Btrfs: don't ignore errors from btrfs_run_delayed_items
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "compat.h"
29 #include "hash.h"
30 #include "ctree.h"
31 #include "disk-io.h"
32 #include "print-tree.h"
33 #include "transaction.h"
34 #include "volumes.h"
35 #include "raid56.h"
36 #include "locking.h"
37 #include "free-space-cache.h"
38 #include "math.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_root *root,
78 u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 struct btrfs_root *root,
81 u64 bytenr, u64 num_bytes, u64 parent,
82 u64 root_objectid, u64 owner_objectid,
83 u64 owner_offset, int refs_to_drop,
84 struct btrfs_delayed_extent_op *extra_op);
85 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
86 struct extent_buffer *leaf,
87 struct btrfs_extent_item *ei);
88 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root,
90 u64 parent, u64 root_objectid,
91 u64 flags, u64 owner, u64 offset,
92 struct btrfs_key *ins, int ref_mod);
93 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
94 struct btrfs_root *root,
95 u64 parent, u64 root_objectid,
96 u64 flags, struct btrfs_disk_key *key,
97 int level, struct btrfs_key *ins);
98 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
99 struct btrfs_root *extent_root, u64 flags,
100 int force);
101 static int find_next_key(struct btrfs_path *path, int level,
102 struct btrfs_key *key);
103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
104 int dump_block_groups);
105 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
106 u64 num_bytes, int reserve);
107 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
108 u64 num_bytes);
109 int btrfs_pin_extent(struct btrfs_root *root,
110 u64 bytenr, u64 num_bytes, int reserved);
111
112 static noinline int
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115 smp_mb();
116 return cache->cached == BTRFS_CACHE_FINISHED ||
117 cache->cached == BTRFS_CACHE_ERROR;
118 }
119
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122 return (cache->flags & bits) == bits;
123 }
124
125 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127 atomic_inc(&cache->count);
128 }
129
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132 if (atomic_dec_and_test(&cache->count)) {
133 WARN_ON(cache->pinned > 0);
134 WARN_ON(cache->reserved > 0);
135 kfree(cache->free_space_ctl);
136 kfree(cache);
137 }
138 }
139
140 /*
141 * this adds the block group to the fs_info rb tree for the block group
142 * cache
143 */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 struct btrfs_block_group_cache *block_group)
146 {
147 struct rb_node **p;
148 struct rb_node *parent = NULL;
149 struct btrfs_block_group_cache *cache;
150
151 spin_lock(&info->block_group_cache_lock);
152 p = &info->block_group_cache_tree.rb_node;
153
154 while (*p) {
155 parent = *p;
156 cache = rb_entry(parent, struct btrfs_block_group_cache,
157 cache_node);
158 if (block_group->key.objectid < cache->key.objectid) {
159 p = &(*p)->rb_left;
160 } else if (block_group->key.objectid > cache->key.objectid) {
161 p = &(*p)->rb_right;
162 } else {
163 spin_unlock(&info->block_group_cache_lock);
164 return -EEXIST;
165 }
166 }
167
168 rb_link_node(&block_group->cache_node, parent, p);
169 rb_insert_color(&block_group->cache_node,
170 &info->block_group_cache_tree);
171
172 if (info->first_logical_byte > block_group->key.objectid)
173 info->first_logical_byte = block_group->key.objectid;
174
175 spin_unlock(&info->block_group_cache_lock);
176
177 return 0;
178 }
179
180 /*
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
183 */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 int contains)
187 {
188 struct btrfs_block_group_cache *cache, *ret = NULL;
189 struct rb_node *n;
190 u64 end, start;
191
192 spin_lock(&info->block_group_cache_lock);
193 n = info->block_group_cache_tree.rb_node;
194
195 while (n) {
196 cache = rb_entry(n, struct btrfs_block_group_cache,
197 cache_node);
198 end = cache->key.objectid + cache->key.offset - 1;
199 start = cache->key.objectid;
200
201 if (bytenr < start) {
202 if (!contains && (!ret || start < ret->key.objectid))
203 ret = cache;
204 n = n->rb_left;
205 } else if (bytenr > start) {
206 if (contains && bytenr <= end) {
207 ret = cache;
208 break;
209 }
210 n = n->rb_right;
211 } else {
212 ret = cache;
213 break;
214 }
215 }
216 if (ret) {
217 btrfs_get_block_group(ret);
218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 info->first_logical_byte = ret->key.objectid;
220 }
221 spin_unlock(&info->block_group_cache_lock);
222
223 return ret;
224 }
225
226 static int add_excluded_extent(struct btrfs_root *root,
227 u64 start, u64 num_bytes)
228 {
229 u64 end = start + num_bytes - 1;
230 set_extent_bits(&root->fs_info->freed_extents[0],
231 start, end, EXTENT_UPTODATE, GFP_NOFS);
232 set_extent_bits(&root->fs_info->freed_extents[1],
233 start, end, EXTENT_UPTODATE, GFP_NOFS);
234 return 0;
235 }
236
237 static void free_excluded_extents(struct btrfs_root *root,
238 struct btrfs_block_group_cache *cache)
239 {
240 u64 start, end;
241
242 start = cache->key.objectid;
243 end = start + cache->key.offset - 1;
244
245 clear_extent_bits(&root->fs_info->freed_extents[0],
246 start, end, EXTENT_UPTODATE, GFP_NOFS);
247 clear_extent_bits(&root->fs_info->freed_extents[1],
248 start, end, EXTENT_UPTODATE, GFP_NOFS);
249 }
250
251 static int exclude_super_stripes(struct btrfs_root *root,
252 struct btrfs_block_group_cache *cache)
253 {
254 u64 bytenr;
255 u64 *logical;
256 int stripe_len;
257 int i, nr, ret;
258
259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 cache->bytes_super += stripe_len;
262 ret = add_excluded_extent(root, cache->key.objectid,
263 stripe_len);
264 if (ret)
265 return ret;
266 }
267
268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 bytenr = btrfs_sb_offset(i);
270 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
271 cache->key.objectid, bytenr,
272 0, &logical, &nr, &stripe_len);
273 if (ret)
274 return ret;
275
276 while (nr--) {
277 u64 start, len;
278
279 if (logical[nr] > cache->key.objectid +
280 cache->key.offset)
281 continue;
282
283 if (logical[nr] + stripe_len <= cache->key.objectid)
284 continue;
285
286 start = logical[nr];
287 if (start < cache->key.objectid) {
288 start = cache->key.objectid;
289 len = (logical[nr] + stripe_len) - start;
290 } else {
291 len = min_t(u64, stripe_len,
292 cache->key.objectid +
293 cache->key.offset - start);
294 }
295
296 cache->bytes_super += len;
297 ret = add_excluded_extent(root, start, len);
298 if (ret) {
299 kfree(logical);
300 return ret;
301 }
302 }
303
304 kfree(logical);
305 }
306 return 0;
307 }
308
309 static struct btrfs_caching_control *
310 get_caching_control(struct btrfs_block_group_cache *cache)
311 {
312 struct btrfs_caching_control *ctl;
313
314 spin_lock(&cache->lock);
315 if (cache->cached != BTRFS_CACHE_STARTED) {
316 spin_unlock(&cache->lock);
317 return NULL;
318 }
319
320 /* We're loading it the fast way, so we don't have a caching_ctl. */
321 if (!cache->caching_ctl) {
322 spin_unlock(&cache->lock);
323 return NULL;
324 }
325
326 ctl = cache->caching_ctl;
327 atomic_inc(&ctl->count);
328 spin_unlock(&cache->lock);
329 return ctl;
330 }
331
332 static void put_caching_control(struct btrfs_caching_control *ctl)
333 {
334 if (atomic_dec_and_test(&ctl->count))
335 kfree(ctl);
336 }
337
338 /*
339 * this is only called by cache_block_group, since we could have freed extents
340 * we need to check the pinned_extents for any extents that can't be used yet
341 * since their free space will be released as soon as the transaction commits.
342 */
343 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
344 struct btrfs_fs_info *info, u64 start, u64 end)
345 {
346 u64 extent_start, extent_end, size, total_added = 0;
347 int ret;
348
349 while (start < end) {
350 ret = find_first_extent_bit(info->pinned_extents, start,
351 &extent_start, &extent_end,
352 EXTENT_DIRTY | EXTENT_UPTODATE,
353 NULL);
354 if (ret)
355 break;
356
357 if (extent_start <= start) {
358 start = extent_end + 1;
359 } else if (extent_start > start && extent_start < end) {
360 size = extent_start - start;
361 total_added += size;
362 ret = btrfs_add_free_space(block_group, start,
363 size);
364 BUG_ON(ret); /* -ENOMEM or logic error */
365 start = extent_end + 1;
366 } else {
367 break;
368 }
369 }
370
371 if (start < end) {
372 size = end - start;
373 total_added += size;
374 ret = btrfs_add_free_space(block_group, start, size);
375 BUG_ON(ret); /* -ENOMEM or logic error */
376 }
377
378 return total_added;
379 }
380
381 static noinline void caching_thread(struct btrfs_work *work)
382 {
383 struct btrfs_block_group_cache *block_group;
384 struct btrfs_fs_info *fs_info;
385 struct btrfs_caching_control *caching_ctl;
386 struct btrfs_root *extent_root;
387 struct btrfs_path *path;
388 struct extent_buffer *leaf;
389 struct btrfs_key key;
390 u64 total_found = 0;
391 u64 last = 0;
392 u32 nritems;
393 int ret = -ENOMEM;
394
395 caching_ctl = container_of(work, struct btrfs_caching_control, work);
396 block_group = caching_ctl->block_group;
397 fs_info = block_group->fs_info;
398 extent_root = fs_info->extent_root;
399
400 path = btrfs_alloc_path();
401 if (!path)
402 goto out;
403
404 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
405
406 /*
407 * We don't want to deadlock with somebody trying to allocate a new
408 * extent for the extent root while also trying to search the extent
409 * root to add free space. So we skip locking and search the commit
410 * root, since its read-only
411 */
412 path->skip_locking = 1;
413 path->search_commit_root = 1;
414 path->reada = 1;
415
416 key.objectid = last;
417 key.offset = 0;
418 key.type = BTRFS_EXTENT_ITEM_KEY;
419 again:
420 mutex_lock(&caching_ctl->mutex);
421 /* need to make sure the commit_root doesn't disappear */
422 down_read(&fs_info->extent_commit_sem);
423
424 next:
425 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
426 if (ret < 0)
427 goto err;
428
429 leaf = path->nodes[0];
430 nritems = btrfs_header_nritems(leaf);
431
432 while (1) {
433 if (btrfs_fs_closing(fs_info) > 1) {
434 last = (u64)-1;
435 break;
436 }
437
438 if (path->slots[0] < nritems) {
439 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
440 } else {
441 ret = find_next_key(path, 0, &key);
442 if (ret)
443 break;
444
445 if (need_resched()) {
446 caching_ctl->progress = last;
447 btrfs_release_path(path);
448 up_read(&fs_info->extent_commit_sem);
449 mutex_unlock(&caching_ctl->mutex);
450 cond_resched();
451 goto again;
452 }
453
454 ret = btrfs_next_leaf(extent_root, path);
455 if (ret < 0)
456 goto err;
457 if (ret)
458 break;
459 leaf = path->nodes[0];
460 nritems = btrfs_header_nritems(leaf);
461 continue;
462 }
463
464 if (key.objectid < last) {
465 key.objectid = last;
466 key.offset = 0;
467 key.type = BTRFS_EXTENT_ITEM_KEY;
468
469 caching_ctl->progress = last;
470 btrfs_release_path(path);
471 goto next;
472 }
473
474 if (key.objectid < block_group->key.objectid) {
475 path->slots[0]++;
476 continue;
477 }
478
479 if (key.objectid >= block_group->key.objectid +
480 block_group->key.offset)
481 break;
482
483 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
484 key.type == BTRFS_METADATA_ITEM_KEY) {
485 total_found += add_new_free_space(block_group,
486 fs_info, last,
487 key.objectid);
488 if (key.type == BTRFS_METADATA_ITEM_KEY)
489 last = key.objectid +
490 fs_info->tree_root->leafsize;
491 else
492 last = key.objectid + key.offset;
493
494 if (total_found > (1024 * 1024 * 2)) {
495 total_found = 0;
496 wake_up(&caching_ctl->wait);
497 }
498 }
499 path->slots[0]++;
500 }
501 ret = 0;
502
503 total_found += add_new_free_space(block_group, fs_info, last,
504 block_group->key.objectid +
505 block_group->key.offset);
506 caching_ctl->progress = (u64)-1;
507
508 spin_lock(&block_group->lock);
509 block_group->caching_ctl = NULL;
510 block_group->cached = BTRFS_CACHE_FINISHED;
511 spin_unlock(&block_group->lock);
512
513 err:
514 btrfs_free_path(path);
515 up_read(&fs_info->extent_commit_sem);
516
517 free_excluded_extents(extent_root, block_group);
518
519 mutex_unlock(&caching_ctl->mutex);
520 out:
521 if (ret) {
522 spin_lock(&block_group->lock);
523 block_group->caching_ctl = NULL;
524 block_group->cached = BTRFS_CACHE_ERROR;
525 spin_unlock(&block_group->lock);
526 }
527 wake_up(&caching_ctl->wait);
528
529 put_caching_control(caching_ctl);
530 btrfs_put_block_group(block_group);
531 }
532
533 static int cache_block_group(struct btrfs_block_group_cache *cache,
534 int load_cache_only)
535 {
536 DEFINE_WAIT(wait);
537 struct btrfs_fs_info *fs_info = cache->fs_info;
538 struct btrfs_caching_control *caching_ctl;
539 int ret = 0;
540
541 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
542 if (!caching_ctl)
543 return -ENOMEM;
544
545 INIT_LIST_HEAD(&caching_ctl->list);
546 mutex_init(&caching_ctl->mutex);
547 init_waitqueue_head(&caching_ctl->wait);
548 caching_ctl->block_group = cache;
549 caching_ctl->progress = cache->key.objectid;
550 atomic_set(&caching_ctl->count, 1);
551 caching_ctl->work.func = caching_thread;
552
553 spin_lock(&cache->lock);
554 /*
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
564 * another.
565 */
566 while (cache->cached == BTRFS_CACHE_FAST) {
567 struct btrfs_caching_control *ctl;
568
569 ctl = cache->caching_ctl;
570 atomic_inc(&ctl->count);
571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 spin_unlock(&cache->lock);
573
574 schedule();
575
576 finish_wait(&ctl->wait, &wait);
577 put_caching_control(ctl);
578 spin_lock(&cache->lock);
579 }
580
581 if (cache->cached != BTRFS_CACHE_NO) {
582 spin_unlock(&cache->lock);
583 kfree(caching_ctl);
584 return 0;
585 }
586 WARN_ON(cache->caching_ctl);
587 cache->caching_ctl = caching_ctl;
588 cache->cached = BTRFS_CACHE_FAST;
589 spin_unlock(&cache->lock);
590
591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 ret = load_free_space_cache(fs_info, cache);
593
594 spin_lock(&cache->lock);
595 if (ret == 1) {
596 cache->caching_ctl = NULL;
597 cache->cached = BTRFS_CACHE_FINISHED;
598 cache->last_byte_to_unpin = (u64)-1;
599 } else {
600 if (load_cache_only) {
601 cache->caching_ctl = NULL;
602 cache->cached = BTRFS_CACHE_NO;
603 } else {
604 cache->cached = BTRFS_CACHE_STARTED;
605 }
606 }
607 spin_unlock(&cache->lock);
608 wake_up(&caching_ctl->wait);
609 if (ret == 1) {
610 put_caching_control(caching_ctl);
611 free_excluded_extents(fs_info->extent_root, cache);
612 return 0;
613 }
614 } else {
615 /*
616 * We are not going to do the fast caching, set cached to the
617 * appropriate value and wakeup any waiters.
618 */
619 spin_lock(&cache->lock);
620 if (load_cache_only) {
621 cache->caching_ctl = NULL;
622 cache->cached = BTRFS_CACHE_NO;
623 } else {
624 cache->cached = BTRFS_CACHE_STARTED;
625 }
626 spin_unlock(&cache->lock);
627 wake_up(&caching_ctl->wait);
628 }
629
630 if (load_cache_only) {
631 put_caching_control(caching_ctl);
632 return 0;
633 }
634
635 down_write(&fs_info->extent_commit_sem);
636 atomic_inc(&caching_ctl->count);
637 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
638 up_write(&fs_info->extent_commit_sem);
639
640 btrfs_get_block_group(cache);
641
642 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
643
644 return ret;
645 }
646
647 /*
648 * return the block group that starts at or after bytenr
649 */
650 static struct btrfs_block_group_cache *
651 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
652 {
653 struct btrfs_block_group_cache *cache;
654
655 cache = block_group_cache_tree_search(info, bytenr, 0);
656
657 return cache;
658 }
659
660 /*
661 * return the block group that contains the given bytenr
662 */
663 struct btrfs_block_group_cache *btrfs_lookup_block_group(
664 struct btrfs_fs_info *info,
665 u64 bytenr)
666 {
667 struct btrfs_block_group_cache *cache;
668
669 cache = block_group_cache_tree_search(info, bytenr, 1);
670
671 return cache;
672 }
673
674 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
675 u64 flags)
676 {
677 struct list_head *head = &info->space_info;
678 struct btrfs_space_info *found;
679
680 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
681
682 rcu_read_lock();
683 list_for_each_entry_rcu(found, head, list) {
684 if (found->flags & flags) {
685 rcu_read_unlock();
686 return found;
687 }
688 }
689 rcu_read_unlock();
690 return NULL;
691 }
692
693 /*
694 * after adding space to the filesystem, we need to clear the full flags
695 * on all the space infos.
696 */
697 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
698 {
699 struct list_head *head = &info->space_info;
700 struct btrfs_space_info *found;
701
702 rcu_read_lock();
703 list_for_each_entry_rcu(found, head, list)
704 found->full = 0;
705 rcu_read_unlock();
706 }
707
708 /* simple helper to search for an existing extent at a given offset */
709 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
710 {
711 int ret;
712 struct btrfs_key key;
713 struct btrfs_path *path;
714
715 path = btrfs_alloc_path();
716 if (!path)
717 return -ENOMEM;
718
719 key.objectid = start;
720 key.offset = len;
721 key.type = BTRFS_EXTENT_ITEM_KEY;
722 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
723 0, 0);
724 if (ret > 0) {
725 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
726 if (key.objectid == start &&
727 key.type == BTRFS_METADATA_ITEM_KEY)
728 ret = 0;
729 }
730 btrfs_free_path(path);
731 return ret;
732 }
733
734 /*
735 * helper function to lookup reference count and flags of a tree block.
736 *
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
742 */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root, u64 bytenr,
745 u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 struct btrfs_delayed_ref_head *head;
748 struct btrfs_delayed_ref_root *delayed_refs;
749 struct btrfs_path *path;
750 struct btrfs_extent_item *ei;
751 struct extent_buffer *leaf;
752 struct btrfs_key key;
753 u32 item_size;
754 u64 num_refs;
755 u64 extent_flags;
756 int ret;
757
758 /*
759 * If we don't have skinny metadata, don't bother doing anything
760 * different
761 */
762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 offset = root->leafsize;
764 metadata = 0;
765 }
766
767 path = btrfs_alloc_path();
768 if (!path)
769 return -ENOMEM;
770
771 if (metadata) {
772 key.objectid = bytenr;
773 key.type = BTRFS_METADATA_ITEM_KEY;
774 key.offset = offset;
775 } else {
776 key.objectid = bytenr;
777 key.type = BTRFS_EXTENT_ITEM_KEY;
778 key.offset = offset;
779 }
780
781 if (!trans) {
782 path->skip_locking = 1;
783 path->search_commit_root = 1;
784 }
785 again:
786 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
787 &key, path, 0, 0);
788 if (ret < 0)
789 goto out_free;
790
791 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
792 metadata = 0;
793 if (path->slots[0]) {
794 path->slots[0]--;
795 btrfs_item_key_to_cpu(path->nodes[0], &key,
796 path->slots[0]);
797 if (key.objectid == bytenr &&
798 key.type == BTRFS_EXTENT_ITEM_KEY &&
799 key.offset == root->leafsize)
800 ret = 0;
801 }
802 if (ret) {
803 key.objectid = bytenr;
804 key.type = BTRFS_EXTENT_ITEM_KEY;
805 key.offset = root->leafsize;
806 btrfs_release_path(path);
807 goto again;
808 }
809 }
810
811 if (ret == 0) {
812 leaf = path->nodes[0];
813 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
814 if (item_size >= sizeof(*ei)) {
815 ei = btrfs_item_ptr(leaf, path->slots[0],
816 struct btrfs_extent_item);
817 num_refs = btrfs_extent_refs(leaf, ei);
818 extent_flags = btrfs_extent_flags(leaf, ei);
819 } else {
820 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
821 struct btrfs_extent_item_v0 *ei0;
822 BUG_ON(item_size != sizeof(*ei0));
823 ei0 = btrfs_item_ptr(leaf, path->slots[0],
824 struct btrfs_extent_item_v0);
825 num_refs = btrfs_extent_refs_v0(leaf, ei0);
826 /* FIXME: this isn't correct for data */
827 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
828 #else
829 BUG();
830 #endif
831 }
832 BUG_ON(num_refs == 0);
833 } else {
834 num_refs = 0;
835 extent_flags = 0;
836 ret = 0;
837 }
838
839 if (!trans)
840 goto out;
841
842 delayed_refs = &trans->transaction->delayed_refs;
843 spin_lock(&delayed_refs->lock);
844 head = btrfs_find_delayed_ref_head(trans, bytenr);
845 if (head) {
846 if (!mutex_trylock(&head->mutex)) {
847 atomic_inc(&head->node.refs);
848 spin_unlock(&delayed_refs->lock);
849
850 btrfs_release_path(path);
851
852 /*
853 * Mutex was contended, block until it's released and try
854 * again
855 */
856 mutex_lock(&head->mutex);
857 mutex_unlock(&head->mutex);
858 btrfs_put_delayed_ref(&head->node);
859 goto again;
860 }
861 if (head->extent_op && head->extent_op->update_flags)
862 extent_flags |= head->extent_op->flags_to_set;
863 else
864 BUG_ON(num_refs == 0);
865
866 num_refs += head->node.ref_mod;
867 mutex_unlock(&head->mutex);
868 }
869 spin_unlock(&delayed_refs->lock);
870 out:
871 WARN_ON(num_refs == 0);
872 if (refs)
873 *refs = num_refs;
874 if (flags)
875 *flags = extent_flags;
876 out_free:
877 btrfs_free_path(path);
878 return ret;
879 }
880
881 /*
882 * Back reference rules. Back refs have three main goals:
883 *
884 * 1) differentiate between all holders of references to an extent so that
885 * when a reference is dropped we can make sure it was a valid reference
886 * before freeing the extent.
887 *
888 * 2) Provide enough information to quickly find the holders of an extent
889 * if we notice a given block is corrupted or bad.
890 *
891 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
892 * maintenance. This is actually the same as #2, but with a slightly
893 * different use case.
894 *
895 * There are two kinds of back refs. The implicit back refs is optimized
896 * for pointers in non-shared tree blocks. For a given pointer in a block,
897 * back refs of this kind provide information about the block's owner tree
898 * and the pointer's key. These information allow us to find the block by
899 * b-tree searching. The full back refs is for pointers in tree blocks not
900 * referenced by their owner trees. The location of tree block is recorded
901 * in the back refs. Actually the full back refs is generic, and can be
902 * used in all cases the implicit back refs is used. The major shortcoming
903 * of the full back refs is its overhead. Every time a tree block gets
904 * COWed, we have to update back refs entry for all pointers in it.
905 *
906 * For a newly allocated tree block, we use implicit back refs for
907 * pointers in it. This means most tree related operations only involve
908 * implicit back refs. For a tree block created in old transaction, the
909 * only way to drop a reference to it is COW it. So we can detect the
910 * event that tree block loses its owner tree's reference and do the
911 * back refs conversion.
912 *
913 * When a tree block is COW'd through a tree, there are four cases:
914 *
915 * The reference count of the block is one and the tree is the block's
916 * owner tree. Nothing to do in this case.
917 *
918 * The reference count of the block is one and the tree is not the
919 * block's owner tree. In this case, full back refs is used for pointers
920 * in the block. Remove these full back refs, add implicit back refs for
921 * every pointers in the new block.
922 *
923 * The reference count of the block is greater than one and the tree is
924 * the block's owner tree. In this case, implicit back refs is used for
925 * pointers in the block. Add full back refs for every pointers in the
926 * block, increase lower level extents' reference counts. The original
927 * implicit back refs are entailed to the new block.
928 *
929 * The reference count of the block is greater than one and the tree is
930 * not the block's owner tree. Add implicit back refs for every pointer in
931 * the new block, increase lower level extents' reference count.
932 *
933 * Back Reference Key composing:
934 *
935 * The key objectid corresponds to the first byte in the extent,
936 * The key type is used to differentiate between types of back refs.
937 * There are different meanings of the key offset for different types
938 * of back refs.
939 *
940 * File extents can be referenced by:
941 *
942 * - multiple snapshots, subvolumes, or different generations in one subvol
943 * - different files inside a single subvolume
944 * - different offsets inside a file (bookend extents in file.c)
945 *
946 * The extent ref structure for the implicit back refs has fields for:
947 *
948 * - Objectid of the subvolume root
949 * - objectid of the file holding the reference
950 * - original offset in the file
951 * - how many bookend extents
952 *
953 * The key offset for the implicit back refs is hash of the first
954 * three fields.
955 *
956 * The extent ref structure for the full back refs has field for:
957 *
958 * - number of pointers in the tree leaf
959 *
960 * The key offset for the implicit back refs is the first byte of
961 * the tree leaf
962 *
963 * When a file extent is allocated, The implicit back refs is used.
964 * the fields are filled in:
965 *
966 * (root_key.objectid, inode objectid, offset in file, 1)
967 *
968 * When a file extent is removed file truncation, we find the
969 * corresponding implicit back refs and check the following fields:
970 *
971 * (btrfs_header_owner(leaf), inode objectid, offset in file)
972 *
973 * Btree extents can be referenced by:
974 *
975 * - Different subvolumes
976 *
977 * Both the implicit back refs and the full back refs for tree blocks
978 * only consist of key. The key offset for the implicit back refs is
979 * objectid of block's owner tree. The key offset for the full back refs
980 * is the first byte of parent block.
981 *
982 * When implicit back refs is used, information about the lowest key and
983 * level of the tree block are required. These information are stored in
984 * tree block info structure.
985 */
986
987 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
988 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
989 struct btrfs_root *root,
990 struct btrfs_path *path,
991 u64 owner, u32 extra_size)
992 {
993 struct btrfs_extent_item *item;
994 struct btrfs_extent_item_v0 *ei0;
995 struct btrfs_extent_ref_v0 *ref0;
996 struct btrfs_tree_block_info *bi;
997 struct extent_buffer *leaf;
998 struct btrfs_key key;
999 struct btrfs_key found_key;
1000 u32 new_size = sizeof(*item);
1001 u64 refs;
1002 int ret;
1003
1004 leaf = path->nodes[0];
1005 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1006
1007 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1008 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1009 struct btrfs_extent_item_v0);
1010 refs = btrfs_extent_refs_v0(leaf, ei0);
1011
1012 if (owner == (u64)-1) {
1013 while (1) {
1014 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1015 ret = btrfs_next_leaf(root, path);
1016 if (ret < 0)
1017 return ret;
1018 BUG_ON(ret > 0); /* Corruption */
1019 leaf = path->nodes[0];
1020 }
1021 btrfs_item_key_to_cpu(leaf, &found_key,
1022 path->slots[0]);
1023 BUG_ON(key.objectid != found_key.objectid);
1024 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1025 path->slots[0]++;
1026 continue;
1027 }
1028 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1029 struct btrfs_extent_ref_v0);
1030 owner = btrfs_ref_objectid_v0(leaf, ref0);
1031 break;
1032 }
1033 }
1034 btrfs_release_path(path);
1035
1036 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1037 new_size += sizeof(*bi);
1038
1039 new_size -= sizeof(*ei0);
1040 ret = btrfs_search_slot(trans, root, &key, path,
1041 new_size + extra_size, 1);
1042 if (ret < 0)
1043 return ret;
1044 BUG_ON(ret); /* Corruption */
1045
1046 btrfs_extend_item(root, path, new_size);
1047
1048 leaf = path->nodes[0];
1049 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1050 btrfs_set_extent_refs(leaf, item, refs);
1051 /* FIXME: get real generation */
1052 btrfs_set_extent_generation(leaf, item, 0);
1053 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1054 btrfs_set_extent_flags(leaf, item,
1055 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1056 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1057 bi = (struct btrfs_tree_block_info *)(item + 1);
1058 /* FIXME: get first key of the block */
1059 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1060 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1061 } else {
1062 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1063 }
1064 btrfs_mark_buffer_dirty(leaf);
1065 return 0;
1066 }
1067 #endif
1068
1069 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1070 {
1071 u32 high_crc = ~(u32)0;
1072 u32 low_crc = ~(u32)0;
1073 __le64 lenum;
1074
1075 lenum = cpu_to_le64(root_objectid);
1076 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1077 lenum = cpu_to_le64(owner);
1078 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1079 lenum = cpu_to_le64(offset);
1080 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1081
1082 return ((u64)high_crc << 31) ^ (u64)low_crc;
1083 }
1084
1085 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref)
1087 {
1088 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1089 btrfs_extent_data_ref_objectid(leaf, ref),
1090 btrfs_extent_data_ref_offset(leaf, ref));
1091 }
1092
1093 static int match_extent_data_ref(struct extent_buffer *leaf,
1094 struct btrfs_extent_data_ref *ref,
1095 u64 root_objectid, u64 owner, u64 offset)
1096 {
1097 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1098 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1099 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1100 return 0;
1101 return 1;
1102 }
1103
1104 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1105 struct btrfs_root *root,
1106 struct btrfs_path *path,
1107 u64 bytenr, u64 parent,
1108 u64 root_objectid,
1109 u64 owner, u64 offset)
1110 {
1111 struct btrfs_key key;
1112 struct btrfs_extent_data_ref *ref;
1113 struct extent_buffer *leaf;
1114 u32 nritems;
1115 int ret;
1116 int recow;
1117 int err = -ENOENT;
1118
1119 key.objectid = bytenr;
1120 if (parent) {
1121 key.type = BTRFS_SHARED_DATA_REF_KEY;
1122 key.offset = parent;
1123 } else {
1124 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1125 key.offset = hash_extent_data_ref(root_objectid,
1126 owner, offset);
1127 }
1128 again:
1129 recow = 0;
1130 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1131 if (ret < 0) {
1132 err = ret;
1133 goto fail;
1134 }
1135
1136 if (parent) {
1137 if (!ret)
1138 return 0;
1139 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1140 key.type = BTRFS_EXTENT_REF_V0_KEY;
1141 btrfs_release_path(path);
1142 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1143 if (ret < 0) {
1144 err = ret;
1145 goto fail;
1146 }
1147 if (!ret)
1148 return 0;
1149 #endif
1150 goto fail;
1151 }
1152
1153 leaf = path->nodes[0];
1154 nritems = btrfs_header_nritems(leaf);
1155 while (1) {
1156 if (path->slots[0] >= nritems) {
1157 ret = btrfs_next_leaf(root, path);
1158 if (ret < 0)
1159 err = ret;
1160 if (ret)
1161 goto fail;
1162
1163 leaf = path->nodes[0];
1164 nritems = btrfs_header_nritems(leaf);
1165 recow = 1;
1166 }
1167
1168 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1169 if (key.objectid != bytenr ||
1170 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1171 goto fail;
1172
1173 ref = btrfs_item_ptr(leaf, path->slots[0],
1174 struct btrfs_extent_data_ref);
1175
1176 if (match_extent_data_ref(leaf, ref, root_objectid,
1177 owner, offset)) {
1178 if (recow) {
1179 btrfs_release_path(path);
1180 goto again;
1181 }
1182 err = 0;
1183 break;
1184 }
1185 path->slots[0]++;
1186 }
1187 fail:
1188 return err;
1189 }
1190
1191 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1192 struct btrfs_root *root,
1193 struct btrfs_path *path,
1194 u64 bytenr, u64 parent,
1195 u64 root_objectid, u64 owner,
1196 u64 offset, int refs_to_add)
1197 {
1198 struct btrfs_key key;
1199 struct extent_buffer *leaf;
1200 u32 size;
1201 u32 num_refs;
1202 int ret;
1203
1204 key.objectid = bytenr;
1205 if (parent) {
1206 key.type = BTRFS_SHARED_DATA_REF_KEY;
1207 key.offset = parent;
1208 size = sizeof(struct btrfs_shared_data_ref);
1209 } else {
1210 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1211 key.offset = hash_extent_data_ref(root_objectid,
1212 owner, offset);
1213 size = sizeof(struct btrfs_extent_data_ref);
1214 }
1215
1216 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1217 if (ret && ret != -EEXIST)
1218 goto fail;
1219
1220 leaf = path->nodes[0];
1221 if (parent) {
1222 struct btrfs_shared_data_ref *ref;
1223 ref = btrfs_item_ptr(leaf, path->slots[0],
1224 struct btrfs_shared_data_ref);
1225 if (ret == 0) {
1226 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1227 } else {
1228 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1229 num_refs += refs_to_add;
1230 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1231 }
1232 } else {
1233 struct btrfs_extent_data_ref *ref;
1234 while (ret == -EEXIST) {
1235 ref = btrfs_item_ptr(leaf, path->slots[0],
1236 struct btrfs_extent_data_ref);
1237 if (match_extent_data_ref(leaf, ref, root_objectid,
1238 owner, offset))
1239 break;
1240 btrfs_release_path(path);
1241 key.offset++;
1242 ret = btrfs_insert_empty_item(trans, root, path, &key,
1243 size);
1244 if (ret && ret != -EEXIST)
1245 goto fail;
1246
1247 leaf = path->nodes[0];
1248 }
1249 ref = btrfs_item_ptr(leaf, path->slots[0],
1250 struct btrfs_extent_data_ref);
1251 if (ret == 0) {
1252 btrfs_set_extent_data_ref_root(leaf, ref,
1253 root_objectid);
1254 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1255 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1256 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1257 } else {
1258 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1259 num_refs += refs_to_add;
1260 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1261 }
1262 }
1263 btrfs_mark_buffer_dirty(leaf);
1264 ret = 0;
1265 fail:
1266 btrfs_release_path(path);
1267 return ret;
1268 }
1269
1270 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1271 struct btrfs_root *root,
1272 struct btrfs_path *path,
1273 int refs_to_drop)
1274 {
1275 struct btrfs_key key;
1276 struct btrfs_extent_data_ref *ref1 = NULL;
1277 struct btrfs_shared_data_ref *ref2 = NULL;
1278 struct extent_buffer *leaf;
1279 u32 num_refs = 0;
1280 int ret = 0;
1281
1282 leaf = path->nodes[0];
1283 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1284
1285 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1286 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1287 struct btrfs_extent_data_ref);
1288 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1289 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1290 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1291 struct btrfs_shared_data_ref);
1292 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1293 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1294 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1295 struct btrfs_extent_ref_v0 *ref0;
1296 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1297 struct btrfs_extent_ref_v0);
1298 num_refs = btrfs_ref_count_v0(leaf, ref0);
1299 #endif
1300 } else {
1301 BUG();
1302 }
1303
1304 BUG_ON(num_refs < refs_to_drop);
1305 num_refs -= refs_to_drop;
1306
1307 if (num_refs == 0) {
1308 ret = btrfs_del_item(trans, root, path);
1309 } else {
1310 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1311 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1312 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1313 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1314 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1315 else {
1316 struct btrfs_extent_ref_v0 *ref0;
1317 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1318 struct btrfs_extent_ref_v0);
1319 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1320 }
1321 #endif
1322 btrfs_mark_buffer_dirty(leaf);
1323 }
1324 return ret;
1325 }
1326
1327 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1328 struct btrfs_path *path,
1329 struct btrfs_extent_inline_ref *iref)
1330 {
1331 struct btrfs_key key;
1332 struct extent_buffer *leaf;
1333 struct btrfs_extent_data_ref *ref1;
1334 struct btrfs_shared_data_ref *ref2;
1335 u32 num_refs = 0;
1336
1337 leaf = path->nodes[0];
1338 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1339 if (iref) {
1340 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1341 BTRFS_EXTENT_DATA_REF_KEY) {
1342 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 } else {
1345 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347 }
1348 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1349 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1350 struct btrfs_extent_data_ref);
1351 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1352 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1353 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1354 struct btrfs_shared_data_ref);
1355 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1358 struct btrfs_extent_ref_v0 *ref0;
1359 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1360 struct btrfs_extent_ref_v0);
1361 num_refs = btrfs_ref_count_v0(leaf, ref0);
1362 #endif
1363 } else {
1364 WARN_ON(1);
1365 }
1366 return num_refs;
1367 }
1368
1369 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1370 struct btrfs_root *root,
1371 struct btrfs_path *path,
1372 u64 bytenr, u64 parent,
1373 u64 root_objectid)
1374 {
1375 struct btrfs_key key;
1376 int ret;
1377
1378 key.objectid = bytenr;
1379 if (parent) {
1380 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1381 key.offset = parent;
1382 } else {
1383 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1384 key.offset = root_objectid;
1385 }
1386
1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 if (ret > 0)
1389 ret = -ENOENT;
1390 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1391 if (ret == -ENOENT && parent) {
1392 btrfs_release_path(path);
1393 key.type = BTRFS_EXTENT_REF_V0_KEY;
1394 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1395 if (ret > 0)
1396 ret = -ENOENT;
1397 }
1398 #endif
1399 return ret;
1400 }
1401
1402 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1403 struct btrfs_root *root,
1404 struct btrfs_path *path,
1405 u64 bytenr, u64 parent,
1406 u64 root_objectid)
1407 {
1408 struct btrfs_key key;
1409 int ret;
1410
1411 key.objectid = bytenr;
1412 if (parent) {
1413 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1414 key.offset = parent;
1415 } else {
1416 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1417 key.offset = root_objectid;
1418 }
1419
1420 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1421 btrfs_release_path(path);
1422 return ret;
1423 }
1424
1425 static inline int extent_ref_type(u64 parent, u64 owner)
1426 {
1427 int type;
1428 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1429 if (parent > 0)
1430 type = BTRFS_SHARED_BLOCK_REF_KEY;
1431 else
1432 type = BTRFS_TREE_BLOCK_REF_KEY;
1433 } else {
1434 if (parent > 0)
1435 type = BTRFS_SHARED_DATA_REF_KEY;
1436 else
1437 type = BTRFS_EXTENT_DATA_REF_KEY;
1438 }
1439 return type;
1440 }
1441
1442 static int find_next_key(struct btrfs_path *path, int level,
1443 struct btrfs_key *key)
1444
1445 {
1446 for (; level < BTRFS_MAX_LEVEL; level++) {
1447 if (!path->nodes[level])
1448 break;
1449 if (path->slots[level] + 1 >=
1450 btrfs_header_nritems(path->nodes[level]))
1451 continue;
1452 if (level == 0)
1453 btrfs_item_key_to_cpu(path->nodes[level], key,
1454 path->slots[level] + 1);
1455 else
1456 btrfs_node_key_to_cpu(path->nodes[level], key,
1457 path->slots[level] + 1);
1458 return 0;
1459 }
1460 return 1;
1461 }
1462
1463 /*
1464 * look for inline back ref. if back ref is found, *ref_ret is set
1465 * to the address of inline back ref, and 0 is returned.
