Btrfs: unlock inodes in correct order in clone ioctl
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "math.h"
38 #include "sysfs.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_root *root,
78 u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 struct btrfs_root *root,
81 u64 bytenr, u64 num_bytes, u64 parent,
82 u64 root_objectid, u64 owner_objectid,
83 u64 owner_offset, int refs_to_drop,
84 struct btrfs_delayed_extent_op *extra_op);
85 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
86 struct extent_buffer *leaf,
87 struct btrfs_extent_item *ei);
88 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root,
90 u64 parent, u64 root_objectid,
91 u64 flags, u64 owner, u64 offset,
92 struct btrfs_key *ins, int ref_mod);
93 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
94 struct btrfs_root *root,
95 u64 parent, u64 root_objectid,
96 u64 flags, struct btrfs_disk_key *key,
97 int level, struct btrfs_key *ins);
98 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
99 struct btrfs_root *extent_root, u64 flags,
100 int force);
101 static int find_next_key(struct btrfs_path *path, int level,
102 struct btrfs_key *key);
103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
104 int dump_block_groups);
105 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
106 u64 num_bytes, int reserve);
107 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
108 u64 num_bytes);
109 int btrfs_pin_extent(struct btrfs_root *root,
110 u64 bytenr, u64 num_bytes, int reserved);
111
112 static noinline int
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115 smp_mb();
116 return cache->cached == BTRFS_CACHE_FINISHED ||
117 cache->cached == BTRFS_CACHE_ERROR;
118 }
119
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122 return (cache->flags & bits) == bits;
123 }
124
125 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127 atomic_inc(&cache->count);
128 }
129
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132 if (atomic_dec_and_test(&cache->count)) {
133 WARN_ON(cache->pinned > 0);
134 WARN_ON(cache->reserved > 0);
135 kfree(cache->free_space_ctl);
136 kfree(cache);
137 }
138 }
139
140 /*
141 * this adds the block group to the fs_info rb tree for the block group
142 * cache
143 */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 struct btrfs_block_group_cache *block_group)
146 {
147 struct rb_node **p;
148 struct rb_node *parent = NULL;
149 struct btrfs_block_group_cache *cache;
150
151 spin_lock(&info->block_group_cache_lock);
152 p = &info->block_group_cache_tree.rb_node;
153
154 while (*p) {
155 parent = *p;
156 cache = rb_entry(parent, struct btrfs_block_group_cache,
157 cache_node);
158 if (block_group->key.objectid < cache->key.objectid) {
159 p = &(*p)->rb_left;
160 } else if (block_group->key.objectid > cache->key.objectid) {
161 p = &(*p)->rb_right;
162 } else {
163 spin_unlock(&info->block_group_cache_lock);
164 return -EEXIST;
165 }
166 }
167
168 rb_link_node(&block_group->cache_node, parent, p);
169 rb_insert_color(&block_group->cache_node,
170 &info->block_group_cache_tree);
171
172 if (info->first_logical_byte > block_group->key.objectid)
173 info->first_logical_byte = block_group->key.objectid;
174
175 spin_unlock(&info->block_group_cache_lock);
176
177 return 0;
178 }
179
180 /*
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
183 */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 int contains)
187 {
188 struct btrfs_block_group_cache *cache, *ret = NULL;
189 struct rb_node *n;
190 u64 end, start;
191
192 spin_lock(&info->block_group_cache_lock);
193 n = info->block_group_cache_tree.rb_node;
194
195 while (n) {
196 cache = rb_entry(n, struct btrfs_block_group_cache,
197 cache_node);
198 end = cache->key.objectid + cache->key.offset - 1;
199 start = cache->key.objectid;
200
201 if (bytenr < start) {
202 if (!contains && (!ret || start < ret->key.objectid))
203 ret = cache;
204 n = n->rb_left;
205 } else if (bytenr > start) {
206 if (contains && bytenr <= end) {
207 ret = cache;
208 break;
209 }
210 n = n->rb_right;
211 } else {
212 ret = cache;
213 break;
214 }
215 }
216 if (ret) {
217 btrfs_get_block_group(ret);
218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 info->first_logical_byte = ret->key.objectid;
220 }
221 spin_unlock(&info->block_group_cache_lock);
222
223 return ret;
224 }
225
226 static int add_excluded_extent(struct btrfs_root *root,
227 u64 start, u64 num_bytes)
228 {
229 u64 end = start + num_bytes - 1;
230 set_extent_bits(&root->fs_info->freed_extents[0],
231 start, end, EXTENT_UPTODATE, GFP_NOFS);
232 set_extent_bits(&root->fs_info->freed_extents[1],
233 start, end, EXTENT_UPTODATE, GFP_NOFS);
234 return 0;
235 }
236
237 static void free_excluded_extents(struct btrfs_root *root,
238 struct btrfs_block_group_cache *cache)
239 {
240 u64 start, end;
241
242 start = cache->key.objectid;
243 end = start + cache->key.offset - 1;
244
245 clear_extent_bits(&root->fs_info->freed_extents[0],
246 start, end, EXTENT_UPTODATE, GFP_NOFS);
247 clear_extent_bits(&root->fs_info->freed_extents[1],
248 start, end, EXTENT_UPTODATE, GFP_NOFS);
249 }
250
251 static int exclude_super_stripes(struct btrfs_root *root,
252 struct btrfs_block_group_cache *cache)
253 {
254 u64 bytenr;
255 u64 *logical;
256 int stripe_len;
257 int i, nr, ret;
258
259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 cache->bytes_super += stripe_len;
262 ret = add_excluded_extent(root, cache->key.objectid,
263 stripe_len);
264 if (ret)
265 return ret;
266 }
267
268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 bytenr = btrfs_sb_offset(i);
270 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
271 cache->key.objectid, bytenr,
272 0, &logical, &nr, &stripe_len);
273 if (ret)
274 return ret;
275
276 while (nr--) {
277 u64 start, len;
278
279 if (logical[nr] > cache->key.objectid +
280 cache->key.offset)
281 continue;
282
283 if (logical[nr] + stripe_len <= cache->key.objectid)
284 continue;
285
286 start = logical[nr];
287 if (start < cache->key.objectid) {
288 start = cache->key.objectid;
289 len = (logical[nr] + stripe_len) - start;
290 } else {
291 len = min_t(u64, stripe_len,
292 cache->key.objectid +
293 cache->key.offset - start);
294 }
295
296 cache->bytes_super += len;
297 ret = add_excluded_extent(root, start, len);
298 if (ret) {
299 kfree(logical);
300 return ret;
301 }
302 }
303
304 kfree(logical);
305 }
306 return 0;
307 }
308
309 static struct btrfs_caching_control *
310 get_caching_control(struct btrfs_block_group_cache *cache)
311 {
312 struct btrfs_caching_control *ctl;
313
314 spin_lock(&cache->lock);
315 if (cache->cached != BTRFS_CACHE_STARTED) {
316 spin_unlock(&cache->lock);
317 return NULL;
318 }
319
320 /* We're loading it the fast way, so we don't have a caching_ctl. */
321 if (!cache->caching_ctl) {
322 spin_unlock(&cache->lock);
323 return NULL;
324 }
325
326 ctl = cache->caching_ctl;
327 atomic_inc(&ctl->count);
328 spin_unlock(&cache->lock);
329 return ctl;
330 }
331
332 static void put_caching_control(struct btrfs_caching_control *ctl)
333 {
334 if (atomic_dec_and_test(&ctl->count))
335 kfree(ctl);
336 }
337
338 /*
339 * this is only called by cache_block_group, since we could have freed extents
340 * we need to check the pinned_extents for any extents that can't be used yet
341 * since their free space will be released as soon as the transaction commits.
342 */
343 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
344 struct btrfs_fs_info *info, u64 start, u64 end)
345 {
346 u64 extent_start, extent_end, size, total_added = 0;
347 int ret;
348
349 while (start < end) {
350 ret = find_first_extent_bit(info->pinned_extents, start,
351 &extent_start, &extent_end,
352 EXTENT_DIRTY | EXTENT_UPTODATE,
353 NULL);
354 if (ret)
355 break;
356
357 if (extent_start <= start) {
358 start = extent_end + 1;
359 } else if (extent_start > start && extent_start < end) {
360 size = extent_start - start;
361 total_added += size;
362 ret = btrfs_add_free_space(block_group, start,
363 size);
364 BUG_ON(ret); /* -ENOMEM or logic error */
365 start = extent_end + 1;
366 } else {
367 break;
368 }
369 }
370
371 if (start < end) {
372 size = end - start;
373 total_added += size;
374 ret = btrfs_add_free_space(block_group, start, size);
375 BUG_ON(ret); /* -ENOMEM or logic error */
376 }
377
378 return total_added;
379 }
380
381 static noinline void caching_thread(struct btrfs_work *work)
382 {
383 struct btrfs_block_group_cache *block_group;
384 struct btrfs_fs_info *fs_info;
385 struct btrfs_caching_control *caching_ctl;
386 struct btrfs_root *extent_root;
387 struct btrfs_path *path;
388 struct extent_buffer *leaf;
389 struct btrfs_key key;
390 u64 total_found = 0;
391 u64 last = 0;
392 u32 nritems;
393 int ret = -ENOMEM;
394
395 caching_ctl = container_of(work, struct btrfs_caching_control, work);
396 block_group = caching_ctl->block_group;
397 fs_info = block_group->fs_info;
398 extent_root = fs_info->extent_root;
399
400 path = btrfs_alloc_path();
401 if (!path)
402 goto out;
403
404 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
405
406 /*
407 * We don't want to deadlock with somebody trying to allocate a new
408 * extent for the extent root while also trying to search the extent
409 * root to add free space. So we skip locking and search the commit
410 * root, since its read-only
411 */
412 path->skip_locking = 1;
413 path->search_commit_root = 1;
414 path->reada = 1;
415
416 key.objectid = last;
417 key.offset = 0;
418 key.type = BTRFS_EXTENT_ITEM_KEY;
419 again:
420 mutex_lock(&caching_ctl->mutex);
421 /* need to make sure the commit_root doesn't disappear */
422 down_read(&fs_info->extent_commit_sem);
423
424 next:
425 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
426 if (ret < 0)
427 goto err;
428
429 leaf = path->nodes[0];
430 nritems = btrfs_header_nritems(leaf);
431
432 while (1) {
433 if (btrfs_fs_closing(fs_info) > 1) {
434 last = (u64)-1;
435 break;
436 }
437
438 if (path->slots[0] < nritems) {
439 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
440 } else {
441 ret = find_next_key(path, 0, &key);
442 if (ret)
443 break;
444
445 if (need_resched() ||
446 rwsem_is_contended(&fs_info->extent_commit_sem)) {
447 caching_ctl->progress = last;
448 btrfs_release_path(path);
449 up_read(&fs_info->extent_commit_sem);
450 mutex_unlock(&caching_ctl->mutex);
451 cond_resched();
452 goto again;
453 }
454
455 ret = btrfs_next_leaf(extent_root, path);
456 if (ret < 0)
457 goto err;
458 if (ret)
459 break;
460 leaf = path->nodes[0];
461 nritems = btrfs_header_nritems(leaf);
462 continue;
463 }
464
465 if (key.objectid < last) {
466 key.objectid = last;
467 key.offset = 0;
468 key.type = BTRFS_EXTENT_ITEM_KEY;
469
470 caching_ctl->progress = last;
471 btrfs_release_path(path);
472 goto next;
473 }
474
475 if (key.objectid < block_group->key.objectid) {
476 path->slots[0]++;
477 continue;
478 }
479
480 if (key.objectid >= block_group->key.objectid +
481 block_group->key.offset)
482 break;
483
484 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
485 key.type == BTRFS_METADATA_ITEM_KEY) {
486 total_found += add_new_free_space(block_group,
487 fs_info, last,
488 key.objectid);
489 if (key.type == BTRFS_METADATA_ITEM_KEY)
490 last = key.objectid +
491 fs_info->tree_root->leafsize;
492 else
493 last = key.objectid + key.offset;
494
495 if (total_found > (1024 * 1024 * 2)) {
496 total_found = 0;
497 wake_up(&caching_ctl->wait);
498 }
499 }
500 path->slots[0]++;
501 }
502 ret = 0;
503
504 total_found += add_new_free_space(block_group, fs_info, last,
505 block_group->key.objectid +
506 block_group->key.offset);
507 caching_ctl->progress = (u64)-1;
508
509 spin_lock(&block_group->lock);
510 block_group->caching_ctl = NULL;
511 block_group->cached = BTRFS_CACHE_FINISHED;
512 spin_unlock(&block_group->lock);
513
514 err:
515 btrfs_free_path(path);
516 up_read(&fs_info->extent_commit_sem);
517
518 free_excluded_extents(extent_root, block_group);
519
520 mutex_unlock(&caching_ctl->mutex);
521 out:
522 if (ret) {
523 spin_lock(&block_group->lock);
524 block_group->caching_ctl = NULL;
525 block_group->cached = BTRFS_CACHE_ERROR;
526 spin_unlock(&block_group->lock);
527 }
528 wake_up(&caching_ctl->wait);
529
530 put_caching_control(caching_ctl);
531 btrfs_put_block_group(block_group);
532 }
533
534 static int cache_block_group(struct btrfs_block_group_cache *cache,
535 int load_cache_only)
536 {
537 DEFINE_WAIT(wait);
538 struct btrfs_fs_info *fs_info = cache->fs_info;
539 struct btrfs_caching_control *caching_ctl;
540 int ret = 0;
541
542 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
543 if (!caching_ctl)
544 return -ENOMEM;
545
546 INIT_LIST_HEAD(&caching_ctl->list);
547 mutex_init(&caching_ctl->mutex);
548 init_waitqueue_head(&caching_ctl->wait);
549 caching_ctl->block_group = cache;
550 caching_ctl->progress = cache->key.objectid;
551 atomic_set(&caching_ctl->count, 1);
552 caching_ctl->work.func = caching_thread;
553
554 spin_lock(&cache->lock);
555 /*
556 * This should be a rare occasion, but this could happen I think in the
557 * case where one thread starts to load the space cache info, and then
558 * some other thread starts a transaction commit which tries to do an
559 * allocation while the other thread is still loading the space cache
560 * info. The previous loop should have kept us from choosing this block
561 * group, but if we've moved to the state where we will wait on caching
562 * block groups we need to first check if we're doing a fast load here,
563 * so we can wait for it to finish, otherwise we could end up allocating
564 * from a block group who's cache gets evicted for one reason or
565 * another.
