Merge git://git.kernel.org/pub/scm/virt/kvm/kvm
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 bytenr, u64 num_bytes, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op,
86 int no_quota);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
99 int level, struct btrfs_key *ins,
100 int no_quota);
101 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
102 struct btrfs_root *extent_root, u64 flags,
103 int force);
104 static int find_next_key(struct btrfs_path *path, int level,
105 struct btrfs_key *key);
106 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 int dump_block_groups);
108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
109 u64 num_bytes, int reserve,
110 int delalloc);
111 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 u64 num_bytes);
113 int btrfs_pin_extent(struct btrfs_root *root,
114 u64 bytenr, u64 num_bytes, int reserved);
115
116 static noinline int
117 block_group_cache_done(struct btrfs_block_group_cache *cache)
118 {
119 smp_mb();
120 return cache->cached == BTRFS_CACHE_FINISHED ||
121 cache->cached == BTRFS_CACHE_ERROR;
122 }
123
124 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125 {
126 return (cache->flags & bits) == bits;
127 }
128
129 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
130 {
131 atomic_inc(&cache->count);
132 }
133
134 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135 {
136 if (atomic_dec_and_test(&cache->count)) {
137 WARN_ON(cache->pinned > 0);
138 WARN_ON(cache->reserved > 0);
139 kfree(cache->free_space_ctl);
140 kfree(cache);
141 }
142 }
143
144 /*
145 * this adds the block group to the fs_info rb tree for the block group
146 * cache
147 */
148 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
149 struct btrfs_block_group_cache *block_group)
150 {
151 struct rb_node **p;
152 struct rb_node *parent = NULL;
153 struct btrfs_block_group_cache *cache;
154
155 spin_lock(&info->block_group_cache_lock);
156 p = &info->block_group_cache_tree.rb_node;
157
158 while (*p) {
159 parent = *p;
160 cache = rb_entry(parent, struct btrfs_block_group_cache,
161 cache_node);
162 if (block_group->key.objectid < cache->key.objectid) {
163 p = &(*p)->rb_left;
164 } else if (block_group->key.objectid > cache->key.objectid) {
165 p = &(*p)->rb_right;
166 } else {
167 spin_unlock(&info->block_group_cache_lock);
168 return -EEXIST;
169 }
170 }
171
172 rb_link_node(&block_group->cache_node, parent, p);
173 rb_insert_color(&block_group->cache_node,
174 &info->block_group_cache_tree);
175
176 if (info->first_logical_byte > block_group->key.objectid)
177 info->first_logical_byte = block_group->key.objectid;
178
179 spin_unlock(&info->block_group_cache_lock);
180
181 return 0;
182 }
183
184 /*
185 * This will return the block group at or after bytenr if contains is 0, else
186 * it will return the block group that contains the bytenr
187 */
188 static struct btrfs_block_group_cache *
189 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 int contains)
191 {
192 struct btrfs_block_group_cache *cache, *ret = NULL;
193 struct rb_node *n;
194 u64 end, start;
195
196 spin_lock(&info->block_group_cache_lock);
197 n = info->block_group_cache_tree.rb_node;
198
199 while (n) {
200 cache = rb_entry(n, struct btrfs_block_group_cache,
201 cache_node);
202 end = cache->key.objectid + cache->key.offset - 1;
203 start = cache->key.objectid;
204
205 if (bytenr < start) {
206 if (!contains && (!ret || start < ret->key.objectid))
207 ret = cache;
208 n = n->rb_left;
209 } else if (bytenr > start) {
210 if (contains && bytenr <= end) {
211 ret = cache;
212 break;
213 }
214 n = n->rb_right;
215 } else {
216 ret = cache;
217 break;
218 }
219 }
220 if (ret) {
221 btrfs_get_block_group(ret);
222 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 info->first_logical_byte = ret->key.objectid;
224 }
225 spin_unlock(&info->block_group_cache_lock);
226
227 return ret;
228 }
229
230 static int add_excluded_extent(struct btrfs_root *root,
231 u64 start, u64 num_bytes)
232 {
233 u64 end = start + num_bytes - 1;
234 set_extent_bits(&root->fs_info->freed_extents[0],
235 start, end, EXTENT_UPTODATE, GFP_NOFS);
236 set_extent_bits(&root->fs_info->freed_extents[1],
237 start, end, EXTENT_UPTODATE, GFP_NOFS);
238 return 0;
239 }
240
241 static void free_excluded_extents(struct btrfs_root *root,
242 struct btrfs_block_group_cache *cache)
243 {
244 u64 start, end;
245
246 start = cache->key.objectid;
247 end = start + cache->key.offset - 1;
248
249 clear_extent_bits(&root->fs_info->freed_extents[0],
250 start, end, EXTENT_UPTODATE, GFP_NOFS);
251 clear_extent_bits(&root->fs_info->freed_extents[1],
252 start, end, EXTENT_UPTODATE, GFP_NOFS);
253 }
254
255 static int exclude_super_stripes(struct btrfs_root *root,
256 struct btrfs_block_group_cache *cache)
257 {
258 u64 bytenr;
259 u64 *logical;
260 int stripe_len;
261 int i, nr, ret;
262
263 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 cache->bytes_super += stripe_len;
266 ret = add_excluded_extent(root, cache->key.objectid,
267 stripe_len);
268 if (ret)
269 return ret;
270 }
271
272 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 bytenr = btrfs_sb_offset(i);
274 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 cache->key.objectid, bytenr,
276 0, &logical, &nr, &stripe_len);
277 if (ret)
278 return ret;
279
280 while (nr--) {
281 u64 start, len;
282
283 if (logical[nr] > cache->key.objectid +
284 cache->key.offset)
285 continue;
286
287 if (logical[nr] + stripe_len <= cache->key.objectid)
288 continue;
289
290 start = logical[nr];
291 if (start < cache->key.objectid) {
292 start = cache->key.objectid;
293 len = (logical[nr] + stripe_len) - start;
294 } else {
295 len = min_t(u64, stripe_len,
296 cache->key.objectid +
297 cache->key.offset - start);
298 }
299
300 cache->bytes_super += len;
301 ret = add_excluded_extent(root, start, len);
302 if (ret) {
303 kfree(logical);
304 return ret;
305 }
306 }
307
308 kfree(logical);
309 }
310 return 0;
311 }
312
313 static struct btrfs_caching_control *
314 get_caching_control(struct btrfs_block_group_cache *cache)
315 {
316 struct btrfs_caching_control *ctl;
317
318 spin_lock(&cache->lock);
319 if (!cache->caching_ctl) {
320 spin_unlock(&cache->lock);
321 return NULL;
322 }
323
324 ctl = cache->caching_ctl;
325 atomic_inc(&ctl->count);
326 spin_unlock(&cache->lock);
327 return ctl;
328 }
329
330 static void put_caching_control(struct btrfs_caching_control *ctl)
331 {
332 if (atomic_dec_and_test(&ctl->count))
333 kfree(ctl);
334 }
335
336 /*
337 * this is only called by cache_block_group, since we could have freed extents
338 * we need to check the pinned_extents for any extents that can't be used yet
339 * since their free space will be released as soon as the transaction commits.
340 */
341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
342 struct btrfs_fs_info *info, u64 start, u64 end)
343 {
344 u64 extent_start, extent_end, size, total_added = 0;
345 int ret;
346
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
352 if (ret)
353 break;
354
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
359 total_added += size;
360 ret = btrfs_add_free_space(block_group, start,
361 size);
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
371 total_added += size;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
374 }
375
376 return total_added;
377 }
378
379 static noinline void caching_thread(struct btrfs_work *work)
380 {
381 struct btrfs_block_group_cache *block_group;
382 struct btrfs_fs_info *fs_info;
383 struct btrfs_caching_control *caching_ctl;
384 struct btrfs_root *extent_root;
385 struct btrfs_path *path;
386 struct extent_buffer *leaf;
387 struct btrfs_key key;
388 u64 total_found = 0;
389 u64 last = 0;
390 u32 nritems;
391 int ret = -ENOMEM;
392
393 caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 block_group = caching_ctl->block_group;
395 fs_info = block_group->fs_info;
396 extent_root = fs_info->extent_root;
397
398 path = btrfs_alloc_path();
399 if (!path)
400 goto out;
401
402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
403
404 /*
405 * We don't want to deadlock with somebody trying to allocate a new
406 * extent for the extent root while also trying to search the extent
407 * root to add free space. So we skip locking and search the commit
408 * root, since its read-only
409 */
410 path->skip_locking = 1;
411 path->search_commit_root = 1;
412 path->reada = 1;
413
414 key.objectid = last;
415 key.offset = 0;
416 key.type = BTRFS_EXTENT_ITEM_KEY;
417 again:
418 mutex_lock(&caching_ctl->mutex);
419 /* need to make sure the commit_root doesn't disappear */
420 down_read(&fs_info->commit_root_sem);
421
422 next:
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 if (ret < 0)
425 goto err;
426
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
430 while (1) {
431 if (btrfs_fs_closing(fs_info) > 1) {
432 last = (u64)-1;
433 break;
434 }
435
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
441 break;
442
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
445 caching_ctl->progress = last;
446 btrfs_release_path(path);
447 up_read(&fs_info->commit_root_sem);
448 mutex_unlock(&caching_ctl->mutex);
449 cond_resched();
450 goto again;
451 }
452
453 ret = btrfs_next_leaf(extent_root, path);
454 if (ret < 0)
455 goto err;
456 if (ret)
457 break;
458 leaf = path->nodes[0];
459 nritems = btrfs_header_nritems(leaf);
460 continue;
461 }
462
463 if (key.objectid < last) {
464 key.objectid = last;
465 key.offset = 0;
466 key.type = BTRFS_EXTENT_ITEM_KEY;
467
468 caching_ctl->progress = last;
469 btrfs_release_path(path);
470 goto next;
471 }
472
473 if (key.objectid < block_group->key.objectid) {
474 path->slots[0]++;
475 continue;
476 }
477
478 if (key.objectid >= block_group->key.objectid +
479 block_group->key.offset)
480 break;
481
482 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 key.type == BTRFS_METADATA_ITEM_KEY) {
484 total_found += add_new_free_space(block_group,
485 fs_info, last,
486 key.objectid);
487 if (key.type == BTRFS_METADATA_ITEM_KEY)
488 last = key.objectid +
489 fs_info->tree_root->nodesize;
490 else
491 last = key.objectid + key.offset;
492
493 if (total_found > (1024 * 1024 * 2)) {
494 total_found = 0;
495 wake_up(&caching_ctl->wait);
496 }
497 }
498 path->slots[0]++;
499 }
500 ret = 0;
501
502 total_found += add_new_free_space(block_group, fs_info, last,
503 block_group->key.objectid +
504 block_group->key.offset);
505 caching_ctl->progress = (u64)-1;
506
507 spin_lock(&block_group->lock);
508 block_group->caching_ctl = NULL;
509 block_group->cached = BTRFS_CACHE_FINISHED;
510 spin_unlock(&block_group->lock);
511
512 err:
513 btrfs_free_path(path);
514 up_read(&fs_info->commit_root_sem);
515
516 free_excluded_extents(extent_root, block_group);
517
518 mutex_unlock(&caching_ctl->mutex);
519 out:
520 if (ret) {
521 spin_lock(&block_group->lock);
522 block_group->caching_ctl = NULL;
523 block_group->cached = BTRFS_CACHE_ERROR;
524 spin_unlock(&block_group->lock);
525 }
526 wake_up(&caching_ctl->wait);
527
528 put_caching_control(caching_ctl);
529 btrfs_put_block_group(block_group);
530 }
531
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 int load_cache_only)
534 {
535 DEFINE_WAIT(wait);
536 struct btrfs_fs_info *fs_info = cache->fs_info;
537 struct btrfs_caching_control *caching_ctl;
538 int ret = 0;
539
540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 if (!caching_ctl)
542 return -ENOMEM;
543
544 INIT_LIST_HEAD(&caching_ctl->list);
545 mutex_init(&caching_ctl->mutex);
546 init_waitqueue_head(&caching_ctl->wait);
547 caching_ctl->block_group = cache;
548 caching_ctl->progress = cache->key.objectid;
549 atomic_set(&caching_ctl->count, 1);
550 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 caching_thread, NULL, NULL);
552
553 spin_lock(&cache->lock);
554 /*
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
564 * another.
565 */
566 while (cache->cached == BTRFS_CACHE_FAST) {
567 struct btrfs_caching_control *ctl;
568
569 ctl = cache->caching_ctl;
570 atomic_inc(&ctl->count);
571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 spin_unlock(&cache->lock);
573
574 schedule();
575
576 finish_wait(&ctl->wait, &wait);
577 put_caching_control(ctl);
578 spin_lock(&cache->lock);
579 }
580
581 if (cache->cached != BTRFS_CACHE_NO) {
582 spin_unlock(&cache->lock);
583 kfree(caching_ctl);
584 return 0;
585 }
586 WARN_ON(cache->caching_ctl);
587 cache->caching_ctl = caching_ctl;
588 cache->cached = BTRFS_CACHE_FAST;
589 spin_unlock(&cache->lock);
590
591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 mutex_lock(&caching_ctl->mutex);
593 ret = load_free_space_cache(fs_info, cache);
594
595 spin_lock(&cache->lock);
596 if (ret == 1) {
597 cache->caching_ctl = NULL;
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
600 caching_ctl->progress = (u64)-1;
601 } else {
602 if (load_cache_only) {
603 cache->caching_ctl = NULL;
604 cache->cached = BTRFS_CACHE_NO;
605 } else {
606 cache->cached = BTRFS_CACHE_STARTED;
607 cache->has_caching_ctl = 1;
608 }
609 }
610 spin_unlock(&cache->lock);
611 mutex_unlock(&caching_ctl->mutex);
612
613 wake_up(&caching_ctl->wait);
614 if (ret == 1) {
615 put_caching_control(caching_ctl);
616 free_excluded_extents(fs_info->extent_root, cache);
617 return 0;
618 }
619 } else {
620 /*
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
623 */
624 spin_lock(&cache->lock);
625 if (load_cache_only) {
626 cache->caching_ctl = NULL;
627 cache->cached = BTRFS_CACHE_NO;
628 } else {
629 cache->cached = BTRFS_CACHE_STARTED;
630 cache->has_caching_ctl = 1;
631 }
632 spin_unlock(&cache->lock);
633 wake_up(&caching_ctl->wait);
634 }
635
636 if (load_cache_only) {
637 put_caching_control(caching_ctl);
638 return 0;
639 }
640
641 down_write(&fs_info->commit_root_sem);
642 atomic_inc(&caching_ctl->count);
643 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
644 up_write(&fs_info->commit_root_sem);
645
646 btrfs_get_block_group(cache);
647
648 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
649
650 return ret;
651 }
652
653 /*
654 * return the block group that starts at or after bytenr
655 */
656 static struct btrfs_block_group_cache *
657 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
658 {
659 struct btrfs_block_group_cache *cache;
660
661 cache = block_group_cache_tree_search(info, bytenr, 0);
662
663 return cache;
664 }
665
666 /*
667 * return the block group that contains the given bytenr
668 */
669 struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 struct btrfs_fs_info *info,
671 u64 bytenr)
672 {
673 struct btrfs_block_group_cache *cache;
674
675 cache = block_group_cache_tree_search(info, bytenr, 1);
676
677 return cache;
678 }
679
680 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 u64 flags)
682 {
683 struct list_head *head = &info->space_info;
684 struct btrfs_space_info *found;
685
686 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
687
688 rcu_read_lock();
689 list_for_each_entry_rcu(found, head, list) {
690 if (found->flags & flags) {
691 rcu_read_unlock();
692 return found;
693 }
694 }
695 rcu_read_unlock();
696 return NULL;
697 }
698
699 /*
700 * after adding space to the filesystem, we need to clear the full flags
701 * on all the space infos.
702 */
703 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
704 {
705 struct list_head *head = &info->space_info;
706 struct btrfs_space_info *found;
707
708 rcu_read_lock();
709 list_for_each_entry_rcu(found, head, list)
710 found->full = 0;
711 rcu_read_unlock();
712 }
713
714 /* simple helper to search for an existing data extent at a given offset */
715 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
716 {
717 int ret;
718 struct btrfs_key key;
719 struct btrfs_path *path;
720
721 path = btrfs_alloc_path();
722 if (!path)
723 return -ENOMEM;
724
725 key.objectid = start;
726 key.offset = len;
727 key.type = BTRFS_EXTENT_ITEM_KEY;
728 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 0, 0);
730 btrfs_free_path(path);
731 return ret;
732 }
733
734 /*
735 * helper function to lookup reference count and flags of a tree block.
736 *
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
742 */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root, u64 bytenr,
745 u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 struct btrfs_delayed_ref_head *head;
748 struct btrfs_delayed_ref_root *delayed_refs;
749 struct btrfs_path *path;
750 struct btrfs_extent_item *ei;
751 struct extent_buffer *leaf;
752 struct btrfs_key key;
753 u32 item_size;
754 u64 num_refs;
755 u64 extent_flags;
756 int ret;
757
758 /*
759 * If we don't have skinny metadata, don't bother doing anything
760 * different
761 */
762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 offset = root->nodesize;
764 metadata = 0;
765 }
766
767 path = btrfs_alloc_path();
768 if (!path)
769 return -ENOMEM;
770
771 if (!trans) {
772 path->skip_locking = 1;
773 path->search_commit_root = 1;
774 }
775
776 search_again:
777 key.objectid = bytenr;
778 key.offset = offset;
779 if (metadata)
780 key.type = BTRFS_METADATA_ITEM_KEY;
781 else
782 key.type = BTRFS_EXTENT_ITEM_KEY;
783
784 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 &key, path, 0, 0);
786 if (ret < 0)
787 goto out_free;
788
789 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
790 if (path->slots[0]) {
791 path->slots[0]--;
792 btrfs_item_key_to_cpu(path->nodes[0], &key,
793 path->slots[0]);
794 if (key.objectid == bytenr &&
795 key.type == BTRFS_EXTENT_ITEM_KEY &&
796 key.offset == root->nodesize)
797 ret = 0;
798 }
799 }
800
801 if (ret == 0) {
802 leaf = path->nodes[0];
803 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 if (item_size >= sizeof(*ei)) {
805 ei = btrfs_item_ptr(leaf, path->slots[0],
806 struct btrfs_extent_item);
807 num_refs = btrfs_extent_refs(leaf, ei);
808 extent_flags = btrfs_extent_flags(leaf, ei);
809 } else {
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 struct btrfs_extent_item_v0 *ei0;
812 BUG_ON(item_size != sizeof(*ei0));
813 ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 struct btrfs_extent_item_v0);
815 num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 /* FIXME: this isn't correct for data */
817 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818 #else
819 BUG();
820 #endif
821 }
822 BUG_ON(num_refs == 0);
823 } else {
824 num_refs = 0;
825 extent_flags = 0;
826 ret = 0;
827 }
828
829 if (!trans)
830 goto out;
831
832 delayed_refs = &trans->transaction->delayed_refs;
833 spin_lock(&delayed_refs->lock);
834 head = btrfs_find_delayed_ref_head(trans, bytenr);
835 if (head) {
836 if (!mutex_trylock(&head->mutex)) {
837 atomic_inc(&head->node.refs);
838 spin_unlock(&delayed_refs->lock);
839
840 btrfs_release_path(path);
841
842 /*
843 * Mutex was contended, block until it's released and try
844 * again
845 */
846 mutex_lock(&head->mutex);
847 mutex_unlock(&head->mutex);
848 btrfs_put_delayed_ref(&head->node);
849 goto search_again;
850 }
851 spin_lock(&head->lock);
852 if (head->extent_op && head->extent_op->update_flags)
853 extent_flags |= head->extent_op->flags_to_set;
854 else
855 BUG_ON(num_refs == 0);
856
857 num_refs += head->node.ref_mod;
858 spin_unlock(&head->lock);
859 mutex_unlock(&head->mutex);
860 }
861 spin_unlock(&delayed_refs->lock);
862 out:
863 WARN_ON(num_refs == 0);
864 if (refs)
865 *refs = num_refs;
866 if (flags)
867 *flags = extent_flags;
868 out_free:
869 btrfs_free_path(path);
870 return ret;
871 }
872
873 /*
874 * Back reference rules. Back refs have three main goals:
875 *
876 * 1) differentiate between all holders of references to an extent so that
877 * when a reference is dropped we can make sure it was a valid reference
878 * before freeing the extent.
879 *
880 * 2) Provide enough information to quickly find the holders of an extent
881 * if we notice a given block is corrupted or bad.
882 *
883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884 * maintenance. This is actually the same as #2, but with a slightly
885 * different use case.
886 *
887 * There are two kinds of back refs. The implicit back refs is optimized
888 * for pointers in non-shared tree blocks. For a given pointer in a block,
889 * back refs of this kind provide information about the block's owner tree
890 * and the pointer's key. These information allow us to find the block by
891 * b-tree searching. The full back refs is for pointers in tree blocks not
892 * referenced by their owner trees. The location of tree block is recorded
893 * in the back refs. Actually the full back refs is generic, and can be
894 * used in all cases the implicit back refs is used. The major shortcoming
895 * of the full back refs is its overhead. Every time a tree block gets
896 * COWed, we have to update back refs entry for all pointers in it.
897 *
898 * For a newly allocated tree block, we use implicit back refs for
899 * pointers in it. This means most tree related operations only involve
900 * implicit back refs. For a tree block created in old transaction, the
901 * only way to drop a reference to it is COW it. So we can detect the
902 * event that tree block loses its owner tree's reference and do the
903 * back refs conversion.
904 *
905 * When a tree block is COW'd through a tree, there are four cases:
906 *
907 * The reference count of the block is one and the tree is the block's
908 * owner tree. Nothing to do in this case.
909 *
910 * The reference count of the block is one and the tree is not the
911 * block's owner tree. In this case, full back refs is used for pointers
912 * in the block. Remove these full back refs, add implicit back refs for
913 * every pointers in the new block.
914 *
915 * The reference count of the block is greater than one and the tree is
916 * the block's owner tree. In this case, implicit back refs is used for
917 * pointers in the block. Add full back refs for every pointers in the
918 * block, increase lower level extents' reference counts. The original
919 * implicit back refs are entailed to the new block.
920 *
921 * The reference count of the block is greater than one and the tree is
922 * not the block's owner tree. Add implicit back refs for every pointer in
923 * the new block, increase lower level extents' reference count.
924 *
925 * Back Reference Key composing:
926 *
927 * The key objectid corresponds to the first byte in the extent,
928 * The key type is used to differentiate between types of back refs.
929 * There are different meanings of the key offset for different types
930 * of back refs.
931 *
932 * File extents can be referenced by:
933 *
934 * - multiple snapshots, subvolumes, or different generations in one subvol
935 * - different files inside a single subvolume
936 * - different offsets inside a file (bookend extents in file.c)
937 *
938 * The extent ref structure for the implicit back refs has fields for:
939 *
940 * - Objectid of the subvolume root
941 * - objectid of the file holding the reference
942 * - original offset in the file
943 * - how many bookend extents
944 *
945 * The key offset for the implicit back refs is hash of the first
946 * three fields.
947 *
948 * The extent ref structure for the full back refs has field for:
949 *
950 * - number of pointers in the tree leaf
951 *
952 * The key offset for the implicit back refs is the first byte of
953 * the tree leaf
954 *
955 * When a file extent is allocated, The implicit back refs is used.
956 * the fields are filled in:
957 *
958 * (root_key.objectid, inode objectid, offset in file, 1)
959 *
960 * When a file extent is removed file truncation, we find the
961 * corresponding implicit back refs and check the following fields:
962 *
963 * (btrfs_header_owner(leaf), inode objectid, offset in file)
964 *
965 * Btree extents can be referenced by:
966 *
967 * - Different subvolumes
968 *
969 * Both the implicit back refs and the full back refs for tree blocks
970 * only consist of key. The key offset for the implicit back refs is
971 * objectid of block's owner tree. The key offset for the full back refs
972 * is the first byte of parent block.
973 *
974 * When implicit back refs is used, information about the lowest key and
975 * level of the tree block are required. These information are stored in
976 * tree block info structure.
977 */
978
979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
982 struct btrfs_path *path,
983 u64 owner, u32 extra_size)
984 {
985 struct btrfs_extent_item *item;
986 struct btrfs_extent_item_v0 *ei0;
987 struct btrfs_extent_ref_v0 *ref0;
988 struct btrfs_tree_block_info *bi;
989 struct extent_buffer *leaf;
990 struct btrfs_key key;
991 struct btrfs_key found_key;
992 u32 new_size = sizeof(*item);
993 u64 refs;
994 int ret;
995
996 leaf = path->nodes[0];
997 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
998
999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_extent_item_v0);
1002 refs = btrfs_extent_refs_v0(leaf, ei0);
1003
1004 if (owner == (u64)-1) {
1005 while (1) {
1006 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 ret = btrfs_next_leaf(root, path);
1008 if (ret < 0)
1009 return ret;
1010 BUG_ON(ret > 0); /* Corruption */
1011 leaf = path->nodes[0];
1012 }
1013 btrfs_item_key_to_cpu(leaf, &found_key,
1014 path->slots[0]);
1015 BUG_ON(key.objectid != found_key.objectid);
1016 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 path->slots[0]++;
1018 continue;
1019 }
1020 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 struct btrfs_extent_ref_v0);
1022 owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 break;
1024 }
1025 }
1026 btrfs_release_path(path);
1027
1028 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 new_size += sizeof(*bi);
1030
1031 new_size -= sizeof(*ei0);
1032 ret = btrfs_search_slot(trans, root, &key, path,
1033 new_size + extra_size, 1);
1034 if (ret < 0)
1035 return ret;
1036 BUG_ON(ret); /* Corruption */
1037
1038 btrfs_extend_item(root, path, new_size);
1039
1040 leaf = path->nodes[0];
1041 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 btrfs_set_extent_refs(leaf, item, refs);
1043 /* FIXME: get real generation */
1044 btrfs_set_extent_generation(leaf, item, 0);
1045 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 btrfs_set_extent_flags(leaf, item,
1047 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 bi = (struct btrfs_tree_block_info *)(item + 1);
1050 /* FIXME: get first key of the block */
1051 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 } else {
1054 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055 }
1056 btrfs_mark_buffer_dirty(leaf);
1057 return 0;
1058 }
1059 #endif
1060
1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 u32 high_crc = ~(u32)0;
1064 u32 low_crc = ~(u32)0;
1065 __le64 lenum;
1066
1067 lenum = cpu_to_le64(root_objectid);
1068 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1069 lenum = cpu_to_le64(owner);
1070 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1071 lenum = cpu_to_le64(offset);
1072 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1073
1074 return ((u64)high_crc << 31) ^ (u64)low_crc;
1075 }
1076
1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 struct btrfs_extent_data_ref *ref)
1079 {
1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 btrfs_extent_data_ref_objectid(leaf, ref),
1082 btrfs_extent_data_ref_offset(leaf, ref));
1083 }
1084
1085 static int match_extent_data_ref(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref,
1087 u64 root_objectid, u64 owner, u64 offset)
1088 {
1089 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 return 0;
1093 return 1;
1094 }
1095
1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root,
1098 struct btrfs_path *path,
1099 u64 bytenr, u64 parent,
1100 u64 root_objectid,
1101 u64 owner, u64 offset)
1102 {
1103 struct btrfs_key key;
1104 struct btrfs_extent_data_ref *ref;
1105 struct extent_buffer *leaf;
1106 u32 nritems;
1107 int ret;
1108 int recow;
1109 int err = -ENOENT;
1110
1111 key.objectid = bytenr;
1112 if (parent) {
1113 key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 key.offset = parent;
1115 } else {
1116 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 key.offset = hash_extent_data_ref(root_objectid,
1118 owner, offset);
1119 }
1120 again:
1121 recow = 0;
1122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 if (ret < 0) {
1124 err = ret;
1125 goto fail;
1126 }
1127
1128 if (parent) {
1129 if (!ret)
1130 return 0;
1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 key.type = BTRFS_EXTENT_REF_V0_KEY;
1133 btrfs_release_path(path);
1134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 if (ret < 0) {
1136 err = ret;
1137 goto fail;
1138 }
1139 if (!ret)
1140 return 0;
1141 #endif
1142 goto fail;
1143 }
1144
1145 leaf = path->nodes[0];
1146 nritems = btrfs_header_nritems(leaf);
1147 while (1) {
1148 if (path->slots[0] >= nritems) {
1149 ret = btrfs_next_leaf(root, path);
1150 if (ret < 0)
1151 err = ret;
1152 if (ret)
1153 goto fail;
1154
1155 leaf = path->nodes[0];
1156 nritems = btrfs_header_nritems(leaf);
1157 recow = 1;
1158 }
1159
1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 if (key.objectid != bytenr ||
1162 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 goto fail;
1164
1165 ref = btrfs_item_ptr(leaf, path->slots[0],
1166 struct btrfs_extent_data_ref);
1167
1168 if (match_extent_data_ref(leaf, ref, root_objectid,
1169 owner, offset)) {
1170 if (recow) {
1171 btrfs_release_path(path);
1172 goto again;
1173 }
1174 err = 0;
1175 break;
1176 }
1177 path->slots[0]++;
1178 }
1179 fail:
1180 return err;
1181 }
1182
1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 struct btrfs_root *root,
1185 struct btrfs_path *path,
1186 u64 bytenr, u64 parent,
1187 u64 root_objectid, u64 owner,
1188 u64 offset, int refs_to_add)
1189 {
1190 struct btrfs_key key;
1191 struct extent_buffer *leaf;
1192 u32 size;
1193 u32 num_refs;
1194 int ret;
1195
1196 key.objectid = bytenr;
1197 if (parent) {
1198 key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 key.offset = parent;
1200 size = sizeof(struct btrfs_shared_data_ref);
1201 } else {
1202 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 key.offset = hash_extent_data_ref(root_objectid,
1204 owner, offset);
1205 size = sizeof(struct btrfs_extent_data_ref);
1206 }
1207
1208 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 if (ret && ret != -EEXIST)
1210 goto fail;
1211
1212 leaf = path->nodes[0];
1213 if (parent) {
1214 struct btrfs_shared_data_ref *ref;
1215 ref = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_shared_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 } else {
1220 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 num_refs += refs_to_add;
1222 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1223 }
1224 } else {
1225 struct btrfs_extent_data_ref *ref;
1226 while (ret == -EEXIST) {
1227 ref = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_data_ref);
1229 if (match_extent_data_ref(leaf, ref, root_objectid,
1230 owner, offset))
1231 break;
1232 btrfs_release_path(path);
1233 key.offset++;
1234 ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 size);
1236 if (ret && ret != -EEXIST)
1237 goto fail;
1238
1239 leaf = path->nodes[0];
1240 }
1241 ref = btrfs_item_ptr(leaf, path->slots[0],
1242 struct btrfs_extent_data_ref);
1243 if (ret == 0) {
1244 btrfs_set_extent_data_ref_root(leaf, ref,
1245 root_objectid);
1246 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 } else {
1250 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 num_refs += refs_to_add;
1252 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1253 }
1254 }
1255 btrfs_mark_buffer_dirty(leaf);
1256 ret = 0;
1257 fail:
1258 btrfs_release_path(path);
1259 return ret;
1260 }
1261
1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 struct btrfs_root *root,
1264 struct btrfs_path *path,
1265 int refs_to_drop, int *last_ref)
1266 {
1267 struct btrfs_key key;
1268 struct btrfs_extent_data_ref *ref1 = NULL;
1269 struct btrfs_shared_data_ref *ref2 = NULL;
1270 struct extent_buffer *leaf;
1271 u32 num_refs = 0;
1272 int ret = 0;
1273
1274 leaf = path->nodes[0];
1275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 struct btrfs_extent_data_ref);
1280 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 struct btrfs_shared_data_ref);
1284 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 struct btrfs_extent_ref_v0 *ref0;
1288 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_ref_v0);
1290 num_refs = btrfs_ref_count_v0(leaf, ref0);
1291 #endif
1292 } else {
1293 BUG();
1294 }
1295
1296 BUG_ON(num_refs < refs_to_drop);
1297 num_refs -= refs_to_drop;
1298
1299 if (num_refs == 0) {
1300 ret = btrfs_del_item(trans, root, path);
1301 *last_ref = 1;
1302 } else {
1303 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 else {
1309 struct btrfs_extent_ref_v0 *ref0;
1310 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 struct btrfs_extent_ref_v0);
1312 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1313 }
1314 #endif
1315 btrfs_mark_buffer_dirty(leaf);
1316 }
1317 return ret;
1318 }
1319
1320 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 struct btrfs_path *path,
1322 struct btrfs_extent_inline_ref *iref)
1323 {
1324 struct btrfs_key key;
1325 struct extent_buffer *leaf;
1326 struct btrfs_extent_data_ref *ref1;
1327 struct btrfs_shared_data_ref *ref2;
1328 u32 num_refs = 0;
1329
1330 leaf = path->nodes[0];
1331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 if (iref) {
1333 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 BTRFS_EXTENT_DATA_REF_KEY) {
1335 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 } else {
1338 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340 }
1341 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 struct btrfs_extent_data_ref);
1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_shared_data_ref);
1348 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 struct btrfs_extent_ref_v0 *ref0;
1352 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_ref_v0);
1354 num_refs = btrfs_ref_count_v0(leaf, ref0);
1355 #endif
1356 } else {
1357 WARN_ON(1);
1358 }
1359 return num_refs;
1360 }
1361
1362 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 struct btrfs_root *root,
1364 struct btrfs_path *path,
1365 u64 bytenr, u64 parent,
1366 u64 root_objectid)
1367 {
1368 struct btrfs_key key;
1369 int ret;
1370
1371 key.objectid = bytenr;
1372 if (parent) {
1373 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 key.offset = parent;
1375 } else {
1376 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 key.offset = root_objectid;
1378 }
1379
1380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 if (ret > 0)
1382 ret = -ENOENT;
1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 if (ret == -ENOENT && parent) {
1385 btrfs_release_path(path);
1386 key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 if (ret > 0)
1389 ret = -ENOENT;
1390 }
1391 #endif
1392 return ret;
1393 }
1394
1395 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root,
1397 struct btrfs_path *path,
1398 u64 bytenr, u64 parent,
1399 u64 root_objectid)
1400 {
1401 struct btrfs_key key;
1402 int ret;
1403
1404 key.objectid = bytenr;
1405 if (parent) {
1406 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 key.offset = parent;
1408 } else {
1409 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 key.offset = root_objectid;
1411 }
1412
1413 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1414 btrfs_release_path(path);
1415 return ret;
1416 }
1417
1418 static inline int extent_ref_type(u64 parent, u64 owner)
1419 {
1420 int type;
1421 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 if (parent > 0)
1423 type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 else
1425 type = BTRFS_TREE_BLOCK_REF_KEY;
1426 } else {
1427 if (parent > 0)
1428 type = BTRFS_SHARED_DATA_REF_KEY;
1429 else
1430 type = BTRFS_EXTENT_DATA_REF_KEY;
1431 }
1432 return type;
1433 }
1434
1435 static int find_next_key(struct btrfs_path *path, int level,
1436 struct btrfs_key *key)
1437
1438 {
1439 for (; level < BTRFS_MAX_LEVEL; level++) {
1440 if (!path->nodes[level])
1441 break;
1442 if (path->slots[level] + 1 >=
1443 btrfs_header_nritems(path->nodes[level]))
1444 continue;
1445 if (level == 0)
1446 btrfs_item_key_to_cpu(path->nodes[level], key,
1447 path->slots[level] + 1);
1448 else
1449 btrfs_node_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 return 0;
1452 }
1453 return 1;
1454 }
1455
1456 /*
1457 * look for inline back ref. if back ref is found, *ref_ret is set
1458 * to the address of inline back ref, and 0 is returned.
1459 *
1460 * if back ref isn't found, *ref_ret is set to the address where it
1461 * should be inserted, and -ENOENT is returned.
1462 *
1463 * if insert is true and there are too many inline back refs, the path
1464 * points to the extent item, and -EAGAIN is returned.
1465 *
1466 * NOTE: inline back refs are ordered in the same way that back ref
1467 * items in the tree are ordered.