1466 *
1467 * if back ref isn't found, *ref_ret is set to the address where it
1468 * should be inserted, and -ENOENT is returned.
1469 *
1470 * if insert is true and there are too many inline back refs, the path
1471 * points to the extent item, and -EAGAIN is returned.
1472 *
1473 * NOTE: inline back refs are ordered in the same way that back ref
1474 * items in the tree are ordered.
1475 */
1476 static noinline_for_stack
1477 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1478 struct btrfs_root *root,
1479 struct btrfs_path *path,
1480 struct btrfs_extent_inline_ref **ref_ret,
1481 u64 bytenr, u64 num_bytes,
1482 u64 parent, u64 root_objectid,
1483 u64 owner, u64 offset, int insert)
1484 {
1485 struct btrfs_key key;
1486 struct extent_buffer *leaf;
1487 struct btrfs_extent_item *ei;
1488 struct btrfs_extent_inline_ref *iref;
1489 u64 flags;
1490 u64 item_size;
1491 unsigned long ptr;
1492 unsigned long end;
1493 int extra_size;
1494 int type;
1495 int want;
1496 int ret;
1497 int err = 0;
1498 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1499 SKINNY_METADATA);
1500
1501 key.objectid = bytenr;
1502 key.type = BTRFS_EXTENT_ITEM_KEY;
1503 key.offset = num_bytes;
1504
1505 want = extent_ref_type(parent, owner);
1506 if (insert) {
1507 extra_size = btrfs_extent_inline_ref_size(want);
1508 path->keep_locks = 1;
1509 } else
1510 extra_size = -1;
1511
1512 /*
1513 * Owner is our parent level, so we can just add one to get the level
1514 * for the block we are interested in.
1515 */
1516 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1517 key.type = BTRFS_METADATA_ITEM_KEY;
1518 key.offset = owner;
1519 }
1520
1521 again:
1522 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1523 if (ret < 0) {
1524 err = ret;
1525 goto out;
1526 }
1527
1528 /*
1529 * We may be a newly converted file system which still has the old fat
1530 * extent entries for metadata, so try and see if we have one of those.
1531 */
1532 if (ret > 0 && skinny_metadata) {
1533 skinny_metadata = false;
1534 if (path->slots[0]) {
1535 path->slots[0]--;
1536 btrfs_item_key_to_cpu(path->nodes[0], &key,
1537 path->slots[0]);
1538 if (key.objectid == bytenr &&
1539 key.type == BTRFS_EXTENT_ITEM_KEY &&
1540 key.offset == num_bytes)
1541 ret = 0;
1542 }
1543 if (ret) {
1544 key.type = BTRFS_EXTENT_ITEM_KEY;
1545 key.offset = num_bytes;
1546 btrfs_release_path(path);
1547 goto again;
1548 }
1549 }
1550
1551 if (ret && !insert) {
1552 err = -ENOENT;
1553 goto out;
1554 } else if (ret) {
1555 err = -EIO;
1556 WARN_ON(1);
1557 goto out;
1558 }
1559
1560 leaf = path->nodes[0];
1561 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1562 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1563 if (item_size < sizeof(*ei)) {
1564 if (!insert) {
1565 err = -ENOENT;
1566 goto out;
1567 }
1568 ret = convert_extent_item_v0(trans, root, path, owner,
1569 extra_size);
1570 if (ret < 0) {
1571 err = ret;
1572 goto out;
1573 }
1574 leaf = path->nodes[0];
1575 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1576 }
1577 #endif
1578 BUG_ON(item_size < sizeof(*ei));
1579
1580 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1581 flags = btrfs_extent_flags(leaf, ei);
1582
1583 ptr = (unsigned long)(ei + 1);
1584 end = (unsigned long)ei + item_size;
1585
1586 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1587 ptr += sizeof(struct btrfs_tree_block_info);
1588 BUG_ON(ptr > end);
1589 }
1590
1591 err = -ENOENT;
1592 while (1) {
1593 if (ptr >= end) {
1594 WARN_ON(ptr > end);
1595 break;
1596 }
1597 iref = (struct btrfs_extent_inline_ref *)ptr;
1598 type = btrfs_extent_inline_ref_type(leaf, iref);
1599 if (want < type)
1600 break;
1601 if (want > type) {
1602 ptr += btrfs_extent_inline_ref_size(type);
1603 continue;
1604 }
1605
1606 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1607 struct btrfs_extent_data_ref *dref;
1608 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1609 if (match_extent_data_ref(leaf, dref, root_objectid,
1610 owner, offset)) {
1611 err = 0;
1612 break;
1613 }
1614 if (hash_extent_data_ref_item(leaf, dref) <
1615 hash_extent_data_ref(root_objectid, owner, offset))
1616 break;
1617 } else {
1618 u64 ref_offset;
1619 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1620 if (parent > 0) {
1621 if (parent == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < parent)
1626 break;
1627 } else {
1628 if (root_objectid == ref_offset) {
1629 err = 0;
1630 break;
1631 }
1632 if (ref_offset < root_objectid)
1633 break;
1634 }
1635 }
1636 ptr += btrfs_extent_inline_ref_size(type);
1637 }
1638 if (err == -ENOENT && insert) {
1639 if (item_size + extra_size >=
1640 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1641 err = -EAGAIN;
1642 goto out;
1643 }
1644 /*
1645 * To add new inline back ref, we have to make sure
1646 * there is no corresponding back ref item.
1647 * For simplicity, we just do not add new inline back
1648 * ref if there is any kind of item for this block
1649 */
1650 if (find_next_key(path, 0, &key) == 0 &&
1651 key.objectid == bytenr &&
1652 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1653 err = -EAGAIN;
1654 goto out;
1655 }
1656 }
1657 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1658 out:
1659 if (insert) {
1660 path->keep_locks = 0;
1661 btrfs_unlock_up_safe(path, 1);
1662 }
1663 return err;
1664 }
1665
1666 /*
1667 * helper to add new inline back ref
1668 */
1669 static noinline_for_stack
1670 void setup_inline_extent_backref(struct btrfs_root *root,
1671 struct btrfs_path *path,
1672 struct btrfs_extent_inline_ref *iref,
1673 u64 parent, u64 root_objectid,
1674 u64 owner, u64 offset, int refs_to_add,
1675 struct btrfs_delayed_extent_op *extent_op)
1676 {
1677 struct extent_buffer *leaf;
1678 struct btrfs_extent_item *ei;
1679 unsigned long ptr;
1680 unsigned long end;
1681 unsigned long item_offset;
1682 u64 refs;
1683 int size;
1684 int type;
1685
1686 leaf = path->nodes[0];
1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 item_offset = (unsigned long)iref - (unsigned long)ei;
1689
1690 type = extent_ref_type(parent, owner);
1691 size = btrfs_extent_inline_ref_size(type);
1692
1693 btrfs_extend_item(root, path, size);
1694
1695 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1696 refs = btrfs_extent_refs(leaf, ei);
1697 refs += refs_to_add;
1698 btrfs_set_extent_refs(leaf, ei, refs);
1699 if (extent_op)
1700 __run_delayed_extent_op(extent_op, leaf, ei);
1701
1702 ptr = (unsigned long)ei + item_offset;
1703 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1704 if (ptr < end - size)
1705 memmove_extent_buffer(leaf, ptr + size, ptr,
1706 end - size - ptr);
1707
1708 iref = (struct btrfs_extent_inline_ref *)ptr;
1709 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1710 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1711 struct btrfs_extent_data_ref *dref;
1712 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1713 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1714 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1715 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1716 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1717 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1718 struct btrfs_shared_data_ref *sref;
1719 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1720 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1721 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1722 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1723 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1724 } else {
1725 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1726 }
1727 btrfs_mark_buffer_dirty(leaf);
1728 }
1729
1730 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1731 struct btrfs_root *root,
1732 struct btrfs_path *path,
1733 struct btrfs_extent_inline_ref **ref_ret,
1734 u64 bytenr, u64 num_bytes, u64 parent,
1735 u64 root_objectid, u64 owner, u64 offset)
1736 {
1737 int ret;
1738
1739 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1740 bytenr, num_bytes, parent,
1741 root_objectid, owner, offset, 0);
1742 if (ret != -ENOENT)
1743 return ret;
1744
1745 btrfs_release_path(path);
1746 *ref_ret = NULL;
1747
1748 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1749 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1750 root_objectid);
1751 } else {
1752 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1753 root_objectid, owner, offset);
1754 }
1755 return ret;
1756 }
1757
1758 /*
1759 * helper to update/remove inline back ref
1760 */
1761 static noinline_for_stack
1762 void update_inline_extent_backref(struct btrfs_root *root,
1763 struct btrfs_path *path,
1764 struct btrfs_extent_inline_ref *iref,
1765 int refs_to_mod,
1766 struct btrfs_delayed_extent_op *extent_op)
1767 {
1768 struct extent_buffer *leaf;
1769 struct btrfs_extent_item *ei;
1770 struct btrfs_extent_data_ref *dref = NULL;
1771 struct btrfs_shared_data_ref *sref = NULL;
1772 unsigned long ptr;
1773 unsigned long end;
1774 u32 item_size;
1775 int size;
1776 int type;
1777 u64 refs;
1778
1779 leaf = path->nodes[0];
1780 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1781 refs = btrfs_extent_refs(leaf, ei);
1782 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1783 refs += refs_to_mod;
1784 btrfs_set_extent_refs(leaf, ei, refs);
1785 if (extent_op)
1786 __run_delayed_extent_op(extent_op, leaf, ei);
1787
1788 type = btrfs_extent_inline_ref_type(leaf, iref);
1789
1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792 refs = btrfs_extent_data_ref_count(leaf, dref);
1793 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795 refs = btrfs_shared_data_ref_count(leaf, sref);
1796 } else {
1797 refs = 1;
1798 BUG_ON(refs_to_mod != -1);
1799 }
1800
1801 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802 refs += refs_to_mod;
1803
1804 if (refs > 0) {
1805 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1807 else
1808 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1809 } else {
1810 size = btrfs_extent_inline_ref_size(type);
1811 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1812 ptr = (unsigned long)iref;
1813 end = (unsigned long)ei + item_size;
1814 if (ptr + size < end)
1815 memmove_extent_buffer(leaf, ptr, ptr + size,
1816 end - ptr - size);
1817 item_size -= size;
1818 btrfs_truncate_item(root, path, item_size, 1);
1819 }
1820 btrfs_mark_buffer_dirty(leaf);
1821 }
1822
1823 static noinline_for_stack
1824 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1825 struct btrfs_root *root,
1826 struct btrfs_path *path,
1827 u64 bytenr, u64 num_bytes, u64 parent,
1828 u64 root_objectid, u64 owner,
1829 u64 offset, int refs_to_add,
1830 struct btrfs_delayed_extent_op *extent_op)
1831 {
1832 struct btrfs_extent_inline_ref *iref;
1833 int ret;
1834
1835 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1836 bytenr, num_bytes, parent,
1837 root_objectid, owner, offset, 1);
1838 if (ret == 0) {
1839 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1840 update_inline_extent_backref(root, path, iref,
1841 refs_to_add, extent_op);
1842 } else if (ret == -ENOENT) {
1843 setup_inline_extent_backref(root, path, iref, parent,
1844 root_objectid, owner, offset,
1845 refs_to_add, extent_op);
1846 ret = 0;
1847 }
1848 return ret;
1849 }
1850
1851 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1852 struct btrfs_root *root,
1853 struct btrfs_path *path,
1854 u64 bytenr, u64 parent, u64 root_objectid,
1855 u64 owner, u64 offset, int refs_to_add)
1856 {
1857 int ret;
1858 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1859 BUG_ON(refs_to_add != 1);
1860 ret = insert_tree_block_ref(trans, root, path, bytenr,
1861 parent, root_objectid);
1862 } else {
1863 ret = insert_extent_data_ref(trans, root, path, bytenr,
1864 parent, root_objectid,
1865 owner, offset, refs_to_add);
1866 }
1867 return ret;
1868 }
1869
1870 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1871 struct btrfs_root *root,
1872 struct btrfs_path *path,
1873 struct btrfs_extent_inline_ref *iref,
1874 int refs_to_drop, int is_data)
1875 {
1876 int ret = 0;
1877
1878 BUG_ON(!is_data && refs_to_drop != 1);
1879 if (iref) {
1880 update_inline_extent_backref(root, path, iref,
1881 -refs_to_drop, NULL);
1882 } else if (is_data) {
1883 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1884 } else {
1885 ret = btrfs_del_item(trans, root, path);
1886 }
1887 return ret;
1888 }
1889
1890 static int btrfs_issue_discard(struct block_device *bdev,
1891 u64 start, u64 len)
1892 {
1893 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1894 }
1895
1896 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1897 u64 num_bytes, u64 *actual_bytes)
1898 {
1899 int ret;
1900 u64 discarded_bytes = 0;
1901 struct btrfs_bio *bbio = NULL;
1902
1903
1904 /* Tell the block device(s) that the sectors can be discarded */
1905 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1906 bytenr, &num_bytes, &bbio, 0);
1907 /* Error condition is -ENOMEM */
1908 if (!ret) {
1909 struct btrfs_bio_stripe *stripe = bbio->stripes;
1910 int i;
1911
1912
1913 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1914 if (!stripe->dev->can_discard)
1915 continue;
1916
1917 ret = btrfs_issue_discard(stripe->dev->bdev,
1918 stripe->physical,
1919 stripe->length);
1920 if (!ret)
1921 discarded_bytes += stripe->length;
1922 else if (ret != -EOPNOTSUPP)
1923 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1924
1925 /*
1926 * Just in case we get back EOPNOTSUPP for some reason,
1927 * just ignore the return value so we don't screw up
1928 * people calling discard_extent.
1929 */
1930 ret = 0;
1931 }
1932 kfree(bbio);
1933 }
1934
1935 if (actual_bytes)
1936 *actual_bytes = discarded_bytes;
1937
1938
1939 if (ret == -EOPNOTSUPP)
1940 ret = 0;
1941 return ret;
1942 }
1943
1944 /* Can return -ENOMEM */
1945 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1946 struct btrfs_root *root,
1947 u64 bytenr, u64 num_bytes, u64 parent,
1948 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1949 {
1950 int ret;
1951 struct btrfs_fs_info *fs_info = root->fs_info;
1952
1953 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1954 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1955
1956 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1957 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1958 num_bytes,
1959 parent, root_objectid, (int)owner,
1960 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1961 } else {
1962 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1963 num_bytes,
1964 parent, root_objectid, owner, offset,
1965 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1966 }
1967 return ret;
1968 }
1969
1970 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1971 struct btrfs_root *root,
1972 u64 bytenr, u64 num_bytes,
1973 u64 parent, u64 root_objectid,
1974 u64 owner, u64 offset, int refs_to_add,
1975 struct btrfs_delayed_extent_op *extent_op)
1976 {
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
1980 u64 refs;
1981 int ret;
1982 int err = 0;
1983
1984 path = btrfs_alloc_path();
1985 if (!path)
1986 return -ENOMEM;
1987
1988 path->reada = 1;
1989 path->leave_spinning = 1;
1990 /* this will setup the path even if it fails to insert the back ref */
1991 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1992 path, bytenr, num_bytes, parent,
1993 root_objectid, owner, offset,
1994 refs_to_add, extent_op);
1995 if (ret == 0)
1996 goto out;
1997
1998 if (ret != -EAGAIN) {
1999 err = ret;
2000 goto out;
2001 }
2002
2003 leaf = path->nodes[0];
2004 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2005 refs = btrfs_extent_refs(leaf, item);
2006 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2007 if (extent_op)
2008 __run_delayed_extent_op(extent_op, leaf, item);
2009
2010 btrfs_mark_buffer_dirty(leaf);
2011 btrfs_release_path(path);
2012
2013 path->reada = 1;
2014 path->leave_spinning = 1;
2015
2016 /* now insert the actual backref */
2017 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2018 path, bytenr, parent, root_objectid,
2019 owner, offset, refs_to_add);
2020 if (ret)
2021 btrfs_abort_transaction(trans, root, ret);
2022 out:
2023 btrfs_free_path(path);
2024 return err;
2025 }
2026
2027 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2028 struct btrfs_root *root,
2029 struct btrfs_delayed_ref_node *node,
2030 struct btrfs_delayed_extent_op *extent_op,
2031 int insert_reserved)
2032 {
2033 int ret = 0;
2034 struct btrfs_delayed_data_ref *ref;
2035 struct btrfs_key ins;
2036 u64 parent = 0;
2037 u64 ref_root = 0;
2038 u64 flags = 0;
2039
2040 ins.objectid = node->bytenr;
2041 ins.offset = node->num_bytes;
2042 ins.type = BTRFS_EXTENT_ITEM_KEY;
2043
2044 ref = btrfs_delayed_node_to_data_ref(node);
2045 trace_run_delayed_data_ref(node, ref, node->action);
2046
2047 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2048 parent = ref->parent;
2049 else
2050 ref_root = ref->root;
2051
2052 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2053 if (extent_op)
2054 flags |= extent_op->flags_to_set;
2055 ret = alloc_reserved_file_extent(trans, root,
2056 parent, ref_root, flags,
2057 ref->objectid, ref->offset,
2058 &ins, node->ref_mod);
2059 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2060 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2061 node->num_bytes, parent,
2062 ref_root, ref->objectid,
2063 ref->offset, node->ref_mod,
2064 extent_op);
2065 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2066 ret = __btrfs_free_extent(trans, root, node->bytenr,
2067 node->num_bytes, parent,
2068 ref_root, ref->objectid,
2069 ref->offset, node->ref_mod,
2070 extent_op);
2071 } else {
2072 BUG();
2073 }
2074 return ret;
2075 }
2076
2077 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2078 struct extent_buffer *leaf,
2079 struct btrfs_extent_item *ei)
2080 {
2081 u64 flags = btrfs_extent_flags(leaf, ei);
2082 if (extent_op->update_flags) {
2083 flags |= extent_op->flags_to_set;
2084 btrfs_set_extent_flags(leaf, ei, flags);
2085 }
2086
2087 if (extent_op->update_key) {
2088 struct btrfs_tree_block_info *bi;
2089 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2090 bi = (struct btrfs_tree_block_info *)(ei + 1);
2091 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2092 }
2093 }
2094
2095 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2096 struct btrfs_root *root,
2097 struct btrfs_delayed_ref_node *node,
2098 struct btrfs_delayed_extent_op *extent_op)
2099 {
2100 struct btrfs_key key;
2101 struct btrfs_path *path;
2102 struct btrfs_extent_item *ei;
2103 struct extent_buffer *leaf;
2104 u32 item_size;
2105 int ret;
2106 int err = 0;
2107 int metadata = !extent_op->is_data;
2108
2109 if (trans->aborted)
2110 return 0;
2111
2112 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2113 metadata = 0;
2114
2115 path = btrfs_alloc_path();
2116 if (!path)
2117 return -ENOMEM;
2118
2119 key.objectid = node->bytenr;
2120
2121 if (metadata) {
2122 key.type = BTRFS_METADATA_ITEM_KEY;
2123 key.offset = extent_op->level;
2124 } else {
2125 key.type = BTRFS_EXTENT_ITEM_KEY;
2126 key.offset = node->num_bytes;
2127 }
2128
2129 again:
2130 path->reada = 1;
2131 path->leave_spinning = 1;
2132 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2133 path, 0, 1);
2134 if (ret < 0) {
2135 err = ret;
2136 goto out;
2137 }
2138 if (ret > 0) {
2139 if (metadata) {
2140 btrfs_release_path(path);
2141 metadata = 0;
2142
2143 key.offset = node->num_bytes;
2144 key.type = BTRFS_EXTENT_ITEM_KEY;
2145 goto again;
2146 }
2147 err = -EIO;
2148 goto out;
2149 }
2150
2151 leaf = path->nodes[0];
2152 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2153 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2154 if (item_size < sizeof(*ei)) {
2155 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2156 path, (u64)-1, 0);
2157 if (ret < 0) {
2158 err = ret;
2159 goto out;
2160 }
2161 leaf = path->nodes[0];
2162 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2163 }
2164 #endif
2165 BUG_ON(item_size < sizeof(*ei));
2166 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2167 __run_delayed_extent_op(extent_op, leaf, ei);
2168
2169 btrfs_mark_buffer_dirty(leaf);
2170 out:
2171 btrfs_free_path(path);
2172 return err;
2173 }
2174
2175 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2176 struct btrfs_root *root,
2177 struct btrfs_delayed_ref_node *node,
2178 struct btrfs_delayed_extent_op *extent_op,
2179 int insert_reserved)
2180 {
2181 int ret = 0;
2182 struct btrfs_delayed_tree_ref *ref;
2183 struct btrfs_key ins;
2184 u64 parent = 0;
2185 u64 ref_root = 0;
2186 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2187 SKINNY_METADATA);
2188
2189 ref = btrfs_delayed_node_to_tree_ref(node);
2190 trace_run_delayed_tree_ref(node, ref, node->action);
2191
2192 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2193 parent = ref->parent;
2194 else
2195 ref_root = ref->root;
2196
2197 ins.objectid = node->bytenr;
2198 if (skinny_metadata) {
2199 ins.offset = ref->level;
2200 ins.type = BTRFS_METADATA_ITEM_KEY;
2201 } else {
2202 ins.offset = node->num_bytes;
2203 ins.type = BTRFS_EXTENT_ITEM_KEY;
2204 }
2205
2206 BUG_ON(node->ref_mod != 1);
2207 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2208 BUG_ON(!extent_op || !extent_op->update_flags);
2209 ret = alloc_reserved_tree_block(trans, root,
2210 parent, ref_root,
2211 extent_op->flags_to_set,
2212 &extent_op->key,
2213 ref->level, &ins);
2214 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2215 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2216 node->num_bytes, parent, ref_root,
2217 ref->level, 0, 1, extent_op);
2218 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2219 ret = __btrfs_free_extent(trans, root, node->bytenr,
2220 node->num_bytes, parent, ref_root,
2221 ref->level, 0, 1, extent_op);
2222 } else {
2223 BUG();
2224 }
2225 return ret;
2226 }
2227
2228 /* helper function to actually process a single delayed ref entry */
2229 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2230 struct btrfs_root *root,
2231 struct btrfs_delayed_ref_node *node,
2232 struct btrfs_delayed_extent_op *extent_op,
2233 int insert_reserved)
2234 {
2235 int ret = 0;
2236
2237 if (trans->aborted)
2238 return 0;
2239
2240 if (btrfs_delayed_ref_is_head(node)) {
2241 struct btrfs_delayed_ref_head *head;
2242 /*
2243 * we've hit the end of the chain and we were supposed
2244 * to insert this extent into the tree. But, it got
2245 * deleted before we ever needed to insert it, so all
2246 * we have to do is clean up the accounting
2247 */
2248 BUG_ON(extent_op);
2249 head = btrfs_delayed_node_to_head(node);
2250 trace_run_delayed_ref_head(node, head, node->action);
2251
2252 if (insert_reserved) {
2253 btrfs_pin_extent(root, node->bytenr,
2254 node->num_bytes, 1);
2255 if (head->is_data) {
2256 ret = btrfs_del_csums(trans, root,
2257 node->bytenr,
2258 node->num_bytes);
2259 }
2260 }
2261 return ret;
2262 }
2263
2264 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2265 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2266 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2267 insert_reserved);
2268 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2269 node->type == BTRFS_SHARED_DATA_REF_KEY)
2270 ret = run_delayed_data_ref(trans, root, node, extent_op,
2271 insert_reserved);
2272 else
2273 BUG();
2274 return ret;
2275 }
2276
2277 static noinline struct btrfs_delayed_ref_node *
2278 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2279 {
2280 struct rb_node *node;
2281 struct btrfs_delayed_ref_node *ref;
2282 int action = BTRFS_ADD_DELAYED_REF;
2283 again:
2284 /*
2285 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2286 * this prevents ref count from going down to zero when
2287 * there still are pending delayed ref.
2288 */
2289 node = rb_prev(&head->node.rb_node);
2290 while (1) {
2291 if (!node)
2292 break;
2293 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2294 rb_node);
2295 if (ref->bytenr != head->node.bytenr)
2296 break;
2297 if (ref->action == action)
2298 return ref;
2299 node = rb_prev(node);
2300 }
2301 if (action == BTRFS_ADD_DELAYED_REF) {
2302 action = BTRFS_DROP_DELAYED_REF;
2303 goto again;
2304 }
2305 return NULL;
2306 }
2307
2308 /*
2309 * Returns 0 on success or if called with an already aborted transaction.
2310 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2311 */
2312 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2313 struct btrfs_root *root,
2314 struct list_head *cluster)
2315 {
2316 struct btrfs_delayed_ref_root *delayed_refs;
2317 struct btrfs_delayed_ref_node *ref;
2318 struct btrfs_delayed_ref_head *locked_ref = NULL;
2319 struct btrfs_delayed_extent_op *extent_op;
2320 struct btrfs_fs_info *fs_info = root->fs_info;
2321 int ret;
2322 int count = 0;
2323 int must_insert_reserved = 0;
2324
2325 delayed_refs = &trans->transaction->delayed_refs;
2326 while (1) {
2327 if (!locked_ref) {
2328 /* pick a new head ref from the cluster list */
2329 if (list_empty(cluster))
2330 break;
2331
2332 locked_ref = list_entry(cluster->next,
2333 struct btrfs_delayed_ref_head, cluster);
2334
2335 /* grab the lock that says we are going to process
2336 * all the refs for this head */
2337 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2338
2339 /*
2340 * we may have dropped the spin lock to get the head
2341 * mutex lock, and that might have given someone else
2342 * time to free the head. If that's true, it has been
2343 * removed from our list and we can move on.
2344 */
2345 if (ret == -EAGAIN) {
2346 locked_ref = NULL;
2347 count++;
2348 continue;
2349 }
2350 }
2351
2352 /*
2353 * We need to try and merge add/drops of the same ref since we
2354 * can run into issues with relocate dropping the implicit ref
2355 * and then it being added back again before the drop can
2356 * finish. If we merged anything we need to re-loop so we can
2357 * get a good ref.
2358 */
2359 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2360 locked_ref);
2361
2362 /*
2363 * locked_ref is the head node, so we have to go one
2364 * node back for any delayed ref updates
2365 */
2366 ref = select_delayed_ref(locked_ref);
2367
2368 if (ref && ref->seq &&
2369 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2370 /*
2371 * there are still refs with lower seq numbers in the
2372 * process of being added. Don't run this ref yet.
2373 */
2374 list_del_init(&locked_ref->cluster);
2375 btrfs_delayed_ref_unlock(locked_ref);
2376 locked_ref = NULL;
2377 delayed_refs->num_heads_ready++;
2378 spin_unlock(&delayed_refs->lock);
2379 cond_resched();
2380 spin_lock(&delayed_refs->lock);
2381 continue;
2382 }
2383
2384 /*
2385 * record the must insert reserved flag before we
2386 * drop the spin lock.
