Merge branch 'for-john' of git://git.kernel.org/pub/scm/linux/kernel/git/iwlwifi...
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "math.h"
38
39 #undef SCRAMBLE_DELAYED_REFS
40
41 /*
42 * control flags for do_chunk_alloc's force field
43 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
44 * if we really need one.
45 *
46 * CHUNK_ALLOC_LIMITED means to only try and allocate one
47 * if we have very few chunks already allocated. This is
48 * used as part of the clustering code to help make sure
49 * we have a good pool of storage to cluster in, without
50 * filling the FS with empty chunks
51 *
52 * CHUNK_ALLOC_FORCE means it must try to allocate one
53 *
54 */
55 enum {
56 CHUNK_ALLOC_NO_FORCE = 0,
57 CHUNK_ALLOC_LIMITED = 1,
58 CHUNK_ALLOC_FORCE = 2,
59 };
60
61 /*
62 * Control how reservations are dealt with.
63 *
64 * RESERVE_FREE - freeing a reservation.
65 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
66 * ENOSPC accounting
67 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
68 * bytes_may_use as the ENOSPC accounting is done elsewhere
69 */
70 enum {
71 RESERVE_FREE = 0,
72 RESERVE_ALLOC = 1,
73 RESERVE_ALLOC_NO_ACCOUNT = 2,
74 };
75
76 static int update_block_group(struct btrfs_root *root,
77 u64 bytenr, u64 num_bytes, int alloc);
78 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root,
80 u64 bytenr, u64 num_bytes, u64 parent,
81 u64 root_objectid, u64 owner_objectid,
82 u64 owner_offset, int refs_to_drop,
83 struct btrfs_delayed_extent_op *extra_op);
84 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
85 struct extent_buffer *leaf,
86 struct btrfs_extent_item *ei);
87 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
88 struct btrfs_root *root,
89 u64 parent, u64 root_objectid,
90 u64 flags, u64 owner, u64 offset,
91 struct btrfs_key *ins, int ref_mod);
92 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
93 struct btrfs_root *root,
94 u64 parent, u64 root_objectid,
95 u64 flags, struct btrfs_disk_key *key,
96 int level, struct btrfs_key *ins);
97 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
98 struct btrfs_root *extent_root, u64 flags,
99 int force);
100 static int find_next_key(struct btrfs_path *path, int level,
101 struct btrfs_key *key);
102 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
103 int dump_block_groups);
104 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
105 u64 num_bytes, int reserve);
106 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
107 u64 num_bytes);
108
109 static noinline int
110 block_group_cache_done(struct btrfs_block_group_cache *cache)
111 {
112 smp_mb();
113 return cache->cached == BTRFS_CACHE_FINISHED;
114 }
115
116 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
117 {
118 return (cache->flags & bits) == bits;
119 }
120
121 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
122 {
123 atomic_inc(&cache->count);
124 }
125
126 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
127 {
128 if (atomic_dec_and_test(&cache->count)) {
129 WARN_ON(cache->pinned > 0);
130 WARN_ON(cache->reserved > 0);
131 kfree(cache->free_space_ctl);
132 kfree(cache);
133 }
134 }
135
136 /*
137 * this adds the block group to the fs_info rb tree for the block group
138 * cache
139 */
140 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
141 struct btrfs_block_group_cache *block_group)
142 {
143 struct rb_node **p;
144 struct rb_node *parent = NULL;
145 struct btrfs_block_group_cache *cache;
146
147 spin_lock(&info->block_group_cache_lock);
148 p = &info->block_group_cache_tree.rb_node;
149
150 while (*p) {
151 parent = *p;
152 cache = rb_entry(parent, struct btrfs_block_group_cache,
153 cache_node);
154 if (block_group->key.objectid < cache->key.objectid) {
155 p = &(*p)->rb_left;
156 } else if (block_group->key.objectid > cache->key.objectid) {
157 p = &(*p)->rb_right;
158 } else {
159 spin_unlock(&info->block_group_cache_lock);
160 return -EEXIST;
161 }
162 }
163
164 rb_link_node(&block_group->cache_node, parent, p);
165 rb_insert_color(&block_group->cache_node,
166 &info->block_group_cache_tree);
167
168 if (info->first_logical_byte > block_group->key.objectid)
169 info->first_logical_byte = block_group->key.objectid;
170
171 spin_unlock(&info->block_group_cache_lock);
172
173 return 0;
174 }
175
176 /*
177 * This will return the block group at or after bytenr if contains is 0, else
178 * it will return the block group that contains the bytenr
179 */
180 static struct btrfs_block_group_cache *
181 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
182 int contains)
183 {
184 struct btrfs_block_group_cache *cache, *ret = NULL;
185 struct rb_node *n;
186 u64 end, start;
187
188 spin_lock(&info->block_group_cache_lock);
189 n = info->block_group_cache_tree.rb_node;
190
191 while (n) {
192 cache = rb_entry(n, struct btrfs_block_group_cache,
193 cache_node);
194 end = cache->key.objectid + cache->key.offset - 1;
195 start = cache->key.objectid;
196
197 if (bytenr < start) {
198 if (!contains && (!ret || start < ret->key.objectid))
199 ret = cache;
200 n = n->rb_left;
201 } else if (bytenr > start) {
202 if (contains && bytenr <= end) {
203 ret = cache;
204 break;
205 }
206 n = n->rb_right;
207 } else {
208 ret = cache;
209 break;
210 }
211 }
212 if (ret) {
213 btrfs_get_block_group(ret);
214 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
215 info->first_logical_byte = ret->key.objectid;
216 }
217 spin_unlock(&info->block_group_cache_lock);
218
219 return ret;
220 }
221
222 static int add_excluded_extent(struct btrfs_root *root,
223 u64 start, u64 num_bytes)
224 {
225 u64 end = start + num_bytes - 1;
226 set_extent_bits(&root->fs_info->freed_extents[0],
227 start, end, EXTENT_UPTODATE, GFP_NOFS);
228 set_extent_bits(&root->fs_info->freed_extents[1],
229 start, end, EXTENT_UPTODATE, GFP_NOFS);
230 return 0;
231 }
232
233 static void free_excluded_extents(struct btrfs_root *root,
234 struct btrfs_block_group_cache *cache)
235 {
236 u64 start, end;
237
238 start = cache->key.objectid;
239 end = start + cache->key.offset - 1;
240
241 clear_extent_bits(&root->fs_info->freed_extents[0],
242 start, end, EXTENT_UPTODATE, GFP_NOFS);
243 clear_extent_bits(&root->fs_info->freed_extents[1],
244 start, end, EXTENT_UPTODATE, GFP_NOFS);
245 }
246
247 static int exclude_super_stripes(struct btrfs_root *root,
248 struct btrfs_block_group_cache *cache)
249 {
250 u64 bytenr;
251 u64 *logical;
252 int stripe_len;
253 int i, nr, ret;
254
255 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
256 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
257 cache->bytes_super += stripe_len;
258 ret = add_excluded_extent(root, cache->key.objectid,
259 stripe_len);
260 BUG_ON(ret); /* -ENOMEM */
261 }
262
263 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
264 bytenr = btrfs_sb_offset(i);
265 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
266 cache->key.objectid, bytenr,
267 0, &logical, &nr, &stripe_len);
268 BUG_ON(ret); /* -ENOMEM */
269
270 while (nr--) {
271 cache->bytes_super += stripe_len;
272 ret = add_excluded_extent(root, logical[nr],
273 stripe_len);
274 BUG_ON(ret); /* -ENOMEM */
275 }
276
277 kfree(logical);
278 }
279 return 0;
280 }
281
282 static struct btrfs_caching_control *
283 get_caching_control(struct btrfs_block_group_cache *cache)
284 {
285 struct btrfs_caching_control *ctl;
286
287 spin_lock(&cache->lock);
288 if (cache->cached != BTRFS_CACHE_STARTED) {
289 spin_unlock(&cache->lock);
290 return NULL;
291 }
292
293 /* We're loading it the fast way, so we don't have a caching_ctl. */
294 if (!cache->caching_ctl) {
295 spin_unlock(&cache->lock);
296 return NULL;
297 }
298
299 ctl = cache->caching_ctl;
300 atomic_inc(&ctl->count);
301 spin_unlock(&cache->lock);
302 return ctl;
303 }
304
305 static void put_caching_control(struct btrfs_caching_control *ctl)
306 {
307 if (atomic_dec_and_test(&ctl->count))
308 kfree(ctl);
309 }
310
311 /*
312 * this is only called by cache_block_group, since we could have freed extents
313 * we need to check the pinned_extents for any extents that can't be used yet
314 * since their free space will be released as soon as the transaction commits.
315 */
316 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
317 struct btrfs_fs_info *info, u64 start, u64 end)
318 {
319 u64 extent_start, extent_end, size, total_added = 0;
320 int ret;
321
322 while (start < end) {
323 ret = find_first_extent_bit(info->pinned_extents, start,
324 &extent_start, &extent_end,
325 EXTENT_DIRTY | EXTENT_UPTODATE,
326 NULL);
327 if (ret)
328 break;
329
330 if (extent_start <= start) {
331 start = extent_end + 1;
332 } else if (extent_start > start && extent_start < end) {
333 size = extent_start - start;
334 total_added += size;
335 ret = btrfs_add_free_space(block_group, start,
336 size);
337 BUG_ON(ret); /* -ENOMEM or logic error */
338 start = extent_end + 1;
339 } else {
340 break;
341 }
342 }
343
344 if (start < end) {
345 size = end - start;
346 total_added += size;
347 ret = btrfs_add_free_space(block_group, start, size);
348 BUG_ON(ret); /* -ENOMEM or logic error */
349 }
350
351 return total_added;
352 }
353
354 static noinline void caching_thread(struct btrfs_work *work)
355 {
356 struct btrfs_block_group_cache *block_group;
357 struct btrfs_fs_info *fs_info;
358 struct btrfs_caching_control *caching_ctl;
359 struct btrfs_root *extent_root;
360 struct btrfs_path *path;
361 struct extent_buffer *leaf;
362 struct btrfs_key key;
363 u64 total_found = 0;
364 u64 last = 0;
365 u32 nritems;
366 int ret = 0;
367
368 caching_ctl = container_of(work, struct btrfs_caching_control, work);
369 block_group = caching_ctl->block_group;
370 fs_info = block_group->fs_info;
371 extent_root = fs_info->extent_root;
372
373 path = btrfs_alloc_path();
374 if (!path)
375 goto out;
376
377 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
378
379 /*
380 * We don't want to deadlock with somebody trying to allocate a new
381 * extent for the extent root while also trying to search the extent
382 * root to add free space. So we skip locking and search the commit
383 * root, since its read-only
384 */
385 path->skip_locking = 1;
386 path->search_commit_root = 1;
387 path->reada = 1;
388
389 key.objectid = last;
390 key.offset = 0;
391 key.type = BTRFS_EXTENT_ITEM_KEY;
392 again:
393 mutex_lock(&caching_ctl->mutex);
394 /* need to make sure the commit_root doesn't disappear */
395 down_read(&fs_info->extent_commit_sem);
396
397 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
398 if (ret < 0)
399 goto err;
400
401 leaf = path->nodes[0];
402 nritems = btrfs_header_nritems(leaf);
403
404 while (1) {
405 if (btrfs_fs_closing(fs_info) > 1) {
406 last = (u64)-1;
407 break;
408 }
409
410 if (path->slots[0] < nritems) {
411 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
412 } else {
413 ret = find_next_key(path, 0, &key);
414 if (ret)
415 break;
416
417 if (need_resched() ||
418 btrfs_next_leaf(extent_root, path)) {
419 caching_ctl->progress = last;
420 btrfs_release_path(path);
421 up_read(&fs_info->extent_commit_sem);
422 mutex_unlock(&caching_ctl->mutex);
423 cond_resched();
424 goto again;
425 }
426 leaf = path->nodes[0];
427 nritems = btrfs_header_nritems(leaf);
428 continue;
429 }
430
431 if (key.objectid < block_group->key.objectid) {
432 path->slots[0]++;
433 continue;
434 }
435
436 if (key.objectid >= block_group->key.objectid +
437 block_group->key.offset)
438 break;
439
440 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
441 total_found += add_new_free_space(block_group,
442 fs_info, last,
443 key.objectid);
444 last = key.objectid + key.offset;
445
446 if (total_found > (1024 * 1024 * 2)) {
447 total_found = 0;
448 wake_up(&caching_ctl->wait);
449 }
450 }
451 path->slots[0]++;
452 }
453 ret = 0;
454
455 total_found += add_new_free_space(block_group, fs_info, last,
456 block_group->key.objectid +
457 block_group->key.offset);
458 caching_ctl->progress = (u64)-1;
459
460 spin_lock(&block_group->lock);
461 block_group->caching_ctl = NULL;
462 block_group->cached = BTRFS_CACHE_FINISHED;
463 spin_unlock(&block_group->lock);
464
465 err:
466 btrfs_free_path(path);
467 up_read(&fs_info->extent_commit_sem);
468
469 free_excluded_extents(extent_root, block_group);
470
471 mutex_unlock(&caching_ctl->mutex);
472 out:
473 wake_up(&caching_ctl->wait);
474
475 put_caching_control(caching_ctl);
476 btrfs_put_block_group(block_group);
477 }
478
479 static int cache_block_group(struct btrfs_block_group_cache *cache,
480 int load_cache_only)
481 {
482 DEFINE_WAIT(wait);
483 struct btrfs_fs_info *fs_info = cache->fs_info;
484 struct btrfs_caching_control *caching_ctl;
485 int ret = 0;
486
487 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
488 if (!caching_ctl)
489 return -ENOMEM;
490
491 INIT_LIST_HEAD(&caching_ctl->list);
492 mutex_init(&caching_ctl->mutex);
493 init_waitqueue_head(&caching_ctl->wait);
494 caching_ctl->block_group = cache;
495 caching_ctl->progress = cache->key.objectid;
496 atomic_set(&caching_ctl->count, 1);
497 caching_ctl->work.func = caching_thread;
498
499 spin_lock(&cache->lock);
500 /*
501 * This should be a rare occasion, but this could happen I think in the
502 * case where one thread starts to load the space cache info, and then
503 * some other thread starts a transaction commit which tries to do an
504 * allocation while the other thread is still loading the space cache
505 * info. The previous loop should have kept us from choosing this block
506 * group, but if we've moved to the state where we will wait on caching
507 * block groups we need to first check if we're doing a fast load here,
508 * so we can wait for it to finish, otherwise we could end up allocating
509 * from a block group who's cache gets evicted for one reason or
510 * another.
511 */
512 while (cache->cached == BTRFS_CACHE_FAST) {
513 struct btrfs_caching_control *ctl;
514
515 ctl = cache->caching_ctl;
516 atomic_inc(&ctl->count);
517 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
518 spin_unlock(&cache->lock);
519
520 schedule();
521
522 finish_wait(&ctl->wait, &wait);
523 put_caching_control(ctl);
524 spin_lock(&cache->lock);
525 }
526
527 if (cache->cached != BTRFS_CACHE_NO) {
528 spin_unlock(&cache->lock);
529 kfree(caching_ctl);
530 return 0;
531 }
532 WARN_ON(cache->caching_ctl);
533 cache->caching_ctl = caching_ctl;
534 cache->cached = BTRFS_CACHE_FAST;
535 spin_unlock(&cache->lock);
536
537 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
538 ret = load_free_space_cache(fs_info, cache);
539
540 spin_lock(&cache->lock);
541 if (ret == 1) {
542 cache->caching_ctl = NULL;
543 cache->cached = BTRFS_CACHE_FINISHED;
544 cache->last_byte_to_unpin = (u64)-1;
545 } else {
546 if (load_cache_only) {
547 cache->caching_ctl = NULL;
548 cache->cached = BTRFS_CACHE_NO;
549 } else {
550 cache->cached = BTRFS_CACHE_STARTED;
551 }
552 }
553 spin_unlock(&cache->lock);
554 wake_up(&caching_ctl->wait);
555 if (ret == 1) {
556 put_caching_control(caching_ctl);
557 free_excluded_extents(fs_info->extent_root, cache);
558 return 0;
559 }
560 } else {
561 /*
562 * We are not going to do the fast caching, set cached to the
563 * appropriate value and wakeup any waiters.
564 */
565 spin_lock(&cache->lock);
566 if (load_cache_only) {
567 cache->caching_ctl = NULL;
568 cache->cached = BTRFS_CACHE_NO;
569 } else {
570 cache->cached = BTRFS_CACHE_STARTED;
571 }
572 spin_unlock(&cache->lock);
573 wake_up(&caching_ctl->wait);
574 }
575
576 if (load_cache_only) {
577 put_caching_control(caching_ctl);
578 return 0;
579 }
580
581 down_write(&fs_info->extent_commit_sem);
582 atomic_inc(&caching_ctl->count);
583 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
584 up_write(&fs_info->extent_commit_sem);
585
586 btrfs_get_block_group(cache);
587
588 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
589
590 return ret;
591 }
592
593 /*
594 * return the block group that starts at or after bytenr
595 */
596 static struct btrfs_block_group_cache *
597 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
598 {
599 struct btrfs_block_group_cache *cache;
600
601 cache = block_group_cache_tree_search(info, bytenr, 0);
602
603 return cache;
604 }
605
606 /*
607 * return the block group that contains the given bytenr
608 */
609 struct btrfs_block_group_cache *btrfs_lookup_block_group(
610 struct btrfs_fs_info *info,
611 u64 bytenr)
612 {
613 struct btrfs_block_group_cache *cache;
614
615 cache = block_group_cache_tree_search(info, bytenr, 1);
616
617 return cache;
618 }
619
620 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
621 u64 flags)
622 {
623 struct list_head *head = &info->space_info;
624 struct btrfs_space_info *found;
625
626 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
627
628 rcu_read_lock();
629 list_for_each_entry_rcu(found, head, list) {
630 if (found->flags & flags) {
631 rcu_read_unlock();
632 return found;
633 }
634 }
635 rcu_read_unlock();
636 return NULL;
637 }
638
639 /*
640 * after adding space to the filesystem, we need to clear the full flags
641 * on all the space infos.
642 */
643 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
644 {
645 struct list_head *head = &info->space_info;
646 struct btrfs_space_info *found;
647
648 rcu_read_lock();
649 list_for_each_entry_rcu(found, head, list)
650 found->full = 0;
651 rcu_read_unlock();
652 }
653
654 u64 btrfs_find_block_group(struct btrfs_root *root,
655 u64 search_start, u64 search_hint, int owner)
656 {
657 struct btrfs_block_group_cache *cache;
658 u64 used;
659 u64 last = max(search_hint, search_start);
660 u64 group_start = 0;
661 int full_search = 0;
662 int factor = 9;
663 int wrapped = 0;
664 again:
665 while (1) {
666 cache = btrfs_lookup_first_block_group(root->fs_info, last);
667 if (!cache)
668 break;
669
670 spin_lock(&cache->lock);
671 last = cache->key.objectid + cache->key.offset;
672 used = btrfs_block_group_used(&cache->item);
673
674 if ((full_search || !cache->ro) &&
675 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
676 if (used + cache->pinned + cache->reserved <
677 div_factor(cache->key.offset, factor)) {
678 group_start = cache->key.objectid;
679 spin_unlock(&cache->lock);
680 btrfs_put_block_group(cache);
681 goto found;
682 }
683 }
684 spin_unlock(&cache->lock);
685 btrfs_put_block_group(cache);
686 cond_resched();
687 }
688 if (!wrapped) {
689 last = search_start;
690 wrapped = 1;
691 goto again;
692 }
693 if (!full_search && factor < 10) {
694 last = search_start;
695 full_search = 1;
696 factor = 10;
697 goto again;
698 }
699 found:
700 return group_start;
701 }
702
703 /* simple helper to search for an existing extent at a given offset */
704 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
705 {
706 int ret;
707 struct btrfs_key key;
708 struct btrfs_path *path;
709
710 path = btrfs_alloc_path();
711 if (!path)
712 return -ENOMEM;
713
714 key.objectid = start;
715 key.offset = len;
716 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
717 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
718 0, 0);
719 btrfs_free_path(path);
720 return ret;
721 }
722
723 /*
724 * helper function to lookup reference count and flags of extent.
725 *
726 * the head node for delayed ref is used to store the sum of all the
727 * reference count modifications queued up in the rbtree. the head
728 * node may also store the extent flags to set. This way you can check
729 * to see what the reference count and extent flags would be if all of
730 * the delayed refs are not processed.
731 */
732 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
733 struct btrfs_root *root, u64 bytenr,
734 u64 num_bytes, u64 *refs, u64 *flags)
735 {
736 struct btrfs_delayed_ref_head *head;
737 struct btrfs_delayed_ref_root *delayed_refs;
738 struct btrfs_path *path;
739 struct btrfs_extent_item *ei;
740 struct extent_buffer *leaf;
741 struct btrfs_key key;
742 u32 item_size;
743 u64 num_refs;
744 u64 extent_flags;
745 int ret;
746
747 path = btrfs_alloc_path();
748 if (!path)
749 return -ENOMEM;
750
751 key.objectid = bytenr;
752 key.type = BTRFS_EXTENT_ITEM_KEY;
753 key.offset = num_bytes;
754 if (!trans) {
755 path->skip_locking = 1;
756 path->search_commit_root = 1;
757 }
758 again:
759 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
760 &key, path, 0, 0);
761 if (ret < 0)
762 goto out_free;
763
764 if (ret == 0) {
765 leaf = path->nodes[0];
766 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
767 if (item_size >= sizeof(*ei)) {
768 ei = btrfs_item_ptr(leaf, path->slots[0],
769 struct btrfs_extent_item);
770 num_refs = btrfs_extent_refs(leaf, ei);
771 extent_flags = btrfs_extent_flags(leaf, ei);
772 } else {
773 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
774 struct btrfs_extent_item_v0 *ei0;
775 BUG_ON(item_size != sizeof(*ei0));
776 ei0 = btrfs_item_ptr(leaf, path->slots[0],
777 struct btrfs_extent_item_v0);
778 num_refs = btrfs_extent_refs_v0(leaf, ei0);
779 /* FIXME: this isn't correct for data */
780 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
781 #else
782 BUG();
783 #endif
784 }
785 BUG_ON(num_refs == 0);
786 } else {
787 num_refs = 0;
788 extent_flags = 0;
789 ret = 0;
790 }
791
792 if (!trans)
793 goto out;
794
795 delayed_refs = &trans->transaction->delayed_refs;
796 spin_lock(&delayed_refs->lock);
797 head = btrfs_find_delayed_ref_head(trans, bytenr);
798 if (head) {
799 if (!mutex_trylock(&head->mutex)) {
800 atomic_inc(&head->node.refs);
801 spin_unlock(&delayed_refs->lock);
802
803 btrfs_release_path(path);
804
805 /*
806 * Mutex was contended, block until it's released and try
807 * again
808 */
809 mutex_lock(&head->mutex);
810 mutex_unlock(&head->mutex);
811 btrfs_put_delayed_ref(&head->node);
812 goto again;
813 }
814 if (head->extent_op && head->extent_op->update_flags)
815 extent_flags |= head->extent_op->flags_to_set;
816 else
817 BUG_ON(num_refs == 0);
818
819 num_refs += head->node.ref_mod;
820 mutex_unlock(&head->mutex);
821 }
822 spin_unlock(&delayed_refs->lock);
823 out:
824 WARN_ON(num_refs == 0);
825 if (refs)
826 *refs = num_refs;
827 if (flags)
828 *flags = extent_flags;
829 out_free:
830 btrfs_free_path(path);
831 return ret;
832 }
833
834 /*
835 * Back reference rules. Back refs have three main goals:
836 *
837 * 1) differentiate between all holders of references to an extent so that
838 * when a reference is dropped we can make sure it was a valid reference
839 * before freeing the extent.
840 *
841 * 2) Provide enough information to quickly find the holders of an extent
842 * if we notice a given block is corrupted or bad.
843 *
844 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
845 * maintenance. This is actually the same as #2, but with a slightly
846 * different use case.
847 *
848 * There are two kinds of back refs. The implicit back refs is optimized
849 * for pointers in non-shared tree blocks. For a given pointer in a block,
850 * back refs of this kind provide information about the block's owner tree
851 * and the pointer's key. These information allow us to find the block by
852 * b-tree searching. The full back refs is for pointers in tree blocks not
853 * referenced by their owner trees. The location of tree block is recorded
854 * in the back refs. Actually the full back refs is generic, and can be
855 * used in all cases the implicit back refs is used. The major shortcoming
856 * of the full back refs is its overhead. Every time a tree block gets
857 * COWed, we have to update back refs entry for all pointers in it.
858 *
859 * For a newly allocated tree block, we use implicit back refs for
860 * pointers in it. This means most tree related operations only involve
861 * implicit back refs. For a tree block created in old transaction, the
862 * only way to drop a reference to it is COW it. So we can detect the
863 * event that tree block loses its owner tree's reference and do the
864 * back refs conversion.
865 *
866 * When a tree block is COW'd through a tree, there are four cases:
867 *
868 * The reference count of the block is one and the tree is the block's
869 * owner tree. Nothing to do in this case.
870 *
871 * The reference count of the block is one and the tree is not the
872 * block's owner tree. In this case, full back refs is used for pointers
873 * in the block. Remove these full back refs, add implicit back refs for
874 * every pointers in the new block.
875 *
876 * The reference count of the block is greater than one and the tree is
877 * the block's owner tree. In this case, implicit back refs is used for
878 * pointers in the block. Add full back refs for every pointers in the
879 * block, increase lower level extents' reference counts. The original
880 * implicit back refs are entailed to the new block.
881 *
882 * The reference count of the block is greater than one and the tree is
883 * not the block's owner tree. Add implicit back refs for every pointer in
884 * the new block, increase lower level extents' reference count.
885 *
886 * Back Reference Key composing:
887 *
888 * The key objectid corresponds to the first byte in the extent,
889 * The key type is used to differentiate between types of back refs.
890 * There are different meanings of the key offset for different types
891 * of back refs.
892 *
893 * File extents can be referenced by:
894 *
895 * - multiple snapshots, subvolumes, or different generations in one subvol
896 * - different files inside a single subvolume
897 * - different offsets inside a file (bookend extents in file.c)
898 *
899 * The extent ref structure for the implicit back refs has fields for:
900 *
901 * - Objectid of the subvolume root
902 * - objectid of the file holding the reference
903 * - original offset in the file
904 * - how many bookend extents
905 *
906 * The key offset for the implicit back refs is hash of the first
907 * three fields.
908 *
909 * The extent ref structure for the full back refs has field for:
910 *
911 * - number of pointers in the tree leaf
912 *
913 * The key offset for the implicit back refs is the first byte of
914 * the tree leaf
915 *
916 * When a file extent is allocated, The implicit back refs is used.
917 * the fields are filled in:
918 *
919 * (root_key.objectid, inode objectid, offset in file, 1)
920 *
921 * When a file extent is removed file truncation, we find the
922 * corresponding implicit back refs and check the following fields:
923 *
924 * (btrfs_header_owner(leaf), inode objectid, offset in file)
925 *
926 * Btree extents can be referenced by:
927 *
928 * - Different subvolumes
929 *
930 * Both the implicit back refs and the full back refs for tree blocks
931 * only consist of key. The key offset for the implicit back refs is
932 * objectid of block's owner tree. The key offset for the full back refs
933 * is the first byte of parent block.
934 *
935 * When implicit back refs is used, information about the lowest key and
936 * level of the tree block are required. These information are stored in
937 * tree block info structure.