566 */
567 while (cache->cached == BTRFS_CACHE_FAST) {
568 struct btrfs_caching_control *ctl;
569
570 ctl = cache->caching_ctl;
571 atomic_inc(&ctl->count);
572 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
573 spin_unlock(&cache->lock);
574
575 schedule();
576
577 finish_wait(&ctl->wait, &wait);
578 put_caching_control(ctl);
579 spin_lock(&cache->lock);
580 }
581
582 if (cache->cached != BTRFS_CACHE_NO) {
583 spin_unlock(&cache->lock);
584 kfree(caching_ctl);
585 return 0;
586 }
587 WARN_ON(cache->caching_ctl);
588 cache->caching_ctl = caching_ctl;
589 cache->cached = BTRFS_CACHE_FAST;
590 spin_unlock(&cache->lock);
591
592 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
593 ret = load_free_space_cache(fs_info, cache);
594
595 spin_lock(&cache->lock);
596 if (ret == 1) {
597 cache->caching_ctl = NULL;
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
600 } else {
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
606 }
607 }
608 spin_unlock(&cache->lock);
609 wake_up(&caching_ctl->wait);
610 if (ret == 1) {
611 put_caching_control(caching_ctl);
612 free_excluded_extents(fs_info->extent_root, cache);
613 return 0;
614 }
615 } else {
616 /*
617 * We are not going to do the fast caching, set cached to the
618 * appropriate value and wakeup any waiters.
619 */
620 spin_lock(&cache->lock);
621 if (load_cache_only) {
622 cache->caching_ctl = NULL;
623 cache->cached = BTRFS_CACHE_NO;
624 } else {
625 cache->cached = BTRFS_CACHE_STARTED;
626 }
627 spin_unlock(&cache->lock);
628 wake_up(&caching_ctl->wait);
629 }
630
631 if (load_cache_only) {
632 put_caching_control(caching_ctl);
633 return 0;
634 }
635
636 down_write(&fs_info->extent_commit_sem);
637 atomic_inc(&caching_ctl->count);
638 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
639 up_write(&fs_info->extent_commit_sem);
640
641 btrfs_get_block_group(cache);
642
643 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
644
645 return ret;
646 }
647
648 /*
649 * return the block group that starts at or after bytenr
650 */
651 static struct btrfs_block_group_cache *
652 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
653 {
654 struct btrfs_block_group_cache *cache;
655
656 cache = block_group_cache_tree_search(info, bytenr, 0);
657
658 return cache;
659 }
660
661 /*
662 * return the block group that contains the given bytenr
663 */
664 struct btrfs_block_group_cache *btrfs_lookup_block_group(
665 struct btrfs_fs_info *info,
666 u64 bytenr)
667 {
668 struct btrfs_block_group_cache *cache;
669
670 cache = block_group_cache_tree_search(info, bytenr, 1);
671
672 return cache;
673 }
674
675 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
676 u64 flags)
677 {
678 struct list_head *head = &info->space_info;
679 struct btrfs_space_info *found;
680
681 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
682
683 rcu_read_lock();
684 list_for_each_entry_rcu(found, head, list) {
685 if (found->flags & flags) {
686 rcu_read_unlock();
687 return found;
688 }
689 }
690 rcu_read_unlock();
691 return NULL;
692 }
693
694 /*
695 * after adding space to the filesystem, we need to clear the full flags
696 * on all the space infos.
697 */
698 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
699 {
700 struct list_head *head = &info->space_info;
701 struct btrfs_space_info *found;
702
703 rcu_read_lock();
704 list_for_each_entry_rcu(found, head, list)
705 found->full = 0;
706 rcu_read_unlock();
707 }
708
709 /* simple helper to search for an existing extent at a given offset */
710 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
711 {
712 int ret;
713 struct btrfs_key key;
714 struct btrfs_path *path;
715
716 path = btrfs_alloc_path();
717 if (!path)
718 return -ENOMEM;
719
720 key.objectid = start;
721 key.offset = len;
722 key.type = BTRFS_EXTENT_ITEM_KEY;
723 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
724 0, 0);
725 if (ret > 0) {
726 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
727 if (key.objectid == start &&
728 key.type == BTRFS_METADATA_ITEM_KEY)
729 ret = 0;
730 }
731 btrfs_free_path(path);
732 return ret;
733 }
734
735 /*
736 * helper function to lookup reference count and flags of a tree block.
737 *
738 * the head node for delayed ref is used to store the sum of all the
739 * reference count modifications queued up in the rbtree. the head
740 * node may also store the extent flags to set. This way you can check
741 * to see what the reference count and extent flags would be if all of
742 * the delayed refs are not processed.
743 */
744 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
745 struct btrfs_root *root, u64 bytenr,
746 u64 offset, int metadata, u64 *refs, u64 *flags)
747 {
748 struct btrfs_delayed_ref_head *head;
749 struct btrfs_delayed_ref_root *delayed_refs;
750 struct btrfs_path *path;
751 struct btrfs_extent_item *ei;
752 struct extent_buffer *leaf;
753 struct btrfs_key key;
754 u32 item_size;
755 u64 num_refs;
756 u64 extent_flags;
757 int ret;
758
759 /*
760 * If we don't have skinny metadata, don't bother doing anything
761 * different
762 */
763 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
764 offset = root->leafsize;
765 metadata = 0;
766 }
767
768 path = btrfs_alloc_path();
769 if (!path)
770 return -ENOMEM;
771
772 if (!trans) {
773 path->skip_locking = 1;
774 path->search_commit_root = 1;
775 }
776
777 search_again:
778 key.objectid = bytenr;
779 key.offset = offset;
780 if (metadata)
781 key.type = BTRFS_METADATA_ITEM_KEY;
782 else
783 key.type = BTRFS_EXTENT_ITEM_KEY;
784
785 again:
786 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
787 &key, path, 0, 0);
788 if (ret < 0)
789 goto out_free;
790
791 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
792 if (path->slots[0]) {
793 path->slots[0]--;
794 btrfs_item_key_to_cpu(path->nodes[0], &key,
795 path->slots[0]);
796 if (key.objectid == bytenr &&
797 key.type == BTRFS_EXTENT_ITEM_KEY &&
798 key.offset == root->leafsize)
799 ret = 0;
800 }
801 if (ret) {
802 key.objectid = bytenr;
803 key.type = BTRFS_EXTENT_ITEM_KEY;
804 key.offset = root->leafsize;
805 btrfs_release_path(path);
806 goto again;
807 }
808 }
809
810 if (ret == 0) {
811 leaf = path->nodes[0];
812 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
813 if (item_size >= sizeof(*ei)) {
814 ei = btrfs_item_ptr(leaf, path->slots[0],
815 struct btrfs_extent_item);
816 num_refs = btrfs_extent_refs(leaf, ei);
817 extent_flags = btrfs_extent_flags(leaf, ei);
818 } else {
819 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
820 struct btrfs_extent_item_v0 *ei0;
821 BUG_ON(item_size != sizeof(*ei0));
822 ei0 = btrfs_item_ptr(leaf, path->slots[0],
823 struct btrfs_extent_item_v0);
824 num_refs = btrfs_extent_refs_v0(leaf, ei0);
825 /* FIXME: this isn't correct for data */
826 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
827 #else
828 BUG();
829 #endif
830 }
831 BUG_ON(num_refs == 0);
832 } else {
833 num_refs = 0;
834 extent_flags = 0;
835 ret = 0;
836 }
837
838 if (!trans)
839 goto out;
840
841 delayed_refs = &trans->transaction->delayed_refs;
842 spin_lock(&delayed_refs->lock);
843 head = btrfs_find_delayed_ref_head(trans, bytenr);
844 if (head) {
845 if (!mutex_trylock(&head->mutex)) {
846 atomic_inc(&head->node.refs);
847 spin_unlock(&delayed_refs->lock);
848
849 btrfs_release_path(path);
850
851 /*
852 * Mutex was contended, block until it's released and try
853 * again
854 */
855 mutex_lock(&head->mutex);
856 mutex_unlock(&head->mutex);
857 btrfs_put_delayed_ref(&head->node);
858 goto search_again;
859 }
860 spin_lock(&head->lock);
861 if (head->extent_op && head->extent_op->update_flags)
862 extent_flags |= head->extent_op->flags_to_set;
863 else
864 BUG_ON(num_refs == 0);
865
866 num_refs += head->node.ref_mod;
867 spin_unlock(&head->lock);
868 mutex_unlock(&head->mutex);
869 }
870 spin_unlock(&delayed_refs->lock);
871 out:
872 WARN_ON(num_refs == 0);
873 if (refs)
874 *refs = num_refs;
875 if (flags)
876 *flags = extent_flags;
877 out_free:
878 btrfs_free_path(path);
879 return ret;
880 }
881
882 /*
883 * Back reference rules. Back refs have three main goals:
884 *
885 * 1) differentiate between all holders of references to an extent so that
886 * when a reference is dropped we can make sure it was a valid reference
887 * before freeing the extent.
888 *
889 * 2) Provide enough information to quickly find the holders of an extent
890 * if we notice a given block is corrupted or bad.
891 *
892 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
893 * maintenance. This is actually the same as #2, but with a slightly
894 * different use case.
895 *
896 * There are two kinds of back refs. The implicit back refs is optimized
897 * for pointers in non-shared tree blocks. For a given pointer in a block,
898 * back refs of this kind provide information about the block's owner tree
899 * and the pointer's key. These information allow us to find the block by
900 * b-tree searching. The full back refs is for pointers in tree blocks not
901 * referenced by their owner trees. The location of tree block is recorded
902 * in the back refs. Actually the full back refs is generic, and can be
903 * used in all cases the implicit back refs is used. The major shortcoming
904 * of the full back refs is its overhead. Every time a tree block gets
905 * COWed, we have to update back refs entry for all pointers in it.
906 *
907 * For a newly allocated tree block, we use implicit back refs for
908 * pointers in it. This means most tree related operations only involve
909 * implicit back refs. For a tree block created in old transaction, the
910 * only way to drop a reference to it is COW it. So we can detect the
911 * event that tree block loses its owner tree's reference and do the
912 * back refs conversion.
913 *
914 * When a tree block is COW'd through a tree, there are four cases:
915 *
916 * The reference count of the block is one and the tree is the block's
917 * owner tree. Nothing to do in this case.
918 *
919 * The reference count of the block is one and the tree is not the
920 * block's owner tree. In this case, full back refs is used for pointers
921 * in the block. Remove these full back refs, add implicit back refs for
922 * every pointers in the new block.
923 *
924 * The reference count of the block is greater than one and the tree is
925 * the block's owner tree. In this case, implicit back refs is used for
926 * pointers in the block. Add full back refs for every pointers in the
927 * block, increase lower level extents' reference counts. The original
928 * implicit back refs are entailed to the new block.
929 *
930 * The reference count of the block is greater than one and the tree is
931 * not the block's owner tree. Add implicit back refs for every pointer in
932 * the new block, increase lower level extents' reference count.
933 *
934 * Back Reference Key composing:
935 *
936 * The key objectid corresponds to the first byte in the extent,
937 * The key type is used to differentiate between types of back refs.
938 * There are different meanings of the key offset for different types
939 * of back refs.
940 *
941 * File extents can be referenced by:
942 *
943 * - multiple snapshots, subvolumes, or different generations in one subvol
944 * - different files inside a single subvolume
945 * - different offsets inside a file (bookend extents in file.c)
946 *
947 * The extent ref structure for the implicit back refs has fields for:
948 *
949 * - Objectid of the subvolume root
950 * - objectid of the file holding the reference
951 * - original offset in the file
952 * - how many bookend extents
953 *
954 * The key offset for the implicit back refs is hash of the first
955 * three fields.
956 *
957 * The extent ref structure for the full back refs has field for:
958 *
959 * - number of pointers in the tree leaf
960 *
961 * The key offset for the implicit back refs is the first byte of
962 * the tree leaf
963 *
964 * When a file extent is allocated, The implicit back refs is used.
965 * the fields are filled in:
966 *
967 * (root_key.objectid, inode objectid, offset in file, 1)
968 *
969 * When a file extent is removed file truncation, we find the
970 * corresponding implicit back refs and check the following fields:
971 *
972 * (btrfs_header_owner(leaf), inode objectid, offset in file)
973 *
974 * Btree extents can be referenced by:
975 *
976 * - Different subvolumes
977 *
978 * Both the implicit back refs and the full back refs for tree blocks
979 * only consist of key. The key offset for the implicit back refs is
980 * objectid of block's owner tree. The key offset for the full back refs
981 * is the first byte of parent block.
982 *
983 * When implicit back refs is used, information about the lowest key and
984 * level of the tree block are required. These information are stored in
985 * tree block info structure.