1468 */
1469 static noinline_for_stack
1470 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 struct btrfs_root *root,
1472 struct btrfs_path *path,
1473 struct btrfs_extent_inline_ref **ref_ret,
1474 u64 bytenr, u64 num_bytes,
1475 u64 parent, u64 root_objectid,
1476 u64 owner, u64 offset, int insert)
1477 {
1478 struct btrfs_key key;
1479 struct extent_buffer *leaf;
1480 struct btrfs_extent_item *ei;
1481 struct btrfs_extent_inline_ref *iref;
1482 u64 flags;
1483 u64 item_size;
1484 unsigned long ptr;
1485 unsigned long end;
1486 int extra_size;
1487 int type;
1488 int want;
1489 int ret;
1490 int err = 0;
1491 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 SKINNY_METADATA);
1493
1494 key.objectid = bytenr;
1495 key.type = BTRFS_EXTENT_ITEM_KEY;
1496 key.offset = num_bytes;
1497
1498 want = extent_ref_type(parent, owner);
1499 if (insert) {
1500 extra_size = btrfs_extent_inline_ref_size(want);
1501 path->keep_locks = 1;
1502 } else
1503 extra_size = -1;
1504
1505 /*
1506 * Owner is our parent level, so we can just add one to get the level
1507 * for the block we are interested in.
1508 */
1509 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 key.type = BTRFS_METADATA_ITEM_KEY;
1511 key.offset = owner;
1512 }
1513
1514 again:
1515 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1516 if (ret < 0) {
1517 err = ret;
1518 goto out;
1519 }
1520
1521 /*
1522 * We may be a newly converted file system which still has the old fat
1523 * extent entries for metadata, so try and see if we have one of those.
1524 */
1525 if (ret > 0 && skinny_metadata) {
1526 skinny_metadata = false;
1527 if (path->slots[0]) {
1528 path->slots[0]--;
1529 btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 path->slots[0]);
1531 if (key.objectid == bytenr &&
1532 key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 key.offset == num_bytes)
1534 ret = 0;
1535 }
1536 if (ret) {
1537 key.objectid = bytenr;
1538 key.type = BTRFS_EXTENT_ITEM_KEY;
1539 key.offset = num_bytes;
1540 btrfs_release_path(path);
1541 goto again;
1542 }
1543 }
1544
1545 if (ret && !insert) {
1546 err = -ENOENT;
1547 goto out;
1548 } else if (WARN_ON(ret)) {
1549 err = -EIO;
1550 goto out;
1551 }
1552
1553 leaf = path->nodes[0];
1554 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 if (item_size < sizeof(*ei)) {
1557 if (!insert) {
1558 err = -ENOENT;
1559 goto out;
1560 }
1561 ret = convert_extent_item_v0(trans, root, path, owner,
1562 extra_size);
1563 if (ret < 0) {
1564 err = ret;
1565 goto out;
1566 }
1567 leaf = path->nodes[0];
1568 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1569 }
1570 #endif
1571 BUG_ON(item_size < sizeof(*ei));
1572
1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 flags = btrfs_extent_flags(leaf, ei);
1575
1576 ptr = (unsigned long)(ei + 1);
1577 end = (unsigned long)ei + item_size;
1578
1579 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1580 ptr += sizeof(struct btrfs_tree_block_info);
1581 BUG_ON(ptr > end);
1582 }
1583
1584 err = -ENOENT;
1585 while (1) {
1586 if (ptr >= end) {
1587 WARN_ON(ptr > end);
1588 break;
1589 }
1590 iref = (struct btrfs_extent_inline_ref *)ptr;
1591 type = btrfs_extent_inline_ref_type(leaf, iref);
1592 if (want < type)
1593 break;
1594 if (want > type) {
1595 ptr += btrfs_extent_inline_ref_size(type);
1596 continue;
1597 }
1598
1599 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 struct btrfs_extent_data_ref *dref;
1601 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 if (match_extent_data_ref(leaf, dref, root_objectid,
1603 owner, offset)) {
1604 err = 0;
1605 break;
1606 }
1607 if (hash_extent_data_ref_item(leaf, dref) <
1608 hash_extent_data_ref(root_objectid, owner, offset))
1609 break;
1610 } else {
1611 u64 ref_offset;
1612 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 if (parent > 0) {
1614 if (parent == ref_offset) {
1615 err = 0;
1616 break;
1617 }
1618 if (ref_offset < parent)
1619 break;
1620 } else {
1621 if (root_objectid == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < root_objectid)
1626 break;
1627 }
1628 }
1629 ptr += btrfs_extent_inline_ref_size(type);
1630 }
1631 if (err == -ENOENT && insert) {
1632 if (item_size + extra_size >=
1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 err = -EAGAIN;
1635 goto out;
1636 }
1637 /*
1638 * To add new inline back ref, we have to make sure
1639 * there is no corresponding back ref item.
1640 * For simplicity, we just do not add new inline back
1641 * ref if there is any kind of item for this block
1642 */
1643 if (find_next_key(path, 0, &key) == 0 &&
1644 key.objectid == bytenr &&
1645 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1646 err = -EAGAIN;
1647 goto out;
1648 }
1649 }
1650 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651 out:
1652 if (insert) {
1653 path->keep_locks = 0;
1654 btrfs_unlock_up_safe(path, 1);
1655 }
1656 return err;
1657 }
1658
1659 /*
1660 * helper to add new inline back ref
1661 */
1662 static noinline_for_stack
1663 void setup_inline_extent_backref(struct btrfs_root *root,
1664 struct btrfs_path *path,
1665 struct btrfs_extent_inline_ref *iref,
1666 u64 parent, u64 root_objectid,
1667 u64 owner, u64 offset, int refs_to_add,
1668 struct btrfs_delayed_extent_op *extent_op)
1669 {
1670 struct extent_buffer *leaf;
1671 struct btrfs_extent_item *ei;
1672 unsigned long ptr;
1673 unsigned long end;
1674 unsigned long item_offset;
1675 u64 refs;
1676 int size;
1677 int type;
1678
1679 leaf = path->nodes[0];
1680 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 item_offset = (unsigned long)iref - (unsigned long)ei;
1682
1683 type = extent_ref_type(parent, owner);
1684 size = btrfs_extent_inline_ref_size(type);
1685
1686 btrfs_extend_item(root, path, size);
1687
1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 refs = btrfs_extent_refs(leaf, ei);
1690 refs += refs_to_add;
1691 btrfs_set_extent_refs(leaf, ei, refs);
1692 if (extent_op)
1693 __run_delayed_extent_op(extent_op, leaf, ei);
1694
1695 ptr = (unsigned long)ei + item_offset;
1696 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 if (ptr < end - size)
1698 memmove_extent_buffer(leaf, ptr + size, ptr,
1699 end - size - ptr);
1700
1701 iref = (struct btrfs_extent_inline_ref *)ptr;
1702 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 struct btrfs_extent_data_ref *dref;
1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 struct btrfs_shared_data_ref *sref;
1712 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 } else {
1718 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719 }
1720 btrfs_mark_buffer_dirty(leaf);
1721 }
1722
1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref **ref_ret,
1727 u64 bytenr, u64 num_bytes, u64 parent,
1728 u64 root_objectid, u64 owner, u64 offset)
1729 {
1730 int ret;
1731
1732 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 bytenr, num_bytes, parent,
1734 root_objectid, owner, offset, 0);
1735 if (ret != -ENOENT)
1736 return ret;
1737
1738 btrfs_release_path(path);
1739 *ref_ret = NULL;
1740
1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 root_objectid);
1744 } else {
1745 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 root_objectid, owner, offset);
1747 }
1748 return ret;
1749 }
1750
1751 /*
1752 * helper to update/remove inline back ref
1753 */
1754 static noinline_for_stack
1755 void update_inline_extent_backref(struct btrfs_root *root,
1756 struct btrfs_path *path,
1757 struct btrfs_extent_inline_ref *iref,
1758 int refs_to_mod,
1759 struct btrfs_delayed_extent_op *extent_op,
1760 int *last_ref)
1761 {
1762 struct extent_buffer *leaf;
1763 struct btrfs_extent_item *ei;
1764 struct btrfs_extent_data_ref *dref = NULL;
1765 struct btrfs_shared_data_ref *sref = NULL;
1766 unsigned long ptr;
1767 unsigned long end;
1768 u32 item_size;
1769 int size;
1770 int type;
1771 u64 refs;
1772
1773 leaf = path->nodes[0];
1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 refs = btrfs_extent_refs(leaf, ei);
1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 refs += refs_to_mod;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1779 if (extent_op)
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1781
1782 type = btrfs_extent_inline_ref_type(leaf, iref);
1783
1784 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 refs = btrfs_extent_data_ref_count(leaf, dref);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 refs = btrfs_shared_data_ref_count(leaf, sref);
1790 } else {
1791 refs = 1;
1792 BUG_ON(refs_to_mod != -1);
1793 }
1794
1795 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 refs += refs_to_mod;
1797
1798 if (refs > 0) {
1799 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 else
1802 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 } else {
1804 *last_ref = 1;
1805 size = btrfs_extent_inline_ref_size(type);
1806 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 ptr = (unsigned long)iref;
1808 end = (unsigned long)ei + item_size;
1809 if (ptr + size < end)
1810 memmove_extent_buffer(leaf, ptr, ptr + size,
1811 end - ptr - size);
1812 item_size -= size;
1813 btrfs_truncate_item(root, path, item_size, 1);
1814 }
1815 btrfs_mark_buffer_dirty(leaf);
1816 }
1817
1818 static noinline_for_stack
1819 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 u64 bytenr, u64 num_bytes, u64 parent,
1823 u64 root_objectid, u64 owner,
1824 u64 offset, int refs_to_add,
1825 struct btrfs_delayed_extent_op *extent_op)
1826 {
1827 struct btrfs_extent_inline_ref *iref;
1828 int ret;
1829
1830 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 bytenr, num_bytes, parent,
1832 root_objectid, owner, offset, 1);
1833 if (ret == 0) {
1834 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1835 update_inline_extent_backref(root, path, iref,
1836 refs_to_add, extent_op, NULL);
1837 } else if (ret == -ENOENT) {
1838 setup_inline_extent_backref(root, path, iref, parent,
1839 root_objectid, owner, offset,
1840 refs_to_add, extent_op);
1841 ret = 0;
1842 }
1843 return ret;
1844 }
1845
1846 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 struct btrfs_root *root,
1848 struct btrfs_path *path,
1849 u64 bytenr, u64 parent, u64 root_objectid,
1850 u64 owner, u64 offset, int refs_to_add)
1851 {
1852 int ret;
1853 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 BUG_ON(refs_to_add != 1);
1855 ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 parent, root_objectid);
1857 } else {
1858 ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 parent, root_objectid,
1860 owner, offset, refs_to_add);
1861 }
1862 return ret;
1863 }
1864
1865 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 struct btrfs_root *root,
1867 struct btrfs_path *path,
1868 struct btrfs_extent_inline_ref *iref,
1869 int refs_to_drop, int is_data, int *last_ref)
1870 {
1871 int ret = 0;
1872
1873 BUG_ON(!is_data && refs_to_drop != 1);
1874 if (iref) {
1875 update_inline_extent_backref(root, path, iref,
1876 -refs_to_drop, NULL, last_ref);
1877 } else if (is_data) {
1878 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 last_ref);
1880 } else {
1881 *last_ref = 1;
1882 ret = btrfs_del_item(trans, root, path);
1883 }
1884 return ret;
1885 }
1886
1887 static int btrfs_issue_discard(struct block_device *bdev,
1888 u64 start, u64 len)
1889 {
1890 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1891 }
1892
1893 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 u64 num_bytes, u64 *actual_bytes)
1895 {
1896 int ret;
1897 u64 discarded_bytes = 0;
1898 struct btrfs_bio *bbio = NULL;
1899
1900
1901 /* Tell the block device(s) that the sectors can be discarded */
1902 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1903 bytenr, &num_bytes, &bbio, 0);
1904 /* Error condition is -ENOMEM */
1905 if (!ret) {
1906 struct btrfs_bio_stripe *stripe = bbio->stripes;
1907 int i;
1908
1909
1910 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1911 if (!stripe->dev->can_discard)
1912 continue;
1913
1914 ret = btrfs_issue_discard(stripe->dev->bdev,
1915 stripe->physical,
1916 stripe->length);
1917 if (!ret)
1918 discarded_bytes += stripe->length;
1919 else if (ret != -EOPNOTSUPP)
1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1921
1922 /*
1923 * Just in case we get back EOPNOTSUPP for some reason,
1924 * just ignore the return value so we don't screw up
1925 * people calling discard_extent.
1926 */
1927 ret = 0;
1928 }
1929 btrfs_put_bbio(bbio);
1930 }
1931
1932 if (actual_bytes)
1933 *actual_bytes = discarded_bytes;
1934
1935
1936 if (ret == -EOPNOTSUPP)
1937 ret = 0;
1938 return ret;
1939 }
1940
1941 /* Can return -ENOMEM */
1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 u64 bytenr, u64 num_bytes, u64 parent,
1945 u64 root_objectid, u64 owner, u64 offset,
1946 int no_quota)
1947 {
1948 int ret;
1949 struct btrfs_fs_info *fs_info = root->fs_info;
1950
1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953
1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 num_bytes,
1957 parent, root_objectid, (int)owner,
1958 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1959 } else {
1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 num_bytes,
1962 parent, root_objectid, owner, offset,
1963 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1964 }
1965 return ret;
1966 }
1967
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 u64 bytenr, u64 num_bytes,
1971 u64 parent, u64 root_objectid,
1972 u64 owner, u64 offset, int refs_to_add,
1973 int no_quota,
1974 struct btrfs_delayed_extent_op *extent_op)
1975 {
1976 struct btrfs_fs_info *fs_info = root->fs_info;
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
1980 struct btrfs_key key;
1981 u64 refs;
1982 int ret;
1983 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1984
1985 path = btrfs_alloc_path();
1986 if (!path)
1987 return -ENOMEM;
1988
1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 no_quota = 1;
1991
1992 path->reada = 1;
1993 path->leave_spinning = 1;
1994 /* this will setup the path even if it fails to insert the back ref */
1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 bytenr, num_bytes, parent,
1997 root_objectid, owner, offset,
1998 refs_to_add, extent_op);
1999 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2000 goto out;
2001 /*
2002 * Ok we were able to insert an inline extent and it appears to be a new
2003 * reference, deal with the qgroup accounting.
2004 */
2005 if (!ret && !no_quota) {
2006 ASSERT(root->fs_info->quota_enabled);
2007 leaf = path->nodes[0];
2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 item = btrfs_item_ptr(leaf, path->slots[0],
2010 struct btrfs_extent_item);
2011 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 btrfs_release_path(path);
2014
2015 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 bytenr, num_bytes, type, 0);
2017 goto out;
2018 }
2019
2020 /*
2021 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 * inline extent ref, so just update the reference count and add a
2023 * normal backref.
2024 */
2025 leaf = path->nodes[0];
2026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 refs = btrfs_extent_refs(leaf, item);
2029 if (refs)
2030 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2031 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 if (extent_op)
2033 __run_delayed_extent_op(extent_op, leaf, item);
2034
2035 btrfs_mark_buffer_dirty(leaf);
2036 btrfs_release_path(path);
2037
2038 if (!no_quota) {
2039 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 bytenr, num_bytes, type, 0);
2041 if (ret)
2042 goto out;
2043 }
2044
2045 path->reada = 1;
2046 path->leave_spinning = 1;
2047 /* now insert the actual backref */
2048 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2049 path, bytenr, parent, root_objectid,
2050 owner, offset, refs_to_add);
2051 if (ret)
2052 btrfs_abort_transaction(trans, root, ret);
2053 out:
2054 btrfs_free_path(path);
2055 return ret;
2056 }
2057
2058 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 struct btrfs_root *root,
2060 struct btrfs_delayed_ref_node *node,
2061 struct btrfs_delayed_extent_op *extent_op,
2062 int insert_reserved)
2063 {
2064 int ret = 0;
2065 struct btrfs_delayed_data_ref *ref;
2066 struct btrfs_key ins;
2067 u64 parent = 0;
2068 u64 ref_root = 0;
2069 u64 flags = 0;
2070
2071 ins.objectid = node->bytenr;
2072 ins.offset = node->num_bytes;
2073 ins.type = BTRFS_EXTENT_ITEM_KEY;
2074
2075 ref = btrfs_delayed_node_to_data_ref(node);
2076 trace_run_delayed_data_ref(node, ref, node->action);
2077
2078 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 parent = ref->parent;
2080 ref_root = ref->root;
2081
2082 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2083 if (extent_op)
2084 flags |= extent_op->flags_to_set;
2085 ret = alloc_reserved_file_extent(trans, root,
2086 parent, ref_root, flags,
2087 ref->objectid, ref->offset,
2088 &ins, node->ref_mod);
2089 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 node->num_bytes, parent,
2092 ref_root, ref->objectid,
2093 ref->offset, node->ref_mod,
2094 node->no_quota, extent_op);
2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 node->num_bytes, parent,
2098 ref_root, ref->objectid,
2099 ref->offset, node->ref_mod,
2100 extent_op, node->no_quota);
2101 } else {
2102 BUG();
2103 }
2104 return ret;
2105 }
2106
2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 struct extent_buffer *leaf,
2109 struct btrfs_extent_item *ei)
2110 {
2111 u64 flags = btrfs_extent_flags(leaf, ei);
2112 if (extent_op->update_flags) {
2113 flags |= extent_op->flags_to_set;
2114 btrfs_set_extent_flags(leaf, ei, flags);
2115 }
2116
2117 if (extent_op->update_key) {
2118 struct btrfs_tree_block_info *bi;
2119 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2122 }
2123 }
2124
2125 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 struct btrfs_root *root,
2127 struct btrfs_delayed_ref_node *node,
2128 struct btrfs_delayed_extent_op *extent_op)
2129 {
2130 struct btrfs_key key;
2131 struct btrfs_path *path;
2132 struct btrfs_extent_item *ei;
2133 struct extent_buffer *leaf;
2134 u32 item_size;
2135 int ret;
2136 int err = 0;
2137 int metadata = !extent_op->is_data;
2138
2139 if (trans->aborted)
2140 return 0;
2141
2142 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 metadata = 0;
2144
2145 path = btrfs_alloc_path();
2146 if (!path)
2147 return -ENOMEM;
2148
2149 key.objectid = node->bytenr;
2150
2151 if (metadata) {
2152 key.type = BTRFS_METADATA_ITEM_KEY;
2153 key.offset = extent_op->level;
2154 } else {
2155 key.type = BTRFS_EXTENT_ITEM_KEY;
2156 key.offset = node->num_bytes;
2157 }
2158
2159 again:
2160 path->reada = 1;
2161 path->leave_spinning = 1;
2162 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 path, 0, 1);
2164 if (ret < 0) {
2165 err = ret;
2166 goto out;
2167 }
2168 if (ret > 0) {
2169 if (metadata) {
2170 if (path->slots[0] > 0) {
2171 path->slots[0]--;
2172 btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 path->slots[0]);
2174 if (key.objectid == node->bytenr &&
2175 key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 key.offset == node->num_bytes)
2177 ret = 0;
2178 }
2179 if (ret > 0) {
2180 btrfs_release_path(path);
2181 metadata = 0;
2182
2183 key.objectid = node->bytenr;
2184 key.offset = node->num_bytes;
2185 key.type = BTRFS_EXTENT_ITEM_KEY;
2186 goto again;
2187 }
2188 } else {
2189 err = -EIO;
2190 goto out;
2191 }
2192 }
2193
2194 leaf = path->nodes[0];
2195 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 if (item_size < sizeof(*ei)) {
2198 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 path, (u64)-1, 0);
2200 if (ret < 0) {
2201 err = ret;
2202 goto out;
2203 }
2204 leaf = path->nodes[0];
2205 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2206 }
2207 #endif
2208 BUG_ON(item_size < sizeof(*ei));
2209 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 __run_delayed_extent_op(extent_op, leaf, ei);
2211
2212 btrfs_mark_buffer_dirty(leaf);
2213 out:
2214 btrfs_free_path(path);
2215 return err;
2216 }
2217
2218 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 struct btrfs_root *root,
2220 struct btrfs_delayed_ref_node *node,
2221 struct btrfs_delayed_extent_op *extent_op,
2222 int insert_reserved)
2223 {
2224 int ret = 0;
2225 struct btrfs_delayed_tree_ref *ref;
2226 struct btrfs_key ins;
2227 u64 parent = 0;
2228 u64 ref_root = 0;
2229 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 SKINNY_METADATA);
2231
2232 ref = btrfs_delayed_node_to_tree_ref(node);
2233 trace_run_delayed_tree_ref(node, ref, node->action);
2234
2235 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 parent = ref->parent;
2237 ref_root = ref->root;
2238
2239 ins.objectid = node->bytenr;
2240 if (skinny_metadata) {
2241 ins.offset = ref->level;
2242 ins.type = BTRFS_METADATA_ITEM_KEY;
2243 } else {
2244 ins.offset = node->num_bytes;
2245 ins.type = BTRFS_EXTENT_ITEM_KEY;
2246 }
2247
2248 BUG_ON(node->ref_mod != 1);
2249 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2250 BUG_ON(!extent_op || !extent_op->update_flags);
2251 ret = alloc_reserved_tree_block(trans, root,
2252 parent, ref_root,
2253 extent_op->flags_to_set,
2254 &extent_op->key,
2255 ref->level, &ins,
2256 node->no_quota);
2257 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 node->num_bytes, parent, ref_root,
2260 ref->level, 0, 1, node->no_quota,
2261 extent_op);
2262 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 node->num_bytes, parent, ref_root,
2265 ref->level, 0, 1, extent_op,
2266 node->no_quota);
2267 } else {
2268 BUG();
2269 }
2270 return ret;
2271 }
2272
2273 /* helper function to actually process a single delayed ref entry */
2274 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 struct btrfs_root *root,
2276 struct btrfs_delayed_ref_node *node,
2277 struct btrfs_delayed_extent_op *extent_op,
2278 int insert_reserved)
2279 {
2280 int ret = 0;
2281
2282 if (trans->aborted) {
2283 if (insert_reserved)
2284 btrfs_pin_extent(root, node->bytenr,
2285 node->num_bytes, 1);
2286 return 0;
2287 }
2288
2289 if (btrfs_delayed_ref_is_head(node)) {
2290 struct btrfs_delayed_ref_head *head;
2291 /*
2292 * we've hit the end of the chain and we were supposed
2293 * to insert this extent into the tree. But, it got
2294 * deleted before we ever needed to insert it, so all
2295 * we have to do is clean up the accounting
2296 */
2297 BUG_ON(extent_op);
2298 head = btrfs_delayed_node_to_head(node);
2299 trace_run_delayed_ref_head(node, head, node->action);
2300
2301 if (insert_reserved) {
2302 btrfs_pin_extent(root, node->bytenr,
2303 node->num_bytes, 1);
2304 if (head->is_data) {
2305 ret = btrfs_del_csums(trans, root,
2306 node->bytenr,
2307 node->num_bytes);
2308 }
2309 }
2310 return ret;
2311 }
2312
2313 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 insert_reserved);
2317 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 insert_reserved);
2321 else
2322 BUG();
2323 return ret;
2324 }
2325
2326 static noinline struct btrfs_delayed_ref_node *
2327 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2328 {
2329 struct rb_node *node;
2330 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2331
2332 /*
2333 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 * this prevents ref count from going down to zero when
2335 * there still are pending delayed ref.
2336 */
2337 node = rb_first(&head->ref_root);
2338 while (node) {
2339 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340 rb_node);
2341 if (ref->action == BTRFS_ADD_DELAYED_REF)
2342 return ref;
2343 else if (last == NULL)
2344 last = ref;
2345 node = rb_next(node);
2346 }
2347 return last;
2348 }
2349
2350 /*
2351 * Returns 0 on success or if called with an already aborted transaction.
2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2353 */
2354 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355 struct btrfs_root *root,
2356 unsigned long nr)
2357 {
2358 struct btrfs_delayed_ref_root *delayed_refs;
2359 struct btrfs_delayed_ref_node *ref;
2360 struct btrfs_delayed_ref_head *locked_ref = NULL;
2361 struct btrfs_delayed_extent_op *extent_op;
2362 struct btrfs_fs_info *fs_info = root->fs_info;
2363 ktime_t start = ktime_get();
2364 int ret;
2365 unsigned long count = 0;
2366 unsigned long actual_count = 0;
2367 int must_insert_reserved = 0;
2368
2369 delayed_refs = &trans->transaction->delayed_refs;
2370 while (1) {
2371 if (!locked_ref) {
2372 if (count >= nr)
2373 break;
2374
2375 spin_lock(&delayed_refs->lock);
2376 locked_ref = btrfs_select_ref_head(trans);
2377 if (!locked_ref) {
2378 spin_unlock(&delayed_refs->lock);
2379 break;
2380 }
2381
2382 /* grab the lock that says we are going to process
2383 * all the refs for this head */
2384 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2385 spin_unlock(&delayed_refs->lock);
2386 /*
2387 * we may have dropped the spin lock to get the head
2388 * mutex lock, and that might have given someone else
2389 * time to free the head. If that's true, it has been
2390 * removed from our list and we can move on.
2391 */
2392 if (ret == -EAGAIN) {
2393 locked_ref = NULL;
2394 count++;
2395 continue;
2396 }
2397 }
2398
2399 /*
2400 * We need to try and merge add/drops of the same ref since we
2401 * can run into issues with relocate dropping the implicit ref
2402 * and then it being added back again before the drop can
2403 * finish. If we merged anything we need to re-loop so we can
2404 * get a good ref.
2405 */
2406 spin_lock(&locked_ref->lock);
2407 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408 locked_ref);
2409
2410 /*
2411 * locked_ref is the head node, so we have to go one
2412 * node back for any delayed ref updates
2413 */
2414 ref = select_delayed_ref(locked_ref);
2415
2416 if (ref && ref->seq &&
2417 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2418 spin_unlock(&locked_ref->lock);
2419 btrfs_delayed_ref_unlock(locked_ref);
2420 spin_lock(&delayed_refs->lock);
2421 locked_ref->processing = 0;
2422 delayed_refs->num_heads_ready++;
2423 spin_unlock(&delayed_refs->lock);
2424 locked_ref = NULL;
2425 cond_resched();
2426 count++;
2427 continue;
2428 }
2429
2430 /*
2431 * record the must insert reserved flag before we
2432 * drop the spin lock.
2433 */
2434 must_insert_reserved = locked_ref->must_insert_reserved;
2435 locked_ref->must_insert_reserved = 0;
2436
2437 extent_op = locked_ref->extent_op;
2438 locked_ref->extent_op = NULL;
2439
2440 if (!ref) {
2441
2442
2443 /* All delayed refs have been processed, Go ahead
2444 * and send the head node to run_one_delayed_ref,
2445 * so that any accounting fixes can happen
2446 */
2447 ref = &locked_ref->node;
2448
2449 if (extent_op && must_insert_reserved) {
2450 btrfs_free_delayed_extent_op(extent_op);
2451 extent_op = NULL;
2452 }
2453
2454 if (extent_op) {
2455 spin_unlock(&locked_ref->lock);
2456 ret = run_delayed_extent_op(trans, root,
2457 ref, extent_op);
2458 btrfs_free_delayed_extent_op(extent_op);
2459
2460 if (ret) {
2461 /*
2462 * Need to reset must_insert_reserved if
2463 * there was an error so the abort stuff
2464 * can cleanup the reserved space
2465 * properly.
2466 */
2467 if (must_insert_reserved)
2468 locked_ref->must_insert_reserved = 1;
2469 locked_ref->processing = 0;
2470 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2471 btrfs_delayed_ref_unlock(locked_ref);
2472 return ret;
2473 }
2474 continue;
2475 }
2476
2477 /*
2478 * Need to drop our head ref lock and re-aqcuire the
2479 * delayed ref lock and then re-check to make sure
2480 * nobody got added.
2481 */
2482 spin_unlock(&locked_ref->lock);
2483 spin_lock(&delayed_refs->lock);
2484 spin_lock(&locked_ref->lock);
2485 if (rb_first(&locked_ref->ref_root) ||
2486 locked_ref->extent_op) {
2487 spin_unlock(&locked_ref->lock);
2488 spin_unlock(&delayed_refs->lock);
2489 continue;
2490 }
2491 ref->in_tree = 0;
2492 delayed_refs->num_heads--;
2493 rb_erase(&locked_ref->href_node,
2494 &delayed_refs->href_root);
2495 spin_unlock(&delayed_refs->lock);
2496 } else {
2497 actual_count++;
2498 ref->in_tree = 0;
2499 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2500 }
2501 atomic_dec(&delayed_refs->num_entries);
2502
2503 if (!btrfs_delayed_ref_is_head(ref)) {
2504 /*
2505 * when we play the delayed ref, also correct the
2506 * ref_mod on head
2507 */
2508 switch (ref->action) {
2509 case BTRFS_ADD_DELAYED_REF:
2510 case BTRFS_ADD_DELAYED_EXTENT:
2511 locked_ref->node.ref_mod -= ref->ref_mod;
2512 break;
2513 case BTRFS_DROP_DELAYED_REF:
2514 locked_ref->node.ref_mod += ref->ref_mod;
2515 break;
2516 default:
2517 WARN_ON(1);
2518 }
2519 }
2520 spin_unlock(&locked_ref->lock);
2521
2522 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2523 must_insert_reserved);
2524
2525 btrfs_free_delayed_extent_op(extent_op);
2526 if (ret) {
2527 locked_ref->processing = 0;
2528 btrfs_delayed_ref_unlock(locked_ref);
2529 btrfs_put_delayed_ref(ref);
2530 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2531 return ret;
2532 }
2533
2534 /*
2535 * If this node is a head, that means all the refs in this head
2536 * have been dealt with, and we will pick the next head to deal
2537 * with, so we must unlock the head and drop it from the cluster
2538 * list before we release it.
2539 */
2540 if (btrfs_delayed_ref_is_head(ref)) {
2541 btrfs_delayed_ref_unlock(locked_ref);
2542 locked_ref = NULL;
2543 }
2544 btrfs_put_delayed_ref(ref);
2545 count++;
2546 cond_resched();
2547 }
2548
2549 /*
2550 * We don't want to include ref heads since we can have empty ref heads
2551 * and those will drastically skew our runtime down since we just do
2552 * accounting, no actual extent tree updates.
2553 */
2554 if (actual_count > 0) {
2555 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2556 u64 avg;
2557
2558 /*
2559 * We weigh the current average higher than our current runtime
2560 * to avoid large swings in the average.
2561 */
2562 spin_lock(&delayed_refs->lock);
2563 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2564 avg = div64_u64(avg, 4);
2565 fs_info->avg_delayed_ref_runtime = avg;
2566 spin_unlock(&delayed_refs->lock);
2567 }
2568 return 0;
2569 }
2570
2571 #ifdef SCRAMBLE_DELAYED_REFS
2572 /*
2573 * Normally delayed refs get processed in ascending bytenr order. This
2574 * correlates in most cases to the order added. To expose dependencies on this
2575 * order, we start to process the tree in the middle instead of the beginning
2576 */
2577 static u64 find_middle(struct rb_root *root)
2578 {
2579 struct rb_node *n = root->rb_node;
2580 struct btrfs_delayed_ref_node *entry;
2581 int alt = 1;
2582 u64 middle;
2583 u64 first = 0, last = 0;
2584
2585 n = rb_first(root);
2586 if (n) {
2587 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2588 first = entry->bytenr;
2589 }
2590 n = rb_last(root);
2591 if (n) {
2592 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2593 last = entry->bytenr;
2594 }
2595 n = root->rb_node;
2596
2597 while (n) {
2598 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2599 WARN_ON(!entry->in_tree);
2600
2601 middle = entry->bytenr;
2602
2603 if (alt)
2604 n = n->rb_left;
2605 else
2606 n = n->rb_right;
2607
2608 alt = 1 - alt;
2609 }
2610 return middle;
2611 }
2612 #endif
2613
2614 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2615 {
2616 u64 num_bytes;
2617
2618 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2619 sizeof(struct btrfs_extent_inline_ref));
2620 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2621 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2622
2623 /*
2624 * We don't ever fill up leaves all the way so multiply by 2 just to be
2625 * closer to what we're really going to want to ouse.
2626 */
2627 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2628 }
2629
2630 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2631 struct btrfs_root *root)
2632 {
2633 struct btrfs_block_rsv *global_rsv;
2634 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2635 u64 num_bytes;
2636 int ret = 0;
2637
2638 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2639 num_heads = heads_to_leaves(root, num_heads);
2640 if (num_heads > 1)
2641 num_bytes += (num_heads - 1) * root->nodesize;
2642 num_bytes <<= 1;
2643 global_rsv = &root->fs_info->global_block_rsv;
2644
2645 /*
2646 * If we can't allocate any more chunks lets make sure we have _lots_ of
2647 * wiggle room since running delayed refs can create more delayed refs.
2648 */
2649 if (global_rsv->space_info->full)
2650 num_bytes <<= 1;
2651
2652 spin_lock(&global_rsv->lock);
2653 if (global_rsv->reserved <= num_bytes)
2654 ret = 1;
2655 spin_unlock(&global_rsv->lock);
2656 return ret;
2657 }
2658
2659 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2660 struct btrfs_root *root)
2661 {
2662 struct btrfs_fs_info *fs_info = root->fs_info;
2663 u64 num_entries =
2664 atomic_read(&trans->transaction->delayed_refs.num_entries);
2665 u64 avg_runtime;
2666 u64 val;
2667
2668 smp_mb();
2669 avg_runtime = fs_info->avg_delayed_ref_runtime;
2670 val = num_entries * avg_runtime;
2671 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2672 return 1;
2673 if (val >= NSEC_PER_SEC / 2)
2674 return 2;
2675
2676 return btrfs_check_space_for_delayed_refs(trans, root);
2677 }
2678
2679 struct async_delayed_refs {
2680 struct btrfs_root *root;
2681 int count;
2682 int error;
2683 int sync;
2684 struct completion wait;
2685 struct btrfs_work work;
2686 };
2687
2688 static void delayed_ref_async_start(struct btrfs_work *work)
2689 {
2690 struct async_delayed_refs *async;
2691 struct btrfs_trans_handle *trans;
2692 int ret;
2693
2694 async = container_of(work, struct async_delayed_refs, work);
2695
2696 trans = btrfs_join_transaction(async->root);
2697 if (IS_ERR(trans)) {
2698 async->error = PTR_ERR(trans);
2699 goto done;
2700 }
2701
2702 /*
2703 * trans->sync means that when we call end_transaciton, we won't
2704 * wait on delayed refs
2705 */
2706 trans->sync = true;
2707 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2708 if (ret)
2709 async->error = ret;
2710
2711 ret = btrfs_end_transaction(trans, async->root);
2712 if (ret && !async->error)
2713 async->error = ret;
2714 done:
2715 if (async->sync)
2716 complete(&async->wait);
2717 else
2718 kfree(async);
2719 }
2720
2721 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2722 unsigned long count, int wait)
2723 {
2724 struct async_delayed_refs *async;
2725 int ret;
2726
2727 async = kmalloc(sizeof(*async), GFP_NOFS);
2728 if (!async)
2729 return -ENOMEM;
2730
2731 async->root = root->fs_info->tree_root;
2732 async->count = count;
2733 async->error = 0;
2734 if (wait)
2735 async->sync = 1;
2736 else
2737 async->sync = 0;
2738 init_completion(&async->wait);
2739
2740 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2741 delayed_ref_async_start, NULL, NULL);
2742
2743 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2744
2745 if (wait) {
2746 wait_for_completion(&async->wait);
2747 ret = async->error;
2748 kfree(async);
2749 return ret;
2750 }
2751 return 0;
2752 }
2753
2754 /*
2755 * this starts processing the delayed reference count updates and
2756 * extent insertions we have queued up so far. count can be
2757 * 0, which means to process everything in the tree at the start
2758 * of the run (but not newly added entries), or it can be some target
2759 * number you'd like to process.
