Btrfs: use helpers for last_trans_log_full_commit instead of opencode
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38
39 #undef SCRAMBLE_DELAYED_REFS
40
41 /*
42 * control flags for do_chunk_alloc's force field
43 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
44 * if we really need one.
45 *
46 * CHUNK_ALLOC_LIMITED means to only try and allocate one
47 * if we have very few chunks already allocated. This is
48 * used as part of the clustering code to help make sure
49 * we have a good pool of storage to cluster in, without
50 * filling the FS with empty chunks
51 *
52 * CHUNK_ALLOC_FORCE means it must try to allocate one
53 *
54 */
55 enum {
56 CHUNK_ALLOC_NO_FORCE = 0,
57 CHUNK_ALLOC_LIMITED = 1,
58 CHUNK_ALLOC_FORCE = 2,
59 };
60
61 /*
62 * Control how reservations are dealt with.
63 *
64 * RESERVE_FREE - freeing a reservation.
65 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
66 * ENOSPC accounting
67 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
68 * bytes_may_use as the ENOSPC accounting is done elsewhere
69 */
70 enum {
71 RESERVE_FREE = 0,
72 RESERVE_ALLOC = 1,
73 RESERVE_ALLOC_NO_ACCOUNT = 2,
74 };
75
76 static int update_block_group(struct btrfs_root *root,
77 u64 bytenr, u64 num_bytes, int alloc);
78 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root,
80 u64 bytenr, u64 num_bytes, u64 parent,
81 u64 root_objectid, u64 owner_objectid,
82 u64 owner_offset, int refs_to_drop,
83 struct btrfs_delayed_extent_op *extra_op);
84 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
85 struct extent_buffer *leaf,
86 struct btrfs_extent_item *ei);
87 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
88 struct btrfs_root *root,
89 u64 parent, u64 root_objectid,
90 u64 flags, u64 owner, u64 offset,
91 struct btrfs_key *ins, int ref_mod);
92 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
93 struct btrfs_root *root,
94 u64 parent, u64 root_objectid,
95 u64 flags, struct btrfs_disk_key *key,
96 int level, struct btrfs_key *ins);
97 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
98 struct btrfs_root *extent_root, u64 flags,
99 int force);
100 static int find_next_key(struct btrfs_path *path, int level,
101 struct btrfs_key *key);
102 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
103 int dump_block_groups);
104 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
105 u64 num_bytes, int reserve);
106 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
107 u64 num_bytes);
108 int btrfs_pin_extent(struct btrfs_root *root,
109 u64 bytenr, u64 num_bytes, int reserved);
110
111 static noinline int
112 block_group_cache_done(struct btrfs_block_group_cache *cache)
113 {
114 smp_mb();
115 return cache->cached == BTRFS_CACHE_FINISHED ||
116 cache->cached == BTRFS_CACHE_ERROR;
117 }
118
119 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
120 {
121 return (cache->flags & bits) == bits;
122 }
123
124 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
125 {
126 atomic_inc(&cache->count);
127 }
128
129 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
130 {
131 if (atomic_dec_and_test(&cache->count)) {
132 WARN_ON(cache->pinned > 0);
133 WARN_ON(cache->reserved > 0);
134 kfree(cache->free_space_ctl);
135 kfree(cache);
136 }
137 }
138
139 /*
140 * this adds the block group to the fs_info rb tree for the block group
141 * cache
142 */
143 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
144 struct btrfs_block_group_cache *block_group)
145 {
146 struct rb_node **p;
147 struct rb_node *parent = NULL;
148 struct btrfs_block_group_cache *cache;
149
150 spin_lock(&info->block_group_cache_lock);
151 p = &info->block_group_cache_tree.rb_node;
152
153 while (*p) {
154 parent = *p;
155 cache = rb_entry(parent, struct btrfs_block_group_cache,
156 cache_node);
157 if (block_group->key.objectid < cache->key.objectid) {
158 p = &(*p)->rb_left;
159 } else if (block_group->key.objectid > cache->key.objectid) {
160 p = &(*p)->rb_right;
161 } else {
162 spin_unlock(&info->block_group_cache_lock);
163 return -EEXIST;
164 }
165 }
166
167 rb_link_node(&block_group->cache_node, parent, p);
168 rb_insert_color(&block_group->cache_node,
169 &info->block_group_cache_tree);
170
171 if (info->first_logical_byte > block_group->key.objectid)
172 info->first_logical_byte = block_group->key.objectid;
173
174 spin_unlock(&info->block_group_cache_lock);
175
176 return 0;
177 }
178
179 /*
180 * This will return the block group at or after bytenr if contains is 0, else
181 * it will return the block group that contains the bytenr
182 */
183 static struct btrfs_block_group_cache *
184 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
185 int contains)
186 {
187 struct btrfs_block_group_cache *cache, *ret = NULL;
188 struct rb_node *n;
189 u64 end, start;
190
191 spin_lock(&info->block_group_cache_lock);
192 n = info->block_group_cache_tree.rb_node;
193
194 while (n) {
195 cache = rb_entry(n, struct btrfs_block_group_cache,
196 cache_node);
197 end = cache->key.objectid + cache->key.offset - 1;
198 start = cache->key.objectid;
199
200 if (bytenr < start) {
201 if (!contains && (!ret || start < ret->key.objectid))
202 ret = cache;
203 n = n->rb_left;
204 } else if (bytenr > start) {
205 if (contains && bytenr <= end) {
206 ret = cache;
207 break;
208 }
209 n = n->rb_right;
210 } else {
211 ret = cache;
212 break;
213 }
214 }
215 if (ret) {
216 btrfs_get_block_group(ret);
217 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
218 info->first_logical_byte = ret->key.objectid;
219 }
220 spin_unlock(&info->block_group_cache_lock);
221
222 return ret;
223 }
224
225 static int add_excluded_extent(struct btrfs_root *root,
226 u64 start, u64 num_bytes)
227 {
228 u64 end = start + num_bytes - 1;
229 set_extent_bits(&root->fs_info->freed_extents[0],
230 start, end, EXTENT_UPTODATE, GFP_NOFS);
231 set_extent_bits(&root->fs_info->freed_extents[1],
232 start, end, EXTENT_UPTODATE, GFP_NOFS);
233 return 0;
234 }
235
236 static void free_excluded_extents(struct btrfs_root *root,
237 struct btrfs_block_group_cache *cache)
238 {
239 u64 start, end;
240
241 start = cache->key.objectid;
242 end = start + cache->key.offset - 1;
243
244 clear_extent_bits(&root->fs_info->freed_extents[0],
245 start, end, EXTENT_UPTODATE, GFP_NOFS);
246 clear_extent_bits(&root->fs_info->freed_extents[1],
247 start, end, EXTENT_UPTODATE, GFP_NOFS);
248 }
249
250 static int exclude_super_stripes(struct btrfs_root *root,
251 struct btrfs_block_group_cache *cache)
252 {
253 u64 bytenr;
254 u64 *logical;
255 int stripe_len;
256 int i, nr, ret;
257
258 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
259 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
260 cache->bytes_super += stripe_len;
261 ret = add_excluded_extent(root, cache->key.objectid,
262 stripe_len);
263 if (ret)
264 return ret;
265 }
266
267 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
268 bytenr = btrfs_sb_offset(i);
269 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
270 cache->key.objectid, bytenr,
271 0, &logical, &nr, &stripe_len);
272 if (ret)
273 return ret;
274
275 while (nr--) {
276 u64 start, len;
277
278 if (logical[nr] > cache->key.objectid +
279 cache->key.offset)
280 continue;
281
282 if (logical[nr] + stripe_len <= cache->key.objectid)
283 continue;
284
285 start = logical[nr];
286 if (start < cache->key.objectid) {
287 start = cache->key.objectid;
288 len = (logical[nr] + stripe_len) - start;
289 } else {
290 len = min_t(u64, stripe_len,
291 cache->key.objectid +
292 cache->key.offset - start);
293 }
294
295 cache->bytes_super += len;
296 ret = add_excluded_extent(root, start, len);
297 if (ret) {
298 kfree(logical);
299 return ret;
300 }
301 }
302
303 kfree(logical);
304 }
305 return 0;
306 }
307
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
310 {
311 struct btrfs_caching_control *ctl;
312
313 spin_lock(&cache->lock);
314 if (cache->cached != BTRFS_CACHE_STARTED) {
315 spin_unlock(&cache->lock);
316 return NULL;
317 }
318
319 /* We're loading it the fast way, so we don't have a caching_ctl. */
320 if (!cache->caching_ctl) {
321 spin_unlock(&cache->lock);
322 return NULL;
323 }
324
325 ctl = cache->caching_ctl;
326 atomic_inc(&ctl->count);
327 spin_unlock(&cache->lock);
328 return ctl;
329 }
330
331 static void put_caching_control(struct btrfs_caching_control *ctl)
332 {
333 if (atomic_dec_and_test(&ctl->count))
334 kfree(ctl);
335 }
336
337 /*
338 * this is only called by cache_block_group, since we could have freed extents
339 * we need to check the pinned_extents for any extents that can't be used yet
340 * since their free space will be released as soon as the transaction commits.
341 */
342 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
343 struct btrfs_fs_info *info, u64 start, u64 end)
344 {
345 u64 extent_start, extent_end, size, total_added = 0;
346 int ret;
347
348 while (start < end) {
349 ret = find_first_extent_bit(info->pinned_extents, start,
350 &extent_start, &extent_end,
351 EXTENT_DIRTY | EXTENT_UPTODATE,
352 NULL);
353 if (ret)
354 break;
355
356 if (extent_start <= start) {
357 start = extent_end + 1;
358 } else if (extent_start > start && extent_start < end) {
359 size = extent_start - start;
360 total_added += size;
361 ret = btrfs_add_free_space(block_group, start,
362 size);
363 BUG_ON(ret); /* -ENOMEM or logic error */
364 start = extent_end + 1;
365 } else {
366 break;
367 }
368 }
369
370 if (start < end) {
371 size = end - start;
372 total_added += size;
373 ret = btrfs_add_free_space(block_group, start, size);
374 BUG_ON(ret); /* -ENOMEM or logic error */
375 }
376
377 return total_added;
378 }
379
380 static noinline void caching_thread(struct btrfs_work *work)
381 {
382 struct btrfs_block_group_cache *block_group;
383 struct btrfs_fs_info *fs_info;
384 struct btrfs_caching_control *caching_ctl;
385 struct btrfs_root *extent_root;
386 struct btrfs_path *path;
387 struct extent_buffer *leaf;
388 struct btrfs_key key;
389 u64 total_found = 0;
390 u64 last = 0;
391 u32 nritems;
392 int ret = -ENOMEM;
393
394 caching_ctl = container_of(work, struct btrfs_caching_control, work);
395 block_group = caching_ctl->block_group;
396 fs_info = block_group->fs_info;
397 extent_root = fs_info->extent_root;
398
399 path = btrfs_alloc_path();
400 if (!path)
401 goto out;
402
403 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
404
405 /*
406 * We don't want to deadlock with somebody trying to allocate a new
407 * extent for the extent root while also trying to search the extent
408 * root to add free space. So we skip locking and search the commit
409 * root, since its read-only
410 */
411 path->skip_locking = 1;
412 path->search_commit_root = 1;
413 path->reada = 1;
414
415 key.objectid = last;
416 key.offset = 0;
417 key.type = BTRFS_EXTENT_ITEM_KEY;
418 again:
419 mutex_lock(&caching_ctl->mutex);
420 /* need to make sure the commit_root doesn't disappear */
421 down_read(&fs_info->commit_root_sem);
422
423 next:
424 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
425 if (ret < 0)
426 goto err;
427
428 leaf = path->nodes[0];
429 nritems = btrfs_header_nritems(leaf);
430
431 while (1) {
432 if (btrfs_fs_closing(fs_info) > 1) {
433 last = (u64)-1;
434 break;
435 }
436
437 if (path->slots[0] < nritems) {
438 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
439 } else {
440 ret = find_next_key(path, 0, &key);
441 if (ret)
442 break;
443
444 if (need_resched() ||
445 rwsem_is_contended(&fs_info->commit_root_sem)) {
446 caching_ctl->progress = last;
447 btrfs_release_path(path);
448 up_read(&fs_info->commit_root_sem);
449 mutex_unlock(&caching_ctl->mutex);
450 cond_resched();
451 goto again;
452 }
453
454 ret = btrfs_next_leaf(extent_root, path);
455 if (ret < 0)
456 goto err;
457 if (ret)
458 break;
459 leaf = path->nodes[0];
460 nritems = btrfs_header_nritems(leaf);
461 continue;
462 }
463
464 if (key.objectid < last) {
465 key.objectid = last;
466 key.offset = 0;
467 key.type = BTRFS_EXTENT_ITEM_KEY;
468
469 caching_ctl->progress = last;
470 btrfs_release_path(path);
471 goto next;
472 }
473
474 if (key.objectid < block_group->key.objectid) {
475 path->slots[0]++;
476 continue;
477 }
478
479 if (key.objectid >= block_group->key.objectid +
480 block_group->key.offset)
481 break;
482
483 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
484 key.type == BTRFS_METADATA_ITEM_KEY) {
485 total_found += add_new_free_space(block_group,
486 fs_info, last,
487 key.objectid);
488 if (key.type == BTRFS_METADATA_ITEM_KEY)
489 last = key.objectid +
490 fs_info->tree_root->leafsize;
491 else
492 last = key.objectid + key.offset;
493
494 if (total_found > (1024 * 1024 * 2)) {
495 total_found = 0;
496 wake_up(&caching_ctl->wait);
497 }
498 }
499 path->slots[0]++;
500 }
501 ret = 0;
502
503 total_found += add_new_free_space(block_group, fs_info, last,
504 block_group->key.objectid +
505 block_group->key.offset);
506 caching_ctl->progress = (u64)-1;
507
508 spin_lock(&block_group->lock);
509 block_group->caching_ctl = NULL;
510 block_group->cached = BTRFS_CACHE_FINISHED;
511 spin_unlock(&block_group->lock);
512
513 err:
514 btrfs_free_path(path);
515 up_read(&fs_info->commit_root_sem);
516
517 free_excluded_extents(extent_root, block_group);
518
519 mutex_unlock(&caching_ctl->mutex);
520 out:
521 if (ret) {
522 spin_lock(&block_group->lock);
523 block_group->caching_ctl = NULL;
524 block_group->cached = BTRFS_CACHE_ERROR;
525 spin_unlock(&block_group->lock);
526 }
527 wake_up(&caching_ctl->wait);
528
529 put_caching_control(caching_ctl);
530 btrfs_put_block_group(block_group);
531 }
532
533 static int cache_block_group(struct btrfs_block_group_cache *cache,
534 int load_cache_only)
535 {
536 DEFINE_WAIT(wait);
537 struct btrfs_fs_info *fs_info = cache->fs_info;
538 struct btrfs_caching_control *caching_ctl;
539 int ret = 0;
540
541 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
542 if (!caching_ctl)
543 return -ENOMEM;
544
545 INIT_LIST_HEAD(&caching_ctl->list);
546 mutex_init(&caching_ctl->mutex);
547 init_waitqueue_head(&caching_ctl->wait);
548 caching_ctl->block_group = cache;
549 caching_ctl->progress = cache->key.objectid;
550 atomic_set(&caching_ctl->count, 1);
551 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
552
553 spin_lock(&cache->lock);
554 /*
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
564 * another.
565 */
566 while (cache->cached == BTRFS_CACHE_FAST) {
567 struct btrfs_caching_control *ctl;
568
569 ctl = cache->caching_ctl;
570 atomic_inc(&ctl->count);
571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 spin_unlock(&cache->lock);
573
574 schedule();
575
576 finish_wait(&ctl->wait, &wait);
577 put_caching_control(ctl);
578 spin_lock(&cache->lock);
579 }
580
581 if (cache->cached != BTRFS_CACHE_NO) {
582 spin_unlock(&cache->lock);
583 kfree(caching_ctl);
584 return 0;
585 }
586 WARN_ON(cache->caching_ctl);
587 cache->caching_ctl = caching_ctl;
588 cache->cached = BTRFS_CACHE_FAST;
589 spin_unlock(&cache->lock);
590
591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 ret = load_free_space_cache(fs_info, cache);
593
594 spin_lock(&cache->lock);
595 if (ret == 1) {
596 cache->caching_ctl = NULL;
597 cache->cached = BTRFS_CACHE_FINISHED;
598 cache->last_byte_to_unpin = (u64)-1;
599 } else {
600 if (load_cache_only) {
601 cache->caching_ctl = NULL;
602 cache->cached = BTRFS_CACHE_NO;
603 } else {
604 cache->cached = BTRFS_CACHE_STARTED;
605 }
606 }
607 spin_unlock(&cache->lock);
608 wake_up(&caching_ctl->wait);
609 if (ret == 1) {
610 put_caching_control(caching_ctl);
611 free_excluded_extents(fs_info->extent_root, cache);
612 return 0;
613 }
614 } else {
615 /*
616 * We are not going to do the fast caching, set cached to the
617 * appropriate value and wakeup any waiters.
618 */
619 spin_lock(&cache->lock);
620 if (load_cache_only) {
621 cache->caching_ctl = NULL;
622 cache->cached = BTRFS_CACHE_NO;
623 } else {
624 cache->cached = BTRFS_CACHE_STARTED;
625 }
626 spin_unlock(&cache->lock);
627 wake_up(&caching_ctl->wait);
628 }
629
630 if (load_cache_only) {
631 put_caching_control(caching_ctl);
632 return 0;
633 }
634
635 down_write(&fs_info->commit_root_sem);
636 atomic_inc(&caching_ctl->count);
637 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
638 up_write(&fs_info->commit_root_sem);
639
640 btrfs_get_block_group(cache);
641
642 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
643
644 return ret;
645 }
646
647 /*
648 * return the block group that starts at or after bytenr
649 */
650 static struct btrfs_block_group_cache *
651 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
652 {
653 struct btrfs_block_group_cache *cache;
654
655 cache = block_group_cache_tree_search(info, bytenr, 0);
656
657 return cache;
658 }
659
660 /*
661 * return the block group that contains the given bytenr
662 */
663 struct btrfs_block_group_cache *btrfs_lookup_block_group(
664 struct btrfs_fs_info *info,
665 u64 bytenr)
666 {
667 struct btrfs_block_group_cache *cache;
668
669 cache = block_group_cache_tree_search(info, bytenr, 1);
670
671 return cache;
672 }
673
674 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
675 u64 flags)
676 {
677 struct list_head *head = &info->space_info;
678 struct btrfs_space_info *found;
679
680 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
681
682 rcu_read_lock();
683 list_for_each_entry_rcu(found, head, list) {
684 if (found->flags & flags) {
685 rcu_read_unlock();
686 return found;
687 }
688 }
689 rcu_read_unlock();
690 return NULL;
691 }
692
693 /*
694 * after adding space to the filesystem, we need to clear the full flags
695 * on all the space infos.
696 */
697 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
698 {
699 struct list_head *head = &info->space_info;
700 struct btrfs_space_info *found;
701
702 rcu_read_lock();
703 list_for_each_entry_rcu(found, head, list)
704 found->full = 0;
705 rcu_read_unlock();
706 }
707
708 /* simple helper to search for an existing extent at a given offset */
709 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
710 {
711 int ret;
712 struct btrfs_key key;
713 struct btrfs_path *path;
714
715 path = btrfs_alloc_path();
716 if (!path)
717 return -ENOMEM;
718
719 key.objectid = start;
720 key.offset = len;
721 key.type = BTRFS_EXTENT_ITEM_KEY;
722 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
723 0, 0);
724 if (ret > 0) {
725 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
726 if (key.objectid == start &&
727 key.type == BTRFS_METADATA_ITEM_KEY)
728 ret = 0;
729 }
730 btrfs_free_path(path);
731 return ret;
732 }
733
734 /*
735 * helper function to lookup reference count and flags of a tree block.
736 *
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
742 */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root, u64 bytenr,
745 u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 struct btrfs_delayed_ref_head *head;
748 struct btrfs_delayed_ref_root *delayed_refs;
749 struct btrfs_path *path;
750 struct btrfs_extent_item *ei;
751 struct extent_buffer *leaf;
752 struct btrfs_key key;
753 u32 item_size;
754 u64 num_refs;
755 u64 extent_flags;
756 int ret;
757
758 /*
759 * If we don't have skinny metadata, don't bother doing anything
760 * different
761 */
762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 offset = root->leafsize;
764 metadata = 0;
765 }
766
767 path = btrfs_alloc_path();
768 if (!path)
769 return -ENOMEM;
770
771 if (!trans) {
772 path->skip_locking = 1;
773 path->search_commit_root = 1;
774 }
775
776 search_again:
777 key.objectid = bytenr;
778 key.offset = offset;
779 if (metadata)
780 key.type = BTRFS_METADATA_ITEM_KEY;
781 else
782 key.type = BTRFS_EXTENT_ITEM_KEY;
783
784 again:
785 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
786 &key, path, 0, 0);
787 if (ret < 0)
788 goto out_free;
789
790 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
791 if (path->slots[0]) {
792 path->slots[0]--;
793 btrfs_item_key_to_cpu(path->nodes[0], &key,
794 path->slots[0]);
795 if (key.objectid == bytenr &&
796 key.type == BTRFS_EXTENT_ITEM_KEY &&
797 key.offset == root->leafsize)
798 ret = 0;
799 }
800 if (ret) {
801 key.objectid = bytenr;
802 key.type = BTRFS_EXTENT_ITEM_KEY;
803 key.offset = root->leafsize;
804 btrfs_release_path(path);
805 goto again;
806 }
807 }
808
809 if (ret == 0) {
810 leaf = path->nodes[0];
811 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
812 if (item_size >= sizeof(*ei)) {
813 ei = btrfs_item_ptr(leaf, path->slots[0],
814 struct btrfs_extent_item);
815 num_refs = btrfs_extent_refs(leaf, ei);
816 extent_flags = btrfs_extent_flags(leaf, ei);
817 } else {
818 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
819 struct btrfs_extent_item_v0 *ei0;
820 BUG_ON(item_size != sizeof(*ei0));
821 ei0 = btrfs_item_ptr(leaf, path->slots[0],
822 struct btrfs_extent_item_v0);
823 num_refs = btrfs_extent_refs_v0(leaf, ei0);
824 /* FIXME: this isn't correct for data */
825 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
826 #else
827 BUG();
828 #endif
829 }
830 BUG_ON(num_refs == 0);
831 } else {
832 num_refs = 0;
833 extent_flags = 0;
834 ret = 0;
835 }
836
837 if (!trans)
838 goto out;
839
840 delayed_refs = &trans->transaction->delayed_refs;
841 spin_lock(&delayed_refs->lock);
842 head = btrfs_find_delayed_ref_head(trans, bytenr);
843 if (head) {
844 if (!mutex_trylock(&head->mutex)) {
845 atomic_inc(&head->node.refs);
846 spin_unlock(&delayed_refs->lock);
847
848 btrfs_release_path(path);
849
850 /*
851 * Mutex was contended, block until it's released and try
852 * again
853 */
854 mutex_lock(&head->mutex);
855 mutex_unlock(&head->mutex);
856 btrfs_put_delayed_ref(&head->node);
857 goto search_again;
858 }
859 spin_lock(&head->lock);
860 if (head->extent_op && head->extent_op->update_flags)
861 extent_flags |= head->extent_op->flags_to_set;
862 else
863 BUG_ON(num_refs == 0);
864
865 num_refs += head->node.ref_mod;
866 spin_unlock(&head->lock);
867 mutex_unlock(&head->mutex);
868 }
869 spin_unlock(&delayed_refs->lock);
870 out:
871 WARN_ON(num_refs == 0);
872 if (refs)
873 *refs = num_refs;
874 if (flags)
875 *flags = extent_flags;
876 out_free:
877 btrfs_free_path(path);
878 return ret;
879 }
880
881 /*
882 * Back reference rules. Back refs have three main goals:
883 *
884 * 1) differentiate between all holders of references to an extent so that
885 * when a reference is dropped we can make sure it was a valid reference
886 * before freeing the extent.
887 *
888 * 2) Provide enough information to quickly find the holders of an extent
889 * if we notice a given block is corrupted or bad.
890 *
891 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
892 * maintenance. This is actually the same as #2, but with a slightly
893 * different use case.
894 *
895 * There are two kinds of back refs. The implicit back refs is optimized
896 * for pointers in non-shared tree blocks. For a given pointer in a block,
897 * back refs of this kind provide information about the block's owner tree
898 * and the pointer's key. These information allow us to find the block by
899 * b-tree searching. The full back refs is for pointers in tree blocks not
900 * referenced by their owner trees. The location of tree block is recorded
901 * in the back refs. Actually the full back refs is generic, and can be
902 * used in all cases the implicit back refs is used. The major shortcoming
903 * of the full back refs is its overhead. Every time a tree block gets
904 * COWed, we have to update back refs entry for all pointers in it.
905 *
906 * For a newly allocated tree block, we use implicit back refs for
907 * pointers in it. This means most tree related operations only involve
908 * implicit back refs. For a tree block created in old transaction, the
909 * only way to drop a reference to it is COW it. So we can detect the
910 * event that tree block loses its owner tree's reference and do the
911 * back refs conversion.
912 *
913 * When a tree block is COW'd through a tree, there are four cases:
914 *
915 * The reference count of the block is one and the tree is the block's
916 * owner tree. Nothing to do in this case.
917 *
918 * The reference count of the block is one and the tree is not the
919 * block's owner tree. In this case, full back refs is used for pointers
920 * in the block. Remove these full back refs, add implicit back refs for
921 * every pointers in the new block.
922 *
923 * The reference count of the block is greater than one and the tree is
924 * the block's owner tree. In this case, implicit back refs is used for
925 * pointers in the block. Add full back refs for every pointers in the
926 * block, increase lower level extents' reference counts. The original
927 * implicit back refs are entailed to the new block.
928 *
929 * The reference count of the block is greater than one and the tree is
930 * not the block's owner tree. Add implicit back refs for every pointer in
931 * the new block, increase lower level extents' reference count.
932 *
933 * Back Reference Key composing:
934 *
935 * The key objectid corresponds to the first byte in the extent,
936 * The key type is used to differentiate between types of back refs.
937 * There are different meanings of the key offset for different types
938 * of back refs.
939 *
940 * File extents can be referenced by:
941 *
942 * - multiple snapshots, subvolumes, or different generations in one subvol
943 * - different files inside a single subvolume
944 * - different offsets inside a file (bookend extents in file.c)
945 *
946 * The extent ref structure for the implicit back refs has fields for:
947 *
948 * - Objectid of the subvolume root
949 * - objectid of the file holding the reference
950 * - original offset in the file
951 * - how many bookend extents
952 *
953 * The key offset for the implicit back refs is hash of the first
954 * three fields.
955 *
956 * The extent ref structure for the full back refs has field for:
957 *
958 * - number of pointers in the tree leaf
959 *
960 * The key offset for the implicit back refs is the first byte of
961 * the tree leaf
962 *
963 * When a file extent is allocated, The implicit back refs is used.
964 * the fields are filled in:
965 *
966 * (root_key.objectid, inode objectid, offset in file, 1)
967 *
968 * When a file extent is removed file truncation, we find the
969 * corresponding implicit back refs and check the following fields:
970 *
971 * (btrfs_header_owner(leaf), inode objectid, offset in file)
972 *
973 * Btree extents can be referenced by:
974 *
975 * - Different subvolumes
976 *
977 * Both the implicit back refs and the full back refs for tree blocks
978 * only consist of key. The key offset for the implicit back refs is
979 * objectid of block's owner tree. The key offset for the full back refs
980 * is the first byte of parent block.
981 *
982 * When implicit back refs is used, information about the lowest key and
983 * level of the tree block are required. These information are stored in
984 * tree block info structure.