986 */
987
988 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
989 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
990 struct btrfs_root *root,
991 struct btrfs_path *path,
992 u64 owner, u32 extra_size)
993 {
994 struct btrfs_extent_item *item;
995 struct btrfs_extent_item_v0 *ei0;
996 struct btrfs_extent_ref_v0 *ref0;
997 struct btrfs_tree_block_info *bi;
998 struct extent_buffer *leaf;
999 struct btrfs_key key;
1000 struct btrfs_key found_key;
1001 u32 new_size = sizeof(*item);
1002 u64 refs;
1003 int ret;
1004
1005 leaf = path->nodes[0];
1006 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1007
1008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1009 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1010 struct btrfs_extent_item_v0);
1011 refs = btrfs_extent_refs_v0(leaf, ei0);
1012
1013 if (owner == (u64)-1) {
1014 while (1) {
1015 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1016 ret = btrfs_next_leaf(root, path);
1017 if (ret < 0)
1018 return ret;
1019 BUG_ON(ret > 0); /* Corruption */
1020 leaf = path->nodes[0];
1021 }
1022 btrfs_item_key_to_cpu(leaf, &found_key,
1023 path->slots[0]);
1024 BUG_ON(key.objectid != found_key.objectid);
1025 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1026 path->slots[0]++;
1027 continue;
1028 }
1029 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1030 struct btrfs_extent_ref_v0);
1031 owner = btrfs_ref_objectid_v0(leaf, ref0);
1032 break;
1033 }
1034 }
1035 btrfs_release_path(path);
1036
1037 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1038 new_size += sizeof(*bi);
1039
1040 new_size -= sizeof(*ei0);
1041 ret = btrfs_search_slot(trans, root, &key, path,
1042 new_size + extra_size, 1);
1043 if (ret < 0)
1044 return ret;
1045 BUG_ON(ret); /* Corruption */
1046
1047 btrfs_extend_item(root, path, new_size);
1048
1049 leaf = path->nodes[0];
1050 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1051 btrfs_set_extent_refs(leaf, item, refs);
1052 /* FIXME: get real generation */
1053 btrfs_set_extent_generation(leaf, item, 0);
1054 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1055 btrfs_set_extent_flags(leaf, item,
1056 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1057 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1058 bi = (struct btrfs_tree_block_info *)(item + 1);
1059 /* FIXME: get first key of the block */
1060 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1061 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1062 } else {
1063 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1064 }
1065 btrfs_mark_buffer_dirty(leaf);
1066 return 0;
1067 }
1068 #endif
1069
1070 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1071 {
1072 u32 high_crc = ~(u32)0;
1073 u32 low_crc = ~(u32)0;
1074 __le64 lenum;
1075
1076 lenum = cpu_to_le64(root_objectid);
1077 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1078 lenum = cpu_to_le64(owner);
1079 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1080 lenum = cpu_to_le64(offset);
1081 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1082
1083 return ((u64)high_crc << 31) ^ (u64)low_crc;
1084 }
1085
1086 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1087 struct btrfs_extent_data_ref *ref)
1088 {
1089 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1090 btrfs_extent_data_ref_objectid(leaf, ref),
1091 btrfs_extent_data_ref_offset(leaf, ref));
1092 }
1093
1094 static int match_extent_data_ref(struct extent_buffer *leaf,
1095 struct btrfs_extent_data_ref *ref,
1096 u64 root_objectid, u64 owner, u64 offset)
1097 {
1098 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1099 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1100 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1101 return 0;
1102 return 1;
1103 }
1104
1105 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1106 struct btrfs_root *root,
1107 struct btrfs_path *path,
1108 u64 bytenr, u64 parent,
1109 u64 root_objectid,
1110 u64 owner, u64 offset)
1111 {
1112 struct btrfs_key key;
1113 struct btrfs_extent_data_ref *ref;
1114 struct extent_buffer *leaf;
1115 u32 nritems;
1116 int ret;
1117 int recow;
1118 int err = -ENOENT;
1119
1120 key.objectid = bytenr;
1121 if (parent) {
1122 key.type = BTRFS_SHARED_DATA_REF_KEY;
1123 key.offset = parent;
1124 } else {
1125 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1126 key.offset = hash_extent_data_ref(root_objectid,
1127 owner, offset);
1128 }
1129 again:
1130 recow = 0;
1131 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1132 if (ret < 0) {
1133 err = ret;
1134 goto fail;
1135 }
1136
1137 if (parent) {
1138 if (!ret)
1139 return 0;
1140 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1141 key.type = BTRFS_EXTENT_REF_V0_KEY;
1142 btrfs_release_path(path);
1143 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1144 if (ret < 0) {
1145 err = ret;
1146 goto fail;
1147 }
1148 if (!ret)
1149 return 0;
1150 #endif
1151 goto fail;
1152 }
1153
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 while (1) {
1157 if (path->slots[0] >= nritems) {
1158 ret = btrfs_next_leaf(root, path);
1159 if (ret < 0)
1160 err = ret;
1161 if (ret)
1162 goto fail;
1163
1164 leaf = path->nodes[0];
1165 nritems = btrfs_header_nritems(leaf);
1166 recow = 1;
1167 }
1168
1169 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1170 if (key.objectid != bytenr ||
1171 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1172 goto fail;
1173
1174 ref = btrfs_item_ptr(leaf, path->slots[0],
1175 struct btrfs_extent_data_ref);
1176
1177 if (match_extent_data_ref(leaf, ref, root_objectid,
1178 owner, offset)) {
1179 if (recow) {
1180 btrfs_release_path(path);
1181 goto again;
1182 }
1183 err = 0;
1184 break;
1185 }
1186 path->slots[0]++;
1187 }
1188 fail:
1189 return err;
1190 }
1191
1192 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1193 struct btrfs_root *root,
1194 struct btrfs_path *path,
1195 u64 bytenr, u64 parent,
1196 u64 root_objectid, u64 owner,
1197 u64 offset, int refs_to_add)
1198 {
1199 struct btrfs_key key;
1200 struct extent_buffer *leaf;
1201 u32 size;
1202 u32 num_refs;
1203 int ret;
1204
1205 key.objectid = bytenr;
1206 if (parent) {
1207 key.type = BTRFS_SHARED_DATA_REF_KEY;
1208 key.offset = parent;
1209 size = sizeof(struct btrfs_shared_data_ref);
1210 } else {
1211 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1212 key.offset = hash_extent_data_ref(root_objectid,
1213 owner, offset);
1214 size = sizeof(struct btrfs_extent_data_ref);
1215 }
1216
1217 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1218 if (ret && ret != -EEXIST)
1219 goto fail;
1220
1221 leaf = path->nodes[0];
1222 if (parent) {
1223 struct btrfs_shared_data_ref *ref;
1224 ref = btrfs_item_ptr(leaf, path->slots[0],
1225 struct btrfs_shared_data_ref);
1226 if (ret == 0) {
1227 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1228 } else {
1229 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1230 num_refs += refs_to_add;
1231 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1232 }
1233 } else {
1234 struct btrfs_extent_data_ref *ref;
1235 while (ret == -EEXIST) {
1236 ref = btrfs_item_ptr(leaf, path->slots[0],
1237 struct btrfs_extent_data_ref);
1238 if (match_extent_data_ref(leaf, ref, root_objectid,
1239 owner, offset))
1240 break;
1241 btrfs_release_path(path);
1242 key.offset++;
1243 ret = btrfs_insert_empty_item(trans, root, path, &key,
1244 size);
1245 if (ret && ret != -EEXIST)
1246 goto fail;
1247
1248 leaf = path->nodes[0];
1249 }
1250 ref = btrfs_item_ptr(leaf, path->slots[0],
1251 struct btrfs_extent_data_ref);
1252 if (ret == 0) {
1253 btrfs_set_extent_data_ref_root(leaf, ref,
1254 root_objectid);
1255 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1256 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1257 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1258 } else {
1259 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1260 num_refs += refs_to_add;
1261 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1262 }
1263 }
1264 btrfs_mark_buffer_dirty(leaf);
1265 ret = 0;
1266 fail:
1267 btrfs_release_path(path);
1268 return ret;
1269 }
1270
1271 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1272 struct btrfs_root *root,
1273 struct btrfs_path *path,
1274 int refs_to_drop)
1275 {
1276 struct btrfs_key key;
1277 struct btrfs_extent_data_ref *ref1 = NULL;
1278 struct btrfs_shared_data_ref *ref2 = NULL;
1279 struct extent_buffer *leaf;
1280 u32 num_refs = 0;
1281 int ret = 0;
1282
1283 leaf = path->nodes[0];
1284 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1285
1286 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1287 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_data_ref);
1289 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1290 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1291 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1292 struct btrfs_shared_data_ref);
1293 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1294 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1295 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1296 struct btrfs_extent_ref_v0 *ref0;
1297 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1298 struct btrfs_extent_ref_v0);
1299 num_refs = btrfs_ref_count_v0(leaf, ref0);
1300 #endif
1301 } else {
1302 BUG();
1303 }
1304
1305 BUG_ON(num_refs < refs_to_drop);
1306 num_refs -= refs_to_drop;
1307
1308 if (num_refs == 0) {
1309 ret = btrfs_del_item(trans, root, path);
1310 } else {
1311 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1312 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1313 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1314 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1315 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1316 else {
1317 struct btrfs_extent_ref_v0 *ref0;
1318 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1319 struct btrfs_extent_ref_v0);
1320 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1321 }
1322 #endif
1323 btrfs_mark_buffer_dirty(leaf);
1324 }
1325 return ret;
1326 }
1327
1328 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1329 struct btrfs_path *path,
1330 struct btrfs_extent_inline_ref *iref)
1331 {
1332 struct btrfs_key key;
1333 struct extent_buffer *leaf;
1334 struct btrfs_extent_data_ref *ref1;
1335 struct btrfs_shared_data_ref *ref2;
1336 u32 num_refs = 0;
1337
1338 leaf = path->nodes[0];
1339 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1340 if (iref) {
1341 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1342 BTRFS_EXTENT_DATA_REF_KEY) {
1343 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 } else {
1346 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348 }
1349 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1350 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_extent_data_ref);
1352 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1353 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1354 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1355 struct btrfs_shared_data_ref);
1356 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1358 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1359 struct btrfs_extent_ref_v0 *ref0;
1360 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1361 struct btrfs_extent_ref_v0);
1362 num_refs = btrfs_ref_count_v0(leaf, ref0);
1363 #endif
1364 } else {
1365 WARN_ON(1);
1366 }
1367 return num_refs;
1368 }
1369
1370 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1371 struct btrfs_root *root,
1372 struct btrfs_path *path,
1373 u64 bytenr, u64 parent,
1374 u64 root_objectid)
1375 {
1376 struct btrfs_key key;
1377 int ret;
1378
1379 key.objectid = bytenr;
1380 if (parent) {
1381 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1382 key.offset = parent;
1383 } else {
1384 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1385 key.offset = root_objectid;
1386 }
1387
1388 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1389 if (ret > 0)
1390 ret = -ENOENT;
1391 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1392 if (ret == -ENOENT && parent) {
1393 btrfs_release_path(path);
1394 key.type = BTRFS_EXTENT_REF_V0_KEY;
1395 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1396 if (ret > 0)
1397 ret = -ENOENT;
1398 }
1399 #endif
1400 return ret;
1401 }
1402
1403 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1404 struct btrfs_root *root,
1405 struct btrfs_path *path,
1406 u64 bytenr, u64 parent,
1407 u64 root_objectid)
1408 {
1409 struct btrfs_key key;
1410 int ret;
1411
1412 key.objectid = bytenr;
1413 if (parent) {
1414 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1415 key.offset = parent;
1416 } else {
1417 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1418 key.offset = root_objectid;
1419 }
1420
1421 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1422 btrfs_release_path(path);
1423 return ret;
1424 }
1425
1426 static inline int extent_ref_type(u64 parent, u64 owner)
1427 {
1428 int type;
1429 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1430 if (parent > 0)
1431 type = BTRFS_SHARED_BLOCK_REF_KEY;
1432 else
1433 type = BTRFS_TREE_BLOCK_REF_KEY;
1434 } else {
1435 if (parent > 0)
1436 type = BTRFS_SHARED_DATA_REF_KEY;
1437 else
1438 type = BTRFS_EXTENT_DATA_REF_KEY;
1439 }
1440 return type;
1441 }
1442
1443 static int find_next_key(struct btrfs_path *path, int level,
1444 struct btrfs_key *key)
1445
1446 {
1447 for (; level < BTRFS_MAX_LEVEL; level++) {
1448 if (!path->nodes[level])
1449 break;
1450 if (path->slots[level] + 1 >=
1451 btrfs_header_nritems(path->nodes[level]))
1452 continue;
1453 if (level == 0)
1454 btrfs_item_key_to_cpu(path->nodes[level], key,
1455 path->slots[level] + 1);
1456 else
1457 btrfs_node_key_to_cpu(path->nodes[level], key,
1458 path->slots[level] + 1);
1459 return 0;
1460 }
1461 return 1;
1462 }
1463
1464 /*
1465 * look for inline back ref. if back ref is found, *ref_ret is set
1466 * to the address of inline back ref, and 0 is returned.
1467 *
1468 * if back ref isn't found, *ref_ret is set to the address where it
1469 * should be inserted, and -ENOENT is returned.
1470 *
1471 * if insert is true and there are too many inline back refs, the path
1472 * points to the extent item, and -EAGAIN is returned.
1473 *
1474 * NOTE: inline back refs are ordered in the same way that back ref
1475 * items in the tree are ordered.