2760 *
2761 * Returns 0 on success or if called with an aborted transaction
2762 * Returns <0 on error and aborts the transaction
2763 */
2764 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2765 struct btrfs_root *root, unsigned long count)
2766 {
2767 struct rb_node *node;
2768 struct btrfs_delayed_ref_root *delayed_refs;
2769 struct btrfs_delayed_ref_head *head;
2770 int ret;
2771 int run_all = count == (unsigned long)-1;
2772
2773 /* We'll clean this up in btrfs_cleanup_transaction */
2774 if (trans->aborted)
2775 return 0;
2776
2777 if (root == root->fs_info->extent_root)
2778 root = root->fs_info->tree_root;
2779
2780 delayed_refs = &trans->transaction->delayed_refs;
2781 if (count == 0)
2782 count = atomic_read(&delayed_refs->num_entries) * 2;
2783
2784 again:
2785 #ifdef SCRAMBLE_DELAYED_REFS
2786 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2787 #endif
2788 ret = __btrfs_run_delayed_refs(trans, root, count);
2789 if (ret < 0) {
2790 btrfs_abort_transaction(trans, root, ret);
2791 return ret;
2792 }
2793
2794 if (run_all) {
2795 if (!list_empty(&trans->new_bgs))
2796 btrfs_create_pending_block_groups(trans, root);
2797
2798 spin_lock(&delayed_refs->lock);
2799 node = rb_first(&delayed_refs->href_root);
2800 if (!node) {
2801 spin_unlock(&delayed_refs->lock);
2802 goto out;
2803 }
2804 count = (unsigned long)-1;
2805
2806 while (node) {
2807 head = rb_entry(node, struct btrfs_delayed_ref_head,
2808 href_node);
2809 if (btrfs_delayed_ref_is_head(&head->node)) {
2810 struct btrfs_delayed_ref_node *ref;
2811
2812 ref = &head->node;
2813 atomic_inc(&ref->refs);
2814
2815 spin_unlock(&delayed_refs->lock);
2816 /*
2817 * Mutex was contended, block until it's
2818 * released and try again
2819 */
2820 mutex_lock(&head->mutex);
2821 mutex_unlock(&head->mutex);
2822
2823 btrfs_put_delayed_ref(ref);
2824 cond_resched();
2825 goto again;
2826 } else {
2827 WARN_ON(1);
2828 }
2829 node = rb_next(node);
2830 }
2831 spin_unlock(&delayed_refs->lock);
2832 cond_resched();
2833 goto again;
2834 }
2835 out:
2836 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2837 if (ret)
2838 return ret;
2839 assert_qgroups_uptodate(trans);
2840 return 0;
2841 }
2842
2843 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2844 struct btrfs_root *root,
2845 u64 bytenr, u64 num_bytes, u64 flags,
2846 int level, int is_data)
2847 {
2848 struct btrfs_delayed_extent_op *extent_op;
2849 int ret;
2850
2851 extent_op = btrfs_alloc_delayed_extent_op();
2852 if (!extent_op)
2853 return -ENOMEM;
2854
2855 extent_op->flags_to_set = flags;
2856 extent_op->update_flags = 1;
2857 extent_op->update_key = 0;
2858 extent_op->is_data = is_data ? 1 : 0;
2859 extent_op->level = level;
2860
2861 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2862 num_bytes, extent_op);
2863 if (ret)
2864 btrfs_free_delayed_extent_op(extent_op);
2865 return ret;
2866 }
2867
2868 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2869 struct btrfs_root *root,
2870 struct btrfs_path *path,
2871 u64 objectid, u64 offset, u64 bytenr)
2872 {
2873 struct btrfs_delayed_ref_head *head;
2874 struct btrfs_delayed_ref_node *ref;
2875 struct btrfs_delayed_data_ref *data_ref;
2876 struct btrfs_delayed_ref_root *delayed_refs;
2877 struct rb_node *node;
2878 int ret = 0;
2879
2880 delayed_refs = &trans->transaction->delayed_refs;
2881 spin_lock(&delayed_refs->lock);
2882 head = btrfs_find_delayed_ref_head(trans, bytenr);
2883 if (!head) {
2884 spin_unlock(&delayed_refs->lock);
2885 return 0;
2886 }
2887
2888 if (!mutex_trylock(&head->mutex)) {
2889 atomic_inc(&head->node.refs);
2890 spin_unlock(&delayed_refs->lock);
2891
2892 btrfs_release_path(path);
2893
2894 /*
2895 * Mutex was contended, block until it's released and let
2896 * caller try again
2897 */
2898 mutex_lock(&head->mutex);
2899 mutex_unlock(&head->mutex);
2900 btrfs_put_delayed_ref(&head->node);
2901 return -EAGAIN;
2902 }
2903 spin_unlock(&delayed_refs->lock);
2904
2905 spin_lock(&head->lock);
2906 node = rb_first(&head->ref_root);
2907 while (node) {
2908 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2909 node = rb_next(node);
2910
2911 /* If it's a shared ref we know a cross reference exists */
2912 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2913 ret = 1;
2914 break;
2915 }
2916
2917 data_ref = btrfs_delayed_node_to_data_ref(ref);
2918
2919 /*
2920 * If our ref doesn't match the one we're currently looking at
2921 * then we have a cross reference.
2922 */
2923 if (data_ref->root != root->root_key.objectid ||
2924 data_ref->objectid != objectid ||
2925 data_ref->offset != offset) {
2926 ret = 1;
2927 break;
2928 }
2929 }
2930 spin_unlock(&head->lock);
2931 mutex_unlock(&head->mutex);
2932 return ret;
2933 }
2934
2935 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2936 struct btrfs_root *root,
2937 struct btrfs_path *path,
2938 u64 objectid, u64 offset, u64 bytenr)
2939 {
2940 struct btrfs_root *extent_root = root->fs_info->extent_root;
2941 struct extent_buffer *leaf;
2942 struct btrfs_extent_data_ref *ref;
2943 struct btrfs_extent_inline_ref *iref;
2944 struct btrfs_extent_item *ei;
2945 struct btrfs_key key;
2946 u32 item_size;
2947 int ret;
2948
2949 key.objectid = bytenr;
2950 key.offset = (u64)-1;
2951 key.type = BTRFS_EXTENT_ITEM_KEY;
2952
2953 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2954 if (ret < 0)
2955 goto out;
2956 BUG_ON(ret == 0); /* Corruption */
2957
2958 ret = -ENOENT;
2959 if (path->slots[0] == 0)
2960 goto out;
2961
2962 path->slots[0]--;
2963 leaf = path->nodes[0];
2964 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2965
2966 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2967 goto out;
2968
2969 ret = 1;
2970 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2971 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2972 if (item_size < sizeof(*ei)) {
2973 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2974 goto out;
2975 }
2976 #endif
2977 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2978
2979 if (item_size != sizeof(*ei) +
2980 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2981 goto out;
2982
2983 if (btrfs_extent_generation(leaf, ei) <=
2984 btrfs_root_last_snapshot(&root->root_item))
2985 goto out;
2986
2987 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2988 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2989 BTRFS_EXTENT_DATA_REF_KEY)
2990 goto out;
2991
2992 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2993 if (btrfs_extent_refs(leaf, ei) !=
2994 btrfs_extent_data_ref_count(leaf, ref) ||
2995 btrfs_extent_data_ref_root(leaf, ref) !=
2996 root->root_key.objectid ||
2997 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2998 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2999 goto out;
3000
3001 ret = 0;
3002 out:
3003 return ret;
3004 }
3005
3006 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3007 struct btrfs_root *root,
3008 u64 objectid, u64 offset, u64 bytenr)
3009 {
3010 struct btrfs_path *path;
3011 int ret;
3012 int ret2;
3013
3014 path = btrfs_alloc_path();
3015 if (!path)
3016 return -ENOENT;
3017
3018 do {
3019 ret = check_committed_ref(trans, root, path, objectid,
3020 offset, bytenr);
3021 if (ret && ret != -ENOENT)
3022 goto out;
3023
3024 ret2 = check_delayed_ref(trans, root, path, objectid,
3025 offset, bytenr);
3026 } while (ret2 == -EAGAIN);
3027
3028 if (ret2 && ret2 != -ENOENT) {
3029 ret = ret2;
3030 goto out;
3031 }
3032
3033 if (ret != -ENOENT || ret2 != -ENOENT)
3034 ret = 0;
3035 out:
3036 btrfs_free_path(path);
3037 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3038 WARN_ON(ret > 0);
3039 return ret;
3040 }
3041
3042 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3043 struct btrfs_root *root,
3044 struct extent_buffer *buf,
3045 int full_backref, int inc)
3046 {
3047 u64 bytenr;
3048 u64 num_bytes;
3049 u64 parent;
3050 u64 ref_root;
3051 u32 nritems;
3052 struct btrfs_key key;
3053 struct btrfs_file_extent_item *fi;
3054 int i;
3055 int level;
3056 int ret = 0;
3057 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3058 u64, u64, u64, u64, u64, u64, int);
3059
3060
3061 if (btrfs_test_is_dummy_root(root))
3062 return 0;
3063
3064 ref_root = btrfs_header_owner(buf);
3065 nritems = btrfs_header_nritems(buf);
3066 level = btrfs_header_level(buf);
3067
3068 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3069 return 0;
3070
3071 if (inc)
3072 process_func = btrfs_inc_extent_ref;
3073 else
3074 process_func = btrfs_free_extent;
3075
3076 if (full_backref)
3077 parent = buf->start;
3078 else
3079 parent = 0;
3080
3081 for (i = 0; i < nritems; i++) {
3082 if (level == 0) {
3083 btrfs_item_key_to_cpu(buf, &key, i);
3084 if (key.type != BTRFS_EXTENT_DATA_KEY)
3085 continue;
3086 fi = btrfs_item_ptr(buf, i,
3087 struct btrfs_file_extent_item);
3088 if (btrfs_file_extent_type(buf, fi) ==
3089 BTRFS_FILE_EXTENT_INLINE)
3090 continue;
3091 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3092 if (bytenr == 0)
3093 continue;
3094
3095 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3096 key.offset -= btrfs_file_extent_offset(buf, fi);
3097 ret = process_func(trans, root, bytenr, num_bytes,
3098 parent, ref_root, key.objectid,
3099 key.offset, 1);
3100 if (ret)
3101 goto fail;
3102 } else {
3103 bytenr = btrfs_node_blockptr(buf, i);
3104 num_bytes = root->nodesize;
3105 ret = process_func(trans, root, bytenr, num_bytes,
3106 parent, ref_root, level - 1, 0,
3107 1);
3108 if (ret)
3109 goto fail;
3110 }
3111 }
3112 return 0;
3113 fail:
3114 return ret;
3115 }
3116
3117 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3118 struct extent_buffer *buf, int full_backref)
3119 {
3120 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3121 }
3122
3123 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3124 struct extent_buffer *buf, int full_backref)
3125 {
3126 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3127 }
3128
3129 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3130 struct btrfs_root *root,
3131 struct btrfs_path *path,
3132 struct btrfs_block_group_cache *cache)
3133 {
3134 int ret;
3135 struct btrfs_root *extent_root = root->fs_info->extent_root;
3136 unsigned long bi;
3137 struct extent_buffer *leaf;
3138
3139 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3140 if (ret) {
3141 if (ret > 0)
3142 ret = -ENOENT;
3143 goto fail;
3144 }
3145
3146 leaf = path->nodes[0];
3147 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3148 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3149 btrfs_mark_buffer_dirty(leaf);
3150 btrfs_release_path(path);
3151 fail:
3152 if (ret)
3153 btrfs_abort_transaction(trans, root, ret);
3154 return ret;
3155
3156 }
3157
3158 static struct btrfs_block_group_cache *
3159 next_block_group(struct btrfs_root *root,
3160 struct btrfs_block_group_cache *cache)
3161 {
3162 struct rb_node *node;
3163
3164 spin_lock(&root->fs_info->block_group_cache_lock);
3165
3166 /* If our block group was removed, we need a full search. */
3167 if (RB_EMPTY_NODE(&cache->cache_node)) {
3168 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3169
3170 spin_unlock(&root->fs_info->block_group_cache_lock);
3171 btrfs_put_block_group(cache);
3172 cache = btrfs_lookup_first_block_group(root->fs_info,
3173 next_bytenr);
3174 return cache;
3175 }
3176 node = rb_next(&cache->cache_node);
3177 btrfs_put_block_group(cache);
3178 if (node) {
3179 cache = rb_entry(node, struct btrfs_block_group_cache,
3180 cache_node);
3181 btrfs_get_block_group(cache);
3182 } else
3183 cache = NULL;
3184 spin_unlock(&root->fs_info->block_group_cache_lock);
3185 return cache;
3186 }
3187
3188 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3189 struct btrfs_trans_handle *trans,
3190 struct btrfs_path *path)
3191 {
3192 struct btrfs_root *root = block_group->fs_info->tree_root;
3193 struct inode *inode = NULL;
3194 u64 alloc_hint = 0;
3195 int dcs = BTRFS_DC_ERROR;
3196 int num_pages = 0;
3197 int retries = 0;
3198 int ret = 0;
3199
3200 /*
3201 * If this block group is smaller than 100 megs don't bother caching the
3202 * block group.
3203 */
3204 if (block_group->key.offset < (100 * 1024 * 1024)) {
3205 spin_lock(&block_group->lock);
3206 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3207 spin_unlock(&block_group->lock);
3208 return 0;
3209 }
3210
3211 if (trans->aborted)
3212 return 0;
3213 again:
3214 inode = lookup_free_space_inode(root, block_group, path);
3215 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3216 ret = PTR_ERR(inode);
3217 btrfs_release_path(path);
3218 goto out;
3219 }
3220
3221 if (IS_ERR(inode)) {
3222 BUG_ON(retries);
3223 retries++;
3224
3225 if (block_group->ro)
3226 goto out_free;
3227
3228 ret = create_free_space_inode(root, trans, block_group, path);
3229 if (ret)
3230 goto out_free;
3231 goto again;
3232 }
3233
3234 /* We've already setup this transaction, go ahead and exit */
3235 if (block_group->cache_generation == trans->transid &&
3236 i_size_read(inode)) {
3237 dcs = BTRFS_DC_SETUP;
3238 goto out_put;
3239 }
3240
3241 /*
3242 * We want to set the generation to 0, that way if anything goes wrong
3243 * from here on out we know not to trust this cache when we load up next
3244 * time.
3245 */
3246 BTRFS_I(inode)->generation = 0;
3247 ret = btrfs_update_inode(trans, root, inode);
3248 if (ret) {
3249 /*
3250 * So theoretically we could recover from this, simply set the
3251 * super cache generation to 0 so we know to invalidate the
3252 * cache, but then we'd have to keep track of the block groups
3253 * that fail this way so we know we _have_ to reset this cache
3254 * before the next commit or risk reading stale cache. So to
3255 * limit our exposure to horrible edge cases lets just abort the
3256 * transaction, this only happens in really bad situations
3257 * anyway.
3258 */
3259 btrfs_abort_transaction(trans, root, ret);
3260 goto out_put;
3261 }
3262 WARN_ON(ret);
3263
3264 if (i_size_read(inode) > 0) {
3265 ret = btrfs_check_trunc_cache_free_space(root,
3266 &root->fs_info->global_block_rsv);
3267 if (ret)
3268 goto out_put;
3269
3270 ret = btrfs_truncate_free_space_cache(root, trans, inode);
3271 if (ret)
3272 goto out_put;
3273 }
3274
3275 spin_lock(&block_group->lock);
3276 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3277 !btrfs_test_opt(root, SPACE_CACHE) ||
3278 block_group->delalloc_bytes) {
3279 /*
3280 * don't bother trying to write stuff out _if_
3281 * a) we're not cached,
3282 * b) we're with nospace_cache mount option.
3283 */
3284 dcs = BTRFS_DC_WRITTEN;
3285 spin_unlock(&block_group->lock);
3286 goto out_put;
3287 }
3288 spin_unlock(&block_group->lock);
3289
3290 /*
3291 * Try to preallocate enough space based on how big the block group is.
3292 * Keep in mind this has to include any pinned space which could end up
3293 * taking up quite a bit since it's not folded into the other space
3294 * cache.
3295 */
3296 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3297 if (!num_pages)
3298 num_pages = 1;
3299
3300 num_pages *= 16;
3301 num_pages *= PAGE_CACHE_SIZE;
3302
3303 ret = btrfs_check_data_free_space(inode, num_pages);
3304 if (ret)
3305 goto out_put;
3306
3307 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3308 num_pages, num_pages,
3309 &alloc_hint);
3310 if (!ret)
3311 dcs = BTRFS_DC_SETUP;
3312 btrfs_free_reserved_data_space(inode, num_pages);
3313
3314 out_put:
3315 iput(inode);
3316 out_free:
3317 btrfs_release_path(path);
3318 out:
3319 spin_lock(&block_group->lock);
3320 if (!ret && dcs == BTRFS_DC_SETUP)
3321 block_group->cache_generation = trans->transid;
3322 block_group->disk_cache_state = dcs;
3323 spin_unlock(&block_group->lock);
3324
3325 return ret;
3326 }
3327
3328 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3329 struct btrfs_root *root)
3330 {
3331 struct btrfs_block_group_cache *cache;
3332 struct btrfs_transaction *cur_trans = trans->transaction;
3333 int ret = 0;
3334 struct btrfs_path *path;
3335
3336 if (list_empty(&cur_trans->dirty_bgs))
3337 return 0;
3338
3339 path = btrfs_alloc_path();
3340 if (!path)
3341 return -ENOMEM;
3342
3343 /*
3344 * We don't need the lock here since we are protected by the transaction
3345 * commit. We want to do the cache_save_setup first and then run the
3346 * delayed refs to make sure we have the best chance at doing this all
3347 * in one shot.
3348 */
3349 while (!list_empty(&cur_trans->dirty_bgs)) {
3350 cache = list_first_entry(&cur_trans->dirty_bgs,
3351 struct btrfs_block_group_cache,
3352 dirty_list);
3353 list_del_init(&cache->dirty_list);
3354 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3355 cache_save_setup(cache, trans, path);
3356 if (!ret)
3357 ret = btrfs_run_delayed_refs(trans, root,
3358 (unsigned long) -1);
3359 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP)
3360 btrfs_write_out_cache(root, trans, cache, path);
3361 if (!ret)
3362 ret = write_one_cache_group(trans, root, path, cache);
3363 btrfs_put_block_group(cache);
3364 }
3365
3366 btrfs_free_path(path);
3367 return ret;
3368 }
3369
3370 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3371 {
3372 struct btrfs_block_group_cache *block_group;
3373 int readonly = 0;
3374
3375 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3376 if (!block_group || block_group->ro)
3377 readonly = 1;
3378 if (block_group)
3379 btrfs_put_block_group(block_group);
3380 return readonly;
3381 }
3382
3383 static const char *alloc_name(u64 flags)
3384 {
3385 switch (flags) {
3386 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3387 return "mixed";
3388 case BTRFS_BLOCK_GROUP_METADATA:
3389 return "metadata";
3390 case BTRFS_BLOCK_GROUP_DATA:
3391 return "data";
3392 case BTRFS_BLOCK_GROUP_SYSTEM:
3393 return "system";
3394 default:
3395 WARN_ON(1);
3396 return "invalid-combination";
3397 };
3398 }
3399
3400 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3401 u64 total_bytes, u64 bytes_used,
3402 struct btrfs_space_info **space_info)
3403 {
3404 struct btrfs_space_info *found;
3405 int i;
3406 int factor;
3407 int ret;
3408
3409 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3410 BTRFS_BLOCK_GROUP_RAID10))
3411 factor = 2;
3412 else
3413 factor = 1;
3414
3415 found = __find_space_info(info, flags);
3416 if (found) {
3417 spin_lock(&found->lock);
3418 found->total_bytes += total_bytes;
3419 found->disk_total += total_bytes * factor;
3420 found->bytes_used += bytes_used;
3421 found->disk_used += bytes_used * factor;
3422 found->full = 0;
3423 spin_unlock(&found->lock);
3424 *space_info = found;
3425 return 0;
3426 }
3427 found = kzalloc(sizeof(*found), GFP_NOFS);
3428 if (!found)
3429 return -ENOMEM;
3430
3431 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3432 if (ret) {
3433 kfree(found);
3434 return ret;
3435 }
3436
3437 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3438 INIT_LIST_HEAD(&found->block_groups[i]);
3439 init_rwsem(&found->groups_sem);
3440 spin_lock_init(&found->lock);
3441 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3442 found->total_bytes = total_bytes;
3443 found->disk_total = total_bytes * factor;
3444 found->bytes_used = bytes_used;
3445 found->disk_used = bytes_used * factor;
3446 found->bytes_pinned = 0;
3447 found->bytes_reserved = 0;
3448 found->bytes_readonly = 0;
3449 found->bytes_may_use = 0;
3450 found->full = 0;
3451 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3452 found->chunk_alloc = 0;
3453 found->flush = 0;
3454 init_waitqueue_head(&found->wait);
3455 INIT_LIST_HEAD(&found->ro_bgs);
3456
3457 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3458 info->space_info_kobj, "%s",
3459 alloc_name(found->flags));
3460 if (ret) {
3461 kfree(found);
3462 return ret;
3463 }
3464
3465 *space_info = found;
3466 list_add_rcu(&found->list, &info->space_info);
3467 if (flags & BTRFS_BLOCK_GROUP_DATA)
3468 info->data_sinfo = found;
3469
3470 return ret;
3471 }
3472
3473 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3474 {
3475 u64 extra_flags = chunk_to_extended(flags) &
3476 BTRFS_EXTENDED_PROFILE_MASK;
3477
3478 write_seqlock(&fs_info->profiles_lock);
3479 if (flags & BTRFS_BLOCK_GROUP_DATA)
3480 fs_info->avail_data_alloc_bits |= extra_flags;
3481 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3482 fs_info->avail_metadata_alloc_bits |= extra_flags;
3483 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3484 fs_info->avail_system_alloc_bits |= extra_flags;
3485 write_sequnlock(&fs_info->profiles_lock);
3486 }
3487
3488 /*
3489 * returns target flags in extended format or 0 if restripe for this
3490 * chunk_type is not in progress
3491 *
3492 * should be called with either volume_mutex or balance_lock held
3493 */
3494 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3495 {
3496 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3497 u64 target = 0;
3498
3499 if (!bctl)
3500 return 0;
3501
3502 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3503 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3504 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3505 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3506 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3507 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3508 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3509 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3510 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3511 }
3512
3513 return target;
3514 }
3515
3516 /*
3517 * @flags: available profiles in extended format (see ctree.h)
3518 *
3519 * Returns reduced profile in chunk format. If profile changing is in
3520 * progress (either running or paused) picks the target profile (if it's
3521 * already available), otherwise falls back to plain reducing.
3522 */
3523 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3524 {
3525 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3526 u64 target;
3527 u64 tmp;
3528
3529 /*
3530 * see if restripe for this chunk_type is in progress, if so
3531 * try to reduce to the target profile
3532 */
3533 spin_lock(&root->fs_info->balance_lock);
3534 target = get_restripe_target(root->fs_info, flags);
3535 if (target) {
3536 /* pick target profile only if it's already available */
3537 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3538 spin_unlock(&root->fs_info->balance_lock);
3539 return extended_to_chunk(target);
3540 }
3541 }
3542 spin_unlock(&root->fs_info->balance_lock);
3543
3544 /* First, mask out the RAID levels which aren't possible */
3545 if (num_devices == 1)
3546 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3547 BTRFS_BLOCK_GROUP_RAID5);
3548 if (num_devices < 3)
3549 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3550 if (num_devices < 4)
3551 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3552
3553 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3554 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3555 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3556 flags &= ~tmp;
3557
3558 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3559 tmp = BTRFS_BLOCK_GROUP_RAID6;
3560 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3561 tmp = BTRFS_BLOCK_GROUP_RAID5;
3562 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3563 tmp = BTRFS_BLOCK_GROUP_RAID10;
3564 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3565 tmp = BTRFS_BLOCK_GROUP_RAID1;
3566 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3567 tmp = BTRFS_BLOCK_GROUP_RAID0;
3568
3569 return extended_to_chunk(flags | tmp);
3570 }
3571
3572 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3573 {
3574 unsigned seq;
3575 u64 flags;
3576
3577 do {
3578 flags = orig_flags;
3579 seq = read_seqbegin(&root->fs_info->profiles_lock);
3580
3581 if (flags & BTRFS_BLOCK_GROUP_DATA)
3582 flags |= root->fs_info->avail_data_alloc_bits;
3583 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3584 flags |= root->fs_info->avail_system_alloc_bits;
3585 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3586 flags |= root->fs_info->avail_metadata_alloc_bits;
3587 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3588
3589 return btrfs_reduce_alloc_profile(root, flags);
3590 }
3591
3592 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3593 {
3594 u64 flags;
3595 u64 ret;
3596
3597 if (data)
3598 flags = BTRFS_BLOCK_GROUP_DATA;
3599 else if (root == root->fs_info->chunk_root)
3600 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3601 else
3602 flags = BTRFS_BLOCK_GROUP_METADATA;
3603
3604 ret = get_alloc_profile(root, flags);
3605 return ret;
3606 }
3607
3608 /*
3609 * This will check the space that the inode allocates from to make sure we have
3610 * enough space for bytes.
3611 */
3612 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3613 {
3614 struct btrfs_space_info *data_sinfo;
3615 struct btrfs_root *root = BTRFS_I(inode)->root;
3616 struct btrfs_fs_info *fs_info = root->fs_info;
3617 u64 used;
3618 int ret = 0, committed = 0, alloc_chunk = 1;
3619
3620 /* make sure bytes are sectorsize aligned */
3621 bytes = ALIGN(bytes, root->sectorsize);
3622
3623 if (btrfs_is_free_space_inode(inode)) {
3624 committed = 1;
3625 ASSERT(current->journal_info);
3626 }
3627
3628 data_sinfo = fs_info->data_sinfo;
3629 if (!data_sinfo)
3630 goto alloc;
3631
3632 again:
3633 /* make sure we have enough space to handle the data first */
3634 spin_lock(&data_sinfo->lock);
3635 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3636 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3637 data_sinfo->bytes_may_use;
3638
3639 if (used + bytes > data_sinfo->total_bytes) {
3640 struct btrfs_trans_handle *trans;
3641
3642 /*
3643 * if we don't have enough free bytes in this space then we need
3644 * to alloc a new chunk.
3645 */
3646 if (!data_sinfo->full && alloc_chunk) {
3647 u64 alloc_target;
3648
3649 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3650 spin_unlock(&data_sinfo->lock);
3651 alloc:
3652 alloc_target = btrfs_get_alloc_profile(root, 1);
3653 /*
3654 * It is ugly that we don't call nolock join
3655 * transaction for the free space inode case here.
3656 * But it is safe because we only do the data space
3657 * reservation for the free space cache in the
3658 * transaction context, the common join transaction
3659 * just increase the counter of the current transaction
3660 * handler, doesn't try to acquire the trans_lock of
3661 * the fs.
3662 */
3663 trans = btrfs_join_transaction(root);
3664 if (IS_ERR(trans))
3665 return PTR_ERR(trans);
3666
3667 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3668 alloc_target,
3669 CHUNK_ALLOC_NO_FORCE);
3670 btrfs_end_transaction(trans, root);
3671 if (ret < 0) {
3672 if (ret != -ENOSPC)
3673 return ret;
3674 else
3675 goto commit_trans;
3676 }
3677
3678 if (!data_sinfo)
3679 data_sinfo = fs_info->data_sinfo;
3680
3681 goto again;
3682 }
3683
3684 /*
3685 * If we don't have enough pinned space to deal with this
3686 * allocation don't bother committing the transaction.
3687 */
3688 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3689 bytes) < 0)
3690 committed = 1;
3691 spin_unlock(&data_sinfo->lock);
3692
3693 /* commit the current transaction and try again */
3694 commit_trans:
3695 if (!committed &&
3696 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3697 committed = 1;
3698
3699 trans = btrfs_join_transaction(root);
3700 if (IS_ERR(trans))
3701 return PTR_ERR(trans);
3702 ret = btrfs_commit_transaction(trans, root);
3703 if (ret)
3704 return ret;
3705 goto again;
3706 }
3707
3708 trace_btrfs_space_reservation(root->fs_info,
3709 "space_info:enospc",
3710 data_sinfo->flags, bytes, 1);
3711 return -ENOSPC;
3712 }
3713 data_sinfo->bytes_may_use += bytes;
3714 trace_btrfs_space_reservation(root->fs_info, "space_info",
3715 data_sinfo->flags, bytes, 1);
3716 spin_unlock(&data_sinfo->lock);
3717
3718 return 0;
3719 }
3720
3721 /*
3722 * Called if we need to clear a data reservation for this inode.
3723 */
3724 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3725 {
3726 struct btrfs_root *root = BTRFS_I(inode)->root;
3727 struct btrfs_space_info *data_sinfo;
3728
3729 /* make sure bytes are sectorsize aligned */
3730 bytes = ALIGN(bytes, root->sectorsize);
3731
3732 data_sinfo = root->fs_info->data_sinfo;
3733 spin_lock(&data_sinfo->lock);
3734 WARN_ON(data_sinfo->bytes_may_use < bytes);
3735 data_sinfo->bytes_may_use -= bytes;
3736 trace_btrfs_space_reservation(root->fs_info, "space_info",
3737 data_sinfo->flags, bytes, 0);
3738 spin_unlock(&data_sinfo->lock);
3739 }
3740
3741 static void force_metadata_allocation(struct btrfs_fs_info *info)
3742 {
3743 struct list_head *head = &info->space_info;
3744 struct btrfs_space_info *found;
3745
3746 rcu_read_lock();
3747 list_for_each_entry_rcu(found, head, list) {
3748 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3749 found->force_alloc = CHUNK_ALLOC_FORCE;
3750 }
3751 rcu_read_unlock();
3752 }
3753
3754 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3755 {
3756 return (global->size << 1);
3757 }
3758
3759 static int should_alloc_chunk(struct btrfs_root *root,
3760 struct btrfs_space_info *sinfo, int force)
3761 {
3762 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3763 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3764 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3765 u64 thresh;
3766
3767 if (force == CHUNK_ALLOC_FORCE)
3768 return 1;
3769
3770 /*
3771 * We need to take into account the global rsv because for all intents
3772 * and purposes it's used space. Don't worry about locking the
3773 * global_rsv, it doesn't change except when the transaction commits.
3774 */
3775 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3776 num_allocated += calc_global_rsv_need_space(global_rsv);
3777
3778 /*
3779 * in limited mode, we want to have some free space up to
3780 * about 1% of the FS size.
3781 */
3782 if (force == CHUNK_ALLOC_LIMITED) {
3783 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3784 thresh = max_t(u64, 64 * 1024 * 1024,
3785 div_factor_fine(thresh, 1));
3786
3787 if (num_bytes - num_allocated < thresh)
3788 return 1;
3789 }
3790
3791 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3792 return 0;
3793 return 1;
3794 }
3795
3796 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3797 {
3798 u64 num_dev;
3799
3800 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3801 BTRFS_BLOCK_GROUP_RAID0 |
3802 BTRFS_BLOCK_GROUP_RAID5 |
3803 BTRFS_BLOCK_GROUP_RAID6))
3804 num_dev = root->fs_info->fs_devices->rw_devices;
3805 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3806 num_dev = 2;
3807 else
3808 num_dev = 1; /* DUP or single */
3809
3810 /* metadata for updaing devices and chunk tree */
3811 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3812 }
3813
3814 static void check_system_chunk(struct btrfs_trans_handle *trans,
3815 struct btrfs_root *root, u64 type)
3816 {
3817 struct btrfs_space_info *info;
3818 u64 left;
3819 u64 thresh;
3820
3821 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3822 spin_lock(&info->lock);
3823 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3824 info->bytes_reserved - info->bytes_readonly;
3825 spin_unlock(&info->lock);
3826
3827 thresh = get_system_chunk_thresh(root, type);
3828 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3829 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3830 left, thresh, type);
3831 dump_space_info(info, 0, 0);
3832 }
3833
3834 if (left < thresh) {
3835 u64 flags;
3836
3837 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3838 btrfs_alloc_chunk(trans, root, flags);
3839 }
3840 }
3841
3842 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3843 struct btrfs_root *extent_root, u64 flags, int force)
3844 {
3845 struct btrfs_space_info *space_info;
3846 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3847 int wait_for_alloc = 0;
3848 int ret = 0;
3849
3850 /* Don't re-enter if we're already allocating a chunk */
3851 if (trans->allocating_chunk)
3852 return -ENOSPC;
3853
3854 space_info = __find_space_info(extent_root->fs_info, flags);
3855 if (!space_info) {
3856 ret = update_space_info(extent_root->fs_info, flags,
3857 0, 0, &space_info);
3858 BUG_ON(ret); /* -ENOMEM */
3859 }
3860 BUG_ON(!space_info); /* Logic error */
3861
3862 again:
3863 spin_lock(&space_info->lock);
3864 if (force < space_info->force_alloc)
3865 force = space_info->force_alloc;
3866 if (space_info->full) {
3867 if (should_alloc_chunk(extent_root, space_info, force))
3868 ret = -ENOSPC;
3869 else
3870 ret = 0;
3871 spin_unlock(&space_info->lock);
3872 return ret;
3873 }
3874
3875 if (!should_alloc_chunk(extent_root, space_info, force)) {
3876 spin_unlock(&space_info->lock);
3877 return 0;
3878 } else if (space_info->chunk_alloc) {
3879 wait_for_alloc = 1;
3880 } else {
3881 space_info->chunk_alloc = 1;
3882 }
3883
3884 spin_unlock(&space_info->lock);
3885
3886 mutex_lock(&fs_info->chunk_mutex);
3887
3888 /*
3889 * The chunk_mutex is held throughout the entirety of a chunk
3890 * allocation, so once we've acquired the chunk_mutex we know that the
3891 * other guy is done and we need to recheck and see if we should
3892 * allocate.
3893 */
3894 if (wait_for_alloc) {
3895 mutex_unlock(&fs_info->chunk_mutex);
3896 wait_for_alloc = 0;
3897 goto again;
3898 }
3899
3900 trans->allocating_chunk = true;
3901
3902 /*
3903 * If we have mixed data/metadata chunks we want to make sure we keep
3904 * allocating mixed chunks instead of individual chunks.
3905 */
3906 if (btrfs_mixed_space_info(space_info))
3907 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3908
3909 /*
3910 * if we're doing a data chunk, go ahead and make sure that
3911 * we keep a reasonable number of metadata chunks allocated in the
3912 * FS as well.
3913 */
3914 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3915 fs_info->data_chunk_allocations++;
3916 if (!(fs_info->data_chunk_allocations %
3917 fs_info->metadata_ratio))
3918 force_metadata_allocation(fs_info);
3919 }
3920
3921 /*
3922 * Check if we have enough space in SYSTEM chunk because we may need
3923 * to update devices.
3924 */
3925 check_system_chunk(trans, extent_root, flags);
3926
3927 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3928 trans->allocating_chunk = false;
3929
3930 spin_lock(&space_info->lock);
3931 if (ret < 0 && ret != -ENOSPC)
3932 goto out;
3933 if (ret)
3934 space_info->full = 1;
3935 else
3936 ret = 1;
3937
3938 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3939 out:
3940 space_info->chunk_alloc = 0;
3941 spin_unlock(&space_info->lock);
3942 mutex_unlock(&fs_info->chunk_mutex);
3943 return ret;
3944 }
3945
3946 static int can_overcommit(struct btrfs_root *root,
3947 struct btrfs_space_info *space_info, u64 bytes,
3948 enum btrfs_reserve_flush_enum flush)
3949 {
3950 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3951 u64 profile = btrfs_get_alloc_profile(root, 0);
3952 u64 space_size;
3953 u64 avail;
3954 u64 used;
3955
3956 used = space_info->bytes_used + space_info->bytes_reserved +
3957 space_info->bytes_pinned + space_info->bytes_readonly;
3958
3959 /*
3960 * We only want to allow over committing if we have lots of actual space
3961 * free, but if we don't have enough space to handle the global reserve
3962 * space then we could end up having a real enospc problem when trying
3963 * to allocate a chunk or some other such important allocation.
