Btrfs: introduce a head ref rbtree
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "math.h"
38
39 #undef SCRAMBLE_DELAYED_REFS
40
41 /*
42 * control flags for do_chunk_alloc's force field
43 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
44 * if we really need one.
45 *
46 * CHUNK_ALLOC_LIMITED means to only try and allocate one
47 * if we have very few chunks already allocated. This is
48 * used as part of the clustering code to help make sure
49 * we have a good pool of storage to cluster in, without
50 * filling the FS with empty chunks
51 *
52 * CHUNK_ALLOC_FORCE means it must try to allocate one
53 *
54 */
55 enum {
56 CHUNK_ALLOC_NO_FORCE = 0,
57 CHUNK_ALLOC_LIMITED = 1,
58 CHUNK_ALLOC_FORCE = 2,
59 };
60
61 /*
62 * Control how reservations are dealt with.
63 *
64 * RESERVE_FREE - freeing a reservation.
65 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
66 * ENOSPC accounting
67 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
68 * bytes_may_use as the ENOSPC accounting is done elsewhere
69 */
70 enum {
71 RESERVE_FREE = 0,
72 RESERVE_ALLOC = 1,
73 RESERVE_ALLOC_NO_ACCOUNT = 2,
74 };
75
76 static int update_block_group(struct btrfs_root *root,
77 u64 bytenr, u64 num_bytes, int alloc);
78 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root,
80 u64 bytenr, u64 num_bytes, u64 parent,
81 u64 root_objectid, u64 owner_objectid,
82 u64 owner_offset, int refs_to_drop,
83 struct btrfs_delayed_extent_op *extra_op);
84 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
85 struct extent_buffer *leaf,
86 struct btrfs_extent_item *ei);
87 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
88 struct btrfs_root *root,
89 u64 parent, u64 root_objectid,
90 u64 flags, u64 owner, u64 offset,
91 struct btrfs_key *ins, int ref_mod);
92 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
93 struct btrfs_root *root,
94 u64 parent, u64 root_objectid,
95 u64 flags, struct btrfs_disk_key *key,
96 int level, struct btrfs_key *ins);
97 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
98 struct btrfs_root *extent_root, u64 flags,
99 int force);
100 static int find_next_key(struct btrfs_path *path, int level,
101 struct btrfs_key *key);
102 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
103 int dump_block_groups);
104 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
105 u64 num_bytes, int reserve);
106 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
107 u64 num_bytes);
108 int btrfs_pin_extent(struct btrfs_root *root,
109 u64 bytenr, u64 num_bytes, int reserved);
110
111 static noinline int
112 block_group_cache_done(struct btrfs_block_group_cache *cache)
113 {
114 smp_mb();
115 return cache->cached == BTRFS_CACHE_FINISHED ||
116 cache->cached == BTRFS_CACHE_ERROR;
117 }
118
119 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
120 {
121 return (cache->flags & bits) == bits;
122 }
123
124 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
125 {
126 atomic_inc(&cache->count);
127 }
128
129 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
130 {
131 if (atomic_dec_and_test(&cache->count)) {
132 WARN_ON(cache->pinned > 0);
133 WARN_ON(cache->reserved > 0);
134 kfree(cache->free_space_ctl);
135 kfree(cache);
136 }
137 }
138
139 /*
140 * this adds the block group to the fs_info rb tree for the block group
141 * cache
142 */
143 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
144 struct btrfs_block_group_cache *block_group)
145 {
146 struct rb_node **p;
147 struct rb_node *parent = NULL;
148 struct btrfs_block_group_cache *cache;
149
150 spin_lock(&info->block_group_cache_lock);
151 p = &info->block_group_cache_tree.rb_node;
152
153 while (*p) {
154 parent = *p;
155 cache = rb_entry(parent, struct btrfs_block_group_cache,
156 cache_node);
157 if (block_group->key.objectid < cache->key.objectid) {
158 p = &(*p)->rb_left;
159 } else if (block_group->key.objectid > cache->key.objectid) {
160 p = &(*p)->rb_right;
161 } else {
162 spin_unlock(&info->block_group_cache_lock);
163 return -EEXIST;
164 }
165 }
166
167 rb_link_node(&block_group->cache_node, parent, p);
168 rb_insert_color(&block_group->cache_node,
169 &info->block_group_cache_tree);
170
171 if (info->first_logical_byte > block_group->key.objectid)
172 info->first_logical_byte = block_group->key.objectid;
173
174 spin_unlock(&info->block_group_cache_lock);
175
176 return 0;
177 }
178
179 /*
180 * This will return the block group at or after bytenr if contains is 0, else
181 * it will return the block group that contains the bytenr
182 */
183 static struct btrfs_block_group_cache *
184 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
185 int contains)
186 {
187 struct btrfs_block_group_cache *cache, *ret = NULL;
188 struct rb_node *n;
189 u64 end, start;
190
191 spin_lock(&info->block_group_cache_lock);
192 n = info->block_group_cache_tree.rb_node;
193
194 while (n) {
195 cache = rb_entry(n, struct btrfs_block_group_cache,
196 cache_node);
197 end = cache->key.objectid + cache->key.offset - 1;
198 start = cache->key.objectid;
199
200 if (bytenr < start) {
201 if (!contains && (!ret || start < ret->key.objectid))
202 ret = cache;
203 n = n->rb_left;
204 } else if (bytenr > start) {
205 if (contains && bytenr <= end) {
206 ret = cache;
207 break;
208 }
209 n = n->rb_right;
210 } else {
211 ret = cache;
212 break;
213 }
214 }
215 if (ret) {
216 btrfs_get_block_group(ret);
217 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
218 info->first_logical_byte = ret->key.objectid;
219 }
220 spin_unlock(&info->block_group_cache_lock);
221
222 return ret;
223 }
224
225 static int add_excluded_extent(struct btrfs_root *root,
226 u64 start, u64 num_bytes)
227 {
228 u64 end = start + num_bytes - 1;
229 set_extent_bits(&root->fs_info->freed_extents[0],
230 start, end, EXTENT_UPTODATE, GFP_NOFS);
231 set_extent_bits(&root->fs_info->freed_extents[1],
232 start, end, EXTENT_UPTODATE, GFP_NOFS);
233 return 0;
234 }
235
236 static void free_excluded_extents(struct btrfs_root *root,
237 struct btrfs_block_group_cache *cache)
238 {
239 u64 start, end;
240
241 start = cache->key.objectid;
242 end = start + cache->key.offset - 1;
243
244 clear_extent_bits(&root->fs_info->freed_extents[0],
245 start, end, EXTENT_UPTODATE, GFP_NOFS);
246 clear_extent_bits(&root->fs_info->freed_extents[1],
247 start, end, EXTENT_UPTODATE, GFP_NOFS);
248 }
249
250 static int exclude_super_stripes(struct btrfs_root *root,
251 struct btrfs_block_group_cache *cache)
252 {
253 u64 bytenr;
254 u64 *logical;
255 int stripe_len;
256 int i, nr, ret;
257
258 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
259 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
260 cache->bytes_super += stripe_len;
261 ret = add_excluded_extent(root, cache->key.objectid,
262 stripe_len);
263 if (ret)
264 return ret;
265 }
266
267 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
268 bytenr = btrfs_sb_offset(i);
269 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
270 cache->key.objectid, bytenr,
271 0, &logical, &nr, &stripe_len);
272 if (ret)
273 return ret;
274
275 while (nr--) {
276 u64 start, len;
277
278 if (logical[nr] > cache->key.objectid +
279 cache->key.offset)
280 continue;
281
282 if (logical[nr] + stripe_len <= cache->key.objectid)
283 continue;
284
285 start = logical[nr];
286 if (start < cache->key.objectid) {
287 start = cache->key.objectid;
288 len = (logical[nr] + stripe_len) - start;
289 } else {
290 len = min_t(u64, stripe_len,
291 cache->key.objectid +
292 cache->key.offset - start);
293 }
294
295 cache->bytes_super += len;
296 ret = add_excluded_extent(root, start, len);
297 if (ret) {
298 kfree(logical);
299 return ret;
300 }
301 }
302
303 kfree(logical);
304 }
305 return 0;
306 }
307
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
310 {
311 struct btrfs_caching_control *ctl;
312
313 spin_lock(&cache->lock);
314 if (cache->cached != BTRFS_CACHE_STARTED) {
315 spin_unlock(&cache->lock);
316 return NULL;
317 }
318
319 /* We're loading it the fast way, so we don't have a caching_ctl. */
320 if (!cache->caching_ctl) {
321 spin_unlock(&cache->lock);
322 return NULL;
323 }
324
325 ctl = cache->caching_ctl;
326 atomic_inc(&ctl->count);
327 spin_unlock(&cache->lock);
328 return ctl;
329 }
330
331 static void put_caching_control(struct btrfs_caching_control *ctl)
332 {
333 if (atomic_dec_and_test(&ctl->count))
334 kfree(ctl);
335 }
336
337 /*
338 * this is only called by cache_block_group, since we could have freed extents
339 * we need to check the pinned_extents for any extents that can't be used yet
340 * since their free space will be released as soon as the transaction commits.
341 */
342 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
343 struct btrfs_fs_info *info, u64 start, u64 end)
344 {
345 u64 extent_start, extent_end, size, total_added = 0;
346 int ret;
347
348 while (start < end) {
349 ret = find_first_extent_bit(info->pinned_extents, start,
350 &extent_start, &extent_end,
351 EXTENT_DIRTY | EXTENT_UPTODATE,
352 NULL);
353 if (ret)
354 break;
355
356 if (extent_start <= start) {
357 start = extent_end + 1;
358 } else if (extent_start > start && extent_start < end) {
359 size = extent_start - start;
360 total_added += size;
361 ret = btrfs_add_free_space(block_group, start,
362 size);
363 BUG_ON(ret); /* -ENOMEM or logic error */
364 start = extent_end + 1;
365 } else {
366 break;
367 }
368 }
369
370 if (start < end) {
371 size = end - start;
372 total_added += size;
373 ret = btrfs_add_free_space(block_group, start, size);
374 BUG_ON(ret); /* -ENOMEM or logic error */
375 }
376
377 return total_added;
378 }
379
380 static noinline void caching_thread(struct btrfs_work *work)
381 {
382 struct btrfs_block_group_cache *block_group;
383 struct btrfs_fs_info *fs_info;
384 struct btrfs_caching_control *caching_ctl;
385 struct btrfs_root *extent_root;
386 struct btrfs_path *path;
387 struct extent_buffer *leaf;
388 struct btrfs_key key;
389 u64 total_found = 0;
390 u64 last = 0;
391 u32 nritems;
392 int ret = -ENOMEM;
393
394 caching_ctl = container_of(work, struct btrfs_caching_control, work);
395 block_group = caching_ctl->block_group;
396 fs_info = block_group->fs_info;
397 extent_root = fs_info->extent_root;
398
399 path = btrfs_alloc_path();
400 if (!path)
401 goto out;
402
403 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
404
405 /*
406 * We don't want to deadlock with somebody trying to allocate a new
407 * extent for the extent root while also trying to search the extent
408 * root to add free space. So we skip locking and search the commit
409 * root, since its read-only
410 */
411 path->skip_locking = 1;
412 path->search_commit_root = 1;
413 path->reada = 1;
414
415 key.objectid = last;
416 key.offset = 0;
417 key.type = BTRFS_EXTENT_ITEM_KEY;
418 again:
419 mutex_lock(&caching_ctl->mutex);
420 /* need to make sure the commit_root doesn't disappear */
421 down_read(&fs_info->extent_commit_sem);
422
423 next:
424 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
425 if (ret < 0)
426 goto err;
427
428 leaf = path->nodes[0];
429 nritems = btrfs_header_nritems(leaf);
430
431 while (1) {
432 if (btrfs_fs_closing(fs_info) > 1) {
433 last = (u64)-1;
434 break;
435 }
436
437 if (path->slots[0] < nritems) {
438 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
439 } else {
440 ret = find_next_key(path, 0, &key);
441 if (ret)
442 break;
443
444 if (need_resched()) {
445 caching_ctl->progress = last;
446 btrfs_release_path(path);
447 up_read(&fs_info->extent_commit_sem);
448 mutex_unlock(&caching_ctl->mutex);
449 cond_resched();
450 goto again;
451 }
452
453 ret = btrfs_next_leaf(extent_root, path);
454 if (ret < 0)
455 goto err;
456 if (ret)
457 break;
458 leaf = path->nodes[0];
459 nritems = btrfs_header_nritems(leaf);
460 continue;
461 }
462
463 if (key.objectid < last) {
464 key.objectid = last;
465 key.offset = 0;
466 key.type = BTRFS_EXTENT_ITEM_KEY;
467
468 caching_ctl->progress = last;
469 btrfs_release_path(path);
470 goto next;
471 }
472
473 if (key.objectid < block_group->key.objectid) {
474 path->slots[0]++;
475 continue;
476 }
477
478 if (key.objectid >= block_group->key.objectid +
479 block_group->key.offset)
480 break;
481
482 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 key.type == BTRFS_METADATA_ITEM_KEY) {
484 total_found += add_new_free_space(block_group,
485 fs_info, last,
486 key.objectid);
487 if (key.type == BTRFS_METADATA_ITEM_KEY)
488 last = key.objectid +
489 fs_info->tree_root->leafsize;
490 else
491 last = key.objectid + key.offset;
492
493 if (total_found > (1024 * 1024 * 2)) {
494 total_found = 0;
495 wake_up(&caching_ctl->wait);
496 }
497 }
498 path->slots[0]++;
499 }
500 ret = 0;
501
502 total_found += add_new_free_space(block_group, fs_info, last,
503 block_group->key.objectid +
504 block_group->key.offset);
505 caching_ctl->progress = (u64)-1;
506
507 spin_lock(&block_group->lock);
508 block_group->caching_ctl = NULL;
509 block_group->cached = BTRFS_CACHE_FINISHED;
510 spin_unlock(&block_group->lock);
511
512 err:
513 btrfs_free_path(path);
514 up_read(&fs_info->extent_commit_sem);
515
516 free_excluded_extents(extent_root, block_group);
517
518 mutex_unlock(&caching_ctl->mutex);
519 out:
520 if (ret) {
521 spin_lock(&block_group->lock);
522 block_group->caching_ctl = NULL;
523 block_group->cached = BTRFS_CACHE_ERROR;
524 spin_unlock(&block_group->lock);
525 }
526 wake_up(&caching_ctl->wait);
527
528 put_caching_control(caching_ctl);
529 btrfs_put_block_group(block_group);
530 }
531
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 int load_cache_only)
534 {
535 DEFINE_WAIT(wait);
536 struct btrfs_fs_info *fs_info = cache->fs_info;
537 struct btrfs_caching_control *caching_ctl;
538 int ret = 0;
539
540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 if (!caching_ctl)
542 return -ENOMEM;
543
544 INIT_LIST_HEAD(&caching_ctl->list);
545 mutex_init(&caching_ctl->mutex);
546 init_waitqueue_head(&caching_ctl->wait);
547 caching_ctl->block_group = cache;
548 caching_ctl->progress = cache->key.objectid;
549 atomic_set(&caching_ctl->count, 1);
550 caching_ctl->work.func = caching_thread;
551
552 spin_lock(&cache->lock);
553 /*
554 * This should be a rare occasion, but this could happen I think in the
555 * case where one thread starts to load the space cache info, and then
556 * some other thread starts a transaction commit which tries to do an
557 * allocation while the other thread is still loading the space cache
558 * info. The previous loop should have kept us from choosing this block
559 * group, but if we've moved to the state where we will wait on caching
560 * block groups we need to first check if we're doing a fast load here,
561 * so we can wait for it to finish, otherwise we could end up allocating
562 * from a block group who's cache gets evicted for one reason or
563 * another.
564 */
565 while (cache->cached == BTRFS_CACHE_FAST) {
566 struct btrfs_caching_control *ctl;
567
568 ctl = cache->caching_ctl;
569 atomic_inc(&ctl->count);
570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 spin_unlock(&cache->lock);
572
573 schedule();
574
575 finish_wait(&ctl->wait, &wait);
576 put_caching_control(ctl);
577 spin_lock(&cache->lock);
578 }
579
580 if (cache->cached != BTRFS_CACHE_NO) {
581 spin_unlock(&cache->lock);
582 kfree(caching_ctl);
583 return 0;
584 }
585 WARN_ON(cache->caching_ctl);
586 cache->caching_ctl = caching_ctl;
587 cache->cached = BTRFS_CACHE_FAST;
588 spin_unlock(&cache->lock);
589
590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
591 ret = load_free_space_cache(fs_info, cache);
592
593 spin_lock(&cache->lock);
594 if (ret == 1) {
595 cache->caching_ctl = NULL;
596 cache->cached = BTRFS_CACHE_FINISHED;
597 cache->last_byte_to_unpin = (u64)-1;
598 } else {
599 if (load_cache_only) {
600 cache->caching_ctl = NULL;
601 cache->cached = BTRFS_CACHE_NO;
602 } else {
603 cache->cached = BTRFS_CACHE_STARTED;
604 }
605 }
606 spin_unlock(&cache->lock);
607 wake_up(&caching_ctl->wait);
608 if (ret == 1) {
609 put_caching_control(caching_ctl);
610 free_excluded_extents(fs_info->extent_root, cache);
611 return 0;
612 }
613 } else {
614 /*
615 * We are not going to do the fast caching, set cached to the
616 * appropriate value and wakeup any waiters.
617 */
618 spin_lock(&cache->lock);
619 if (load_cache_only) {
620 cache->caching_ctl = NULL;
621 cache->cached = BTRFS_CACHE_NO;
622 } else {
623 cache->cached = BTRFS_CACHE_STARTED;
624 }
625 spin_unlock(&cache->lock);
626 wake_up(&caching_ctl->wait);
627 }
628
629 if (load_cache_only) {
630 put_caching_control(caching_ctl);
631 return 0;
632 }
633
634 down_write(&fs_info->extent_commit_sem);
635 atomic_inc(&caching_ctl->count);
636 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
637 up_write(&fs_info->extent_commit_sem);
638
639 btrfs_get_block_group(cache);
640
641 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
642
643 return ret;
644 }
645
646 /*
647 * return the block group that starts at or after bytenr
648 */
649 static struct btrfs_block_group_cache *
650 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
651 {
652 struct btrfs_block_group_cache *cache;
653
654 cache = block_group_cache_tree_search(info, bytenr, 0);
655
656 return cache;
657 }
658
659 /*
660 * return the block group that contains the given bytenr
661 */
662 struct btrfs_block_group_cache *btrfs_lookup_block_group(
663 struct btrfs_fs_info *info,
664 u64 bytenr)
665 {
666 struct btrfs_block_group_cache *cache;
667
668 cache = block_group_cache_tree_search(info, bytenr, 1);
669
670 return cache;
671 }
672
673 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
674 u64 flags)
675 {
676 struct list_head *head = &info->space_info;
677 struct btrfs_space_info *found;
678
679 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
680
681 rcu_read_lock();
682 list_for_each_entry_rcu(found, head, list) {
683 if (found->flags & flags) {
684 rcu_read_unlock();
685 return found;
686 }
687 }
688 rcu_read_unlock();
689 return NULL;
690 }
691
692 /*
693 * after adding space to the filesystem, we need to clear the full flags
694 * on all the space infos.
695 */
696 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
697 {
698 struct list_head *head = &info->space_info;
699 struct btrfs_space_info *found;
700
701 rcu_read_lock();
702 list_for_each_entry_rcu(found, head, list)
703 found->full = 0;
704 rcu_read_unlock();
705 }
706
707 /* simple helper to search for an existing extent at a given offset */
708 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
709 {
710 int ret;
711 struct btrfs_key key;
712 struct btrfs_path *path;
713
714 path = btrfs_alloc_path();
715 if (!path)
716 return -ENOMEM;
717
718 key.objectid = start;
719 key.offset = len;
720 key.type = BTRFS_EXTENT_ITEM_KEY;
721 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
722 0, 0);
723 if (ret > 0) {
724 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
725 if (key.objectid == start &&
726 key.type == BTRFS_METADATA_ITEM_KEY)
727 ret = 0;
728 }
729 btrfs_free_path(path);
730 return ret;
731 }
732
733 /*
734 * helper function to lookup reference count and flags of a tree block.
735 *
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
741 */
742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 bytenr,
744 u64 offset, int metadata, u64 *refs, u64 *flags)
745 {
746 struct btrfs_delayed_ref_head *head;
747 struct btrfs_delayed_ref_root *delayed_refs;
748 struct btrfs_path *path;
749 struct btrfs_extent_item *ei;
750 struct extent_buffer *leaf;
751 struct btrfs_key key;
752 u32 item_size;
753 u64 num_refs;
754 u64 extent_flags;
755 int ret;
756
757 /*
758 * If we don't have skinny metadata, don't bother doing anything
759 * different
760 */
761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
762 offset = root->leafsize;
763 metadata = 0;
764 }
765
766 path = btrfs_alloc_path();
767 if (!path)
768 return -ENOMEM;
769
770 if (!trans) {
771 path->skip_locking = 1;
772 path->search_commit_root = 1;
773 }
774
775 search_again:
776 key.objectid = bytenr;
777 key.offset = offset;
778 if (metadata)
779 key.type = BTRFS_METADATA_ITEM_KEY;
780 else
781 key.type = BTRFS_EXTENT_ITEM_KEY;
782
783 again:
784 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 &key, path, 0, 0);
786 if (ret < 0)
787 goto out_free;
788
789 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
790 if (path->slots[0]) {
791 path->slots[0]--;
792 btrfs_item_key_to_cpu(path->nodes[0], &key,
793 path->slots[0]);
794 if (key.objectid == bytenr &&
795 key.type == BTRFS_EXTENT_ITEM_KEY &&
796 key.offset == root->leafsize)
797 ret = 0;
798 }
799 if (ret) {
800 key.objectid = bytenr;
801 key.type = BTRFS_EXTENT_ITEM_KEY;
802 key.offset = root->leafsize;
803 btrfs_release_path(path);
804 goto again;
805 }
806 }
807
808 if (ret == 0) {
809 leaf = path->nodes[0];
810 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
811 if (item_size >= sizeof(*ei)) {
812 ei = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_extent_item);
814 num_refs = btrfs_extent_refs(leaf, ei);
815 extent_flags = btrfs_extent_flags(leaf, ei);
816 } else {
817 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
818 struct btrfs_extent_item_v0 *ei0;
819 BUG_ON(item_size != sizeof(*ei0));
820 ei0 = btrfs_item_ptr(leaf, path->slots[0],
821 struct btrfs_extent_item_v0);
822 num_refs = btrfs_extent_refs_v0(leaf, ei0);
823 /* FIXME: this isn't correct for data */
824 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
825 #else
826 BUG();
827 #endif
828 }
829 BUG_ON(num_refs == 0);
830 } else {
831 num_refs = 0;
832 extent_flags = 0;
833 ret = 0;
834 }
835
836 if (!trans)
837 goto out;
838
839 delayed_refs = &trans->transaction->delayed_refs;
840 spin_lock(&delayed_refs->lock);
841 head = btrfs_find_delayed_ref_head(trans, bytenr);
842 if (head) {
843 if (!mutex_trylock(&head->mutex)) {
844 atomic_inc(&head->node.refs);
845 spin_unlock(&delayed_refs->lock);
846
847 btrfs_release_path(path);
848
849 /*
850 * Mutex was contended, block until it's released and try
851 * again
852 */
853 mutex_lock(&head->mutex);
854 mutex_unlock(&head->mutex);
855 btrfs_put_delayed_ref(&head->node);
856 goto search_again;
857 }
858 if (head->extent_op && head->extent_op->update_flags)
859 extent_flags |= head->extent_op->flags_to_set;
860 else
861 BUG_ON(num_refs == 0);
862
863 num_refs += head->node.ref_mod;
864 mutex_unlock(&head->mutex);
865 }
866 spin_unlock(&delayed_refs->lock);
867 out:
868 WARN_ON(num_refs == 0);
869 if (refs)
870 *refs = num_refs;
871 if (flags)
872 *flags = extent_flags;
873 out_free:
874 btrfs_free_path(path);
875 return ret;
876 }
877
878 /*
879 * Back reference rules. Back refs have three main goals:
880 *
881 * 1) differentiate between all holders of references to an extent so that
882 * when a reference is dropped we can make sure it was a valid reference
883 * before freeing the extent.
884 *
885 * 2) Provide enough information to quickly find the holders of an extent
886 * if we notice a given block is corrupted or bad.
887 *
888 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
889 * maintenance. This is actually the same as #2, but with a slightly
890 * different use case.
891 *
892 * There are two kinds of back refs. The implicit back refs is optimized
893 * for pointers in non-shared tree blocks. For a given pointer in a block,
894 * back refs of this kind provide information about the block's owner tree
895 * and the pointer's key. These information allow us to find the block by
896 * b-tree searching. The full back refs is for pointers in tree blocks not
897 * referenced by their owner trees. The location of tree block is recorded
898 * in the back refs. Actually the full back refs is generic, and can be
899 * used in all cases the implicit back refs is used. The major shortcoming
900 * of the full back refs is its overhead. Every time a tree block gets
901 * COWed, we have to update back refs entry for all pointers in it.
902 *
903 * For a newly allocated tree block, we use implicit back refs for
904 * pointers in it. This means most tree related operations only involve
905 * implicit back refs. For a tree block created in old transaction, the
906 * only way to drop a reference to it is COW it. So we can detect the
907 * event that tree block loses its owner tree's reference and do the
908 * back refs conversion.
909 *
910 * When a tree block is COW'd through a tree, there are four cases:
911 *
912 * The reference count of the block is one and the tree is the block's
913 * owner tree. Nothing to do in this case.
914 *
915 * The reference count of the block is one and the tree is not the
916 * block's owner tree. In this case, full back refs is used for pointers
917 * in the block. Remove these full back refs, add implicit back refs for
918 * every pointers in the new block.
919 *
920 * The reference count of the block is greater than one and the tree is
921 * the block's owner tree. In this case, implicit back refs is used for
922 * pointers in the block. Add full back refs for every pointers in the
923 * block, increase lower level extents' reference counts. The original
924 * implicit back refs are entailed to the new block.
925 *
926 * The reference count of the block is greater than one and the tree is
927 * not the block's owner tree. Add implicit back refs for every pointer in
928 * the new block, increase lower level extents' reference count.
929 *
930 * Back Reference Key composing:
931 *
932 * The key objectid corresponds to the first byte in the extent,
933 * The key type is used to differentiate between types of back refs.
934 * There are different meanings of the key offset for different types
935 * of back refs.
936 *
937 * File extents can be referenced by:
938 *
939 * - multiple snapshots, subvolumes, or different generations in one subvol
940 * - different files inside a single subvolume
941 * - different offsets inside a file (bookend extents in file.c)
942 *
943 * The extent ref structure for the implicit back refs has fields for:
944 *
945 * - Objectid of the subvolume root
946 * - objectid of the file holding the reference
947 * - original offset in the file
948 * - how many bookend extents
949 *
950 * The key offset for the implicit back refs is hash of the first
951 * three fields.
952 *
953 * The extent ref structure for the full back refs has field for:
954 *
955 * - number of pointers in the tree leaf
956 *
957 * The key offset for the implicit back refs is the first byte of
958 * the tree leaf
959 *
960 * When a file extent is allocated, The implicit back refs is used.
961 * the fields are filled in:
962 *
963 * (root_key.objectid, inode objectid, offset in file, 1)
964 *
965 * When a file extent is removed file truncation, we find the
966 * corresponding implicit back refs and check the following fields:
967 *
968 * (btrfs_header_owner(leaf), inode objectid, offset in file)
969 *
970 * Btree extents can be referenced by:
971 *
972 * - Different subvolumes
973 *
974 * Both the implicit back refs and the full back refs for tree blocks
975 * only consist of key. The key offset for the implicit back refs is
976 * objectid of block's owner tree. The key offset for the full back refs
977 * is the first byte of parent block.
978 *
979 * When implicit back refs is used, information about the lowest key and
980 * level of the tree block are required. These information are stored in
981 * tree block info structure.