985 */
986
987 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
988 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
989 struct btrfs_root *root,
990 struct btrfs_path *path,
991 u64 owner, u32 extra_size)
992 {
993 struct btrfs_extent_item *item;
994 struct btrfs_extent_item_v0 *ei0;
995 struct btrfs_extent_ref_v0 *ref0;
996 struct btrfs_tree_block_info *bi;
997 struct extent_buffer *leaf;
998 struct btrfs_key key;
999 struct btrfs_key found_key;
1000 u32 new_size = sizeof(*item);
1001 u64 refs;
1002 int ret;
1003
1004 leaf = path->nodes[0];
1005 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1006
1007 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1008 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1009 struct btrfs_extent_item_v0);
1010 refs = btrfs_extent_refs_v0(leaf, ei0);
1011
1012 if (owner == (u64)-1) {
1013 while (1) {
1014 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1015 ret = btrfs_next_leaf(root, path);
1016 if (ret < 0)
1017 return ret;
1018 BUG_ON(ret > 0); /* Corruption */
1019 leaf = path->nodes[0];
1020 }
1021 btrfs_item_key_to_cpu(leaf, &found_key,
1022 path->slots[0]);
1023 BUG_ON(key.objectid != found_key.objectid);
1024 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1025 path->slots[0]++;
1026 continue;
1027 }
1028 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1029 struct btrfs_extent_ref_v0);
1030 owner = btrfs_ref_objectid_v0(leaf, ref0);
1031 break;
1032 }
1033 }
1034 btrfs_release_path(path);
1035
1036 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1037 new_size += sizeof(*bi);
1038
1039 new_size -= sizeof(*ei0);
1040 ret = btrfs_search_slot(trans, root, &key, path,
1041 new_size + extra_size, 1);
1042 if (ret < 0)
1043 return ret;
1044 BUG_ON(ret); /* Corruption */
1045
1046 btrfs_extend_item(root, path, new_size);
1047
1048 leaf = path->nodes[0];
1049 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1050 btrfs_set_extent_refs(leaf, item, refs);
1051 /* FIXME: get real generation */
1052 btrfs_set_extent_generation(leaf, item, 0);
1053 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1054 btrfs_set_extent_flags(leaf, item,
1055 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1056 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1057 bi = (struct btrfs_tree_block_info *)(item + 1);
1058 /* FIXME: get first key of the block */
1059 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1060 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1061 } else {
1062 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1063 }
1064 btrfs_mark_buffer_dirty(leaf);
1065 return 0;
1066 }
1067 #endif
1068
1069 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1070 {
1071 u32 high_crc = ~(u32)0;
1072 u32 low_crc = ~(u32)0;
1073 __le64 lenum;
1074
1075 lenum = cpu_to_le64(root_objectid);
1076 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1077 lenum = cpu_to_le64(owner);
1078 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1079 lenum = cpu_to_le64(offset);
1080 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1081
1082 return ((u64)high_crc << 31) ^ (u64)low_crc;
1083 }
1084
1085 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref)
1087 {
1088 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1089 btrfs_extent_data_ref_objectid(leaf, ref),
1090 btrfs_extent_data_ref_offset(leaf, ref));
1091 }
1092
1093 static int match_extent_data_ref(struct extent_buffer *leaf,
1094 struct btrfs_extent_data_ref *ref,
1095 u64 root_objectid, u64 owner, u64 offset)
1096 {
1097 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1098 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1099 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1100 return 0;
1101 return 1;
1102 }
1103
1104 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1105 struct btrfs_root *root,
1106 struct btrfs_path *path,
1107 u64 bytenr, u64 parent,
1108 u64 root_objectid,
1109 u64 owner, u64 offset)
1110 {
1111 struct btrfs_key key;
1112 struct btrfs_extent_data_ref *ref;
1113 struct extent_buffer *leaf;
1114 u32 nritems;
1115 int ret;
1116 int recow;
1117 int err = -ENOENT;
1118
1119 key.objectid = bytenr;
1120 if (parent) {
1121 key.type = BTRFS_SHARED_DATA_REF_KEY;
1122 key.offset = parent;
1123 } else {
1124 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1125 key.offset = hash_extent_data_ref(root_objectid,
1126 owner, offset);
1127 }
1128 again:
1129 recow = 0;
1130 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1131 if (ret < 0) {
1132 err = ret;
1133 goto fail;
1134 }
1135
1136 if (parent) {
1137 if (!ret)
1138 return 0;
1139 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1140 key.type = BTRFS_EXTENT_REF_V0_KEY;
1141 btrfs_release_path(path);
1142 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1143 if (ret < 0) {
1144 err = ret;
1145 goto fail;
1146 }
1147 if (!ret)
1148 return 0;
1149 #endif
1150 goto fail;
1151 }
1152
1153 leaf = path->nodes[0];
1154 nritems = btrfs_header_nritems(leaf);
1155 while (1) {
1156 if (path->slots[0] >= nritems) {
1157 ret = btrfs_next_leaf(root, path);
1158 if (ret < 0)
1159 err = ret;
1160 if (ret)
1161 goto fail;
1162
1163 leaf = path->nodes[0];
1164 nritems = btrfs_header_nritems(leaf);
1165 recow = 1;
1166 }
1167
1168 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1169 if (key.objectid != bytenr ||
1170 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1171 goto fail;
1172
1173 ref = btrfs_item_ptr(leaf, path->slots[0],
1174 struct btrfs_extent_data_ref);
1175
1176 if (match_extent_data_ref(leaf, ref, root_objectid,
1177 owner, offset)) {
1178 if (recow) {
1179 btrfs_release_path(path);
1180 goto again;
1181 }
1182 err = 0;
1183 break;
1184 }
1185 path->slots[0]++;
1186 }
1187 fail:
1188 return err;
1189 }
1190
1191 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1192 struct btrfs_root *root,
1193 struct btrfs_path *path,
1194 u64 bytenr, u64 parent,
1195 u64 root_objectid, u64 owner,
1196 u64 offset, int refs_to_add)
1197 {
1198 struct btrfs_key key;
1199 struct extent_buffer *leaf;
1200 u32 size;
1201 u32 num_refs;
1202 int ret;
1203
1204 key.objectid = bytenr;
1205 if (parent) {
1206 key.type = BTRFS_SHARED_DATA_REF_KEY;
1207 key.offset = parent;
1208 size = sizeof(struct btrfs_shared_data_ref);
1209 } else {
1210 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1211 key.offset = hash_extent_data_ref(root_objectid,
1212 owner, offset);
1213 size = sizeof(struct btrfs_extent_data_ref);
1214 }
1215
1216 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1217 if (ret && ret != -EEXIST)
1218 goto fail;
1219
1220 leaf = path->nodes[0];
1221 if (parent) {
1222 struct btrfs_shared_data_ref *ref;
1223 ref = btrfs_item_ptr(leaf, path->slots[0],
1224 struct btrfs_shared_data_ref);
1225 if (ret == 0) {
1226 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1227 } else {
1228 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1229 num_refs += refs_to_add;
1230 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1231 }
1232 } else {
1233 struct btrfs_extent_data_ref *ref;
1234 while (ret == -EEXIST) {
1235 ref = btrfs_item_ptr(leaf, path->slots[0],
1236 struct btrfs_extent_data_ref);
1237 if (match_extent_data_ref(leaf, ref, root_objectid,
1238 owner, offset))
1239 break;
1240 btrfs_release_path(path);
1241 key.offset++;
1242 ret = btrfs_insert_empty_item(trans, root, path, &key,
1243 size);
1244 if (ret && ret != -EEXIST)
1245 goto fail;
1246
1247 leaf = path->nodes[0];
1248 }
1249 ref = btrfs_item_ptr(leaf, path->slots[0],
1250 struct btrfs_extent_data_ref);
1251 if (ret == 0) {
1252 btrfs_set_extent_data_ref_root(leaf, ref,
1253 root_objectid);
1254 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1255 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1256 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1257 } else {
1258 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1259 num_refs += refs_to_add;
1260 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1261 }
1262 }
1263 btrfs_mark_buffer_dirty(leaf);
1264 ret = 0;
1265 fail:
1266 btrfs_release_path(path);
1267 return ret;
1268 }
1269
1270 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1271 struct btrfs_root *root,
1272 struct btrfs_path *path,
1273 int refs_to_drop)
1274 {
1275 struct btrfs_key key;
1276 struct btrfs_extent_data_ref *ref1 = NULL;
1277 struct btrfs_shared_data_ref *ref2 = NULL;
1278 struct extent_buffer *leaf;
1279 u32 num_refs = 0;
1280 int ret = 0;
1281
1282 leaf = path->nodes[0];
1283 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1284
1285 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1286 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1287 struct btrfs_extent_data_ref);
1288 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1289 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1290 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1291 struct btrfs_shared_data_ref);
1292 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1293 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1294 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1295 struct btrfs_extent_ref_v0 *ref0;
1296 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1297 struct btrfs_extent_ref_v0);
1298 num_refs = btrfs_ref_count_v0(leaf, ref0);
1299 #endif
1300 } else {
1301 BUG();
1302 }
1303
1304 BUG_ON(num_refs < refs_to_drop);
1305 num_refs -= refs_to_drop;
1306
1307 if (num_refs == 0) {
1308 ret = btrfs_del_item(trans, root, path);
1309 } else {
1310 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1311 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1312 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1313 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1314 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1315 else {
1316 struct btrfs_extent_ref_v0 *ref0;
1317 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1318 struct btrfs_extent_ref_v0);
1319 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1320 }
1321 #endif
1322 btrfs_mark_buffer_dirty(leaf);
1323 }
1324 return ret;
1325 }
1326
1327 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1328 struct btrfs_path *path,
1329 struct btrfs_extent_inline_ref *iref)
1330 {
1331 struct btrfs_key key;
1332 struct extent_buffer *leaf;
1333 struct btrfs_extent_data_ref *ref1;
1334 struct btrfs_shared_data_ref *ref2;
1335 u32 num_refs = 0;
1336
1337 leaf = path->nodes[0];
1338 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1339 if (iref) {
1340 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1341 BTRFS_EXTENT_DATA_REF_KEY) {
1342 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 } else {
1345 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347 }
1348 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1349 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1350 struct btrfs_extent_data_ref);
1351 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1352 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1353 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1354 struct btrfs_shared_data_ref);
1355 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1358 struct btrfs_extent_ref_v0 *ref0;
1359 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1360 struct btrfs_extent_ref_v0);
1361 num_refs = btrfs_ref_count_v0(leaf, ref0);
1362 #endif
1363 } else {
1364 WARN_ON(1);
1365 }
1366 return num_refs;
1367 }
1368
1369 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1370 struct btrfs_root *root,
1371 struct btrfs_path *path,
1372 u64 bytenr, u64 parent,
1373 u64 root_objectid)
1374 {
1375 struct btrfs_key key;
1376 int ret;
1377
1378 key.objectid = bytenr;
1379 if (parent) {
1380 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1381 key.offset = parent;
1382 } else {
1383 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1384 key.offset = root_objectid;
1385 }
1386
1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 if (ret > 0)
1389 ret = -ENOENT;
1390 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1391 if (ret == -ENOENT && parent) {
1392 btrfs_release_path(path);
1393 key.type = BTRFS_EXTENT_REF_V0_KEY;
1394 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1395 if (ret > 0)
1396 ret = -ENOENT;
1397 }
1398 #endif
1399 return ret;
1400 }
1401
1402 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1403 struct btrfs_root *root,
1404 struct btrfs_path *path,
1405 u64 bytenr, u64 parent,
1406 u64 root_objectid)
1407 {
1408 struct btrfs_key key;
1409 int ret;
1410
1411 key.objectid = bytenr;
1412 if (parent) {
1413 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1414 key.offset = parent;
1415 } else {
1416 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1417 key.offset = root_objectid;
1418 }
1419
1420 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1421 btrfs_release_path(path);
1422 return ret;
1423 }
1424
1425 static inline int extent_ref_type(u64 parent, u64 owner)
1426 {
1427 int type;
1428 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1429 if (parent > 0)
1430 type = BTRFS_SHARED_BLOCK_REF_KEY;
1431 else
1432 type = BTRFS_TREE_BLOCK_REF_KEY;
1433 } else {
1434 if (parent > 0)
1435 type = BTRFS_SHARED_DATA_REF_KEY;
1436 else
1437 type = BTRFS_EXTENT_DATA_REF_KEY;
1438 }
1439 return type;
1440 }
1441
1442 static int find_next_key(struct btrfs_path *path, int level,
1443 struct btrfs_key *key)
1444
1445 {
1446 for (; level < BTRFS_MAX_LEVEL; level++) {
1447 if (!path->nodes[level])
1448 break;
1449 if (path->slots[level] + 1 >=
1450 btrfs_header_nritems(path->nodes[level]))
1451 continue;
1452 if (level == 0)
1453 btrfs_item_key_to_cpu(path->nodes[level], key,
1454 path->slots[level] + 1);
1455 else
1456 btrfs_node_key_to_cpu(path->nodes[level], key,
1457 path->slots[level] + 1);
1458 return 0;
1459 }
1460 return 1;
1461 }
1462
1463 /*
1464 * look for inline back ref. if back ref is found, *ref_ret is set
1465 * to the address of inline back ref, and 0 is returned.
1466 *
1467 * if back ref isn't found, *ref_ret is set to the address where it
1468 * should be inserted, and -ENOENT is returned.
1469 *
1470 * if insert is true and there are too many inline back refs, the path
1471 * points to the extent item, and -EAGAIN is returned.
1472 *
1473 * NOTE: inline back refs are ordered in the same way that back ref
1474 * items in the tree are ordered.
1475 */
1476 static noinline_for_stack
1477 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1478 struct btrfs_root *root,
1479 struct btrfs_path *path,
1480 struct btrfs_extent_inline_ref **ref_ret,
1481 u64 bytenr, u64 num_bytes,
1482 u64 parent, u64 root_objectid,
1483 u64 owner, u64 offset, int insert)
1484 {
1485 struct btrfs_key key;
1486 struct extent_buffer *leaf;
1487 struct btrfs_extent_item *ei;
1488 struct btrfs_extent_inline_ref *iref;
1489 u64 flags;
1490 u64 item_size;
1491 unsigned long ptr;
1492 unsigned long end;
1493 int extra_size;
1494 int type;
1495 int want;
1496 int ret;
1497 int err = 0;
1498 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1499 SKINNY_METADATA);
1500
1501 key.objectid = bytenr;
1502 key.type = BTRFS_EXTENT_ITEM_KEY;
1503 key.offset = num_bytes;
1504
1505 want = extent_ref_type(parent, owner);
1506 if (insert) {
1507 extra_size = btrfs_extent_inline_ref_size(want);
1508 path->keep_locks = 1;
1509 } else
1510 extra_size = -1;
1511
1512 /*
1513 * Owner is our parent level, so we can just add one to get the level
1514 * for the block we are interested in.
1515 */
1516 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1517 key.type = BTRFS_METADATA_ITEM_KEY;
1518 key.offset = owner;
1519 }
1520
1521 again:
1522 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1523 if (ret < 0) {
1524 err = ret;
1525 goto out;
1526 }
1527
1528 /*
1529 * We may be a newly converted file system which still has the old fat
1530 * extent entries for metadata, so try and see if we have one of those.
1531 */
1532 if (ret > 0 && skinny_metadata) {
1533 skinny_metadata = false;
1534 if (path->slots[0]) {
1535 path->slots[0]--;
1536 btrfs_item_key_to_cpu(path->nodes[0], &key,
1537 path->slots[0]);
1538 if (key.objectid == bytenr &&
1539 key.type == BTRFS_EXTENT_ITEM_KEY &&
1540 key.offset == num_bytes)
1541 ret = 0;
1542 }
1543 if (ret) {
1544 key.objectid = bytenr;
1545 key.type = BTRFS_EXTENT_ITEM_KEY;
1546 key.offset = num_bytes;
1547 btrfs_release_path(path);
1548 goto again;
1549 }
1550 }
1551
1552 if (ret && !insert) {
1553 err = -ENOENT;
1554 goto out;
1555 } else if (WARN_ON(ret)) {
1556 err = -EIO;
1557 goto out;
1558 }
1559
1560 leaf = path->nodes[0];
1561 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1562 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1563 if (item_size < sizeof(*ei)) {
1564 if (!insert) {
1565 err = -ENOENT;
1566 goto out;
1567 }
1568 ret = convert_extent_item_v0(trans, root, path, owner,
1569 extra_size);
1570 if (ret < 0) {
1571 err = ret;
1572 goto out;
1573 }
1574 leaf = path->nodes[0];
1575 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1576 }
1577 #endif
1578 BUG_ON(item_size < sizeof(*ei));
1579
1580 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1581 flags = btrfs_extent_flags(leaf, ei);
1582
1583 ptr = (unsigned long)(ei + 1);
1584 end = (unsigned long)ei + item_size;
1585
1586 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1587 ptr += sizeof(struct btrfs_tree_block_info);
1588 BUG_ON(ptr > end);
1589 }
1590
1591 err = -ENOENT;
1592 while (1) {
1593 if (ptr >= end) {
1594 WARN_ON(ptr > end);
1595 break;
1596 }
1597 iref = (struct btrfs_extent_inline_ref *)ptr;
1598 type = btrfs_extent_inline_ref_type(leaf, iref);
1599 if (want < type)
1600 break;
1601 if (want > type) {
1602 ptr += btrfs_extent_inline_ref_size(type);
1603 continue;
1604 }
1605
1606 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1607 struct btrfs_extent_data_ref *dref;
1608 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1609 if (match_extent_data_ref(leaf, dref, root_objectid,
1610 owner, offset)) {
1611 err = 0;
1612 break;
1613 }
1614 if (hash_extent_data_ref_item(leaf, dref) <
1615 hash_extent_data_ref(root_objectid, owner, offset))
1616 break;
1617 } else {
1618 u64 ref_offset;
1619 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1620 if (parent > 0) {
1621 if (parent == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < parent)
1626 break;
1627 } else {
1628 if (root_objectid == ref_offset) {
1629 err = 0;
1630 break;
1631 }
1632 if (ref_offset < root_objectid)
1633 break;
1634 }
1635 }
1636 ptr += btrfs_extent_inline_ref_size(type);
1637 }
1638 if (err == -ENOENT && insert) {
1639 if (item_size + extra_size >=
1640 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1641 err = -EAGAIN;
1642 goto out;
1643 }
1644 /*
1645 * To add new inline back ref, we have to make sure
1646 * there is no corresponding back ref item.
1647 * For simplicity, we just do not add new inline back
1648 * ref if there is any kind of item for this block
1649 */
1650 if (find_next_key(path, 0, &key) == 0 &&
1651 key.objectid == bytenr &&
1652 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1653 err = -EAGAIN;
1654 goto out;
1655 }
1656 }
1657 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1658 out:
1659 if (insert) {
1660 path->keep_locks = 0;
1661 btrfs_unlock_up_safe(path, 1);
1662 }
1663 return err;
1664 }
1665
1666 /*
1667 * helper to add new inline back ref
1668 */
1669 static noinline_for_stack
1670 void setup_inline_extent_backref(struct btrfs_root *root,
1671 struct btrfs_path *path,
1672 struct btrfs_extent_inline_ref *iref,
1673 u64 parent, u64 root_objectid,
1674 u64 owner, u64 offset, int refs_to_add,
1675 struct btrfs_delayed_extent_op *extent_op)
1676 {
1677 struct extent_buffer *leaf;
1678 struct btrfs_extent_item *ei;
1679 unsigned long ptr;
1680 unsigned long end;
1681 unsigned long item_offset;
1682 u64 refs;
1683 int size;
1684 int type;
1685
1686 leaf = path->nodes[0];
1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 item_offset = (unsigned long)iref - (unsigned long)ei;
1689
1690 type = extent_ref_type(parent, owner);
1691 size = btrfs_extent_inline_ref_size(type);
1692
1693 btrfs_extend_item(root, path, size);
1694
1695 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1696 refs = btrfs_extent_refs(leaf, ei);
1697 refs += refs_to_add;
1698 btrfs_set_extent_refs(leaf, ei, refs);
1699 if (extent_op)
1700 __run_delayed_extent_op(extent_op, leaf, ei);
1701
1702 ptr = (unsigned long)ei + item_offset;
1703 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1704 if (ptr < end - size)
1705 memmove_extent_buffer(leaf, ptr + size, ptr,
1706 end - size - ptr);
1707
1708 iref = (struct btrfs_extent_inline_ref *)ptr;
1709 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1710 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1711 struct btrfs_extent_data_ref *dref;
1712 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1713 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1714 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1715 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1716 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1717 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1718 struct btrfs_shared_data_ref *sref;
1719 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1720 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1721 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1722 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1723 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1724 } else {
1725 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1726 }
1727 btrfs_mark_buffer_dirty(leaf);
1728 }
1729
1730 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1731 struct btrfs_root *root,
1732 struct btrfs_path *path,
1733 struct btrfs_extent_inline_ref **ref_ret,
1734 u64 bytenr, u64 num_bytes, u64 parent,
1735 u64 root_objectid, u64 owner, u64 offset)
1736 {
1737 int ret;
1738
1739 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1740 bytenr, num_bytes, parent,
1741 root_objectid, owner, offset, 0);
1742 if (ret != -ENOENT)
1743 return ret;
1744
1745 btrfs_release_path(path);
1746 *ref_ret = NULL;
1747
1748 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1749 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1750 root_objectid);
1751 } else {
1752 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1753 root_objectid, owner, offset);
1754 }
1755 return ret;
1756 }
1757
1758 /*
1759 * helper to update/remove inline back ref
1760 */
1761 static noinline_for_stack
1762 void update_inline_extent_backref(struct btrfs_root *root,
1763 struct btrfs_path *path,
1764 struct btrfs_extent_inline_ref *iref,
1765 int refs_to_mod,
1766 struct btrfs_delayed_extent_op *extent_op)
1767 {
1768 struct extent_buffer *leaf;
1769 struct btrfs_extent_item *ei;
1770 struct btrfs_extent_data_ref *dref = NULL;
1771 struct btrfs_shared_data_ref *sref = NULL;
1772 unsigned long ptr;
1773 unsigned long end;
1774 u32 item_size;
1775 int size;
1776 int type;
1777 u64 refs;
1778
1779 leaf = path->nodes[0];
1780 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1781 refs = btrfs_extent_refs(leaf, ei);
1782 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1783 refs += refs_to_mod;
1784 btrfs_set_extent_refs(leaf, ei, refs);
1785 if (extent_op)
1786 __run_delayed_extent_op(extent_op, leaf, ei);
1787
1788 type = btrfs_extent_inline_ref_type(leaf, iref);
1789
1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792 refs = btrfs_extent_data_ref_count(leaf, dref);
1793 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795 refs = btrfs_shared_data_ref_count(leaf, sref);
1796 } else {
1797 refs = 1;
1798 BUG_ON(refs_to_mod != -1);
1799 }
1800
1801 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802 refs += refs_to_mod;
1803
1804 if (refs > 0) {
1805 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1807 else
1808 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1809 } else {
1810 size = btrfs_extent_inline_ref_size(type);
1811 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1812 ptr = (unsigned long)iref;
1813 end = (unsigned long)ei + item_size;
1814 if (ptr + size < end)
1815 memmove_extent_buffer(leaf, ptr, ptr + size,
1816 end - ptr - size);
1817 item_size -= size;
1818 btrfs_truncate_item(root, path, item_size, 1);
1819 }
1820 btrfs_mark_buffer_dirty(leaf);
1821 }
1822
1823 static noinline_for_stack
1824 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1825 struct btrfs_root *root,
1826 struct btrfs_path *path,
1827 u64 bytenr, u64 num_bytes, u64 parent,
1828 u64 root_objectid, u64 owner,
1829 u64 offset, int refs_to_add,
1830 struct btrfs_delayed_extent_op *extent_op)
1831 {
1832 struct btrfs_extent_inline_ref *iref;
1833 int ret;
1834
1835 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1836 bytenr, num_bytes, parent,
1837 root_objectid, owner, offset, 1);
1838 if (ret == 0) {
1839 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1840 update_inline_extent_backref(root, path, iref,
1841 refs_to_add, extent_op);
1842 } else if (ret == -ENOENT) {
1843 setup_inline_extent_backref(root, path, iref, parent,
1844 root_objectid, owner, offset,
1845 refs_to_add, extent_op);
1846 ret = 0;
1847 }
1848 return ret;
1849 }
1850
1851 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1852 struct btrfs_root *root,
1853 struct btrfs_path *path,
1854 u64 bytenr, u64 parent, u64 root_objectid,
1855 u64 owner, u64 offset, int refs_to_add)
1856 {
1857 int ret;
1858 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1859 BUG_ON(refs_to_add != 1);
1860 ret = insert_tree_block_ref(trans, root, path, bytenr,
1861 parent, root_objectid);
1862 } else {
1863 ret = insert_extent_data_ref(trans, root, path, bytenr,
1864 parent, root_objectid,
1865 owner, offset, refs_to_add);
1866 }
1867 return ret;
1868 }
1869
1870 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1871 struct btrfs_root *root,
1872 struct btrfs_path *path,
1873 struct btrfs_extent_inline_ref *iref,
1874 int refs_to_drop, int is_data)
1875 {
1876 int ret = 0;
1877
1878 BUG_ON(!is_data && refs_to_drop != 1);
1879 if (iref) {
1880 update_inline_extent_backref(root, path, iref,
1881 -refs_to_drop, NULL);
1882 } else if (is_data) {
1883 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1884 } else {
1885 ret = btrfs_del_item(trans, root, path);
1886 }
1887 return ret;
1888 }
1889
1890 static int btrfs_issue_discard(struct block_device *bdev,
1891 u64 start, u64 len)
1892 {
1893 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1894 }
1895
1896 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1897 u64 num_bytes, u64 *actual_bytes)
1898 {
1899 int ret;
1900 u64 discarded_bytes = 0;
1901 struct btrfs_bio *bbio = NULL;
1902
1903
1904 /* Tell the block device(s) that the sectors can be discarded */
1905 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1906 bytenr, &num_bytes, &bbio, 0);
1907 /* Error condition is -ENOMEM */
1908 if (!ret) {
1909 struct btrfs_bio_stripe *stripe = bbio->stripes;
1910 int i;
1911
1912
1913 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1914 if (!stripe->dev->can_discard)
1915 continue;
1916
1917 ret = btrfs_issue_discard(stripe->dev->bdev,
1918 stripe->physical,
1919 stripe->length);
1920 if (!ret)
1921 discarded_bytes += stripe->length;
1922 else if (ret != -EOPNOTSUPP)
1923 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1924
1925 /*
1926 * Just in case we get back EOPNOTSUPP for some reason,
1927 * just ignore the return value so we don't screw up
1928 * people calling discard_extent.
1929 */
1930 ret = 0;
1931 }
1932 kfree(bbio);
1933 }
1934
1935 if (actual_bytes)
1936 *actual_bytes = discarded_bytes;
1937
1938
1939 if (ret == -EOPNOTSUPP)
1940 ret = 0;
1941 return ret;
1942 }
1943
1944 /* Can return -ENOMEM */
1945 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1946 struct btrfs_root *root,
1947 u64 bytenr, u64 num_bytes, u64 parent,
1948 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1949 {
1950 int ret;
1951 struct btrfs_fs_info *fs_info = root->fs_info;
1952
1953 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1954 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1955
1956 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1957 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1958 num_bytes,
1959 parent, root_objectid, (int)owner,
1960 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1961 } else {
1962 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1963 num_bytes,
1964 parent, root_objectid, owner, offset,
1965 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1966 }
1967 return ret;
1968 }
1969
1970 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1971 struct btrfs_root *root,
1972 u64 bytenr, u64 num_bytes,
1973 u64 parent, u64 root_objectid,
1974 u64 owner, u64 offset, int refs_to_add,
1975 struct btrfs_delayed_extent_op *extent_op)
1976 {
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
1980 u64 refs;
1981 int ret;
1982
1983 path = btrfs_alloc_path();
1984 if (!path)
1985 return -ENOMEM;
1986
1987 path->reada = 1;
1988 path->leave_spinning = 1;
1989 /* this will setup the path even if it fails to insert the back ref */
1990 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1991 path, bytenr, num_bytes, parent,
1992 root_objectid, owner, offset,
1993 refs_to_add, extent_op);
1994 if (ret != -EAGAIN)
1995 goto out;
1996
1997 leaf = path->nodes[0];
1998 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1999 refs = btrfs_extent_refs(leaf, item);
2000 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2001 if (extent_op)
2002 __run_delayed_extent_op(extent_op, leaf, item);
2003
2004 btrfs_mark_buffer_dirty(leaf);
2005 btrfs_release_path(path);
2006
2007 path->reada = 1;
2008 path->leave_spinning = 1;
2009
2010 /* now insert the actual backref */
2011 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2012 path, bytenr, parent, root_objectid,
2013 owner, offset, refs_to_add);
2014 if (ret)
2015 btrfs_abort_transaction(trans, root, ret);
2016 out:
2017 btrfs_free_path(path);
2018 return ret;
2019 }
2020
2021 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2022 struct btrfs_root *root,
2023 struct btrfs_delayed_ref_node *node,
2024 struct btrfs_delayed_extent_op *extent_op,
2025 int insert_reserved)
2026 {
2027 int ret = 0;
2028 struct btrfs_delayed_data_ref *ref;
2029 struct btrfs_key ins;
2030 u64 parent = 0;
2031 u64 ref_root = 0;
2032 u64 flags = 0;
2033
2034 ins.objectid = node->bytenr;
2035 ins.offset = node->num_bytes;
2036 ins.type = BTRFS_EXTENT_ITEM_KEY;
2037
2038 ref = btrfs_delayed_node_to_data_ref(node);
2039 trace_run_delayed_data_ref(node, ref, node->action);
2040
2041 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2042 parent = ref->parent;
2043 else
2044 ref_root = ref->root;
2045
2046 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2047 if (extent_op)
2048 flags |= extent_op->flags_to_set;
2049 ret = alloc_reserved_file_extent(trans, root,
2050 parent, ref_root, flags,
2051 ref->objectid, ref->offset,
2052 &ins, node->ref_mod);
2053 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2054 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2055 node->num_bytes, parent,
2056 ref_root, ref->objectid,
2057 ref->offset, node->ref_mod,
2058 extent_op);
2059 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2060 ret = __btrfs_free_extent(trans, root, node->bytenr,
2061 node->num_bytes, parent,
2062 ref_root, ref->objectid,
2063 ref->offset, node->ref_mod,
2064 extent_op);
2065 } else {
2066 BUG();
2067 }
2068 return ret;
2069 }
2070
2071 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2072 struct extent_buffer *leaf,
2073 struct btrfs_extent_item *ei)
2074 {
2075 u64 flags = btrfs_extent_flags(leaf, ei);
2076 if (extent_op->update_flags) {
2077 flags |= extent_op->flags_to_set;
2078 btrfs_set_extent_flags(leaf, ei, flags);
2079 }
2080
2081 if (extent_op->update_key) {
2082 struct btrfs_tree_block_info *bi;
2083 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2084 bi = (struct btrfs_tree_block_info *)(ei + 1);
2085 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2086 }
2087 }
2088
2089 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2090 struct btrfs_root *root,
2091 struct btrfs_delayed_ref_node *node,
2092 struct btrfs_delayed_extent_op *extent_op)
2093 {
2094 struct btrfs_key key;
2095 struct btrfs_path *path;
2096 struct btrfs_extent_item *ei;
2097 struct extent_buffer *leaf;
2098 u32 item_size;
2099 int ret;
2100 int err = 0;
2101 int metadata = !extent_op->is_data;
2102
2103 if (trans->aborted)
2104 return 0;
2105
2106 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2107 metadata = 0;
2108
2109 path = btrfs_alloc_path();
2110 if (!path)
2111 return -ENOMEM;
2112
2113 key.objectid = node->bytenr;
2114
2115 if (metadata) {
2116 key.type = BTRFS_METADATA_ITEM_KEY;
2117 key.offset = extent_op->level;
2118 } else {
2119 key.type = BTRFS_EXTENT_ITEM_KEY;
2120 key.offset = node->num_bytes;
2121 }
2122
2123 again:
2124 path->reada = 1;
2125 path->leave_spinning = 1;
2126 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2127 path, 0, 1);
2128 if (ret < 0) {
2129 err = ret;
2130 goto out;
2131 }
2132 if (ret > 0) {
2133 if (metadata) {
2134 if (path->slots[0] > 0) {
2135 path->slots[0]--;
2136 btrfs_item_key_to_cpu(path->nodes[0], &key,
2137 path->slots[0]);
2138 if (key.objectid == node->bytenr &&
2139 key.type == BTRFS_EXTENT_ITEM_KEY &&
2140 key.offset == node->num_bytes)
2141 ret = 0;
2142 }
2143 if (ret > 0) {
2144 btrfs_release_path(path);
2145 metadata = 0;
2146
2147 key.objectid = node->bytenr;
2148 key.offset = node->num_bytes;
2149 key.type = BTRFS_EXTENT_ITEM_KEY;
2150 goto again;
2151 }
2152 } else {
2153 err = -EIO;
2154 goto out;
2155 }
2156 }
2157
2158 leaf = path->nodes[0];
2159 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2160 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2161 if (item_size < sizeof(*ei)) {
2162 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2163 path, (u64)-1, 0);
2164 if (ret < 0) {
2165 err = ret;
2166 goto out;
2167 }
2168 leaf = path->nodes[0];
2169 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2170 }
2171 #endif
2172 BUG_ON(item_size < sizeof(*ei));
2173 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2174 __run_delayed_extent_op(extent_op, leaf, ei);
2175
2176 btrfs_mark_buffer_dirty(leaf);
2177 out:
2178 btrfs_free_path(path);
2179 return err;
2180 }
2181
2182 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2183 struct btrfs_root *root,
2184 struct btrfs_delayed_ref_node *node,
2185 struct btrfs_delayed_extent_op *extent_op,
2186 int insert_reserved)
2187 {
2188 int ret = 0;
2189 struct btrfs_delayed_tree_ref *ref;
2190 struct btrfs_key ins;
2191 u64 parent = 0;
2192 u64 ref_root = 0;
2193 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2194 SKINNY_METADATA);
2195
2196 ref = btrfs_delayed_node_to_tree_ref(node);
2197 trace_run_delayed_tree_ref(node, ref, node->action);
2198
2199 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2200 parent = ref->parent;
2201 else
2202 ref_root = ref->root;
2203
2204 ins.objectid = node->bytenr;
2205 if (skinny_metadata) {
2206 ins.offset = ref->level;
2207 ins.type = BTRFS_METADATA_ITEM_KEY;
2208 } else {
2209 ins.offset = node->num_bytes;
2210 ins.type = BTRFS_EXTENT_ITEM_KEY;
2211 }
2212
2213 BUG_ON(node->ref_mod != 1);
2214 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2215 BUG_ON(!extent_op || !extent_op->update_flags);
2216 ret = alloc_reserved_tree_block(trans, root,
2217 parent, ref_root,
2218 extent_op->flags_to_set,
2219 &extent_op->key,
2220 ref->level, &ins);
2221 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2222 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2223 node->num_bytes, parent, ref_root,
2224 ref->level, 0, 1, extent_op);
2225 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2226 ret = __btrfs_free_extent(trans, root, node->bytenr,
2227 node->num_bytes, parent, ref_root,
2228 ref->level, 0, 1, extent_op);
2229 } else {
2230 BUG();
2231 }
2232 return ret;
2233 }
2234
2235 /* helper function to actually process a single delayed ref entry */
2236 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2237 struct btrfs_root *root,
2238 struct btrfs_delayed_ref_node *node,
2239 struct btrfs_delayed_extent_op *extent_op,
2240 int insert_reserved)
2241 {
2242 int ret = 0;
2243
2244 if (trans->aborted) {
2245 if (insert_reserved)
2246 btrfs_pin_extent(root, node->bytenr,
2247 node->num_bytes, 1);
2248 return 0;
2249 }
2250
2251 if (btrfs_delayed_ref_is_head(node)) {
2252 struct btrfs_delayed_ref_head *head;
2253 /*
2254 * we've hit the end of the chain and we were supposed
2255 * to insert this extent into the tree. But, it got
2256 * deleted before we ever needed to insert it, so all
2257 * we have to do is clean up the accounting
2258 */
2259 BUG_ON(extent_op);
2260 head = btrfs_delayed_node_to_head(node);
2261 trace_run_delayed_ref_head(node, head, node->action);
2262
2263 if (insert_reserved) {
2264 btrfs_pin_extent(root, node->bytenr,
2265 node->num_bytes, 1);
2266 if (head->is_data) {
2267 ret = btrfs_del_csums(trans, root,
2268 node->bytenr,
2269 node->num_bytes);
2270 }
2271 }
2272 return ret;
2273 }
2274
2275 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2276 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2277 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2278 insert_reserved);
2279 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2280 node->type == BTRFS_SHARED_DATA_REF_KEY)
2281 ret = run_delayed_data_ref(trans, root, node, extent_op,
2282 insert_reserved);
2283 else
2284 BUG();
2285 return ret;
2286 }
2287
2288 static noinline struct btrfs_delayed_ref_node *
2289 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2290 {
2291 struct rb_node *node;
2292 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2293
2294 /*
2295 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2296 * this prevents ref count from going down to zero when
2297 * there still are pending delayed ref.
2298 */
2299 node = rb_first(&head->ref_root);
2300 while (node) {
2301 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2302 rb_node);
2303 if (ref->action == BTRFS_ADD_DELAYED_REF)
2304 return ref;
2305 else if (last == NULL)
2306 last = ref;
2307 node = rb_next(node);
2308 }
2309 return last;
2310 }
2311
2312 /*
2313 * Returns 0 on success or if called with an already aborted transaction.
2314 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2315 */
2316 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2317 struct btrfs_root *root,
2318 unsigned long nr)
2319 {
2320 struct btrfs_delayed_ref_root *delayed_refs;
2321 struct btrfs_delayed_ref_node *ref;
2322 struct btrfs_delayed_ref_head *locked_ref = NULL;
2323 struct btrfs_delayed_extent_op *extent_op;
2324 struct btrfs_fs_info *fs_info = root->fs_info;
2325 ktime_t start = ktime_get();
2326 int ret;
2327 unsigned long count = 0;
2328 unsigned long actual_count = 0;
2329 int must_insert_reserved = 0;
2330
2331 delayed_refs = &trans->transaction->delayed_refs;
2332 while (1) {
2333 if (!locked_ref) {
2334 if (count >= nr)
2335 break;
2336
2337 spin_lock(&delayed_refs->lock);
2338 locked_ref = btrfs_select_ref_head(trans);
2339 if (!locked_ref) {
2340 spin_unlock(&delayed_refs->lock);
2341 break;
2342 }
2343
2344 /* grab the lock that says we are going to process
2345 * all the refs for this head */
2346 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2347 spin_unlock(&delayed_refs->lock);
2348 /*
2349 * we may have dropped the spin lock to get the head
2350 * mutex lock, and that might have given someone else
2351 * time to free the head. If that's true, it has been
2352 * removed from our list and we can move on.
2353 */
2354 if (ret == -EAGAIN) {
2355 locked_ref = NULL;
2356 count++;
2357 continue;
2358 }
2359 }
2360
2361 /*
2362 * We need to try and merge add/drops of the same ref since we
2363 * can run into issues with relocate dropping the implicit ref
2364 * and then it being added back again before the drop can
2365 * finish. If we merged anything we need to re-loop so we can
2366 * get a good ref.
2367 */
2368 spin_lock(&locked_ref->lock);
2369 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2370 locked_ref);
2371
2372 /*
2373 * locked_ref is the head node, so we have to go one
2374 * node back for any delayed ref updates
2375 */
2376 ref = select_delayed_ref(locked_ref);
2377
2378 if (ref && ref->seq &&
2379 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2380 spin_unlock(&locked_ref->lock);
2381 btrfs_delayed_ref_unlock(locked_ref);
2382 spin_lock(&delayed_refs->lock);
2383 locked_ref->processing = 0;
2384 delayed_refs->num_heads_ready++;
2385 spin_unlock(&delayed_refs->lock);
2386 locked_ref = NULL;
2387 cond_resched();
2388 count++;
2389 continue;
2390 }
2391
2392 /*
2393 * record the must insert reserved flag before we
2394 * drop the spin lock.