938 */
939
940 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
941 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
942 struct btrfs_root *root,
943 struct btrfs_path *path,
944 u64 owner, u32 extra_size)
945 {
946 struct btrfs_extent_item *item;
947 struct btrfs_extent_item_v0 *ei0;
948 struct btrfs_extent_ref_v0 *ref0;
949 struct btrfs_tree_block_info *bi;
950 struct extent_buffer *leaf;
951 struct btrfs_key key;
952 struct btrfs_key found_key;
953 u32 new_size = sizeof(*item);
954 u64 refs;
955 int ret;
956
957 leaf = path->nodes[0];
958 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
959
960 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
961 ei0 = btrfs_item_ptr(leaf, path->slots[0],
962 struct btrfs_extent_item_v0);
963 refs = btrfs_extent_refs_v0(leaf, ei0);
964
965 if (owner == (u64)-1) {
966 while (1) {
967 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
968 ret = btrfs_next_leaf(root, path);
969 if (ret < 0)
970 return ret;
971 BUG_ON(ret > 0); /* Corruption */
972 leaf = path->nodes[0];
973 }
974 btrfs_item_key_to_cpu(leaf, &found_key,
975 path->slots[0]);
976 BUG_ON(key.objectid != found_key.objectid);
977 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
978 path->slots[0]++;
979 continue;
980 }
981 ref0 = btrfs_item_ptr(leaf, path->slots[0],
982 struct btrfs_extent_ref_v0);
983 owner = btrfs_ref_objectid_v0(leaf, ref0);
984 break;
985 }
986 }
987 btrfs_release_path(path);
988
989 if (owner < BTRFS_FIRST_FREE_OBJECTID)
990 new_size += sizeof(*bi);
991
992 new_size -= sizeof(*ei0);
993 ret = btrfs_search_slot(trans, root, &key, path,
994 new_size + extra_size, 1);
995 if (ret < 0)
996 return ret;
997 BUG_ON(ret); /* Corruption */
998
999 btrfs_extend_item(trans, root, path, new_size);
1000
1001 leaf = path->nodes[0];
1002 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1003 btrfs_set_extent_refs(leaf, item, refs);
1004 /* FIXME: get real generation */
1005 btrfs_set_extent_generation(leaf, item, 0);
1006 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1007 btrfs_set_extent_flags(leaf, item,
1008 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1009 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1010 bi = (struct btrfs_tree_block_info *)(item + 1);
1011 /* FIXME: get first key of the block */
1012 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1013 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1014 } else {
1015 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1016 }
1017 btrfs_mark_buffer_dirty(leaf);
1018 return 0;
1019 }
1020 #endif
1021
1022 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1023 {
1024 u32 high_crc = ~(u32)0;
1025 u32 low_crc = ~(u32)0;
1026 __le64 lenum;
1027
1028 lenum = cpu_to_le64(root_objectid);
1029 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1030 lenum = cpu_to_le64(owner);
1031 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1032 lenum = cpu_to_le64(offset);
1033 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1034
1035 return ((u64)high_crc << 31) ^ (u64)low_crc;
1036 }
1037
1038 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1039 struct btrfs_extent_data_ref *ref)
1040 {
1041 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1042 btrfs_extent_data_ref_objectid(leaf, ref),
1043 btrfs_extent_data_ref_offset(leaf, ref));
1044 }
1045
1046 static int match_extent_data_ref(struct extent_buffer *leaf,
1047 struct btrfs_extent_data_ref *ref,
1048 u64 root_objectid, u64 owner, u64 offset)
1049 {
1050 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1051 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1052 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1053 return 0;
1054 return 1;
1055 }
1056
1057 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1058 struct btrfs_root *root,
1059 struct btrfs_path *path,
1060 u64 bytenr, u64 parent,
1061 u64 root_objectid,
1062 u64 owner, u64 offset)
1063 {
1064 struct btrfs_key key;
1065 struct btrfs_extent_data_ref *ref;
1066 struct extent_buffer *leaf;
1067 u32 nritems;
1068 int ret;
1069 int recow;
1070 int err = -ENOENT;
1071
1072 key.objectid = bytenr;
1073 if (parent) {
1074 key.type = BTRFS_SHARED_DATA_REF_KEY;
1075 key.offset = parent;
1076 } else {
1077 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1078 key.offset = hash_extent_data_ref(root_objectid,
1079 owner, offset);
1080 }
1081 again:
1082 recow = 0;
1083 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1084 if (ret < 0) {
1085 err = ret;
1086 goto fail;
1087 }
1088
1089 if (parent) {
1090 if (!ret)
1091 return 0;
1092 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1093 key.type = BTRFS_EXTENT_REF_V0_KEY;
1094 btrfs_release_path(path);
1095 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1096 if (ret < 0) {
1097 err = ret;
1098 goto fail;
1099 }
1100 if (!ret)
1101 return 0;
1102 #endif
1103 goto fail;
1104 }
1105
1106 leaf = path->nodes[0];
1107 nritems = btrfs_header_nritems(leaf);
1108 while (1) {
1109 if (path->slots[0] >= nritems) {
1110 ret = btrfs_next_leaf(root, path);
1111 if (ret < 0)
1112 err = ret;
1113 if (ret)
1114 goto fail;
1115
1116 leaf = path->nodes[0];
1117 nritems = btrfs_header_nritems(leaf);
1118 recow = 1;
1119 }
1120
1121 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1122 if (key.objectid != bytenr ||
1123 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1124 goto fail;
1125
1126 ref = btrfs_item_ptr(leaf, path->slots[0],
1127 struct btrfs_extent_data_ref);
1128
1129 if (match_extent_data_ref(leaf, ref, root_objectid,
1130 owner, offset)) {
1131 if (recow) {
1132 btrfs_release_path(path);
1133 goto again;
1134 }
1135 err = 0;
1136 break;
1137 }
1138 path->slots[0]++;
1139 }
1140 fail:
1141 return err;
1142 }
1143
1144 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1145 struct btrfs_root *root,
1146 struct btrfs_path *path,
1147 u64 bytenr, u64 parent,
1148 u64 root_objectid, u64 owner,
1149 u64 offset, int refs_to_add)
1150 {
1151 struct btrfs_key key;
1152 struct extent_buffer *leaf;
1153 u32 size;
1154 u32 num_refs;
1155 int ret;
1156
1157 key.objectid = bytenr;
1158 if (parent) {
1159 key.type = BTRFS_SHARED_DATA_REF_KEY;
1160 key.offset = parent;
1161 size = sizeof(struct btrfs_shared_data_ref);
1162 } else {
1163 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1164 key.offset = hash_extent_data_ref(root_objectid,
1165 owner, offset);
1166 size = sizeof(struct btrfs_extent_data_ref);
1167 }
1168
1169 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1170 if (ret && ret != -EEXIST)
1171 goto fail;
1172
1173 leaf = path->nodes[0];
1174 if (parent) {
1175 struct btrfs_shared_data_ref *ref;
1176 ref = btrfs_item_ptr(leaf, path->slots[0],
1177 struct btrfs_shared_data_ref);
1178 if (ret == 0) {
1179 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1180 } else {
1181 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1182 num_refs += refs_to_add;
1183 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1184 }
1185 } else {
1186 struct btrfs_extent_data_ref *ref;
1187 while (ret == -EEXIST) {
1188 ref = btrfs_item_ptr(leaf, path->slots[0],
1189 struct btrfs_extent_data_ref);
1190 if (match_extent_data_ref(leaf, ref, root_objectid,
1191 owner, offset))
1192 break;
1193 btrfs_release_path(path);
1194 key.offset++;
1195 ret = btrfs_insert_empty_item(trans, root, path, &key,
1196 size);
1197 if (ret && ret != -EEXIST)
1198 goto fail;
1199
1200 leaf = path->nodes[0];
1201 }
1202 ref = btrfs_item_ptr(leaf, path->slots[0],
1203 struct btrfs_extent_data_ref);
1204 if (ret == 0) {
1205 btrfs_set_extent_data_ref_root(leaf, ref,
1206 root_objectid);
1207 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1208 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1209 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1210 } else {
1211 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1212 num_refs += refs_to_add;
1213 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1214 }
1215 }
1216 btrfs_mark_buffer_dirty(leaf);
1217 ret = 0;
1218 fail:
1219 btrfs_release_path(path);
1220 return ret;
1221 }
1222
1223 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1224 struct btrfs_root *root,
1225 struct btrfs_path *path,
1226 int refs_to_drop)
1227 {
1228 struct btrfs_key key;
1229 struct btrfs_extent_data_ref *ref1 = NULL;
1230 struct btrfs_shared_data_ref *ref2 = NULL;
1231 struct extent_buffer *leaf;
1232 u32 num_refs = 0;
1233 int ret = 0;
1234
1235 leaf = path->nodes[0];
1236 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1237
1238 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1239 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1240 struct btrfs_extent_data_ref);
1241 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1242 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1243 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1244 struct btrfs_shared_data_ref);
1245 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1246 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1247 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1248 struct btrfs_extent_ref_v0 *ref0;
1249 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1250 struct btrfs_extent_ref_v0);
1251 num_refs = btrfs_ref_count_v0(leaf, ref0);
1252 #endif
1253 } else {
1254 BUG();
1255 }
1256
1257 BUG_ON(num_refs < refs_to_drop);
1258 num_refs -= refs_to_drop;
1259
1260 if (num_refs == 0) {
1261 ret = btrfs_del_item(trans, root, path);
1262 } else {
1263 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1264 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1265 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1266 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1267 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1268 else {
1269 struct btrfs_extent_ref_v0 *ref0;
1270 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1271 struct btrfs_extent_ref_v0);
1272 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1273 }
1274 #endif
1275 btrfs_mark_buffer_dirty(leaf);
1276 }
1277 return ret;
1278 }
1279
1280 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1281 struct btrfs_path *path,
1282 struct btrfs_extent_inline_ref *iref)
1283 {
1284 struct btrfs_key key;
1285 struct extent_buffer *leaf;
1286 struct btrfs_extent_data_ref *ref1;
1287 struct btrfs_shared_data_ref *ref2;
1288 u32 num_refs = 0;
1289
1290 leaf = path->nodes[0];
1291 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1292 if (iref) {
1293 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1294 BTRFS_EXTENT_DATA_REF_KEY) {
1295 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1296 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1297 } else {
1298 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1299 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1300 }
1301 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1302 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1303 struct btrfs_extent_data_ref);
1304 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1305 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1306 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1307 struct btrfs_shared_data_ref);
1308 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1309 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1310 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1311 struct btrfs_extent_ref_v0 *ref0;
1312 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1313 struct btrfs_extent_ref_v0);
1314 num_refs = btrfs_ref_count_v0(leaf, ref0);
1315 #endif
1316 } else {
1317 WARN_ON(1);
1318 }
1319 return num_refs;
1320 }
1321
1322 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1323 struct btrfs_root *root,
1324 struct btrfs_path *path,
1325 u64 bytenr, u64 parent,
1326 u64 root_objectid)
1327 {
1328 struct btrfs_key key;
1329 int ret;
1330
1331 key.objectid = bytenr;
1332 if (parent) {
1333 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1334 key.offset = parent;
1335 } else {
1336 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1337 key.offset = root_objectid;
1338 }
1339
1340 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1341 if (ret > 0)
1342 ret = -ENOENT;
1343 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1344 if (ret == -ENOENT && parent) {
1345 btrfs_release_path(path);
1346 key.type = BTRFS_EXTENT_REF_V0_KEY;
1347 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1348 if (ret > 0)
1349 ret = -ENOENT;
1350 }
1351 #endif
1352 return ret;
1353 }
1354
1355 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1356 struct btrfs_root *root,
1357 struct btrfs_path *path,
1358 u64 bytenr, u64 parent,
1359 u64 root_objectid)
1360 {
1361 struct btrfs_key key;
1362 int ret;
1363
1364 key.objectid = bytenr;
1365 if (parent) {
1366 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1367 key.offset = parent;
1368 } else {
1369 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1370 key.offset = root_objectid;
1371 }
1372
1373 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1374 btrfs_release_path(path);
1375 return ret;
1376 }
1377
1378 static inline int extent_ref_type(u64 parent, u64 owner)
1379 {
1380 int type;
1381 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1382 if (parent > 0)
1383 type = BTRFS_SHARED_BLOCK_REF_KEY;
1384 else
1385 type = BTRFS_TREE_BLOCK_REF_KEY;
1386 } else {
1387 if (parent > 0)
1388 type = BTRFS_SHARED_DATA_REF_KEY;
1389 else
1390 type = BTRFS_EXTENT_DATA_REF_KEY;
1391 }
1392 return type;
1393 }
1394
1395 static int find_next_key(struct btrfs_path *path, int level,
1396 struct btrfs_key *key)
1397
1398 {
1399 for (; level < BTRFS_MAX_LEVEL; level++) {
1400 if (!path->nodes[level])
1401 break;
1402 if (path->slots[level] + 1 >=
1403 btrfs_header_nritems(path->nodes[level]))
1404 continue;
1405 if (level == 0)
1406 btrfs_item_key_to_cpu(path->nodes[level], key,
1407 path->slots[level] + 1);
1408 else
1409 btrfs_node_key_to_cpu(path->nodes[level], key,
1410 path->slots[level] + 1);
1411 return 0;
1412 }
1413 return 1;
1414 }
1415
1416 /*
1417 * look for inline back ref. if back ref is found, *ref_ret is set
1418 * to the address of inline back ref, and 0 is returned.
1419 *
1420 * if back ref isn't found, *ref_ret is set to the address where it
1421 * should be inserted, and -ENOENT is returned.
1422 *
1423 * if insert is true and there are too many inline back refs, the path
1424 * points to the extent item, and -EAGAIN is returned.
1425 *
1426 * NOTE: inline back refs are ordered in the same way that back ref
1427 * items in the tree are ordered.
1428 */
1429 static noinline_for_stack
1430 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1431 struct btrfs_root *root,
1432 struct btrfs_path *path,
1433 struct btrfs_extent_inline_ref **ref_ret,
1434 u64 bytenr, u64 num_bytes,
1435 u64 parent, u64 root_objectid,
1436 u64 owner, u64 offset, int insert)
1437 {
1438 struct btrfs_key key;
1439 struct extent_buffer *leaf;
1440 struct btrfs_extent_item *ei;
1441 struct btrfs_extent_inline_ref *iref;
1442 u64 flags;
1443 u64 item_size;
1444 unsigned long ptr;
1445 unsigned long end;
1446 int extra_size;
1447 int type;
1448 int want;
1449 int ret;
1450 int err = 0;
1451
1452 key.objectid = bytenr;
1453 key.type = BTRFS_EXTENT_ITEM_KEY;
1454 key.offset = num_bytes;
1455
1456 want = extent_ref_type(parent, owner);
1457 if (insert) {
1458 extra_size = btrfs_extent_inline_ref_size(want);
1459 path->keep_locks = 1;
1460 } else
1461 extra_size = -1;
1462 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1463 if (ret < 0) {
1464 err = ret;
1465 goto out;
1466 }
1467 if (ret && !insert) {
1468 err = -ENOENT;
1469 goto out;
1470 }
1471 BUG_ON(ret); /* Corruption */
1472
1473 leaf = path->nodes[0];
1474 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1475 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1476 if (item_size < sizeof(*ei)) {
1477 if (!insert) {
1478 err = -ENOENT;
1479 goto out;
1480 }
1481 ret = convert_extent_item_v0(trans, root, path, owner,
1482 extra_size);
1483 if (ret < 0) {
1484 err = ret;
1485 goto out;
1486 }
1487 leaf = path->nodes[0];
1488 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1489 }
1490 #endif
1491 BUG_ON(item_size < sizeof(*ei));
1492
1493 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1494 flags = btrfs_extent_flags(leaf, ei);
1495
1496 ptr = (unsigned long)(ei + 1);
1497 end = (unsigned long)ei + item_size;
1498
1499 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1500 ptr += sizeof(struct btrfs_tree_block_info);
1501 BUG_ON(ptr > end);
1502 } else {
1503 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1504 }
1505
1506 err = -ENOENT;
1507 while (1) {
1508 if (ptr >= end) {
1509 WARN_ON(ptr > end);
1510 break;
1511 }
1512 iref = (struct btrfs_extent_inline_ref *)ptr;
1513 type = btrfs_extent_inline_ref_type(leaf, iref);
1514 if (want < type)
1515 break;
1516 if (want > type) {
1517 ptr += btrfs_extent_inline_ref_size(type);
1518 continue;
1519 }
1520
1521 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1522 struct btrfs_extent_data_ref *dref;
1523 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1524 if (match_extent_data_ref(leaf, dref, root_objectid,
1525 owner, offset)) {
1526 err = 0;
1527 break;
1528 }
1529 if (hash_extent_data_ref_item(leaf, dref) <
1530 hash_extent_data_ref(root_objectid, owner, offset))
1531 break;
1532 } else {
1533 u64 ref_offset;
1534 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1535 if (parent > 0) {
1536 if (parent == ref_offset) {
1537 err = 0;
1538 break;
1539 }
1540 if (ref_offset < parent)
1541 break;
1542 } else {
1543 if (root_objectid == ref_offset) {
1544 err = 0;
1545 break;
1546 }
1547 if (ref_offset < root_objectid)
1548 break;
1549 }
1550 }
1551 ptr += btrfs_extent_inline_ref_size(type);
1552 }
1553 if (err == -ENOENT && insert) {
1554 if (item_size + extra_size >=
1555 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1556 err = -EAGAIN;
1557 goto out;
1558 }
1559 /*
1560 * To add new inline back ref, we have to make sure
1561 * there is no corresponding back ref item.
1562 * For simplicity, we just do not add new inline back
1563 * ref if there is any kind of item for this block
1564 */
1565 if (find_next_key(path, 0, &key) == 0 &&
1566 key.objectid == bytenr &&
1567 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1568 err = -EAGAIN;
1569 goto out;
1570 }
1571 }
1572 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1573 out:
1574 if (insert) {
1575 path->keep_locks = 0;
1576 btrfs_unlock_up_safe(path, 1);
1577 }
1578 return err;
1579 }
1580
1581 /*
1582 * helper to add new inline back ref
1583 */
1584 static noinline_for_stack
1585 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1586 struct btrfs_root *root,
1587 struct btrfs_path *path,
1588 struct btrfs_extent_inline_ref *iref,
1589 u64 parent, u64 root_objectid,
1590 u64 owner, u64 offset, int refs_to_add,
1591 struct btrfs_delayed_extent_op *extent_op)
1592 {
1593 struct extent_buffer *leaf;
1594 struct btrfs_extent_item *ei;
1595 unsigned long ptr;
1596 unsigned long end;
1597 unsigned long item_offset;
1598 u64 refs;
1599 int size;
1600 int type;
1601
1602 leaf = path->nodes[0];
1603 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1604 item_offset = (unsigned long)iref - (unsigned long)ei;
1605
1606 type = extent_ref_type(parent, owner);
1607 size = btrfs_extent_inline_ref_size(type);
1608
1609 btrfs_extend_item(trans, root, path, size);
1610
1611 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1612 refs = btrfs_extent_refs(leaf, ei);
1613 refs += refs_to_add;
1614 btrfs_set_extent_refs(leaf, ei, refs);
1615 if (extent_op)
1616 __run_delayed_extent_op(extent_op, leaf, ei);
1617
1618 ptr = (unsigned long)ei + item_offset;
1619 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1620 if (ptr < end - size)
1621 memmove_extent_buffer(leaf, ptr + size, ptr,
1622 end - size - ptr);
1623
1624 iref = (struct btrfs_extent_inline_ref *)ptr;
1625 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1626 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1627 struct btrfs_extent_data_ref *dref;
1628 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1629 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1630 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1631 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1632 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1633 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1634 struct btrfs_shared_data_ref *sref;
1635 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1636 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1637 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1638 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1639 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1640 } else {
1641 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1642 }
1643 btrfs_mark_buffer_dirty(leaf);
1644 }
1645
1646 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1647 struct btrfs_root *root,
1648 struct btrfs_path *path,
1649 struct btrfs_extent_inline_ref **ref_ret,
1650 u64 bytenr, u64 num_bytes, u64 parent,
1651 u64 root_objectid, u64 owner, u64 offset)
1652 {
1653 int ret;
1654
1655 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1656 bytenr, num_bytes, parent,
1657 root_objectid, owner, offset, 0);
1658 if (ret != -ENOENT)
1659 return ret;
1660
1661 btrfs_release_path(path);
1662 *ref_ret = NULL;
1663
1664 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1665 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1666 root_objectid);
1667 } else {
1668 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1669 root_objectid, owner, offset);
1670 }
1671 return ret;
1672 }
1673
1674 /*
1675 * helper to update/remove inline back ref
1676 */
1677 static noinline_for_stack
1678 void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1679 struct btrfs_root *root,
1680 struct btrfs_path *path,
1681 struct btrfs_extent_inline_ref *iref,
1682 int refs_to_mod,
1683 struct btrfs_delayed_extent_op *extent_op)
1684 {
1685 struct extent_buffer *leaf;
1686 struct btrfs_extent_item *ei;
1687 struct btrfs_extent_data_ref *dref = NULL;
1688 struct btrfs_shared_data_ref *sref = NULL;
1689 unsigned long ptr;
1690 unsigned long end;
1691 u32 item_size;
1692 int size;
1693 int type;
1694 u64 refs;
1695
1696 leaf = path->nodes[0];
1697 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1698 refs = btrfs_extent_refs(leaf, ei);
1699 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1700 refs += refs_to_mod;
1701 btrfs_set_extent_refs(leaf, ei, refs);
1702 if (extent_op)
1703 __run_delayed_extent_op(extent_op, leaf, ei);
1704
1705 type = btrfs_extent_inline_ref_type(leaf, iref);
1706
1707 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1708 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1709 refs = btrfs_extent_data_ref_count(leaf, dref);
1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1712 refs = btrfs_shared_data_ref_count(leaf, sref);
1713 } else {
1714 refs = 1;
1715 BUG_ON(refs_to_mod != -1);
1716 }
1717
1718 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1719 refs += refs_to_mod;
1720
1721 if (refs > 0) {
1722 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1723 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1724 else
1725 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1726 } else {
1727 size = btrfs_extent_inline_ref_size(type);
1728 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1729 ptr = (unsigned long)iref;
1730 end = (unsigned long)ei + item_size;
1731 if (ptr + size < end)
1732 memmove_extent_buffer(leaf, ptr, ptr + size,
1733 end - ptr - size);
1734 item_size -= size;
1735 btrfs_truncate_item(trans, root, path, item_size, 1);
1736 }
1737 btrfs_mark_buffer_dirty(leaf);
1738 }
1739
1740 static noinline_for_stack
1741 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1742 struct btrfs_root *root,
1743 struct btrfs_path *path,
1744 u64 bytenr, u64 num_bytes, u64 parent,
1745 u64 root_objectid, u64 owner,
1746 u64 offset, int refs_to_add,
1747 struct btrfs_delayed_extent_op *extent_op)
1748 {
1749 struct btrfs_extent_inline_ref *iref;
1750 int ret;
1751
1752 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1753 bytenr, num_bytes, parent,
1754 root_objectid, owner, offset, 1);
1755 if (ret == 0) {
1756 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1757 update_inline_extent_backref(trans, root, path, iref,
1758 refs_to_add, extent_op);
1759 } else if (ret == -ENOENT) {
1760 setup_inline_extent_backref(trans, root, path, iref, parent,
1761 root_objectid, owner, offset,
1762 refs_to_add, extent_op);
1763 ret = 0;
1764 }
1765 return ret;
1766 }
1767
1768 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1769 struct btrfs_root *root,
1770 struct btrfs_path *path,
1771 u64 bytenr, u64 parent, u64 root_objectid,
1772 u64 owner, u64 offset, int refs_to_add)
1773 {
1774 int ret;
1775 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1776 BUG_ON(refs_to_add != 1);
1777 ret = insert_tree_block_ref(trans, root, path, bytenr,
1778 parent, root_objectid);
1779 } else {
1780 ret = insert_extent_data_ref(trans, root, path, bytenr,
1781 parent, root_objectid,
1782 owner, offset, refs_to_add);
1783 }
1784 return ret;
1785 }
1786
1787 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1788 struct btrfs_root *root,
1789 struct btrfs_path *path,
1790 struct btrfs_extent_inline_ref *iref,
1791 int refs_to_drop, int is_data)
1792 {
1793 int ret = 0;
1794
1795 BUG_ON(!is_data && refs_to_drop != 1);
1796 if (iref) {
1797 update_inline_extent_backref(trans, root, path, iref,
1798 -refs_to_drop, NULL);
1799 } else if (is_data) {
1800 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1801 } else {
1802 ret = btrfs_del_item(trans, root, path);
1803 }
1804 return ret;
1805 }
1806
1807 static int btrfs_issue_discard(struct block_device *bdev,
1808 u64 start, u64 len)
1809 {
1810 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1811 }
1812
1813 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1814 u64 num_bytes, u64 *actual_bytes)
1815 {
1816 int ret;
1817 u64 discarded_bytes = 0;
1818 struct btrfs_bio *bbio = NULL;
1819
1820
1821 /* Tell the block device(s) that the sectors can be discarded */
1822 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1823 bytenr, &num_bytes, &bbio, 0);
1824 /* Error condition is -ENOMEM */
1825 if (!ret) {
1826 struct btrfs_bio_stripe *stripe = bbio->stripes;
1827 int i;
1828
1829
1830 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1831 if (!stripe->dev->can_discard)
1832 continue;
1833
1834 ret = btrfs_issue_discard(stripe->dev->bdev,
1835 stripe->physical,
1836 stripe->length);
1837 if (!ret)
1838 discarded_bytes += stripe->length;
1839 else if (ret != -EOPNOTSUPP)
1840 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1841
1842 /*
1843 * Just in case we get back EOPNOTSUPP for some reason,
1844 * just ignore the return value so we don't screw up
1845 * people calling discard_extent.
1846 */
1847 ret = 0;
1848 }
1849 kfree(bbio);
1850 }
1851
1852 if (actual_bytes)
1853 *actual_bytes = discarded_bytes;
1854
1855
1856 if (ret == -EOPNOTSUPP)
1857 ret = 0;
1858 return ret;
1859 }
1860
1861 /* Can return -ENOMEM */
1862 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1863 struct btrfs_root *root,
1864 u64 bytenr, u64 num_bytes, u64 parent,
1865 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1866 {
1867 int ret;
1868 struct btrfs_fs_info *fs_info = root->fs_info;
1869
1870 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1871 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1872
1873 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1874 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1875 num_bytes,
1876 parent, root_objectid, (int)owner,
1877 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1878 } else {
1879 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1880 num_bytes,
1881 parent, root_objectid, owner, offset,
1882 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1883 }
1884 return ret;
1885 }
1886
1887 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1888 struct btrfs_root *root,
1889 u64 bytenr, u64 num_bytes,
1890 u64 parent, u64 root_objectid,
1891 u64 owner, u64 offset, int refs_to_add,
1892 struct btrfs_delayed_extent_op *extent_op)
1893 {
1894 struct btrfs_path *path;
1895 struct extent_buffer *leaf;
1896 struct btrfs_extent_item *item;
1897 u64 refs;
1898 int ret;
1899 int err = 0;
1900
1901 path = btrfs_alloc_path();
1902 if (!path)
1903 return -ENOMEM;
1904
1905 path->reada = 1;
1906 path->leave_spinning = 1;
1907 /* this will setup the path even if it fails to insert the back ref */
1908 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1909 path, bytenr, num_bytes, parent,
1910 root_objectid, owner, offset,
1911 refs_to_add, extent_op);
1912 if (ret == 0)
1913 goto out;
1914
1915 if (ret != -EAGAIN) {
1916 err = ret;
1917 goto out;
1918 }
1919
1920 leaf = path->nodes[0];
1921 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1922 refs = btrfs_extent_refs(leaf, item);
1923 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1924 if (extent_op)
1925 __run_delayed_extent_op(extent_op, leaf, item);
1926
1927 btrfs_mark_buffer_dirty(leaf);
1928 btrfs_release_path(path);
1929
1930 path->reada = 1;
1931 path->leave_spinning = 1;
1932
1933 /* now insert the actual backref */
1934 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1935 path, bytenr, parent, root_objectid,
1936 owner, offset, refs_to_add);
1937 if (ret)
1938 btrfs_abort_transaction(trans, root, ret);
1939 out:
1940 btrfs_free_path(path);
1941 return err;
1942 }
1943
1944 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1945 struct btrfs_root *root,
1946 struct btrfs_delayed_ref_node *node,
1947 struct btrfs_delayed_extent_op *extent_op,
1948 int insert_reserved)
1949 {
1950 int ret = 0;
1951 struct btrfs_delayed_data_ref *ref;
1952 struct btrfs_key ins;
1953 u64 parent = 0;
1954 u64 ref_root = 0;
1955 u64 flags = 0;
1956
1957 ins.objectid = node->bytenr;
1958 ins.offset = node->num_bytes;
1959 ins.type = BTRFS_EXTENT_ITEM_KEY;
1960
1961 ref = btrfs_delayed_node_to_data_ref(node);
1962 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1963 parent = ref->parent;
1964 else
1965 ref_root = ref->root;
1966
1967 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1968 if (extent_op) {
1969 BUG_ON(extent_op->update_key);
1970 flags |= extent_op->flags_to_set;
1971 }
1972 ret = alloc_reserved_file_extent(trans, root,
1973 parent, ref_root, flags,
1974 ref->objectid, ref->offset,
1975 &ins, node->ref_mod);
1976 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1977 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1978 node->num_bytes, parent,
1979 ref_root, ref->objectid,
1980 ref->offset, node->ref_mod,
1981 extent_op);
1982 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1983 ret = __btrfs_free_extent(trans, root, node->bytenr,
1984 node->num_bytes, parent,
1985 ref_root, ref->objectid,
1986 ref->offset, node->ref_mod,
1987 extent_op);
1988 } else {
1989 BUG();
1990 }
1991 return ret;
1992 }
1993
1994 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1995 struct extent_buffer *leaf,
1996 struct btrfs_extent_item *ei)
1997 {
1998 u64 flags = btrfs_extent_flags(leaf, ei);
1999 if (extent_op->update_flags) {
2000 flags |= extent_op->flags_to_set;
2001 btrfs_set_extent_flags(leaf, ei, flags);
2002 }
2003
2004 if (extent_op->update_key) {
2005 struct btrfs_tree_block_info *bi;
2006 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2007 bi = (struct btrfs_tree_block_info *)(ei + 1);
2008 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2009 }
2010 }
2011
2012 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2013 struct btrfs_root *root,
2014 struct btrfs_delayed_ref_node *node,
2015 struct btrfs_delayed_extent_op *extent_op)
2016 {
2017 struct btrfs_key key;
2018 struct btrfs_path *path;
2019 struct btrfs_extent_item *ei;
2020 struct extent_buffer *leaf;
2021 u32 item_size;
2022 int ret;
2023 int err = 0;
2024
2025 if (trans->aborted)
2026 return 0;
2027
2028 path = btrfs_alloc_path();
2029 if (!path)
2030 return -ENOMEM;
2031
2032 key.objectid = node->bytenr;
2033 key.type = BTRFS_EXTENT_ITEM_KEY;
2034 key.offset = node->num_bytes;
2035
2036 path->reada = 1;
2037 path->leave_spinning = 1;
2038 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2039 path, 0, 1);
2040 if (ret < 0) {
2041 err = ret;
2042 goto out;
2043 }
2044 if (ret > 0) {
2045 err = -EIO;
2046 goto out;
2047 }
2048
2049 leaf = path->nodes[0];
2050 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2051 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2052 if (item_size < sizeof(*ei)) {
2053 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2054 path, (u64)-1, 0);
2055 if (ret < 0) {
2056 err = ret;
2057 goto out;
2058 }
2059 leaf = path->nodes[0];
2060 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2061 }
2062 #endif
2063 BUG_ON(item_size < sizeof(*ei));
2064 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2065 __run_delayed_extent_op(extent_op, leaf, ei);
2066
2067 btrfs_mark_buffer_dirty(leaf);
2068 out:
2069 btrfs_free_path(path);
2070 return err;
2071 }
2072
2073 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2074 struct btrfs_root *root,
2075 struct btrfs_delayed_ref_node *node,
2076 struct btrfs_delayed_extent_op *extent_op,
2077 int insert_reserved)
2078 {
2079 int ret = 0;
2080 struct btrfs_delayed_tree_ref *ref;
2081 struct btrfs_key ins;
2082 u64 parent = 0;
2083 u64 ref_root = 0;
2084
2085 ins.objectid = node->bytenr;
2086 ins.offset = node->num_bytes;
2087 ins.type = BTRFS_EXTENT_ITEM_KEY;
2088
2089 ref = btrfs_delayed_node_to_tree_ref(node);
2090 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2091 parent = ref->parent;
2092 else
2093 ref_root = ref->root;
2094
2095 BUG_ON(node->ref_mod != 1);
2096 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2097 BUG_ON(!extent_op || !extent_op->update_flags ||
2098 !extent_op->update_key);
2099 ret = alloc_reserved_tree_block(trans, root,
2100 parent, ref_root,
2101 extent_op->flags_to_set,
2102 &extent_op->key,
2103 ref->level, &ins);
2104 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2105 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2106 node->num_bytes, parent, ref_root,
2107 ref->level, 0, 1, extent_op);
2108 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2109 ret = __btrfs_free_extent(trans, root, node->bytenr,
2110 node->num_bytes, parent, ref_root,
2111 ref->level, 0, 1, extent_op);
2112 } else {
2113 BUG();
2114 }
2115 return ret;
2116 }
2117
2118 /* helper function to actually process a single delayed ref entry */
2119 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2120 struct btrfs_root *root,
2121 struct btrfs_delayed_ref_node *node,
2122 struct btrfs_delayed_extent_op *extent_op,
2123 int insert_reserved)
2124 {
2125 int ret = 0;
2126
2127 if (trans->aborted)
2128 return 0;
2129
2130 if (btrfs_delayed_ref_is_head(node)) {
2131 struct btrfs_delayed_ref_head *head;
2132 /*
2133 * we've hit the end of the chain and we were supposed
2134 * to insert this extent into the tree. But, it got
2135 * deleted before we ever needed to insert it, so all
2136 * we have to do is clean up the accounting
2137 */
2138 BUG_ON(extent_op);
2139 head = btrfs_delayed_node_to_head(node);
2140 if (insert_reserved) {
2141 btrfs_pin_extent(root, node->bytenr,
2142 node->num_bytes, 1);
2143 if (head->is_data) {
2144 ret = btrfs_del_csums(trans, root,
2145 node->bytenr,
2146 node->num_bytes);
2147 }
2148 }
2149 return ret;
2150 }
2151
2152 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2153 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2154 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2155 insert_reserved);
2156 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2157 node->type == BTRFS_SHARED_DATA_REF_KEY)
2158 ret = run_delayed_data_ref(trans, root, node, extent_op,
2159 insert_reserved);
2160 else
2161 BUG();
2162 return ret;
2163 }
2164
2165 static noinline struct btrfs_delayed_ref_node *
2166 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2167 {
2168 struct rb_node *node;
2169 struct btrfs_delayed_ref_node *ref;
2170 int action = BTRFS_ADD_DELAYED_REF;
2171 again:
2172 /*
2173 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2174 * this prevents ref count from going down to zero when
2175 * there still are pending delayed ref.
2176 */
2177 node = rb_prev(&head->node.rb_node);
2178 while (1) {
2179 if (!node)
2180 break;
2181 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2182 rb_node);
2183 if (ref->bytenr != head->node.bytenr)
2184 break;
2185 if (ref->action == action)
2186 return ref;
2187 node = rb_prev(node);
2188 }
2189 if (action == BTRFS_ADD_DELAYED_REF) {
2190 action = BTRFS_DROP_DELAYED_REF;
2191 goto again;
2192 }
2193 return NULL;
2194 }
2195
2196 /*
2197 * Returns 0 on success or if called with an already aborted transaction.