1476 */
1477 static noinline_for_stack
1478 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1479 struct btrfs_root *root,
1480 struct btrfs_path *path,
1481 struct btrfs_extent_inline_ref **ref_ret,
1482 u64 bytenr, u64 num_bytes,
1483 u64 parent, u64 root_objectid,
1484 u64 owner, u64 offset, int insert)
1485 {
1486 struct btrfs_key key;
1487 struct extent_buffer *leaf;
1488 struct btrfs_extent_item *ei;
1489 struct btrfs_extent_inline_ref *iref;
1490 u64 flags;
1491 u64 item_size;
1492 unsigned long ptr;
1493 unsigned long end;
1494 int extra_size;
1495 int type;
1496 int want;
1497 int ret;
1498 int err = 0;
1499 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1500 SKINNY_METADATA);
1501
1502 key.objectid = bytenr;
1503 key.type = BTRFS_EXTENT_ITEM_KEY;
1504 key.offset = num_bytes;
1505
1506 want = extent_ref_type(parent, owner);
1507 if (insert) {
1508 extra_size = btrfs_extent_inline_ref_size(want);
1509 path->keep_locks = 1;
1510 } else
1511 extra_size = -1;
1512
1513 /*
1514 * Owner is our parent level, so we can just add one to get the level
1515 * for the block we are interested in.
1516 */
1517 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1518 key.type = BTRFS_METADATA_ITEM_KEY;
1519 key.offset = owner;
1520 }
1521
1522 again:
1523 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1524 if (ret < 0) {
1525 err = ret;
1526 goto out;
1527 }
1528
1529 /*
1530 * We may be a newly converted file system which still has the old fat
1531 * extent entries for metadata, so try and see if we have one of those.
1532 */
1533 if (ret > 0 && skinny_metadata) {
1534 skinny_metadata = false;
1535 if (path->slots[0]) {
1536 path->slots[0]--;
1537 btrfs_item_key_to_cpu(path->nodes[0], &key,
1538 path->slots[0]);
1539 if (key.objectid == bytenr &&
1540 key.type == BTRFS_EXTENT_ITEM_KEY &&
1541 key.offset == num_bytes)
1542 ret = 0;
1543 }
1544 if (ret) {
1545 key.type = BTRFS_EXTENT_ITEM_KEY;
1546 key.offset = num_bytes;
1547 btrfs_release_path(path);
1548 goto again;
1549 }
1550 }
1551
1552 if (ret && !insert) {
1553 err = -ENOENT;
1554 goto out;
1555 } else if (WARN_ON(ret)) {
1556 err = -EIO;
1557 goto out;
1558 }
1559
1560 leaf = path->nodes[0];
1561 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1562 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1563 if (item_size < sizeof(*ei)) {
1564 if (!insert) {
1565 err = -ENOENT;
1566 goto out;
1567 }
1568 ret = convert_extent_item_v0(trans, root, path, owner,
1569 extra_size);
1570 if (ret < 0) {
1571 err = ret;
1572 goto out;
1573 }
1574 leaf = path->nodes[0];
1575 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1576 }
1577 #endif
1578 BUG_ON(item_size < sizeof(*ei));
1579
1580 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1581 flags = btrfs_extent_flags(leaf, ei);
1582
1583 ptr = (unsigned long)(ei + 1);
1584 end = (unsigned long)ei + item_size;
1585
1586 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1587 ptr += sizeof(struct btrfs_tree_block_info);
1588 BUG_ON(ptr > end);
1589 }
1590
1591 err = -ENOENT;
1592 while (1) {
1593 if (ptr >= end) {
1594 WARN_ON(ptr > end);
1595 break;
1596 }
1597 iref = (struct btrfs_extent_inline_ref *)ptr;
1598 type = btrfs_extent_inline_ref_type(leaf, iref);
1599 if (want < type)
1600 break;
1601 if (want > type) {
1602 ptr += btrfs_extent_inline_ref_size(type);
1603 continue;
1604 }
1605
1606 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1607 struct btrfs_extent_data_ref *dref;
1608 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1609 if (match_extent_data_ref(leaf, dref, root_objectid,
1610 owner, offset)) {
1611 err = 0;
1612 break;
1613 }
1614 if (hash_extent_data_ref_item(leaf, dref) <
1615 hash_extent_data_ref(root_objectid, owner, offset))
1616 break;
1617 } else {
1618 u64 ref_offset;
1619 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1620 if (parent > 0) {
1621 if (parent == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < parent)
1626 break;
1627 } else {
1628 if (root_objectid == ref_offset) {
1629 err = 0;
1630 break;
1631 }
1632 if (ref_offset < root_objectid)
1633 break;
1634 }
1635 }
1636 ptr += btrfs_extent_inline_ref_size(type);
1637 }
1638 if (err == -ENOENT && insert) {
1639 if (item_size + extra_size >=
1640 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1641 err = -EAGAIN;
1642 goto out;
1643 }
1644 /*
1645 * To add new inline back ref, we have to make sure
1646 * there is no corresponding back ref item.
1647 * For simplicity, we just do not add new inline back
1648 * ref if there is any kind of item for this block
1649 */
1650 if (find_next_key(path, 0, &key) == 0 &&
1651 key.objectid == bytenr &&
1652 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1653 err = -EAGAIN;
1654 goto out;
1655 }
1656 }
1657 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1658 out:
1659 if (insert) {
1660 path->keep_locks = 0;
1661 btrfs_unlock_up_safe(path, 1);
1662 }
1663 return err;
1664 }
1665
1666 /*
1667 * helper to add new inline back ref
1668 */
1669 static noinline_for_stack
1670 void setup_inline_extent_backref(struct btrfs_root *root,
1671 struct btrfs_path *path,
1672 struct btrfs_extent_inline_ref *iref,
1673 u64 parent, u64 root_objectid,
1674 u64 owner, u64 offset, int refs_to_add,
1675 struct btrfs_delayed_extent_op *extent_op)
1676 {
1677 struct extent_buffer *leaf;
1678 struct btrfs_extent_item *ei;
1679 unsigned long ptr;
1680 unsigned long end;
1681 unsigned long item_offset;
1682 u64 refs;
1683 int size;
1684 int type;
1685
1686 leaf = path->nodes[0];
1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 item_offset = (unsigned long)iref - (unsigned long)ei;
1689
1690 type = extent_ref_type(parent, owner);
1691 size = btrfs_extent_inline_ref_size(type);
1692
1693 btrfs_extend_item(root, path, size);
1694
1695 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1696 refs = btrfs_extent_refs(leaf, ei);
1697 refs += refs_to_add;
1698 btrfs_set_extent_refs(leaf, ei, refs);
1699 if (extent_op)
1700 __run_delayed_extent_op(extent_op, leaf, ei);
1701
1702 ptr = (unsigned long)ei + item_offset;
1703 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1704 if (ptr < end - size)
1705 memmove_extent_buffer(leaf, ptr + size, ptr,
1706 end - size - ptr);
1707
1708 iref = (struct btrfs_extent_inline_ref *)ptr;
1709 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1710 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1711 struct btrfs_extent_data_ref *dref;
1712 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1713 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1714 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1715 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1716 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1717 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1718 struct btrfs_shared_data_ref *sref;
1719 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1720 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1721 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1722 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1723 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1724 } else {
1725 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1726 }
1727 btrfs_mark_buffer_dirty(leaf);
1728 }
1729
1730 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1731 struct btrfs_root *root,
1732 struct btrfs_path *path,
1733 struct btrfs_extent_inline_ref **ref_ret,
1734 u64 bytenr, u64 num_bytes, u64 parent,
1735 u64 root_objectid, u64 owner, u64 offset)
1736 {
1737 int ret;
1738
1739 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1740 bytenr, num_bytes, parent,
1741 root_objectid, owner, offset, 0);
1742 if (ret != -ENOENT)
1743 return ret;
1744
1745 btrfs_release_path(path);
1746 *ref_ret = NULL;
1747
1748 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1749 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1750 root_objectid);
1751 } else {
1752 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1753 root_objectid, owner, offset);
1754 }
1755 return ret;
1756 }
1757
1758 /*
1759 * helper to update/remove inline back ref
1760 */
1761 static noinline_for_stack
1762 void update_inline_extent_backref(struct btrfs_root *root,
1763 struct btrfs_path *path,
1764 struct btrfs_extent_inline_ref *iref,
1765 int refs_to_mod,
1766 struct btrfs_delayed_extent_op *extent_op)
1767 {
1768 struct extent_buffer *leaf;
1769 struct btrfs_extent_item *ei;
1770 struct btrfs_extent_data_ref *dref = NULL;
1771 struct btrfs_shared_data_ref *sref = NULL;
1772 unsigned long ptr;
1773 unsigned long end;
1774 u32 item_size;
1775 int size;
1776 int type;
1777 u64 refs;
1778
1779 leaf = path->nodes[0];
1780 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1781 refs = btrfs_extent_refs(leaf, ei);
1782 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1783 refs += refs_to_mod;
1784 btrfs_set_extent_refs(leaf, ei, refs);
1785 if (extent_op)
1786 __run_delayed_extent_op(extent_op, leaf, ei);
1787
1788 type = btrfs_extent_inline_ref_type(leaf, iref);
1789
1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792 refs = btrfs_extent_data_ref_count(leaf, dref);
1793 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795 refs = btrfs_shared_data_ref_count(leaf, sref);
1796 } else {
1797 refs = 1;
1798 BUG_ON(refs_to_mod != -1);
1799 }
1800
1801 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802 refs += refs_to_mod;
1803
1804 if (refs > 0) {
1805 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1807 else
1808 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1809 } else {
1810 size = btrfs_extent_inline_ref_size(type);
1811 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1812 ptr = (unsigned long)iref;
1813 end = (unsigned long)ei + item_size;
1814 if (ptr + size < end)
1815 memmove_extent_buffer(leaf, ptr, ptr + size,
1816 end - ptr - size);
1817 item_size -= size;
1818 btrfs_truncate_item(root, path, item_size, 1);
1819 }
1820 btrfs_mark_buffer_dirty(leaf);
1821 }
1822
1823 static noinline_for_stack
1824 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1825 struct btrfs_root *root,
1826 struct btrfs_path *path,
1827 u64 bytenr, u64 num_bytes, u64 parent,
1828 u64 root_objectid, u64 owner,
1829 u64 offset, int refs_to_add,
1830 struct btrfs_delayed_extent_op *extent_op)
1831 {
1832 struct btrfs_extent_inline_ref *iref;
1833 int ret;
1834
1835 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1836 bytenr, num_bytes, parent,
1837 root_objectid, owner, offset, 1);
1838 if (ret == 0) {
1839 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1840 update_inline_extent_backref(root, path, iref,
1841 refs_to_add, extent_op);
1842 } else if (ret == -ENOENT) {
1843 setup_inline_extent_backref(root, path, iref, parent,
1844 root_objectid, owner, offset,
1845 refs_to_add, extent_op);
1846 ret = 0;
1847 }
1848 return ret;
1849 }
1850
1851 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1852 struct btrfs_root *root,
1853 struct btrfs_path *path,
1854 u64 bytenr, u64 parent, u64 root_objectid,
1855 u64 owner, u64 offset, int refs_to_add)
1856 {
1857 int ret;
1858 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1859 BUG_ON(refs_to_add != 1);
1860 ret = insert_tree_block_ref(trans, root, path, bytenr,
1861 parent, root_objectid);
1862 } else {
1863 ret = insert_extent_data_ref(trans, root, path, bytenr,
1864 parent, root_objectid,
1865 owner, offset, refs_to_add);
1866 }
1867 return ret;
1868 }
1869
1870 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1871 struct btrfs_root *root,
1872 struct btrfs_path *path,
1873 struct btrfs_extent_inline_ref *iref,
1874 int refs_to_drop, int is_data)
1875 {
1876 int ret = 0;
1877
1878 BUG_ON(!is_data && refs_to_drop != 1);
1879 if (iref) {
1880 update_inline_extent_backref(root, path, iref,
1881 -refs_to_drop, NULL);
1882 } else if (is_data) {
1883 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1884 } else {
1885 ret = btrfs_del_item(trans, root, path);
1886 }
1887 return ret;
1888 }
1889
1890 static int btrfs_issue_discard(struct block_device *bdev,
1891 u64 start, u64 len)
1892 {
1893 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1894 }
1895
1896 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1897 u64 num_bytes, u64 *actual_bytes)
1898 {
1899 int ret;
1900 u64 discarded_bytes = 0;
1901 struct btrfs_bio *bbio = NULL;
1902
1903
1904 /* Tell the block device(s) that the sectors can be discarded */
1905 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1906 bytenr, &num_bytes, &bbio, 0);
1907 /* Error condition is -ENOMEM */
1908 if (!ret) {
1909 struct btrfs_bio_stripe *stripe = bbio->stripes;
1910 int i;
1911
1912
1913 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1914 if (!stripe->dev->can_discard)
1915 continue;
1916
1917 ret = btrfs_issue_discard(stripe->dev->bdev,
1918 stripe->physical,
1919 stripe->length);
1920 if (!ret)
1921 discarded_bytes += stripe->length;
1922 else if (ret != -EOPNOTSUPP)
1923 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1924
1925 /*
1926 * Just in case we get back EOPNOTSUPP for some reason,
1927 * just ignore the return value so we don't screw up
1928 * people calling discard_extent.