2395 */
2396 must_insert_reserved = locked_ref->must_insert_reserved;
2397 locked_ref->must_insert_reserved = 0;
2398
2399 extent_op = locked_ref->extent_op;
2400 locked_ref->extent_op = NULL;
2401
2402 if (!ref) {
2403
2404
2405 /* All delayed refs have been processed, Go ahead
2406 * and send the head node to run_one_delayed_ref,
2407 * so that any accounting fixes can happen
2408 */
2409 ref = &locked_ref->node;
2410
2411 if (extent_op && must_insert_reserved) {
2412 btrfs_free_delayed_extent_op(extent_op);
2413 extent_op = NULL;
2414 }
2415
2416 if (extent_op) {
2417 spin_unlock(&locked_ref->lock);
2418 ret = run_delayed_extent_op(trans, root,
2419 ref, extent_op);
2420 btrfs_free_delayed_extent_op(extent_op);
2421
2422 if (ret) {
2423 /*
2424 * Need to reset must_insert_reserved if
2425 * there was an error so the abort stuff
2426 * can cleanup the reserved space
2427 * properly.
2428 */
2429 if (must_insert_reserved)
2430 locked_ref->must_insert_reserved = 1;
2431 locked_ref->processing = 0;
2432 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2433 btrfs_delayed_ref_unlock(locked_ref);
2434 return ret;
2435 }
2436 continue;
2437 }
2438
2439 /*
2440 * Need to drop our head ref lock and re-aqcuire the
2441 * delayed ref lock and then re-check to make sure
2442 * nobody got added.
2443 */
2444 spin_unlock(&locked_ref->lock);
2445 spin_lock(&delayed_refs->lock);
2446 spin_lock(&locked_ref->lock);
2447 if (rb_first(&locked_ref->ref_root) ||
2448 locked_ref->extent_op) {
2449 spin_unlock(&locked_ref->lock);
2450 spin_unlock(&delayed_refs->lock);
2451 continue;
2452 }
2453 ref->in_tree = 0;
2454 delayed_refs->num_heads--;
2455 rb_erase(&locked_ref->href_node,
2456 &delayed_refs->href_root);
2457 spin_unlock(&delayed_refs->lock);
2458 } else {
2459 actual_count++;
2460 ref->in_tree = 0;
2461 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2462 }
2463 atomic_dec(&delayed_refs->num_entries);
2464
2465 if (!btrfs_delayed_ref_is_head(ref)) {
2466 /*
2467 * when we play the delayed ref, also correct the
2468 * ref_mod on head
2469 */
2470 switch (ref->action) {
2471 case BTRFS_ADD_DELAYED_REF:
2472 case BTRFS_ADD_DELAYED_EXTENT:
2473 locked_ref->node.ref_mod -= ref->ref_mod;
2474 break;
2475 case BTRFS_DROP_DELAYED_REF:
2476 locked_ref->node.ref_mod += ref->ref_mod;
2477 break;
2478 default:
2479 WARN_ON(1);
2480 }
2481 }
2482 spin_unlock(&locked_ref->lock);
2483
2484 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2485 must_insert_reserved);
2486
2487 btrfs_free_delayed_extent_op(extent_op);
2488 if (ret) {
2489 locked_ref->processing = 0;
2490 btrfs_delayed_ref_unlock(locked_ref);
2491 btrfs_put_delayed_ref(ref);
2492 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2493 return ret;
2494 }
2495
2496 /*
2497 * If this node is a head, that means all the refs in this head
2498 * have been dealt with, and we will pick the next head to deal
2499 * with, so we must unlock the head and drop it from the cluster
2500 * list before we release it.
2501 */
2502 if (btrfs_delayed_ref_is_head(ref)) {
2503 btrfs_delayed_ref_unlock(locked_ref);
2504 locked_ref = NULL;
2505 }
2506 btrfs_put_delayed_ref(ref);
2507 count++;
2508 cond_resched();
2509 }
2510
2511 /*
2512 * We don't want to include ref heads since we can have empty ref heads
2513 * and those will drastically skew our runtime down since we just do
2514 * accounting, no actual extent tree updates.
2515 */
2516 if (actual_count > 0) {
2517 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2518 u64 avg;
2519
2520 /*
2521 * We weigh the current average higher than our current runtime
2522 * to avoid large swings in the average.
2523 */
2524 spin_lock(&delayed_refs->lock);
2525 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2526 avg = div64_u64(avg, 4);
2527 fs_info->avg_delayed_ref_runtime = avg;
2528 spin_unlock(&delayed_refs->lock);
2529 }
2530 return 0;
2531 }
2532
2533 #ifdef SCRAMBLE_DELAYED_REFS
2534 /*
2535 * Normally delayed refs get processed in ascending bytenr order. This
2536 * correlates in most cases to the order added. To expose dependencies on this
2537 * order, we start to process the tree in the middle instead of the beginning
2538 */
2539 static u64 find_middle(struct rb_root *root)
2540 {
2541 struct rb_node *n = root->rb_node;
2542 struct btrfs_delayed_ref_node *entry;
2543 int alt = 1;
2544 u64 middle;
2545 u64 first = 0, last = 0;
2546
2547 n = rb_first(root);
2548 if (n) {
2549 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2550 first = entry->bytenr;
2551 }
2552 n = rb_last(root);
2553 if (n) {
2554 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2555 last = entry->bytenr;
2556 }
2557 n = root->rb_node;
2558
2559 while (n) {
2560 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2561 WARN_ON(!entry->in_tree);
2562
2563 middle = entry->bytenr;
2564
2565 if (alt)
2566 n = n->rb_left;
2567 else
2568 n = n->rb_right;
2569
2570 alt = 1 - alt;
2571 }
2572 return middle;
2573 }
2574 #endif
2575
2576 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2577 struct btrfs_fs_info *fs_info)
2578 {
2579 struct qgroup_update *qgroup_update;
2580 int ret = 0;
2581
2582 if (list_empty(&trans->qgroup_ref_list) !=
2583 !trans->delayed_ref_elem.seq) {
2584 /* list without seq or seq without list */
2585 btrfs_err(fs_info,
2586 "qgroup accounting update error, list is%s empty, seq is %#x.%x",
2587 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2588 (u32)(trans->delayed_ref_elem.seq >> 32),
2589 (u32)trans->delayed_ref_elem.seq);
2590 BUG();
2591 }
2592
2593 if (!trans->delayed_ref_elem.seq)
2594 return 0;
2595
2596 while (!list_empty(&trans->qgroup_ref_list)) {
2597 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2598 struct qgroup_update, list);
2599 list_del(&qgroup_update->list);
2600 if (!ret)
2601 ret = btrfs_qgroup_account_ref(
2602 trans, fs_info, qgroup_update->node,
2603 qgroup_update->extent_op);
2604 kfree(qgroup_update);
2605 }
2606
2607 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2608
2609 return ret;
2610 }
2611
2612 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2613 {
2614 u64 num_bytes;
2615
2616 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2617 sizeof(struct btrfs_extent_inline_ref));
2618 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2619 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2620
2621 /*
2622 * We don't ever fill up leaves all the way so multiply by 2 just to be
2623 * closer to what we're really going to want to ouse.
2624 */
2625 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2626 }
2627
2628 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2629 struct btrfs_root *root)
2630 {
2631 struct btrfs_block_rsv *global_rsv;
2632 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2633 u64 num_bytes;
2634 int ret = 0;
2635
2636 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2637 num_heads = heads_to_leaves(root, num_heads);
2638 if (num_heads > 1)
2639 num_bytes += (num_heads - 1) * root->leafsize;
2640 num_bytes <<= 1;
2641 global_rsv = &root->fs_info->global_block_rsv;
2642
2643 /*
2644 * If we can't allocate any more chunks lets make sure we have _lots_ of
2645 * wiggle room since running delayed refs can create more delayed refs.
2646 */
2647 if (global_rsv->space_info->full)
2648 num_bytes <<= 1;
2649
2650 spin_lock(&global_rsv->lock);
2651 if (global_rsv->reserved <= num_bytes)
2652 ret = 1;
2653 spin_unlock(&global_rsv->lock);
2654 return ret;
2655 }
2656
2657 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2658 struct btrfs_root *root)
2659 {
2660 struct btrfs_fs_info *fs_info = root->fs_info;
2661 u64 num_entries =
2662 atomic_read(&trans->transaction->delayed_refs.num_entries);
2663 u64 avg_runtime;
2664
2665 smp_mb();
2666 avg_runtime = fs_info->avg_delayed_ref_runtime;
2667 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2668 return 1;
2669
2670 return btrfs_check_space_for_delayed_refs(trans, root);
2671 }
2672
2673 /*
2674 * this starts processing the delayed reference count updates and
2675 * extent insertions we have queued up so far. count can be
2676 * 0, which means to process everything in the tree at the start
2677 * of the run (but not newly added entries), or it can be some target
2678 * number you'd like to process.
2679 *
2680 * Returns 0 on success or if called with an aborted transaction
2681 * Returns <0 on error and aborts the transaction
2682 */
2683 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2684 struct btrfs_root *root, unsigned long count)
2685 {
2686 struct rb_node *node;
2687 struct btrfs_delayed_ref_root *delayed_refs;
2688 struct btrfs_delayed_ref_head *head;
2689 int ret;
2690 int run_all = count == (unsigned long)-1;
2691 int run_most = 0;
2692
2693 /* We'll clean this up in btrfs_cleanup_transaction */
2694 if (trans->aborted)
2695 return 0;
2696
2697 if (root == root->fs_info->extent_root)
2698 root = root->fs_info->tree_root;
2699
2700 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2701
2702 delayed_refs = &trans->transaction->delayed_refs;
2703 if (count == 0) {
2704 count = atomic_read(&delayed_refs->num_entries) * 2;
2705 run_most = 1;
2706 }
2707
2708 again:
2709 #ifdef SCRAMBLE_DELAYED_REFS
2710 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2711 #endif
2712 ret = __btrfs_run_delayed_refs(trans, root, count);
2713 if (ret < 0) {
2714 btrfs_abort_transaction(trans, root, ret);
2715 return ret;
2716 }
2717
2718 if (run_all) {
2719 if (!list_empty(&trans->new_bgs))
2720 btrfs_create_pending_block_groups(trans, root);
2721
2722 spin_lock(&delayed_refs->lock);
2723 node = rb_first(&delayed_refs->href_root);
2724 if (!node) {
2725 spin_unlock(&delayed_refs->lock);
2726 goto out;
2727 }
2728 count = (unsigned long)-1;
2729
2730 while (node) {
2731 head = rb_entry(node, struct btrfs_delayed_ref_head,
2732 href_node);
2733 if (btrfs_delayed_ref_is_head(&head->node)) {
2734 struct btrfs_delayed_ref_node *ref;
2735
2736 ref = &head->node;
2737 atomic_inc(&ref->refs);
2738
2739 spin_unlock(&delayed_refs->lock);
2740 /*
2741 * Mutex was contended, block until it's
2742 * released and try again
2743 */
2744 mutex_lock(&head->mutex);
2745 mutex_unlock(&head->mutex);
2746
2747 btrfs_put_delayed_ref(ref);
2748 cond_resched();
2749 goto again;
2750 } else {
2751 WARN_ON(1);
2752 }
2753 node = rb_next(node);
2754 }
2755 spin_unlock(&delayed_refs->lock);
2756 cond_resched();
2757 goto again;
2758 }
2759 out:
2760 assert_qgroups_uptodate(trans);
2761 return 0;
2762 }
2763
2764 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2765 struct btrfs_root *root,
2766 u64 bytenr, u64 num_bytes, u64 flags,
2767 int level, int is_data)
2768 {
2769 struct btrfs_delayed_extent_op *extent_op;
2770 int ret;
2771
2772 extent_op = btrfs_alloc_delayed_extent_op();
2773 if (!extent_op)
2774 return -ENOMEM;
2775
2776 extent_op->flags_to_set = flags;
2777 extent_op->update_flags = 1;
2778 extent_op->update_key = 0;
2779 extent_op->is_data = is_data ? 1 : 0;
2780 extent_op->level = level;
2781
2782 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2783 num_bytes, extent_op);
2784 if (ret)
2785 btrfs_free_delayed_extent_op(extent_op);
2786 return ret;
2787 }
2788
2789 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2790 struct btrfs_root *root,
2791 struct btrfs_path *path,
2792 u64 objectid, u64 offset, u64 bytenr)
2793 {
2794 struct btrfs_delayed_ref_head *head;
2795 struct btrfs_delayed_ref_node *ref;
2796 struct btrfs_delayed_data_ref *data_ref;
2797 struct btrfs_delayed_ref_root *delayed_refs;
2798 struct rb_node *node;
2799 int ret = 0;
2800
2801 delayed_refs = &trans->transaction->delayed_refs;
2802 spin_lock(&delayed_refs->lock);
2803 head = btrfs_find_delayed_ref_head(trans, bytenr);
2804 if (!head) {
2805 spin_unlock(&delayed_refs->lock);
2806 return 0;
2807 }
2808
2809 if (!mutex_trylock(&head->mutex)) {
2810 atomic_inc(&head->node.refs);
2811 spin_unlock(&delayed_refs->lock);
2812
2813 btrfs_release_path(path);
2814
2815 /*
2816 * Mutex was contended, block until it's released and let
2817 * caller try again
2818 */
2819 mutex_lock(&head->mutex);
2820 mutex_unlock(&head->mutex);
2821 btrfs_put_delayed_ref(&head->node);
2822 return -EAGAIN;
2823 }
2824 spin_unlock(&delayed_refs->lock);
2825
2826 spin_lock(&head->lock);
2827 node = rb_first(&head->ref_root);
2828 while (node) {
2829 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2830 node = rb_next(node);
2831
2832 /* If it's a shared ref we know a cross reference exists */
2833 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2834 ret = 1;
2835 break;
2836 }
2837
2838 data_ref = btrfs_delayed_node_to_data_ref(ref);
2839
2840 /*
2841 * If our ref doesn't match the one we're currently looking at
2842 * then we have a cross reference.
2843 */
2844 if (data_ref->root != root->root_key.objectid ||
2845 data_ref->objectid != objectid ||
2846 data_ref->offset != offset) {
2847 ret = 1;
2848 break;
2849 }
2850 }
2851 spin_unlock(&head->lock);
2852 mutex_unlock(&head->mutex);
2853 return ret;
2854 }
2855
2856 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2857 struct btrfs_root *root,
2858 struct btrfs_path *path,
2859 u64 objectid, u64 offset, u64 bytenr)
2860 {
2861 struct btrfs_root *extent_root = root->fs_info->extent_root;
2862 struct extent_buffer *leaf;
2863 struct btrfs_extent_data_ref *ref;
2864 struct btrfs_extent_inline_ref *iref;
2865 struct btrfs_extent_item *ei;
2866 struct btrfs_key key;
2867 u32 item_size;
2868 int ret;
2869
2870 key.objectid = bytenr;
2871 key.offset = (u64)-1;
2872 key.type = BTRFS_EXTENT_ITEM_KEY;
2873
2874 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2875 if (ret < 0)
2876 goto out;
2877 BUG_ON(ret == 0); /* Corruption */
2878
2879 ret = -ENOENT;
2880 if (path->slots[0] == 0)
2881 goto out;
2882
2883 path->slots[0]--;
2884 leaf = path->nodes[0];
2885 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2886
2887 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2888 goto out;
2889
2890 ret = 1;
2891 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2892 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2893 if (item_size < sizeof(*ei)) {
2894 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2895 goto out;
2896 }
2897 #endif
2898 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2899
2900 if (item_size != sizeof(*ei) +
2901 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2902 goto out;
2903
2904 if (btrfs_extent_generation(leaf, ei) <=
2905 btrfs_root_last_snapshot(&root->root_item))
2906 goto out;
2907
2908 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2909 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2910 BTRFS_EXTENT_DATA_REF_KEY)
2911 goto out;
2912
2913 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2914 if (btrfs_extent_refs(leaf, ei) !=
2915 btrfs_extent_data_ref_count(leaf, ref) ||
2916 btrfs_extent_data_ref_root(leaf, ref) !=
2917 root->root_key.objectid ||
2918 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2919 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2920 goto out;
2921
2922 ret = 0;
2923 out:
2924 return ret;
2925 }
2926
2927 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2928 struct btrfs_root *root,
2929 u64 objectid, u64 offset, u64 bytenr)
2930 {
2931 struct btrfs_path *path;
2932 int ret;
2933 int ret2;
2934
2935 path = btrfs_alloc_path();
2936 if (!path)
2937 return -ENOENT;
2938
2939 do {
2940 ret = check_committed_ref(trans, root, path, objectid,
2941 offset, bytenr);
2942 if (ret && ret != -ENOENT)
2943 goto out;
2944
2945 ret2 = check_delayed_ref(trans, root, path, objectid,
2946 offset, bytenr);
2947 } while (ret2 == -EAGAIN);
2948
2949 if (ret2 && ret2 != -ENOENT) {
2950 ret = ret2;
2951 goto out;
2952 }
2953
2954 if (ret != -ENOENT || ret2 != -ENOENT)
2955 ret = 0;
2956 out:
2957 btrfs_free_path(path);
2958 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2959 WARN_ON(ret > 0);
2960 return ret;
2961 }
2962
2963 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2964 struct btrfs_root *root,
2965 struct extent_buffer *buf,
2966 int full_backref, int inc, int for_cow)
2967 {
2968 u64 bytenr;
2969 u64 num_bytes;
2970 u64 parent;
2971 u64 ref_root;
2972 u32 nritems;
2973 struct btrfs_key key;
2974 struct btrfs_file_extent_item *fi;
2975 int i;
2976 int level;
2977 int ret = 0;
2978 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2979 u64, u64, u64, u64, u64, u64, int);
2980
2981 ref_root = btrfs_header_owner(buf);
2982 nritems = btrfs_header_nritems(buf);
2983 level = btrfs_header_level(buf);
2984
2985 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
2986 return 0;
2987
2988 if (inc)
2989 process_func = btrfs_inc_extent_ref;
2990 else
2991 process_func = btrfs_free_extent;
2992
2993 if (full_backref)
2994 parent = buf->start;
2995 else
2996 parent = 0;
2997
2998 for (i = 0; i < nritems; i++) {
2999 if (level == 0) {
3000 btrfs_item_key_to_cpu(buf, &key, i);
3001 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3002 continue;
3003 fi = btrfs_item_ptr(buf, i,
3004 struct btrfs_file_extent_item);
3005 if (btrfs_file_extent_type(buf, fi) ==
3006 BTRFS_FILE_EXTENT_INLINE)
3007 continue;
3008 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3009 if (bytenr == 0)
3010 continue;
3011
3012 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3013 key.offset -= btrfs_file_extent_offset(buf, fi);
3014 ret = process_func(trans, root, bytenr, num_bytes,
3015 parent, ref_root, key.objectid,
3016 key.offset, for_cow);
3017 if (ret)
3018 goto fail;
3019 } else {
3020 bytenr = btrfs_node_blockptr(buf, i);
3021 num_bytes = btrfs_level_size(root, level - 1);
3022 ret = process_func(trans, root, bytenr, num_bytes,
3023 parent, ref_root, level - 1, 0,
3024 for_cow);
3025 if (ret)
3026 goto fail;
3027 }
3028 }
3029 return 0;
3030 fail:
3031 return ret;
3032 }
3033
3034 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3035 struct extent_buffer *buf, int full_backref, int for_cow)
3036 {
3037 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3038 }
3039
3040 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3041 struct extent_buffer *buf, int full_backref, int for_cow)
3042 {
3043 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3044 }
3045
3046 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3047 struct btrfs_root *root,
3048 struct btrfs_path *path,
3049 struct btrfs_block_group_cache *cache)
3050 {
3051 int ret;
3052 struct btrfs_root *extent_root = root->fs_info->extent_root;
3053 unsigned long bi;
3054 struct extent_buffer *leaf;
3055
3056 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3057 if (ret < 0)
3058 goto fail;
3059 BUG_ON(ret); /* Corruption */
3060
3061 leaf = path->nodes[0];
3062 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3063 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3064 btrfs_mark_buffer_dirty(leaf);
3065 btrfs_release_path(path);
3066 fail:
3067 if (ret) {
3068 btrfs_abort_transaction(trans, root, ret);
3069 return ret;
3070 }
3071 return 0;
3072
3073 }
3074
3075 static struct btrfs_block_group_cache *
3076 next_block_group(struct btrfs_root *root,
3077 struct btrfs_block_group_cache *cache)
3078 {
3079 struct rb_node *node;
3080 spin_lock(&root->fs_info->block_group_cache_lock);
3081 node = rb_next(&cache->cache_node);
3082 btrfs_put_block_group(cache);
3083 if (node) {
3084 cache = rb_entry(node, struct btrfs_block_group_cache,
3085 cache_node);
3086 btrfs_get_block_group(cache);
3087 } else
3088 cache = NULL;
3089 spin_unlock(&root->fs_info->block_group_cache_lock);
3090 return cache;
3091 }
3092
3093 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3094 struct btrfs_trans_handle *trans,
3095 struct btrfs_path *path)
3096 {
3097 struct btrfs_root *root = block_group->fs_info->tree_root;
3098 struct inode *inode = NULL;
3099 u64 alloc_hint = 0;
3100 int dcs = BTRFS_DC_ERROR;
3101 int num_pages = 0;
3102 int retries = 0;
3103 int ret = 0;
3104
3105 /*
3106 * If this block group is smaller than 100 megs don't bother caching the
3107 * block group.
3108 */
3109 if (block_group->key.offset < (100 * 1024 * 1024)) {
3110 spin_lock(&block_group->lock);
3111 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3112 spin_unlock(&block_group->lock);
3113 return 0;
3114 }
3115
3116 again:
3117 inode = lookup_free_space_inode(root, block_group, path);
3118 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3119 ret = PTR_ERR(inode);
3120 btrfs_release_path(path);
3121 goto out;
3122 }
3123
3124 if (IS_ERR(inode)) {
3125 BUG_ON(retries);
3126 retries++;
3127
3128 if (block_group->ro)
3129 goto out_free;
3130
3131 ret = create_free_space_inode(root, trans, block_group, path);
3132 if (ret)
3133 goto out_free;
3134 goto again;
3135 }
3136
3137 /* We've already setup this transaction, go ahead and exit */
3138 if (block_group->cache_generation == trans->transid &&
3139 i_size_read(inode)) {
3140 dcs = BTRFS_DC_SETUP;
3141 goto out_put;
3142 }
3143
3144 /*
3145 * We want to set the generation to 0, that way if anything goes wrong
3146 * from here on out we know not to trust this cache when we load up next
3147 * time.
3148 */
3149 BTRFS_I(inode)->generation = 0;
3150 ret = btrfs_update_inode(trans, root, inode);
3151 WARN_ON(ret);
3152
3153 if (i_size_read(inode) > 0) {
3154 ret = btrfs_check_trunc_cache_free_space(root,
3155 &root->fs_info->global_block_rsv);
3156 if (ret)
3157 goto out_put;
3158
3159 ret = btrfs_truncate_free_space_cache(root, trans, inode);
3160 if (ret)
3161 goto out_put;
3162 }
3163
3164 spin_lock(&block_group->lock);
3165 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3166 !btrfs_test_opt(root, SPACE_CACHE)) {
3167 /*
3168 * don't bother trying to write stuff out _if_
3169 * a) we're not cached,
3170 * b) we're with nospace_cache mount option.
3171 */
3172 dcs = BTRFS_DC_WRITTEN;
3173 spin_unlock(&block_group->lock);
3174 goto out_put;
3175 }
3176 spin_unlock(&block_group->lock);
3177
3178 /*
3179 * Try to preallocate enough space based on how big the block group is.
3180 * Keep in mind this has to include any pinned space which could end up
3181 * taking up quite a bit since it's not folded into the other space
3182 * cache.
3183 */
3184 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3185 if (!num_pages)
3186 num_pages = 1;
3187
3188 num_pages *= 16;
3189 num_pages *= PAGE_CACHE_SIZE;
3190
3191 ret = btrfs_check_data_free_space(inode, num_pages);
3192 if (ret)
3193 goto out_put;
3194
3195 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3196 num_pages, num_pages,
3197 &alloc_hint);
3198 if (!ret)
3199 dcs = BTRFS_DC_SETUP;
3200 btrfs_free_reserved_data_space(inode, num_pages);
3201
3202 out_put:
3203 iput(inode);
3204 out_free:
3205 btrfs_release_path(path);
3206 out:
3207 spin_lock(&block_group->lock);
3208 if (!ret && dcs == BTRFS_DC_SETUP)
3209 block_group->cache_generation = trans->transid;
3210 block_group->disk_cache_state = dcs;
3211 spin_unlock(&block_group->lock);
3212
3213 return ret;
3214 }
3215
3216 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3217 struct btrfs_root *root)
3218 {
3219 struct btrfs_block_group_cache *cache;
3220 int err = 0;
3221 struct btrfs_path *path;
3222 u64 last = 0;
3223
3224 path = btrfs_alloc_path();
3225 if (!path)
3226 return -ENOMEM;
3227
3228 again:
3229 while (1) {
3230 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3231 while (cache) {
3232 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3233 break;
3234 cache = next_block_group(root, cache);
3235 }
3236 if (!cache) {
3237 if (last == 0)
3238 break;
3239 last = 0;
3240 continue;
3241 }
3242 err = cache_save_setup(cache, trans, path);
3243 last = cache->key.objectid + cache->key.offset;
3244 btrfs_put_block_group(cache);
3245 }
3246
3247 while (1) {
3248 if (last == 0) {
3249 err = btrfs_run_delayed_refs(trans, root,
3250 (unsigned long)-1);
3251 if (err) /* File system offline */
3252 goto out;
3253 }
3254
3255 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3256 while (cache) {
3257 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3258 btrfs_put_block_group(cache);
3259 goto again;
3260 }
3261
3262 if (cache->dirty)
3263 break;
3264 cache = next_block_group(root, cache);
3265 }
3266 if (!cache) {
3267 if (last == 0)
3268 break;
3269 last = 0;
3270 continue;
3271 }
3272
3273 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3274 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3275 cache->dirty = 0;
3276 last = cache->key.objectid + cache->key.offset;
3277
3278 err = write_one_cache_group(trans, root, path, cache);
3279 btrfs_put_block_group(cache);
3280 if (err) /* File system offline */
3281 goto out;
3282 }
3283
3284 while (1) {
3285 /*
3286 * I don't think this is needed since we're just marking our
3287 * preallocated extent as written, but just in case it can't
3288 * hurt.
3289 */
3290 if (last == 0) {
3291 err = btrfs_run_delayed_refs(trans, root,
3292 (unsigned long)-1);
3293 if (err) /* File system offline */
3294 goto out;
3295 }
3296
3297 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3298 while (cache) {
3299 /*
3300 * Really this shouldn't happen, but it could if we
3301 * couldn't write the entire preallocated extent and
3302 * splitting the extent resulted in a new block.
3303 */
3304 if (cache->dirty) {
3305 btrfs_put_block_group(cache);
3306 goto again;
3307 }
3308 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3309 break;
3310 cache = next_block_group(root, cache);
3311 }
3312 if (!cache) {
3313 if (last == 0)
3314 break;
3315 last = 0;
3316 continue;
3317 }
3318
3319 err = btrfs_write_out_cache(root, trans, cache, path);
3320
3321 /*
3322 * If we didn't have an error then the cache state is still
3323 * NEED_WRITE, so we can set it to WRITTEN.
3324 */
3325 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3326 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3327 last = cache->key.objectid + cache->key.offset;
3328 btrfs_put_block_group(cache);
3329 }
3330 out:
3331
3332 btrfs_free_path(path);
3333 return err;
3334 }
3335
3336 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3337 {
3338 struct btrfs_block_group_cache *block_group;
3339 int readonly = 0;
3340
3341 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3342 if (!block_group || block_group->ro)
3343 readonly = 1;
3344 if (block_group)
3345 btrfs_put_block_group(block_group);
3346 return readonly;
3347 }
3348
3349 static const char *alloc_name(u64 flags)
3350 {
3351 switch (flags) {
3352 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3353 return "mixed";
3354 case BTRFS_BLOCK_GROUP_METADATA:
3355 return "metadata";
3356 case BTRFS_BLOCK_GROUP_DATA:
3357 return "data";
3358 case BTRFS_BLOCK_GROUP_SYSTEM:
3359 return "system";
3360 default:
3361 WARN_ON(1);
3362 return "invalid-combination";
3363 };
3364 }
3365
3366 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3367 u64 total_bytes, u64 bytes_used,
3368 struct btrfs_space_info **space_info)
3369 {
3370 struct btrfs_space_info *found;
3371 int i;
3372 int factor;
3373 int ret;
3374
3375 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3376 BTRFS_BLOCK_GROUP_RAID10))
3377 factor = 2;
3378 else
3379 factor = 1;
3380
3381 found = __find_space_info(info, flags);
3382 if (found) {
3383 spin_lock(&found->lock);
3384 found->total_bytes += total_bytes;
3385 found->disk_total += total_bytes * factor;
3386 found->bytes_used += bytes_used;
3387 found->disk_used += bytes_used * factor;
3388 found->full = 0;
3389 spin_unlock(&found->lock);
3390 *space_info = found;
3391 return 0;
3392 }
3393 found = kzalloc(sizeof(*found), GFP_NOFS);
3394 if (!found)
3395 return -ENOMEM;
3396
3397 ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3398 if (ret) {
3399 kfree(found);
3400 return ret;
3401 }
3402
3403 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
3404 INIT_LIST_HEAD(&found->block_groups[i]);
3405 kobject_init(&found->block_group_kobjs[i], &btrfs_raid_ktype);
3406 }
3407 init_rwsem(&found->groups_sem);
3408 spin_lock_init(&found->lock);
3409 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3410 found->total_bytes = total_bytes;
3411 found->disk_total = total_bytes * factor;
3412 found->bytes_used = bytes_used;
3413 found->disk_used = bytes_used * factor;
3414 found->bytes_pinned = 0;
3415 found->bytes_reserved = 0;
3416 found->bytes_readonly = 0;
3417 found->bytes_may_use = 0;
3418 found->full = 0;
3419 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3420 found->chunk_alloc = 0;
3421 found->flush = 0;
3422 init_waitqueue_head(&found->wait);
3423
3424 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3425 info->space_info_kobj, "%s",
3426 alloc_name(found->flags));
3427 if (ret) {
3428 kfree(found);
3429 return ret;
3430 }
3431
3432 *space_info = found;
3433 list_add_rcu(&found->list, &info->space_info);
3434 if (flags & BTRFS_BLOCK_GROUP_DATA)
3435 info->data_sinfo = found;
3436
3437 return ret;
3438 }
3439
3440 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3441 {
3442 u64 extra_flags = chunk_to_extended(flags) &
3443 BTRFS_EXTENDED_PROFILE_MASK;
3444
3445 write_seqlock(&fs_info->profiles_lock);
3446 if (flags & BTRFS_BLOCK_GROUP_DATA)
3447 fs_info->avail_data_alloc_bits |= extra_flags;
3448 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3449 fs_info->avail_metadata_alloc_bits |= extra_flags;
3450 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3451 fs_info->avail_system_alloc_bits |= extra_flags;
3452 write_sequnlock(&fs_info->profiles_lock);
3453 }
3454
3455 /*
3456 * returns target flags in extended format or 0 if restripe for this
3457 * chunk_type is not in progress
3458 *
3459 * should be called with either volume_mutex or balance_lock held
3460 */
3461 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3462 {
3463 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3464 u64 target = 0;
3465
3466 if (!bctl)
3467 return 0;
3468
3469 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3470 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3471 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3472 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3473 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3474 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3475 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3476 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3477 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3478 }
3479
3480 return target;
3481 }
3482
3483 /*
3484 * @flags: available profiles in extended format (see ctree.h)
3485 *
3486 * Returns reduced profile in chunk format. If profile changing is in
3487 * progress (either running or paused) picks the target profile (if it's
3488 * already available), otherwise falls back to plain reducing.
3489 */
3490 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3491 {
3492 /*
3493 * we add in the count of missing devices because we want
3494 * to make sure that any RAID levels on a degraded FS
3495 * continue to be honored.
3496 */
3497 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3498 root->fs_info->fs_devices->missing_devices;
3499 u64 target;
3500 u64 tmp;
3501
3502 /*
3503 * see if restripe for this chunk_type is in progress, if so
3504 * try to reduce to the target profile
3505 */
3506 spin_lock(&root->fs_info->balance_lock);
3507 target = get_restripe_target(root->fs_info, flags);
3508 if (target) {
3509 /* pick target profile only if it's already available */
3510 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3511 spin_unlock(&root->fs_info->balance_lock);
3512 return extended_to_chunk(target);
3513 }
3514 }
3515 spin_unlock(&root->fs_info->balance_lock);
3516
3517 /* First, mask out the RAID levels which aren't possible */
3518 if (num_devices == 1)
3519 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3520 BTRFS_BLOCK_GROUP_RAID5);
3521 if (num_devices < 3)
3522 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3523 if (num_devices < 4)
3524 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3525
3526 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3527 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3528 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3529 flags &= ~tmp;
3530
3531 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3532 tmp = BTRFS_BLOCK_GROUP_RAID6;
3533 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3534 tmp = BTRFS_BLOCK_GROUP_RAID5;
3535 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3536 tmp = BTRFS_BLOCK_GROUP_RAID10;
3537 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3538 tmp = BTRFS_BLOCK_GROUP_RAID1;
3539 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3540 tmp = BTRFS_BLOCK_GROUP_RAID0;
3541
3542 return extended_to_chunk(flags | tmp);
3543 }
3544
3545 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3546 {
3547 unsigned seq;
3548 u64 flags;
3549
3550 do {
3551 flags = orig_flags;
3552 seq = read_seqbegin(&root->fs_info->profiles_lock);
3553
3554 if (flags & BTRFS_BLOCK_GROUP_DATA)
3555 flags |= root->fs_info->avail_data_alloc_bits;
3556 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3557 flags |= root->fs_info->avail_system_alloc_bits;
3558 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3559 flags |= root->fs_info->avail_metadata_alloc_bits;
3560 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3561
3562 return btrfs_reduce_alloc_profile(root, flags);
3563 }
3564
3565 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3566 {
3567 u64 flags;
3568 u64 ret;
3569
3570 if (data)
3571 flags = BTRFS_BLOCK_GROUP_DATA;
3572 else if (root == root->fs_info->chunk_root)
3573 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3574 else
3575 flags = BTRFS_BLOCK_GROUP_METADATA;
3576
3577 ret = get_alloc_profile(root, flags);
3578 return ret;
3579 }
3580
3581 /*
3582 * This will check the space that the inode allocates from to make sure we have
3583 * enough space for bytes.