2198 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2199 */
2200 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2201 struct btrfs_root *root,
2202 struct list_head *cluster)
2203 {
2204 struct btrfs_delayed_ref_root *delayed_refs;
2205 struct btrfs_delayed_ref_node *ref;
2206 struct btrfs_delayed_ref_head *locked_ref = NULL;
2207 struct btrfs_delayed_extent_op *extent_op;
2208 struct btrfs_fs_info *fs_info = root->fs_info;
2209 int ret;
2210 int count = 0;
2211 int must_insert_reserved = 0;
2212
2213 delayed_refs = &trans->transaction->delayed_refs;
2214 while (1) {
2215 if (!locked_ref) {
2216 /* pick a new head ref from the cluster list */
2217 if (list_empty(cluster))
2218 break;
2219
2220 locked_ref = list_entry(cluster->next,
2221 struct btrfs_delayed_ref_head, cluster);
2222
2223 /* grab the lock that says we are going to process
2224 * all the refs for this head */
2225 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2226
2227 /*
2228 * we may have dropped the spin lock to get the head
2229 * mutex lock, and that might have given someone else
2230 * time to free the head. If that's true, it has been
2231 * removed from our list and we can move on.
2232 */
2233 if (ret == -EAGAIN) {
2234 locked_ref = NULL;
2235 count++;
2236 continue;
2237 }
2238 }
2239
2240 /*
2241 * We need to try and merge add/drops of the same ref since we
2242 * can run into issues with relocate dropping the implicit ref
2243 * and then it being added back again before the drop can
2244 * finish. If we merged anything we need to re-loop so we can
2245 * get a good ref.
2246 */
2247 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2248 locked_ref);
2249
2250 /*
2251 * locked_ref is the head node, so we have to go one
2252 * node back for any delayed ref updates
2253 */
2254 ref = select_delayed_ref(locked_ref);
2255
2256 if (ref && ref->seq &&
2257 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2258 /*
2259 * there are still refs with lower seq numbers in the
2260 * process of being added. Don't run this ref yet.
2261 */
2262 list_del_init(&locked_ref->cluster);
2263 btrfs_delayed_ref_unlock(locked_ref);
2264 locked_ref = NULL;
2265 delayed_refs->num_heads_ready++;
2266 spin_unlock(&delayed_refs->lock);
2267 cond_resched();
2268 spin_lock(&delayed_refs->lock);
2269 continue;
2270 }
2271
2272 /*
2273 * record the must insert reserved flag before we
2274 * drop the spin lock.
2275 */
2276 must_insert_reserved = locked_ref->must_insert_reserved;
2277 locked_ref->must_insert_reserved = 0;
2278
2279 extent_op = locked_ref->extent_op;
2280 locked_ref->extent_op = NULL;
2281
2282 if (!ref) {
2283 /* All delayed refs have been processed, Go ahead
2284 * and send the head node to run_one_delayed_ref,
2285 * so that any accounting fixes can happen
2286 */
2287 ref = &locked_ref->node;
2288
2289 if (extent_op && must_insert_reserved) {
2290 btrfs_free_delayed_extent_op(extent_op);
2291 extent_op = NULL;
2292 }
2293
2294 if (extent_op) {
2295 spin_unlock(&delayed_refs->lock);
2296
2297 ret = run_delayed_extent_op(trans, root,
2298 ref, extent_op);
2299 btrfs_free_delayed_extent_op(extent_op);
2300
2301 if (ret) {
2302 printk(KERN_DEBUG
2303 "btrfs: run_delayed_extent_op "
2304 "returned %d\n", ret);
2305 spin_lock(&delayed_refs->lock);
2306 btrfs_delayed_ref_unlock(locked_ref);
2307 return ret;
2308 }
2309
2310 goto next;
2311 }
2312 }
2313
2314 ref->in_tree = 0;
2315 rb_erase(&ref->rb_node, &delayed_refs->root);
2316 delayed_refs->num_entries--;
2317 if (!btrfs_delayed_ref_is_head(ref)) {
2318 /*
2319 * when we play the delayed ref, also correct the
2320 * ref_mod on head
2321 */
2322 switch (ref->action) {
2323 case BTRFS_ADD_DELAYED_REF:
2324 case BTRFS_ADD_DELAYED_EXTENT:
2325 locked_ref->node.ref_mod -= ref->ref_mod;
2326 break;
2327 case BTRFS_DROP_DELAYED_REF:
2328 locked_ref->node.ref_mod += ref->ref_mod;
2329 break;
2330 default:
2331 WARN_ON(1);
2332 }
2333 }
2334 spin_unlock(&delayed_refs->lock);
2335
2336 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2337 must_insert_reserved);
2338
2339 btrfs_free_delayed_extent_op(extent_op);
2340 if (ret) {
2341 btrfs_delayed_ref_unlock(locked_ref);
2342 btrfs_put_delayed_ref(ref);
2343 printk(KERN_DEBUG
2344 "btrfs: run_one_delayed_ref returned %d\n", ret);
2345 spin_lock(&delayed_refs->lock);
2346 return ret;
2347 }
2348
2349 /*
2350 * If this node is a head, that means all the refs in this head
2351 * have been dealt with, and we will pick the next head to deal
2352 * with, so we must unlock the head and drop it from the cluster
2353 * list before we release it.
2354 */
2355 if (btrfs_delayed_ref_is_head(ref)) {
2356 list_del_init(&locked_ref->cluster);
2357 btrfs_delayed_ref_unlock(locked_ref);
2358 locked_ref = NULL;
2359 }
2360 btrfs_put_delayed_ref(ref);
2361 count++;
2362 next:
2363 cond_resched();
2364 spin_lock(&delayed_refs->lock);
2365 }
2366 return count;
2367 }
2368
2369 #ifdef SCRAMBLE_DELAYED_REFS
2370 /*
2371 * Normally delayed refs get processed in ascending bytenr order. This
2372 * correlates in most cases to the order added. To expose dependencies on this
2373 * order, we start to process the tree in the middle instead of the beginning
2374 */
2375 static u64 find_middle(struct rb_root *root)
2376 {
2377 struct rb_node *n = root->rb_node;
2378 struct btrfs_delayed_ref_node *entry;
2379 int alt = 1;
2380 u64 middle;
2381 u64 first = 0, last = 0;
2382
2383 n = rb_first(root);
2384 if (n) {
2385 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2386 first = entry->bytenr;
2387 }
2388 n = rb_last(root);
2389 if (n) {
2390 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2391 last = entry->bytenr;
2392 }
2393 n = root->rb_node;
2394
2395 while (n) {
2396 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2397 WARN_ON(!entry->in_tree);
2398
2399 middle = entry->bytenr;
2400
2401 if (alt)
2402 n = n->rb_left;
2403 else
2404 n = n->rb_right;
2405
2406 alt = 1 - alt;
2407 }
2408 return middle;
2409 }
2410 #endif
2411
2412 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2413 struct btrfs_fs_info *fs_info)
2414 {
2415 struct qgroup_update *qgroup_update;
2416 int ret = 0;
2417
2418 if (list_empty(&trans->qgroup_ref_list) !=
2419 !trans->delayed_ref_elem.seq) {
2420 /* list without seq or seq without list */
2421 printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n",
2422 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2423 trans->delayed_ref_elem.seq);
2424 BUG();
2425 }
2426
2427 if (!trans->delayed_ref_elem.seq)
2428 return 0;
2429
2430 while (!list_empty(&trans->qgroup_ref_list)) {
2431 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2432 struct qgroup_update, list);
2433 list_del(&qgroup_update->list);
2434 if (!ret)
2435 ret = btrfs_qgroup_account_ref(
2436 trans, fs_info, qgroup_update->node,
2437 qgroup_update->extent_op);
2438 kfree(qgroup_update);
2439 }
2440
2441 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2442
2443 return ret;
2444 }
2445
2446 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
2447 int count)
2448 {
2449 int val = atomic_read(&delayed_refs->ref_seq);
2450
2451 if (val < seq || val >= seq + count)
2452 return 1;
2453 return 0;
2454 }
2455
2456 /*
2457 * this starts processing the delayed reference count updates and
2458 * extent insertions we have queued up so far. count can be
2459 * 0, which means to process everything in the tree at the start
2460 * of the run (but not newly added entries), or it can be some target
2461 * number you'd like to process.
2462 *
2463 * Returns 0 on success or if called with an aborted transaction
2464 * Returns <0 on error and aborts the transaction
2465 */
2466 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2467 struct btrfs_root *root, unsigned long count)
2468 {
2469 struct rb_node *node;
2470 struct btrfs_delayed_ref_root *delayed_refs;
2471 struct btrfs_delayed_ref_node *ref;
2472 struct list_head cluster;
2473 int ret;
2474 u64 delayed_start;
2475 int run_all = count == (unsigned long)-1;
2476 int run_most = 0;
2477 int loops;
2478
2479 /* We'll clean this up in btrfs_cleanup_transaction */
2480 if (trans->aborted)
2481 return 0;
2482
2483 if (root == root->fs_info->extent_root)
2484 root = root->fs_info->tree_root;
2485
2486 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2487
2488 delayed_refs = &trans->transaction->delayed_refs;
2489 INIT_LIST_HEAD(&cluster);
2490 if (count == 0) {
2491 count = delayed_refs->num_entries * 2;
2492 run_most = 1;
2493 }
2494
2495 if (!run_all && !run_most) {
2496 int old;
2497 int seq = atomic_read(&delayed_refs->ref_seq);
2498
2499 progress:
2500 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2501 if (old) {
2502 DEFINE_WAIT(__wait);
2503 if (delayed_refs->num_entries < 16348)
2504 return 0;
2505
2506 prepare_to_wait(&delayed_refs->wait, &__wait,
2507 TASK_UNINTERRUPTIBLE);
2508
2509 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2510 if (old) {
2511 schedule();
2512 finish_wait(&delayed_refs->wait, &__wait);
2513
2514 if (!refs_newer(delayed_refs, seq, 256))
2515 goto progress;
2516 else
2517 return 0;
2518 } else {
2519 finish_wait(&delayed_refs->wait, &__wait);
2520 goto again;
2521 }
2522 }
2523
2524 } else {
2525 atomic_inc(&delayed_refs->procs_running_refs);
2526 }
2527
2528 again:
2529 loops = 0;
2530 spin_lock(&delayed_refs->lock);
2531
2532 #ifdef SCRAMBLE_DELAYED_REFS
2533 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2534 #endif
2535
2536 while (1) {
2537 if (!(run_all || run_most) &&
2538 delayed_refs->num_heads_ready < 64)
2539 break;
2540
2541 /*
2542 * go find something we can process in the rbtree. We start at
2543 * the beginning of the tree, and then build a cluster
2544 * of refs to process starting at the first one we are able to
2545 * lock
2546 */
2547 delayed_start = delayed_refs->run_delayed_start;
2548 ret = btrfs_find_ref_cluster(trans, &cluster,
2549 delayed_refs->run_delayed_start);
2550 if (ret)
2551 break;
2552
2553 ret = run_clustered_refs(trans, root, &cluster);
2554 if (ret < 0) {
2555 btrfs_release_ref_cluster(&cluster);
2556 spin_unlock(&delayed_refs->lock);
2557 btrfs_abort_transaction(trans, root, ret);
2558 atomic_dec(&delayed_refs->procs_running_refs);
2559 return ret;
2560 }
2561
2562 atomic_add(ret, &delayed_refs->ref_seq);
2563
2564 count -= min_t(unsigned long, ret, count);
2565
2566 if (count == 0)
2567 break;
2568
2569 if (delayed_start >= delayed_refs->run_delayed_start) {
2570 if (loops == 0) {
2571 /*
2572 * btrfs_find_ref_cluster looped. let's do one
2573 * more cycle. if we don't run any delayed ref
2574 * during that cycle (because we can't because
2575 * all of them are blocked), bail out.
2576 */
2577 loops = 1;
2578 } else {
2579 /*
2580 * no runnable refs left, stop trying
2581 */
2582 BUG_ON(run_all);
2583 break;
2584 }
2585 }
2586 if (ret) {
2587 /* refs were run, let's reset staleness detection */
2588 loops = 0;
2589 }
2590 }
2591
2592 if (run_all) {
2593 if (!list_empty(&trans->new_bgs)) {
2594 spin_unlock(&delayed_refs->lock);
2595 btrfs_create_pending_block_groups(trans, root);
2596 spin_lock(&delayed_refs->lock);
2597 }
2598
2599 node = rb_first(&delayed_refs->root);
2600 if (!node)
2601 goto out;
2602 count = (unsigned long)-1;
2603
2604 while (node) {
2605 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2606 rb_node);
2607 if (btrfs_delayed_ref_is_head(ref)) {
2608 struct btrfs_delayed_ref_head *head;
2609
2610 head = btrfs_delayed_node_to_head(ref);
2611 atomic_inc(&ref->refs);
2612
2613 spin_unlock(&delayed_refs->lock);
2614 /*
2615 * Mutex was contended, block until it's
2616 * released and try again
2617 */
2618 mutex_lock(&head->mutex);
2619 mutex_unlock(&head->mutex);
2620
2621 btrfs_put_delayed_ref(ref);
2622 cond_resched();
2623 goto again;
2624 }
2625 node = rb_next(node);
2626 }
2627 spin_unlock(&delayed_refs->lock);
2628 schedule_timeout(1);
2629 goto again;
2630 }
2631 out:
2632 atomic_dec(&delayed_refs->procs_running_refs);
2633 smp_mb();
2634 if (waitqueue_active(&delayed_refs->wait))
2635 wake_up(&delayed_refs->wait);
2636
2637 spin_unlock(&delayed_refs->lock);
2638 assert_qgroups_uptodate(trans);
2639 return 0;
2640 }
2641
2642 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2643 struct btrfs_root *root,
2644 u64 bytenr, u64 num_bytes, u64 flags,
2645 int is_data)
2646 {
2647 struct btrfs_delayed_extent_op *extent_op;
2648 int ret;
2649
2650 extent_op = btrfs_alloc_delayed_extent_op();
2651 if (!extent_op)
2652 return -ENOMEM;
2653
2654 extent_op->flags_to_set = flags;
2655 extent_op->update_flags = 1;
2656 extent_op->update_key = 0;
2657 extent_op->is_data = is_data ? 1 : 0;
2658
2659 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2660 num_bytes, extent_op);
2661 if (ret)
2662 btrfs_free_delayed_extent_op(extent_op);
2663 return ret;
2664 }
2665
2666 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2667 struct btrfs_root *root,
2668 struct btrfs_path *path,
2669 u64 objectid, u64 offset, u64 bytenr)
2670 {
2671 struct btrfs_delayed_ref_head *head;
2672 struct btrfs_delayed_ref_node *ref;
2673 struct btrfs_delayed_data_ref *data_ref;
2674 struct btrfs_delayed_ref_root *delayed_refs;
2675 struct rb_node *node;
2676 int ret = 0;
2677
2678 ret = -ENOENT;
2679 delayed_refs = &trans->transaction->delayed_refs;
2680 spin_lock(&delayed_refs->lock);
2681 head = btrfs_find_delayed_ref_head(trans, bytenr);
2682 if (!head)
2683 goto out;
2684
2685 if (!mutex_trylock(&head->mutex)) {
2686 atomic_inc(&head->node.refs);
2687 spin_unlock(&delayed_refs->lock);
2688
2689 btrfs_release_path(path);
2690
2691 /*
2692 * Mutex was contended, block until it's released and let
2693 * caller try again
2694 */
2695 mutex_lock(&head->mutex);
2696 mutex_unlock(&head->mutex);
2697 btrfs_put_delayed_ref(&head->node);
2698 return -EAGAIN;
2699 }
2700
2701 node = rb_prev(&head->node.rb_node);
2702 if (!node)
2703 goto out_unlock;
2704
2705 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2706
2707 if (ref->bytenr != bytenr)
2708 goto out_unlock;
2709
2710 ret = 1;
2711 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2712 goto out_unlock;
2713
2714 data_ref = btrfs_delayed_node_to_data_ref(ref);
2715
2716 node = rb_prev(node);
2717 if (node) {
2718 int seq = ref->seq;
2719
2720 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2721 if (ref->bytenr == bytenr && ref->seq == seq)
2722 goto out_unlock;
2723 }
2724
2725 if (data_ref->root != root->root_key.objectid ||
2726 data_ref->objectid != objectid || data_ref->offset != offset)
2727 goto out_unlock;
2728
2729 ret = 0;
2730 out_unlock:
2731 mutex_unlock(&head->mutex);
2732 out:
2733 spin_unlock(&delayed_refs->lock);
2734 return ret;
2735 }
2736
2737 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2738 struct btrfs_root *root,
2739 struct btrfs_path *path,
2740 u64 objectid, u64 offset, u64 bytenr)
2741 {
2742 struct btrfs_root *extent_root = root->fs_info->extent_root;
2743 struct extent_buffer *leaf;
2744 struct btrfs_extent_data_ref *ref;
2745 struct btrfs_extent_inline_ref *iref;
2746 struct btrfs_extent_item *ei;
2747 struct btrfs_key key;
2748 u32 item_size;
2749 int ret;
2750
2751 key.objectid = bytenr;
2752 key.offset = (u64)-1;
2753 key.type = BTRFS_EXTENT_ITEM_KEY;
2754
2755 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2756 if (ret < 0)
2757 goto out;
2758 BUG_ON(ret == 0); /* Corruption */
2759
2760 ret = -ENOENT;
2761 if (path->slots[0] == 0)
2762 goto out;
2763
2764 path->slots[0]--;
2765 leaf = path->nodes[0];
2766 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2767
2768 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2769 goto out;
2770
2771 ret = 1;
2772 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2773 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2774 if (item_size < sizeof(*ei)) {
2775 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2776 goto out;
2777 }
2778 #endif
2779 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2780
2781 if (item_size != sizeof(*ei) +
2782 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2783 goto out;
2784
2785 if (btrfs_extent_generation(leaf, ei) <=
2786 btrfs_root_last_snapshot(&root->root_item))
2787 goto out;
2788
2789 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2790 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2791 BTRFS_EXTENT_DATA_REF_KEY)
2792 goto out;
2793
2794 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2795 if (btrfs_extent_refs(leaf, ei) !=
2796 btrfs_extent_data_ref_count(leaf, ref) ||
2797 btrfs_extent_data_ref_root(leaf, ref) !=
2798 root->root_key.objectid ||
2799 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2800 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2801 goto out;
2802
2803 ret = 0;
2804 out:
2805 return ret;
2806 }
2807
2808 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2809 struct btrfs_root *root,
2810 u64 objectid, u64 offset, u64 bytenr)
2811 {
2812 struct btrfs_path *path;
2813 int ret;
2814 int ret2;
2815
2816 path = btrfs_alloc_path();
2817 if (!path)
2818 return -ENOENT;
2819
2820 do {
2821 ret = check_committed_ref(trans, root, path, objectid,
2822 offset, bytenr);
2823 if (ret && ret != -ENOENT)
2824 goto out;
2825
2826 ret2 = check_delayed_ref(trans, root, path, objectid,
2827 offset, bytenr);
2828 } while (ret2 == -EAGAIN);
2829
2830 if (ret2 && ret2 != -ENOENT) {
2831 ret = ret2;
2832 goto out;
2833 }
2834
2835 if (ret != -ENOENT || ret2 != -ENOENT)
2836 ret = 0;
2837 out:
2838 btrfs_free_path(path);
2839 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2840 WARN_ON(ret > 0);
2841 return ret;
2842 }
2843
2844 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2845 struct btrfs_root *root,
2846 struct extent_buffer *buf,
2847 int full_backref, int inc, int for_cow)
2848 {
2849 u64 bytenr;
2850 u64 num_bytes;
2851 u64 parent;
2852 u64 ref_root;
2853 u32 nritems;
2854 struct btrfs_key key;
2855 struct btrfs_file_extent_item *fi;
2856 int i;
2857 int level;
2858 int ret = 0;
2859 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2860 u64, u64, u64, u64, u64, u64, int);
2861
2862 ref_root = btrfs_header_owner(buf);
2863 nritems = btrfs_header_nritems(buf);
2864 level = btrfs_header_level(buf);
2865
2866 if (!root->ref_cows && level == 0)
2867 return 0;
2868
2869 if (inc)
2870 process_func = btrfs_inc_extent_ref;
2871 else
2872 process_func = btrfs_free_extent;
2873
2874 if (full_backref)
2875 parent = buf->start;
2876 else
2877 parent = 0;
2878
2879 for (i = 0; i < nritems; i++) {
2880 if (level == 0) {
2881 btrfs_item_key_to_cpu(buf, &key, i);
2882 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2883 continue;
2884 fi = btrfs_item_ptr(buf, i,
2885 struct btrfs_file_extent_item);
2886 if (btrfs_file_extent_type(buf, fi) ==
2887 BTRFS_FILE_EXTENT_INLINE)
2888 continue;
2889 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2890 if (bytenr == 0)
2891 continue;
2892
2893 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2894 key.offset -= btrfs_file_extent_offset(buf, fi);
2895 ret = process_func(trans, root, bytenr, num_bytes,
2896 parent, ref_root, key.objectid,
2897 key.offset, for_cow);
2898 if (ret)
2899 goto fail;
2900 } else {
2901 bytenr = btrfs_node_blockptr(buf, i);
2902 num_bytes = btrfs_level_size(root, level - 1);
2903 ret = process_func(trans, root, bytenr, num_bytes,
2904 parent, ref_root, level - 1, 0,
2905 for_cow);
2906 if (ret)
2907 goto fail;
2908 }
2909 }
2910 return 0;
2911 fail:
2912 return ret;
2913 }
2914
2915 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2916 struct extent_buffer *buf, int full_backref, int for_cow)
2917 {
2918 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2919 }
2920
2921 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2922 struct extent_buffer *buf, int full_backref, int for_cow)
2923 {
2924 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2925 }
2926
2927 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2928 struct btrfs_root *root,
2929 struct btrfs_path *path,
2930 struct btrfs_block_group_cache *cache)
2931 {
2932 int ret;
2933 struct btrfs_root *extent_root = root->fs_info->extent_root;
2934 unsigned long bi;
2935 struct extent_buffer *leaf;
2936
2937 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2938 if (ret < 0)
2939 goto fail;
2940 BUG_ON(ret); /* Corruption */
2941
2942 leaf = path->nodes[0];
2943 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2944 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2945 btrfs_mark_buffer_dirty(leaf);
2946 btrfs_release_path(path);
2947 fail:
2948 if (ret) {
2949 btrfs_abort_transaction(trans, root, ret);
2950 return ret;
2951 }
2952 return 0;
2953
2954 }
2955
2956 static struct btrfs_block_group_cache *
2957 next_block_group(struct btrfs_root *root,
2958 struct btrfs_block_group_cache *cache)
2959 {
2960 struct rb_node *node;
2961 spin_lock(&root->fs_info->block_group_cache_lock);
2962 node = rb_next(&cache->cache_node);
2963 btrfs_put_block_group(cache);
2964 if (node) {
2965 cache = rb_entry(node, struct btrfs_block_group_cache,
2966 cache_node);
2967 btrfs_get_block_group(cache);
2968 } else
2969 cache = NULL;
2970 spin_unlock(&root->fs_info->block_group_cache_lock);
2971 return cache;
2972 }
2973
2974 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2975 struct btrfs_trans_handle *trans,
2976 struct btrfs_path *path)
2977 {
2978 struct btrfs_root *root = block_group->fs_info->tree_root;
2979 struct inode *inode = NULL;
2980 u64 alloc_hint = 0;
2981 int dcs = BTRFS_DC_ERROR;
2982 int num_pages = 0;
2983 int retries = 0;
2984 int ret = 0;
2985
2986 /*
2987 * If this block group is smaller than 100 megs don't bother caching the
2988 * block group.
2989 */
2990 if (block_group->key.offset < (100 * 1024 * 1024)) {
2991 spin_lock(&block_group->lock);
2992 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2993 spin_unlock(&block_group->lock);
2994 return 0;
2995 }
2996
2997 again:
2998 inode = lookup_free_space_inode(root, block_group, path);
2999 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3000 ret = PTR_ERR(inode);
3001 btrfs_release_path(path);
3002 goto out;
3003 }
3004
3005 if (IS_ERR(inode)) {
3006 BUG_ON(retries);
3007 retries++;
3008
3009 if (block_group->ro)
3010 goto out_free;
3011
3012 ret = create_free_space_inode(root, trans, block_group, path);
3013 if (ret)
3014 goto out_free;
3015 goto again;
3016 }
3017
3018 /* We've already setup this transaction, go ahead and exit */
3019 if (block_group->cache_generation == trans->transid &&
3020 i_size_read(inode)) {
3021 dcs = BTRFS_DC_SETUP;
3022 goto out_put;
3023 }
3024
3025 /*
3026 * We want to set the generation to 0, that way if anything goes wrong
3027 * from here on out we know not to trust this cache when we load up next
3028 * time.
3029 */
3030 BTRFS_I(inode)->generation = 0;
3031 ret = btrfs_update_inode(trans, root, inode);
3032 WARN_ON(ret);
3033
3034 if (i_size_read(inode) > 0) {
3035 ret = btrfs_truncate_free_space_cache(root, trans, path,
3036 inode);
3037 if (ret)
3038 goto out_put;
3039 }
3040
3041 spin_lock(&block_group->lock);
3042 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3043 !btrfs_test_opt(root, SPACE_CACHE)) {
3044 /*
3045 * don't bother trying to write stuff out _if_
3046 * a) we're not cached,
3047 * b) we're with nospace_cache mount option.
3048 */
3049 dcs = BTRFS_DC_WRITTEN;
3050 spin_unlock(&block_group->lock);
3051 goto out_put;
3052 }
3053 spin_unlock(&block_group->lock);
3054
3055 /*
3056 * Try to preallocate enough space based on how big the block group is.
3057 * Keep in mind this has to include any pinned space which could end up
3058 * taking up quite a bit since it's not folded into the other space
3059 * cache.
3060 */
3061 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3062 if (!num_pages)
3063 num_pages = 1;
3064
3065 num_pages *= 16;
3066 num_pages *= PAGE_CACHE_SIZE;
3067
3068 ret = btrfs_check_data_free_space(inode, num_pages);
3069 if (ret)
3070 goto out_put;
3071
3072 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3073 num_pages, num_pages,
3074 &alloc_hint);
3075 if (!ret)
3076 dcs = BTRFS_DC_SETUP;
3077 btrfs_free_reserved_data_space(inode, num_pages);
3078
3079 out_put:
3080 iput(inode);
3081 out_free:
3082 btrfs_release_path(path);
3083 out:
3084 spin_lock(&block_group->lock);
3085 if (!ret && dcs == BTRFS_DC_SETUP)
3086 block_group->cache_generation = trans->transid;
3087 block_group->disk_cache_state = dcs;
3088 spin_unlock(&block_group->lock);
3089
3090 return ret;
3091 }
3092
3093 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3094 struct btrfs_root *root)
3095 {
3096 struct btrfs_block_group_cache *cache;
3097 int err = 0;
3098 struct btrfs_path *path;
3099 u64 last = 0;
3100
3101 path = btrfs_alloc_path();
3102 if (!path)
3103 return -ENOMEM;
3104
3105 again:
3106 while (1) {
3107 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3108 while (cache) {
3109 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3110 break;
3111 cache = next_block_group(root, cache);
3112 }
3113 if (!cache) {
3114 if (last == 0)
3115 break;
3116 last = 0;
3117 continue;
3118 }
3119 err = cache_save_setup(cache, trans, path);
3120 last = cache->key.objectid + cache->key.offset;
3121 btrfs_put_block_group(cache);
3122 }
3123
3124 while (1) {
3125 if (last == 0) {
3126 err = btrfs_run_delayed_refs(trans, root,
3127 (unsigned long)-1);
3128 if (err) /* File system offline */
3129 goto out;
3130 }
3131
3132 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3133 while (cache) {
3134 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3135 btrfs_put_block_group(cache);
3136 goto again;
3137 }
3138
3139 if (cache->dirty)
3140 break;
3141 cache = next_block_group(root, cache);
3142 }
3143 if (!cache) {
3144 if (last == 0)
3145 break;
3146 last = 0;
3147 continue;
3148 }
3149
3150 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3151 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3152 cache->dirty = 0;
3153 last = cache->key.objectid + cache->key.offset;
3154
3155 err = write_one_cache_group(trans, root, path, cache);
3156 if (err) /* File system offline */
3157 goto out;
3158
3159 btrfs_put_block_group(cache);
3160 }
3161
3162 while (1) {
3163 /*
3164 * I don't think this is needed since we're just marking our
3165 * preallocated extent as written, but just in case it can't
3166 * hurt.
3167 */
3168 if (last == 0) {
3169 err = btrfs_run_delayed_refs(trans, root,
3170 (unsigned long)-1);
3171 if (err) /* File system offline */
3172 goto out;
3173 }
3174
3175 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3176 while (cache) {
3177 /*
3178 * Really this shouldn't happen, but it could if we
3179 * couldn't write the entire preallocated extent and
3180 * splitting the extent resulted in a new block.
3181 */
3182 if (cache->dirty) {
3183 btrfs_put_block_group(cache);
3184 goto again;
3185 }
3186 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3187 break;
3188 cache = next_block_group(root, cache);
3189 }
3190 if (!cache) {
3191 if (last == 0)
3192 break;
3193 last = 0;
3194 continue;
3195 }
3196
3197 err = btrfs_write_out_cache(root, trans, cache, path);
3198
3199 /*
3200 * If we didn't have an error then the cache state is still
3201 * NEED_WRITE, so we can set it to WRITTEN.
3202 */
3203 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3204 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3205 last = cache->key.objectid + cache->key.offset;
3206 btrfs_put_block_group(cache);
3207 }
3208 out:
3209
3210 btrfs_free_path(path);
3211 return err;
3212 }
3213
3214 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3215 {
3216 struct btrfs_block_group_cache *block_group;
3217 int readonly = 0;
3218
3219 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3220 if (!block_group || block_group->ro)
3221 readonly = 1;
3222 if (block_group)
3223 btrfs_put_block_group(block_group);
3224 return readonly;
3225 }
3226
3227 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3228 u64 total_bytes, u64 bytes_used,
3229 struct btrfs_space_info **space_info)
3230 {
3231 struct btrfs_space_info *found;
3232 int i;
3233 int factor;
3234
3235 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3236 BTRFS_BLOCK_GROUP_RAID10))
3237 factor = 2;
3238 else
3239 factor = 1;
3240
3241 found = __find_space_info(info, flags);
3242 if (found) {
3243 spin_lock(&found->lock);
3244 found->total_bytes += total_bytes;
3245 found->disk_total += total_bytes * factor;
3246 found->bytes_used += bytes_used;
3247 found->disk_used += bytes_used * factor;
3248 found->full = 0;
3249 spin_unlock(&found->lock);
3250 *space_info = found;
3251 return 0;
3252 }
3253 found = kzalloc(sizeof(*found), GFP_NOFS);
3254 if (!found)
3255 return -ENOMEM;
3256
3257 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3258 INIT_LIST_HEAD(&found->block_groups[i]);
3259 init_rwsem(&found->groups_sem);
3260 spin_lock_init(&found->lock);
3261 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3262 found->total_bytes = total_bytes;
3263 found->disk_total = total_bytes * factor;
3264 found->bytes_used = bytes_used;
3265 found->disk_used = bytes_used * factor;
3266 found->bytes_pinned = 0;
3267 found->bytes_reserved = 0;
3268 found->bytes_readonly = 0;
3269 found->bytes_may_use = 0;
3270 found->full = 0;
3271 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3272 found->chunk_alloc = 0;
3273 found->flush = 0;
3274 init_waitqueue_head(&found->wait);
3275 *space_info = found;
3276 list_add_rcu(&found->list, &info->space_info);
3277 if (flags & BTRFS_BLOCK_GROUP_DATA)
3278 info->data_sinfo = found;
3279 return 0;
3280 }
3281
3282 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3283 {
3284 u64 extra_flags = chunk_to_extended(flags) &
3285 BTRFS_EXTENDED_PROFILE_MASK;
3286
3287 write_seqlock(&fs_info->profiles_lock);
3288 if (flags & BTRFS_BLOCK_GROUP_DATA)
3289 fs_info->avail_data_alloc_bits |= extra_flags;
3290 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3291 fs_info->avail_metadata_alloc_bits |= extra_flags;
3292 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3293 fs_info->avail_system_alloc_bits |= extra_flags;
3294 write_sequnlock(&fs_info->profiles_lock);
3295 }
3296
3297 /*
3298 * returns target flags in extended format or 0 if restripe for this
3299 * chunk_type is not in progress
3300 *
3301 * should be called with either volume_mutex or balance_lock held
3302 */
3303 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3304 {
3305 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3306 u64 target = 0;
3307
3308 if (!bctl)
3309 return 0;
3310
3311 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3312 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3313 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3314 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3315 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3316 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3317 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3318 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3319 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3320 }
3321
3322 return target;
3323 }
3324
3325 /*
3326 * @flags: available profiles in extended format (see ctree.h)
3327 *
3328 * Returns reduced profile in chunk format. If profile changing is in
3329 * progress (either running or paused) picks the target profile (if it's
3330 * already available), otherwise falls back to plain reducing.