2387 */
2388 must_insert_reserved = locked_ref->must_insert_reserved;
2389 locked_ref->must_insert_reserved = 0;
2390
2391 extent_op = locked_ref->extent_op;
2392 locked_ref->extent_op = NULL;
2393
2394 if (!ref) {
2395 /* All delayed refs have been processed, Go ahead
2396 * and send the head node to run_one_delayed_ref,
2397 * so that any accounting fixes can happen
2398 */
2399 ref = &locked_ref->node;
2400
2401 if (extent_op && must_insert_reserved) {
2402 btrfs_free_delayed_extent_op(extent_op);
2403 extent_op = NULL;
2404 }
2405
2406 if (extent_op) {
2407 spin_unlock(&delayed_refs->lock);
2408
2409 ret = run_delayed_extent_op(trans, root,
2410 ref, extent_op);
2411 btrfs_free_delayed_extent_op(extent_op);
2412
2413 if (ret) {
2414 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2415 spin_lock(&delayed_refs->lock);
2416 btrfs_delayed_ref_unlock(locked_ref);
2417 return ret;
2418 }
2419
2420 goto next;
2421 }
2422 }
2423
2424 ref->in_tree = 0;
2425 rb_erase(&ref->rb_node, &delayed_refs->root);
2426 delayed_refs->num_entries--;
2427 if (!btrfs_delayed_ref_is_head(ref)) {
2428 /*
2429 * when we play the delayed ref, also correct the
2430 * ref_mod on head
2431 */
2432 switch (ref->action) {
2433 case BTRFS_ADD_DELAYED_REF:
2434 case BTRFS_ADD_DELAYED_EXTENT:
2435 locked_ref->node.ref_mod -= ref->ref_mod;
2436 break;
2437 case BTRFS_DROP_DELAYED_REF:
2438 locked_ref->node.ref_mod += ref->ref_mod;
2439 break;
2440 default:
2441 WARN_ON(1);
2442 }
2443 }
2444 spin_unlock(&delayed_refs->lock);
2445
2446 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2447 must_insert_reserved);
2448
2449 btrfs_free_delayed_extent_op(extent_op);
2450 if (ret) {
2451 btrfs_delayed_ref_unlock(locked_ref);
2452 btrfs_put_delayed_ref(ref);
2453 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2454 spin_lock(&delayed_refs->lock);
2455 return ret;
2456 }
2457
2458 /*
2459 * If this node is a head, that means all the refs in this head
2460 * have been dealt with, and we will pick the next head to deal
2461 * with, so we must unlock the head and drop it from the cluster
2462 * list before we release it.
2463 */
2464 if (btrfs_delayed_ref_is_head(ref)) {
2465 list_del_init(&locked_ref->cluster);
2466 btrfs_delayed_ref_unlock(locked_ref);
2467 locked_ref = NULL;
2468 }
2469 btrfs_put_delayed_ref(ref);
2470 count++;
2471 next:
2472 cond_resched();
2473 spin_lock(&delayed_refs->lock);
2474 }
2475 return count;
2476 }
2477
2478 #ifdef SCRAMBLE_DELAYED_REFS
2479 /*
2480 * Normally delayed refs get processed in ascending bytenr order. This
2481 * correlates in most cases to the order added. To expose dependencies on this
2482 * order, we start to process the tree in the middle instead of the beginning
2483 */
2484 static u64 find_middle(struct rb_root *root)
2485 {
2486 struct rb_node *n = root->rb_node;
2487 struct btrfs_delayed_ref_node *entry;
2488 int alt = 1;
2489 u64 middle;
2490 u64 first = 0, last = 0;
2491
2492 n = rb_first(root);
2493 if (n) {
2494 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2495 first = entry->bytenr;
2496 }
2497 n = rb_last(root);
2498 if (n) {
2499 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2500 last = entry->bytenr;
2501 }
2502 n = root->rb_node;
2503
2504 while (n) {
2505 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2506 WARN_ON(!entry->in_tree);
2507
2508 middle = entry->bytenr;
2509
2510 if (alt)
2511 n = n->rb_left;
2512 else
2513 n = n->rb_right;
2514
2515 alt = 1 - alt;
2516 }
2517 return middle;
2518 }
2519 #endif
2520
2521 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2522 struct btrfs_fs_info *fs_info)
2523 {
2524 struct qgroup_update *qgroup_update;
2525 int ret = 0;
2526
2527 if (list_empty(&trans->qgroup_ref_list) !=
2528 !trans->delayed_ref_elem.seq) {
2529 /* list without seq or seq without list */
2530 btrfs_err(fs_info,
2531 "qgroup accounting update error, list is%s empty, seq is %#x.%x",
2532 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2533 (u32)(trans->delayed_ref_elem.seq >> 32),
2534 (u32)trans->delayed_ref_elem.seq);
2535 BUG();
2536 }
2537
2538 if (!trans->delayed_ref_elem.seq)
2539 return 0;
2540
2541 while (!list_empty(&trans->qgroup_ref_list)) {
2542 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2543 struct qgroup_update, list);
2544 list_del(&qgroup_update->list);
2545 if (!ret)
2546 ret = btrfs_qgroup_account_ref(
2547 trans, fs_info, qgroup_update->node,
2548 qgroup_update->extent_op);
2549 kfree(qgroup_update);
2550 }
2551
2552 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2553
2554 return ret;
2555 }
2556
2557 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
2558 int count)
2559 {
2560 int val = atomic_read(&delayed_refs->ref_seq);
2561
2562 if (val < seq || val >= seq + count)
2563 return 1;
2564 return 0;
2565 }
2566
2567 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2568 {
2569 u64 num_bytes;
2570
2571 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2572 sizeof(struct btrfs_extent_inline_ref));
2573 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2574 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2575
2576 /*
2577 * We don't ever fill up leaves all the way so multiply by 2 just to be
2578 * closer to what we're really going to want to ouse.
2579 */
2580 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2581 }
2582
2583 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2584 struct btrfs_root *root)
2585 {
2586 struct btrfs_block_rsv *global_rsv;
2587 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2588 u64 num_bytes;
2589 int ret = 0;
2590
2591 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2592 num_heads = heads_to_leaves(root, num_heads);
2593 if (num_heads > 1)
2594 num_bytes += (num_heads - 1) * root->leafsize;
2595 num_bytes <<= 1;
2596 global_rsv = &root->fs_info->global_block_rsv;
2597
2598 /*
2599 * If we can't allocate any more chunks lets make sure we have _lots_ of
2600 * wiggle room since running delayed refs can create more delayed refs.
2601 */
2602 if (global_rsv->space_info->full)
2603 num_bytes <<= 1;
2604
2605 spin_lock(&global_rsv->lock);
2606 if (global_rsv->reserved <= num_bytes)
2607 ret = 1;
2608 spin_unlock(&global_rsv->lock);
2609 return ret;
2610 }
2611
2612 /*
2613 * this starts processing the delayed reference count updates and
2614 * extent insertions we have queued up so far. count can be
2615 * 0, which means to process everything in the tree at the start
2616 * of the run (but not newly added entries), or it can be some target
2617 * number you'd like to process.
2618 *
2619 * Returns 0 on success or if called with an aborted transaction
2620 * Returns <0 on error and aborts the transaction
2621 */
2622 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2623 struct btrfs_root *root, unsigned long count)
2624 {
2625 struct rb_node *node;
2626 struct btrfs_delayed_ref_root *delayed_refs;
2627 struct btrfs_delayed_ref_node *ref;
2628 struct list_head cluster;
2629 int ret;
2630 u64 delayed_start;
2631 int run_all = count == (unsigned long)-1;
2632 int run_most = 0;
2633 int loops;
2634
2635 /* We'll clean this up in btrfs_cleanup_transaction */
2636 if (trans->aborted)
2637 return 0;
2638
2639 if (root == root->fs_info->extent_root)
2640 root = root->fs_info->tree_root;
2641
2642 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2643
2644 delayed_refs = &trans->transaction->delayed_refs;
2645 INIT_LIST_HEAD(&cluster);
2646 if (count == 0) {
2647 count = delayed_refs->num_entries * 2;
2648 run_most = 1;
2649 }
2650
2651 if (!run_all && !run_most) {
2652 int old;
2653 int seq = atomic_read(&delayed_refs->ref_seq);
2654
2655 progress:
2656 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2657 if (old) {
2658 DEFINE_WAIT(__wait);
2659 if (delayed_refs->flushing ||
2660 !btrfs_should_throttle_delayed_refs(trans, root))
2661 return 0;
2662
2663 prepare_to_wait(&delayed_refs->wait, &__wait,
2664 TASK_UNINTERRUPTIBLE);
2665
2666 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2667 if (old) {
2668 schedule();
2669 finish_wait(&delayed_refs->wait, &__wait);
2670
2671 if (!refs_newer(delayed_refs, seq, 256))
2672 goto progress;
2673 else
2674 return 0;
2675 } else {
2676 finish_wait(&delayed_refs->wait, &__wait);
2677 goto again;
2678 }
2679 }
2680
2681 } else {
2682 atomic_inc(&delayed_refs->procs_running_refs);
2683 }
2684
2685 again:
2686 loops = 0;
2687 spin_lock(&delayed_refs->lock);
2688
2689 #ifdef SCRAMBLE_DELAYED_REFS
2690 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2691 #endif
2692
2693 while (1) {
2694 if (!(run_all || run_most) &&
2695 !btrfs_should_throttle_delayed_refs(trans, root))
2696 break;
2697
2698 /*
2699 * go find something we can process in the rbtree. We start at
2700 * the beginning of the tree, and then build a cluster
2701 * of refs to process starting at the first one we are able to
2702 * lock
2703 */
2704 delayed_start = delayed_refs->run_delayed_start;
2705 ret = btrfs_find_ref_cluster(trans, &cluster,
2706 delayed_refs->run_delayed_start);
2707 if (ret)
2708 break;
2709
2710 ret = run_clustered_refs(trans, root, &cluster);
2711 if (ret < 0) {
2712 btrfs_release_ref_cluster(&cluster);
2713 spin_unlock(&delayed_refs->lock);
2714 btrfs_abort_transaction(trans, root, ret);
2715 atomic_dec(&delayed_refs->procs_running_refs);
2716 wake_up(&delayed_refs->wait);
2717 return ret;
2718 }
2719
2720 atomic_add(ret, &delayed_refs->ref_seq);
2721
2722 count -= min_t(unsigned long, ret, count);
2723
2724 if (count == 0)
2725 break;
2726
2727 if (delayed_start >= delayed_refs->run_delayed_start) {
2728 if (loops == 0) {
2729 /*
2730 * btrfs_find_ref_cluster looped. let's do one
2731 * more cycle. if we don't run any delayed ref
2732 * during that cycle (because we can't because
2733 * all of them are blocked), bail out.
2734 */
2735 loops = 1;
2736 } else {
2737 /*
2738 * no runnable refs left, stop trying
2739 */
2740 BUG_ON(run_all);
2741 break;
2742 }
2743 }
2744 if (ret) {
2745 /* refs were run, let's reset staleness detection */
2746 loops = 0;
2747 }
2748 }
2749
2750 if (run_all) {
2751 if (!list_empty(&trans->new_bgs)) {
2752 spin_unlock(&delayed_refs->lock);
2753 btrfs_create_pending_block_groups(trans, root);
2754 spin_lock(&delayed_refs->lock);
2755 }
2756
2757 node = rb_first(&delayed_refs->root);
2758 if (!node)
2759 goto out;
2760 count = (unsigned long)-1;
2761
2762 while (node) {
2763 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2764 rb_node);
2765 if (btrfs_delayed_ref_is_head(ref)) {
2766 struct btrfs_delayed_ref_head *head;
2767
2768 head = btrfs_delayed_node_to_head(ref);
2769 atomic_inc(&ref->refs);
2770
2771 spin_unlock(&delayed_refs->lock);
2772 /*
2773 * Mutex was contended, block until it's
2774 * released and try again
2775 */
2776 mutex_lock(&head->mutex);
2777 mutex_unlock(&head->mutex);
2778
2779 btrfs_put_delayed_ref(ref);
2780 cond_resched();
2781 goto again;
2782 }
2783 node = rb_next(node);
2784 }
2785 spin_unlock(&delayed_refs->lock);
2786 schedule_timeout(1);
2787 goto again;
2788 }
2789 out:
2790 atomic_dec(&delayed_refs->procs_running_refs);
2791 smp_mb();
2792 if (waitqueue_active(&delayed_refs->wait))
2793 wake_up(&delayed_refs->wait);
2794
2795 spin_unlock(&delayed_refs->lock);
2796 assert_qgroups_uptodate(trans);
2797 return 0;
2798 }
2799
2800 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2801 struct btrfs_root *root,
2802 u64 bytenr, u64 num_bytes, u64 flags,
2803 int level, int is_data)
2804 {
2805 struct btrfs_delayed_extent_op *extent_op;
2806 int ret;
2807
2808 extent_op = btrfs_alloc_delayed_extent_op();
2809 if (!extent_op)
2810 return -ENOMEM;
2811
2812 extent_op->flags_to_set = flags;
2813 extent_op->update_flags = 1;
2814 extent_op->update_key = 0;
2815 extent_op->is_data = is_data ? 1 : 0;
2816 extent_op->level = level;
2817
2818 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2819 num_bytes, extent_op);
2820 if (ret)
2821 btrfs_free_delayed_extent_op(extent_op);
2822 return ret;
2823 }
2824
2825 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2826 struct btrfs_root *root,
2827 struct btrfs_path *path,
2828 u64 objectid, u64 offset, u64 bytenr)
2829 {
2830 struct btrfs_delayed_ref_head *head;
2831 struct btrfs_delayed_ref_node *ref;
2832 struct btrfs_delayed_data_ref *data_ref;
2833 struct btrfs_delayed_ref_root *delayed_refs;
2834 struct rb_node *node;
2835 int ret = 0;
2836
2837 ret = -ENOENT;
2838 delayed_refs = &trans->transaction->delayed_refs;
2839 spin_lock(&delayed_refs->lock);
2840 head = btrfs_find_delayed_ref_head(trans, bytenr);
2841 if (!head)
2842 goto out;
2843
2844 if (!mutex_trylock(&head->mutex)) {
2845 atomic_inc(&head->node.refs);
2846 spin_unlock(&delayed_refs->lock);
2847
2848 btrfs_release_path(path);
2849
2850 /*
2851 * Mutex was contended, block until it's released and let
2852 * caller try again
2853 */
2854 mutex_lock(&head->mutex);
2855 mutex_unlock(&head->mutex);
2856 btrfs_put_delayed_ref(&head->node);
2857 return -EAGAIN;
2858 }
2859
2860 node = rb_prev(&head->node.rb_node);
2861 if (!node)
2862 goto out_unlock;
2863
2864 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2865
2866 if (ref->bytenr != bytenr)
2867 goto out_unlock;
2868
2869 ret = 1;
2870 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2871 goto out_unlock;
2872
2873 data_ref = btrfs_delayed_node_to_data_ref(ref);
2874
2875 node = rb_prev(node);
2876 if (node) {
2877 int seq = ref->seq;
2878
2879 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2880 if (ref->bytenr == bytenr && ref->seq == seq)
2881 goto out_unlock;
2882 }
2883
2884 if (data_ref->root != root->root_key.objectid ||
2885 data_ref->objectid != objectid || data_ref->offset != offset)
2886 goto out_unlock;
2887
2888 ret = 0;
2889 out_unlock:
2890 mutex_unlock(&head->mutex);
2891 out:
2892 spin_unlock(&delayed_refs->lock);
2893 return ret;
2894 }
2895
2896 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2897 struct btrfs_root *root,
2898 struct btrfs_path *path,
2899 u64 objectid, u64 offset, u64 bytenr)
2900 {
2901 struct btrfs_root *extent_root = root->fs_info->extent_root;
2902 struct extent_buffer *leaf;
2903 struct btrfs_extent_data_ref *ref;
2904 struct btrfs_extent_inline_ref *iref;
2905 struct btrfs_extent_item *ei;
2906 struct btrfs_key key;
2907 u32 item_size;
2908 int ret;
2909
2910 key.objectid = bytenr;
2911 key.offset = (u64)-1;
2912 key.type = BTRFS_EXTENT_ITEM_KEY;
2913
2914 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2915 if (ret < 0)
2916 goto out;
2917 BUG_ON(ret == 0); /* Corruption */
2918
2919 ret = -ENOENT;
2920 if (path->slots[0] == 0)
2921 goto out;
2922
2923 path->slots[0]--;
2924 leaf = path->nodes[0];
2925 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2926
2927 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2928 goto out;
2929
2930 ret = 1;
2931 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2932 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2933 if (item_size < sizeof(*ei)) {
2934 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2935 goto out;
2936 }
2937 #endif
2938 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2939
2940 if (item_size != sizeof(*ei) +
2941 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2942 goto out;
2943
2944 if (btrfs_extent_generation(leaf, ei) <=
2945 btrfs_root_last_snapshot(&root->root_item))
2946 goto out;
2947
2948 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2949 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2950 BTRFS_EXTENT_DATA_REF_KEY)
2951 goto out;
2952
2953 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2954 if (btrfs_extent_refs(leaf, ei) !=
2955 btrfs_extent_data_ref_count(leaf, ref) ||
2956 btrfs_extent_data_ref_root(leaf, ref) !=
2957 root->root_key.objectid ||
2958 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2959 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2960 goto out;
2961
2962 ret = 0;
2963 out:
2964 return ret;
2965 }
2966
2967 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2968 struct btrfs_root *root,
2969 u64 objectid, u64 offset, u64 bytenr)
2970 {
2971 struct btrfs_path *path;
2972 int ret;
2973 int ret2;
2974
2975 path = btrfs_alloc_path();
2976 if (!path)
2977 return -ENOENT;
2978
2979 do {
2980 ret = check_committed_ref(trans, root, path, objectid,
2981 offset, bytenr);
2982 if (ret && ret != -ENOENT)
2983 goto out;
2984
2985 ret2 = check_delayed_ref(trans, root, path, objectid,
2986 offset, bytenr);
2987 } while (ret2 == -EAGAIN);
2988
2989 if (ret2 && ret2 != -ENOENT) {
2990 ret = ret2;
2991 goto out;
2992 }
2993
2994 if (ret != -ENOENT || ret2 != -ENOENT)
2995 ret = 0;
2996 out:
2997 btrfs_free_path(path);
2998 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2999 WARN_ON(ret > 0);
3000 return ret;
3001 }
3002
3003 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3004 struct btrfs_root *root,
3005 struct extent_buffer *buf,
3006 int full_backref, int inc, int for_cow)
3007 {
3008 u64 bytenr;
3009 u64 num_bytes;
3010 u64 parent;
3011 u64 ref_root;
3012 u32 nritems;
3013 struct btrfs_key key;
3014 struct btrfs_file_extent_item *fi;
3015 int i;
3016 int level;
3017 int ret = 0;
3018 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3019 u64, u64, u64, u64, u64, u64, int);
3020
3021 ref_root = btrfs_header_owner(buf);
3022 nritems = btrfs_header_nritems(buf);
3023 level = btrfs_header_level(buf);
3024
3025 if (!root->ref_cows && level == 0)
3026 return 0;
3027
3028 if (inc)
3029 process_func = btrfs_inc_extent_ref;
3030 else
3031 process_func = btrfs_free_extent;
3032
3033 if (full_backref)
3034 parent = buf->start;
3035 else
3036 parent = 0;
3037
3038 for (i = 0; i < nritems; i++) {
3039 if (level == 0) {
3040 btrfs_item_key_to_cpu(buf, &key, i);
3041 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3042 continue;
3043 fi = btrfs_item_ptr(buf, i,
3044 struct btrfs_file_extent_item);
3045 if (btrfs_file_extent_type(buf, fi) ==
3046 BTRFS_FILE_EXTENT_INLINE)
3047 continue;
3048 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3049 if (bytenr == 0)
3050 continue;
3051
3052 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3053 key.offset -= btrfs_file_extent_offset(buf, fi);
3054 ret = process_func(trans, root, bytenr, num_bytes,
3055 parent, ref_root, key.objectid,
3056 key.offset, for_cow);
3057 if (ret)
3058 goto fail;
3059 } else {
3060 bytenr = btrfs_node_blockptr(buf, i);
3061 num_bytes = btrfs_level_size(root, level - 1);
3062 ret = process_func(trans, root, bytenr, num_bytes,
3063 parent, ref_root, level - 1, 0,
3064 for_cow);
3065 if (ret)
3066 goto fail;
3067 }
3068 }
3069 return 0;
3070 fail:
3071 return ret;
3072 }
3073
3074 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3075 struct extent_buffer *buf, int full_backref, int for_cow)
3076 {
3077 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3078 }
3079
3080 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3081 struct extent_buffer *buf, int full_backref, int for_cow)
3082 {
3083 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3084 }
3085
3086 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3087 struct btrfs_root *root,
3088 struct btrfs_path *path,
3089 struct btrfs_block_group_cache *cache)
3090 {
3091 int ret;
3092 struct btrfs_root *extent_root = root->fs_info->extent_root;
3093 unsigned long bi;
3094 struct extent_buffer *leaf;
3095
3096 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3097 if (ret < 0)
3098 goto fail;
3099 BUG_ON(ret); /* Corruption */
3100
3101 leaf = path->nodes[0];
3102 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3103 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3104 btrfs_mark_buffer_dirty(leaf);
3105 btrfs_release_path(path);
3106 fail:
3107 if (ret) {
3108 btrfs_abort_transaction(trans, root, ret);
3109 return ret;
3110 }
3111 return 0;
3112
3113 }
3114
3115 static struct btrfs_block_group_cache *
3116 next_block_group(struct btrfs_root *root,
3117 struct btrfs_block_group_cache *cache)
3118 {
3119 struct rb_node *node;
3120 spin_lock(&root->fs_info->block_group_cache_lock);
3121 node = rb_next(&cache->cache_node);
3122 btrfs_put_block_group(cache);
3123 if (node) {
3124 cache = rb_entry(node, struct btrfs_block_group_cache,
3125 cache_node);
3126 btrfs_get_block_group(cache);
3127 } else
3128 cache = NULL;
3129 spin_unlock(&root->fs_info->block_group_cache_lock);
3130 return cache;
3131 }
3132
3133 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3134 struct btrfs_trans_handle *trans,
3135 struct btrfs_path *path)
3136 {
3137 struct btrfs_root *root = block_group->fs_info->tree_root;
3138 struct inode *inode = NULL;
3139 u64 alloc_hint = 0;
3140 int dcs = BTRFS_DC_ERROR;
3141 int num_pages = 0;
3142 int retries = 0;
3143 int ret = 0;
3144
3145 /*
3146 * If this block group is smaller than 100 megs don't bother caching the
3147 * block group.
3148 */
3149 if (block_group->key.offset < (100 * 1024 * 1024)) {
3150 spin_lock(&block_group->lock);
3151 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3152 spin_unlock(&block_group->lock);
3153 return 0;
3154 }
3155
3156 again:
3157 inode = lookup_free_space_inode(root, block_group, path);
3158 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3159 ret = PTR_ERR(inode);
3160 btrfs_release_path(path);
3161 goto out;
3162 }
3163
3164 if (IS_ERR(inode)) {
3165 BUG_ON(retries);
3166 retries++;
3167
3168 if (block_group->ro)
3169 goto out_free;
3170
3171 ret = create_free_space_inode(root, trans, block_group, path);
3172 if (ret)
3173 goto out_free;
3174 goto again;
3175 }
3176
3177 /* We've already setup this transaction, go ahead and exit */
3178 if (block_group->cache_generation == trans->transid &&
3179 i_size_read(inode)) {
3180 dcs = BTRFS_DC_SETUP;
3181 goto out_put;
3182 }
3183
3184 /*
3185 * We want to set the generation to 0, that way if anything goes wrong
3186 * from here on out we know not to trust this cache when we load up next
3187 * time.
3188 */
3189 BTRFS_I(inode)->generation = 0;
3190 ret = btrfs_update_inode(trans, root, inode);
3191 WARN_ON(ret);
3192
3193 if (i_size_read(inode) > 0) {
3194 ret = btrfs_check_trunc_cache_free_space(root,
3195 &root->fs_info->global_block_rsv);
3196 if (ret)
3197 goto out_put;
3198
3199 ret = btrfs_truncate_free_space_cache(root, trans, path,
3200 inode);
3201 if (ret)
3202 goto out_put;
3203 }
3204
3205 spin_lock(&block_group->lock);
3206 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3207 !btrfs_test_opt(root, SPACE_CACHE)) {
3208 /*
3209 * don't bother trying to write stuff out _if_
3210 * a) we're not cached,
3211 * b) we're with nospace_cache mount option.
3212 */
3213 dcs = BTRFS_DC_WRITTEN;
3214 spin_unlock(&block_group->lock);
3215 goto out_put;
3216 }
3217 spin_unlock(&block_group->lock);
3218
3219 /*
3220 * Try to preallocate enough space based on how big the block group is.
3221 * Keep in mind this has to include any pinned space which could end up
3222 * taking up quite a bit since it's not folded into the other space
3223 * cache.
3224 */
3225 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3226 if (!num_pages)
3227 num_pages = 1;
3228
3229 num_pages *= 16;
3230 num_pages *= PAGE_CACHE_SIZE;
3231
3232 ret = btrfs_check_data_free_space(inode, num_pages);
3233 if (ret)
3234 goto out_put;
3235
3236 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3237 num_pages, num_pages,
3238 &alloc_hint);
3239 if (!ret)
3240 dcs = BTRFS_DC_SETUP;
3241 btrfs_free_reserved_data_space(inode, num_pages);
3242
3243 out_put:
3244 iput(inode);
3245 out_free:
3246 btrfs_release_path(path);
3247 out:
3248 spin_lock(&block_group->lock);
3249 if (!ret && dcs == BTRFS_DC_SETUP)
3250 block_group->cache_generation = trans->transid;
3251 block_group->disk_cache_state = dcs;
3252 spin_unlock(&block_group->lock);
3253
3254 return ret;
3255 }
3256
3257 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3258 struct btrfs_root *root)
3259 {
3260 struct btrfs_block_group_cache *cache;
3261 int err = 0;
3262 struct btrfs_path *path;
3263 u64 last = 0;
3264
3265 path = btrfs_alloc_path();
3266 if (!path)
3267 return -ENOMEM;
3268
3269 again:
3270 while (1) {
3271 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3272 while (cache) {
3273 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3274 break;
3275 cache = next_block_group(root, cache);
3276 }
3277 if (!cache) {
3278 if (last == 0)
3279 break;
3280 last = 0;
3281 continue;
3282 }
3283 err = cache_save_setup(cache, trans, path);
3284 last = cache->key.objectid + cache->key.offset;
3285 btrfs_put_block_group(cache);
3286 }
3287
3288 while (1) {
3289 if (last == 0) {
3290 err = btrfs_run_delayed_refs(trans, root,
3291 (unsigned long)-1);
3292 if (err) /* File system offline */
3293 goto out;
3294 }
3295
3296 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3297 while (cache) {
3298 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3299 btrfs_put_block_group(cache);
3300 goto again;
3301 }
3302
3303 if (cache->dirty)
3304 break;
3305 cache = next_block_group(root, cache);
3306 }
3307 if (!cache) {
3308 if (last == 0)
3309 break;
3310 last = 0;
3311 continue;
3312 }
3313
3314 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3315 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3316 cache->dirty = 0;
3317 last = cache->key.objectid + cache->key.offset;
3318
3319 err = write_one_cache_group(trans, root, path, cache);
3320 if (err) /* File system offline */
3321 goto out;
3322
3323 btrfs_put_block_group(cache);
3324 }
3325
3326 while (1) {
3327 /*
3328 * I don't think this is needed since we're just marking our
3329 * preallocated extent as written, but just in case it can't
3330 * hurt.
3331 */
3332 if (last == 0) {
3333 err = btrfs_run_delayed_refs(trans, root,
3334 (unsigned long)-1);
3335 if (err) /* File system offline */
3336 goto out;
3337 }
3338
3339 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3340 while (cache) {
3341 /*
3342 * Really this shouldn't happen, but it could if we
3343 * couldn't write the entire preallocated extent and
3344 * splitting the extent resulted in a new block.
3345 */
3346 if (cache->dirty) {
3347 btrfs_put_block_group(cache);
3348 goto again;
3349 }
3350 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3351 break;
3352 cache = next_block_group(root, cache);
3353 }
3354 if (!cache) {
3355 if (last == 0)
3356 break;
3357 last = 0;
3358 continue;
3359 }
3360
3361 err = btrfs_write_out_cache(root, trans, cache, path);
3362
3363 /*
3364 * If we didn't have an error then the cache state is still
3365 * NEED_WRITE, so we can set it to WRITTEN.
3366 */
3367 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3368 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3369 last = cache->key.objectid + cache->key.offset;
3370 btrfs_put_block_group(cache);
3371 }
3372 out:
3373
3374 btrfs_free_path(path);
3375 return err;
3376 }
3377
3378 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3379 {
3380 struct btrfs_block_group_cache *block_group;
3381 int readonly = 0;
3382
3383 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3384 if (!block_group || block_group->ro)
3385 readonly = 1;
3386 if (block_group)
3387 btrfs_put_block_group(block_group);
3388 return readonly;
3389 }
3390
3391 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3392 u64 total_bytes, u64 bytes_used,
3393 struct btrfs_space_info **space_info)
3394 {
3395 struct btrfs_space_info *found;
3396 int i;
3397 int factor;
3398 int ret;
3399
3400 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3401 BTRFS_BLOCK_GROUP_RAID10))
3402 factor = 2;
3403 else
3404 factor = 1;
3405
3406 found = __find_space_info(info, flags);
3407 if (found) {
3408 spin_lock(&found->lock);
3409 found->total_bytes += total_bytes;
3410 found->disk_total += total_bytes * factor;
3411 found->bytes_used += bytes_used;
3412 found->disk_used += bytes_used * factor;
3413 found->full = 0;
3414 spin_unlock(&found->lock);
3415 *space_info = found;
3416 return 0;
3417 }
3418 found = kzalloc(sizeof(*found), GFP_NOFS);
3419 if (!found)
3420 return -ENOMEM;
3421
3422 ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3423 if (ret) {
3424 kfree(found);
3425 return ret;
3426 }
3427
3428 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3429 INIT_LIST_HEAD(&found->block_groups[i]);
3430 init_rwsem(&found->groups_sem);
3431 spin_lock_init(&found->lock);
3432 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3433 found->total_bytes = total_bytes;
3434 found->disk_total = total_bytes * factor;
3435 found->bytes_used = bytes_used;
3436 found->disk_used = bytes_used * factor;
3437 found->bytes_pinned = 0;
3438 found->bytes_reserved = 0;
3439 found->bytes_readonly = 0;
3440 found->bytes_may_use = 0;
3441 found->full = 0;
3442 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3443 found->chunk_alloc = 0;
3444 found->flush = 0;
3445 init_waitqueue_head(&found->wait);
3446 *space_info = found;
3447 list_add_rcu(&found->list, &info->space_info);
3448 if (flags & BTRFS_BLOCK_GROUP_DATA)
3449 info->data_sinfo = found;
3450 return 0;
3451 }
3452
3453 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3454 {
3455 u64 extra_flags = chunk_to_extended(flags) &
3456 BTRFS_EXTENDED_PROFILE_MASK;
3457
3458 write_seqlock(&fs_info->profiles_lock);
3459 if (flags & BTRFS_BLOCK_GROUP_DATA)
3460 fs_info->avail_data_alloc_bits |= extra_flags;
3461 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3462 fs_info->avail_metadata_alloc_bits |= extra_flags;
3463 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3464 fs_info->avail_system_alloc_bits |= extra_flags;
3465 write_sequnlock(&fs_info->profiles_lock);
3466 }
3467
3468 /*
3469 * returns target flags in extended format or 0 if restripe for this
3470 * chunk_type is not in progress
3471 *
3472 * should be called with either volume_mutex or balance_lock held
3473 */
3474 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3475 {
3476 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3477 u64 target = 0;
3478
3479 if (!bctl)
3480 return 0;
3481
3482 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3483 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3484 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3485 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3486 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3487 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3488 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3489 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3490 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3491 }
3492
3493 return target;
3494 }
3495
3496 /*
3497 * @flags: available profiles in extended format (see ctree.h)
3498 *
3499 * Returns reduced profile in chunk format. If profile changing is in
3500 * progress (either running or paused) picks the target profile (if it's
3501 * already available), otherwise falls back to plain reducing.
3502 */
3503 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3504 {
3505 /*
3506 * we add in the count of missing devices because we want
3507 * to make sure that any RAID levels on a degraded FS
3508 * continue to be honored.