982 */
983
984 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
985 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
986 struct btrfs_root *root,
987 struct btrfs_path *path,
988 u64 owner, u32 extra_size)
989 {
990 struct btrfs_extent_item *item;
991 struct btrfs_extent_item_v0 *ei0;
992 struct btrfs_extent_ref_v0 *ref0;
993 struct btrfs_tree_block_info *bi;
994 struct extent_buffer *leaf;
995 struct btrfs_key key;
996 struct btrfs_key found_key;
997 u32 new_size = sizeof(*item);
998 u64 refs;
999 int ret;
1000
1001 leaf = path->nodes[0];
1002 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1003
1004 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1005 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1006 struct btrfs_extent_item_v0);
1007 refs = btrfs_extent_refs_v0(leaf, ei0);
1008
1009 if (owner == (u64)-1) {
1010 while (1) {
1011 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1012 ret = btrfs_next_leaf(root, path);
1013 if (ret < 0)
1014 return ret;
1015 BUG_ON(ret > 0); /* Corruption */
1016 leaf = path->nodes[0];
1017 }
1018 btrfs_item_key_to_cpu(leaf, &found_key,
1019 path->slots[0]);
1020 BUG_ON(key.objectid != found_key.objectid);
1021 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1022 path->slots[0]++;
1023 continue;
1024 }
1025 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1026 struct btrfs_extent_ref_v0);
1027 owner = btrfs_ref_objectid_v0(leaf, ref0);
1028 break;
1029 }
1030 }
1031 btrfs_release_path(path);
1032
1033 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1034 new_size += sizeof(*bi);
1035
1036 new_size -= sizeof(*ei0);
1037 ret = btrfs_search_slot(trans, root, &key, path,
1038 new_size + extra_size, 1);
1039 if (ret < 0)
1040 return ret;
1041 BUG_ON(ret); /* Corruption */
1042
1043 btrfs_extend_item(root, path, new_size);
1044
1045 leaf = path->nodes[0];
1046 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1047 btrfs_set_extent_refs(leaf, item, refs);
1048 /* FIXME: get real generation */
1049 btrfs_set_extent_generation(leaf, item, 0);
1050 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1051 btrfs_set_extent_flags(leaf, item,
1052 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1053 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1054 bi = (struct btrfs_tree_block_info *)(item + 1);
1055 /* FIXME: get first key of the block */
1056 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1057 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1058 } else {
1059 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1060 }
1061 btrfs_mark_buffer_dirty(leaf);
1062 return 0;
1063 }
1064 #endif
1065
1066 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1067 {
1068 u32 high_crc = ~(u32)0;
1069 u32 low_crc = ~(u32)0;
1070 __le64 lenum;
1071
1072 lenum = cpu_to_le64(root_objectid);
1073 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1074 lenum = cpu_to_le64(owner);
1075 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1076 lenum = cpu_to_le64(offset);
1077 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1078
1079 return ((u64)high_crc << 31) ^ (u64)low_crc;
1080 }
1081
1082 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1083 struct btrfs_extent_data_ref *ref)
1084 {
1085 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1086 btrfs_extent_data_ref_objectid(leaf, ref),
1087 btrfs_extent_data_ref_offset(leaf, ref));
1088 }
1089
1090 static int match_extent_data_ref(struct extent_buffer *leaf,
1091 struct btrfs_extent_data_ref *ref,
1092 u64 root_objectid, u64 owner, u64 offset)
1093 {
1094 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1095 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1096 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1097 return 0;
1098 return 1;
1099 }
1100
1101 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1102 struct btrfs_root *root,
1103 struct btrfs_path *path,
1104 u64 bytenr, u64 parent,
1105 u64 root_objectid,
1106 u64 owner, u64 offset)
1107 {
1108 struct btrfs_key key;
1109 struct btrfs_extent_data_ref *ref;
1110 struct extent_buffer *leaf;
1111 u32 nritems;
1112 int ret;
1113 int recow;
1114 int err = -ENOENT;
1115
1116 key.objectid = bytenr;
1117 if (parent) {
1118 key.type = BTRFS_SHARED_DATA_REF_KEY;
1119 key.offset = parent;
1120 } else {
1121 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1122 key.offset = hash_extent_data_ref(root_objectid,
1123 owner, offset);
1124 }
1125 again:
1126 recow = 0;
1127 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1128 if (ret < 0) {
1129 err = ret;
1130 goto fail;
1131 }
1132
1133 if (parent) {
1134 if (!ret)
1135 return 0;
1136 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1137 key.type = BTRFS_EXTENT_REF_V0_KEY;
1138 btrfs_release_path(path);
1139 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1140 if (ret < 0) {
1141 err = ret;
1142 goto fail;
1143 }
1144 if (!ret)
1145 return 0;
1146 #endif
1147 goto fail;
1148 }
1149
1150 leaf = path->nodes[0];
1151 nritems = btrfs_header_nritems(leaf);
1152 while (1) {
1153 if (path->slots[0] >= nritems) {
1154 ret = btrfs_next_leaf(root, path);
1155 if (ret < 0)
1156 err = ret;
1157 if (ret)
1158 goto fail;
1159
1160 leaf = path->nodes[0];
1161 nritems = btrfs_header_nritems(leaf);
1162 recow = 1;
1163 }
1164
1165 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1166 if (key.objectid != bytenr ||
1167 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1168 goto fail;
1169
1170 ref = btrfs_item_ptr(leaf, path->slots[0],
1171 struct btrfs_extent_data_ref);
1172
1173 if (match_extent_data_ref(leaf, ref, root_objectid,
1174 owner, offset)) {
1175 if (recow) {
1176 btrfs_release_path(path);
1177 goto again;
1178 }
1179 err = 0;
1180 break;
1181 }
1182 path->slots[0]++;
1183 }
1184 fail:
1185 return err;
1186 }
1187
1188 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1189 struct btrfs_root *root,
1190 struct btrfs_path *path,
1191 u64 bytenr, u64 parent,
1192 u64 root_objectid, u64 owner,
1193 u64 offset, int refs_to_add)
1194 {
1195 struct btrfs_key key;
1196 struct extent_buffer *leaf;
1197 u32 size;
1198 u32 num_refs;
1199 int ret;
1200
1201 key.objectid = bytenr;
1202 if (parent) {
1203 key.type = BTRFS_SHARED_DATA_REF_KEY;
1204 key.offset = parent;
1205 size = sizeof(struct btrfs_shared_data_ref);
1206 } else {
1207 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1208 key.offset = hash_extent_data_ref(root_objectid,
1209 owner, offset);
1210 size = sizeof(struct btrfs_extent_data_ref);
1211 }
1212
1213 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1214 if (ret && ret != -EEXIST)
1215 goto fail;
1216
1217 leaf = path->nodes[0];
1218 if (parent) {
1219 struct btrfs_shared_data_ref *ref;
1220 ref = btrfs_item_ptr(leaf, path->slots[0],
1221 struct btrfs_shared_data_ref);
1222 if (ret == 0) {
1223 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1224 } else {
1225 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1226 num_refs += refs_to_add;
1227 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1228 }
1229 } else {
1230 struct btrfs_extent_data_ref *ref;
1231 while (ret == -EEXIST) {
1232 ref = btrfs_item_ptr(leaf, path->slots[0],
1233 struct btrfs_extent_data_ref);
1234 if (match_extent_data_ref(leaf, ref, root_objectid,
1235 owner, offset))
1236 break;
1237 btrfs_release_path(path);
1238 key.offset++;
1239 ret = btrfs_insert_empty_item(trans, root, path, &key,
1240 size);
1241 if (ret && ret != -EEXIST)
1242 goto fail;
1243
1244 leaf = path->nodes[0];
1245 }
1246 ref = btrfs_item_ptr(leaf, path->slots[0],
1247 struct btrfs_extent_data_ref);
1248 if (ret == 0) {
1249 btrfs_set_extent_data_ref_root(leaf, ref,
1250 root_objectid);
1251 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1252 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1253 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1254 } else {
1255 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1256 num_refs += refs_to_add;
1257 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1258 }
1259 }
1260 btrfs_mark_buffer_dirty(leaf);
1261 ret = 0;
1262 fail:
1263 btrfs_release_path(path);
1264 return ret;
1265 }
1266
1267 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1268 struct btrfs_root *root,
1269 struct btrfs_path *path,
1270 int refs_to_drop)
1271 {
1272 struct btrfs_key key;
1273 struct btrfs_extent_data_ref *ref1 = NULL;
1274 struct btrfs_shared_data_ref *ref2 = NULL;
1275 struct extent_buffer *leaf;
1276 u32 num_refs = 0;
1277 int ret = 0;
1278
1279 leaf = path->nodes[0];
1280 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1281
1282 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1283 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1284 struct btrfs_extent_data_ref);
1285 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1286 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1287 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_shared_data_ref);
1289 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1290 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1291 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1292 struct btrfs_extent_ref_v0 *ref0;
1293 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1294 struct btrfs_extent_ref_v0);
1295 num_refs = btrfs_ref_count_v0(leaf, ref0);
1296 #endif
1297 } else {
1298 BUG();
1299 }
1300
1301 BUG_ON(num_refs < refs_to_drop);
1302 num_refs -= refs_to_drop;
1303
1304 if (num_refs == 0) {
1305 ret = btrfs_del_item(trans, root, path);
1306 } else {
1307 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1308 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1309 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1310 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1311 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1312 else {
1313 struct btrfs_extent_ref_v0 *ref0;
1314 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1315 struct btrfs_extent_ref_v0);
1316 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1317 }
1318 #endif
1319 btrfs_mark_buffer_dirty(leaf);
1320 }
1321 return ret;
1322 }
1323
1324 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1325 struct btrfs_path *path,
1326 struct btrfs_extent_inline_ref *iref)
1327 {
1328 struct btrfs_key key;
1329 struct extent_buffer *leaf;
1330 struct btrfs_extent_data_ref *ref1;
1331 struct btrfs_shared_data_ref *ref2;
1332 u32 num_refs = 0;
1333
1334 leaf = path->nodes[0];
1335 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1336 if (iref) {
1337 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1338 BTRFS_EXTENT_DATA_REF_KEY) {
1339 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1340 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1341 } else {
1342 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1343 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1344 }
1345 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1346 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_extent_data_ref);
1348 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1349 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1350 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_shared_data_ref);
1352 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1353 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1354 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1355 struct btrfs_extent_ref_v0 *ref0;
1356 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1357 struct btrfs_extent_ref_v0);
1358 num_refs = btrfs_ref_count_v0(leaf, ref0);
1359 #endif
1360 } else {
1361 WARN_ON(1);
1362 }
1363 return num_refs;
1364 }
1365
1366 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1367 struct btrfs_root *root,
1368 struct btrfs_path *path,
1369 u64 bytenr, u64 parent,
1370 u64 root_objectid)
1371 {
1372 struct btrfs_key key;
1373 int ret;
1374
1375 key.objectid = bytenr;
1376 if (parent) {
1377 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1378 key.offset = parent;
1379 } else {
1380 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1381 key.offset = root_objectid;
1382 }
1383
1384 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1385 if (ret > 0)
1386 ret = -ENOENT;
1387 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1388 if (ret == -ENOENT && parent) {
1389 btrfs_release_path(path);
1390 key.type = BTRFS_EXTENT_REF_V0_KEY;
1391 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1392 if (ret > 0)
1393 ret = -ENOENT;
1394 }
1395 #endif
1396 return ret;
1397 }
1398
1399 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1400 struct btrfs_root *root,
1401 struct btrfs_path *path,
1402 u64 bytenr, u64 parent,
1403 u64 root_objectid)
1404 {
1405 struct btrfs_key key;
1406 int ret;
1407
1408 key.objectid = bytenr;
1409 if (parent) {
1410 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1411 key.offset = parent;
1412 } else {
1413 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1414 key.offset = root_objectid;
1415 }
1416
1417 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1418 btrfs_release_path(path);
1419 return ret;
1420 }
1421
1422 static inline int extent_ref_type(u64 parent, u64 owner)
1423 {
1424 int type;
1425 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1426 if (parent > 0)
1427 type = BTRFS_SHARED_BLOCK_REF_KEY;
1428 else
1429 type = BTRFS_TREE_BLOCK_REF_KEY;
1430 } else {
1431 if (parent > 0)
1432 type = BTRFS_SHARED_DATA_REF_KEY;
1433 else
1434 type = BTRFS_EXTENT_DATA_REF_KEY;
1435 }
1436 return type;
1437 }
1438
1439 static int find_next_key(struct btrfs_path *path, int level,
1440 struct btrfs_key *key)
1441
1442 {
1443 for (; level < BTRFS_MAX_LEVEL; level++) {
1444 if (!path->nodes[level])
1445 break;
1446 if (path->slots[level] + 1 >=
1447 btrfs_header_nritems(path->nodes[level]))
1448 continue;
1449 if (level == 0)
1450 btrfs_item_key_to_cpu(path->nodes[level], key,
1451 path->slots[level] + 1);
1452 else
1453 btrfs_node_key_to_cpu(path->nodes[level], key,
1454 path->slots[level] + 1);
1455 return 0;
1456 }
1457 return 1;
1458 }
1459
1460 /*
1461 * look for inline back ref. if back ref is found, *ref_ret is set
1462 * to the address of inline back ref, and 0 is returned.
1463 *
1464 * if back ref isn't found, *ref_ret is set to the address where it
1465 * should be inserted, and -ENOENT is returned.
1466 *
1467 * if insert is true and there are too many inline back refs, the path
1468 * points to the extent item, and -EAGAIN is returned.
1469 *
1470 * NOTE: inline back refs are ordered in the same way that back ref
1471 * items in the tree are ordered.
1472 */
1473 static noinline_for_stack
1474 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1475 struct btrfs_root *root,
1476 struct btrfs_path *path,
1477 struct btrfs_extent_inline_ref **ref_ret,
1478 u64 bytenr, u64 num_bytes,
1479 u64 parent, u64 root_objectid,
1480 u64 owner, u64 offset, int insert)
1481 {
1482 struct btrfs_key key;
1483 struct extent_buffer *leaf;
1484 struct btrfs_extent_item *ei;
1485 struct btrfs_extent_inline_ref *iref;
1486 u64 flags;
1487 u64 item_size;
1488 unsigned long ptr;
1489 unsigned long end;
1490 int extra_size;
1491 int type;
1492 int want;
1493 int ret;
1494 int err = 0;
1495 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1496 SKINNY_METADATA);
1497
1498 key.objectid = bytenr;
1499 key.type = BTRFS_EXTENT_ITEM_KEY;
1500 key.offset = num_bytes;
1501
1502 want = extent_ref_type(parent, owner);
1503 if (insert) {
1504 extra_size = btrfs_extent_inline_ref_size(want);
1505 path->keep_locks = 1;
1506 } else
1507 extra_size = -1;
1508
1509 /*
1510 * Owner is our parent level, so we can just add one to get the level
1511 * for the block we are interested in.
1512 */
1513 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1514 key.type = BTRFS_METADATA_ITEM_KEY;
1515 key.offset = owner;
1516 }
1517
1518 again:
1519 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1520 if (ret < 0) {
1521 err = ret;
1522 goto out;
1523 }
1524
1525 /*
1526 * We may be a newly converted file system which still has the old fat
1527 * extent entries for metadata, so try and see if we have one of those.
1528 */
1529 if (ret > 0 && skinny_metadata) {
1530 skinny_metadata = false;
1531 if (path->slots[0]) {
1532 path->slots[0]--;
1533 btrfs_item_key_to_cpu(path->nodes[0], &key,
1534 path->slots[0]);
1535 if (key.objectid == bytenr &&
1536 key.type == BTRFS_EXTENT_ITEM_KEY &&
1537 key.offset == num_bytes)
1538 ret = 0;
1539 }
1540 if (ret) {
1541 key.type = BTRFS_EXTENT_ITEM_KEY;
1542 key.offset = num_bytes;
1543 btrfs_release_path(path);
1544 goto again;
1545 }
1546 }
1547
1548 if (ret && !insert) {
1549 err = -ENOENT;
1550 goto out;
1551 } else if (WARN_ON(ret)) {
1552 err = -EIO;
1553 goto out;
1554 }
1555
1556 leaf = path->nodes[0];
1557 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1558 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1559 if (item_size < sizeof(*ei)) {
1560 if (!insert) {
1561 err = -ENOENT;
1562 goto out;
1563 }
1564 ret = convert_extent_item_v0(trans, root, path, owner,
1565 extra_size);
1566 if (ret < 0) {
1567 err = ret;
1568 goto out;
1569 }
1570 leaf = path->nodes[0];
1571 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1572 }
1573 #endif
1574 BUG_ON(item_size < sizeof(*ei));
1575
1576 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1577 flags = btrfs_extent_flags(leaf, ei);
1578
1579 ptr = (unsigned long)(ei + 1);
1580 end = (unsigned long)ei + item_size;
1581
1582 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1583 ptr += sizeof(struct btrfs_tree_block_info);
1584 BUG_ON(ptr > end);
1585 }
1586
1587 err = -ENOENT;
1588 while (1) {
1589 if (ptr >= end) {
1590 WARN_ON(ptr > end);
1591 break;
1592 }
1593 iref = (struct btrfs_extent_inline_ref *)ptr;
1594 type = btrfs_extent_inline_ref_type(leaf, iref);
1595 if (want < type)
1596 break;
1597 if (want > type) {
1598 ptr += btrfs_extent_inline_ref_size(type);
1599 continue;
1600 }
1601
1602 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1603 struct btrfs_extent_data_ref *dref;
1604 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1605 if (match_extent_data_ref(leaf, dref, root_objectid,
1606 owner, offset)) {
1607 err = 0;
1608 break;
1609 }
1610 if (hash_extent_data_ref_item(leaf, dref) <
1611 hash_extent_data_ref(root_objectid, owner, offset))
1612 break;
1613 } else {
1614 u64 ref_offset;
1615 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1616 if (parent > 0) {
1617 if (parent == ref_offset) {
1618 err = 0;
1619 break;
1620 }
1621 if (ref_offset < parent)
1622 break;
1623 } else {
1624 if (root_objectid == ref_offset) {
1625 err = 0;
1626 break;
1627 }
1628 if (ref_offset < root_objectid)
1629 break;
1630 }
1631 }
1632 ptr += btrfs_extent_inline_ref_size(type);
1633 }
1634 if (err == -ENOENT && insert) {
1635 if (item_size + extra_size >=
1636 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1637 err = -EAGAIN;
1638 goto out;
1639 }
1640 /*
1641 * To add new inline back ref, we have to make sure
1642 * there is no corresponding back ref item.
1643 * For simplicity, we just do not add new inline back
1644 * ref if there is any kind of item for this block
1645 */
1646 if (find_next_key(path, 0, &key) == 0 &&
1647 key.objectid == bytenr &&
1648 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1649 err = -EAGAIN;
1650 goto out;
1651 }
1652 }
1653 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1654 out:
1655 if (insert) {
1656 path->keep_locks = 0;
1657 btrfs_unlock_up_safe(path, 1);
1658 }
1659 return err;
1660 }
1661
1662 /*
1663 * helper to add new inline back ref
1664 */
1665 static noinline_for_stack
1666 void setup_inline_extent_backref(struct btrfs_root *root,
1667 struct btrfs_path *path,
1668 struct btrfs_extent_inline_ref *iref,
1669 u64 parent, u64 root_objectid,
1670 u64 owner, u64 offset, int refs_to_add,
1671 struct btrfs_delayed_extent_op *extent_op)
1672 {
1673 struct extent_buffer *leaf;
1674 struct btrfs_extent_item *ei;
1675 unsigned long ptr;
1676 unsigned long end;
1677 unsigned long item_offset;
1678 u64 refs;
1679 int size;
1680 int type;
1681
1682 leaf = path->nodes[0];
1683 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1684 item_offset = (unsigned long)iref - (unsigned long)ei;
1685
1686 type = extent_ref_type(parent, owner);
1687 size = btrfs_extent_inline_ref_size(type);
1688
1689 btrfs_extend_item(root, path, size);
1690
1691 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1692 refs = btrfs_extent_refs(leaf, ei);
1693 refs += refs_to_add;
1694 btrfs_set_extent_refs(leaf, ei, refs);
1695 if (extent_op)
1696 __run_delayed_extent_op(extent_op, leaf, ei);
1697
1698 ptr = (unsigned long)ei + item_offset;
1699 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1700 if (ptr < end - size)
1701 memmove_extent_buffer(leaf, ptr + size, ptr,
1702 end - size - ptr);
1703
1704 iref = (struct btrfs_extent_inline_ref *)ptr;
1705 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1706 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1707 struct btrfs_extent_data_ref *dref;
1708 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1709 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1710 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1711 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1712 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1713 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1714 struct btrfs_shared_data_ref *sref;
1715 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1716 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1717 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1718 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1719 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1720 } else {
1721 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1722 }
1723 btrfs_mark_buffer_dirty(leaf);
1724 }
1725
1726 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1727 struct btrfs_root *root,
1728 struct btrfs_path *path,
1729 struct btrfs_extent_inline_ref **ref_ret,
1730 u64 bytenr, u64 num_bytes, u64 parent,
1731 u64 root_objectid, u64 owner, u64 offset)
1732 {
1733 int ret;
1734
1735 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1736 bytenr, num_bytes, parent,
1737 root_objectid, owner, offset, 0);
1738 if (ret != -ENOENT)
1739 return ret;
1740
1741 btrfs_release_path(path);
1742 *ref_ret = NULL;
1743
1744 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1745 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1746 root_objectid);
1747 } else {
1748 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1749 root_objectid, owner, offset);
1750 }
1751 return ret;
1752 }
1753
1754 /*
1755 * helper to update/remove inline back ref
1756 */
1757 static noinline_for_stack
1758 void update_inline_extent_backref(struct btrfs_root *root,
1759 struct btrfs_path *path,
1760 struct btrfs_extent_inline_ref *iref,
1761 int refs_to_mod,
1762 struct btrfs_delayed_extent_op *extent_op)
1763 {
1764 struct extent_buffer *leaf;
1765 struct btrfs_extent_item *ei;
1766 struct btrfs_extent_data_ref *dref = NULL;
1767 struct btrfs_shared_data_ref *sref = NULL;
1768 unsigned long ptr;
1769 unsigned long end;
1770 u32 item_size;
1771 int size;
1772 int type;
1773 u64 refs;
1774
1775 leaf = path->nodes[0];
1776 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1777 refs = btrfs_extent_refs(leaf, ei);
1778 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1779 refs += refs_to_mod;
1780 btrfs_set_extent_refs(leaf, ei, refs);
1781 if (extent_op)
1782 __run_delayed_extent_op(extent_op, leaf, ei);
1783
1784 type = btrfs_extent_inline_ref_type(leaf, iref);
1785
1786 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1787 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1788 refs = btrfs_extent_data_ref_count(leaf, dref);
1789 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1790 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1791 refs = btrfs_shared_data_ref_count(leaf, sref);
1792 } else {
1793 refs = 1;
1794 BUG_ON(refs_to_mod != -1);
1795 }
1796
1797 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1798 refs += refs_to_mod;
1799
1800 if (refs > 0) {
1801 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1802 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1803 else
1804 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1805 } else {
1806 size = btrfs_extent_inline_ref_size(type);
1807 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1808 ptr = (unsigned long)iref;
1809 end = (unsigned long)ei + item_size;
1810 if (ptr + size < end)
1811 memmove_extent_buffer(leaf, ptr, ptr + size,
1812 end - ptr - size);
1813 item_size -= size;
1814 btrfs_truncate_item(root, path, item_size, 1);
1815 }
1816 btrfs_mark_buffer_dirty(leaf);
1817 }
1818
1819 static noinline_for_stack
1820 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1821 struct btrfs_root *root,
1822 struct btrfs_path *path,
1823 u64 bytenr, u64 num_bytes, u64 parent,
1824 u64 root_objectid, u64 owner,
1825 u64 offset, int refs_to_add,
1826 struct btrfs_delayed_extent_op *extent_op)
1827 {
1828 struct btrfs_extent_inline_ref *iref;
1829 int ret;
1830
1831 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1832 bytenr, num_bytes, parent,
1833 root_objectid, owner, offset, 1);
1834 if (ret == 0) {
1835 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1836 update_inline_extent_backref(root, path, iref,
1837 refs_to_add, extent_op);
1838 } else if (ret == -ENOENT) {
1839 setup_inline_extent_backref(root, path, iref, parent,
1840 root_objectid, owner, offset,
1841 refs_to_add, extent_op);
1842 ret = 0;
1843 }
1844 return ret;
1845 }
1846
1847 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1848 struct btrfs_root *root,
1849 struct btrfs_path *path,
1850 u64 bytenr, u64 parent, u64 root_objectid,
1851 u64 owner, u64 offset, int refs_to_add)
1852 {
1853 int ret;
1854 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1855 BUG_ON(refs_to_add != 1);
1856 ret = insert_tree_block_ref(trans, root, path, bytenr,
1857 parent, root_objectid);
1858 } else {
1859 ret = insert_extent_data_ref(trans, root, path, bytenr,
1860 parent, root_objectid,
1861 owner, offset, refs_to_add);
1862 }
1863 return ret;
1864 }
1865
1866 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1867 struct btrfs_root *root,
1868 struct btrfs_path *path,
1869 struct btrfs_extent_inline_ref *iref,
1870 int refs_to_drop, int is_data)
1871 {
1872 int ret = 0;
1873
1874 BUG_ON(!is_data && refs_to_drop != 1);
1875 if (iref) {
1876 update_inline_extent_backref(root, path, iref,
1877 -refs_to_drop, NULL);
1878 } else if (is_data) {
1879 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1880 } else {
1881 ret = btrfs_del_item(trans, root, path);
1882 }
1883 return ret;
1884 }
1885
1886 static int btrfs_issue_discard(struct block_device *bdev,
1887 u64 start, u64 len)
1888 {
1889 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1890 }
1891
1892 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1893 u64 num_bytes, u64 *actual_bytes)
1894 {
1895 int ret;
1896 u64 discarded_bytes = 0;
1897 struct btrfs_bio *bbio = NULL;
1898
1899
1900 /* Tell the block device(s) that the sectors can be discarded */
1901 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1902 bytenr, &num_bytes, &bbio, 0);
1903 /* Error condition is -ENOMEM */
1904 if (!ret) {
1905 struct btrfs_bio_stripe *stripe = bbio->stripes;
1906 int i;
1907
1908
1909 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1910 if (!stripe->dev->can_discard)
1911 continue;
1912
1913 ret = btrfs_issue_discard(stripe->dev->bdev,
1914 stripe->physical,
1915 stripe->length);
1916 if (!ret)
1917 discarded_bytes += stripe->length;
1918 else if (ret != -EOPNOTSUPP)
1919 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1920
1921 /*
1922 * Just in case we get back EOPNOTSUPP for some reason,
1923 * just ignore the return value so we don't screw up
1924 * people calling discard_extent.
1925 */
1926 ret = 0;
1927 }
1928 kfree(bbio);
1929 }
1930
1931 if (actual_bytes)
1932 *actual_bytes = discarded_bytes;
1933
1934
1935 if (ret == -EOPNOTSUPP)
1936 ret = 0;
1937 return ret;
1938 }
1939
1940 /* Can return -ENOMEM */
1941 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1942 struct btrfs_root *root,
1943 u64 bytenr, u64 num_bytes, u64 parent,
1944 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1945 {
1946 int ret;
1947 struct btrfs_fs_info *fs_info = root->fs_info;
1948
1949 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1950 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1951
1952 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1953 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1954 num_bytes,
1955 parent, root_objectid, (int)owner,
1956 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1957 } else {
1958 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1959 num_bytes,
1960 parent, root_objectid, owner, offset,
1961 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1962 }
1963 return ret;
1964 }
1965
1966 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1967 struct btrfs_root *root,
1968 u64 bytenr, u64 num_bytes,
1969 u64 parent, u64 root_objectid,
1970 u64 owner, u64 offset, int refs_to_add,
1971 struct btrfs_delayed_extent_op *extent_op)
1972 {
1973 struct btrfs_path *path;
1974 struct extent_buffer *leaf;
1975 struct btrfs_extent_item *item;
1976 u64 refs;
1977 int ret;
1978
1979 path = btrfs_alloc_path();
1980 if (!path)
1981 return -ENOMEM;
1982
1983 path->reada = 1;
1984 path->leave_spinning = 1;
1985 /* this will setup the path even if it fails to insert the back ref */
1986 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1987 path, bytenr, num_bytes, parent,
1988 root_objectid, owner, offset,
1989 refs_to_add, extent_op);
1990 if (ret != -EAGAIN)
1991 goto out;
1992
1993 leaf = path->nodes[0];
1994 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1995 refs = btrfs_extent_refs(leaf, item);
1996 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1997 if (extent_op)
1998 __run_delayed_extent_op(extent_op, leaf, item);
1999
2000 btrfs_mark_buffer_dirty(leaf);
2001 btrfs_release_path(path);
2002
2003 path->reada = 1;
2004 path->leave_spinning = 1;
2005
2006 /* now insert the actual backref */
2007 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2008 path, bytenr, parent, root_objectid,
2009 owner, offset, refs_to_add);
2010 if (ret)
2011 btrfs_abort_transaction(trans, root, ret);
2012 out:
2013 btrfs_free_path(path);
2014 return ret;
2015 }
2016
2017 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2018 struct btrfs_root *root,
2019 struct btrfs_delayed_ref_node *node,
2020 struct btrfs_delayed_extent_op *extent_op,
2021 int insert_reserved)
2022 {
2023 int ret = 0;
2024 struct btrfs_delayed_data_ref *ref;
2025 struct btrfs_key ins;
2026 u64 parent = 0;
2027 u64 ref_root = 0;
2028 u64 flags = 0;
2029
2030 ins.objectid = node->bytenr;
2031 ins.offset = node->num_bytes;
2032 ins.type = BTRFS_EXTENT_ITEM_KEY;
2033
2034 ref = btrfs_delayed_node_to_data_ref(node);
2035 trace_run_delayed_data_ref(node, ref, node->action);
2036
2037 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2038 parent = ref->parent;
2039 else
2040 ref_root = ref->root;
2041
2042 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2043 if (extent_op)
2044 flags |= extent_op->flags_to_set;
2045 ret = alloc_reserved_file_extent(trans, root,
2046 parent, ref_root, flags,
2047 ref->objectid, ref->offset,
2048 &ins, node->ref_mod);
2049 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2050 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2051 node->num_bytes, parent,
2052 ref_root, ref->objectid,
2053 ref->offset, node->ref_mod,
2054 extent_op);
2055 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2056 ret = __btrfs_free_extent(trans, root, node->bytenr,
2057 node->num_bytes, parent,
2058 ref_root, ref->objectid,
2059 ref->offset, node->ref_mod,
2060 extent_op);
2061 } else {
2062 BUG();
2063 }
2064 return ret;
2065 }
2066
2067 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2068 struct extent_buffer *leaf,
2069 struct btrfs_extent_item *ei)
2070 {
2071 u64 flags = btrfs_extent_flags(leaf, ei);
2072 if (extent_op->update_flags) {
2073 flags |= extent_op->flags_to_set;
2074 btrfs_set_extent_flags(leaf, ei, flags);
2075 }
2076
2077 if (extent_op->update_key) {
2078 struct btrfs_tree_block_info *bi;
2079 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2080 bi = (struct btrfs_tree_block_info *)(ei + 1);
2081 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2082 }
2083 }
2084
2085 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2086 struct btrfs_root *root,
2087 struct btrfs_delayed_ref_node *node,
2088 struct btrfs_delayed_extent_op *extent_op)
2089 {
2090 struct btrfs_key key;
2091 struct btrfs_path *path;
2092 struct btrfs_extent_item *ei;
2093 struct extent_buffer *leaf;
2094 u32 item_size;
2095 int ret;
2096 int err = 0;
2097 int metadata = !extent_op->is_data;
2098
2099 if (trans->aborted)
2100 return 0;
2101
2102 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2103 metadata = 0;
2104
2105 path = btrfs_alloc_path();
2106 if (!path)
2107 return -ENOMEM;
2108
2109 key.objectid = node->bytenr;
2110
2111 if (metadata) {
2112 key.type = BTRFS_METADATA_ITEM_KEY;
2113 key.offset = extent_op->level;
2114 } else {
2115 key.type = BTRFS_EXTENT_ITEM_KEY;
2116 key.offset = node->num_bytes;
2117 }
2118
2119 again:
2120 path->reada = 1;
2121 path->leave_spinning = 1;
2122 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2123 path, 0, 1);
2124 if (ret < 0) {
2125 err = ret;
2126 goto out;
2127 }
2128 if (ret > 0) {
2129 if (metadata) {
2130 if (path->slots[0] > 0) {
2131 path->slots[0]--;
2132 btrfs_item_key_to_cpu(path->nodes[0], &key,
2133 path->slots[0]);
2134 if (key.objectid == node->bytenr &&
2135 key.type == BTRFS_EXTENT_ITEM_KEY &&
2136 key.offset == node->num_bytes)
2137 ret = 0;
2138 }
2139 if (ret > 0) {
2140 btrfs_release_path(path);
2141 metadata = 0;
2142
2143 key.objectid = node->bytenr;
2144 key.offset = node->num_bytes;
2145 key.type = BTRFS_EXTENT_ITEM_KEY;
2146 goto again;
2147 }
2148 } else {
2149 err = -EIO;
2150 goto out;
2151 }
2152 }
2153
2154 leaf = path->nodes[0];
2155 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2156 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2157 if (item_size < sizeof(*ei)) {
2158 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2159 path, (u64)-1, 0);
2160 if (ret < 0) {
2161 err = ret;
2162 goto out;
2163 }
2164 leaf = path->nodes[0];
2165 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2166 }
2167 #endif
2168 BUG_ON(item_size < sizeof(*ei));
2169 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2170 __run_delayed_extent_op(extent_op, leaf, ei);
2171
2172 btrfs_mark_buffer_dirty(leaf);
2173 out:
2174 btrfs_free_path(path);
2175 return err;
2176 }
2177
2178 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2179 struct btrfs_root *root,
2180 struct btrfs_delayed_ref_node *node,
2181 struct btrfs_delayed_extent_op *extent_op,
2182 int insert_reserved)
2183 {
2184 int ret = 0;
2185 struct btrfs_delayed_tree_ref *ref;
2186 struct btrfs_key ins;
2187 u64 parent = 0;
2188 u64 ref_root = 0;
2189 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2190 SKINNY_METADATA);
2191
2192 ref = btrfs_delayed_node_to_tree_ref(node);
2193 trace_run_delayed_tree_ref(node, ref, node->action);
2194
2195 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2196 parent = ref->parent;
2197 else
2198 ref_root = ref->root;
2199
2200 ins.objectid = node->bytenr;
2201 if (skinny_metadata) {
2202 ins.offset = ref->level;
2203 ins.type = BTRFS_METADATA_ITEM_KEY;
2204 } else {
2205 ins.offset = node->num_bytes;
2206 ins.type = BTRFS_EXTENT_ITEM_KEY;
2207 }
2208
2209 BUG_ON(node->ref_mod != 1);
2210 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2211 BUG_ON(!extent_op || !extent_op->update_flags);
2212 ret = alloc_reserved_tree_block(trans, root,
2213 parent, ref_root,
2214 extent_op->flags_to_set,
2215 &extent_op->key,
2216 ref->level, &ins);
2217 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2218 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2219 node->num_bytes, parent, ref_root,
2220 ref->level, 0, 1, extent_op);
2221 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2222 ret = __btrfs_free_extent(trans, root, node->bytenr,
2223 node->num_bytes, parent, ref_root,
2224 ref->level, 0, 1, extent_op);
2225 } else {
2226 BUG();
2227 }
2228 return ret;
2229 }
2230
2231 /* helper function to actually process a single delayed ref entry */
2232 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2233 struct btrfs_root *root,
2234 struct btrfs_delayed_ref_node *node,
2235 struct btrfs_delayed_extent_op *extent_op,
2236 int insert_reserved)
2237 {
2238 int ret = 0;
2239
2240 if (trans->aborted) {
2241 if (insert_reserved)
2242 btrfs_pin_extent(root, node->bytenr,
2243 node->num_bytes, 1);
2244 return 0;
2245 }
2246
2247 if (btrfs_delayed_ref_is_head(node)) {
2248 struct btrfs_delayed_ref_head *head;
2249 /*
2250 * we've hit the end of the chain and we were supposed
2251 * to insert this extent into the tree. But, it got
2252 * deleted before we ever needed to insert it, so all
2253 * we have to do is clean up the accounting
2254 */
2255 BUG_ON(extent_op);
2256 head = btrfs_delayed_node_to_head(node);
2257 trace_run_delayed_ref_head(node, head, node->action);
2258
2259 if (insert_reserved) {
2260 btrfs_pin_extent(root, node->bytenr,
2261 node->num_bytes, 1);
2262 if (head->is_data) {
2263 ret = btrfs_del_csums(trans, root,
2264 node->bytenr,
2265 node->num_bytes);
2266 }
2267 }
2268 return ret;
2269 }
2270
2271 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2272 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2273 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2274 insert_reserved);
2275 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2276 node->type == BTRFS_SHARED_DATA_REF_KEY)
2277 ret = run_delayed_data_ref(trans, root, node, extent_op,
2278 insert_reserved);
2279 else
2280 BUG();
2281 return ret;
2282 }
2283
2284 static noinline struct btrfs_delayed_ref_node *
2285 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2286 {
2287 struct rb_node *node;
2288 struct btrfs_delayed_ref_node *ref;
2289 int action = BTRFS_ADD_DELAYED_REF;
2290 again:
2291 /*
2292 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2293 * this prevents ref count from going down to zero when
2294 * there still are pending delayed ref.
2295 */
2296 node = rb_prev(&head->node.rb_node);
2297 while (1) {
2298 if (!node)
2299 break;
2300 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2301 rb_node);
2302 if (ref->bytenr != head->node.bytenr)
2303 break;
2304 if (ref->action == action)
2305 return ref;
2306 node = rb_prev(node);
2307 }
2308 if (action == BTRFS_ADD_DELAYED_REF) {
2309 action = BTRFS_DROP_DELAYED_REF;
2310 goto again;
2311 }
2312 return NULL;
2313 }
2314
2315 /*
2316 * Returns 0 on success or if called with an already aborted transaction.
2317 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2318 */
2319 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2320 struct btrfs_root *root,
2321 struct list_head *cluster)
2322 {
2323 struct btrfs_delayed_ref_root *delayed_refs;
2324 struct btrfs_delayed_ref_node *ref;
2325 struct btrfs_delayed_ref_head *locked_ref = NULL;
2326 struct btrfs_delayed_extent_op *extent_op;
2327 struct btrfs_fs_info *fs_info = root->fs_info;
2328 int ret;
2329 int count = 0;
2330 int must_insert_reserved = 0;
2331
2332 delayed_refs = &trans->transaction->delayed_refs;
2333 while (1) {
2334 if (!locked_ref) {
2335 /* pick a new head ref from the cluster list */
2336 if (list_empty(cluster))
2337 break;
2338
2339 locked_ref = list_entry(cluster->next,
2340 struct btrfs_delayed_ref_head, cluster);
2341
2342 /* grab the lock that says we are going to process
2343 * all the refs for this head */
2344 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2345
2346 /*
2347 * we may have dropped the spin lock to get the head
2348 * mutex lock, and that might have given someone else
2349 * time to free the head. If that's true, it has been
2350 * removed from our list and we can move on.