1929 */
1930 ret = 0;
1931 }
1932 kfree(bbio);
1933 }
1934
1935 if (actual_bytes)
1936 *actual_bytes = discarded_bytes;
1937
1938
1939 if (ret == -EOPNOTSUPP)
1940 ret = 0;
1941 return ret;
1942 }
1943
1944 /* Can return -ENOMEM */
1945 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1946 struct btrfs_root *root,
1947 u64 bytenr, u64 num_bytes, u64 parent,
1948 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1949 {
1950 int ret;
1951 struct btrfs_fs_info *fs_info = root->fs_info;
1952
1953 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1954 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1955
1956 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1957 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1958 num_bytes,
1959 parent, root_objectid, (int)owner,
1960 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1961 } else {
1962 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1963 num_bytes,
1964 parent, root_objectid, owner, offset,
1965 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1966 }
1967 return ret;
1968 }
1969
1970 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1971 struct btrfs_root *root,
1972 u64 bytenr, u64 num_bytes,
1973 u64 parent, u64 root_objectid,
1974 u64 owner, u64 offset, int refs_to_add,
1975 struct btrfs_delayed_extent_op *extent_op)
1976 {
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
1980 u64 refs;
1981 int ret;
1982
1983 path = btrfs_alloc_path();
1984 if (!path)
1985 return -ENOMEM;
1986
1987 path->reada = 1;
1988 path->leave_spinning = 1;
1989 /* this will setup the path even if it fails to insert the back ref */
1990 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1991 path, bytenr, num_bytes, parent,
1992 root_objectid, owner, offset,
1993 refs_to_add, extent_op);
1994 if (ret != -EAGAIN)
1995 goto out;
1996
1997 leaf = path->nodes[0];
1998 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1999 refs = btrfs_extent_refs(leaf, item);
2000 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2001 if (extent_op)
2002 __run_delayed_extent_op(extent_op, leaf, item);
2003
2004 btrfs_mark_buffer_dirty(leaf);
2005 btrfs_release_path(path);
2006
2007 path->reada = 1;
2008 path->leave_spinning = 1;
2009
2010 /* now insert the actual backref */
2011 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2012 path, bytenr, parent, root_objectid,
2013 owner, offset, refs_to_add);
2014 if (ret)
2015 btrfs_abort_transaction(trans, root, ret);
2016 out:
2017 btrfs_free_path(path);
2018 return ret;
2019 }
2020
2021 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2022 struct btrfs_root *root,
2023 struct btrfs_delayed_ref_node *node,
2024 struct btrfs_delayed_extent_op *extent_op,
2025 int insert_reserved)
2026 {
2027 int ret = 0;
2028 struct btrfs_delayed_data_ref *ref;
2029 struct btrfs_key ins;
2030 u64 parent = 0;
2031 u64 ref_root = 0;
2032 u64 flags = 0;
2033
2034 ins.objectid = node->bytenr;
2035 ins.offset = node->num_bytes;
2036 ins.type = BTRFS_EXTENT_ITEM_KEY;
2037
2038 ref = btrfs_delayed_node_to_data_ref(node);
2039 trace_run_delayed_data_ref(node, ref, node->action);
2040
2041 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2042 parent = ref->parent;
2043 else
2044 ref_root = ref->root;
2045
2046 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2047 if (extent_op)
2048 flags |= extent_op->flags_to_set;
2049 ret = alloc_reserved_file_extent(trans, root,
2050 parent, ref_root, flags,
2051 ref->objectid, ref->offset,
2052 &ins, node->ref_mod);
2053 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2054 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2055 node->num_bytes, parent,
2056 ref_root, ref->objectid,
2057 ref->offset, node->ref_mod,
2058 extent_op);
2059 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2060 ret = __btrfs_free_extent(trans, root, node->bytenr,
2061 node->num_bytes, parent,
2062 ref_root, ref->objectid,
2063 ref->offset, node->ref_mod,
2064 extent_op);
2065 } else {
2066 BUG();
2067 }
2068 return ret;
2069 }
2070
2071 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2072 struct extent_buffer *leaf,
2073 struct btrfs_extent_item *ei)
2074 {
2075 u64 flags = btrfs_extent_flags(leaf, ei);
2076 if (extent_op->update_flags) {
2077 flags |= extent_op->flags_to_set;
2078 btrfs_set_extent_flags(leaf, ei, flags);
2079 }
2080
2081 if (extent_op->update_key) {
2082 struct btrfs_tree_block_info *bi;
2083 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2084 bi = (struct btrfs_tree_block_info *)(ei + 1);
2085 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2086 }
2087 }
2088
2089 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2090 struct btrfs_root *root,
2091 struct btrfs_delayed_ref_node *node,
2092 struct btrfs_delayed_extent_op *extent_op)
2093 {
2094 struct btrfs_key key;
2095 struct btrfs_path *path;
2096 struct btrfs_extent_item *ei;
2097 struct extent_buffer *leaf;
2098 u32 item_size;
2099 int ret;
2100 int err = 0;
2101 int metadata = !extent_op->is_data;
2102
2103 if (trans->aborted)
2104 return 0;
2105
2106 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2107 metadata = 0;
2108
2109 path = btrfs_alloc_path();
2110 if (!path)
2111 return -ENOMEM;
2112
2113 key.objectid = node->bytenr;
2114
2115 if (metadata) {
2116 key.type = BTRFS_METADATA_ITEM_KEY;
2117 key.offset = extent_op->level;
2118 } else {
2119 key.type = BTRFS_EXTENT_ITEM_KEY;
2120 key.offset = node->num_bytes;
2121 }
2122
2123 again:
2124 path->reada = 1;
2125 path->leave_spinning = 1;
2126 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2127 path, 0, 1);
2128 if (ret < 0) {
2129 err = ret;
2130 goto out;
2131 }
2132 if (ret > 0) {
2133 if (metadata) {
2134 if (path->slots[0] > 0) {
2135 path->slots[0]--;
2136 btrfs_item_key_to_cpu(path->nodes[0], &key,
2137 path->slots[0]);
2138 if (key.objectid == node->bytenr &&
2139 key.type == BTRFS_EXTENT_ITEM_KEY &&
2140 key.offset == node->num_bytes)
2141 ret = 0;
2142 }
2143 if (ret > 0) {
2144 btrfs_release_path(path);
2145 metadata = 0;
2146
2147 key.objectid = node->bytenr;
2148 key.offset = node->num_bytes;
2149 key.type = BTRFS_EXTENT_ITEM_KEY;
2150 goto again;
2151 }
2152 } else {
2153 err = -EIO;
2154 goto out;
2155 }
2156 }
2157
2158 leaf = path->nodes[0];
2159 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2160 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2161 if (item_size < sizeof(*ei)) {
2162 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2163 path, (u64)-1, 0);
2164 if (ret < 0) {
2165 err = ret;
2166 goto out;
2167 }
2168 leaf = path->nodes[0];
2169 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2170 }
2171 #endif
2172 BUG_ON(item_size < sizeof(*ei));
2173 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2174 __run_delayed_extent_op(extent_op, leaf, ei);
2175
2176 btrfs_mark_buffer_dirty(leaf);
2177 out:
2178 btrfs_free_path(path);
2179 return err;
2180 }
2181
2182 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2183 struct btrfs_root *root,
2184 struct btrfs_delayed_ref_node *node,
2185 struct btrfs_delayed_extent_op *extent_op,
2186 int insert_reserved)
2187 {
2188 int ret = 0;
2189 struct btrfs_delayed_tree_ref *ref;
2190 struct btrfs_key ins;
2191 u64 parent = 0;
2192 u64 ref_root = 0;
2193 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2194 SKINNY_METADATA);
2195
2196 ref = btrfs_delayed_node_to_tree_ref(node);
2197 trace_run_delayed_tree_ref(node, ref, node->action);
2198
2199 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2200 parent = ref->parent;
2201 else
2202 ref_root = ref->root;
2203
2204 ins.objectid = node->bytenr;
2205 if (skinny_metadata) {
2206 ins.offset = ref->level;
2207 ins.type = BTRFS_METADATA_ITEM_KEY;
2208 } else {
2209 ins.offset = node->num_bytes;
2210 ins.type = BTRFS_EXTENT_ITEM_KEY;
2211 }
2212
2213 BUG_ON(node->ref_mod != 1);
2214 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2215 BUG_ON(!extent_op || !extent_op->update_flags);
2216 ret = alloc_reserved_tree_block(trans, root,
2217 parent, ref_root,
2218 extent_op->flags_to_set,
2219 &extent_op->key,
2220 ref->level, &ins);
2221 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2222 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2223 node->num_bytes, parent, ref_root,
2224 ref->level, 0, 1, extent_op);
2225 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2226 ret = __btrfs_free_extent(trans, root, node->bytenr,
2227 node->num_bytes, parent, ref_root,
2228 ref->level, 0, 1, extent_op);
2229 } else {
2230 BUG();
2231 }
2232 return ret;
2233 }
2234
2235 /* helper function to actually process a single delayed ref entry */
2236 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2237 struct btrfs_root *root,
2238 struct btrfs_delayed_ref_node *node,
2239 struct btrfs_delayed_extent_op *extent_op,
2240 int insert_reserved)
2241 {
2242 int ret = 0;
2243
2244 if (trans->aborted) {
2245 if (insert_reserved)
2246 btrfs_pin_extent(root, node->bytenr,
2247 node->num_bytes, 1);
2248 return 0;
2249 }
2250
2251 if (btrfs_delayed_ref_is_head(node)) {
2252 struct btrfs_delayed_ref_head *head;
2253 /*
2254 * we've hit the end of the chain and we were supposed
2255 * to insert this extent into the tree. But, it got
2256 * deleted before we ever needed to insert it, so all
2257 * we have to do is clean up the accounting
2258 */
2259 BUG_ON(extent_op);
2260 head = btrfs_delayed_node_to_head(node);
2261 trace_run_delayed_ref_head(node, head, node->action);
2262
2263 if (insert_reserved) {
2264 btrfs_pin_extent(root, node->bytenr,
2265 node->num_bytes, 1);
2266 if (head->is_data) {
2267 ret = btrfs_del_csums(trans, root,
2268 node->bytenr,
2269 node->num_bytes);
2270 }
2271 }
2272 return ret;
2273 }
2274
2275 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2276 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2277 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2278 insert_reserved);
2279 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2280 node->type == BTRFS_SHARED_DATA_REF_KEY)
2281 ret = run_delayed_data_ref(trans, root, node, extent_op,
2282 insert_reserved);
2283 else
2284 BUG();
2285 return ret;
2286 }
2287
2288 static noinline struct btrfs_delayed_ref_node *
2289 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2290 {
2291 struct rb_node *node;
2292 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2293
2294 /*
2295 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2296 * this prevents ref count from going down to zero when
2297 * there still are pending delayed ref.
2298 */
2299 node = rb_first(&head->ref_root);
2300 while (node) {
2301 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2302 rb_node);
2303 if (ref->action == BTRFS_ADD_DELAYED_REF)
2304 return ref;
2305 else if (last == NULL)
2306 last = ref;
2307 node = rb_next(node);
2308 }
2309 return last;
2310 }
2311
2312 /*
2313 * Returns 0 on success or if called with an already aborted transaction.
2314 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2315 */
2316 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2317 struct btrfs_root *root,
2318 unsigned long nr)
2319 {
2320 struct btrfs_delayed_ref_root *delayed_refs;
2321 struct btrfs_delayed_ref_node *ref;
2322 struct btrfs_delayed_ref_head *locked_ref = NULL;
2323 struct btrfs_delayed_extent_op *extent_op;
2324 struct btrfs_fs_info *fs_info = root->fs_info;
2325 ktime_t start = ktime_get();
2326 int ret;
2327 unsigned long count = 0;
2328 unsigned long actual_count = 0;
2329 int must_insert_reserved = 0;
2330
2331 delayed_refs = &trans->transaction->delayed_refs;
2332 while (1) {
2333 if (!locked_ref) {
2334 if (count >= nr)
2335 break;
2336
2337 spin_lock(&delayed_refs->lock);
2338 locked_ref = btrfs_select_ref_head(trans);
2339 if (!locked_ref) {
2340 spin_unlock(&delayed_refs->lock);
2341 break;
2342 }
2343
2344 /* grab the lock that says we are going to process
2345 * all the refs for this head */
2346 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2347 spin_unlock(&delayed_refs->lock);
2348 /*
2349 * we may have dropped the spin lock to get the head
2350 * mutex lock, and that might have given someone else
2351 * time to free the head. If that's true, it has been
2352 * removed from our list and we can move on.
2353 */
2354 if (ret == -EAGAIN) {
2355 locked_ref = NULL;
2356 count++;
2357 continue;
2358 }
2359 }
2360
2361 /*
2362 * We need to try and merge add/drops of the same ref since we
2363 * can run into issues with relocate dropping the implicit ref
2364 * and then it being added back again before the drop can
2365 * finish. If we merged anything we need to re-loop so we can
2366 * get a good ref.
2367 */
2368 spin_lock(&locked_ref->lock);
2369 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2370 locked_ref);
2371
2372 /*
2373 * locked_ref is the head node, so we have to go one
2374 * node back for any delayed ref updates
2375 */
2376 ref = select_delayed_ref(locked_ref);
2377
2378 if (ref && ref->seq &&
2379 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2380 spin_unlock(&locked_ref->lock);
2381 btrfs_delayed_ref_unlock(locked_ref);
2382 spin_lock(&delayed_refs->lock);
2383 locked_ref->processing = 0;
2384 delayed_refs->num_heads_ready++;
2385 spin_unlock(&delayed_refs->lock);
2386 locked_ref = NULL;
2387 cond_resched();
2388 continue;
2389 }
2390
2391 /*
2392 * record the must insert reserved flag before we
2393 * drop the spin lock.