3509 */
3510 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3511 root->fs_info->fs_devices->missing_devices;
3512 u64 target;
3513 u64 tmp;
3514
3515 /*
3516 * see if restripe for this chunk_type is in progress, if so
3517 * try to reduce to the target profile
3518 */
3519 spin_lock(&root->fs_info->balance_lock);
3520 target = get_restripe_target(root->fs_info, flags);
3521 if (target) {
3522 /* pick target profile only if it's already available */
3523 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3524 spin_unlock(&root->fs_info->balance_lock);
3525 return extended_to_chunk(target);
3526 }
3527 }
3528 spin_unlock(&root->fs_info->balance_lock);
3529
3530 /* First, mask out the RAID levels which aren't possible */
3531 if (num_devices == 1)
3532 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3533 BTRFS_BLOCK_GROUP_RAID5);
3534 if (num_devices < 3)
3535 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3536 if (num_devices < 4)
3537 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3538
3539 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3540 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3541 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3542 flags &= ~tmp;
3543
3544 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3545 tmp = BTRFS_BLOCK_GROUP_RAID6;
3546 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3547 tmp = BTRFS_BLOCK_GROUP_RAID5;
3548 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3549 tmp = BTRFS_BLOCK_GROUP_RAID10;
3550 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3551 tmp = BTRFS_BLOCK_GROUP_RAID1;
3552 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3553 tmp = BTRFS_BLOCK_GROUP_RAID0;
3554
3555 return extended_to_chunk(flags | tmp);
3556 }
3557
3558 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3559 {
3560 unsigned seq;
3561
3562 do {
3563 seq = read_seqbegin(&root->fs_info->profiles_lock);
3564
3565 if (flags & BTRFS_BLOCK_GROUP_DATA)
3566 flags |= root->fs_info->avail_data_alloc_bits;
3567 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3568 flags |= root->fs_info->avail_system_alloc_bits;
3569 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3570 flags |= root->fs_info->avail_metadata_alloc_bits;
3571 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3572
3573 return btrfs_reduce_alloc_profile(root, flags);
3574 }
3575
3576 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3577 {
3578 u64 flags;
3579 u64 ret;
3580
3581 if (data)
3582 flags = BTRFS_BLOCK_GROUP_DATA;
3583 else if (root == root->fs_info->chunk_root)
3584 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3585 else
3586 flags = BTRFS_BLOCK_GROUP_METADATA;
3587
3588 ret = get_alloc_profile(root, flags);
3589 return ret;
3590 }
3591
3592 /*
3593 * This will check the space that the inode allocates from to make sure we have
3594 * enough space for bytes.
3595 */
3596 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3597 {
3598 struct btrfs_space_info *data_sinfo;
3599 struct btrfs_root *root = BTRFS_I(inode)->root;
3600 struct btrfs_fs_info *fs_info = root->fs_info;
3601 u64 used;
3602 int ret = 0, committed = 0, alloc_chunk = 1;
3603
3604 /* make sure bytes are sectorsize aligned */
3605 bytes = ALIGN(bytes, root->sectorsize);
3606
3607 if (root == root->fs_info->tree_root ||
3608 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3609 alloc_chunk = 0;
3610 committed = 1;
3611 }
3612
3613 data_sinfo = fs_info->data_sinfo;
3614 if (!data_sinfo)
3615 goto alloc;
3616
3617 again:
3618 /* make sure we have enough space to handle the data first */
3619 spin_lock(&data_sinfo->lock);
3620 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3621 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3622 data_sinfo->bytes_may_use;
3623
3624 if (used + bytes > data_sinfo->total_bytes) {
3625 struct btrfs_trans_handle *trans;
3626
3627 /*
3628 * if we don't have enough free bytes in this space then we need
3629 * to alloc a new chunk.
3630 */
3631 if (!data_sinfo->full && alloc_chunk) {
3632 u64 alloc_target;
3633
3634 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3635 spin_unlock(&data_sinfo->lock);
3636 alloc:
3637 alloc_target = btrfs_get_alloc_profile(root, 1);
3638 trans = btrfs_join_transaction(root);
3639 if (IS_ERR(trans))
3640 return PTR_ERR(trans);
3641
3642 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3643 alloc_target,
3644 CHUNK_ALLOC_NO_FORCE);
3645 btrfs_end_transaction(trans, root);
3646 if (ret < 0) {
3647 if (ret != -ENOSPC)
3648 return ret;
3649 else
3650 goto commit_trans;
3651 }
3652
3653 if (!data_sinfo)
3654 data_sinfo = fs_info->data_sinfo;
3655
3656 goto again;
3657 }
3658
3659 /*
3660 * If we don't have enough pinned space to deal with this
3661 * allocation don't bother committing the transaction.
3662 */
3663 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3664 bytes) < 0)
3665 committed = 1;
3666 spin_unlock(&data_sinfo->lock);
3667
3668 /* commit the current transaction and try again */
3669 commit_trans:
3670 if (!committed &&
3671 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3672 committed = 1;
3673
3674 trans = btrfs_join_transaction(root);
3675 if (IS_ERR(trans))
3676 return PTR_ERR(trans);
3677 ret = btrfs_commit_transaction(trans, root);
3678 if (ret)
3679 return ret;
3680 goto again;
3681 }
3682
3683 return -ENOSPC;
3684 }
3685 data_sinfo->bytes_may_use += bytes;
3686 trace_btrfs_space_reservation(root->fs_info, "space_info",
3687 data_sinfo->flags, bytes, 1);
3688 spin_unlock(&data_sinfo->lock);
3689
3690 return 0;
3691 }
3692
3693 /*
3694 * Called if we need to clear a data reservation for this inode.
3695 */
3696 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3697 {
3698 struct btrfs_root *root = BTRFS_I(inode)->root;
3699 struct btrfs_space_info *data_sinfo;
3700
3701 /* make sure bytes are sectorsize aligned */
3702 bytes = ALIGN(bytes, root->sectorsize);
3703
3704 data_sinfo = root->fs_info->data_sinfo;
3705 spin_lock(&data_sinfo->lock);
3706 WARN_ON(data_sinfo->bytes_may_use < bytes);
3707 data_sinfo->bytes_may_use -= bytes;
3708 trace_btrfs_space_reservation(root->fs_info, "space_info",
3709 data_sinfo->flags, bytes, 0);
3710 spin_unlock(&data_sinfo->lock);
3711 }
3712
3713 static void force_metadata_allocation(struct btrfs_fs_info *info)
3714 {
3715 struct list_head *head = &info->space_info;
3716 struct btrfs_space_info *found;
3717
3718 rcu_read_lock();
3719 list_for_each_entry_rcu(found, head, list) {
3720 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3721 found->force_alloc = CHUNK_ALLOC_FORCE;
3722 }
3723 rcu_read_unlock();
3724 }
3725
3726 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3727 {
3728 return (global->size << 1);
3729 }
3730
3731 static int should_alloc_chunk(struct btrfs_root *root,
3732 struct btrfs_space_info *sinfo, int force)
3733 {
3734 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3735 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3736 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3737 u64 thresh;
3738
3739 if (force == CHUNK_ALLOC_FORCE)
3740 return 1;
3741
3742 /*
3743 * We need to take into account the global rsv because for all intents
3744 * and purposes it's used space. Don't worry about locking the
3745 * global_rsv, it doesn't change except when the transaction commits.
3746 */
3747 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3748 num_allocated += calc_global_rsv_need_space(global_rsv);
3749
3750 /*
3751 * in limited mode, we want to have some free space up to
3752 * about 1% of the FS size.
3753 */
3754 if (force == CHUNK_ALLOC_LIMITED) {
3755 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3756 thresh = max_t(u64, 64 * 1024 * 1024,
3757 div_factor_fine(thresh, 1));
3758
3759 if (num_bytes - num_allocated < thresh)
3760 return 1;
3761 }
3762
3763 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3764 return 0;
3765 return 1;
3766 }
3767
3768 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3769 {
3770 u64 num_dev;
3771
3772 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3773 BTRFS_BLOCK_GROUP_RAID0 |
3774 BTRFS_BLOCK_GROUP_RAID5 |
3775 BTRFS_BLOCK_GROUP_RAID6))
3776 num_dev = root->fs_info->fs_devices->rw_devices;
3777 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3778 num_dev = 2;
3779 else
3780 num_dev = 1; /* DUP or single */
3781
3782 /* metadata for updaing devices and chunk tree */
3783 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3784 }
3785
3786 static void check_system_chunk(struct btrfs_trans_handle *trans,
3787 struct btrfs_root *root, u64 type)
3788 {
3789 struct btrfs_space_info *info;
3790 u64 left;
3791 u64 thresh;
3792
3793 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3794 spin_lock(&info->lock);
3795 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3796 info->bytes_reserved - info->bytes_readonly;
3797 spin_unlock(&info->lock);
3798
3799 thresh = get_system_chunk_thresh(root, type);
3800 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3801 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3802 left, thresh, type);
3803 dump_space_info(info, 0, 0);
3804 }
3805
3806 if (left < thresh) {
3807 u64 flags;
3808
3809 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3810 btrfs_alloc_chunk(trans, root, flags);
3811 }
3812 }
3813
3814 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3815 struct btrfs_root *extent_root, u64 flags, int force)
3816 {
3817 struct btrfs_space_info *space_info;
3818 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3819 int wait_for_alloc = 0;
3820 int ret = 0;
3821
3822 /* Don't re-enter if we're already allocating a chunk */
3823 if (trans->allocating_chunk)
3824 return -ENOSPC;
3825
3826 space_info = __find_space_info(extent_root->fs_info, flags);
3827 if (!space_info) {
3828 ret = update_space_info(extent_root->fs_info, flags,
3829 0, 0, &space_info);
3830 BUG_ON(ret); /* -ENOMEM */
3831 }
3832 BUG_ON(!space_info); /* Logic error */
3833
3834 again:
3835 spin_lock(&space_info->lock);
3836 if (force < space_info->force_alloc)
3837 force = space_info->force_alloc;
3838 if (space_info->full) {
3839 spin_unlock(&space_info->lock);
3840 return 0;
3841 }
3842
3843 if (!should_alloc_chunk(extent_root, space_info, force)) {
3844 spin_unlock(&space_info->lock);
3845 return 0;
3846 } else if (space_info->chunk_alloc) {
3847 wait_for_alloc = 1;
3848 } else {
3849 space_info->chunk_alloc = 1;
3850 }
3851
3852 spin_unlock(&space_info->lock);
3853
3854 mutex_lock(&fs_info->chunk_mutex);
3855
3856 /*
3857 * The chunk_mutex is held throughout the entirety of a chunk
3858 * allocation, so once we've acquired the chunk_mutex we know that the
3859 * other guy is done and we need to recheck and see if we should
3860 * allocate.
3861 */
3862 if (wait_for_alloc) {
3863 mutex_unlock(&fs_info->chunk_mutex);
3864 wait_for_alloc = 0;
3865 goto again;
3866 }
3867
3868 trans->allocating_chunk = true;
3869
3870 /*
3871 * If we have mixed data/metadata chunks we want to make sure we keep
3872 * allocating mixed chunks instead of individual chunks.
3873 */
3874 if (btrfs_mixed_space_info(space_info))
3875 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3876
3877 /*
3878 * if we're doing a data chunk, go ahead and make sure that
3879 * we keep a reasonable number of metadata chunks allocated in the
3880 * FS as well.
3881 */
3882 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3883 fs_info->data_chunk_allocations++;
3884 if (!(fs_info->data_chunk_allocations %
3885 fs_info->metadata_ratio))
3886 force_metadata_allocation(fs_info);
3887 }
3888
3889 /*
3890 * Check if we have enough space in SYSTEM chunk because we may need
3891 * to update devices.
3892 */
3893 check_system_chunk(trans, extent_root, flags);
3894
3895 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3896 trans->allocating_chunk = false;
3897
3898 spin_lock(&space_info->lock);
3899 if (ret < 0 && ret != -ENOSPC)
3900 goto out;
3901 if (ret)
3902 space_info->full = 1;
3903 else
3904 ret = 1;
3905
3906 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3907 out:
3908 space_info->chunk_alloc = 0;
3909 spin_unlock(&space_info->lock);
3910 mutex_unlock(&fs_info->chunk_mutex);
3911 return ret;
3912 }
3913
3914 static int can_overcommit(struct btrfs_root *root,
3915 struct btrfs_space_info *space_info, u64 bytes,
3916 enum btrfs_reserve_flush_enum flush)
3917 {
3918 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3919 u64 profile = btrfs_get_alloc_profile(root, 0);
3920 u64 space_size;
3921 u64 avail;
3922 u64 used;
3923 u64 to_add;
3924
3925 used = space_info->bytes_used + space_info->bytes_reserved +
3926 space_info->bytes_pinned + space_info->bytes_readonly;
3927
3928 /*
3929 * We only want to allow over committing if we have lots of actual space
3930 * free, but if we don't have enough space to handle the global reserve
3931 * space then we could end up having a real enospc problem when trying
3932 * to allocate a chunk or some other such important allocation.
3933 */
3934 spin_lock(&global_rsv->lock);
3935 space_size = calc_global_rsv_need_space(global_rsv);
3936 spin_unlock(&global_rsv->lock);
3937 if (used + space_size >= space_info->total_bytes)
3938 return 0;
3939
3940 used += space_info->bytes_may_use;
3941
3942 spin_lock(&root->fs_info->free_chunk_lock);
3943 avail = root->fs_info->free_chunk_space;
3944 spin_unlock(&root->fs_info->free_chunk_lock);
3945
3946 /*
3947 * If we have dup, raid1 or raid10 then only half of the free
3948 * space is actually useable. For raid56, the space info used
3949 * doesn't include the parity drive, so we don't have to
3950 * change the math
3951 */
3952 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3953 BTRFS_BLOCK_GROUP_RAID1 |
3954 BTRFS_BLOCK_GROUP_RAID10))
3955 avail >>= 1;
3956
3957 to_add = space_info->total_bytes;
3958
3959 /*
3960 * If we aren't flushing all things, let us overcommit up to
3961 * 1/2th of the space. If we can flush, don't let us overcommit
3962 * too much, let it overcommit up to 1/8 of the space.
3963 */
3964 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3965 to_add >>= 3;
3966 else
3967 to_add >>= 1;
3968
3969 /*
3970 * Limit the overcommit to the amount of free space we could possibly
3971 * allocate for chunks.
3972 */
3973 to_add = min(avail, to_add);
3974
3975 if (used + bytes < space_info->total_bytes + to_add)
3976 return 1;
3977 return 0;
3978 }
3979
3980 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3981 unsigned long nr_pages)
3982 {
3983 struct super_block *sb = root->fs_info->sb;
3984
3985 if (down_read_trylock(&sb->s_umount)) {
3986 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
3987 up_read(&sb->s_umount);
3988 } else {
3989 /*
3990 * We needn't worry the filesystem going from r/w to r/o though
3991 * we don't acquire ->s_umount mutex, because the filesystem
3992 * should guarantee the delalloc inodes list be empty after
3993 * the filesystem is readonly(all dirty pages are written to
3994 * the disk).
3995 */
3996 btrfs_start_all_delalloc_inodes(root->fs_info, 0);
3997 if (!current->journal_info)
3998 btrfs_wait_all_ordered_extents(root->fs_info, 0);
3999 }
4000 }
4001
4002 /*
4003 * shrink metadata reservation for delalloc
4004 */
4005 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4006 bool wait_ordered)
4007 {
4008 struct btrfs_block_rsv *block_rsv;
4009 struct btrfs_space_info *space_info;
4010 struct btrfs_trans_handle *trans;
4011 u64 delalloc_bytes;
4012 u64 max_reclaim;
4013 long time_left;
4014 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
4015 int loops = 0;
4016 enum btrfs_reserve_flush_enum flush;
4017
4018 trans = (struct btrfs_trans_handle *)current->journal_info;
4019 block_rsv = &root->fs_info->delalloc_block_rsv;
4020 space_info = block_rsv->space_info;
4021
4022 smp_mb();
4023 delalloc_bytes = percpu_counter_sum_positive(
4024 &root->fs_info->delalloc_bytes);
4025 if (delalloc_bytes == 0) {
4026 if (trans)
4027 return;
4028 btrfs_wait_all_ordered_extents(root->fs_info, 0);
4029 return;
4030 }
4031
4032 while (delalloc_bytes && loops < 3) {
4033 max_reclaim = min(delalloc_bytes, to_reclaim);
4034 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4035 btrfs_writeback_inodes_sb_nr(root, nr_pages);
4036 /*
4037 * We need to wait for the async pages to actually start before
4038 * we do anything.
4039 */
4040 wait_event(root->fs_info->async_submit_wait,
4041 !atomic_read(&root->fs_info->async_delalloc_pages));
4042
4043 if (!trans)
4044 flush = BTRFS_RESERVE_FLUSH_ALL;
4045 else
4046 flush = BTRFS_RESERVE_NO_FLUSH;
4047 spin_lock(&space_info->lock);
4048 if (can_overcommit(root, space_info, orig, flush)) {
4049 spin_unlock(&space_info->lock);
4050 break;
4051 }
4052 spin_unlock(&space_info->lock);
4053
4054 loops++;
4055 if (wait_ordered && !trans) {
4056 btrfs_wait_all_ordered_extents(root->fs_info, 0);
4057 } else {
4058 time_left = schedule_timeout_killable(1);
4059 if (time_left)
4060 break;
4061 }
4062 smp_mb();
4063 delalloc_bytes = percpu_counter_sum_positive(
4064 &root->fs_info->delalloc_bytes);
4065 }
4066 }
4067
4068 /**
4069 * maybe_commit_transaction - possibly commit the transaction if its ok to
4070 * @root - the root we're allocating for
4071 * @bytes - the number of bytes we want to reserve
4072 * @force - force the commit
4073 *
4074 * This will check to make sure that committing the transaction will actually
4075 * get us somewhere and then commit the transaction if it does. Otherwise it
4076 * will return -ENOSPC.
4077 */
4078 static int may_commit_transaction(struct btrfs_root *root,
4079 struct btrfs_space_info *space_info,
4080 u64 bytes, int force)
4081 {
4082 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4083 struct btrfs_trans_handle *trans;
4084
4085 trans = (struct btrfs_trans_handle *)current->journal_info;
4086 if (trans)
4087 return -EAGAIN;
4088
4089 if (force)
4090 goto commit;
4091
4092 /* See if there is enough pinned space to make this reservation */
4093 spin_lock(&space_info->lock);
4094 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4095 bytes) >= 0) {
4096 spin_unlock(&space_info->lock);
4097 goto commit;
4098 }
4099 spin_unlock(&space_info->lock);
4100
4101 /*
4102 * See if there is some space in the delayed insertion reservation for
4103 * this reservation.
4104 */
4105 if (space_info != delayed_rsv->space_info)
4106 return -ENOSPC;
4107
4108 spin_lock(&space_info->lock);
4109 spin_lock(&delayed_rsv->lock);
4110 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4111 bytes - delayed_rsv->size) >= 0) {
4112 spin_unlock(&delayed_rsv->lock);
4113 spin_unlock(&space_info->lock);
4114 return -ENOSPC;
4115 }
4116 spin_unlock(&delayed_rsv->lock);
4117 spin_unlock(&space_info->lock);
4118
4119 commit:
4120 trans = btrfs_join_transaction(root);
4121 if (IS_ERR(trans))
4122 return -ENOSPC;
4123
4124 return btrfs_commit_transaction(trans, root);
4125 }
4126
4127 enum flush_state {
4128 FLUSH_DELAYED_ITEMS_NR = 1,
4129 FLUSH_DELAYED_ITEMS = 2,
4130 FLUSH_DELALLOC = 3,
4131 FLUSH_DELALLOC_WAIT = 4,
4132 ALLOC_CHUNK = 5,
4133 COMMIT_TRANS = 6,
4134 };
4135
4136 static int flush_space(struct btrfs_root *root,
4137 struct btrfs_space_info *space_info, u64 num_bytes,
4138 u64 orig_bytes, int state)
4139 {
4140 struct btrfs_trans_handle *trans;
4141 int nr;
4142 int ret = 0;
4143
4144 switch (state) {
4145 case FLUSH_DELAYED_ITEMS_NR:
4146 case FLUSH_DELAYED_ITEMS:
4147 if (state == FLUSH_DELAYED_ITEMS_NR) {
4148 u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
4149
4150 nr = (int)div64_u64(num_bytes, bytes);
4151 if (!nr)
4152 nr = 1;
4153 nr *= 2;
4154 } else {
4155 nr = -1;
4156 }
4157 trans = btrfs_join_transaction(root);
4158 if (IS_ERR(trans)) {
4159 ret = PTR_ERR(trans);
4160 break;
4161 }
4162 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4163 btrfs_end_transaction(trans, root);
4164 break;
4165 case FLUSH_DELALLOC:
4166 case FLUSH_DELALLOC_WAIT:
4167 shrink_delalloc(root, num_bytes, orig_bytes,
4168 state == FLUSH_DELALLOC_WAIT);
4169 break;
4170 case ALLOC_CHUNK:
4171 trans = btrfs_join_transaction(root);
4172 if (IS_ERR(trans)) {
4173 ret = PTR_ERR(trans);
4174 break;
4175 }
4176 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4177 btrfs_get_alloc_profile(root, 0),
4178 CHUNK_ALLOC_NO_FORCE);
4179 btrfs_end_transaction(trans, root);
4180 if (ret == -ENOSPC)
4181 ret = 0;
4182 break;
4183 case COMMIT_TRANS:
4184 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4185 break;
4186 default:
4187 ret = -ENOSPC;
4188 break;
4189 }
4190
4191 return ret;
4192 }
4193 /**
4194 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4195 * @root - the root we're allocating for
4196 * @block_rsv - the block_rsv we're allocating for
4197 * @orig_bytes - the number of bytes we want
4198 * @flush - whether or not we can flush to make our reservation
4199 *
4200 * This will reserve orgi_bytes number of bytes from the space info associated
4201 * with the block_rsv. If there is not enough space it will make an attempt to
4202 * flush out space to make room. It will do this by flushing delalloc if
4203 * possible or committing the transaction. If flush is 0 then no attempts to
4204 * regain reservations will be made and this will fail if there is not enough
4205 * space already.
4206 */
4207 static int reserve_metadata_bytes(struct btrfs_root *root,
4208 struct btrfs_block_rsv *block_rsv,
4209 u64 orig_bytes,
4210 enum btrfs_reserve_flush_enum flush)
4211 {
4212 struct btrfs_space_info *space_info = block_rsv->space_info;
4213 u64 used;
4214 u64 num_bytes = orig_bytes;
4215 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4216 int ret = 0;
4217 bool flushing = false;
4218
4219 again:
4220 ret = 0;
4221 spin_lock(&space_info->lock);
4222 /*
4223 * We only want to wait if somebody other than us is flushing and we
4224 * are actually allowed to flush all things.
4225 */
4226 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4227 space_info->flush) {
4228 spin_unlock(&space_info->lock);
4229 /*
4230 * If we have a trans handle we can't wait because the flusher
4231 * may have to commit the transaction, which would mean we would
4232 * deadlock since we are waiting for the flusher to finish, but
4233 * hold the current transaction open.
4234 */
4235 if (current->journal_info)
4236 return -EAGAIN;
4237 ret = wait_event_killable(space_info->wait, !space_info->flush);
4238 /* Must have been killed, return */
4239 if (ret)
4240 return -EINTR;
4241
4242 spin_lock(&space_info->lock);
4243 }
4244
4245 ret = -ENOSPC;
4246 used = space_info->bytes_used + space_info->bytes_reserved +
4247 space_info->bytes_pinned + space_info->bytes_readonly +
4248 space_info->bytes_may_use;
4249
4250 /*
4251 * The idea here is that we've not already over-reserved the block group
4252 * then we can go ahead and save our reservation first and then start
4253 * flushing if we need to. Otherwise if we've already overcommitted
4254 * lets start flushing stuff first and then come back and try to make
4255 * our reservation.
4256 */
4257 if (used <= space_info->total_bytes) {
4258 if (used + orig_bytes <= space_info->total_bytes) {
4259 space_info->bytes_may_use += orig_bytes;
4260 trace_btrfs_space_reservation(root->fs_info,
4261 "space_info", space_info->flags, orig_bytes, 1);
4262 ret = 0;
4263 } else {
4264 /*
4265 * Ok set num_bytes to orig_bytes since we aren't
4266 * overocmmitted, this way we only try and reclaim what
4267 * we need.
4268 */
4269 num_bytes = orig_bytes;
4270 }
4271 } else {
4272 /*
4273 * Ok we're over committed, set num_bytes to the overcommitted
4274 * amount plus the amount of bytes that we need for this
4275 * reservation.
4276 */
4277 num_bytes = used - space_info->total_bytes +
4278 (orig_bytes * 2);
4279 }
4280
4281 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4282 space_info->bytes_may_use += orig_bytes;
4283 trace_btrfs_space_reservation(root->fs_info, "space_info",
4284 space_info->flags, orig_bytes,
4285 1);
4286 ret = 0;
4287 }
4288
4289 /*
4290 * Couldn't make our reservation, save our place so while we're trying
4291 * to reclaim space we can actually use it instead of somebody else
4292 * stealing it from us.
4293 *
4294 * We make the other tasks wait for the flush only when we can flush
4295 * all things.
4296 */
4297 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4298 flushing = true;
4299 space_info->flush = 1;
4300 }
4301
4302 spin_unlock(&space_info->lock);
4303
4304 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4305 goto out;
4306
4307 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4308 flush_state);
4309 flush_state++;
4310
4311 /*
4312 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4313 * would happen. So skip delalloc flush.
4314 */
4315 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4316 (flush_state == FLUSH_DELALLOC ||
4317 flush_state == FLUSH_DELALLOC_WAIT))
4318 flush_state = ALLOC_CHUNK;
4319
4320 if (!ret)
4321 goto again;
4322 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4323 flush_state < COMMIT_TRANS)
4324 goto again;
4325 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4326 flush_state <= COMMIT_TRANS)
4327 goto again;
4328
4329 out:
4330 if (ret == -ENOSPC &&
4331 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4332 struct btrfs_block_rsv *global_rsv =
4333 &root->fs_info->global_block_rsv;
4334
4335 if (block_rsv != global_rsv &&
4336 !block_rsv_use_bytes(global_rsv, orig_bytes))
4337 ret = 0;
4338 }
4339 if (flushing) {
4340 spin_lock(&space_info->lock);
4341 space_info->flush = 0;
4342 wake_up_all(&space_info->wait);
4343 spin_unlock(&space_info->lock);
4344 }
4345 return ret;
4346 }
4347
4348 static struct btrfs_block_rsv *get_block_rsv(
4349 const struct btrfs_trans_handle *trans,
4350 const struct btrfs_root *root)
4351 {
4352 struct btrfs_block_rsv *block_rsv = NULL;
4353
4354 if (root->ref_cows)
4355 block_rsv = trans->block_rsv;
4356
4357 if (root == root->fs_info->csum_root && trans->adding_csums)
4358 block_rsv = trans->block_rsv;
4359
4360 if (!block_rsv)
4361 block_rsv = root->block_rsv;
4362
4363 if (!block_rsv)
4364 block_rsv = &root->fs_info->empty_block_rsv;
4365
4366 return block_rsv;
4367 }
4368
4369 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4370 u64 num_bytes)
4371 {
4372 int ret = -ENOSPC;
4373 spin_lock(&block_rsv->lock);
4374 if (block_rsv->reserved >= num_bytes) {
4375 block_rsv->reserved -= num_bytes;
4376 if (block_rsv->reserved < block_rsv->size)
4377 block_rsv->full = 0;
4378 ret = 0;
4379 }
4380 spin_unlock(&block_rsv->lock);
4381 return ret;
4382 }
4383
4384 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4385 u64 num_bytes, int update_size)
4386 {
4387 spin_lock(&block_rsv->lock);
4388 block_rsv->reserved += num_bytes;
4389 if (update_size)
4390 block_rsv->size += num_bytes;
4391 else if (block_rsv->reserved >= block_rsv->size)
4392 block_rsv->full = 1;
4393 spin_unlock(&block_rsv->lock);
4394 }
4395
4396 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4397 struct btrfs_block_rsv *dest, u64 num_bytes,
4398 int min_factor)
4399 {
4400 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4401 u64 min_bytes;
4402
4403 if (global_rsv->space_info != dest->space_info)
4404 return -ENOSPC;
4405
4406 spin_lock(&global_rsv->lock);
4407 min_bytes = div_factor(global_rsv->size, min_factor);
4408 if (global_rsv->reserved < min_bytes + num_bytes) {
4409 spin_unlock(&global_rsv->lock);
4410 return -ENOSPC;
4411 }
4412 global_rsv->reserved -= num_bytes;
4413 if (global_rsv->reserved < global_rsv->size)
4414 global_rsv->full = 0;
4415 spin_unlock(&global_rsv->lock);
4416
4417 block_rsv_add_bytes(dest, num_bytes, 1);
4418 return 0;
4419 }
4420
4421 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4422 struct btrfs_block_rsv *block_rsv,
4423 struct btrfs_block_rsv *dest, u64 num_bytes)
4424 {
4425 struct btrfs_space_info *space_info = block_rsv->space_info;
4426
4427 spin_lock(&block_rsv->lock);
4428 if (num_bytes == (u64)-1)
4429 num_bytes = block_rsv->size;
4430 block_rsv->size -= num_bytes;
4431 if (block_rsv->reserved >= block_rsv->size) {
4432 num_bytes = block_rsv->reserved - block_rsv->size;
4433 block_rsv->reserved = block_rsv->size;
4434 block_rsv->full = 1;
4435 } else {
4436 num_bytes = 0;
4437 }
4438 spin_unlock(&block_rsv->lock);
4439
4440 if (num_bytes > 0) {
4441 if (dest) {
4442 spin_lock(&dest->lock);
4443 if (!dest->full) {
4444 u64 bytes_to_add;
4445
4446 bytes_to_add = dest->size - dest->reserved;
4447 bytes_to_add = min(num_bytes, bytes_to_add);
4448 dest->reserved += bytes_to_add;
4449 if (dest->reserved >= dest->size)
4450 dest->full = 1;
4451 num_bytes -= bytes_to_add;
4452 }
4453 spin_unlock(&dest->lock);
4454 }
4455 if (num_bytes) {
4456 spin_lock(&space_info->lock);
4457 space_info->bytes_may_use -= num_bytes;
4458 trace_btrfs_space_reservation(fs_info, "space_info",
4459 space_info->flags, num_bytes, 0);
4460 space_info->reservation_progress++;
4461 spin_unlock(&space_info->lock);
4462 }
4463 }
4464 }
4465
4466 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4467 struct btrfs_block_rsv *dst, u64 num_bytes)
4468 {
4469 int ret;
4470
4471 ret = block_rsv_use_bytes(src, num_bytes);
4472 if (ret)
4473 return ret;
4474
4475 block_rsv_add_bytes(dst, num_bytes, 1);
4476 return 0;
4477 }
4478
4479 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4480 {
4481 memset(rsv, 0, sizeof(*rsv));
4482 spin_lock_init(&rsv->lock);
4483 rsv->type = type;
4484 }
4485
4486 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4487 unsigned short type)
4488 {
4489 struct btrfs_block_rsv *block_rsv;
4490 struct btrfs_fs_info *fs_info = root->fs_info;
4491
4492 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4493 if (!block_rsv)
4494 return NULL;
4495
4496 btrfs_init_block_rsv(block_rsv, type);
4497 block_rsv->space_info = __find_space_info(fs_info,
4498 BTRFS_BLOCK_GROUP_METADATA);
4499 return block_rsv;
4500 }
4501
4502 void btrfs_free_block_rsv(struct btrfs_root *root,
4503 struct btrfs_block_rsv *rsv)
4504 {
4505 if (!rsv)
4506 return;
4507 btrfs_block_rsv_release(root, rsv, (u64)-1);
4508 kfree(rsv);
4509 }
4510
4511 int btrfs_block_rsv_add(struct btrfs_root *root,
4512 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4513 enum btrfs_reserve_flush_enum flush)
4514 {
4515 int ret;
4516
4517 if (num_bytes == 0)
4518 return 0;
4519
4520 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4521 if (!ret) {
4522 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4523 return 0;
4524 }
4525
4526 return ret;
4527 }
4528
4529 int btrfs_block_rsv_check(struct btrfs_root *root,
4530 struct btrfs_block_rsv *block_rsv, int min_factor)
4531 {
4532 u64 num_bytes = 0;
4533 int ret = -ENOSPC;
4534
4535 if (!block_rsv)
4536 return 0;
4537
4538 spin_lock(&block_rsv->lock);
4539 num_bytes = div_factor(block_rsv->size, min_factor);
4540 if (block_rsv->reserved >= num_bytes)
4541 ret = 0;
4542 spin_unlock(&block_rsv->lock);
4543
4544 return ret;
4545 }
4546
4547 int btrfs_block_rsv_refill(struct btrfs_root *root,
4548 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4549 enum btrfs_reserve_flush_enum flush)
4550 {
4551 u64 num_bytes = 0;
4552 int ret = -ENOSPC;
4553
4554 if (!block_rsv)
4555 return 0;
4556
4557 spin_lock(&block_rsv->lock);
4558 num_bytes = min_reserved;
4559 if (block_rsv->reserved >= num_bytes)
4560 ret = 0;
4561 else
4562 num_bytes -= block_rsv->reserved;
4563 spin_unlock(&block_rsv->lock);
4564
4565 if (!ret)
4566 return 0;
4567
4568 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4569 if (!ret) {
4570 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4571 return 0;
4572 }
4573
4574 return ret;
4575 }
4576
4577 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4578 struct btrfs_block_rsv *dst_rsv,
4579 u64 num_bytes)
4580 {
4581 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4582 }
4583
4584 void btrfs_block_rsv_release(struct btrfs_root *root,
4585 struct btrfs_block_rsv *block_rsv,
4586 u64 num_bytes)
4587 {
4588 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4589 if (global_rsv->full || global_rsv == block_rsv ||
4590 block_rsv->space_info != global_rsv->space_info)
4591 global_rsv = NULL;
4592 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4593 num_bytes);
4594 }
4595
4596 /*
4597 * helper to calculate size of global block reservation.