3331 */
3332 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3333 {
3334 /*
3335 * we add in the count of missing devices because we want
3336 * to make sure that any RAID levels on a degraded FS
3337 * continue to be honored.
3338 */
3339 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3340 root->fs_info->fs_devices->missing_devices;
3341 u64 target;
3342 u64 tmp;
3343
3344 /*
3345 * see if restripe for this chunk_type is in progress, if so
3346 * try to reduce to the target profile
3347 */
3348 spin_lock(&root->fs_info->balance_lock);
3349 target = get_restripe_target(root->fs_info, flags);
3350 if (target) {
3351 /* pick target profile only if it's already available */
3352 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3353 spin_unlock(&root->fs_info->balance_lock);
3354 return extended_to_chunk(target);
3355 }
3356 }
3357 spin_unlock(&root->fs_info->balance_lock);
3358
3359 /* First, mask out the RAID levels which aren't possible */
3360 if (num_devices == 1)
3361 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3362 BTRFS_BLOCK_GROUP_RAID5);
3363 if (num_devices < 3)
3364 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3365 if (num_devices < 4)
3366 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3367
3368 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3369 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3370 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3371 flags &= ~tmp;
3372
3373 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3374 tmp = BTRFS_BLOCK_GROUP_RAID6;
3375 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3376 tmp = BTRFS_BLOCK_GROUP_RAID5;
3377 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3378 tmp = BTRFS_BLOCK_GROUP_RAID10;
3379 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3380 tmp = BTRFS_BLOCK_GROUP_RAID1;
3381 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3382 tmp = BTRFS_BLOCK_GROUP_RAID0;
3383
3384 return extended_to_chunk(flags | tmp);
3385 }
3386
3387 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3388 {
3389 unsigned seq;
3390
3391 do {
3392 seq = read_seqbegin(&root->fs_info->profiles_lock);
3393
3394 if (flags & BTRFS_BLOCK_GROUP_DATA)
3395 flags |= root->fs_info->avail_data_alloc_bits;
3396 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3397 flags |= root->fs_info->avail_system_alloc_bits;
3398 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3399 flags |= root->fs_info->avail_metadata_alloc_bits;
3400 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3401
3402 return btrfs_reduce_alloc_profile(root, flags);
3403 }
3404
3405 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3406 {
3407 u64 flags;
3408 u64 ret;
3409
3410 if (data)
3411 flags = BTRFS_BLOCK_GROUP_DATA;
3412 else if (root == root->fs_info->chunk_root)
3413 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3414 else
3415 flags = BTRFS_BLOCK_GROUP_METADATA;
3416
3417 ret = get_alloc_profile(root, flags);
3418 return ret;
3419 }
3420
3421 /*
3422 * This will check the space that the inode allocates from to make sure we have
3423 * enough space for bytes.
3424 */
3425 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3426 {
3427 struct btrfs_space_info *data_sinfo;
3428 struct btrfs_root *root = BTRFS_I(inode)->root;
3429 struct btrfs_fs_info *fs_info = root->fs_info;
3430 u64 used;
3431 int ret = 0, committed = 0, alloc_chunk = 1;
3432
3433 /* make sure bytes are sectorsize aligned */
3434 bytes = ALIGN(bytes, root->sectorsize);
3435
3436 if (root == root->fs_info->tree_root ||
3437 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3438 alloc_chunk = 0;
3439 committed = 1;
3440 }
3441
3442 data_sinfo = fs_info->data_sinfo;
3443 if (!data_sinfo)
3444 goto alloc;
3445
3446 again:
3447 /* make sure we have enough space to handle the data first */
3448 spin_lock(&data_sinfo->lock);
3449 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3450 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3451 data_sinfo->bytes_may_use;
3452
3453 if (used + bytes > data_sinfo->total_bytes) {
3454 struct btrfs_trans_handle *trans;
3455
3456 /*
3457 * if we don't have enough free bytes in this space then we need
3458 * to alloc a new chunk.
3459 */
3460 if (!data_sinfo->full && alloc_chunk) {
3461 u64 alloc_target;
3462
3463 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3464 spin_unlock(&data_sinfo->lock);
3465 alloc:
3466 alloc_target = btrfs_get_alloc_profile(root, 1);
3467 trans = btrfs_join_transaction(root);
3468 if (IS_ERR(trans))
3469 return PTR_ERR(trans);
3470
3471 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3472 alloc_target,
3473 CHUNK_ALLOC_NO_FORCE);
3474 btrfs_end_transaction(trans, root);
3475 if (ret < 0) {
3476 if (ret != -ENOSPC)
3477 return ret;
3478 else
3479 goto commit_trans;
3480 }
3481
3482 if (!data_sinfo)
3483 data_sinfo = fs_info->data_sinfo;
3484
3485 goto again;
3486 }
3487
3488 /*
3489 * If we have less pinned bytes than we want to allocate then
3490 * don't bother committing the transaction, it won't help us.
3491 */
3492 if (data_sinfo->bytes_pinned < bytes)
3493 committed = 1;
3494 spin_unlock(&data_sinfo->lock);
3495
3496 /* commit the current transaction and try again */
3497 commit_trans:
3498 if (!committed &&
3499 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3500 committed = 1;
3501 trans = btrfs_join_transaction(root);
3502 if (IS_ERR(trans))
3503 return PTR_ERR(trans);
3504 ret = btrfs_commit_transaction(trans, root);
3505 if (ret)
3506 return ret;
3507 goto again;
3508 }
3509
3510 return -ENOSPC;
3511 }
3512 data_sinfo->bytes_may_use += bytes;
3513 trace_btrfs_space_reservation(root->fs_info, "space_info",
3514 data_sinfo->flags, bytes, 1);
3515 spin_unlock(&data_sinfo->lock);
3516
3517 return 0;
3518 }
3519
3520 /*
3521 * Called if we need to clear a data reservation for this inode.
3522 */
3523 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3524 {
3525 struct btrfs_root *root = BTRFS_I(inode)->root;
3526 struct btrfs_space_info *data_sinfo;
3527
3528 /* make sure bytes are sectorsize aligned */
3529 bytes = ALIGN(bytes, root->sectorsize);
3530
3531 data_sinfo = root->fs_info->data_sinfo;
3532 spin_lock(&data_sinfo->lock);
3533 data_sinfo->bytes_may_use -= bytes;
3534 trace_btrfs_space_reservation(root->fs_info, "space_info",
3535 data_sinfo->flags, bytes, 0);
3536 spin_unlock(&data_sinfo->lock);
3537 }
3538
3539 static void force_metadata_allocation(struct btrfs_fs_info *info)
3540 {
3541 struct list_head *head = &info->space_info;
3542 struct btrfs_space_info *found;
3543
3544 rcu_read_lock();
3545 list_for_each_entry_rcu(found, head, list) {
3546 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3547 found->force_alloc = CHUNK_ALLOC_FORCE;
3548 }
3549 rcu_read_unlock();
3550 }
3551
3552 static int should_alloc_chunk(struct btrfs_root *root,
3553 struct btrfs_space_info *sinfo, int force)
3554 {
3555 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3556 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3557 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3558 u64 thresh;
3559
3560 if (force == CHUNK_ALLOC_FORCE)
3561 return 1;
3562
3563 /*
3564 * We need to take into account the global rsv because for all intents
3565 * and purposes it's used space. Don't worry about locking the
3566 * global_rsv, it doesn't change except when the transaction commits.
3567 */
3568 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3569 num_allocated += global_rsv->size;
3570
3571 /*
3572 * in limited mode, we want to have some free space up to
3573 * about 1% of the FS size.
3574 */
3575 if (force == CHUNK_ALLOC_LIMITED) {
3576 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3577 thresh = max_t(u64, 64 * 1024 * 1024,
3578 div_factor_fine(thresh, 1));
3579
3580 if (num_bytes - num_allocated < thresh)
3581 return 1;
3582 }
3583
3584 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3585 return 0;
3586 return 1;
3587 }
3588
3589 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3590 {
3591 u64 num_dev;
3592
3593 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3594 BTRFS_BLOCK_GROUP_RAID0 |
3595 BTRFS_BLOCK_GROUP_RAID5 |
3596 BTRFS_BLOCK_GROUP_RAID6))
3597 num_dev = root->fs_info->fs_devices->rw_devices;
3598 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3599 num_dev = 2;
3600 else
3601 num_dev = 1; /* DUP or single */
3602
3603 /* metadata for updaing devices and chunk tree */
3604 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3605 }
3606
3607 static void check_system_chunk(struct btrfs_trans_handle *trans,
3608 struct btrfs_root *root, u64 type)
3609 {
3610 struct btrfs_space_info *info;
3611 u64 left;
3612 u64 thresh;
3613
3614 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3615 spin_lock(&info->lock);
3616 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3617 info->bytes_reserved - info->bytes_readonly;
3618 spin_unlock(&info->lock);
3619
3620 thresh = get_system_chunk_thresh(root, type);
3621 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3622 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
3623 left, thresh, type);
3624 dump_space_info(info, 0, 0);
3625 }
3626
3627 if (left < thresh) {
3628 u64 flags;
3629
3630 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3631 btrfs_alloc_chunk(trans, root, flags);
3632 }
3633 }
3634
3635 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3636 struct btrfs_root *extent_root, u64 flags, int force)
3637 {
3638 struct btrfs_space_info *space_info;
3639 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3640 int wait_for_alloc = 0;
3641 int ret = 0;
3642
3643 /* Don't re-enter if we're already allocating a chunk */
3644 if (trans->allocating_chunk)
3645 return -ENOSPC;
3646
3647 space_info = __find_space_info(extent_root->fs_info, flags);
3648 if (!space_info) {
3649 ret = update_space_info(extent_root->fs_info, flags,
3650 0, 0, &space_info);
3651 BUG_ON(ret); /* -ENOMEM */
3652 }
3653 BUG_ON(!space_info); /* Logic error */
3654
3655 again:
3656 spin_lock(&space_info->lock);
3657 if (force < space_info->force_alloc)
3658 force = space_info->force_alloc;
3659 if (space_info->full) {
3660 spin_unlock(&space_info->lock);
3661 return 0;
3662 }
3663
3664 if (!should_alloc_chunk(extent_root, space_info, force)) {
3665 spin_unlock(&space_info->lock);
3666 return 0;
3667 } else if (space_info->chunk_alloc) {
3668 wait_for_alloc = 1;
3669 } else {
3670 space_info->chunk_alloc = 1;
3671 }
3672
3673 spin_unlock(&space_info->lock);
3674
3675 mutex_lock(&fs_info->chunk_mutex);
3676
3677 /*
3678 * The chunk_mutex is held throughout the entirety of a chunk
3679 * allocation, so once we've acquired the chunk_mutex we know that the
3680 * other guy is done and we need to recheck and see if we should
3681 * allocate.
3682 */
3683 if (wait_for_alloc) {
3684 mutex_unlock(&fs_info->chunk_mutex);
3685 wait_for_alloc = 0;
3686 goto again;
3687 }
3688
3689 trans->allocating_chunk = true;
3690
3691 /*
3692 * If we have mixed data/metadata chunks we want to make sure we keep
3693 * allocating mixed chunks instead of individual chunks.
3694 */
3695 if (btrfs_mixed_space_info(space_info))
3696 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3697
3698 /*
3699 * if we're doing a data chunk, go ahead and make sure that
3700 * we keep a reasonable number of metadata chunks allocated in the
3701 * FS as well.
3702 */
3703 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3704 fs_info->data_chunk_allocations++;
3705 if (!(fs_info->data_chunk_allocations %
3706 fs_info->metadata_ratio))
3707 force_metadata_allocation(fs_info);
3708 }
3709
3710 /*
3711 * Check if we have enough space in SYSTEM chunk because we may need
3712 * to update devices.
3713 */
3714 check_system_chunk(trans, extent_root, flags);
3715
3716 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3717 trans->allocating_chunk = false;
3718
3719 spin_lock(&space_info->lock);
3720 if (ret < 0 && ret != -ENOSPC)
3721 goto out;
3722 if (ret)
3723 space_info->full = 1;
3724 else
3725 ret = 1;
3726
3727 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3728 out:
3729 space_info->chunk_alloc = 0;
3730 spin_unlock(&space_info->lock);
3731 mutex_unlock(&fs_info->chunk_mutex);
3732 return ret;
3733 }
3734
3735 static int can_overcommit(struct btrfs_root *root,
3736 struct btrfs_space_info *space_info, u64 bytes,
3737 enum btrfs_reserve_flush_enum flush)
3738 {
3739 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3740 u64 profile = btrfs_get_alloc_profile(root, 0);
3741 u64 rsv_size = 0;
3742 u64 avail;
3743 u64 used;
3744 u64 to_add;
3745
3746 used = space_info->bytes_used + space_info->bytes_reserved +
3747 space_info->bytes_pinned + space_info->bytes_readonly;
3748
3749 spin_lock(&global_rsv->lock);
3750 rsv_size = global_rsv->size;
3751 spin_unlock(&global_rsv->lock);
3752
3753 /*
3754 * We only want to allow over committing if we have lots of actual space
3755 * free, but if we don't have enough space to handle the global reserve
3756 * space then we could end up having a real enospc problem when trying
3757 * to allocate a chunk or some other such important allocation.
3758 */
3759 rsv_size <<= 1;
3760 if (used + rsv_size >= space_info->total_bytes)
3761 return 0;
3762
3763 used += space_info->bytes_may_use;
3764
3765 spin_lock(&root->fs_info->free_chunk_lock);
3766 avail = root->fs_info->free_chunk_space;
3767 spin_unlock(&root->fs_info->free_chunk_lock);
3768
3769 /*
3770 * If we have dup, raid1 or raid10 then only half of the free
3771 * space is actually useable. For raid56, the space info used
3772 * doesn't include the parity drive, so we don't have to
3773 * change the math
3774 */
3775 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3776 BTRFS_BLOCK_GROUP_RAID1 |
3777 BTRFS_BLOCK_GROUP_RAID10))
3778 avail >>= 1;
3779
3780 to_add = space_info->total_bytes;
3781
3782 /*
3783 * If we aren't flushing all things, let us overcommit up to
3784 * 1/2th of the space. If we can flush, don't let us overcommit
3785 * too much, let it overcommit up to 1/8 of the space.
3786 */
3787 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3788 to_add >>= 3;
3789 else
3790 to_add >>= 1;
3791
3792 /*
3793 * Limit the overcommit to the amount of free space we could possibly
3794 * allocate for chunks.
3795 */
3796 to_add = min(avail, to_add);
3797
3798 if (used + bytes < space_info->total_bytes + to_add)
3799 return 1;
3800 return 0;
3801 }
3802
3803 void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3804 unsigned long nr_pages)
3805 {
3806 struct super_block *sb = root->fs_info->sb;
3807 int started;
3808
3809 /* If we can not start writeback, just sync all the delalloc file. */
3810 started = try_to_writeback_inodes_sb_nr(sb, nr_pages,
3811 WB_REASON_FS_FREE_SPACE);
3812 if (!started) {
3813 /*
3814 * We needn't worry the filesystem going from r/w to r/o though
3815 * we don't acquire ->s_umount mutex, because the filesystem
3816 * should guarantee the delalloc inodes list be empty after
3817 * the filesystem is readonly(all dirty pages are written to
3818 * the disk).
3819 */
3820 btrfs_start_delalloc_inodes(root, 0);
3821 btrfs_wait_ordered_extents(root, 0);
3822 }
3823 }
3824
3825 /*
3826 * shrink metadata reservation for delalloc
3827 */
3828 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
3829 bool wait_ordered)
3830 {
3831 struct btrfs_block_rsv *block_rsv;
3832 struct btrfs_space_info *space_info;
3833 struct btrfs_trans_handle *trans;
3834 u64 delalloc_bytes;
3835 u64 max_reclaim;
3836 long time_left;
3837 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3838 int loops = 0;
3839 enum btrfs_reserve_flush_enum flush;
3840
3841 trans = (struct btrfs_trans_handle *)current->journal_info;
3842 block_rsv = &root->fs_info->delalloc_block_rsv;
3843 space_info = block_rsv->space_info;
3844
3845 smp_mb();
3846 delalloc_bytes = percpu_counter_sum_positive(
3847 &root->fs_info->delalloc_bytes);
3848 if (delalloc_bytes == 0) {
3849 if (trans)
3850 return;
3851 btrfs_wait_ordered_extents(root, 0);
3852 return;
3853 }
3854
3855 while (delalloc_bytes && loops < 3) {
3856 max_reclaim = min(delalloc_bytes, to_reclaim);
3857 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
3858 btrfs_writeback_inodes_sb_nr(root, nr_pages);
3859 /*
3860 * We need to wait for the async pages to actually start before
3861 * we do anything.
3862 */
3863 wait_event(root->fs_info->async_submit_wait,
3864 !atomic_read(&root->fs_info->async_delalloc_pages));
3865
3866 if (!trans)
3867 flush = BTRFS_RESERVE_FLUSH_ALL;
3868 else
3869 flush = BTRFS_RESERVE_NO_FLUSH;
3870 spin_lock(&space_info->lock);
3871 if (can_overcommit(root, space_info, orig, flush)) {
3872 spin_unlock(&space_info->lock);
3873 break;
3874 }
3875 spin_unlock(&space_info->lock);
3876
3877 loops++;
3878 if (wait_ordered && !trans) {
3879 btrfs_wait_ordered_extents(root, 0);
3880 } else {
3881 time_left = schedule_timeout_killable(1);
3882 if (time_left)
3883 break;
3884 }
3885 smp_mb();
3886 delalloc_bytes = percpu_counter_sum_positive(
3887 &root->fs_info->delalloc_bytes);
3888 }
3889 }
3890
3891 /**
3892 * maybe_commit_transaction - possibly commit the transaction if its ok to
3893 * @root - the root we're allocating for
3894 * @bytes - the number of bytes we want to reserve
3895 * @force - force the commit
3896 *
3897 * This will check to make sure that committing the transaction will actually
3898 * get us somewhere and then commit the transaction if it does. Otherwise it
3899 * will return -ENOSPC.
3900 */
3901 static int may_commit_transaction(struct btrfs_root *root,
3902 struct btrfs_space_info *space_info,
3903 u64 bytes, int force)
3904 {
3905 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3906 struct btrfs_trans_handle *trans;
3907
3908 trans = (struct btrfs_trans_handle *)current->journal_info;
3909 if (trans)
3910 return -EAGAIN;
3911
3912 if (force)
3913 goto commit;
3914
3915 /* See if there is enough pinned space to make this reservation */
3916 spin_lock(&space_info->lock);
3917 if (space_info->bytes_pinned >= bytes) {
3918 spin_unlock(&space_info->lock);
3919 goto commit;
3920 }
3921 spin_unlock(&space_info->lock);
3922
3923 /*
3924 * See if there is some space in the delayed insertion reservation for
3925 * this reservation.
3926 */
3927 if (space_info != delayed_rsv->space_info)
3928 return -ENOSPC;
3929
3930 spin_lock(&space_info->lock);
3931 spin_lock(&delayed_rsv->lock);
3932 if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3933 spin_unlock(&delayed_rsv->lock);
3934 spin_unlock(&space_info->lock);
3935 return -ENOSPC;
3936 }
3937 spin_unlock(&delayed_rsv->lock);
3938 spin_unlock(&space_info->lock);
3939
3940 commit:
3941 trans = btrfs_join_transaction(root);
3942 if (IS_ERR(trans))
3943 return -ENOSPC;
3944
3945 return btrfs_commit_transaction(trans, root);
3946 }
3947
3948 enum flush_state {
3949 FLUSH_DELAYED_ITEMS_NR = 1,
3950 FLUSH_DELAYED_ITEMS = 2,
3951 FLUSH_DELALLOC = 3,
3952 FLUSH_DELALLOC_WAIT = 4,
3953 ALLOC_CHUNK = 5,
3954 COMMIT_TRANS = 6,
3955 };
3956
3957 static int flush_space(struct btrfs_root *root,
3958 struct btrfs_space_info *space_info, u64 num_bytes,
3959 u64 orig_bytes, int state)
3960 {
3961 struct btrfs_trans_handle *trans;
3962 int nr;
3963 int ret = 0;
3964
3965 switch (state) {
3966 case FLUSH_DELAYED_ITEMS_NR:
3967 case FLUSH_DELAYED_ITEMS:
3968 if (state == FLUSH_DELAYED_ITEMS_NR) {
3969 u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
3970
3971 nr = (int)div64_u64(num_bytes, bytes);
3972 if (!nr)
3973 nr = 1;
3974 nr *= 2;
3975 } else {
3976 nr = -1;
3977 }
3978 trans = btrfs_join_transaction(root);
3979 if (IS_ERR(trans)) {
3980 ret = PTR_ERR(trans);
3981 break;
3982 }
3983 ret = btrfs_run_delayed_items_nr(trans, root, nr);
3984 btrfs_end_transaction(trans, root);
3985 break;
3986 case FLUSH_DELALLOC:
3987 case FLUSH_DELALLOC_WAIT:
3988 shrink_delalloc(root, num_bytes, orig_bytes,
3989 state == FLUSH_DELALLOC_WAIT);
3990 break;
3991 case ALLOC_CHUNK:
3992 trans = btrfs_join_transaction(root);
3993 if (IS_ERR(trans)) {
3994 ret = PTR_ERR(trans);
3995 break;
3996 }
3997 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3998 btrfs_get_alloc_profile(root, 0),
3999 CHUNK_ALLOC_NO_FORCE);
4000 btrfs_end_transaction(trans, root);
4001 if (ret == -ENOSPC)
4002 ret = 0;
4003 break;
4004 case COMMIT_TRANS:
4005 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4006 break;
4007 default:
4008 ret = -ENOSPC;
4009 break;
4010 }
4011
4012 return ret;
4013 }
4014 /**
4015 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4016 * @root - the root we're allocating for
4017 * @block_rsv - the block_rsv we're allocating for
4018 * @orig_bytes - the number of bytes we want
4019 * @flush - whether or not we can flush to make our reservation
4020 *
4021 * This will reserve orgi_bytes number of bytes from the space info associated
4022 * with the block_rsv. If there is not enough space it will make an attempt to
4023 * flush out space to make room. It will do this by flushing delalloc if
4024 * possible or committing the transaction. If flush is 0 then no attempts to
4025 * regain reservations will be made and this will fail if there is not enough
4026 * space already.
4027 */
4028 static int reserve_metadata_bytes(struct btrfs_root *root,
4029 struct btrfs_block_rsv *block_rsv,
4030 u64 orig_bytes,
4031 enum btrfs_reserve_flush_enum flush)
4032 {
4033 struct btrfs_space_info *space_info = block_rsv->space_info;
4034 u64 used;
4035 u64 num_bytes = orig_bytes;
4036 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4037 int ret = 0;
4038 bool flushing = false;
4039
4040 again:
4041 ret = 0;
4042 spin_lock(&space_info->lock);
4043 /*
4044 * We only want to wait if somebody other than us is flushing and we
4045 * are actually allowed to flush all things.
4046 */
4047 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4048 space_info->flush) {
4049 spin_unlock(&space_info->lock);
4050 /*
4051 * If we have a trans handle we can't wait because the flusher
4052 * may have to commit the transaction, which would mean we would
4053 * deadlock since we are waiting for the flusher to finish, but
4054 * hold the current transaction open.
4055 */
4056 if (current->journal_info)
4057 return -EAGAIN;
4058 ret = wait_event_killable(space_info->wait, !space_info->flush);
4059 /* Must have been killed, return */
4060 if (ret)
4061 return -EINTR;
4062
4063 spin_lock(&space_info->lock);
4064 }
4065
4066 ret = -ENOSPC;
4067 used = space_info->bytes_used + space_info->bytes_reserved +
4068 space_info->bytes_pinned + space_info->bytes_readonly +
4069 space_info->bytes_may_use;
4070
4071 /*
4072 * The idea here is that we've not already over-reserved the block group
4073 * then we can go ahead and save our reservation first and then start
4074 * flushing if we need to. Otherwise if we've already overcommitted
4075 * lets start flushing stuff first and then come back and try to make
4076 * our reservation.
4077 */
4078 if (used <= space_info->total_bytes) {
4079 if (used + orig_bytes <= space_info->total_bytes) {
4080 space_info->bytes_may_use += orig_bytes;
4081 trace_btrfs_space_reservation(root->fs_info,
4082 "space_info", space_info->flags, orig_bytes, 1);
4083 ret = 0;
4084 } else {
4085 /*
4086 * Ok set num_bytes to orig_bytes since we aren't
4087 * overocmmitted, this way we only try and reclaim what
4088 * we need.
4089 */
4090 num_bytes = orig_bytes;
4091 }
4092 } else {
4093 /*
4094 * Ok we're over committed, set num_bytes to the overcommitted
4095 * amount plus the amount of bytes that we need for this
4096 * reservation.
4097 */
4098 num_bytes = used - space_info->total_bytes +
4099 (orig_bytes * 2);
4100 }
4101
4102 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4103 space_info->bytes_may_use += orig_bytes;
4104 trace_btrfs_space_reservation(root->fs_info, "space_info",
4105 space_info->flags, orig_bytes,
4106 1);
4107 ret = 0;
4108 }
4109
4110 /*
4111 * Couldn't make our reservation, save our place so while we're trying
4112 * to reclaim space we can actually use it instead of somebody else
4113 * stealing it from us.
4114 *
4115 * We make the other tasks wait for the flush only when we can flush
4116 * all things.
4117 */
4118 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4119 flushing = true;
4120 space_info->flush = 1;
4121 }
4122
4123 spin_unlock(&space_info->lock);
4124
4125 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4126 goto out;
4127
4128 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4129 flush_state);
4130 flush_state++;
4131
4132 /*
4133 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4134 * would happen. So skip delalloc flush.
4135 */
4136 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4137 (flush_state == FLUSH_DELALLOC ||
4138 flush_state == FLUSH_DELALLOC_WAIT))
4139 flush_state = ALLOC_CHUNK;
4140
4141 if (!ret)
4142 goto again;
4143 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4144 flush_state < COMMIT_TRANS)
4145 goto again;
4146 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4147 flush_state <= COMMIT_TRANS)
4148 goto again;
4149
4150 out:
4151 if (ret == -ENOSPC &&
4152 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4153 struct btrfs_block_rsv *global_rsv =
4154 &root->fs_info->global_block_rsv;
4155
4156 if (block_rsv != global_rsv &&
4157 !block_rsv_use_bytes(global_rsv, orig_bytes))
4158 ret = 0;
4159 }
4160 if (flushing) {
4161 spin_lock(&space_info->lock);
4162 space_info->flush = 0;
4163 wake_up_all(&space_info->wait);
4164 spin_unlock(&space_info->lock);
4165 }
4166 return ret;
4167 }
4168
4169 static struct btrfs_block_rsv *get_block_rsv(
4170 const struct btrfs_trans_handle *trans,
4171 const struct btrfs_root *root)
4172 {
4173 struct btrfs_block_rsv *block_rsv = NULL;
4174
4175 if (root->ref_cows)
4176 block_rsv = trans->block_rsv;
4177
4178 if (root == root->fs_info->csum_root && trans->adding_csums)
4179 block_rsv = trans->block_rsv;
4180
4181 if (!block_rsv)
4182 block_rsv = root->block_rsv;
4183
4184 if (!block_rsv)
4185 block_rsv = &root->fs_info->empty_block_rsv;
4186
4187 return block_rsv;
4188 }
4189
4190 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4191 u64 num_bytes)
4192 {
4193 int ret = -ENOSPC;
4194 spin_lock(&block_rsv->lock);
4195 if (block_rsv->reserved >= num_bytes) {
4196 block_rsv->reserved -= num_bytes;
4197 if (block_rsv->reserved < block_rsv->size)
4198 block_rsv->full = 0;
4199 ret = 0;
4200 }
4201 spin_unlock(&block_rsv->lock);
4202 return ret;
4203 }
4204
4205 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4206 u64 num_bytes, int update_size)
4207 {
4208 spin_lock(&block_rsv->lock);
4209 block_rsv->reserved += num_bytes;
4210 if (update_size)
4211 block_rsv->size += num_bytes;
4212 else if (block_rsv->reserved >= block_rsv->size)
4213 block_rsv->full = 1;
4214 spin_unlock(&block_rsv->lock);
4215 }
4216
4217 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4218 struct btrfs_block_rsv *block_rsv,
4219 struct btrfs_block_rsv *dest, u64 num_bytes)
4220 {
4221 struct btrfs_space_info *space_info = block_rsv->space_info;
4222
4223 spin_lock(&block_rsv->lock);
4224 if (num_bytes == (u64)-1)
4225 num_bytes = block_rsv->size;
4226 block_rsv->size -= num_bytes;
4227 if (block_rsv->reserved >= block_rsv->size) {
4228 num_bytes = block_rsv->reserved - block_rsv->size;
4229 block_rsv->reserved = block_rsv->size;
4230 block_rsv->full = 1;
4231 } else {
4232 num_bytes = 0;
4233 }
4234 spin_unlock(&block_rsv->lock);
4235
4236 if (num_bytes > 0) {
4237 if (dest) {
4238 spin_lock(&dest->lock);
4239 if (!dest->full) {
4240 u64 bytes_to_add;
4241
4242 bytes_to_add = dest->size - dest->reserved;
4243 bytes_to_add = min(num_bytes, bytes_to_add);
4244 dest->reserved += bytes_to_add;
4245 if (dest->reserved >= dest->size)
4246 dest->full = 1;
4247 num_bytes -= bytes_to_add;
4248 }
4249 spin_unlock(&dest->lock);
4250 }
4251 if (num_bytes) {
4252 spin_lock(&space_info->lock);
4253 space_info->bytes_may_use -= num_bytes;
4254 trace_btrfs_space_reservation(fs_info, "space_info",
4255 space_info->flags, num_bytes, 0);
4256 space_info->reservation_progress++;
4257 spin_unlock(&space_info->lock);
4258 }
4259 }
4260 }
4261
4262 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4263 struct btrfs_block_rsv *dst, u64 num_bytes)
4264 {
4265 int ret;
4266
4267 ret = block_rsv_use_bytes(src, num_bytes);
4268 if (ret)
4269 return ret;
4270
4271 block_rsv_add_bytes(dst, num_bytes, 1);
4272 return 0;
4273 }
4274
4275 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4276 {
4277 memset(rsv, 0, sizeof(*rsv));
4278 spin_lock_init(&rsv->lock);
4279 rsv->type = type;
4280 }
4281
4282 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4283 unsigned short type)
4284 {
4285 struct btrfs_block_rsv *block_rsv;
4286 struct btrfs_fs_info *fs_info = root->fs_info;
4287
4288 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4289 if (!block_rsv)
4290 return NULL;
4291
4292 btrfs_init_block_rsv(block_rsv, type);
4293 block_rsv->space_info = __find_space_info(fs_info,
4294 BTRFS_BLOCK_GROUP_METADATA);
4295 return block_rsv;
4296 }
4297
4298 void btrfs_free_block_rsv(struct btrfs_root *root,
4299 struct btrfs_block_rsv *rsv)
4300 {
4301 if (!rsv)
4302 return;
4303 btrfs_block_rsv_release(root, rsv, (u64)-1);
4304 kfree(rsv);
4305 }
4306
4307 int btrfs_block_rsv_add(struct btrfs_root *root,
4308 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4309 enum btrfs_reserve_flush_enum flush)
4310 {
4311 int ret;
4312
4313 if (num_bytes == 0)
4314 return 0;
4315
4316 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4317 if (!ret) {
4318 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4319 return 0;
4320 }
4321
4322 return ret;
4323 }
4324
4325 int btrfs_block_rsv_check(struct btrfs_root *root,
4326 struct btrfs_block_rsv *block_rsv, int min_factor)
4327 {
4328 u64 num_bytes = 0;
4329 int ret = -ENOSPC;
4330
4331 if (!block_rsv)
4332 return 0;
4333
4334 spin_lock(&block_rsv->lock);
4335 num_bytes = div_factor(block_rsv->size, min_factor);
4336 if (block_rsv->reserved >= num_bytes)
4337 ret = 0;
4338 spin_unlock(&block_rsv->lock);
4339
4340 return ret;
4341 }
4342
4343 int btrfs_block_rsv_refill(struct btrfs_root *root,
4344 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4345 enum btrfs_reserve_flush_enum flush)
4346 {
4347 u64 num_bytes = 0;
4348 int ret = -ENOSPC;
4349
4350 if (!block_rsv)
4351 return 0;
4352
4353 spin_lock(&block_rsv->lock);
4354 num_bytes = min_reserved;
4355 if (block_rsv->reserved >= num_bytes)
4356 ret = 0;
4357 else
4358 num_bytes -= block_rsv->reserved;
4359 spin_unlock(&block_rsv->lock);
4360
4361 if (!ret)
4362 return 0;
4363
4364 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4365 if (!ret) {
4366 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4367 return 0;
4368 }
4369
4370 return ret;
4371 }
4372
4373 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4374 struct btrfs_block_rsv *dst_rsv,
4375 u64 num_bytes)
4376 {
4377 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4378 }
4379
4380 void btrfs_block_rsv_release(struct btrfs_root *root,
4381 struct btrfs_block_rsv *block_rsv,
4382 u64 num_bytes)
4383 {
4384 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4385 if (global_rsv->full || global_rsv == block_rsv ||
4386 block_rsv->space_info != global_rsv->space_info)
4387 global_rsv = NULL;
4388 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4389 num_bytes);
4390 }
4391
4392 /*
4393 * helper to calculate size of global block reservation.