2351 */
2352 if (ret == -EAGAIN) {
2353 locked_ref = NULL;
2354 count++;
2355 continue;
2356 }
2357 }
2358
2359 /*
2360 * We need to try and merge add/drops of the same ref since we
2361 * can run into issues with relocate dropping the implicit ref
2362 * and then it being added back again before the drop can
2363 * finish. If we merged anything we need to re-loop so we can
2364 * get a good ref.
2365 */
2366 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2367 locked_ref);
2368
2369 /*
2370 * locked_ref is the head node, so we have to go one
2371 * node back for any delayed ref updates
2372 */
2373 ref = select_delayed_ref(locked_ref);
2374
2375 if (ref && ref->seq &&
2376 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2377 /*
2378 * there are still refs with lower seq numbers in the
2379 * process of being added. Don't run this ref yet.
2380 */
2381 list_del_init(&locked_ref->cluster);
2382 btrfs_delayed_ref_unlock(locked_ref);
2383 locked_ref = NULL;
2384 delayed_refs->num_heads_ready++;
2385 spin_unlock(&delayed_refs->lock);
2386 cond_resched();
2387 spin_lock(&delayed_refs->lock);
2388 continue;
2389 }
2390
2391 /*
2392 * record the must insert reserved flag before we
2393 * drop the spin lock.
2394 */
2395 must_insert_reserved = locked_ref->must_insert_reserved;
2396 locked_ref->must_insert_reserved = 0;
2397
2398 extent_op = locked_ref->extent_op;
2399 locked_ref->extent_op = NULL;
2400
2401 if (!ref) {
2402 /* All delayed refs have been processed, Go ahead
2403 * and send the head node to run_one_delayed_ref,
2404 * so that any accounting fixes can happen
2405 */
2406 ref = &locked_ref->node;
2407
2408 if (extent_op && must_insert_reserved) {
2409 btrfs_free_delayed_extent_op(extent_op);
2410 extent_op = NULL;
2411 }
2412
2413 if (extent_op) {
2414 spin_unlock(&delayed_refs->lock);
2415
2416 ret = run_delayed_extent_op(trans, root,
2417 ref, extent_op);
2418 btrfs_free_delayed_extent_op(extent_op);
2419
2420 if (ret) {
2421 /*
2422 * Need to reset must_insert_reserved if
2423 * there was an error so the abort stuff
2424 * can cleanup the reserved space
2425 * properly.
2426 */
2427 if (must_insert_reserved)
2428 locked_ref->must_insert_reserved = 1;
2429 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2430 spin_lock(&delayed_refs->lock);
2431 btrfs_delayed_ref_unlock(locked_ref);
2432 return ret;
2433 }
2434
2435 goto next;
2436 }
2437 }
2438
2439 ref->in_tree = 0;
2440 rb_erase(&ref->rb_node, &delayed_refs->root);
2441 if (btrfs_delayed_ref_is_head(ref)) {
2442 rb_erase(&locked_ref->href_node,
2443 &delayed_refs->href_root);
2444 }
2445 delayed_refs->num_entries--;
2446 if (!btrfs_delayed_ref_is_head(ref)) {
2447 /*
2448 * when we play the delayed ref, also correct the
2449 * ref_mod on head
2450 */
2451 switch (ref->action) {
2452 case BTRFS_ADD_DELAYED_REF:
2453 case BTRFS_ADD_DELAYED_EXTENT:
2454 locked_ref->node.ref_mod -= ref->ref_mod;
2455 break;
2456 case BTRFS_DROP_DELAYED_REF:
2457 locked_ref->node.ref_mod += ref->ref_mod;
2458 break;
2459 default:
2460 WARN_ON(1);
2461 }
2462 } else {
2463 list_del_init(&locked_ref->cluster);
2464 }
2465 spin_unlock(&delayed_refs->lock);
2466
2467 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2468 must_insert_reserved);
2469
2470 btrfs_free_delayed_extent_op(extent_op);
2471 if (ret) {
2472 btrfs_delayed_ref_unlock(locked_ref);
2473 btrfs_put_delayed_ref(ref);
2474 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2475 spin_lock(&delayed_refs->lock);
2476 return ret;
2477 }
2478
2479 /*
2480 * If this node is a head, that means all the refs in this head
2481 * have been dealt with, and we will pick the next head to deal
2482 * with, so we must unlock the head and drop it from the cluster
2483 * list before we release it.
2484 */
2485 if (btrfs_delayed_ref_is_head(ref)) {
2486 btrfs_delayed_ref_unlock(locked_ref);
2487 locked_ref = NULL;
2488 }
2489 btrfs_put_delayed_ref(ref);
2490 count++;
2491 next:
2492 cond_resched();
2493 spin_lock(&delayed_refs->lock);
2494 }
2495 return count;
2496 }
2497
2498 #ifdef SCRAMBLE_DELAYED_REFS
2499 /*
2500 * Normally delayed refs get processed in ascending bytenr order. This
2501 * correlates in most cases to the order added. To expose dependencies on this
2502 * order, we start to process the tree in the middle instead of the beginning
2503 */
2504 static u64 find_middle(struct rb_root *root)
2505 {
2506 struct rb_node *n = root->rb_node;
2507 struct btrfs_delayed_ref_node *entry;
2508 int alt = 1;
2509 u64 middle;
2510 u64 first = 0, last = 0;
2511
2512 n = rb_first(root);
2513 if (n) {
2514 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2515 first = entry->bytenr;
2516 }
2517 n = rb_last(root);
2518 if (n) {
2519 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2520 last = entry->bytenr;
2521 }
2522 n = root->rb_node;
2523
2524 while (n) {
2525 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2526 WARN_ON(!entry->in_tree);
2527
2528 middle = entry->bytenr;
2529
2530 if (alt)
2531 n = n->rb_left;
2532 else
2533 n = n->rb_right;
2534
2535 alt = 1 - alt;
2536 }
2537 return middle;
2538 }
2539 #endif
2540
2541 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2542 struct btrfs_fs_info *fs_info)
2543 {
2544 struct qgroup_update *qgroup_update;
2545 int ret = 0;
2546
2547 if (list_empty(&trans->qgroup_ref_list) !=
2548 !trans->delayed_ref_elem.seq) {
2549 /* list without seq or seq without list */
2550 btrfs_err(fs_info,
2551 "qgroup accounting update error, list is%s empty, seq is %#x.%x",
2552 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2553 (u32)(trans->delayed_ref_elem.seq >> 32),
2554 (u32)trans->delayed_ref_elem.seq);
2555 BUG();
2556 }
2557
2558 if (!trans->delayed_ref_elem.seq)
2559 return 0;
2560
2561 while (!list_empty(&trans->qgroup_ref_list)) {
2562 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2563 struct qgroup_update, list);
2564 list_del(&qgroup_update->list);
2565 if (!ret)
2566 ret = btrfs_qgroup_account_ref(
2567 trans, fs_info, qgroup_update->node,
2568 qgroup_update->extent_op);
2569 kfree(qgroup_update);
2570 }
2571
2572 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2573
2574 return ret;
2575 }
2576
2577 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
2578 int count)
2579 {
2580 int val = atomic_read(&delayed_refs->ref_seq);
2581
2582 if (val < seq || val >= seq + count)
2583 return 1;
2584 return 0;
2585 }
2586
2587 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2588 {
2589 u64 num_bytes;
2590
2591 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2592 sizeof(struct btrfs_extent_inline_ref));
2593 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2594 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2595
2596 /*
2597 * We don't ever fill up leaves all the way so multiply by 2 just to be
2598 * closer to what we're really going to want to ouse.
2599 */
2600 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2601 }
2602
2603 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2604 struct btrfs_root *root)
2605 {
2606 struct btrfs_block_rsv *global_rsv;
2607 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2608 u64 num_bytes;
2609 int ret = 0;
2610
2611 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2612 num_heads = heads_to_leaves(root, num_heads);
2613 if (num_heads > 1)
2614 num_bytes += (num_heads - 1) * root->leafsize;
2615 num_bytes <<= 1;
2616 global_rsv = &root->fs_info->global_block_rsv;
2617
2618 /*
2619 * If we can't allocate any more chunks lets make sure we have _lots_ of
2620 * wiggle room since running delayed refs can create more delayed refs.
2621 */
2622 if (global_rsv->space_info->full)
2623 num_bytes <<= 1;
2624
2625 spin_lock(&global_rsv->lock);
2626 if (global_rsv->reserved <= num_bytes)
2627 ret = 1;
2628 spin_unlock(&global_rsv->lock);
2629 return ret;
2630 }
2631
2632 /*
2633 * this starts processing the delayed reference count updates and
2634 * extent insertions we have queued up so far. count can be
2635 * 0, which means to process everything in the tree at the start
2636 * of the run (but not newly added entries), or it can be some target
2637 * number you'd like to process.
2638 *
2639 * Returns 0 on success or if called with an aborted transaction
2640 * Returns <0 on error and aborts the transaction
2641 */
2642 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2643 struct btrfs_root *root, unsigned long count)
2644 {
2645 struct rb_node *node;
2646 struct btrfs_delayed_ref_root *delayed_refs;
2647 struct btrfs_delayed_ref_head *head;
2648 struct list_head cluster;
2649 int ret;
2650 u64 delayed_start;
2651 int run_all = count == (unsigned long)-1;
2652 int run_most = 0;
2653 int loops;
2654
2655 /* We'll clean this up in btrfs_cleanup_transaction */
2656 if (trans->aborted)
2657 return 0;
2658
2659 if (root == root->fs_info->extent_root)
2660 root = root->fs_info->tree_root;
2661
2662 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2663
2664 delayed_refs = &trans->transaction->delayed_refs;
2665 INIT_LIST_HEAD(&cluster);
2666 if (count == 0) {
2667 count = delayed_refs->num_entries * 2;
2668 run_most = 1;
2669 }
2670
2671 if (!run_all && !run_most) {
2672 int old;
2673 int seq = atomic_read(&delayed_refs->ref_seq);
2674
2675 progress:
2676 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2677 if (old) {
2678 DEFINE_WAIT(__wait);
2679 if (delayed_refs->flushing ||
2680 !btrfs_should_throttle_delayed_refs(trans, root))
2681 return 0;
2682
2683 prepare_to_wait(&delayed_refs->wait, &__wait,
2684 TASK_UNINTERRUPTIBLE);
2685
2686 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2687 if (old) {
2688 schedule();
2689 finish_wait(&delayed_refs->wait, &__wait);
2690
2691 if (!refs_newer(delayed_refs, seq, 256))
2692 goto progress;
2693 else
2694 return 0;
2695 } else {
2696 finish_wait(&delayed_refs->wait, &__wait);
2697 goto again;
2698 }
2699 }
2700
2701 } else {
2702 atomic_inc(&delayed_refs->procs_running_refs);
2703 }
2704
2705 again:
2706 loops = 0;
2707 spin_lock(&delayed_refs->lock);
2708
2709 #ifdef SCRAMBLE_DELAYED_REFS
2710 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2711 #endif
2712
2713 while (1) {
2714 if (!(run_all || run_most) &&
2715 !btrfs_should_throttle_delayed_refs(trans, root))
2716 break;
2717
2718 /*
2719 * go find something we can process in the rbtree. We start at
2720 * the beginning of the tree, and then build a cluster
2721 * of refs to process starting at the first one we are able to
2722 * lock
2723 */
2724 delayed_start = delayed_refs->run_delayed_start;
2725 ret = btrfs_find_ref_cluster(trans, &cluster,
2726 delayed_refs->run_delayed_start);
2727 if (ret)
2728 break;
2729
2730 ret = run_clustered_refs(trans, root, &cluster);
2731 if (ret < 0) {
2732 btrfs_release_ref_cluster(&cluster);
2733 spin_unlock(&delayed_refs->lock);
2734 btrfs_abort_transaction(trans, root, ret);
2735 atomic_dec(&delayed_refs->procs_running_refs);
2736 wake_up(&delayed_refs->wait);
2737 return ret;
2738 }
2739
2740 atomic_add(ret, &delayed_refs->ref_seq);
2741
2742 count -= min_t(unsigned long, ret, count);
2743
2744 if (count == 0)
2745 break;
2746
2747 if (delayed_start >= delayed_refs->run_delayed_start) {
2748 if (loops == 0) {
2749 /*
2750 * btrfs_find_ref_cluster looped. let's do one
2751 * more cycle. if we don't run any delayed ref
2752 * during that cycle (because we can't because
2753 * all of them are blocked), bail out.
2754 */
2755 loops = 1;
2756 } else {
2757 /*
2758 * no runnable refs left, stop trying
2759 */
2760 BUG_ON(run_all);
2761 break;
2762 }
2763 }
2764 if (ret) {
2765 /* refs were run, let's reset staleness detection */
2766 loops = 0;
2767 }
2768 }
2769
2770 if (run_all) {
2771 if (!list_empty(&trans->new_bgs)) {
2772 spin_unlock(&delayed_refs->lock);
2773 btrfs_create_pending_block_groups(trans, root);
2774 spin_lock(&delayed_refs->lock);
2775 }
2776
2777 node = rb_first(&delayed_refs->href_root);
2778 if (!node)
2779 goto out;
2780 count = (unsigned long)-1;
2781
2782 while (node) {
2783 head = rb_entry(node, struct btrfs_delayed_ref_head,
2784 href_node);
2785 if (btrfs_delayed_ref_is_head(&head->node)) {
2786 struct btrfs_delayed_ref_node *ref;
2787
2788 ref = &head->node;
2789 atomic_inc(&ref->refs);
2790
2791 spin_unlock(&delayed_refs->lock);
2792 /*
2793 * Mutex was contended, block until it's
2794 * released and try again
2795 */
2796 mutex_lock(&head->mutex);
2797 mutex_unlock(&head->mutex);
2798
2799 btrfs_put_delayed_ref(ref);
2800 cond_resched();
2801 goto again;
2802 } else {
2803 WARN_ON(1);
2804 }
2805 node = rb_next(node);
2806 }
2807 spin_unlock(&delayed_refs->lock);
2808 schedule_timeout(1);
2809 goto again;
2810 }
2811 out:
2812 atomic_dec(&delayed_refs->procs_running_refs);
2813 smp_mb();
2814 if (waitqueue_active(&delayed_refs->wait))
2815 wake_up(&delayed_refs->wait);
2816
2817 spin_unlock(&delayed_refs->lock);
2818 assert_qgroups_uptodate(trans);
2819 return 0;
2820 }
2821
2822 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2823 struct btrfs_root *root,
2824 u64 bytenr, u64 num_bytes, u64 flags,
2825 int level, int is_data)
2826 {
2827 struct btrfs_delayed_extent_op *extent_op;
2828 int ret;
2829
2830 extent_op = btrfs_alloc_delayed_extent_op();
2831 if (!extent_op)
2832 return -ENOMEM;
2833
2834 extent_op->flags_to_set = flags;
2835 extent_op->update_flags = 1;
2836 extent_op->update_key = 0;
2837 extent_op->is_data = is_data ? 1 : 0;
2838 extent_op->level = level;
2839
2840 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2841 num_bytes, extent_op);
2842 if (ret)
2843 btrfs_free_delayed_extent_op(extent_op);
2844 return ret;
2845 }
2846
2847 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2848 struct btrfs_root *root,
2849 struct btrfs_path *path,
2850 u64 objectid, u64 offset, u64 bytenr)
2851 {
2852 struct btrfs_delayed_ref_head *head;
2853 struct btrfs_delayed_ref_node *ref;
2854 struct btrfs_delayed_data_ref *data_ref;
2855 struct btrfs_delayed_ref_root *delayed_refs;
2856 struct rb_node *node;
2857 int ret = 0;
2858
2859 ret = -ENOENT;
2860 delayed_refs = &trans->transaction->delayed_refs;
2861 spin_lock(&delayed_refs->lock);
2862 head = btrfs_find_delayed_ref_head(trans, bytenr);
2863 if (!head)
2864 goto out;
2865
2866 if (!mutex_trylock(&head->mutex)) {
2867 atomic_inc(&head->node.refs);
2868 spin_unlock(&delayed_refs->lock);
2869
2870 btrfs_release_path(path);
2871
2872 /*
2873 * Mutex was contended, block until it's released and let
2874 * caller try again
2875 */
2876 mutex_lock(&head->mutex);
2877 mutex_unlock(&head->mutex);
2878 btrfs_put_delayed_ref(&head->node);
2879 return -EAGAIN;
2880 }
2881
2882 node = rb_prev(&head->node.rb_node);
2883 if (!node)
2884 goto out_unlock;
2885
2886 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2887
2888 if (ref->bytenr != bytenr)
2889 goto out_unlock;
2890
2891 ret = 1;
2892 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2893 goto out_unlock;
2894
2895 data_ref = btrfs_delayed_node_to_data_ref(ref);
2896
2897 node = rb_prev(node);
2898 if (node) {
2899 int seq = ref->seq;
2900
2901 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2902 if (ref->bytenr == bytenr && ref->seq == seq)
2903 goto out_unlock;
2904 }
2905
2906 if (data_ref->root != root->root_key.objectid ||
2907 data_ref->objectid != objectid || data_ref->offset != offset)
2908 goto out_unlock;
2909
2910 ret = 0;
2911 out_unlock:
2912 mutex_unlock(&head->mutex);
2913 out:
2914 spin_unlock(&delayed_refs->lock);
2915 return ret;
2916 }
2917
2918 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2919 struct btrfs_root *root,
2920 struct btrfs_path *path,
2921 u64 objectid, u64 offset, u64 bytenr)
2922 {
2923 struct btrfs_root *extent_root = root->fs_info->extent_root;
2924 struct extent_buffer *leaf;
2925 struct btrfs_extent_data_ref *ref;
2926 struct btrfs_extent_inline_ref *iref;
2927 struct btrfs_extent_item *ei;
2928 struct btrfs_key key;
2929 u32 item_size;
2930 int ret;
2931
2932 key.objectid = bytenr;
2933 key.offset = (u64)-1;
2934 key.type = BTRFS_EXTENT_ITEM_KEY;
2935
2936 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2937 if (ret < 0)
2938 goto out;
2939 BUG_ON(ret == 0); /* Corruption */
2940
2941 ret = -ENOENT;
2942 if (path->slots[0] == 0)
2943 goto out;
2944
2945 path->slots[0]--;
2946 leaf = path->nodes[0];
2947 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2948
2949 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2950 goto out;
2951
2952 ret = 1;
2953 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2954 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2955 if (item_size < sizeof(*ei)) {
2956 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2957 goto out;
2958 }
2959 #endif
2960 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2961
2962 if (item_size != sizeof(*ei) +
2963 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2964 goto out;
2965
2966 if (btrfs_extent_generation(leaf, ei) <=
2967 btrfs_root_last_snapshot(&root->root_item))
2968 goto out;
2969
2970 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2971 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2972 BTRFS_EXTENT_DATA_REF_KEY)
2973 goto out;
2974
2975 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2976 if (btrfs_extent_refs(leaf, ei) !=
2977 btrfs_extent_data_ref_count(leaf, ref) ||
2978 btrfs_extent_data_ref_root(leaf, ref) !=
2979 root->root_key.objectid ||
2980 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2981 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2982 goto out;
2983
2984 ret = 0;
2985 out:
2986 return ret;
2987 }
2988
2989 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2990 struct btrfs_root *root,
2991 u64 objectid, u64 offset, u64 bytenr)
2992 {
2993 struct btrfs_path *path;
2994 int ret;
2995 int ret2;
2996
2997 path = btrfs_alloc_path();
2998 if (!path)
2999 return -ENOENT;
3000
3001 do {
3002 ret = check_committed_ref(trans, root, path, objectid,
3003 offset, bytenr);
3004 if (ret && ret != -ENOENT)
3005 goto out;
3006
3007 ret2 = check_delayed_ref(trans, root, path, objectid,
3008 offset, bytenr);
3009 } while (ret2 == -EAGAIN);
3010
3011 if (ret2 && ret2 != -ENOENT) {
3012 ret = ret2;
3013 goto out;
3014 }
3015
3016 if (ret != -ENOENT || ret2 != -ENOENT)
3017 ret = 0;
3018 out:
3019 btrfs_free_path(path);
3020 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3021 WARN_ON(ret > 0);
3022 return ret;
3023 }
3024
3025 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3026 struct btrfs_root *root,
3027 struct extent_buffer *buf,
3028 int full_backref, int inc, int for_cow)
3029 {
3030 u64 bytenr;
3031 u64 num_bytes;
3032 u64 parent;
3033 u64 ref_root;
3034 u32 nritems;
3035 struct btrfs_key key;
3036 struct btrfs_file_extent_item *fi;
3037 int i;
3038 int level;
3039 int ret = 0;
3040 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3041 u64, u64, u64, u64, u64, u64, int);
3042
3043 ref_root = btrfs_header_owner(buf);
3044 nritems = btrfs_header_nritems(buf);
3045 level = btrfs_header_level(buf);
3046
3047 if (!root->ref_cows && level == 0)
3048 return 0;
3049
3050 if (inc)
3051 process_func = btrfs_inc_extent_ref;
3052 else
3053 process_func = btrfs_free_extent;
3054
3055 if (full_backref)
3056 parent = buf->start;
3057 else
3058 parent = 0;
3059
3060 for (i = 0; i < nritems; i++) {
3061 if (level == 0) {
3062 btrfs_item_key_to_cpu(buf, &key, i);
3063 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3064 continue;
3065 fi = btrfs_item_ptr(buf, i,
3066 struct btrfs_file_extent_item);
3067 if (btrfs_file_extent_type(buf, fi) ==
3068 BTRFS_FILE_EXTENT_INLINE)
3069 continue;
3070 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3071 if (bytenr == 0)
3072 continue;
3073
3074 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3075 key.offset -= btrfs_file_extent_offset(buf, fi);
3076 ret = process_func(trans, root, bytenr, num_bytes,
3077 parent, ref_root, key.objectid,
3078 key.offset, for_cow);
3079 if (ret)
3080 goto fail;
3081 } else {
3082 bytenr = btrfs_node_blockptr(buf, i);
3083 num_bytes = btrfs_level_size(root, level - 1);
3084 ret = process_func(trans, root, bytenr, num_bytes,
3085 parent, ref_root, level - 1, 0,
3086 for_cow);
3087 if (ret)
3088 goto fail;
3089 }
3090 }
3091 return 0;
3092 fail:
3093 return ret;
3094 }
3095
3096 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3097 struct extent_buffer *buf, int full_backref, int for_cow)
3098 {
3099 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3100 }
3101
3102 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3103 struct extent_buffer *buf, int full_backref, int for_cow)
3104 {
3105 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3106 }
3107
3108 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3109 struct btrfs_root *root,
3110 struct btrfs_path *path,
3111 struct btrfs_block_group_cache *cache)
3112 {
3113 int ret;
3114 struct btrfs_root *extent_root = root->fs_info->extent_root;
3115 unsigned long bi;
3116 struct extent_buffer *leaf;
3117
3118 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3119 if (ret < 0)
3120 goto fail;
3121 BUG_ON(ret); /* Corruption */
3122
3123 leaf = path->nodes[0];
3124 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3125 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3126 btrfs_mark_buffer_dirty(leaf);
3127 btrfs_release_path(path);
3128 fail:
3129 if (ret) {
3130 btrfs_abort_transaction(trans, root, ret);
3131 return ret;
3132 }
3133 return 0;
3134
3135 }
3136
3137 static struct btrfs_block_group_cache *
3138 next_block_group(struct btrfs_root *root,
3139 struct btrfs_block_group_cache *cache)
3140 {
3141 struct rb_node *node;
3142 spin_lock(&root->fs_info->block_group_cache_lock);
3143 node = rb_next(&cache->cache_node);
3144 btrfs_put_block_group(cache);
3145 if (node) {
3146 cache = rb_entry(node, struct btrfs_block_group_cache,
3147 cache_node);
3148 btrfs_get_block_group(cache);
3149 } else
3150 cache = NULL;
3151 spin_unlock(&root->fs_info->block_group_cache_lock);
3152 return cache;
3153 }
3154
3155 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3156 struct btrfs_trans_handle *trans,
3157 struct btrfs_path *path)
3158 {
3159 struct btrfs_root *root = block_group->fs_info->tree_root;
3160 struct inode *inode = NULL;
3161 u64 alloc_hint = 0;
3162 int dcs = BTRFS_DC_ERROR;
3163 int num_pages = 0;
3164 int retries = 0;
3165 int ret = 0;
3166
3167 /*
3168 * If this block group is smaller than 100 megs don't bother caching the
3169 * block group.
3170 */
3171 if (block_group->key.offset < (100 * 1024 * 1024)) {
3172 spin_lock(&block_group->lock);
3173 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3174 spin_unlock(&block_group->lock);
3175 return 0;
3176 }
3177
3178 again:
3179 inode = lookup_free_space_inode(root, block_group, path);
3180 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3181 ret = PTR_ERR(inode);
3182 btrfs_release_path(path);
3183 goto out;
3184 }
3185
3186 if (IS_ERR(inode)) {
3187 BUG_ON(retries);
3188 retries++;
3189
3190 if (block_group->ro)
3191 goto out_free;
3192
3193 ret = create_free_space_inode(root, trans, block_group, path);
3194 if (ret)
3195 goto out_free;
3196 goto again;
3197 }
3198
3199 /* We've already setup this transaction, go ahead and exit */
3200 if (block_group->cache_generation == trans->transid &&
3201 i_size_read(inode)) {
3202 dcs = BTRFS_DC_SETUP;
3203 goto out_put;
3204 }
3205
3206 /*
3207 * We want to set the generation to 0, that way if anything goes wrong
3208 * from here on out we know not to trust this cache when we load up next
3209 * time.
3210 */
3211 BTRFS_I(inode)->generation = 0;
3212 ret = btrfs_update_inode(trans, root, inode);
3213 WARN_ON(ret);
3214
3215 if (i_size_read(inode) > 0) {
3216 ret = btrfs_check_trunc_cache_free_space(root,
3217 &root->fs_info->global_block_rsv);
3218 if (ret)
3219 goto out_put;
3220
3221 ret = btrfs_truncate_free_space_cache(root, trans, inode);
3222 if (ret)
3223 goto out_put;
3224 }
3225
3226 spin_lock(&block_group->lock);
3227 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3228 !btrfs_test_opt(root, SPACE_CACHE)) {
3229 /*
3230 * don't bother trying to write stuff out _if_
3231 * a) we're not cached,
3232 * b) we're with nospace_cache mount option.
3233 */
3234 dcs = BTRFS_DC_WRITTEN;
3235 spin_unlock(&block_group->lock);
3236 goto out_put;
3237 }
3238 spin_unlock(&block_group->lock);
3239
3240 /*
3241 * Try to preallocate enough space based on how big the block group is.
3242 * Keep in mind this has to include any pinned space which could end up
3243 * taking up quite a bit since it's not folded into the other space
3244 * cache.
3245 */
3246 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3247 if (!num_pages)
3248 num_pages = 1;
3249
3250 num_pages *= 16;
3251 num_pages *= PAGE_CACHE_SIZE;
3252
3253 ret = btrfs_check_data_free_space(inode, num_pages);
3254 if (ret)
3255 goto out_put;
3256
3257 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3258 num_pages, num_pages,
3259 &alloc_hint);
3260 if (!ret)
3261 dcs = BTRFS_DC_SETUP;
3262 btrfs_free_reserved_data_space(inode, num_pages);
3263
3264 out_put:
3265 iput(inode);
3266 out_free:
3267 btrfs_release_path(path);
3268 out:
3269 spin_lock(&block_group->lock);
3270 if (!ret && dcs == BTRFS_DC_SETUP)
3271 block_group->cache_generation = trans->transid;
3272 block_group->disk_cache_state = dcs;
3273 spin_unlock(&block_group->lock);
3274
3275 return ret;
3276 }
3277
3278 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3279 struct btrfs_root *root)
3280 {
3281 struct btrfs_block_group_cache *cache;
3282 int err = 0;
3283 struct btrfs_path *path;
3284 u64 last = 0;
3285
3286 path = btrfs_alloc_path();
3287 if (!path)
3288 return -ENOMEM;
3289
3290 again:
3291 while (1) {
3292 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3293 while (cache) {
3294 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3295 break;
3296 cache = next_block_group(root, cache);
3297 }
3298 if (!cache) {
3299 if (last == 0)
3300 break;
3301 last = 0;
3302 continue;
3303 }
3304 err = cache_save_setup(cache, trans, path);
3305 last = cache->key.objectid + cache->key.offset;
3306 btrfs_put_block_group(cache);
3307 }
3308
3309 while (1) {
3310 if (last == 0) {
3311 err = btrfs_run_delayed_refs(trans, root,
3312 (unsigned long)-1);
3313 if (err) /* File system offline */
3314 goto out;
3315 }
3316
3317 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3318 while (cache) {
3319 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3320 btrfs_put_block_group(cache);
3321 goto again;
3322 }
3323
3324 if (cache->dirty)
3325 break;
3326 cache = next_block_group(root, cache);
3327 }
3328 if (!cache) {
3329 if (last == 0)
3330 break;
3331 last = 0;
3332 continue;
3333 }
3334
3335 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3336 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3337 cache->dirty = 0;
3338 last = cache->key.objectid + cache->key.offset;
3339
3340 err = write_one_cache_group(trans, root, path, cache);
3341 btrfs_put_block_group(cache);
3342 if (err) /* File system offline */
3343 goto out;
3344 }
3345
3346 while (1) {
3347 /*
3348 * I don't think this is needed since we're just marking our
3349 * preallocated extent as written, but just in case it can't
3350 * hurt.
3351 */
3352 if (last == 0) {
3353 err = btrfs_run_delayed_refs(trans, root,
3354 (unsigned long)-1);
3355 if (err) /* File system offline */
3356 goto out;
3357 }
3358
3359 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3360 while (cache) {
3361 /*
3362 * Really this shouldn't happen, but it could if we
3363 * couldn't write the entire preallocated extent and
3364 * splitting the extent resulted in a new block.
3365 */
3366 if (cache->dirty) {
3367 btrfs_put_block_group(cache);
3368 goto again;
3369 }
3370 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3371 break;
3372 cache = next_block_group(root, cache);
3373 }
3374 if (!cache) {
3375 if (last == 0)
3376 break;
3377 last = 0;
3378 continue;
3379 }
3380
3381 err = btrfs_write_out_cache(root, trans, cache, path);
3382
3383 /*
3384 * If we didn't have an error then the cache state is still
3385 * NEED_WRITE, so we can set it to WRITTEN.
3386 */
3387 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3388 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3389 last = cache->key.objectid + cache->key.offset;
3390 btrfs_put_block_group(cache);
3391 }
3392 out:
3393
3394 btrfs_free_path(path);
3395 return err;
3396 }
3397
3398 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3399 {
3400 struct btrfs_block_group_cache *block_group;
3401 int readonly = 0;
3402
3403 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3404 if (!block_group || block_group->ro)
3405 readonly = 1;
3406 if (block_group)
3407 btrfs_put_block_group(block_group);
3408 return readonly;
3409 }
3410
3411 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3412 u64 total_bytes, u64 bytes_used,
3413 struct btrfs_space_info **space_info)
3414 {
3415 struct btrfs_space_info *found;
3416 int i;
3417 int factor;
3418 int ret;
3419
3420 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3421 BTRFS_BLOCK_GROUP_RAID10))
3422 factor = 2;
3423 else
3424 factor = 1;
3425
3426 found = __find_space_info(info, flags);
3427 if (found) {
3428 spin_lock(&found->lock);
3429 found->total_bytes += total_bytes;
3430 found->disk_total += total_bytes * factor;
3431 found->bytes_used += bytes_used;
3432 found->disk_used += bytes_used * factor;
3433 found->full = 0;
3434 spin_unlock(&found->lock);
3435 *space_info = found;
3436 return 0;
3437 }
3438 found = kzalloc(sizeof(*found), GFP_NOFS);
3439 if (!found)
3440 return -ENOMEM;
3441
3442 ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3443 if (ret) {
3444 kfree(found);
3445 return ret;
3446 }
3447
3448 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3449 INIT_LIST_HEAD(&found->block_groups[i]);
3450 init_rwsem(&found->groups_sem);
3451 spin_lock_init(&found->lock);
3452 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3453 found->total_bytes = total_bytes;
3454 found->disk_total = total_bytes * factor;
3455 found->bytes_used = bytes_used;
3456 found->disk_used = bytes_used * factor;
3457 found->bytes_pinned = 0;
3458 found->bytes_reserved = 0;
3459 found->bytes_readonly = 0;
3460 found->bytes_may_use = 0;
3461 found->full = 0;
3462 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3463 found->chunk_alloc = 0;
3464 found->flush = 0;
3465 init_waitqueue_head(&found->wait);
3466 *space_info = found;
3467 list_add_rcu(&found->list, &info->space_info);
3468 if (flags & BTRFS_BLOCK_GROUP_DATA)
3469 info->data_sinfo = found;
3470 return 0;
3471 }
3472
3473 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3474 {
3475 u64 extra_flags = chunk_to_extended(flags) &
3476 BTRFS_EXTENDED_PROFILE_MASK;
3477
3478 write_seqlock(&fs_info->profiles_lock);
3479 if (flags & BTRFS_BLOCK_GROUP_DATA)
3480 fs_info->avail_data_alloc_bits |= extra_flags;
3481 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3482 fs_info->avail_metadata_alloc_bits |= extra_flags;
3483 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3484 fs_info->avail_system_alloc_bits |= extra_flags;
3485 write_sequnlock(&fs_info->profiles_lock);
3486 }
3487
3488 /*
3489 * returns target flags in extended format or 0 if restripe for this
3490 * chunk_type is not in progress
3491 *
3492 * should be called with either volume_mutex or balance_lock held
3493 */
3494 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3495 {
3496 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3497 u64 target = 0;
3498
3499 if (!bctl)
3500 return 0;
3501
3502 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3503 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3504 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3505 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3506 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3507 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3508 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3509 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3510 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3511 }
3512
3513 return target;
3514 }
3515
3516 /*
3517 * @flags: available profiles in extended format (see ctree.h)
3518 *
3519 * Returns reduced profile in chunk format. If profile changing is in
3520 * progress (either running or paused) picks the target profile (if it's
3521 * already available), otherwise falls back to plain reducing.