3964 */
3965 spin_lock(&global_rsv->lock);
3966 space_size = calc_global_rsv_need_space(global_rsv);
3967 spin_unlock(&global_rsv->lock);
3968 if (used + space_size >= space_info->total_bytes)
3969 return 0;
3970
3971 used += space_info->bytes_may_use;
3972
3973 spin_lock(&root->fs_info->free_chunk_lock);
3974 avail = root->fs_info->free_chunk_space;
3975 spin_unlock(&root->fs_info->free_chunk_lock);
3976
3977 /*
3978 * If we have dup, raid1 or raid10 then only half of the free
3979 * space is actually useable. For raid56, the space info used
3980 * doesn't include the parity drive, so we don't have to
3981 * change the math
3982 */
3983 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3984 BTRFS_BLOCK_GROUP_RAID1 |
3985 BTRFS_BLOCK_GROUP_RAID10))
3986 avail >>= 1;
3987
3988 /*
3989 * If we aren't flushing all things, let us overcommit up to
3990 * 1/2th of the space. If we can flush, don't let us overcommit
3991 * too much, let it overcommit up to 1/8 of the space.
3992 */
3993 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3994 avail >>= 3;
3995 else
3996 avail >>= 1;
3997
3998 if (used + bytes < space_info->total_bytes + avail)
3999 return 1;
4000 return 0;
4001 }
4002
4003 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4004 unsigned long nr_pages, int nr_items)
4005 {
4006 struct super_block *sb = root->fs_info->sb;
4007
4008 if (down_read_trylock(&sb->s_umount)) {
4009 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4010 up_read(&sb->s_umount);
4011 } else {
4012 /*
4013 * We needn't worry the filesystem going from r/w to r/o though
4014 * we don't acquire ->s_umount mutex, because the filesystem
4015 * should guarantee the delalloc inodes list be empty after
4016 * the filesystem is readonly(all dirty pages are written to
4017 * the disk).
4018 */
4019 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4020 if (!current->journal_info)
4021 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4022 }
4023 }
4024
4025 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4026 {
4027 u64 bytes;
4028 int nr;
4029
4030 bytes = btrfs_calc_trans_metadata_size(root, 1);
4031 nr = (int)div64_u64(to_reclaim, bytes);
4032 if (!nr)
4033 nr = 1;
4034 return nr;
4035 }
4036
4037 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4038
4039 /*
4040 * shrink metadata reservation for delalloc
4041 */
4042 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4043 bool wait_ordered)
4044 {
4045 struct btrfs_block_rsv *block_rsv;
4046 struct btrfs_space_info *space_info;
4047 struct btrfs_trans_handle *trans;
4048 u64 delalloc_bytes;
4049 u64 max_reclaim;
4050 long time_left;
4051 unsigned long nr_pages;
4052 int loops;
4053 int items;
4054 enum btrfs_reserve_flush_enum flush;
4055
4056 /* Calc the number of the pages we need flush for space reservation */
4057 items = calc_reclaim_items_nr(root, to_reclaim);
4058 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4059
4060 trans = (struct btrfs_trans_handle *)current->journal_info;
4061 block_rsv = &root->fs_info->delalloc_block_rsv;
4062 space_info = block_rsv->space_info;
4063
4064 delalloc_bytes = percpu_counter_sum_positive(
4065 &root->fs_info->delalloc_bytes);
4066 if (delalloc_bytes == 0) {
4067 if (trans)
4068 return;
4069 if (wait_ordered)
4070 btrfs_wait_ordered_roots(root->fs_info, items);
4071 return;
4072 }
4073
4074 loops = 0;
4075 while (delalloc_bytes && loops < 3) {
4076 max_reclaim = min(delalloc_bytes, to_reclaim);
4077 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4078 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4079 /*
4080 * We need to wait for the async pages to actually start before
4081 * we do anything.
4082 */
4083 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4084 if (!max_reclaim)
4085 goto skip_async;
4086
4087 if (max_reclaim <= nr_pages)
4088 max_reclaim = 0;
4089 else
4090 max_reclaim -= nr_pages;
4091
4092 wait_event(root->fs_info->async_submit_wait,
4093 atomic_read(&root->fs_info->async_delalloc_pages) <=
4094 (int)max_reclaim);
4095 skip_async:
4096 if (!trans)
4097 flush = BTRFS_RESERVE_FLUSH_ALL;
4098 else
4099 flush = BTRFS_RESERVE_NO_FLUSH;
4100 spin_lock(&space_info->lock);
4101 if (can_overcommit(root, space_info, orig, flush)) {
4102 spin_unlock(&space_info->lock);
4103 break;
4104 }
4105 spin_unlock(&space_info->lock);
4106
4107 loops++;
4108 if (wait_ordered && !trans) {
4109 btrfs_wait_ordered_roots(root->fs_info, items);
4110 } else {
4111 time_left = schedule_timeout_killable(1);
4112 if (time_left)
4113 break;
4114 }
4115 delalloc_bytes = percpu_counter_sum_positive(
4116 &root->fs_info->delalloc_bytes);
4117 }
4118 }
4119
4120 /**
4121 * maybe_commit_transaction - possibly commit the transaction if its ok to
4122 * @root - the root we're allocating for
4123 * @bytes - the number of bytes we want to reserve
4124 * @force - force the commit
4125 *
4126 * This will check to make sure that committing the transaction will actually
4127 * get us somewhere and then commit the transaction if it does. Otherwise it
4128 * will return -ENOSPC.
4129 */
4130 static int may_commit_transaction(struct btrfs_root *root,
4131 struct btrfs_space_info *space_info,
4132 u64 bytes, int force)
4133 {
4134 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4135 struct btrfs_trans_handle *trans;
4136
4137 trans = (struct btrfs_trans_handle *)current->journal_info;
4138 if (trans)
4139 return -EAGAIN;
4140
4141 if (force)
4142 goto commit;
4143
4144 /* See if there is enough pinned space to make this reservation */
4145 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4146 bytes) >= 0)
4147 goto commit;
4148
4149 /*
4150 * See if there is some space in the delayed insertion reservation for
4151 * this reservation.
4152 */
4153 if (space_info != delayed_rsv->space_info)
4154 return -ENOSPC;
4155
4156 spin_lock(&delayed_rsv->lock);
4157 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4158 bytes - delayed_rsv->size) >= 0) {
4159 spin_unlock(&delayed_rsv->lock);
4160 return -ENOSPC;
4161 }
4162 spin_unlock(&delayed_rsv->lock);
4163
4164 commit:
4165 trans = btrfs_join_transaction(root);
4166 if (IS_ERR(trans))
4167 return -ENOSPC;
4168
4169 return btrfs_commit_transaction(trans, root);
4170 }
4171
4172 enum flush_state {
4173 FLUSH_DELAYED_ITEMS_NR = 1,
4174 FLUSH_DELAYED_ITEMS = 2,
4175 FLUSH_DELALLOC = 3,
4176 FLUSH_DELALLOC_WAIT = 4,
4177 ALLOC_CHUNK = 5,
4178 COMMIT_TRANS = 6,
4179 };
4180
4181 static int flush_space(struct btrfs_root *root,
4182 struct btrfs_space_info *space_info, u64 num_bytes,
4183 u64 orig_bytes, int state)
4184 {
4185 struct btrfs_trans_handle *trans;
4186 int nr;
4187 int ret = 0;
4188
4189 switch (state) {
4190 case FLUSH_DELAYED_ITEMS_NR:
4191 case FLUSH_DELAYED_ITEMS:
4192 if (state == FLUSH_DELAYED_ITEMS_NR)
4193 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4194 else
4195 nr = -1;
4196
4197 trans = btrfs_join_transaction(root);
4198 if (IS_ERR(trans)) {
4199 ret = PTR_ERR(trans);
4200 break;
4201 }
4202 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4203 btrfs_end_transaction(trans, root);
4204 break;
4205 case FLUSH_DELALLOC:
4206 case FLUSH_DELALLOC_WAIT:
4207 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4208 state == FLUSH_DELALLOC_WAIT);
4209 break;
4210 case ALLOC_CHUNK:
4211 trans = btrfs_join_transaction(root);
4212 if (IS_ERR(trans)) {
4213 ret = PTR_ERR(trans);
4214 break;
4215 }
4216 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4217 btrfs_get_alloc_profile(root, 0),
4218 CHUNK_ALLOC_NO_FORCE);
4219 btrfs_end_transaction(trans, root);
4220 if (ret == -ENOSPC)
4221 ret = 0;
4222 break;
4223 case COMMIT_TRANS:
4224 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4225 break;
4226 default:
4227 ret = -ENOSPC;
4228 break;
4229 }
4230
4231 return ret;
4232 }
4233
4234 static inline u64
4235 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4236 struct btrfs_space_info *space_info)
4237 {
4238 u64 used;
4239 u64 expected;
4240 u64 to_reclaim;
4241
4242 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4243 16 * 1024 * 1024);
4244 spin_lock(&space_info->lock);
4245 if (can_overcommit(root, space_info, to_reclaim,
4246 BTRFS_RESERVE_FLUSH_ALL)) {
4247 to_reclaim = 0;
4248 goto out;
4249 }
4250
4251 used = space_info->bytes_used + space_info->bytes_reserved +
4252 space_info->bytes_pinned + space_info->bytes_readonly +
4253 space_info->bytes_may_use;
4254 if (can_overcommit(root, space_info, 1024 * 1024,
4255 BTRFS_RESERVE_FLUSH_ALL))
4256 expected = div_factor_fine(space_info->total_bytes, 95);
4257 else
4258 expected = div_factor_fine(space_info->total_bytes, 90);
4259
4260 if (used > expected)
4261 to_reclaim = used - expected;
4262 else
4263 to_reclaim = 0;
4264 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4265 space_info->bytes_reserved);
4266 out:
4267 spin_unlock(&space_info->lock);
4268
4269 return to_reclaim;
4270 }
4271
4272 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4273 struct btrfs_fs_info *fs_info, u64 used)
4274 {
4275 return (used >= div_factor_fine(space_info->total_bytes, 98) &&
4276 !btrfs_fs_closing(fs_info) &&
4277 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4278 }
4279
4280 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4281 struct btrfs_fs_info *fs_info,
4282 int flush_state)
4283 {
4284 u64 used;
4285
4286 spin_lock(&space_info->lock);
4287 /*
4288 * We run out of space and have not got any free space via flush_space,
4289 * so don't bother doing async reclaim.
4290 */
4291 if (flush_state > COMMIT_TRANS && space_info->full) {
4292 spin_unlock(&space_info->lock);
4293 return 0;
4294 }
4295
4296 used = space_info->bytes_used + space_info->bytes_reserved +
4297 space_info->bytes_pinned + space_info->bytes_readonly +
4298 space_info->bytes_may_use;
4299 if (need_do_async_reclaim(space_info, fs_info, used)) {
4300 spin_unlock(&space_info->lock);
4301 return 1;
4302 }
4303 spin_unlock(&space_info->lock);
4304
4305 return 0;
4306 }
4307
4308 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4309 {
4310 struct btrfs_fs_info *fs_info;
4311 struct btrfs_space_info *space_info;
4312 u64 to_reclaim;
4313 int flush_state;
4314
4315 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4316 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4317
4318 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4319 space_info);
4320 if (!to_reclaim)
4321 return;
4322
4323 flush_state = FLUSH_DELAYED_ITEMS_NR;
4324 do {
4325 flush_space(fs_info->fs_root, space_info, to_reclaim,
4326 to_reclaim, flush_state);
4327 flush_state++;
4328 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4329 flush_state))
4330 return;
4331 } while (flush_state <= COMMIT_TRANS);
4332
4333 if (btrfs_need_do_async_reclaim(space_info, fs_info, flush_state))
4334 queue_work(system_unbound_wq, work);
4335 }
4336
4337 void btrfs_init_async_reclaim_work(struct work_struct *work)
4338 {
4339 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4340 }
4341
4342 /**
4343 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4344 * @root - the root we're allocating for
4345 * @block_rsv - the block_rsv we're allocating for
4346 * @orig_bytes - the number of bytes we want
4347 * @flush - whether or not we can flush to make our reservation
4348 *
4349 * This will reserve orgi_bytes number of bytes from the space info associated
4350 * with the block_rsv. If there is not enough space it will make an attempt to
4351 * flush out space to make room. It will do this by flushing delalloc if
4352 * possible or committing the transaction. If flush is 0 then no attempts to
4353 * regain reservations will be made and this will fail if there is not enough
4354 * space already.
4355 */
4356 static int reserve_metadata_bytes(struct btrfs_root *root,
4357 struct btrfs_block_rsv *block_rsv,
4358 u64 orig_bytes,
4359 enum btrfs_reserve_flush_enum flush)
4360 {
4361 struct btrfs_space_info *space_info = block_rsv->space_info;
4362 u64 used;
4363 u64 num_bytes = orig_bytes;
4364 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4365 int ret = 0;
4366 bool flushing = false;
4367
4368 again:
4369 ret = 0;
4370 spin_lock(&space_info->lock);
4371 /*
4372 * We only want to wait if somebody other than us is flushing and we
4373 * are actually allowed to flush all things.
4374 */
4375 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4376 space_info->flush) {
4377 spin_unlock(&space_info->lock);
4378 /*
4379 * If we have a trans handle we can't wait because the flusher
4380 * may have to commit the transaction, which would mean we would
4381 * deadlock since we are waiting for the flusher to finish, but
4382 * hold the current transaction open.
4383 */
4384 if (current->journal_info)
4385 return -EAGAIN;
4386 ret = wait_event_killable(space_info->wait, !space_info->flush);
4387 /* Must have been killed, return */
4388 if (ret)
4389 return -EINTR;
4390
4391 spin_lock(&space_info->lock);
4392 }
4393
4394 ret = -ENOSPC;
4395 used = space_info->bytes_used + space_info->bytes_reserved +
4396 space_info->bytes_pinned + space_info->bytes_readonly +
4397 space_info->bytes_may_use;
4398
4399 /*
4400 * The idea here is that we've not already over-reserved the block group
4401 * then we can go ahead and save our reservation first and then start
4402 * flushing if we need to. Otherwise if we've already overcommitted
4403 * lets start flushing stuff first and then come back and try to make
4404 * our reservation.
4405 */
4406 if (used <= space_info->total_bytes) {
4407 if (used + orig_bytes <= space_info->total_bytes) {
4408 space_info->bytes_may_use += orig_bytes;
4409 trace_btrfs_space_reservation(root->fs_info,
4410 "space_info", space_info->flags, orig_bytes, 1);
4411 ret = 0;
4412 } else {
4413 /*
4414 * Ok set num_bytes to orig_bytes since we aren't
4415 * overocmmitted, this way we only try and reclaim what
4416 * we need.
4417 */
4418 num_bytes = orig_bytes;
4419 }
4420 } else {
4421 /*
4422 * Ok we're over committed, set num_bytes to the overcommitted
4423 * amount plus the amount of bytes that we need for this
4424 * reservation.
4425 */
4426 num_bytes = used - space_info->total_bytes +
4427 (orig_bytes * 2);
4428 }
4429
4430 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4431 space_info->bytes_may_use += orig_bytes;
4432 trace_btrfs_space_reservation(root->fs_info, "space_info",
4433 space_info->flags, orig_bytes,
4434 1);
4435 ret = 0;
4436 }
4437
4438 /*
4439 * Couldn't make our reservation, save our place so while we're trying
4440 * to reclaim space we can actually use it instead of somebody else
4441 * stealing it from us.
4442 *
4443 * We make the other tasks wait for the flush only when we can flush
4444 * all things.
4445 */
4446 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4447 flushing = true;
4448 space_info->flush = 1;
4449 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4450 used += orig_bytes;
4451 /*
4452 * We will do the space reservation dance during log replay,
4453 * which means we won't have fs_info->fs_root set, so don't do
4454 * the async reclaim as we will panic.
4455 */
4456 if (!root->fs_info->log_root_recovering &&
4457 need_do_async_reclaim(space_info, root->fs_info, used) &&
4458 !work_busy(&root->fs_info->async_reclaim_work))
4459 queue_work(system_unbound_wq,
4460 &root->fs_info->async_reclaim_work);
4461 }
4462 spin_unlock(&space_info->lock);
4463
4464 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4465 goto out;
4466
4467 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4468 flush_state);
4469 flush_state++;
4470
4471 /*
4472 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4473 * would happen. So skip delalloc flush.
4474 */
4475 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4476 (flush_state == FLUSH_DELALLOC ||
4477 flush_state == FLUSH_DELALLOC_WAIT))
4478 flush_state = ALLOC_CHUNK;
4479
4480 if (!ret)
4481 goto again;
4482 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4483 flush_state < COMMIT_TRANS)
4484 goto again;
4485 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4486 flush_state <= COMMIT_TRANS)
4487 goto again;
4488
4489 out:
4490 if (ret == -ENOSPC &&
4491 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4492 struct btrfs_block_rsv *global_rsv =
4493 &root->fs_info->global_block_rsv;
4494
4495 if (block_rsv != global_rsv &&
4496 !block_rsv_use_bytes(global_rsv, orig_bytes))
4497 ret = 0;
4498 }
4499 if (ret == -ENOSPC)
4500 trace_btrfs_space_reservation(root->fs_info,
4501 "space_info:enospc",
4502 space_info->flags, orig_bytes, 1);
4503 if (flushing) {
4504 spin_lock(&space_info->lock);
4505 space_info->flush = 0;
4506 wake_up_all(&space_info->wait);
4507 spin_unlock(&space_info->lock);
4508 }
4509 return ret;
4510 }
4511
4512 static struct btrfs_block_rsv *get_block_rsv(
4513 const struct btrfs_trans_handle *trans,
4514 const struct btrfs_root *root)
4515 {
4516 struct btrfs_block_rsv *block_rsv = NULL;
4517
4518 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4519 block_rsv = trans->block_rsv;
4520
4521 if (root == root->fs_info->csum_root && trans->adding_csums)
4522 block_rsv = trans->block_rsv;
4523
4524 if (root == root->fs_info->uuid_root)
4525 block_rsv = trans->block_rsv;
4526
4527 if (!block_rsv)
4528 block_rsv = root->block_rsv;
4529
4530 if (!block_rsv)
4531 block_rsv = &root->fs_info->empty_block_rsv;
4532
4533 return block_rsv;
4534 }
4535
4536 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4537 u64 num_bytes)
4538 {
4539 int ret = -ENOSPC;
4540 spin_lock(&block_rsv->lock);
4541 if (block_rsv->reserved >= num_bytes) {
4542 block_rsv->reserved -= num_bytes;
4543 if (block_rsv->reserved < block_rsv->size)
4544 block_rsv->full = 0;
4545 ret = 0;
4546 }
4547 spin_unlock(&block_rsv->lock);
4548 return ret;
4549 }
4550
4551 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4552 u64 num_bytes, int update_size)
4553 {
4554 spin_lock(&block_rsv->lock);
4555 block_rsv->reserved += num_bytes;
4556 if (update_size)
4557 block_rsv->size += num_bytes;
4558 else if (block_rsv->reserved >= block_rsv->size)
4559 block_rsv->full = 1;
4560 spin_unlock(&block_rsv->lock);
4561 }
4562
4563 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4564 struct btrfs_block_rsv *dest, u64 num_bytes,
4565 int min_factor)
4566 {
4567 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4568 u64 min_bytes;
4569
4570 if (global_rsv->space_info != dest->space_info)
4571 return -ENOSPC;
4572
4573 spin_lock(&global_rsv->lock);
4574 min_bytes = div_factor(global_rsv->size, min_factor);
4575 if (global_rsv->reserved < min_bytes + num_bytes) {
4576 spin_unlock(&global_rsv->lock);
4577 return -ENOSPC;
4578 }
4579 global_rsv->reserved -= num_bytes;
4580 if (global_rsv->reserved < global_rsv->size)
4581 global_rsv->full = 0;
4582 spin_unlock(&global_rsv->lock);
4583
4584 block_rsv_add_bytes(dest, num_bytes, 1);
4585 return 0;
4586 }
4587
4588 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4589 struct btrfs_block_rsv *block_rsv,
4590 struct btrfs_block_rsv *dest, u64 num_bytes)
4591 {
4592 struct btrfs_space_info *space_info = block_rsv->space_info;
4593
4594 spin_lock(&block_rsv->lock);
4595 if (num_bytes == (u64)-1)
4596 num_bytes = block_rsv->size;
4597 block_rsv->size -= num_bytes;
4598 if (block_rsv->reserved >= block_rsv->size) {
4599 num_bytes = block_rsv->reserved - block_rsv->size;
4600 block_rsv->reserved = block_rsv->size;
4601 block_rsv->full = 1;
4602 } else {
4603 num_bytes = 0;
4604 }
4605 spin_unlock(&block_rsv->lock);
4606
4607 if (num_bytes > 0) {
4608 if (dest) {
4609 spin_lock(&dest->lock);
4610 if (!dest->full) {
4611 u64 bytes_to_add;
4612
4613 bytes_to_add = dest->size - dest->reserved;
4614 bytes_to_add = min(num_bytes, bytes_to_add);
4615 dest->reserved += bytes_to_add;
4616 if (dest->reserved >= dest->size)
4617 dest->full = 1;
4618 num_bytes -= bytes_to_add;
4619 }
4620 spin_unlock(&dest->lock);
4621 }
4622 if (num_bytes) {
4623 spin_lock(&space_info->lock);
4624 space_info->bytes_may_use -= num_bytes;
4625 trace_btrfs_space_reservation(fs_info, "space_info",
4626 space_info->flags, num_bytes, 0);
4627 spin_unlock(&space_info->lock);
4628 }
4629 }
4630 }
4631
4632 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4633 struct btrfs_block_rsv *dst, u64 num_bytes)
4634 {
4635 int ret;
4636
4637 ret = block_rsv_use_bytes(src, num_bytes);
4638 if (ret)
4639 return ret;
4640
4641 block_rsv_add_bytes(dst, num_bytes, 1);
4642 return 0;
4643 }
4644
4645 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4646 {
4647 memset(rsv, 0, sizeof(*rsv));
4648 spin_lock_init(&rsv->lock);
4649 rsv->type = type;
4650 }
4651
4652 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4653 unsigned short type)
4654 {
4655 struct btrfs_block_rsv *block_rsv;
4656 struct btrfs_fs_info *fs_info = root->fs_info;
4657
4658 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4659 if (!block_rsv)
4660 return NULL;
4661
4662 btrfs_init_block_rsv(block_rsv, type);
4663 block_rsv->space_info = __find_space_info(fs_info,
4664 BTRFS_BLOCK_GROUP_METADATA);
4665 return block_rsv;
4666 }
4667
4668 void btrfs_free_block_rsv(struct btrfs_root *root,
4669 struct btrfs_block_rsv *rsv)
4670 {
4671 if (!rsv)
4672 return;
4673 btrfs_block_rsv_release(root, rsv, (u64)-1);
4674 kfree(rsv);
4675 }
4676
4677 int btrfs_block_rsv_add(struct btrfs_root *root,
4678 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4679 enum btrfs_reserve_flush_enum flush)
4680 {
4681 int ret;
4682
4683 if (num_bytes == 0)
4684 return 0;
4685
4686 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4687 if (!ret) {
4688 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4689 return 0;
4690 }
4691
4692 return ret;
4693 }
4694
4695 int btrfs_block_rsv_check(struct btrfs_root *root,
4696 struct btrfs_block_rsv *block_rsv, int min_factor)
4697 {
4698 u64 num_bytes = 0;
4699 int ret = -ENOSPC;
4700
4701 if (!block_rsv)
4702 return 0;
4703
4704 spin_lock(&block_rsv->lock);
4705 num_bytes = div_factor(block_rsv->size, min_factor);
4706 if (block_rsv->reserved >= num_bytes)
4707 ret = 0;
4708 spin_unlock(&block_rsv->lock);
4709
4710 return ret;
4711 }
4712
4713 int btrfs_block_rsv_refill(struct btrfs_root *root,
4714 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4715 enum btrfs_reserve_flush_enum flush)
4716 {
4717 u64 num_bytes = 0;
4718 int ret = -ENOSPC;
4719
4720 if (!block_rsv)
4721 return 0;
4722
4723 spin_lock(&block_rsv->lock);
4724 num_bytes = min_reserved;
4725 if (block_rsv->reserved >= num_bytes)
4726 ret = 0;
4727 else
4728 num_bytes -= block_rsv->reserved;
4729 spin_unlock(&block_rsv->lock);
4730
4731 if (!ret)
4732 return 0;
4733
4734 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4735 if (!ret) {
4736 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4737 return 0;
4738 }
4739
4740 return ret;
4741 }
4742
4743 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4744 struct btrfs_block_rsv *dst_rsv,
4745 u64 num_bytes)
4746 {
4747 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4748 }
4749
4750 void btrfs_block_rsv_release(struct btrfs_root *root,
4751 struct btrfs_block_rsv *block_rsv,
4752 u64 num_bytes)
4753 {
4754 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4755 if (global_rsv == block_rsv ||
4756 block_rsv->space_info != global_rsv->space_info)
4757 global_rsv = NULL;
4758 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4759 num_bytes);
4760 }
4761
4762 /*
4763 * helper to calculate size of global block reservation.
4764 * the desired value is sum of space used by extent tree,
4765 * checksum tree and root tree
4766 */
4767 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4768 {
4769 struct btrfs_space_info *sinfo;
4770 u64 num_bytes;
4771 u64 meta_used;
4772 u64 data_used;
4773 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4774
4775 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4776 spin_lock(&sinfo->lock);
4777 data_used = sinfo->bytes_used;
4778 spin_unlock(&sinfo->lock);
4779
4780 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4781 spin_lock(&sinfo->lock);
4782 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4783 data_used = 0;
4784 meta_used = sinfo->bytes_used;
4785 spin_unlock(&sinfo->lock);
4786
4787 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4788 csum_size * 2;
4789 num_bytes += div64_u64(data_used + meta_used, 50);
4790
4791 if (num_bytes * 3 > meta_used)
4792 num_bytes = div64_u64(meta_used, 3);
4793
4794 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
4795 }
4796
4797 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4798 {
4799 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4800 struct btrfs_space_info *sinfo = block_rsv->space_info;
4801 u64 num_bytes;
4802
4803 num_bytes = calc_global_metadata_size(fs_info);
4804
4805 spin_lock(&sinfo->lock);
4806 spin_lock(&block_rsv->lock);
4807
4808 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4809
4810 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4811 sinfo->bytes_reserved + sinfo->bytes_readonly +
4812 sinfo->bytes_may_use;
4813
4814 if (sinfo->total_bytes > num_bytes) {
4815 num_bytes = sinfo->total_bytes - num_bytes;
4816 block_rsv->reserved += num_bytes;
4817 sinfo->bytes_may_use += num_bytes;
4818 trace_btrfs_space_reservation(fs_info, "space_info",
4819 sinfo->flags, num_bytes, 1);
4820 }
4821
4822 if (block_rsv->reserved >= block_rsv->size) {
4823 num_bytes = block_rsv->reserved - block_rsv->size;
4824 sinfo->bytes_may_use -= num_bytes;
4825 trace_btrfs_space_reservation(fs_info, "space_info",
4826 sinfo->flags, num_bytes, 0);
4827 block_rsv->reserved = block_rsv->size;
4828 block_rsv->full = 1;
4829 }
4830
4831 spin_unlock(&block_rsv->lock);
4832 spin_unlock(&sinfo->lock);
4833 }
4834
4835 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4836 {
4837 struct btrfs_space_info *space_info;
4838
4839 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4840 fs_info->chunk_block_rsv.space_info = space_info;
4841
4842 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4843 fs_info->global_block_rsv.space_info = space_info;
4844 fs_info->delalloc_block_rsv.space_info = space_info;
4845 fs_info->trans_block_rsv.space_info = space_info;
4846 fs_info->empty_block_rsv.space_info = space_info;
4847 fs_info->delayed_block_rsv.space_info = space_info;
4848
4849 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4850 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4851 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4852 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4853 if (fs_info->quota_root)
4854 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4855 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4856
4857 update_global_block_rsv(fs_info);
4858 }
4859
4860 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4861 {
4862 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4863 (u64)-1);
4864 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4865 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4866 WARN_ON(fs_info->trans_block_rsv.size > 0);
4867 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4868 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4869 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4870 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4871 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4872 }
4873
4874 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4875 struct btrfs_root *root)
4876 {
4877 if (!trans->block_rsv)
4878 return;
4879
4880 if (!trans->bytes_reserved)
4881 return;
4882
4883 trace_btrfs_space_reservation(root->fs_info, "transaction",
4884 trans->transid, trans->bytes_reserved, 0);
4885 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4886 trans->bytes_reserved = 0;
4887 }
4888
4889 /* Can only return 0 or -ENOSPC */
4890 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4891 struct inode *inode)
4892 {
4893 struct btrfs_root *root = BTRFS_I(inode)->root;
4894 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4895 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4896
4897 /*
4898 * We need to hold space in order to delete our orphan item once we've
4899 * added it, so this takes the reservation so we can release it later
4900 * when we are truly done with the orphan item.
4901 */
4902 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4903 trace_btrfs_space_reservation(root->fs_info, "orphan",
4904 btrfs_ino(inode), num_bytes, 1);
4905 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4906 }
4907
4908 void btrfs_orphan_release_metadata(struct inode *inode)
4909 {
4910 struct btrfs_root *root = BTRFS_I(inode)->root;
4911 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4912 trace_btrfs_space_reservation(root->fs_info, "orphan",
4913 btrfs_ino(inode), num_bytes, 0);
4914 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4915 }
4916
4917 /*
4918 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4919 * root: the root of the parent directory
4920 * rsv: block reservation
4921 * items: the number of items that we need do reservation
4922 * qgroup_reserved: used to return the reserved size in qgroup
4923 *
4924 * This function is used to reserve the space for snapshot/subvolume
4925 * creation and deletion. Those operations are different with the
4926 * common file/directory operations, they change two fs/file trees
4927 * and root tree, the number of items that the qgroup reserves is
4928 * different with the free space reservation. So we can not use
4929 * the space reseravtion mechanism in start_transaction().
4930 */
4931 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4932 struct btrfs_block_rsv *rsv,
4933 int items,
4934 u64 *qgroup_reserved,
4935 bool use_global_rsv)
4936 {
4937 u64 num_bytes;
4938 int ret;
4939 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4940
4941 if (root->fs_info->quota_enabled) {
4942 /* One for parent inode, two for dir entries */
4943 num_bytes = 3 * root->nodesize;
4944 ret = btrfs_qgroup_reserve(root, num_bytes);
4945 if (ret)
4946 return ret;
4947 } else {
4948 num_bytes = 0;
4949 }
4950
4951 *qgroup_reserved = num_bytes;
4952
4953 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4954 rsv->space_info = __find_space_info(root->fs_info,
4955 BTRFS_BLOCK_GROUP_METADATA);
4956 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4957 BTRFS_RESERVE_FLUSH_ALL);
4958
4959 if (ret == -ENOSPC && use_global_rsv)
4960 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4961
4962 if (ret) {
4963 if (*qgroup_reserved)
4964 btrfs_qgroup_free(root, *qgroup_reserved);
4965 }
4966
4967 return ret;
4968 }
4969
4970 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4971 struct btrfs_block_rsv *rsv,
4972 u64 qgroup_reserved)
4973 {
4974 btrfs_block_rsv_release(root, rsv, (u64)-1);
4975 if (qgroup_reserved)
4976 btrfs_qgroup_free(root, qgroup_reserved);
4977 }
4978
4979 /**
4980 * drop_outstanding_extent - drop an outstanding extent
4981 * @inode: the inode we're dropping the extent for
4982 * @num_bytes: the number of bytes we're relaseing.
4983 *
4984 * This is called when we are freeing up an outstanding extent, either called
4985 * after an error or after an extent is written. This will return the number of
4986 * reserved extents that need to be freed. This must be called with
4987 * BTRFS_I(inode)->lock held.
4988 */
4989 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
4990 {
4991 unsigned drop_inode_space = 0;
4992 unsigned dropped_extents = 0;
4993 unsigned num_extents = 0;
4994
4995 num_extents = (unsigned)div64_u64(num_bytes +
4996 BTRFS_MAX_EXTENT_SIZE - 1,
4997 BTRFS_MAX_EXTENT_SIZE);
4998 ASSERT(num_extents);
4999 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5000 BTRFS_I(inode)->outstanding_extents -= num_extents;
5001
5002 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5003 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5004 &BTRFS_I(inode)->runtime_flags))
5005 drop_inode_space = 1;
5006
5007 /*
5008 * If we have more or the same amount of outsanding extents than we have
5009 * reserved then we need to leave the reserved extents count alone.
5010 */
5011 if (BTRFS_I(inode)->outstanding_extents >=
5012 BTRFS_I(inode)->reserved_extents)
5013 return drop_inode_space;
5014
5015 dropped_extents = BTRFS_I(inode)->reserved_extents -
5016 BTRFS_I(inode)->outstanding_extents;
5017 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5018 return dropped_extents + drop_inode_space;
5019 }
5020
5021 /**
5022 * calc_csum_metadata_size - return the amount of metada space that must be
5023 * reserved/free'd for the given bytes.
5024 * @inode: the inode we're manipulating
5025 * @num_bytes: the number of bytes in question
5026 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5027 *
5028 * This adjusts the number of csum_bytes in the inode and then returns the
5029 * correct amount of metadata that must either be reserved or freed. We
5030 * calculate how many checksums we can fit into one leaf and then divide the
5031 * number of bytes that will need to be checksumed by this value to figure out
5032 * how many checksums will be required. If we are adding bytes then the number
5033 * may go up and we will return the number of additional bytes that must be
5034 * reserved. If it is going down we will return the number of bytes that must
5035 * be freed.
5036 *
5037 * This must be called with BTRFS_I(inode)->lock held.
5038 */
5039 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5040 int reserve)
5041 {
5042 struct btrfs_root *root = BTRFS_I(inode)->root;
5043 u64 csum_size;
5044 int num_csums_per_leaf;
5045 int num_csums;
5046 int old_csums;
5047
5048 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5049 BTRFS_I(inode)->csum_bytes == 0)
5050 return 0;
5051
5052 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5053 if (reserve)
5054 BTRFS_I(inode)->csum_bytes += num_bytes;
5055 else
5056 BTRFS_I(inode)->csum_bytes -= num_bytes;
5057 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
5058 num_csums_per_leaf = (int)div64_u64(csum_size,
5059 sizeof(struct btrfs_csum_item) +
5060 sizeof(struct btrfs_disk_key));
5061 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5062 num_csums = num_csums + num_csums_per_leaf - 1;
5063 num_csums = num_csums / num_csums_per_leaf;
5064
5065 old_csums = old_csums + num_csums_per_leaf - 1;
5066 old_csums = old_csums / num_csums_per_leaf;
5067
5068 /* No change, no need to reserve more */
5069 if (old_csums == num_csums)
5070 return 0;
5071
5072 if (reserve)
5073 return btrfs_calc_trans_metadata_size(root,
5074 num_csums - old_csums);
5075
5076 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5077 }
5078
5079 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5080 {
5081 struct btrfs_root *root = BTRFS_I(inode)->root;
5082 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5083 u64 to_reserve = 0;
5084 u64 csum_bytes;
5085 unsigned nr_extents = 0;
5086 int extra_reserve = 0;
5087 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5088 int ret = 0;
5089 bool delalloc_lock = true;
5090 u64 to_free = 0;
5091 unsigned dropped;
5092
5093 /* If we are a free space inode we need to not flush since we will be in
5094 * the middle of a transaction commit. We also don't need the delalloc
5095 * mutex since we won't race with anybody. We need this mostly to make
5096 * lockdep shut its filthy mouth.
5097 */
5098 if (btrfs_is_free_space_inode(inode)) {
5099 flush = BTRFS_RESERVE_NO_FLUSH;
5100 delalloc_lock = false;
5101 }
5102
5103 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5104 btrfs_transaction_in_commit(root->fs_info))
5105 schedule_timeout(1);
5106
5107 if (delalloc_lock)
5108 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5109
5110 num_bytes = ALIGN(num_bytes, root->sectorsize);
5111
5112 spin_lock(&BTRFS_I(inode)->lock);
5113 BTRFS_I(inode)->outstanding_extents++;
5114
5115 if (BTRFS_I(inode)->outstanding_extents >
5116 BTRFS_I(inode)->reserved_extents)
5117 nr_extents = BTRFS_I(inode)->outstanding_extents -
5118 BTRFS_I(inode)->reserved_extents;
5119
5120 /*
5121 * Add an item to reserve for updating the inode when we complete the
5122 * delalloc io.