4394 * the desired value is sum of space used by extent tree,
4395 * checksum tree and root tree
4396 */
4397 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4398 {
4399 struct btrfs_space_info *sinfo;
4400 u64 num_bytes;
4401 u64 meta_used;
4402 u64 data_used;
4403 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4404
4405 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4406 spin_lock(&sinfo->lock);
4407 data_used = sinfo->bytes_used;
4408 spin_unlock(&sinfo->lock);
4409
4410 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4411 spin_lock(&sinfo->lock);
4412 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4413 data_used = 0;
4414 meta_used = sinfo->bytes_used;
4415 spin_unlock(&sinfo->lock);
4416
4417 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4418 csum_size * 2;
4419 num_bytes += div64_u64(data_used + meta_used, 50);
4420
4421 if (num_bytes * 3 > meta_used)
4422 num_bytes = div64_u64(meta_used, 3);
4423
4424 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4425 }
4426
4427 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4428 {
4429 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4430 struct btrfs_space_info *sinfo = block_rsv->space_info;
4431 u64 num_bytes;
4432
4433 num_bytes = calc_global_metadata_size(fs_info);
4434
4435 spin_lock(&sinfo->lock);
4436 spin_lock(&block_rsv->lock);
4437
4438 block_rsv->size = num_bytes;
4439
4440 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4441 sinfo->bytes_reserved + sinfo->bytes_readonly +
4442 sinfo->bytes_may_use;
4443
4444 if (sinfo->total_bytes > num_bytes) {
4445 num_bytes = sinfo->total_bytes - num_bytes;
4446 block_rsv->reserved += num_bytes;
4447 sinfo->bytes_may_use += num_bytes;
4448 trace_btrfs_space_reservation(fs_info, "space_info",
4449 sinfo->flags, num_bytes, 1);
4450 }
4451
4452 if (block_rsv->reserved >= block_rsv->size) {
4453 num_bytes = block_rsv->reserved - block_rsv->size;
4454 sinfo->bytes_may_use -= num_bytes;
4455 trace_btrfs_space_reservation(fs_info, "space_info",
4456 sinfo->flags, num_bytes, 0);
4457 sinfo->reservation_progress++;
4458 block_rsv->reserved = block_rsv->size;
4459 block_rsv->full = 1;
4460 }
4461
4462 spin_unlock(&block_rsv->lock);
4463 spin_unlock(&sinfo->lock);
4464 }
4465
4466 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4467 {
4468 struct btrfs_space_info *space_info;
4469
4470 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4471 fs_info->chunk_block_rsv.space_info = space_info;
4472
4473 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4474 fs_info->global_block_rsv.space_info = space_info;
4475 fs_info->delalloc_block_rsv.space_info = space_info;
4476 fs_info->trans_block_rsv.space_info = space_info;
4477 fs_info->empty_block_rsv.space_info = space_info;
4478 fs_info->delayed_block_rsv.space_info = space_info;
4479
4480 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4481 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4482 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4483 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4484 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4485
4486 update_global_block_rsv(fs_info);
4487 }
4488
4489 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4490 {
4491 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4492 (u64)-1);
4493 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4494 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4495 WARN_ON(fs_info->trans_block_rsv.size > 0);
4496 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4497 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4498 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4499 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4500 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4501 }
4502
4503 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4504 struct btrfs_root *root)
4505 {
4506 if (!trans->block_rsv)
4507 return;
4508
4509 if (!trans->bytes_reserved)
4510 return;
4511
4512 trace_btrfs_space_reservation(root->fs_info, "transaction",
4513 trans->transid, trans->bytes_reserved, 0);
4514 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4515 trans->bytes_reserved = 0;
4516 }
4517
4518 /* Can only return 0 or -ENOSPC */
4519 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4520 struct inode *inode)
4521 {
4522 struct btrfs_root *root = BTRFS_I(inode)->root;
4523 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4524 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4525
4526 /*
4527 * We need to hold space in order to delete our orphan item once we've
4528 * added it, so this takes the reservation so we can release it later
4529 * when we are truly done with the orphan item.
4530 */
4531 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4532 trace_btrfs_space_reservation(root->fs_info, "orphan",
4533 btrfs_ino(inode), num_bytes, 1);
4534 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4535 }
4536
4537 void btrfs_orphan_release_metadata(struct inode *inode)
4538 {
4539 struct btrfs_root *root = BTRFS_I(inode)->root;
4540 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4541 trace_btrfs_space_reservation(root->fs_info, "orphan",
4542 btrfs_ino(inode), num_bytes, 0);
4543 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4544 }
4545
4546 /*
4547 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4548 * root: the root of the parent directory
4549 * rsv: block reservation
4550 * items: the number of items that we need do reservation
4551 * qgroup_reserved: used to return the reserved size in qgroup
4552 *
4553 * This function is used to reserve the space for snapshot/subvolume
4554 * creation and deletion. Those operations are different with the
4555 * common file/directory operations, they change two fs/file trees
4556 * and root tree, the number of items that the qgroup reserves is
4557 * different with the free space reservation. So we can not use
4558 * the space reseravtion mechanism in start_transaction().
4559 */
4560 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4561 struct btrfs_block_rsv *rsv,
4562 int items,
4563 u64 *qgroup_reserved)
4564 {
4565 u64 num_bytes;
4566 int ret;
4567
4568 if (root->fs_info->quota_enabled) {
4569 /* One for parent inode, two for dir entries */
4570 num_bytes = 3 * root->leafsize;
4571 ret = btrfs_qgroup_reserve(root, num_bytes);
4572 if (ret)
4573 return ret;
4574 } else {
4575 num_bytes = 0;
4576 }
4577
4578 *qgroup_reserved = num_bytes;
4579
4580 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4581 rsv->space_info = __find_space_info(root->fs_info,
4582 BTRFS_BLOCK_GROUP_METADATA);
4583 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4584 BTRFS_RESERVE_FLUSH_ALL);
4585 if (ret) {
4586 if (*qgroup_reserved)
4587 btrfs_qgroup_free(root, *qgroup_reserved);
4588 }
4589
4590 return ret;
4591 }
4592
4593 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4594 struct btrfs_block_rsv *rsv,
4595 u64 qgroup_reserved)
4596 {
4597 btrfs_block_rsv_release(root, rsv, (u64)-1);
4598 if (qgroup_reserved)
4599 btrfs_qgroup_free(root, qgroup_reserved);
4600 }
4601
4602 /**
4603 * drop_outstanding_extent - drop an outstanding extent
4604 * @inode: the inode we're dropping the extent for
4605 *
4606 * This is called when we are freeing up an outstanding extent, either called
4607 * after an error or after an extent is written. This will return the number of
4608 * reserved extents that need to be freed. This must be called with
4609 * BTRFS_I(inode)->lock held.
4610 */
4611 static unsigned drop_outstanding_extent(struct inode *inode)
4612 {
4613 unsigned drop_inode_space = 0;
4614 unsigned dropped_extents = 0;
4615
4616 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4617 BTRFS_I(inode)->outstanding_extents--;
4618
4619 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4620 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4621 &BTRFS_I(inode)->runtime_flags))
4622 drop_inode_space = 1;
4623
4624 /*
4625 * If we have more or the same amount of outsanding extents than we have
4626 * reserved then we need to leave the reserved extents count alone.
4627 */
4628 if (BTRFS_I(inode)->outstanding_extents >=
4629 BTRFS_I(inode)->reserved_extents)
4630 return drop_inode_space;
4631
4632 dropped_extents = BTRFS_I(inode)->reserved_extents -
4633 BTRFS_I(inode)->outstanding_extents;
4634 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4635 return dropped_extents + drop_inode_space;
4636 }
4637
4638 /**
4639 * calc_csum_metadata_size - return the amount of metada space that must be
4640 * reserved/free'd for the given bytes.
4641 * @inode: the inode we're manipulating
4642 * @num_bytes: the number of bytes in question
4643 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4644 *
4645 * This adjusts the number of csum_bytes in the inode and then returns the
4646 * correct amount of metadata that must either be reserved or freed. We
4647 * calculate how many checksums we can fit into one leaf and then divide the
4648 * number of bytes that will need to be checksumed by this value to figure out
4649 * how many checksums will be required. If we are adding bytes then the number
4650 * may go up and we will return the number of additional bytes that must be
4651 * reserved. If it is going down we will return the number of bytes that must
4652 * be freed.
4653 *
4654 * This must be called with BTRFS_I(inode)->lock held.
4655 */
4656 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4657 int reserve)
4658 {
4659 struct btrfs_root *root = BTRFS_I(inode)->root;
4660 u64 csum_size;
4661 int num_csums_per_leaf;
4662 int num_csums;
4663 int old_csums;
4664
4665 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4666 BTRFS_I(inode)->csum_bytes == 0)
4667 return 0;
4668
4669 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4670 if (reserve)
4671 BTRFS_I(inode)->csum_bytes += num_bytes;
4672 else
4673 BTRFS_I(inode)->csum_bytes -= num_bytes;
4674 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4675 num_csums_per_leaf = (int)div64_u64(csum_size,
4676 sizeof(struct btrfs_csum_item) +
4677 sizeof(struct btrfs_disk_key));
4678 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4679 num_csums = num_csums + num_csums_per_leaf - 1;
4680 num_csums = num_csums / num_csums_per_leaf;
4681
4682 old_csums = old_csums + num_csums_per_leaf - 1;
4683 old_csums = old_csums / num_csums_per_leaf;
4684
4685 /* No change, no need to reserve more */
4686 if (old_csums == num_csums)
4687 return 0;
4688
4689 if (reserve)
4690 return btrfs_calc_trans_metadata_size(root,
4691 num_csums - old_csums);
4692
4693 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4694 }
4695
4696 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4697 {
4698 struct btrfs_root *root = BTRFS_I(inode)->root;
4699 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4700 u64 to_reserve = 0;
4701 u64 csum_bytes;
4702 unsigned nr_extents = 0;
4703 int extra_reserve = 0;
4704 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4705 int ret = 0;
4706 bool delalloc_lock = true;
4707 u64 to_free = 0;
4708 unsigned dropped;
4709
4710 /* If we are a free space inode we need to not flush since we will be in
4711 * the middle of a transaction commit. We also don't need the delalloc
4712 * mutex since we won't race with anybody. We need this mostly to make
4713 * lockdep shut its filthy mouth.
4714 */
4715 if (btrfs_is_free_space_inode(inode)) {
4716 flush = BTRFS_RESERVE_NO_FLUSH;
4717 delalloc_lock = false;
4718 }
4719
4720 if (flush != BTRFS_RESERVE_NO_FLUSH &&
4721 btrfs_transaction_in_commit(root->fs_info))
4722 schedule_timeout(1);
4723
4724 if (delalloc_lock)
4725 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4726
4727 num_bytes = ALIGN(num_bytes, root->sectorsize);
4728
4729 spin_lock(&BTRFS_I(inode)->lock);
4730 BTRFS_I(inode)->outstanding_extents++;
4731
4732 if (BTRFS_I(inode)->outstanding_extents >
4733 BTRFS_I(inode)->reserved_extents)
4734 nr_extents = BTRFS_I(inode)->outstanding_extents -
4735 BTRFS_I(inode)->reserved_extents;
4736
4737 /*
4738 * Add an item to reserve for updating the inode when we complete the
4739 * delalloc io.
4740 */
4741 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4742 &BTRFS_I(inode)->runtime_flags)) {
4743 nr_extents++;
4744 extra_reserve = 1;
4745 }
4746
4747 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4748 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4749 csum_bytes = BTRFS_I(inode)->csum_bytes;
4750 spin_unlock(&BTRFS_I(inode)->lock);
4751
4752 if (root->fs_info->quota_enabled) {
4753 ret = btrfs_qgroup_reserve(root, num_bytes +
4754 nr_extents * root->leafsize);
4755 if (ret)
4756 goto out_fail;
4757 }
4758
4759 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4760 if (unlikely(ret)) {
4761 if (root->fs_info->quota_enabled)
4762 btrfs_qgroup_free(root, num_bytes +
4763 nr_extents * root->leafsize);
4764 goto out_fail;
4765 }
4766
4767 spin_lock(&BTRFS_I(inode)->lock);
4768 if (extra_reserve) {
4769 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4770 &BTRFS_I(inode)->runtime_flags);
4771 nr_extents--;
4772 }
4773 BTRFS_I(inode)->reserved_extents += nr_extents;
4774 spin_unlock(&BTRFS_I(inode)->lock);
4775
4776 if (delalloc_lock)
4777 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4778
4779 if (to_reserve)
4780 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4781 btrfs_ino(inode), to_reserve, 1);
4782 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4783
4784 return 0;
4785
4786 out_fail:
4787 spin_lock(&BTRFS_I(inode)->lock);
4788 dropped = drop_outstanding_extent(inode);
4789 /*
4790 * If the inodes csum_bytes is the same as the original
4791 * csum_bytes then we know we haven't raced with any free()ers
4792 * so we can just reduce our inodes csum bytes and carry on.
4793 * Otherwise we have to do the normal free thing to account for
4794 * the case that the free side didn't free up its reserve
4795 * because of this outstanding reservation.
4796 */
4797 if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4798 calc_csum_metadata_size(inode, num_bytes, 0);
4799 else
4800 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4801 spin_unlock(&BTRFS_I(inode)->lock);
4802 if (dropped)
4803 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4804
4805 if (to_free) {
4806 btrfs_block_rsv_release(root, block_rsv, to_free);
4807 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4808 btrfs_ino(inode), to_free, 0);
4809 }
4810 if (delalloc_lock)
4811 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4812 return ret;
4813 }
4814
4815 /**
4816 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4817 * @inode: the inode to release the reservation for
4818 * @num_bytes: the number of bytes we're releasing
4819 *
4820 * This will release the metadata reservation for an inode. This can be called
4821 * once we complete IO for a given set of bytes to release their metadata
4822 * reservations.
4823 */
4824 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4825 {
4826 struct btrfs_root *root = BTRFS_I(inode)->root;
4827 u64 to_free = 0;
4828 unsigned dropped;
4829
4830 num_bytes = ALIGN(num_bytes, root->sectorsize);
4831 spin_lock(&BTRFS_I(inode)->lock);
4832 dropped = drop_outstanding_extent(inode);
4833
4834 if (num_bytes)
4835 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4836 spin_unlock(&BTRFS_I(inode)->lock);
4837 if (dropped > 0)
4838 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4839
4840 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4841 btrfs_ino(inode), to_free, 0);
4842 if (root->fs_info->quota_enabled) {
4843 btrfs_qgroup_free(root, num_bytes +
4844 dropped * root->leafsize);
4845 }
4846
4847 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4848 to_free);
4849 }
4850
4851 /**
4852 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4853 * @inode: inode we're writing to
4854 * @num_bytes: the number of bytes we want to allocate
4855 *
4856 * This will do the following things
4857 *
4858 * o reserve space in the data space info for num_bytes
4859 * o reserve space in the metadata space info based on number of outstanding
4860 * extents and how much csums will be needed
4861 * o add to the inodes ->delalloc_bytes
4862 * o add it to the fs_info's delalloc inodes list.
4863 *
4864 * This will return 0 for success and -ENOSPC if there is no space left.
4865 */
4866 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4867 {
4868 int ret;
4869
4870 ret = btrfs_check_data_free_space(inode, num_bytes);
4871 if (ret)
4872 return ret;
4873
4874 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4875 if (ret) {
4876 btrfs_free_reserved_data_space(inode, num_bytes);
4877 return ret;
4878 }
4879
4880 return 0;
4881 }
4882
4883 /**
4884 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4885 * @inode: inode we're releasing space for
4886 * @num_bytes: the number of bytes we want to free up
4887 *
4888 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4889 * called in the case that we don't need the metadata AND data reservations
4890 * anymore. So if there is an error or we insert an inline extent.
4891 *
4892 * This function will release the metadata space that was not used and will
4893 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4894 * list if there are no delalloc bytes left.
4895 */
4896 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4897 {
4898 btrfs_delalloc_release_metadata(inode, num_bytes);
4899 btrfs_free_reserved_data_space(inode, num_bytes);
4900 }
4901
4902 static int update_block_group(struct btrfs_root *root,
4903 u64 bytenr, u64 num_bytes, int alloc)
4904 {
4905 struct btrfs_block_group_cache *cache = NULL;
4906 struct btrfs_fs_info *info = root->fs_info;
4907 u64 total = num_bytes;
4908 u64 old_val;
4909 u64 byte_in_group;
4910 int factor;
4911
4912 /* block accounting for super block */
4913 spin_lock(&info->delalloc_lock);
4914 old_val = btrfs_super_bytes_used(info->super_copy);
4915 if (alloc)
4916 old_val += num_bytes;
4917 else
4918 old_val -= num_bytes;
4919 btrfs_set_super_bytes_used(info->super_copy, old_val);
4920 spin_unlock(&info->delalloc_lock);
4921
4922 while (total) {
4923 cache = btrfs_lookup_block_group(info, bytenr);
4924 if (!cache)
4925 return -ENOENT;
4926 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4927 BTRFS_BLOCK_GROUP_RAID1 |
4928 BTRFS_BLOCK_GROUP_RAID10))
4929 factor = 2;
4930 else
4931 factor = 1;
4932 /*
4933 * If this block group has free space cache written out, we
4934 * need to make sure to load it if we are removing space. This
4935 * is because we need the unpinning stage to actually add the
4936 * space back to the block group, otherwise we will leak space.
4937 */
4938 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4939 cache_block_group(cache, 1);
4940
4941 byte_in_group = bytenr - cache->key.objectid;
4942 WARN_ON(byte_in_group > cache->key.offset);
4943
4944 spin_lock(&cache->space_info->lock);
4945 spin_lock(&cache->lock);
4946
4947 if (btrfs_test_opt(root, SPACE_CACHE) &&
4948 cache->disk_cache_state < BTRFS_DC_CLEAR)
4949 cache->disk_cache_state = BTRFS_DC_CLEAR;
4950
4951 cache->dirty = 1;
4952 old_val = btrfs_block_group_used(&cache->item);
4953 num_bytes = min(total, cache->key.offset - byte_in_group);
4954 if (alloc) {
4955 old_val += num_bytes;
4956 btrfs_set_block_group_used(&cache->item, old_val);
4957 cache->reserved -= num_bytes;
4958 cache->space_info->bytes_reserved -= num_bytes;
4959 cache->space_info->bytes_used += num_bytes;
4960 cache->space_info->disk_used += num_bytes * factor;
4961 spin_unlock(&cache->lock);
4962 spin_unlock(&cache->space_info->lock);
4963 } else {
4964 old_val -= num_bytes;
4965 btrfs_set_block_group_used(&cache->item, old_val);
4966 cache->pinned += num_bytes;
4967 cache->space_info->bytes_pinned += num_bytes;
4968 cache->space_info->bytes_used -= num_bytes;
4969 cache->space_info->disk_used -= num_bytes * factor;
4970 spin_unlock(&cache->lock);
4971 spin_unlock(&cache->space_info->lock);
4972
4973 set_extent_dirty(info->pinned_extents,
4974 bytenr, bytenr + num_bytes - 1,
4975 GFP_NOFS | __GFP_NOFAIL);
4976 }
4977 btrfs_put_block_group(cache);
4978 total -= num_bytes;
4979 bytenr += num_bytes;
4980 }
4981 return 0;
4982 }
4983
4984 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4985 {
4986 struct btrfs_block_group_cache *cache;
4987 u64 bytenr;
4988
4989 spin_lock(&root->fs_info->block_group_cache_lock);
4990 bytenr = root->fs_info->first_logical_byte;
4991 spin_unlock(&root->fs_info->block_group_cache_lock);
4992
4993 if (bytenr < (u64)-1)
4994 return bytenr;
4995
4996 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4997 if (!cache)
4998 return 0;
4999
5000 bytenr = cache->key.objectid;
5001 btrfs_put_block_group(cache);
5002
5003 return bytenr;
5004 }
5005
5006 static int pin_down_extent(struct btrfs_root *root,
5007 struct btrfs_block_group_cache *cache,
5008 u64 bytenr, u64 num_bytes, int reserved)
5009 {
5010 spin_lock(&cache->space_info->lock);
5011 spin_lock(&cache->lock);
5012 cache->pinned += num_bytes;
5013 cache->space_info->bytes_pinned += num_bytes;
5014 if (reserved) {
5015 cache->reserved -= num_bytes;
5016 cache->space_info->bytes_reserved -= num_bytes;
5017 }
5018 spin_unlock(&cache->lock);
5019 spin_unlock(&cache->space_info->lock);
5020
5021 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5022 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5023 return 0;
5024 }
5025
5026 /*
5027 * this function must be called within transaction
5028 */
5029 int btrfs_pin_extent(struct btrfs_root *root,
5030 u64 bytenr, u64 num_bytes, int reserved)
5031 {
5032 struct btrfs_block_group_cache *cache;
5033
5034 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5035 BUG_ON(!cache); /* Logic error */
5036
5037 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5038
5039 btrfs_put_block_group(cache);
5040 return 0;
5041 }
5042
5043 /*
5044 * this function must be called within transaction
5045 */
5046 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5047 u64 bytenr, u64 num_bytes)
5048 {
5049 struct btrfs_block_group_cache *cache;
5050
5051 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5052 BUG_ON(!cache); /* Logic error */
5053
5054 /*
5055 * pull in the free space cache (if any) so that our pin
5056 * removes the free space from the cache. We have load_only set
5057 * to one because the slow code to read in the free extents does check
5058 * the pinned extents.
5059 */
5060 cache_block_group(cache, 1);
5061
5062 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5063
5064 /* remove us from the free space cache (if we're there at all) */
5065 btrfs_remove_free_space(cache, bytenr, num_bytes);
5066 btrfs_put_block_group(cache);
5067 return 0;
5068 }
5069
5070 /**
5071 * btrfs_update_reserved_bytes - update the block_group and space info counters
5072 * @cache: The cache we are manipulating
5073 * @num_bytes: The number of bytes in question
5074 * @reserve: One of the reservation enums
5075 *
5076 * This is called by the allocator when it reserves space, or by somebody who is
5077 * freeing space that was never actually used on disk. For example if you
5078 * reserve some space for a new leaf in transaction A and before transaction A
5079 * commits you free that leaf, you call this with reserve set to 0 in order to
5080 * clear the reservation.
5081 *
5082 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5083 * ENOSPC accounting. For data we handle the reservation through clearing the
5084 * delalloc bits in the io_tree. We have to do this since we could end up
5085 * allocating less disk space for the amount of data we have reserved in the
5086 * case of compression.
5087 *
5088 * If this is a reservation and the block group has become read only we cannot
5089 * make the reservation and return -EAGAIN, otherwise this function always
5090 * succeeds.
5091 */
5092 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5093 u64 num_bytes, int reserve)
5094 {
5095 struct btrfs_space_info *space_info = cache->space_info;
5096 int ret = 0;
5097
5098 spin_lock(&space_info->lock);
5099 spin_lock(&cache->lock);
5100 if (reserve != RESERVE_FREE) {
5101 if (cache->ro) {
5102 ret = -EAGAIN;
5103 } else {
5104 cache->reserved += num_bytes;
5105 space_info->bytes_reserved += num_bytes;
5106 if (reserve == RESERVE_ALLOC) {
5107 trace_btrfs_space_reservation(cache->fs_info,
5108 "space_info", space_info->flags,
5109 num_bytes, 0);
5110 space_info->bytes_may_use -= num_bytes;
5111 }
5112 }
5113 } else {
5114 if (cache->ro)
5115 space_info->bytes_readonly += num_bytes;
5116 cache->reserved -= num_bytes;
5117 space_info->bytes_reserved -= num_bytes;
5118 space_info->reservation_progress++;
5119 }
5120 spin_unlock(&cache->lock);
5121 spin_unlock(&space_info->lock);
5122 return ret;
5123 }
5124
5125 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5126 struct btrfs_root *root)
5127 {
5128 struct btrfs_fs_info *fs_info = root->fs_info;
5129 struct btrfs_caching_control *next;
5130 struct btrfs_caching_control *caching_ctl;
5131 struct btrfs_block_group_cache *cache;
5132
5133 down_write(&fs_info->extent_commit_sem);
5134
5135 list_for_each_entry_safe(caching_ctl, next,
5136 &fs_info->caching_block_groups, list) {
5137 cache = caching_ctl->block_group;
5138 if (block_group_cache_done(cache)) {
5139 cache->last_byte_to_unpin = (u64)-1;
5140 list_del_init(&caching_ctl->list);
5141 put_caching_control(caching_ctl);
5142 } else {
5143 cache->last_byte_to_unpin = caching_ctl->progress;
5144 }
5145 }
5146
5147 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5148 fs_info->pinned_extents = &fs_info->freed_extents[1];
5149 else
5150 fs_info->pinned_extents = &fs_info->freed_extents[0];
5151
5152 up_write(&fs_info->extent_commit_sem);
5153
5154 update_global_block_rsv(fs_info);
5155 }
5156
5157 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5158 {
5159 struct btrfs_fs_info *fs_info = root->fs_info;
5160 struct btrfs_block_group_cache *cache = NULL;
5161 struct btrfs_space_info *space_info;
5162 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5163 u64 len;
5164 bool readonly;
5165
5166 while (start <= end) {
5167 readonly = false;
5168 if (!cache ||
5169 start >= cache->key.objectid + cache->key.offset) {
5170 if (cache)
5171 btrfs_put_block_group(cache);
5172 cache = btrfs_lookup_block_group(fs_info, start);
5173 BUG_ON(!cache); /* Logic error */
5174 }
5175
5176 len = cache->key.objectid + cache->key.offset - start;
5177 len = min(len, end + 1 - start);
5178
5179 if (start < cache->last_byte_to_unpin) {
5180 len = min(len, cache->last_byte_to_unpin - start);
5181 btrfs_add_free_space(cache, start, len);
5182 }
5183
5184 start += len;
5185 space_info = cache->space_info;
5186
5187 spin_lock(&space_info->lock);
5188 spin_lock(&cache->lock);
5189 cache->pinned -= len;
5190 space_info->bytes_pinned -= len;
5191 if (cache->ro) {
5192 space_info->bytes_readonly += len;
5193 readonly = true;
5194 }
5195 spin_unlock(&cache->lock);
5196 if (!readonly && global_rsv->space_info == space_info) {
5197 spin_lock(&global_rsv->lock);
5198 if (!global_rsv->full) {
5199 len = min(len, global_rsv->size -
5200 global_rsv->reserved);
5201 global_rsv->reserved += len;
5202 space_info->bytes_may_use += len;
5203 if (global_rsv->reserved >= global_rsv->size)
5204 global_rsv->full = 1;
5205 }
5206 spin_unlock(&global_rsv->lock);
5207 }
5208 spin_unlock(&space_info->lock);
5209 }
5210
5211 if (cache)
5212 btrfs_put_block_group(cache);
5213 return 0;
5214 }
5215
5216 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5217 struct btrfs_root *root)
5218 {
5219 struct btrfs_fs_info *fs_info = root->fs_info;
5220 struct extent_io_tree *unpin;
5221 u64 start;
5222 u64 end;
5223 int ret;
5224
5225 if (trans->aborted)
5226 return 0;
5227
5228 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5229 unpin = &fs_info->freed_extents[1];
5230 else
5231 unpin = &fs_info->freed_extents[0];
5232
5233 while (1) {
5234 ret = find_first_extent_bit(unpin, 0, &start, &end,
5235 EXTENT_DIRTY, NULL);
5236 if (ret)
5237 break;
5238
5239 if (btrfs_test_opt(root, DISCARD))
5240 ret = btrfs_discard_extent(root, start,
5241 end + 1 - start, NULL);
5242
5243 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5244 unpin_extent_range(root, start, end);
5245 cond_resched();
5246 }
5247
5248 return 0;
5249 }
5250
5251 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5252 struct btrfs_root *root,
5253 u64 bytenr, u64 num_bytes, u64 parent,
5254 u64 root_objectid, u64 owner_objectid,
5255 u64 owner_offset, int refs_to_drop,
5256 struct btrfs_delayed_extent_op *extent_op)
5257 {
5258 struct btrfs_key key;
5259 struct btrfs_path *path;
5260 struct btrfs_fs_info *info = root->fs_info;
5261 struct btrfs_root *extent_root = info->extent_root;
5262 struct extent_buffer *leaf;
5263 struct btrfs_extent_item *ei;
5264 struct btrfs_extent_inline_ref *iref;
5265 int ret;
5266 int is_data;
5267 int extent_slot = 0;
5268 int found_extent = 0;
5269 int num_to_del = 1;
5270 u32 item_size;
5271 u64 refs;
5272
5273 path = btrfs_alloc_path();
5274 if (!path)
5275 return -ENOMEM;
5276
5277 path->reada = 1;
5278 path->leave_spinning = 1;
5279
5280 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5281 BUG_ON(!is_data && refs_to_drop != 1);
5282
5283 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5284 bytenr, num_bytes, parent,
5285 root_objectid, owner_objectid,
5286 owner_offset);
5287 if (ret == 0) {
5288 extent_slot = path->slots[0];
5289 while (extent_slot >= 0) {
5290 btrfs_item_key_to_cpu(path->nodes[0], &key,
5291 extent_slot);
5292 if (key.objectid != bytenr)
5293 break;
5294 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5295 key.offset == num_bytes) {
5296 found_extent = 1;
5297 break;
5298 }
5299 if (path->slots[0] - extent_slot > 5)
5300 break;
5301 extent_slot--;
5302 }
5303 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5304 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5305 if (found_extent && item_size < sizeof(*ei))
5306 found_extent = 0;
5307 #endif
5308 if (!found_extent) {
5309 BUG_ON(iref);
5310 ret = remove_extent_backref(trans, extent_root, path,
5311 NULL, refs_to_drop,
5312 is_data);
5313 if (ret) {
5314 btrfs_abort_transaction(trans, extent_root, ret);
5315 goto out;
5316 }
5317 btrfs_release_path(path);
5318 path->leave_spinning = 1;
5319
5320 key.objectid = bytenr;
5321 key.type = BTRFS_EXTENT_ITEM_KEY;
5322 key.offset = num_bytes;
5323
5324 ret = btrfs_search_slot(trans, extent_root,
5325 &key, path, -1, 1);
5326 if (ret) {
5327 printk(KERN_ERR "umm, got %d back from search"
5328 ", was looking for %llu\n", ret,
5329 (unsigned long long)bytenr);
5330 if (ret > 0)
5331 btrfs_print_leaf(extent_root,
5332 path->nodes[0]);
5333 }
5334 if (ret < 0) {
5335 btrfs_abort_transaction(trans, extent_root, ret);
5336 goto out;
5337 }
5338 extent_slot = path->slots[0];
5339 }
5340 } else if (ret == -ENOENT) {
5341 btrfs_print_leaf(extent_root, path->nodes[0]);
5342 WARN_ON(1);
5343 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
5344 "parent %llu root %llu owner %llu offset %llu\n",
5345 (unsigned long long)bytenr,
5346 (unsigned long long)parent,
5347 (unsigned long long)root_objectid,
5348 (unsigned long long)owner_objectid,
5349 (unsigned long long)owner_offset);
5350 } else {
5351 btrfs_abort_transaction(trans, extent_root, ret);
5352 goto out;
5353 }
5354
5355 leaf = path->nodes[0];
5356 item_size = btrfs_item_size_nr(leaf, extent_slot);
5357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5358 if (item_size < sizeof(*ei)) {
5359 BUG_ON(found_extent || extent_slot != path->slots[0]);
5360 ret = convert_extent_item_v0(trans, extent_root, path,
5361 owner_objectid, 0);
5362 if (ret < 0) {
5363 btrfs_abort_transaction(trans, extent_root, ret);
5364 goto out;
5365 }
5366
5367 btrfs_release_path(path);
5368 path->leave_spinning = 1;
5369
5370 key.objectid = bytenr;
5371 key.type = BTRFS_EXTENT_ITEM_KEY;
5372 key.offset = num_bytes;
5373
5374 ret = btrfs_search_slot(trans, extent_root, &key, path,
5375 -1, 1);
5376 if (ret) {
5377 printk(KERN_ERR "umm, got %d back from search"
5378 ", was looking for %llu\n", ret,
5379 (unsigned long long)bytenr);
5380 btrfs_print_leaf(extent_root, path->nodes[0]);
5381 }
5382 if (ret < 0) {
5383 btrfs_abort_transaction(trans, extent_root, ret);
5384 goto out;
5385 }
5386
5387 extent_slot = path->slots[0];
5388 leaf = path->nodes[0];
5389 item_size = btrfs_item_size_nr(leaf, extent_slot);
5390 }
5391 #endif
5392 BUG_ON(item_size < sizeof(*ei));
5393 ei = btrfs_item_ptr(leaf, extent_slot,
5394 struct btrfs_extent_item);
5395 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5396 struct btrfs_tree_block_info *bi;
5397 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5398 bi = (struct btrfs_tree_block_info *)(ei + 1);
5399 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5400 }
5401
5402 refs = btrfs_extent_refs(leaf, ei);
5403 BUG_ON(refs < refs_to_drop);
5404 refs -= refs_to_drop;
5405
5406 if (refs > 0) {
5407 if (extent_op)
5408 __run_delayed_extent_op(extent_op, leaf, ei);
5409 /*
5410 * In the case of inline back ref, reference count will
5411 * be updated by remove_extent_backref
5412 */
5413 if (iref) {
5414 BUG_ON(!found_extent);
5415 } else {
5416 btrfs_set_extent_refs(leaf, ei, refs);
5417 btrfs_mark_buffer_dirty(leaf);
5418 }
5419 if (found_extent) {
5420 ret = remove_extent_backref(trans, extent_root, path,
5421 iref, refs_to_drop,
5422 is_data);
5423 if (ret) {
5424 btrfs_abort_transaction(trans, extent_root, ret);
5425 goto out;
5426 }
5427 }
5428 } else {
5429 if (found_extent) {
5430 BUG_ON(is_data && refs_to_drop !=
5431 extent_data_ref_count(root, path, iref));
5432 if (iref) {
5433 BUG_ON(path->slots[0] != extent_slot);
5434 } else {
5435 BUG_ON(path->slots[0] != extent_slot + 1);
5436 path->slots[0] = extent_slot;
5437 num_to_del = 2;
5438 }
5439 }
5440
5441 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5442 num_to_del);
5443 if (ret) {
5444 btrfs_abort_transaction(trans, extent_root, ret);
5445 goto out;
5446 }
5447 btrfs_release_path(path);
5448
5449 if (is_data) {
5450 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5451 if (ret) {
5452 btrfs_abort_transaction(trans, extent_root, ret);
5453 goto out;
5454 }
5455 }
5456
5457 ret = update_block_group(root, bytenr, num_bytes, 0);
5458 if (ret) {
5459 btrfs_abort_transaction(trans, extent_root, ret);
5460 goto out;
5461 }
5462 }
5463 out:
5464 btrfs_free_path(path);
5465 return ret;
5466 }
5467
5468 /*
5469 * when we free an block, it is possible (and likely) that we free the last
5470 * delayed ref for that extent as well. This searches the delayed ref tree for
5471 * a given extent, and if there are no other delayed refs to be processed, it
5472 * removes it from the tree.