3522 */
3523 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3524 {
3525 /*
3526 * we add in the count of missing devices because we want
3527 * to make sure that any RAID levels on a degraded FS
3528 * continue to be honored.
3529 */
3530 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3531 root->fs_info->fs_devices->missing_devices;
3532 u64 target;
3533 u64 tmp;
3534
3535 /*
3536 * see if restripe for this chunk_type is in progress, if so
3537 * try to reduce to the target profile
3538 */
3539 spin_lock(&root->fs_info->balance_lock);
3540 target = get_restripe_target(root->fs_info, flags);
3541 if (target) {
3542 /* pick target profile only if it's already available */
3543 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3544 spin_unlock(&root->fs_info->balance_lock);
3545 return extended_to_chunk(target);
3546 }
3547 }
3548 spin_unlock(&root->fs_info->balance_lock);
3549
3550 /* First, mask out the RAID levels which aren't possible */
3551 if (num_devices == 1)
3552 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3553 BTRFS_BLOCK_GROUP_RAID5);
3554 if (num_devices < 3)
3555 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3556 if (num_devices < 4)
3557 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3558
3559 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3560 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3561 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3562 flags &= ~tmp;
3563
3564 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3565 tmp = BTRFS_BLOCK_GROUP_RAID6;
3566 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3567 tmp = BTRFS_BLOCK_GROUP_RAID5;
3568 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3569 tmp = BTRFS_BLOCK_GROUP_RAID10;
3570 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3571 tmp = BTRFS_BLOCK_GROUP_RAID1;
3572 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3573 tmp = BTRFS_BLOCK_GROUP_RAID0;
3574
3575 return extended_to_chunk(flags | tmp);
3576 }
3577
3578 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3579 {
3580 unsigned seq;
3581
3582 do {
3583 seq = read_seqbegin(&root->fs_info->profiles_lock);
3584
3585 if (flags & BTRFS_BLOCK_GROUP_DATA)
3586 flags |= root->fs_info->avail_data_alloc_bits;
3587 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3588 flags |= root->fs_info->avail_system_alloc_bits;
3589 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3590 flags |= root->fs_info->avail_metadata_alloc_bits;
3591 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3592
3593 return btrfs_reduce_alloc_profile(root, flags);
3594 }
3595
3596 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3597 {
3598 u64 flags;
3599 u64 ret;
3600
3601 if (data)
3602 flags = BTRFS_BLOCK_GROUP_DATA;
3603 else if (root == root->fs_info->chunk_root)
3604 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3605 else
3606 flags = BTRFS_BLOCK_GROUP_METADATA;
3607
3608 ret = get_alloc_profile(root, flags);
3609 return ret;
3610 }
3611
3612 /*
3613 * This will check the space that the inode allocates from to make sure we have
3614 * enough space for bytes.
3615 */
3616 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3617 {
3618 struct btrfs_space_info *data_sinfo;
3619 struct btrfs_root *root = BTRFS_I(inode)->root;
3620 struct btrfs_fs_info *fs_info = root->fs_info;
3621 u64 used;
3622 int ret = 0, committed = 0, alloc_chunk = 1;
3623
3624 /* make sure bytes are sectorsize aligned */
3625 bytes = ALIGN(bytes, root->sectorsize);
3626
3627 if (btrfs_is_free_space_inode(inode)) {
3628 committed = 1;
3629 ASSERT(current->journal_info);
3630 }
3631
3632 data_sinfo = fs_info->data_sinfo;
3633 if (!data_sinfo)
3634 goto alloc;
3635
3636 again:
3637 /* make sure we have enough space to handle the data first */
3638 spin_lock(&data_sinfo->lock);
3639 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3640 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3641 data_sinfo->bytes_may_use;
3642
3643 if (used + bytes > data_sinfo->total_bytes) {
3644 struct btrfs_trans_handle *trans;
3645
3646 /*
3647 * if we don't have enough free bytes in this space then we need
3648 * to alloc a new chunk.
3649 */
3650 if (!data_sinfo->full && alloc_chunk) {
3651 u64 alloc_target;
3652
3653 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3654 spin_unlock(&data_sinfo->lock);
3655 alloc:
3656 alloc_target = btrfs_get_alloc_profile(root, 1);
3657 /*
3658 * It is ugly that we don't call nolock join
3659 * transaction for the free space inode case here.
3660 * But it is safe because we only do the data space
3661 * reservation for the free space cache in the
3662 * transaction context, the common join transaction
3663 * just increase the counter of the current transaction
3664 * handler, doesn't try to acquire the trans_lock of
3665 * the fs.
3666 */
3667 trans = btrfs_join_transaction(root);
3668 if (IS_ERR(trans))
3669 return PTR_ERR(trans);
3670
3671 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3672 alloc_target,
3673 CHUNK_ALLOC_NO_FORCE);
3674 btrfs_end_transaction(trans, root);
3675 if (ret < 0) {
3676 if (ret != -ENOSPC)
3677 return ret;
3678 else
3679 goto commit_trans;
3680 }
3681
3682 if (!data_sinfo)
3683 data_sinfo = fs_info->data_sinfo;
3684
3685 goto again;
3686 }
3687
3688 /*
3689 * If we don't have enough pinned space to deal with this
3690 * allocation don't bother committing the transaction.
3691 */
3692 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3693 bytes) < 0)
3694 committed = 1;
3695 spin_unlock(&data_sinfo->lock);
3696
3697 /* commit the current transaction and try again */
3698 commit_trans:
3699 if (!committed &&
3700 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3701 committed = 1;
3702
3703 trans = btrfs_join_transaction(root);
3704 if (IS_ERR(trans))
3705 return PTR_ERR(trans);
3706 ret = btrfs_commit_transaction(trans, root);
3707 if (ret)
3708 return ret;
3709 goto again;
3710 }
3711
3712 trace_btrfs_space_reservation(root->fs_info,
3713 "space_info:enospc",
3714 data_sinfo->flags, bytes, 1);
3715 return -ENOSPC;
3716 }
3717 data_sinfo->bytes_may_use += bytes;
3718 trace_btrfs_space_reservation(root->fs_info, "space_info",
3719 data_sinfo->flags, bytes, 1);
3720 spin_unlock(&data_sinfo->lock);
3721
3722 return 0;
3723 }
3724
3725 /*
3726 * Called if we need to clear a data reservation for this inode.
3727 */
3728 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3729 {
3730 struct btrfs_root *root = BTRFS_I(inode)->root;
3731 struct btrfs_space_info *data_sinfo;
3732
3733 /* make sure bytes are sectorsize aligned */
3734 bytes = ALIGN(bytes, root->sectorsize);
3735
3736 data_sinfo = root->fs_info->data_sinfo;
3737 spin_lock(&data_sinfo->lock);
3738 WARN_ON(data_sinfo->bytes_may_use < bytes);
3739 data_sinfo->bytes_may_use -= bytes;
3740 trace_btrfs_space_reservation(root->fs_info, "space_info",
3741 data_sinfo->flags, bytes, 0);
3742 spin_unlock(&data_sinfo->lock);
3743 }
3744
3745 static void force_metadata_allocation(struct btrfs_fs_info *info)
3746 {
3747 struct list_head *head = &info->space_info;
3748 struct btrfs_space_info *found;
3749
3750 rcu_read_lock();
3751 list_for_each_entry_rcu(found, head, list) {
3752 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3753 found->force_alloc = CHUNK_ALLOC_FORCE;
3754 }
3755 rcu_read_unlock();
3756 }
3757
3758 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3759 {
3760 return (global->size << 1);
3761 }
3762
3763 static int should_alloc_chunk(struct btrfs_root *root,
3764 struct btrfs_space_info *sinfo, int force)
3765 {
3766 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3767 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3768 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3769 u64 thresh;
3770
3771 if (force == CHUNK_ALLOC_FORCE)
3772 return 1;
3773
3774 /*
3775 * We need to take into account the global rsv because for all intents
3776 * and purposes it's used space. Don't worry about locking the
3777 * global_rsv, it doesn't change except when the transaction commits.
3778 */
3779 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3780 num_allocated += calc_global_rsv_need_space(global_rsv);
3781
3782 /*
3783 * in limited mode, we want to have some free space up to
3784 * about 1% of the FS size.
3785 */
3786 if (force == CHUNK_ALLOC_LIMITED) {
3787 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3788 thresh = max_t(u64, 64 * 1024 * 1024,
3789 div_factor_fine(thresh, 1));
3790
3791 if (num_bytes - num_allocated < thresh)
3792 return 1;
3793 }
3794
3795 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3796 return 0;
3797 return 1;
3798 }
3799
3800 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3801 {
3802 u64 num_dev;
3803
3804 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3805 BTRFS_BLOCK_GROUP_RAID0 |
3806 BTRFS_BLOCK_GROUP_RAID5 |
3807 BTRFS_BLOCK_GROUP_RAID6))
3808 num_dev = root->fs_info->fs_devices->rw_devices;
3809 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3810 num_dev = 2;
3811 else
3812 num_dev = 1; /* DUP or single */
3813
3814 /* metadata for updaing devices and chunk tree */
3815 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3816 }
3817
3818 static void check_system_chunk(struct btrfs_trans_handle *trans,
3819 struct btrfs_root *root, u64 type)
3820 {
3821 struct btrfs_space_info *info;
3822 u64 left;
3823 u64 thresh;
3824
3825 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3826 spin_lock(&info->lock);
3827 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3828 info->bytes_reserved - info->bytes_readonly;
3829 spin_unlock(&info->lock);
3830
3831 thresh = get_system_chunk_thresh(root, type);
3832 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3833 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3834 left, thresh, type);
3835 dump_space_info(info, 0, 0);
3836 }
3837
3838 if (left < thresh) {
3839 u64 flags;
3840
3841 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3842 btrfs_alloc_chunk(trans, root, flags);
3843 }
3844 }
3845
3846 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3847 struct btrfs_root *extent_root, u64 flags, int force)
3848 {
3849 struct btrfs_space_info *space_info;
3850 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3851 int wait_for_alloc = 0;
3852 int ret = 0;
3853
3854 /* Don't re-enter if we're already allocating a chunk */
3855 if (trans->allocating_chunk)
3856 return -ENOSPC;
3857
3858 space_info = __find_space_info(extent_root->fs_info, flags);
3859 if (!space_info) {
3860 ret = update_space_info(extent_root->fs_info, flags,
3861 0, 0, &space_info);
3862 BUG_ON(ret); /* -ENOMEM */
3863 }
3864 BUG_ON(!space_info); /* Logic error */
3865
3866 again:
3867 spin_lock(&space_info->lock);
3868 if (force < space_info->force_alloc)
3869 force = space_info->force_alloc;
3870 if (space_info->full) {
3871 if (should_alloc_chunk(extent_root, space_info, force))
3872 ret = -ENOSPC;
3873 else
3874 ret = 0;
3875 spin_unlock(&space_info->lock);
3876 return ret;
3877 }
3878
3879 if (!should_alloc_chunk(extent_root, space_info, force)) {
3880 spin_unlock(&space_info->lock);
3881 return 0;
3882 } else if (space_info->chunk_alloc) {
3883 wait_for_alloc = 1;
3884 } else {
3885 space_info->chunk_alloc = 1;
3886 }
3887
3888 spin_unlock(&space_info->lock);
3889
3890 mutex_lock(&fs_info->chunk_mutex);
3891
3892 /*
3893 * The chunk_mutex is held throughout the entirety of a chunk
3894 * allocation, so once we've acquired the chunk_mutex we know that the
3895 * other guy is done and we need to recheck and see if we should
3896 * allocate.
3897 */
3898 if (wait_for_alloc) {
3899 mutex_unlock(&fs_info->chunk_mutex);
3900 wait_for_alloc = 0;
3901 goto again;
3902 }
3903
3904 trans->allocating_chunk = true;
3905
3906 /*
3907 * If we have mixed data/metadata chunks we want to make sure we keep
3908 * allocating mixed chunks instead of individual chunks.
3909 */
3910 if (btrfs_mixed_space_info(space_info))
3911 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3912
3913 /*
3914 * if we're doing a data chunk, go ahead and make sure that
3915 * we keep a reasonable number of metadata chunks allocated in the
3916 * FS as well.
3917 */
3918 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3919 fs_info->data_chunk_allocations++;
3920 if (!(fs_info->data_chunk_allocations %
3921 fs_info->metadata_ratio))
3922 force_metadata_allocation(fs_info);
3923 }
3924
3925 /*
3926 * Check if we have enough space in SYSTEM chunk because we may need
3927 * to update devices.
3928 */
3929 check_system_chunk(trans, extent_root, flags);
3930
3931 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3932 trans->allocating_chunk = false;
3933
3934 spin_lock(&space_info->lock);
3935 if (ret < 0 && ret != -ENOSPC)
3936 goto out;
3937 if (ret)
3938 space_info->full = 1;
3939 else
3940 ret = 1;
3941
3942 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3943 out:
3944 space_info->chunk_alloc = 0;
3945 spin_unlock(&space_info->lock);
3946 mutex_unlock(&fs_info->chunk_mutex);
3947 return ret;
3948 }
3949
3950 static int can_overcommit(struct btrfs_root *root,
3951 struct btrfs_space_info *space_info, u64 bytes,
3952 enum btrfs_reserve_flush_enum flush)
3953 {
3954 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3955 u64 profile = btrfs_get_alloc_profile(root, 0);
3956 u64 space_size;
3957 u64 avail;
3958 u64 used;
3959
3960 used = space_info->bytes_used + space_info->bytes_reserved +
3961 space_info->bytes_pinned + space_info->bytes_readonly;
3962
3963 /*
3964 * We only want to allow over committing if we have lots of actual space
3965 * free, but if we don't have enough space to handle the global reserve
3966 * space then we could end up having a real enospc problem when trying
3967 * to allocate a chunk or some other such important allocation.
3968 */
3969 spin_lock(&global_rsv->lock);
3970 space_size = calc_global_rsv_need_space(global_rsv);
3971 spin_unlock(&global_rsv->lock);
3972 if (used + space_size >= space_info->total_bytes)
3973 return 0;
3974
3975 used += space_info->bytes_may_use;
3976
3977 spin_lock(&root->fs_info->free_chunk_lock);
3978 avail = root->fs_info->free_chunk_space;
3979 spin_unlock(&root->fs_info->free_chunk_lock);
3980
3981 /*
3982 * If we have dup, raid1 or raid10 then only half of the free
3983 * space is actually useable. For raid56, the space info used
3984 * doesn't include the parity drive, so we don't have to
3985 * change the math
3986 */
3987 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3988 BTRFS_BLOCK_GROUP_RAID1 |
3989 BTRFS_BLOCK_GROUP_RAID10))
3990 avail >>= 1;
3991
3992 /*
3993 * If we aren't flushing all things, let us overcommit up to
3994 * 1/2th of the space. If we can flush, don't let us overcommit
3995 * too much, let it overcommit up to 1/8 of the space.
3996 */
3997 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3998 avail >>= 3;
3999 else
4000 avail >>= 1;
4001
4002 if (used + bytes < space_info->total_bytes + avail)
4003 return 1;
4004 return 0;
4005 }
4006
4007 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4008 unsigned long nr_pages)
4009 {
4010 struct super_block *sb = root->fs_info->sb;
4011
4012 if (down_read_trylock(&sb->s_umount)) {
4013 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4014 up_read(&sb->s_umount);
4015 } else {
4016 /*
4017 * We needn't worry the filesystem going from r/w to r/o though
4018 * we don't acquire ->s_umount mutex, because the filesystem
4019 * should guarantee the delalloc inodes list be empty after
4020 * the filesystem is readonly(all dirty pages are written to
4021 * the disk).
4022 */
4023 btrfs_start_delalloc_roots(root->fs_info, 0);
4024 if (!current->journal_info)
4025 btrfs_wait_ordered_roots(root->fs_info, -1);
4026 }
4027 }
4028
4029 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4030 {
4031 u64 bytes;
4032 int nr;
4033
4034 bytes = btrfs_calc_trans_metadata_size(root, 1);
4035 nr = (int)div64_u64(to_reclaim, bytes);
4036 if (!nr)
4037 nr = 1;
4038 return nr;
4039 }
4040
4041 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4042
4043 /*
4044 * shrink metadata reservation for delalloc
4045 */
4046 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4047 bool wait_ordered)
4048 {
4049 struct btrfs_block_rsv *block_rsv;
4050 struct btrfs_space_info *space_info;
4051 struct btrfs_trans_handle *trans;
4052 u64 delalloc_bytes;
4053 u64 max_reclaim;
4054 long time_left;
4055 unsigned long nr_pages;
4056 int loops;
4057 int items;
4058 enum btrfs_reserve_flush_enum flush;
4059
4060 /* Calc the number of the pages we need flush for space reservation */
4061 items = calc_reclaim_items_nr(root, to_reclaim);
4062 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4063
4064 trans = (struct btrfs_trans_handle *)current->journal_info;
4065 block_rsv = &root->fs_info->delalloc_block_rsv;
4066 space_info = block_rsv->space_info;
4067
4068 delalloc_bytes = percpu_counter_sum_positive(
4069 &root->fs_info->delalloc_bytes);
4070 if (delalloc_bytes == 0) {
4071 if (trans)
4072 return;
4073 if (wait_ordered)
4074 btrfs_wait_ordered_roots(root->fs_info, items);
4075 return;
4076 }
4077
4078 loops = 0;
4079 while (delalloc_bytes && loops < 3) {
4080 max_reclaim = min(delalloc_bytes, to_reclaim);
4081 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4082 btrfs_writeback_inodes_sb_nr(root, nr_pages);
4083 /*
4084 * We need to wait for the async pages to actually start before
4085 * we do anything.
4086 */
4087 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4088 if (!max_reclaim)
4089 goto skip_async;
4090
4091 if (max_reclaim <= nr_pages)
4092 max_reclaim = 0;
4093 else
4094 max_reclaim -= nr_pages;
4095
4096 wait_event(root->fs_info->async_submit_wait,
4097 atomic_read(&root->fs_info->async_delalloc_pages) <=
4098 (int)max_reclaim);
4099 skip_async:
4100 if (!trans)
4101 flush = BTRFS_RESERVE_FLUSH_ALL;
4102 else
4103 flush = BTRFS_RESERVE_NO_FLUSH;
4104 spin_lock(&space_info->lock);
4105 if (can_overcommit(root, space_info, orig, flush)) {
4106 spin_unlock(&space_info->lock);
4107 break;
4108 }
4109 spin_unlock(&space_info->lock);
4110
4111 loops++;
4112 if (wait_ordered && !trans) {
4113 btrfs_wait_ordered_roots(root->fs_info, items);
4114 } else {
4115 time_left = schedule_timeout_killable(1);
4116 if (time_left)
4117 break;
4118 }
4119 delalloc_bytes = percpu_counter_sum_positive(
4120 &root->fs_info->delalloc_bytes);
4121 }
4122 }
4123
4124 /**
4125 * maybe_commit_transaction - possibly commit the transaction if its ok to
4126 * @root - the root we're allocating for
4127 * @bytes - the number of bytes we want to reserve
4128 * @force - force the commit
4129 *
4130 * This will check to make sure that committing the transaction will actually
4131 * get us somewhere and then commit the transaction if it does. Otherwise it
4132 * will return -ENOSPC.
4133 */
4134 static int may_commit_transaction(struct btrfs_root *root,
4135 struct btrfs_space_info *space_info,
4136 u64 bytes, int force)
4137 {
4138 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4139 struct btrfs_trans_handle *trans;
4140
4141 trans = (struct btrfs_trans_handle *)current->journal_info;
4142 if (trans)
4143 return -EAGAIN;
4144
4145 if (force)
4146 goto commit;
4147
4148 /* See if there is enough pinned space to make this reservation */
4149 spin_lock(&space_info->lock);
4150 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4151 bytes) >= 0) {
4152 spin_unlock(&space_info->lock);
4153 goto commit;
4154 }
4155 spin_unlock(&space_info->lock);
4156
4157 /*
4158 * See if there is some space in the delayed insertion reservation for
4159 * this reservation.
4160 */
4161 if (space_info != delayed_rsv->space_info)
4162 return -ENOSPC;
4163
4164 spin_lock(&space_info->lock);
4165 spin_lock(&delayed_rsv->lock);
4166 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4167 bytes - delayed_rsv->size) >= 0) {
4168 spin_unlock(&delayed_rsv->lock);
4169 spin_unlock(&space_info->lock);
4170 return -ENOSPC;
4171 }
4172 spin_unlock(&delayed_rsv->lock);
4173 spin_unlock(&space_info->lock);
4174
4175 commit:
4176 trans = btrfs_join_transaction(root);
4177 if (IS_ERR(trans))
4178 return -ENOSPC;
4179
4180 return btrfs_commit_transaction(trans, root);
4181 }
4182
4183 enum flush_state {
4184 FLUSH_DELAYED_ITEMS_NR = 1,
4185 FLUSH_DELAYED_ITEMS = 2,
4186 FLUSH_DELALLOC = 3,
4187 FLUSH_DELALLOC_WAIT = 4,
4188 ALLOC_CHUNK = 5,
4189 COMMIT_TRANS = 6,
4190 };
4191
4192 static int flush_space(struct btrfs_root *root,
4193 struct btrfs_space_info *space_info, u64 num_bytes,
4194 u64 orig_bytes, int state)
4195 {
4196 struct btrfs_trans_handle *trans;
4197 int nr;
4198 int ret = 0;
4199
4200 switch (state) {
4201 case FLUSH_DELAYED_ITEMS_NR:
4202 case FLUSH_DELAYED_ITEMS:
4203 if (state == FLUSH_DELAYED_ITEMS_NR)
4204 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4205 else
4206 nr = -1;
4207
4208 trans = btrfs_join_transaction(root);
4209 if (IS_ERR(trans)) {
4210 ret = PTR_ERR(trans);
4211 break;
4212 }
4213 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4214 btrfs_end_transaction(trans, root);
4215 break;
4216 case FLUSH_DELALLOC:
4217 case FLUSH_DELALLOC_WAIT:
4218 shrink_delalloc(root, num_bytes, orig_bytes,
4219 state == FLUSH_DELALLOC_WAIT);
4220 break;
4221 case ALLOC_CHUNK:
4222 trans = btrfs_join_transaction(root);
4223 if (IS_ERR(trans)) {
4224 ret = PTR_ERR(trans);
4225 break;
4226 }
4227 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4228 btrfs_get_alloc_profile(root, 0),
4229 CHUNK_ALLOC_NO_FORCE);
4230 btrfs_end_transaction(trans, root);
4231 if (ret == -ENOSPC)
4232 ret = 0;
4233 break;
4234 case COMMIT_TRANS:
4235 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4236 break;
4237 default:
4238 ret = -ENOSPC;
4239 break;
4240 }
4241
4242 return ret;
4243 }
4244 /**
4245 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4246 * @root - the root we're allocating for
4247 * @block_rsv - the block_rsv we're allocating for
4248 * @orig_bytes - the number of bytes we want
4249 * @flush - whether or not we can flush to make our reservation
4250 *
4251 * This will reserve orgi_bytes number of bytes from the space info associated
4252 * with the block_rsv. If there is not enough space it will make an attempt to
4253 * flush out space to make room. It will do this by flushing delalloc if
4254 * possible or committing the transaction. If flush is 0 then no attempts to
4255 * regain reservations will be made and this will fail if there is not enough
4256 * space already.
4257 */
4258 static int reserve_metadata_bytes(struct btrfs_root *root,
4259 struct btrfs_block_rsv *block_rsv,
4260 u64 orig_bytes,
4261 enum btrfs_reserve_flush_enum flush)
4262 {
4263 struct btrfs_space_info *space_info = block_rsv->space_info;
4264 u64 used;
4265 u64 num_bytes = orig_bytes;
4266 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4267 int ret = 0;
4268 bool flushing = false;
4269
4270 again:
4271 ret = 0;
4272 spin_lock(&space_info->lock);
4273 /*
4274 * We only want to wait if somebody other than us is flushing and we
4275 * are actually allowed to flush all things.
4276 */
4277 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4278 space_info->flush) {
4279 spin_unlock(&space_info->lock);
4280 /*
4281 * If we have a trans handle we can't wait because the flusher
4282 * may have to commit the transaction, which would mean we would
4283 * deadlock since we are waiting for the flusher to finish, but
4284 * hold the current transaction open.
4285 */
4286 if (current->journal_info)
4287 return -EAGAIN;
4288 ret = wait_event_killable(space_info->wait, !space_info->flush);
4289 /* Must have been killed, return */
4290 if (ret)
4291 return -EINTR;
4292
4293 spin_lock(&space_info->lock);
4294 }
4295
4296 ret = -ENOSPC;
4297 used = space_info->bytes_used + space_info->bytes_reserved +
4298 space_info->bytes_pinned + space_info->bytes_readonly +
4299 space_info->bytes_may_use;
4300
4301 /*
4302 * The idea here is that we've not already over-reserved the block group
4303 * then we can go ahead and save our reservation first and then start
4304 * flushing if we need to. Otherwise if we've already overcommitted
4305 * lets start flushing stuff first and then come back and try to make
4306 * our reservation.
4307 */
4308 if (used <= space_info->total_bytes) {
4309 if (used + orig_bytes <= space_info->total_bytes) {
4310 space_info->bytes_may_use += orig_bytes;
4311 trace_btrfs_space_reservation(root->fs_info,
4312 "space_info", space_info->flags, orig_bytes, 1);
4313 ret = 0;
4314 } else {
4315 /*
4316 * Ok set num_bytes to orig_bytes since we aren't
4317 * overocmmitted, this way we only try and reclaim what
4318 * we need.
4319 */
4320 num_bytes = orig_bytes;
4321 }
4322 } else {
4323 /*
4324 * Ok we're over committed, set num_bytes to the overcommitted
4325 * amount plus the amount of bytes that we need for this
4326 * reservation.
4327 */
4328 num_bytes = used - space_info->total_bytes +
4329 (orig_bytes * 2);
4330 }
4331
4332 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4333 space_info->bytes_may_use += orig_bytes;
4334 trace_btrfs_space_reservation(root->fs_info, "space_info",
4335 space_info->flags, orig_bytes,
4336 1);
4337 ret = 0;
4338 }
4339
4340 /*
4341 * Couldn't make our reservation, save our place so while we're trying
4342 * to reclaim space we can actually use it instead of somebody else
4343 * stealing it from us.
4344 *
4345 * We make the other tasks wait for the flush only when we can flush
4346 * all things.
4347 */
4348 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4349 flushing = true;
4350 space_info->flush = 1;
4351 }
4352
4353 spin_unlock(&space_info->lock);
4354
4355 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4356 goto out;
4357
4358 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4359 flush_state);
4360 flush_state++;
4361
4362 /*
4363 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4364 * would happen. So skip delalloc flush.
4365 */
4366 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4367 (flush_state == FLUSH_DELALLOC ||
4368 flush_state == FLUSH_DELALLOC_WAIT))
4369 flush_state = ALLOC_CHUNK;
4370
4371 if (!ret)
4372 goto again;
4373 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4374 flush_state < COMMIT_TRANS)
4375 goto again;
4376 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4377 flush_state <= COMMIT_TRANS)
4378 goto again;
4379
4380 out:
4381 if (ret == -ENOSPC &&
4382 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4383 struct btrfs_block_rsv *global_rsv =
4384 &root->fs_info->global_block_rsv;
4385
4386 if (block_rsv != global_rsv &&
4387 !block_rsv_use_bytes(global_rsv, orig_bytes))
4388 ret = 0;
4389 }
4390 if (ret == -ENOSPC)
4391 trace_btrfs_space_reservation(root->fs_info,
4392 "space_info:enospc",
4393 space_info->flags, orig_bytes, 1);
4394 if (flushing) {
4395 spin_lock(&space_info->lock);
4396 space_info->flush = 0;
4397 wake_up_all(&space_info->wait);
4398 spin_unlock(&space_info->lock);
4399 }
4400 return ret;
4401 }
4402
4403 static struct btrfs_block_rsv *get_block_rsv(
4404 const struct btrfs_trans_handle *trans,
4405 const struct btrfs_root *root)
4406 {
4407 struct btrfs_block_rsv *block_rsv = NULL;
4408
4409 if (root->ref_cows)
4410 block_rsv = trans->block_rsv;
4411
4412 if (root == root->fs_info->csum_root && trans->adding_csums)
4413 block_rsv = trans->block_rsv;
4414
4415 if (root == root->fs_info->uuid_root)
4416 block_rsv = trans->block_rsv;
4417
4418 if (!block_rsv)
4419 block_rsv = root->block_rsv;
4420
4421 if (!block_rsv)
4422 block_rsv = &root->fs_info->empty_block_rsv;
4423
4424 return block_rsv;
4425 }
4426
4427 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4428 u64 num_bytes)
4429 {
4430 int ret = -ENOSPC;
4431 spin_lock(&block_rsv->lock);
4432 if (block_rsv->reserved >= num_bytes) {
4433 block_rsv->reserved -= num_bytes;
4434 if (block_rsv->reserved < block_rsv->size)
4435 block_rsv->full = 0;
4436 ret = 0;
4437 }
4438 spin_unlock(&block_rsv->lock);
4439 return ret;
4440 }
4441
4442 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4443 u64 num_bytes, int update_size)
4444 {
4445 spin_lock(&block_rsv->lock);
4446 block_rsv->reserved += num_bytes;
4447 if (update_size)
4448 block_rsv->size += num_bytes;
4449 else if (block_rsv->reserved >= block_rsv->size)
4450 block_rsv->full = 1;
4451 spin_unlock(&block_rsv->lock);
4452 }
4453
4454 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4455 struct btrfs_block_rsv *dest, u64 num_bytes,
4456 int min_factor)
4457 {
4458 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4459 u64 min_bytes;
4460
4461 if (global_rsv->space_info != dest->space_info)
4462 return -ENOSPC;
4463
4464 spin_lock(&global_rsv->lock);
4465 min_bytes = div_factor(global_rsv->size, min_factor);
4466 if (global_rsv->reserved < min_bytes + num_bytes) {
4467 spin_unlock(&global_rsv->lock);
4468 return -ENOSPC;
4469 }
4470 global_rsv->reserved -= num_bytes;
4471 if (global_rsv->reserved < global_rsv->size)
4472 global_rsv->full = 0;
4473 spin_unlock(&global_rsv->lock);
4474
4475 block_rsv_add_bytes(dest, num_bytes, 1);
4476 return 0;
4477 }
4478
4479 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4480 struct btrfs_block_rsv *block_rsv,
4481 struct btrfs_block_rsv *dest, u64 num_bytes)
4482 {
4483 struct btrfs_space_info *space_info = block_rsv->space_info;
4484
4485 spin_lock(&block_rsv->lock);
4486 if (num_bytes == (u64)-1)
4487 num_bytes = block_rsv->size;
4488 block_rsv->size -= num_bytes;
4489 if (block_rsv->reserved >= block_rsv->size) {
4490 num_bytes = block_rsv->reserved - block_rsv->size;
4491 block_rsv->reserved = block_rsv->size;
4492 block_rsv->full = 1;
4493 } else {
4494 num_bytes = 0;
4495 }
4496 spin_unlock(&block_rsv->lock);
4497
4498 if (num_bytes > 0) {
4499 if (dest) {
4500 spin_lock(&dest->lock);
4501 if (!dest->full) {
4502 u64 bytes_to_add;
4503
4504 bytes_to_add = dest->size - dest->reserved;
4505 bytes_to_add = min(num_bytes, bytes_to_add);
4506 dest->reserved += bytes_to_add;
4507 if (dest->reserved >= dest->size)
4508 dest->full = 1;
4509 num_bytes -= bytes_to_add;
4510 }
4511 spin_unlock(&dest->lock);
4512 }
4513 if (num_bytes) {
4514 spin_lock(&space_info->lock);
4515 space_info->bytes_may_use -= num_bytes;
4516 trace_btrfs_space_reservation(fs_info, "space_info",
4517 space_info->flags, num_bytes, 0);
4518 spin_unlock(&space_info->lock);
4519 }
4520 }
4521 }
4522
4523 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4524 struct btrfs_block_rsv *dst, u64 num_bytes)
4525 {
4526 int ret;
4527
4528 ret = block_rsv_use_bytes(src, num_bytes);
4529 if (ret)
4530 return ret;
4531
4532 block_rsv_add_bytes(dst, num_bytes, 1);
4533 return 0;
4534 }
4535
4536 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4537 {
4538 memset(rsv, 0, sizeof(*rsv));
4539 spin_lock_init(&rsv->lock);
4540 rsv->type = type;
4541 }
4542
4543 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4544 unsigned short type)
4545 {
4546 struct btrfs_block_rsv *block_rsv;
4547 struct btrfs_fs_info *fs_info = root->fs_info;
4548
4549 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4550 if (!block_rsv)
4551 return NULL;
4552
4553 btrfs_init_block_rsv(block_rsv, type);
4554 block_rsv->space_info = __find_space_info(fs_info,
4555 BTRFS_BLOCK_GROUP_METADATA);
4556 return block_rsv;
4557 }
4558
4559 void btrfs_free_block_rsv(struct btrfs_root *root,
4560 struct btrfs_block_rsv *rsv)
4561 {
4562 if (!rsv)
4563 return;
4564 btrfs_block_rsv_release(root, rsv, (u64)-1);
4565 kfree(rsv);
4566 }
4567
4568 int btrfs_block_rsv_add(struct btrfs_root *root,
4569 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4570 enum btrfs_reserve_flush_enum flush)
4571 {
4572 int ret;
4573
4574 if (num_bytes == 0)
4575 return 0;
4576
4577 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4578 if (!ret) {
4579 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4580 return 0;
4581 }
4582
4583 return ret;
4584 }
4585
4586 int btrfs_block_rsv_check(struct btrfs_root *root,
4587 struct btrfs_block_rsv *block_rsv, int min_factor)
4588 {
4589 u64 num_bytes = 0;
4590 int ret = -ENOSPC;
4591
4592 if (!block_rsv)
4593 return 0;
4594
4595 spin_lock(&block_rsv->lock);
4596 num_bytes = div_factor(block_rsv->size, min_factor);
4597 if (block_rsv->reserved >= num_bytes)
4598 ret = 0;
4599 spin_unlock(&block_rsv->lock);
4600
4601 return ret;
4602 }
4603
4604 int btrfs_block_rsv_refill(struct btrfs_root *root,
4605 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4606 enum btrfs_reserve_flush_enum flush)
4607 {
4608 u64 num_bytes = 0;
4609 int ret = -ENOSPC;
4610
4611 if (!block_rsv)
4612 return 0;
4613
4614 spin_lock(&block_rsv->lock);
4615 num_bytes = min_reserved;
4616 if (block_rsv->reserved >= num_bytes)
4617 ret = 0;
4618 else
4619 num_bytes -= block_rsv->reserved;
4620 spin_unlock(&block_rsv->lock);
4621
4622 if (!ret)
4623 return 0;
4624
4625 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4626 if (!ret) {
4627 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4628 return 0;
4629 }
4630
4631 return ret;
4632 }
4633
4634 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4635 struct btrfs_block_rsv *dst_rsv,
4636 u64 num_bytes)
4637 {
4638 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4639 }
4640
4641 void btrfs_block_rsv_release(struct btrfs_root *root,
4642 struct btrfs_block_rsv *block_rsv,
4643 u64 num_bytes)
4644 {
4645 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4646 if (global_rsv->full || global_rsv == block_rsv ||
4647 block_rsv->space_info != global_rsv->space_info)
4648 global_rsv = NULL;
4649 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4650 num_bytes);
4651 }
4652
4653 /*
4654 * helper to calculate size of global block reservation.