3584 */
3585 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3586 {
3587 struct btrfs_space_info *data_sinfo;
3588 struct btrfs_root *root = BTRFS_I(inode)->root;
3589 struct btrfs_fs_info *fs_info = root->fs_info;
3590 u64 used;
3591 int ret = 0, committed = 0, alloc_chunk = 1;
3592
3593 /* make sure bytes are sectorsize aligned */
3594 bytes = ALIGN(bytes, root->sectorsize);
3595
3596 if (btrfs_is_free_space_inode(inode)) {
3597 committed = 1;
3598 ASSERT(current->journal_info);
3599 }
3600
3601 data_sinfo = fs_info->data_sinfo;
3602 if (!data_sinfo)
3603 goto alloc;
3604
3605 again:
3606 /* make sure we have enough space to handle the data first */
3607 spin_lock(&data_sinfo->lock);
3608 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3609 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3610 data_sinfo->bytes_may_use;
3611
3612 if (used + bytes > data_sinfo->total_bytes) {
3613 struct btrfs_trans_handle *trans;
3614
3615 /*
3616 * if we don't have enough free bytes in this space then we need
3617 * to alloc a new chunk.
3618 */
3619 if (!data_sinfo->full && alloc_chunk) {
3620 u64 alloc_target;
3621
3622 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3623 spin_unlock(&data_sinfo->lock);
3624 alloc:
3625 alloc_target = btrfs_get_alloc_profile(root, 1);
3626 /*
3627 * It is ugly that we don't call nolock join
3628 * transaction for the free space inode case here.
3629 * But it is safe because we only do the data space
3630 * reservation for the free space cache in the
3631 * transaction context, the common join transaction
3632 * just increase the counter of the current transaction
3633 * handler, doesn't try to acquire the trans_lock of
3634 * the fs.
3635 */
3636 trans = btrfs_join_transaction(root);
3637 if (IS_ERR(trans))
3638 return PTR_ERR(trans);
3639
3640 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3641 alloc_target,
3642 CHUNK_ALLOC_NO_FORCE);
3643 btrfs_end_transaction(trans, root);
3644 if (ret < 0) {
3645 if (ret != -ENOSPC)
3646 return ret;
3647 else
3648 goto commit_trans;
3649 }
3650
3651 if (!data_sinfo)
3652 data_sinfo = fs_info->data_sinfo;
3653
3654 goto again;
3655 }
3656
3657 /*
3658 * If we don't have enough pinned space to deal with this
3659 * allocation don't bother committing the transaction.
3660 */
3661 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3662 bytes) < 0)
3663 committed = 1;
3664 spin_unlock(&data_sinfo->lock);
3665
3666 /* commit the current transaction and try again */
3667 commit_trans:
3668 if (!committed &&
3669 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3670 committed = 1;
3671
3672 trans = btrfs_join_transaction(root);
3673 if (IS_ERR(trans))
3674 return PTR_ERR(trans);
3675 ret = btrfs_commit_transaction(trans, root);
3676 if (ret)
3677 return ret;
3678 goto again;
3679 }
3680
3681 trace_btrfs_space_reservation(root->fs_info,
3682 "space_info:enospc",
3683 data_sinfo->flags, bytes, 1);
3684 return -ENOSPC;
3685 }
3686 data_sinfo->bytes_may_use += bytes;
3687 trace_btrfs_space_reservation(root->fs_info, "space_info",
3688 data_sinfo->flags, bytes, 1);
3689 spin_unlock(&data_sinfo->lock);
3690
3691 return 0;
3692 }
3693
3694 /*
3695 * Called if we need to clear a data reservation for this inode.
3696 */
3697 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3698 {
3699 struct btrfs_root *root = BTRFS_I(inode)->root;
3700 struct btrfs_space_info *data_sinfo;
3701
3702 /* make sure bytes are sectorsize aligned */
3703 bytes = ALIGN(bytes, root->sectorsize);
3704
3705 data_sinfo = root->fs_info->data_sinfo;
3706 spin_lock(&data_sinfo->lock);
3707 WARN_ON(data_sinfo->bytes_may_use < bytes);
3708 data_sinfo->bytes_may_use -= bytes;
3709 trace_btrfs_space_reservation(root->fs_info, "space_info",
3710 data_sinfo->flags, bytes, 0);
3711 spin_unlock(&data_sinfo->lock);
3712 }
3713
3714 static void force_metadata_allocation(struct btrfs_fs_info *info)
3715 {
3716 struct list_head *head = &info->space_info;
3717 struct btrfs_space_info *found;
3718
3719 rcu_read_lock();
3720 list_for_each_entry_rcu(found, head, list) {
3721 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3722 found->force_alloc = CHUNK_ALLOC_FORCE;
3723 }
3724 rcu_read_unlock();
3725 }
3726
3727 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3728 {
3729 return (global->size << 1);
3730 }
3731
3732 static int should_alloc_chunk(struct btrfs_root *root,
3733 struct btrfs_space_info *sinfo, int force)
3734 {
3735 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3736 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3737 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3738 u64 thresh;
3739
3740 if (force == CHUNK_ALLOC_FORCE)
3741 return 1;
3742
3743 /*
3744 * We need to take into account the global rsv because for all intents
3745 * and purposes it's used space. Don't worry about locking the
3746 * global_rsv, it doesn't change except when the transaction commits.
3747 */
3748 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3749 num_allocated += calc_global_rsv_need_space(global_rsv);
3750
3751 /*
3752 * in limited mode, we want to have some free space up to
3753 * about 1% of the FS size.
3754 */
3755 if (force == CHUNK_ALLOC_LIMITED) {
3756 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3757 thresh = max_t(u64, 64 * 1024 * 1024,
3758 div_factor_fine(thresh, 1));
3759
3760 if (num_bytes - num_allocated < thresh)
3761 return 1;
3762 }
3763
3764 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3765 return 0;
3766 return 1;
3767 }
3768
3769 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3770 {
3771 u64 num_dev;
3772
3773 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3774 BTRFS_BLOCK_GROUP_RAID0 |
3775 BTRFS_BLOCK_GROUP_RAID5 |
3776 BTRFS_BLOCK_GROUP_RAID6))
3777 num_dev = root->fs_info->fs_devices->rw_devices;
3778 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3779 num_dev = 2;
3780 else
3781 num_dev = 1; /* DUP or single */
3782
3783 /* metadata for updaing devices and chunk tree */
3784 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3785 }
3786
3787 static void check_system_chunk(struct btrfs_trans_handle *trans,
3788 struct btrfs_root *root, u64 type)
3789 {
3790 struct btrfs_space_info *info;
3791 u64 left;
3792 u64 thresh;
3793
3794 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3795 spin_lock(&info->lock);
3796 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3797 info->bytes_reserved - info->bytes_readonly;
3798 spin_unlock(&info->lock);
3799
3800 thresh = get_system_chunk_thresh(root, type);
3801 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3802 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3803 left, thresh, type);
3804 dump_space_info(info, 0, 0);
3805 }
3806
3807 if (left < thresh) {
3808 u64 flags;
3809
3810 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3811 btrfs_alloc_chunk(trans, root, flags);
3812 }
3813 }
3814
3815 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3816 struct btrfs_root *extent_root, u64 flags, int force)
3817 {
3818 struct btrfs_space_info *space_info;
3819 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3820 int wait_for_alloc = 0;
3821 int ret = 0;
3822
3823 /* Don't re-enter if we're already allocating a chunk */
3824 if (trans->allocating_chunk)
3825 return -ENOSPC;
3826
3827 space_info = __find_space_info(extent_root->fs_info, flags);
3828 if (!space_info) {
3829 ret = update_space_info(extent_root->fs_info, flags,
3830 0, 0, &space_info);
3831 BUG_ON(ret); /* -ENOMEM */
3832 }
3833 BUG_ON(!space_info); /* Logic error */
3834
3835 again:
3836 spin_lock(&space_info->lock);
3837 if (force < space_info->force_alloc)
3838 force = space_info->force_alloc;
3839 if (space_info->full) {
3840 if (should_alloc_chunk(extent_root, space_info, force))
3841 ret = -ENOSPC;
3842 else
3843 ret = 0;
3844 spin_unlock(&space_info->lock);
3845 return ret;
3846 }
3847
3848 if (!should_alloc_chunk(extent_root, space_info, force)) {
3849 spin_unlock(&space_info->lock);
3850 return 0;
3851 } else if (space_info->chunk_alloc) {
3852 wait_for_alloc = 1;
3853 } else {
3854 space_info->chunk_alloc = 1;
3855 }
3856
3857 spin_unlock(&space_info->lock);
3858
3859 mutex_lock(&fs_info->chunk_mutex);
3860
3861 /*
3862 * The chunk_mutex is held throughout the entirety of a chunk
3863 * allocation, so once we've acquired the chunk_mutex we know that the
3864 * other guy is done and we need to recheck and see if we should
3865 * allocate.
3866 */
3867 if (wait_for_alloc) {
3868 mutex_unlock(&fs_info->chunk_mutex);
3869 wait_for_alloc = 0;
3870 goto again;
3871 }
3872
3873 trans->allocating_chunk = true;
3874
3875 /*
3876 * If we have mixed data/metadata chunks we want to make sure we keep
3877 * allocating mixed chunks instead of individual chunks.
3878 */
3879 if (btrfs_mixed_space_info(space_info))
3880 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3881
3882 /*
3883 * if we're doing a data chunk, go ahead and make sure that
3884 * we keep a reasonable number of metadata chunks allocated in the
3885 * FS as well.
3886 */
3887 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3888 fs_info->data_chunk_allocations++;
3889 if (!(fs_info->data_chunk_allocations %
3890 fs_info->metadata_ratio))
3891 force_metadata_allocation(fs_info);
3892 }
3893
3894 /*
3895 * Check if we have enough space in SYSTEM chunk because we may need
3896 * to update devices.
3897 */
3898 check_system_chunk(trans, extent_root, flags);
3899
3900 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3901 trans->allocating_chunk = false;
3902
3903 spin_lock(&space_info->lock);
3904 if (ret < 0 && ret != -ENOSPC)
3905 goto out;
3906 if (ret)
3907 space_info->full = 1;
3908 else
3909 ret = 1;
3910
3911 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3912 out:
3913 space_info->chunk_alloc = 0;
3914 spin_unlock(&space_info->lock);
3915 mutex_unlock(&fs_info->chunk_mutex);
3916 return ret;
3917 }
3918
3919 static int can_overcommit(struct btrfs_root *root,
3920 struct btrfs_space_info *space_info, u64 bytes,
3921 enum btrfs_reserve_flush_enum flush)
3922 {
3923 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3924 u64 profile = btrfs_get_alloc_profile(root, 0);
3925 u64 space_size;
3926 u64 avail;
3927 u64 used;
3928
3929 used = space_info->bytes_used + space_info->bytes_reserved +
3930 space_info->bytes_pinned + space_info->bytes_readonly;
3931
3932 /*
3933 * We only want to allow over committing if we have lots of actual space
3934 * free, but if we don't have enough space to handle the global reserve
3935 * space then we could end up having a real enospc problem when trying
3936 * to allocate a chunk or some other such important allocation.
3937 */
3938 spin_lock(&global_rsv->lock);
3939 space_size = calc_global_rsv_need_space(global_rsv);
3940 spin_unlock(&global_rsv->lock);
3941 if (used + space_size >= space_info->total_bytes)
3942 return 0;
3943
3944 used += space_info->bytes_may_use;
3945
3946 spin_lock(&root->fs_info->free_chunk_lock);
3947 avail = root->fs_info->free_chunk_space;
3948 spin_unlock(&root->fs_info->free_chunk_lock);
3949
3950 /*
3951 * If we have dup, raid1 or raid10 then only half of the free
3952 * space is actually useable. For raid56, the space info used
3953 * doesn't include the parity drive, so we don't have to
3954 * change the math
3955 */
3956 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3957 BTRFS_BLOCK_GROUP_RAID1 |
3958 BTRFS_BLOCK_GROUP_RAID10))
3959 avail >>= 1;
3960
3961 /*
3962 * If we aren't flushing all things, let us overcommit up to
3963 * 1/2th of the space. If we can flush, don't let us overcommit
3964 * too much, let it overcommit up to 1/8 of the space.
3965 */
3966 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3967 avail >>= 3;
3968 else
3969 avail >>= 1;
3970
3971 if (used + bytes < space_info->total_bytes + avail)
3972 return 1;
3973 return 0;
3974 }
3975
3976 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3977 unsigned long nr_pages, int nr_items)
3978 {
3979 struct super_block *sb = root->fs_info->sb;
3980
3981 if (down_read_trylock(&sb->s_umount)) {
3982 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
3983 up_read(&sb->s_umount);
3984 } else {
3985 /*
3986 * We needn't worry the filesystem going from r/w to r/o though
3987 * we don't acquire ->s_umount mutex, because the filesystem
3988 * should guarantee the delalloc inodes list be empty after
3989 * the filesystem is readonly(all dirty pages are written to
3990 * the disk).
3991 */
3992 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
3993 if (!current->journal_info)
3994 btrfs_wait_ordered_roots(root->fs_info, nr_items);
3995 }
3996 }
3997
3998 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
3999 {
4000 u64 bytes;
4001 int nr;
4002
4003 bytes = btrfs_calc_trans_metadata_size(root, 1);
4004 nr = (int)div64_u64(to_reclaim, bytes);
4005 if (!nr)
4006 nr = 1;
4007 return nr;
4008 }
4009
4010 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4011
4012 /*
4013 * shrink metadata reservation for delalloc
4014 */
4015 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4016 bool wait_ordered)
4017 {
4018 struct btrfs_block_rsv *block_rsv;
4019 struct btrfs_space_info *space_info;
4020 struct btrfs_trans_handle *trans;
4021 u64 delalloc_bytes;
4022 u64 max_reclaim;
4023 long time_left;
4024 unsigned long nr_pages;
4025 int loops;
4026 int items;
4027 enum btrfs_reserve_flush_enum flush;
4028
4029 /* Calc the number of the pages we need flush for space reservation */
4030 items = calc_reclaim_items_nr(root, to_reclaim);
4031 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4032
4033 trans = (struct btrfs_trans_handle *)current->journal_info;
4034 block_rsv = &root->fs_info->delalloc_block_rsv;
4035 space_info = block_rsv->space_info;
4036
4037 delalloc_bytes = percpu_counter_sum_positive(
4038 &root->fs_info->delalloc_bytes);
4039 if (delalloc_bytes == 0) {
4040 if (trans)
4041 return;
4042 if (wait_ordered)
4043 btrfs_wait_ordered_roots(root->fs_info, items);
4044 return;
4045 }
4046
4047 loops = 0;
4048 while (delalloc_bytes && loops < 3) {
4049 max_reclaim = min(delalloc_bytes, to_reclaim);
4050 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4051 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4052 /*
4053 * We need to wait for the async pages to actually start before
4054 * we do anything.
4055 */
4056 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4057 if (!max_reclaim)
4058 goto skip_async;
4059
4060 if (max_reclaim <= nr_pages)
4061 max_reclaim = 0;
4062 else
4063 max_reclaim -= nr_pages;
4064
4065 wait_event(root->fs_info->async_submit_wait,
4066 atomic_read(&root->fs_info->async_delalloc_pages) <=
4067 (int)max_reclaim);
4068 skip_async:
4069 if (!trans)
4070 flush = BTRFS_RESERVE_FLUSH_ALL;
4071 else
4072 flush = BTRFS_RESERVE_NO_FLUSH;
4073 spin_lock(&space_info->lock);
4074 if (can_overcommit(root, space_info, orig, flush)) {
4075 spin_unlock(&space_info->lock);
4076 break;
4077 }
4078 spin_unlock(&space_info->lock);
4079
4080 loops++;
4081 if (wait_ordered && !trans) {
4082 btrfs_wait_ordered_roots(root->fs_info, items);
4083 } else {
4084 time_left = schedule_timeout_killable(1);
4085 if (time_left)
4086 break;
4087 }
4088 delalloc_bytes = percpu_counter_sum_positive(
4089 &root->fs_info->delalloc_bytes);
4090 }
4091 }
4092
4093 /**
4094 * maybe_commit_transaction - possibly commit the transaction if its ok to
4095 * @root - the root we're allocating for
4096 * @bytes - the number of bytes we want to reserve
4097 * @force - force the commit
4098 *
4099 * This will check to make sure that committing the transaction will actually
4100 * get us somewhere and then commit the transaction if it does. Otherwise it
4101 * will return -ENOSPC.
4102 */
4103 static int may_commit_transaction(struct btrfs_root *root,
4104 struct btrfs_space_info *space_info,
4105 u64 bytes, int force)
4106 {
4107 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4108 struct btrfs_trans_handle *trans;
4109
4110 trans = (struct btrfs_trans_handle *)current->journal_info;
4111 if (trans)
4112 return -EAGAIN;
4113
4114 if (force)
4115 goto commit;
4116
4117 /* See if there is enough pinned space to make this reservation */
4118 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4119 bytes) >= 0)
4120 goto commit;
4121
4122 /*
4123 * See if there is some space in the delayed insertion reservation for
4124 * this reservation.
4125 */
4126 if (space_info != delayed_rsv->space_info)
4127 return -ENOSPC;
4128
4129 spin_lock(&delayed_rsv->lock);
4130 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4131 bytes - delayed_rsv->size) >= 0) {
4132 spin_unlock(&delayed_rsv->lock);
4133 return -ENOSPC;
4134 }
4135 spin_unlock(&delayed_rsv->lock);
4136
4137 commit:
4138 trans = btrfs_join_transaction(root);
4139 if (IS_ERR(trans))
4140 return -ENOSPC;
4141
4142 return btrfs_commit_transaction(trans, root);
4143 }
4144
4145 enum flush_state {
4146 FLUSH_DELAYED_ITEMS_NR = 1,
4147 FLUSH_DELAYED_ITEMS = 2,
4148 FLUSH_DELALLOC = 3,
4149 FLUSH_DELALLOC_WAIT = 4,
4150 ALLOC_CHUNK = 5,
4151 COMMIT_TRANS = 6,
4152 };
4153
4154 static int flush_space(struct btrfs_root *root,
4155 struct btrfs_space_info *space_info, u64 num_bytes,
4156 u64 orig_bytes, int state)
4157 {
4158 struct btrfs_trans_handle *trans;
4159 int nr;
4160 int ret = 0;
4161
4162 switch (state) {
4163 case FLUSH_DELAYED_ITEMS_NR:
4164 case FLUSH_DELAYED_ITEMS:
4165 if (state == FLUSH_DELAYED_ITEMS_NR)
4166 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4167 else
4168 nr = -1;
4169
4170 trans = btrfs_join_transaction(root);
4171 if (IS_ERR(trans)) {
4172 ret = PTR_ERR(trans);
4173 break;
4174 }
4175 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4176 btrfs_end_transaction(trans, root);
4177 break;
4178 case FLUSH_DELALLOC:
4179 case FLUSH_DELALLOC_WAIT:
4180 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4181 state == FLUSH_DELALLOC_WAIT);
4182 break;
4183 case ALLOC_CHUNK:
4184 trans = btrfs_join_transaction(root);
4185 if (IS_ERR(trans)) {
4186 ret = PTR_ERR(trans);
4187 break;
4188 }
4189 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4190 btrfs_get_alloc_profile(root, 0),
4191 CHUNK_ALLOC_NO_FORCE);
4192 btrfs_end_transaction(trans, root);
4193 if (ret == -ENOSPC)
4194 ret = 0;
4195 break;
4196 case COMMIT_TRANS:
4197 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4198 break;
4199 default:
4200 ret = -ENOSPC;
4201 break;
4202 }
4203
4204 return ret;
4205 }
4206
4207 static inline u64
4208 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4209 struct btrfs_space_info *space_info)
4210 {
4211 u64 used;
4212 u64 expected;
4213 u64 to_reclaim;
4214
4215 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4216 16 * 1024 * 1024);
4217 spin_lock(&space_info->lock);
4218 if (can_overcommit(root, space_info, to_reclaim,
4219 BTRFS_RESERVE_FLUSH_ALL)) {
4220 to_reclaim = 0;
4221 goto out;
4222 }
4223
4224 used = space_info->bytes_used + space_info->bytes_reserved +
4225 space_info->bytes_pinned + space_info->bytes_readonly +
4226 space_info->bytes_may_use;
4227 if (can_overcommit(root, space_info, 1024 * 1024,
4228 BTRFS_RESERVE_FLUSH_ALL))
4229 expected = div_factor_fine(space_info->total_bytes, 95);
4230 else
4231 expected = div_factor_fine(space_info->total_bytes, 90);
4232
4233 if (used > expected)
4234 to_reclaim = used - expected;
4235 else
4236 to_reclaim = 0;
4237 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4238 space_info->bytes_reserved);
4239 out:
4240 spin_unlock(&space_info->lock);
4241
4242 return to_reclaim;
4243 }
4244
4245 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4246 struct btrfs_fs_info *fs_info, u64 used)
4247 {
4248 return (used >= div_factor_fine(space_info->total_bytes, 98) &&
4249 !btrfs_fs_closing(fs_info) &&
4250 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4251 }
4252
4253 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4254 struct btrfs_fs_info *fs_info)
4255 {
4256 u64 used;
4257
4258 spin_lock(&space_info->lock);
4259 used = space_info->bytes_used + space_info->bytes_reserved +
4260 space_info->bytes_pinned + space_info->bytes_readonly +
4261 space_info->bytes_may_use;
4262 if (need_do_async_reclaim(space_info, fs_info, used)) {
4263 spin_unlock(&space_info->lock);
4264 return 1;
4265 }
4266 spin_unlock(&space_info->lock);
4267
4268 return 0;
4269 }
4270
4271 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4272 {
4273 struct btrfs_fs_info *fs_info;
4274 struct btrfs_space_info *space_info;
4275 u64 to_reclaim;
4276 int flush_state;
4277
4278 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4279 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4280
4281 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4282 space_info);
4283 if (!to_reclaim)
4284 return;
4285
4286 flush_state = FLUSH_DELAYED_ITEMS_NR;
4287 do {
4288 flush_space(fs_info->fs_root, space_info, to_reclaim,
4289 to_reclaim, flush_state);
4290 flush_state++;
4291 if (!btrfs_need_do_async_reclaim(space_info, fs_info))
4292 return;
4293 } while (flush_state <= COMMIT_TRANS);
4294
4295 if (btrfs_need_do_async_reclaim(space_info, fs_info))
4296 queue_work(system_unbound_wq, work);
4297 }
4298
4299 void btrfs_init_async_reclaim_work(struct work_struct *work)
4300 {
4301 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4302 }
4303
4304 /**
4305 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4306 * @root - the root we're allocating for
4307 * @block_rsv - the block_rsv we're allocating for
4308 * @orig_bytes - the number of bytes we want
4309 * @flush - whether or not we can flush to make our reservation
4310 *
4311 * This will reserve orgi_bytes number of bytes from the space info associated
4312 * with the block_rsv. If there is not enough space it will make an attempt to
4313 * flush out space to make room. It will do this by flushing delalloc if
4314 * possible or committing the transaction. If flush is 0 then no attempts to
4315 * regain reservations will be made and this will fail if there is not enough
4316 * space already.
4317 */
4318 static int reserve_metadata_bytes(struct btrfs_root *root,
4319 struct btrfs_block_rsv *block_rsv,
4320 u64 orig_bytes,
4321 enum btrfs_reserve_flush_enum flush)
4322 {
4323 struct btrfs_space_info *space_info = block_rsv->space_info;
4324 u64 used;
4325 u64 num_bytes = orig_bytes;
4326 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4327 int ret = 0;
4328 bool flushing = false;
4329
4330 again:
4331 ret = 0;
4332 spin_lock(&space_info->lock);
4333 /*
4334 * We only want to wait if somebody other than us is flushing and we
4335 * are actually allowed to flush all things.
4336 */
4337 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4338 space_info->flush) {
4339 spin_unlock(&space_info->lock);
4340 /*
4341 * If we have a trans handle we can't wait because the flusher
4342 * may have to commit the transaction, which would mean we would
4343 * deadlock since we are waiting for the flusher to finish, but
4344 * hold the current transaction open.
4345 */
4346 if (current->journal_info)
4347 return -EAGAIN;
4348 ret = wait_event_killable(space_info->wait, !space_info->flush);
4349 /* Must have been killed, return */
4350 if (ret)
4351 return -EINTR;
4352
4353 spin_lock(&space_info->lock);
4354 }
4355
4356 ret = -ENOSPC;
4357 used = space_info->bytes_used + space_info->bytes_reserved +
4358 space_info->bytes_pinned + space_info->bytes_readonly +
4359 space_info->bytes_may_use;
4360
4361 /*
4362 * The idea here is that we've not already over-reserved the block group
4363 * then we can go ahead and save our reservation first and then start
4364 * flushing if we need to. Otherwise if we've already overcommitted
4365 * lets start flushing stuff first and then come back and try to make
4366 * our reservation.
4367 */
4368 if (used <= space_info->total_bytes) {
4369 if (used + orig_bytes <= space_info->total_bytes) {
4370 space_info->bytes_may_use += orig_bytes;
4371 trace_btrfs_space_reservation(root->fs_info,
4372 "space_info", space_info->flags, orig_bytes, 1);
4373 ret = 0;
4374 } else {
4375 /*
4376 * Ok set num_bytes to orig_bytes since we aren't
4377 * overocmmitted, this way we only try and reclaim what
4378 * we need.
4379 */
4380 num_bytes = orig_bytes;
4381 }
4382 } else {
4383 /*
4384 * Ok we're over committed, set num_bytes to the overcommitted
4385 * amount plus the amount of bytes that we need for this
4386 * reservation.
4387 */
4388 num_bytes = used - space_info->total_bytes +
4389 (orig_bytes * 2);
4390 }
4391
4392 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4393 space_info->bytes_may_use += orig_bytes;
4394 trace_btrfs_space_reservation(root->fs_info, "space_info",
4395 space_info->flags, orig_bytes,
4396 1);
4397 ret = 0;
4398 }
4399
4400 /*
4401 * Couldn't make our reservation, save our place so while we're trying
4402 * to reclaim space we can actually use it instead of somebody else
4403 * stealing it from us.
4404 *
4405 * We make the other tasks wait for the flush only when we can flush
4406 * all things.
4407 */
4408 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4409 flushing = true;
4410 space_info->flush = 1;
4411 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4412 used += orig_bytes;
4413 if (need_do_async_reclaim(space_info, root->fs_info, used) &&
4414 !work_busy(&root->fs_info->async_reclaim_work))
4415 queue_work(system_unbound_wq,
4416 &root->fs_info->async_reclaim_work);
4417 }
4418 spin_unlock(&space_info->lock);
4419
4420 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4421 goto out;
4422
4423 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4424 flush_state);
4425 flush_state++;
4426
4427 /*
4428 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4429 * would happen. So skip delalloc flush.
4430 */
4431 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4432 (flush_state == FLUSH_DELALLOC ||
4433 flush_state == FLUSH_DELALLOC_WAIT))
4434 flush_state = ALLOC_CHUNK;
4435
4436 if (!ret)
4437 goto again;
4438 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4439 flush_state < COMMIT_TRANS)
4440 goto again;
4441 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4442 flush_state <= COMMIT_TRANS)
4443 goto again;
4444
4445 out:
4446 if (ret == -ENOSPC &&
4447 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4448 struct btrfs_block_rsv *global_rsv =
4449 &root->fs_info->global_block_rsv;
4450
4451 if (block_rsv != global_rsv &&
4452 !block_rsv_use_bytes(global_rsv, orig_bytes))
4453 ret = 0;
4454 }
4455 if (ret == -ENOSPC)
4456 trace_btrfs_space_reservation(root->fs_info,
4457 "space_info:enospc",
4458 space_info->flags, orig_bytes, 1);
4459 if (flushing) {
4460 spin_lock(&space_info->lock);
4461 space_info->flush = 0;
4462 wake_up_all(&space_info->wait);
4463 spin_unlock(&space_info->lock);
4464 }
4465 return ret;
4466 }
4467
4468 static struct btrfs_block_rsv *get_block_rsv(
4469 const struct btrfs_trans_handle *trans,
4470 const struct btrfs_root *root)
4471 {
4472 struct btrfs_block_rsv *block_rsv = NULL;
4473
4474 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4475 block_rsv = trans->block_rsv;
4476
4477 if (root == root->fs_info->csum_root && trans->adding_csums)
4478 block_rsv = trans->block_rsv;
4479
4480 if (root == root->fs_info->uuid_root)
4481 block_rsv = trans->block_rsv;
4482
4483 if (!block_rsv)
4484 block_rsv = root->block_rsv;
4485
4486 if (!block_rsv)
4487 block_rsv = &root->fs_info->empty_block_rsv;
4488
4489 return block_rsv;
4490 }
4491
4492 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4493 u64 num_bytes)
4494 {
4495 int ret = -ENOSPC;
4496 spin_lock(&block_rsv->lock);
4497 if (block_rsv->reserved >= num_bytes) {
4498 block_rsv->reserved -= num_bytes;
4499 if (block_rsv->reserved < block_rsv->size)
4500 block_rsv->full = 0;
4501 ret = 0;
4502 }
4503 spin_unlock(&block_rsv->lock);
4504 return ret;
4505 }
4506
4507 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4508 u64 num_bytes, int update_size)
4509 {
4510 spin_lock(&block_rsv->lock);
4511 block_rsv->reserved += num_bytes;
4512 if (update_size)
4513 block_rsv->size += num_bytes;
4514 else if (block_rsv->reserved >= block_rsv->size)
4515 block_rsv->full = 1;
4516 spin_unlock(&block_rsv->lock);
4517 }
4518
4519 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4520 struct btrfs_block_rsv *dest, u64 num_bytes,
4521 int min_factor)
4522 {
4523 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4524 u64 min_bytes;
4525
4526 if (global_rsv->space_info != dest->space_info)
4527 return -ENOSPC;
4528
4529 spin_lock(&global_rsv->lock);
4530 min_bytes = div_factor(global_rsv->size, min_factor);
4531 if (global_rsv->reserved < min_bytes + num_bytes) {
4532 spin_unlock(&global_rsv->lock);
4533 return -ENOSPC;
4534 }
4535 global_rsv->reserved -= num_bytes;
4536 if (global_rsv->reserved < global_rsv->size)
4537 global_rsv->full = 0;
4538 spin_unlock(&global_rsv->lock);
4539
4540 block_rsv_add_bytes(dest, num_bytes, 1);
4541 return 0;
4542 }
4543
4544 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4545 struct btrfs_block_rsv *block_rsv,
4546 struct btrfs_block_rsv *dest, u64 num_bytes)
4547 {
4548 struct btrfs_space_info *space_info = block_rsv->space_info;
4549
4550 spin_lock(&block_rsv->lock);
4551 if (num_bytes == (u64)-1)
4552 num_bytes = block_rsv->size;
4553 block_rsv->size -= num_bytes;
4554 if (block_rsv->reserved >= block_rsv->size) {
4555 num_bytes = block_rsv->reserved - block_rsv->size;
4556 block_rsv->reserved = block_rsv->size;
4557 block_rsv->full = 1;
4558 } else {
4559 num_bytes = 0;
4560 }
4561 spin_unlock(&block_rsv->lock);
4562
4563 if (num_bytes > 0) {
4564 if (dest) {
4565 spin_lock(&dest->lock);
4566 if (!dest->full) {
4567 u64 bytes_to_add;
4568
4569 bytes_to_add = dest->size - dest->reserved;
4570 bytes_to_add = min(num_bytes, bytes_to_add);
4571 dest->reserved += bytes_to_add;
4572 if (dest->reserved >= dest->size)
4573 dest->full = 1;
4574 num_bytes -= bytes_to_add;
4575 }
4576 spin_unlock(&dest->lock);
4577 }
4578 if (num_bytes) {
4579 spin_lock(&space_info->lock);
4580 space_info->bytes_may_use -= num_bytes;
4581 trace_btrfs_space_reservation(fs_info, "space_info",
4582 space_info->flags, num_bytes, 0);
4583 spin_unlock(&space_info->lock);
4584 }
4585 }
4586 }
4587
4588 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4589 struct btrfs_block_rsv *dst, u64 num_bytes)
4590 {
4591 int ret;
4592
4593 ret = block_rsv_use_bytes(src, num_bytes);
4594 if (ret)
4595 return ret;
4596
4597 block_rsv_add_bytes(dst, num_bytes, 1);
4598 return 0;
4599 }
4600
4601 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4602 {
4603 memset(rsv, 0, sizeof(*rsv));
4604 spin_lock_init(&rsv->lock);
4605 rsv->type = type;
4606 }
4607
4608 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4609 unsigned short type)
4610 {
4611 struct btrfs_block_rsv *block_rsv;
4612 struct btrfs_fs_info *fs_info = root->fs_info;
4613
4614 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4615 if (!block_rsv)
4616 return NULL;
4617
4618 btrfs_init_block_rsv(block_rsv, type);
4619 block_rsv->space_info = __find_space_info(fs_info,
4620 BTRFS_BLOCK_GROUP_METADATA);
4621 return block_rsv;
4622 }
4623
4624 void btrfs_free_block_rsv(struct btrfs_root *root,
4625 struct btrfs_block_rsv *rsv)
4626 {
4627 if (!rsv)
4628 return;
4629 btrfs_block_rsv_release(root, rsv, (u64)-1);
4630 kfree(rsv);
4631 }
4632
4633 int btrfs_block_rsv_add(struct btrfs_root *root,
4634 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4635 enum btrfs_reserve_flush_enum flush)
4636 {
4637 int ret;
4638
4639 if (num_bytes == 0)
4640 return 0;
4641
4642 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4643 if (!ret) {
4644 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4645 return 0;
4646 }
4647
4648 return ret;
4649 }
4650
4651 int btrfs_block_rsv_check(struct btrfs_root *root,
4652 struct btrfs_block_rsv *block_rsv, int min_factor)
4653 {
4654 u64 num_bytes = 0;
4655 int ret = -ENOSPC;
4656
4657 if (!block_rsv)
4658 return 0;
4659
4660 spin_lock(&block_rsv->lock);
4661 num_bytes = div_factor(block_rsv->size, min_factor);
4662 if (block_rsv->reserved >= num_bytes)
4663 ret = 0;
4664 spin_unlock(&block_rsv->lock);
4665
4666 return ret;
4667 }
4668
4669 int btrfs_block_rsv_refill(struct btrfs_root *root,
4670 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4671 enum btrfs_reserve_flush_enum flush)
4672 {
4673 u64 num_bytes = 0;
4674 int ret = -ENOSPC;
4675
4676 if (!block_rsv)
4677 return 0;
4678
4679 spin_lock(&block_rsv->lock);
4680 num_bytes = min_reserved;
4681 if (block_rsv->reserved >= num_bytes)
4682 ret = 0;
4683 else
4684 num_bytes -= block_rsv->reserved;
4685 spin_unlock(&block_rsv->lock);
4686
4687 if (!ret)
4688 return 0;
4689
4690 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4691 if (!ret) {
4692 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4693 return 0;
4694 }
4695
4696 return ret;
4697 }
4698
4699 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4700 struct btrfs_block_rsv *dst_rsv,
4701 u64 num_bytes)
4702 {
4703 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4704 }
4705
4706 void btrfs_block_rsv_release(struct btrfs_root *root,
4707 struct btrfs_block_rsv *block_rsv,
4708 u64 num_bytes)
4709 {
4710 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4711 if (global_rsv == block_rsv ||
4712 block_rsv->space_info != global_rsv->space_info)
4713 global_rsv = NULL;
4714 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4715 num_bytes);
4716 }
4717
4718 /*
4719 * helper to calculate size of global block reservation.