2394 */
2395 must_insert_reserved = locked_ref->must_insert_reserved;
2396 locked_ref->must_insert_reserved = 0;
2397
2398 extent_op = locked_ref->extent_op;
2399 locked_ref->extent_op = NULL;
2400
2401 if (!ref) {
2402
2403
2404 /* All delayed refs have been processed, Go ahead
2405 * and send the head node to run_one_delayed_ref,
2406 * so that any accounting fixes can happen
2407 */
2408 ref = &locked_ref->node;
2409
2410 if (extent_op && must_insert_reserved) {
2411 btrfs_free_delayed_extent_op(extent_op);
2412 extent_op = NULL;
2413 }
2414
2415 if (extent_op) {
2416 spin_unlock(&locked_ref->lock);
2417 ret = run_delayed_extent_op(trans, root,
2418 ref, extent_op);
2419 btrfs_free_delayed_extent_op(extent_op);
2420
2421 if (ret) {
2422 /*
2423 * Need to reset must_insert_reserved if
2424 * there was an error so the abort stuff
2425 * can cleanup the reserved space
2426 * properly.
2427 */
2428 if (must_insert_reserved)
2429 locked_ref->must_insert_reserved = 1;
2430 locked_ref->processing = 0;
2431 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2432 btrfs_delayed_ref_unlock(locked_ref);
2433 return ret;
2434 }
2435 continue;
2436 }
2437
2438 /*
2439 * Need to drop our head ref lock and re-aqcuire the
2440 * delayed ref lock and then re-check to make sure
2441 * nobody got added.
2442 */
2443 spin_unlock(&locked_ref->lock);
2444 spin_lock(&delayed_refs->lock);
2445 spin_lock(&locked_ref->lock);
2446 if (rb_first(&locked_ref->ref_root)) {
2447 spin_unlock(&locked_ref->lock);
2448 spin_unlock(&delayed_refs->lock);
2449 continue;
2450 }
2451 ref->in_tree = 0;
2452 delayed_refs->num_heads--;
2453 rb_erase(&locked_ref->href_node,
2454 &delayed_refs->href_root);
2455 spin_unlock(&delayed_refs->lock);
2456 } else {
2457 actual_count++;
2458 ref->in_tree = 0;
2459 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2460 }
2461 atomic_dec(&delayed_refs->num_entries);
2462
2463 if (!btrfs_delayed_ref_is_head(ref)) {
2464 /*
2465 * when we play the delayed ref, also correct the
2466 * ref_mod on head
2467 */
2468 switch (ref->action) {
2469 case BTRFS_ADD_DELAYED_REF:
2470 case BTRFS_ADD_DELAYED_EXTENT:
2471 locked_ref->node.ref_mod -= ref->ref_mod;
2472 break;
2473 case BTRFS_DROP_DELAYED_REF:
2474 locked_ref->node.ref_mod += ref->ref_mod;
2475 break;
2476 default:
2477 WARN_ON(1);
2478 }
2479 }
2480 spin_unlock(&locked_ref->lock);
2481
2482 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2483 must_insert_reserved);
2484
2485 btrfs_free_delayed_extent_op(extent_op);
2486 if (ret) {
2487 locked_ref->processing = 0;
2488 btrfs_delayed_ref_unlock(locked_ref);
2489 btrfs_put_delayed_ref(ref);
2490 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2491 return ret;
2492 }
2493
2494 /*
2495 * If this node is a head, that means all the refs in this head
2496 * have been dealt with, and we will pick the next head to deal
2497 * with, so we must unlock the head and drop it from the cluster
2498 * list before we release it.
2499 */
2500 if (btrfs_delayed_ref_is_head(ref)) {
2501 btrfs_delayed_ref_unlock(locked_ref);
2502 locked_ref = NULL;
2503 }
2504 btrfs_put_delayed_ref(ref);
2505 count++;
2506 cond_resched();
2507 }
2508
2509 /*
2510 * We don't want to include ref heads since we can have empty ref heads
2511 * and those will drastically skew our runtime down since we just do
2512 * accounting, no actual extent tree updates.
2513 */
2514 if (actual_count > 0) {
2515 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2516 u64 avg;
2517
2518 /*
2519 * We weigh the current average higher than our current runtime
2520 * to avoid large swings in the average.
2521 */
2522 spin_lock(&delayed_refs->lock);
2523 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2524 avg = div64_u64(avg, 4);
2525 fs_info->avg_delayed_ref_runtime = avg;
2526 spin_unlock(&delayed_refs->lock);
2527 }
2528 return 0;
2529 }
2530
2531 #ifdef SCRAMBLE_DELAYED_REFS
2532 /*
2533 * Normally delayed refs get processed in ascending bytenr order. This
2534 * correlates in most cases to the order added. To expose dependencies on this
2535 * order, we start to process the tree in the middle instead of the beginning
2536 */
2537 static u64 find_middle(struct rb_root *root)
2538 {
2539 struct rb_node *n = root->rb_node;
2540 struct btrfs_delayed_ref_node *entry;
2541 int alt = 1;
2542 u64 middle;
2543 u64 first = 0, last = 0;
2544
2545 n = rb_first(root);
2546 if (n) {
2547 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2548 first = entry->bytenr;
2549 }
2550 n = rb_last(root);
2551 if (n) {
2552 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2553 last = entry->bytenr;
2554 }
2555 n = root->rb_node;
2556
2557 while (n) {
2558 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2559 WARN_ON(!entry->in_tree);
2560
2561 middle = entry->bytenr;
2562
2563 if (alt)
2564 n = n->rb_left;
2565 else
2566 n = n->rb_right;
2567
2568 alt = 1 - alt;
2569 }
2570 return middle;
2571 }
2572 #endif
2573
2574 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2575 struct btrfs_fs_info *fs_info)
2576 {
2577 struct qgroup_update *qgroup_update;
2578 int ret = 0;
2579
2580 if (list_empty(&trans->qgroup_ref_list) !=
2581 !trans->delayed_ref_elem.seq) {
2582 /* list without seq or seq without list */
2583 btrfs_err(fs_info,
2584 "qgroup accounting update error, list is%s empty, seq is %#x.%x",
2585 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2586 (u32)(trans->delayed_ref_elem.seq >> 32),
2587 (u32)trans->delayed_ref_elem.seq);
2588 BUG();
2589 }
2590
2591 if (!trans->delayed_ref_elem.seq)
2592 return 0;
2593
2594 while (!list_empty(&trans->qgroup_ref_list)) {
2595 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2596 struct qgroup_update, list);
2597 list_del(&qgroup_update->list);
2598 if (!ret)
2599 ret = btrfs_qgroup_account_ref(
2600 trans, fs_info, qgroup_update->node,
2601 qgroup_update->extent_op);
2602 kfree(qgroup_update);
2603 }
2604
2605 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2606
2607 return ret;
2608 }
2609
2610 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2611 {
2612 u64 num_bytes;
2613
2614 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2615 sizeof(struct btrfs_extent_inline_ref));
2616 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2617 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2618
2619 /*
2620 * We don't ever fill up leaves all the way so multiply by 2 just to be
2621 * closer to what we're really going to want to ouse.
2622 */
2623 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2624 }
2625
2626 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2627 struct btrfs_root *root)
2628 {
2629 struct btrfs_block_rsv *global_rsv;
2630 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2631 u64 num_bytes;
2632 int ret = 0;
2633
2634 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2635 num_heads = heads_to_leaves(root, num_heads);
2636 if (num_heads > 1)
2637 num_bytes += (num_heads - 1) * root->leafsize;
2638 num_bytes <<= 1;
2639 global_rsv = &root->fs_info->global_block_rsv;
2640
2641 /*
2642 * If we can't allocate any more chunks lets make sure we have _lots_ of
2643 * wiggle room since running delayed refs can create more delayed refs.
2644 */
2645 if (global_rsv->space_info->full)
2646 num_bytes <<= 1;
2647
2648 spin_lock(&global_rsv->lock);
2649 if (global_rsv->reserved <= num_bytes)
2650 ret = 1;
2651 spin_unlock(&global_rsv->lock);
2652 return ret;
2653 }
2654
2655 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2656 struct btrfs_root *root)
2657 {
2658 struct btrfs_fs_info *fs_info = root->fs_info;
2659 u64 num_entries =
2660 atomic_read(&trans->transaction->delayed_refs.num_entries);
2661 u64 avg_runtime;
2662
2663 smp_mb();
2664 avg_runtime = fs_info->avg_delayed_ref_runtime;
2665 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2666 return 1;
2667
2668 return btrfs_check_space_for_delayed_refs(trans, root);
2669 }
2670
2671 /*
2672 * this starts processing the delayed reference count updates and
2673 * extent insertions we have queued up so far. count can be
2674 * 0, which means to process everything in the tree at the start
2675 * of the run (but not newly added entries), or it can be some target
2676 * number you'd like to process.
2677 *
2678 * Returns 0 on success or if called with an aborted transaction
2679 * Returns <0 on error and aborts the transaction
2680 */
2681 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2682 struct btrfs_root *root, unsigned long count)
2683 {
2684 struct rb_node *node;
2685 struct btrfs_delayed_ref_root *delayed_refs;
2686 struct btrfs_delayed_ref_head *head;
2687 int ret;
2688 int run_all = count == (unsigned long)-1;
2689 int run_most = 0;
2690
2691 /* We'll clean this up in btrfs_cleanup_transaction */
2692 if (trans->aborted)
2693 return 0;
2694
2695 if (root == root->fs_info->extent_root)
2696 root = root->fs_info->tree_root;
2697
2698 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2699
2700 delayed_refs = &trans->transaction->delayed_refs;
2701 if (count == 0) {
2702 count = atomic_read(&delayed_refs->num_entries) * 2;
2703 run_most = 1;
2704 }
2705
2706 again:
2707 #ifdef SCRAMBLE_DELAYED_REFS
2708 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2709 #endif
2710 ret = __btrfs_run_delayed_refs(trans, root, count);
2711 if (ret < 0) {
2712 btrfs_abort_transaction(trans, root, ret);
2713 return ret;
2714 }
2715
2716 if (run_all) {
2717 if (!list_empty(&trans->new_bgs))
2718 btrfs_create_pending_block_groups(trans, root);
2719
2720 spin_lock(&delayed_refs->lock);
2721 node = rb_first(&delayed_refs->href_root);
2722 if (!node) {
2723 spin_unlock(&delayed_refs->lock);
2724 goto out;
2725 }
2726 count = (unsigned long)-1;
2727
2728 while (node) {
2729 head = rb_entry(node, struct btrfs_delayed_ref_head,
2730 href_node);
2731 if (btrfs_delayed_ref_is_head(&head->node)) {
2732 struct btrfs_delayed_ref_node *ref;
2733
2734 ref = &head->node;
2735 atomic_inc(&ref->refs);
2736
2737 spin_unlock(&delayed_refs->lock);
2738 /*
2739 * Mutex was contended, block until it's
2740 * released and try again
2741 */
2742 mutex_lock(&head->mutex);
2743 mutex_unlock(&head->mutex);
2744
2745 btrfs_put_delayed_ref(ref);
2746 cond_resched();
2747 goto again;
2748 } else {
2749 WARN_ON(1);
2750 }
2751 node = rb_next(node);
2752 }
2753 spin_unlock(&delayed_refs->lock);
2754 cond_resched();
2755 goto again;
2756 }
2757 out:
2758 assert_qgroups_uptodate(trans);
2759 return 0;
2760 }
2761
2762 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2763 struct btrfs_root *root,
2764 u64 bytenr, u64 num_bytes, u64 flags,
2765 int level, int is_data)
2766 {
2767 struct btrfs_delayed_extent_op *extent_op;
2768 int ret;
2769
2770 extent_op = btrfs_alloc_delayed_extent_op();
2771 if (!extent_op)
2772 return -ENOMEM;
2773
2774 extent_op->flags_to_set = flags;
2775 extent_op->update_flags = 1;
2776 extent_op->update_key = 0;
2777 extent_op->is_data = is_data ? 1 : 0;
2778 extent_op->level = level;
2779
2780 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2781 num_bytes, extent_op);
2782 if (ret)
2783 btrfs_free_delayed_extent_op(extent_op);
2784 return ret;
2785 }
2786
2787 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2788 struct btrfs_root *root,
2789 struct btrfs_path *path,
2790 u64 objectid, u64 offset, u64 bytenr)
2791 {
2792 struct btrfs_delayed_ref_head *head;
2793 struct btrfs_delayed_ref_node *ref;
2794 struct btrfs_delayed_data_ref *data_ref;
2795 struct btrfs_delayed_ref_root *delayed_refs;
2796 struct rb_node *node;
2797 int ret = 0;
2798
2799 delayed_refs = &trans->transaction->delayed_refs;
2800 spin_lock(&delayed_refs->lock);
2801 head = btrfs_find_delayed_ref_head(trans, bytenr);
2802 if (!head) {
2803 spin_unlock(&delayed_refs->lock);
2804 return 0;
2805 }
2806
2807 if (!mutex_trylock(&head->mutex)) {
2808 atomic_inc(&head->node.refs);
2809 spin_unlock(&delayed_refs->lock);
2810
2811 btrfs_release_path(path);
2812
2813 /*
2814 * Mutex was contended, block until it's released and let
2815 * caller try again
2816 */
2817 mutex_lock(&head->mutex);
2818 mutex_unlock(&head->mutex);
2819 btrfs_put_delayed_ref(&head->node);
2820 return -EAGAIN;
2821 }
2822 spin_unlock(&delayed_refs->lock);
2823
2824 spin_lock(&head->lock);
2825 node = rb_first(&head->ref_root);
2826 while (node) {
2827 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2828 node = rb_next(node);
2829
2830 /* If it's a shared ref we know a cross reference exists */
2831 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2832 ret = 1;
2833 break;
2834 }
2835
2836 data_ref = btrfs_delayed_node_to_data_ref(ref);
2837
2838 /*
2839 * If our ref doesn't match the one we're currently looking at
2840 * then we have a cross reference.