5473 */
5474 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5475 struct btrfs_root *root, u64 bytenr)
5476 {
5477 struct btrfs_delayed_ref_head *head;
5478 struct btrfs_delayed_ref_root *delayed_refs;
5479 struct btrfs_delayed_ref_node *ref;
5480 struct rb_node *node;
5481 int ret = 0;
5482
5483 delayed_refs = &trans->transaction->delayed_refs;
5484 spin_lock(&delayed_refs->lock);
5485 head = btrfs_find_delayed_ref_head(trans, bytenr);
5486 if (!head)
5487 goto out;
5488
5489 node = rb_prev(&head->node.rb_node);
5490 if (!node)
5491 goto out;
5492
5493 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5494
5495 /* there are still entries for this ref, we can't drop it */
5496 if (ref->bytenr == bytenr)
5497 goto out;
5498
5499 if (head->extent_op) {
5500 if (!head->must_insert_reserved)
5501 goto out;
5502 btrfs_free_delayed_extent_op(head->extent_op);
5503 head->extent_op = NULL;
5504 }
5505
5506 /*
5507 * waiting for the lock here would deadlock. If someone else has it
5508 * locked they are already in the process of dropping it anyway
5509 */
5510 if (!mutex_trylock(&head->mutex))
5511 goto out;
5512
5513 /*
5514 * at this point we have a head with no other entries. Go
5515 * ahead and process it.
5516 */
5517 head->node.in_tree = 0;
5518 rb_erase(&head->node.rb_node, &delayed_refs->root);
5519
5520 delayed_refs->num_entries--;
5521
5522 /*
5523 * we don't take a ref on the node because we're removing it from the
5524 * tree, so we just steal the ref the tree was holding.
5525 */
5526 delayed_refs->num_heads--;
5527 if (list_empty(&head->cluster))
5528 delayed_refs->num_heads_ready--;
5529
5530 list_del_init(&head->cluster);
5531 spin_unlock(&delayed_refs->lock);
5532
5533 BUG_ON(head->extent_op);
5534 if (head->must_insert_reserved)
5535 ret = 1;
5536
5537 mutex_unlock(&head->mutex);
5538 btrfs_put_delayed_ref(&head->node);
5539 return ret;
5540 out:
5541 spin_unlock(&delayed_refs->lock);
5542 return 0;
5543 }
5544
5545 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5546 struct btrfs_root *root,
5547 struct extent_buffer *buf,
5548 u64 parent, int last_ref)
5549 {
5550 struct btrfs_block_group_cache *cache = NULL;
5551 int ret;
5552
5553 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5554 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5555 buf->start, buf->len,
5556 parent, root->root_key.objectid,
5557 btrfs_header_level(buf),
5558 BTRFS_DROP_DELAYED_REF, NULL, 0);
5559 BUG_ON(ret); /* -ENOMEM */
5560 }
5561
5562 if (!last_ref)
5563 return;
5564
5565 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5566
5567 if (btrfs_header_generation(buf) == trans->transid) {
5568 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5569 ret = check_ref_cleanup(trans, root, buf->start);
5570 if (!ret)
5571 goto out;
5572 }
5573
5574 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5575 pin_down_extent(root, cache, buf->start, buf->len, 1);
5576 goto out;
5577 }
5578
5579 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5580
5581 btrfs_add_free_space(cache, buf->start, buf->len);
5582 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5583 }
5584 out:
5585 /*
5586 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5587 * anymore.
5588 */
5589 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5590 btrfs_put_block_group(cache);
5591 }
5592
5593 /* Can return -ENOMEM */
5594 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5595 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5596 u64 owner, u64 offset, int for_cow)
5597 {
5598 int ret;
5599 struct btrfs_fs_info *fs_info = root->fs_info;
5600
5601 /*
5602 * tree log blocks never actually go into the extent allocation
5603 * tree, just update pinning info and exit early.
5604 */
5605 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5606 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5607 /* unlocks the pinned mutex */
5608 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5609 ret = 0;
5610 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5611 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5612 num_bytes,
5613 parent, root_objectid, (int)owner,
5614 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5615 } else {
5616 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5617 num_bytes,
5618 parent, root_objectid, owner,
5619 offset, BTRFS_DROP_DELAYED_REF,
5620 NULL, for_cow);
5621 }
5622 return ret;
5623 }
5624
5625 static u64 stripe_align(struct btrfs_root *root,
5626 struct btrfs_block_group_cache *cache,
5627 u64 val, u64 num_bytes)
5628 {
5629 u64 ret = ALIGN(val, root->stripesize);
5630 return ret;
5631 }
5632
5633 /*
5634 * when we wait for progress in the block group caching, its because
5635 * our allocation attempt failed at least once. So, we must sleep
5636 * and let some progress happen before we try again.
5637 *
5638 * This function will sleep at least once waiting for new free space to
5639 * show up, and then it will check the block group free space numbers
5640 * for our min num_bytes. Another option is to have it go ahead
5641 * and look in the rbtree for a free extent of a given size, but this
5642 * is a good start.
5643 */
5644 static noinline int
5645 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5646 u64 num_bytes)
5647 {
5648 struct btrfs_caching_control *caching_ctl;
5649
5650 caching_ctl = get_caching_control(cache);
5651 if (!caching_ctl)
5652 return 0;
5653
5654 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5655 (cache->free_space_ctl->free_space >= num_bytes));
5656
5657 put_caching_control(caching_ctl);
5658 return 0;
5659 }
5660
5661 static noinline int
5662 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5663 {
5664 struct btrfs_caching_control *caching_ctl;
5665
5666 caching_ctl = get_caching_control(cache);
5667 if (!caching_ctl)
5668 return 0;
5669
5670 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5671
5672 put_caching_control(caching_ctl);
5673 return 0;
5674 }
5675
5676 int __get_raid_index(u64 flags)
5677 {
5678 if (flags & BTRFS_BLOCK_GROUP_RAID10)
5679 return BTRFS_RAID_RAID10;
5680 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5681 return BTRFS_RAID_RAID1;
5682 else if (flags & BTRFS_BLOCK_GROUP_DUP)
5683 return BTRFS_RAID_DUP;
5684 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5685 return BTRFS_RAID_RAID0;
5686 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
5687 return BTRFS_RAID_RAID5;
5688 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
5689 return BTRFS_RAID_RAID6;
5690
5691 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
5692 }
5693
5694 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5695 {
5696 return __get_raid_index(cache->flags);
5697 }
5698
5699 enum btrfs_loop_type {
5700 LOOP_CACHING_NOWAIT = 0,
5701 LOOP_CACHING_WAIT = 1,
5702 LOOP_ALLOC_CHUNK = 2,
5703 LOOP_NO_EMPTY_SIZE = 3,
5704 };
5705
5706 /*
5707 * walks the btree of allocated extents and find a hole of a given size.
5708 * The key ins is changed to record the hole:
5709 * ins->objectid == block start
5710 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5711 * ins->offset == number of blocks
5712 * Any available blocks before search_start are skipped.
5713 */
5714 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5715 struct btrfs_root *orig_root,
5716 u64 num_bytes, u64 empty_size,
5717 u64 hint_byte, struct btrfs_key *ins,
5718 u64 data)
5719 {
5720 int ret = 0;
5721 struct btrfs_root *root = orig_root->fs_info->extent_root;
5722 struct btrfs_free_cluster *last_ptr = NULL;
5723 struct btrfs_block_group_cache *block_group = NULL;
5724 struct btrfs_block_group_cache *used_block_group;
5725 u64 search_start = 0;
5726 int empty_cluster = 2 * 1024 * 1024;
5727 struct btrfs_space_info *space_info;
5728 int loop = 0;
5729 int index = __get_raid_index(data);
5730 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5731 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5732 bool found_uncached_bg = false;
5733 bool failed_cluster_refill = false;
5734 bool failed_alloc = false;
5735 bool use_cluster = true;
5736 bool have_caching_bg = false;
5737
5738 WARN_ON(num_bytes < root->sectorsize);
5739 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5740 ins->objectid = 0;
5741 ins->offset = 0;
5742
5743 trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5744
5745 space_info = __find_space_info(root->fs_info, data);
5746 if (!space_info) {
5747 printk(KERN_ERR "No space info for %llu\n", data);
5748 return -ENOSPC;
5749 }
5750
5751 /*
5752 * If the space info is for both data and metadata it means we have a
5753 * small filesystem and we can't use the clustering stuff.
5754 */
5755 if (btrfs_mixed_space_info(space_info))
5756 use_cluster = false;
5757
5758 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5759 last_ptr = &root->fs_info->meta_alloc_cluster;
5760 if (!btrfs_test_opt(root, SSD))
5761 empty_cluster = 64 * 1024;
5762 }
5763
5764 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5765 btrfs_test_opt(root, SSD)) {
5766 last_ptr = &root->fs_info->data_alloc_cluster;
5767 }
5768
5769 if (last_ptr) {
5770 spin_lock(&last_ptr->lock);
5771 if (last_ptr->block_group)
5772 hint_byte = last_ptr->window_start;
5773 spin_unlock(&last_ptr->lock);
5774 }
5775
5776 search_start = max(search_start, first_logical_byte(root, 0));
5777 search_start = max(search_start, hint_byte);
5778
5779 if (!last_ptr)
5780 empty_cluster = 0;
5781
5782 if (search_start == hint_byte) {
5783 block_group = btrfs_lookup_block_group(root->fs_info,
5784 search_start);
5785 used_block_group = block_group;
5786 /*
5787 * we don't want to use the block group if it doesn't match our
5788 * allocation bits, or if its not cached.
5789 *
5790 * However if we are re-searching with an ideal block group
5791 * picked out then we don't care that the block group is cached.
5792 */
5793 if (block_group && block_group_bits(block_group, data) &&
5794 block_group->cached != BTRFS_CACHE_NO) {
5795 down_read(&space_info->groups_sem);
5796 if (list_empty(&block_group->list) ||
5797 block_group->ro) {
5798 /*
5799 * someone is removing this block group,
5800 * we can't jump into the have_block_group
5801 * target because our list pointers are not
5802 * valid
5803 */
5804 btrfs_put_block_group(block_group);
5805 up_read(&space_info->groups_sem);
5806 } else {
5807 index = get_block_group_index(block_group);
5808 goto have_block_group;
5809 }
5810 } else if (block_group) {
5811 btrfs_put_block_group(block_group);
5812 }
5813 }
5814 search:
5815 have_caching_bg = false;
5816 down_read(&space_info->groups_sem);
5817 list_for_each_entry(block_group, &space_info->block_groups[index],
5818 list) {
5819 u64 offset;
5820 int cached;
5821
5822 used_block_group = block_group;
5823 btrfs_get_block_group(block_group);
5824 search_start = block_group->key.objectid;
5825
5826 /*
5827 * this can happen if we end up cycling through all the
5828 * raid types, but we want to make sure we only allocate
5829 * for the proper type.
5830 */
5831 if (!block_group_bits(block_group, data)) {
5832 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5833 BTRFS_BLOCK_GROUP_RAID1 |
5834 BTRFS_BLOCK_GROUP_RAID5 |
5835 BTRFS_BLOCK_GROUP_RAID6 |
5836 BTRFS_BLOCK_GROUP_RAID10;
5837
5838 /*
5839 * if they asked for extra copies and this block group
5840 * doesn't provide them, bail. This does allow us to
5841 * fill raid0 from raid1.
5842 */
5843 if ((data & extra) && !(block_group->flags & extra))
5844 goto loop;
5845 }
5846
5847 have_block_group:
5848 cached = block_group_cache_done(block_group);
5849 if (unlikely(!cached)) {
5850 found_uncached_bg = true;
5851 ret = cache_block_group(block_group, 0);
5852 BUG_ON(ret < 0);
5853 ret = 0;
5854 }
5855
5856 if (unlikely(block_group->ro))
5857 goto loop;
5858
5859 /*
5860 * Ok we want to try and use the cluster allocator, so
5861 * lets look there
5862 */
5863 if (last_ptr) {
5864 unsigned long aligned_cluster;
5865 /*
5866 * the refill lock keeps out other
5867 * people trying to start a new cluster
5868 */
5869 spin_lock(&last_ptr->refill_lock);
5870 used_block_group = last_ptr->block_group;
5871 if (used_block_group != block_group &&
5872 (!used_block_group ||
5873 used_block_group->ro ||
5874 !block_group_bits(used_block_group, data))) {
5875 used_block_group = block_group;
5876 goto refill_cluster;
5877 }
5878
5879 if (used_block_group != block_group)
5880 btrfs_get_block_group(used_block_group);
5881
5882 offset = btrfs_alloc_from_cluster(used_block_group,
5883 last_ptr, num_bytes, used_block_group->key.objectid);
5884 if (offset) {
5885 /* we have a block, we're done */
5886 spin_unlock(&last_ptr->refill_lock);
5887 trace_btrfs_reserve_extent_cluster(root,
5888 block_group, search_start, num_bytes);
5889 goto checks;
5890 }
5891
5892 WARN_ON(last_ptr->block_group != used_block_group);
5893 if (used_block_group != block_group) {
5894 btrfs_put_block_group(used_block_group);
5895 used_block_group = block_group;
5896 }
5897 refill_cluster:
5898 BUG_ON(used_block_group != block_group);
5899 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5900 * set up a new clusters, so lets just skip it
5901 * and let the allocator find whatever block
5902 * it can find. If we reach this point, we
5903 * will have tried the cluster allocator
5904 * plenty of times and not have found
5905 * anything, so we are likely way too
5906 * fragmented for the clustering stuff to find
5907 * anything.
5908 *
5909 * However, if the cluster is taken from the
5910 * current block group, release the cluster
5911 * first, so that we stand a better chance of
5912 * succeeding in the unclustered
5913 * allocation. */
5914 if (loop >= LOOP_NO_EMPTY_SIZE &&
5915 last_ptr->block_group != block_group) {
5916 spin_unlock(&last_ptr->refill_lock);
5917 goto unclustered_alloc;
5918 }
5919
5920 /*
5921 * this cluster didn't work out, free it and
5922 * start over
5923 */
5924 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5925
5926 if (loop >= LOOP_NO_EMPTY_SIZE) {
5927 spin_unlock(&last_ptr->refill_lock);
5928 goto unclustered_alloc;
5929 }
5930
5931 aligned_cluster = max_t(unsigned long,
5932 empty_cluster + empty_size,
5933 block_group->full_stripe_len);
5934
5935 /* allocate a cluster in this block group */
5936 ret = btrfs_find_space_cluster(trans, root,
5937 block_group, last_ptr,
5938 search_start, num_bytes,
5939 aligned_cluster);
5940 if (ret == 0) {
5941 /*
5942 * now pull our allocation out of this
5943 * cluster
5944 */
5945 offset = btrfs_alloc_from_cluster(block_group,
5946 last_ptr, num_bytes,
5947 search_start);
5948 if (offset) {
5949 /* we found one, proceed */
5950 spin_unlock(&last_ptr->refill_lock);
5951 trace_btrfs_reserve_extent_cluster(root,
5952 block_group, search_start,
5953 num_bytes);
5954 goto checks;
5955 }
5956 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5957 && !failed_cluster_refill) {
5958 spin_unlock(&last_ptr->refill_lock);
5959
5960 failed_cluster_refill = true;
5961 wait_block_group_cache_progress(block_group,
5962 num_bytes + empty_cluster + empty_size);
5963 goto have_block_group;
5964 }
5965
5966 /*
5967 * at this point we either didn't find a cluster
5968 * or we weren't able to allocate a block from our
5969 * cluster. Free the cluster we've been trying
5970 * to use, and go to the next block group
5971 */
5972 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5973 spin_unlock(&last_ptr->refill_lock);
5974 goto loop;
5975 }
5976
5977 unclustered_alloc:
5978 spin_lock(&block_group->free_space_ctl->tree_lock);
5979 if (cached &&
5980 block_group->free_space_ctl->free_space <
5981 num_bytes + empty_cluster + empty_size) {
5982 spin_unlock(&block_group->free_space_ctl->tree_lock);
5983 goto loop;
5984 }
5985 spin_unlock(&block_group->free_space_ctl->tree_lock);
5986
5987 offset = btrfs_find_space_for_alloc(block_group, search_start,
5988 num_bytes, empty_size);
5989 /*
5990 * If we didn't find a chunk, and we haven't failed on this
5991 * block group before, and this block group is in the middle of
5992 * caching and we are ok with waiting, then go ahead and wait
5993 * for progress to be made, and set failed_alloc to true.
5994 *
5995 * If failed_alloc is true then we've already waited on this
5996 * block group once and should move on to the next block group.
5997 */
5998 if (!offset && !failed_alloc && !cached &&
5999 loop > LOOP_CACHING_NOWAIT) {
6000 wait_block_group_cache_progress(block_group,
6001 num_bytes + empty_size);
6002 failed_alloc = true;
6003 goto have_block_group;
6004 } else if (!offset) {
6005 if (!cached)
6006 have_caching_bg = true;
6007 goto loop;
6008 }
6009 checks:
6010 search_start = stripe_align(root, used_block_group,
6011 offset, num_bytes);
6012
6013 /* move on to the next group */
6014 if (search_start + num_bytes >
6015 used_block_group->key.objectid + used_block_group->key.offset) {
6016 btrfs_add_free_space(used_block_group, offset, num_bytes);
6017 goto loop;
6018 }
6019
6020 if (offset < search_start)
6021 btrfs_add_free_space(used_block_group, offset,
6022 search_start - offset);
6023 BUG_ON(offset > search_start);
6024
6025 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
6026 alloc_type);
6027 if (ret == -EAGAIN) {
6028 btrfs_add_free_space(used_block_group, offset, num_bytes);
6029 goto loop;
6030 }
6031
6032 /* we are all good, lets return */
6033 ins->objectid = search_start;
6034 ins->offset = num_bytes;
6035
6036 trace_btrfs_reserve_extent(orig_root, block_group,
6037 search_start, num_bytes);
6038 if (used_block_group != block_group)
6039 btrfs_put_block_group(used_block_group);
6040 btrfs_put_block_group(block_group);
6041 break;
6042 loop:
6043 failed_cluster_refill = false;
6044 failed_alloc = false;
6045 BUG_ON(index != get_block_group_index(block_group));
6046 if (used_block_group != block_group)
6047 btrfs_put_block_group(used_block_group);
6048 btrfs_put_block_group(block_group);
6049 }
6050 up_read(&space_info->groups_sem);
6051
6052 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6053 goto search;
6054
6055 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6056 goto search;
6057
6058 /*
6059 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6060 * caching kthreads as we move along
6061 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6062 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6063 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6064 * again
6065 */
6066 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6067 index = 0;
6068 loop++;
6069 if (loop == LOOP_ALLOC_CHUNK) {
6070 ret = do_chunk_alloc(trans, root, data,
6071 CHUNK_ALLOC_FORCE);
6072 /*
6073 * Do not bail out on ENOSPC since we
6074 * can do more things.
6075 */
6076 if (ret < 0 && ret != -ENOSPC) {
6077 btrfs_abort_transaction(trans,
6078 root, ret);
6079 goto out;
6080 }
6081 }
6082
6083 if (loop == LOOP_NO_EMPTY_SIZE) {
6084 empty_size = 0;
6085 empty_cluster = 0;
6086 }
6087
6088 goto search;
6089 } else if (!ins->objectid) {
6090 ret = -ENOSPC;
6091 } else if (ins->objectid) {
6092 ret = 0;
6093 }
6094 out:
6095
6096 return ret;
6097 }
6098
6099 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6100 int dump_block_groups)
6101 {
6102 struct btrfs_block_group_cache *cache;
6103 int index = 0;
6104
6105 spin_lock(&info->lock);
6106 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
6107 (unsigned long long)info->flags,
6108 (unsigned long long)(info->total_bytes - info->bytes_used -
6109 info->bytes_pinned - info->bytes_reserved -
6110 info->bytes_readonly),
6111 (info->full) ? "" : "not ");
6112 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
6113 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6114 (unsigned long long)info->total_bytes,
6115 (unsigned long long)info->bytes_used,
6116 (unsigned long long)info->bytes_pinned,
6117 (unsigned long long)info->bytes_reserved,
6118 (unsigned long long)info->bytes_may_use,
6119 (unsigned long long)info->bytes_readonly);
6120 spin_unlock(&info->lock);
6121
6122 if (!dump_block_groups)
6123 return;
6124
6125 down_read(&info->groups_sem);
6126 again:
6127 list_for_each_entry(cache, &info->block_groups[index], list) {
6128 spin_lock(&cache->lock);
6129 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
6130 (unsigned long long)cache->key.objectid,
6131 (unsigned long long)cache->key.offset,
6132 (unsigned long long)btrfs_block_group_used(&cache->item),
6133 (unsigned long long)cache->pinned,
6134 (unsigned long long)cache->reserved,
6135 cache->ro ? "[readonly]" : "");
6136 btrfs_dump_free_space(cache, bytes);
6137 spin_unlock(&cache->lock);
6138 }
6139 if (++index < BTRFS_NR_RAID_TYPES)
6140 goto again;
6141 up_read(&info->groups_sem);
6142 }
6143
6144 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
6145 struct btrfs_root *root,
6146 u64 num_bytes, u64 min_alloc_size,
6147 u64 empty_size, u64 hint_byte,
6148 struct btrfs_key *ins, u64 data)
6149 {
6150 bool final_tried = false;
6151 int ret;
6152
6153 data = btrfs_get_alloc_profile(root, data);
6154 again:
6155 WARN_ON(num_bytes < root->sectorsize);
6156 ret = find_free_extent(trans, root, num_bytes, empty_size,
6157 hint_byte, ins, data);
6158
6159 if (ret == -ENOSPC) {
6160 if (!final_tried) {
6161 num_bytes = num_bytes >> 1;
6162 num_bytes = round_down(num_bytes, root->sectorsize);
6163 num_bytes = max(num_bytes, min_alloc_size);
6164 if (num_bytes == min_alloc_size)
6165 final_tried = true;
6166 goto again;
6167 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6168 struct btrfs_space_info *sinfo;
6169
6170 sinfo = __find_space_info(root->fs_info, data);
6171 printk(KERN_ERR "btrfs allocation failed flags %llu, "
6172 "wanted %llu\n", (unsigned long long)data,
6173 (unsigned long long)num_bytes);
6174 if (sinfo)
6175 dump_space_info(sinfo, num_bytes, 1);
6176 }
6177 }
6178
6179 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6180
6181 return ret;
6182 }
6183
6184 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6185 u64 start, u64 len, int pin)
6186 {
6187 struct btrfs_block_group_cache *cache;
6188 int ret = 0;
6189
6190 cache = btrfs_lookup_block_group(root->fs_info, start);
6191 if (!cache) {
6192 printk(KERN_ERR "Unable to find block group for %llu\n",
6193 (unsigned long long)start);
6194 return -ENOSPC;
6195 }
6196
6197 if (btrfs_test_opt(root, DISCARD))
6198 ret = btrfs_discard_extent(root, start, len, NULL);
6199
6200 if (pin)
6201 pin_down_extent(root, cache, start, len, 1);
6202 else {
6203 btrfs_add_free_space(cache, start, len);
6204 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6205 }
6206 btrfs_put_block_group(cache);
6207
6208 trace_btrfs_reserved_extent_free(root, start, len);
6209
6210 return ret;
6211 }
6212
6213 int btrfs_free_reserved_extent(struct btrfs_root *root,
6214 u64 start, u64 len)
6215 {
6216 return __btrfs_free_reserved_extent(root, start, len, 0);
6217 }
6218
6219 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6220 u64 start, u64 len)
6221 {
6222 return __btrfs_free_reserved_extent(root, start, len, 1);
6223 }
6224
6225 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6226 struct btrfs_root *root,
6227 u64 parent, u64 root_objectid,
6228 u64 flags, u64 owner, u64 offset,
6229 struct btrfs_key *ins, int ref_mod)
6230 {
6231 int ret;
6232 struct btrfs_fs_info *fs_info = root->fs_info;
6233 struct btrfs_extent_item *extent_item;
6234 struct btrfs_extent_inline_ref *iref;
6235 struct btrfs_path *path;
6236 struct extent_buffer *leaf;
6237 int type;
6238 u32 size;
6239
6240 if (parent > 0)
6241 type = BTRFS_SHARED_DATA_REF_KEY;
6242 else
6243 type = BTRFS_EXTENT_DATA_REF_KEY;
6244
6245 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6246
6247 path = btrfs_alloc_path();
6248 if (!path)
6249 return -ENOMEM;
6250
6251 path->leave_spinning = 1;
6252 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6253 ins, size);
6254 if (ret) {
6255 btrfs_free_path(path);
6256 return ret;
6257 }
6258
6259 leaf = path->nodes[0];
6260 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6261 struct btrfs_extent_item);
6262 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6263 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6264 btrfs_set_extent_flags(leaf, extent_item,
6265 flags | BTRFS_EXTENT_FLAG_DATA);
6266
6267 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6268 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6269 if (parent > 0) {
6270 struct btrfs_shared_data_ref *ref;
6271 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6272 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6273 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6274 } else {
6275 struct btrfs_extent_data_ref *ref;
6276 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6277 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6278 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6279 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6280 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6281 }
6282
6283 btrfs_mark_buffer_dirty(path->nodes[0]);
6284 btrfs_free_path(path);
6285
6286 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6287 if (ret) { /* -ENOENT, logic error */
6288 printk(KERN_ERR "btrfs update block group failed for %llu "
6289 "%llu\n", (unsigned long long)ins->objectid,
6290 (unsigned long long)ins->offset);
6291 BUG();
6292 }
6293 return ret;
6294 }
6295
6296 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6297 struct btrfs_root *root,
6298 u64 parent, u64 root_objectid,
6299 u64 flags, struct btrfs_disk_key *key,
6300 int level, struct btrfs_key *ins)
6301 {
6302 int ret;
6303 struct btrfs_fs_info *fs_info = root->fs_info;
6304 struct btrfs_extent_item *extent_item;
6305 struct btrfs_tree_block_info *block_info;
6306 struct btrfs_extent_inline_ref *iref;
6307 struct btrfs_path *path;
6308 struct extent_buffer *leaf;
6309 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
6310
6311 path = btrfs_alloc_path();
6312 if (!path)
6313 return -ENOMEM;
6314
6315 path->leave_spinning = 1;
6316 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6317 ins, size);
6318 if (ret) {
6319 btrfs_free_path(path);
6320 return ret;
6321 }
6322
6323 leaf = path->nodes[0];
6324 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6325 struct btrfs_extent_item);
6326 btrfs_set_extent_refs(leaf, extent_item, 1);
6327 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6328 btrfs_set_extent_flags(leaf, extent_item,
6329 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6330 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6331
6332 btrfs_set_tree_block_key(leaf, block_info, key);
6333 btrfs_set_tree_block_level(leaf, block_info, level);
6334
6335 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6336 if (parent > 0) {
6337 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6338 btrfs_set_extent_inline_ref_type(leaf, iref,
6339 BTRFS_SHARED_BLOCK_REF_KEY);
6340 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6341 } else {
6342 btrfs_set_extent_inline_ref_type(leaf, iref,
6343 BTRFS_TREE_BLOCK_REF_KEY);
6344 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6345 }
6346
6347 btrfs_mark_buffer_dirty(leaf);
6348 btrfs_free_path(path);
6349
6350 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6351 if (ret) { /* -ENOENT, logic error */
6352 printk(KERN_ERR "btrfs update block group failed for %llu "
6353 "%llu\n", (unsigned long long)ins->objectid,
6354 (unsigned long long)ins->offset);
6355 BUG();
6356 }
6357 return ret;
6358 }
6359
6360 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6361 struct btrfs_root *root,
6362 u64 root_objectid, u64 owner,
6363 u64 offset, struct btrfs_key *ins)
6364 {
6365 int ret;
6366
6367 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6368
6369 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6370 ins->offset, 0,
6371 root_objectid, owner, offset,
6372 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6373 return ret;
6374 }
6375
6376 /*
6377 * this is used by the tree logging recovery code. It records that
6378 * an extent has been allocated and makes sure to clear the free
6379 * space cache bits as well
6380 */
6381 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6382 struct btrfs_root *root,
6383 u64 root_objectid, u64 owner, u64 offset,
6384 struct btrfs_key *ins)
6385 {
6386 int ret;
6387 struct btrfs_block_group_cache *block_group;
6388 struct btrfs_caching_control *caching_ctl;
6389 u64 start = ins->objectid;
6390 u64 num_bytes = ins->offset;
6391
6392 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6393 cache_block_group(block_group, 0);
6394 caching_ctl = get_caching_control(block_group);
6395
6396 if (!caching_ctl) {
6397 BUG_ON(!block_group_cache_done(block_group));
6398 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6399 BUG_ON(ret); /* -ENOMEM */
6400 } else {
6401 mutex_lock(&caching_ctl->mutex);
6402
6403 if (start >= caching_ctl->progress) {
6404 ret = add_excluded_extent(root, start, num_bytes);
6405 BUG_ON(ret); /* -ENOMEM */
6406 } else if (start + num_bytes <= caching_ctl->progress) {
6407 ret = btrfs_remove_free_space(block_group,
6408 start, num_bytes);
6409 BUG_ON(ret); /* -ENOMEM */
6410 } else {
6411 num_bytes = caching_ctl->progress - start;
6412 ret = btrfs_remove_free_space(block_group,
6413 start, num_bytes);
6414 BUG_ON(ret); /* -ENOMEM */
6415
6416 start = caching_ctl->progress;
6417 num_bytes = ins->objectid + ins->offset -
6418 caching_ctl->progress;
6419 ret = add_excluded_extent(root, start, num_bytes);
6420 BUG_ON(ret); /* -ENOMEM */
6421 }
6422
6423 mutex_unlock(&caching_ctl->mutex);
6424 put_caching_control(caching_ctl);
6425 }
6426
6427 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6428 RESERVE_ALLOC_NO_ACCOUNT);
6429 BUG_ON(ret); /* logic error */
6430 btrfs_put_block_group(block_group);
6431 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6432 0, owner, offset, ins, 1);
6433 return ret;
6434 }
6435
6436 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6437 struct btrfs_root *root,
6438 u64 bytenr, u32 blocksize,
6439 int level)
6440 {
6441 struct extent_buffer *buf;
6442
6443 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6444 if (!buf)
6445 return ERR_PTR(-ENOMEM);
6446 btrfs_set_header_generation(buf, trans->transid);
6447 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6448 btrfs_tree_lock(buf);
6449 clean_tree_block(trans, root, buf);
6450 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6451
6452 btrfs_set_lock_blocking(buf);
6453 btrfs_set_buffer_uptodate(buf);
6454
6455 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6456 /*
6457 * we allow two log transactions at a time, use different
6458 * EXENT bit to differentiate dirty pages.