4720 * the desired value is sum of space used by extent tree,
4721 * checksum tree and root tree
4722 */
4723 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4724 {
4725 struct btrfs_space_info *sinfo;
4726 u64 num_bytes;
4727 u64 meta_used;
4728 u64 data_used;
4729 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4730
4731 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4732 spin_lock(&sinfo->lock);
4733 data_used = sinfo->bytes_used;
4734 spin_unlock(&sinfo->lock);
4735
4736 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4737 spin_lock(&sinfo->lock);
4738 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4739 data_used = 0;
4740 meta_used = sinfo->bytes_used;
4741 spin_unlock(&sinfo->lock);
4742
4743 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4744 csum_size * 2;
4745 num_bytes += div64_u64(data_used + meta_used, 50);
4746
4747 if (num_bytes * 3 > meta_used)
4748 num_bytes = div64_u64(meta_used, 3);
4749
4750 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4751 }
4752
4753 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4754 {
4755 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4756 struct btrfs_space_info *sinfo = block_rsv->space_info;
4757 u64 num_bytes;
4758
4759 num_bytes = calc_global_metadata_size(fs_info);
4760
4761 spin_lock(&sinfo->lock);
4762 spin_lock(&block_rsv->lock);
4763
4764 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4765
4766 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4767 sinfo->bytes_reserved + sinfo->bytes_readonly +
4768 sinfo->bytes_may_use;
4769
4770 if (sinfo->total_bytes > num_bytes) {
4771 num_bytes = sinfo->total_bytes - num_bytes;
4772 block_rsv->reserved += num_bytes;
4773 sinfo->bytes_may_use += num_bytes;
4774 trace_btrfs_space_reservation(fs_info, "space_info",
4775 sinfo->flags, num_bytes, 1);
4776 }
4777
4778 if (block_rsv->reserved >= block_rsv->size) {
4779 num_bytes = block_rsv->reserved - block_rsv->size;
4780 sinfo->bytes_may_use -= num_bytes;
4781 trace_btrfs_space_reservation(fs_info, "space_info",
4782 sinfo->flags, num_bytes, 0);
4783 block_rsv->reserved = block_rsv->size;
4784 block_rsv->full = 1;
4785 }
4786
4787 spin_unlock(&block_rsv->lock);
4788 spin_unlock(&sinfo->lock);
4789 }
4790
4791 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4792 {
4793 struct btrfs_space_info *space_info;
4794
4795 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4796 fs_info->chunk_block_rsv.space_info = space_info;
4797
4798 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4799 fs_info->global_block_rsv.space_info = space_info;
4800 fs_info->delalloc_block_rsv.space_info = space_info;
4801 fs_info->trans_block_rsv.space_info = space_info;
4802 fs_info->empty_block_rsv.space_info = space_info;
4803 fs_info->delayed_block_rsv.space_info = space_info;
4804
4805 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4806 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4807 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4808 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4809 if (fs_info->quota_root)
4810 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4811 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4812
4813 update_global_block_rsv(fs_info);
4814 }
4815
4816 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4817 {
4818 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4819 (u64)-1);
4820 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4821 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4822 WARN_ON(fs_info->trans_block_rsv.size > 0);
4823 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4824 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4825 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4826 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4827 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4828 }
4829
4830 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4831 struct btrfs_root *root)
4832 {
4833 if (!trans->block_rsv)
4834 return;
4835
4836 if (!trans->bytes_reserved)
4837 return;
4838
4839 trace_btrfs_space_reservation(root->fs_info, "transaction",
4840 trans->transid, trans->bytes_reserved, 0);
4841 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4842 trans->bytes_reserved = 0;
4843 }
4844
4845 /* Can only return 0 or -ENOSPC */
4846 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4847 struct inode *inode)
4848 {
4849 struct btrfs_root *root = BTRFS_I(inode)->root;
4850 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4851 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4852
4853 /*
4854 * We need to hold space in order to delete our orphan item once we've
4855 * added it, so this takes the reservation so we can release it later
4856 * when we are truly done with the orphan item.
4857 */
4858 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4859 trace_btrfs_space_reservation(root->fs_info, "orphan",
4860 btrfs_ino(inode), num_bytes, 1);
4861 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4862 }
4863
4864 void btrfs_orphan_release_metadata(struct inode *inode)
4865 {
4866 struct btrfs_root *root = BTRFS_I(inode)->root;
4867 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4868 trace_btrfs_space_reservation(root->fs_info, "orphan",
4869 btrfs_ino(inode), num_bytes, 0);
4870 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4871 }
4872
4873 /*
4874 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4875 * root: the root of the parent directory
4876 * rsv: block reservation
4877 * items: the number of items that we need do reservation
4878 * qgroup_reserved: used to return the reserved size in qgroup
4879 *
4880 * This function is used to reserve the space for snapshot/subvolume
4881 * creation and deletion. Those operations are different with the
4882 * common file/directory operations, they change two fs/file trees
4883 * and root tree, the number of items that the qgroup reserves is
4884 * different with the free space reservation. So we can not use
4885 * the space reseravtion mechanism in start_transaction().
4886 */
4887 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4888 struct btrfs_block_rsv *rsv,
4889 int items,
4890 u64 *qgroup_reserved,
4891 bool use_global_rsv)
4892 {
4893 u64 num_bytes;
4894 int ret;
4895 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4896
4897 if (root->fs_info->quota_enabled) {
4898 /* One for parent inode, two for dir entries */
4899 num_bytes = 3 * root->leafsize;
4900 ret = btrfs_qgroup_reserve(root, num_bytes);
4901 if (ret)
4902 return ret;
4903 } else {
4904 num_bytes = 0;
4905 }
4906
4907 *qgroup_reserved = num_bytes;
4908
4909 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4910 rsv->space_info = __find_space_info(root->fs_info,
4911 BTRFS_BLOCK_GROUP_METADATA);
4912 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4913 BTRFS_RESERVE_FLUSH_ALL);
4914
4915 if (ret == -ENOSPC && use_global_rsv)
4916 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4917
4918 if (ret) {
4919 if (*qgroup_reserved)
4920 btrfs_qgroup_free(root, *qgroup_reserved);
4921 }
4922
4923 return ret;
4924 }
4925
4926 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4927 struct btrfs_block_rsv *rsv,
4928 u64 qgroup_reserved)
4929 {
4930 btrfs_block_rsv_release(root, rsv, (u64)-1);
4931 if (qgroup_reserved)
4932 btrfs_qgroup_free(root, qgroup_reserved);
4933 }
4934
4935 /**
4936 * drop_outstanding_extent - drop an outstanding extent
4937 * @inode: the inode we're dropping the extent for
4938 *
4939 * This is called when we are freeing up an outstanding extent, either called
4940 * after an error or after an extent is written. This will return the number of
4941 * reserved extents that need to be freed. This must be called with
4942 * BTRFS_I(inode)->lock held.
4943 */
4944 static unsigned drop_outstanding_extent(struct inode *inode)
4945 {
4946 unsigned drop_inode_space = 0;
4947 unsigned dropped_extents = 0;
4948
4949 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4950 BTRFS_I(inode)->outstanding_extents--;
4951
4952 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4953 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4954 &BTRFS_I(inode)->runtime_flags))
4955 drop_inode_space = 1;
4956
4957 /*
4958 * If we have more or the same amount of outsanding extents than we have
4959 * reserved then we need to leave the reserved extents count alone.
4960 */
4961 if (BTRFS_I(inode)->outstanding_extents >=
4962 BTRFS_I(inode)->reserved_extents)
4963 return drop_inode_space;
4964
4965 dropped_extents = BTRFS_I(inode)->reserved_extents -
4966 BTRFS_I(inode)->outstanding_extents;
4967 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4968 return dropped_extents + drop_inode_space;
4969 }
4970
4971 /**
4972 * calc_csum_metadata_size - return the amount of metada space that must be
4973 * reserved/free'd for the given bytes.
4974 * @inode: the inode we're manipulating
4975 * @num_bytes: the number of bytes in question
4976 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4977 *
4978 * This adjusts the number of csum_bytes in the inode and then returns the
4979 * correct amount of metadata that must either be reserved or freed. We
4980 * calculate how many checksums we can fit into one leaf and then divide the
4981 * number of bytes that will need to be checksumed by this value to figure out
4982 * how many checksums will be required. If we are adding bytes then the number
4983 * may go up and we will return the number of additional bytes that must be
4984 * reserved. If it is going down we will return the number of bytes that must
4985 * be freed.
4986 *
4987 * This must be called with BTRFS_I(inode)->lock held.
4988 */
4989 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4990 int reserve)
4991 {
4992 struct btrfs_root *root = BTRFS_I(inode)->root;
4993 u64 csum_size;
4994 int num_csums_per_leaf;
4995 int num_csums;
4996 int old_csums;
4997
4998 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4999 BTRFS_I(inode)->csum_bytes == 0)
5000 return 0;
5001
5002 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5003 if (reserve)
5004 BTRFS_I(inode)->csum_bytes += num_bytes;
5005 else
5006 BTRFS_I(inode)->csum_bytes -= num_bytes;
5007 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
5008 num_csums_per_leaf = (int)div64_u64(csum_size,
5009 sizeof(struct btrfs_csum_item) +
5010 sizeof(struct btrfs_disk_key));
5011 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5012 num_csums = num_csums + num_csums_per_leaf - 1;
5013 num_csums = num_csums / num_csums_per_leaf;
5014
5015 old_csums = old_csums + num_csums_per_leaf - 1;
5016 old_csums = old_csums / num_csums_per_leaf;
5017
5018 /* No change, no need to reserve more */
5019 if (old_csums == num_csums)
5020 return 0;
5021
5022 if (reserve)
5023 return btrfs_calc_trans_metadata_size(root,
5024 num_csums - old_csums);
5025
5026 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5027 }
5028
5029 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5030 {
5031 struct btrfs_root *root = BTRFS_I(inode)->root;
5032 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5033 u64 to_reserve = 0;
5034 u64 csum_bytes;
5035 unsigned nr_extents = 0;
5036 int extra_reserve = 0;
5037 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5038 int ret = 0;
5039 bool delalloc_lock = true;
5040 u64 to_free = 0;
5041 unsigned dropped;
5042
5043 /* If we are a free space inode we need to not flush since we will be in
5044 * the middle of a transaction commit. We also don't need the delalloc
5045 * mutex since we won't race with anybody. We need this mostly to make
5046 * lockdep shut its filthy mouth.
5047 */
5048 if (btrfs_is_free_space_inode(inode)) {
5049 flush = BTRFS_RESERVE_NO_FLUSH;
5050 delalloc_lock = false;
5051 }
5052
5053 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5054 btrfs_transaction_in_commit(root->fs_info))
5055 schedule_timeout(1);
5056
5057 if (delalloc_lock)
5058 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5059
5060 num_bytes = ALIGN(num_bytes, root->sectorsize);
5061
5062 spin_lock(&BTRFS_I(inode)->lock);
5063 BTRFS_I(inode)->outstanding_extents++;
5064
5065 if (BTRFS_I(inode)->outstanding_extents >
5066 BTRFS_I(inode)->reserved_extents)
5067 nr_extents = BTRFS_I(inode)->outstanding_extents -
5068 BTRFS_I(inode)->reserved_extents;
5069
5070 /*
5071 * Add an item to reserve for updating the inode when we complete the
5072 * delalloc io.
5073 */
5074 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5075 &BTRFS_I(inode)->runtime_flags)) {
5076 nr_extents++;
5077 extra_reserve = 1;
5078 }
5079
5080 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5081 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5082 csum_bytes = BTRFS_I(inode)->csum_bytes;
5083 spin_unlock(&BTRFS_I(inode)->lock);
5084
5085 if (root->fs_info->quota_enabled) {
5086 ret = btrfs_qgroup_reserve(root, num_bytes +
5087 nr_extents * root->leafsize);
5088 if (ret)
5089 goto out_fail;
5090 }
5091
5092 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5093 if (unlikely(ret)) {
5094 if (root->fs_info->quota_enabled)
5095 btrfs_qgroup_free(root, num_bytes +
5096 nr_extents * root->leafsize);
5097 goto out_fail;
5098 }
5099
5100 spin_lock(&BTRFS_I(inode)->lock);
5101 if (extra_reserve) {
5102 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5103 &BTRFS_I(inode)->runtime_flags);
5104 nr_extents--;
5105 }
5106 BTRFS_I(inode)->reserved_extents += nr_extents;
5107 spin_unlock(&BTRFS_I(inode)->lock);
5108
5109 if (delalloc_lock)
5110 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5111
5112 if (to_reserve)
5113 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5114 btrfs_ino(inode), to_reserve, 1);
5115 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5116
5117 return 0;
5118
5119 out_fail:
5120 spin_lock(&BTRFS_I(inode)->lock);
5121 dropped = drop_outstanding_extent(inode);
5122 /*
5123 * If the inodes csum_bytes is the same as the original
5124 * csum_bytes then we know we haven't raced with any free()ers
5125 * so we can just reduce our inodes csum bytes and carry on.
5126 */
5127 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5128 calc_csum_metadata_size(inode, num_bytes, 0);
5129 } else {
5130 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5131 u64 bytes;
5132
5133 /*
5134 * This is tricky, but first we need to figure out how much we
5135 * free'd from any free-ers that occured during this
5136 * reservation, so we reset ->csum_bytes to the csum_bytes
5137 * before we dropped our lock, and then call the free for the
5138 * number of bytes that were freed while we were trying our
5139 * reservation.
5140 */
5141 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5142 BTRFS_I(inode)->csum_bytes = csum_bytes;
5143 to_free = calc_csum_metadata_size(inode, bytes, 0);
5144
5145
5146 /*
5147 * Now we need to see how much we would have freed had we not
5148 * been making this reservation and our ->csum_bytes were not
5149 * artificially inflated.
5150 */
5151 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5152 bytes = csum_bytes - orig_csum_bytes;
5153 bytes = calc_csum_metadata_size(inode, bytes, 0);
5154
5155 /*
5156 * Now reset ->csum_bytes to what it should be. If bytes is
5157 * more than to_free then we would have free'd more space had we
5158 * not had an artificially high ->csum_bytes, so we need to free
5159 * the remainder. If bytes is the same or less then we don't
5160 * need to do anything, the other free-ers did the correct
5161 * thing.
5162 */
5163 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5164 if (bytes > to_free)
5165 to_free = bytes - to_free;
5166 else
5167 to_free = 0;
5168 }
5169 spin_unlock(&BTRFS_I(inode)->lock);
5170 if (dropped)
5171 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5172
5173 if (to_free) {
5174 btrfs_block_rsv_release(root, block_rsv, to_free);
5175 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5176 btrfs_ino(inode), to_free, 0);
5177 }
5178 if (delalloc_lock)
5179 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5180 return ret;
5181 }
5182
5183 /**
5184 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5185 * @inode: the inode to release the reservation for
5186 * @num_bytes: the number of bytes we're releasing
5187 *
5188 * This will release the metadata reservation for an inode. This can be called
5189 * once we complete IO for a given set of bytes to release their metadata
5190 * reservations.
5191 */
5192 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5193 {
5194 struct btrfs_root *root = BTRFS_I(inode)->root;
5195 u64 to_free = 0;
5196 unsigned dropped;
5197
5198 num_bytes = ALIGN(num_bytes, root->sectorsize);
5199 spin_lock(&BTRFS_I(inode)->lock);
5200 dropped = drop_outstanding_extent(inode);
5201
5202 if (num_bytes)
5203 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5204 spin_unlock(&BTRFS_I(inode)->lock);
5205 if (dropped > 0)
5206 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5207
5208 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5209 btrfs_ino(inode), to_free, 0);
5210 if (root->fs_info->quota_enabled) {
5211 btrfs_qgroup_free(root, num_bytes +
5212 dropped * root->leafsize);
5213 }
5214
5215 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5216 to_free);
5217 }
5218
5219 /**
5220 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5221 * @inode: inode we're writing to
5222 * @num_bytes: the number of bytes we want to allocate
5223 *
5224 * This will do the following things
5225 *
5226 * o reserve space in the data space info for num_bytes
5227 * o reserve space in the metadata space info based on number of outstanding
5228 * extents and how much csums will be needed
5229 * o add to the inodes ->delalloc_bytes
5230 * o add it to the fs_info's delalloc inodes list.
5231 *
5232 * This will return 0 for success and -ENOSPC if there is no space left.
5233 */
5234 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5235 {
5236 int ret;
5237
5238 ret = btrfs_check_data_free_space(inode, num_bytes);
5239 if (ret)
5240 return ret;
5241
5242 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5243 if (ret) {
5244 btrfs_free_reserved_data_space(inode, num_bytes);
5245 return ret;
5246 }
5247
5248 return 0;
5249 }
5250
5251 /**
5252 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5253 * @inode: inode we're releasing space for
5254 * @num_bytes: the number of bytes we want to free up
5255 *
5256 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5257 * called in the case that we don't need the metadata AND data reservations
5258 * anymore. So if there is an error or we insert an inline extent.
5259 *
5260 * This function will release the metadata space that was not used and will
5261 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5262 * list if there are no delalloc bytes left.
5263 */
5264 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5265 {
5266 btrfs_delalloc_release_metadata(inode, num_bytes);
5267 btrfs_free_reserved_data_space(inode, num_bytes);
5268 }
5269
5270 static int update_block_group(struct btrfs_root *root,
5271 u64 bytenr, u64 num_bytes, int alloc)
5272 {
5273 struct btrfs_block_group_cache *cache = NULL;
5274 struct btrfs_fs_info *info = root->fs_info;
5275 u64 total = num_bytes;
5276 u64 old_val;
5277 u64 byte_in_group;
5278 int factor;
5279
5280 /* block accounting for super block */
5281 spin_lock(&info->delalloc_root_lock);
5282 old_val = btrfs_super_bytes_used(info->super_copy);
5283 if (alloc)
5284 old_val += num_bytes;
5285 else
5286 old_val -= num_bytes;
5287 btrfs_set_super_bytes_used(info->super_copy, old_val);
5288 spin_unlock(&info->delalloc_root_lock);
5289
5290 while (total) {
5291 cache = btrfs_lookup_block_group(info, bytenr);
5292 if (!cache)
5293 return -ENOENT;
5294 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5295 BTRFS_BLOCK_GROUP_RAID1 |
5296 BTRFS_BLOCK_GROUP_RAID10))
5297 factor = 2;
5298 else
5299 factor = 1;
5300 /*
5301 * If this block group has free space cache written out, we
5302 * need to make sure to load it if we are removing space. This
5303 * is because we need the unpinning stage to actually add the
5304 * space back to the block group, otherwise we will leak space.
5305 */
5306 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5307 cache_block_group(cache, 1);
5308
5309 byte_in_group = bytenr - cache->key.objectid;
5310 WARN_ON(byte_in_group > cache->key.offset);
5311
5312 spin_lock(&cache->space_info->lock);
5313 spin_lock(&cache->lock);
5314
5315 if (btrfs_test_opt(root, SPACE_CACHE) &&
5316 cache->disk_cache_state < BTRFS_DC_CLEAR)
5317 cache->disk_cache_state = BTRFS_DC_CLEAR;
5318
5319 cache->dirty = 1;
5320 old_val = btrfs_block_group_used(&cache->item);
5321 num_bytes = min(total, cache->key.offset - byte_in_group);
5322 if (alloc) {
5323 old_val += num_bytes;
5324 btrfs_set_block_group_used(&cache->item, old_val);
5325 cache->reserved -= num_bytes;
5326 cache->space_info->bytes_reserved -= num_bytes;
5327 cache->space_info->bytes_used += num_bytes;
5328 cache->space_info->disk_used += num_bytes * factor;
5329 spin_unlock(&cache->lock);
5330 spin_unlock(&cache->space_info->lock);
5331 } else {
5332 old_val -= num_bytes;
5333 btrfs_set_block_group_used(&cache->item, old_val);
5334 cache->pinned += num_bytes;
5335 cache->space_info->bytes_pinned += num_bytes;
5336 cache->space_info->bytes_used -= num_bytes;
5337 cache->space_info->disk_used -= num_bytes * factor;
5338 spin_unlock(&cache->lock);
5339 spin_unlock(&cache->space_info->lock);
5340
5341 set_extent_dirty(info->pinned_extents,
5342 bytenr, bytenr + num_bytes - 1,
5343 GFP_NOFS | __GFP_NOFAIL);
5344 }
5345 btrfs_put_block_group(cache);
5346 total -= num_bytes;
5347 bytenr += num_bytes;
5348 }
5349 return 0;
5350 }
5351
5352 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5353 {
5354 struct btrfs_block_group_cache *cache;
5355 u64 bytenr;
5356
5357 spin_lock(&root->fs_info->block_group_cache_lock);
5358 bytenr = root->fs_info->first_logical_byte;
5359 spin_unlock(&root->fs_info->block_group_cache_lock);
5360
5361 if (bytenr < (u64)-1)
5362 return bytenr;
5363
5364 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5365 if (!cache)
5366 return 0;
5367
5368 bytenr = cache->key.objectid;
5369 btrfs_put_block_group(cache);
5370
5371 return bytenr;
5372 }
5373
5374 static int pin_down_extent(struct btrfs_root *root,
5375 struct btrfs_block_group_cache *cache,
5376 u64 bytenr, u64 num_bytes, int reserved)
5377 {
5378 spin_lock(&cache->space_info->lock);
5379 spin_lock(&cache->lock);
5380 cache->pinned += num_bytes;
5381 cache->space_info->bytes_pinned += num_bytes;
5382 if (reserved) {
5383 cache->reserved -= num_bytes;
5384 cache->space_info->bytes_reserved -= num_bytes;
5385 }
5386 spin_unlock(&cache->lock);
5387 spin_unlock(&cache->space_info->lock);
5388
5389 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5390 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5391 if (reserved)
5392 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5393 return 0;
5394 }
5395
5396 /*
5397 * this function must be called within transaction
5398 */
5399 int btrfs_pin_extent(struct btrfs_root *root,
5400 u64 bytenr, u64 num_bytes, int reserved)
5401 {
5402 struct btrfs_block_group_cache *cache;
5403
5404 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5405 BUG_ON(!cache); /* Logic error */
5406
5407 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5408
5409 btrfs_put_block_group(cache);
5410 return 0;
5411 }
5412
5413 /*
5414 * this function must be called within transaction
5415 */
5416 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5417 u64 bytenr, u64 num_bytes)
5418 {
5419 struct btrfs_block_group_cache *cache;
5420 int ret;
5421
5422 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5423 if (!cache)
5424 return -EINVAL;
5425
5426 /*
5427 * pull in the free space cache (if any) so that our pin
5428 * removes the free space from the cache. We have load_only set
5429 * to one because the slow code to read in the free extents does check
5430 * the pinned extents.
5431 */
5432 cache_block_group(cache, 1);
5433
5434 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5435
5436 /* remove us from the free space cache (if we're there at all) */
5437 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5438 btrfs_put_block_group(cache);
5439 return ret;
5440 }
5441
5442 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5443 {
5444 int ret;
5445 struct btrfs_block_group_cache *block_group;
5446 struct btrfs_caching_control *caching_ctl;
5447
5448 block_group = btrfs_lookup_block_group(root->fs_info, start);
5449 if (!block_group)
5450 return -EINVAL;
5451
5452 cache_block_group(block_group, 0);
5453 caching_ctl = get_caching_control(block_group);
5454
5455 if (!caching_ctl) {
5456 /* Logic error */
5457 BUG_ON(!block_group_cache_done(block_group));
5458 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5459 } else {
5460 mutex_lock(&caching_ctl->mutex);
5461
5462 if (start >= caching_ctl->progress) {
5463 ret = add_excluded_extent(root, start, num_bytes);
5464 } else if (start + num_bytes <= caching_ctl->progress) {
5465 ret = btrfs_remove_free_space(block_group,
5466 start, num_bytes);
5467 } else {
5468 num_bytes = caching_ctl->progress - start;
5469 ret = btrfs_remove_free_space(block_group,
5470 start, num_bytes);
5471 if (ret)
5472 goto out_lock;
5473
5474 num_bytes = (start + num_bytes) -
5475 caching_ctl->progress;
5476 start = caching_ctl->progress;
5477 ret = add_excluded_extent(root, start, num_bytes);
5478 }
5479 out_lock:
5480 mutex_unlock(&caching_ctl->mutex);
5481 put_caching_control(caching_ctl);
5482 }
5483 btrfs_put_block_group(block_group);
5484 return ret;
5485 }
5486
5487 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5488 struct extent_buffer *eb)
5489 {
5490 struct btrfs_file_extent_item *item;
5491 struct btrfs_key key;
5492 int found_type;
5493 int i;
5494
5495 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5496 return 0;
5497
5498 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5499 btrfs_item_key_to_cpu(eb, &key, i);
5500 if (key.type != BTRFS_EXTENT_DATA_KEY)
5501 continue;
5502 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5503 found_type = btrfs_file_extent_type(eb, item);
5504 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5505 continue;
5506 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5507 continue;
5508 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5509 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5510 __exclude_logged_extent(log, key.objectid, key.offset);
5511 }
5512
5513 return 0;
5514 }
5515
5516 /**
5517 * btrfs_update_reserved_bytes - update the block_group and space info counters
5518 * @cache: The cache we are manipulating
5519 * @num_bytes: The number of bytes in question
5520 * @reserve: One of the reservation enums
5521 *
5522 * This is called by the allocator when it reserves space, or by somebody who is
5523 * freeing space that was never actually used on disk. For example if you
5524 * reserve some space for a new leaf in transaction A and before transaction A
5525 * commits you free that leaf, you call this with reserve set to 0 in order to
5526 * clear the reservation.
5527 *
5528 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5529 * ENOSPC accounting. For data we handle the reservation through clearing the
5530 * delalloc bits in the io_tree. We have to do this since we could end up
5531 * allocating less disk space for the amount of data we have reserved in the
5532 * case of compression.
5533 *
5534 * If this is a reservation and the block group has become read only we cannot
5535 * make the reservation and return -EAGAIN, otherwise this function always
5536 * succeeds.
5537 */
5538 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5539 u64 num_bytes, int reserve)
5540 {
5541 struct btrfs_space_info *space_info = cache->space_info;
5542 int ret = 0;
5543
5544 spin_lock(&space_info->lock);
5545 spin_lock(&cache->lock);
5546 if (reserve != RESERVE_FREE) {
5547 if (cache->ro) {
5548 ret = -EAGAIN;
5549 } else {
5550 cache->reserved += num_bytes;
5551 space_info->bytes_reserved += num_bytes;
5552 if (reserve == RESERVE_ALLOC) {
5553 trace_btrfs_space_reservation(cache->fs_info,
5554 "space_info", space_info->flags,
5555 num_bytes, 0);
5556 space_info->bytes_may_use -= num_bytes;
5557 }
5558 }
5559 } else {
5560 if (cache->ro)
5561 space_info->bytes_readonly += num_bytes;
5562 cache->reserved -= num_bytes;
5563 space_info->bytes_reserved -= num_bytes;
5564 }
5565 spin_unlock(&cache->lock);
5566 spin_unlock(&space_info->lock);
5567 return ret;
5568 }
5569
5570 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5571 struct btrfs_root *root)
5572 {
5573 struct btrfs_fs_info *fs_info = root->fs_info;
5574 struct btrfs_caching_control *next;
5575 struct btrfs_caching_control *caching_ctl;
5576 struct btrfs_block_group_cache *cache;
5577 struct btrfs_space_info *space_info;
5578
5579 down_write(&fs_info->commit_root_sem);
5580
5581 list_for_each_entry_safe(caching_ctl, next,
5582 &fs_info->caching_block_groups, list) {
5583 cache = caching_ctl->block_group;
5584 if (block_group_cache_done(cache)) {
5585 cache->last_byte_to_unpin = (u64)-1;
5586 list_del_init(&caching_ctl->list);
5587 put_caching_control(caching_ctl);
5588 } else {
5589 cache->last_byte_to_unpin = caching_ctl->progress;
5590 }
5591 }
5592
5593 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5594 fs_info->pinned_extents = &fs_info->freed_extents[1];
5595 else
5596 fs_info->pinned_extents = &fs_info->freed_extents[0];
5597
5598 up_write(&fs_info->commit_root_sem);
5599
5600 list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5601 percpu_counter_set(&space_info->total_bytes_pinned, 0);
5602
5603 update_global_block_rsv(fs_info);
5604 }
5605
5606 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5607 {
5608 struct btrfs_fs_info *fs_info = root->fs_info;
5609 struct btrfs_block_group_cache *cache = NULL;
5610 struct btrfs_space_info *space_info;
5611 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5612 u64 len;
5613 bool readonly;
5614
5615 while (start <= end) {
5616 readonly = false;
5617 if (!cache ||
5618 start >= cache->key.objectid + cache->key.offset) {
5619 if (cache)
5620 btrfs_put_block_group(cache);
5621 cache = btrfs_lookup_block_group(fs_info, start);
5622 BUG_ON(!cache); /* Logic error */
5623 }
5624
5625 len = cache->key.objectid + cache->key.offset - start;
5626 len = min(len, end + 1 - start);
5627
5628 if (start < cache->last_byte_to_unpin) {
5629 len = min(len, cache->last_byte_to_unpin - start);
5630 btrfs_add_free_space(cache, start, len);
5631 }
5632
5633 start += len;
5634 space_info = cache->space_info;
5635
5636 spin_lock(&space_info->lock);
5637 spin_lock(&cache->lock);
5638 cache->pinned -= len;
5639 space_info->bytes_pinned -= len;
5640 if (cache->ro) {
5641 space_info->bytes_readonly += len;
5642 readonly = true;
5643 }
5644 spin_unlock(&cache->lock);
5645 if (!readonly && global_rsv->space_info == space_info) {
5646 spin_lock(&global_rsv->lock);
5647 if (!global_rsv->full) {
5648 len = min(len, global_rsv->size -
5649 global_rsv->reserved);
5650 global_rsv->reserved += len;
5651 space_info->bytes_may_use += len;
5652 if (global_rsv->reserved >= global_rsv->size)
5653 global_rsv->full = 1;
5654 }
5655 spin_unlock(&global_rsv->lock);
5656 }
5657 spin_unlock(&space_info->lock);
5658 }
5659
5660 if (cache)
5661 btrfs_put_block_group(cache);
5662 return 0;
5663 }
5664
5665 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5666 struct btrfs_root *root)
5667 {
5668 struct btrfs_fs_info *fs_info = root->fs_info;
5669 struct extent_io_tree *unpin;
5670 u64 start;
5671 u64 end;
5672 int ret;
5673
5674 if (trans->aborted)
5675 return 0;
5676
5677 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5678 unpin = &fs_info->freed_extents[1];
5679 else
5680 unpin = &fs_info->freed_extents[0];
5681
5682 while (1) {
5683 ret = find_first_extent_bit(unpin, 0, &start, &end,
5684 EXTENT_DIRTY, NULL);
5685 if (ret)
5686 break;
5687
5688 if (btrfs_test_opt(root, DISCARD))
5689 ret = btrfs_discard_extent(root, start,
5690 end + 1 - start, NULL);
5691
5692 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5693 unpin_extent_range(root, start, end);
5694 cond_resched();
5695 }
5696
5697 return 0;
5698 }
5699
5700 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5701 u64 owner, u64 root_objectid)
5702 {
5703 struct btrfs_space_info *space_info;
5704 u64 flags;
5705
5706 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5707 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5708 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5709 else
5710 flags = BTRFS_BLOCK_GROUP_METADATA;
5711 } else {
5712 flags = BTRFS_BLOCK_GROUP_DATA;
5713 }
5714
5715 space_info = __find_space_info(fs_info, flags);
5716 BUG_ON(!space_info); /* Logic bug */
5717 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5718 }
5719
5720
5721 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5722 struct btrfs_root *root,
5723 u64 bytenr, u64 num_bytes, u64 parent,
5724 u64 root_objectid, u64 owner_objectid,
5725 u64 owner_offset, int refs_to_drop,
5726 struct btrfs_delayed_extent_op *extent_op)
5727 {
5728 struct btrfs_key key;
5729 struct btrfs_path *path;
5730 struct btrfs_fs_info *info = root->fs_info;
5731 struct btrfs_root *extent_root = info->extent_root;
5732 struct extent_buffer *leaf;
5733 struct btrfs_extent_item *ei;
5734 struct btrfs_extent_inline_ref *iref;
5735 int ret;
5736 int is_data;
5737 int extent_slot = 0;
5738 int found_extent = 0;
5739 int num_to_del = 1;
5740 u32 item_size;
5741 u64 refs;
5742 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5743 SKINNY_METADATA);
5744
5745 path = btrfs_alloc_path();
5746 if (!path)
5747 return -ENOMEM;
5748
5749 path->reada = 1;
5750 path->leave_spinning = 1;
5751
5752 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5753 BUG_ON(!is_data && refs_to_drop != 1);
5754
5755 if (is_data)
5756 skinny_metadata = 0;
5757
5758 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5759 bytenr, num_bytes, parent,
5760 root_objectid, owner_objectid,
5761 owner_offset);
5762 if (ret == 0) {
5763 extent_slot = path->slots[0];
5764 while (extent_slot >= 0) {
5765 btrfs_item_key_to_cpu(path->nodes[0], &key,
5766 extent_slot);
5767 if (key.objectid != bytenr)
5768 break;
5769 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5770 key.offset == num_bytes) {
5771 found_extent = 1;
5772 break;
5773 }
5774 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5775 key.offset == owner_objectid) {
5776 found_extent = 1;
5777 break;
5778 }
5779 if (path->slots[0] - extent_slot > 5)
5780 break;
5781 extent_slot--;
5782 }
5783 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5784 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5785 if (found_extent && item_size < sizeof(*ei))
5786 found_extent = 0;
5787 #endif
5788 if (!found_extent) {
5789 BUG_ON(iref);
5790 ret = remove_extent_backref(trans, extent_root, path,
5791 NULL, refs_to_drop,
5792 is_data);
5793 if (ret) {
5794 btrfs_abort_transaction(trans, extent_root, ret);
5795 goto out;
5796 }
5797 btrfs_release_path(path);
5798 path->leave_spinning = 1;
5799
5800 key.objectid = bytenr;
5801 key.type = BTRFS_EXTENT_ITEM_KEY;
5802 key.offset = num_bytes;
5803
5804 if (!is_data && skinny_metadata) {
5805 key.type = BTRFS_METADATA_ITEM_KEY;
5806 key.offset = owner_objectid;
5807 }
5808
5809 ret = btrfs_search_slot(trans, extent_root,
5810 &key, path, -1, 1);
5811 if (ret > 0 && skinny_metadata && path->slots[0]) {
5812 /*
5813 * Couldn't find our skinny metadata item,
5814 * see if we have ye olde extent item.