4655 * the desired value is sum of space used by extent tree,
4656 * checksum tree and root tree
4657 */
4658 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4659 {
4660 struct btrfs_space_info *sinfo;
4661 u64 num_bytes;
4662 u64 meta_used;
4663 u64 data_used;
4664 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4665
4666 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4667 spin_lock(&sinfo->lock);
4668 data_used = sinfo->bytes_used;
4669 spin_unlock(&sinfo->lock);
4670
4671 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4672 spin_lock(&sinfo->lock);
4673 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4674 data_used = 0;
4675 meta_used = sinfo->bytes_used;
4676 spin_unlock(&sinfo->lock);
4677
4678 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4679 csum_size * 2;
4680 num_bytes += div64_u64(data_used + meta_used, 50);
4681
4682 if (num_bytes * 3 > meta_used)
4683 num_bytes = div64_u64(meta_used, 3);
4684
4685 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4686 }
4687
4688 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4689 {
4690 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4691 struct btrfs_space_info *sinfo = block_rsv->space_info;
4692 u64 num_bytes;
4693
4694 num_bytes = calc_global_metadata_size(fs_info);
4695
4696 spin_lock(&sinfo->lock);
4697 spin_lock(&block_rsv->lock);
4698
4699 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4700
4701 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4702 sinfo->bytes_reserved + sinfo->bytes_readonly +
4703 sinfo->bytes_may_use;
4704
4705 if (sinfo->total_bytes > num_bytes) {
4706 num_bytes = sinfo->total_bytes - num_bytes;
4707 block_rsv->reserved += num_bytes;
4708 sinfo->bytes_may_use += num_bytes;
4709 trace_btrfs_space_reservation(fs_info, "space_info",
4710 sinfo->flags, num_bytes, 1);
4711 }
4712
4713 if (block_rsv->reserved >= block_rsv->size) {
4714 num_bytes = block_rsv->reserved - block_rsv->size;
4715 sinfo->bytes_may_use -= num_bytes;
4716 trace_btrfs_space_reservation(fs_info, "space_info",
4717 sinfo->flags, num_bytes, 0);
4718 block_rsv->reserved = block_rsv->size;
4719 block_rsv->full = 1;
4720 }
4721
4722 spin_unlock(&block_rsv->lock);
4723 spin_unlock(&sinfo->lock);
4724 }
4725
4726 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4727 {
4728 struct btrfs_space_info *space_info;
4729
4730 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4731 fs_info->chunk_block_rsv.space_info = space_info;
4732
4733 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4734 fs_info->global_block_rsv.space_info = space_info;
4735 fs_info->delalloc_block_rsv.space_info = space_info;
4736 fs_info->trans_block_rsv.space_info = space_info;
4737 fs_info->empty_block_rsv.space_info = space_info;
4738 fs_info->delayed_block_rsv.space_info = space_info;
4739
4740 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4741 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4742 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4743 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4744 if (fs_info->quota_root)
4745 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4746 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4747
4748 update_global_block_rsv(fs_info);
4749 }
4750
4751 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4752 {
4753 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4754 (u64)-1);
4755 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4756 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4757 WARN_ON(fs_info->trans_block_rsv.size > 0);
4758 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4759 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4760 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4761 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4762 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4763 }
4764
4765 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4766 struct btrfs_root *root)
4767 {
4768 if (!trans->block_rsv)
4769 return;
4770
4771 if (!trans->bytes_reserved)
4772 return;
4773
4774 trace_btrfs_space_reservation(root->fs_info, "transaction",
4775 trans->transid, trans->bytes_reserved, 0);
4776 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4777 trans->bytes_reserved = 0;
4778 }
4779
4780 /* Can only return 0 or -ENOSPC */
4781 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4782 struct inode *inode)
4783 {
4784 struct btrfs_root *root = BTRFS_I(inode)->root;
4785 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4786 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4787
4788 /*
4789 * We need to hold space in order to delete our orphan item once we've
4790 * added it, so this takes the reservation so we can release it later
4791 * when we are truly done with the orphan item.
4792 */
4793 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4794 trace_btrfs_space_reservation(root->fs_info, "orphan",
4795 btrfs_ino(inode), num_bytes, 1);
4796 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4797 }
4798
4799 void btrfs_orphan_release_metadata(struct inode *inode)
4800 {
4801 struct btrfs_root *root = BTRFS_I(inode)->root;
4802 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4803 trace_btrfs_space_reservation(root->fs_info, "orphan",
4804 btrfs_ino(inode), num_bytes, 0);
4805 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4806 }
4807
4808 /*
4809 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4810 * root: the root of the parent directory
4811 * rsv: block reservation
4812 * items: the number of items that we need do reservation
4813 * qgroup_reserved: used to return the reserved size in qgroup
4814 *
4815 * This function is used to reserve the space for snapshot/subvolume
4816 * creation and deletion. Those operations are different with the
4817 * common file/directory operations, they change two fs/file trees
4818 * and root tree, the number of items that the qgroup reserves is
4819 * different with the free space reservation. So we can not use
4820 * the space reseravtion mechanism in start_transaction().
4821 */
4822 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4823 struct btrfs_block_rsv *rsv,
4824 int items,
4825 u64 *qgroup_reserved,
4826 bool use_global_rsv)
4827 {
4828 u64 num_bytes;
4829 int ret;
4830 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4831
4832 if (root->fs_info->quota_enabled) {
4833 /* One for parent inode, two for dir entries */
4834 num_bytes = 3 * root->leafsize;
4835 ret = btrfs_qgroup_reserve(root, num_bytes);
4836 if (ret)
4837 return ret;
4838 } else {
4839 num_bytes = 0;
4840 }
4841
4842 *qgroup_reserved = num_bytes;
4843
4844 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4845 rsv->space_info = __find_space_info(root->fs_info,
4846 BTRFS_BLOCK_GROUP_METADATA);
4847 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4848 BTRFS_RESERVE_FLUSH_ALL);
4849
4850 if (ret == -ENOSPC && use_global_rsv)
4851 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4852
4853 if (ret) {
4854 if (*qgroup_reserved)
4855 btrfs_qgroup_free(root, *qgroup_reserved);
4856 }
4857
4858 return ret;
4859 }
4860
4861 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4862 struct btrfs_block_rsv *rsv,
4863 u64 qgroup_reserved)
4864 {
4865 btrfs_block_rsv_release(root, rsv, (u64)-1);
4866 if (qgroup_reserved)
4867 btrfs_qgroup_free(root, qgroup_reserved);
4868 }
4869
4870 /**
4871 * drop_outstanding_extent - drop an outstanding extent
4872 * @inode: the inode we're dropping the extent for
4873 *
4874 * This is called when we are freeing up an outstanding extent, either called
4875 * after an error or after an extent is written. This will return the number of
4876 * reserved extents that need to be freed. This must be called with
4877 * BTRFS_I(inode)->lock held.
4878 */
4879 static unsigned drop_outstanding_extent(struct inode *inode)
4880 {
4881 unsigned drop_inode_space = 0;
4882 unsigned dropped_extents = 0;
4883
4884 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4885 BTRFS_I(inode)->outstanding_extents--;
4886
4887 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4888 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4889 &BTRFS_I(inode)->runtime_flags))
4890 drop_inode_space = 1;
4891
4892 /*
4893 * If we have more or the same amount of outsanding extents than we have
4894 * reserved then we need to leave the reserved extents count alone.
4895 */
4896 if (BTRFS_I(inode)->outstanding_extents >=
4897 BTRFS_I(inode)->reserved_extents)
4898 return drop_inode_space;
4899
4900 dropped_extents = BTRFS_I(inode)->reserved_extents -
4901 BTRFS_I(inode)->outstanding_extents;
4902 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4903 return dropped_extents + drop_inode_space;
4904 }
4905
4906 /**
4907 * calc_csum_metadata_size - return the amount of metada space that must be
4908 * reserved/free'd for the given bytes.
4909 * @inode: the inode we're manipulating
4910 * @num_bytes: the number of bytes in question
4911 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4912 *
4913 * This adjusts the number of csum_bytes in the inode and then returns the
4914 * correct amount of metadata that must either be reserved or freed. We
4915 * calculate how many checksums we can fit into one leaf and then divide the
4916 * number of bytes that will need to be checksumed by this value to figure out
4917 * how many checksums will be required. If we are adding bytes then the number
4918 * may go up and we will return the number of additional bytes that must be
4919 * reserved. If it is going down we will return the number of bytes that must
4920 * be freed.
4921 *
4922 * This must be called with BTRFS_I(inode)->lock held.
4923 */
4924 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4925 int reserve)
4926 {
4927 struct btrfs_root *root = BTRFS_I(inode)->root;
4928 u64 csum_size;
4929 int num_csums_per_leaf;
4930 int num_csums;
4931 int old_csums;
4932
4933 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4934 BTRFS_I(inode)->csum_bytes == 0)
4935 return 0;
4936
4937 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4938 if (reserve)
4939 BTRFS_I(inode)->csum_bytes += num_bytes;
4940 else
4941 BTRFS_I(inode)->csum_bytes -= num_bytes;
4942 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4943 num_csums_per_leaf = (int)div64_u64(csum_size,
4944 sizeof(struct btrfs_csum_item) +
4945 sizeof(struct btrfs_disk_key));
4946 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4947 num_csums = num_csums + num_csums_per_leaf - 1;
4948 num_csums = num_csums / num_csums_per_leaf;
4949
4950 old_csums = old_csums + num_csums_per_leaf - 1;
4951 old_csums = old_csums / num_csums_per_leaf;
4952
4953 /* No change, no need to reserve more */
4954 if (old_csums == num_csums)
4955 return 0;
4956
4957 if (reserve)
4958 return btrfs_calc_trans_metadata_size(root,
4959 num_csums - old_csums);
4960
4961 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4962 }
4963
4964 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4965 {
4966 struct btrfs_root *root = BTRFS_I(inode)->root;
4967 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4968 u64 to_reserve = 0;
4969 u64 csum_bytes;
4970 unsigned nr_extents = 0;
4971 int extra_reserve = 0;
4972 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4973 int ret = 0;
4974 bool delalloc_lock = true;
4975 u64 to_free = 0;
4976 unsigned dropped;
4977
4978 /* If we are a free space inode we need to not flush since we will be in
4979 * the middle of a transaction commit. We also don't need the delalloc
4980 * mutex since we won't race with anybody. We need this mostly to make
4981 * lockdep shut its filthy mouth.
4982 */
4983 if (btrfs_is_free_space_inode(inode)) {
4984 flush = BTRFS_RESERVE_NO_FLUSH;
4985 delalloc_lock = false;
4986 }
4987
4988 if (flush != BTRFS_RESERVE_NO_FLUSH &&
4989 btrfs_transaction_in_commit(root->fs_info))
4990 schedule_timeout(1);
4991
4992 if (delalloc_lock)
4993 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4994
4995 num_bytes = ALIGN(num_bytes, root->sectorsize);
4996
4997 spin_lock(&BTRFS_I(inode)->lock);
4998 BTRFS_I(inode)->outstanding_extents++;
4999
5000 if (BTRFS_I(inode)->outstanding_extents >
5001 BTRFS_I(inode)->reserved_extents)
5002 nr_extents = BTRFS_I(inode)->outstanding_extents -
5003 BTRFS_I(inode)->reserved_extents;
5004
5005 /*
5006 * Add an item to reserve for updating the inode when we complete the
5007 * delalloc io.
5008 */
5009 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5010 &BTRFS_I(inode)->runtime_flags)) {
5011 nr_extents++;
5012 extra_reserve = 1;
5013 }
5014
5015 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5016 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5017 csum_bytes = BTRFS_I(inode)->csum_bytes;
5018 spin_unlock(&BTRFS_I(inode)->lock);
5019
5020 if (root->fs_info->quota_enabled) {
5021 ret = btrfs_qgroup_reserve(root, num_bytes +
5022 nr_extents * root->leafsize);
5023 if (ret)
5024 goto out_fail;
5025 }
5026
5027 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5028 if (unlikely(ret)) {
5029 if (root->fs_info->quota_enabled)
5030 btrfs_qgroup_free(root, num_bytes +
5031 nr_extents * root->leafsize);
5032 goto out_fail;
5033 }
5034
5035 spin_lock(&BTRFS_I(inode)->lock);
5036 if (extra_reserve) {
5037 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5038 &BTRFS_I(inode)->runtime_flags);
5039 nr_extents--;
5040 }
5041 BTRFS_I(inode)->reserved_extents += nr_extents;
5042 spin_unlock(&BTRFS_I(inode)->lock);
5043
5044 if (delalloc_lock)
5045 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5046
5047 if (to_reserve)
5048 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5049 btrfs_ino(inode), to_reserve, 1);
5050 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5051
5052 return 0;
5053
5054 out_fail:
5055 spin_lock(&BTRFS_I(inode)->lock);
5056 dropped = drop_outstanding_extent(inode);
5057 /*
5058 * If the inodes csum_bytes is the same as the original
5059 * csum_bytes then we know we haven't raced with any free()ers
5060 * so we can just reduce our inodes csum bytes and carry on.
5061 */
5062 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5063 calc_csum_metadata_size(inode, num_bytes, 0);
5064 } else {
5065 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5066 u64 bytes;
5067
5068 /*
5069 * This is tricky, but first we need to figure out how much we
5070 * free'd from any free-ers that occured during this
5071 * reservation, so we reset ->csum_bytes to the csum_bytes
5072 * before we dropped our lock, and then call the free for the
5073 * number of bytes that were freed while we were trying our
5074 * reservation.
5075 */
5076 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5077 BTRFS_I(inode)->csum_bytes = csum_bytes;
5078 to_free = calc_csum_metadata_size(inode, bytes, 0);
5079
5080
5081 /*
5082 * Now we need to see how much we would have freed had we not
5083 * been making this reservation and our ->csum_bytes were not
5084 * artificially inflated.
5085 */
5086 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5087 bytes = csum_bytes - orig_csum_bytes;
5088 bytes = calc_csum_metadata_size(inode, bytes, 0);
5089
5090 /*
5091 * Now reset ->csum_bytes to what it should be. If bytes is
5092 * more than to_free then we would have free'd more space had we
5093 * not had an artificially high ->csum_bytes, so we need to free
5094 * the remainder. If bytes is the same or less then we don't
5095 * need to do anything, the other free-ers did the correct
5096 * thing.
5097 */
5098 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5099 if (bytes > to_free)
5100 to_free = bytes - to_free;
5101 else
5102 to_free = 0;
5103 }
5104 spin_unlock(&BTRFS_I(inode)->lock);
5105 if (dropped)
5106 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5107
5108 if (to_free) {
5109 btrfs_block_rsv_release(root, block_rsv, to_free);
5110 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5111 btrfs_ino(inode), to_free, 0);
5112 }
5113 if (delalloc_lock)
5114 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5115 return ret;
5116 }
5117
5118 /**
5119 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5120 * @inode: the inode to release the reservation for
5121 * @num_bytes: the number of bytes we're releasing
5122 *
5123 * This will release the metadata reservation for an inode. This can be called
5124 * once we complete IO for a given set of bytes to release their metadata
5125 * reservations.
5126 */
5127 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5128 {
5129 struct btrfs_root *root = BTRFS_I(inode)->root;
5130 u64 to_free = 0;
5131 unsigned dropped;
5132
5133 num_bytes = ALIGN(num_bytes, root->sectorsize);
5134 spin_lock(&BTRFS_I(inode)->lock);
5135 dropped = drop_outstanding_extent(inode);
5136
5137 if (num_bytes)
5138 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5139 spin_unlock(&BTRFS_I(inode)->lock);
5140 if (dropped > 0)
5141 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5142
5143 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5144 btrfs_ino(inode), to_free, 0);
5145 if (root->fs_info->quota_enabled) {
5146 btrfs_qgroup_free(root, num_bytes +
5147 dropped * root->leafsize);
5148 }
5149
5150 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5151 to_free);
5152 }
5153
5154 /**
5155 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5156 * @inode: inode we're writing to
5157 * @num_bytes: the number of bytes we want to allocate
5158 *
5159 * This will do the following things
5160 *
5161 * o reserve space in the data space info for num_bytes
5162 * o reserve space in the metadata space info based on number of outstanding
5163 * extents and how much csums will be needed
5164 * o add to the inodes ->delalloc_bytes
5165 * o add it to the fs_info's delalloc inodes list.
5166 *
5167 * This will return 0 for success and -ENOSPC if there is no space left.
5168 */
5169 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5170 {
5171 int ret;
5172
5173 ret = btrfs_check_data_free_space(inode, num_bytes);
5174 if (ret)
5175 return ret;
5176
5177 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5178 if (ret) {
5179 btrfs_free_reserved_data_space(inode, num_bytes);
5180 return ret;
5181 }
5182
5183 return 0;
5184 }
5185
5186 /**
5187 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5188 * @inode: inode we're releasing space for
5189 * @num_bytes: the number of bytes we want to free up
5190 *
5191 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5192 * called in the case that we don't need the metadata AND data reservations
5193 * anymore. So if there is an error or we insert an inline extent.
5194 *
5195 * This function will release the metadata space that was not used and will
5196 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5197 * list if there are no delalloc bytes left.
5198 */
5199 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5200 {
5201 btrfs_delalloc_release_metadata(inode, num_bytes);
5202 btrfs_free_reserved_data_space(inode, num_bytes);
5203 }
5204
5205 static int update_block_group(struct btrfs_root *root,
5206 u64 bytenr, u64 num_bytes, int alloc)
5207 {
5208 struct btrfs_block_group_cache *cache = NULL;
5209 struct btrfs_fs_info *info = root->fs_info;
5210 u64 total = num_bytes;
5211 u64 old_val;
5212 u64 byte_in_group;
5213 int factor;
5214
5215 /* block accounting for super block */
5216 spin_lock(&info->delalloc_root_lock);
5217 old_val = btrfs_super_bytes_used(info->super_copy);
5218 if (alloc)
5219 old_val += num_bytes;
5220 else
5221 old_val -= num_bytes;
5222 btrfs_set_super_bytes_used(info->super_copy, old_val);
5223 spin_unlock(&info->delalloc_root_lock);
5224
5225 while (total) {
5226 cache = btrfs_lookup_block_group(info, bytenr);
5227 if (!cache)
5228 return -ENOENT;
5229 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5230 BTRFS_BLOCK_GROUP_RAID1 |
5231 BTRFS_BLOCK_GROUP_RAID10))
5232 factor = 2;
5233 else
5234 factor = 1;
5235 /*
5236 * If this block group has free space cache written out, we
5237 * need to make sure to load it if we are removing space. This
5238 * is because we need the unpinning stage to actually add the
5239 * space back to the block group, otherwise we will leak space.
5240 */
5241 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5242 cache_block_group(cache, 1);
5243
5244 byte_in_group = bytenr - cache->key.objectid;
5245 WARN_ON(byte_in_group > cache->key.offset);
5246
5247 spin_lock(&cache->space_info->lock);
5248 spin_lock(&cache->lock);
5249
5250 if (btrfs_test_opt(root, SPACE_CACHE) &&
5251 cache->disk_cache_state < BTRFS_DC_CLEAR)
5252 cache->disk_cache_state = BTRFS_DC_CLEAR;
5253
5254 cache->dirty = 1;
5255 old_val = btrfs_block_group_used(&cache->item);
5256 num_bytes = min(total, cache->key.offset - byte_in_group);
5257 if (alloc) {
5258 old_val += num_bytes;
5259 btrfs_set_block_group_used(&cache->item, old_val);
5260 cache->reserved -= num_bytes;
5261 cache->space_info->bytes_reserved -= num_bytes;
5262 cache->space_info->bytes_used += num_bytes;
5263 cache->space_info->disk_used += num_bytes * factor;
5264 spin_unlock(&cache->lock);
5265 spin_unlock(&cache->space_info->lock);
5266 } else {
5267 old_val -= num_bytes;
5268 btrfs_set_block_group_used(&cache->item, old_val);
5269 cache->pinned += num_bytes;
5270 cache->space_info->bytes_pinned += num_bytes;
5271 cache->space_info->bytes_used -= num_bytes;
5272 cache->space_info->disk_used -= num_bytes * factor;
5273 spin_unlock(&cache->lock);
5274 spin_unlock(&cache->space_info->lock);
5275
5276 set_extent_dirty(info->pinned_extents,
5277 bytenr, bytenr + num_bytes - 1,
5278 GFP_NOFS | __GFP_NOFAIL);
5279 }
5280 btrfs_put_block_group(cache);
5281 total -= num_bytes;
5282 bytenr += num_bytes;
5283 }
5284 return 0;
5285 }
5286
5287 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5288 {
5289 struct btrfs_block_group_cache *cache;
5290 u64 bytenr;
5291
5292 spin_lock(&root->fs_info->block_group_cache_lock);
5293 bytenr = root->fs_info->first_logical_byte;
5294 spin_unlock(&root->fs_info->block_group_cache_lock);
5295
5296 if (bytenr < (u64)-1)
5297 return bytenr;
5298
5299 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5300 if (!cache)
5301 return 0;
5302
5303 bytenr = cache->key.objectid;
5304 btrfs_put_block_group(cache);
5305
5306 return bytenr;
5307 }
5308
5309 static int pin_down_extent(struct btrfs_root *root,
5310 struct btrfs_block_group_cache *cache,
5311 u64 bytenr, u64 num_bytes, int reserved)
5312 {
5313 spin_lock(&cache->space_info->lock);
5314 spin_lock(&cache->lock);
5315 cache->pinned += num_bytes;
5316 cache->space_info->bytes_pinned += num_bytes;
5317 if (reserved) {
5318 cache->reserved -= num_bytes;
5319 cache->space_info->bytes_reserved -= num_bytes;
5320 }
5321 spin_unlock(&cache->lock);
5322 spin_unlock(&cache->space_info->lock);
5323
5324 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5325 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5326 if (reserved)
5327 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5328 return 0;
5329 }
5330
5331 /*
5332 * this function must be called within transaction
5333 */
5334 int btrfs_pin_extent(struct btrfs_root *root,
5335 u64 bytenr, u64 num_bytes, int reserved)
5336 {
5337 struct btrfs_block_group_cache *cache;
5338
5339 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5340 BUG_ON(!cache); /* Logic error */
5341
5342 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5343
5344 btrfs_put_block_group(cache);
5345 return 0;
5346 }
5347
5348 /*
5349 * this function must be called within transaction
5350 */
5351 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5352 u64 bytenr, u64 num_bytes)
5353 {
5354 struct btrfs_block_group_cache *cache;
5355 int ret;
5356
5357 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5358 if (!cache)
5359 return -EINVAL;
5360
5361 /*
5362 * pull in the free space cache (if any) so that our pin
5363 * removes the free space from the cache. We have load_only set
5364 * to one because the slow code to read in the free extents does check
5365 * the pinned extents.
5366 */
5367 cache_block_group(cache, 1);
5368
5369 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5370
5371 /* remove us from the free space cache (if we're there at all) */
5372 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5373 btrfs_put_block_group(cache);
5374 return ret;
5375 }
5376
5377 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5378 {
5379 int ret;
5380 struct btrfs_block_group_cache *block_group;
5381 struct btrfs_caching_control *caching_ctl;
5382
5383 block_group = btrfs_lookup_block_group(root->fs_info, start);
5384 if (!block_group)
5385 return -EINVAL;
5386
5387 cache_block_group(block_group, 0);
5388 caching_ctl = get_caching_control(block_group);
5389
5390 if (!caching_ctl) {
5391 /* Logic error */
5392 BUG_ON(!block_group_cache_done(block_group));
5393 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5394 } else {
5395 mutex_lock(&caching_ctl->mutex);
5396
5397 if (start >= caching_ctl->progress) {
5398 ret = add_excluded_extent(root, start, num_bytes);
5399 } else if (start + num_bytes <= caching_ctl->progress) {
5400 ret = btrfs_remove_free_space(block_group,
5401 start, num_bytes);
5402 } else {
5403 num_bytes = caching_ctl->progress - start;
5404 ret = btrfs_remove_free_space(block_group,
5405 start, num_bytes);
5406 if (ret)
5407 goto out_lock;
5408
5409 num_bytes = (start + num_bytes) -
5410 caching_ctl->progress;
5411 start = caching_ctl->progress;
5412 ret = add_excluded_extent(root, start, num_bytes);
5413 }
5414 out_lock:
5415 mutex_unlock(&caching_ctl->mutex);
5416 put_caching_control(caching_ctl);
5417 }
5418 btrfs_put_block_group(block_group);
5419 return ret;
5420 }
5421
5422 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5423 struct extent_buffer *eb)
5424 {
5425 struct btrfs_file_extent_item *item;
5426 struct btrfs_key key;
5427 int found_type;
5428 int i;
5429
5430 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5431 return 0;
5432
5433 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5434 btrfs_item_key_to_cpu(eb, &key, i);
5435 if (key.type != BTRFS_EXTENT_DATA_KEY)
5436 continue;
5437 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5438 found_type = btrfs_file_extent_type(eb, item);
5439 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5440 continue;
5441 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5442 continue;
5443 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5444 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5445 __exclude_logged_extent(log, key.objectid, key.offset);
5446 }
5447
5448 return 0;
5449 }
5450
5451 /**
5452 * btrfs_update_reserved_bytes - update the block_group and space info counters
5453 * @cache: The cache we are manipulating
5454 * @num_bytes: The number of bytes in question
5455 * @reserve: One of the reservation enums
5456 *
5457 * This is called by the allocator when it reserves space, or by somebody who is
5458 * freeing space that was never actually used on disk. For example if you
5459 * reserve some space for a new leaf in transaction A and before transaction A
5460 * commits you free that leaf, you call this with reserve set to 0 in order to
5461 * clear the reservation.
5462 *
5463 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5464 * ENOSPC accounting. For data we handle the reservation through clearing the
5465 * delalloc bits in the io_tree. We have to do this since we could end up
5466 * allocating less disk space for the amount of data we have reserved in the
5467 * case of compression.
5468 *
5469 * If this is a reservation and the block group has become read only we cannot
5470 * make the reservation and return -EAGAIN, otherwise this function always
5471 * succeeds.
5472 */
5473 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5474 u64 num_bytes, int reserve)
5475 {
5476 struct btrfs_space_info *space_info = cache->space_info;
5477 int ret = 0;
5478
5479 spin_lock(&space_info->lock);
5480 spin_lock(&cache->lock);
5481 if (reserve != RESERVE_FREE) {
5482 if (cache->ro) {
5483 ret = -EAGAIN;
5484 } else {
5485 cache->reserved += num_bytes;
5486 space_info->bytes_reserved += num_bytes;
5487 if (reserve == RESERVE_ALLOC) {
5488 trace_btrfs_space_reservation(cache->fs_info,
5489 "space_info", space_info->flags,
5490 num_bytes, 0);
5491 space_info->bytes_may_use -= num_bytes;
5492 }
5493 }
5494 } else {
5495 if (cache->ro)
5496 space_info->bytes_readonly += num_bytes;
5497 cache->reserved -= num_bytes;
5498 space_info->bytes_reserved -= num_bytes;
5499 }
5500 spin_unlock(&cache->lock);
5501 spin_unlock(&space_info->lock);
5502 return ret;
5503 }
5504
5505 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5506 struct btrfs_root *root)
5507 {
5508 struct btrfs_fs_info *fs_info = root->fs_info;
5509 struct btrfs_caching_control *next;
5510 struct btrfs_caching_control *caching_ctl;
5511 struct btrfs_block_group_cache *cache;
5512 struct btrfs_space_info *space_info;
5513
5514 down_write(&fs_info->extent_commit_sem);
5515
5516 list_for_each_entry_safe(caching_ctl, next,
5517 &fs_info->caching_block_groups, list) {
5518 cache = caching_ctl->block_group;
5519 if (block_group_cache_done(cache)) {
5520 cache->last_byte_to_unpin = (u64)-1;
5521 list_del_init(&caching_ctl->list);
5522 put_caching_control(caching_ctl);
5523 } else {
5524 cache->last_byte_to_unpin = caching_ctl->progress;
5525 }
5526 }
5527
5528 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5529 fs_info->pinned_extents = &fs_info->freed_extents[1];
5530 else
5531 fs_info->pinned_extents = &fs_info->freed_extents[0];
5532
5533 up_write(&fs_info->extent_commit_sem);
5534
5535 list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5536 percpu_counter_set(&space_info->total_bytes_pinned, 0);
5537
5538 update_global_block_rsv(fs_info);
5539 }
5540
5541 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5542 {
5543 struct btrfs_fs_info *fs_info = root->fs_info;
5544 struct btrfs_block_group_cache *cache = NULL;
5545 struct btrfs_space_info *space_info;
5546 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5547 u64 len;
5548 bool readonly;
5549
5550 while (start <= end) {
5551 readonly = false;
5552 if (!cache ||
5553 start >= cache->key.objectid + cache->key.offset) {
5554 if (cache)
5555 btrfs_put_block_group(cache);
5556 cache = btrfs_lookup_block_group(fs_info, start);
5557 BUG_ON(!cache); /* Logic error */
5558 }
5559
5560 len = cache->key.objectid + cache->key.offset - start;
5561 len = min(len, end + 1 - start);
5562
5563 if (start < cache->last_byte_to_unpin) {
5564 len = min(len, cache->last_byte_to_unpin - start);
5565 btrfs_add_free_space(cache, start, len);
5566 }
5567
5568 start += len;
5569 space_info = cache->space_info;
5570
5571 spin_lock(&space_info->lock);
5572 spin_lock(&cache->lock);
5573 cache->pinned -= len;
5574 space_info->bytes_pinned -= len;
5575 if (cache->ro) {
5576 space_info->bytes_readonly += len;
5577 readonly = true;
5578 }
5579 spin_unlock(&cache->lock);
5580 if (!readonly && global_rsv->space_info == space_info) {
5581 spin_lock(&global_rsv->lock);
5582 if (!global_rsv->full) {
5583 len = min(len, global_rsv->size -
5584 global_rsv->reserved);
5585 global_rsv->reserved += len;
5586 space_info->bytes_may_use += len;
5587 if (global_rsv->reserved >= global_rsv->size)
5588 global_rsv->full = 1;
5589 }
5590 spin_unlock(&global_rsv->lock);
5591 }
5592 spin_unlock(&space_info->lock);
5593 }
5594
5595 if (cache)
5596 btrfs_put_block_group(cache);
5597 return 0;
5598 }
5599
5600 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5601 struct btrfs_root *root)
5602 {
5603 struct btrfs_fs_info *fs_info = root->fs_info;
5604 struct extent_io_tree *unpin;
5605 u64 start;
5606 u64 end;
5607 int ret;
5608
5609 if (trans->aborted)
5610 return 0;
5611
5612 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5613 unpin = &fs_info->freed_extents[1];
5614 else
5615 unpin = &fs_info->freed_extents[0];
5616
5617 while (1) {
5618 ret = find_first_extent_bit(unpin, 0, &start, &end,
5619 EXTENT_DIRTY, NULL);
5620 if (ret)
5621 break;
5622
5623 if (btrfs_test_opt(root, DISCARD))
5624 ret = btrfs_discard_extent(root, start,
5625 end + 1 - start, NULL);
5626
5627 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5628 unpin_extent_range(root, start, end);
5629 cond_resched();
5630 }
5631
5632 return 0;
5633 }
5634
5635 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5636 u64 owner, u64 root_objectid)
5637 {
5638 struct btrfs_space_info *space_info;
5639 u64 flags;
5640
5641 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5642 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5643 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5644 else
5645 flags = BTRFS_BLOCK_GROUP_METADATA;
5646 } else {
5647 flags = BTRFS_BLOCK_GROUP_DATA;
5648 }
5649
5650 space_info = __find_space_info(fs_info, flags);
5651 BUG_ON(!space_info); /* Logic bug */
5652 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5653 }
5654
5655
5656 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5657 struct btrfs_root *root,
5658 u64 bytenr, u64 num_bytes, u64 parent,
5659 u64 root_objectid, u64 owner_objectid,
5660 u64 owner_offset, int refs_to_drop,
5661 struct btrfs_delayed_extent_op *extent_op)
5662 {
5663 struct btrfs_key key;
5664 struct btrfs_path *path;
5665 struct btrfs_fs_info *info = root->fs_info;
5666 struct btrfs_root *extent_root = info->extent_root;
5667 struct extent_buffer *leaf;
5668 struct btrfs_extent_item *ei;
5669 struct btrfs_extent_inline_ref *iref;
5670 int ret;
5671 int is_data;
5672 int extent_slot = 0;
5673 int found_extent = 0;
5674 int num_to_del = 1;
5675 u32 item_size;
5676 u64 refs;
5677 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5678 SKINNY_METADATA);
5679
5680 path = btrfs_alloc_path();
5681 if (!path)
5682 return -ENOMEM;
5683
5684 path->reada = 1;
5685 path->leave_spinning = 1;
5686
5687 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5688 BUG_ON(!is_data && refs_to_drop != 1);
5689
5690 if (is_data)
5691 skinny_metadata = 0;
5692
5693 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5694 bytenr, num_bytes, parent,
5695 root_objectid, owner_objectid,
5696 owner_offset);
5697 if (ret == 0) {
5698 extent_slot = path->slots[0];
5699 while (extent_slot >= 0) {
5700 btrfs_item_key_to_cpu(path->nodes[0], &key,
5701 extent_slot);
5702 if (key.objectid != bytenr)
5703 break;
5704 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5705 key.offset == num_bytes) {
5706 found_extent = 1;
5707 break;
5708 }
5709 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5710 key.offset == owner_objectid) {
5711 found_extent = 1;
5712 break;
5713 }
5714 if (path->slots[0] - extent_slot > 5)
5715 break;
5716 extent_slot--;
5717 }
5718 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5719 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5720 if (found_extent && item_size < sizeof(*ei))
5721 found_extent = 0;
5722 #endif
5723 if (!found_extent) {
5724 BUG_ON(iref);
5725 ret = remove_extent_backref(trans, extent_root, path,
5726 NULL, refs_to_drop,
5727 is_data);
5728 if (ret) {
5729 btrfs_abort_transaction(trans, extent_root, ret);
5730 goto out;
5731 }
5732 btrfs_release_path(path);
5733 path->leave_spinning = 1;
5734
5735 key.objectid = bytenr;
5736 key.type = BTRFS_EXTENT_ITEM_KEY;
5737 key.offset = num_bytes;
5738
5739 if (!is_data && skinny_metadata) {
5740 key.type = BTRFS_METADATA_ITEM_KEY;
5741 key.offset = owner_objectid;
5742 }
5743
5744 ret = btrfs_search_slot(trans, extent_root,
5745 &key, path, -1, 1);
5746 if (ret > 0 && skinny_metadata && path->slots[0]) {
5747 /*
5748 * Couldn't find our skinny metadata item,
5749 * see if we have ye olde extent item.