5123 */
5124 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5125 &BTRFS_I(inode)->runtime_flags)) {
5126 nr_extents++;
5127 extra_reserve = 1;
5128 }
5129
5130 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5131 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5132 csum_bytes = BTRFS_I(inode)->csum_bytes;
5133 spin_unlock(&BTRFS_I(inode)->lock);
5134
5135 if (root->fs_info->quota_enabled) {
5136 ret = btrfs_qgroup_reserve(root, num_bytes +
5137 nr_extents * root->nodesize);
5138 if (ret)
5139 goto out_fail;
5140 }
5141
5142 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5143 if (unlikely(ret)) {
5144 if (root->fs_info->quota_enabled)
5145 btrfs_qgroup_free(root, num_bytes +
5146 nr_extents * root->nodesize);
5147 goto out_fail;
5148 }
5149
5150 spin_lock(&BTRFS_I(inode)->lock);
5151 if (extra_reserve) {
5152 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5153 &BTRFS_I(inode)->runtime_flags);
5154 nr_extents--;
5155 }
5156 BTRFS_I(inode)->reserved_extents += nr_extents;
5157 spin_unlock(&BTRFS_I(inode)->lock);
5158
5159 if (delalloc_lock)
5160 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5161
5162 if (to_reserve)
5163 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5164 btrfs_ino(inode), to_reserve, 1);
5165 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5166
5167 return 0;
5168
5169 out_fail:
5170 spin_lock(&BTRFS_I(inode)->lock);
5171 dropped = drop_outstanding_extent(inode, num_bytes);
5172 /*
5173 * If the inodes csum_bytes is the same as the original
5174 * csum_bytes then we know we haven't raced with any free()ers
5175 * so we can just reduce our inodes csum bytes and carry on.
5176 */
5177 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5178 calc_csum_metadata_size(inode, num_bytes, 0);
5179 } else {
5180 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5181 u64 bytes;
5182
5183 /*
5184 * This is tricky, but first we need to figure out how much we
5185 * free'd from any free-ers that occured during this
5186 * reservation, so we reset ->csum_bytes to the csum_bytes
5187 * before we dropped our lock, and then call the free for the
5188 * number of bytes that were freed while we were trying our
5189 * reservation.
5190 */
5191 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5192 BTRFS_I(inode)->csum_bytes = csum_bytes;
5193 to_free = calc_csum_metadata_size(inode, bytes, 0);
5194
5195
5196 /*
5197 * Now we need to see how much we would have freed had we not
5198 * been making this reservation and our ->csum_bytes were not
5199 * artificially inflated.
5200 */
5201 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5202 bytes = csum_bytes - orig_csum_bytes;
5203 bytes = calc_csum_metadata_size(inode, bytes, 0);
5204
5205 /*
5206 * Now reset ->csum_bytes to what it should be. If bytes is
5207 * more than to_free then we would have free'd more space had we
5208 * not had an artificially high ->csum_bytes, so we need to free
5209 * the remainder. If bytes is the same or less then we don't
5210 * need to do anything, the other free-ers did the correct
5211 * thing.
5212 */
5213 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5214 if (bytes > to_free)
5215 to_free = bytes - to_free;
5216 else
5217 to_free = 0;
5218 }
5219 spin_unlock(&BTRFS_I(inode)->lock);
5220 if (dropped)
5221 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5222
5223 if (to_free) {
5224 btrfs_block_rsv_release(root, block_rsv, to_free);
5225 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5226 btrfs_ino(inode), to_free, 0);
5227 }
5228 if (delalloc_lock)
5229 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5230 return ret;
5231 }
5232
5233 /**
5234 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5235 * @inode: the inode to release the reservation for
5236 * @num_bytes: the number of bytes we're releasing
5237 *
5238 * This will release the metadata reservation for an inode. This can be called
5239 * once we complete IO for a given set of bytes to release their metadata
5240 * reservations.
5241 */
5242 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5243 {
5244 struct btrfs_root *root = BTRFS_I(inode)->root;
5245 u64 to_free = 0;
5246 unsigned dropped;
5247
5248 num_bytes = ALIGN(num_bytes, root->sectorsize);
5249 spin_lock(&BTRFS_I(inode)->lock);
5250 dropped = drop_outstanding_extent(inode, num_bytes);
5251
5252 if (num_bytes)
5253 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5254 spin_unlock(&BTRFS_I(inode)->lock);
5255 if (dropped > 0)
5256 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5257
5258 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5259 btrfs_ino(inode), to_free, 0);
5260 if (root->fs_info->quota_enabled) {
5261 btrfs_qgroup_free(root, num_bytes +
5262 dropped * root->nodesize);
5263 }
5264
5265 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5266 to_free);
5267 }
5268
5269 /**
5270 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5271 * @inode: inode we're writing to
5272 * @num_bytes: the number of bytes we want to allocate
5273 *
5274 * This will do the following things
5275 *
5276 * o reserve space in the data space info for num_bytes
5277 * o reserve space in the metadata space info based on number of outstanding
5278 * extents and how much csums will be needed
5279 * o add to the inodes ->delalloc_bytes
5280 * o add it to the fs_info's delalloc inodes list.
5281 *
5282 * This will return 0 for success and -ENOSPC if there is no space left.
5283 */
5284 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5285 {
5286 int ret;
5287
5288 ret = btrfs_check_data_free_space(inode, num_bytes);
5289 if (ret)
5290 return ret;
5291
5292 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5293 if (ret) {
5294 btrfs_free_reserved_data_space(inode, num_bytes);
5295 return ret;
5296 }
5297
5298 return 0;
5299 }
5300
5301 /**
5302 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5303 * @inode: inode we're releasing space for
5304 * @num_bytes: the number of bytes we want to free up
5305 *
5306 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5307 * called in the case that we don't need the metadata AND data reservations
5308 * anymore. So if there is an error or we insert an inline extent.
5309 *
5310 * This function will release the metadata space that was not used and will
5311 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5312 * list if there are no delalloc bytes left.
5313 */
5314 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5315 {
5316 btrfs_delalloc_release_metadata(inode, num_bytes);
5317 btrfs_free_reserved_data_space(inode, num_bytes);
5318 }
5319
5320 static int update_block_group(struct btrfs_trans_handle *trans,
5321 struct btrfs_root *root, u64 bytenr,
5322 u64 num_bytes, int alloc)
5323 {
5324 struct btrfs_block_group_cache *cache = NULL;
5325 struct btrfs_fs_info *info = root->fs_info;
5326 u64 total = num_bytes;
5327 u64 old_val;
5328 u64 byte_in_group;
5329 int factor;
5330
5331 /* block accounting for super block */
5332 spin_lock(&info->delalloc_root_lock);
5333 old_val = btrfs_super_bytes_used(info->super_copy);
5334 if (alloc)
5335 old_val += num_bytes;
5336 else
5337 old_val -= num_bytes;
5338 btrfs_set_super_bytes_used(info->super_copy, old_val);
5339 spin_unlock(&info->delalloc_root_lock);
5340
5341 while (total) {
5342 cache = btrfs_lookup_block_group(info, bytenr);
5343 if (!cache)
5344 return -ENOENT;
5345 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5346 BTRFS_BLOCK_GROUP_RAID1 |
5347 BTRFS_BLOCK_GROUP_RAID10))
5348 factor = 2;
5349 else
5350 factor = 1;
5351 /*
5352 * If this block group has free space cache written out, we
5353 * need to make sure to load it if we are removing space. This
5354 * is because we need the unpinning stage to actually add the
5355 * space back to the block group, otherwise we will leak space.
5356 */
5357 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5358 cache_block_group(cache, 1);
5359
5360 spin_lock(&trans->transaction->dirty_bgs_lock);
5361 if (list_empty(&cache->dirty_list)) {
5362 list_add_tail(&cache->dirty_list,
5363 &trans->transaction->dirty_bgs);
5364 btrfs_get_block_group(cache);
5365 }
5366 spin_unlock(&trans->transaction->dirty_bgs_lock);
5367
5368 byte_in_group = bytenr - cache->key.objectid;
5369 WARN_ON(byte_in_group > cache->key.offset);
5370
5371 spin_lock(&cache->space_info->lock);
5372 spin_lock(&cache->lock);
5373
5374 if (btrfs_test_opt(root, SPACE_CACHE) &&
5375 cache->disk_cache_state < BTRFS_DC_CLEAR)
5376 cache->disk_cache_state = BTRFS_DC_CLEAR;
5377
5378 old_val = btrfs_block_group_used(&cache->item);
5379 num_bytes = min(total, cache->key.offset - byte_in_group);
5380 if (alloc) {
5381 old_val += num_bytes;
5382 btrfs_set_block_group_used(&cache->item, old_val);
5383 cache->reserved -= num_bytes;
5384 cache->space_info->bytes_reserved -= num_bytes;
5385 cache->space_info->bytes_used += num_bytes;
5386 cache->space_info->disk_used += num_bytes * factor;
5387 spin_unlock(&cache->lock);
5388 spin_unlock(&cache->space_info->lock);
5389 } else {
5390 old_val -= num_bytes;
5391 btrfs_set_block_group_used(&cache->item, old_val);
5392 cache->pinned += num_bytes;
5393 cache->space_info->bytes_pinned += num_bytes;
5394 cache->space_info->bytes_used -= num_bytes;
5395 cache->space_info->disk_used -= num_bytes * factor;
5396 spin_unlock(&cache->lock);
5397 spin_unlock(&cache->space_info->lock);
5398
5399 set_extent_dirty(info->pinned_extents,
5400 bytenr, bytenr + num_bytes - 1,
5401 GFP_NOFS | __GFP_NOFAIL);
5402 /*
5403 * No longer have used bytes in this block group, queue
5404 * it for deletion.
5405 */
5406 if (old_val == 0) {
5407 spin_lock(&info->unused_bgs_lock);
5408 if (list_empty(&cache->bg_list)) {
5409 btrfs_get_block_group(cache);
5410 list_add_tail(&cache->bg_list,
5411 &info->unused_bgs);
5412 }
5413 spin_unlock(&info->unused_bgs_lock);
5414 }
5415 }
5416 btrfs_put_block_group(cache);
5417 total -= num_bytes;
5418 bytenr += num_bytes;
5419 }
5420 return 0;
5421 }
5422
5423 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5424 {
5425 struct btrfs_block_group_cache *cache;
5426 u64 bytenr;
5427
5428 spin_lock(&root->fs_info->block_group_cache_lock);
5429 bytenr = root->fs_info->first_logical_byte;
5430 spin_unlock(&root->fs_info->block_group_cache_lock);
5431
5432 if (bytenr < (u64)-1)
5433 return bytenr;
5434
5435 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5436 if (!cache)
5437 return 0;
5438
5439 bytenr = cache->key.objectid;
5440 btrfs_put_block_group(cache);
5441
5442 return bytenr;
5443 }
5444
5445 static int pin_down_extent(struct btrfs_root *root,
5446 struct btrfs_block_group_cache *cache,
5447 u64 bytenr, u64 num_bytes, int reserved)
5448 {
5449 spin_lock(&cache->space_info->lock);
5450 spin_lock(&cache->lock);
5451 cache->pinned += num_bytes;
5452 cache->space_info->bytes_pinned += num_bytes;
5453 if (reserved) {
5454 cache->reserved -= num_bytes;
5455 cache->space_info->bytes_reserved -= num_bytes;
5456 }
5457 spin_unlock(&cache->lock);
5458 spin_unlock(&cache->space_info->lock);
5459
5460 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5461 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5462 if (reserved)
5463 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5464 return 0;
5465 }
5466
5467 /*
5468 * this function must be called within transaction
5469 */
5470 int btrfs_pin_extent(struct btrfs_root *root,
5471 u64 bytenr, u64 num_bytes, int reserved)
5472 {
5473 struct btrfs_block_group_cache *cache;
5474
5475 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5476 BUG_ON(!cache); /* Logic error */
5477
5478 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5479
5480 btrfs_put_block_group(cache);
5481 return 0;
5482 }
5483
5484 /*
5485 * this function must be called within transaction
5486 */
5487 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5488 u64 bytenr, u64 num_bytes)
5489 {
5490 struct btrfs_block_group_cache *cache;
5491 int ret;
5492
5493 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5494 if (!cache)
5495 return -EINVAL;
5496
5497 /*
5498 * pull in the free space cache (if any) so that our pin
5499 * removes the free space from the cache. We have load_only set
5500 * to one because the slow code to read in the free extents does check
5501 * the pinned extents.
5502 */
5503 cache_block_group(cache, 1);
5504
5505 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5506
5507 /* remove us from the free space cache (if we're there at all) */
5508 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5509 btrfs_put_block_group(cache);
5510 return ret;
5511 }
5512
5513 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5514 {
5515 int ret;
5516 struct btrfs_block_group_cache *block_group;
5517 struct btrfs_caching_control *caching_ctl;
5518
5519 block_group = btrfs_lookup_block_group(root->fs_info, start);
5520 if (!block_group)
5521 return -EINVAL;
5522
5523 cache_block_group(block_group, 0);
5524 caching_ctl = get_caching_control(block_group);
5525
5526 if (!caching_ctl) {
5527 /* Logic error */
5528 BUG_ON(!block_group_cache_done(block_group));
5529 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5530 } else {
5531 mutex_lock(&caching_ctl->mutex);
5532
5533 if (start >= caching_ctl->progress) {
5534 ret = add_excluded_extent(root, start, num_bytes);
5535 } else if (start + num_bytes <= caching_ctl->progress) {
5536 ret = btrfs_remove_free_space(block_group,
5537 start, num_bytes);
5538 } else {
5539 num_bytes = caching_ctl->progress - start;
5540 ret = btrfs_remove_free_space(block_group,
5541 start, num_bytes);
5542 if (ret)
5543 goto out_lock;
5544
5545 num_bytes = (start + num_bytes) -
5546 caching_ctl->progress;
5547 start = caching_ctl->progress;
5548 ret = add_excluded_extent(root, start, num_bytes);
5549 }
5550 out_lock:
5551 mutex_unlock(&caching_ctl->mutex);
5552 put_caching_control(caching_ctl);
5553 }
5554 btrfs_put_block_group(block_group);
5555 return ret;
5556 }
5557
5558 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5559 struct extent_buffer *eb)
5560 {
5561 struct btrfs_file_extent_item *item;
5562 struct btrfs_key key;
5563 int found_type;
5564 int i;
5565
5566 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5567 return 0;
5568
5569 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5570 btrfs_item_key_to_cpu(eb, &key, i);
5571 if (key.type != BTRFS_EXTENT_DATA_KEY)
5572 continue;
5573 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5574 found_type = btrfs_file_extent_type(eb, item);
5575 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5576 continue;
5577 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5578 continue;
5579 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5580 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5581 __exclude_logged_extent(log, key.objectid, key.offset);
5582 }
5583
5584 return 0;
5585 }
5586
5587 /**
5588 * btrfs_update_reserved_bytes - update the block_group and space info counters
5589 * @cache: The cache we are manipulating
5590 * @num_bytes: The number of bytes in question
5591 * @reserve: One of the reservation enums
5592 * @delalloc: The blocks are allocated for the delalloc write
5593 *
5594 * This is called by the allocator when it reserves space, or by somebody who is
5595 * freeing space that was never actually used on disk. For example if you
5596 * reserve some space for a new leaf in transaction A and before transaction A
5597 * commits you free that leaf, you call this with reserve set to 0 in order to
5598 * clear the reservation.
5599 *
5600 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5601 * ENOSPC accounting. For data we handle the reservation through clearing the
5602 * delalloc bits in the io_tree. We have to do this since we could end up
5603 * allocating less disk space for the amount of data we have reserved in the
5604 * case of compression.
5605 *
5606 * If this is a reservation and the block group has become read only we cannot
5607 * make the reservation and return -EAGAIN, otherwise this function always
5608 * succeeds.
5609 */
5610 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5611 u64 num_bytes, int reserve, int delalloc)
5612 {
5613 struct btrfs_space_info *space_info = cache->space_info;
5614 int ret = 0;
5615
5616 spin_lock(&space_info->lock);
5617 spin_lock(&cache->lock);
5618 if (reserve != RESERVE_FREE) {
5619 if (cache->ro) {
5620 ret = -EAGAIN;
5621 } else {
5622 cache->reserved += num_bytes;
5623 space_info->bytes_reserved += num_bytes;
5624 if (reserve == RESERVE_ALLOC) {
5625 trace_btrfs_space_reservation(cache->fs_info,
5626 "space_info", space_info->flags,
5627 num_bytes, 0);
5628 space_info->bytes_may_use -= num_bytes;
5629 }
5630
5631 if (delalloc)
5632 cache->delalloc_bytes += num_bytes;
5633 }
5634 } else {
5635 if (cache->ro)
5636 space_info->bytes_readonly += num_bytes;
5637 cache->reserved -= num_bytes;
5638 space_info->bytes_reserved -= num_bytes;
5639
5640 if (delalloc)
5641 cache->delalloc_bytes -= num_bytes;
5642 }
5643 spin_unlock(&cache->lock);
5644 spin_unlock(&space_info->lock);
5645 return ret;
5646 }
5647
5648 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5649 struct btrfs_root *root)
5650 {
5651 struct btrfs_fs_info *fs_info = root->fs_info;
5652 struct btrfs_caching_control *next;
5653 struct btrfs_caching_control *caching_ctl;
5654 struct btrfs_block_group_cache *cache;
5655
5656 down_write(&fs_info->commit_root_sem);
5657
5658 list_for_each_entry_safe(caching_ctl, next,
5659 &fs_info->caching_block_groups, list) {
5660 cache = caching_ctl->block_group;
5661 if (block_group_cache_done(cache)) {
5662 cache->last_byte_to_unpin = (u64)-1;
5663 list_del_init(&caching_ctl->list);
5664 put_caching_control(caching_ctl);
5665 } else {
5666 cache->last_byte_to_unpin = caching_ctl->progress;
5667 }
5668 }
5669
5670 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5671 fs_info->pinned_extents = &fs_info->freed_extents[1];
5672 else
5673 fs_info->pinned_extents = &fs_info->freed_extents[0];
5674
5675 up_write(&fs_info->commit_root_sem);
5676
5677 update_global_block_rsv(fs_info);
5678 }
5679
5680 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5681 const bool return_free_space)
5682 {
5683 struct btrfs_fs_info *fs_info = root->fs_info;
5684 struct btrfs_block_group_cache *cache = NULL;
5685 struct btrfs_space_info *space_info;
5686 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5687 u64 len;
5688 bool readonly;
5689
5690 while (start <= end) {
5691 readonly = false;
5692 if (!cache ||
5693 start >= cache->key.objectid + cache->key.offset) {
5694 if (cache)
5695 btrfs_put_block_group(cache);
5696 cache = btrfs_lookup_block_group(fs_info, start);
5697 BUG_ON(!cache); /* Logic error */
5698 }
5699
5700 len = cache->key.objectid + cache->key.offset - start;
5701 len = min(len, end + 1 - start);
5702
5703 if (start < cache->last_byte_to_unpin) {
5704 len = min(len, cache->last_byte_to_unpin - start);
5705 if (return_free_space)
5706 btrfs_add_free_space(cache, start, len);
5707 }
5708
5709 start += len;
5710 space_info = cache->space_info;
5711
5712 spin_lock(&space_info->lock);
5713 spin_lock(&cache->lock);
5714 cache->pinned -= len;
5715 space_info->bytes_pinned -= len;
5716 percpu_counter_add(&space_info->total_bytes_pinned, -len);
5717 if (cache->ro) {
5718 space_info->bytes_readonly += len;
5719 readonly = true;
5720 }
5721 spin_unlock(&cache->lock);
5722 if (!readonly && global_rsv->space_info == space_info) {
5723 spin_lock(&global_rsv->lock);
5724 if (!global_rsv->full) {
5725 len = min(len, global_rsv->size -
5726 global_rsv->reserved);
5727 global_rsv->reserved += len;
5728 space_info->bytes_may_use += len;
5729 if (global_rsv->reserved >= global_rsv->size)
5730 global_rsv->full = 1;
5731 }
5732 spin_unlock(&global_rsv->lock);
5733 }
5734 spin_unlock(&space_info->lock);
5735 }
5736
5737 if (cache)
5738 btrfs_put_block_group(cache);
5739 return 0;
5740 }
5741
5742 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5743 struct btrfs_root *root)
5744 {
5745 struct btrfs_fs_info *fs_info = root->fs_info;
5746 struct extent_io_tree *unpin;
5747 u64 start;
5748 u64 end;
5749 int ret;
5750
5751 if (trans->aborted)
5752 return 0;
5753
5754 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5755 unpin = &fs_info->freed_extents[1];
5756 else
5757 unpin = &fs_info->freed_extents[0];
5758
5759 while (1) {
5760 mutex_lock(&fs_info->unused_bg_unpin_mutex);
5761 ret = find_first_extent_bit(unpin, 0, &start, &end,
5762 EXTENT_DIRTY, NULL);
5763 if (ret) {
5764 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5765 break;
5766 }
5767
5768 if (btrfs_test_opt(root, DISCARD))
5769 ret = btrfs_discard_extent(root, start,
5770 end + 1 - start, NULL);
5771
5772 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5773 unpin_extent_range(root, start, end, true);
5774 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5775 cond_resched();
5776 }
5777
5778 return 0;
5779 }
5780
5781 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5782 u64 owner, u64 root_objectid)
5783 {
5784 struct btrfs_space_info *space_info;
5785 u64 flags;
5786
5787 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5788 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5789 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5790 else
5791 flags = BTRFS_BLOCK_GROUP_METADATA;
5792 } else {
5793 flags = BTRFS_BLOCK_GROUP_DATA;
5794 }
5795
5796 space_info = __find_space_info(fs_info, flags);
5797 BUG_ON(!space_info); /* Logic bug */
5798 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5799 }
5800
5801
5802 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5803 struct btrfs_root *root,
5804 u64 bytenr, u64 num_bytes, u64 parent,
5805 u64 root_objectid, u64 owner_objectid,
5806 u64 owner_offset, int refs_to_drop,
5807 struct btrfs_delayed_extent_op *extent_op,
5808 int no_quota)
5809 {
5810 struct btrfs_key key;
5811 struct btrfs_path *path;
5812 struct btrfs_fs_info *info = root->fs_info;
5813 struct btrfs_root *extent_root = info->extent_root;
5814 struct extent_buffer *leaf;
5815 struct btrfs_extent_item *ei;
5816 struct btrfs_extent_inline_ref *iref;
5817 int ret;
5818 int is_data;
5819 int extent_slot = 0;
5820 int found_extent = 0;
5821 int num_to_del = 1;
5822 u32 item_size;
5823 u64 refs;
5824 int last_ref = 0;
5825 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
5826 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5827 SKINNY_METADATA);
5828
5829 if (!info->quota_enabled || !is_fstree(root_objectid))
5830 no_quota = 1;
5831
5832 path = btrfs_alloc_path();
5833 if (!path)
5834 return -ENOMEM;
5835
5836 path->reada = 1;
5837 path->leave_spinning = 1;
5838
5839 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5840 BUG_ON(!is_data && refs_to_drop != 1);
5841
5842 if (is_data)
5843 skinny_metadata = 0;
5844
5845 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5846 bytenr, num_bytes, parent,
5847 root_objectid, owner_objectid,
5848 owner_offset);
5849 if (ret == 0) {
5850 extent_slot = path->slots[0];
5851 while (extent_slot >= 0) {
5852 btrfs_item_key_to_cpu(path->nodes[0], &key,
5853 extent_slot);
5854 if (key.objectid != bytenr)
5855 break;
5856 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5857 key.offset == num_bytes) {
5858 found_extent = 1;
5859 break;
5860 }
5861 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5862 key.offset == owner_objectid) {
5863 found_extent = 1;
5864 break;
5865 }
5866 if (path->slots[0] - extent_slot > 5)
5867 break;
5868 extent_slot--;
5869 }
5870 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5871 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5872 if (found_extent && item_size < sizeof(*ei))
5873 found_extent = 0;
5874 #endif
5875 if (!found_extent) {
5876 BUG_ON(iref);
5877 ret = remove_extent_backref(trans, extent_root, path,
5878 NULL, refs_to_drop,
5879 is_data, &last_ref);
5880 if (ret) {
5881 btrfs_abort_transaction(trans, extent_root, ret);
5882 goto out;
5883 }
5884 btrfs_release_path(path);
5885 path->leave_spinning = 1;
5886
5887 key.objectid = bytenr;
5888 key.type = BTRFS_EXTENT_ITEM_KEY;
5889 key.offset = num_bytes;
5890
5891 if (!is_data && skinny_metadata) {
5892 key.type = BTRFS_METADATA_ITEM_KEY;
5893 key.offset = owner_objectid;
5894 }
5895
5896 ret = btrfs_search_slot(trans, extent_root,
5897 &key, path, -1, 1);
5898 if (ret > 0 && skinny_metadata && path->slots[0]) {
5899 /*
5900 * Couldn't find our skinny metadata item,
5901 * see if we have ye olde extent item.
5902 */
5903 path->slots[0]--;
5904 btrfs_item_key_to_cpu(path->nodes[0], &key,
5905 path->slots[0]);
5906 if (key.objectid == bytenr &&
5907 key.type == BTRFS_EXTENT_ITEM_KEY &&
5908 key.offset == num_bytes)
5909 ret = 0;
5910 }
5911
5912 if (ret > 0 && skinny_metadata) {
5913 skinny_metadata = false;
5914 key.objectid = bytenr;
5915 key.type = BTRFS_EXTENT_ITEM_KEY;
5916 key.offset = num_bytes;
5917 btrfs_release_path(path);
5918 ret = btrfs_search_slot(trans, extent_root,
5919 &key, path, -1, 1);
5920 }
5921
5922 if (ret) {
5923 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5924 ret, bytenr);
5925 if (ret > 0)
5926 btrfs_print_leaf(extent_root,
5927 path->nodes[0]);
5928 }
5929 if (ret < 0) {
5930 btrfs_abort_transaction(trans, extent_root, ret);
5931 goto out;
5932 }
5933 extent_slot = path->slots[0];
5934 }
5935 } else if (WARN_ON(ret == -ENOENT)) {
5936 btrfs_print_leaf(extent_root, path->nodes[0]);
5937 btrfs_err(info,
5938 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5939 bytenr, parent, root_objectid, owner_objectid,
5940 owner_offset);
5941 btrfs_abort_transaction(trans, extent_root, ret);
5942 goto out;
5943 } else {
5944 btrfs_abort_transaction(trans, extent_root, ret);
5945 goto out;
5946 }
5947
5948 leaf = path->nodes[0];
5949 item_size = btrfs_item_size_nr(leaf, extent_slot);
5950 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5951 if (item_size < sizeof(*ei)) {
5952 BUG_ON(found_extent || extent_slot != path->slots[0]);
5953 ret = convert_extent_item_v0(trans, extent_root, path,
5954 owner_objectid, 0);
5955 if (ret < 0) {
5956 btrfs_abort_transaction(trans, extent_root, ret);
5957 goto out;
5958 }
5959
5960 btrfs_release_path(path);
5961 path->leave_spinning = 1;
5962
5963 key.objectid = bytenr;
5964 key.type = BTRFS_EXTENT_ITEM_KEY;
5965 key.offset = num_bytes;
5966
5967 ret = btrfs_search_slot(trans, extent_root, &key, path,
5968 -1, 1);
5969 if (ret) {
5970 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5971 ret, bytenr);
5972 btrfs_print_leaf(extent_root, path->nodes[0]);
5973 }
5974 if (ret < 0) {
5975 btrfs_abort_transaction(trans, extent_root, ret);
5976 goto out;
5977 }
5978
5979 extent_slot = path->slots[0];
5980 leaf = path->nodes[0];
5981 item_size = btrfs_item_size_nr(leaf, extent_slot);
5982 }
5983 #endif
5984 BUG_ON(item_size < sizeof(*ei));
5985 ei = btrfs_item_ptr(leaf, extent_slot,
5986 struct btrfs_extent_item);
5987 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5988 key.type == BTRFS_EXTENT_ITEM_KEY) {
5989 struct btrfs_tree_block_info *bi;
5990 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5991 bi = (struct btrfs_tree_block_info *)(ei + 1);
5992 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5993 }
5994
5995 refs = btrfs_extent_refs(leaf, ei);
5996 if (refs < refs_to_drop) {
5997 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5998 "for bytenr %Lu", refs_to_drop, refs, bytenr);
5999 ret = -EINVAL;
6000 btrfs_abort_transaction(trans, extent_root, ret);
6001 goto out;
6002 }
6003 refs -= refs_to_drop;
6004
6005 if (refs > 0) {
6006 type = BTRFS_QGROUP_OPER_SUB_SHARED;
6007 if (extent_op)
6008 __run_delayed_extent_op(extent_op, leaf, ei);
6009 /*
6010 * In the case of inline back ref, reference count will
6011 * be updated by remove_extent_backref
6012 */
6013 if (iref) {
6014 BUG_ON(!found_extent);
6015 } else {
6016 btrfs_set_extent_refs(leaf, ei, refs);
6017 btrfs_mark_buffer_dirty(leaf);
6018 }
6019 if (found_extent) {
6020 ret = remove_extent_backref(trans, extent_root, path,
6021 iref, refs_to_drop,
6022 is_data, &last_ref);
6023 if (ret) {
6024 btrfs_abort_transaction(trans, extent_root, ret);
6025 goto out;
6026 }
6027 }
6028 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6029 root_objectid);
6030 } else {
6031 if (found_extent) {
6032 BUG_ON(is_data && refs_to_drop !=
6033 extent_data_ref_count(root, path, iref));
6034 if (iref) {
6035 BUG_ON(path->slots[0] != extent_slot);
6036 } else {
6037 BUG_ON(path->slots[0] != extent_slot + 1);
6038 path->slots[0] = extent_slot;
6039 num_to_del = 2;
6040 }
6041 }
6042
6043 last_ref = 1;
6044 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6045 num_to_del);
6046 if (ret) {
6047 btrfs_abort_transaction(trans, extent_root, ret);
6048 goto out;
6049 }
6050 btrfs_release_path(path);
6051
6052 if (is_data) {
6053 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6054 if (ret) {
6055 btrfs_abort_transaction(trans, extent_root, ret);
6056 goto out;
6057 }
6058 }
6059
6060 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6061 if (ret) {
6062 btrfs_abort_transaction(trans, extent_root, ret);
6063 goto out;
6064 }
6065 }
6066 btrfs_release_path(path);
6067
6068 /* Deal with the quota accounting */
6069 if (!ret && last_ref && !no_quota) {
6070 int mod_seq = 0;
6071
6072 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6073 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6074 mod_seq = 1;
6075
6076 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6077 bytenr, num_bytes, type,
6078 mod_seq);
6079 }
6080 out:
6081 btrfs_free_path(path);
6082 return ret;
6083 }
6084
6085 /*
6086 * when we free an block, it is possible (and likely) that we free the last
6087 * delayed ref for that extent as well. This searches the delayed ref tree for
6088 * a given extent, and if there are no other delayed refs to be processed, it
6089 * removes it from the tree.
6090 */
6091 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6092 struct btrfs_root *root, u64 bytenr)
6093 {
6094 struct btrfs_delayed_ref_head *head;
6095 struct btrfs_delayed_ref_root *delayed_refs;
6096 int ret = 0;
6097
6098 delayed_refs = &trans->transaction->delayed_refs;
6099 spin_lock(&delayed_refs->lock);
6100 head = btrfs_find_delayed_ref_head(trans, bytenr);
6101 if (!head)
6102 goto out_delayed_unlock;
6103
6104 spin_lock(&head->lock);
6105 if (rb_first(&head->ref_root))
6106 goto out;
6107
6108 if (head->extent_op) {
6109 if (!head->must_insert_reserved)
6110 goto out;
6111 btrfs_free_delayed_extent_op(head->extent_op);
6112 head->extent_op = NULL;
6113 }
6114
6115 /*
6116 * waiting for the lock here would deadlock. If someone else has it
6117 * locked they are already in the process of dropping it anyway
6118 */
6119 if (!mutex_trylock(&head->mutex))
6120 goto out;
6121
6122 /*
6123 * at this point we have a head with no other entries. Go
6124 * ahead and process it.
6125 */
6126 head->node.in_tree = 0;
6127 rb_erase(&head->href_node, &delayed_refs->href_root);
6128
6129 atomic_dec(&delayed_refs->num_entries);
6130
6131 /*
6132 * we don't take a ref on the node because we're removing it from the
6133 * tree, so we just steal the ref the tree was holding.
6134 */
6135 delayed_refs->num_heads--;
6136 if (head->processing == 0)
6137 delayed_refs->num_heads_ready--;
6138 head->processing = 0;
6139 spin_unlock(&head->lock);
6140 spin_unlock(&delayed_refs->lock);
6141
6142 BUG_ON(head->extent_op);
6143 if (head->must_insert_reserved)
6144 ret = 1;
6145
6146 mutex_unlock(&head->mutex);
6147 btrfs_put_delayed_ref(&head->node);
6148 return ret;
6149 out:
6150 spin_unlock(&head->lock);
6151
6152 out_delayed_unlock:
6153 spin_unlock(&delayed_refs->lock);
6154 return 0;
6155 }
6156
6157 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6158 struct btrfs_root *root,
6159 struct extent_buffer *buf,
6160 u64 parent, int last_ref)
6161 {
6162 int pin = 1;
6163 int ret;
6164
6165 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6166 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6167 buf->start, buf->len,
6168 parent, root->root_key.objectid,
6169 btrfs_header_level(buf),
6170 BTRFS_DROP_DELAYED_REF, NULL, 0);
6171 BUG_ON(ret); /* -ENOMEM */
6172 }
6173
6174 if (!last_ref)
6175 return;
6176
6177 if (btrfs_header_generation(buf) == trans->transid) {
6178 struct btrfs_block_group_cache *cache;
6179
6180 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6181 ret = check_ref_cleanup(trans, root, buf->start);
6182 if (!ret)
6183 goto out;
6184 }
6185
6186 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6187
6188 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6189 pin_down_extent(root, cache, buf->start, buf->len, 1);
6190 btrfs_put_block_group(cache);
6191 goto out;
6192 }
6193
6194 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6195
6196 btrfs_add_free_space(cache, buf->start, buf->len);
6197 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6198 btrfs_put_block_group(cache);
6199 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6200 pin = 0;
6201 }
6202 out:
6203 if (pin)
6204 add_pinned_bytes(root->fs_info, buf->len,
6205 btrfs_header_level(buf),
6206 root->root_key.objectid);
6207
6208 /*
6209 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6210 * anymore.
6211 */
6212 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6213 }
6214
6215 /* Can return -ENOMEM */
6216 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6217 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6218 u64 owner, u64 offset, int no_quota)
6219 {
6220 int ret;
6221 struct btrfs_fs_info *fs_info = root->fs_info;
6222
6223 if (btrfs_test_is_dummy_root(root))
6224 return 0;
6225
6226 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6227
6228 /*
6229 * tree log blocks never actually go into the extent allocation
6230 * tree, just update pinning info and exit early.
6231 */
6232 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6233 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6234 /* unlocks the pinned mutex */
6235 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6236 ret = 0;
6237 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6238 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6239 num_bytes,
6240 parent, root_objectid, (int)owner,
6241 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6242 } else {
6243 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6244 num_bytes,
6245 parent, root_objectid, owner,
6246 offset, BTRFS_DROP_DELAYED_REF,
6247 NULL, no_quota);
6248 }
6249 return ret;
6250 }
6251
6252 /*
6253 * when we wait for progress in the block group caching, its because
6254 * our allocation attempt failed at least once. So, we must sleep
6255 * and let some progress happen before we try again.