5815 */
5816 path->slots[0]--;
5817 btrfs_item_key_to_cpu(path->nodes[0], &key,
5818 path->slots[0]);
5819 if (key.objectid == bytenr &&
5820 key.type == BTRFS_EXTENT_ITEM_KEY &&
5821 key.offset == num_bytes)
5822 ret = 0;
5823 }
5824
5825 if (ret > 0 && skinny_metadata) {
5826 skinny_metadata = false;
5827 key.objectid = bytenr;
5828 key.type = BTRFS_EXTENT_ITEM_KEY;
5829 key.offset = num_bytes;
5830 btrfs_release_path(path);
5831 ret = btrfs_search_slot(trans, extent_root,
5832 &key, path, -1, 1);
5833 }
5834
5835 if (ret) {
5836 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5837 ret, bytenr);
5838 if (ret > 0)
5839 btrfs_print_leaf(extent_root,
5840 path->nodes[0]);
5841 }
5842 if (ret < 0) {
5843 btrfs_abort_transaction(trans, extent_root, ret);
5844 goto out;
5845 }
5846 extent_slot = path->slots[0];
5847 }
5848 } else if (WARN_ON(ret == -ENOENT)) {
5849 btrfs_print_leaf(extent_root, path->nodes[0]);
5850 btrfs_err(info,
5851 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5852 bytenr, parent, root_objectid, owner_objectid,
5853 owner_offset);
5854 btrfs_abort_transaction(trans, extent_root, ret);
5855 goto out;
5856 } else {
5857 btrfs_abort_transaction(trans, extent_root, ret);
5858 goto out;
5859 }
5860
5861 leaf = path->nodes[0];
5862 item_size = btrfs_item_size_nr(leaf, extent_slot);
5863 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5864 if (item_size < sizeof(*ei)) {
5865 BUG_ON(found_extent || extent_slot != path->slots[0]);
5866 ret = convert_extent_item_v0(trans, extent_root, path,
5867 owner_objectid, 0);
5868 if (ret < 0) {
5869 btrfs_abort_transaction(trans, extent_root, ret);
5870 goto out;
5871 }
5872
5873 btrfs_release_path(path);
5874 path->leave_spinning = 1;
5875
5876 key.objectid = bytenr;
5877 key.type = BTRFS_EXTENT_ITEM_KEY;
5878 key.offset = num_bytes;
5879
5880 ret = btrfs_search_slot(trans, extent_root, &key, path,
5881 -1, 1);
5882 if (ret) {
5883 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5884 ret, bytenr);
5885 btrfs_print_leaf(extent_root, path->nodes[0]);
5886 }
5887 if (ret < 0) {
5888 btrfs_abort_transaction(trans, extent_root, ret);
5889 goto out;
5890 }
5891
5892 extent_slot = path->slots[0];
5893 leaf = path->nodes[0];
5894 item_size = btrfs_item_size_nr(leaf, extent_slot);
5895 }
5896 #endif
5897 BUG_ON(item_size < sizeof(*ei));
5898 ei = btrfs_item_ptr(leaf, extent_slot,
5899 struct btrfs_extent_item);
5900 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5901 key.type == BTRFS_EXTENT_ITEM_KEY) {
5902 struct btrfs_tree_block_info *bi;
5903 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5904 bi = (struct btrfs_tree_block_info *)(ei + 1);
5905 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5906 }
5907
5908 refs = btrfs_extent_refs(leaf, ei);
5909 if (refs < refs_to_drop) {
5910 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5911 "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5912 ret = -EINVAL;
5913 btrfs_abort_transaction(trans, extent_root, ret);
5914 goto out;
5915 }
5916 refs -= refs_to_drop;
5917
5918 if (refs > 0) {
5919 if (extent_op)
5920 __run_delayed_extent_op(extent_op, leaf, ei);
5921 /*
5922 * In the case of inline back ref, reference count will
5923 * be updated by remove_extent_backref
5924 */
5925 if (iref) {
5926 BUG_ON(!found_extent);
5927 } else {
5928 btrfs_set_extent_refs(leaf, ei, refs);
5929 btrfs_mark_buffer_dirty(leaf);
5930 }
5931 if (found_extent) {
5932 ret = remove_extent_backref(trans, extent_root, path,
5933 iref, refs_to_drop,
5934 is_data);
5935 if (ret) {
5936 btrfs_abort_transaction(trans, extent_root, ret);
5937 goto out;
5938 }
5939 }
5940 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5941 root_objectid);
5942 } else {
5943 if (found_extent) {
5944 BUG_ON(is_data && refs_to_drop !=
5945 extent_data_ref_count(root, path, iref));
5946 if (iref) {
5947 BUG_ON(path->slots[0] != extent_slot);
5948 } else {
5949 BUG_ON(path->slots[0] != extent_slot + 1);
5950 path->slots[0] = extent_slot;
5951 num_to_del = 2;
5952 }
5953 }
5954
5955 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5956 num_to_del);
5957 if (ret) {
5958 btrfs_abort_transaction(trans, extent_root, ret);
5959 goto out;
5960 }
5961 btrfs_release_path(path);
5962
5963 if (is_data) {
5964 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5965 if (ret) {
5966 btrfs_abort_transaction(trans, extent_root, ret);
5967 goto out;
5968 }
5969 }
5970
5971 ret = update_block_group(root, bytenr, num_bytes, 0);
5972 if (ret) {
5973 btrfs_abort_transaction(trans, extent_root, ret);
5974 goto out;
5975 }
5976 }
5977 out:
5978 btrfs_free_path(path);
5979 return ret;
5980 }
5981
5982 /*
5983 * when we free an block, it is possible (and likely) that we free the last
5984 * delayed ref for that extent as well. This searches the delayed ref tree for
5985 * a given extent, and if there are no other delayed refs to be processed, it
5986 * removes it from the tree.
5987 */
5988 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5989 struct btrfs_root *root, u64 bytenr)
5990 {
5991 struct btrfs_delayed_ref_head *head;
5992 struct btrfs_delayed_ref_root *delayed_refs;
5993 int ret = 0;
5994
5995 delayed_refs = &trans->transaction->delayed_refs;
5996 spin_lock(&delayed_refs->lock);
5997 head = btrfs_find_delayed_ref_head(trans, bytenr);
5998 if (!head)
5999 goto out_delayed_unlock;
6000
6001 spin_lock(&head->lock);
6002 if (rb_first(&head->ref_root))
6003 goto out;
6004
6005 if (head->extent_op) {
6006 if (!head->must_insert_reserved)
6007 goto out;
6008 btrfs_free_delayed_extent_op(head->extent_op);
6009 head->extent_op = NULL;
6010 }
6011
6012 /*
6013 * waiting for the lock here would deadlock. If someone else has it
6014 * locked they are already in the process of dropping it anyway
6015 */
6016 if (!mutex_trylock(&head->mutex))
6017 goto out;
6018
6019 /*
6020 * at this point we have a head with no other entries. Go
6021 * ahead and process it.
6022 */
6023 head->node.in_tree = 0;
6024 rb_erase(&head->href_node, &delayed_refs->href_root);
6025
6026 atomic_dec(&delayed_refs->num_entries);
6027
6028 /*
6029 * we don't take a ref on the node because we're removing it from the
6030 * tree, so we just steal the ref the tree was holding.
6031 */
6032 delayed_refs->num_heads--;
6033 if (head->processing == 0)
6034 delayed_refs->num_heads_ready--;
6035 head->processing = 0;
6036 spin_unlock(&head->lock);
6037 spin_unlock(&delayed_refs->lock);
6038
6039 BUG_ON(head->extent_op);
6040 if (head->must_insert_reserved)
6041 ret = 1;
6042
6043 mutex_unlock(&head->mutex);
6044 btrfs_put_delayed_ref(&head->node);
6045 return ret;
6046 out:
6047 spin_unlock(&head->lock);
6048
6049 out_delayed_unlock:
6050 spin_unlock(&delayed_refs->lock);
6051 return 0;
6052 }
6053
6054 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6055 struct btrfs_root *root,
6056 struct extent_buffer *buf,
6057 u64 parent, int last_ref)
6058 {
6059 struct btrfs_block_group_cache *cache = NULL;
6060 int pin = 1;
6061 int ret;
6062
6063 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6064 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6065 buf->start, buf->len,
6066 parent, root->root_key.objectid,
6067 btrfs_header_level(buf),
6068 BTRFS_DROP_DELAYED_REF, NULL, 0);
6069 BUG_ON(ret); /* -ENOMEM */
6070 }
6071
6072 if (!last_ref)
6073 return;
6074
6075 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6076
6077 if (btrfs_header_generation(buf) == trans->transid) {
6078 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6079 ret = check_ref_cleanup(trans, root, buf->start);
6080 if (!ret)
6081 goto out;
6082 }
6083
6084 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6085 pin_down_extent(root, cache, buf->start, buf->len, 1);
6086 goto out;
6087 }
6088
6089 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6090
6091 btrfs_add_free_space(cache, buf->start, buf->len);
6092 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
6093 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6094 pin = 0;
6095 }
6096 out:
6097 if (pin)
6098 add_pinned_bytes(root->fs_info, buf->len,
6099 btrfs_header_level(buf),
6100 root->root_key.objectid);
6101
6102 /*
6103 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6104 * anymore.
6105 */
6106 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6107 btrfs_put_block_group(cache);
6108 }
6109
6110 /* Can return -ENOMEM */
6111 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6112 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6113 u64 owner, u64 offset, int for_cow)
6114 {
6115 int ret;
6116 struct btrfs_fs_info *fs_info = root->fs_info;
6117
6118 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6119
6120 /*
6121 * tree log blocks never actually go into the extent allocation
6122 * tree, just update pinning info and exit early.
6123 */
6124 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6125 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6126 /* unlocks the pinned mutex */
6127 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6128 ret = 0;
6129 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6130 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6131 num_bytes,
6132 parent, root_objectid, (int)owner,
6133 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
6134 } else {
6135 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6136 num_bytes,
6137 parent, root_objectid, owner,
6138 offset, BTRFS_DROP_DELAYED_REF,
6139 NULL, for_cow);
6140 }
6141 return ret;
6142 }
6143
6144 static u64 stripe_align(struct btrfs_root *root,
6145 struct btrfs_block_group_cache *cache,
6146 u64 val, u64 num_bytes)
6147 {
6148 u64 ret = ALIGN(val, root->stripesize);
6149 return ret;
6150 }
6151
6152 /*
6153 * when we wait for progress in the block group caching, its because
6154 * our allocation attempt failed at least once. So, we must sleep
6155 * and let some progress happen before we try again.
6156 *
6157 * This function will sleep at least once waiting for new free space to
6158 * show up, and then it will check the block group free space numbers
6159 * for our min num_bytes. Another option is to have it go ahead
6160 * and look in the rbtree for a free extent of a given size, but this
6161 * is a good start.
6162 *
6163 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6164 * any of the information in this block group.
6165 */
6166 static noinline void
6167 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6168 u64 num_bytes)
6169 {
6170 struct btrfs_caching_control *caching_ctl;
6171
6172 caching_ctl = get_caching_control(cache);
6173 if (!caching_ctl)
6174 return;
6175
6176 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6177 (cache->free_space_ctl->free_space >= num_bytes));
6178
6179 put_caching_control(caching_ctl);
6180 }
6181
6182 static noinline int
6183 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6184 {
6185 struct btrfs_caching_control *caching_ctl;
6186 int ret = 0;
6187
6188 caching_ctl = get_caching_control(cache);
6189 if (!caching_ctl)
6190 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6191
6192 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6193 if (cache->cached == BTRFS_CACHE_ERROR)
6194 ret = -EIO;
6195 put_caching_control(caching_ctl);
6196 return ret;
6197 }
6198
6199 int __get_raid_index(u64 flags)
6200 {
6201 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6202 return BTRFS_RAID_RAID10;
6203 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6204 return BTRFS_RAID_RAID1;
6205 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6206 return BTRFS_RAID_DUP;
6207 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6208 return BTRFS_RAID_RAID0;
6209 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6210 return BTRFS_RAID_RAID5;
6211 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6212 return BTRFS_RAID_RAID6;
6213
6214 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6215 }
6216
6217 int get_block_group_index(struct btrfs_block_group_cache *cache)
6218 {
6219 return __get_raid_index(cache->flags);
6220 }
6221
6222 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6223 [BTRFS_RAID_RAID10] = "raid10",
6224 [BTRFS_RAID_RAID1] = "raid1",
6225 [BTRFS_RAID_DUP] = "dup",
6226 [BTRFS_RAID_RAID0] = "raid0",
6227 [BTRFS_RAID_SINGLE] = "single",
6228 [BTRFS_RAID_RAID5] = "raid5",
6229 [BTRFS_RAID_RAID6] = "raid6",
6230 };
6231
6232 static const char *get_raid_name(enum btrfs_raid_types type)
6233 {
6234 if (type >= BTRFS_NR_RAID_TYPES)
6235 return NULL;
6236
6237 return btrfs_raid_type_names[type];
6238 }
6239
6240 enum btrfs_loop_type {
6241 LOOP_CACHING_NOWAIT = 0,
6242 LOOP_CACHING_WAIT = 1,
6243 LOOP_ALLOC_CHUNK = 2,
6244 LOOP_NO_EMPTY_SIZE = 3,
6245 };
6246
6247 /*
6248 * walks the btree of allocated extents and find a hole of a given size.
6249 * The key ins is changed to record the hole:
6250 * ins->objectid == start position
6251 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6252 * ins->offset == the size of the hole.
6253 * Any available blocks before search_start are skipped.
6254 *
6255 * If there is no suitable free space, we will record the max size of
6256 * the free space extent currently.
6257 */
6258 static noinline int find_free_extent(struct btrfs_root *orig_root,
6259 u64 num_bytes, u64 empty_size,
6260 u64 hint_byte, struct btrfs_key *ins,
6261 u64 flags)
6262 {
6263 int ret = 0;
6264 struct btrfs_root *root = orig_root->fs_info->extent_root;
6265 struct btrfs_free_cluster *last_ptr = NULL;
6266 struct btrfs_block_group_cache *block_group = NULL;
6267 u64 search_start = 0;
6268 u64 max_extent_size = 0;
6269 int empty_cluster = 2 * 1024 * 1024;
6270 struct btrfs_space_info *space_info;
6271 int loop = 0;
6272 int index = __get_raid_index(flags);
6273 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6274 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6275 bool failed_cluster_refill = false;
6276 bool failed_alloc = false;
6277 bool use_cluster = true;
6278 bool have_caching_bg = false;
6279
6280 WARN_ON(num_bytes < root->sectorsize);
6281 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6282 ins->objectid = 0;
6283 ins->offset = 0;
6284
6285 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6286
6287 space_info = __find_space_info(root->fs_info, flags);
6288 if (!space_info) {
6289 btrfs_err(root->fs_info, "No space info for %llu", flags);
6290 return -ENOSPC;
6291 }
6292
6293 /*
6294 * If the space info is for both data and metadata it means we have a
6295 * small filesystem and we can't use the clustering stuff.
6296 */
6297 if (btrfs_mixed_space_info(space_info))
6298 use_cluster = false;
6299
6300 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6301 last_ptr = &root->fs_info->meta_alloc_cluster;
6302 if (!btrfs_test_opt(root, SSD))
6303 empty_cluster = 64 * 1024;
6304 }
6305
6306 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6307 btrfs_test_opt(root, SSD)) {
6308 last_ptr = &root->fs_info->data_alloc_cluster;
6309 }
6310
6311 if (last_ptr) {
6312 spin_lock(&last_ptr->lock);
6313 if (last_ptr->block_group)
6314 hint_byte = last_ptr->window_start;
6315 spin_unlock(&last_ptr->lock);
6316 }
6317
6318 search_start = max(search_start, first_logical_byte(root, 0));
6319 search_start = max(search_start, hint_byte);
6320
6321 if (!last_ptr)
6322 empty_cluster = 0;
6323
6324 if (search_start == hint_byte) {
6325 block_group = btrfs_lookup_block_group(root->fs_info,
6326 search_start);
6327 /*
6328 * we don't want to use the block group if it doesn't match our
6329 * allocation bits, or if its not cached.
6330 *
6331 * However if we are re-searching with an ideal block group
6332 * picked out then we don't care that the block group is cached.
6333 */
6334 if (block_group && block_group_bits(block_group, flags) &&
6335 block_group->cached != BTRFS_CACHE_NO) {
6336 down_read(&space_info->groups_sem);
6337 if (list_empty(&block_group->list) ||
6338 block_group->ro) {
6339 /*
6340 * someone is removing this block group,
6341 * we can't jump into the have_block_group
6342 * target because our list pointers are not
6343 * valid
6344 */
6345 btrfs_put_block_group(block_group);
6346 up_read(&space_info->groups_sem);
6347 } else {
6348 index = get_block_group_index(block_group);
6349 goto have_block_group;
6350 }
6351 } else if (block_group) {
6352 btrfs_put_block_group(block_group);
6353 }
6354 }
6355 search:
6356 have_caching_bg = false;
6357 down_read(&space_info->groups_sem);
6358 list_for_each_entry(block_group, &space_info->block_groups[index],
6359 list) {
6360 u64 offset;
6361 int cached;
6362
6363 btrfs_get_block_group(block_group);
6364 search_start = block_group->key.objectid;
6365
6366 /*
6367 * this can happen if we end up cycling through all the
6368 * raid types, but we want to make sure we only allocate
6369 * for the proper type.
6370 */
6371 if (!block_group_bits(block_group, flags)) {
6372 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6373 BTRFS_BLOCK_GROUP_RAID1 |
6374 BTRFS_BLOCK_GROUP_RAID5 |
6375 BTRFS_BLOCK_GROUP_RAID6 |
6376 BTRFS_BLOCK_GROUP_RAID10;
6377
6378 /*
6379 * if they asked for extra copies and this block group
6380 * doesn't provide them, bail. This does allow us to
6381 * fill raid0 from raid1.
6382 */
6383 if ((flags & extra) && !(block_group->flags & extra))
6384 goto loop;
6385 }
6386
6387 have_block_group:
6388 cached = block_group_cache_done(block_group);
6389 if (unlikely(!cached)) {
6390 ret = cache_block_group(block_group, 0);
6391 BUG_ON(ret < 0);
6392 ret = 0;
6393 }
6394
6395 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6396 goto loop;
6397 if (unlikely(block_group->ro))
6398 goto loop;
6399
6400 /*
6401 * Ok we want to try and use the cluster allocator, so
6402 * lets look there
6403 */
6404 if (last_ptr) {
6405 struct btrfs_block_group_cache *used_block_group;
6406 unsigned long aligned_cluster;
6407 /*
6408 * the refill lock keeps out other
6409 * people trying to start a new cluster
6410 */
6411 spin_lock(&last_ptr->refill_lock);
6412 used_block_group = last_ptr->block_group;
6413 if (used_block_group != block_group &&
6414 (!used_block_group ||
6415 used_block_group->ro ||
6416 !block_group_bits(used_block_group, flags)))
6417 goto refill_cluster;
6418
6419 if (used_block_group != block_group)
6420 btrfs_get_block_group(used_block_group);
6421
6422 offset = btrfs_alloc_from_cluster(used_block_group,
6423 last_ptr,
6424 num_bytes,
6425 used_block_group->key.objectid,
6426 &max_extent_size);
6427 if (offset) {
6428 /* we have a block, we're done */
6429 spin_unlock(&last_ptr->refill_lock);
6430 trace_btrfs_reserve_extent_cluster(root,
6431 used_block_group,
6432 search_start, num_bytes);
6433 if (used_block_group != block_group) {
6434 btrfs_put_block_group(block_group);
6435 block_group = used_block_group;
6436 }
6437 goto checks;
6438 }
6439
6440 WARN_ON(last_ptr->block_group != used_block_group);
6441 if (used_block_group != block_group)
6442 btrfs_put_block_group(used_block_group);
6443 refill_cluster:
6444 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6445 * set up a new clusters, so lets just skip it
6446 * and let the allocator find whatever block
6447 * it can find. If we reach this point, we
6448 * will have tried the cluster allocator
6449 * plenty of times and not have found
6450 * anything, so we are likely way too
6451 * fragmented for the clustering stuff to find
6452 * anything.
6453 *
6454 * However, if the cluster is taken from the
6455 * current block group, release the cluster
6456 * first, so that we stand a better chance of
6457 * succeeding in the unclustered
6458 * allocation. */
6459 if (loop >= LOOP_NO_EMPTY_SIZE &&
6460 last_ptr->block_group != block_group) {
6461 spin_unlock(&last_ptr->refill_lock);
6462 goto unclustered_alloc;
6463 }
6464
6465 /*
6466 * this cluster didn't work out, free it and
6467 * start over
6468 */
6469 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6470
6471 if (loop >= LOOP_NO_EMPTY_SIZE) {
6472 spin_unlock(&last_ptr->refill_lock);
6473 goto unclustered_alloc;
6474 }
6475
6476 aligned_cluster = max_t(unsigned long,
6477 empty_cluster + empty_size,
6478 block_group->full_stripe_len);
6479
6480 /* allocate a cluster in this block group */
6481 ret = btrfs_find_space_cluster(root, block_group,
6482 last_ptr, search_start,
6483 num_bytes,
6484 aligned_cluster);
6485 if (ret == 0) {
6486 /*
6487 * now pull our allocation out of this
6488 * cluster
6489 */
6490 offset = btrfs_alloc_from_cluster(block_group,
6491 last_ptr,
6492 num_bytes,
6493 search_start,
6494 &max_extent_size);
6495 if (offset) {
6496 /* we found one, proceed */
6497 spin_unlock(&last_ptr->refill_lock);
6498 trace_btrfs_reserve_extent_cluster(root,
6499 block_group, search_start,
6500 num_bytes);
6501 goto checks;
6502 }
6503 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6504 && !failed_cluster_refill) {
6505 spin_unlock(&last_ptr->refill_lock);
6506
6507 failed_cluster_refill = true;
6508 wait_block_group_cache_progress(block_group,
6509 num_bytes + empty_cluster + empty_size);
6510 goto have_block_group;
6511 }
6512
6513 /*
6514 * at this point we either didn't find a cluster
6515 * or we weren't able to allocate a block from our
6516 * cluster. Free the cluster we've been trying
6517 * to use, and go to the next block group
6518 */
6519 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6520 spin_unlock(&last_ptr->refill_lock);
6521 goto loop;
6522 }
6523
6524 unclustered_alloc:
6525 spin_lock(&block_group->free_space_ctl->tree_lock);
6526 if (cached &&
6527 block_group->free_space_ctl->free_space <
6528 num_bytes + empty_cluster + empty_size) {
6529 if (block_group->free_space_ctl->free_space >
6530 max_extent_size)
6531 max_extent_size =
6532 block_group->free_space_ctl->free_space;
6533 spin_unlock(&block_group->free_space_ctl->tree_lock);
6534 goto loop;
6535 }
6536 spin_unlock(&block_group->free_space_ctl->tree_lock);
6537
6538 offset = btrfs_find_space_for_alloc(block_group, search_start,
6539 num_bytes, empty_size,
6540 &max_extent_size);
6541 /*
6542 * If we didn't find a chunk, and we haven't failed on this
6543 * block group before, and this block group is in the middle of
6544 * caching and we are ok with waiting, then go ahead and wait
6545 * for progress to be made, and set failed_alloc to true.
6546 *
6547 * If failed_alloc is true then we've already waited on this
6548 * block group once and should move on to the next block group.
6549 */
6550 if (!offset && !failed_alloc && !cached &&
6551 loop > LOOP_CACHING_NOWAIT) {
6552 wait_block_group_cache_progress(block_group,
6553 num_bytes + empty_size);
6554 failed_alloc = true;
6555 goto have_block_group;
6556 } else if (!offset) {
6557 if (!cached)
6558 have_caching_bg = true;
6559 goto loop;
6560 }
6561 checks:
6562 search_start = stripe_align(root, block_group,
6563 offset, num_bytes);
6564
6565 /* move on to the next group */
6566 if (search_start + num_bytes >
6567 block_group->key.objectid + block_group->key.offset) {
6568 btrfs_add_free_space(block_group, offset, num_bytes);
6569 goto loop;
6570 }
6571
6572 if (offset < search_start)
6573 btrfs_add_free_space(block_group, offset,
6574 search_start - offset);
6575 BUG_ON(offset > search_start);
6576
6577 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6578 alloc_type);
6579 if (ret == -EAGAIN) {
6580 btrfs_add_free_space(block_group, offset, num_bytes);
6581 goto loop;
6582 }
6583
6584 /* we are all good, lets return */
6585 ins->objectid = search_start;
6586 ins->offset = num_bytes;
6587
6588 trace_btrfs_reserve_extent(orig_root, block_group,
6589 search_start, num_bytes);
6590 btrfs_put_block_group(block_group);
6591 break;
6592 loop:
6593 failed_cluster_refill = false;
6594 failed_alloc = false;
6595 BUG_ON(index != get_block_group_index(block_group));
6596 btrfs_put_block_group(block_group);
6597 }
6598 up_read(&space_info->groups_sem);
6599
6600 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6601 goto search;
6602
6603 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6604 goto search;
6605
6606 /*
6607 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6608 * caching kthreads as we move along
6609 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6610 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6611 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6612 * again
6613 */
6614 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6615 index = 0;
6616 loop++;
6617 if (loop == LOOP_ALLOC_CHUNK) {
6618 struct btrfs_trans_handle *trans;
6619
6620 trans = btrfs_join_transaction(root);
6621 if (IS_ERR(trans)) {
6622 ret = PTR_ERR(trans);
6623 goto out;
6624 }
6625
6626 ret = do_chunk_alloc(trans, root, flags,
6627 CHUNK_ALLOC_FORCE);
6628 /*
6629 * Do not bail out on ENOSPC since we
6630 * can do more things.
6631 */
6632 if (ret < 0 && ret != -ENOSPC)
6633 btrfs_abort_transaction(trans,
6634 root, ret);
6635 else
6636 ret = 0;
6637 btrfs_end_transaction(trans, root);
6638 if (ret)
6639 goto out;
6640 }
6641
6642 if (loop == LOOP_NO_EMPTY_SIZE) {
6643 empty_size = 0;
6644 empty_cluster = 0;
6645 }
6646
6647 goto search;
6648 } else if (!ins->objectid) {
6649 ret = -ENOSPC;
6650 } else if (ins->objectid) {
6651 ret = 0;
6652 }
6653 out:
6654 if (ret == -ENOSPC)
6655 ins->offset = max_extent_size;
6656 return ret;
6657 }
6658
6659 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6660 int dump_block_groups)
6661 {
6662 struct btrfs_block_group_cache *cache;
6663 int index = 0;
6664
6665 spin_lock(&info->lock);
6666 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6667 info->flags,
6668 info->total_bytes - info->bytes_used - info->bytes_pinned -
6669 info->bytes_reserved - info->bytes_readonly,
6670 (info->full) ? "" : "not ");
6671 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6672 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6673 info->total_bytes, info->bytes_used, info->bytes_pinned,
6674 info->bytes_reserved, info->bytes_may_use,
6675 info->bytes_readonly);
6676 spin_unlock(&info->lock);
6677
6678 if (!dump_block_groups)
6679 return;
6680
6681 down_read(&info->groups_sem);
6682 again:
6683 list_for_each_entry(cache, &info->block_groups[index], list) {
6684 spin_lock(&cache->lock);
6685 printk(KERN_INFO "BTRFS: "
6686 "block group %llu has %llu bytes, "
6687 "%llu used %llu pinned %llu reserved %s\n",
6688 cache->key.objectid, cache->key.offset,
6689 btrfs_block_group_used(&cache->item), cache->pinned,
6690 cache->reserved, cache->ro ? "[readonly]" : "");
6691 btrfs_dump_free_space(cache, bytes);
6692 spin_unlock(&cache->lock);
6693 }
6694 if (++index < BTRFS_NR_RAID_TYPES)
6695 goto again;
6696 up_read(&info->groups_sem);
6697 }
6698
6699 int btrfs_reserve_extent(struct btrfs_root *root,
6700 u64 num_bytes, u64 min_alloc_size,
6701 u64 empty_size, u64 hint_byte,
6702 struct btrfs_key *ins, int is_data)
6703 {
6704 bool final_tried = false;
6705 u64 flags;
6706 int ret;
6707
6708 flags = btrfs_get_alloc_profile(root, is_data);
6709 again:
6710 WARN_ON(num_bytes < root->sectorsize);
6711 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6712 flags);
6713
6714 if (ret == -ENOSPC) {
6715 if (!final_tried && ins->offset) {
6716 num_bytes = min(num_bytes >> 1, ins->offset);
6717 num_bytes = round_down(num_bytes, root->sectorsize);
6718 num_bytes = max(num_bytes, min_alloc_size);
6719 if (num_bytes == min_alloc_size)
6720 final_tried = true;
6721 goto again;
6722 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6723 struct btrfs_space_info *sinfo;
6724
6725 sinfo = __find_space_info(root->fs_info, flags);
6726 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6727 flags, num_bytes);
6728 if (sinfo)
6729 dump_space_info(sinfo, num_bytes, 1);
6730 }
6731 }
6732
6733 return ret;
6734 }
6735
6736 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6737 u64 start, u64 len, int pin)
6738 {
6739 struct btrfs_block_group_cache *cache;
6740 int ret = 0;
6741
6742 cache = btrfs_lookup_block_group(root->fs_info, start);
6743 if (!cache) {
6744 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6745 start);
6746 return -ENOSPC;
6747 }
6748
6749 if (btrfs_test_opt(root, DISCARD))
6750 ret = btrfs_discard_extent(root, start, len, NULL);
6751
6752 if (pin)
6753 pin_down_extent(root, cache, start, len, 1);
6754 else {
6755 btrfs_add_free_space(cache, start, len);
6756 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6757 }
6758 btrfs_put_block_group(cache);
6759
6760 trace_btrfs_reserved_extent_free(root, start, len);
6761
6762 return ret;
6763 }
6764
6765 int btrfs_free_reserved_extent(struct btrfs_root *root,
6766 u64 start, u64 len)
6767 {
6768 return __btrfs_free_reserved_extent(root, start, len, 0);
6769 }
6770
6771 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6772 u64 start, u64 len)
6773 {
6774 return __btrfs_free_reserved_extent(root, start, len, 1);
6775 }
6776
6777 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6778 struct btrfs_root *root,
6779 u64 parent, u64 root_objectid,
6780 u64 flags, u64 owner, u64 offset,
6781 struct btrfs_key *ins, int ref_mod)
6782 {
6783 int ret;
6784 struct btrfs_fs_info *fs_info = root->fs_info;
6785 struct btrfs_extent_item *extent_item;
6786 struct btrfs_extent_inline_ref *iref;
6787 struct btrfs_path *path;
6788 struct extent_buffer *leaf;
6789 int type;
6790 u32 size;
6791
6792 if (parent > 0)
6793 type = BTRFS_SHARED_DATA_REF_KEY;
6794 else
6795 type = BTRFS_EXTENT_DATA_REF_KEY;
6796
6797 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6798
6799 path = btrfs_alloc_path();
6800 if (!path)
6801 return -ENOMEM;
6802
6803 path->leave_spinning = 1;
6804 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6805 ins, size);
6806 if (ret) {
6807 btrfs_free_path(path);
6808 return ret;
6809 }
6810
6811 leaf = path->nodes[0];
6812 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6813 struct btrfs_extent_item);
6814 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6815 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6816 btrfs_set_extent_flags(leaf, extent_item,
6817 flags | BTRFS_EXTENT_FLAG_DATA);
6818
6819 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6820 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6821 if (parent > 0) {
6822 struct btrfs_shared_data_ref *ref;
6823 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6824 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6825 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6826 } else {
6827 struct btrfs_extent_data_ref *ref;
6828 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6829 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6830 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6831 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6832 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6833 }
6834
6835 btrfs_mark_buffer_dirty(path->nodes[0]);
6836 btrfs_free_path(path);
6837
6838 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6839 if (ret) { /* -ENOENT, logic error */
6840 btrfs_err(fs_info, "update block group failed for %llu %llu",
6841 ins->objectid, ins->offset);
6842 BUG();
6843 }
6844 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6845 return ret;
6846 }
6847
6848 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6849 struct btrfs_root *root,
6850 u64 parent, u64 root_objectid,
6851 u64 flags, struct btrfs_disk_key *key,
6852 int level, struct btrfs_key *ins)
6853 {
6854 int ret;
6855 struct btrfs_fs_info *fs_info = root->fs_info;
6856 struct btrfs_extent_item *extent_item;
6857 struct btrfs_tree_block_info *block_info;
6858 struct btrfs_extent_inline_ref *iref;
6859 struct btrfs_path *path;
6860 struct extent_buffer *leaf;
6861 u32 size = sizeof(*extent_item) + sizeof(*iref);
6862 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6863 SKINNY_METADATA);
6864
6865 if (!skinny_metadata)
6866 size += sizeof(*block_info);
6867
6868 path = btrfs_alloc_path();
6869 if (!path) {
6870 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6871 root->leafsize);
6872 return -ENOMEM;
6873 }
6874
6875 path->leave_spinning = 1;
6876 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6877 ins, size);
6878 if (ret) {
6879 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6880 root->leafsize);
6881 btrfs_free_path(path);
6882 return ret;
6883 }
6884
6885 leaf = path->nodes[0];
6886 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6887 struct btrfs_extent_item);
6888 btrfs_set_extent_refs(leaf, extent_item, 1);
6889 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6890 btrfs_set_extent_flags(leaf, extent_item,
6891 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6892
6893 if (skinny_metadata) {
6894 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6895 } else {
6896 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6897 btrfs_set_tree_block_key(leaf, block_info, key);
6898 btrfs_set_tree_block_level(leaf, block_info, level);
6899 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6900 }
6901
6902 if (parent > 0) {
6903 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6904 btrfs_set_extent_inline_ref_type(leaf, iref,
6905 BTRFS_SHARED_BLOCK_REF_KEY);
6906 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6907 } else {
6908 btrfs_set_extent_inline_ref_type(leaf, iref,
6909 BTRFS_TREE_BLOCK_REF_KEY);
6910 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6911 }
6912
6913 btrfs_mark_buffer_dirty(leaf);
6914 btrfs_free_path(path);
6915
6916 ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6917 if (ret) { /* -ENOENT, logic error */
6918 btrfs_err(fs_info, "update block group failed for %llu %llu",
6919 ins->objectid, ins->offset);
6920 BUG();
6921 }
6922
6923 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize);
6924 return ret;
6925 }
6926
6927 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6928 struct btrfs_root *root,
6929 u64 root_objectid, u64 owner,
6930 u64 offset, struct btrfs_key *ins)
6931 {
6932 int ret;
6933
6934 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6935
6936 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6937 ins->offset, 0,
6938 root_objectid, owner, offset,
6939 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6940 return ret;
6941 }
6942
6943 /*
6944 * this is used by the tree logging recovery code. It records that
6945 * an extent has been allocated and makes sure to clear the free
6946 * space cache bits as well
6947 */
6948 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6949 struct btrfs_root *root,
6950 u64 root_objectid, u64 owner, u64 offset,
6951 struct btrfs_key *ins)
6952 {
6953 int ret;
6954 struct btrfs_block_group_cache *block_group;
6955
6956 /*
6957 * Mixed block groups will exclude before processing the log so we only
6958 * need to do the exlude dance if this fs isn't mixed.