5750 */
5751 path->slots[0]--;
5752 btrfs_item_key_to_cpu(path->nodes[0], &key,
5753 path->slots[0]);
5754 if (key.objectid == bytenr &&
5755 key.type == BTRFS_EXTENT_ITEM_KEY &&
5756 key.offset == num_bytes)
5757 ret = 0;
5758 }
5759
5760 if (ret > 0 && skinny_metadata) {
5761 skinny_metadata = false;
5762 key.type = BTRFS_EXTENT_ITEM_KEY;
5763 key.offset = num_bytes;
5764 btrfs_release_path(path);
5765 ret = btrfs_search_slot(trans, extent_root,
5766 &key, path, -1, 1);
5767 }
5768
5769 if (ret) {
5770 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5771 ret, bytenr);
5772 if (ret > 0)
5773 btrfs_print_leaf(extent_root,
5774 path->nodes[0]);
5775 }
5776 if (ret < 0) {
5777 btrfs_abort_transaction(trans, extent_root, ret);
5778 goto out;
5779 }
5780 extent_slot = path->slots[0];
5781 }
5782 } else if (WARN_ON(ret == -ENOENT)) {
5783 btrfs_print_leaf(extent_root, path->nodes[0]);
5784 btrfs_err(info,
5785 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5786 bytenr, parent, root_objectid, owner_objectid,
5787 owner_offset);
5788 } else {
5789 btrfs_abort_transaction(trans, extent_root, ret);
5790 goto out;
5791 }
5792
5793 leaf = path->nodes[0];
5794 item_size = btrfs_item_size_nr(leaf, extent_slot);
5795 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5796 if (item_size < sizeof(*ei)) {
5797 BUG_ON(found_extent || extent_slot != path->slots[0]);
5798 ret = convert_extent_item_v0(trans, extent_root, path,
5799 owner_objectid, 0);
5800 if (ret < 0) {
5801 btrfs_abort_transaction(trans, extent_root, ret);
5802 goto out;
5803 }
5804
5805 btrfs_release_path(path);
5806 path->leave_spinning = 1;
5807
5808 key.objectid = bytenr;
5809 key.type = BTRFS_EXTENT_ITEM_KEY;
5810 key.offset = num_bytes;
5811
5812 ret = btrfs_search_slot(trans, extent_root, &key, path,
5813 -1, 1);
5814 if (ret) {
5815 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5816 ret, bytenr);
5817 btrfs_print_leaf(extent_root, path->nodes[0]);
5818 }
5819 if (ret < 0) {
5820 btrfs_abort_transaction(trans, extent_root, ret);
5821 goto out;
5822 }
5823
5824 extent_slot = path->slots[0];
5825 leaf = path->nodes[0];
5826 item_size = btrfs_item_size_nr(leaf, extent_slot);
5827 }
5828 #endif
5829 BUG_ON(item_size < sizeof(*ei));
5830 ei = btrfs_item_ptr(leaf, extent_slot,
5831 struct btrfs_extent_item);
5832 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5833 key.type == BTRFS_EXTENT_ITEM_KEY) {
5834 struct btrfs_tree_block_info *bi;
5835 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5836 bi = (struct btrfs_tree_block_info *)(ei + 1);
5837 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5838 }
5839
5840 refs = btrfs_extent_refs(leaf, ei);
5841 if (refs < refs_to_drop) {
5842 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5843 "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5844 ret = -EINVAL;
5845 btrfs_abort_transaction(trans, extent_root, ret);
5846 goto out;
5847 }
5848 refs -= refs_to_drop;
5849
5850 if (refs > 0) {
5851 if (extent_op)
5852 __run_delayed_extent_op(extent_op, leaf, ei);
5853 /*
5854 * In the case of inline back ref, reference count will
5855 * be updated by remove_extent_backref
5856 */
5857 if (iref) {
5858 BUG_ON(!found_extent);
5859 } else {
5860 btrfs_set_extent_refs(leaf, ei, refs);
5861 btrfs_mark_buffer_dirty(leaf);
5862 }
5863 if (found_extent) {
5864 ret = remove_extent_backref(trans, extent_root, path,
5865 iref, refs_to_drop,
5866 is_data);
5867 if (ret) {
5868 btrfs_abort_transaction(trans, extent_root, ret);
5869 goto out;
5870 }
5871 }
5872 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5873 root_objectid);
5874 } else {
5875 if (found_extent) {
5876 BUG_ON(is_data && refs_to_drop !=
5877 extent_data_ref_count(root, path, iref));
5878 if (iref) {
5879 BUG_ON(path->slots[0] != extent_slot);
5880 } else {
5881 BUG_ON(path->slots[0] != extent_slot + 1);
5882 path->slots[0] = extent_slot;
5883 num_to_del = 2;
5884 }
5885 }
5886
5887 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5888 num_to_del);
5889 if (ret) {
5890 btrfs_abort_transaction(trans, extent_root, ret);
5891 goto out;
5892 }
5893 btrfs_release_path(path);
5894
5895 if (is_data) {
5896 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5897 if (ret) {
5898 btrfs_abort_transaction(trans, extent_root, ret);
5899 goto out;
5900 }
5901 }
5902
5903 ret = update_block_group(root, bytenr, num_bytes, 0);
5904 if (ret) {
5905 btrfs_abort_transaction(trans, extent_root, ret);
5906 goto out;
5907 }
5908 }
5909 out:
5910 btrfs_free_path(path);
5911 return ret;
5912 }
5913
5914 /*
5915 * when we free an block, it is possible (and likely) that we free the last
5916 * delayed ref for that extent as well. This searches the delayed ref tree for
5917 * a given extent, and if there are no other delayed refs to be processed, it
5918 * removes it from the tree.
5919 */
5920 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5921 struct btrfs_root *root, u64 bytenr)
5922 {
5923 struct btrfs_delayed_ref_head *head;
5924 struct btrfs_delayed_ref_root *delayed_refs;
5925 struct btrfs_delayed_ref_node *ref;
5926 struct rb_node *node;
5927 int ret = 0;
5928
5929 delayed_refs = &trans->transaction->delayed_refs;
5930 spin_lock(&delayed_refs->lock);
5931 head = btrfs_find_delayed_ref_head(trans, bytenr);
5932 if (!head)
5933 goto out;
5934
5935 node = rb_prev(&head->node.rb_node);
5936 if (!node)
5937 goto out;
5938
5939 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5940
5941 /* there are still entries for this ref, we can't drop it */
5942 if (ref->bytenr == bytenr)
5943 goto out;
5944
5945 if (head->extent_op) {
5946 if (!head->must_insert_reserved)
5947 goto out;
5948 btrfs_free_delayed_extent_op(head->extent_op);
5949 head->extent_op = NULL;
5950 }
5951
5952 /*
5953 * waiting for the lock here would deadlock. If someone else has it
5954 * locked they are already in the process of dropping it anyway
5955 */
5956 if (!mutex_trylock(&head->mutex))
5957 goto out;
5958
5959 /*
5960 * at this point we have a head with no other entries. Go
5961 * ahead and process it.
5962 */
5963 head->node.in_tree = 0;
5964 rb_erase(&head->node.rb_node, &delayed_refs->root);
5965 rb_erase(&head->href_node, &delayed_refs->href_root);
5966
5967 delayed_refs->num_entries--;
5968
5969 /*
5970 * we don't take a ref on the node because we're removing it from the
5971 * tree, so we just steal the ref the tree was holding.
5972 */
5973 delayed_refs->num_heads--;
5974 if (list_empty(&head->cluster))
5975 delayed_refs->num_heads_ready--;
5976
5977 list_del_init(&head->cluster);
5978 spin_unlock(&delayed_refs->lock);
5979
5980 BUG_ON(head->extent_op);
5981 if (head->must_insert_reserved)
5982 ret = 1;
5983
5984 mutex_unlock(&head->mutex);
5985 btrfs_put_delayed_ref(&head->node);
5986 return ret;
5987 out:
5988 spin_unlock(&delayed_refs->lock);
5989 return 0;
5990 }
5991
5992 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5993 struct btrfs_root *root,
5994 struct extent_buffer *buf,
5995 u64 parent, int last_ref)
5996 {
5997 struct btrfs_block_group_cache *cache = NULL;
5998 int pin = 1;
5999 int ret;
6000
6001 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6002 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6003 buf->start, buf->len,
6004 parent, root->root_key.objectid,
6005 btrfs_header_level(buf),
6006 BTRFS_DROP_DELAYED_REF, NULL, 0);
6007 BUG_ON(ret); /* -ENOMEM */
6008 }
6009
6010 if (!last_ref)
6011 return;
6012
6013 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6014
6015 if (btrfs_header_generation(buf) == trans->transid) {
6016 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6017 ret = check_ref_cleanup(trans, root, buf->start);
6018 if (!ret)
6019 goto out;
6020 }
6021
6022 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6023 pin_down_extent(root, cache, buf->start, buf->len, 1);
6024 goto out;
6025 }
6026
6027 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6028
6029 btrfs_add_free_space(cache, buf->start, buf->len);
6030 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
6031 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6032 pin = 0;
6033 }
6034 out:
6035 if (pin)
6036 add_pinned_bytes(root->fs_info, buf->len,
6037 btrfs_header_level(buf),
6038 root->root_key.objectid);
6039
6040 /*
6041 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6042 * anymore.
6043 */
6044 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6045 btrfs_put_block_group(cache);
6046 }
6047
6048 /* Can return -ENOMEM */
6049 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6050 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6051 u64 owner, u64 offset, int for_cow)
6052 {
6053 int ret;
6054 struct btrfs_fs_info *fs_info = root->fs_info;
6055
6056 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6057
6058 /*
6059 * tree log blocks never actually go into the extent allocation
6060 * tree, just update pinning info and exit early.
6061 */
6062 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6063 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6064 /* unlocks the pinned mutex */
6065 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6066 ret = 0;
6067 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6068 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6069 num_bytes,
6070 parent, root_objectid, (int)owner,
6071 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
6072 } else {
6073 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6074 num_bytes,
6075 parent, root_objectid, owner,
6076 offset, BTRFS_DROP_DELAYED_REF,
6077 NULL, for_cow);
6078 }
6079 return ret;
6080 }
6081
6082 static u64 stripe_align(struct btrfs_root *root,
6083 struct btrfs_block_group_cache *cache,
6084 u64 val, u64 num_bytes)
6085 {
6086 u64 ret = ALIGN(val, root->stripesize);
6087 return ret;
6088 }
6089
6090 /*
6091 * when we wait for progress in the block group caching, its because
6092 * our allocation attempt failed at least once. So, we must sleep
6093 * and let some progress happen before we try again.
6094 *
6095 * This function will sleep at least once waiting for new free space to
6096 * show up, and then it will check the block group free space numbers
6097 * for our min num_bytes. Another option is to have it go ahead
6098 * and look in the rbtree for a free extent of a given size, but this
6099 * is a good start.
6100 *
6101 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6102 * any of the information in this block group.
6103 */
6104 static noinline void
6105 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6106 u64 num_bytes)
6107 {
6108 struct btrfs_caching_control *caching_ctl;
6109
6110 caching_ctl = get_caching_control(cache);
6111 if (!caching_ctl)
6112 return;
6113
6114 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6115 (cache->free_space_ctl->free_space >= num_bytes));
6116
6117 put_caching_control(caching_ctl);
6118 }
6119
6120 static noinline int
6121 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6122 {
6123 struct btrfs_caching_control *caching_ctl;
6124 int ret = 0;
6125
6126 caching_ctl = get_caching_control(cache);
6127 if (!caching_ctl)
6128 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6129
6130 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6131 if (cache->cached == BTRFS_CACHE_ERROR)
6132 ret = -EIO;
6133 put_caching_control(caching_ctl);
6134 return ret;
6135 }
6136
6137 int __get_raid_index(u64 flags)
6138 {
6139 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6140 return BTRFS_RAID_RAID10;
6141 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6142 return BTRFS_RAID_RAID1;
6143 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6144 return BTRFS_RAID_DUP;
6145 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6146 return BTRFS_RAID_RAID0;
6147 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6148 return BTRFS_RAID_RAID5;
6149 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6150 return BTRFS_RAID_RAID6;
6151
6152 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6153 }
6154
6155 static int get_block_group_index(struct btrfs_block_group_cache *cache)
6156 {
6157 return __get_raid_index(cache->flags);
6158 }
6159
6160 enum btrfs_loop_type {
6161 LOOP_CACHING_NOWAIT = 0,
6162 LOOP_CACHING_WAIT = 1,
6163 LOOP_ALLOC_CHUNK = 2,
6164 LOOP_NO_EMPTY_SIZE = 3,
6165 };
6166
6167 /*
6168 * walks the btree of allocated extents and find a hole of a given size.
6169 * The key ins is changed to record the hole:
6170 * ins->objectid == start position
6171 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6172 * ins->offset == the size of the hole.
6173 * Any available blocks before search_start are skipped.
6174 *
6175 * If there is no suitable free space, we will record the max size of
6176 * the free space extent currently.
6177 */
6178 static noinline int find_free_extent(struct btrfs_root *orig_root,
6179 u64 num_bytes, u64 empty_size,
6180 u64 hint_byte, struct btrfs_key *ins,
6181 u64 flags)
6182 {
6183 int ret = 0;
6184 struct btrfs_root *root = orig_root->fs_info->extent_root;
6185 struct btrfs_free_cluster *last_ptr = NULL;
6186 struct btrfs_block_group_cache *block_group = NULL;
6187 struct btrfs_block_group_cache *used_block_group;
6188 u64 search_start = 0;
6189 u64 max_extent_size = 0;
6190 int empty_cluster = 2 * 1024 * 1024;
6191 struct btrfs_space_info *space_info;
6192 int loop = 0;
6193 int index = __get_raid_index(flags);
6194 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6195 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6196 bool found_uncached_bg = false;
6197 bool failed_cluster_refill = false;
6198 bool failed_alloc = false;
6199 bool use_cluster = true;
6200 bool have_caching_bg = false;
6201
6202 WARN_ON(num_bytes < root->sectorsize);
6203 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6204 ins->objectid = 0;
6205 ins->offset = 0;
6206
6207 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6208
6209 space_info = __find_space_info(root->fs_info, flags);
6210 if (!space_info) {
6211 btrfs_err(root->fs_info, "No space info for %llu", flags);
6212 return -ENOSPC;
6213 }
6214
6215 /*
6216 * If the space info is for both data and metadata it means we have a
6217 * small filesystem and we can't use the clustering stuff.
6218 */
6219 if (btrfs_mixed_space_info(space_info))
6220 use_cluster = false;
6221
6222 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6223 last_ptr = &root->fs_info->meta_alloc_cluster;
6224 if (!btrfs_test_opt(root, SSD))
6225 empty_cluster = 64 * 1024;
6226 }
6227
6228 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6229 btrfs_test_opt(root, SSD)) {
6230 last_ptr = &root->fs_info->data_alloc_cluster;
6231 }
6232
6233 if (last_ptr) {
6234 spin_lock(&last_ptr->lock);
6235 if (last_ptr->block_group)
6236 hint_byte = last_ptr->window_start;
6237 spin_unlock(&last_ptr->lock);
6238 }
6239
6240 search_start = max(search_start, first_logical_byte(root, 0));
6241 search_start = max(search_start, hint_byte);
6242
6243 if (!last_ptr)
6244 empty_cluster = 0;
6245
6246 if (search_start == hint_byte) {
6247 block_group = btrfs_lookup_block_group(root->fs_info,
6248 search_start);
6249 used_block_group = block_group;
6250 /*
6251 * we don't want to use the block group if it doesn't match our
6252 * allocation bits, or if its not cached.
6253 *
6254 * However if we are re-searching with an ideal block group
6255 * picked out then we don't care that the block group is cached.
6256 */
6257 if (block_group && block_group_bits(block_group, flags) &&
6258 block_group->cached != BTRFS_CACHE_NO) {
6259 down_read(&space_info->groups_sem);
6260 if (list_empty(&block_group->list) ||
6261 block_group->ro) {
6262 /*
6263 * someone is removing this block group,
6264 * we can't jump into the have_block_group
6265 * target because our list pointers are not
6266 * valid
6267 */
6268 btrfs_put_block_group(block_group);
6269 up_read(&space_info->groups_sem);
6270 } else {
6271 index = get_block_group_index(block_group);
6272 goto have_block_group;
6273 }
6274 } else if (block_group) {
6275 btrfs_put_block_group(block_group);
6276 }
6277 }
6278 search:
6279 have_caching_bg = false;
6280 down_read(&space_info->groups_sem);
6281 list_for_each_entry(block_group, &space_info->block_groups[index],
6282 list) {
6283 u64 offset;
6284 int cached;
6285
6286 used_block_group = block_group;
6287 btrfs_get_block_group(block_group);
6288 search_start = block_group->key.objectid;
6289
6290 /*
6291 * this can happen if we end up cycling through all the
6292 * raid types, but we want to make sure we only allocate
6293 * for the proper type.
6294 */
6295 if (!block_group_bits(block_group, flags)) {
6296 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6297 BTRFS_BLOCK_GROUP_RAID1 |
6298 BTRFS_BLOCK_GROUP_RAID5 |
6299 BTRFS_BLOCK_GROUP_RAID6 |
6300 BTRFS_BLOCK_GROUP_RAID10;
6301
6302 /*
6303 * if they asked for extra copies and this block group
6304 * doesn't provide them, bail. This does allow us to
6305 * fill raid0 from raid1.
6306 */
6307 if ((flags & extra) && !(block_group->flags & extra))
6308 goto loop;
6309 }
6310
6311 have_block_group:
6312 cached = block_group_cache_done(block_group);
6313 if (unlikely(!cached)) {
6314 found_uncached_bg = true;
6315 ret = cache_block_group(block_group, 0);
6316 BUG_ON(ret < 0);
6317 ret = 0;
6318 }
6319
6320 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6321 goto loop;
6322 if (unlikely(block_group->ro))
6323 goto loop;
6324
6325 /*
6326 * Ok we want to try and use the cluster allocator, so
6327 * lets look there
6328 */
6329 if (last_ptr) {
6330 unsigned long aligned_cluster;
6331 /*
6332 * the refill lock keeps out other
6333 * people trying to start a new cluster
6334 */
6335 spin_lock(&last_ptr->refill_lock);
6336 used_block_group = last_ptr->block_group;
6337 if (used_block_group != block_group &&
6338 (!used_block_group ||
6339 used_block_group->ro ||
6340 !block_group_bits(used_block_group, flags))) {
6341 used_block_group = block_group;
6342 goto refill_cluster;
6343 }
6344
6345 if (used_block_group != block_group)
6346 btrfs_get_block_group(used_block_group);
6347
6348 offset = btrfs_alloc_from_cluster(used_block_group,
6349 last_ptr,
6350 num_bytes,
6351 used_block_group->key.objectid,
6352 &max_extent_size);
6353 if (offset) {
6354 /* we have a block, we're done */
6355 spin_unlock(&last_ptr->refill_lock);
6356 trace_btrfs_reserve_extent_cluster(root,
6357 block_group, search_start, num_bytes);
6358 goto checks;
6359 }
6360
6361 WARN_ON(last_ptr->block_group != used_block_group);
6362 if (used_block_group != block_group) {
6363 btrfs_put_block_group(used_block_group);
6364 used_block_group = block_group;
6365 }
6366 refill_cluster:
6367 BUG_ON(used_block_group != block_group);
6368 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6369 * set up a new clusters, so lets just skip it
6370 * and let the allocator find whatever block
6371 * it can find. If we reach this point, we
6372 * will have tried the cluster allocator
6373 * plenty of times and not have found
6374 * anything, so we are likely way too
6375 * fragmented for the clustering stuff to find
6376 * anything.
6377 *
6378 * However, if the cluster is taken from the
6379 * current block group, release the cluster
6380 * first, so that we stand a better chance of
6381 * succeeding in the unclustered
6382 * allocation. */
6383 if (loop >= LOOP_NO_EMPTY_SIZE &&
6384 last_ptr->block_group != block_group) {
6385 spin_unlock(&last_ptr->refill_lock);
6386 goto unclustered_alloc;
6387 }
6388
6389 /*
6390 * this cluster didn't work out, free it and
6391 * start over
6392 */
6393 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6394
6395 if (loop >= LOOP_NO_EMPTY_SIZE) {
6396 spin_unlock(&last_ptr->refill_lock);
6397 goto unclustered_alloc;
6398 }
6399
6400 aligned_cluster = max_t(unsigned long,
6401 empty_cluster + empty_size,
6402 block_group->full_stripe_len);
6403
6404 /* allocate a cluster in this block group */
6405 ret = btrfs_find_space_cluster(root, block_group,
6406 last_ptr, search_start,
6407 num_bytes,
6408 aligned_cluster);
6409 if (ret == 0) {
6410 /*
6411 * now pull our allocation out of this
6412 * cluster
6413 */
6414 offset = btrfs_alloc_from_cluster(block_group,
6415 last_ptr,
6416 num_bytes,
6417 search_start,
6418 &max_extent_size);
6419 if (offset) {
6420 /* we found one, proceed */
6421 spin_unlock(&last_ptr->refill_lock);
6422 trace_btrfs_reserve_extent_cluster(root,
6423 block_group, search_start,
6424 num_bytes);
6425 goto checks;
6426 }
6427 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6428 && !failed_cluster_refill) {
6429 spin_unlock(&last_ptr->refill_lock);
6430
6431 failed_cluster_refill = true;
6432 wait_block_group_cache_progress(block_group,
6433 num_bytes + empty_cluster + empty_size);
6434 goto have_block_group;
6435 }
6436
6437 /*
6438 * at this point we either didn't find a cluster
6439 * or we weren't able to allocate a block from our
6440 * cluster. Free the cluster we've been trying
6441 * to use, and go to the next block group
6442 */
6443 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6444 spin_unlock(&last_ptr->refill_lock);
6445 goto loop;
6446 }
6447
6448 unclustered_alloc:
6449 spin_lock(&block_group->free_space_ctl->tree_lock);
6450 if (cached &&
6451 block_group->free_space_ctl->free_space <
6452 num_bytes + empty_cluster + empty_size) {
6453 if (block_group->free_space_ctl->free_space >
6454 max_extent_size)
6455 max_extent_size =
6456 block_group->free_space_ctl->free_space;
6457 spin_unlock(&block_group->free_space_ctl->tree_lock);
6458 goto loop;
6459 }
6460 spin_unlock(&block_group->free_space_ctl->tree_lock);
6461
6462 offset = btrfs_find_space_for_alloc(block_group, search_start,
6463 num_bytes, empty_size,
6464 &max_extent_size);
6465 /*
6466 * If we didn't find a chunk, and we haven't failed on this
6467 * block group before, and this block group is in the middle of
6468 * caching and we are ok with waiting, then go ahead and wait
6469 * for progress to be made, and set failed_alloc to true.
6470 *
6471 * If failed_alloc is true then we've already waited on this
6472 * block group once and should move on to the next block group.
6473 */
6474 if (!offset && !failed_alloc && !cached &&
6475 loop > LOOP_CACHING_NOWAIT) {
6476 wait_block_group_cache_progress(block_group,
6477 num_bytes + empty_size);
6478 failed_alloc = true;
6479 goto have_block_group;
6480 } else if (!offset) {
6481 if (!cached)
6482 have_caching_bg = true;
6483 goto loop;
6484 }
6485 checks:
6486 search_start = stripe_align(root, used_block_group,
6487 offset, num_bytes);
6488
6489 /* move on to the next group */
6490 if (search_start + num_bytes >
6491 used_block_group->key.objectid + used_block_group->key.offset) {
6492 btrfs_add_free_space(used_block_group, offset, num_bytes);
6493 goto loop;
6494 }
6495
6496 if (offset < search_start)
6497 btrfs_add_free_space(used_block_group, offset,
6498 search_start - offset);
6499 BUG_ON(offset > search_start);
6500
6501 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
6502 alloc_type);
6503 if (ret == -EAGAIN) {
6504 btrfs_add_free_space(used_block_group, offset, num_bytes);
6505 goto loop;
6506 }
6507
6508 /* we are all good, lets return */
6509 ins->objectid = search_start;
6510 ins->offset = num_bytes;
6511
6512 trace_btrfs_reserve_extent(orig_root, block_group,
6513 search_start, num_bytes);
6514 if (used_block_group != block_group)
6515 btrfs_put_block_group(used_block_group);
6516 btrfs_put_block_group(block_group);
6517 break;
6518 loop:
6519 failed_cluster_refill = false;
6520 failed_alloc = false;
6521 BUG_ON(index != get_block_group_index(block_group));
6522 if (used_block_group != block_group)
6523 btrfs_put_block_group(used_block_group);
6524 btrfs_put_block_group(block_group);
6525 }
6526 up_read(&space_info->groups_sem);
6527
6528 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6529 goto search;
6530
6531 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6532 goto search;
6533
6534 /*
6535 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6536 * caching kthreads as we move along
6537 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6538 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6539 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6540 * again
6541 */
6542 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6543 index = 0;
6544 loop++;
6545 if (loop == LOOP_ALLOC_CHUNK) {
6546 struct btrfs_trans_handle *trans;
6547
6548 trans = btrfs_join_transaction(root);
6549 if (IS_ERR(trans)) {
6550 ret = PTR_ERR(trans);
6551 goto out;
6552 }
6553
6554 ret = do_chunk_alloc(trans, root, flags,
6555 CHUNK_ALLOC_FORCE);
6556 /*
6557 * Do not bail out on ENOSPC since we
6558 * can do more things.
6559 */
6560 if (ret < 0 && ret != -ENOSPC)
6561 btrfs_abort_transaction(trans,
6562 root, ret);
6563 else
6564 ret = 0;
6565 btrfs_end_transaction(trans, root);
6566 if (ret)
6567 goto out;
6568 }
6569
6570 if (loop == LOOP_NO_EMPTY_SIZE) {
6571 empty_size = 0;
6572 empty_cluster = 0;
6573 }
6574
6575 goto search;
6576 } else if (!ins->objectid) {
6577 ret = -ENOSPC;
6578 } else if (ins->objectid) {
6579 ret = 0;
6580 }
6581 out:
6582 if (ret == -ENOSPC)
6583 ins->offset = max_extent_size;
6584 return ret;
6585 }
6586
6587 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6588 int dump_block_groups)
6589 {
6590 struct btrfs_block_group_cache *cache;
6591 int index = 0;
6592
6593 spin_lock(&info->lock);
6594 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
6595 info->flags,
6596 info->total_bytes - info->bytes_used - info->bytes_pinned -
6597 info->bytes_reserved - info->bytes_readonly,
6598 (info->full) ? "" : "not ");
6599 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
6600 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6601 info->total_bytes, info->bytes_used, info->bytes_pinned,
6602 info->bytes_reserved, info->bytes_may_use,
6603 info->bytes_readonly);
6604 spin_unlock(&info->lock);
6605
6606 if (!dump_block_groups)
6607 return;
6608
6609 down_read(&info->groups_sem);
6610 again:
6611 list_for_each_entry(cache, &info->block_groups[index], list) {
6612 spin_lock(&cache->lock);
6613 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
6614 cache->key.objectid, cache->key.offset,
6615 btrfs_block_group_used(&cache->item), cache->pinned,
6616 cache->reserved, cache->ro ? "[readonly]" : "");
6617 btrfs_dump_free_space(cache, bytes);
6618 spin_unlock(&cache->lock);
6619 }
6620 if (++index < BTRFS_NR_RAID_TYPES)
6621 goto again;
6622 up_read(&info->groups_sem);
6623 }
6624
6625 int btrfs_reserve_extent(struct btrfs_root *root,
6626 u64 num_bytes, u64 min_alloc_size,
6627 u64 empty_size, u64 hint_byte,
6628 struct btrfs_key *ins, int is_data)
6629 {
6630 bool final_tried = false;
6631 u64 flags;
6632 int ret;
6633
6634 flags = btrfs_get_alloc_profile(root, is_data);
6635 again:
6636 WARN_ON(num_bytes < root->sectorsize);
6637 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6638 flags);
6639
6640 if (ret == -ENOSPC) {
6641 if (!final_tried && ins->offset) {
6642 num_bytes = min(num_bytes >> 1, ins->offset);
6643 num_bytes = round_down(num_bytes, root->sectorsize);
6644 num_bytes = max(num_bytes, min_alloc_size);
6645 if (num_bytes == min_alloc_size)
6646 final_tried = true;
6647 goto again;
6648 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6649 struct btrfs_space_info *sinfo;
6650
6651 sinfo = __find_space_info(root->fs_info, flags);
6652 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6653 flags, num_bytes);
6654 if (sinfo)
6655 dump_space_info(sinfo, num_bytes, 1);
6656 }
6657 }
6658
6659 return ret;
6660 }
6661
6662 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6663 u64 start, u64 len, int pin)
6664 {
6665 struct btrfs_block_group_cache *cache;
6666 int ret = 0;
6667
6668 cache = btrfs_lookup_block_group(root->fs_info, start);
6669 if (!cache) {
6670 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6671 start);
6672 return -ENOSPC;
6673 }
6674
6675 if (btrfs_test_opt(root, DISCARD))
6676 ret = btrfs_discard_extent(root, start, len, NULL);
6677
6678 if (pin)
6679 pin_down_extent(root, cache, start, len, 1);
6680 else {
6681 btrfs_add_free_space(cache, start, len);
6682 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6683 }
6684 btrfs_put_block_group(cache);
6685
6686 trace_btrfs_reserved_extent_free(root, start, len);
6687
6688 return ret;
6689 }
6690
6691 int btrfs_free_reserved_extent(struct btrfs_root *root,
6692 u64 start, u64 len)
6693 {
6694 return __btrfs_free_reserved_extent(root, start, len, 0);
6695 }
6696
6697 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6698 u64 start, u64 len)
6699 {
6700 return __btrfs_free_reserved_extent(root, start, len, 1);
6701 }
6702
6703 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6704 struct btrfs_root *root,
6705 u64 parent, u64 root_objectid,
6706 u64 flags, u64 owner, u64 offset,
6707 struct btrfs_key *ins, int ref_mod)
6708 {
6709 int ret;
6710 struct btrfs_fs_info *fs_info = root->fs_info;
6711 struct btrfs_extent_item *extent_item;
6712 struct btrfs_extent_inline_ref *iref;
6713 struct btrfs_path *path;
6714 struct extent_buffer *leaf;
6715 int type;
6716 u32 size;
6717
6718 if (parent > 0)
6719 type = BTRFS_SHARED_DATA_REF_KEY;
6720 else
6721 type = BTRFS_EXTENT_DATA_REF_KEY;
6722
6723 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6724
6725 path = btrfs_alloc_path();
6726 if (!path)
6727 return -ENOMEM;
6728
6729 path->leave_spinning = 1;
6730 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6731 ins, size);
6732 if (ret) {
6733 btrfs_free_path(path);
6734 return ret;
6735 }
6736
6737 leaf = path->nodes[0];
6738 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6739 struct btrfs_extent_item);
6740 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6741 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6742 btrfs_set_extent_flags(leaf, extent_item,
6743 flags | BTRFS_EXTENT_FLAG_DATA);
6744
6745 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6746 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6747 if (parent > 0) {
6748 struct btrfs_shared_data_ref *ref;
6749 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6750 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6751 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6752 } else {
6753 struct btrfs_extent_data_ref *ref;
6754 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6755 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6756 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6757 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6758 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6759 }
6760
6761 btrfs_mark_buffer_dirty(path->nodes[0]);
6762 btrfs_free_path(path);
6763
6764 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6765 if (ret) { /* -ENOENT, logic error */
6766 btrfs_err(fs_info, "update block group failed for %llu %llu",
6767 ins->objectid, ins->offset);
6768 BUG();
6769 }
6770 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6771 return ret;
6772 }
6773
6774 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6775 struct btrfs_root *root,
6776 u64 parent, u64 root_objectid,
6777 u64 flags, struct btrfs_disk_key *key,
6778 int level, struct btrfs_key *ins)
6779 {
6780 int ret;
6781 struct btrfs_fs_info *fs_info = root->fs_info;
6782 struct btrfs_extent_item *extent_item;
6783 struct btrfs_tree_block_info *block_info;
6784 struct btrfs_extent_inline_ref *iref;
6785 struct btrfs_path *path;
6786 struct extent_buffer *leaf;
6787 u32 size = sizeof(*extent_item) + sizeof(*iref);
6788 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6789 SKINNY_METADATA);
6790
6791 if (!skinny_metadata)
6792 size += sizeof(*block_info);
6793
6794 path = btrfs_alloc_path();
6795 if (!path) {
6796 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6797 root->leafsize);
6798 return -ENOMEM;
6799 }
6800
6801 path->leave_spinning = 1;
6802 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6803 ins, size);
6804 if (ret) {
6805 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6806 root->leafsize);
6807 btrfs_free_path(path);
6808 return ret;
6809 }
6810
6811 leaf = path->nodes[0];
6812 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6813 struct btrfs_extent_item);
6814 btrfs_set_extent_refs(leaf, extent_item, 1);
6815 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6816 btrfs_set_extent_flags(leaf, extent_item,
6817 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6818
6819 if (skinny_metadata) {
6820 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6821 } else {
6822 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6823 btrfs_set_tree_block_key(leaf, block_info, key);
6824 btrfs_set_tree_block_level(leaf, block_info, level);
6825 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6826 }
6827
6828 if (parent > 0) {
6829 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6830 btrfs_set_extent_inline_ref_type(leaf, iref,
6831 BTRFS_SHARED_BLOCK_REF_KEY);
6832 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6833 } else {
6834 btrfs_set_extent_inline_ref_type(leaf, iref,
6835 BTRFS_TREE_BLOCK_REF_KEY);
6836 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6837 }
6838
6839 btrfs_mark_buffer_dirty(leaf);
6840 btrfs_free_path(path);
6841
6842 ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6843 if (ret) { /* -ENOENT, logic error */
6844 btrfs_err(fs_info, "update block group failed for %llu %llu",
6845 ins->objectid, ins->offset);
6846 BUG();
6847 }
6848
6849 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize);
6850 return ret;
6851 }
6852
6853 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6854 struct btrfs_root *root,
6855 u64 root_objectid, u64 owner,
6856 u64 offset, struct btrfs_key *ins)
6857 {
6858 int ret;
6859
6860 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6861
6862 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6863 ins->offset, 0,
6864 root_objectid, owner, offset,
6865 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6866 return ret;
6867 }
6868
6869 /*
6870 * this is used by the tree logging recovery code. It records that
6871 * an extent has been allocated and makes sure to clear the free
6872 * space cache bits as well
6873 */
6874 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6875 struct btrfs_root *root,
6876 u64 root_objectid, u64 owner, u64 offset,
6877 struct btrfs_key *ins)
6878 {
6879 int ret;
6880 struct btrfs_block_group_cache *block_group;
6881
6882 /*
6883 * Mixed block groups will exclude before processing the log so we only
6884 * need to do the exlude dance if this fs isn't mixed.