4598 * the desired value is sum of space used by extent tree,
4599 * checksum tree and root tree
4600 */
4601 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4602 {
4603 struct btrfs_space_info *sinfo;
4604 u64 num_bytes;
4605 u64 meta_used;
4606 u64 data_used;
4607 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4608
4609 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4610 spin_lock(&sinfo->lock);
4611 data_used = sinfo->bytes_used;
4612 spin_unlock(&sinfo->lock);
4613
4614 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4615 spin_lock(&sinfo->lock);
4616 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4617 data_used = 0;
4618 meta_used = sinfo->bytes_used;
4619 spin_unlock(&sinfo->lock);
4620
4621 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4622 csum_size * 2;
4623 num_bytes += div64_u64(data_used + meta_used, 50);
4624
4625 if (num_bytes * 3 > meta_used)
4626 num_bytes = div64_u64(meta_used, 3);
4627
4628 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4629 }
4630
4631 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4632 {
4633 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4634 struct btrfs_space_info *sinfo = block_rsv->space_info;
4635 u64 num_bytes;
4636
4637 num_bytes = calc_global_metadata_size(fs_info);
4638
4639 spin_lock(&sinfo->lock);
4640 spin_lock(&block_rsv->lock);
4641
4642 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4643
4644 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4645 sinfo->bytes_reserved + sinfo->bytes_readonly +
4646 sinfo->bytes_may_use;
4647
4648 if (sinfo->total_bytes > num_bytes) {
4649 num_bytes = sinfo->total_bytes - num_bytes;
4650 block_rsv->reserved += num_bytes;
4651 sinfo->bytes_may_use += num_bytes;
4652 trace_btrfs_space_reservation(fs_info, "space_info",
4653 sinfo->flags, num_bytes, 1);
4654 }
4655
4656 if (block_rsv->reserved >= block_rsv->size) {
4657 num_bytes = block_rsv->reserved - block_rsv->size;
4658 sinfo->bytes_may_use -= num_bytes;
4659 trace_btrfs_space_reservation(fs_info, "space_info",
4660 sinfo->flags, num_bytes, 0);
4661 sinfo->reservation_progress++;
4662 block_rsv->reserved = block_rsv->size;
4663 block_rsv->full = 1;
4664 }
4665
4666 spin_unlock(&block_rsv->lock);
4667 spin_unlock(&sinfo->lock);
4668 }
4669
4670 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4671 {
4672 struct btrfs_space_info *space_info;
4673
4674 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4675 fs_info->chunk_block_rsv.space_info = space_info;
4676
4677 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4678 fs_info->global_block_rsv.space_info = space_info;
4679 fs_info->delalloc_block_rsv.space_info = space_info;
4680 fs_info->trans_block_rsv.space_info = space_info;
4681 fs_info->empty_block_rsv.space_info = space_info;
4682 fs_info->delayed_block_rsv.space_info = space_info;
4683
4684 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4685 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4686 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4687 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4688 if (fs_info->quota_root)
4689 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4690 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4691
4692 update_global_block_rsv(fs_info);
4693 }
4694
4695 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4696 {
4697 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4698 (u64)-1);
4699 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4700 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4701 WARN_ON(fs_info->trans_block_rsv.size > 0);
4702 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4703 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4704 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4705 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4706 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4707 }
4708
4709 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4710 struct btrfs_root *root)
4711 {
4712 if (!trans->block_rsv)
4713 return;
4714
4715 if (!trans->bytes_reserved)
4716 return;
4717
4718 trace_btrfs_space_reservation(root->fs_info, "transaction",
4719 trans->transid, trans->bytes_reserved, 0);
4720 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4721 trans->bytes_reserved = 0;
4722 }
4723
4724 /* Can only return 0 or -ENOSPC */
4725 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4726 struct inode *inode)
4727 {
4728 struct btrfs_root *root = BTRFS_I(inode)->root;
4729 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4730 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4731
4732 /*
4733 * We need to hold space in order to delete our orphan item once we've
4734 * added it, so this takes the reservation so we can release it later
4735 * when we are truly done with the orphan item.
4736 */
4737 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4738 trace_btrfs_space_reservation(root->fs_info, "orphan",
4739 btrfs_ino(inode), num_bytes, 1);
4740 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4741 }
4742
4743 void btrfs_orphan_release_metadata(struct inode *inode)
4744 {
4745 struct btrfs_root *root = BTRFS_I(inode)->root;
4746 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4747 trace_btrfs_space_reservation(root->fs_info, "orphan",
4748 btrfs_ino(inode), num_bytes, 0);
4749 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4750 }
4751
4752 /*
4753 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4754 * root: the root of the parent directory
4755 * rsv: block reservation
4756 * items: the number of items that we need do reservation
4757 * qgroup_reserved: used to return the reserved size in qgroup
4758 *
4759 * This function is used to reserve the space for snapshot/subvolume
4760 * creation and deletion. Those operations are different with the
4761 * common file/directory operations, they change two fs/file trees
4762 * and root tree, the number of items that the qgroup reserves is
4763 * different with the free space reservation. So we can not use
4764 * the space reseravtion mechanism in start_transaction().
4765 */
4766 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4767 struct btrfs_block_rsv *rsv,
4768 int items,
4769 u64 *qgroup_reserved,
4770 bool use_global_rsv)
4771 {
4772 u64 num_bytes;
4773 int ret;
4774 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4775
4776 if (root->fs_info->quota_enabled) {
4777 /* One for parent inode, two for dir entries */
4778 num_bytes = 3 * root->leafsize;
4779 ret = btrfs_qgroup_reserve(root, num_bytes);
4780 if (ret)
4781 return ret;
4782 } else {
4783 num_bytes = 0;
4784 }
4785
4786 *qgroup_reserved = num_bytes;
4787
4788 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4789 rsv->space_info = __find_space_info(root->fs_info,
4790 BTRFS_BLOCK_GROUP_METADATA);
4791 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4792 BTRFS_RESERVE_FLUSH_ALL);
4793
4794 if (ret == -ENOSPC && use_global_rsv)
4795 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4796
4797 if (ret) {
4798 if (*qgroup_reserved)
4799 btrfs_qgroup_free(root, *qgroup_reserved);
4800 }
4801
4802 return ret;
4803 }
4804
4805 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4806 struct btrfs_block_rsv *rsv,
4807 u64 qgroup_reserved)
4808 {
4809 btrfs_block_rsv_release(root, rsv, (u64)-1);
4810 if (qgroup_reserved)
4811 btrfs_qgroup_free(root, qgroup_reserved);
4812 }
4813
4814 /**
4815 * drop_outstanding_extent - drop an outstanding extent
4816 * @inode: the inode we're dropping the extent for
4817 *
4818 * This is called when we are freeing up an outstanding extent, either called
4819 * after an error or after an extent is written. This will return the number of
4820 * reserved extents that need to be freed. This must be called with
4821 * BTRFS_I(inode)->lock held.
4822 */
4823 static unsigned drop_outstanding_extent(struct inode *inode)
4824 {
4825 unsigned drop_inode_space = 0;
4826 unsigned dropped_extents = 0;
4827
4828 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4829 BTRFS_I(inode)->outstanding_extents--;
4830
4831 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4832 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4833 &BTRFS_I(inode)->runtime_flags))
4834 drop_inode_space = 1;
4835
4836 /*
4837 * If we have more or the same amount of outsanding extents than we have
4838 * reserved then we need to leave the reserved extents count alone.
4839 */
4840 if (BTRFS_I(inode)->outstanding_extents >=
4841 BTRFS_I(inode)->reserved_extents)
4842 return drop_inode_space;
4843
4844 dropped_extents = BTRFS_I(inode)->reserved_extents -
4845 BTRFS_I(inode)->outstanding_extents;
4846 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4847 return dropped_extents + drop_inode_space;
4848 }
4849
4850 /**
4851 * calc_csum_metadata_size - return the amount of metada space that must be
4852 * reserved/free'd for the given bytes.
4853 * @inode: the inode we're manipulating
4854 * @num_bytes: the number of bytes in question
4855 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4856 *
4857 * This adjusts the number of csum_bytes in the inode and then returns the
4858 * correct amount of metadata that must either be reserved or freed. We
4859 * calculate how many checksums we can fit into one leaf and then divide the
4860 * number of bytes that will need to be checksumed by this value to figure out
4861 * how many checksums will be required. If we are adding bytes then the number
4862 * may go up and we will return the number of additional bytes that must be
4863 * reserved. If it is going down we will return the number of bytes that must
4864 * be freed.
4865 *
4866 * This must be called with BTRFS_I(inode)->lock held.
4867 */
4868 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4869 int reserve)
4870 {
4871 struct btrfs_root *root = BTRFS_I(inode)->root;
4872 u64 csum_size;
4873 int num_csums_per_leaf;
4874 int num_csums;
4875 int old_csums;
4876
4877 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4878 BTRFS_I(inode)->csum_bytes == 0)
4879 return 0;
4880
4881 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4882 if (reserve)
4883 BTRFS_I(inode)->csum_bytes += num_bytes;
4884 else
4885 BTRFS_I(inode)->csum_bytes -= num_bytes;
4886 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4887 num_csums_per_leaf = (int)div64_u64(csum_size,
4888 sizeof(struct btrfs_csum_item) +
4889 sizeof(struct btrfs_disk_key));
4890 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4891 num_csums = num_csums + num_csums_per_leaf - 1;
4892 num_csums = num_csums / num_csums_per_leaf;
4893
4894 old_csums = old_csums + num_csums_per_leaf - 1;
4895 old_csums = old_csums / num_csums_per_leaf;
4896
4897 /* No change, no need to reserve more */
4898 if (old_csums == num_csums)
4899 return 0;
4900
4901 if (reserve)
4902 return btrfs_calc_trans_metadata_size(root,
4903 num_csums - old_csums);
4904
4905 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4906 }
4907
4908 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4909 {
4910 struct btrfs_root *root = BTRFS_I(inode)->root;
4911 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4912 u64 to_reserve = 0;
4913 u64 csum_bytes;
4914 unsigned nr_extents = 0;
4915 int extra_reserve = 0;
4916 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4917 int ret = 0;
4918 bool delalloc_lock = true;
4919 u64 to_free = 0;
4920 unsigned dropped;
4921
4922 /* If we are a free space inode we need to not flush since we will be in
4923 * the middle of a transaction commit. We also don't need the delalloc
4924 * mutex since we won't race with anybody. We need this mostly to make
4925 * lockdep shut its filthy mouth.
4926 */
4927 if (btrfs_is_free_space_inode(inode)) {
4928 flush = BTRFS_RESERVE_NO_FLUSH;
4929 delalloc_lock = false;
4930 }
4931
4932 if (flush != BTRFS_RESERVE_NO_FLUSH &&
4933 btrfs_transaction_in_commit(root->fs_info))
4934 schedule_timeout(1);
4935
4936 if (delalloc_lock)
4937 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4938
4939 num_bytes = ALIGN(num_bytes, root->sectorsize);
4940
4941 spin_lock(&BTRFS_I(inode)->lock);
4942 BTRFS_I(inode)->outstanding_extents++;
4943
4944 if (BTRFS_I(inode)->outstanding_extents >
4945 BTRFS_I(inode)->reserved_extents)
4946 nr_extents = BTRFS_I(inode)->outstanding_extents -
4947 BTRFS_I(inode)->reserved_extents;
4948
4949 /*
4950 * Add an item to reserve for updating the inode when we complete the
4951 * delalloc io.
4952 */
4953 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4954 &BTRFS_I(inode)->runtime_flags)) {
4955 nr_extents++;
4956 extra_reserve = 1;
4957 }
4958
4959 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4960 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4961 csum_bytes = BTRFS_I(inode)->csum_bytes;
4962 spin_unlock(&BTRFS_I(inode)->lock);
4963
4964 if (root->fs_info->quota_enabled) {
4965 ret = btrfs_qgroup_reserve(root, num_bytes +
4966 nr_extents * root->leafsize);
4967 if (ret)
4968 goto out_fail;
4969 }
4970
4971 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4972 if (unlikely(ret)) {
4973 if (root->fs_info->quota_enabled)
4974 btrfs_qgroup_free(root, num_bytes +
4975 nr_extents * root->leafsize);
4976 goto out_fail;
4977 }
4978
4979 spin_lock(&BTRFS_I(inode)->lock);
4980 if (extra_reserve) {
4981 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4982 &BTRFS_I(inode)->runtime_flags);
4983 nr_extents--;
4984 }
4985 BTRFS_I(inode)->reserved_extents += nr_extents;
4986 spin_unlock(&BTRFS_I(inode)->lock);
4987
4988 if (delalloc_lock)
4989 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4990
4991 if (to_reserve)
4992 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4993 btrfs_ino(inode), to_reserve, 1);
4994 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4995
4996 return 0;
4997
4998 out_fail:
4999 spin_lock(&BTRFS_I(inode)->lock);
5000 dropped = drop_outstanding_extent(inode);
5001 /*
5002 * If the inodes csum_bytes is the same as the original
5003 * csum_bytes then we know we haven't raced with any free()ers
5004 * so we can just reduce our inodes csum bytes and carry on.
5005 */
5006 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5007 calc_csum_metadata_size(inode, num_bytes, 0);
5008 } else {
5009 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5010 u64 bytes;
5011
5012 /*
5013 * This is tricky, but first we need to figure out how much we
5014 * free'd from any free-ers that occured during this
5015 * reservation, so we reset ->csum_bytes to the csum_bytes
5016 * before we dropped our lock, and then call the free for the
5017 * number of bytes that were freed while we were trying our
5018 * reservation.
5019 */
5020 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5021 BTRFS_I(inode)->csum_bytes = csum_bytes;
5022 to_free = calc_csum_metadata_size(inode, bytes, 0);
5023
5024
5025 /*
5026 * Now we need to see how much we would have freed had we not
5027 * been making this reservation and our ->csum_bytes were not
5028 * artificially inflated.
5029 */
5030 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5031 bytes = csum_bytes - orig_csum_bytes;
5032 bytes = calc_csum_metadata_size(inode, bytes, 0);
5033
5034 /*
5035 * Now reset ->csum_bytes to what it should be. If bytes is
5036 * more than to_free then we would have free'd more space had we
5037 * not had an artificially high ->csum_bytes, so we need to free
5038 * the remainder. If bytes is the same or less then we don't
5039 * need to do anything, the other free-ers did the correct
5040 * thing.
5041 */
5042 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5043 if (bytes > to_free)
5044 to_free = bytes - to_free;
5045 else
5046 to_free = 0;
5047 }
5048 spin_unlock(&BTRFS_I(inode)->lock);
5049 if (dropped)
5050 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5051
5052 if (to_free) {
5053 btrfs_block_rsv_release(root, block_rsv, to_free);
5054 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5055 btrfs_ino(inode), to_free, 0);
5056 }
5057 if (delalloc_lock)
5058 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5059 return ret;
5060 }
5061
5062 /**
5063 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5064 * @inode: the inode to release the reservation for
5065 * @num_bytes: the number of bytes we're releasing
5066 *
5067 * This will release the metadata reservation for an inode. This can be called
5068 * once we complete IO for a given set of bytes to release their metadata
5069 * reservations.
5070 */
5071 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5072 {
5073 struct btrfs_root *root = BTRFS_I(inode)->root;
5074 u64 to_free = 0;
5075 unsigned dropped;
5076
5077 num_bytes = ALIGN(num_bytes, root->sectorsize);
5078 spin_lock(&BTRFS_I(inode)->lock);
5079 dropped = drop_outstanding_extent(inode);
5080
5081 if (num_bytes)
5082 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5083 spin_unlock(&BTRFS_I(inode)->lock);
5084 if (dropped > 0)
5085 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5086
5087 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5088 btrfs_ino(inode), to_free, 0);
5089 if (root->fs_info->quota_enabled) {
5090 btrfs_qgroup_free(root, num_bytes +
5091 dropped * root->leafsize);
5092 }
5093
5094 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5095 to_free);
5096 }
5097
5098 /**
5099 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5100 * @inode: inode we're writing to
5101 * @num_bytes: the number of bytes we want to allocate
5102 *
5103 * This will do the following things
5104 *
5105 * o reserve space in the data space info for num_bytes
5106 * o reserve space in the metadata space info based on number of outstanding
5107 * extents and how much csums will be needed
5108 * o add to the inodes ->delalloc_bytes
5109 * o add it to the fs_info's delalloc inodes list.
5110 *
5111 * This will return 0 for success and -ENOSPC if there is no space left.
5112 */
5113 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5114 {
5115 int ret;
5116
5117 ret = btrfs_check_data_free_space(inode, num_bytes);
5118 if (ret)
5119 return ret;
5120
5121 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5122 if (ret) {
5123 btrfs_free_reserved_data_space(inode, num_bytes);
5124 return ret;
5125 }
5126
5127 return 0;
5128 }
5129
5130 /**
5131 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5132 * @inode: inode we're releasing space for
5133 * @num_bytes: the number of bytes we want to free up
5134 *
5135 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5136 * called in the case that we don't need the metadata AND data reservations
5137 * anymore. So if there is an error or we insert an inline extent.
5138 *
5139 * This function will release the metadata space that was not used and will
5140 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5141 * list if there are no delalloc bytes left.
5142 */
5143 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5144 {
5145 btrfs_delalloc_release_metadata(inode, num_bytes);
5146 btrfs_free_reserved_data_space(inode, num_bytes);
5147 }
5148
5149 static int update_block_group(struct btrfs_root *root,
5150 u64 bytenr, u64 num_bytes, int alloc)
5151 {
5152 struct btrfs_block_group_cache *cache = NULL;
5153 struct btrfs_fs_info *info = root->fs_info;
5154 u64 total = num_bytes;
5155 u64 old_val;
5156 u64 byte_in_group;
5157 int factor;
5158
5159 /* block accounting for super block */
5160 spin_lock(&info->delalloc_root_lock);
5161 old_val = btrfs_super_bytes_used(info->super_copy);
5162 if (alloc)
5163 old_val += num_bytes;
5164 else
5165 old_val -= num_bytes;
5166 btrfs_set_super_bytes_used(info->super_copy, old_val);
5167 spin_unlock(&info->delalloc_root_lock);
5168
5169 while (total) {
5170 cache = btrfs_lookup_block_group(info, bytenr);
5171 if (!cache)
5172 return -ENOENT;
5173 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5174 BTRFS_BLOCK_GROUP_RAID1 |
5175 BTRFS_BLOCK_GROUP_RAID10))
5176 factor = 2;
5177 else
5178 factor = 1;
5179 /*
5180 * If this block group has free space cache written out, we
5181 * need to make sure to load it if we are removing space. This
5182 * is because we need the unpinning stage to actually add the
5183 * space back to the block group, otherwise we will leak space.
5184 */
5185 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5186 cache_block_group(cache, 1);
5187
5188 byte_in_group = bytenr - cache->key.objectid;
5189 WARN_ON(byte_in_group > cache->key.offset);
5190
5191 spin_lock(&cache->space_info->lock);
5192 spin_lock(&cache->lock);
5193
5194 if (btrfs_test_opt(root, SPACE_CACHE) &&
5195 cache->disk_cache_state < BTRFS_DC_CLEAR)
5196 cache->disk_cache_state = BTRFS_DC_CLEAR;
5197
5198 cache->dirty = 1;
5199 old_val = btrfs_block_group_used(&cache->item);
5200 num_bytes = min(total, cache->key.offset - byte_in_group);
5201 if (alloc) {
5202 old_val += num_bytes;
5203 btrfs_set_block_group_used(&cache->item, old_val);
5204 cache->reserved -= num_bytes;
5205 cache->space_info->bytes_reserved -= num_bytes;
5206 cache->space_info->bytes_used += num_bytes;
5207 cache->space_info->disk_used += num_bytes * factor;
5208 spin_unlock(&cache->lock);
5209 spin_unlock(&cache->space_info->lock);
5210 } else {
5211 old_val -= num_bytes;
5212 btrfs_set_block_group_used(&cache->item, old_val);
5213 cache->pinned += num_bytes;
5214 cache->space_info->bytes_pinned += num_bytes;
5215 cache->space_info->bytes_used -= num_bytes;
5216 cache->space_info->disk_used -= num_bytes * factor;
5217 spin_unlock(&cache->lock);
5218 spin_unlock(&cache->space_info->lock);
5219
5220 set_extent_dirty(info->pinned_extents,
5221 bytenr, bytenr + num_bytes - 1,
5222 GFP_NOFS | __GFP_NOFAIL);
5223 }
5224 btrfs_put_block_group(cache);
5225 total -= num_bytes;
5226 bytenr += num_bytes;
5227 }
5228 return 0;
5229 }
5230
5231 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5232 {
5233 struct btrfs_block_group_cache *cache;
5234 u64 bytenr;
5235
5236 spin_lock(&root->fs_info->block_group_cache_lock);
5237 bytenr = root->fs_info->first_logical_byte;
5238 spin_unlock(&root->fs_info->block_group_cache_lock);
5239
5240 if (bytenr < (u64)-1)
5241 return bytenr;
5242
5243 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5244 if (!cache)
5245 return 0;
5246
5247 bytenr = cache->key.objectid;
5248 btrfs_put_block_group(cache);
5249
5250 return bytenr;
5251 }
5252
5253 static int pin_down_extent(struct btrfs_root *root,
5254 struct btrfs_block_group_cache *cache,
5255 u64 bytenr, u64 num_bytes, int reserved)
5256 {
5257 spin_lock(&cache->space_info->lock);
5258 spin_lock(&cache->lock);
5259 cache->pinned += num_bytes;
5260 cache->space_info->bytes_pinned += num_bytes;
5261 if (reserved) {
5262 cache->reserved -= num_bytes;
5263 cache->space_info->bytes_reserved -= num_bytes;
5264 }
5265 spin_unlock(&cache->lock);
5266 spin_unlock(&cache->space_info->lock);
5267
5268 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5269 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5270 return 0;
5271 }
5272
5273 /*
5274 * this function must be called within transaction
5275 */
5276 int btrfs_pin_extent(struct btrfs_root *root,
5277 u64 bytenr, u64 num_bytes, int reserved)
5278 {
5279 struct btrfs_block_group_cache *cache;
5280
5281 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5282 BUG_ON(!cache); /* Logic error */
5283
5284 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5285
5286 btrfs_put_block_group(cache);
5287 return 0;
5288 }
5289
5290 /*
5291 * this function must be called within transaction
5292 */
5293 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5294 u64 bytenr, u64 num_bytes)
5295 {
5296 struct btrfs_block_group_cache *cache;
5297 int ret;
5298
5299 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5300 if (!cache)
5301 return -EINVAL;
5302
5303 /*
5304 * pull in the free space cache (if any) so that our pin
5305 * removes the free space from the cache. We have load_only set
5306 * to one because the slow code to read in the free extents does check
5307 * the pinned extents.
5308 */
5309 cache_block_group(cache, 1);
5310
5311 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5312
5313 /* remove us from the free space cache (if we're there at all) */
5314 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5315 btrfs_put_block_group(cache);
5316 return ret;
5317 }
5318
5319 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5320 {
5321 int ret;
5322 struct btrfs_block_group_cache *block_group;
5323 struct btrfs_caching_control *caching_ctl;
5324
5325 block_group = btrfs_lookup_block_group(root->fs_info, start);
5326 if (!block_group)
5327 return -EINVAL;
5328
5329 cache_block_group(block_group, 0);
5330 caching_ctl = get_caching_control(block_group);
5331
5332 if (!caching_ctl) {
5333 /* Logic error */
5334 BUG_ON(!block_group_cache_done(block_group));
5335 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5336 } else {
5337 mutex_lock(&caching_ctl->mutex);
5338
5339 if (start >= caching_ctl->progress) {
5340 ret = add_excluded_extent(root, start, num_bytes);
5341 } else if (start + num_bytes <= caching_ctl->progress) {
5342 ret = btrfs_remove_free_space(block_group,
5343 start, num_bytes);
5344 } else {
5345 num_bytes = caching_ctl->progress - start;
5346 ret = btrfs_remove_free_space(block_group,
5347 start, num_bytes);
5348 if (ret)
5349 goto out_lock;
5350
5351 num_bytes = (start + num_bytes) -
5352 caching_ctl->progress;
5353 start = caching_ctl->progress;
5354 ret = add_excluded_extent(root, start, num_bytes);
5355 }
5356 out_lock:
5357 mutex_unlock(&caching_ctl->mutex);
5358 put_caching_control(caching_ctl);
5359 }
5360 btrfs_put_block_group(block_group);
5361 return ret;
5362 }
5363
5364 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5365 struct extent_buffer *eb)
5366 {
5367 struct btrfs_file_extent_item *item;
5368 struct btrfs_key key;
5369 int found_type;
5370 int i;
5371
5372 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5373 return 0;
5374
5375 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5376 btrfs_item_key_to_cpu(eb, &key, i);
5377 if (key.type != BTRFS_EXTENT_DATA_KEY)
5378 continue;
5379 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5380 found_type = btrfs_file_extent_type(eb, item);
5381 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5382 continue;
5383 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5384 continue;
5385 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5386 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5387 __exclude_logged_extent(log, key.objectid, key.offset);
5388 }
5389
5390 return 0;
5391 }
5392
5393 /**
5394 * btrfs_update_reserved_bytes - update the block_group and space info counters
5395 * @cache: The cache we are manipulating
5396 * @num_bytes: The number of bytes in question
5397 * @reserve: One of the reservation enums
5398 *
5399 * This is called by the allocator when it reserves space, or by somebody who is
5400 * freeing space that was never actually used on disk. For example if you
5401 * reserve some space for a new leaf in transaction A and before transaction A
5402 * commits you free that leaf, you call this with reserve set to 0 in order to
5403 * clear the reservation.
5404 *
5405 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5406 * ENOSPC accounting. For data we handle the reservation through clearing the
5407 * delalloc bits in the io_tree. We have to do this since we could end up
5408 * allocating less disk space for the amount of data we have reserved in the
5409 * case of compression.
5410 *
5411 * If this is a reservation and the block group has become read only we cannot
5412 * make the reservation and return -EAGAIN, otherwise this function always
5413 * succeeds.
5414 */
5415 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5416 u64 num_bytes, int reserve)
5417 {
5418 struct btrfs_space_info *space_info = cache->space_info;
5419 int ret = 0;
5420
5421 spin_lock(&space_info->lock);
5422 spin_lock(&cache->lock);
5423 if (reserve != RESERVE_FREE) {
5424 if (cache->ro) {
5425 ret = -EAGAIN;
5426 } else {
5427 cache->reserved += num_bytes;
5428 space_info->bytes_reserved += num_bytes;
5429 if (reserve == RESERVE_ALLOC) {
5430 trace_btrfs_space_reservation(cache->fs_info,
5431 "space_info", space_info->flags,
5432 num_bytes, 0);
5433 space_info->bytes_may_use -= num_bytes;
5434 }
5435 }
5436 } else {
5437 if (cache->ro)
5438 space_info->bytes_readonly += num_bytes;
5439 cache->reserved -= num_bytes;
5440 space_info->bytes_reserved -= num_bytes;
5441 space_info->reservation_progress++;
5442 }
5443 spin_unlock(&cache->lock);
5444 spin_unlock(&space_info->lock);
5445 return ret;
5446 }
5447
5448 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5449 struct btrfs_root *root)
5450 {
5451 struct btrfs_fs_info *fs_info = root->fs_info;
5452 struct btrfs_caching_control *next;
5453 struct btrfs_caching_control *caching_ctl;
5454 struct btrfs_block_group_cache *cache;
5455 struct btrfs_space_info *space_info;
5456
5457 down_write(&fs_info->extent_commit_sem);
5458
5459 list_for_each_entry_safe(caching_ctl, next,
5460 &fs_info->caching_block_groups, list) {
5461 cache = caching_ctl->block_group;
5462 if (block_group_cache_done(cache)) {
5463 cache->last_byte_to_unpin = (u64)-1;
5464 list_del_init(&caching_ctl->list);
5465 put_caching_control(caching_ctl);
5466 } else {
5467 cache->last_byte_to_unpin = caching_ctl->progress;
5468 }
5469 }
5470
5471 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5472 fs_info->pinned_extents = &fs_info->freed_extents[1];
5473 else
5474 fs_info->pinned_extents = &fs_info->freed_extents[0];
5475
5476 up_write(&fs_info->extent_commit_sem);
5477
5478 list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5479 percpu_counter_set(&space_info->total_bytes_pinned, 0);
5480
5481 update_global_block_rsv(fs_info);
5482 }
5483
5484 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5485 {
5486 struct btrfs_fs_info *fs_info = root->fs_info;
5487 struct btrfs_block_group_cache *cache = NULL;
5488 struct btrfs_space_info *space_info;
5489 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5490 u64 len;
5491 bool readonly;
5492
5493 while (start <= end) {
5494 readonly = false;
5495 if (!cache ||
5496 start >= cache->key.objectid + cache->key.offset) {
5497 if (cache)
5498 btrfs_put_block_group(cache);
5499 cache = btrfs_lookup_block_group(fs_info, start);
5500 BUG_ON(!cache); /* Logic error */
5501 }
5502
5503 len = cache->key.objectid + cache->key.offset - start;
5504 len = min(len, end + 1 - start);
5505
5506 if (start < cache->last_byte_to_unpin) {
5507 len = min(len, cache->last_byte_to_unpin - start);
5508 btrfs_add_free_space(cache, start, len);
5509 }
5510
5511 start += len;
5512 space_info = cache->space_info;
5513
5514 spin_lock(&space_info->lock);
5515 spin_lock(&cache->lock);
5516 cache->pinned -= len;
5517 space_info->bytes_pinned -= len;
5518 if (cache->ro) {
5519 space_info->bytes_readonly += len;
5520 readonly = true;
5521 }
5522 spin_unlock(&cache->lock);
5523 if (!readonly && global_rsv->space_info == space_info) {
5524 spin_lock(&global_rsv->lock);
5525 if (!global_rsv->full) {
5526 len = min(len, global_rsv->size -
5527 global_rsv->reserved);
5528 global_rsv->reserved += len;
5529 space_info->bytes_may_use += len;
5530 if (global_rsv->reserved >= global_rsv->size)
5531 global_rsv->full = 1;
5532 }
5533 spin_unlock(&global_rsv->lock);
5534 }
5535 spin_unlock(&space_info->lock);
5536 }
5537
5538 if (cache)
5539 btrfs_put_block_group(cache);
5540 return 0;
5541 }
5542
5543 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5544 struct btrfs_root *root)
5545 {
5546 struct btrfs_fs_info *fs_info = root->fs_info;
5547 struct extent_io_tree *unpin;
5548 u64 start;
5549 u64 end;
5550 int ret;
5551
5552 if (trans->aborted)
5553 return 0;
5554
5555 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5556 unpin = &fs_info->freed_extents[1];
5557 else
5558 unpin = &fs_info->freed_extents[0];
5559
5560 while (1) {
5561 ret = find_first_extent_bit(unpin, 0, &start, &end,
5562 EXTENT_DIRTY, NULL);
5563 if (ret)
5564 break;
5565
5566 if (btrfs_test_opt(root, DISCARD))
5567 ret = btrfs_discard_extent(root, start,
5568 end + 1 - start, NULL);
5569
5570 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5571 unpin_extent_range(root, start, end);
5572 cond_resched();
5573 }
5574
5575 return 0;
5576 }
5577
5578 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5579 u64 owner, u64 root_objectid)
5580 {
5581 struct btrfs_space_info *space_info;
5582 u64 flags;
5583
5584 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5585 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5586 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5587 else
5588 flags = BTRFS_BLOCK_GROUP_METADATA;
5589 } else {
5590 flags = BTRFS_BLOCK_GROUP_DATA;
5591 }
5592
5593 space_info = __find_space_info(fs_info, flags);
5594 BUG_ON(!space_info); /* Logic bug */
5595 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5596 }
5597
5598
5599 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5600 struct btrfs_root *root,
5601 u64 bytenr, u64 num_bytes, u64 parent,
5602 u64 root_objectid, u64 owner_objectid,
5603 u64 owner_offset, int refs_to_drop,
5604 struct btrfs_delayed_extent_op *extent_op)
5605 {
5606 struct btrfs_key key;
5607 struct btrfs_path *path;
5608 struct btrfs_fs_info *info = root->fs_info;
5609 struct btrfs_root *extent_root = info->extent_root;
5610 struct extent_buffer *leaf;
5611 struct btrfs_extent_item *ei;
5612 struct btrfs_extent_inline_ref *iref;
5613 int ret;
5614 int is_data;
5615 int extent_slot = 0;
5616 int found_extent = 0;
5617 int num_to_del = 1;
5618 u32 item_size;
5619 u64 refs;
5620 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5621 SKINNY_METADATA);
5622
5623 path = btrfs_alloc_path();
5624 if (!path)
5625 return -ENOMEM;
5626
5627 path->reada = 1;
5628 path->leave_spinning = 1;
5629
5630 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5631 BUG_ON(!is_data && refs_to_drop != 1);
5632
5633 if (is_data)
5634 skinny_metadata = 0;
5635
5636 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5637 bytenr, num_bytes, parent,
5638 root_objectid, owner_objectid,
5639 owner_offset);
5640 if (ret == 0) {
5641 extent_slot = path->slots[0];
5642 while (extent_slot >= 0) {
5643 btrfs_item_key_to_cpu(path->nodes[0], &key,
5644 extent_slot);
5645 if (key.objectid != bytenr)
5646 break;
5647 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5648 key.offset == num_bytes) {
5649 found_extent = 1;
5650 break;
5651 }
5652 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5653 key.offset == owner_objectid) {
5654 found_extent = 1;
5655 break;
5656 }
5657 if (path->slots[0] - extent_slot > 5)
5658 break;
5659 extent_slot--;
5660 }
5661 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5662 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5663 if (found_extent && item_size < sizeof(*ei))
5664 found_extent = 0;
5665 #endif
5666 if (!found_extent) {
5667 BUG_ON(iref);
5668 ret = remove_extent_backref(trans, extent_root, path,
5669 NULL, refs_to_drop,
5670 is_data);
5671 if (ret) {
5672 btrfs_abort_transaction(trans, extent_root, ret);
5673 goto out;
5674 }
5675 btrfs_release_path(path);
5676 path->leave_spinning = 1;
5677
5678 key.objectid = bytenr;
5679 key.type = BTRFS_EXTENT_ITEM_KEY;
5680 key.offset = num_bytes;
5681
5682 if (!is_data && skinny_metadata) {
5683 key.type = BTRFS_METADATA_ITEM_KEY;
5684 key.offset = owner_objectid;
5685 }
5686
5687 ret = btrfs_search_slot(trans, extent_root,
5688 &key, path, -1, 1);
5689 if (ret > 0 && skinny_metadata && path->slots[0]) {
5690 /*
5691 * Couldn't find our skinny metadata item,
5692 * see if we have ye olde extent item.