6959 */
6960 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6961 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6962 if (ret)
6963 return ret;
6964 }
6965
6966 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6967 if (!block_group)
6968 return -EINVAL;
6969
6970 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6971 RESERVE_ALLOC_NO_ACCOUNT);
6972 BUG_ON(ret); /* logic error */
6973 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6974 0, owner, offset, ins, 1);
6975 btrfs_put_block_group(block_group);
6976 return ret;
6977 }
6978
6979 static struct extent_buffer *
6980 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6981 u64 bytenr, u32 blocksize, int level)
6982 {
6983 struct extent_buffer *buf;
6984
6985 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6986 if (!buf)
6987 return ERR_PTR(-ENOMEM);
6988 btrfs_set_header_generation(buf, trans->transid);
6989 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6990 btrfs_tree_lock(buf);
6991 clean_tree_block(trans, root, buf);
6992 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6993
6994 btrfs_set_lock_blocking(buf);
6995 btrfs_set_buffer_uptodate(buf);
6996
6997 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6998 /*
6999 * we allow two log transactions at a time, use different
7000 * EXENT bit to differentiate dirty pages.
7001 */
7002 if (root->log_transid % 2 == 0)
7003 set_extent_dirty(&root->dirty_log_pages, buf->start,
7004 buf->start + buf->len - 1, GFP_NOFS);
7005 else
7006 set_extent_new(&root->dirty_log_pages, buf->start,
7007 buf->start + buf->len - 1, GFP_NOFS);
7008 } else {
7009 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7010 buf->start + buf->len - 1, GFP_NOFS);
7011 }
7012 trans->blocks_used++;
7013 /* this returns a buffer locked for blocking */
7014 return buf;
7015 }
7016
7017 static struct btrfs_block_rsv *
7018 use_block_rsv(struct btrfs_trans_handle *trans,
7019 struct btrfs_root *root, u32 blocksize)
7020 {
7021 struct btrfs_block_rsv *block_rsv;
7022 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7023 int ret;
7024 bool global_updated = false;
7025
7026 block_rsv = get_block_rsv(trans, root);
7027
7028 if (unlikely(block_rsv->size == 0))
7029 goto try_reserve;
7030 again:
7031 ret = block_rsv_use_bytes(block_rsv, blocksize);
7032 if (!ret)
7033 return block_rsv;
7034
7035 if (block_rsv->failfast)
7036 return ERR_PTR(ret);
7037
7038 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7039 global_updated = true;
7040 update_global_block_rsv(root->fs_info);
7041 goto again;
7042 }
7043
7044 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7045 static DEFINE_RATELIMIT_STATE(_rs,
7046 DEFAULT_RATELIMIT_INTERVAL * 10,
7047 /*DEFAULT_RATELIMIT_BURST*/ 1);
7048 if (__ratelimit(&_rs))
7049 WARN(1, KERN_DEBUG
7050 "BTRFS: block rsv returned %d\n", ret);
7051 }
7052 try_reserve:
7053 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7054 BTRFS_RESERVE_NO_FLUSH);
7055 if (!ret)
7056 return block_rsv;
7057 /*
7058 * If we couldn't reserve metadata bytes try and use some from
7059 * the global reserve if its space type is the same as the global
7060 * reservation.
7061 */
7062 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7063 block_rsv->space_info == global_rsv->space_info) {
7064 ret = block_rsv_use_bytes(global_rsv, blocksize);
7065 if (!ret)
7066 return global_rsv;
7067 }
7068 return ERR_PTR(ret);
7069 }
7070
7071 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7072 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7073 {
7074 block_rsv_add_bytes(block_rsv, blocksize, 0);
7075 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7076 }
7077
7078 /*
7079 * finds a free extent and does all the dirty work required for allocation
7080 * returns the key for the extent through ins, and a tree buffer for
7081 * the first block of the extent through buf.
7082 *
7083 * returns the tree buffer or NULL.
7084 */
7085 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
7086 struct btrfs_root *root, u32 blocksize,
7087 u64 parent, u64 root_objectid,
7088 struct btrfs_disk_key *key, int level,
7089 u64 hint, u64 empty_size)
7090 {
7091 struct btrfs_key ins;
7092 struct btrfs_block_rsv *block_rsv;
7093 struct extent_buffer *buf;
7094 u64 flags = 0;
7095 int ret;
7096 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7097 SKINNY_METADATA);
7098
7099 block_rsv = use_block_rsv(trans, root, blocksize);
7100 if (IS_ERR(block_rsv))
7101 return ERR_CAST(block_rsv);
7102
7103 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7104 empty_size, hint, &ins, 0);
7105 if (ret) {
7106 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7107 return ERR_PTR(ret);
7108 }
7109
7110 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7111 blocksize, level);
7112 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7113
7114 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7115 if (parent == 0)
7116 parent = ins.objectid;
7117 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7118 } else
7119 BUG_ON(parent > 0);
7120
7121 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7122 struct btrfs_delayed_extent_op *extent_op;
7123 extent_op = btrfs_alloc_delayed_extent_op();
7124 BUG_ON(!extent_op); /* -ENOMEM */
7125 if (key)
7126 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7127 else
7128 memset(&extent_op->key, 0, sizeof(extent_op->key));
7129 extent_op->flags_to_set = flags;
7130 if (skinny_metadata)
7131 extent_op->update_key = 0;
7132 else
7133 extent_op->update_key = 1;
7134 extent_op->update_flags = 1;
7135 extent_op->is_data = 0;
7136 extent_op->level = level;
7137
7138 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7139 ins.objectid,
7140 ins.offset, parent, root_objectid,
7141 level, BTRFS_ADD_DELAYED_EXTENT,
7142 extent_op, 0);
7143 BUG_ON(ret); /* -ENOMEM */
7144 }
7145 return buf;
7146 }
7147
7148 struct walk_control {
7149 u64 refs[BTRFS_MAX_LEVEL];
7150 u64 flags[BTRFS_MAX_LEVEL];
7151 struct btrfs_key update_progress;
7152 int stage;
7153 int level;
7154 int shared_level;
7155 int update_ref;
7156 int keep_locks;
7157 int reada_slot;
7158 int reada_count;
7159 int for_reloc;
7160 };
7161
7162 #define DROP_REFERENCE 1
7163 #define UPDATE_BACKREF 2
7164
7165 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7166 struct btrfs_root *root,
7167 struct walk_control *wc,
7168 struct btrfs_path *path)
7169 {
7170 u64 bytenr;
7171 u64 generation;
7172 u64 refs;
7173 u64 flags;
7174 u32 nritems;
7175 u32 blocksize;
7176 struct btrfs_key key;
7177 struct extent_buffer *eb;
7178 int ret;
7179 int slot;
7180 int nread = 0;
7181
7182 if (path->slots[wc->level] < wc->reada_slot) {
7183 wc->reada_count = wc->reada_count * 2 / 3;
7184 wc->reada_count = max(wc->reada_count, 2);
7185 } else {
7186 wc->reada_count = wc->reada_count * 3 / 2;
7187 wc->reada_count = min_t(int, wc->reada_count,
7188 BTRFS_NODEPTRS_PER_BLOCK(root));
7189 }
7190
7191 eb = path->nodes[wc->level];
7192 nritems = btrfs_header_nritems(eb);
7193 blocksize = btrfs_level_size(root, wc->level - 1);
7194
7195 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7196 if (nread >= wc->reada_count)
7197 break;
7198
7199 cond_resched();
7200 bytenr = btrfs_node_blockptr(eb, slot);
7201 generation = btrfs_node_ptr_generation(eb, slot);
7202
7203 if (slot == path->slots[wc->level])
7204 goto reada;
7205
7206 if (wc->stage == UPDATE_BACKREF &&
7207 generation <= root->root_key.offset)
7208 continue;
7209
7210 /* We don't lock the tree block, it's OK to be racy here */
7211 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7212 wc->level - 1, 1, &refs,
7213 &flags);
7214 /* We don't care about errors in readahead. */
7215 if (ret < 0)
7216 continue;
7217 BUG_ON(refs == 0);
7218
7219 if (wc->stage == DROP_REFERENCE) {
7220 if (refs == 1)
7221 goto reada;
7222
7223 if (wc->level == 1 &&
7224 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7225 continue;
7226 if (!wc->update_ref ||
7227 generation <= root->root_key.offset)
7228 continue;
7229 btrfs_node_key_to_cpu(eb, &key, slot);
7230 ret = btrfs_comp_cpu_keys(&key,
7231 &wc->update_progress);
7232 if (ret < 0)
7233 continue;
7234 } else {
7235 if (wc->level == 1 &&
7236 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7237 continue;
7238 }
7239 reada:
7240 ret = readahead_tree_block(root, bytenr, blocksize,
7241 generation);
7242 if (ret)
7243 break;
7244 nread++;
7245 }
7246 wc->reada_slot = slot;
7247 }
7248
7249 /*
7250 * helper to process tree block while walking down the tree.
7251 *
7252 * when wc->stage == UPDATE_BACKREF, this function updates
7253 * back refs for pointers in the block.
7254 *
7255 * NOTE: return value 1 means we should stop walking down.
7256 */
7257 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7258 struct btrfs_root *root,
7259 struct btrfs_path *path,
7260 struct walk_control *wc, int lookup_info)
7261 {
7262 int level = wc->level;
7263 struct extent_buffer *eb = path->nodes[level];
7264 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7265 int ret;
7266
7267 if (wc->stage == UPDATE_BACKREF &&
7268 btrfs_header_owner(eb) != root->root_key.objectid)
7269 return 1;
7270
7271 /*
7272 * when reference count of tree block is 1, it won't increase
7273 * again. once full backref flag is set, we never clear it.
7274 */
7275 if (lookup_info &&
7276 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7277 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7278 BUG_ON(!path->locks[level]);
7279 ret = btrfs_lookup_extent_info(trans, root,
7280 eb->start, level, 1,
7281 &wc->refs[level],
7282 &wc->flags[level]);
7283 BUG_ON(ret == -ENOMEM);
7284 if (ret)
7285 return ret;
7286 BUG_ON(wc->refs[level] == 0);
7287 }
7288
7289 if (wc->stage == DROP_REFERENCE) {
7290 if (wc->refs[level] > 1)
7291 return 1;
7292
7293 if (path->locks[level] && !wc->keep_locks) {
7294 btrfs_tree_unlock_rw(eb, path->locks[level]);
7295 path->locks[level] = 0;
7296 }
7297 return 0;
7298 }
7299
7300 /* wc->stage == UPDATE_BACKREF */
7301 if (!(wc->flags[level] & flag)) {
7302 BUG_ON(!path->locks[level]);
7303 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7304 BUG_ON(ret); /* -ENOMEM */
7305 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7306 BUG_ON(ret); /* -ENOMEM */
7307 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7308 eb->len, flag,
7309 btrfs_header_level(eb), 0);
7310 BUG_ON(ret); /* -ENOMEM */
7311 wc->flags[level] |= flag;
7312 }
7313
7314 /*
7315 * the block is shared by multiple trees, so it's not good to
7316 * keep the tree lock
7317 */
7318 if (path->locks[level] && level > 0) {
7319 btrfs_tree_unlock_rw(eb, path->locks[level]);
7320 path->locks[level] = 0;
7321 }
7322 return 0;
7323 }
7324
7325 /*
7326 * helper to process tree block pointer.
7327 *
7328 * when wc->stage == DROP_REFERENCE, this function checks
7329 * reference count of the block pointed to. if the block
7330 * is shared and we need update back refs for the subtree
7331 * rooted at the block, this function changes wc->stage to
7332 * UPDATE_BACKREF. if the block is shared and there is no
7333 * need to update back, this function drops the reference
7334 * to the block.
7335 *
7336 * NOTE: return value 1 means we should stop walking down.
7337 */
7338 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7339 struct btrfs_root *root,
7340 struct btrfs_path *path,
7341 struct walk_control *wc, int *lookup_info)
7342 {
7343 u64 bytenr;
7344 u64 generation;
7345 u64 parent;
7346 u32 blocksize;
7347 struct btrfs_key key;
7348 struct extent_buffer *next;
7349 int level = wc->level;
7350 int reada = 0;
7351 int ret = 0;
7352
7353 generation = btrfs_node_ptr_generation(path->nodes[level],
7354 path->slots[level]);
7355 /*
7356 * if the lower level block was created before the snapshot
7357 * was created, we know there is no need to update back refs
7358 * for the subtree
7359 */
7360 if (wc->stage == UPDATE_BACKREF &&
7361 generation <= root->root_key.offset) {
7362 *lookup_info = 1;
7363 return 1;
7364 }
7365
7366 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7367 blocksize = btrfs_level_size(root, level - 1);
7368
7369 next = btrfs_find_tree_block(root, bytenr, blocksize);
7370 if (!next) {
7371 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7372 if (!next)
7373 return -ENOMEM;
7374 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7375 level - 1);
7376 reada = 1;
7377 }
7378 btrfs_tree_lock(next);
7379 btrfs_set_lock_blocking(next);
7380
7381 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7382 &wc->refs[level - 1],
7383 &wc->flags[level - 1]);
7384 if (ret < 0) {
7385 btrfs_tree_unlock(next);
7386 return ret;
7387 }
7388
7389 if (unlikely(wc->refs[level - 1] == 0)) {
7390 btrfs_err(root->fs_info, "Missing references.");
7391 BUG();
7392 }
7393 *lookup_info = 0;
7394
7395 if (wc->stage == DROP_REFERENCE) {
7396 if (wc->refs[level - 1] > 1) {
7397 if (level == 1 &&
7398 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7399 goto skip;
7400
7401 if (!wc->update_ref ||
7402 generation <= root->root_key.offset)
7403 goto skip;
7404
7405 btrfs_node_key_to_cpu(path->nodes[level], &key,
7406 path->slots[level]);
7407 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7408 if (ret < 0)
7409 goto skip;
7410
7411 wc->stage = UPDATE_BACKREF;
7412 wc->shared_level = level - 1;
7413 }
7414 } else {
7415 if (level == 1 &&
7416 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7417 goto skip;
7418 }
7419
7420 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7421 btrfs_tree_unlock(next);
7422 free_extent_buffer(next);
7423 next = NULL;
7424 *lookup_info = 1;
7425 }
7426
7427 if (!next) {
7428 if (reada && level == 1)
7429 reada_walk_down(trans, root, wc, path);
7430 next = read_tree_block(root, bytenr, blocksize, generation);
7431 if (!next || !extent_buffer_uptodate(next)) {
7432 free_extent_buffer(next);
7433 return -EIO;
7434 }
7435 btrfs_tree_lock(next);
7436 btrfs_set_lock_blocking(next);
7437 }
7438
7439 level--;
7440 BUG_ON(level != btrfs_header_level(next));
7441 path->nodes[level] = next;
7442 path->slots[level] = 0;
7443 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7444 wc->level = level;
7445 if (wc->level == 1)
7446 wc->reada_slot = 0;
7447 return 0;
7448 skip:
7449 wc->refs[level - 1] = 0;
7450 wc->flags[level - 1] = 0;
7451 if (wc->stage == DROP_REFERENCE) {
7452 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7453 parent = path->nodes[level]->start;
7454 } else {
7455 BUG_ON(root->root_key.objectid !=
7456 btrfs_header_owner(path->nodes[level]));
7457 parent = 0;
7458 }
7459
7460 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7461 root->root_key.objectid, level - 1, 0, 0);
7462 BUG_ON(ret); /* -ENOMEM */
7463 }
7464 btrfs_tree_unlock(next);
7465 free_extent_buffer(next);
7466 *lookup_info = 1;
7467 return 1;
7468 }
7469
7470 /*
7471 * helper to process tree block while walking up the tree.
7472 *
7473 * when wc->stage == DROP_REFERENCE, this function drops
7474 * reference count on the block.
7475 *
7476 * when wc->stage == UPDATE_BACKREF, this function changes
7477 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7478 * to UPDATE_BACKREF previously while processing the block.
7479 *
7480 * NOTE: return value 1 means we should stop walking up.
7481 */
7482 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7483 struct btrfs_root *root,
7484 struct btrfs_path *path,
7485 struct walk_control *wc)
7486 {
7487 int ret;
7488 int level = wc->level;
7489 struct extent_buffer *eb = path->nodes[level];
7490 u64 parent = 0;
7491
7492 if (wc->stage == UPDATE_BACKREF) {
7493 BUG_ON(wc->shared_level < level);
7494 if (level < wc->shared_level)
7495 goto out;
7496
7497 ret = find_next_key(path, level + 1, &wc->update_progress);
7498 if (ret > 0)
7499 wc->update_ref = 0;
7500
7501 wc->stage = DROP_REFERENCE;
7502 wc->shared_level = -1;
7503 path->slots[level] = 0;
7504
7505 /*
7506 * check reference count again if the block isn't locked.
7507 * we should start walking down the tree again if reference
7508 * count is one.
7509 */
7510 if (!path->locks[level]) {
7511 BUG_ON(level == 0);
7512 btrfs_tree_lock(eb);
7513 btrfs_set_lock_blocking(eb);
7514 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7515
7516 ret = btrfs_lookup_extent_info(trans, root,
7517 eb->start, level, 1,
7518 &wc->refs[level],
7519 &wc->flags[level]);
7520 if (ret < 0) {
7521 btrfs_tree_unlock_rw(eb, path->locks[level]);
7522 path->locks[level] = 0;
7523 return ret;
7524 }
7525 BUG_ON(wc->refs[level] == 0);
7526 if (wc->refs[level] == 1) {
7527 btrfs_tree_unlock_rw(eb, path->locks[level]);
7528 path->locks[level] = 0;
7529 return 1;
7530 }
7531 }
7532 }
7533
7534 /* wc->stage == DROP_REFERENCE */
7535 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7536
7537 if (wc->refs[level] == 1) {
7538 if (level == 0) {
7539 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7540 ret = btrfs_dec_ref(trans, root, eb, 1,
7541 wc->for_reloc);
7542 else
7543 ret = btrfs_dec_ref(trans, root, eb, 0,
7544 wc->for_reloc);
7545 BUG_ON(ret); /* -ENOMEM */
7546 }
7547 /* make block locked assertion in clean_tree_block happy */
7548 if (!path->locks[level] &&
7549 btrfs_header_generation(eb) == trans->transid) {
7550 btrfs_tree_lock(eb);
7551 btrfs_set_lock_blocking(eb);
7552 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7553 }
7554 clean_tree_block(trans, root, eb);
7555 }
7556
7557 if (eb == root->node) {
7558 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7559 parent = eb->start;
7560 else
7561 BUG_ON(root->root_key.objectid !=
7562 btrfs_header_owner(eb));
7563 } else {
7564 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7565 parent = path->nodes[level + 1]->start;
7566 else
7567 BUG_ON(root->root_key.objectid !=
7568 btrfs_header_owner(path->nodes[level + 1]));
7569 }
7570
7571 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7572 out:
7573 wc->refs[level] = 0;
7574 wc->flags[level] = 0;
7575 return 0;
7576 }
7577
7578 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7579 struct btrfs_root *root,
7580 struct btrfs_path *path,
7581 struct walk_control *wc)
7582 {
7583 int level = wc->level;
7584 int lookup_info = 1;
7585 int ret;
7586
7587 while (level >= 0) {
7588 ret = walk_down_proc(trans, root, path, wc, lookup_info);
7589 if (ret > 0)
7590 break;
7591
7592 if (level == 0)
7593 break;
7594
7595 if (path->slots[level] >=
7596 btrfs_header_nritems(path->nodes[level]))
7597 break;
7598
7599 ret = do_walk_down(trans, root, path, wc, &lookup_info);
7600 if (ret > 0) {
7601 path->slots[level]++;
7602 continue;
7603 } else if (ret < 0)
7604 return ret;
7605 level = wc->level;
7606 }
7607 return 0;
7608 }
7609
7610 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7611 struct btrfs_root *root,
7612 struct btrfs_path *path,
7613 struct walk_control *wc, int max_level)
7614 {
7615 int level = wc->level;
7616 int ret;
7617
7618 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7619 while (level < max_level && path->nodes[level]) {
7620 wc->level = level;
7621 if (path->slots[level] + 1 <
7622 btrfs_header_nritems(path->nodes[level])) {
7623 path->slots[level]++;
7624 return 0;
7625 } else {
7626 ret = walk_up_proc(trans, root, path, wc);
7627 if (ret > 0)
7628 return 0;
7629
7630 if (path->locks[level]) {
7631 btrfs_tree_unlock_rw(path->nodes[level],
7632 path->locks[level]);
7633 path->locks[level] = 0;
7634 }
7635 free_extent_buffer(path->nodes[level]);
7636 path->nodes[level] = NULL;
7637 level++;
7638 }
7639 }
7640 return 1;
7641 }
7642
7643 /*
7644 * drop a subvolume tree.
7645 *
7646 * this function traverses the tree freeing any blocks that only
7647 * referenced by the tree.
7648 *
7649 * when a shared tree block is found. this function decreases its
7650 * reference count by one. if update_ref is true, this function
7651 * also make sure backrefs for the shared block and all lower level
7652 * blocks are properly updated.
7653 *
7654 * If called with for_reloc == 0, may exit early with -EAGAIN
7655 */
7656 int btrfs_drop_snapshot(struct btrfs_root *root,
7657 struct btrfs_block_rsv *block_rsv, int update_ref,
7658 int for_reloc)
7659 {
7660 struct btrfs_path *path;
7661 struct btrfs_trans_handle *trans;
7662 struct btrfs_root *tree_root = root->fs_info->tree_root;
7663 struct btrfs_root_item *root_item = &root->root_item;
7664 struct walk_control *wc;
7665 struct btrfs_key key;
7666 int err = 0;
7667 int ret;
7668 int level;
7669 bool root_dropped = false;
7670
7671 path = btrfs_alloc_path();
7672 if (!path) {
7673 err = -ENOMEM;
7674 goto out;
7675 }
7676
7677 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7678 if (!wc) {
7679 btrfs_free_path(path);
7680 err = -ENOMEM;
7681 goto out;
7682 }
7683
7684 trans = btrfs_start_transaction(tree_root, 0);
7685 if (IS_ERR(trans)) {
7686 err = PTR_ERR(trans);
7687 goto out_free;
7688 }
7689
7690 if (block_rsv)
7691 trans->block_rsv = block_rsv;
7692
7693 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7694 level = btrfs_header_level(root->node);
7695 path->nodes[level] = btrfs_lock_root_node(root);
7696 btrfs_set_lock_blocking(path->nodes[level]);
7697 path->slots[level] = 0;
7698 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7699 memset(&wc->update_progress, 0,
7700 sizeof(wc->update_progress));
7701 } else {
7702 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7703 memcpy(&wc->update_progress, &key,
7704 sizeof(wc->update_progress));
7705
7706 level = root_item->drop_level;
7707 BUG_ON(level == 0);
7708 path->lowest_level = level;
7709 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7710 path->lowest_level = 0;
7711 if (ret < 0) {
7712 err = ret;
7713 goto out_end_trans;
7714 }
7715 WARN_ON(ret > 0);
7716
7717 /*
7718 * unlock our path, this is safe because only this
7719 * function is allowed to delete this snapshot
7720 */
7721 btrfs_unlock_up_safe(path, 0);
7722
7723 level = btrfs_header_level(root->node);
7724 while (1) {
7725 btrfs_tree_lock(path->nodes[level]);
7726 btrfs_set_lock_blocking(path->nodes[level]);
7727 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7728
7729 ret = btrfs_lookup_extent_info(trans, root,
7730 path->nodes[level]->start,
7731 level, 1, &wc->refs[level],
7732 &wc->flags[level]);
7733 if (ret < 0) {
7734 err = ret;
7735 goto out_end_trans;
7736 }
7737 BUG_ON(wc->refs[level] == 0);
7738
7739 if (level == root_item->drop_level)
7740 break;
7741
7742 btrfs_tree_unlock(path->nodes[level]);
7743 path->locks[level] = 0;
7744 WARN_ON(wc->refs[level] != 1);
7745 level--;
7746 }
7747 }
7748
7749 wc->level = level;
7750 wc->shared_level = -1;
7751 wc->stage = DROP_REFERENCE;
7752 wc->update_ref = update_ref;
7753 wc->keep_locks = 0;
7754 wc->for_reloc = for_reloc;
7755 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7756
7757 while (1) {
7758
7759 ret = walk_down_tree(trans, root, path, wc);
7760 if (ret < 0) {
7761 err = ret;
7762 break;
7763 }
7764
7765 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7766 if (ret < 0) {
7767 err = ret;
7768 break;
7769 }
7770
7771 if (ret > 0) {
7772 BUG_ON(wc->stage != DROP_REFERENCE);
7773 break;
7774 }
7775
7776 if (wc->stage == DROP_REFERENCE) {
7777 level = wc->level;
7778 btrfs_node_key(path->nodes[level],
7779 &root_item->drop_progress,
7780 path->slots[level]);
7781 root_item->drop_level = level;
7782 }
7783
7784 BUG_ON(wc->level == 0);
7785 if (btrfs_should_end_transaction(trans, tree_root) ||
7786 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7787 ret = btrfs_update_root(trans, tree_root,
7788 &root->root_key,
7789 root_item);
7790 if (ret) {
7791 btrfs_abort_transaction(trans, tree_root, ret);
7792 err = ret;
7793 goto out_end_trans;
7794 }
7795
7796 btrfs_end_transaction_throttle(trans, tree_root);
7797 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7798 pr_debug("BTRFS: drop snapshot early exit\n");
7799 err = -EAGAIN;
7800 goto out_free;
7801 }
7802
7803 trans = btrfs_start_transaction(tree_root, 0);
7804 if (IS_ERR(trans)) {
7805 err = PTR_ERR(trans);
7806 goto out_free;
7807 }
7808 if (block_rsv)
7809 trans->block_rsv = block_rsv;
7810 }
7811 }
7812 btrfs_release_path(path);
7813 if (err)
7814 goto out_end_trans;
7815
7816 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7817 if (ret) {
7818 btrfs_abort_transaction(trans, tree_root, ret);
7819 goto out_end_trans;
7820 }
7821
7822 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7823 ret = btrfs_find_root(tree_root, &root->root_key, path,
7824 NULL, NULL);
7825 if (ret < 0) {
7826 btrfs_abort_transaction(trans, tree_root, ret);
7827 err = ret;
7828 goto out_end_trans;
7829 } else if (ret > 0) {
7830 /* if we fail to delete the orphan item this time
7831 * around, it'll get picked up the next time.
7832 *
7833 * The most common failure here is just -ENOENT.
7834 */
7835 btrfs_del_orphan_item(trans, tree_root,
7836 root->root_key.objectid);
7837 }
7838 }
7839
7840 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
7841 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7842 } else {
7843 free_extent_buffer(root->node);
7844 free_extent_buffer(root->commit_root);
7845 btrfs_put_fs_root(root);
7846 }
7847 root_dropped = true;
7848 out_end_trans:
7849 btrfs_end_transaction_throttle(trans, tree_root);
7850 out_free:
7851 kfree(wc);
7852 btrfs_free_path(path);
7853 out:
7854 /*
7855 * So if we need to stop dropping the snapshot for whatever reason we
7856 * need to make sure to add it back to the dead root list so that we
7857 * keep trying to do the work later. This also cleans up roots if we
7858 * don't have it in the radix (like when we recover after a power fail
7859 * or unmount) so we don't leak memory.
7860 */
7861 if (!for_reloc && root_dropped == false)
7862 btrfs_add_dead_root(root);
7863 if (err && err != -EAGAIN)
7864 btrfs_std_error(root->fs_info, err);
7865 return err;
7866 }
7867
7868 /*
7869 * drop subtree rooted at tree block 'node'.
7870 *
7871 * NOTE: this function will unlock and release tree block 'node'
7872 * only used by relocation code
7873 */
7874 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7875 struct btrfs_root *root,
7876 struct extent_buffer *node,
7877 struct extent_buffer *parent)
7878 {
7879 struct btrfs_path *path;
7880 struct walk_control *wc;
7881 int level;
7882 int parent_level;
7883 int ret = 0;
7884 int wret;
7885
7886 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7887
7888 path = btrfs_alloc_path();
7889 if (!path)
7890 return -ENOMEM;
7891
7892 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7893 if (!wc) {
7894 btrfs_free_path(path);
7895 return -ENOMEM;
7896 }
7897
7898 btrfs_assert_tree_locked(parent);
7899 parent_level = btrfs_header_level(parent);
7900 extent_buffer_get(parent);
7901 path->nodes[parent_level] = parent;
7902 path->slots[parent_level] = btrfs_header_nritems(parent);
7903
7904 btrfs_assert_tree_locked(node);
7905 level = btrfs_header_level(node);
7906 path->nodes[level] = node;
7907 path->slots[level] = 0;
7908 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7909
7910 wc->refs[parent_level] = 1;
7911 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7912 wc->level = level;
7913 wc->shared_level = -1;
7914 wc->stage = DROP_REFERENCE;
7915 wc->update_ref = 0;
7916 wc->keep_locks = 1;
7917 wc->for_reloc = 1;
7918 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7919
7920 while (1) {
7921 wret = walk_down_tree(trans, root, path, wc);
7922 if (wret < 0) {
7923 ret = wret;
7924 break;
7925 }
7926
7927 wret = walk_up_tree(trans, root, path, wc, parent_level);
7928 if (wret < 0)
7929 ret = wret;
7930 if (wret != 0)
7931 break;
7932 }
7933
7934 kfree(wc);
7935 btrfs_free_path(path);
7936 return ret;
7937 }
7938
7939 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7940 {
7941 u64 num_devices;
7942 u64 stripped;
7943
7944 /*
7945 * if restripe for this chunk_type is on pick target profile and
7946 * return, otherwise do the usual balance
7947 */
7948 stripped = get_restripe_target(root->fs_info, flags);
7949 if (stripped)
7950 return extended_to_chunk(stripped);
7951
7952 /*
7953 * we add in the count of missing devices because we want
7954 * to make sure that any RAID levels on a degraded FS
7955 * continue to be honored.
7956 */
7957 num_devices = root->fs_info->fs_devices->rw_devices +
7958 root->fs_info->fs_devices->missing_devices;
7959
7960 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7961 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7962 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7963
7964 if (num_devices == 1) {
7965 stripped |= BTRFS_BLOCK_GROUP_DUP;
7966 stripped = flags & ~stripped;
7967
7968 /* turn raid0 into single device chunks */
7969 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7970 return stripped;
7971
7972 /* turn mirroring into duplication */
7973 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7974 BTRFS_BLOCK_GROUP_RAID10))
7975 return stripped | BTRFS_BLOCK_GROUP_DUP;
7976 } else {
7977 /* they already had raid on here, just return */
7978 if (flags & stripped)
7979 return flags;
7980
7981 stripped |= BTRFS_BLOCK_GROUP_DUP;
7982 stripped = flags & ~stripped;
7983
7984 /* switch duplicated blocks with raid1 */
7985 if (flags & BTRFS_BLOCK_GROUP_DUP)
7986 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7987
7988 /* this is drive concat, leave it alone */
7989 }
7990
7991 return flags;
7992 }
7993
7994 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7995 {
7996 struct btrfs_space_info *sinfo = cache->space_info;
7997 u64 num_bytes;
7998 u64 min_allocable_bytes;
7999 int ret = -ENOSPC;
8000
8001
8002 /*
8003 * We need some metadata space and system metadata space for
8004 * allocating chunks in some corner cases until we force to set
8005 * it to be readonly.