6885 */
6886 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6887 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6888 if (ret)
6889 return ret;
6890 }
6891
6892 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6893 if (!block_group)
6894 return -EINVAL;
6895
6896 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6897 RESERVE_ALLOC_NO_ACCOUNT);
6898 BUG_ON(ret); /* logic error */
6899 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6900 0, owner, offset, ins, 1);
6901 btrfs_put_block_group(block_group);
6902 return ret;
6903 }
6904
6905 static struct extent_buffer *
6906 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6907 u64 bytenr, u32 blocksize, int level)
6908 {
6909 struct extent_buffer *buf;
6910
6911 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6912 if (!buf)
6913 return ERR_PTR(-ENOMEM);
6914 btrfs_set_header_generation(buf, trans->transid);
6915 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6916 btrfs_tree_lock(buf);
6917 clean_tree_block(trans, root, buf);
6918 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6919
6920 btrfs_set_lock_blocking(buf);
6921 btrfs_set_buffer_uptodate(buf);
6922
6923 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6924 /*
6925 * we allow two log transactions at a time, use different
6926 * EXENT bit to differentiate dirty pages.
6927 */
6928 if (root->log_transid % 2 == 0)
6929 set_extent_dirty(&root->dirty_log_pages, buf->start,
6930 buf->start + buf->len - 1, GFP_NOFS);
6931 else
6932 set_extent_new(&root->dirty_log_pages, buf->start,
6933 buf->start + buf->len - 1, GFP_NOFS);
6934 } else {
6935 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6936 buf->start + buf->len - 1, GFP_NOFS);
6937 }
6938 trans->blocks_used++;
6939 /* this returns a buffer locked for blocking */
6940 return buf;
6941 }
6942
6943 static struct btrfs_block_rsv *
6944 use_block_rsv(struct btrfs_trans_handle *trans,
6945 struct btrfs_root *root, u32 blocksize)
6946 {
6947 struct btrfs_block_rsv *block_rsv;
6948 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6949 int ret;
6950 bool global_updated = false;
6951
6952 block_rsv = get_block_rsv(trans, root);
6953
6954 if (unlikely(block_rsv->size == 0))
6955 goto try_reserve;
6956 again:
6957 ret = block_rsv_use_bytes(block_rsv, blocksize);
6958 if (!ret)
6959 return block_rsv;
6960
6961 if (block_rsv->failfast)
6962 return ERR_PTR(ret);
6963
6964 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
6965 global_updated = true;
6966 update_global_block_rsv(root->fs_info);
6967 goto again;
6968 }
6969
6970 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6971 static DEFINE_RATELIMIT_STATE(_rs,
6972 DEFAULT_RATELIMIT_INTERVAL * 10,
6973 /*DEFAULT_RATELIMIT_BURST*/ 1);
6974 if (__ratelimit(&_rs))
6975 WARN(1, KERN_DEBUG
6976 "btrfs: block rsv returned %d\n", ret);
6977 }
6978 try_reserve:
6979 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6980 BTRFS_RESERVE_NO_FLUSH);
6981 if (!ret)
6982 return block_rsv;
6983 /*
6984 * If we couldn't reserve metadata bytes try and use some from
6985 * the global reserve if its space type is the same as the global
6986 * reservation.
6987 */
6988 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
6989 block_rsv->space_info == global_rsv->space_info) {
6990 ret = block_rsv_use_bytes(global_rsv, blocksize);
6991 if (!ret)
6992 return global_rsv;
6993 }
6994 return ERR_PTR(ret);
6995 }
6996
6997 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6998 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6999 {
7000 block_rsv_add_bytes(block_rsv, blocksize, 0);
7001 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7002 }
7003
7004 /*
7005 * finds a free extent and does all the dirty work required for allocation
7006 * returns the key for the extent through ins, and a tree buffer for
7007 * the first block of the extent through buf.
7008 *
7009 * returns the tree buffer or NULL.
7010 */
7011 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
7012 struct btrfs_root *root, u32 blocksize,
7013 u64 parent, u64 root_objectid,
7014 struct btrfs_disk_key *key, int level,
7015 u64 hint, u64 empty_size)
7016 {
7017 struct btrfs_key ins;
7018 struct btrfs_block_rsv *block_rsv;
7019 struct extent_buffer *buf;
7020 u64 flags = 0;
7021 int ret;
7022 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7023 SKINNY_METADATA);
7024
7025 block_rsv = use_block_rsv(trans, root, blocksize);
7026 if (IS_ERR(block_rsv))
7027 return ERR_CAST(block_rsv);
7028
7029 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7030 empty_size, hint, &ins, 0);
7031 if (ret) {
7032 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7033 return ERR_PTR(ret);
7034 }
7035
7036 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7037 blocksize, level);
7038 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7039
7040 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7041 if (parent == 0)
7042 parent = ins.objectid;
7043 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7044 } else
7045 BUG_ON(parent > 0);
7046
7047 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7048 struct btrfs_delayed_extent_op *extent_op;
7049 extent_op = btrfs_alloc_delayed_extent_op();
7050 BUG_ON(!extent_op); /* -ENOMEM */
7051 if (key)
7052 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7053 else
7054 memset(&extent_op->key, 0, sizeof(extent_op->key));
7055 extent_op->flags_to_set = flags;
7056 if (skinny_metadata)
7057 extent_op->update_key = 0;
7058 else
7059 extent_op->update_key = 1;
7060 extent_op->update_flags = 1;
7061 extent_op->is_data = 0;
7062 extent_op->level = level;
7063
7064 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7065 ins.objectid,
7066 ins.offset, parent, root_objectid,
7067 level, BTRFS_ADD_DELAYED_EXTENT,
7068 extent_op, 0);
7069 BUG_ON(ret); /* -ENOMEM */
7070 }
7071 return buf;
7072 }
7073
7074 struct walk_control {
7075 u64 refs[BTRFS_MAX_LEVEL];
7076 u64 flags[BTRFS_MAX_LEVEL];
7077 struct btrfs_key update_progress;
7078 int stage;
7079 int level;
7080 int shared_level;
7081 int update_ref;
7082 int keep_locks;
7083 int reada_slot;
7084 int reada_count;
7085 int for_reloc;
7086 };
7087
7088 #define DROP_REFERENCE 1
7089 #define UPDATE_BACKREF 2
7090
7091 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7092 struct btrfs_root *root,
7093 struct walk_control *wc,
7094 struct btrfs_path *path)
7095 {
7096 u64 bytenr;
7097 u64 generation;
7098 u64 refs;
7099 u64 flags;
7100 u32 nritems;
7101 u32 blocksize;
7102 struct btrfs_key key;
7103 struct extent_buffer *eb;
7104 int ret;
7105 int slot;
7106 int nread = 0;
7107
7108 if (path->slots[wc->level] < wc->reada_slot) {
7109 wc->reada_count = wc->reada_count * 2 / 3;
7110 wc->reada_count = max(wc->reada_count, 2);
7111 } else {
7112 wc->reada_count = wc->reada_count * 3 / 2;
7113 wc->reada_count = min_t(int, wc->reada_count,
7114 BTRFS_NODEPTRS_PER_BLOCK(root));
7115 }
7116
7117 eb = path->nodes[wc->level];
7118 nritems = btrfs_header_nritems(eb);
7119 blocksize = btrfs_level_size(root, wc->level - 1);
7120
7121 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7122 if (nread >= wc->reada_count)
7123 break;
7124
7125 cond_resched();
7126 bytenr = btrfs_node_blockptr(eb, slot);
7127 generation = btrfs_node_ptr_generation(eb, slot);
7128
7129 if (slot == path->slots[wc->level])
7130 goto reada;
7131
7132 if (wc->stage == UPDATE_BACKREF &&
7133 generation <= root->root_key.offset)
7134 continue;
7135
7136 /* We don't lock the tree block, it's OK to be racy here */
7137 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7138 wc->level - 1, 1, &refs,
7139 &flags);
7140 /* We don't care about errors in readahead. */
7141 if (ret < 0)
7142 continue;
7143 BUG_ON(refs == 0);
7144
7145 if (wc->stage == DROP_REFERENCE) {
7146 if (refs == 1)
7147 goto reada;
7148
7149 if (wc->level == 1 &&
7150 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7151 continue;
7152 if (!wc->update_ref ||
7153 generation <= root->root_key.offset)
7154 continue;
7155 btrfs_node_key_to_cpu(eb, &key, slot);
7156 ret = btrfs_comp_cpu_keys(&key,
7157 &wc->update_progress);
7158 if (ret < 0)
7159 continue;
7160 } else {
7161 if (wc->level == 1 &&
7162 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7163 continue;
7164 }
7165 reada:
7166 ret = readahead_tree_block(root, bytenr, blocksize,
7167 generation);
7168 if (ret)
7169 break;
7170 nread++;
7171 }
7172 wc->reada_slot = slot;
7173 }
7174
7175 /*
7176 * helper to process tree block while walking down the tree.
7177 *
7178 * when wc->stage == UPDATE_BACKREF, this function updates
7179 * back refs for pointers in the block.
7180 *
7181 * NOTE: return value 1 means we should stop walking down.
7182 */
7183 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7184 struct btrfs_root *root,
7185 struct btrfs_path *path,
7186 struct walk_control *wc, int lookup_info)
7187 {
7188 int level = wc->level;
7189 struct extent_buffer *eb = path->nodes[level];
7190 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7191 int ret;
7192
7193 if (wc->stage == UPDATE_BACKREF &&
7194 btrfs_header_owner(eb) != root->root_key.objectid)
7195 return 1;
7196
7197 /*
7198 * when reference count of tree block is 1, it won't increase
7199 * again. once full backref flag is set, we never clear it.
7200 */
7201 if (lookup_info &&
7202 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7203 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7204 BUG_ON(!path->locks[level]);
7205 ret = btrfs_lookup_extent_info(trans, root,
7206 eb->start, level, 1,
7207 &wc->refs[level],
7208 &wc->flags[level]);
7209 BUG_ON(ret == -ENOMEM);
7210 if (ret)
7211 return ret;
7212 BUG_ON(wc->refs[level] == 0);
7213 }
7214
7215 if (wc->stage == DROP_REFERENCE) {
7216 if (wc->refs[level] > 1)
7217 return 1;
7218
7219 if (path->locks[level] && !wc->keep_locks) {
7220 btrfs_tree_unlock_rw(eb, path->locks[level]);
7221 path->locks[level] = 0;
7222 }
7223 return 0;
7224 }
7225
7226 /* wc->stage == UPDATE_BACKREF */
7227 if (!(wc->flags[level] & flag)) {
7228 BUG_ON(!path->locks[level]);
7229 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7230 BUG_ON(ret); /* -ENOMEM */
7231 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7232 BUG_ON(ret); /* -ENOMEM */
7233 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7234 eb->len, flag,
7235 btrfs_header_level(eb), 0);
7236 BUG_ON(ret); /* -ENOMEM */
7237 wc->flags[level] |= flag;
7238 }
7239
7240 /*
7241 * the block is shared by multiple trees, so it's not good to
7242 * keep the tree lock
7243 */
7244 if (path->locks[level] && level > 0) {
7245 btrfs_tree_unlock_rw(eb, path->locks[level]);
7246 path->locks[level] = 0;
7247 }
7248 return 0;
7249 }
7250
7251 /*
7252 * helper to process tree block pointer.
7253 *
7254 * when wc->stage == DROP_REFERENCE, this function checks
7255 * reference count of the block pointed to. if the block
7256 * is shared and we need update back refs for the subtree
7257 * rooted at the block, this function changes wc->stage to
7258 * UPDATE_BACKREF. if the block is shared and there is no
7259 * need to update back, this function drops the reference
7260 * to the block.
7261 *
7262 * NOTE: return value 1 means we should stop walking down.
7263 */
7264 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7265 struct btrfs_root *root,
7266 struct btrfs_path *path,
7267 struct walk_control *wc, int *lookup_info)
7268 {
7269 u64 bytenr;
7270 u64 generation;
7271 u64 parent;
7272 u32 blocksize;
7273 struct btrfs_key key;
7274 struct extent_buffer *next;
7275 int level = wc->level;
7276 int reada = 0;
7277 int ret = 0;
7278
7279 generation = btrfs_node_ptr_generation(path->nodes[level],
7280 path->slots[level]);
7281 /*
7282 * if the lower level block was created before the snapshot
7283 * was created, we know there is no need to update back refs
7284 * for the subtree
7285 */
7286 if (wc->stage == UPDATE_BACKREF &&
7287 generation <= root->root_key.offset) {
7288 *lookup_info = 1;
7289 return 1;
7290 }
7291
7292 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7293 blocksize = btrfs_level_size(root, level - 1);
7294
7295 next = btrfs_find_tree_block(root, bytenr, blocksize);
7296 if (!next) {
7297 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7298 if (!next)
7299 return -ENOMEM;
7300 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7301 level - 1);
7302 reada = 1;
7303 }
7304 btrfs_tree_lock(next);
7305 btrfs_set_lock_blocking(next);
7306
7307 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7308 &wc->refs[level - 1],
7309 &wc->flags[level - 1]);
7310 if (ret < 0) {
7311 btrfs_tree_unlock(next);
7312 return ret;
7313 }
7314
7315 if (unlikely(wc->refs[level - 1] == 0)) {
7316 btrfs_err(root->fs_info, "Missing references.");
7317 BUG();
7318 }
7319 *lookup_info = 0;
7320
7321 if (wc->stage == DROP_REFERENCE) {
7322 if (wc->refs[level - 1] > 1) {
7323 if (level == 1 &&
7324 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7325 goto skip;
7326
7327 if (!wc->update_ref ||
7328 generation <= root->root_key.offset)
7329 goto skip;
7330
7331 btrfs_node_key_to_cpu(path->nodes[level], &key,
7332 path->slots[level]);
7333 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7334 if (ret < 0)
7335 goto skip;
7336
7337 wc->stage = UPDATE_BACKREF;
7338 wc->shared_level = level - 1;
7339 }
7340 } else {
7341 if (level == 1 &&
7342 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7343 goto skip;
7344 }
7345
7346 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7347 btrfs_tree_unlock(next);
7348 free_extent_buffer(next);
7349 next = NULL;
7350 *lookup_info = 1;
7351 }
7352
7353 if (!next) {
7354 if (reada && level == 1)
7355 reada_walk_down(trans, root, wc, path);
7356 next = read_tree_block(root, bytenr, blocksize, generation);
7357 if (!next || !extent_buffer_uptodate(next)) {
7358 free_extent_buffer(next);
7359 return -EIO;
7360 }
7361 btrfs_tree_lock(next);
7362 btrfs_set_lock_blocking(next);
7363 }
7364
7365 level--;
7366 BUG_ON(level != btrfs_header_level(next));
7367 path->nodes[level] = next;
7368 path->slots[level] = 0;
7369 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7370 wc->level = level;
7371 if (wc->level == 1)
7372 wc->reada_slot = 0;
7373 return 0;
7374 skip:
7375 wc->refs[level - 1] = 0;
7376 wc->flags[level - 1] = 0;
7377 if (wc->stage == DROP_REFERENCE) {
7378 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7379 parent = path->nodes[level]->start;
7380 } else {
7381 BUG_ON(root->root_key.objectid !=
7382 btrfs_header_owner(path->nodes[level]));
7383 parent = 0;
7384 }
7385
7386 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7387 root->root_key.objectid, level - 1, 0, 0);
7388 BUG_ON(ret); /* -ENOMEM */
7389 }
7390 btrfs_tree_unlock(next);
7391 free_extent_buffer(next);
7392 *lookup_info = 1;
7393 return 1;
7394 }
7395
7396 /*
7397 * helper to process tree block while walking up the tree.
7398 *
7399 * when wc->stage == DROP_REFERENCE, this function drops
7400 * reference count on the block.
7401 *
7402 * when wc->stage == UPDATE_BACKREF, this function changes
7403 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7404 * to UPDATE_BACKREF previously while processing the block.
7405 *
7406 * NOTE: return value 1 means we should stop walking up.
7407 */
7408 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7409 struct btrfs_root *root,
7410 struct btrfs_path *path,
7411 struct walk_control *wc)
7412 {
7413 int ret;
7414 int level = wc->level;
7415 struct extent_buffer *eb = path->nodes[level];
7416 u64 parent = 0;
7417
7418 if (wc->stage == UPDATE_BACKREF) {
7419 BUG_ON(wc->shared_level < level);
7420 if (level < wc->shared_level)
7421 goto out;
7422
7423 ret = find_next_key(path, level + 1, &wc->update_progress);
7424 if (ret > 0)
7425 wc->update_ref = 0;
7426
7427 wc->stage = DROP_REFERENCE;
7428 wc->shared_level = -1;
7429 path->slots[level] = 0;
7430
7431 /*
7432 * check reference count again if the block isn't locked.
7433 * we should start walking down the tree again if reference
7434 * count is one.
7435 */
7436 if (!path->locks[level]) {
7437 BUG_ON(level == 0);
7438 btrfs_tree_lock(eb);
7439 btrfs_set_lock_blocking(eb);
7440 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7441
7442 ret = btrfs_lookup_extent_info(trans, root,
7443 eb->start, level, 1,
7444 &wc->refs[level],
7445 &wc->flags[level]);
7446 if (ret < 0) {
7447 btrfs_tree_unlock_rw(eb, path->locks[level]);
7448 path->locks[level] = 0;
7449 return ret;
7450 }
7451 BUG_ON(wc->refs[level] == 0);
7452 if (wc->refs[level] == 1) {
7453 btrfs_tree_unlock_rw(eb, path->locks[level]);
7454 path->locks[level] = 0;
7455 return 1;
7456 }
7457 }
7458 }
7459
7460 /* wc->stage == DROP_REFERENCE */
7461 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7462
7463 if (wc->refs[level] == 1) {
7464 if (level == 0) {
7465 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7466 ret = btrfs_dec_ref(trans, root, eb, 1,
7467 wc->for_reloc);
7468 else
7469 ret = btrfs_dec_ref(trans, root, eb, 0,
7470 wc->for_reloc);
7471 BUG_ON(ret); /* -ENOMEM */
7472 }
7473 /* make block locked assertion in clean_tree_block happy */
7474 if (!path->locks[level] &&
7475 btrfs_header_generation(eb) == trans->transid) {
7476 btrfs_tree_lock(eb);
7477 btrfs_set_lock_blocking(eb);
7478 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7479 }
7480 clean_tree_block(trans, root, eb);
7481 }
7482
7483 if (eb == root->node) {
7484 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7485 parent = eb->start;
7486 else
7487 BUG_ON(root->root_key.objectid !=
7488 btrfs_header_owner(eb));
7489 } else {
7490 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7491 parent = path->nodes[level + 1]->start;
7492 else
7493 BUG_ON(root->root_key.objectid !=
7494 btrfs_header_owner(path->nodes[level + 1]));
7495 }
7496
7497 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7498 out:
7499 wc->refs[level] = 0;
7500 wc->flags[level] = 0;
7501 return 0;
7502 }
7503
7504 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7505 struct btrfs_root *root,
7506 struct btrfs_path *path,
7507 struct walk_control *wc)
7508 {
7509 int level = wc->level;
7510 int lookup_info = 1;
7511 int ret;
7512
7513 while (level >= 0) {
7514 ret = walk_down_proc(trans, root, path, wc, lookup_info);
7515 if (ret > 0)
7516 break;
7517
7518 if (level == 0)
7519 break;
7520
7521 if (path->slots[level] >=
7522 btrfs_header_nritems(path->nodes[level]))
7523 break;
7524
7525 ret = do_walk_down(trans, root, path, wc, &lookup_info);
7526 if (ret > 0) {
7527 path->slots[level]++;
7528 continue;
7529 } else if (ret < 0)
7530 return ret;
7531 level = wc->level;
7532 }
7533 return 0;
7534 }
7535
7536 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7537 struct btrfs_root *root,
7538 struct btrfs_path *path,
7539 struct walk_control *wc, int max_level)
7540 {
7541 int level = wc->level;
7542 int ret;
7543
7544 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7545 while (level < max_level && path->nodes[level]) {
7546 wc->level = level;
7547 if (path->slots[level] + 1 <
7548 btrfs_header_nritems(path->nodes[level])) {
7549 path->slots[level]++;
7550 return 0;
7551 } else {
7552 ret = walk_up_proc(trans, root, path, wc);
7553 if (ret > 0)
7554 return 0;
7555
7556 if (path->locks[level]) {
7557 btrfs_tree_unlock_rw(path->nodes[level],
7558 path->locks[level]);
7559 path->locks[level] = 0;
7560 }
7561 free_extent_buffer(path->nodes[level]);
7562 path->nodes[level] = NULL;
7563 level++;
7564 }
7565 }
7566 return 1;
7567 }
7568
7569 /*
7570 * drop a subvolume tree.
7571 *
7572 * this function traverses the tree freeing any blocks that only
7573 * referenced by the tree.
7574 *
7575 * when a shared tree block is found. this function decreases its
7576 * reference count by one. if update_ref is true, this function
7577 * also make sure backrefs for the shared block and all lower level
7578 * blocks are properly updated.
7579 *
7580 * If called with for_reloc == 0, may exit early with -EAGAIN
7581 */
7582 int btrfs_drop_snapshot(struct btrfs_root *root,
7583 struct btrfs_block_rsv *block_rsv, int update_ref,
7584 int for_reloc)
7585 {
7586 struct btrfs_path *path;
7587 struct btrfs_trans_handle *trans;
7588 struct btrfs_root *tree_root = root->fs_info->tree_root;
7589 struct btrfs_root_item *root_item = &root->root_item;
7590 struct walk_control *wc;
7591 struct btrfs_key key;
7592 int err = 0;
7593 int ret;
7594 int level;
7595 bool root_dropped = false;
7596
7597 path = btrfs_alloc_path();
7598 if (!path) {
7599 err = -ENOMEM;
7600 goto out;
7601 }
7602
7603 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7604 if (!wc) {
7605 btrfs_free_path(path);
7606 err = -ENOMEM;
7607 goto out;
7608 }
7609
7610 trans = btrfs_start_transaction(tree_root, 0);
7611 if (IS_ERR(trans)) {
7612 err = PTR_ERR(trans);
7613 goto out_free;
7614 }
7615
7616 if (block_rsv)
7617 trans->block_rsv = block_rsv;
7618
7619 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7620 level = btrfs_header_level(root->node);
7621 path->nodes[level] = btrfs_lock_root_node(root);
7622 btrfs_set_lock_blocking(path->nodes[level]);
7623 path->slots[level] = 0;
7624 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7625 memset(&wc->update_progress, 0,
7626 sizeof(wc->update_progress));
7627 } else {
7628 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7629 memcpy(&wc->update_progress, &key,
7630 sizeof(wc->update_progress));
7631
7632 level = root_item->drop_level;
7633 BUG_ON(level == 0);
7634 path->lowest_level = level;
7635 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7636 path->lowest_level = 0;
7637 if (ret < 0) {
7638 err = ret;
7639 goto out_end_trans;
7640 }
7641 WARN_ON(ret > 0);
7642
7643 /*
7644 * unlock our path, this is safe because only this
7645 * function is allowed to delete this snapshot
7646 */
7647 btrfs_unlock_up_safe(path, 0);
7648
7649 level = btrfs_header_level(root->node);
7650 while (1) {
7651 btrfs_tree_lock(path->nodes[level]);
7652 btrfs_set_lock_blocking(path->nodes[level]);
7653 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7654
7655 ret = btrfs_lookup_extent_info(trans, root,
7656 path->nodes[level]->start,
7657 level, 1, &wc->refs[level],
7658 &wc->flags[level]);
7659 if (ret < 0) {
7660 err = ret;
7661 goto out_end_trans;
7662 }
7663 BUG_ON(wc->refs[level] == 0);
7664
7665 if (level == root_item->drop_level)
7666 break;
7667
7668 btrfs_tree_unlock(path->nodes[level]);
7669 path->locks[level] = 0;
7670 WARN_ON(wc->refs[level] != 1);
7671 level--;
7672 }
7673 }
7674
7675 wc->level = level;
7676 wc->shared_level = -1;
7677 wc->stage = DROP_REFERENCE;
7678 wc->update_ref = update_ref;
7679 wc->keep_locks = 0;
7680 wc->for_reloc = for_reloc;
7681 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7682
7683 while (1) {
7684
7685 ret = walk_down_tree(trans, root, path, wc);
7686 if (ret < 0) {
7687 err = ret;
7688 break;
7689 }
7690
7691 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7692 if (ret < 0) {
7693 err = ret;
7694 break;
7695 }
7696
7697 if (ret > 0) {
7698 BUG_ON(wc->stage != DROP_REFERENCE);
7699 break;
7700 }
7701
7702 if (wc->stage == DROP_REFERENCE) {
7703 level = wc->level;
7704 btrfs_node_key(path->nodes[level],
7705 &root_item->drop_progress,
7706 path->slots[level]);
7707 root_item->drop_level = level;
7708 }
7709
7710 BUG_ON(wc->level == 0);
7711 if (btrfs_should_end_transaction(trans, tree_root) ||
7712 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7713 ret = btrfs_update_root(trans, tree_root,
7714 &root->root_key,
7715 root_item);
7716 if (ret) {
7717 btrfs_abort_transaction(trans, tree_root, ret);
7718 err = ret;
7719 goto out_end_trans;
7720 }
7721
7722 btrfs_end_transaction_throttle(trans, tree_root);
7723 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7724 pr_debug("btrfs: drop snapshot early exit\n");
7725 err = -EAGAIN;
7726 goto out_free;
7727 }
7728
7729 trans = btrfs_start_transaction(tree_root, 0);
7730 if (IS_ERR(trans)) {
7731 err = PTR_ERR(trans);
7732 goto out_free;
7733 }
7734 if (block_rsv)
7735 trans->block_rsv = block_rsv;
7736 }
7737 }
7738 btrfs_release_path(path);
7739 if (err)
7740 goto out_end_trans;
7741
7742 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7743 if (ret) {
7744 btrfs_abort_transaction(trans, tree_root, ret);
7745 goto out_end_trans;
7746 }
7747
7748 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7749 ret = btrfs_find_root(tree_root, &root->root_key, path,
7750 NULL, NULL);
7751 if (ret < 0) {
7752 btrfs_abort_transaction(trans, tree_root, ret);
7753 err = ret;
7754 goto out_end_trans;
7755 } else if (ret > 0) {
7756 /* if we fail to delete the orphan item this time
7757 * around, it'll get picked up the next time.
7758 *
7759 * The most common failure here is just -ENOENT.
7760 */
7761 btrfs_del_orphan_item(trans, tree_root,
7762 root->root_key.objectid);
7763 }
7764 }
7765
7766 if (root->in_radix) {
7767 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7768 } else {
7769 free_extent_buffer(root->node);
7770 free_extent_buffer(root->commit_root);
7771 btrfs_put_fs_root(root);
7772 }
7773 root_dropped = true;
7774 out_end_trans:
7775 btrfs_end_transaction_throttle(trans, tree_root);
7776 out_free:
7777 kfree(wc);
7778 btrfs_free_path(path);
7779 out:
7780 /*
7781 * So if we need to stop dropping the snapshot for whatever reason we
7782 * need to make sure to add it back to the dead root list so that we
7783 * keep trying to do the work later. This also cleans up roots if we
7784 * don't have it in the radix (like when we recover after a power fail
7785 * or unmount) so we don't leak memory.
7786 */
7787 if (!for_reloc && root_dropped == false)
7788 btrfs_add_dead_root(root);
7789 if (err)
7790 btrfs_std_error(root->fs_info, err);
7791 return err;
7792 }
7793
7794 /*
7795 * drop subtree rooted at tree block 'node'.
7796 *
7797 * NOTE: this function will unlock and release tree block 'node'
7798 * only used by relocation code
7799 */
7800 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7801 struct btrfs_root *root,
7802 struct extent_buffer *node,
7803 struct extent_buffer *parent)
7804 {
7805 struct btrfs_path *path;
7806 struct walk_control *wc;
7807 int level;
7808 int parent_level;
7809 int ret = 0;
7810 int wret;
7811
7812 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7813
7814 path = btrfs_alloc_path();
7815 if (!path)
7816 return -ENOMEM;
7817
7818 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7819 if (!wc) {
7820 btrfs_free_path(path);
7821 return -ENOMEM;
7822 }
7823
7824 btrfs_assert_tree_locked(parent);
7825 parent_level = btrfs_header_level(parent);
7826 extent_buffer_get(parent);
7827 path->nodes[parent_level] = parent;
7828 path->slots[parent_level] = btrfs_header_nritems(parent);
7829
7830 btrfs_assert_tree_locked(node);
7831 level = btrfs_header_level(node);
7832 path->nodes[level] = node;
7833 path->slots[level] = 0;
7834 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7835
7836 wc->refs[parent_level] = 1;
7837 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7838 wc->level = level;
7839 wc->shared_level = -1;
7840 wc->stage = DROP_REFERENCE;
7841 wc->update_ref = 0;
7842 wc->keep_locks = 1;
7843 wc->for_reloc = 1;
7844 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7845
7846 while (1) {
7847 wret = walk_down_tree(trans, root, path, wc);
7848 if (wret < 0) {
7849 ret = wret;
7850 break;
7851 }
7852
7853 wret = walk_up_tree(trans, root, path, wc, parent_level);
7854 if (wret < 0)
7855 ret = wret;
7856 if (wret != 0)
7857 break;
7858 }
7859
7860 kfree(wc);
7861 btrfs_free_path(path);
7862 return ret;
7863 }
7864
7865 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7866 {
7867 u64 num_devices;
7868 u64 stripped;
7869
7870 /*
7871 * if restripe for this chunk_type is on pick target profile and
7872 * return, otherwise do the usual balance
7873 */
7874 stripped = get_restripe_target(root->fs_info, flags);
7875 if (stripped)
7876 return extended_to_chunk(stripped);
7877
7878 /*
7879 * we add in the count of missing devices because we want
7880 * to make sure that any RAID levels on a degraded FS
7881 * continue to be honored.