6459 */
6460 if (root->log_transid % 2 == 0)
6461 set_extent_dirty(&root->dirty_log_pages, buf->start,
6462 buf->start + buf->len - 1, GFP_NOFS);
6463 else
6464 set_extent_new(&root->dirty_log_pages, buf->start,
6465 buf->start + buf->len - 1, GFP_NOFS);
6466 } else {
6467 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6468 buf->start + buf->len - 1, GFP_NOFS);
6469 }
6470 trans->blocks_used++;
6471 /* this returns a buffer locked for blocking */
6472 return buf;
6473 }
6474
6475 static struct btrfs_block_rsv *
6476 use_block_rsv(struct btrfs_trans_handle *trans,
6477 struct btrfs_root *root, u32 blocksize)
6478 {
6479 struct btrfs_block_rsv *block_rsv;
6480 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6481 int ret;
6482
6483 block_rsv = get_block_rsv(trans, root);
6484
6485 if (block_rsv->size == 0) {
6486 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6487 BTRFS_RESERVE_NO_FLUSH);
6488 /*
6489 * If we couldn't reserve metadata bytes try and use some from
6490 * the global reserve.
6491 */
6492 if (ret && block_rsv != global_rsv) {
6493 ret = block_rsv_use_bytes(global_rsv, blocksize);
6494 if (!ret)
6495 return global_rsv;
6496 return ERR_PTR(ret);
6497 } else if (ret) {
6498 return ERR_PTR(ret);
6499 }
6500 return block_rsv;
6501 }
6502
6503 ret = block_rsv_use_bytes(block_rsv, blocksize);
6504 if (!ret)
6505 return block_rsv;
6506 if (ret && !block_rsv->failfast) {
6507 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6508 static DEFINE_RATELIMIT_STATE(_rs,
6509 DEFAULT_RATELIMIT_INTERVAL * 10,
6510 /*DEFAULT_RATELIMIT_BURST*/ 1);
6511 if (__ratelimit(&_rs))
6512 WARN(1, KERN_DEBUG
6513 "btrfs: block rsv returned %d\n", ret);
6514 }
6515 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6516 BTRFS_RESERVE_NO_FLUSH);
6517 if (!ret) {
6518 return block_rsv;
6519 } else if (ret && block_rsv != global_rsv) {
6520 ret = block_rsv_use_bytes(global_rsv, blocksize);
6521 if (!ret)
6522 return global_rsv;
6523 }
6524 }
6525
6526 return ERR_PTR(-ENOSPC);
6527 }
6528
6529 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6530 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6531 {
6532 block_rsv_add_bytes(block_rsv, blocksize, 0);
6533 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6534 }
6535
6536 /*
6537 * finds a free extent and does all the dirty work required for allocation
6538 * returns the key for the extent through ins, and a tree buffer for
6539 * the first block of the extent through buf.
6540 *
6541 * returns the tree buffer or NULL.
6542 */
6543 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6544 struct btrfs_root *root, u32 blocksize,
6545 u64 parent, u64 root_objectid,
6546 struct btrfs_disk_key *key, int level,
6547 u64 hint, u64 empty_size)
6548 {
6549 struct btrfs_key ins;
6550 struct btrfs_block_rsv *block_rsv;
6551 struct extent_buffer *buf;
6552 u64 flags = 0;
6553 int ret;
6554
6555
6556 block_rsv = use_block_rsv(trans, root, blocksize);
6557 if (IS_ERR(block_rsv))
6558 return ERR_CAST(block_rsv);
6559
6560 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6561 empty_size, hint, &ins, 0);
6562 if (ret) {
6563 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6564 return ERR_PTR(ret);
6565 }
6566
6567 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6568 blocksize, level);
6569 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6570
6571 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6572 if (parent == 0)
6573 parent = ins.objectid;
6574 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6575 } else
6576 BUG_ON(parent > 0);
6577
6578 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6579 struct btrfs_delayed_extent_op *extent_op;
6580 extent_op = btrfs_alloc_delayed_extent_op();
6581 BUG_ON(!extent_op); /* -ENOMEM */
6582 if (key)
6583 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6584 else
6585 memset(&extent_op->key, 0, sizeof(extent_op->key));
6586 extent_op->flags_to_set = flags;
6587 extent_op->update_key = 1;
6588 extent_op->update_flags = 1;
6589 extent_op->is_data = 0;
6590
6591 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6592 ins.objectid,
6593 ins.offset, parent, root_objectid,
6594 level, BTRFS_ADD_DELAYED_EXTENT,
6595 extent_op, 0);
6596 BUG_ON(ret); /* -ENOMEM */
6597 }
6598 return buf;
6599 }
6600
6601 struct walk_control {
6602 u64 refs[BTRFS_MAX_LEVEL];
6603 u64 flags[BTRFS_MAX_LEVEL];
6604 struct btrfs_key update_progress;
6605 int stage;
6606 int level;
6607 int shared_level;
6608 int update_ref;
6609 int keep_locks;
6610 int reada_slot;
6611 int reada_count;
6612 int for_reloc;
6613 };
6614
6615 #define DROP_REFERENCE 1
6616 #define UPDATE_BACKREF 2
6617
6618 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6619 struct btrfs_root *root,
6620 struct walk_control *wc,
6621 struct btrfs_path *path)
6622 {
6623 u64 bytenr;
6624 u64 generation;
6625 u64 refs;
6626 u64 flags;
6627 u32 nritems;
6628 u32 blocksize;
6629 struct btrfs_key key;
6630 struct extent_buffer *eb;
6631 int ret;
6632 int slot;
6633 int nread = 0;
6634
6635 if (path->slots[wc->level] < wc->reada_slot) {
6636 wc->reada_count = wc->reada_count * 2 / 3;
6637 wc->reada_count = max(wc->reada_count, 2);
6638 } else {
6639 wc->reada_count = wc->reada_count * 3 / 2;
6640 wc->reada_count = min_t(int, wc->reada_count,
6641 BTRFS_NODEPTRS_PER_BLOCK(root));
6642 }
6643
6644 eb = path->nodes[wc->level];
6645 nritems = btrfs_header_nritems(eb);
6646 blocksize = btrfs_level_size(root, wc->level - 1);
6647
6648 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6649 if (nread >= wc->reada_count)
6650 break;
6651
6652 cond_resched();
6653 bytenr = btrfs_node_blockptr(eb, slot);
6654 generation = btrfs_node_ptr_generation(eb, slot);
6655
6656 if (slot == path->slots[wc->level])
6657 goto reada;
6658
6659 if (wc->stage == UPDATE_BACKREF &&
6660 generation <= root->root_key.offset)
6661 continue;
6662
6663 /* We don't lock the tree block, it's OK to be racy here */
6664 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6665 &refs, &flags);
6666 /* We don't care about errors in readahead. */
6667 if (ret < 0)
6668 continue;
6669 BUG_ON(refs == 0);
6670
6671 if (wc->stage == DROP_REFERENCE) {
6672 if (refs == 1)
6673 goto reada;
6674
6675 if (wc->level == 1 &&
6676 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6677 continue;
6678 if (!wc->update_ref ||
6679 generation <= root->root_key.offset)
6680 continue;
6681 btrfs_node_key_to_cpu(eb, &key, slot);
6682 ret = btrfs_comp_cpu_keys(&key,
6683 &wc->update_progress);
6684 if (ret < 0)
6685 continue;
6686 } else {
6687 if (wc->level == 1 &&
6688 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6689 continue;
6690 }
6691 reada:
6692 ret = readahead_tree_block(root, bytenr, blocksize,
6693 generation);
6694 if (ret)
6695 break;
6696 nread++;
6697 }
6698 wc->reada_slot = slot;
6699 }
6700
6701 /*
6702 * helper to process tree block while walking down the tree.
6703 *
6704 * when wc->stage == UPDATE_BACKREF, this function updates
6705 * back refs for pointers in the block.
6706 *
6707 * NOTE: return value 1 means we should stop walking down.
6708 */
6709 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6710 struct btrfs_root *root,
6711 struct btrfs_path *path,
6712 struct walk_control *wc, int lookup_info)
6713 {
6714 int level = wc->level;
6715 struct extent_buffer *eb = path->nodes[level];
6716 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6717 int ret;
6718
6719 if (wc->stage == UPDATE_BACKREF &&
6720 btrfs_header_owner(eb) != root->root_key.objectid)
6721 return 1;
6722
6723 /*
6724 * when reference count of tree block is 1, it won't increase
6725 * again. once full backref flag is set, we never clear it.
6726 */
6727 if (lookup_info &&
6728 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6729 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6730 BUG_ON(!path->locks[level]);
6731 ret = btrfs_lookup_extent_info(trans, root,
6732 eb->start, eb->len,
6733 &wc->refs[level],
6734 &wc->flags[level]);
6735 BUG_ON(ret == -ENOMEM);
6736 if (ret)
6737 return ret;
6738 BUG_ON(wc->refs[level] == 0);
6739 }
6740
6741 if (wc->stage == DROP_REFERENCE) {
6742 if (wc->refs[level] > 1)
6743 return 1;
6744
6745 if (path->locks[level] && !wc->keep_locks) {
6746 btrfs_tree_unlock_rw(eb, path->locks[level]);
6747 path->locks[level] = 0;
6748 }
6749 return 0;
6750 }
6751
6752 /* wc->stage == UPDATE_BACKREF */
6753 if (!(wc->flags[level] & flag)) {
6754 BUG_ON(!path->locks[level]);
6755 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6756 BUG_ON(ret); /* -ENOMEM */
6757 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6758 BUG_ON(ret); /* -ENOMEM */
6759 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6760 eb->len, flag, 0);
6761 BUG_ON(ret); /* -ENOMEM */
6762 wc->flags[level] |= flag;
6763 }
6764
6765 /*
6766 * the block is shared by multiple trees, so it's not good to
6767 * keep the tree lock
6768 */
6769 if (path->locks[level] && level > 0) {
6770 btrfs_tree_unlock_rw(eb, path->locks[level]);
6771 path->locks[level] = 0;
6772 }
6773 return 0;
6774 }
6775
6776 /*
6777 * helper to process tree block pointer.
6778 *
6779 * when wc->stage == DROP_REFERENCE, this function checks
6780 * reference count of the block pointed to. if the block
6781 * is shared and we need update back refs for the subtree
6782 * rooted at the block, this function changes wc->stage to
6783 * UPDATE_BACKREF. if the block is shared and there is no
6784 * need to update back, this function drops the reference
6785 * to the block.
6786 *
6787 * NOTE: return value 1 means we should stop walking down.
6788 */
6789 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6790 struct btrfs_root *root,
6791 struct btrfs_path *path,
6792 struct walk_control *wc, int *lookup_info)
6793 {
6794 u64 bytenr;
6795 u64 generation;
6796 u64 parent;
6797 u32 blocksize;
6798 struct btrfs_key key;
6799 struct extent_buffer *next;
6800 int level = wc->level;
6801 int reada = 0;
6802 int ret = 0;
6803
6804 generation = btrfs_node_ptr_generation(path->nodes[level],
6805 path->slots[level]);
6806 /*
6807 * if the lower level block was created before the snapshot
6808 * was created, we know there is no need to update back refs
6809 * for the subtree
6810 */
6811 if (wc->stage == UPDATE_BACKREF &&
6812 generation <= root->root_key.offset) {
6813 *lookup_info = 1;
6814 return 1;
6815 }
6816
6817 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6818 blocksize = btrfs_level_size(root, level - 1);
6819
6820 next = btrfs_find_tree_block(root, bytenr, blocksize);
6821 if (!next) {
6822 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6823 if (!next)
6824 return -ENOMEM;
6825 reada = 1;
6826 }
6827 btrfs_tree_lock(next);
6828 btrfs_set_lock_blocking(next);
6829
6830 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6831 &wc->refs[level - 1],
6832 &wc->flags[level - 1]);
6833 if (ret < 0) {
6834 btrfs_tree_unlock(next);
6835 return ret;
6836 }
6837
6838 BUG_ON(wc->refs[level - 1] == 0);
6839 *lookup_info = 0;
6840
6841 if (wc->stage == DROP_REFERENCE) {
6842 if (wc->refs[level - 1] > 1) {
6843 if (level == 1 &&
6844 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6845 goto skip;
6846
6847 if (!wc->update_ref ||
6848 generation <= root->root_key.offset)
6849 goto skip;
6850
6851 btrfs_node_key_to_cpu(path->nodes[level], &key,
6852 path->slots[level]);
6853 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6854 if (ret < 0)
6855 goto skip;
6856
6857 wc->stage = UPDATE_BACKREF;
6858 wc->shared_level = level - 1;
6859 }
6860 } else {
6861 if (level == 1 &&
6862 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6863 goto skip;
6864 }
6865
6866 if (!btrfs_buffer_uptodate(next, generation, 0)) {
6867 btrfs_tree_unlock(next);
6868 free_extent_buffer(next);
6869 next = NULL;
6870 *lookup_info = 1;
6871 }
6872
6873 if (!next) {
6874 if (reada && level == 1)
6875 reada_walk_down(trans, root, wc, path);
6876 next = read_tree_block(root, bytenr, blocksize, generation);
6877 if (!next)
6878 return -EIO;
6879 btrfs_tree_lock(next);
6880 btrfs_set_lock_blocking(next);
6881 }
6882
6883 level--;
6884 BUG_ON(level != btrfs_header_level(next));
6885 path->nodes[level] = next;
6886 path->slots[level] = 0;
6887 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6888 wc->level = level;
6889 if (wc->level == 1)
6890 wc->reada_slot = 0;
6891 return 0;
6892 skip:
6893 wc->refs[level - 1] = 0;
6894 wc->flags[level - 1] = 0;
6895 if (wc->stage == DROP_REFERENCE) {
6896 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6897 parent = path->nodes[level]->start;
6898 } else {
6899 BUG_ON(root->root_key.objectid !=
6900 btrfs_header_owner(path->nodes[level]));
6901 parent = 0;
6902 }
6903
6904 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6905 root->root_key.objectid, level - 1, 0, 0);
6906 BUG_ON(ret); /* -ENOMEM */
6907 }
6908 btrfs_tree_unlock(next);
6909 free_extent_buffer(next);
6910 *lookup_info = 1;
6911 return 1;
6912 }
6913
6914 /*
6915 * helper to process tree block while walking up the tree.
6916 *
6917 * when wc->stage == DROP_REFERENCE, this function drops
6918 * reference count on the block.
6919 *
6920 * when wc->stage == UPDATE_BACKREF, this function changes
6921 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6922 * to UPDATE_BACKREF previously while processing the block.
6923 *
6924 * NOTE: return value 1 means we should stop walking up.
6925 */
6926 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6927 struct btrfs_root *root,
6928 struct btrfs_path *path,
6929 struct walk_control *wc)
6930 {
6931 int ret;
6932 int level = wc->level;
6933 struct extent_buffer *eb = path->nodes[level];
6934 u64 parent = 0;
6935
6936 if (wc->stage == UPDATE_BACKREF) {
6937 BUG_ON(wc->shared_level < level);
6938 if (level < wc->shared_level)
6939 goto out;
6940
6941 ret = find_next_key(path, level + 1, &wc->update_progress);
6942 if (ret > 0)
6943 wc->update_ref = 0;
6944
6945 wc->stage = DROP_REFERENCE;
6946 wc->shared_level = -1;
6947 path->slots[level] = 0;
6948
6949 /*
6950 * check reference count again if the block isn't locked.
6951 * we should start walking down the tree again if reference
6952 * count is one.
6953 */
6954 if (!path->locks[level]) {
6955 BUG_ON(level == 0);
6956 btrfs_tree_lock(eb);
6957 btrfs_set_lock_blocking(eb);
6958 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6959
6960 ret = btrfs_lookup_extent_info(trans, root,
6961 eb->start, eb->len,
6962 &wc->refs[level],
6963 &wc->flags[level]);
6964 if (ret < 0) {
6965 btrfs_tree_unlock_rw(eb, path->locks[level]);
6966 path->locks[level] = 0;
6967 return ret;
6968 }
6969 BUG_ON(wc->refs[level] == 0);
6970 if (wc->refs[level] == 1) {
6971 btrfs_tree_unlock_rw(eb, path->locks[level]);
6972 path->locks[level] = 0;
6973 return 1;
6974 }
6975 }
6976 }
6977
6978 /* wc->stage == DROP_REFERENCE */
6979 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6980
6981 if (wc->refs[level] == 1) {
6982 if (level == 0) {
6983 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6984 ret = btrfs_dec_ref(trans, root, eb, 1,
6985 wc->for_reloc);
6986 else
6987 ret = btrfs_dec_ref(trans, root, eb, 0,
6988 wc->for_reloc);
6989 BUG_ON(ret); /* -ENOMEM */
6990 }
6991 /* make block locked assertion in clean_tree_block happy */
6992 if (!path->locks[level] &&
6993 btrfs_header_generation(eb) == trans->transid) {
6994 btrfs_tree_lock(eb);
6995 btrfs_set_lock_blocking(eb);
6996 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6997 }
6998 clean_tree_block(trans, root, eb);
6999 }
7000
7001 if (eb == root->node) {
7002 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7003 parent = eb->start;
7004 else
7005 BUG_ON(root->root_key.objectid !=
7006 btrfs_header_owner(eb));
7007 } else {
7008 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7009 parent = path->nodes[level + 1]->start;
7010 else
7011 BUG_ON(root->root_key.objectid !=
7012 btrfs_header_owner(path->nodes[level + 1]));
7013 }
7014
7015 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7016 out:
7017 wc->refs[level] = 0;
7018 wc->flags[level] = 0;
7019 return 0;
7020 }
7021
7022 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7023 struct btrfs_root *root,
7024 struct btrfs_path *path,
7025 struct walk_control *wc)
7026 {
7027 int level = wc->level;
7028 int lookup_info = 1;
7029 int ret;
7030
7031 while (level >= 0) {
7032 ret = walk_down_proc(trans, root, path, wc, lookup_info);
7033 if (ret > 0)
7034 break;
7035
7036 if (level == 0)
7037 break;
7038
7039 if (path->slots[level] >=
7040 btrfs_header_nritems(path->nodes[level]))
7041 break;
7042
7043 ret = do_walk_down(trans, root, path, wc, &lookup_info);
7044 if (ret > 0) {
7045 path->slots[level]++;
7046 continue;
7047 } else if (ret < 0)
7048 return ret;
7049 level = wc->level;
7050 }
7051 return 0;
7052 }
7053
7054 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7055 struct btrfs_root *root,
7056 struct btrfs_path *path,
7057 struct walk_control *wc, int max_level)
7058 {
7059 int level = wc->level;
7060 int ret;
7061
7062 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7063 while (level < max_level && path->nodes[level]) {
7064 wc->level = level;
7065 if (path->slots[level] + 1 <
7066 btrfs_header_nritems(path->nodes[level])) {
7067 path->slots[level]++;
7068 return 0;
7069 } else {
7070 ret = walk_up_proc(trans, root, path, wc);
7071 if (ret > 0)
7072 return 0;
7073
7074 if (path->locks[level]) {
7075 btrfs_tree_unlock_rw(path->nodes[level],
7076 path->locks[level]);
7077 path->locks[level] = 0;
7078 }
7079 free_extent_buffer(path->nodes[level]);
7080 path->nodes[level] = NULL;
7081 level++;
7082 }
7083 }
7084 return 1;
7085 }
7086
7087 /*
7088 * drop a subvolume tree.
7089 *
7090 * this function traverses the tree freeing any blocks that only
7091 * referenced by the tree.
7092 *
7093 * when a shared tree block is found. this function decreases its
7094 * reference count by one. if update_ref is true, this function
7095 * also make sure backrefs for the shared block and all lower level
7096 * blocks are properly updated.
7097 */
7098 int btrfs_drop_snapshot(struct btrfs_root *root,
7099 struct btrfs_block_rsv *block_rsv, int update_ref,
7100 int for_reloc)
7101 {
7102 struct btrfs_path *path;
7103 struct btrfs_trans_handle *trans;
7104 struct btrfs_root *tree_root = root->fs_info->tree_root;
7105 struct btrfs_root_item *root_item = &root->root_item;
7106 struct walk_control *wc;
7107 struct btrfs_key key;
7108 int err = 0;
7109 int ret;
7110 int level;
7111
7112 path = btrfs_alloc_path();
7113 if (!path) {
7114 err = -ENOMEM;
7115 goto out;
7116 }
7117
7118 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7119 if (!wc) {
7120 btrfs_free_path(path);
7121 err = -ENOMEM;
7122 goto out;
7123 }
7124
7125 trans = btrfs_start_transaction(tree_root, 0);
7126 if (IS_ERR(trans)) {
7127 err = PTR_ERR(trans);
7128 goto out_free;
7129 }
7130
7131 if (block_rsv)
7132 trans->block_rsv = block_rsv;
7133
7134 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7135 level = btrfs_header_level(root->node);
7136 path->nodes[level] = btrfs_lock_root_node(root);
7137 btrfs_set_lock_blocking(path->nodes[level]);
7138 path->slots[level] = 0;
7139 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7140 memset(&wc->update_progress, 0,
7141 sizeof(wc->update_progress));
7142 } else {
7143 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7144 memcpy(&wc->update_progress, &key,
7145 sizeof(wc->update_progress));
7146
7147 level = root_item->drop_level;
7148 BUG_ON(level == 0);
7149 path->lowest_level = level;
7150 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7151 path->lowest_level = 0;
7152 if (ret < 0) {
7153 err = ret;
7154 goto out_end_trans;
7155 }
7156 WARN_ON(ret > 0);
7157
7158 /*
7159 * unlock our path, this is safe because only this
7160 * function is allowed to delete this snapshot
7161 */
7162 btrfs_unlock_up_safe(path, 0);
7163
7164 level = btrfs_header_level(root->node);
7165 while (1) {
7166 btrfs_tree_lock(path->nodes[level]);
7167 btrfs_set_lock_blocking(path->nodes[level]);
7168
7169 ret = btrfs_lookup_extent_info(trans, root,
7170 path->nodes[level]->start,
7171 path->nodes[level]->len,
7172 &wc->refs[level],
7173 &wc->flags[level]);
7174 if (ret < 0) {
7175 err = ret;
7176 goto out_end_trans;
7177 }
7178 BUG_ON(wc->refs[level] == 0);
7179
7180 if (level == root_item->drop_level)
7181 break;
7182
7183 btrfs_tree_unlock(path->nodes[level]);
7184 WARN_ON(wc->refs[level] != 1);
7185 level--;
7186 }
7187 }
7188
7189 wc->level = level;
7190 wc->shared_level = -1;
7191 wc->stage = DROP_REFERENCE;
7192 wc->update_ref = update_ref;
7193 wc->keep_locks = 0;
7194 wc->for_reloc = for_reloc;
7195 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7196
7197 while (1) {
7198 ret = walk_down_tree(trans, root, path, wc);
7199 if (ret < 0) {
7200 err = ret;
7201 break;
7202 }
7203
7204 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7205 if (ret < 0) {
7206 err = ret;
7207 break;
7208 }
7209
7210 if (ret > 0) {
7211 BUG_ON(wc->stage != DROP_REFERENCE);
7212 break;
7213 }
7214
7215 if (wc->stage == DROP_REFERENCE) {
7216 level = wc->level;
7217 btrfs_node_key(path->nodes[level],
7218 &root_item->drop_progress,
7219 path->slots[level]);
7220 root_item->drop_level = level;
7221 }
7222
7223 BUG_ON(wc->level == 0);
7224 if (btrfs_should_end_transaction(trans, tree_root)) {
7225 ret = btrfs_update_root(trans, tree_root,
7226 &root->root_key,
7227 root_item);
7228 if (ret) {
7229 btrfs_abort_transaction(trans, tree_root, ret);
7230 err = ret;
7231 goto out_end_trans;
7232 }
7233
7234 btrfs_end_transaction_throttle(trans, tree_root);
7235 trans = btrfs_start_transaction(tree_root, 0);
7236 if (IS_ERR(trans)) {
7237 err = PTR_ERR(trans);
7238 goto out_free;
7239 }
7240 if (block_rsv)
7241 trans->block_rsv = block_rsv;
7242 }
7243 }
7244 btrfs_release_path(path);
7245 if (err)
7246 goto out_end_trans;
7247
7248 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7249 if (ret) {
7250 btrfs_abort_transaction(trans, tree_root, ret);
7251 goto out_end_trans;
7252 }
7253
7254 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7255 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
7256 NULL, NULL);
7257 if (ret < 0) {
7258 btrfs_abort_transaction(trans, tree_root, ret);
7259 err = ret;
7260 goto out_end_trans;
7261 } else if (ret > 0) {
7262 /* if we fail to delete the orphan item this time
7263 * around, it'll get picked up the next time.
7264 *
7265 * The most common failure here is just -ENOENT.
7266 */
7267 btrfs_del_orphan_item(trans, tree_root,
7268 root->root_key.objectid);
7269 }
7270 }
7271
7272 if (root->in_radix) {
7273 btrfs_free_fs_root(tree_root->fs_info, root);
7274 } else {
7275 free_extent_buffer(root->node);
7276 free_extent_buffer(root->commit_root);
7277 kfree(root);
7278 }
7279 out_end_trans:
7280 btrfs_end_transaction_throttle(trans, tree_root);
7281 out_free:
7282 kfree(wc);
7283 btrfs_free_path(path);
7284 out:
7285 if (err)
7286 btrfs_std_error(root->fs_info, err);
7287 return err;
7288 }
7289
7290 /*
7291 * drop subtree rooted at tree block 'node'.
7292 *
7293 * NOTE: this function will unlock and release tree block 'node'
7294 * only used by relocation code
7295 */
7296 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7297 struct btrfs_root *root,
7298 struct extent_buffer *node,
7299 struct extent_buffer *parent)
7300 {
7301 struct btrfs_path *path;
7302 struct walk_control *wc;
7303 int level;
7304 int parent_level;
7305 int ret = 0;
7306 int wret;
7307
7308 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7309
7310 path = btrfs_alloc_path();
7311 if (!path)
7312 return -ENOMEM;
7313
7314 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7315 if (!wc) {
7316 btrfs_free_path(path);
7317 return -ENOMEM;
7318 }
7319
7320 btrfs_assert_tree_locked(parent);
7321 parent_level = btrfs_header_level(parent);
7322 extent_buffer_get(parent);
7323 path->nodes[parent_level] = parent;
7324 path->slots[parent_level] = btrfs_header_nritems(parent);
7325
7326 btrfs_assert_tree_locked(node);
7327 level = btrfs_header_level(node);
7328 path->nodes[level] = node;
7329 path->slots[level] = 0;
7330 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7331
7332 wc->refs[parent_level] = 1;
7333 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7334 wc->level = level;
7335 wc->shared_level = -1;
7336 wc->stage = DROP_REFERENCE;
7337 wc->update_ref = 0;
7338 wc->keep_locks = 1;
7339 wc->for_reloc = 1;
7340 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7341
7342 while (1) {
7343 wret = walk_down_tree(trans, root, path, wc);
7344 if (wret < 0) {
7345 ret = wret;
7346 break;
7347 }
7348
7349 wret = walk_up_tree(trans, root, path, wc, parent_level);
7350 if (wret < 0)
7351 ret = wret;
7352 if (wret != 0)
7353 break;
7354 }
7355
7356 kfree(wc);
7357 btrfs_free_path(path);
7358 return ret;
7359 }
7360
7361 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7362 {
7363 u64 num_devices;
7364 u64 stripped;
7365
7366 /*
7367 * if restripe for this chunk_type is on pick target profile and
7368 * return, otherwise do the usual balance
7369 */
7370 stripped = get_restripe_target(root->fs_info, flags);
7371 if (stripped)
7372 return extended_to_chunk(stripped);
7373
7374 /*
7375 * we add in the count of missing devices because we want
7376 * to make sure that any RAID levels on a degraded FS
7377 * continue to be honored.