6256 *
6257 * This function will sleep at least once waiting for new free space to
6258 * show up, and then it will check the block group free space numbers
6259 * for our min num_bytes. Another option is to have it go ahead
6260 * and look in the rbtree for a free extent of a given size, but this
6261 * is a good start.
6262 *
6263 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6264 * any of the information in this block group.
6265 */
6266 static noinline void
6267 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6268 u64 num_bytes)
6269 {
6270 struct btrfs_caching_control *caching_ctl;
6271
6272 caching_ctl = get_caching_control(cache);
6273 if (!caching_ctl)
6274 return;
6275
6276 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6277 (cache->free_space_ctl->free_space >= num_bytes));
6278
6279 put_caching_control(caching_ctl);
6280 }
6281
6282 static noinline int
6283 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6284 {
6285 struct btrfs_caching_control *caching_ctl;
6286 int ret = 0;
6287
6288 caching_ctl = get_caching_control(cache);
6289 if (!caching_ctl)
6290 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6291
6292 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6293 if (cache->cached == BTRFS_CACHE_ERROR)
6294 ret = -EIO;
6295 put_caching_control(caching_ctl);
6296 return ret;
6297 }
6298
6299 int __get_raid_index(u64 flags)
6300 {
6301 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6302 return BTRFS_RAID_RAID10;
6303 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6304 return BTRFS_RAID_RAID1;
6305 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6306 return BTRFS_RAID_DUP;
6307 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6308 return BTRFS_RAID_RAID0;
6309 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6310 return BTRFS_RAID_RAID5;
6311 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6312 return BTRFS_RAID_RAID6;
6313
6314 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6315 }
6316
6317 int get_block_group_index(struct btrfs_block_group_cache *cache)
6318 {
6319 return __get_raid_index(cache->flags);
6320 }
6321
6322 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6323 [BTRFS_RAID_RAID10] = "raid10",
6324 [BTRFS_RAID_RAID1] = "raid1",
6325 [BTRFS_RAID_DUP] = "dup",
6326 [BTRFS_RAID_RAID0] = "raid0",
6327 [BTRFS_RAID_SINGLE] = "single",
6328 [BTRFS_RAID_RAID5] = "raid5",
6329 [BTRFS_RAID_RAID6] = "raid6",
6330 };
6331
6332 static const char *get_raid_name(enum btrfs_raid_types type)
6333 {
6334 if (type >= BTRFS_NR_RAID_TYPES)
6335 return NULL;
6336
6337 return btrfs_raid_type_names[type];
6338 }
6339
6340 enum btrfs_loop_type {
6341 LOOP_CACHING_NOWAIT = 0,
6342 LOOP_CACHING_WAIT = 1,
6343 LOOP_ALLOC_CHUNK = 2,
6344 LOOP_NO_EMPTY_SIZE = 3,
6345 };
6346
6347 static inline void
6348 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6349 int delalloc)
6350 {
6351 if (delalloc)
6352 down_read(&cache->data_rwsem);
6353 }
6354
6355 static inline void
6356 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6357 int delalloc)
6358 {
6359 btrfs_get_block_group(cache);
6360 if (delalloc)
6361 down_read(&cache->data_rwsem);
6362 }
6363
6364 static struct btrfs_block_group_cache *
6365 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6366 struct btrfs_free_cluster *cluster,
6367 int delalloc)
6368 {
6369 struct btrfs_block_group_cache *used_bg;
6370 bool locked = false;
6371 again:
6372 spin_lock(&cluster->refill_lock);
6373 if (locked) {
6374 if (used_bg == cluster->block_group)
6375 return used_bg;
6376
6377 up_read(&used_bg->data_rwsem);
6378 btrfs_put_block_group(used_bg);
6379 }
6380
6381 used_bg = cluster->block_group;
6382 if (!used_bg)
6383 return NULL;
6384
6385 if (used_bg == block_group)
6386 return used_bg;
6387
6388 btrfs_get_block_group(used_bg);
6389
6390 if (!delalloc)
6391 return used_bg;
6392
6393 if (down_read_trylock(&used_bg->data_rwsem))
6394 return used_bg;
6395
6396 spin_unlock(&cluster->refill_lock);
6397 down_read(&used_bg->data_rwsem);
6398 locked = true;
6399 goto again;
6400 }
6401
6402 static inline void
6403 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6404 int delalloc)
6405 {
6406 if (delalloc)
6407 up_read(&cache->data_rwsem);
6408 btrfs_put_block_group(cache);
6409 }
6410
6411 /*
6412 * walks the btree of allocated extents and find a hole of a given size.
6413 * The key ins is changed to record the hole:
6414 * ins->objectid == start position
6415 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6416 * ins->offset == the size of the hole.
6417 * Any available blocks before search_start are skipped.
6418 *
6419 * If there is no suitable free space, we will record the max size of
6420 * the free space extent currently.
6421 */
6422 static noinline int find_free_extent(struct btrfs_root *orig_root,
6423 u64 num_bytes, u64 empty_size,
6424 u64 hint_byte, struct btrfs_key *ins,
6425 u64 flags, int delalloc)
6426 {
6427 int ret = 0;
6428 struct btrfs_root *root = orig_root->fs_info->extent_root;
6429 struct btrfs_free_cluster *last_ptr = NULL;
6430 struct btrfs_block_group_cache *block_group = NULL;
6431 u64 search_start = 0;
6432 u64 max_extent_size = 0;
6433 int empty_cluster = 2 * 1024 * 1024;
6434 struct btrfs_space_info *space_info;
6435 int loop = 0;
6436 int index = __get_raid_index(flags);
6437 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6438 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6439 bool failed_cluster_refill = false;
6440 bool failed_alloc = false;
6441 bool use_cluster = true;
6442 bool have_caching_bg = false;
6443
6444 WARN_ON(num_bytes < root->sectorsize);
6445 ins->type = BTRFS_EXTENT_ITEM_KEY;
6446 ins->objectid = 0;
6447 ins->offset = 0;
6448
6449 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6450
6451 space_info = __find_space_info(root->fs_info, flags);
6452 if (!space_info) {
6453 btrfs_err(root->fs_info, "No space info for %llu", flags);
6454 return -ENOSPC;
6455 }
6456
6457 /*
6458 * If the space info is for both data and metadata it means we have a
6459 * small filesystem and we can't use the clustering stuff.
6460 */
6461 if (btrfs_mixed_space_info(space_info))
6462 use_cluster = false;
6463
6464 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6465 last_ptr = &root->fs_info->meta_alloc_cluster;
6466 if (!btrfs_test_opt(root, SSD))
6467 empty_cluster = 64 * 1024;
6468 }
6469
6470 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6471 btrfs_test_opt(root, SSD)) {
6472 last_ptr = &root->fs_info->data_alloc_cluster;
6473 }
6474
6475 if (last_ptr) {
6476 spin_lock(&last_ptr->lock);
6477 if (last_ptr->block_group)
6478 hint_byte = last_ptr->window_start;
6479 spin_unlock(&last_ptr->lock);
6480 }
6481
6482 search_start = max(search_start, first_logical_byte(root, 0));
6483 search_start = max(search_start, hint_byte);
6484
6485 if (!last_ptr)
6486 empty_cluster = 0;
6487
6488 if (search_start == hint_byte) {
6489 block_group = btrfs_lookup_block_group(root->fs_info,
6490 search_start);
6491 /*
6492 * we don't want to use the block group if it doesn't match our
6493 * allocation bits, or if its not cached.
6494 *
6495 * However if we are re-searching with an ideal block group
6496 * picked out then we don't care that the block group is cached.
6497 */
6498 if (block_group && block_group_bits(block_group, flags) &&
6499 block_group->cached != BTRFS_CACHE_NO) {
6500 down_read(&space_info->groups_sem);
6501 if (list_empty(&block_group->list) ||
6502 block_group->ro) {
6503 /*
6504 * someone is removing this block group,
6505 * we can't jump into the have_block_group
6506 * target because our list pointers are not
6507 * valid
6508 */
6509 btrfs_put_block_group(block_group);
6510 up_read(&space_info->groups_sem);
6511 } else {
6512 index = get_block_group_index(block_group);
6513 btrfs_lock_block_group(block_group, delalloc);
6514 goto have_block_group;
6515 }
6516 } else if (block_group) {
6517 btrfs_put_block_group(block_group);
6518 }
6519 }
6520 search:
6521 have_caching_bg = false;
6522 down_read(&space_info->groups_sem);
6523 list_for_each_entry(block_group, &space_info->block_groups[index],
6524 list) {
6525 u64 offset;
6526 int cached;
6527
6528 btrfs_grab_block_group(block_group, delalloc);
6529 search_start = block_group->key.objectid;
6530
6531 /*
6532 * this can happen if we end up cycling through all the
6533 * raid types, but we want to make sure we only allocate
6534 * for the proper type.
6535 */
6536 if (!block_group_bits(block_group, flags)) {
6537 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6538 BTRFS_BLOCK_GROUP_RAID1 |
6539 BTRFS_BLOCK_GROUP_RAID5 |
6540 BTRFS_BLOCK_GROUP_RAID6 |
6541 BTRFS_BLOCK_GROUP_RAID10;
6542
6543 /*
6544 * if they asked for extra copies and this block group
6545 * doesn't provide them, bail. This does allow us to
6546 * fill raid0 from raid1.
6547 */
6548 if ((flags & extra) && !(block_group->flags & extra))
6549 goto loop;
6550 }
6551
6552 have_block_group:
6553 cached = block_group_cache_done(block_group);
6554 if (unlikely(!cached)) {
6555 ret = cache_block_group(block_group, 0);
6556 BUG_ON(ret < 0);
6557 ret = 0;
6558 }
6559
6560 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6561 goto loop;
6562 if (unlikely(block_group->ro))
6563 goto loop;
6564
6565 /*
6566 * Ok we want to try and use the cluster allocator, so
6567 * lets look there
6568 */
6569 if (last_ptr) {
6570 struct btrfs_block_group_cache *used_block_group;
6571 unsigned long aligned_cluster;
6572 /*
6573 * the refill lock keeps out other
6574 * people trying to start a new cluster
6575 */
6576 used_block_group = btrfs_lock_cluster(block_group,
6577 last_ptr,
6578 delalloc);
6579 if (!used_block_group)
6580 goto refill_cluster;
6581
6582 if (used_block_group != block_group &&
6583 (used_block_group->ro ||
6584 !block_group_bits(used_block_group, flags)))
6585 goto release_cluster;
6586
6587 offset = btrfs_alloc_from_cluster(used_block_group,
6588 last_ptr,
6589 num_bytes,
6590 used_block_group->key.objectid,
6591 &max_extent_size);
6592 if (offset) {
6593 /* we have a block, we're done */
6594 spin_unlock(&last_ptr->refill_lock);
6595 trace_btrfs_reserve_extent_cluster(root,
6596 used_block_group,
6597 search_start, num_bytes);
6598 if (used_block_group != block_group) {
6599 btrfs_release_block_group(block_group,
6600 delalloc);
6601 block_group = used_block_group;
6602 }
6603 goto checks;
6604 }
6605
6606 WARN_ON(last_ptr->block_group != used_block_group);
6607 release_cluster:
6608 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6609 * set up a new clusters, so lets just skip it
6610 * and let the allocator find whatever block
6611 * it can find. If we reach this point, we
6612 * will have tried the cluster allocator
6613 * plenty of times and not have found
6614 * anything, so we are likely way too
6615 * fragmented for the clustering stuff to find
6616 * anything.
6617 *
6618 * However, if the cluster is taken from the
6619 * current block group, release the cluster
6620 * first, so that we stand a better chance of
6621 * succeeding in the unclustered
6622 * allocation. */
6623 if (loop >= LOOP_NO_EMPTY_SIZE &&
6624 used_block_group != block_group) {
6625 spin_unlock(&last_ptr->refill_lock);
6626 btrfs_release_block_group(used_block_group,
6627 delalloc);
6628 goto unclustered_alloc;
6629 }
6630
6631 /*
6632 * this cluster didn't work out, free it and
6633 * start over
6634 */
6635 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6636
6637 if (used_block_group != block_group)
6638 btrfs_release_block_group(used_block_group,
6639 delalloc);
6640 refill_cluster:
6641 if (loop >= LOOP_NO_EMPTY_SIZE) {
6642 spin_unlock(&last_ptr->refill_lock);
6643 goto unclustered_alloc;
6644 }
6645
6646 aligned_cluster = max_t(unsigned long,
6647 empty_cluster + empty_size,
6648 block_group->full_stripe_len);
6649
6650 /* allocate a cluster in this block group */
6651 ret = btrfs_find_space_cluster(root, block_group,
6652 last_ptr, search_start,
6653 num_bytes,
6654 aligned_cluster);
6655 if (ret == 0) {
6656 /*
6657 * now pull our allocation out of this
6658 * cluster
6659 */
6660 offset = btrfs_alloc_from_cluster(block_group,
6661 last_ptr,
6662 num_bytes,
6663 search_start,
6664 &max_extent_size);
6665 if (offset) {
6666 /* we found one, proceed */
6667 spin_unlock(&last_ptr->refill_lock);
6668 trace_btrfs_reserve_extent_cluster(root,
6669 block_group, search_start,
6670 num_bytes);
6671 goto checks;
6672 }
6673 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6674 && !failed_cluster_refill) {
6675 spin_unlock(&last_ptr->refill_lock);
6676
6677 failed_cluster_refill = true;
6678 wait_block_group_cache_progress(block_group,
6679 num_bytes + empty_cluster + empty_size);
6680 goto have_block_group;
6681 }
6682
6683 /*
6684 * at this point we either didn't find a cluster
6685 * or we weren't able to allocate a block from our
6686 * cluster. Free the cluster we've been trying
6687 * to use, and go to the next block group
6688 */
6689 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6690 spin_unlock(&last_ptr->refill_lock);
6691 goto loop;
6692 }
6693
6694 unclustered_alloc:
6695 spin_lock(&block_group->free_space_ctl->tree_lock);
6696 if (cached &&
6697 block_group->free_space_ctl->free_space <
6698 num_bytes + empty_cluster + empty_size) {
6699 if (block_group->free_space_ctl->free_space >
6700 max_extent_size)
6701 max_extent_size =
6702 block_group->free_space_ctl->free_space;
6703 spin_unlock(&block_group->free_space_ctl->tree_lock);
6704 goto loop;
6705 }
6706 spin_unlock(&block_group->free_space_ctl->tree_lock);
6707
6708 offset = btrfs_find_space_for_alloc(block_group, search_start,
6709 num_bytes, empty_size,
6710 &max_extent_size);
6711 /*
6712 * If we didn't find a chunk, and we haven't failed on this
6713 * block group before, and this block group is in the middle of
6714 * caching and we are ok with waiting, then go ahead and wait
6715 * for progress to be made, and set failed_alloc to true.
6716 *
6717 * If failed_alloc is true then we've already waited on this
6718 * block group once and should move on to the next block group.
6719 */
6720 if (!offset && !failed_alloc && !cached &&
6721 loop > LOOP_CACHING_NOWAIT) {
6722 wait_block_group_cache_progress(block_group,
6723 num_bytes + empty_size);
6724 failed_alloc = true;
6725 goto have_block_group;
6726 } else if (!offset) {
6727 if (!cached)
6728 have_caching_bg = true;
6729 goto loop;
6730 }
6731 checks:
6732 search_start = ALIGN(offset, root->stripesize);
6733
6734 /* move on to the next group */
6735 if (search_start + num_bytes >
6736 block_group->key.objectid + block_group->key.offset) {
6737 btrfs_add_free_space(block_group, offset, num_bytes);
6738 goto loop;
6739 }
6740
6741 if (offset < search_start)
6742 btrfs_add_free_space(block_group, offset,
6743 search_start - offset);
6744 BUG_ON(offset > search_start);
6745
6746 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6747 alloc_type, delalloc);
6748 if (ret == -EAGAIN) {
6749 btrfs_add_free_space(block_group, offset, num_bytes);
6750 goto loop;
6751 }
6752
6753 /* we are all good, lets return */
6754 ins->objectid = search_start;
6755 ins->offset = num_bytes;
6756
6757 trace_btrfs_reserve_extent(orig_root, block_group,
6758 search_start, num_bytes);
6759 btrfs_release_block_group(block_group, delalloc);
6760 break;
6761 loop:
6762 failed_cluster_refill = false;
6763 failed_alloc = false;
6764 BUG_ON(index != get_block_group_index(block_group));
6765 btrfs_release_block_group(block_group, delalloc);
6766 }
6767 up_read(&space_info->groups_sem);
6768
6769 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6770 goto search;
6771
6772 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6773 goto search;
6774
6775 /*
6776 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6777 * caching kthreads as we move along
6778 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6779 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6780 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6781 * again
6782 */
6783 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6784 index = 0;
6785 loop++;
6786 if (loop == LOOP_ALLOC_CHUNK) {
6787 struct btrfs_trans_handle *trans;
6788 int exist = 0;
6789
6790 trans = current->journal_info;
6791 if (trans)
6792 exist = 1;
6793 else
6794 trans = btrfs_join_transaction(root);
6795
6796 if (IS_ERR(trans)) {
6797 ret = PTR_ERR(trans);
6798 goto out;
6799 }
6800
6801 ret = do_chunk_alloc(trans, root, flags,
6802 CHUNK_ALLOC_FORCE);
6803 /*
6804 * Do not bail out on ENOSPC since we
6805 * can do more things.
6806 */
6807 if (ret < 0 && ret != -ENOSPC)
6808 btrfs_abort_transaction(trans,
6809 root, ret);
6810 else
6811 ret = 0;
6812 if (!exist)
6813 btrfs_end_transaction(trans, root);
6814 if (ret)
6815 goto out;
6816 }
6817
6818 if (loop == LOOP_NO_EMPTY_SIZE) {
6819 empty_size = 0;
6820 empty_cluster = 0;
6821 }
6822
6823 goto search;
6824 } else if (!ins->objectid) {
6825 ret = -ENOSPC;
6826 } else if (ins->objectid) {
6827 ret = 0;
6828 }
6829 out:
6830 if (ret == -ENOSPC)
6831 ins->offset = max_extent_size;
6832 return ret;
6833 }
6834
6835 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6836 int dump_block_groups)
6837 {
6838 struct btrfs_block_group_cache *cache;
6839 int index = 0;
6840
6841 spin_lock(&info->lock);
6842 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6843 info->flags,
6844 info->total_bytes - info->bytes_used - info->bytes_pinned -
6845 info->bytes_reserved - info->bytes_readonly,
6846 (info->full) ? "" : "not ");
6847 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6848 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6849 info->total_bytes, info->bytes_used, info->bytes_pinned,
6850 info->bytes_reserved, info->bytes_may_use,
6851 info->bytes_readonly);
6852 spin_unlock(&info->lock);
6853
6854 if (!dump_block_groups)
6855 return;
6856
6857 down_read(&info->groups_sem);
6858 again:
6859 list_for_each_entry(cache, &info->block_groups[index], list) {
6860 spin_lock(&cache->lock);
6861 printk(KERN_INFO "BTRFS: "
6862 "block group %llu has %llu bytes, "
6863 "%llu used %llu pinned %llu reserved %s\n",
6864 cache->key.objectid, cache->key.offset,
6865 btrfs_block_group_used(&cache->item), cache->pinned,
6866 cache->reserved, cache->ro ? "[readonly]" : "");
6867 btrfs_dump_free_space(cache, bytes);
6868 spin_unlock(&cache->lock);
6869 }
6870 if (++index < BTRFS_NR_RAID_TYPES)
6871 goto again;
6872 up_read(&info->groups_sem);
6873 }
6874
6875 int btrfs_reserve_extent(struct btrfs_root *root,
6876 u64 num_bytes, u64 min_alloc_size,
6877 u64 empty_size, u64 hint_byte,
6878 struct btrfs_key *ins, int is_data, int delalloc)
6879 {
6880 bool final_tried = false;
6881 u64 flags;
6882 int ret;
6883
6884 flags = btrfs_get_alloc_profile(root, is_data);
6885 again:
6886 WARN_ON(num_bytes < root->sectorsize);
6887 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6888 flags, delalloc);
6889
6890 if (ret == -ENOSPC) {
6891 if (!final_tried && ins->offset) {
6892 num_bytes = min(num_bytes >> 1, ins->offset);
6893 num_bytes = round_down(num_bytes, root->sectorsize);
6894 num_bytes = max(num_bytes, min_alloc_size);
6895 if (num_bytes == min_alloc_size)
6896 final_tried = true;
6897 goto again;
6898 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6899 struct btrfs_space_info *sinfo;
6900
6901 sinfo = __find_space_info(root->fs_info, flags);
6902 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6903 flags, num_bytes);
6904 if (sinfo)
6905 dump_space_info(sinfo, num_bytes, 1);
6906 }
6907 }
6908
6909 return ret;
6910 }
6911
6912 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6913 u64 start, u64 len,
6914 int pin, int delalloc)
6915 {
6916 struct btrfs_block_group_cache *cache;
6917 int ret = 0;
6918
6919 cache = btrfs_lookup_block_group(root->fs_info, start);
6920 if (!cache) {
6921 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6922 start);
6923 return -ENOSPC;
6924 }
6925
6926 if (btrfs_test_opt(root, DISCARD))
6927 ret = btrfs_discard_extent(root, start, len, NULL);
6928
6929 if (pin)
6930 pin_down_extent(root, cache, start, len, 1);
6931 else {
6932 btrfs_add_free_space(cache, start, len);
6933 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
6934 }
6935 btrfs_put_block_group(cache);
6936
6937 trace_btrfs_reserved_extent_free(root, start, len);
6938
6939 return ret;
6940 }
6941
6942 int btrfs_free_reserved_extent(struct btrfs_root *root,
6943 u64 start, u64 len, int delalloc)
6944 {
6945 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
6946 }
6947
6948 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6949 u64 start, u64 len)
6950 {
6951 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
6952 }
6953
6954 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6955 struct btrfs_root *root,
6956 u64 parent, u64 root_objectid,
6957 u64 flags, u64 owner, u64 offset,
6958 struct btrfs_key *ins, int ref_mod)
6959 {
6960 int ret;
6961 struct btrfs_fs_info *fs_info = root->fs_info;
6962 struct btrfs_extent_item *extent_item;
6963 struct btrfs_extent_inline_ref *iref;
6964 struct btrfs_path *path;
6965 struct extent_buffer *leaf;
6966 int type;
6967 u32 size;
6968
6969 if (parent > 0)
6970 type = BTRFS_SHARED_DATA_REF_KEY;
6971 else
6972 type = BTRFS_EXTENT_DATA_REF_KEY;
6973
6974 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6975
6976 path = btrfs_alloc_path();
6977 if (!path)
6978 return -ENOMEM;
6979
6980 path->leave_spinning = 1;
6981 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6982 ins, size);
6983 if (ret) {
6984 btrfs_free_path(path);
6985 return ret;
6986 }
6987
6988 leaf = path->nodes[0];
6989 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6990 struct btrfs_extent_item);
6991 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6992 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6993 btrfs_set_extent_flags(leaf, extent_item,
6994 flags | BTRFS_EXTENT_FLAG_DATA);
6995
6996 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6997 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6998 if (parent > 0) {
6999 struct btrfs_shared_data_ref *ref;
7000 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7001 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7002 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7003 } else {
7004 struct btrfs_extent_data_ref *ref;
7005 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7006 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7007 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7008 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7009 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7010 }
7011
7012 btrfs_mark_buffer_dirty(path->nodes[0]);
7013 btrfs_free_path(path);
7014
7015 /* Always set parent to 0 here since its exclusive anyway. */
7016 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7017 ins->objectid, ins->offset,
7018 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7019 if (ret)
7020 return ret;
7021
7022 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7023 if (ret) { /* -ENOENT, logic error */
7024 btrfs_err(fs_info, "update block group failed for %llu %llu",
7025 ins->objectid, ins->offset);
7026 BUG();
7027 }
7028 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7029 return ret;
7030 }
7031
7032 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7033 struct btrfs_root *root,
7034 u64 parent, u64 root_objectid,
7035 u64 flags, struct btrfs_disk_key *key,
7036 int level, struct btrfs_key *ins,
7037 int no_quota)
7038 {
7039 int ret;
7040 struct btrfs_fs_info *fs_info = root->fs_info;
7041 struct btrfs_extent_item *extent_item;
7042 struct btrfs_tree_block_info *block_info;
7043 struct btrfs_extent_inline_ref *iref;
7044 struct btrfs_path *path;
7045 struct extent_buffer *leaf;
7046 u32 size = sizeof(*extent_item) + sizeof(*iref);
7047 u64 num_bytes = ins->offset;
7048 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7049 SKINNY_METADATA);
7050
7051 if (!skinny_metadata)
7052 size += sizeof(*block_info);
7053
7054 path = btrfs_alloc_path();
7055 if (!path) {
7056 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7057 root->nodesize);
7058 return -ENOMEM;
7059 }
7060
7061 path->leave_spinning = 1;
7062 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7063 ins, size);
7064 if (ret) {
7065 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7066 root->nodesize);
7067 btrfs_free_path(path);
7068 return ret;
7069 }
7070
7071 leaf = path->nodes[0];
7072 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7073 struct btrfs_extent_item);
7074 btrfs_set_extent_refs(leaf, extent_item, 1);
7075 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7076 btrfs_set_extent_flags(leaf, extent_item,
7077 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7078
7079 if (skinny_metadata) {
7080 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7081 num_bytes = root->nodesize;
7082 } else {
7083 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7084 btrfs_set_tree_block_key(leaf, block_info, key);
7085 btrfs_set_tree_block_level(leaf, block_info, level);
7086 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7087 }
7088
7089 if (parent > 0) {
7090 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7091 btrfs_set_extent_inline_ref_type(leaf, iref,
7092 BTRFS_SHARED_BLOCK_REF_KEY);
7093 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7094 } else {
7095 btrfs_set_extent_inline_ref_type(leaf, iref,
7096 BTRFS_TREE_BLOCK_REF_KEY);
7097 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7098 }
7099
7100 btrfs_mark_buffer_dirty(leaf);
7101 btrfs_free_path(path);
7102
7103 if (!no_quota) {
7104 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7105 ins->objectid, num_bytes,
7106 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7107 if (ret)
7108 return ret;
7109 }
7110
7111 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7112 1);
7113 if (ret) { /* -ENOENT, logic error */
7114 btrfs_err(fs_info, "update block group failed for %llu %llu",
7115 ins->objectid, ins->offset);
7116 BUG();
7117 }
7118
7119 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7120 return ret;
7121 }
7122
7123 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7124 struct btrfs_root *root,
7125 u64 root_objectid, u64 owner,
7126 u64 offset, struct btrfs_key *ins)
7127 {
7128 int ret;
7129
7130 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7131
7132 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7133 ins->offset, 0,
7134 root_objectid, owner, offset,
7135 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7136 return ret;
7137 }
7138
7139 /*
7140 * this is used by the tree logging recovery code. It records that
7141 * an extent has been allocated and makes sure to clear the free
7142 * space cache bits as well
7143 */
7144 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7145 struct btrfs_root *root,
7146 u64 root_objectid, u64 owner, u64 offset,
7147 struct btrfs_key *ins)
7148 {
7149 int ret;
7150 struct btrfs_block_group_cache *block_group;
7151
7152 /*
7153 * Mixed block groups will exclude before processing the log so we only
7154 * need to do the exlude dance if this fs isn't mixed.
7155 */
7156 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7157 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7158 if (ret)
7159 return ret;
7160 }
7161
7162 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7163 if (!block_group)
7164 return -EINVAL;
7165
7166 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7167 RESERVE_ALLOC_NO_ACCOUNT, 0);
7168 BUG_ON(ret); /* logic error */
7169 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7170 0, owner, offset, ins, 1);
7171 btrfs_put_block_group(block_group);
7172 return ret;
7173 }
7174
7175 static struct extent_buffer *
7176 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7177 u64 bytenr, int level)
7178 {
7179 struct extent_buffer *buf;
7180
7181 buf = btrfs_find_create_tree_block(root, bytenr);
7182 if (!buf)
7183 return ERR_PTR(-ENOMEM);
7184 btrfs_set_header_generation(buf, trans->transid);
7185 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7186 btrfs_tree_lock(buf);
7187 clean_tree_block(trans, root, buf);
7188 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7189
7190 btrfs_set_lock_blocking(buf);
7191 btrfs_set_buffer_uptodate(buf);
7192
7193 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7194 buf->log_index = root->log_transid % 2;
7195 /*
7196 * we allow two log transactions at a time, use different
7197 * EXENT bit to differentiate dirty pages.
7198 */
7199 if (buf->log_index == 0)
7200 set_extent_dirty(&root->dirty_log_pages, buf->start,
7201 buf->start + buf->len - 1, GFP_NOFS);
7202 else
7203 set_extent_new(&root->dirty_log_pages, buf->start,
7204 buf->start + buf->len - 1, GFP_NOFS);
7205 } else {
7206 buf->log_index = -1;
7207 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7208 buf->start + buf->len - 1, GFP_NOFS);
7209 }
7210 trans->blocks_used++;
7211 /* this returns a buffer locked for blocking */
7212 return buf;
7213 }
7214
7215 static struct btrfs_block_rsv *
7216 use_block_rsv(struct btrfs_trans_handle *trans,
7217 struct btrfs_root *root, u32 blocksize)
7218 {
7219 struct btrfs_block_rsv *block_rsv;
7220 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7221 int ret;
7222 bool global_updated = false;
7223
7224 block_rsv = get_block_rsv(trans, root);
7225
7226 if (unlikely(block_rsv->size == 0))
7227 goto try_reserve;
7228 again:
7229 ret = block_rsv_use_bytes(block_rsv, blocksize);
7230 if (!ret)
7231 return block_rsv;
7232
7233 if (block_rsv->failfast)
7234 return ERR_PTR(ret);
7235
7236 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7237 global_updated = true;
7238 update_global_block_rsv(root->fs_info);
7239 goto again;
7240 }
7241
7242 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7243 static DEFINE_RATELIMIT_STATE(_rs,
7244 DEFAULT_RATELIMIT_INTERVAL * 10,
7245 /*DEFAULT_RATELIMIT_BURST*/ 1);
7246 if (__ratelimit(&_rs))
7247 WARN(1, KERN_DEBUG
7248 "BTRFS: block rsv returned %d\n", ret);
7249 }
7250 try_reserve:
7251 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7252 BTRFS_RESERVE_NO_FLUSH);
7253 if (!ret)
7254 return block_rsv;
7255 /*
7256 * If we couldn't reserve metadata bytes try and use some from
7257 * the global reserve if its space type is the same as the global
7258 * reservation.
7259 */
7260 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7261 block_rsv->space_info == global_rsv->space_info) {
7262 ret = block_rsv_use_bytes(global_rsv, blocksize);
7263 if (!ret)
7264 return global_rsv;
7265 }
7266 return ERR_PTR(ret);
7267 }
7268
7269 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7270 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7271 {
7272 block_rsv_add_bytes(block_rsv, blocksize, 0);
7273 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7274 }
7275
7276 /*
7277 * finds a free extent and does all the dirty work required for allocation
7278 * returns the key for the extent through ins, and a tree buffer for
7279 * the first block of the extent through buf.
7280 *
7281 * returns the tree buffer or NULL.
7282 */
7283 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7284 struct btrfs_root *root,
7285 u64 parent, u64 root_objectid,
7286 struct btrfs_disk_key *key, int level,
7287 u64 hint, u64 empty_size)
7288 {
7289 struct btrfs_key ins;
7290 struct btrfs_block_rsv *block_rsv;
7291 struct extent_buffer *buf;
7292 u64 flags = 0;
7293 int ret;
7294 u32 blocksize = root->nodesize;
7295 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7296 SKINNY_METADATA);
7297
7298 if (btrfs_test_is_dummy_root(root)) {
7299 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7300 level);
7301 if (!IS_ERR(buf))
7302 root->alloc_bytenr += blocksize;
7303 return buf;
7304 }
7305
7306 block_rsv = use_block_rsv(trans, root, blocksize);
7307 if (IS_ERR(block_rsv))
7308 return ERR_CAST(block_rsv);
7309
7310 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7311 empty_size, hint, &ins, 0, 0);
7312 if (ret) {
7313 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7314 return ERR_PTR(ret);
7315 }
7316
7317 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7318 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7319
7320 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7321 if (parent == 0)
7322 parent = ins.objectid;
7323 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7324 } else
7325 BUG_ON(parent > 0);
7326
7327 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7328 struct btrfs_delayed_extent_op *extent_op;
7329 extent_op = btrfs_alloc_delayed_extent_op();
7330 BUG_ON(!extent_op); /* -ENOMEM */
7331 if (key)
7332 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7333 else
7334 memset(&extent_op->key, 0, sizeof(extent_op->key));
7335 extent_op->flags_to_set = flags;
7336 if (skinny_metadata)
7337 extent_op->update_key = 0;
7338 else
7339 extent_op->update_key = 1;
7340 extent_op->update_flags = 1;
7341 extent_op->is_data = 0;
7342 extent_op->level = level;
7343
7344 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7345 ins.objectid,
7346 ins.offset, parent, root_objectid,
7347 level, BTRFS_ADD_DELAYED_EXTENT,
7348 extent_op, 0);
7349 BUG_ON(ret); /* -ENOMEM */
7350 }
7351 return buf;
7352 }
7353
7354 struct walk_control {
7355 u64 refs[BTRFS_MAX_LEVEL];
7356 u64 flags[BTRFS_MAX_LEVEL];
7357 struct btrfs_key update_progress;
7358 int stage;
7359 int level;
7360 int shared_level;
7361 int update_ref;
7362 int keep_locks;
7363 int reada_slot;
7364 int reada_count;
7365 int for_reloc;
7366 };
7367
7368 #define DROP_REFERENCE 1
7369 #define UPDATE_BACKREF 2
7370
7371 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7372 struct btrfs_root *root,
7373 struct walk_control *wc,
7374 struct btrfs_path *path)
7375 {
7376 u64 bytenr;
7377 u64 generation;
7378 u64 refs;
7379 u64 flags;
7380 u32 nritems;
7381 u32 blocksize;
7382 struct btrfs_key key;
7383 struct extent_buffer *eb;
7384 int ret;
7385 int slot;
7386 int nread = 0;
7387
7388 if (path->slots[wc->level] < wc->reada_slot) {
7389 wc->reada_count = wc->reada_count * 2 / 3;
7390 wc->reada_count = max(wc->reada_count, 2);
7391 } else {
7392 wc->reada_count = wc->reada_count * 3 / 2;
7393 wc->reada_count = min_t(int, wc->reada_count,
7394 BTRFS_NODEPTRS_PER_BLOCK(root));
7395 }
7396
7397 eb = path->nodes[wc->level];
7398 nritems = btrfs_header_nritems(eb);
7399 blocksize = root->nodesize;
7400
7401 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7402 if (nread >= wc->reada_count)
7403 break;
7404
7405 cond_resched();
7406 bytenr = btrfs_node_blockptr(eb, slot);
7407 generation = btrfs_node_ptr_generation(eb, slot);
7408
7409 if (slot == path->slots[wc->level])
7410 goto reada;
7411
7412 if (wc->stage == UPDATE_BACKREF &&
7413 generation <= root->root_key.offset)
7414 continue;
7415
7416 /* We don't lock the tree block, it's OK to be racy here */
7417 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7418 wc->level - 1, 1, &refs,
7419 &flags);
7420 /* We don't care about errors in readahead. */
7421 if (ret < 0)
7422 continue;
7423 BUG_ON(refs == 0);
7424
7425 if (wc->stage == DROP_REFERENCE) {
7426 if (refs == 1)
7427 goto reada;
7428
7429 if (wc->level == 1 &&
7430 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7431 continue;
7432 if (!wc->update_ref ||
7433 generation <= root->root_key.offset)
7434 continue;
7435 btrfs_node_key_to_cpu(eb, &key, slot);
7436 ret = btrfs_comp_cpu_keys(&key,
7437 &wc->update_progress);
7438 if (ret < 0)
7439 continue;
7440 } else {
7441 if (wc->level == 1 &&
7442 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7443 continue;
7444 }
7445 reada:
7446 readahead_tree_block(root, bytenr);
7447 nread++;
7448 }
7449 wc->reada_slot = slot;
7450 }
7451
7452 static int account_leaf_items(struct btrfs_trans_handle *trans,
7453 struct btrfs_root *root,
7454 struct extent_buffer *eb)
7455 {
7456 int nr = btrfs_header_nritems(eb);
7457 int i, extent_type, ret;
7458 struct btrfs_key key;
7459 struct btrfs_file_extent_item *fi;
7460 u64 bytenr, num_bytes;
7461
7462 for (i = 0; i < nr; i++) {
7463 btrfs_item_key_to_cpu(eb, &key, i);
7464
7465 if (key.type != BTRFS_EXTENT_DATA_KEY)
7466 continue;
7467
7468 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7469 /* filter out non qgroup-accountable extents */
7470 extent_type = btrfs_file_extent_type(eb, fi);
7471
7472 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7473 continue;
7474
7475 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7476 if (!bytenr)
7477 continue;
7478
7479 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7480
7481 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7482 root->objectid,
7483 bytenr, num_bytes,
7484 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7485 if (ret)
7486 return ret;
7487 }
7488 return 0;
7489 }
7490
7491 /*
7492 * Walk up the tree from the bottom, freeing leaves and any interior
7493 * nodes which have had all slots visited. If a node (leaf or
7494 * interior) is freed, the node above it will have it's slot
7495 * incremented. The root node will never be freed.