5693 */
5694 path->slots[0]--;
5695 btrfs_item_key_to_cpu(path->nodes[0], &key,
5696 path->slots[0]);
5697 if (key.objectid == bytenr &&
5698 key.type == BTRFS_EXTENT_ITEM_KEY &&
5699 key.offset == num_bytes)
5700 ret = 0;
5701 }
5702
5703 if (ret > 0 && skinny_metadata) {
5704 skinny_metadata = false;
5705 key.type = BTRFS_EXTENT_ITEM_KEY;
5706 key.offset = num_bytes;
5707 btrfs_release_path(path);
5708 ret = btrfs_search_slot(trans, extent_root,
5709 &key, path, -1, 1);
5710 }
5711
5712 if (ret) {
5713 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5714 ret, (unsigned long long)bytenr);
5715 if (ret > 0)
5716 btrfs_print_leaf(extent_root,
5717 path->nodes[0]);
5718 }
5719 if (ret < 0) {
5720 btrfs_abort_transaction(trans, extent_root, ret);
5721 goto out;
5722 }
5723 extent_slot = path->slots[0];
5724 }
5725 } else if (ret == -ENOENT) {
5726 btrfs_print_leaf(extent_root, path->nodes[0]);
5727 WARN_ON(1);
5728 btrfs_err(info,
5729 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5730 (unsigned long long)bytenr,
5731 (unsigned long long)parent,
5732 (unsigned long long)root_objectid,
5733 (unsigned long long)owner_objectid,
5734 (unsigned long long)owner_offset);
5735 } else {
5736 btrfs_abort_transaction(trans, extent_root, ret);
5737 goto out;
5738 }
5739
5740 leaf = path->nodes[0];
5741 item_size = btrfs_item_size_nr(leaf, extent_slot);
5742 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5743 if (item_size < sizeof(*ei)) {
5744 BUG_ON(found_extent || extent_slot != path->slots[0]);
5745 ret = convert_extent_item_v0(trans, extent_root, path,
5746 owner_objectid, 0);
5747 if (ret < 0) {
5748 btrfs_abort_transaction(trans, extent_root, ret);
5749 goto out;
5750 }
5751
5752 btrfs_release_path(path);
5753 path->leave_spinning = 1;
5754
5755 key.objectid = bytenr;
5756 key.type = BTRFS_EXTENT_ITEM_KEY;
5757 key.offset = num_bytes;
5758
5759 ret = btrfs_search_slot(trans, extent_root, &key, path,
5760 -1, 1);
5761 if (ret) {
5762 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5763 ret, (unsigned long long)bytenr);
5764 btrfs_print_leaf(extent_root, path->nodes[0]);
5765 }
5766 if (ret < 0) {
5767 btrfs_abort_transaction(trans, extent_root, ret);
5768 goto out;
5769 }
5770
5771 extent_slot = path->slots[0];
5772 leaf = path->nodes[0];
5773 item_size = btrfs_item_size_nr(leaf, extent_slot);
5774 }
5775 #endif
5776 BUG_ON(item_size < sizeof(*ei));
5777 ei = btrfs_item_ptr(leaf, extent_slot,
5778 struct btrfs_extent_item);
5779 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5780 key.type == BTRFS_EXTENT_ITEM_KEY) {
5781 struct btrfs_tree_block_info *bi;
5782 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5783 bi = (struct btrfs_tree_block_info *)(ei + 1);
5784 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5785 }
5786
5787 refs = btrfs_extent_refs(leaf, ei);
5788 if (refs < refs_to_drop) {
5789 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5790 "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5791 ret = -EINVAL;
5792 btrfs_abort_transaction(trans, extent_root, ret);
5793 goto out;
5794 }
5795 refs -= refs_to_drop;
5796
5797 if (refs > 0) {
5798 if (extent_op)
5799 __run_delayed_extent_op(extent_op, leaf, ei);
5800 /*
5801 * In the case of inline back ref, reference count will
5802 * be updated by remove_extent_backref
5803 */
5804 if (iref) {
5805 BUG_ON(!found_extent);
5806 } else {
5807 btrfs_set_extent_refs(leaf, ei, refs);
5808 btrfs_mark_buffer_dirty(leaf);
5809 }
5810 if (found_extent) {
5811 ret = remove_extent_backref(trans, extent_root, path,
5812 iref, refs_to_drop,
5813 is_data);
5814 if (ret) {
5815 btrfs_abort_transaction(trans, extent_root, ret);
5816 goto out;
5817 }
5818 }
5819 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5820 root_objectid);
5821 } else {
5822 if (found_extent) {
5823 BUG_ON(is_data && refs_to_drop !=
5824 extent_data_ref_count(root, path, iref));
5825 if (iref) {
5826 BUG_ON(path->slots[0] != extent_slot);
5827 } else {
5828 BUG_ON(path->slots[0] != extent_slot + 1);
5829 path->slots[0] = extent_slot;
5830 num_to_del = 2;
5831 }
5832 }
5833
5834 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5835 num_to_del);
5836 if (ret) {
5837 btrfs_abort_transaction(trans, extent_root, ret);
5838 goto out;
5839 }
5840 btrfs_release_path(path);
5841
5842 if (is_data) {
5843 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5844 if (ret) {
5845 btrfs_abort_transaction(trans, extent_root, ret);
5846 goto out;
5847 }
5848 }
5849
5850 ret = update_block_group(root, bytenr, num_bytes, 0);
5851 if (ret) {
5852 btrfs_abort_transaction(trans, extent_root, ret);
5853 goto out;
5854 }
5855 }
5856 out:
5857 btrfs_free_path(path);
5858 return ret;
5859 }
5860
5861 /*
5862 * when we free an block, it is possible (and likely) that we free the last
5863 * delayed ref for that extent as well. This searches the delayed ref tree for
5864 * a given extent, and if there are no other delayed refs to be processed, it
5865 * removes it from the tree.
5866 */
5867 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5868 struct btrfs_root *root, u64 bytenr)
5869 {
5870 struct btrfs_delayed_ref_head *head;
5871 struct btrfs_delayed_ref_root *delayed_refs;
5872 struct btrfs_delayed_ref_node *ref;
5873 struct rb_node *node;
5874 int ret = 0;
5875
5876 delayed_refs = &trans->transaction->delayed_refs;
5877 spin_lock(&delayed_refs->lock);
5878 head = btrfs_find_delayed_ref_head(trans, bytenr);
5879 if (!head)
5880 goto out;
5881
5882 node = rb_prev(&head->node.rb_node);
5883 if (!node)
5884 goto out;
5885
5886 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5887
5888 /* there are still entries for this ref, we can't drop it */
5889 if (ref->bytenr == bytenr)
5890 goto out;
5891
5892 if (head->extent_op) {
5893 if (!head->must_insert_reserved)
5894 goto out;
5895 btrfs_free_delayed_extent_op(head->extent_op);
5896 head->extent_op = NULL;
5897 }
5898
5899 /*
5900 * waiting for the lock here would deadlock. If someone else has it
5901 * locked they are already in the process of dropping it anyway
5902 */
5903 if (!mutex_trylock(&head->mutex))
5904 goto out;
5905
5906 /*
5907 * at this point we have a head with no other entries. Go
5908 * ahead and process it.
5909 */
5910 head->node.in_tree = 0;
5911 rb_erase(&head->node.rb_node, &delayed_refs->root);
5912
5913 delayed_refs->num_entries--;
5914
5915 /*
5916 * we don't take a ref on the node because we're removing it from the
5917 * tree, so we just steal the ref the tree was holding.
5918 */
5919 delayed_refs->num_heads--;
5920 if (list_empty(&head->cluster))
5921 delayed_refs->num_heads_ready--;
5922
5923 list_del_init(&head->cluster);
5924 spin_unlock(&delayed_refs->lock);
5925
5926 BUG_ON(head->extent_op);
5927 if (head->must_insert_reserved)
5928 ret = 1;
5929
5930 mutex_unlock(&head->mutex);
5931 btrfs_put_delayed_ref(&head->node);
5932 return ret;
5933 out:
5934 spin_unlock(&delayed_refs->lock);
5935 return 0;
5936 }
5937
5938 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5939 struct btrfs_root *root,
5940 struct extent_buffer *buf,
5941 u64 parent, int last_ref)
5942 {
5943 struct btrfs_block_group_cache *cache = NULL;
5944 int pin = 1;
5945 int ret;
5946
5947 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5948 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5949 buf->start, buf->len,
5950 parent, root->root_key.objectid,
5951 btrfs_header_level(buf),
5952 BTRFS_DROP_DELAYED_REF, NULL, 0);
5953 BUG_ON(ret); /* -ENOMEM */
5954 }
5955
5956 if (!last_ref)
5957 return;
5958
5959 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5960
5961 if (btrfs_header_generation(buf) == trans->transid) {
5962 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5963 ret = check_ref_cleanup(trans, root, buf->start);
5964 if (!ret)
5965 goto out;
5966 }
5967
5968 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5969 pin_down_extent(root, cache, buf->start, buf->len, 1);
5970 goto out;
5971 }
5972
5973 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5974
5975 btrfs_add_free_space(cache, buf->start, buf->len);
5976 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5977 pin = 0;
5978 }
5979 out:
5980 if (pin)
5981 add_pinned_bytes(root->fs_info, buf->len,
5982 btrfs_header_level(buf),
5983 root->root_key.objectid);
5984
5985 /*
5986 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5987 * anymore.
5988 */
5989 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5990 btrfs_put_block_group(cache);
5991 }
5992
5993 /* Can return -ENOMEM */
5994 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5995 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5996 u64 owner, u64 offset, int for_cow)
5997 {
5998 int ret;
5999 struct btrfs_fs_info *fs_info = root->fs_info;
6000
6001 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6002
6003 /*
6004 * tree log blocks never actually go into the extent allocation
6005 * tree, just update pinning info and exit early.
6006 */
6007 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6008 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6009 /* unlocks the pinned mutex */
6010 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6011 ret = 0;
6012 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6013 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6014 num_bytes,
6015 parent, root_objectid, (int)owner,
6016 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
6017 } else {
6018 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6019 num_bytes,
6020 parent, root_objectid, owner,
6021 offset, BTRFS_DROP_DELAYED_REF,
6022 NULL, for_cow);
6023 }
6024 return ret;
6025 }
6026
6027 static u64 stripe_align(struct btrfs_root *root,
6028 struct btrfs_block_group_cache *cache,
6029 u64 val, u64 num_bytes)
6030 {
6031 u64 ret = ALIGN(val, root->stripesize);
6032 return ret;
6033 }
6034
6035 /*
6036 * when we wait for progress in the block group caching, its because
6037 * our allocation attempt failed at least once. So, we must sleep
6038 * and let some progress happen before we try again.
6039 *
6040 * This function will sleep at least once waiting for new free space to
6041 * show up, and then it will check the block group free space numbers
6042 * for our min num_bytes. Another option is to have it go ahead
6043 * and look in the rbtree for a free extent of a given size, but this
6044 * is a good start.
6045 *
6046 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6047 * any of the information in this block group.
6048 */
6049 static noinline void
6050 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6051 u64 num_bytes)
6052 {
6053 struct btrfs_caching_control *caching_ctl;
6054
6055 caching_ctl = get_caching_control(cache);
6056 if (!caching_ctl)
6057 return;
6058
6059 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6060 (cache->free_space_ctl->free_space >= num_bytes));
6061
6062 put_caching_control(caching_ctl);
6063 }
6064
6065 static noinline int
6066 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6067 {
6068 struct btrfs_caching_control *caching_ctl;
6069 int ret = 0;
6070
6071 caching_ctl = get_caching_control(cache);
6072 if (!caching_ctl)
6073 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6074
6075 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6076 if (cache->cached == BTRFS_CACHE_ERROR)
6077 ret = -EIO;
6078 put_caching_control(caching_ctl);
6079 return ret;
6080 }
6081
6082 int __get_raid_index(u64 flags)
6083 {
6084 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6085 return BTRFS_RAID_RAID10;
6086 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6087 return BTRFS_RAID_RAID1;
6088 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6089 return BTRFS_RAID_DUP;
6090 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6091 return BTRFS_RAID_RAID0;
6092 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6093 return BTRFS_RAID_RAID5;
6094 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6095 return BTRFS_RAID_RAID6;
6096
6097 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6098 }
6099
6100 static int get_block_group_index(struct btrfs_block_group_cache *cache)
6101 {
6102 return __get_raid_index(cache->flags);
6103 }
6104
6105 enum btrfs_loop_type {
6106 LOOP_CACHING_NOWAIT = 0,
6107 LOOP_CACHING_WAIT = 1,
6108 LOOP_ALLOC_CHUNK = 2,
6109 LOOP_NO_EMPTY_SIZE = 3,
6110 };
6111
6112 /*
6113 * walks the btree of allocated extents and find a hole of a given size.
6114 * The key ins is changed to record the hole:
6115 * ins->objectid == block start
6116 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6117 * ins->offset == number of blocks
6118 * Any available blocks before search_start are skipped.
6119 */
6120 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
6121 struct btrfs_root *orig_root,
6122 u64 num_bytes, u64 empty_size,
6123 u64 hint_byte, struct btrfs_key *ins,
6124 u64 flags)
6125 {
6126 int ret = 0;
6127 struct btrfs_root *root = orig_root->fs_info->extent_root;
6128 struct btrfs_free_cluster *last_ptr = NULL;
6129 struct btrfs_block_group_cache *block_group = NULL;
6130 struct btrfs_block_group_cache *used_block_group;
6131 u64 search_start = 0;
6132 int empty_cluster = 2 * 1024 * 1024;
6133 struct btrfs_space_info *space_info;
6134 int loop = 0;
6135 int index = __get_raid_index(flags);
6136 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6137 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6138 bool found_uncached_bg = false;
6139 bool failed_cluster_refill = false;
6140 bool failed_alloc = false;
6141 bool use_cluster = true;
6142 bool have_caching_bg = false;
6143
6144 WARN_ON(num_bytes < root->sectorsize);
6145 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6146 ins->objectid = 0;
6147 ins->offset = 0;
6148
6149 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6150
6151 space_info = __find_space_info(root->fs_info, flags);
6152 if (!space_info) {
6153 btrfs_err(root->fs_info, "No space info for %llu", flags);
6154 return -ENOSPC;
6155 }
6156
6157 /*
6158 * If the space info is for both data and metadata it means we have a
6159 * small filesystem and we can't use the clustering stuff.
6160 */
6161 if (btrfs_mixed_space_info(space_info))
6162 use_cluster = false;
6163
6164 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6165 last_ptr = &root->fs_info->meta_alloc_cluster;
6166 if (!btrfs_test_opt(root, SSD))
6167 empty_cluster = 64 * 1024;
6168 }
6169
6170 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6171 btrfs_test_opt(root, SSD)) {
6172 last_ptr = &root->fs_info->data_alloc_cluster;
6173 }
6174
6175 if (last_ptr) {
6176 spin_lock(&last_ptr->lock);
6177 if (last_ptr->block_group)
6178 hint_byte = last_ptr->window_start;
6179 spin_unlock(&last_ptr->lock);
6180 }
6181
6182 search_start = max(search_start, first_logical_byte(root, 0));
6183 search_start = max(search_start, hint_byte);
6184
6185 if (!last_ptr)
6186 empty_cluster = 0;
6187
6188 if (search_start == hint_byte) {
6189 block_group = btrfs_lookup_block_group(root->fs_info,
6190 search_start);
6191 used_block_group = block_group;
6192 /*
6193 * we don't want to use the block group if it doesn't match our
6194 * allocation bits, or if its not cached.
6195 *
6196 * However if we are re-searching with an ideal block group
6197 * picked out then we don't care that the block group is cached.
6198 */
6199 if (block_group && block_group_bits(block_group, flags) &&
6200 block_group->cached != BTRFS_CACHE_NO) {
6201 down_read(&space_info->groups_sem);
6202 if (list_empty(&block_group->list) ||
6203 block_group->ro) {
6204 /*
6205 * someone is removing this block group,
6206 * we can't jump into the have_block_group
6207 * target because our list pointers are not
6208 * valid
6209 */
6210 btrfs_put_block_group(block_group);
6211 up_read(&space_info->groups_sem);
6212 } else {
6213 index = get_block_group_index(block_group);
6214 goto have_block_group;
6215 }
6216 } else if (block_group) {
6217 btrfs_put_block_group(block_group);
6218 }
6219 }
6220 search:
6221 have_caching_bg = false;
6222 down_read(&space_info->groups_sem);
6223 list_for_each_entry(block_group, &space_info->block_groups[index],
6224 list) {
6225 u64 offset;
6226 int cached;
6227
6228 used_block_group = block_group;
6229 btrfs_get_block_group(block_group);
6230 search_start = block_group->key.objectid;
6231
6232 /*
6233 * this can happen if we end up cycling through all the
6234 * raid types, but we want to make sure we only allocate
6235 * for the proper type.
6236 */
6237 if (!block_group_bits(block_group, flags)) {
6238 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6239 BTRFS_BLOCK_GROUP_RAID1 |
6240 BTRFS_BLOCK_GROUP_RAID5 |
6241 BTRFS_BLOCK_GROUP_RAID6 |
6242 BTRFS_BLOCK_GROUP_RAID10;
6243
6244 /*
6245 * if they asked for extra copies and this block group
6246 * doesn't provide them, bail. This does allow us to
6247 * fill raid0 from raid1.
6248 */
6249 if ((flags & extra) && !(block_group->flags & extra))
6250 goto loop;
6251 }
6252
6253 have_block_group:
6254 cached = block_group_cache_done(block_group);
6255 if (unlikely(!cached)) {
6256 found_uncached_bg = true;
6257 ret = cache_block_group(block_group, 0);
6258 BUG_ON(ret < 0);
6259 ret = 0;
6260 }
6261
6262 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6263 goto loop;
6264 if (unlikely(block_group->ro))
6265 goto loop;
6266
6267 /*
6268 * Ok we want to try and use the cluster allocator, so
6269 * lets look there
6270 */
6271 if (last_ptr) {
6272 unsigned long aligned_cluster;
6273 /*
6274 * the refill lock keeps out other
6275 * people trying to start a new cluster
6276 */
6277 spin_lock(&last_ptr->refill_lock);
6278 used_block_group = last_ptr->block_group;
6279 if (used_block_group != block_group &&
6280 (!used_block_group ||
6281 used_block_group->ro ||
6282 !block_group_bits(used_block_group, flags))) {
6283 used_block_group = block_group;
6284 goto refill_cluster;
6285 }
6286
6287 if (used_block_group != block_group)
6288 btrfs_get_block_group(used_block_group);
6289
6290 offset = btrfs_alloc_from_cluster(used_block_group,
6291 last_ptr, num_bytes, used_block_group->key.objectid);
6292 if (offset) {
6293 /* we have a block, we're done */
6294 spin_unlock(&last_ptr->refill_lock);
6295 trace_btrfs_reserve_extent_cluster(root,
6296 block_group, search_start, num_bytes);
6297 goto checks;
6298 }
6299
6300 WARN_ON(last_ptr->block_group != used_block_group);
6301 if (used_block_group != block_group) {
6302 btrfs_put_block_group(used_block_group);
6303 used_block_group = block_group;
6304 }
6305 refill_cluster:
6306 BUG_ON(used_block_group != block_group);
6307 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6308 * set up a new clusters, so lets just skip it
6309 * and let the allocator find whatever block
6310 * it can find. If we reach this point, we
6311 * will have tried the cluster allocator
6312 * plenty of times and not have found
6313 * anything, so we are likely way too
6314 * fragmented for the clustering stuff to find
6315 * anything.
6316 *
6317 * However, if the cluster is taken from the
6318 * current block group, release the cluster
6319 * first, so that we stand a better chance of
6320 * succeeding in the unclustered
6321 * allocation. */
6322 if (loop >= LOOP_NO_EMPTY_SIZE &&
6323 last_ptr->block_group != block_group) {
6324 spin_unlock(&last_ptr->refill_lock);
6325 goto unclustered_alloc;
6326 }
6327
6328 /*
6329 * this cluster didn't work out, free it and
6330 * start over
6331 */
6332 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6333
6334 if (loop >= LOOP_NO_EMPTY_SIZE) {
6335 spin_unlock(&last_ptr->refill_lock);
6336 goto unclustered_alloc;
6337 }
6338
6339 aligned_cluster = max_t(unsigned long,
6340 empty_cluster + empty_size,
6341 block_group->full_stripe_len);
6342
6343 /* allocate a cluster in this block group */
6344 ret = btrfs_find_space_cluster(trans, root,
6345 block_group, last_ptr,
6346 search_start, num_bytes,
6347 aligned_cluster);
6348 if (ret == 0) {
6349 /*
6350 * now pull our allocation out of this
6351 * cluster
6352 */
6353 offset = btrfs_alloc_from_cluster(block_group,
6354 last_ptr, num_bytes,
6355 search_start);
6356 if (offset) {
6357 /* we found one, proceed */
6358 spin_unlock(&last_ptr->refill_lock);
6359 trace_btrfs_reserve_extent_cluster(root,
6360 block_group, search_start,
6361 num_bytes);
6362 goto checks;
6363 }
6364 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6365 && !failed_cluster_refill) {
6366 spin_unlock(&last_ptr->refill_lock);
6367
6368 failed_cluster_refill = true;
6369 wait_block_group_cache_progress(block_group,
6370 num_bytes + empty_cluster + empty_size);
6371 goto have_block_group;
6372 }
6373
6374 /*
6375 * at this point we either didn't find a cluster
6376 * or we weren't able to allocate a block from our
6377 * cluster. Free the cluster we've been trying
6378 * to use, and go to the next block group
6379 */
6380 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6381 spin_unlock(&last_ptr->refill_lock);
6382 goto loop;
6383 }
6384
6385 unclustered_alloc:
6386 spin_lock(&block_group->free_space_ctl->tree_lock);
6387 if (cached &&
6388 block_group->free_space_ctl->free_space <
6389 num_bytes + empty_cluster + empty_size) {
6390 spin_unlock(&block_group->free_space_ctl->tree_lock);
6391 goto loop;
6392 }
6393 spin_unlock(&block_group->free_space_ctl->tree_lock);
6394
6395 offset = btrfs_find_space_for_alloc(block_group, search_start,
6396 num_bytes, empty_size);
6397 /*
6398 * If we didn't find a chunk, and we haven't failed on this
6399 * block group before, and this block group is in the middle of
6400 * caching and we are ok with waiting, then go ahead and wait
6401 * for progress to be made, and set failed_alloc to true.
6402 *
6403 * If failed_alloc is true then we've already waited on this
6404 * block group once and should move on to the next block group.
6405 */
6406 if (!offset && !failed_alloc && !cached &&
6407 loop > LOOP_CACHING_NOWAIT) {
6408 wait_block_group_cache_progress(block_group,
6409 num_bytes + empty_size);
6410 failed_alloc = true;
6411 goto have_block_group;
6412 } else if (!offset) {
6413 if (!cached)
6414 have_caching_bg = true;
6415 goto loop;
6416 }
6417 checks:
6418 search_start = stripe_align(root, used_block_group,
6419 offset, num_bytes);
6420
6421 /* move on to the next group */
6422 if (search_start + num_bytes >
6423 used_block_group->key.objectid + used_block_group->key.offset) {
6424 btrfs_add_free_space(used_block_group, offset, num_bytes);
6425 goto loop;
6426 }
6427
6428 if (offset < search_start)
6429 btrfs_add_free_space(used_block_group, offset,
6430 search_start - offset);
6431 BUG_ON(offset > search_start);
6432
6433 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
6434 alloc_type);
6435 if (ret == -EAGAIN) {
6436 btrfs_add_free_space(used_block_group, offset, num_bytes);
6437 goto loop;
6438 }
6439
6440 /* we are all good, lets return */
6441 ins->objectid = search_start;
6442 ins->offset = num_bytes;
6443
6444 trace_btrfs_reserve_extent(orig_root, block_group,
6445 search_start, num_bytes);
6446 if (used_block_group != block_group)
6447 btrfs_put_block_group(used_block_group);
6448 btrfs_put_block_group(block_group);
6449 break;
6450 loop:
6451 failed_cluster_refill = false;
6452 failed_alloc = false;
6453 BUG_ON(index != get_block_group_index(block_group));
6454 if (used_block_group != block_group)
6455 btrfs_put_block_group(used_block_group);
6456 btrfs_put_block_group(block_group);
6457 }
6458 up_read(&space_info->groups_sem);
6459
6460 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6461 goto search;
6462
6463 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6464 goto search;
6465
6466 /*
6467 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6468 * caching kthreads as we move along
6469 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6470 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6471 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6472 * again
6473 */
6474 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6475 index = 0;
6476 loop++;
6477 if (loop == LOOP_ALLOC_CHUNK) {
6478 ret = do_chunk_alloc(trans, root, flags,
6479 CHUNK_ALLOC_FORCE);
6480 /*
6481 * Do not bail out on ENOSPC since we
6482 * can do more things.
6483 */
6484 if (ret < 0 && ret != -ENOSPC) {
6485 btrfs_abort_transaction(trans,
6486 root, ret);
6487 goto out;
6488 }
6489 }
6490
6491 if (loop == LOOP_NO_EMPTY_SIZE) {
6492 empty_size = 0;
6493 empty_cluster = 0;
6494 }
6495
6496 goto search;
6497 } else if (!ins->objectid) {
6498 ret = -ENOSPC;
6499 } else if (ins->objectid) {
6500 ret = 0;
6501 }
6502 out:
6503
6504 return ret;
6505 }
6506
6507 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6508 int dump_block_groups)
6509 {
6510 struct btrfs_block_group_cache *cache;
6511 int index = 0;
6512
6513 spin_lock(&info->lock);
6514 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
6515 (unsigned long long)info->flags,
6516 (unsigned long long)(info->total_bytes - info->bytes_used -
6517 info->bytes_pinned - info->bytes_reserved -
6518 info->bytes_readonly),
6519 (info->full) ? "" : "not ");
6520 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
6521 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6522 (unsigned long long)info->total_bytes,
6523 (unsigned long long)info->bytes_used,
6524 (unsigned long long)info->bytes_pinned,
6525 (unsigned long long)info->bytes_reserved,
6526 (unsigned long long)info->bytes_may_use,
6527 (unsigned long long)info->bytes_readonly);
6528 spin_unlock(&info->lock);
6529
6530 if (!dump_block_groups)
6531 return;
6532
6533 down_read(&info->groups_sem);
6534 again:
6535 list_for_each_entry(cache, &info->block_groups[index], list) {
6536 spin_lock(&cache->lock);
6537 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
6538 (unsigned long long)cache->key.objectid,
6539 (unsigned long long)cache->key.offset,
6540 (unsigned long long)btrfs_block_group_used(&cache->item),
6541 (unsigned long long)cache->pinned,
6542 (unsigned long long)cache->reserved,
6543 cache->ro ? "[readonly]" : "");
6544 btrfs_dump_free_space(cache, bytes);
6545 spin_unlock(&cache->lock);
6546 }
6547 if (++index < BTRFS_NR_RAID_TYPES)
6548 goto again;
6549 up_read(&info->groups_sem);
6550 }
6551
6552 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
6553 struct btrfs_root *root,
6554 u64 num_bytes, u64 min_alloc_size,
6555 u64 empty_size, u64 hint_byte,
6556 struct btrfs_key *ins, int is_data)
6557 {
6558 bool final_tried = false;
6559 u64 flags;
6560 int ret;
6561
6562 flags = btrfs_get_alloc_profile(root, is_data);
6563 again:
6564 WARN_ON(num_bytes < root->sectorsize);
6565 ret = find_free_extent(trans, root, num_bytes, empty_size,
6566 hint_byte, ins, flags);
6567
6568 if (ret == -ENOSPC) {
6569 if (!final_tried) {
6570 num_bytes = num_bytes >> 1;
6571 num_bytes = round_down(num_bytes, root->sectorsize);
6572 num_bytes = max(num_bytes, min_alloc_size);
6573 if (num_bytes == min_alloc_size)
6574 final_tried = true;
6575 goto again;
6576 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6577 struct btrfs_space_info *sinfo;
6578
6579 sinfo = __find_space_info(root->fs_info, flags);
6580 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6581 (unsigned long long)flags,
6582 (unsigned long long)num_bytes);
6583 if (sinfo)
6584 dump_space_info(sinfo, num_bytes, 1);
6585 }
6586 }
6587
6588 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6589
6590 return ret;
6591 }
6592
6593 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6594 u64 start, u64 len, int pin)
6595 {
6596 struct btrfs_block_group_cache *cache;
6597 int ret = 0;
6598
6599 cache = btrfs_lookup_block_group(root->fs_info, start);
6600 if (!cache) {
6601 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6602 (unsigned long long)start);
6603 return -ENOSPC;
6604 }
6605
6606 if (btrfs_test_opt(root, DISCARD))
6607 ret = btrfs_discard_extent(root, start, len, NULL);
6608
6609 if (pin)
6610 pin_down_extent(root, cache, start, len, 1);
6611 else {
6612 btrfs_add_free_space(cache, start, len);
6613 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6614 }
6615 btrfs_put_block_group(cache);
6616
6617 trace_btrfs_reserved_extent_free(root, start, len);
6618
6619 return ret;
6620 }
6621
6622 int btrfs_free_reserved_extent(struct btrfs_root *root,
6623 u64 start, u64 len)
6624 {
6625 return __btrfs_free_reserved_extent(root, start, len, 0);
6626 }
6627
6628 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6629 u64 start, u64 len)
6630 {
6631 return __btrfs_free_reserved_extent(root, start, len, 1);
6632 }
6633
6634 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6635 struct btrfs_root *root,
6636 u64 parent, u64 root_objectid,
6637 u64 flags, u64 owner, u64 offset,
6638 struct btrfs_key *ins, int ref_mod)
6639 {
6640 int ret;
6641 struct btrfs_fs_info *fs_info = root->fs_info;
6642 struct btrfs_extent_item *extent_item;
6643 struct btrfs_extent_inline_ref *iref;
6644 struct btrfs_path *path;
6645 struct extent_buffer *leaf;
6646 int type;
6647 u32 size;
6648
6649 if (parent > 0)
6650 type = BTRFS_SHARED_DATA_REF_KEY;
6651 else
6652 type = BTRFS_EXTENT_DATA_REF_KEY;
6653
6654 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6655
6656 path = btrfs_alloc_path();
6657 if (!path)
6658 return -ENOMEM;
6659
6660 path->leave_spinning = 1;
6661 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6662 ins, size);
6663 if (ret) {
6664 btrfs_free_path(path);
6665 return ret;
6666 }
6667
6668 leaf = path->nodes[0];
6669 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6670 struct btrfs_extent_item);
6671 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6672 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6673 btrfs_set_extent_flags(leaf, extent_item,
6674 flags | BTRFS_EXTENT_FLAG_DATA);
6675
6676 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6677 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6678 if (parent > 0) {
6679 struct btrfs_shared_data_ref *ref;
6680 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6681 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6682 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6683 } else {
6684 struct btrfs_extent_data_ref *ref;
6685 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6686 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6687 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6688 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6689 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6690 }
6691
6692 btrfs_mark_buffer_dirty(path->nodes[0]);
6693 btrfs_free_path(path);
6694
6695 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6696 if (ret) { /* -ENOENT, logic error */
6697 btrfs_err(fs_info, "update block group failed for %llu %llu",
6698 (unsigned long long)ins->objectid,
6699 (unsigned long long)ins->offset);
6700 BUG();
6701 }
6702 return ret;
6703 }
6704
6705 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6706 struct btrfs_root *root,
6707 u64 parent, u64 root_objectid,
6708 u64 flags, struct btrfs_disk_key *key,
6709 int level, struct btrfs_key *ins)
6710 {
6711 int ret;
6712 struct btrfs_fs_info *fs_info = root->fs_info;
6713 struct btrfs_extent_item *extent_item;
6714 struct btrfs_tree_block_info *block_info;
6715 struct btrfs_extent_inline_ref *iref;
6716 struct btrfs_path *path;
6717 struct extent_buffer *leaf;
6718 u32 size = sizeof(*extent_item) + sizeof(*iref);
6719 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6720 SKINNY_METADATA);
6721
6722 if (!skinny_metadata)
6723 size += sizeof(*block_info);
6724
6725 path = btrfs_alloc_path();
6726 if (!path)
6727 return -ENOMEM;
6728
6729 path->leave_spinning = 1;
6730 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6731 ins, size);
6732 if (ret) {
6733 btrfs_free_path(path);
6734 return ret;
6735 }
6736
6737 leaf = path->nodes[0];
6738 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6739 struct btrfs_extent_item);
6740 btrfs_set_extent_refs(leaf, extent_item, 1);
6741 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6742 btrfs_set_extent_flags(leaf, extent_item,
6743 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6744
6745 if (skinny_metadata) {
6746 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6747 } else {
6748 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6749 btrfs_set_tree_block_key(leaf, block_info, key);
6750 btrfs_set_tree_block_level(leaf, block_info, level);
6751 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6752 }
6753
6754 if (parent > 0) {
6755 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6756 btrfs_set_extent_inline_ref_type(leaf, iref,
6757 BTRFS_SHARED_BLOCK_REF_KEY);
6758 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6759 } else {
6760 btrfs_set_extent_inline_ref_type(leaf, iref,
6761 BTRFS_TREE_BLOCK_REF_KEY);
6762 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6763 }
6764
6765 btrfs_mark_buffer_dirty(leaf);
6766 btrfs_free_path(path);
6767
6768 ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6769 if (ret) { /* -ENOENT, logic error */
6770 btrfs_err(fs_info, "update block group failed for %llu %llu",
6771 (unsigned long long)ins->objectid,
6772 (unsigned long long)ins->offset);
6773 BUG();
6774 }
6775 return ret;
6776 }
6777
6778 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6779 struct btrfs_root *root,
6780 u64 root_objectid, u64 owner,
6781 u64 offset, struct btrfs_key *ins)
6782 {
6783 int ret;
6784
6785 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6786
6787 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6788 ins->offset, 0,
6789 root_objectid, owner, offset,
6790 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6791 return ret;
6792 }
6793
6794 /*
6795 * this is used by the tree logging recovery code. It records that
6796 * an extent has been allocated and makes sure to clear the free
6797 * space cache bits as well
6798 */
6799 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6800 struct btrfs_root *root,
6801 u64 root_objectid, u64 owner, u64 offset,
6802 struct btrfs_key *ins)
6803 {
6804 int ret;
6805 struct btrfs_block_group_cache *block_group;
6806
6807 /*
6808 * Mixed block groups will exclude before processing the log so we only
6809 * need to do the exlude dance if this fs isn't mixed.