7378 */
7379 num_devices = root->fs_info->fs_devices->rw_devices +
7380 root->fs_info->fs_devices->missing_devices;
7381
7382 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7383 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7384 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7385
7386 if (num_devices == 1) {
7387 stripped |= BTRFS_BLOCK_GROUP_DUP;
7388 stripped = flags & ~stripped;
7389
7390 /* turn raid0 into single device chunks */
7391 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7392 return stripped;
7393
7394 /* turn mirroring into duplication */
7395 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7396 BTRFS_BLOCK_GROUP_RAID10))
7397 return stripped | BTRFS_BLOCK_GROUP_DUP;
7398 } else {
7399 /* they already had raid on here, just return */
7400 if (flags & stripped)
7401 return flags;
7402
7403 stripped |= BTRFS_BLOCK_GROUP_DUP;
7404 stripped = flags & ~stripped;
7405
7406 /* switch duplicated blocks with raid1 */
7407 if (flags & BTRFS_BLOCK_GROUP_DUP)
7408 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7409
7410 /* this is drive concat, leave it alone */
7411 }
7412
7413 return flags;
7414 }
7415
7416 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7417 {
7418 struct btrfs_space_info *sinfo = cache->space_info;
7419 u64 num_bytes;
7420 u64 min_allocable_bytes;
7421 int ret = -ENOSPC;
7422
7423
7424 /*
7425 * We need some metadata space and system metadata space for
7426 * allocating chunks in some corner cases until we force to set
7427 * it to be readonly.
7428 */
7429 if ((sinfo->flags &
7430 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7431 !force)
7432 min_allocable_bytes = 1 * 1024 * 1024;
7433 else
7434 min_allocable_bytes = 0;
7435
7436 spin_lock(&sinfo->lock);
7437 spin_lock(&cache->lock);
7438
7439 if (cache->ro) {
7440 ret = 0;
7441 goto out;
7442 }
7443
7444 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7445 cache->bytes_super - btrfs_block_group_used(&cache->item);
7446
7447 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7448 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7449 min_allocable_bytes <= sinfo->total_bytes) {
7450 sinfo->bytes_readonly += num_bytes;
7451 cache->ro = 1;
7452 ret = 0;
7453 }
7454 out:
7455 spin_unlock(&cache->lock);
7456 spin_unlock(&sinfo->lock);
7457 return ret;
7458 }
7459
7460 int btrfs_set_block_group_ro(struct btrfs_root *root,
7461 struct btrfs_block_group_cache *cache)
7462
7463 {
7464 struct btrfs_trans_handle *trans;
7465 u64 alloc_flags;
7466 int ret;
7467
7468 BUG_ON(cache->ro);
7469
7470 trans = btrfs_join_transaction(root);
7471 if (IS_ERR(trans))
7472 return PTR_ERR(trans);
7473
7474 alloc_flags = update_block_group_flags(root, cache->flags);
7475 if (alloc_flags != cache->flags) {
7476 ret = do_chunk_alloc(trans, root, alloc_flags,
7477 CHUNK_ALLOC_FORCE);
7478 if (ret < 0)
7479 goto out;
7480 }
7481
7482 ret = set_block_group_ro(cache, 0);
7483 if (!ret)
7484 goto out;
7485 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7486 ret = do_chunk_alloc(trans, root, alloc_flags,
7487 CHUNK_ALLOC_FORCE);
7488 if (ret < 0)
7489 goto out;
7490 ret = set_block_group_ro(cache, 0);
7491 out:
7492 btrfs_end_transaction(trans, root);
7493 return ret;
7494 }
7495
7496 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7497 struct btrfs_root *root, u64 type)
7498 {
7499 u64 alloc_flags = get_alloc_profile(root, type);
7500 return do_chunk_alloc(trans, root, alloc_flags,
7501 CHUNK_ALLOC_FORCE);
7502 }
7503
7504 /*
7505 * helper to account the unused space of all the readonly block group in the
7506 * list. takes mirrors into account.
7507 */
7508 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7509 {
7510 struct btrfs_block_group_cache *block_group;
7511 u64 free_bytes = 0;
7512 int factor;
7513
7514 list_for_each_entry(block_group, groups_list, list) {
7515 spin_lock(&block_group->lock);
7516
7517 if (!block_group->ro) {
7518 spin_unlock(&block_group->lock);
7519 continue;
7520 }
7521
7522 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7523 BTRFS_BLOCK_GROUP_RAID10 |
7524 BTRFS_BLOCK_GROUP_DUP))
7525 factor = 2;
7526 else
7527 factor = 1;
7528
7529 free_bytes += (block_group->key.offset -
7530 btrfs_block_group_used(&block_group->item)) *
7531 factor;
7532
7533 spin_unlock(&block_group->lock);
7534 }
7535
7536 return free_bytes;
7537 }
7538
7539 /*
7540 * helper to account the unused space of all the readonly block group in the
7541 * space_info. takes mirrors into account.
7542 */
7543 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7544 {
7545 int i;
7546 u64 free_bytes = 0;
7547
7548 spin_lock(&sinfo->lock);
7549
7550 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7551 if (!list_empty(&sinfo->block_groups[i]))
7552 free_bytes += __btrfs_get_ro_block_group_free_space(
7553 &sinfo->block_groups[i]);
7554
7555 spin_unlock(&sinfo->lock);
7556
7557 return free_bytes;
7558 }
7559
7560 void btrfs_set_block_group_rw(struct btrfs_root *root,
7561 struct btrfs_block_group_cache *cache)
7562 {
7563 struct btrfs_space_info *sinfo = cache->space_info;
7564 u64 num_bytes;
7565
7566 BUG_ON(!cache->ro);
7567
7568 spin_lock(&sinfo->lock);
7569 spin_lock(&cache->lock);
7570 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7571 cache->bytes_super - btrfs_block_group_used(&cache->item);
7572 sinfo->bytes_readonly -= num_bytes;
7573 cache->ro = 0;
7574 spin_unlock(&cache->lock);
7575 spin_unlock(&sinfo->lock);
7576 }
7577
7578 /*
7579 * checks to see if its even possible to relocate this block group.
7580 *
7581 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7582 * ok to go ahead and try.
7583 */
7584 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7585 {
7586 struct btrfs_block_group_cache *block_group;
7587 struct btrfs_space_info *space_info;
7588 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7589 struct btrfs_device *device;
7590 u64 min_free;
7591 u64 dev_min = 1;
7592 u64 dev_nr = 0;
7593 u64 target;
7594 int index;
7595 int full = 0;
7596 int ret = 0;
7597
7598 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7599
7600 /* odd, couldn't find the block group, leave it alone */
7601 if (!block_group)
7602 return -1;
7603
7604 min_free = btrfs_block_group_used(&block_group->item);
7605
7606 /* no bytes used, we're good */
7607 if (!min_free)
7608 goto out;
7609
7610 space_info = block_group->space_info;
7611 spin_lock(&space_info->lock);
7612
7613 full = space_info->full;
7614
7615 /*
7616 * if this is the last block group we have in this space, we can't
7617 * relocate it unless we're able to allocate a new chunk below.
7618 *
7619 * Otherwise, we need to make sure we have room in the space to handle
7620 * all of the extents from this block group. If we can, we're good
7621 */
7622 if ((space_info->total_bytes != block_group->key.offset) &&
7623 (space_info->bytes_used + space_info->bytes_reserved +
7624 space_info->bytes_pinned + space_info->bytes_readonly +
7625 min_free < space_info->total_bytes)) {
7626 spin_unlock(&space_info->lock);
7627 goto out;
7628 }
7629 spin_unlock(&space_info->lock);
7630
7631 /*
7632 * ok we don't have enough space, but maybe we have free space on our
7633 * devices to allocate new chunks for relocation, so loop through our
7634 * alloc devices and guess if we have enough space. if this block
7635 * group is going to be restriped, run checks against the target
7636 * profile instead of the current one.
7637 */
7638 ret = -1;
7639
7640 /*
7641 * index:
7642 * 0: raid10
7643 * 1: raid1
7644 * 2: dup
7645 * 3: raid0
7646 * 4: single
7647 */
7648 target = get_restripe_target(root->fs_info, block_group->flags);
7649 if (target) {
7650 index = __get_raid_index(extended_to_chunk(target));
7651 } else {
7652 /*
7653 * this is just a balance, so if we were marked as full
7654 * we know there is no space for a new chunk
7655 */
7656 if (full)
7657 goto out;
7658
7659 index = get_block_group_index(block_group);
7660 }
7661
7662 if (index == BTRFS_RAID_RAID10) {
7663 dev_min = 4;
7664 /* Divide by 2 */
7665 min_free >>= 1;
7666 } else if (index == BTRFS_RAID_RAID1) {
7667 dev_min = 2;
7668 } else if (index == BTRFS_RAID_DUP) {
7669 /* Multiply by 2 */
7670 min_free <<= 1;
7671 } else if (index == BTRFS_RAID_RAID0) {
7672 dev_min = fs_devices->rw_devices;
7673 do_div(min_free, dev_min);
7674 }
7675
7676 mutex_lock(&root->fs_info->chunk_mutex);
7677 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7678 u64 dev_offset;
7679
7680 /*
7681 * check to make sure we can actually find a chunk with enough
7682 * space to fit our block group in.
7683 */
7684 if (device->total_bytes > device->bytes_used + min_free &&
7685 !device->is_tgtdev_for_dev_replace) {
7686 ret = find_free_dev_extent(device, min_free,
7687 &dev_offset, NULL);
7688 if (!ret)
7689 dev_nr++;
7690
7691 if (dev_nr >= dev_min)
7692 break;
7693
7694 ret = -1;
7695 }
7696 }
7697 mutex_unlock(&root->fs_info->chunk_mutex);
7698 out:
7699 btrfs_put_block_group(block_group);
7700 return ret;
7701 }
7702
7703 static int find_first_block_group(struct btrfs_root *root,
7704 struct btrfs_path *path, struct btrfs_key *key)
7705 {
7706 int ret = 0;
7707 struct btrfs_key found_key;
7708 struct extent_buffer *leaf;
7709 int slot;
7710
7711 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7712 if (ret < 0)
7713 goto out;
7714
7715 while (1) {
7716 slot = path->slots[0];
7717 leaf = path->nodes[0];
7718 if (slot >= btrfs_header_nritems(leaf)) {
7719 ret = btrfs_next_leaf(root, path);
7720 if (ret == 0)
7721 continue;
7722 if (ret < 0)
7723 goto out;
7724 break;
7725 }
7726 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7727
7728 if (found_key.objectid >= key->objectid &&
7729 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7730 ret = 0;
7731 goto out;
7732 }
7733 path->slots[0]++;
7734 }
7735 out:
7736 return ret;
7737 }
7738
7739 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7740 {
7741 struct btrfs_block_group_cache *block_group;
7742 u64 last = 0;
7743
7744 while (1) {
7745 struct inode *inode;
7746
7747 block_group = btrfs_lookup_first_block_group(info, last);
7748 while (block_group) {
7749 spin_lock(&block_group->lock);
7750 if (block_group->iref)
7751 break;
7752 spin_unlock(&block_group->lock);
7753 block_group = next_block_group(info->tree_root,
7754 block_group);
7755 }
7756 if (!block_group) {
7757 if (last == 0)
7758 break;
7759 last = 0;
7760 continue;
7761 }
7762
7763 inode = block_group->inode;
7764 block_group->iref = 0;
7765 block_group->inode = NULL;
7766 spin_unlock(&block_group->lock);
7767 iput(inode);
7768 last = block_group->key.objectid + block_group->key.offset;
7769 btrfs_put_block_group(block_group);
7770 }
7771 }
7772
7773 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7774 {
7775 struct btrfs_block_group_cache *block_group;
7776 struct btrfs_space_info *space_info;
7777 struct btrfs_caching_control *caching_ctl;
7778 struct rb_node *n;
7779
7780 down_write(&info->extent_commit_sem);
7781 while (!list_empty(&info->caching_block_groups)) {
7782 caching_ctl = list_entry(info->caching_block_groups.next,
7783 struct btrfs_caching_control, list);
7784 list_del(&caching_ctl->list);
7785 put_caching_control(caching_ctl);
7786 }
7787 up_write(&info->extent_commit_sem);
7788
7789 spin_lock(&info->block_group_cache_lock);
7790 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7791 block_group = rb_entry(n, struct btrfs_block_group_cache,
7792 cache_node);
7793 rb_erase(&block_group->cache_node,
7794 &info->block_group_cache_tree);
7795 spin_unlock(&info->block_group_cache_lock);
7796
7797 down_write(&block_group->space_info->groups_sem);
7798 list_del(&block_group->list);
7799 up_write(&block_group->space_info->groups_sem);
7800
7801 if (block_group->cached == BTRFS_CACHE_STARTED)
7802 wait_block_group_cache_done(block_group);
7803
7804 /*
7805 * We haven't cached this block group, which means we could
7806 * possibly have excluded extents on this block group.
7807 */
7808 if (block_group->cached == BTRFS_CACHE_NO)
7809 free_excluded_extents(info->extent_root, block_group);
7810
7811 btrfs_remove_free_space_cache(block_group);
7812 btrfs_put_block_group(block_group);
7813
7814 spin_lock(&info->block_group_cache_lock);
7815 }
7816 spin_unlock(&info->block_group_cache_lock);
7817
7818 /* now that all the block groups are freed, go through and
7819 * free all the space_info structs. This is only called during
7820 * the final stages of unmount, and so we know nobody is
7821 * using them. We call synchronize_rcu() once before we start,
7822 * just to be on the safe side.
7823 */
7824 synchronize_rcu();
7825
7826 release_global_block_rsv(info);
7827
7828 while(!list_empty(&info->space_info)) {
7829 space_info = list_entry(info->space_info.next,
7830 struct btrfs_space_info,
7831 list);
7832 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
7833 if (space_info->bytes_pinned > 0 ||
7834 space_info->bytes_reserved > 0 ||
7835 space_info->bytes_may_use > 0) {
7836 WARN_ON(1);
7837 dump_space_info(space_info, 0, 0);
7838 }
7839 }
7840 list_del(&space_info->list);
7841 kfree(space_info);
7842 }
7843 return 0;
7844 }
7845
7846 static void __link_block_group(struct btrfs_space_info *space_info,
7847 struct btrfs_block_group_cache *cache)
7848 {
7849 int index = get_block_group_index(cache);
7850
7851 down_write(&space_info->groups_sem);
7852 list_add_tail(&cache->list, &space_info->block_groups[index]);
7853 up_write(&space_info->groups_sem);
7854 }
7855
7856 int btrfs_read_block_groups(struct btrfs_root *root)
7857 {
7858 struct btrfs_path *path;
7859 int ret;
7860 struct btrfs_block_group_cache *cache;
7861 struct btrfs_fs_info *info = root->fs_info;
7862 struct btrfs_space_info *space_info;
7863 struct btrfs_key key;
7864 struct btrfs_key found_key;
7865 struct extent_buffer *leaf;
7866 int need_clear = 0;
7867 u64 cache_gen;
7868
7869 root = info->extent_root;
7870 key.objectid = 0;
7871 key.offset = 0;
7872 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7873 path = btrfs_alloc_path();
7874 if (!path)
7875 return -ENOMEM;
7876 path->reada = 1;
7877
7878 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7879 if (btrfs_test_opt(root, SPACE_CACHE) &&
7880 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7881 need_clear = 1;
7882 if (btrfs_test_opt(root, CLEAR_CACHE))
7883 need_clear = 1;
7884
7885 while (1) {
7886 ret = find_first_block_group(root, path, &key);
7887 if (ret > 0)
7888 break;
7889 if (ret != 0)
7890 goto error;
7891 leaf = path->nodes[0];
7892 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7893 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7894 if (!cache) {
7895 ret = -ENOMEM;
7896 goto error;
7897 }
7898 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7899 GFP_NOFS);
7900 if (!cache->free_space_ctl) {
7901 kfree(cache);
7902 ret = -ENOMEM;
7903 goto error;
7904 }
7905
7906 atomic_set(&cache->count, 1);
7907 spin_lock_init(&cache->lock);
7908 cache->fs_info = info;
7909 INIT_LIST_HEAD(&cache->list);
7910 INIT_LIST_HEAD(&cache->cluster_list);
7911
7912 if (need_clear) {
7913 /*
7914 * When we mount with old space cache, we need to
7915 * set BTRFS_DC_CLEAR and set dirty flag.
7916 *
7917 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
7918 * truncate the old free space cache inode and
7919 * setup a new one.
7920 * b) Setting 'dirty flag' makes sure that we flush
7921 * the new space cache info onto disk.
7922 */
7923 cache->disk_cache_state = BTRFS_DC_CLEAR;
7924 if (btrfs_test_opt(root, SPACE_CACHE))
7925 cache->dirty = 1;
7926 }
7927
7928 read_extent_buffer(leaf, &cache->item,
7929 btrfs_item_ptr_offset(leaf, path->slots[0]),
7930 sizeof(cache->item));
7931 memcpy(&cache->key, &found_key, sizeof(found_key));
7932
7933 key.objectid = found_key.objectid + found_key.offset;
7934 btrfs_release_path(path);
7935 cache->flags = btrfs_block_group_flags(&cache->item);
7936 cache->sectorsize = root->sectorsize;
7937 cache->full_stripe_len = btrfs_full_stripe_len(root,
7938 &root->fs_info->mapping_tree,
7939 found_key.objectid);
7940 btrfs_init_free_space_ctl(cache);
7941
7942 /*
7943 * We need to exclude the super stripes now so that the space
7944 * info has super bytes accounted for, otherwise we'll think
7945 * we have more space than we actually do.
7946 */
7947 exclude_super_stripes(root, cache);
7948
7949 /*
7950 * check for two cases, either we are full, and therefore
7951 * don't need to bother with the caching work since we won't
7952 * find any space, or we are empty, and we can just add all
7953 * the space in and be done with it. This saves us _alot_ of
7954 * time, particularly in the full case.
7955 */
7956 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7957 cache->last_byte_to_unpin = (u64)-1;
7958 cache->cached = BTRFS_CACHE_FINISHED;
7959 free_excluded_extents(root, cache);
7960 } else if (btrfs_block_group_used(&cache->item) == 0) {
7961 cache->last_byte_to_unpin = (u64)-1;
7962 cache->cached = BTRFS_CACHE_FINISHED;
7963 add_new_free_space(cache, root->fs_info,
7964 found_key.objectid,
7965 found_key.objectid +
7966 found_key.offset);
7967 free_excluded_extents(root, cache);
7968 }
7969
7970 ret = update_space_info(info, cache->flags, found_key.offset,
7971 btrfs_block_group_used(&cache->item),
7972 &space_info);
7973 BUG_ON(ret); /* -ENOMEM */
7974 cache->space_info = space_info;
7975 spin_lock(&cache->space_info->lock);
7976 cache->space_info->bytes_readonly += cache->bytes_super;
7977 spin_unlock(&cache->space_info->lock);
7978
7979 __link_block_group(space_info, cache);
7980
7981 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7982 BUG_ON(ret); /* Logic error */
7983
7984 set_avail_alloc_bits(root->fs_info, cache->flags);
7985 if (btrfs_chunk_readonly(root, cache->key.objectid))
7986 set_block_group_ro(cache, 1);
7987 }
7988
7989 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7990 if (!(get_alloc_profile(root, space_info->flags) &
7991 (BTRFS_BLOCK_GROUP_RAID10 |
7992 BTRFS_BLOCK_GROUP_RAID1 |
7993 BTRFS_BLOCK_GROUP_RAID5 |
7994 BTRFS_BLOCK_GROUP_RAID6 |
7995 BTRFS_BLOCK_GROUP_DUP)))
7996 continue;
7997 /*
7998 * avoid allocating from un-mirrored block group if there are
7999 * mirrored block groups.
8000 */
8001 list_for_each_entry(cache, &space_info->block_groups[3], list)
8002 set_block_group_ro(cache, 1);
8003 list_for_each_entry(cache, &space_info->block_groups[4], list)
8004 set_block_group_ro(cache, 1);
8005 }
8006
8007 init_global_block_rsv(info);
8008 ret = 0;
8009 error:
8010 btrfs_free_path(path);
8011 return ret;
8012 }
8013
8014 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8015 struct btrfs_root *root)
8016 {
8017 struct btrfs_block_group_cache *block_group, *tmp;
8018 struct btrfs_root *extent_root = root->fs_info->extent_root;
8019 struct btrfs_block_group_item item;
8020 struct btrfs_key key;
8021 int ret = 0;
8022
8023 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8024 new_bg_list) {
8025 list_del_init(&block_group->new_bg_list);
8026
8027 if (ret)
8028 continue;
8029
8030 spin_lock(&block_group->lock);
8031 memcpy(&item, &block_group->item, sizeof(item));
8032 memcpy(&key, &block_group->key, sizeof(key));
8033 spin_unlock(&block_group->lock);
8034
8035 ret = btrfs_insert_item(trans, extent_root, &key, &item,
8036 sizeof(item));
8037 if (ret)
8038 btrfs_abort_transaction(trans, extent_root, ret);
8039 }
8040 }
8041
8042 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8043 struct btrfs_root *root, u64 bytes_used,
8044 u64 type, u64 chunk_objectid, u64 chunk_offset,
8045 u64 size)
8046 {
8047 int ret;
8048 struct btrfs_root *extent_root;
8049 struct btrfs_block_group_cache *cache;
8050
8051 extent_root = root->fs_info->extent_root;
8052
8053 root->fs_info->last_trans_log_full_commit = trans->transid;
8054
8055 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8056 if (!cache)
8057 return -ENOMEM;
8058 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8059 GFP_NOFS);
8060 if (!cache->free_space_ctl) {
8061 kfree(cache);
8062 return -ENOMEM;
8063 }
8064
8065 cache->key.objectid = chunk_offset;
8066 cache->key.offset = size;
8067 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8068 cache->sectorsize = root->sectorsize;
8069 cache->fs_info = root->fs_info;
8070 cache->full_stripe_len = btrfs_full_stripe_len(root,
8071 &root->fs_info->mapping_tree,
8072 chunk_offset);
8073
8074 atomic_set(&cache->count, 1);
8075 spin_lock_init(&cache->lock);
8076 INIT_LIST_HEAD(&cache->list);
8077 INIT_LIST_HEAD(&cache->cluster_list);
8078 INIT_LIST_HEAD(&cache->new_bg_list);
8079
8080 btrfs_init_free_space_ctl(cache);
8081
8082 btrfs_set_block_group_used(&cache->item, bytes_used);
8083 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8084 cache->flags = type;
8085 btrfs_set_block_group_flags(&cache->item, type);
8086
8087 cache->last_byte_to_unpin = (u64)-1;
8088 cache->cached = BTRFS_CACHE_FINISHED;
8089 exclude_super_stripes(root, cache);
8090
8091 add_new_free_space(cache, root->fs_info, chunk_offset,
8092 chunk_offset + size);
8093
8094 free_excluded_extents(root, cache);
8095
8096 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8097 &cache->space_info);
8098 BUG_ON(ret); /* -ENOMEM */
8099 update_global_block_rsv(root->fs_info);
8100
8101 spin_lock(&cache->space_info->lock);
8102 cache->space_info->bytes_readonly += cache->bytes_super;
8103 spin_unlock(&cache->space_info->lock);
8104
8105 __link_block_group(cache->space_info, cache);
8106
8107 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8108 BUG_ON(ret); /* Logic error */
8109
8110 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8111
8112 set_avail_alloc_bits(extent_root->fs_info, type);
8113
8114 return 0;
8115 }
8116
8117 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8118 {
8119 u64 extra_flags = chunk_to_extended(flags) &
8120 BTRFS_EXTENDED_PROFILE_MASK;
8121
8122 write_seqlock(&fs_info->profiles_lock);
8123 if (flags & BTRFS_BLOCK_GROUP_DATA)
8124 fs_info->avail_data_alloc_bits &= ~extra_flags;
8125 if (flags & BTRFS_BLOCK_GROUP_METADATA)
8126 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8127 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8128 fs_info->avail_system_alloc_bits &= ~extra_flags;
8129 write_sequnlock(&fs_info->profiles_lock);
8130 }
8131
8132 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8133 struct btrfs_root *root, u64 group_start)
8134 {
8135 struct btrfs_path *path;
8136 struct btrfs_block_group_cache *block_group;
8137 struct btrfs_free_cluster *cluster;
8138 struct btrfs_root *tree_root = root->fs_info->tree_root;
8139 struct btrfs_key key;
8140 struct inode *inode;
8141 int ret;
8142 int index;
8143 int factor;
8144
8145 root = root->fs_info->extent_root;
8146
8147 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8148 BUG_ON(!block_group);
8149 BUG_ON(!block_group->ro);
8150
8151 /*
8152 * Free the reserved super bytes from this block group before
8153 * remove it.
8154 */
8155 free_excluded_extents(root, block_group);
8156
8157 memcpy(&key, &block_group->key, sizeof(key));
8158 index = get_block_group_index(block_group);
8159 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8160 BTRFS_BLOCK_GROUP_RAID1 |
8161 BTRFS_BLOCK_GROUP_RAID10))
8162 factor = 2;
8163 else
8164 factor = 1;
8165
8166 /* make sure this block group isn't part of an allocation cluster */
8167 cluster = &root->fs_info->data_alloc_cluster;
8168 spin_lock(&cluster->refill_lock);
8169 btrfs_return_cluster_to_free_space(block_group, cluster);
8170 spin_unlock(&cluster->refill_lock);
8171
8172 /*
8173 * make sure this block group isn't part of a metadata
8174 * allocation cluster
8175 */
8176 cluster = &root->fs_info->meta_alloc_cluster;
8177 spin_lock(&cluster->refill_lock);
8178 btrfs_return_cluster_to_free_space(block_group, cluster);
8179 spin_unlock(&cluster->refill_lock);
8180
8181 path = btrfs_alloc_path();
8182 if (!path) {
8183 ret = -ENOMEM;
8184 goto out;
8185 }
8186
8187 inode = lookup_free_space_inode(tree_root, block_group, path);
8188 if (!IS_ERR(inode)) {
8189 ret = btrfs_orphan_add(trans, inode);
8190 if (ret) {
8191 btrfs_add_delayed_iput(inode);
8192 goto out;
8193 }
8194 clear_nlink(inode);
8195 /* One for the block groups ref */
8196 spin_lock(&block_group->lock);
8197 if (block_group->iref) {
8198 block_group->iref = 0;
8199 block_group->inode = NULL;
8200 spin_unlock(&block_group->lock);
8201 iput(inode);
8202 } else {
8203 spin_unlock(&block_group->lock);
8204 }
8205 /* One for our lookup ref */
8206 btrfs_add_delayed_iput(inode);
8207 }
8208
8209 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8210 key.offset = block_group->key.objectid;
8211 key.type = 0;
8212
8213 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8214 if (ret < 0)
8215 goto out;
8216 if (ret > 0)
8217 btrfs_release_path(path);
8218 if (ret == 0) {
8219 ret = btrfs_del_item(trans, tree_root, path);
8220 if (ret)
8221 goto out;
8222 btrfs_release_path(path);
8223 }
8224
8225 spin_lock(&root->fs_info->block_group_cache_lock);
8226 rb_erase(&block_group->cache_node,
8227 &root->fs_info->block_group_cache_tree);
8228
8229 if (root->fs_info->first_logical_byte == block_group->key.objectid)
8230 root->fs_info->first_logical_byte = (u64)-1;
8231 spin_unlock(&root->fs_info->block_group_cache_lock);
8232
8233 down_write(&block_group->space_info->groups_sem);
8234 /*
8235 * we must use list_del_init so people can check to see if they
8236 * are still on the list after taking the semaphore
8237 */
8238 list_del_init(&block_group->list);
8239 if (list_empty(&block_group->space_info->block_groups[index]))
8240 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8241 up_write(&block_group->space_info->groups_sem);
8242
8243 if (block_group->cached == BTRFS_CACHE_STARTED)
8244 wait_block_group_cache_done(block_group);
8245
8246 btrfs_remove_free_space_cache(block_group);
8247
8248 spin_lock(&block_group->space_info->lock);
8249 block_group->space_info->total_bytes -= block_group->key.offset;
8250 block_group->space_info->bytes_readonly -= block_group->key.offset;
8251 block_group->space_info->disk_total -= block_group->key.offset * factor;
8252 spin_unlock(&block_group->space_info->lock);
8253
8254 memcpy(&key, &block_group->key, sizeof(key));
8255
8256 btrfs_clear_space_info_full(root->fs_info);
8257
8258 btrfs_put_block_group(block_group);
8259 btrfs_put_block_group(block_group);
8260
8261 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8262 if (ret > 0)
8263 ret = -EIO;
8264 if (ret < 0)
8265 goto out;
8266
8267 ret = btrfs_del_item(trans, root, path);
8268 out:
8269 btrfs_free_path(path);
8270 return ret;
8271 }
8272
8273 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8274 {
8275 struct btrfs_space_info *space_info;
8276 struct btrfs_super_block *disk_super;
8277 u64 features;
8278 u64 flags;
8279 int mixed = 0;
8280 int ret;
8281
8282 disk_super = fs_info->super_copy;
8283 if (!btrfs_super_root(disk_super))
8284 return 1;
8285
8286 features = btrfs_super_incompat_flags(disk_super);
8287 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8288 mixed = 1;
8289
8290 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8291 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8292 if (ret)
8293 goto out;
8294
8295 if (mixed) {
8296 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8297 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8298 } else {
8299 flags = BTRFS_BLOCK_GROUP_METADATA;
8300 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8301 if (ret)
8302 goto out;
8303
8304 flags = BTRFS_BLOCK_GROUP_DATA;
8305 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8306 }
8307 out:
8308 return ret;
8309 }
8310
8311 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8312 {
8313 return unpin_extent_range(root, start, end);
8314 }
8315
8316 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8317 u64 num_bytes, u64 *actual_bytes)
8318 {
8319 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8320 }
8321
8322 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8323 {
8324 struct btrfs_fs_info *fs_info = root->fs_info;
8325 struct btrfs_block_group_cache *cache = NULL;
8326 u64 group_trimmed;
8327 u64 start;
8328 u64 end;
8329 u64 trimmed = 0;
8330 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8331 int ret = 0;
8332
8333 /*
8334 * try to trim all FS space, our block group may start from non-zero.
8335 */
8336 if (range->len == total_bytes)
8337 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8338 else
8339 cache = btrfs_lookup_block_group(fs_info, range->start);
8340
8341 while (cache) {
8342 if (cache->key.objectid >= (range->start + range->len)) {
8343 btrfs_put_block_group(cache);
8344 break;
8345 }
8346
8347 start = max(range->start, cache->key.objectid);
8348 end = min(range->start + range->len,
8349 cache->key.objectid + cache->key.offset);
8350
8351 if (end - start >= range->minlen) {
8352 if (!block_group_cache_done(cache)) {
8353 ret = cache_block_group(cache, 0);
8354 if (!ret)
8355 wait_block_group_cache_done(cache);
8356 }
8357 ret = btrfs_trim_block_group(cache,
8358 &group_trimmed,
8359 start,
8360 end,
8361 range->minlen);
8362
8363 trimmed += group_trimmed;
8364 if (ret) {
8365 btrfs_put_block_group(cache);
8366 break;
8367 }
8368 }
8369
8370 cache = next_block_group(fs_info->tree_root, cache);
8371 }
8372
8373 range->len = trimmed;
8374 return ret;
8375 }
This page took 0.193014 seconds and 6 git commands to generate.