7496 *
7497 * At the end of this function, we should have a path which has all
7498 * slots incremented to the next position for a search. If we need to
7499 * read a new node it will be NULL and the node above it will have the
7500 * correct slot selected for a later read.
7501 *
7502 * If we increment the root nodes slot counter past the number of
7503 * elements, 1 is returned to signal completion of the search.
7504 */
7505 static int adjust_slots_upwards(struct btrfs_root *root,
7506 struct btrfs_path *path, int root_level)
7507 {
7508 int level = 0;
7509 int nr, slot;
7510 struct extent_buffer *eb;
7511
7512 if (root_level == 0)
7513 return 1;
7514
7515 while (level <= root_level) {
7516 eb = path->nodes[level];
7517 nr = btrfs_header_nritems(eb);
7518 path->slots[level]++;
7519 slot = path->slots[level];
7520 if (slot >= nr || level == 0) {
7521 /*
7522 * Don't free the root - we will detect this
7523 * condition after our loop and return a
7524 * positive value for caller to stop walking the tree.
7525 */
7526 if (level != root_level) {
7527 btrfs_tree_unlock_rw(eb, path->locks[level]);
7528 path->locks[level] = 0;
7529
7530 free_extent_buffer(eb);
7531 path->nodes[level] = NULL;
7532 path->slots[level] = 0;
7533 }
7534 } else {
7535 /*
7536 * We have a valid slot to walk back down
7537 * from. Stop here so caller can process these
7538 * new nodes.
7539 */
7540 break;
7541 }
7542
7543 level++;
7544 }
7545
7546 eb = path->nodes[root_level];
7547 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7548 return 1;
7549
7550 return 0;
7551 }
7552
7553 /*
7554 * root_eb is the subtree root and is locked before this function is called.
7555 */
7556 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7557 struct btrfs_root *root,
7558 struct extent_buffer *root_eb,
7559 u64 root_gen,
7560 int root_level)
7561 {
7562 int ret = 0;
7563 int level;
7564 struct extent_buffer *eb = root_eb;
7565 struct btrfs_path *path = NULL;
7566
7567 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7568 BUG_ON(root_eb == NULL);
7569
7570 if (!root->fs_info->quota_enabled)
7571 return 0;
7572
7573 if (!extent_buffer_uptodate(root_eb)) {
7574 ret = btrfs_read_buffer(root_eb, root_gen);
7575 if (ret)
7576 goto out;
7577 }
7578
7579 if (root_level == 0) {
7580 ret = account_leaf_items(trans, root, root_eb);
7581 goto out;
7582 }
7583
7584 path = btrfs_alloc_path();
7585 if (!path)
7586 return -ENOMEM;
7587
7588 /*
7589 * Walk down the tree. Missing extent blocks are filled in as
7590 * we go. Metadata is accounted every time we read a new
7591 * extent block.
7592 *
7593 * When we reach a leaf, we account for file extent items in it,
7594 * walk back up the tree (adjusting slot pointers as we go)
7595 * and restart the search process.
7596 */
7597 extent_buffer_get(root_eb); /* For path */
7598 path->nodes[root_level] = root_eb;
7599 path->slots[root_level] = 0;
7600 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7601 walk_down:
7602 level = root_level;
7603 while (level >= 0) {
7604 if (path->nodes[level] == NULL) {
7605 int parent_slot;
7606 u64 child_gen;
7607 u64 child_bytenr;
7608
7609 /* We need to get child blockptr/gen from
7610 * parent before we can read it. */
7611 eb = path->nodes[level + 1];
7612 parent_slot = path->slots[level + 1];
7613 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7614 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7615
7616 eb = read_tree_block(root, child_bytenr, child_gen);
7617 if (!eb || !extent_buffer_uptodate(eb)) {
7618 ret = -EIO;
7619 goto out;
7620 }
7621
7622 path->nodes[level] = eb;
7623 path->slots[level] = 0;
7624
7625 btrfs_tree_read_lock(eb);
7626 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7627 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7628
7629 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7630 root->objectid,
7631 child_bytenr,
7632 root->nodesize,
7633 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7634 0);
7635 if (ret)
7636 goto out;
7637
7638 }
7639
7640 if (level == 0) {
7641 ret = account_leaf_items(trans, root, path->nodes[level]);
7642 if (ret)
7643 goto out;
7644
7645 /* Nonzero return here means we completed our search */
7646 ret = adjust_slots_upwards(root, path, root_level);
7647 if (ret)
7648 break;
7649
7650 /* Restart search with new slots */
7651 goto walk_down;
7652 }
7653
7654 level--;
7655 }
7656
7657 ret = 0;
7658 out:
7659 btrfs_free_path(path);
7660
7661 return ret;
7662 }
7663
7664 /*
7665 * helper to process tree block while walking down the tree.
7666 *
7667 * when wc->stage == UPDATE_BACKREF, this function updates
7668 * back refs for pointers in the block.
7669 *
7670 * NOTE: return value 1 means we should stop walking down.
7671 */
7672 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7673 struct btrfs_root *root,
7674 struct btrfs_path *path,
7675 struct walk_control *wc, int lookup_info)
7676 {
7677 int level = wc->level;
7678 struct extent_buffer *eb = path->nodes[level];
7679 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7680 int ret;
7681
7682 if (wc->stage == UPDATE_BACKREF &&
7683 btrfs_header_owner(eb) != root->root_key.objectid)
7684 return 1;
7685
7686 /*
7687 * when reference count of tree block is 1, it won't increase
7688 * again. once full backref flag is set, we never clear it.
7689 */
7690 if (lookup_info &&
7691 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7692 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7693 BUG_ON(!path->locks[level]);
7694 ret = btrfs_lookup_extent_info(trans, root,
7695 eb->start, level, 1,
7696 &wc->refs[level],
7697 &wc->flags[level]);
7698 BUG_ON(ret == -ENOMEM);
7699 if (ret)
7700 return ret;
7701 BUG_ON(wc->refs[level] == 0);
7702 }
7703
7704 if (wc->stage == DROP_REFERENCE) {
7705 if (wc->refs[level] > 1)
7706 return 1;
7707
7708 if (path->locks[level] && !wc->keep_locks) {
7709 btrfs_tree_unlock_rw(eb, path->locks[level]);
7710 path->locks[level] = 0;
7711 }
7712 return 0;
7713 }
7714
7715 /* wc->stage == UPDATE_BACKREF */
7716 if (!(wc->flags[level] & flag)) {
7717 BUG_ON(!path->locks[level]);
7718 ret = btrfs_inc_ref(trans, root, eb, 1);
7719 BUG_ON(ret); /* -ENOMEM */
7720 ret = btrfs_dec_ref(trans, root, eb, 0);
7721 BUG_ON(ret); /* -ENOMEM */
7722 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7723 eb->len, flag,
7724 btrfs_header_level(eb), 0);
7725 BUG_ON(ret); /* -ENOMEM */
7726 wc->flags[level] |= flag;
7727 }
7728
7729 /*
7730 * the block is shared by multiple trees, so it's not good to
7731 * keep the tree lock
7732 */
7733 if (path->locks[level] && level > 0) {
7734 btrfs_tree_unlock_rw(eb, path->locks[level]);
7735 path->locks[level] = 0;
7736 }
7737 return 0;
7738 }
7739
7740 /*
7741 * helper to process tree block pointer.
7742 *
7743 * when wc->stage == DROP_REFERENCE, this function checks
7744 * reference count of the block pointed to. if the block
7745 * is shared and we need update back refs for the subtree
7746 * rooted at the block, this function changes wc->stage to
7747 * UPDATE_BACKREF. if the block is shared and there is no
7748 * need to update back, this function drops the reference
7749 * to the block.
7750 *
7751 * NOTE: return value 1 means we should stop walking down.
7752 */
7753 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7754 struct btrfs_root *root,
7755 struct btrfs_path *path,
7756 struct walk_control *wc, int *lookup_info)
7757 {
7758 u64 bytenr;
7759 u64 generation;
7760 u64 parent;
7761 u32 blocksize;
7762 struct btrfs_key key;
7763 struct extent_buffer *next;
7764 int level = wc->level;
7765 int reada = 0;
7766 int ret = 0;
7767 bool need_account = false;
7768
7769 generation = btrfs_node_ptr_generation(path->nodes[level],
7770 path->slots[level]);
7771 /*
7772 * if the lower level block was created before the snapshot
7773 * was created, we know there is no need to update back refs
7774 * for the subtree
7775 */
7776 if (wc->stage == UPDATE_BACKREF &&
7777 generation <= root->root_key.offset) {
7778 *lookup_info = 1;
7779 return 1;
7780 }
7781
7782 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7783 blocksize = root->nodesize;
7784
7785 next = btrfs_find_tree_block(root, bytenr);
7786 if (!next) {
7787 next = btrfs_find_create_tree_block(root, bytenr);
7788 if (!next)
7789 return -ENOMEM;
7790 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7791 level - 1);
7792 reada = 1;
7793 }
7794 btrfs_tree_lock(next);
7795 btrfs_set_lock_blocking(next);
7796
7797 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7798 &wc->refs[level - 1],
7799 &wc->flags[level - 1]);
7800 if (ret < 0) {
7801 btrfs_tree_unlock(next);
7802 return ret;
7803 }
7804
7805 if (unlikely(wc->refs[level - 1] == 0)) {
7806 btrfs_err(root->fs_info, "Missing references.");
7807 BUG();
7808 }
7809 *lookup_info = 0;
7810
7811 if (wc->stage == DROP_REFERENCE) {
7812 if (wc->refs[level - 1] > 1) {
7813 need_account = true;
7814 if (level == 1 &&
7815 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7816 goto skip;
7817
7818 if (!wc->update_ref ||
7819 generation <= root->root_key.offset)
7820 goto skip;
7821
7822 btrfs_node_key_to_cpu(path->nodes[level], &key,
7823 path->slots[level]);
7824 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7825 if (ret < 0)
7826 goto skip;
7827
7828 wc->stage = UPDATE_BACKREF;
7829 wc->shared_level = level - 1;
7830 }
7831 } else {
7832 if (level == 1 &&
7833 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7834 goto skip;
7835 }
7836
7837 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7838 btrfs_tree_unlock(next);
7839 free_extent_buffer(next);
7840 next = NULL;
7841 *lookup_info = 1;
7842 }
7843
7844 if (!next) {
7845 if (reada && level == 1)
7846 reada_walk_down(trans, root, wc, path);
7847 next = read_tree_block(root, bytenr, generation);
7848 if (!next || !extent_buffer_uptodate(next)) {
7849 free_extent_buffer(next);
7850 return -EIO;
7851 }
7852 btrfs_tree_lock(next);
7853 btrfs_set_lock_blocking(next);
7854 }
7855
7856 level--;
7857 BUG_ON(level != btrfs_header_level(next));
7858 path->nodes[level] = next;
7859 path->slots[level] = 0;
7860 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7861 wc->level = level;
7862 if (wc->level == 1)
7863 wc->reada_slot = 0;
7864 return 0;
7865 skip:
7866 wc->refs[level - 1] = 0;
7867 wc->flags[level - 1] = 0;
7868 if (wc->stage == DROP_REFERENCE) {
7869 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7870 parent = path->nodes[level]->start;
7871 } else {
7872 BUG_ON(root->root_key.objectid !=
7873 btrfs_header_owner(path->nodes[level]));
7874 parent = 0;
7875 }
7876
7877 if (need_account) {
7878 ret = account_shared_subtree(trans, root, next,
7879 generation, level - 1);
7880 if (ret) {
7881 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7882 "%d accounting shared subtree. Quota "
7883 "is out of sync, rescan required.\n",
7884 root->fs_info->sb->s_id, ret);
7885 }
7886 }
7887 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7888 root->root_key.objectid, level - 1, 0, 0);
7889 BUG_ON(ret); /* -ENOMEM */
7890 }
7891 btrfs_tree_unlock(next);
7892 free_extent_buffer(next);
7893 *lookup_info = 1;
7894 return 1;
7895 }
7896
7897 /*
7898 * helper to process tree block while walking up the tree.
7899 *
7900 * when wc->stage == DROP_REFERENCE, this function drops
7901 * reference count on the block.
7902 *
7903 * when wc->stage == UPDATE_BACKREF, this function changes
7904 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7905 * to UPDATE_BACKREF previously while processing the block.
7906 *
7907 * NOTE: return value 1 means we should stop walking up.
7908 */
7909 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7910 struct btrfs_root *root,
7911 struct btrfs_path *path,
7912 struct walk_control *wc)
7913 {
7914 int ret;
7915 int level = wc->level;
7916 struct extent_buffer *eb = path->nodes[level];
7917 u64 parent = 0;
7918
7919 if (wc->stage == UPDATE_BACKREF) {
7920 BUG_ON(wc->shared_level < level);
7921 if (level < wc->shared_level)
7922 goto out;
7923
7924 ret = find_next_key(path, level + 1, &wc->update_progress);
7925 if (ret > 0)
7926 wc->update_ref = 0;
7927
7928 wc->stage = DROP_REFERENCE;
7929 wc->shared_level = -1;
7930 path->slots[level] = 0;
7931
7932 /*
7933 * check reference count again if the block isn't locked.
7934 * we should start walking down the tree again if reference
7935 * count is one.
7936 */
7937 if (!path->locks[level]) {
7938 BUG_ON(level == 0);
7939 btrfs_tree_lock(eb);
7940 btrfs_set_lock_blocking(eb);
7941 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7942
7943 ret = btrfs_lookup_extent_info(trans, root,
7944 eb->start, level, 1,
7945 &wc->refs[level],
7946 &wc->flags[level]);
7947 if (ret < 0) {
7948 btrfs_tree_unlock_rw(eb, path->locks[level]);
7949 path->locks[level] = 0;
7950 return ret;
7951 }
7952 BUG_ON(wc->refs[level] == 0);
7953 if (wc->refs[level] == 1) {
7954 btrfs_tree_unlock_rw(eb, path->locks[level]);
7955 path->locks[level] = 0;
7956 return 1;
7957 }
7958 }
7959 }
7960
7961 /* wc->stage == DROP_REFERENCE */
7962 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7963
7964 if (wc->refs[level] == 1) {
7965 if (level == 0) {
7966 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7967 ret = btrfs_dec_ref(trans, root, eb, 1);
7968 else
7969 ret = btrfs_dec_ref(trans, root, eb, 0);
7970 BUG_ON(ret); /* -ENOMEM */
7971 ret = account_leaf_items(trans, root, eb);
7972 if (ret) {
7973 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7974 "%d accounting leaf items. Quota "
7975 "is out of sync, rescan required.\n",
7976 root->fs_info->sb->s_id, ret);
7977 }
7978 }
7979 /* make block locked assertion in clean_tree_block happy */
7980 if (!path->locks[level] &&
7981 btrfs_header_generation(eb) == trans->transid) {
7982 btrfs_tree_lock(eb);
7983 btrfs_set_lock_blocking(eb);
7984 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7985 }
7986 clean_tree_block(trans, root, eb);
7987 }
7988
7989 if (eb == root->node) {
7990 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7991 parent = eb->start;
7992 else
7993 BUG_ON(root->root_key.objectid !=
7994 btrfs_header_owner(eb));
7995 } else {
7996 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7997 parent = path->nodes[level + 1]->start;
7998 else
7999 BUG_ON(root->root_key.objectid !=
8000 btrfs_header_owner(path->nodes[level + 1]));
8001 }
8002
8003 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8004 out:
8005 wc->refs[level] = 0;
8006 wc->flags[level] = 0;
8007 return 0;
8008 }
8009
8010 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8011 struct btrfs_root *root,
8012 struct btrfs_path *path,
8013 struct walk_control *wc)
8014 {
8015 int level = wc->level;
8016 int lookup_info = 1;
8017 int ret;
8018
8019 while (level >= 0) {
8020 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8021 if (ret > 0)
8022 break;
8023
8024 if (level == 0)
8025 break;
8026
8027 if (path->slots[level] >=
8028 btrfs_header_nritems(path->nodes[level]))
8029 break;
8030
8031 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8032 if (ret > 0) {
8033 path->slots[level]++;
8034 continue;
8035 } else if (ret < 0)
8036 return ret;
8037 level = wc->level;
8038 }
8039 return 0;
8040 }
8041
8042 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8043 struct btrfs_root *root,
8044 struct btrfs_path *path,
8045 struct walk_control *wc, int max_level)
8046 {
8047 int level = wc->level;
8048 int ret;
8049
8050 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8051 while (level < max_level && path->nodes[level]) {
8052 wc->level = level;
8053 if (path->slots[level] + 1 <
8054 btrfs_header_nritems(path->nodes[level])) {
8055 path->slots[level]++;
8056 return 0;
8057 } else {
8058 ret = walk_up_proc(trans, root, path, wc);
8059 if (ret > 0)
8060 return 0;
8061
8062 if (path->locks[level]) {
8063 btrfs_tree_unlock_rw(path->nodes[level],
8064 path->locks[level]);
8065 path->locks[level] = 0;
8066 }
8067 free_extent_buffer(path->nodes[level]);
8068 path->nodes[level] = NULL;
8069 level++;
8070 }
8071 }
8072 return 1;
8073 }
8074
8075 /*
8076 * drop a subvolume tree.
8077 *
8078 * this function traverses the tree freeing any blocks that only
8079 * referenced by the tree.
8080 *
8081 * when a shared tree block is found. this function decreases its
8082 * reference count by one. if update_ref is true, this function
8083 * also make sure backrefs for the shared block and all lower level
8084 * blocks are properly updated.
8085 *
8086 * If called with for_reloc == 0, may exit early with -EAGAIN
8087 */
8088 int btrfs_drop_snapshot(struct btrfs_root *root,
8089 struct btrfs_block_rsv *block_rsv, int update_ref,
8090 int for_reloc)
8091 {
8092 struct btrfs_path *path;
8093 struct btrfs_trans_handle *trans;
8094 struct btrfs_root *tree_root = root->fs_info->tree_root;
8095 struct btrfs_root_item *root_item = &root->root_item;
8096 struct walk_control *wc;
8097 struct btrfs_key key;
8098 int err = 0;
8099 int ret;
8100 int level;
8101 bool root_dropped = false;
8102
8103 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8104
8105 path = btrfs_alloc_path();
8106 if (!path) {
8107 err = -ENOMEM;
8108 goto out;
8109 }
8110
8111 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8112 if (!wc) {
8113 btrfs_free_path(path);
8114 err = -ENOMEM;
8115 goto out;
8116 }
8117
8118 trans = btrfs_start_transaction(tree_root, 0);
8119 if (IS_ERR(trans)) {
8120 err = PTR_ERR(trans);
8121 goto out_free;
8122 }
8123
8124 if (block_rsv)
8125 trans->block_rsv = block_rsv;
8126
8127 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8128 level = btrfs_header_level(root->node);
8129 path->nodes[level] = btrfs_lock_root_node(root);
8130 btrfs_set_lock_blocking(path->nodes[level]);
8131 path->slots[level] = 0;
8132 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8133 memset(&wc->update_progress, 0,
8134 sizeof(wc->update_progress));
8135 } else {
8136 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8137 memcpy(&wc->update_progress, &key,
8138 sizeof(wc->update_progress));
8139
8140 level = root_item->drop_level;
8141 BUG_ON(level == 0);
8142 path->lowest_level = level;
8143 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8144 path->lowest_level = 0;
8145 if (ret < 0) {
8146 err = ret;
8147 goto out_end_trans;
8148 }
8149 WARN_ON(ret > 0);
8150
8151 /*
8152 * unlock our path, this is safe because only this
8153 * function is allowed to delete this snapshot
8154 */
8155 btrfs_unlock_up_safe(path, 0);
8156
8157 level = btrfs_header_level(root->node);
8158 while (1) {
8159 btrfs_tree_lock(path->nodes[level]);
8160 btrfs_set_lock_blocking(path->nodes[level]);
8161 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8162
8163 ret = btrfs_lookup_extent_info(trans, root,
8164 path->nodes[level]->start,
8165 level, 1, &wc->refs[level],
8166 &wc->flags[level]);
8167 if (ret < 0) {
8168 err = ret;
8169 goto out_end_trans;
8170 }
8171 BUG_ON(wc->refs[level] == 0);
8172
8173 if (level == root_item->drop_level)
8174 break;
8175
8176 btrfs_tree_unlock(path->nodes[level]);
8177 path->locks[level] = 0;
8178 WARN_ON(wc->refs[level] != 1);
8179 level--;
8180 }
8181 }
8182
8183 wc->level = level;
8184 wc->shared_level = -1;
8185 wc->stage = DROP_REFERENCE;
8186 wc->update_ref = update_ref;
8187 wc->keep_locks = 0;
8188 wc->for_reloc = for_reloc;
8189 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8190
8191 while (1) {
8192
8193 ret = walk_down_tree(trans, root, path, wc);
8194 if (ret < 0) {
8195 err = ret;
8196 break;
8197 }
8198
8199 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8200 if (ret < 0) {
8201 err = ret;
8202 break;
8203 }
8204
8205 if (ret > 0) {
8206 BUG_ON(wc->stage != DROP_REFERENCE);
8207 break;
8208 }
8209
8210 if (wc->stage == DROP_REFERENCE) {
8211 level = wc->level;
8212 btrfs_node_key(path->nodes[level],
8213 &root_item->drop_progress,
8214 path->slots[level]);
8215 root_item->drop_level = level;
8216 }
8217
8218 BUG_ON(wc->level == 0);
8219 if (btrfs_should_end_transaction(trans, tree_root) ||
8220 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8221 ret = btrfs_update_root(trans, tree_root,
8222 &root->root_key,
8223 root_item);
8224 if (ret) {
8225 btrfs_abort_transaction(trans, tree_root, ret);
8226 err = ret;
8227 goto out_end_trans;
8228 }
8229
8230 /*
8231 * Qgroup update accounting is run from
8232 * delayed ref handling. This usually works
8233 * out because delayed refs are normally the
8234 * only way qgroup updates are added. However,
8235 * we may have added updates during our tree
8236 * walk so run qgroups here to make sure we
8237 * don't lose any updates.
8238 */
8239 ret = btrfs_delayed_qgroup_accounting(trans,
8240 root->fs_info);
8241 if (ret)
8242 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8243 "running qgroup updates "
8244 "during snapshot delete. "
8245 "Quota is out of sync, "
8246 "rescan required.\n", ret);
8247
8248 btrfs_end_transaction_throttle(trans, tree_root);
8249 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8250 pr_debug("BTRFS: drop snapshot early exit\n");
8251 err = -EAGAIN;
8252 goto out_free;
8253 }
8254
8255 trans = btrfs_start_transaction(tree_root, 0);
8256 if (IS_ERR(trans)) {
8257 err = PTR_ERR(trans);
8258 goto out_free;
8259 }
8260 if (block_rsv)
8261 trans->block_rsv = block_rsv;
8262 }
8263 }
8264 btrfs_release_path(path);
8265 if (err)
8266 goto out_end_trans;
8267
8268 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8269 if (ret) {
8270 btrfs_abort_transaction(trans, tree_root, ret);
8271 goto out_end_trans;
8272 }
8273
8274 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8275 ret = btrfs_find_root(tree_root, &root->root_key, path,
8276 NULL, NULL);
8277 if (ret < 0) {
8278 btrfs_abort_transaction(trans, tree_root, ret);
8279 err = ret;
8280 goto out_end_trans;
8281 } else if (ret > 0) {
8282 /* if we fail to delete the orphan item this time
8283 * around, it'll get picked up the next time.
8284 *
8285 * The most common failure here is just -ENOENT.
8286 */
8287 btrfs_del_orphan_item(trans, tree_root,
8288 root->root_key.objectid);
8289 }
8290 }
8291
8292 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8293 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8294 } else {
8295 free_extent_buffer(root->node);
8296 free_extent_buffer(root->commit_root);
8297 btrfs_put_fs_root(root);
8298 }
8299 root_dropped = true;
8300 out_end_trans:
8301 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8302 if (ret)
8303 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8304 "running qgroup updates "
8305 "during snapshot delete. "
8306 "Quota is out of sync, "
8307 "rescan required.\n", ret);
8308
8309 btrfs_end_transaction_throttle(trans, tree_root);
8310 out_free:
8311 kfree(wc);
8312 btrfs_free_path(path);
8313 out:
8314 /*
8315 * So if we need to stop dropping the snapshot for whatever reason we
8316 * need to make sure to add it back to the dead root list so that we
8317 * keep trying to do the work later. This also cleans up roots if we
8318 * don't have it in the radix (like when we recover after a power fail
8319 * or unmount) so we don't leak memory.
8320 */
8321 if (!for_reloc && root_dropped == false)
8322 btrfs_add_dead_root(root);
8323 if (err && err != -EAGAIN)
8324 btrfs_std_error(root->fs_info, err);
8325 return err;
8326 }
8327
8328 /*
8329 * drop subtree rooted at tree block 'node'.
8330 *
8331 * NOTE: this function will unlock and release tree block 'node'
8332 * only used by relocation code
8333 */
8334 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8335 struct btrfs_root *root,
8336 struct extent_buffer *node,
8337 struct extent_buffer *parent)
8338 {
8339 struct btrfs_path *path;
8340 struct walk_control *wc;
8341 int level;
8342 int parent_level;
8343 int ret = 0;
8344 int wret;
8345
8346 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8347
8348 path = btrfs_alloc_path();
8349 if (!path)
8350 return -ENOMEM;
8351
8352 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8353 if (!wc) {
8354 btrfs_free_path(path);
8355 return -ENOMEM;
8356 }
8357
8358 btrfs_assert_tree_locked(parent);
8359 parent_level = btrfs_header_level(parent);
8360 extent_buffer_get(parent);
8361 path->nodes[parent_level] = parent;
8362 path->slots[parent_level] = btrfs_header_nritems(parent);
8363
8364 btrfs_assert_tree_locked(node);
8365 level = btrfs_header_level(node);
8366 path->nodes[level] = node;
8367 path->slots[level] = 0;
8368 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8369
8370 wc->refs[parent_level] = 1;
8371 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8372 wc->level = level;
8373 wc->shared_level = -1;
8374 wc->stage = DROP_REFERENCE;
8375 wc->update_ref = 0;
8376 wc->keep_locks = 1;
8377 wc->for_reloc = 1;
8378 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8379
8380 while (1) {
8381 wret = walk_down_tree(trans, root, path, wc);
8382 if (wret < 0) {
8383 ret = wret;
8384 break;
8385 }
8386
8387 wret = walk_up_tree(trans, root, path, wc, parent_level);
8388 if (wret < 0)
8389 ret = wret;
8390 if (wret != 0)
8391 break;
8392 }
8393
8394 kfree(wc);
8395 btrfs_free_path(path);
8396 return ret;
8397 }
8398
8399 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8400 {
8401 u64 num_devices;
8402 u64 stripped;
8403
8404 /*
8405 * if restripe for this chunk_type is on pick target profile and
8406 * return, otherwise do the usual balance
8407 */
8408 stripped = get_restripe_target(root->fs_info, flags);
8409 if (stripped)
8410 return extended_to_chunk(stripped);
8411
8412 num_devices = root->fs_info->fs_devices->rw_devices;
8413
8414 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8415 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8416 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8417
8418 if (num_devices == 1) {
8419 stripped |= BTRFS_BLOCK_GROUP_DUP;
8420 stripped = flags & ~stripped;
8421
8422 /* turn raid0 into single device chunks */
8423 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8424 return stripped;
8425
8426 /* turn mirroring into duplication */
8427 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8428 BTRFS_BLOCK_GROUP_RAID10))
8429 return stripped | BTRFS_BLOCK_GROUP_DUP;
8430 } else {
8431 /* they already had raid on here, just return */
8432 if (flags & stripped)
8433 return flags;
8434
8435 stripped |= BTRFS_BLOCK_GROUP_DUP;
8436 stripped = flags & ~stripped;
8437
8438 /* switch duplicated blocks with raid1 */
8439 if (flags & BTRFS_BLOCK_GROUP_DUP)
8440 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8441
8442 /* this is drive concat, leave it alone */
8443 }
8444
8445 return flags;
8446 }
8447
8448 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8449 {
8450 struct btrfs_space_info *sinfo = cache->space_info;
8451 u64 num_bytes;
8452 u64 min_allocable_bytes;
8453 int ret = -ENOSPC;
8454
8455
8456 /*
8457 * We need some metadata space and system metadata space for
8458 * allocating chunks in some corner cases until we force to set
8459 * it to be readonly.
8460 */
8461 if ((sinfo->flags &
8462 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8463 !force)
8464 min_allocable_bytes = 1 * 1024 * 1024;
8465 else
8466 min_allocable_bytes = 0;
8467
8468 spin_lock(&sinfo->lock);
8469 spin_lock(&cache->lock);
8470
8471 if (cache->ro) {
8472 ret = 0;
8473 goto out;
8474 }
8475
8476 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8477 cache->bytes_super - btrfs_block_group_used(&cache->item);
8478
8479 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8480 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8481 min_allocable_bytes <= sinfo->total_bytes) {
8482 sinfo->bytes_readonly += num_bytes;
8483 cache->ro = 1;
8484 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8485 ret = 0;
8486 }
8487 out:
8488 spin_unlock(&cache->lock);
8489 spin_unlock(&sinfo->lock);
8490 return ret;
8491 }
8492
8493 int btrfs_set_block_group_ro(struct btrfs_root *root,
8494 struct btrfs_block_group_cache *cache)
8495
8496 {
8497 struct btrfs_trans_handle *trans;
8498 u64 alloc_flags;
8499 int ret;
8500
8501 BUG_ON(cache->ro);
8502
8503 trans = btrfs_join_transaction(root);
8504 if (IS_ERR(trans))
8505 return PTR_ERR(trans);
8506
8507 ret = set_block_group_ro(cache, 0);
8508 if (!ret)
8509 goto out;
8510 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8511 ret = do_chunk_alloc(trans, root, alloc_flags,
8512 CHUNK_ALLOC_FORCE);
8513 if (ret < 0)
8514 goto out;
8515 ret = set_block_group_ro(cache, 0);
8516 out:
8517 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8518 alloc_flags = update_block_group_flags(root, cache->flags);
8519 check_system_chunk(trans, root, alloc_flags);
8520 }
8521
8522 btrfs_end_transaction(trans, root);
8523 return ret;
8524 }
8525
8526 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8527 struct btrfs_root *root, u64 type)
8528 {
8529 u64 alloc_flags = get_alloc_profile(root, type);
8530 return do_chunk_alloc(trans, root, alloc_flags,
8531 CHUNK_ALLOC_FORCE);
8532 }
8533
8534 /*
8535 * helper to account the unused space of all the readonly block group in the
8536 * space_info. takes mirrors into account.
8537 */
8538 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8539 {
8540 struct btrfs_block_group_cache *block_group;
8541 u64 free_bytes = 0;
8542 int factor;
8543
8544 /* It's df, we don't care if it's racey */
8545 if (list_empty(&sinfo->ro_bgs))
8546 return 0;
8547
8548 spin_lock(&sinfo->lock);
8549 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8550 spin_lock(&block_group->lock);
8551
8552 if (!block_group->ro) {
8553 spin_unlock(&block_group->lock);
8554 continue;
8555 }
8556
8557 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8558 BTRFS_BLOCK_GROUP_RAID10 |
8559 BTRFS_BLOCK_GROUP_DUP))
8560 factor = 2;
8561 else
8562 factor = 1;
8563
8564 free_bytes += (block_group->key.offset -
8565 btrfs_block_group_used(&block_group->item)) *
8566 factor;
8567
8568 spin_unlock(&block_group->lock);
8569 }
8570 spin_unlock(&sinfo->lock);
8571
8572 return free_bytes;
8573 }
8574
8575 void btrfs_set_block_group_rw(struct btrfs_root *root,
8576 struct btrfs_block_group_cache *cache)
8577 {
8578 struct btrfs_space_info *sinfo = cache->space_info;
8579 u64 num_bytes;
8580
8581 BUG_ON(!cache->ro);
8582
8583 spin_lock(&sinfo->lock);
8584 spin_lock(&cache->lock);
8585 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8586 cache->bytes_super - btrfs_block_group_used(&cache->item);
8587 sinfo->bytes_readonly -= num_bytes;
8588 cache->ro = 0;
8589 list_del_init(&cache->ro_list);
8590 spin_unlock(&cache->lock);
8591 spin_unlock(&sinfo->lock);
8592 }
8593
8594 /*
8595 * checks to see if its even possible to relocate this block group.
8596 *
8597 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8598 * ok to go ahead and try.
8599 */
8600 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8601 {
8602 struct btrfs_block_group_cache *block_group;
8603 struct btrfs_space_info *space_info;
8604 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8605 struct btrfs_device *device;
8606 struct btrfs_trans_handle *trans;
8607 u64 min_free;
8608 u64 dev_min = 1;
8609 u64 dev_nr = 0;
8610 u64 target;
8611 int index;
8612 int full = 0;
8613 int ret = 0;
8614
8615 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8616
8617 /* odd, couldn't find the block group, leave it alone */
8618 if (!block_group)
8619 return -1;
8620
8621 min_free = btrfs_block_group_used(&block_group->item);
8622
8623 /* no bytes used, we're good */
8624 if (!min_free)
8625 goto out;
8626
8627 space_info = block_group->space_info;
8628 spin_lock(&space_info->lock);
8629
8630 full = space_info->full;
8631
8632 /*
8633 * if this is the last block group we have in this space, we can't
8634 * relocate it unless we're able to allocate a new chunk below.
8635 *
8636 * Otherwise, we need to make sure we have room in the space to handle
8637 * all of the extents from this block group. If we can, we're good
8638 */
8639 if ((space_info->total_bytes != block_group->key.offset) &&
8640 (space_info->bytes_used + space_info->bytes_reserved +
8641 space_info->bytes_pinned + space_info->bytes_readonly +
8642 min_free < space_info->total_bytes)) {
8643 spin_unlock(&space_info->lock);
8644 goto out;
8645 }
8646 spin_unlock(&space_info->lock);
8647
8648 /*
8649 * ok we don't have enough space, but maybe we have free space on our
8650 * devices to allocate new chunks for relocation, so loop through our
8651 * alloc devices and guess if we have enough space. if this block
8652 * group is going to be restriped, run checks against the target
8653 * profile instead of the current one.