6810 */
6811 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6812 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6813 if (ret)
6814 return ret;
6815 }
6816
6817 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6818 if (!block_group)
6819 return -EINVAL;
6820
6821 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6822 RESERVE_ALLOC_NO_ACCOUNT);
6823 BUG_ON(ret); /* logic error */
6824 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6825 0, owner, offset, ins, 1);
6826 btrfs_put_block_group(block_group);
6827 return ret;
6828 }
6829
6830 static struct extent_buffer *
6831 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6832 u64 bytenr, u32 blocksize, int level)
6833 {
6834 struct extent_buffer *buf;
6835
6836 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6837 if (!buf)
6838 return ERR_PTR(-ENOMEM);
6839 btrfs_set_header_generation(buf, trans->transid);
6840 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6841 btrfs_tree_lock(buf);
6842 clean_tree_block(trans, root, buf);
6843 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6844
6845 btrfs_set_lock_blocking(buf);
6846 btrfs_set_buffer_uptodate(buf);
6847
6848 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6849 /*
6850 * we allow two log transactions at a time, use different
6851 * EXENT bit to differentiate dirty pages.
6852 */
6853 if (root->log_transid % 2 == 0)
6854 set_extent_dirty(&root->dirty_log_pages, buf->start,
6855 buf->start + buf->len - 1, GFP_NOFS);
6856 else
6857 set_extent_new(&root->dirty_log_pages, buf->start,
6858 buf->start + buf->len - 1, GFP_NOFS);
6859 } else {
6860 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6861 buf->start + buf->len - 1, GFP_NOFS);
6862 }
6863 trans->blocks_used++;
6864 /* this returns a buffer locked for blocking */
6865 return buf;
6866 }
6867
6868 static struct btrfs_block_rsv *
6869 use_block_rsv(struct btrfs_trans_handle *trans,
6870 struct btrfs_root *root, u32 blocksize)
6871 {
6872 struct btrfs_block_rsv *block_rsv;
6873 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6874 int ret;
6875 bool global_updated = false;
6876
6877 block_rsv = get_block_rsv(trans, root);
6878
6879 if (unlikely(block_rsv->size == 0))
6880 goto try_reserve;
6881 again:
6882 ret = block_rsv_use_bytes(block_rsv, blocksize);
6883 if (!ret)
6884 return block_rsv;
6885
6886 if (block_rsv->failfast)
6887 return ERR_PTR(ret);
6888
6889 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
6890 global_updated = true;
6891 update_global_block_rsv(root->fs_info);
6892 goto again;
6893 }
6894
6895 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6896 static DEFINE_RATELIMIT_STATE(_rs,
6897 DEFAULT_RATELIMIT_INTERVAL * 10,
6898 /*DEFAULT_RATELIMIT_BURST*/ 1);
6899 if (__ratelimit(&_rs))
6900 WARN(1, KERN_DEBUG
6901 "btrfs: block rsv returned %d\n", ret);
6902 }
6903 try_reserve:
6904 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6905 BTRFS_RESERVE_NO_FLUSH);
6906 if (!ret)
6907 return block_rsv;
6908 /*
6909 * If we couldn't reserve metadata bytes try and use some from
6910 * the global reserve if its space type is the same as the global
6911 * reservation.
6912 */
6913 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
6914 block_rsv->space_info == global_rsv->space_info) {
6915 ret = block_rsv_use_bytes(global_rsv, blocksize);
6916 if (!ret)
6917 return global_rsv;
6918 }
6919 return ERR_PTR(ret);
6920 }
6921
6922 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6923 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6924 {
6925 block_rsv_add_bytes(block_rsv, blocksize, 0);
6926 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6927 }
6928
6929 /*
6930 * finds a free extent and does all the dirty work required for allocation
6931 * returns the key for the extent through ins, and a tree buffer for
6932 * the first block of the extent through buf.
6933 *
6934 * returns the tree buffer or NULL.
6935 */
6936 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6937 struct btrfs_root *root, u32 blocksize,
6938 u64 parent, u64 root_objectid,
6939 struct btrfs_disk_key *key, int level,
6940 u64 hint, u64 empty_size)
6941 {
6942 struct btrfs_key ins;
6943 struct btrfs_block_rsv *block_rsv;
6944 struct extent_buffer *buf;
6945 u64 flags = 0;
6946 int ret;
6947 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6948 SKINNY_METADATA);
6949
6950 block_rsv = use_block_rsv(trans, root, blocksize);
6951 if (IS_ERR(block_rsv))
6952 return ERR_CAST(block_rsv);
6953
6954 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6955 empty_size, hint, &ins, 0);
6956 if (ret) {
6957 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6958 return ERR_PTR(ret);
6959 }
6960
6961 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6962 blocksize, level);
6963 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6964
6965 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6966 if (parent == 0)
6967 parent = ins.objectid;
6968 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6969 } else
6970 BUG_ON(parent > 0);
6971
6972 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6973 struct btrfs_delayed_extent_op *extent_op;
6974 extent_op = btrfs_alloc_delayed_extent_op();
6975 BUG_ON(!extent_op); /* -ENOMEM */
6976 if (key)
6977 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6978 else
6979 memset(&extent_op->key, 0, sizeof(extent_op->key));
6980 extent_op->flags_to_set = flags;
6981 if (skinny_metadata)
6982 extent_op->update_key = 0;
6983 else
6984 extent_op->update_key = 1;
6985 extent_op->update_flags = 1;
6986 extent_op->is_data = 0;
6987 extent_op->level = level;
6988
6989 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6990 ins.objectid,
6991 ins.offset, parent, root_objectid,
6992 level, BTRFS_ADD_DELAYED_EXTENT,
6993 extent_op, 0);
6994 BUG_ON(ret); /* -ENOMEM */
6995 }
6996 return buf;
6997 }
6998
6999 struct walk_control {
7000 u64 refs[BTRFS_MAX_LEVEL];
7001 u64 flags[BTRFS_MAX_LEVEL];
7002 struct btrfs_key update_progress;
7003 int stage;
7004 int level;
7005 int shared_level;
7006 int update_ref;
7007 int keep_locks;
7008 int reada_slot;
7009 int reada_count;
7010 int for_reloc;
7011 };
7012
7013 #define DROP_REFERENCE 1
7014 #define UPDATE_BACKREF 2
7015
7016 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7017 struct btrfs_root *root,
7018 struct walk_control *wc,
7019 struct btrfs_path *path)
7020 {
7021 u64 bytenr;
7022 u64 generation;
7023 u64 refs;
7024 u64 flags;
7025 u32 nritems;
7026 u32 blocksize;
7027 struct btrfs_key key;
7028 struct extent_buffer *eb;
7029 int ret;
7030 int slot;
7031 int nread = 0;
7032
7033 if (path->slots[wc->level] < wc->reada_slot) {
7034 wc->reada_count = wc->reada_count * 2 / 3;
7035 wc->reada_count = max(wc->reada_count, 2);
7036 } else {
7037 wc->reada_count = wc->reada_count * 3 / 2;
7038 wc->reada_count = min_t(int, wc->reada_count,
7039 BTRFS_NODEPTRS_PER_BLOCK(root));
7040 }
7041
7042 eb = path->nodes[wc->level];
7043 nritems = btrfs_header_nritems(eb);
7044 blocksize = btrfs_level_size(root, wc->level - 1);
7045
7046 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7047 if (nread >= wc->reada_count)
7048 break;
7049
7050 cond_resched();
7051 bytenr = btrfs_node_blockptr(eb, slot);
7052 generation = btrfs_node_ptr_generation(eb, slot);
7053
7054 if (slot == path->slots[wc->level])
7055 goto reada;
7056
7057 if (wc->stage == UPDATE_BACKREF &&
7058 generation <= root->root_key.offset)
7059 continue;
7060
7061 /* We don't lock the tree block, it's OK to be racy here */
7062 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7063 wc->level - 1, 1, &refs,
7064 &flags);
7065 /* We don't care about errors in readahead. */
7066 if (ret < 0)
7067 continue;
7068 BUG_ON(refs == 0);
7069
7070 if (wc->stage == DROP_REFERENCE) {
7071 if (refs == 1)
7072 goto reada;
7073
7074 if (wc->level == 1 &&
7075 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7076 continue;
7077 if (!wc->update_ref ||
7078 generation <= root->root_key.offset)
7079 continue;
7080 btrfs_node_key_to_cpu(eb, &key, slot);
7081 ret = btrfs_comp_cpu_keys(&key,
7082 &wc->update_progress);
7083 if (ret < 0)
7084 continue;
7085 } else {
7086 if (wc->level == 1 &&
7087 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7088 continue;
7089 }
7090 reada:
7091 ret = readahead_tree_block(root, bytenr, blocksize,
7092 generation);
7093 if (ret)
7094 break;
7095 nread++;
7096 }
7097 wc->reada_slot = slot;
7098 }
7099
7100 /*
7101 * helper to process tree block while walking down the tree.
7102 *
7103 * when wc->stage == UPDATE_BACKREF, this function updates
7104 * back refs for pointers in the block.
7105 *
7106 * NOTE: return value 1 means we should stop walking down.
7107 */
7108 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7109 struct btrfs_root *root,
7110 struct btrfs_path *path,
7111 struct walk_control *wc, int lookup_info)
7112 {
7113 int level = wc->level;
7114 struct extent_buffer *eb = path->nodes[level];
7115 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7116 int ret;
7117
7118 if (wc->stage == UPDATE_BACKREF &&
7119 btrfs_header_owner(eb) != root->root_key.objectid)
7120 return 1;
7121
7122 /*
7123 * when reference count of tree block is 1, it won't increase
7124 * again. once full backref flag is set, we never clear it.
7125 */
7126 if (lookup_info &&
7127 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7128 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7129 BUG_ON(!path->locks[level]);
7130 ret = btrfs_lookup_extent_info(trans, root,
7131 eb->start, level, 1,
7132 &wc->refs[level],
7133 &wc->flags[level]);
7134 BUG_ON(ret == -ENOMEM);
7135 if (ret)
7136 return ret;
7137 BUG_ON(wc->refs[level] == 0);
7138 }
7139
7140 if (wc->stage == DROP_REFERENCE) {
7141 if (wc->refs[level] > 1)
7142 return 1;
7143
7144 if (path->locks[level] && !wc->keep_locks) {
7145 btrfs_tree_unlock_rw(eb, path->locks[level]);
7146 path->locks[level] = 0;
7147 }
7148 return 0;
7149 }
7150
7151 /* wc->stage == UPDATE_BACKREF */
7152 if (!(wc->flags[level] & flag)) {
7153 BUG_ON(!path->locks[level]);
7154 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7155 BUG_ON(ret); /* -ENOMEM */
7156 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7157 BUG_ON(ret); /* -ENOMEM */
7158 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7159 eb->len, flag,
7160 btrfs_header_level(eb), 0);
7161 BUG_ON(ret); /* -ENOMEM */
7162 wc->flags[level] |= flag;
7163 }
7164
7165 /*
7166 * the block is shared by multiple trees, so it's not good to
7167 * keep the tree lock
7168 */
7169 if (path->locks[level] && level > 0) {
7170 btrfs_tree_unlock_rw(eb, path->locks[level]);
7171 path->locks[level] = 0;
7172 }
7173 return 0;
7174 }
7175
7176 /*
7177 * helper to process tree block pointer.
7178 *
7179 * when wc->stage == DROP_REFERENCE, this function checks
7180 * reference count of the block pointed to. if the block
7181 * is shared and we need update back refs for the subtree
7182 * rooted at the block, this function changes wc->stage to
7183 * UPDATE_BACKREF. if the block is shared and there is no
7184 * need to update back, this function drops the reference
7185 * to the block.
7186 *
7187 * NOTE: return value 1 means we should stop walking down.
7188 */
7189 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7190 struct btrfs_root *root,
7191 struct btrfs_path *path,
7192 struct walk_control *wc, int *lookup_info)
7193 {
7194 u64 bytenr;
7195 u64 generation;
7196 u64 parent;
7197 u32 blocksize;
7198 struct btrfs_key key;
7199 struct extent_buffer *next;
7200 int level = wc->level;
7201 int reada = 0;
7202 int ret = 0;
7203
7204 generation = btrfs_node_ptr_generation(path->nodes[level],
7205 path->slots[level]);
7206 /*
7207 * if the lower level block was created before the snapshot
7208 * was created, we know there is no need to update back refs
7209 * for the subtree
7210 */
7211 if (wc->stage == UPDATE_BACKREF &&
7212 generation <= root->root_key.offset) {
7213 *lookup_info = 1;
7214 return 1;
7215 }
7216
7217 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7218 blocksize = btrfs_level_size(root, level - 1);
7219
7220 next = btrfs_find_tree_block(root, bytenr, blocksize);
7221 if (!next) {
7222 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7223 if (!next)
7224 return -ENOMEM;
7225 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7226 level - 1);
7227 reada = 1;
7228 }
7229 btrfs_tree_lock(next);
7230 btrfs_set_lock_blocking(next);
7231
7232 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7233 &wc->refs[level - 1],
7234 &wc->flags[level - 1]);
7235 if (ret < 0) {
7236 btrfs_tree_unlock(next);
7237 return ret;
7238 }
7239
7240 if (unlikely(wc->refs[level - 1] == 0)) {
7241 btrfs_err(root->fs_info, "Missing references.");
7242 BUG();
7243 }
7244 *lookup_info = 0;
7245
7246 if (wc->stage == DROP_REFERENCE) {
7247 if (wc->refs[level - 1] > 1) {
7248 if (level == 1 &&
7249 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7250 goto skip;
7251
7252 if (!wc->update_ref ||
7253 generation <= root->root_key.offset)
7254 goto skip;
7255
7256 btrfs_node_key_to_cpu(path->nodes[level], &key,
7257 path->slots[level]);
7258 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7259 if (ret < 0)
7260 goto skip;
7261
7262 wc->stage = UPDATE_BACKREF;
7263 wc->shared_level = level - 1;
7264 }
7265 } else {
7266 if (level == 1 &&
7267 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7268 goto skip;
7269 }
7270
7271 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7272 btrfs_tree_unlock(next);
7273 free_extent_buffer(next);
7274 next = NULL;
7275 *lookup_info = 1;
7276 }
7277
7278 if (!next) {
7279 if (reada && level == 1)
7280 reada_walk_down(trans, root, wc, path);
7281 next = read_tree_block(root, bytenr, blocksize, generation);
7282 if (!next || !extent_buffer_uptodate(next)) {
7283 free_extent_buffer(next);
7284 return -EIO;
7285 }
7286 btrfs_tree_lock(next);
7287 btrfs_set_lock_blocking(next);
7288 }
7289
7290 level--;
7291 BUG_ON(level != btrfs_header_level(next));
7292 path->nodes[level] = next;
7293 path->slots[level] = 0;
7294 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7295 wc->level = level;
7296 if (wc->level == 1)
7297 wc->reada_slot = 0;
7298 return 0;
7299 skip:
7300 wc->refs[level - 1] = 0;
7301 wc->flags[level - 1] = 0;
7302 if (wc->stage == DROP_REFERENCE) {
7303 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7304 parent = path->nodes[level]->start;
7305 } else {
7306 BUG_ON(root->root_key.objectid !=
7307 btrfs_header_owner(path->nodes[level]));
7308 parent = 0;
7309 }
7310
7311 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7312 root->root_key.objectid, level - 1, 0, 0);
7313 BUG_ON(ret); /* -ENOMEM */
7314 }
7315 btrfs_tree_unlock(next);
7316 free_extent_buffer(next);
7317 *lookup_info = 1;
7318 return 1;
7319 }
7320
7321 /*
7322 * helper to process tree block while walking up the tree.
7323 *
7324 * when wc->stage == DROP_REFERENCE, this function drops
7325 * reference count on the block.
7326 *
7327 * when wc->stage == UPDATE_BACKREF, this function changes
7328 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7329 * to UPDATE_BACKREF previously while processing the block.
7330 *
7331 * NOTE: return value 1 means we should stop walking up.
7332 */
7333 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7334 struct btrfs_root *root,
7335 struct btrfs_path *path,
7336 struct walk_control *wc)
7337 {
7338 int ret;
7339 int level = wc->level;
7340 struct extent_buffer *eb = path->nodes[level];
7341 u64 parent = 0;
7342
7343 if (wc->stage == UPDATE_BACKREF) {
7344 BUG_ON(wc->shared_level < level);
7345 if (level < wc->shared_level)
7346 goto out;
7347
7348 ret = find_next_key(path, level + 1, &wc->update_progress);
7349 if (ret > 0)
7350 wc->update_ref = 0;
7351
7352 wc->stage = DROP_REFERENCE;
7353 wc->shared_level = -1;
7354 path->slots[level] = 0;
7355
7356 /*
7357 * check reference count again if the block isn't locked.
7358 * we should start walking down the tree again if reference
7359 * count is one.
7360 */
7361 if (!path->locks[level]) {
7362 BUG_ON(level == 0);
7363 btrfs_tree_lock(eb);
7364 btrfs_set_lock_blocking(eb);
7365 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7366
7367 ret = btrfs_lookup_extent_info(trans, root,
7368 eb->start, level, 1,
7369 &wc->refs[level],
7370 &wc->flags[level]);
7371 if (ret < 0) {
7372 btrfs_tree_unlock_rw(eb, path->locks[level]);
7373 path->locks[level] = 0;
7374 return ret;
7375 }
7376 BUG_ON(wc->refs[level] == 0);
7377 if (wc->refs[level] == 1) {
7378 btrfs_tree_unlock_rw(eb, path->locks[level]);
7379 path->locks[level] = 0;
7380 return 1;
7381 }
7382 }
7383 }
7384
7385 /* wc->stage == DROP_REFERENCE */
7386 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7387
7388 if (wc->refs[level] == 1) {
7389 if (level == 0) {
7390 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7391 ret = btrfs_dec_ref(trans, root, eb, 1,
7392 wc->for_reloc);
7393 else
7394 ret = btrfs_dec_ref(trans, root, eb, 0,
7395 wc->for_reloc);
7396 BUG_ON(ret); /* -ENOMEM */
7397 }
7398 /* make block locked assertion in clean_tree_block happy */
7399 if (!path->locks[level] &&
7400 btrfs_header_generation(eb) == trans->transid) {
7401 btrfs_tree_lock(eb);
7402 btrfs_set_lock_blocking(eb);
7403 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7404 }
7405 clean_tree_block(trans, root, eb);
7406 }
7407
7408 if (eb == root->node) {
7409 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7410 parent = eb->start;
7411 else
7412 BUG_ON(root->root_key.objectid !=
7413 btrfs_header_owner(eb));
7414 } else {
7415 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7416 parent = path->nodes[level + 1]->start;
7417 else
7418 BUG_ON(root->root_key.objectid !=
7419 btrfs_header_owner(path->nodes[level + 1]));
7420 }
7421
7422 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7423 out:
7424 wc->refs[level] = 0;
7425 wc->flags[level] = 0;
7426 return 0;
7427 }
7428
7429 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7430 struct btrfs_root *root,
7431 struct btrfs_path *path,
7432 struct walk_control *wc)
7433 {
7434 int level = wc->level;
7435 int lookup_info = 1;
7436 int ret;
7437
7438 while (level >= 0) {
7439 ret = walk_down_proc(trans, root, path, wc, lookup_info);
7440 if (ret > 0)
7441 break;
7442
7443 if (level == 0)
7444 break;
7445
7446 if (path->slots[level] >=
7447 btrfs_header_nritems(path->nodes[level]))
7448 break;
7449
7450 ret = do_walk_down(trans, root, path, wc, &lookup_info);
7451 if (ret > 0) {
7452 path->slots[level]++;
7453 continue;
7454 } else if (ret < 0)
7455 return ret;
7456 level = wc->level;
7457 }
7458 return 0;
7459 }
7460
7461 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7462 struct btrfs_root *root,
7463 struct btrfs_path *path,
7464 struct walk_control *wc, int max_level)
7465 {
7466 int level = wc->level;
7467 int ret;
7468
7469 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7470 while (level < max_level && path->nodes[level]) {
7471 wc->level = level;
7472 if (path->slots[level] + 1 <
7473 btrfs_header_nritems(path->nodes[level])) {
7474 path->slots[level]++;
7475 return 0;
7476 } else {
7477 ret = walk_up_proc(trans, root, path, wc);
7478 if (ret > 0)
7479 return 0;
7480
7481 if (path->locks[level]) {
7482 btrfs_tree_unlock_rw(path->nodes[level],
7483 path->locks[level]);
7484 path->locks[level] = 0;
7485 }
7486 free_extent_buffer(path->nodes[level]);
7487 path->nodes[level] = NULL;
7488 level++;
7489 }
7490 }
7491 return 1;
7492 }
7493
7494 /*
7495 * drop a subvolume tree.
7496 *
7497 * this function traverses the tree freeing any blocks that only
7498 * referenced by the tree.
7499 *
7500 * when a shared tree block is found. this function decreases its
7501 * reference count by one. if update_ref is true, this function
7502 * also make sure backrefs for the shared block and all lower level
7503 * blocks are properly updated.
7504 *
7505 * If called with for_reloc == 0, may exit early with -EAGAIN
7506 */
7507 int btrfs_drop_snapshot(struct btrfs_root *root,
7508 struct btrfs_block_rsv *block_rsv, int update_ref,
7509 int for_reloc)
7510 {
7511 struct btrfs_path *path;
7512 struct btrfs_trans_handle *trans;
7513 struct btrfs_root *tree_root = root->fs_info->tree_root;
7514 struct btrfs_root_item *root_item = &root->root_item;
7515 struct walk_control *wc;
7516 struct btrfs_key key;
7517 int err = 0;
7518 int ret;
7519 int level;
7520 bool root_dropped = false;
7521
7522 path = btrfs_alloc_path();
7523 if (!path) {
7524 err = -ENOMEM;
7525 goto out;
7526 }
7527
7528 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7529 if (!wc) {
7530 btrfs_free_path(path);
7531 err = -ENOMEM;
7532 goto out;
7533 }
7534
7535 trans = btrfs_start_transaction(tree_root, 0);
7536 if (IS_ERR(trans)) {
7537 err = PTR_ERR(trans);
7538 goto out_free;
7539 }
7540
7541 if (block_rsv)
7542 trans->block_rsv = block_rsv;
7543
7544 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7545 level = btrfs_header_level(root->node);
7546 path->nodes[level] = btrfs_lock_root_node(root);
7547 btrfs_set_lock_blocking(path->nodes[level]);
7548 path->slots[level] = 0;
7549 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7550 memset(&wc->update_progress, 0,
7551 sizeof(wc->update_progress));
7552 } else {
7553 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7554 memcpy(&wc->update_progress, &key,
7555 sizeof(wc->update_progress));
7556
7557 level = root_item->drop_level;
7558 BUG_ON(level == 0);
7559 path->lowest_level = level;
7560 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7561 path->lowest_level = 0;
7562 if (ret < 0) {
7563 err = ret;
7564 goto out_end_trans;
7565 }
7566 WARN_ON(ret > 0);
7567
7568 /*
7569 * unlock our path, this is safe because only this
7570 * function is allowed to delete this snapshot
7571 */
7572 btrfs_unlock_up_safe(path, 0);
7573
7574 level = btrfs_header_level(root->node);
7575 while (1) {
7576 btrfs_tree_lock(path->nodes[level]);
7577 btrfs_set_lock_blocking(path->nodes[level]);
7578 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7579
7580 ret = btrfs_lookup_extent_info(trans, root,
7581 path->nodes[level]->start,
7582 level, 1, &wc->refs[level],
7583 &wc->flags[level]);
7584 if (ret < 0) {
7585 err = ret;
7586 goto out_end_trans;
7587 }
7588 BUG_ON(wc->refs[level] == 0);
7589
7590 if (level == root_item->drop_level)
7591 break;
7592
7593 btrfs_tree_unlock(path->nodes[level]);
7594 path->locks[level] = 0;
7595 WARN_ON(wc->refs[level] != 1);
7596 level--;
7597 }
7598 }
7599
7600 wc->level = level;
7601 wc->shared_level = -1;
7602 wc->stage = DROP_REFERENCE;
7603 wc->update_ref = update_ref;
7604 wc->keep_locks = 0;
7605 wc->for_reloc = for_reloc;
7606 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7607
7608 while (1) {
7609
7610 ret = walk_down_tree(trans, root, path, wc);
7611 if (ret < 0) {
7612 err = ret;
7613 break;
7614 }
7615
7616 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7617 if (ret < 0) {
7618 err = ret;
7619 break;
7620 }
7621
7622 if (ret > 0) {
7623 BUG_ON(wc->stage != DROP_REFERENCE);
7624 break;
7625 }
7626
7627 if (wc->stage == DROP_REFERENCE) {
7628 level = wc->level;
7629 btrfs_node_key(path->nodes[level],
7630 &root_item->drop_progress,
7631 path->slots[level]);
7632 root_item->drop_level = level;
7633 }
7634
7635 BUG_ON(wc->level == 0);
7636 if (btrfs_should_end_transaction(trans, tree_root) ||
7637 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7638 ret = btrfs_update_root(trans, tree_root,
7639 &root->root_key,
7640 root_item);
7641 if (ret) {
7642 btrfs_abort_transaction(trans, tree_root, ret);
7643 err = ret;
7644 goto out_end_trans;
7645 }
7646
7647 btrfs_end_transaction_throttle(trans, tree_root);
7648 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7649 pr_debug("btrfs: drop snapshot early exit\n");
7650 err = -EAGAIN;
7651 goto out_free;
7652 }
7653
7654 trans = btrfs_start_transaction(tree_root, 0);
7655 if (IS_ERR(trans)) {
7656 err = PTR_ERR(trans);
7657 goto out_free;
7658 }
7659 if (block_rsv)
7660 trans->block_rsv = block_rsv;
7661 }
7662 }
7663 btrfs_release_path(path);
7664 if (err)
7665 goto out_end_trans;
7666
7667 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7668 if (ret) {
7669 btrfs_abort_transaction(trans, tree_root, ret);
7670 goto out_end_trans;
7671 }
7672
7673 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7674 ret = btrfs_find_root(tree_root, &root->root_key, path,
7675 NULL, NULL);
7676 if (ret < 0) {
7677 btrfs_abort_transaction(trans, tree_root, ret);
7678 err = ret;
7679 goto out_end_trans;
7680 } else if (ret > 0) {
7681 /* if we fail to delete the orphan item this time
7682 * around, it'll get picked up the next time.
7683 *
7684 * The most common failure here is just -ENOENT.
7685 */
7686 btrfs_del_orphan_item(trans, tree_root,
7687 root->root_key.objectid);
7688 }
7689 }
7690
7691 if (root->in_radix) {
7692 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7693 } else {
7694 free_extent_buffer(root->node);
7695 free_extent_buffer(root->commit_root);
7696 btrfs_put_fs_root(root);
7697 }
7698 root_dropped = true;
7699 out_end_trans:
7700 btrfs_end_transaction_throttle(trans, tree_root);
7701 out_free:
7702 kfree(wc);
7703 btrfs_free_path(path);
7704 out:
7705 /*
7706 * So if we need to stop dropping the snapshot for whatever reason we
7707 * need to make sure to add it back to the dead root list so that we
7708 * keep trying to do the work later. This also cleans up roots if we
7709 * don't have it in the radix (like when we recover after a power fail
7710 * or unmount) so we don't leak memory.
7711 */
7712 if (!for_reloc && root_dropped == false)
7713 btrfs_add_dead_root(root);
7714 if (err)
7715 btrfs_std_error(root->fs_info, err);
7716 return err;
7717 }
7718
7719 /*
7720 * drop subtree rooted at tree block 'node'.
7721 *
7722 * NOTE: this function will unlock and release tree block 'node'
7723 * only used by relocation code
7724 */
7725 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7726 struct btrfs_root *root,
7727 struct extent_buffer *node,
7728 struct extent_buffer *parent)
7729 {
7730 struct btrfs_path *path;
7731 struct walk_control *wc;
7732 int level;
7733 int parent_level;
7734 int ret = 0;
7735 int wret;
7736
7737 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7738
7739 path = btrfs_alloc_path();
7740 if (!path)
7741 return -ENOMEM;
7742
7743 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7744 if (!wc) {
7745 btrfs_free_path(path);
7746 return -ENOMEM;
7747 }
7748
7749 btrfs_assert_tree_locked(parent);
7750 parent_level = btrfs_header_level(parent);
7751 extent_buffer_get(parent);
7752 path->nodes[parent_level] = parent;
7753 path->slots[parent_level] = btrfs_header_nritems(parent);
7754
7755 btrfs_assert_tree_locked(node);
7756 level = btrfs_header_level(node);
7757 path->nodes[level] = node;
7758 path->slots[level] = 0;
7759 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7760
7761 wc->refs[parent_level] = 1;
7762 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7763 wc->level = level;
7764 wc->shared_level = -1;
7765 wc->stage = DROP_REFERENCE;
7766 wc->update_ref = 0;
7767 wc->keep_locks = 1;
7768 wc->for_reloc = 1;
7769 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7770
7771 while (1) {
7772 wret = walk_down_tree(trans, root, path, wc);
7773 if (wret < 0) {
7774 ret = wret;
7775 break;
7776 }
7777
7778 wret = walk_up_tree(trans, root, path, wc, parent_level);
7779 if (wret < 0)
7780 ret = wret;
7781 if (wret != 0)
7782 break;
7783 }
7784
7785 kfree(wc);
7786 btrfs_free_path(path);
7787 return ret;
7788 }
7789
7790 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7791 {
7792 u64 num_devices;
7793 u64 stripped;
7794
7795 /*
7796 * if restripe for this chunk_type is on pick target profile and
7797 * return, otherwise do the usual balance
7798 */
7799 stripped = get_restripe_target(root->fs_info, flags);
7800 if (stripped)
7801 return extended_to_chunk(stripped);
7802
7803 /*
7804 * we add in the count of missing devices because we want
7805 * to make sure that any RAID levels on a degraded FS
7806 * continue to be honored.