7882 */
7883 num_devices = root->fs_info->fs_devices->rw_devices +
7884 root->fs_info->fs_devices->missing_devices;
7885
7886 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7887 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7888 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7889
7890 if (num_devices == 1) {
7891 stripped |= BTRFS_BLOCK_GROUP_DUP;
7892 stripped = flags & ~stripped;
7893
7894 /* turn raid0 into single device chunks */
7895 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7896 return stripped;
7897
7898 /* turn mirroring into duplication */
7899 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7900 BTRFS_BLOCK_GROUP_RAID10))
7901 return stripped | BTRFS_BLOCK_GROUP_DUP;
7902 } else {
7903 /* they already had raid on here, just return */
7904 if (flags & stripped)
7905 return flags;
7906
7907 stripped |= BTRFS_BLOCK_GROUP_DUP;
7908 stripped = flags & ~stripped;
7909
7910 /* switch duplicated blocks with raid1 */
7911 if (flags & BTRFS_BLOCK_GROUP_DUP)
7912 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7913
7914 /* this is drive concat, leave it alone */
7915 }
7916
7917 return flags;
7918 }
7919
7920 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7921 {
7922 struct btrfs_space_info *sinfo = cache->space_info;
7923 u64 num_bytes;
7924 u64 min_allocable_bytes;
7925 int ret = -ENOSPC;
7926
7927
7928 /*
7929 * We need some metadata space and system metadata space for
7930 * allocating chunks in some corner cases until we force to set
7931 * it to be readonly.
7932 */
7933 if ((sinfo->flags &
7934 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7935 !force)
7936 min_allocable_bytes = 1 * 1024 * 1024;
7937 else
7938 min_allocable_bytes = 0;
7939
7940 spin_lock(&sinfo->lock);
7941 spin_lock(&cache->lock);
7942
7943 if (cache->ro) {
7944 ret = 0;
7945 goto out;
7946 }
7947
7948 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7949 cache->bytes_super - btrfs_block_group_used(&cache->item);
7950
7951 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7952 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7953 min_allocable_bytes <= sinfo->total_bytes) {
7954 sinfo->bytes_readonly += num_bytes;
7955 cache->ro = 1;
7956 ret = 0;
7957 }
7958 out:
7959 spin_unlock(&cache->lock);
7960 spin_unlock(&sinfo->lock);
7961 return ret;
7962 }
7963
7964 int btrfs_set_block_group_ro(struct btrfs_root *root,
7965 struct btrfs_block_group_cache *cache)
7966
7967 {
7968 struct btrfs_trans_handle *trans;
7969 u64 alloc_flags;
7970 int ret;
7971
7972 BUG_ON(cache->ro);
7973
7974 trans = btrfs_join_transaction(root);
7975 if (IS_ERR(trans))
7976 return PTR_ERR(trans);
7977
7978 alloc_flags = update_block_group_flags(root, cache->flags);
7979 if (alloc_flags != cache->flags) {
7980 ret = do_chunk_alloc(trans, root, alloc_flags,
7981 CHUNK_ALLOC_FORCE);
7982 if (ret < 0)
7983 goto out;
7984 }
7985
7986 ret = set_block_group_ro(cache, 0);
7987 if (!ret)
7988 goto out;
7989 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7990 ret = do_chunk_alloc(trans, root, alloc_flags,
7991 CHUNK_ALLOC_FORCE);
7992 if (ret < 0)
7993 goto out;
7994 ret = set_block_group_ro(cache, 0);
7995 out:
7996 btrfs_end_transaction(trans, root);
7997 return ret;
7998 }
7999
8000 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8001 struct btrfs_root *root, u64 type)
8002 {
8003 u64 alloc_flags = get_alloc_profile(root, type);
8004 return do_chunk_alloc(trans, root, alloc_flags,
8005 CHUNK_ALLOC_FORCE);
8006 }
8007
8008 /*
8009 * helper to account the unused space of all the readonly block group in the
8010 * list. takes mirrors into account.
8011 */
8012 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
8013 {
8014 struct btrfs_block_group_cache *block_group;
8015 u64 free_bytes = 0;
8016 int factor;
8017
8018 list_for_each_entry(block_group, groups_list, list) {
8019 spin_lock(&block_group->lock);
8020
8021 if (!block_group->ro) {
8022 spin_unlock(&block_group->lock);
8023 continue;
8024 }
8025
8026 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8027 BTRFS_BLOCK_GROUP_RAID10 |
8028 BTRFS_BLOCK_GROUP_DUP))
8029 factor = 2;
8030 else
8031 factor = 1;
8032
8033 free_bytes += (block_group->key.offset -
8034 btrfs_block_group_used(&block_group->item)) *
8035 factor;
8036
8037 spin_unlock(&block_group->lock);
8038 }
8039
8040 return free_bytes;
8041 }
8042
8043 /*
8044 * helper to account the unused space of all the readonly block group in the
8045 * space_info. takes mirrors into account.
8046 */
8047 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8048 {
8049 int i;
8050 u64 free_bytes = 0;
8051
8052 spin_lock(&sinfo->lock);
8053
8054 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8055 if (!list_empty(&sinfo->block_groups[i]))
8056 free_bytes += __btrfs_get_ro_block_group_free_space(
8057 &sinfo->block_groups[i]);
8058
8059 spin_unlock(&sinfo->lock);
8060
8061 return free_bytes;
8062 }
8063
8064 void btrfs_set_block_group_rw(struct btrfs_root *root,
8065 struct btrfs_block_group_cache *cache)
8066 {
8067 struct btrfs_space_info *sinfo = cache->space_info;
8068 u64 num_bytes;
8069
8070 BUG_ON(!cache->ro);
8071
8072 spin_lock(&sinfo->lock);
8073 spin_lock(&cache->lock);
8074 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8075 cache->bytes_super - btrfs_block_group_used(&cache->item);
8076 sinfo->bytes_readonly -= num_bytes;
8077 cache->ro = 0;
8078 spin_unlock(&cache->lock);
8079 spin_unlock(&sinfo->lock);
8080 }
8081
8082 /*
8083 * checks to see if its even possible to relocate this block group.
8084 *
8085 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8086 * ok to go ahead and try.
8087 */
8088 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8089 {
8090 struct btrfs_block_group_cache *block_group;
8091 struct btrfs_space_info *space_info;
8092 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8093 struct btrfs_device *device;
8094 struct btrfs_trans_handle *trans;
8095 u64 min_free;
8096 u64 dev_min = 1;
8097 u64 dev_nr = 0;
8098 u64 target;
8099 int index;
8100 int full = 0;
8101 int ret = 0;
8102
8103 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8104
8105 /* odd, couldn't find the block group, leave it alone */
8106 if (!block_group)
8107 return -1;
8108
8109 min_free = btrfs_block_group_used(&block_group->item);
8110
8111 /* no bytes used, we're good */
8112 if (!min_free)
8113 goto out;
8114
8115 space_info = block_group->space_info;
8116 spin_lock(&space_info->lock);
8117
8118 full = space_info->full;
8119
8120 /*
8121 * if this is the last block group we have in this space, we can't
8122 * relocate it unless we're able to allocate a new chunk below.
8123 *
8124 * Otherwise, we need to make sure we have room in the space to handle
8125 * all of the extents from this block group. If we can, we're good
8126 */
8127 if ((space_info->total_bytes != block_group->key.offset) &&
8128 (space_info->bytes_used + space_info->bytes_reserved +
8129 space_info->bytes_pinned + space_info->bytes_readonly +
8130 min_free < space_info->total_bytes)) {
8131 spin_unlock(&space_info->lock);
8132 goto out;
8133 }
8134 spin_unlock(&space_info->lock);
8135
8136 /*
8137 * ok we don't have enough space, but maybe we have free space on our
8138 * devices to allocate new chunks for relocation, so loop through our
8139 * alloc devices and guess if we have enough space. if this block
8140 * group is going to be restriped, run checks against the target
8141 * profile instead of the current one.
8142 */
8143 ret = -1;
8144
8145 /*
8146 * index:
8147 * 0: raid10
8148 * 1: raid1
8149 * 2: dup
8150 * 3: raid0
8151 * 4: single
8152 */
8153 target = get_restripe_target(root->fs_info, block_group->flags);
8154 if (target) {
8155 index = __get_raid_index(extended_to_chunk(target));
8156 } else {
8157 /*
8158 * this is just a balance, so if we were marked as full
8159 * we know there is no space for a new chunk
8160 */
8161 if (full)
8162 goto out;
8163
8164 index = get_block_group_index(block_group);
8165 }
8166
8167 if (index == BTRFS_RAID_RAID10) {
8168 dev_min = 4;
8169 /* Divide by 2 */
8170 min_free >>= 1;
8171 } else if (index == BTRFS_RAID_RAID1) {
8172 dev_min = 2;
8173 } else if (index == BTRFS_RAID_DUP) {
8174 /* Multiply by 2 */
8175 min_free <<= 1;
8176 } else if (index == BTRFS_RAID_RAID0) {
8177 dev_min = fs_devices->rw_devices;
8178 do_div(min_free, dev_min);
8179 }
8180
8181 /* We need to do this so that we can look at pending chunks */
8182 trans = btrfs_join_transaction(root);
8183 if (IS_ERR(trans)) {
8184 ret = PTR_ERR(trans);
8185 goto out;
8186 }
8187
8188 mutex_lock(&root->fs_info->chunk_mutex);
8189 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8190 u64 dev_offset;
8191
8192 /*
8193 * check to make sure we can actually find a chunk with enough
8194 * space to fit our block group in.
8195 */
8196 if (device->total_bytes > device->bytes_used + min_free &&
8197 !device->is_tgtdev_for_dev_replace) {
8198 ret = find_free_dev_extent(trans, device, min_free,
8199 &dev_offset, NULL);
8200 if (!ret)
8201 dev_nr++;
8202
8203 if (dev_nr >= dev_min)
8204 break;
8205
8206 ret = -1;
8207 }
8208 }
8209 mutex_unlock(&root->fs_info->chunk_mutex);
8210 btrfs_end_transaction(trans, root);
8211 out:
8212 btrfs_put_block_group(block_group);
8213 return ret;
8214 }
8215
8216 static int find_first_block_group(struct btrfs_root *root,
8217 struct btrfs_path *path, struct btrfs_key *key)
8218 {
8219 int ret = 0;
8220 struct btrfs_key found_key;
8221 struct extent_buffer *leaf;
8222 int slot;
8223
8224 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8225 if (ret < 0)
8226 goto out;
8227
8228 while (1) {
8229 slot = path->slots[0];
8230 leaf = path->nodes[0];
8231 if (slot >= btrfs_header_nritems(leaf)) {
8232 ret = btrfs_next_leaf(root, path);
8233 if (ret == 0)
8234 continue;
8235 if (ret < 0)
8236 goto out;
8237 break;
8238 }
8239 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8240
8241 if (found_key.objectid >= key->objectid &&
8242 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8243 ret = 0;
8244 goto out;
8245 }
8246 path->slots[0]++;
8247 }
8248 out:
8249 return ret;
8250 }
8251
8252 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8253 {
8254 struct btrfs_block_group_cache *block_group;
8255 u64 last = 0;
8256
8257 while (1) {
8258 struct inode *inode;
8259
8260 block_group = btrfs_lookup_first_block_group(info, last);
8261 while (block_group) {
8262 spin_lock(&block_group->lock);
8263 if (block_group->iref)
8264 break;
8265 spin_unlock(&block_group->lock);
8266 block_group = next_block_group(info->tree_root,
8267 block_group);
8268 }
8269 if (!block_group) {
8270 if (last == 0)
8271 break;
8272 last = 0;
8273 continue;
8274 }
8275
8276 inode = block_group->inode;
8277 block_group->iref = 0;
8278 block_group->inode = NULL;
8279 spin_unlock(&block_group->lock);
8280 iput(inode);
8281 last = block_group->key.objectid + block_group->key.offset;
8282 btrfs_put_block_group(block_group);
8283 }
8284 }
8285
8286 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8287 {
8288 struct btrfs_block_group_cache *block_group;
8289 struct btrfs_space_info *space_info;
8290 struct btrfs_caching_control *caching_ctl;
8291 struct rb_node *n;
8292
8293 down_write(&info->extent_commit_sem);
8294 while (!list_empty(&info->caching_block_groups)) {
8295 caching_ctl = list_entry(info->caching_block_groups.next,
8296 struct btrfs_caching_control, list);
8297 list_del(&caching_ctl->list);
8298 put_caching_control(caching_ctl);
8299 }
8300 up_write(&info->extent_commit_sem);
8301
8302 spin_lock(&info->block_group_cache_lock);
8303 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8304 block_group = rb_entry(n, struct btrfs_block_group_cache,
8305 cache_node);
8306 rb_erase(&block_group->cache_node,
8307 &info->block_group_cache_tree);
8308 spin_unlock(&info->block_group_cache_lock);
8309
8310 down_write(&block_group->space_info->groups_sem);
8311 list_del(&block_group->list);
8312 up_write(&block_group->space_info->groups_sem);
8313
8314 if (block_group->cached == BTRFS_CACHE_STARTED)
8315 wait_block_group_cache_done(block_group);
8316
8317 /*
8318 * We haven't cached this block group, which means we could
8319 * possibly have excluded extents on this block group.
8320 */
8321 if (block_group->cached == BTRFS_CACHE_NO ||
8322 block_group->cached == BTRFS_CACHE_ERROR)
8323 free_excluded_extents(info->extent_root, block_group);
8324
8325 btrfs_remove_free_space_cache(block_group);
8326 btrfs_put_block_group(block_group);
8327
8328 spin_lock(&info->block_group_cache_lock);
8329 }
8330 spin_unlock(&info->block_group_cache_lock);
8331
8332 /* now that all the block groups are freed, go through and
8333 * free all the space_info structs. This is only called during
8334 * the final stages of unmount, and so we know nobody is
8335 * using them. We call synchronize_rcu() once before we start,
8336 * just to be on the safe side.
8337 */
8338 synchronize_rcu();
8339
8340 release_global_block_rsv(info);
8341
8342 while (!list_empty(&info->space_info)) {
8343 space_info = list_entry(info->space_info.next,
8344 struct btrfs_space_info,
8345 list);
8346 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8347 if (WARN_ON(space_info->bytes_pinned > 0 ||
8348 space_info->bytes_reserved > 0 ||
8349 space_info->bytes_may_use > 0)) {
8350 dump_space_info(space_info, 0, 0);
8351 }
8352 }
8353 percpu_counter_destroy(&space_info->total_bytes_pinned);
8354 list_del(&space_info->list);
8355 kfree(space_info);
8356 }
8357 return 0;
8358 }
8359
8360 static void __link_block_group(struct btrfs_space_info *space_info,
8361 struct btrfs_block_group_cache *cache)
8362 {
8363 int index = get_block_group_index(cache);
8364
8365 down_write(&space_info->groups_sem);
8366 list_add_tail(&cache->list, &space_info->block_groups[index]);
8367 up_write(&space_info->groups_sem);
8368 }
8369
8370 int btrfs_read_block_groups(struct btrfs_root *root)
8371 {
8372 struct btrfs_path *path;
8373 int ret;
8374 struct btrfs_block_group_cache *cache;
8375 struct btrfs_fs_info *info = root->fs_info;
8376 struct btrfs_space_info *space_info;
8377 struct btrfs_key key;
8378 struct btrfs_key found_key;
8379 struct extent_buffer *leaf;
8380 int need_clear = 0;
8381 u64 cache_gen;
8382
8383 root = info->extent_root;
8384 key.objectid = 0;
8385 key.offset = 0;
8386 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8387 path = btrfs_alloc_path();
8388 if (!path)
8389 return -ENOMEM;
8390 path->reada = 1;
8391
8392 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8393 if (btrfs_test_opt(root, SPACE_CACHE) &&
8394 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8395 need_clear = 1;
8396 if (btrfs_test_opt(root, CLEAR_CACHE))
8397 need_clear = 1;
8398
8399 while (1) {
8400 ret = find_first_block_group(root, path, &key);
8401 if (ret > 0)
8402 break;
8403 if (ret != 0)
8404 goto error;
8405 leaf = path->nodes[0];
8406 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8407 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8408 if (!cache) {
8409 ret = -ENOMEM;
8410 goto error;
8411 }
8412 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8413 GFP_NOFS);
8414 if (!cache->free_space_ctl) {
8415 kfree(cache);
8416 ret = -ENOMEM;
8417 goto error;
8418 }
8419
8420 atomic_set(&cache->count, 1);
8421 spin_lock_init(&cache->lock);
8422 cache->fs_info = info;
8423 INIT_LIST_HEAD(&cache->list);
8424 INIT_LIST_HEAD(&cache->cluster_list);
8425
8426 if (need_clear) {
8427 /*
8428 * When we mount with old space cache, we need to
8429 * set BTRFS_DC_CLEAR and set dirty flag.
8430 *
8431 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8432 * truncate the old free space cache inode and
8433 * setup a new one.
8434 * b) Setting 'dirty flag' makes sure that we flush
8435 * the new space cache info onto disk.
8436 */
8437 cache->disk_cache_state = BTRFS_DC_CLEAR;
8438 if (btrfs_test_opt(root, SPACE_CACHE))
8439 cache->dirty = 1;
8440 }
8441
8442 read_extent_buffer(leaf, &cache->item,
8443 btrfs_item_ptr_offset(leaf, path->slots[0]),
8444 sizeof(cache->item));
8445 memcpy(&cache->key, &found_key, sizeof(found_key));
8446
8447 key.objectid = found_key.objectid + found_key.offset;
8448 btrfs_release_path(path);
8449 cache->flags = btrfs_block_group_flags(&cache->item);
8450 cache->sectorsize = root->sectorsize;
8451 cache->full_stripe_len = btrfs_full_stripe_len(root,
8452 &root->fs_info->mapping_tree,
8453 found_key.objectid);
8454 btrfs_init_free_space_ctl(cache);
8455
8456 /*
8457 * We need to exclude the super stripes now so that the space
8458 * info has super bytes accounted for, otherwise we'll think
8459 * we have more space than we actually do.
8460 */
8461 ret = exclude_super_stripes(root, cache);
8462 if (ret) {
8463 /*
8464 * We may have excluded something, so call this just in
8465 * case.
8466 */
8467 free_excluded_extents(root, cache);
8468 kfree(cache->free_space_ctl);
8469 kfree(cache);
8470 goto error;
8471 }
8472
8473 /*
8474 * check for two cases, either we are full, and therefore
8475 * don't need to bother with the caching work since we won't
8476 * find any space, or we are empty, and we can just add all
8477 * the space in and be done with it. This saves us _alot_ of
8478 * time, particularly in the full case.
8479 */
8480 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8481 cache->last_byte_to_unpin = (u64)-1;
8482 cache->cached = BTRFS_CACHE_FINISHED;
8483 free_excluded_extents(root, cache);
8484 } else if (btrfs_block_group_used(&cache->item) == 0) {
8485 cache->last_byte_to_unpin = (u64)-1;
8486 cache->cached = BTRFS_CACHE_FINISHED;
8487 add_new_free_space(cache, root->fs_info,
8488 found_key.objectid,
8489 found_key.objectid +
8490 found_key.offset);
8491 free_excluded_extents(root, cache);
8492 }
8493
8494 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8495 if (ret) {
8496 btrfs_remove_free_space_cache(cache);
8497 btrfs_put_block_group(cache);
8498 goto error;
8499 }
8500
8501 ret = update_space_info(info, cache->flags, found_key.offset,
8502 btrfs_block_group_used(&cache->item),
8503 &space_info);
8504 if (ret) {
8505 btrfs_remove_free_space_cache(cache);
8506 spin_lock(&info->block_group_cache_lock);
8507 rb_erase(&cache->cache_node,
8508 &info->block_group_cache_tree);
8509 spin_unlock(&info->block_group_cache_lock);
8510 btrfs_put_block_group(cache);
8511 goto error;
8512 }
8513
8514 cache->space_info = space_info;
8515 spin_lock(&cache->space_info->lock);
8516 cache->space_info->bytes_readonly += cache->bytes_super;
8517 spin_unlock(&cache->space_info->lock);
8518
8519 __link_block_group(space_info, cache);
8520
8521 set_avail_alloc_bits(root->fs_info, cache->flags);
8522 if (btrfs_chunk_readonly(root, cache->key.objectid))
8523 set_block_group_ro(cache, 1);
8524 }
8525
8526 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8527 if (!(get_alloc_profile(root, space_info->flags) &
8528 (BTRFS_BLOCK_GROUP_RAID10 |
8529 BTRFS_BLOCK_GROUP_RAID1 |
8530 BTRFS_BLOCK_GROUP_RAID5 |
8531 BTRFS_BLOCK_GROUP_RAID6 |
8532 BTRFS_BLOCK_GROUP_DUP)))
8533 continue;
8534 /*
8535 * avoid allocating from un-mirrored block group if there are
8536 * mirrored block groups.
8537 */
8538 list_for_each_entry(cache,
8539 &space_info->block_groups[BTRFS_RAID_RAID0],
8540 list)
8541 set_block_group_ro(cache, 1);
8542 list_for_each_entry(cache,
8543 &space_info->block_groups[BTRFS_RAID_SINGLE],
8544 list)
8545 set_block_group_ro(cache, 1);
8546 }
8547
8548 init_global_block_rsv(info);
8549 ret = 0;
8550 error:
8551 btrfs_free_path(path);
8552 return ret;
8553 }
8554
8555 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8556 struct btrfs_root *root)
8557 {
8558 struct btrfs_block_group_cache *block_group, *tmp;
8559 struct btrfs_root *extent_root = root->fs_info->extent_root;
8560 struct btrfs_block_group_item item;
8561 struct btrfs_key key;
8562 int ret = 0;
8563
8564 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8565 new_bg_list) {
8566 list_del_init(&block_group->new_bg_list);
8567
8568 if (ret)
8569 continue;
8570
8571 spin_lock(&block_group->lock);
8572 memcpy(&item, &block_group->item, sizeof(item));
8573 memcpy(&key, &block_group->key, sizeof(key));
8574 spin_unlock(&block_group->lock);
8575
8576 ret = btrfs_insert_item(trans, extent_root, &key, &item,
8577 sizeof(item));
8578 if (ret)
8579 btrfs_abort_transaction(trans, extent_root, ret);
8580 ret = btrfs_finish_chunk_alloc(trans, extent_root,
8581 key.objectid, key.offset);
8582 if (ret)
8583 btrfs_abort_transaction(trans, extent_root, ret);
8584 }
8585 }
8586
8587 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8588 struct btrfs_root *root, u64 bytes_used,
8589 u64 type, u64 chunk_objectid, u64 chunk_offset,
8590 u64 size)
8591 {
8592 int ret;
8593 struct btrfs_root *extent_root;
8594 struct btrfs_block_group_cache *cache;
8595
8596 extent_root = root->fs_info->extent_root;
8597
8598 root->fs_info->last_trans_log_full_commit = trans->transid;
8599
8600 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8601 if (!cache)
8602 return -ENOMEM;
8603 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8604 GFP_NOFS);
8605 if (!cache->free_space_ctl) {
8606 kfree(cache);
8607 return -ENOMEM;
8608 }
8609
8610 cache->key.objectid = chunk_offset;
8611 cache->key.offset = size;
8612 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8613 cache->sectorsize = root->sectorsize;
8614 cache->fs_info = root->fs_info;
8615 cache->full_stripe_len = btrfs_full_stripe_len(root,
8616 &root->fs_info->mapping_tree,
8617 chunk_offset);
8618
8619 atomic_set(&cache->count, 1);
8620 spin_lock_init(&cache->lock);
8621 INIT_LIST_HEAD(&cache->list);
8622 INIT_LIST_HEAD(&cache->cluster_list);
8623 INIT_LIST_HEAD(&cache->new_bg_list);
8624
8625 btrfs_init_free_space_ctl(cache);
8626
8627 btrfs_set_block_group_used(&cache->item, bytes_used);
8628 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8629 cache->flags = type;
8630 btrfs_set_block_group_flags(&cache->item, type);
8631
8632 cache->last_byte_to_unpin = (u64)-1;
8633 cache->cached = BTRFS_CACHE_FINISHED;
8634 ret = exclude_super_stripes(root, cache);
8635 if (ret) {
8636 /*
8637 * We may have excluded something, so call this just in
8638 * case.
8639 */
8640 free_excluded_extents(root, cache);
8641 kfree(cache->free_space_ctl);
8642 kfree(cache);
8643 return ret;
8644 }
8645
8646 add_new_free_space(cache, root->fs_info, chunk_offset,
8647 chunk_offset + size);
8648
8649 free_excluded_extents(root, cache);
8650
8651 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8652 if (ret) {
8653 btrfs_remove_free_space_cache(cache);
8654 btrfs_put_block_group(cache);
8655 return ret;
8656 }
8657
8658 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8659 &cache->space_info);
8660 if (ret) {
8661 btrfs_remove_free_space_cache(cache);
8662 spin_lock(&root->fs_info->block_group_cache_lock);
8663 rb_erase(&cache->cache_node,
8664 &root->fs_info->block_group_cache_tree);
8665 spin_unlock(&root->fs_info->block_group_cache_lock);
8666 btrfs_put_block_group(cache);
8667 return ret;
8668 }
8669 update_global_block_rsv(root->fs_info);
8670
8671 spin_lock(&cache->space_info->lock);
8672 cache->space_info->bytes_readonly += cache->bytes_super;
8673 spin_unlock(&cache->space_info->lock);
8674
8675 __link_block_group(cache->space_info, cache);
8676
8677 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8678
8679 set_avail_alloc_bits(extent_root->fs_info, type);
8680
8681 return 0;
8682 }
8683
8684 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8685 {
8686 u64 extra_flags = chunk_to_extended(flags) &
8687 BTRFS_EXTENDED_PROFILE_MASK;
8688
8689 write_seqlock(&fs_info->profiles_lock);
8690 if (flags & BTRFS_BLOCK_GROUP_DATA)
8691 fs_info->avail_data_alloc_bits &= ~extra_flags;
8692 if (flags & BTRFS_BLOCK_GROUP_METADATA)
8693 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8694 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8695 fs_info->avail_system_alloc_bits &= ~extra_flags;
8696 write_sequnlock(&fs_info->profiles_lock);
8697 }
8698
8699 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8700 struct btrfs_root *root, u64 group_start)
8701 {
8702 struct btrfs_path *path;
8703 struct btrfs_block_group_cache *block_group;
8704 struct btrfs_free_cluster *cluster;
8705 struct btrfs_root *tree_root = root->fs_info->tree_root;
8706 struct btrfs_key key;
8707 struct inode *inode;
8708 int ret;
8709 int index;
8710 int factor;
8711
8712 root = root->fs_info->extent_root;
8713
8714 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8715 BUG_ON(!block_group);
8716 BUG_ON(!block_group->ro);
8717
8718 /*
8719 * Free the reserved super bytes from this block group before
8720 * remove it.
8721 */
8722 free_excluded_extents(root, block_group);
8723
8724 memcpy(&key, &block_group->key, sizeof(key));
8725 index = get_block_group_index(block_group);
8726 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8727 BTRFS_BLOCK_GROUP_RAID1 |
8728 BTRFS_BLOCK_GROUP_RAID10))
8729 factor = 2;
8730 else
8731 factor = 1;
8732
8733 /* make sure this block group isn't part of an allocation cluster */
8734 cluster = &root->fs_info->data_alloc_cluster;
8735 spin_lock(&cluster->refill_lock);
8736 btrfs_return_cluster_to_free_space(block_group, cluster);
8737 spin_unlock(&cluster->refill_lock);
8738
8739 /*
8740 * make sure this block group isn't part of a metadata
8741 * allocation cluster
8742 */
8743 cluster = &root->fs_info->meta_alloc_cluster;
8744 spin_lock(&cluster->refill_lock);
8745 btrfs_return_cluster_to_free_space(block_group, cluster);
8746 spin_unlock(&cluster->refill_lock);
8747
8748 path = btrfs_alloc_path();
8749 if (!path) {
8750 ret = -ENOMEM;
8751 goto out;
8752 }
8753
8754 inode = lookup_free_space_inode(tree_root, block_group, path);
8755 if (!IS_ERR(inode)) {
8756 ret = btrfs_orphan_add(trans, inode);
8757 if (ret) {
8758 btrfs_add_delayed_iput(inode);
8759 goto out;
8760 }
8761 clear_nlink(inode);
8762 /* One for the block groups ref */
8763 spin_lock(&block_group->lock);
8764 if (block_group->iref) {
8765 block_group->iref = 0;
8766 block_group->inode = NULL;
8767 spin_unlock(&block_group->lock);
8768 iput(inode);
8769 } else {
8770 spin_unlock(&block_group->lock);
8771 }
8772 /* One for our lookup ref */
8773 btrfs_add_delayed_iput(inode);
8774 }
8775
8776 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8777 key.offset = block_group->key.objectid;
8778 key.type = 0;
8779
8780 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8781 if (ret < 0)
8782 goto out;
8783 if (ret > 0)
8784 btrfs_release_path(path);
8785 if (ret == 0) {
8786 ret = btrfs_del_item(trans, tree_root, path);
8787 if (ret)
8788 goto out;
8789 btrfs_release_path(path);
8790 }
8791
8792 spin_lock(&root->fs_info->block_group_cache_lock);
8793 rb_erase(&block_group->cache_node,
8794 &root->fs_info->block_group_cache_tree);
8795
8796 if (root->fs_info->first_logical_byte == block_group->key.objectid)
8797 root->fs_info->first_logical_byte = (u64)-1;
8798 spin_unlock(&root->fs_info->block_group_cache_lock);
8799
8800 down_write(&block_group->space_info->groups_sem);
8801 /*
8802 * we must use list_del_init so people can check to see if they
8803 * are still on the list after taking the semaphore
8804 */
8805 list_del_init(&block_group->list);
8806 if (list_empty(&block_group->space_info->block_groups[index]))
8807 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8808 up_write(&block_group->space_info->groups_sem);
8809
8810 if (block_group->cached == BTRFS_CACHE_STARTED)
8811 wait_block_group_cache_done(block_group);
8812
8813 btrfs_remove_free_space_cache(block_group);
8814
8815 spin_lock(&block_group->space_info->lock);
8816 block_group->space_info->total_bytes -= block_group->key.offset;
8817 block_group->space_info->bytes_readonly -= block_group->key.offset;
8818 block_group->space_info->disk_total -= block_group->key.offset * factor;
8819 spin_unlock(&block_group->space_info->lock);
8820
8821 memcpy(&key, &block_group->key, sizeof(key));
8822
8823 btrfs_clear_space_info_full(root->fs_info);
8824
8825 btrfs_put_block_group(block_group);
8826 btrfs_put_block_group(block_group);
8827
8828 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8829 if (ret > 0)
8830 ret = -EIO;
8831 if (ret < 0)
8832 goto out;
8833
8834 ret = btrfs_del_item(trans, root, path);
8835 out:
8836 btrfs_free_path(path);
8837 return ret;
8838 }
8839
8840 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8841 {
8842 struct btrfs_space_info *space_info;
8843 struct btrfs_super_block *disk_super;
8844 u64 features;
8845 u64 flags;
8846 int mixed = 0;
8847 int ret;
8848
8849 disk_super = fs_info->super_copy;
8850 if (!btrfs_super_root(disk_super))
8851 return 1;
8852
8853 features = btrfs_super_incompat_flags(disk_super);
8854 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8855 mixed = 1;
8856
8857 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8858 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8859 if (ret)
8860 goto out;
8861
8862 if (mixed) {
8863 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8864 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8865 } else {
8866 flags = BTRFS_BLOCK_GROUP_METADATA;
8867 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8868 if (ret)
8869 goto out;
8870
8871 flags = BTRFS_BLOCK_GROUP_DATA;
8872 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8873 }
8874 out:
8875 return ret;
8876 }
8877
8878 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8879 {
8880 return unpin_extent_range(root, start, end);
8881 }
8882
8883 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8884 u64 num_bytes, u64 *actual_bytes)
8885 {
8886 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8887 }
8888
8889 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8890 {
8891 struct btrfs_fs_info *fs_info = root->fs_info;
8892 struct btrfs_block_group_cache *cache = NULL;
8893 u64 group_trimmed;
8894 u64 start;
8895 u64 end;
8896 u64 trimmed = 0;
8897 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8898 int ret = 0;
8899
8900 /*
8901 * try to trim all FS space, our block group may start from non-zero.
8902 */
8903 if (range->len == total_bytes)
8904 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8905 else
8906 cache = btrfs_lookup_block_group(fs_info, range->start);
8907
8908 while (cache) {
8909 if (cache->key.objectid >= (range->start + range->len)) {
8910 btrfs_put_block_group(cache);
8911 break;
8912 }
8913
8914 start = max(range->start, cache->key.objectid);
8915 end = min(range->start + range->len,
8916 cache->key.objectid + cache->key.offset);
8917
8918 if (end - start >= range->minlen) {
8919 if (!block_group_cache_done(cache)) {
8920 ret = cache_block_group(cache, 0);
8921 if (ret) {
8922 btrfs_put_block_group(cache);
8923 break;
8924 }
8925 ret = wait_block_group_cache_done(cache);
8926 if (ret) {
8927 btrfs_put_block_group(cache);
8928 break;
8929 }
8930 }
8931 ret = btrfs_trim_block_group(cache,
8932 &group_trimmed,
8933 start,
8934 end,
8935 range->minlen);
8936
8937 trimmed += group_trimmed;
8938 if (ret) {
8939 btrfs_put_block_group(cache);
8940 break;
8941 }
8942 }
8943
8944 cache = next_block_group(fs_info->tree_root, cache);
8945 }
8946
8947 range->len = trimmed;
8948 return ret;
8949 }
This page took 0.237455 seconds and 6 git commands to generate.