2841 */
2842 if (data_ref->root != root->root_key.objectid ||
2843 data_ref->objectid != objectid ||
2844 data_ref->offset != offset) {
2845 ret = 1;
2846 break;
2847 }
2848 }
2849 spin_unlock(&head->lock);
2850 mutex_unlock(&head->mutex);
2851 return ret;
2852 }
2853
2854 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2855 struct btrfs_root *root,
2856 struct btrfs_path *path,
2857 u64 objectid, u64 offset, u64 bytenr)
2858 {
2859 struct btrfs_root *extent_root = root->fs_info->extent_root;
2860 struct extent_buffer *leaf;
2861 struct btrfs_extent_data_ref *ref;
2862 struct btrfs_extent_inline_ref *iref;
2863 struct btrfs_extent_item *ei;
2864 struct btrfs_key key;
2865 u32 item_size;
2866 int ret;
2867
2868 key.objectid = bytenr;
2869 key.offset = (u64)-1;
2870 key.type = BTRFS_EXTENT_ITEM_KEY;
2871
2872 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2873 if (ret < 0)
2874 goto out;
2875 BUG_ON(ret == 0); /* Corruption */
2876
2877 ret = -ENOENT;
2878 if (path->slots[0] == 0)
2879 goto out;
2880
2881 path->slots[0]--;
2882 leaf = path->nodes[0];
2883 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2884
2885 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2886 goto out;
2887
2888 ret = 1;
2889 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2890 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2891 if (item_size < sizeof(*ei)) {
2892 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2893 goto out;
2894 }
2895 #endif
2896 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2897
2898 if (item_size != sizeof(*ei) +
2899 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2900 goto out;
2901
2902 if (btrfs_extent_generation(leaf, ei) <=
2903 btrfs_root_last_snapshot(&root->root_item))
2904 goto out;
2905
2906 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2907 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2908 BTRFS_EXTENT_DATA_REF_KEY)
2909 goto out;
2910
2911 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2912 if (btrfs_extent_refs(leaf, ei) !=
2913 btrfs_extent_data_ref_count(leaf, ref) ||
2914 btrfs_extent_data_ref_root(leaf, ref) !=
2915 root->root_key.objectid ||
2916 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2917 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2918 goto out;
2919
2920 ret = 0;
2921 out:
2922 return ret;
2923 }
2924
2925 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2926 struct btrfs_root *root,
2927 u64 objectid, u64 offset, u64 bytenr)
2928 {
2929 struct btrfs_path *path;
2930 int ret;
2931 int ret2;
2932
2933 path = btrfs_alloc_path();
2934 if (!path)
2935 return -ENOENT;
2936
2937 do {
2938 ret = check_committed_ref(trans, root, path, objectid,
2939 offset, bytenr);
2940 if (ret && ret != -ENOENT)
2941 goto out;
2942
2943 ret2 = check_delayed_ref(trans, root, path, objectid,
2944 offset, bytenr);
2945 } while (ret2 == -EAGAIN);
2946
2947 if (ret2 && ret2 != -ENOENT) {
2948 ret = ret2;
2949 goto out;
2950 }
2951
2952 if (ret != -ENOENT || ret2 != -ENOENT)
2953 ret = 0;
2954 out:
2955 btrfs_free_path(path);
2956 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2957 WARN_ON(ret > 0);
2958 return ret;
2959 }
2960
2961 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2962 struct btrfs_root *root,
2963 struct extent_buffer *buf,
2964 int full_backref, int inc, int for_cow)
2965 {
2966 u64 bytenr;
2967 u64 num_bytes;
2968 u64 parent;
2969 u64 ref_root;
2970 u32 nritems;
2971 struct btrfs_key key;
2972 struct btrfs_file_extent_item *fi;
2973 int i;
2974 int level;
2975 int ret = 0;
2976 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2977 u64, u64, u64, u64, u64, u64, int);
2978
2979 ref_root = btrfs_header_owner(buf);
2980 nritems = btrfs_header_nritems(buf);
2981 level = btrfs_header_level(buf);
2982
2983 if (!root->ref_cows && level == 0)
2984 return 0;
2985
2986 if (inc)
2987 process_func = btrfs_inc_extent_ref;
2988 else
2989 process_func = btrfs_free_extent;
2990
2991 if (full_backref)
2992 parent = buf->start;
2993 else
2994 parent = 0;
2995
2996 for (i = 0; i < nritems; i++) {
2997 if (level == 0) {
2998 btrfs_item_key_to_cpu(buf, &key, i);
2999 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3000 continue;
3001 fi = btrfs_item_ptr(buf, i,
3002 struct btrfs_file_extent_item);
3003 if (btrfs_file_extent_type(buf, fi) ==
3004 BTRFS_FILE_EXTENT_INLINE)
3005 continue;
3006 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3007 if (bytenr == 0)
3008 continue;
3009
3010 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3011 key.offset -= btrfs_file_extent_offset(buf, fi);
3012 ret = process_func(trans, root, bytenr, num_bytes,
3013 parent, ref_root, key.objectid,
3014 key.offset, for_cow);
3015 if (ret)
3016 goto fail;
3017 } else {
3018 bytenr = btrfs_node_blockptr(buf, i);
3019 num_bytes = btrfs_level_size(root, level - 1);
3020 ret = process_func(trans, root, bytenr, num_bytes,
3021 parent, ref_root, level - 1, 0,
3022 for_cow);
3023 if (ret)
3024 goto fail;
3025 }
3026 }
3027 return 0;
3028 fail:
3029 return ret;
3030 }
3031
3032 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3033 struct extent_buffer *buf, int full_backref, int for_cow)
3034 {
3035 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3036 }
3037
3038 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3039 struct extent_buffer *buf, int full_backref, int for_cow)
3040 {
3041 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3042 }
3043
3044 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3045 struct btrfs_root *root,
3046 struct btrfs_path *path,
3047 struct btrfs_block_group_cache *cache)
3048 {
3049 int ret;
3050 struct btrfs_root *extent_root = root->fs_info->extent_root;
3051 unsigned long bi;
3052 struct extent_buffer *leaf;
3053
3054 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3055 if (ret < 0)
3056 goto fail;
3057 BUG_ON(ret); /* Corruption */
3058
3059 leaf = path->nodes[0];
3060 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3061 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3062 btrfs_mark_buffer_dirty(leaf);
3063 btrfs_release_path(path);
3064 fail:
3065 if (ret) {
3066 btrfs_abort_transaction(trans, root, ret);
3067 return ret;
3068 }
3069 return 0;
3070
3071 }
3072
3073 static struct btrfs_block_group_cache *
3074 next_block_group(struct btrfs_root *root,
3075 struct btrfs_block_group_cache *cache)
3076 {
3077 struct rb_node *node;
3078 spin_lock(&root->fs_info->block_group_cache_lock);
3079 node = rb_next(&cache->cache_node);
3080 btrfs_put_block_group(cache);
3081 if (node) {
3082 cache = rb_entry(node, struct btrfs_block_group_cache,
3083 cache_node);
3084 btrfs_get_block_group(cache);
3085 } else
3086 cache = NULL;
3087 spin_unlock(&root->fs_info->block_group_cache_lock);
3088 return cache;
3089 }
3090
3091 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3092 struct btrfs_trans_handle *trans,
3093 struct btrfs_path *path)
3094 {
3095 struct btrfs_root *root = block_group->fs_info->tree_root;
3096 struct inode *inode = NULL;
3097 u64 alloc_hint = 0;
3098 int dcs = BTRFS_DC_ERROR;
3099 int num_pages = 0;
3100 int retries = 0;
3101 int ret = 0;
3102
3103 /*
3104 * If this block group is smaller than 100 megs don't bother caching the
3105 * block group.
3106 */
3107 if (block_group->key.offset < (100 * 1024 * 1024)) {
3108 spin_lock(&block_group->lock);
3109 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3110 spin_unlock(&block_group->lock);
3111 return 0;
3112 }
3113
3114 again:
3115 inode = lookup_free_space_inode(root, block_group, path);
3116 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3117 ret = PTR_ERR(inode);
3118 btrfs_release_path(path);
3119 goto out;
3120 }
3121
3122 if (IS_ERR(inode)) {
3123 BUG_ON(retries);
3124 retries++;
3125
3126 if (block_group->ro)
3127 goto out_free;
3128
3129 ret = create_free_space_inode(root, trans, block_group, path);
3130 if (ret)
3131 goto out_free;
3132 goto again;
3133 }
3134
3135 /* We've already setup this transaction, go ahead and exit */
3136 if (block_group->cache_generation == trans->transid &&
3137 i_size_read(inode)) {
3138 dcs = BTRFS_DC_SETUP;
3139 goto out_put;
3140 }
3141
3142 /*
3143 * We want to set the generation to 0, that way if anything goes wrong
3144 * from here on out we know not to trust this cache when we load up next
3145 * time.
3146 */
3147 BTRFS_I(inode)->generation = 0;
3148 ret = btrfs_update_inode(trans, root, inode);
3149 WARN_ON(ret);
3150
3151 if (i_size_read(inode) > 0) {
3152 ret = btrfs_check_trunc_cache_free_space(root,
3153 &root->fs_info->global_block_rsv);
3154 if (ret)
3155 goto out_put;
3156
3157 ret = btrfs_truncate_free_space_cache(root, trans, inode);
3158 if (ret)
3159 goto out_put;
3160 }
3161
3162 spin_lock(&block_group->lock);
3163 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3164 !btrfs_test_opt(root, SPACE_CACHE)) {
3165 /*
3166 * don't bother trying to write stuff out _if_
3167 * a) we're not cached,
3168 * b) we're with nospace_cache mount option.
3169 */
3170 dcs = BTRFS_DC_WRITTEN;
3171 spin_unlock(&block_group->lock);
3172 goto out_put;
3173 }
3174 spin_unlock(&block_group->lock);
3175
3176 /*
3177 * Try to preallocate enough space based on how big the block group is.
3178 * Keep in mind this has to include any pinned space which could end up
3179 * taking up quite a bit since it's not folded into the other space
3180 * cache.
3181 */
3182 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3183 if (!num_pages)
3184 num_pages = 1;
3185
3186 num_pages *= 16;
3187 num_pages *= PAGE_CACHE_SIZE;
3188
3189 ret = btrfs_check_data_free_space(inode, num_pages);
3190 if (ret)
3191 goto out_put;
3192
3193 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3194 num_pages, num_pages,
3195 &alloc_hint);
3196 if (!ret)
3197 dcs = BTRFS_DC_SETUP;
3198 btrfs_free_reserved_data_space(inode, num_pages);
3199
3200 out_put:
3201 iput(inode);
3202 out_free:
3203 btrfs_release_path(path);
3204 out:
3205 spin_lock(&block_group->lock);
3206 if (!ret && dcs == BTRFS_DC_SETUP)
3207 block_group->cache_generation = trans->transid;
3208 block_group->disk_cache_state = dcs;
3209 spin_unlock(&block_group->lock);
3210
3211 return ret;
3212 }
3213
3214 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3215 struct btrfs_root *root)
3216 {
3217 struct btrfs_block_group_cache *cache;
3218 int err = 0;
3219 struct btrfs_path *path;
3220 u64 last = 0;
3221
3222 path = btrfs_alloc_path();
3223 if (!path)
3224 return -ENOMEM;
3225
3226 again:
3227 while (1) {
3228 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3229 while (cache) {
3230 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3231 break;
3232 cache = next_block_group(root, cache);
3233 }
3234 if (!cache) {
3235 if (last == 0)
3236 break;
3237 last = 0;
3238 continue;
3239 }
3240 err = cache_save_setup(cache, trans, path);
3241 last = cache->key.objectid + cache->key.offset;
3242 btrfs_put_block_group(cache);
3243 }
3244
3245 while (1) {
3246 if (last == 0) {
3247 err = btrfs_run_delayed_refs(trans, root,
3248 (unsigned long)-1);
3249 if (err) /* File system offline */
3250 goto out;
3251 }
3252
3253 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3254 while (cache) {
3255 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3256 btrfs_put_block_group(cache);
3257 goto again;
3258 }
3259
3260 if (cache->dirty)
3261 break;
3262 cache = next_block_group(root, cache);
3263 }
3264 if (!cache) {
3265 if (last == 0)
3266 break;
3267 last = 0;
3268 continue;
3269 }
3270
3271 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3272 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3273 cache->dirty = 0;
3274 last = cache->key.objectid + cache->key.offset;
3275
3276 err = write_one_cache_group(trans, root, path, cache);
3277 btrfs_put_block_group(cache);
3278 if (err) /* File system offline */
3279 goto out;
3280 }
3281
3282 while (1) {
3283 /*
3284 * I don't think this is needed since we're just marking our
3285 * preallocated extent as written, but just in case it can't
3286 * hurt.
3287 */
3288 if (last == 0) {
3289 err = btrfs_run_delayed_refs(trans, root,
3290 (unsigned long)-1);
3291 if (err) /* File system offline */
3292 goto out;
3293 }
3294
3295 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3296 while (cache) {
3297 /*
3298 * Really this shouldn't happen, but it could if we
3299 * couldn't write the entire preallocated extent and
3300 * splitting the extent resulted in a new block.