7807 */
7808 num_devices = root->fs_info->fs_devices->rw_devices +
7809 root->fs_info->fs_devices->missing_devices;
7810
7811 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7812 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7813 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7814
7815 if (num_devices == 1) {
7816 stripped |= BTRFS_BLOCK_GROUP_DUP;
7817 stripped = flags & ~stripped;
7818
7819 /* turn raid0 into single device chunks */
7820 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7821 return stripped;
7822
7823 /* turn mirroring into duplication */
7824 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7825 BTRFS_BLOCK_GROUP_RAID10))
7826 return stripped | BTRFS_BLOCK_GROUP_DUP;
7827 } else {
7828 /* they already had raid on here, just return */
7829 if (flags & stripped)
7830 return flags;
7831
7832 stripped |= BTRFS_BLOCK_GROUP_DUP;
7833 stripped = flags & ~stripped;
7834
7835 /* switch duplicated blocks with raid1 */
7836 if (flags & BTRFS_BLOCK_GROUP_DUP)
7837 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7838
7839 /* this is drive concat, leave it alone */
7840 }
7841
7842 return flags;
7843 }
7844
7845 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7846 {
7847 struct btrfs_space_info *sinfo = cache->space_info;
7848 u64 num_bytes;
7849 u64 min_allocable_bytes;
7850 int ret = -ENOSPC;
7851
7852
7853 /*
7854 * We need some metadata space and system metadata space for
7855 * allocating chunks in some corner cases until we force to set
7856 * it to be readonly.
7857 */
7858 if ((sinfo->flags &
7859 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7860 !force)
7861 min_allocable_bytes = 1 * 1024 * 1024;
7862 else
7863 min_allocable_bytes = 0;
7864
7865 spin_lock(&sinfo->lock);
7866 spin_lock(&cache->lock);
7867
7868 if (cache->ro) {
7869 ret = 0;
7870 goto out;
7871 }
7872
7873 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7874 cache->bytes_super - btrfs_block_group_used(&cache->item);
7875
7876 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7877 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7878 min_allocable_bytes <= sinfo->total_bytes) {
7879 sinfo->bytes_readonly += num_bytes;
7880 cache->ro = 1;
7881 ret = 0;
7882 }
7883 out:
7884 spin_unlock(&cache->lock);
7885 spin_unlock(&sinfo->lock);
7886 return ret;
7887 }
7888
7889 int btrfs_set_block_group_ro(struct btrfs_root *root,
7890 struct btrfs_block_group_cache *cache)
7891
7892 {
7893 struct btrfs_trans_handle *trans;
7894 u64 alloc_flags;
7895 int ret;
7896
7897 BUG_ON(cache->ro);
7898
7899 trans = btrfs_join_transaction(root);
7900 if (IS_ERR(trans))
7901 return PTR_ERR(trans);
7902
7903 alloc_flags = update_block_group_flags(root, cache->flags);
7904 if (alloc_flags != cache->flags) {
7905 ret = do_chunk_alloc(trans, root, alloc_flags,
7906 CHUNK_ALLOC_FORCE);
7907 if (ret < 0)
7908 goto out;
7909 }
7910
7911 ret = set_block_group_ro(cache, 0);
7912 if (!ret)
7913 goto out;
7914 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7915 ret = do_chunk_alloc(trans, root, alloc_flags,
7916 CHUNK_ALLOC_FORCE);
7917 if (ret < 0)
7918 goto out;
7919 ret = set_block_group_ro(cache, 0);
7920 out:
7921 btrfs_end_transaction(trans, root);
7922 return ret;
7923 }
7924
7925 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7926 struct btrfs_root *root, u64 type)
7927 {
7928 u64 alloc_flags = get_alloc_profile(root, type);
7929 return do_chunk_alloc(trans, root, alloc_flags,
7930 CHUNK_ALLOC_FORCE);
7931 }
7932
7933 /*
7934 * helper to account the unused space of all the readonly block group in the
7935 * list. takes mirrors into account.
7936 */
7937 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7938 {
7939 struct btrfs_block_group_cache *block_group;
7940 u64 free_bytes = 0;
7941 int factor;
7942
7943 list_for_each_entry(block_group, groups_list, list) {
7944 spin_lock(&block_group->lock);
7945
7946 if (!block_group->ro) {
7947 spin_unlock(&block_group->lock);
7948 continue;
7949 }
7950
7951 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7952 BTRFS_BLOCK_GROUP_RAID10 |
7953 BTRFS_BLOCK_GROUP_DUP))
7954 factor = 2;
7955 else
7956 factor = 1;
7957
7958 free_bytes += (block_group->key.offset -
7959 btrfs_block_group_used(&block_group->item)) *
7960 factor;
7961
7962 spin_unlock(&block_group->lock);
7963 }
7964
7965 return free_bytes;
7966 }
7967
7968 /*
7969 * helper to account the unused space of all the readonly block group in the
7970 * space_info. takes mirrors into account.
7971 */
7972 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7973 {
7974 int i;
7975 u64 free_bytes = 0;
7976
7977 spin_lock(&sinfo->lock);
7978
7979 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7980 if (!list_empty(&sinfo->block_groups[i]))
7981 free_bytes += __btrfs_get_ro_block_group_free_space(
7982 &sinfo->block_groups[i]);
7983
7984 spin_unlock(&sinfo->lock);
7985
7986 return free_bytes;
7987 }
7988
7989 void btrfs_set_block_group_rw(struct btrfs_root *root,
7990 struct btrfs_block_group_cache *cache)
7991 {
7992 struct btrfs_space_info *sinfo = cache->space_info;
7993 u64 num_bytes;
7994
7995 BUG_ON(!cache->ro);
7996
7997 spin_lock(&sinfo->lock);
7998 spin_lock(&cache->lock);
7999 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8000 cache->bytes_super - btrfs_block_group_used(&cache->item);
8001 sinfo->bytes_readonly -= num_bytes;
8002 cache->ro = 0;
8003 spin_unlock(&cache->lock);
8004 spin_unlock(&sinfo->lock);
8005 }
8006
8007 /*
8008 * checks to see if its even possible to relocate this block group.
8009 *
8010 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8011 * ok to go ahead and try.
8012 */
8013 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8014 {
8015 struct btrfs_block_group_cache *block_group;
8016 struct btrfs_space_info *space_info;
8017 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8018 struct btrfs_device *device;
8019 struct btrfs_trans_handle *trans;
8020 u64 min_free;
8021 u64 dev_min = 1;
8022 u64 dev_nr = 0;
8023 u64 target;
8024 int index;
8025 int full = 0;
8026 int ret = 0;
8027
8028 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8029
8030 /* odd, couldn't find the block group, leave it alone */
8031 if (!block_group)
8032 return -1;
8033
8034 min_free = btrfs_block_group_used(&block_group->item);
8035
8036 /* no bytes used, we're good */
8037 if (!min_free)
8038 goto out;
8039
8040 space_info = block_group->space_info;
8041 spin_lock(&space_info->lock);
8042
8043 full = space_info->full;
8044
8045 /*
8046 * if this is the last block group we have in this space, we can't
8047 * relocate it unless we're able to allocate a new chunk below.
8048 *
8049 * Otherwise, we need to make sure we have room in the space to handle
8050 * all of the extents from this block group. If we can, we're good
8051 */
8052 if ((space_info->total_bytes != block_group->key.offset) &&
8053 (space_info->bytes_used + space_info->bytes_reserved +
8054 space_info->bytes_pinned + space_info->bytes_readonly +
8055 min_free < space_info->total_bytes)) {
8056 spin_unlock(&space_info->lock);
8057 goto out;
8058 }
8059 spin_unlock(&space_info->lock);
8060
8061 /*
8062 * ok we don't have enough space, but maybe we have free space on our
8063 * devices to allocate new chunks for relocation, so loop through our
8064 * alloc devices and guess if we have enough space. if this block
8065 * group is going to be restriped, run checks against the target
8066 * profile instead of the current one.
8067 */
8068 ret = -1;
8069
8070 /*
8071 * index:
8072 * 0: raid10
8073 * 1: raid1
8074 * 2: dup
8075 * 3: raid0
8076 * 4: single
8077 */
8078 target = get_restripe_target(root->fs_info, block_group->flags);
8079 if (target) {
8080 index = __get_raid_index(extended_to_chunk(target));
8081 } else {
8082 /*
8083 * this is just a balance, so if we were marked as full
8084 * we know there is no space for a new chunk
8085 */
8086 if (full)
8087 goto out;
8088
8089 index = get_block_group_index(block_group);
8090 }
8091
8092 if (index == BTRFS_RAID_RAID10) {
8093 dev_min = 4;
8094 /* Divide by 2 */
8095 min_free >>= 1;
8096 } else if (index == BTRFS_RAID_RAID1) {
8097 dev_min = 2;
8098 } else if (index == BTRFS_RAID_DUP) {
8099 /* Multiply by 2 */
8100 min_free <<= 1;
8101 } else if (index == BTRFS_RAID_RAID0) {
8102 dev_min = fs_devices->rw_devices;
8103 do_div(min_free, dev_min);
8104 }
8105
8106 /* We need to do this so that we can look at pending chunks */
8107 trans = btrfs_join_transaction(root);
8108 if (IS_ERR(trans)) {
8109 ret = PTR_ERR(trans);
8110 goto out;
8111 }
8112
8113 mutex_lock(&root->fs_info->chunk_mutex);
8114 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8115 u64 dev_offset;
8116
8117 /*
8118 * check to make sure we can actually find a chunk with enough
8119 * space to fit our block group in.
8120 */
8121 if (device->total_bytes > device->bytes_used + min_free &&
8122 !device->is_tgtdev_for_dev_replace) {
8123 ret = find_free_dev_extent(trans, device, min_free,
8124 &dev_offset, NULL);
8125 if (!ret)
8126 dev_nr++;
8127
8128 if (dev_nr >= dev_min)
8129 break;
8130
8131 ret = -1;
8132 }
8133 }
8134 mutex_unlock(&root->fs_info->chunk_mutex);
8135 btrfs_end_transaction(trans, root);
8136 out:
8137 btrfs_put_block_group(block_group);
8138 return ret;
8139 }
8140
8141 static int find_first_block_group(struct btrfs_root *root,
8142 struct btrfs_path *path, struct btrfs_key *key)
8143 {
8144 int ret = 0;
8145 struct btrfs_key found_key;
8146 struct extent_buffer *leaf;
8147 int slot;
8148
8149 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8150 if (ret < 0)
8151 goto out;
8152
8153 while (1) {
8154 slot = path->slots[0];
8155 leaf = path->nodes[0];
8156 if (slot >= btrfs_header_nritems(leaf)) {
8157 ret = btrfs_next_leaf(root, path);
8158 if (ret == 0)
8159 continue;
8160 if (ret < 0)
8161 goto out;
8162 break;
8163 }
8164 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8165
8166 if (found_key.objectid >= key->objectid &&
8167 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8168 ret = 0;
8169 goto out;
8170 }
8171 path->slots[0]++;
8172 }
8173 out:
8174 return ret;
8175 }
8176
8177 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8178 {
8179 struct btrfs_block_group_cache *block_group;
8180 u64 last = 0;
8181
8182 while (1) {
8183 struct inode *inode;
8184
8185 block_group = btrfs_lookup_first_block_group(info, last);
8186 while (block_group) {
8187 spin_lock(&block_group->lock);
8188 if (block_group->iref)
8189 break;
8190 spin_unlock(&block_group->lock);
8191 block_group = next_block_group(info->tree_root,
8192 block_group);
8193 }
8194 if (!block_group) {
8195 if (last == 0)
8196 break;
8197 last = 0;
8198 continue;
8199 }
8200
8201 inode = block_group->inode;
8202 block_group->iref = 0;
8203 block_group->inode = NULL;
8204 spin_unlock(&block_group->lock);
8205 iput(inode);
8206 last = block_group->key.objectid + block_group->key.offset;
8207 btrfs_put_block_group(block_group);
8208 }
8209 }
8210
8211 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8212 {
8213 struct btrfs_block_group_cache *block_group;
8214 struct btrfs_space_info *space_info;
8215 struct btrfs_caching_control *caching_ctl;
8216 struct rb_node *n;
8217
8218 down_write(&info->extent_commit_sem);
8219 while (!list_empty(&info->caching_block_groups)) {
8220 caching_ctl = list_entry(info->caching_block_groups.next,
8221 struct btrfs_caching_control, list);
8222 list_del(&caching_ctl->list);
8223 put_caching_control(caching_ctl);
8224 }
8225 up_write(&info->extent_commit_sem);
8226
8227 spin_lock(&info->block_group_cache_lock);
8228 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8229 block_group = rb_entry(n, struct btrfs_block_group_cache,
8230 cache_node);
8231 rb_erase(&block_group->cache_node,
8232 &info->block_group_cache_tree);
8233 spin_unlock(&info->block_group_cache_lock);
8234
8235 down_write(&block_group->space_info->groups_sem);
8236 list_del(&block_group->list);
8237 up_write(&block_group->space_info->groups_sem);
8238
8239 if (block_group->cached == BTRFS_CACHE_STARTED)
8240 wait_block_group_cache_done(block_group);
8241
8242 /*
8243 * We haven't cached this block group, which means we could
8244 * possibly have excluded extents on this block group.
8245 */
8246 if (block_group->cached == BTRFS_CACHE_NO ||
8247 block_group->cached == BTRFS_CACHE_ERROR)
8248 free_excluded_extents(info->extent_root, block_group);
8249
8250 btrfs_remove_free_space_cache(block_group);
8251 btrfs_put_block_group(block_group);
8252
8253 spin_lock(&info->block_group_cache_lock);
8254 }
8255 spin_unlock(&info->block_group_cache_lock);
8256
8257 /* now that all the block groups are freed, go through and
8258 * free all the space_info structs. This is only called during
8259 * the final stages of unmount, and so we know nobody is
8260 * using them. We call synchronize_rcu() once before we start,
8261 * just to be on the safe side.
8262 */
8263 synchronize_rcu();
8264
8265 release_global_block_rsv(info);
8266
8267 while(!list_empty(&info->space_info)) {
8268 space_info = list_entry(info->space_info.next,
8269 struct btrfs_space_info,
8270 list);
8271 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8272 if (space_info->bytes_pinned > 0 ||
8273 space_info->bytes_reserved > 0 ||
8274 space_info->bytes_may_use > 0) {
8275 WARN_ON(1);
8276 dump_space_info(space_info, 0, 0);
8277 }
8278 }
8279 percpu_counter_destroy(&space_info->total_bytes_pinned);
8280 list_del(&space_info->list);
8281 kfree(space_info);
8282 }
8283 return 0;
8284 }
8285
8286 static void __link_block_group(struct btrfs_space_info *space_info,
8287 struct btrfs_block_group_cache *cache)
8288 {
8289 int index = get_block_group_index(cache);
8290
8291 down_write(&space_info->groups_sem);
8292 list_add_tail(&cache->list, &space_info->block_groups[index]);
8293 up_write(&space_info->groups_sem);
8294 }
8295
8296 int btrfs_read_block_groups(struct btrfs_root *root)
8297 {
8298 struct btrfs_path *path;
8299 int ret;
8300 struct btrfs_block_group_cache *cache;
8301 struct btrfs_fs_info *info = root->fs_info;
8302 struct btrfs_space_info *space_info;
8303 struct btrfs_key key;
8304 struct btrfs_key found_key;
8305 struct extent_buffer *leaf;
8306 int need_clear = 0;
8307 u64 cache_gen;
8308
8309 root = info->extent_root;
8310 key.objectid = 0;
8311 key.offset = 0;
8312 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8313 path = btrfs_alloc_path();
8314 if (!path)
8315 return -ENOMEM;
8316 path->reada = 1;
8317
8318 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8319 if (btrfs_test_opt(root, SPACE_CACHE) &&
8320 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8321 need_clear = 1;
8322 if (btrfs_test_opt(root, CLEAR_CACHE))
8323 need_clear = 1;
8324
8325 while (1) {
8326 ret = find_first_block_group(root, path, &key);
8327 if (ret > 0)
8328 break;
8329 if (ret != 0)
8330 goto error;
8331 leaf = path->nodes[0];
8332 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8333 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8334 if (!cache) {
8335 ret = -ENOMEM;
8336 goto error;
8337 }
8338 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8339 GFP_NOFS);
8340 if (!cache->free_space_ctl) {
8341 kfree(cache);
8342 ret = -ENOMEM;
8343 goto error;
8344 }
8345
8346 atomic_set(&cache->count, 1);
8347 spin_lock_init(&cache->lock);
8348 cache->fs_info = info;
8349 INIT_LIST_HEAD(&cache->list);
8350 INIT_LIST_HEAD(&cache->cluster_list);
8351
8352 if (need_clear) {
8353 /*
8354 * When we mount with old space cache, we need to
8355 * set BTRFS_DC_CLEAR and set dirty flag.
8356 *
8357 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8358 * truncate the old free space cache inode and
8359 * setup a new one.
8360 * b) Setting 'dirty flag' makes sure that we flush
8361 * the new space cache info onto disk.
8362 */
8363 cache->disk_cache_state = BTRFS_DC_CLEAR;
8364 if (btrfs_test_opt(root, SPACE_CACHE))
8365 cache->dirty = 1;
8366 }
8367
8368 read_extent_buffer(leaf, &cache->item,
8369 btrfs_item_ptr_offset(leaf, path->slots[0]),
8370 sizeof(cache->item));
8371 memcpy(&cache->key, &found_key, sizeof(found_key));
8372
8373 key.objectid = found_key.objectid + found_key.offset;
8374 btrfs_release_path(path);
8375 cache->flags = btrfs_block_group_flags(&cache->item);
8376 cache->sectorsize = root->sectorsize;
8377 cache->full_stripe_len = btrfs_full_stripe_len(root,
8378 &root->fs_info->mapping_tree,
8379 found_key.objectid);
8380 btrfs_init_free_space_ctl(cache);
8381
8382 /*
8383 * We need to exclude the super stripes now so that the space
8384 * info has super bytes accounted for, otherwise we'll think
8385 * we have more space than we actually do.
8386 */
8387 ret = exclude_super_stripes(root, cache);
8388 if (ret) {
8389 /*
8390 * We may have excluded something, so call this just in
8391 * case.
8392 */
8393 free_excluded_extents(root, cache);
8394 kfree(cache->free_space_ctl);
8395 kfree(cache);
8396 goto error;
8397 }
8398
8399 /*
8400 * check for two cases, either we are full, and therefore
8401 * don't need to bother with the caching work since we won't
8402 * find any space, or we are empty, and we can just add all
8403 * the space in and be done with it. This saves us _alot_ of
8404 * time, particularly in the full case.
8405 */
8406 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8407 cache->last_byte_to_unpin = (u64)-1;
8408 cache->cached = BTRFS_CACHE_FINISHED;
8409 free_excluded_extents(root, cache);
8410 } else if (btrfs_block_group_used(&cache->item) == 0) {
8411 cache->last_byte_to_unpin = (u64)-1;
8412 cache->cached = BTRFS_CACHE_FINISHED;
8413 add_new_free_space(cache, root->fs_info,
8414 found_key.objectid,
8415 found_key.objectid +
8416 found_key.offset);
8417 free_excluded_extents(root, cache);
8418 }
8419
8420 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8421 if (ret) {
8422 btrfs_remove_free_space_cache(cache);
8423 btrfs_put_block_group(cache);
8424 goto error;
8425 }
8426
8427 ret = update_space_info(info, cache->flags, found_key.offset,
8428 btrfs_block_group_used(&cache->item),
8429 &space_info);
8430 if (ret) {
8431 btrfs_remove_free_space_cache(cache);
8432 spin_lock(&info->block_group_cache_lock);
8433 rb_erase(&cache->cache_node,
8434 &info->block_group_cache_tree);
8435 spin_unlock(&info->block_group_cache_lock);
8436 btrfs_put_block_group(cache);
8437 goto error;
8438 }
8439
8440 cache->space_info = space_info;
8441 spin_lock(&cache->space_info->lock);
8442 cache->space_info->bytes_readonly += cache->bytes_super;
8443 spin_unlock(&cache->space_info->lock);
8444
8445 __link_block_group(space_info, cache);
8446
8447 set_avail_alloc_bits(root->fs_info, cache->flags);
8448 if (btrfs_chunk_readonly(root, cache->key.objectid))
8449 set_block_group_ro(cache, 1);
8450 }
8451
8452 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8453 if (!(get_alloc_profile(root, space_info->flags) &
8454 (BTRFS_BLOCK_GROUP_RAID10 |
8455 BTRFS_BLOCK_GROUP_RAID1 |
8456 BTRFS_BLOCK_GROUP_RAID5 |
8457 BTRFS_BLOCK_GROUP_RAID6 |
8458 BTRFS_BLOCK_GROUP_DUP)))
8459 continue;
8460 /*
8461 * avoid allocating from un-mirrored block group if there are
8462 * mirrored block groups.
8463 */
8464 list_for_each_entry(cache,
8465 &space_info->block_groups[BTRFS_RAID_RAID0],
8466 list)
8467 set_block_group_ro(cache, 1);
8468 list_for_each_entry(cache,
8469 &space_info->block_groups[BTRFS_RAID_SINGLE],
8470 list)
8471 set_block_group_ro(cache, 1);
8472 }
8473
8474 init_global_block_rsv(info);
8475 ret = 0;
8476 error:
8477 btrfs_free_path(path);
8478 return ret;
8479 }
8480
8481 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8482 struct btrfs_root *root)
8483 {
8484 struct btrfs_block_group_cache *block_group, *tmp;
8485 struct btrfs_root *extent_root = root->fs_info->extent_root;
8486 struct btrfs_block_group_item item;
8487 struct btrfs_key key;
8488 int ret = 0;
8489
8490 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8491 new_bg_list) {
8492 list_del_init(&block_group->new_bg_list);
8493
8494 if (ret)
8495 continue;
8496
8497 spin_lock(&block_group->lock);
8498 memcpy(&item, &block_group->item, sizeof(item));
8499 memcpy(&key, &block_group->key, sizeof(key));
8500 spin_unlock(&block_group->lock);
8501
8502 ret = btrfs_insert_item(trans, extent_root, &key, &item,
8503 sizeof(item));
8504 if (ret)
8505 btrfs_abort_transaction(trans, extent_root, ret);
8506 ret = btrfs_finish_chunk_alloc(trans, extent_root,
8507 key.objectid, key.offset);
8508 if (ret)
8509 btrfs_abort_transaction(trans, extent_root, ret);
8510 }
8511 }
8512
8513 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8514 struct btrfs_root *root, u64 bytes_used,
8515 u64 type, u64 chunk_objectid, u64 chunk_offset,
8516 u64 size)
8517 {
8518 int ret;
8519 struct btrfs_root *extent_root;
8520 struct btrfs_block_group_cache *cache;
8521
8522 extent_root = root->fs_info->extent_root;
8523
8524 root->fs_info->last_trans_log_full_commit = trans->transid;
8525
8526 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8527 if (!cache)
8528 return -ENOMEM;
8529 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8530 GFP_NOFS);
8531 if (!cache->free_space_ctl) {
8532 kfree(cache);
8533 return -ENOMEM;
8534 }
8535
8536 cache->key.objectid = chunk_offset;
8537 cache->key.offset = size;
8538 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8539 cache->sectorsize = root->sectorsize;
8540 cache->fs_info = root->fs_info;
8541 cache->full_stripe_len = btrfs_full_stripe_len(root,
8542 &root->fs_info->mapping_tree,
8543 chunk_offset);
8544
8545 atomic_set(&cache->count, 1);
8546 spin_lock_init(&cache->lock);
8547 INIT_LIST_HEAD(&cache->list);
8548 INIT_LIST_HEAD(&cache->cluster_list);
8549 INIT_LIST_HEAD(&cache->new_bg_list);
8550
8551 btrfs_init_free_space_ctl(cache);
8552
8553 btrfs_set_block_group_used(&cache->item, bytes_used);
8554 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8555 cache->flags = type;
8556 btrfs_set_block_group_flags(&cache->item, type);
8557
8558 cache->last_byte_to_unpin = (u64)-1;
8559 cache->cached = BTRFS_CACHE_FINISHED;
8560 ret = exclude_super_stripes(root, cache);
8561 if (ret) {
8562 /*
8563 * We may have excluded something, so call this just in
8564 * case.
8565 */
8566 free_excluded_extents(root, cache);
8567 kfree(cache->free_space_ctl);
8568 kfree(cache);
8569 return ret;
8570 }
8571
8572 add_new_free_space(cache, root->fs_info, chunk_offset,
8573 chunk_offset + size);
8574
8575 free_excluded_extents(root, cache);
8576
8577 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8578 if (ret) {
8579 btrfs_remove_free_space_cache(cache);
8580 btrfs_put_block_group(cache);
8581 return ret;
8582 }
8583
8584 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8585 &cache->space_info);
8586 if (ret) {
8587 btrfs_remove_free_space_cache(cache);
8588 spin_lock(&root->fs_info->block_group_cache_lock);
8589 rb_erase(&cache->cache_node,
8590 &root->fs_info->block_group_cache_tree);
8591 spin_unlock(&root->fs_info->block_group_cache_lock);
8592 btrfs_put_block_group(cache);
8593 return ret;
8594 }
8595 update_global_block_rsv(root->fs_info);
8596
8597 spin_lock(&cache->space_info->lock);
8598 cache->space_info->bytes_readonly += cache->bytes_super;
8599 spin_unlock(&cache->space_info->lock);
8600
8601 __link_block_group(cache->space_info, cache);
8602
8603 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8604
8605 set_avail_alloc_bits(extent_root->fs_info, type);
8606
8607 return 0;
8608 }
8609
8610 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8611 {
8612 u64 extra_flags = chunk_to_extended(flags) &
8613 BTRFS_EXTENDED_PROFILE_MASK;
8614
8615 write_seqlock(&fs_info->profiles_lock);
8616 if (flags & BTRFS_BLOCK_GROUP_DATA)
8617 fs_info->avail_data_alloc_bits &= ~extra_flags;
8618 if (flags & BTRFS_BLOCK_GROUP_METADATA)
8619 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8620 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8621 fs_info->avail_system_alloc_bits &= ~extra_flags;
8622 write_sequnlock(&fs_info->profiles_lock);
8623 }
8624
8625 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8626 struct btrfs_root *root, u64 group_start)
8627 {
8628 struct btrfs_path *path;
8629 struct btrfs_block_group_cache *block_group;
8630 struct btrfs_free_cluster *cluster;
8631 struct btrfs_root *tree_root = root->fs_info->tree_root;
8632 struct btrfs_key key;
8633 struct inode *inode;
8634 int ret;
8635 int index;
8636 int factor;
8637
8638 root = root->fs_info->extent_root;
8639
8640 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8641 BUG_ON(!block_group);
8642 BUG_ON(!block_group->ro);
8643
8644 /*
8645 * Free the reserved super bytes from this block group before
8646 * remove it.
8647 */
8648 free_excluded_extents(root, block_group);
8649
8650 memcpy(&key, &block_group->key, sizeof(key));
8651 index = get_block_group_index(block_group);
8652 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8653 BTRFS_BLOCK_GROUP_RAID1 |
8654 BTRFS_BLOCK_GROUP_RAID10))
8655 factor = 2;
8656 else
8657 factor = 1;
8658
8659 /* make sure this block group isn't part of an allocation cluster */
8660 cluster = &root->fs_info->data_alloc_cluster;
8661 spin_lock(&cluster->refill_lock);
8662 btrfs_return_cluster_to_free_space(block_group, cluster);
8663 spin_unlock(&cluster->refill_lock);
8664
8665 /*
8666 * make sure this block group isn't part of a metadata
8667 * allocation cluster
8668 */
8669 cluster = &root->fs_info->meta_alloc_cluster;
8670 spin_lock(&cluster->refill_lock);
8671 btrfs_return_cluster_to_free_space(block_group, cluster);
8672 spin_unlock(&cluster->refill_lock);
8673
8674 path = btrfs_alloc_path();
8675 if (!path) {
8676 ret = -ENOMEM;
8677 goto out;
8678 }
8679
8680 inode = lookup_free_space_inode(tree_root, block_group, path);
8681 if (!IS_ERR(inode)) {
8682 ret = btrfs_orphan_add(trans, inode);
8683 if (ret) {
8684 btrfs_add_delayed_iput(inode);
8685 goto out;
8686 }
8687 clear_nlink(inode);
8688 /* One for the block groups ref */
8689 spin_lock(&block_group->lock);
8690 if (block_group->iref) {
8691 block_group->iref = 0;
8692 block_group->inode = NULL;
8693 spin_unlock(&block_group->lock);
8694 iput(inode);
8695 } else {
8696 spin_unlock(&block_group->lock);
8697 }
8698 /* One for our lookup ref */
8699 btrfs_add_delayed_iput(inode);
8700 }
8701
8702 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8703 key.offset = block_group->key.objectid;
8704 key.type = 0;
8705
8706 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8707 if (ret < 0)
8708 goto out;
8709 if (ret > 0)
8710 btrfs_release_path(path);
8711 if (ret == 0) {
8712 ret = btrfs_del_item(trans, tree_root, path);
8713 if (ret)
8714 goto out;
8715 btrfs_release_path(path);
8716 }
8717
8718 spin_lock(&root->fs_info->block_group_cache_lock);
8719 rb_erase(&block_group->cache_node,
8720 &root->fs_info->block_group_cache_tree);
8721
8722 if (root->fs_info->first_logical_byte == block_group->key.objectid)
8723 root->fs_info->first_logical_byte = (u64)-1;
8724 spin_unlock(&root->fs_info->block_group_cache_lock);
8725
8726 down_write(&block_group->space_info->groups_sem);
8727 /*
8728 * we must use list_del_init so people can check to see if they
8729 * are still on the list after taking the semaphore
8730 */
8731 list_del_init(&block_group->list);
8732 if (list_empty(&block_group->space_info->block_groups[index]))
8733 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8734 up_write(&block_group->space_info->groups_sem);
8735
8736 if (block_group->cached == BTRFS_CACHE_STARTED)
8737 wait_block_group_cache_done(block_group);
8738
8739 btrfs_remove_free_space_cache(block_group);
8740
8741 spin_lock(&block_group->space_info->lock);
8742 block_group->space_info->total_bytes -= block_group->key.offset;
8743 block_group->space_info->bytes_readonly -= block_group->key.offset;
8744 block_group->space_info->disk_total -= block_group->key.offset * factor;
8745 spin_unlock(&block_group->space_info->lock);
8746
8747 memcpy(&key, &block_group->key, sizeof(key));
8748
8749 btrfs_clear_space_info_full(root->fs_info);
8750
8751 btrfs_put_block_group(block_group);
8752 btrfs_put_block_group(block_group);
8753
8754 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8755 if (ret > 0)
8756 ret = -EIO;
8757 if (ret < 0)
8758 goto out;
8759
8760 ret = btrfs_del_item(trans, root, path);
8761 out:
8762 btrfs_free_path(path);
8763 return ret;
8764 }
8765
8766 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8767 {
8768 struct btrfs_space_info *space_info;
8769 struct btrfs_super_block *disk_super;
8770 u64 features;
8771 u64 flags;
8772 int mixed = 0;
8773 int ret;
8774
8775 disk_super = fs_info->super_copy;
8776 if (!btrfs_super_root(disk_super))
8777 return 1;
8778
8779 features = btrfs_super_incompat_flags(disk_super);
8780 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8781 mixed = 1;
8782
8783 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8784 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8785 if (ret)
8786 goto out;
8787
8788 if (mixed) {
8789 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8790 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8791 } else {
8792 flags = BTRFS_BLOCK_GROUP_METADATA;
8793 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8794 if (ret)
8795 goto out;
8796
8797 flags = BTRFS_BLOCK_GROUP_DATA;
8798 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8799 }
8800 out:
8801 return ret;
8802 }
8803
8804 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8805 {
8806 return unpin_extent_range(root, start, end);
8807 }
8808
8809 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8810 u64 num_bytes, u64 *actual_bytes)
8811 {
8812 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8813 }
8814
8815 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8816 {
8817 struct btrfs_fs_info *fs_info = root->fs_info;
8818 struct btrfs_block_group_cache *cache = NULL;
8819 u64 group_trimmed;
8820 u64 start;
8821 u64 end;
8822 u64 trimmed = 0;
8823 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8824 int ret = 0;
8825
8826 /*
8827 * try to trim all FS space, our block group may start from non-zero.
8828 */
8829 if (range->len == total_bytes)
8830 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8831 else
8832 cache = btrfs_lookup_block_group(fs_info, range->start);
8833
8834 while (cache) {
8835 if (cache->key.objectid >= (range->start + range->len)) {
8836 btrfs_put_block_group(cache);
8837 break;
8838 }
8839
8840 start = max(range->start, cache->key.objectid);
8841 end = min(range->start + range->len,
8842 cache->key.objectid + cache->key.offset);
8843
8844 if (end - start >= range->minlen) {
8845 if (!block_group_cache_done(cache)) {
8846 ret = cache_block_group(cache, 0);
8847 if (ret) {
8848 btrfs_put_block_group(cache);
8849 break;
8850 }
8851 ret = wait_block_group_cache_done(cache);
8852 if (ret) {
8853 btrfs_put_block_group(cache);
8854 break;
8855 }
8856 }
8857 ret = btrfs_trim_block_group(cache,
8858 &group_trimmed,
8859 start,
8860 end,
8861 range->minlen);
8862
8863 trimmed += group_trimmed;
8864 if (ret) {
8865 btrfs_put_block_group(cache);
8866 break;
8867 }
8868 }
8869
8870 cache = next_block_group(fs_info->tree_root, cache);
8871 }
8872
8873 range->len = trimmed;
8874 return ret;
8875 }
This page took 0.918254 seconds and 6 git commands to generate.