8654 */
8655 ret = -1;
8656
8657 /*
8658 * index:
8659 * 0: raid10
8660 * 1: raid1
8661 * 2: dup
8662 * 3: raid0
8663 * 4: single
8664 */
8665 target = get_restripe_target(root->fs_info, block_group->flags);
8666 if (target) {
8667 index = __get_raid_index(extended_to_chunk(target));
8668 } else {
8669 /*
8670 * this is just a balance, so if we were marked as full
8671 * we know there is no space for a new chunk
8672 */
8673 if (full)
8674 goto out;
8675
8676 index = get_block_group_index(block_group);
8677 }
8678
8679 if (index == BTRFS_RAID_RAID10) {
8680 dev_min = 4;
8681 /* Divide by 2 */
8682 min_free >>= 1;
8683 } else if (index == BTRFS_RAID_RAID1) {
8684 dev_min = 2;
8685 } else if (index == BTRFS_RAID_DUP) {
8686 /* Multiply by 2 */
8687 min_free <<= 1;
8688 } else if (index == BTRFS_RAID_RAID0) {
8689 dev_min = fs_devices->rw_devices;
8690 do_div(min_free, dev_min);
8691 }
8692
8693 /* We need to do this so that we can look at pending chunks */
8694 trans = btrfs_join_transaction(root);
8695 if (IS_ERR(trans)) {
8696 ret = PTR_ERR(trans);
8697 goto out;
8698 }
8699
8700 mutex_lock(&root->fs_info->chunk_mutex);
8701 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8702 u64 dev_offset;
8703
8704 /*
8705 * check to make sure we can actually find a chunk with enough
8706 * space to fit our block group in.
8707 */
8708 if (device->total_bytes > device->bytes_used + min_free &&
8709 !device->is_tgtdev_for_dev_replace) {
8710 ret = find_free_dev_extent(trans, device, min_free,
8711 &dev_offset, NULL);
8712 if (!ret)
8713 dev_nr++;
8714
8715 if (dev_nr >= dev_min)
8716 break;
8717
8718 ret = -1;
8719 }
8720 }
8721 mutex_unlock(&root->fs_info->chunk_mutex);
8722 btrfs_end_transaction(trans, root);
8723 out:
8724 btrfs_put_block_group(block_group);
8725 return ret;
8726 }
8727
8728 static int find_first_block_group(struct btrfs_root *root,
8729 struct btrfs_path *path, struct btrfs_key *key)
8730 {
8731 int ret = 0;
8732 struct btrfs_key found_key;
8733 struct extent_buffer *leaf;
8734 int slot;
8735
8736 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8737 if (ret < 0)
8738 goto out;
8739
8740 while (1) {
8741 slot = path->slots[0];
8742 leaf = path->nodes[0];
8743 if (slot >= btrfs_header_nritems(leaf)) {
8744 ret = btrfs_next_leaf(root, path);
8745 if (ret == 0)
8746 continue;
8747 if (ret < 0)
8748 goto out;
8749 break;
8750 }
8751 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8752
8753 if (found_key.objectid >= key->objectid &&
8754 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8755 ret = 0;
8756 goto out;
8757 }
8758 path->slots[0]++;
8759 }
8760 out:
8761 return ret;
8762 }
8763
8764 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8765 {
8766 struct btrfs_block_group_cache *block_group;
8767 u64 last = 0;
8768
8769 while (1) {
8770 struct inode *inode;
8771
8772 block_group = btrfs_lookup_first_block_group(info, last);
8773 while (block_group) {
8774 spin_lock(&block_group->lock);
8775 if (block_group->iref)
8776 break;
8777 spin_unlock(&block_group->lock);
8778 block_group = next_block_group(info->tree_root,
8779 block_group);
8780 }
8781 if (!block_group) {
8782 if (last == 0)
8783 break;
8784 last = 0;
8785 continue;
8786 }
8787
8788 inode = block_group->inode;
8789 block_group->iref = 0;
8790 block_group->inode = NULL;
8791 spin_unlock(&block_group->lock);
8792 iput(inode);
8793 last = block_group->key.objectid + block_group->key.offset;
8794 btrfs_put_block_group(block_group);
8795 }
8796 }
8797
8798 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8799 {
8800 struct btrfs_block_group_cache *block_group;
8801 struct btrfs_space_info *space_info;
8802 struct btrfs_caching_control *caching_ctl;
8803 struct rb_node *n;
8804
8805 down_write(&info->commit_root_sem);
8806 while (!list_empty(&info->caching_block_groups)) {
8807 caching_ctl = list_entry(info->caching_block_groups.next,
8808 struct btrfs_caching_control, list);
8809 list_del(&caching_ctl->list);
8810 put_caching_control(caching_ctl);
8811 }
8812 up_write(&info->commit_root_sem);
8813
8814 spin_lock(&info->unused_bgs_lock);
8815 while (!list_empty(&info->unused_bgs)) {
8816 block_group = list_first_entry(&info->unused_bgs,
8817 struct btrfs_block_group_cache,
8818 bg_list);
8819 list_del_init(&block_group->bg_list);
8820 btrfs_put_block_group(block_group);
8821 }
8822 spin_unlock(&info->unused_bgs_lock);
8823
8824 spin_lock(&info->block_group_cache_lock);
8825 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8826 block_group = rb_entry(n, struct btrfs_block_group_cache,
8827 cache_node);
8828 rb_erase(&block_group->cache_node,
8829 &info->block_group_cache_tree);
8830 RB_CLEAR_NODE(&block_group->cache_node);
8831 spin_unlock(&info->block_group_cache_lock);
8832
8833 down_write(&block_group->space_info->groups_sem);
8834 list_del(&block_group->list);
8835 up_write(&block_group->space_info->groups_sem);
8836
8837 if (block_group->cached == BTRFS_CACHE_STARTED)
8838 wait_block_group_cache_done(block_group);
8839
8840 /*
8841 * We haven't cached this block group, which means we could
8842 * possibly have excluded extents on this block group.
8843 */
8844 if (block_group->cached == BTRFS_CACHE_NO ||
8845 block_group->cached == BTRFS_CACHE_ERROR)
8846 free_excluded_extents(info->extent_root, block_group);
8847
8848 btrfs_remove_free_space_cache(block_group);
8849 btrfs_put_block_group(block_group);
8850
8851 spin_lock(&info->block_group_cache_lock);
8852 }
8853 spin_unlock(&info->block_group_cache_lock);
8854
8855 /* now that all the block groups are freed, go through and
8856 * free all the space_info structs. This is only called during
8857 * the final stages of unmount, and so we know nobody is
8858 * using them. We call synchronize_rcu() once before we start,
8859 * just to be on the safe side.
8860 */
8861 synchronize_rcu();
8862
8863 release_global_block_rsv(info);
8864
8865 while (!list_empty(&info->space_info)) {
8866 int i;
8867
8868 space_info = list_entry(info->space_info.next,
8869 struct btrfs_space_info,
8870 list);
8871 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8872 if (WARN_ON(space_info->bytes_pinned > 0 ||
8873 space_info->bytes_reserved > 0 ||
8874 space_info->bytes_may_use > 0)) {
8875 dump_space_info(space_info, 0, 0);
8876 }
8877 }
8878 list_del(&space_info->list);
8879 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8880 struct kobject *kobj;
8881 kobj = space_info->block_group_kobjs[i];
8882 space_info->block_group_kobjs[i] = NULL;
8883 if (kobj) {
8884 kobject_del(kobj);
8885 kobject_put(kobj);
8886 }
8887 }
8888 kobject_del(&space_info->kobj);
8889 kobject_put(&space_info->kobj);
8890 }
8891 return 0;
8892 }
8893
8894 static void __link_block_group(struct btrfs_space_info *space_info,
8895 struct btrfs_block_group_cache *cache)
8896 {
8897 int index = get_block_group_index(cache);
8898 bool first = false;
8899
8900 down_write(&space_info->groups_sem);
8901 if (list_empty(&space_info->block_groups[index]))
8902 first = true;
8903 list_add_tail(&cache->list, &space_info->block_groups[index]);
8904 up_write(&space_info->groups_sem);
8905
8906 if (first) {
8907 struct raid_kobject *rkobj;
8908 int ret;
8909
8910 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
8911 if (!rkobj)
8912 goto out_err;
8913 rkobj->raid_type = index;
8914 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
8915 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
8916 "%s", get_raid_name(index));
8917 if (ret) {
8918 kobject_put(&rkobj->kobj);
8919 goto out_err;
8920 }
8921 space_info->block_group_kobjs[index] = &rkobj->kobj;
8922 }
8923
8924 return;
8925 out_err:
8926 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8927 }
8928
8929 static struct btrfs_block_group_cache *
8930 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8931 {
8932 struct btrfs_block_group_cache *cache;
8933
8934 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8935 if (!cache)
8936 return NULL;
8937
8938 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8939 GFP_NOFS);
8940 if (!cache->free_space_ctl) {
8941 kfree(cache);
8942 return NULL;
8943 }
8944
8945 cache->key.objectid = start;
8946 cache->key.offset = size;
8947 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8948
8949 cache->sectorsize = root->sectorsize;
8950 cache->fs_info = root->fs_info;
8951 cache->full_stripe_len = btrfs_full_stripe_len(root,
8952 &root->fs_info->mapping_tree,
8953 start);
8954 atomic_set(&cache->count, 1);
8955 spin_lock_init(&cache->lock);
8956 init_rwsem(&cache->data_rwsem);
8957 INIT_LIST_HEAD(&cache->list);
8958 INIT_LIST_HEAD(&cache->cluster_list);
8959 INIT_LIST_HEAD(&cache->bg_list);
8960 INIT_LIST_HEAD(&cache->ro_list);
8961 INIT_LIST_HEAD(&cache->dirty_list);
8962 btrfs_init_free_space_ctl(cache);
8963 atomic_set(&cache->trimming, 0);
8964
8965 return cache;
8966 }
8967
8968 int btrfs_read_block_groups(struct btrfs_root *root)
8969 {
8970 struct btrfs_path *path;
8971 int ret;
8972 struct btrfs_block_group_cache *cache;
8973 struct btrfs_fs_info *info = root->fs_info;
8974 struct btrfs_space_info *space_info;
8975 struct btrfs_key key;
8976 struct btrfs_key found_key;
8977 struct extent_buffer *leaf;
8978 int need_clear = 0;
8979 u64 cache_gen;
8980
8981 root = info->extent_root;
8982 key.objectid = 0;
8983 key.offset = 0;
8984 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8985 path = btrfs_alloc_path();
8986 if (!path)
8987 return -ENOMEM;
8988 path->reada = 1;
8989
8990 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8991 if (btrfs_test_opt(root, SPACE_CACHE) &&
8992 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8993 need_clear = 1;
8994 if (btrfs_test_opt(root, CLEAR_CACHE))
8995 need_clear = 1;
8996
8997 while (1) {
8998 ret = find_first_block_group(root, path, &key);
8999 if (ret > 0)
9000 break;
9001 if (ret != 0)
9002 goto error;
9003
9004 leaf = path->nodes[0];
9005 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9006
9007 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9008 found_key.offset);
9009 if (!cache) {
9010 ret = -ENOMEM;
9011 goto error;
9012 }
9013
9014 if (need_clear) {
9015 /*
9016 * When we mount with old space cache, we need to
9017 * set BTRFS_DC_CLEAR and set dirty flag.
9018 *
9019 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9020 * truncate the old free space cache inode and
9021 * setup a new one.
9022 * b) Setting 'dirty flag' makes sure that we flush
9023 * the new space cache info onto disk.
9024 */
9025 if (btrfs_test_opt(root, SPACE_CACHE))
9026 cache->disk_cache_state = BTRFS_DC_CLEAR;
9027 }
9028
9029 read_extent_buffer(leaf, &cache->item,
9030 btrfs_item_ptr_offset(leaf, path->slots[0]),
9031 sizeof(cache->item));
9032 cache->flags = btrfs_block_group_flags(&cache->item);
9033
9034 key.objectid = found_key.objectid + found_key.offset;
9035 btrfs_release_path(path);
9036
9037 /*
9038 * We need to exclude the super stripes now so that the space
9039 * info has super bytes accounted for, otherwise we'll think
9040 * we have more space than we actually do.
9041 */
9042 ret = exclude_super_stripes(root, cache);
9043 if (ret) {
9044 /*
9045 * We may have excluded something, so call this just in
9046 * case.
9047 */
9048 free_excluded_extents(root, cache);
9049 btrfs_put_block_group(cache);
9050 goto error;
9051 }
9052
9053 /*
9054 * check for two cases, either we are full, and therefore
9055 * don't need to bother with the caching work since we won't
9056 * find any space, or we are empty, and we can just add all
9057 * the space in and be done with it. This saves us _alot_ of
9058 * time, particularly in the full case.
9059 */
9060 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9061 cache->last_byte_to_unpin = (u64)-1;
9062 cache->cached = BTRFS_CACHE_FINISHED;
9063 free_excluded_extents(root, cache);
9064 } else if (btrfs_block_group_used(&cache->item) == 0) {
9065 cache->last_byte_to_unpin = (u64)-1;
9066 cache->cached = BTRFS_CACHE_FINISHED;
9067 add_new_free_space(cache, root->fs_info,
9068 found_key.objectid,
9069 found_key.objectid +
9070 found_key.offset);
9071 free_excluded_extents(root, cache);
9072 }
9073
9074 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9075 if (ret) {
9076 btrfs_remove_free_space_cache(cache);
9077 btrfs_put_block_group(cache);
9078 goto error;
9079 }
9080
9081 ret = update_space_info(info, cache->flags, found_key.offset,
9082 btrfs_block_group_used(&cache->item),
9083 &space_info);
9084 if (ret) {
9085 btrfs_remove_free_space_cache(cache);
9086 spin_lock(&info->block_group_cache_lock);
9087 rb_erase(&cache->cache_node,
9088 &info->block_group_cache_tree);
9089 RB_CLEAR_NODE(&cache->cache_node);
9090 spin_unlock(&info->block_group_cache_lock);
9091 btrfs_put_block_group(cache);
9092 goto error;
9093 }
9094
9095 cache->space_info = space_info;
9096 spin_lock(&cache->space_info->lock);
9097 cache->space_info->bytes_readonly += cache->bytes_super;
9098 spin_unlock(&cache->space_info->lock);
9099
9100 __link_block_group(space_info, cache);
9101
9102 set_avail_alloc_bits(root->fs_info, cache->flags);
9103 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9104 set_block_group_ro(cache, 1);
9105 } else if (btrfs_block_group_used(&cache->item) == 0) {
9106 spin_lock(&info->unused_bgs_lock);
9107 /* Should always be true but just in case. */
9108 if (list_empty(&cache->bg_list)) {
9109 btrfs_get_block_group(cache);
9110 list_add_tail(&cache->bg_list,
9111 &info->unused_bgs);
9112 }
9113 spin_unlock(&info->unused_bgs_lock);
9114 }
9115 }
9116
9117 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9118 if (!(get_alloc_profile(root, space_info->flags) &
9119 (BTRFS_BLOCK_GROUP_RAID10 |
9120 BTRFS_BLOCK_GROUP_RAID1 |
9121 BTRFS_BLOCK_GROUP_RAID5 |
9122 BTRFS_BLOCK_GROUP_RAID6 |
9123 BTRFS_BLOCK_GROUP_DUP)))
9124 continue;
9125 /*
9126 * avoid allocating from un-mirrored block group if there are
9127 * mirrored block groups.
9128 */
9129 list_for_each_entry(cache,
9130 &space_info->block_groups[BTRFS_RAID_RAID0],
9131 list)
9132 set_block_group_ro(cache, 1);
9133 list_for_each_entry(cache,
9134 &space_info->block_groups[BTRFS_RAID_SINGLE],
9135 list)
9136 set_block_group_ro(cache, 1);
9137 }
9138
9139 init_global_block_rsv(info);
9140 ret = 0;
9141 error:
9142 btrfs_free_path(path);
9143 return ret;
9144 }
9145
9146 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9147 struct btrfs_root *root)
9148 {
9149 struct btrfs_block_group_cache *block_group, *tmp;
9150 struct btrfs_root *extent_root = root->fs_info->extent_root;
9151 struct btrfs_block_group_item item;
9152 struct btrfs_key key;
9153 int ret = 0;
9154
9155 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9156 if (ret)
9157 goto next;
9158
9159 spin_lock(&block_group->lock);
9160 memcpy(&item, &block_group->item, sizeof(item));
9161 memcpy(&key, &block_group->key, sizeof(key));
9162 spin_unlock(&block_group->lock);
9163
9164 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9165 sizeof(item));
9166 if (ret)
9167 btrfs_abort_transaction(trans, extent_root, ret);
9168 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9169 key.objectid, key.offset);
9170 if (ret)
9171 btrfs_abort_transaction(trans, extent_root, ret);
9172 next:
9173 list_del_init(&block_group->bg_list);
9174 }
9175 }
9176
9177 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9178 struct btrfs_root *root, u64 bytes_used,
9179 u64 type, u64 chunk_objectid, u64 chunk_offset,
9180 u64 size)
9181 {
9182 int ret;
9183 struct btrfs_root *extent_root;
9184 struct btrfs_block_group_cache *cache;
9185
9186 extent_root = root->fs_info->extent_root;
9187
9188 btrfs_set_log_full_commit(root->fs_info, trans);
9189
9190 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9191 if (!cache)
9192 return -ENOMEM;
9193
9194 btrfs_set_block_group_used(&cache->item, bytes_used);
9195 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9196 btrfs_set_block_group_flags(&cache->item, type);
9197
9198 cache->flags = type;
9199 cache->last_byte_to_unpin = (u64)-1;
9200 cache->cached = BTRFS_CACHE_FINISHED;
9201 ret = exclude_super_stripes(root, cache);
9202 if (ret) {
9203 /*
9204 * We may have excluded something, so call this just in
9205 * case.
9206 */
9207 free_excluded_extents(root, cache);
9208 btrfs_put_block_group(cache);
9209 return ret;
9210 }
9211
9212 add_new_free_space(cache, root->fs_info, chunk_offset,
9213 chunk_offset + size);
9214
9215 free_excluded_extents(root, cache);
9216
9217 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9218 if (ret) {
9219 btrfs_remove_free_space_cache(cache);
9220 btrfs_put_block_group(cache);
9221 return ret;
9222 }
9223
9224 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9225 &cache->space_info);
9226 if (ret) {
9227 btrfs_remove_free_space_cache(cache);
9228 spin_lock(&root->fs_info->block_group_cache_lock);
9229 rb_erase(&cache->cache_node,
9230 &root->fs_info->block_group_cache_tree);
9231 RB_CLEAR_NODE(&cache->cache_node);
9232 spin_unlock(&root->fs_info->block_group_cache_lock);
9233 btrfs_put_block_group(cache);
9234 return ret;
9235 }
9236 update_global_block_rsv(root->fs_info);
9237
9238 spin_lock(&cache->space_info->lock);
9239 cache->space_info->bytes_readonly += cache->bytes_super;
9240 spin_unlock(&cache->space_info->lock);
9241
9242 __link_block_group(cache->space_info, cache);
9243
9244 list_add_tail(&cache->bg_list, &trans->new_bgs);
9245
9246 set_avail_alloc_bits(extent_root->fs_info, type);
9247
9248 return 0;
9249 }
9250
9251 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9252 {
9253 u64 extra_flags = chunk_to_extended(flags) &
9254 BTRFS_EXTENDED_PROFILE_MASK;
9255
9256 write_seqlock(&fs_info->profiles_lock);
9257 if (flags & BTRFS_BLOCK_GROUP_DATA)
9258 fs_info->avail_data_alloc_bits &= ~extra_flags;
9259 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9260 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9261 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9262 fs_info->avail_system_alloc_bits &= ~extra_flags;
9263 write_sequnlock(&fs_info->profiles_lock);
9264 }
9265
9266 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9267 struct btrfs_root *root, u64 group_start,
9268 struct extent_map *em)
9269 {
9270 struct btrfs_path *path;
9271 struct btrfs_block_group_cache *block_group;
9272 struct btrfs_free_cluster *cluster;
9273 struct btrfs_root *tree_root = root->fs_info->tree_root;
9274 struct btrfs_key key;
9275 struct inode *inode;
9276 struct kobject *kobj = NULL;
9277 int ret;
9278 int index;
9279 int factor;
9280 struct btrfs_caching_control *caching_ctl = NULL;
9281 bool remove_em;
9282
9283 root = root->fs_info->extent_root;
9284
9285 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9286 BUG_ON(!block_group);
9287 BUG_ON(!block_group->ro);
9288
9289 /*
9290 * Free the reserved super bytes from this block group before
9291 * remove it.
9292 */
9293 free_excluded_extents(root, block_group);
9294
9295 memcpy(&key, &block_group->key, sizeof(key));
9296 index = get_block_group_index(block_group);
9297 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9298 BTRFS_BLOCK_GROUP_RAID1 |
9299 BTRFS_BLOCK_GROUP_RAID10))
9300 factor = 2;
9301 else
9302 factor = 1;
9303
9304 /* make sure this block group isn't part of an allocation cluster */
9305 cluster = &root->fs_info->data_alloc_cluster;
9306 spin_lock(&cluster->refill_lock);
9307 btrfs_return_cluster_to_free_space(block_group, cluster);
9308 spin_unlock(&cluster->refill_lock);
9309
9310 /*
9311 * make sure this block group isn't part of a metadata
9312 * allocation cluster
9313 */
9314 cluster = &root->fs_info->meta_alloc_cluster;
9315 spin_lock(&cluster->refill_lock);
9316 btrfs_return_cluster_to_free_space(block_group, cluster);
9317 spin_unlock(&cluster->refill_lock);
9318
9319 path = btrfs_alloc_path();
9320 if (!path) {
9321 ret = -ENOMEM;
9322 goto out;
9323 }
9324
9325 inode = lookup_free_space_inode(tree_root, block_group, path);
9326 if (!IS_ERR(inode)) {
9327 ret = btrfs_orphan_add(trans, inode);
9328 if (ret) {
9329 btrfs_add_delayed_iput(inode);
9330 goto out;
9331 }
9332 clear_nlink(inode);
9333 /* One for the block groups ref */
9334 spin_lock(&block_group->lock);
9335 if (block_group->iref) {
9336 block_group->iref = 0;
9337 block_group->inode = NULL;
9338 spin_unlock(&block_group->lock);
9339 iput(inode);
9340 } else {
9341 spin_unlock(&block_group->lock);
9342 }
9343 /* One for our lookup ref */
9344 btrfs_add_delayed_iput(inode);
9345 }
9346
9347 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9348 key.offset = block_group->key.objectid;
9349 key.type = 0;
9350
9351 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9352 if (ret < 0)
9353 goto out;
9354 if (ret > 0)
9355 btrfs_release_path(path);
9356 if (ret == 0) {
9357 ret = btrfs_del_item(trans, tree_root, path);
9358 if (ret)
9359 goto out;
9360 btrfs_release_path(path);
9361 }
9362
9363 spin_lock(&root->fs_info->block_group_cache_lock);
9364 rb_erase(&block_group->cache_node,
9365 &root->fs_info->block_group_cache_tree);
9366 RB_CLEAR_NODE(&block_group->cache_node);
9367
9368 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9369 root->fs_info->first_logical_byte = (u64)-1;
9370 spin_unlock(&root->fs_info->block_group_cache_lock);
9371
9372 down_write(&block_group->space_info->groups_sem);
9373 /*
9374 * we must use list_del_init so people can check to see if they
9375 * are still on the list after taking the semaphore
9376 */
9377 list_del_init(&block_group->list);
9378 if (list_empty(&block_group->space_info->block_groups[index])) {
9379 kobj = block_group->space_info->block_group_kobjs[index];
9380 block_group->space_info->block_group_kobjs[index] = NULL;
9381 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9382 }
9383 up_write(&block_group->space_info->groups_sem);
9384 if (kobj) {
9385 kobject_del(kobj);
9386 kobject_put(kobj);
9387 }
9388
9389 if (block_group->has_caching_ctl)
9390 caching_ctl = get_caching_control(block_group);
9391 if (block_group->cached == BTRFS_CACHE_STARTED)
9392 wait_block_group_cache_done(block_group);
9393 if (block_group->has_caching_ctl) {
9394 down_write(&root->fs_info->commit_root_sem);
9395 if (!caching_ctl) {
9396 struct btrfs_caching_control *ctl;
9397
9398 list_for_each_entry(ctl,
9399 &root->fs_info->caching_block_groups, list)
9400 if (ctl->block_group == block_group) {
9401 caching_ctl = ctl;
9402 atomic_inc(&caching_ctl->count);
9403 break;
9404 }
9405 }
9406 if (caching_ctl)
9407 list_del_init(&caching_ctl->list);
9408 up_write(&root->fs_info->commit_root_sem);
9409 if (caching_ctl) {
9410 /* Once for the caching bgs list and once for us. */
9411 put_caching_control(caching_ctl);
9412 put_caching_control(caching_ctl);
9413 }
9414 }
9415
9416 spin_lock(&trans->transaction->dirty_bgs_lock);
9417 if (!list_empty(&block_group->dirty_list)) {
9418 list_del_init(&block_group->dirty_list);
9419 btrfs_put_block_group(block_group);
9420 }
9421 spin_unlock(&trans->transaction->dirty_bgs_lock);
9422
9423 btrfs_remove_free_space_cache(block_group);
9424
9425 spin_lock(&block_group->space_info->lock);
9426 list_del_init(&block_group->ro_list);
9427 block_group->space_info->total_bytes -= block_group->key.offset;
9428 block_group->space_info->bytes_readonly -= block_group->key.offset;
9429 block_group->space_info->disk_total -= block_group->key.offset * factor;
9430 spin_unlock(&block_group->space_info->lock);
9431
9432 memcpy(&key, &block_group->key, sizeof(key));
9433
9434 lock_chunks(root);
9435 if (!list_empty(&em->list)) {
9436 /* We're in the transaction->pending_chunks list. */
9437 free_extent_map(em);
9438 }
9439 spin_lock(&block_group->lock);
9440 block_group->removed = 1;
9441 /*
9442 * At this point trimming can't start on this block group, because we
9443 * removed the block group from the tree fs_info->block_group_cache_tree
9444 * so no one can't find it anymore and even if someone already got this
9445 * block group before we removed it from the rbtree, they have already
9446 * incremented block_group->trimming - if they didn't, they won't find
9447 * any free space entries because we already removed them all when we
9448 * called btrfs_remove_free_space_cache().
9449 *
9450 * And we must not remove the extent map from the fs_info->mapping_tree
9451 * to prevent the same logical address range and physical device space
9452 * ranges from being reused for a new block group. This is because our
9453 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9454 * completely transactionless, so while it is trimming a range the
9455 * currently running transaction might finish and a new one start,
9456 * allowing for new block groups to be created that can reuse the same
9457 * physical device locations unless we take this special care.
9458 */
9459 remove_em = (atomic_read(&block_group->trimming) == 0);
9460 /*
9461 * Make sure a trimmer task always sees the em in the pinned_chunks list
9462 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9463 * before checking block_group->removed).
9464 */
9465 if (!remove_em) {
9466 /*
9467 * Our em might be in trans->transaction->pending_chunks which
9468 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9469 * and so is the fs_info->pinned_chunks list.
9470 *
9471 * So at this point we must be holding the chunk_mutex to avoid
9472 * any races with chunk allocation (more specifically at
9473 * volumes.c:contains_pending_extent()), to ensure it always
9474 * sees the em, either in the pending_chunks list or in the
9475 * pinned_chunks list.
9476 */
9477 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9478 }
9479 spin_unlock(&block_group->lock);
9480
9481 if (remove_em) {
9482 struct extent_map_tree *em_tree;
9483
9484 em_tree = &root->fs_info->mapping_tree.map_tree;
9485 write_lock(&em_tree->lock);
9486 /*
9487 * The em might be in the pending_chunks list, so make sure the
9488 * chunk mutex is locked, since remove_extent_mapping() will
9489 * delete us from that list.
9490 */
9491 remove_extent_mapping(em_tree, em);
9492 write_unlock(&em_tree->lock);
9493 /* once for the tree */
9494 free_extent_map(em);
9495 }
9496
9497 unlock_chunks(root);
9498
9499 btrfs_put_block_group(block_group);
9500 btrfs_put_block_group(block_group);
9501
9502 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9503 if (ret > 0)
9504 ret = -EIO;
9505 if (ret < 0)
9506 goto out;
9507
9508 ret = btrfs_del_item(trans, root, path);
9509 out:
9510 btrfs_free_path(path);
9511 return ret;
9512 }
9513
9514 /*
9515 * Process the unused_bgs list and remove any that don't have any allocated
9516 * space inside of them.
9517 */
9518 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9519 {
9520 struct btrfs_block_group_cache *block_group;
9521 struct btrfs_space_info *space_info;
9522 struct btrfs_root *root = fs_info->extent_root;
9523 struct btrfs_trans_handle *trans;
9524 int ret = 0;
9525
9526 if (!fs_info->open)
9527 return;
9528
9529 spin_lock(&fs_info->unused_bgs_lock);
9530 while (!list_empty(&fs_info->unused_bgs)) {
9531 u64 start, end;
9532
9533 block_group = list_first_entry(&fs_info->unused_bgs,
9534 struct btrfs_block_group_cache,
9535 bg_list);
9536 space_info = block_group->space_info;
9537 list_del_init(&block_group->bg_list);
9538 if (ret || btrfs_mixed_space_info(space_info)) {
9539 btrfs_put_block_group(block_group);
9540 continue;
9541 }
9542 spin_unlock(&fs_info->unused_bgs_lock);
9543
9544 /* Don't want to race with allocators so take the groups_sem */
9545 down_write(&space_info->groups_sem);
9546 spin_lock(&block_group->lock);
9547 if (block_group->reserved ||
9548 btrfs_block_group_used(&block_group->item) ||
9549 block_group->ro) {
9550 /*
9551 * We want to bail if we made new allocations or have
9552 * outstanding allocations in this block group. We do
9553 * the ro check in case balance is currently acting on
9554 * this block group.
9555 */
9556 spin_unlock(&block_group->lock);
9557 up_write(&space_info->groups_sem);
9558 goto next;
9559 }
9560 spin_unlock(&block_group->lock);
9561
9562 /* We don't want to force the issue, only flip if it's ok. */
9563 ret = set_block_group_ro(block_group, 0);
9564 up_write(&space_info->groups_sem);
9565 if (ret < 0) {
9566 ret = 0;
9567 goto next;
9568 }
9569
9570 /*
9571 * Want to do this before we do anything else so we can recover
9572 * properly if we fail to join the transaction.
9573 */
9574 /* 1 for btrfs_orphan_reserve_metadata() */
9575 trans = btrfs_start_transaction(root, 1);
9576 if (IS_ERR(trans)) {
9577 btrfs_set_block_group_rw(root, block_group);
9578 ret = PTR_ERR(trans);
9579 goto next;
9580 }
9581
9582 /*
9583 * We could have pending pinned extents for this block group,
9584 * just delete them, we don't care about them anymore.
9585 */
9586 start = block_group->key.objectid;
9587 end = start + block_group->key.offset - 1;
9588 /*
9589 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9590 * btrfs_finish_extent_commit(). If we are at transaction N,
9591 * another task might be running finish_extent_commit() for the
9592 * previous transaction N - 1, and have seen a range belonging
9593 * to the block group in freed_extents[] before we were able to
9594 * clear the whole block group range from freed_extents[]. This
9595 * means that task can lookup for the block group after we
9596 * unpinned it from freed_extents[] and removed it, leading to
9597 * a BUG_ON() at btrfs_unpin_extent_range().
9598 */
9599 mutex_lock(&fs_info->unused_bg_unpin_mutex);
9600 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9601 EXTENT_DIRTY, GFP_NOFS);
9602 if (ret) {
9603 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9604 btrfs_set_block_group_rw(root, block_group);
9605 goto end_trans;
9606 }
9607 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9608 EXTENT_DIRTY, GFP_NOFS);
9609 if (ret) {
9610 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9611 btrfs_set_block_group_rw(root, block_group);
9612 goto end_trans;
9613 }
9614 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9615
9616 /* Reset pinned so btrfs_put_block_group doesn't complain */
9617 block_group->pinned = 0;
9618
9619 /*
9620 * Btrfs_remove_chunk will abort the transaction if things go
9621 * horribly wrong.
9622 */
9623 ret = btrfs_remove_chunk(trans, root,
9624 block_group->key.objectid);
9625 end_trans:
9626 btrfs_end_transaction(trans, root);
9627 next:
9628 btrfs_put_block_group(block_group);
9629 spin_lock(&fs_info->unused_bgs_lock);
9630 }
9631 spin_unlock(&fs_info->unused_bgs_lock);
9632 }
9633
9634 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9635 {
9636 struct btrfs_space_info *space_info;
9637 struct btrfs_super_block *disk_super;
9638 u64 features;
9639 u64 flags;
9640 int mixed = 0;
9641 int ret;
9642
9643 disk_super = fs_info->super_copy;
9644 if (!btrfs_super_root(disk_super))
9645 return 1;
9646
9647 features = btrfs_super_incompat_flags(disk_super);
9648 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9649 mixed = 1;
9650
9651 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9652 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9653 if (ret)
9654 goto out;
9655
9656 if (mixed) {
9657 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9658 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9659 } else {
9660 flags = BTRFS_BLOCK_GROUP_METADATA;
9661 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9662 if (ret)
9663 goto out;
9664
9665 flags = BTRFS_BLOCK_GROUP_DATA;
9666 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9667 }
9668 out:
9669 return ret;
9670 }
9671
9672 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
9673 {
9674 return unpin_extent_range(root, start, end, false);
9675 }
9676
9677 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
9678 {
9679 struct btrfs_fs_info *fs_info = root->fs_info;
9680 struct btrfs_block_group_cache *cache = NULL;
9681 u64 group_trimmed;
9682 u64 start;
9683 u64 end;
9684 u64 trimmed = 0;
9685 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
9686 int ret = 0;
9687
9688 /*
9689 * try to trim all FS space, our block group may start from non-zero.
9690 */
9691 if (range->len == total_bytes)
9692 cache = btrfs_lookup_first_block_group(fs_info, range->start);
9693 else
9694 cache = btrfs_lookup_block_group(fs_info, range->start);
9695
9696 while (cache) {
9697 if (cache->key.objectid >= (range->start + range->len)) {
9698 btrfs_put_block_group(cache);
9699 break;
9700 }
9701
9702 start = max(range->start, cache->key.objectid);
9703 end = min(range->start + range->len,
9704 cache->key.objectid + cache->key.offset);
9705
9706 if (end - start >= range->minlen) {
9707 if (!block_group_cache_done(cache)) {
9708 ret = cache_block_group(cache, 0);
9709 if (ret) {
9710 btrfs_put_block_group(cache);
9711 break;
9712 }
9713 ret = wait_block_group_cache_done(cache);
9714 if (ret) {
9715 btrfs_put_block_group(cache);
9716 break;
9717 }
9718 }
9719 ret = btrfs_trim_block_group(cache,
9720 &group_trimmed,
9721 start,
9722 end,
9723 range->minlen);
9724
9725 trimmed += group_trimmed;
9726 if (ret) {
9727 btrfs_put_block_group(cache);
9728 break;
9729 }
9730 }
9731
9732 cache = next_block_group(fs_info->tree_root, cache);
9733 }
9734
9735 range->len = trimmed;
9736 return ret;
9737 }
9738
9739 /*
9740 * btrfs_{start,end}_write_no_snapshoting() are similar to
9741 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
9742 * data into the page cache through nocow before the subvolume is snapshoted,
9743 * but flush the data into disk after the snapshot creation, or to prevent
9744 * operations while snapshoting is ongoing and that cause the snapshot to be
9745 * inconsistent (writes followed by expanding truncates for example).
9746 */
9747 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
9748 {
9749 percpu_counter_dec(&root->subv_writers->counter);
9750 /*
9751 * Make sure counter is updated before we wake up
9752 * waiters.
9753 */
9754 smp_mb();
9755 if (waitqueue_active(&root->subv_writers->wait))
9756 wake_up(&root->subv_writers->wait);
9757 }
9758
9759 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
9760 {
9761 if (atomic_read(&root->will_be_snapshoted))
9762 return 0;
9763
9764 percpu_counter_inc(&root->subv_writers->counter);
9765 /*
9766 * Make sure counter is updated before we check for snapshot creation.
9767 */
9768 smp_mb();
9769 if (atomic_read(&root->will_be_snapshoted)) {
9770 btrfs_end_write_no_snapshoting(root);
9771 return 0;
9772 }
9773 return 1;
9774 }
This page took 0.2203 seconds and 6 git commands to generate.