8006 */
8007 if ((sinfo->flags &
8008 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8009 !force)
8010 min_allocable_bytes = 1 * 1024 * 1024;
8011 else
8012 min_allocable_bytes = 0;
8013
8014 spin_lock(&sinfo->lock);
8015 spin_lock(&cache->lock);
8016
8017 if (cache->ro) {
8018 ret = 0;
8019 goto out;
8020 }
8021
8022 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8023 cache->bytes_super - btrfs_block_group_used(&cache->item);
8024
8025 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8026 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8027 min_allocable_bytes <= sinfo->total_bytes) {
8028 sinfo->bytes_readonly += num_bytes;
8029 cache->ro = 1;
8030 ret = 0;
8031 }
8032 out:
8033 spin_unlock(&cache->lock);
8034 spin_unlock(&sinfo->lock);
8035 return ret;
8036 }
8037
8038 int btrfs_set_block_group_ro(struct btrfs_root *root,
8039 struct btrfs_block_group_cache *cache)
8040
8041 {
8042 struct btrfs_trans_handle *trans;
8043 u64 alloc_flags;
8044 int ret;
8045
8046 BUG_ON(cache->ro);
8047
8048 trans = btrfs_join_transaction(root);
8049 if (IS_ERR(trans))
8050 return PTR_ERR(trans);
8051
8052 alloc_flags = update_block_group_flags(root, cache->flags);
8053 if (alloc_flags != cache->flags) {
8054 ret = do_chunk_alloc(trans, root, alloc_flags,
8055 CHUNK_ALLOC_FORCE);
8056 if (ret < 0)
8057 goto out;
8058 }
8059
8060 ret = set_block_group_ro(cache, 0);
8061 if (!ret)
8062 goto out;
8063 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8064 ret = do_chunk_alloc(trans, root, alloc_flags,
8065 CHUNK_ALLOC_FORCE);
8066 if (ret < 0)
8067 goto out;
8068 ret = set_block_group_ro(cache, 0);
8069 out:
8070 btrfs_end_transaction(trans, root);
8071 return ret;
8072 }
8073
8074 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8075 struct btrfs_root *root, u64 type)
8076 {
8077 u64 alloc_flags = get_alloc_profile(root, type);
8078 return do_chunk_alloc(trans, root, alloc_flags,
8079 CHUNK_ALLOC_FORCE);
8080 }
8081
8082 /*
8083 * helper to account the unused space of all the readonly block group in the
8084 * list. takes mirrors into account.
8085 */
8086 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
8087 {
8088 struct btrfs_block_group_cache *block_group;
8089 u64 free_bytes = 0;
8090 int factor;
8091
8092 list_for_each_entry(block_group, groups_list, list) {
8093 spin_lock(&block_group->lock);
8094
8095 if (!block_group->ro) {
8096 spin_unlock(&block_group->lock);
8097 continue;
8098 }
8099
8100 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8101 BTRFS_BLOCK_GROUP_RAID10 |
8102 BTRFS_BLOCK_GROUP_DUP))
8103 factor = 2;
8104 else
8105 factor = 1;
8106
8107 free_bytes += (block_group->key.offset -
8108 btrfs_block_group_used(&block_group->item)) *
8109 factor;
8110
8111 spin_unlock(&block_group->lock);
8112 }
8113
8114 return free_bytes;
8115 }
8116
8117 /*
8118 * helper to account the unused space of all the readonly block group in the
8119 * space_info. takes mirrors into account.
8120 */
8121 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8122 {
8123 int i;
8124 u64 free_bytes = 0;
8125
8126 spin_lock(&sinfo->lock);
8127
8128 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8129 if (!list_empty(&sinfo->block_groups[i]))
8130 free_bytes += __btrfs_get_ro_block_group_free_space(
8131 &sinfo->block_groups[i]);
8132
8133 spin_unlock(&sinfo->lock);
8134
8135 return free_bytes;
8136 }
8137
8138 void btrfs_set_block_group_rw(struct btrfs_root *root,
8139 struct btrfs_block_group_cache *cache)
8140 {
8141 struct btrfs_space_info *sinfo = cache->space_info;
8142 u64 num_bytes;
8143
8144 BUG_ON(!cache->ro);
8145
8146 spin_lock(&sinfo->lock);
8147 spin_lock(&cache->lock);
8148 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8149 cache->bytes_super - btrfs_block_group_used(&cache->item);
8150 sinfo->bytes_readonly -= num_bytes;
8151 cache->ro = 0;
8152 spin_unlock(&cache->lock);
8153 spin_unlock(&sinfo->lock);
8154 }
8155
8156 /*
8157 * checks to see if its even possible to relocate this block group.
8158 *
8159 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8160 * ok to go ahead and try.
8161 */
8162 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8163 {
8164 struct btrfs_block_group_cache *block_group;
8165 struct btrfs_space_info *space_info;
8166 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8167 struct btrfs_device *device;
8168 struct btrfs_trans_handle *trans;
8169 u64 min_free;
8170 u64 dev_min = 1;
8171 u64 dev_nr = 0;
8172 u64 target;
8173 int index;
8174 int full = 0;
8175 int ret = 0;
8176
8177 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8178
8179 /* odd, couldn't find the block group, leave it alone */
8180 if (!block_group)
8181 return -1;
8182
8183 min_free = btrfs_block_group_used(&block_group->item);
8184
8185 /* no bytes used, we're good */
8186 if (!min_free)
8187 goto out;
8188
8189 space_info = block_group->space_info;
8190 spin_lock(&space_info->lock);
8191
8192 full = space_info->full;
8193
8194 /*
8195 * if this is the last block group we have in this space, we can't
8196 * relocate it unless we're able to allocate a new chunk below.
8197 *
8198 * Otherwise, we need to make sure we have room in the space to handle
8199 * all of the extents from this block group. If we can, we're good
8200 */
8201 if ((space_info->total_bytes != block_group->key.offset) &&
8202 (space_info->bytes_used + space_info->bytes_reserved +
8203 space_info->bytes_pinned + space_info->bytes_readonly +
8204 min_free < space_info->total_bytes)) {
8205 spin_unlock(&space_info->lock);
8206 goto out;
8207 }
8208 spin_unlock(&space_info->lock);
8209
8210 /*
8211 * ok we don't have enough space, but maybe we have free space on our
8212 * devices to allocate new chunks for relocation, so loop through our
8213 * alloc devices and guess if we have enough space. if this block
8214 * group is going to be restriped, run checks against the target
8215 * profile instead of the current one.
8216 */
8217 ret = -1;
8218
8219 /*
8220 * index:
8221 * 0: raid10
8222 * 1: raid1
8223 * 2: dup
8224 * 3: raid0
8225 * 4: single
8226 */
8227 target = get_restripe_target(root->fs_info, block_group->flags);
8228 if (target) {
8229 index = __get_raid_index(extended_to_chunk(target));
8230 } else {
8231 /*
8232 * this is just a balance, so if we were marked as full
8233 * we know there is no space for a new chunk
8234 */
8235 if (full)
8236 goto out;
8237
8238 index = get_block_group_index(block_group);
8239 }
8240
8241 if (index == BTRFS_RAID_RAID10) {
8242 dev_min = 4;
8243 /* Divide by 2 */
8244 min_free >>= 1;
8245 } else if (index == BTRFS_RAID_RAID1) {
8246 dev_min = 2;
8247 } else if (index == BTRFS_RAID_DUP) {
8248 /* Multiply by 2 */
8249 min_free <<= 1;
8250 } else if (index == BTRFS_RAID_RAID0) {
8251 dev_min = fs_devices->rw_devices;
8252 do_div(min_free, dev_min);
8253 }
8254
8255 /* We need to do this so that we can look at pending chunks */
8256 trans = btrfs_join_transaction(root);
8257 if (IS_ERR(trans)) {
8258 ret = PTR_ERR(trans);
8259 goto out;
8260 }
8261
8262 mutex_lock(&root->fs_info->chunk_mutex);
8263 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8264 u64 dev_offset;
8265
8266 /*
8267 * check to make sure we can actually find a chunk with enough
8268 * space to fit our block group in.
8269 */
8270 if (device->total_bytes > device->bytes_used + min_free &&
8271 !device->is_tgtdev_for_dev_replace) {
8272 ret = find_free_dev_extent(trans, device, min_free,
8273 &dev_offset, NULL);
8274 if (!ret)
8275 dev_nr++;
8276
8277 if (dev_nr >= dev_min)
8278 break;
8279
8280 ret = -1;
8281 }
8282 }
8283 mutex_unlock(&root->fs_info->chunk_mutex);
8284 btrfs_end_transaction(trans, root);
8285 out:
8286 btrfs_put_block_group(block_group);
8287 return ret;
8288 }
8289
8290 static int find_first_block_group(struct btrfs_root *root,
8291 struct btrfs_path *path, struct btrfs_key *key)
8292 {
8293 int ret = 0;
8294 struct btrfs_key found_key;
8295 struct extent_buffer *leaf;
8296 int slot;
8297
8298 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8299 if (ret < 0)
8300 goto out;
8301
8302 while (1) {
8303 slot = path->slots[0];
8304 leaf = path->nodes[0];
8305 if (slot >= btrfs_header_nritems(leaf)) {
8306 ret = btrfs_next_leaf(root, path);
8307 if (ret == 0)
8308 continue;
8309 if (ret < 0)
8310 goto out;
8311 break;
8312 }
8313 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8314
8315 if (found_key.objectid >= key->objectid &&
8316 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8317 ret = 0;
8318 goto out;
8319 }
8320 path->slots[0]++;
8321 }
8322 out:
8323 return ret;
8324 }
8325
8326 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8327 {
8328 struct btrfs_block_group_cache *block_group;
8329 u64 last = 0;
8330
8331 while (1) {
8332 struct inode *inode;
8333
8334 block_group = btrfs_lookup_first_block_group(info, last);
8335 while (block_group) {
8336 spin_lock(&block_group->lock);
8337 if (block_group->iref)
8338 break;
8339 spin_unlock(&block_group->lock);
8340 block_group = next_block_group(info->tree_root,
8341 block_group);
8342 }
8343 if (!block_group) {
8344 if (last == 0)
8345 break;
8346 last = 0;
8347 continue;
8348 }
8349
8350 inode = block_group->inode;
8351 block_group->iref = 0;
8352 block_group->inode = NULL;
8353 spin_unlock(&block_group->lock);
8354 iput(inode);
8355 last = block_group->key.objectid + block_group->key.offset;
8356 btrfs_put_block_group(block_group);
8357 }
8358 }
8359
8360 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8361 {
8362 struct btrfs_block_group_cache *block_group;
8363 struct btrfs_space_info *space_info;
8364 struct btrfs_caching_control *caching_ctl;
8365 struct rb_node *n;
8366
8367 down_write(&info->commit_root_sem);
8368 while (!list_empty(&info->caching_block_groups)) {
8369 caching_ctl = list_entry(info->caching_block_groups.next,
8370 struct btrfs_caching_control, list);
8371 list_del(&caching_ctl->list);
8372 put_caching_control(caching_ctl);
8373 }
8374 up_write(&info->commit_root_sem);
8375
8376 spin_lock(&info->block_group_cache_lock);
8377 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8378 block_group = rb_entry(n, struct btrfs_block_group_cache,
8379 cache_node);
8380 rb_erase(&block_group->cache_node,
8381 &info->block_group_cache_tree);
8382 spin_unlock(&info->block_group_cache_lock);
8383
8384 down_write(&block_group->space_info->groups_sem);
8385 list_del(&block_group->list);
8386 up_write(&block_group->space_info->groups_sem);
8387
8388 if (block_group->cached == BTRFS_CACHE_STARTED)
8389 wait_block_group_cache_done(block_group);
8390
8391 /*
8392 * We haven't cached this block group, which means we could
8393 * possibly have excluded extents on this block group.
8394 */
8395 if (block_group->cached == BTRFS_CACHE_NO ||
8396 block_group->cached == BTRFS_CACHE_ERROR)
8397 free_excluded_extents(info->extent_root, block_group);
8398
8399 btrfs_remove_free_space_cache(block_group);
8400 btrfs_put_block_group(block_group);
8401
8402 spin_lock(&info->block_group_cache_lock);
8403 }
8404 spin_unlock(&info->block_group_cache_lock);
8405
8406 /* now that all the block groups are freed, go through and
8407 * free all the space_info structs. This is only called during
8408 * the final stages of unmount, and so we know nobody is
8409 * using them. We call synchronize_rcu() once before we start,
8410 * just to be on the safe side.
8411 */
8412 synchronize_rcu();
8413
8414 release_global_block_rsv(info);
8415
8416 while (!list_empty(&info->space_info)) {
8417 int i;
8418
8419 space_info = list_entry(info->space_info.next,
8420 struct btrfs_space_info,
8421 list);
8422 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8423 if (WARN_ON(space_info->bytes_pinned > 0 ||
8424 space_info->bytes_reserved > 0 ||
8425 space_info->bytes_may_use > 0)) {
8426 dump_space_info(space_info, 0, 0);
8427 }
8428 }
8429 list_del(&space_info->list);
8430 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8431 struct kobject *kobj;
8432 kobj = &space_info->block_group_kobjs[i];
8433 if (kobj->parent) {
8434 kobject_del(kobj);
8435 kobject_put(kobj);
8436 }
8437 }
8438 kobject_del(&space_info->kobj);
8439 kobject_put(&space_info->kobj);
8440 }
8441 return 0;
8442 }
8443
8444 static void __link_block_group(struct btrfs_space_info *space_info,
8445 struct btrfs_block_group_cache *cache)
8446 {
8447 int index = get_block_group_index(cache);
8448 bool first = false;
8449
8450 down_write(&space_info->groups_sem);
8451 if (list_empty(&space_info->block_groups[index]))
8452 first = true;
8453 list_add_tail(&cache->list, &space_info->block_groups[index]);
8454 up_write(&space_info->groups_sem);
8455
8456 if (first) {
8457 struct kobject *kobj = &space_info->block_group_kobjs[index];
8458 int ret;
8459
8460 kobject_get(&space_info->kobj); /* put in release */
8461 ret = kobject_add(kobj, &space_info->kobj, "%s",
8462 get_raid_name(index));
8463 if (ret) {
8464 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8465 kobject_put(&space_info->kobj);
8466 }
8467 }
8468 }
8469
8470 static struct btrfs_block_group_cache *
8471 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8472 {
8473 struct btrfs_block_group_cache *cache;
8474
8475 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8476 if (!cache)
8477 return NULL;
8478
8479 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8480 GFP_NOFS);
8481 if (!cache->free_space_ctl) {
8482 kfree(cache);
8483 return NULL;
8484 }
8485
8486 cache->key.objectid = start;
8487 cache->key.offset = size;
8488 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8489
8490 cache->sectorsize = root->sectorsize;
8491 cache->fs_info = root->fs_info;
8492 cache->full_stripe_len = btrfs_full_stripe_len(root,
8493 &root->fs_info->mapping_tree,
8494 start);
8495 atomic_set(&cache->count, 1);
8496 spin_lock_init(&cache->lock);
8497 INIT_LIST_HEAD(&cache->list);
8498 INIT_LIST_HEAD(&cache->cluster_list);
8499 INIT_LIST_HEAD(&cache->new_bg_list);
8500 btrfs_init_free_space_ctl(cache);
8501
8502 return cache;
8503 }
8504
8505 int btrfs_read_block_groups(struct btrfs_root *root)
8506 {
8507 struct btrfs_path *path;
8508 int ret;
8509 struct btrfs_block_group_cache *cache;
8510 struct btrfs_fs_info *info = root->fs_info;
8511 struct btrfs_space_info *space_info;
8512 struct btrfs_key key;
8513 struct btrfs_key found_key;
8514 struct extent_buffer *leaf;
8515 int need_clear = 0;
8516 u64 cache_gen;
8517
8518 root = info->extent_root;
8519 key.objectid = 0;
8520 key.offset = 0;
8521 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8522 path = btrfs_alloc_path();
8523 if (!path)
8524 return -ENOMEM;
8525 path->reada = 1;
8526
8527 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8528 if (btrfs_test_opt(root, SPACE_CACHE) &&
8529 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8530 need_clear = 1;
8531 if (btrfs_test_opt(root, CLEAR_CACHE))
8532 need_clear = 1;
8533
8534 while (1) {
8535 ret = find_first_block_group(root, path, &key);
8536 if (ret > 0)
8537 break;
8538 if (ret != 0)
8539 goto error;
8540
8541 leaf = path->nodes[0];
8542 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8543
8544 cache = btrfs_create_block_group_cache(root, found_key.objectid,
8545 found_key.offset);
8546 if (!cache) {
8547 ret = -ENOMEM;
8548 goto error;
8549 }
8550
8551 if (need_clear) {
8552 /*
8553 * When we mount with old space cache, we need to
8554 * set BTRFS_DC_CLEAR and set dirty flag.
8555 *
8556 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8557 * truncate the old free space cache inode and
8558 * setup a new one.
8559 * b) Setting 'dirty flag' makes sure that we flush
8560 * the new space cache info onto disk.
8561 */
8562 cache->disk_cache_state = BTRFS_DC_CLEAR;
8563 if (btrfs_test_opt(root, SPACE_CACHE))
8564 cache->dirty = 1;
8565 }
8566
8567 read_extent_buffer(leaf, &cache->item,
8568 btrfs_item_ptr_offset(leaf, path->slots[0]),
8569 sizeof(cache->item));
8570 cache->flags = btrfs_block_group_flags(&cache->item);
8571
8572 key.objectid = found_key.objectid + found_key.offset;
8573 btrfs_release_path(path);
8574
8575 /*
8576 * We need to exclude the super stripes now so that the space
8577 * info has super bytes accounted for, otherwise we'll think
8578 * we have more space than we actually do.
8579 */
8580 ret = exclude_super_stripes(root, cache);
8581 if (ret) {
8582 /*
8583 * We may have excluded something, so call this just in
8584 * case.
8585 */
8586 free_excluded_extents(root, cache);
8587 btrfs_put_block_group(cache);
8588 goto error;
8589 }
8590
8591 /*
8592 * check for two cases, either we are full, and therefore
8593 * don't need to bother with the caching work since we won't
8594 * find any space, or we are empty, and we can just add all
8595 * the space in and be done with it. This saves us _alot_ of
8596 * time, particularly in the full case.
8597 */
8598 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8599 cache->last_byte_to_unpin = (u64)-1;
8600 cache->cached = BTRFS_CACHE_FINISHED;
8601 free_excluded_extents(root, cache);
8602 } else if (btrfs_block_group_used(&cache->item) == 0) {
8603 cache->last_byte_to_unpin = (u64)-1;
8604 cache->cached = BTRFS_CACHE_FINISHED;
8605 add_new_free_space(cache, root->fs_info,
8606 found_key.objectid,
8607 found_key.objectid +
8608 found_key.offset);
8609 free_excluded_extents(root, cache);
8610 }
8611
8612 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8613 if (ret) {
8614 btrfs_remove_free_space_cache(cache);
8615 btrfs_put_block_group(cache);
8616 goto error;
8617 }
8618
8619 ret = update_space_info(info, cache->flags, found_key.offset,
8620 btrfs_block_group_used(&cache->item),
8621 &space_info);
8622 if (ret) {
8623 btrfs_remove_free_space_cache(cache);
8624 spin_lock(&info->block_group_cache_lock);
8625 rb_erase(&cache->cache_node,
8626 &info->block_group_cache_tree);
8627 spin_unlock(&info->block_group_cache_lock);
8628 btrfs_put_block_group(cache);
8629 goto error;
8630 }
8631
8632 cache->space_info = space_info;
8633 spin_lock(&cache->space_info->lock);
8634 cache->space_info->bytes_readonly += cache->bytes_super;
8635 spin_unlock(&cache->space_info->lock);
8636
8637 __link_block_group(space_info, cache);
8638
8639 set_avail_alloc_bits(root->fs_info, cache->flags);
8640 if (btrfs_chunk_readonly(root, cache->key.objectid))
8641 set_block_group_ro(cache, 1);
8642 }
8643
8644 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8645 if (!(get_alloc_profile(root, space_info->flags) &
8646 (BTRFS_BLOCK_GROUP_RAID10 |
8647 BTRFS_BLOCK_GROUP_RAID1 |
8648 BTRFS_BLOCK_GROUP_RAID5 |
8649 BTRFS_BLOCK_GROUP_RAID6 |
8650 BTRFS_BLOCK_GROUP_DUP)))
8651 continue;
8652 /*
8653 * avoid allocating from un-mirrored block group if there are
8654 * mirrored block groups.
8655 */
8656 list_for_each_entry(cache,
8657 &space_info->block_groups[BTRFS_RAID_RAID0],
8658 list)
8659 set_block_group_ro(cache, 1);
8660 list_for_each_entry(cache,
8661 &space_info->block_groups[BTRFS_RAID_SINGLE],
8662 list)
8663 set_block_group_ro(cache, 1);
8664 }
8665
8666 init_global_block_rsv(info);
8667 ret = 0;
8668 error:
8669 btrfs_free_path(path);
8670 return ret;
8671 }
8672
8673 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8674 struct btrfs_root *root)
8675 {
8676 struct btrfs_block_group_cache *block_group, *tmp;
8677 struct btrfs_root *extent_root = root->fs_info->extent_root;
8678 struct btrfs_block_group_item item;
8679 struct btrfs_key key;
8680 int ret = 0;
8681
8682 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8683 new_bg_list) {
8684 list_del_init(&block_group->new_bg_list);
8685
8686 if (ret)
8687 continue;
8688
8689 spin_lock(&block_group->lock);
8690 memcpy(&item, &block_group->item, sizeof(item));
8691 memcpy(&key, &block_group->key, sizeof(key));
8692 spin_unlock(&block_group->lock);
8693
8694 ret = btrfs_insert_item(trans, extent_root, &key, &item,
8695 sizeof(item));
8696 if (ret)
8697 btrfs_abort_transaction(trans, extent_root, ret);
8698 ret = btrfs_finish_chunk_alloc(trans, extent_root,
8699 key.objectid, key.offset);
8700 if (ret)
8701 btrfs_abort_transaction(trans, extent_root, ret);
8702 }
8703 }
8704
8705 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8706 struct btrfs_root *root, u64 bytes_used,
8707 u64 type, u64 chunk_objectid, u64 chunk_offset,
8708 u64 size)
8709 {
8710 int ret;
8711 struct btrfs_root *extent_root;
8712 struct btrfs_block_group_cache *cache;
8713
8714 extent_root = root->fs_info->extent_root;
8715
8716 btrfs_set_log_full_commit(root->fs_info, trans);
8717
8718 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
8719 if (!cache)
8720 return -ENOMEM;
8721
8722 btrfs_set_block_group_used(&cache->item, bytes_used);
8723 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8724 btrfs_set_block_group_flags(&cache->item, type);
8725
8726 cache->flags = type;
8727 cache->last_byte_to_unpin = (u64)-1;
8728 cache->cached = BTRFS_CACHE_FINISHED;
8729 ret = exclude_super_stripes(root, cache);
8730 if (ret) {
8731 /*
8732 * We may have excluded something, so call this just in
8733 * case.
8734 */
8735 free_excluded_extents(root, cache);
8736 btrfs_put_block_group(cache);
8737 return ret;
8738 }
8739
8740 add_new_free_space(cache, root->fs_info, chunk_offset,
8741 chunk_offset + size);
8742
8743 free_excluded_extents(root, cache);
8744
8745 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8746 if (ret) {
8747 btrfs_remove_free_space_cache(cache);
8748 btrfs_put_block_group(cache);
8749 return ret;
8750 }
8751
8752 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8753 &cache->space_info);
8754 if (ret) {
8755 btrfs_remove_free_space_cache(cache);
8756 spin_lock(&root->fs_info->block_group_cache_lock);
8757 rb_erase(&cache->cache_node,
8758 &root->fs_info->block_group_cache_tree);
8759 spin_unlock(&root->fs_info->block_group_cache_lock);
8760 btrfs_put_block_group(cache);
8761 return ret;
8762 }
8763 update_global_block_rsv(root->fs_info);
8764
8765 spin_lock(&cache->space_info->lock);
8766 cache->space_info->bytes_readonly += cache->bytes_super;
8767 spin_unlock(&cache->space_info->lock);
8768
8769 __link_block_group(cache->space_info, cache);
8770
8771 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8772
8773 set_avail_alloc_bits(extent_root->fs_info, type);
8774
8775 return 0;
8776 }
8777
8778 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8779 {
8780 u64 extra_flags = chunk_to_extended(flags) &
8781 BTRFS_EXTENDED_PROFILE_MASK;
8782
8783 write_seqlock(&fs_info->profiles_lock);
8784 if (flags & BTRFS_BLOCK_GROUP_DATA)
8785 fs_info->avail_data_alloc_bits &= ~extra_flags;
8786 if (flags & BTRFS_BLOCK_GROUP_METADATA)
8787 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8788 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8789 fs_info->avail_system_alloc_bits &= ~extra_flags;
8790 write_sequnlock(&fs_info->profiles_lock);
8791 }
8792
8793 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8794 struct btrfs_root *root, u64 group_start)
8795 {
8796 struct btrfs_path *path;
8797 struct btrfs_block_group_cache *block_group;
8798 struct btrfs_free_cluster *cluster;
8799 struct btrfs_root *tree_root = root->fs_info->tree_root;
8800 struct btrfs_key key;
8801 struct inode *inode;
8802 int ret;
8803 int index;
8804 int factor;
8805
8806 root = root->fs_info->extent_root;
8807
8808 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8809 BUG_ON(!block_group);
8810 BUG_ON(!block_group->ro);
8811
8812 /*
8813 * Free the reserved super bytes from this block group before
8814 * remove it.
8815 */
8816 free_excluded_extents(root, block_group);
8817
8818 memcpy(&key, &block_group->key, sizeof(key));
8819 index = get_block_group_index(block_group);
8820 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8821 BTRFS_BLOCK_GROUP_RAID1 |
8822 BTRFS_BLOCK_GROUP_RAID10))
8823 factor = 2;
8824 else
8825 factor = 1;
8826
8827 /* make sure this block group isn't part of an allocation cluster */
8828 cluster = &root->fs_info->data_alloc_cluster;
8829 spin_lock(&cluster->refill_lock);
8830 btrfs_return_cluster_to_free_space(block_group, cluster);
8831 spin_unlock(&cluster->refill_lock);
8832
8833 /*
8834 * make sure this block group isn't part of a metadata
8835 * allocation cluster
8836 */
8837 cluster = &root->fs_info->meta_alloc_cluster;
8838 spin_lock(&cluster->refill_lock);
8839 btrfs_return_cluster_to_free_space(block_group, cluster);
8840 spin_unlock(&cluster->refill_lock);
8841
8842 path = btrfs_alloc_path();
8843 if (!path) {
8844 ret = -ENOMEM;
8845 goto out;
8846 }
8847
8848 inode = lookup_free_space_inode(tree_root, block_group, path);
8849 if (!IS_ERR(inode)) {
8850 ret = btrfs_orphan_add(trans, inode);
8851 if (ret) {
8852 btrfs_add_delayed_iput(inode);
8853 goto out;
8854 }
8855 clear_nlink(inode);
8856 /* One for the block groups ref */
8857 spin_lock(&block_group->lock);
8858 if (block_group->iref) {
8859 block_group->iref = 0;
8860 block_group->inode = NULL;
8861 spin_unlock(&block_group->lock);
8862 iput(inode);
8863 } else {
8864 spin_unlock(&block_group->lock);
8865 }
8866 /* One for our lookup ref */
8867 btrfs_add_delayed_iput(inode);
8868 }
8869
8870 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8871 key.offset = block_group->key.objectid;
8872 key.type = 0;
8873
8874 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8875 if (ret < 0)
8876 goto out;
8877 if (ret > 0)
8878 btrfs_release_path(path);
8879 if (ret == 0) {
8880 ret = btrfs_del_item(trans, tree_root, path);
8881 if (ret)
8882 goto out;
8883 btrfs_release_path(path);
8884 }
8885
8886 spin_lock(&root->fs_info->block_group_cache_lock);
8887 rb_erase(&block_group->cache_node,
8888 &root->fs_info->block_group_cache_tree);
8889
8890 if (root->fs_info->first_logical_byte == block_group->key.objectid)
8891 root->fs_info->first_logical_byte = (u64)-1;
8892 spin_unlock(&root->fs_info->block_group_cache_lock);
8893
8894 down_write(&block_group->space_info->groups_sem);
8895 /*
8896 * we must use list_del_init so people can check to see if they
8897 * are still on the list after taking the semaphore
8898 */
8899 list_del_init(&block_group->list);
8900 if (list_empty(&block_group->space_info->block_groups[index])) {
8901 kobject_del(&block_group->space_info->block_group_kobjs[index]);
8902 kobject_put(&block_group->space_info->block_group_kobjs[index]);
8903 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8904 }
8905 up_write(&block_group->space_info->groups_sem);
8906
8907 if (block_group->cached == BTRFS_CACHE_STARTED)
8908 wait_block_group_cache_done(block_group);
8909
8910 btrfs_remove_free_space_cache(block_group);
8911
8912 spin_lock(&block_group->space_info->lock);
8913 block_group->space_info->total_bytes -= block_group->key.offset;
8914 block_group->space_info->bytes_readonly -= block_group->key.offset;
8915 block_group->space_info->disk_total -= block_group->key.offset * factor;
8916 spin_unlock(&block_group->space_info->lock);
8917
8918 memcpy(&key, &block_group->key, sizeof(key));
8919
8920 btrfs_clear_space_info_full(root->fs_info);
8921
8922 btrfs_put_block_group(block_group);
8923 btrfs_put_block_group(block_group);
8924
8925 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8926 if (ret > 0)
8927 ret = -EIO;
8928 if (ret < 0)
8929 goto out;
8930
8931 ret = btrfs_del_item(trans, root, path);
8932 out:
8933 btrfs_free_path(path);
8934 return ret;
8935 }
8936
8937 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8938 {
8939 struct btrfs_space_info *space_info;
8940 struct btrfs_super_block *disk_super;
8941 u64 features;
8942 u64 flags;
8943 int mixed = 0;
8944 int ret;
8945
8946 disk_super = fs_info->super_copy;
8947 if (!btrfs_super_root(disk_super))
8948 return 1;
8949
8950 features = btrfs_super_incompat_flags(disk_super);
8951 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8952 mixed = 1;
8953
8954 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8955 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8956 if (ret)
8957 goto out;
8958
8959 if (mixed) {
8960 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8961 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8962 } else {
8963 flags = BTRFS_BLOCK_GROUP_METADATA;
8964 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8965 if (ret)
8966 goto out;
8967
8968 flags = BTRFS_BLOCK_GROUP_DATA;
8969 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8970 }
8971 out:
8972 return ret;
8973 }
8974
8975 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8976 {
8977 return unpin_extent_range(root, start, end);
8978 }
8979
8980 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8981 u64 num_bytes, u64 *actual_bytes)
8982 {
8983 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8984 }
8985
8986 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8987 {
8988 struct btrfs_fs_info *fs_info = root->fs_info;
8989 struct btrfs_block_group_cache *cache = NULL;
8990 u64 group_trimmed;
8991 u64 start;
8992 u64 end;
8993 u64 trimmed = 0;
8994 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8995 int ret = 0;
8996
8997 /*
8998 * try to trim all FS space, our block group may start from non-zero.
8999 */
9000 if (range->len == total_bytes)
9001 cache = btrfs_lookup_first_block_group(fs_info, range->start);
9002 else
9003 cache = btrfs_lookup_block_group(fs_info, range->start);
9004
9005 while (cache) {
9006 if (cache->key.objectid >= (range->start + range->len)) {
9007 btrfs_put_block_group(cache);
9008 break;
9009 }
9010
9011 start = max(range->start, cache->key.objectid);
9012 end = min(range->start + range->len,
9013 cache->key.objectid + cache->key.offset);
9014
9015 if (end - start >= range->minlen) {
9016 if (!block_group_cache_done(cache)) {
9017 ret = cache_block_group(cache, 0);
9018 if (ret) {
9019 btrfs_put_block_group(cache);
9020 break;
9021 }
9022 ret = wait_block_group_cache_done(cache);
9023 if (ret) {
9024 btrfs_put_block_group(cache);
9025 break;
9026 }
9027 }
9028 ret = btrfs_trim_block_group(cache,
9029 &group_trimmed,
9030 start,
9031 end,
9032 range->minlen);
9033
9034 trimmed += group_trimmed;
9035 if (ret) {
9036 btrfs_put_block_group(cache);
9037 break;
9038 }
9039 }
9040
9041 cache = next_block_group(fs_info->tree_root, cache);
9042 }
9043
9044 range->len = trimmed;
9045 return ret;
9046 }
9047
9048 /*
9049 * btrfs_{start,end}_write() is similar to mnt_{want, drop}_write(),
9050 * they are used to prevent the some tasks writing data into the page cache
9051 * by nocow before the subvolume is snapshoted, but flush the data into
9052 * the disk after the snapshot creation.
9053 */
9054 void btrfs_end_nocow_write(struct btrfs_root *root)
9055 {
9056 percpu_counter_dec(&root->subv_writers->counter);
9057 /*
9058 * Make sure counter is updated before we wake up
9059 * waiters.
9060 */
9061 smp_mb();
9062 if (waitqueue_active(&root->subv_writers->wait))
9063 wake_up(&root->subv_writers->wait);
9064 }
9065
9066 int btrfs_start_nocow_write(struct btrfs_root *root)
9067 {
9068 if (unlikely(atomic_read(&root->will_be_snapshoted)))
9069 return 0;
9070
9071 percpu_counter_inc(&root->subv_writers->counter);
9072 /*
9073 * Make sure counter is updated before we check for snapshot creation.
9074 */
9075 smp_mb();
9076 if (unlikely(atomic_read(&root->will_be_snapshoted))) {
9077 btrfs_end_nocow_write(root);
9078 return 0;
9079 }
9080 return 1;
9081 }
This page took 0.571925 seconds and 6 git commands to generate.