3301 */
3302 if (cache->dirty) {
3303 btrfs_put_block_group(cache);
3304 goto again;
3305 }
3306 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3307 break;
3308 cache = next_block_group(root, cache);
3309 }
3310 if (!cache) {
3311 if (last == 0)
3312 break;
3313 last = 0;
3314 continue;
3315 }
3316
3317 err = btrfs_write_out_cache(root, trans, cache, path);
3318
3319 /*
3320 * If we didn't have an error then the cache state is still
3321 * NEED_WRITE, so we can set it to WRITTEN.
3322 */
3323 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3324 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3325 last = cache->key.objectid + cache->key.offset;
3326 btrfs_put_block_group(cache);
3327 }
3328 out:
3329
3330 btrfs_free_path(path);
3331 return err;
3332 }
3333
3334 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3335 {
3336 struct btrfs_block_group_cache *block_group;
3337 int readonly = 0;
3338
3339 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3340 if (!block_group || block_group->ro)
3341 readonly = 1;
3342 if (block_group)
3343 btrfs_put_block_group(block_group);
3344 return readonly;
3345 }
3346
3347 static const char *alloc_name(u64 flags)
3348 {
3349 switch (flags) {
3350 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3351 return "mixed";
3352 case BTRFS_BLOCK_GROUP_METADATA:
3353 return "metadata";
3354 case BTRFS_BLOCK_GROUP_DATA:
3355 return "data";
3356 case BTRFS_BLOCK_GROUP_SYSTEM:
3357 return "system";
3358 default:
3359 WARN_ON(1);
3360 return "invalid-combination";
3361 };
3362 }
3363
3364 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3365 u64 total_bytes, u64 bytes_used,
3366 struct btrfs_space_info **space_info)
3367 {
3368 struct btrfs_space_info *found;
3369 int i;
3370 int factor;
3371 int ret;
3372
3373 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3374 BTRFS_BLOCK_GROUP_RAID10))
3375 factor = 2;
3376 else
3377 factor = 1;
3378
3379 found = __find_space_info(info, flags);
3380 if (found) {
3381 spin_lock(&found->lock);
3382 found->total_bytes += total_bytes;
3383 found->disk_total += total_bytes * factor;
3384 found->bytes_used += bytes_used;
3385 found->disk_used += bytes_used * factor;
3386 found->full = 0;
3387 spin_unlock(&found->lock);
3388 *space_info = found;
3389 return 0;
3390 }
3391 found = kzalloc(sizeof(*found), GFP_NOFS);
3392 if (!found)
3393 return -ENOMEM;
3394
3395 ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3396 if (ret) {
3397 kfree(found);
3398 return ret;
3399 }
3400
3401 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
3402 INIT_LIST_HEAD(&found->block_groups[i]);
3403 kobject_init(&found->block_group_kobjs[i], &btrfs_raid_ktype);
3404 }
3405 init_rwsem(&found->groups_sem);
3406 spin_lock_init(&found->lock);
3407 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3408 found->total_bytes = total_bytes;
3409 found->disk_total = total_bytes * factor;
3410 found->bytes_used = bytes_used;
3411 found->disk_used = bytes_used * factor;
3412 found->bytes_pinned = 0;
3413 found->bytes_reserved = 0;
3414 found->bytes_readonly = 0;
3415 found->bytes_may_use = 0;
3416 found->full = 0;
3417 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3418 found->chunk_alloc = 0;
3419 found->flush = 0;
3420 init_waitqueue_head(&found->wait);
3421
3422 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3423 info->space_info_kobj, "%s",
3424 alloc_name(found->flags));
3425 if (ret) {
3426 kfree(found);
3427 return ret;
3428 }
3429
3430 *space_info = found;
3431 list_add_rcu(&found->list, &info->space_info);
3432 if (flags & BTRFS_BLOCK_GROUP_DATA)
3433 info->data_sinfo = found;
3434
3435 return ret;
3436 }
3437
3438 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3439 {
3440 u64 extra_flags = chunk_to_extended(flags) &
3441 BTRFS_EXTENDED_PROFILE_MASK;
3442
3443 write_seqlock(&fs_info->profiles_lock);
3444 if (flags & BTRFS_BLOCK_GROUP_DATA)
3445 fs_info->avail_data_alloc_bits |= extra_flags;
3446 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3447 fs_info->avail_metadata_alloc_bits |= extra_flags;
3448 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3449 fs_info->avail_system_alloc_bits |= extra_flags;
3450 write_sequnlock(&fs_info->profiles_lock);
3451 }
3452
3453 /*
3454 * returns target flags in extended format or 0 if restripe for this
3455 * chunk_type is not in progress
3456 *
3457 * should be called with either volume_mutex or balance_lock held
3458 */
3459 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3460 {
3461 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3462 u64 target = 0;
3463
3464 if (!bctl)
3465 return 0;
3466
3467 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3468 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3469 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3470 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3471 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3472 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3473 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3474 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3475 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3476 }
3477
3478 return target;
3479 }
3480
3481 /*
3482 * @flags: available profiles in extended format (see ctree.h)
3483 *
3484 * Returns reduced profile in chunk format. If profile changing is in
3485 * progress (either running or paused) picks the target profile (if it's
3486 * already available), otherwise falls back to plain reducing.
3487 */
3488 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3489 {
3490 /*
3491 * we add in the count of missing devices because we want
3492 * to make sure that any RAID levels on a degraded FS
3493 * continue to be honored.
3494 */
3495 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3496 root->fs_info->fs_devices->missing_devices;
3497 u64 target;
3498 u64 tmp;
3499
3500 /*
3501 * see if restripe for this chunk_type is in progress, if so
3502 * try to reduce to the target profile
3503 */
3504 spin_lock(&root->fs_info->balance_lock);
3505 target = get_restripe_target(root->fs_info, flags);
3506 if (target) {
3507 /* pick target profile only if it's already available */
3508 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3509 spin_unlock(&root->fs_info->balance_lock);
3510 return extended_to_chunk(target);
3511 }
3512 }
3513 spin_unlock(&root->fs_info->balance_lock);
3514
3515 /* First, mask out the RAID levels which aren't possible */
3516 if (num_devices == 1)
3517 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3518 BTRFS_BLOCK_GROUP_RAID5);
3519 if (num_devices < 3)
3520 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3521 if (num_devices < 4)
3522 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3523
3524 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3525 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3526 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3527 flags &= ~tmp;
3528
3529 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3530 tmp = BTRFS_BLOCK_GROUP_RAID6;
3531 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3532 tmp = BTRFS_BLOCK_GROUP_RAID5;
3533 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3534 tmp = BTRFS_BLOCK_GROUP_RAID10;
3535 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3536 tmp = BTRFS_BLOCK_GROUP_RAID1;
3537 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3538 tmp = BTRFS_BLOCK_GROUP_RAID0;
3539
3540 return extended_to_chunk(flags | tmp);
3541 }
3542
3543 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3544 {
3545 unsigned seq;
3546
3547 do {
3548 seq = read_seqbegin(&root->fs_info->profiles_lock);
3549
3550 if (flags & BTRFS_BLOCK_GROUP_DATA)
3551 flags |= root->fs_info->avail_data_alloc_bits;
3552 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3553 flags |= root->fs_info->avail_system_alloc_bits;
3554 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3555 flags |= root->fs_info->avail_metadata_alloc_bits;
3556 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3557
3558 return btrfs_reduce_alloc_profile(root, flags);
3559 }
3560
3561 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3562 {
3563 u64 flags;
3564 u64 ret;
3565
3566 if (data)
3567 flags = BTRFS_BLOCK_GROUP_DATA;
3568 else if (root == root->fs_info->chunk_root)
3569 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3570 else
3571 flags = BTRFS_BLOCK_GROUP_METADATA;
3572
3573 ret = get_alloc_profile(root, flags);
3574 return ret;
3575 }
3576
3577 /*
3578 * This will check the space that the inode allocates from to make sure we have
3579 * enough space for bytes.
3580 */
3581 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3582 {
3583 struct btrfs_space_info *data_sinfo;
3584 struct btrfs_root *root = BTRFS_I(inode)->root;
3585 struct btrfs_fs_info *fs_info = root->fs_info;
3586 u64 used;
3587 int ret = 0, committed = 0, alloc_chunk = 1;
3588
3589 /* make sure bytes are sectorsize aligned */
3590 bytes = ALIGN(bytes, root->sectorsize);
3591
3592 if (btrfs_is_free_space_inode(inode)) {
3593 committed = 1;
3594 ASSERT(current->journal_info);
3595 }
3596
3597 data_sinfo = fs_info->data_sinfo;
3598 if (!data_sinfo)
3599 goto alloc;
3600
3601 again:
3602 /* make sure we have enough space to handle the data first */
3603 spin_lock(&data_sinfo->lock);
3604 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3605 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3606 data_sinfo->bytes_may_use;
3607
3608 if (used + bytes > data_sinfo->total_bytes) {
3609 struct btrfs_trans_handle *trans;
3610
3611 /*
3612 * if we don't have enough free bytes in this space then we need
3613 * to alloc a new chunk.
3614 */
3615 if (!data_sinfo->full && alloc_chunk) {
3616 u64 alloc_target;
3617
3618 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3619 spin_unlock(&data_sinfo->lock);
3620 alloc:
3621 alloc_target = btrfs_get_alloc_profile(root, 1);
3622 /*
3623 * It is ugly that we don't call nolock join
3624 * transaction for the free space inode case here.
3625 * But it is safe because we only do the data space
3626 * reservation for the free space cache in the
3627 * transaction context, the common join transaction
3628 * just increase the counter of the current transaction
3629 * handler, doesn't try to acquire the trans_lock of
3630 * the fs.
3631 */
3632 trans = btrfs_join_transaction(root);
3633 if (IS_ERR(trans))
3634 return PTR_ERR(trans);
3635
3636 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3637 alloc_target,
3638 CHUNK_ALLOC_NO_FORCE);
3639 btrfs_end_transaction(trans, root);
3640 if (ret < 0) {
3641 if (ret != -ENOSPC)
3642 return ret;
3643 else
3644 goto commit_trans;
3645 }
3646
3647 if (!data_sinfo)
3648 data_sinfo = fs_info->data_sinfo;
3649
3650 goto again;
3651 }
3652
3653 /*
3654 * If we don't have enough pinned space to deal with this
3655 * allocation don't bother committing the transaction.
3656 */
3657 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3658 bytes) < 0)
3659 committed = 1;
3660 spin_unlock(&data_sinfo->lock);
3661
3662 /* commit the current transaction and try again */
3663 commit_trans:
3664 if (!committed &&
3665 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3666 committed = 1;
3667
3668 trans = btrfs_join_transaction(root);
3669 if (IS_ERR(trans))
3670 return PTR_ERR(trans);
3671 ret = btrfs_commit_transaction(trans, root);
3672 if (ret)
3673 return ret;
3674 goto again;
3675 }
3676
3677 trace_btrfs_space_reservation(root->fs_info,
3678 "space_info:enospc",
3679 data_sinfo->flags, bytes, 1);
3680 return -ENOSPC;
3681 }
3682 data_sinfo->bytes_may_use += bytes;
3683 trace_btrfs_space_reservation(root->fs_info, "space_info",
3684 data_sinfo->flags, bytes, 1);
3685 spin_unlock(&data_sinfo->lock);
3686
3687 return 0;
3688 }
3689
3690 /*
3691 * Called if we need to clear a data reservation for this inode.
3692 */
3693 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3694 {
3695 struct btrfs_root *root = BTRFS_I(inode)->root;
3696 struct btrfs_space_info *data_sinfo;
3697
3698 /* make sure bytes are sectorsize aligned */
3699 bytes = ALIGN(bytes, root->sectorsize);
3700
3701 data_sinfo = root->fs_info->data_sinfo;
3702 spin_lock(&data_sinfo->lock);
3703 WARN_ON(data_sinfo->bytes_may_use < bytes);
3704 data_sinfo->bytes_may_use -= bytes;
3705 trace_btrfs_space_reservation(root->fs_info, "space_info",
3706 data_sinfo->flags, bytes, 0);
3707 spin_unlock(&data_sinfo->lock);
3708 }
3709
3710 static void force_metadata_allocation(struct btrfs_fs_info *info)
3711 {
3712 struct list_head *head = &info->space_info;
3713 struct btrfs_space_info *found;
3714
3715 rcu_read_lock();
3716 list_for_each_entry_rcu(found, head, list) {
3717 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3718 found->force_alloc = CHUNK_ALLOC_FORCE;
3719 }
3720 rcu_read_unlock();
3721 }
3722
3723 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3724 {
3725 return (global->size << 1);
3726 }
3727
3728 static int should_alloc_chunk(struct btrfs_root *root,
3729 struct btrfs_space_info *sinfo, int force)
3730 {
3731 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3732 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3733 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3734 u64 thresh;
3735
3736 if (force == CHUNK_ALLOC_FORCE)
3737 return 1;
3738
3739 /*
3740 * We need to take into account the global rsv because for all intents
3741 * and purposes it's used space. Don't worry about locking the
3742 * global_rsv, it doesn't change except when the transaction commits.
3743 */
3744 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3745 num_allocated += calc_global_rsv_need_space(global_rsv);
3746
3747 /*
3748 * in limited mode, we want to have some free space up to
3749 * about 1% of the FS size.
3750 */
3751 if (force == CHUNK_ALLOC_LIMITED) {
3752 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3753 thresh = max_t(u64, 64 * 1024 * 1024,
3754 div_factor_fine(thresh, 1));
3755
3756 if (num_bytes - num_allocated < thresh)
3757 return 1;
3758 }
3759
3760 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3761 return 0;
3762 return 1;
3763 }
3764
3765 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3766 {
3767 u64 num_dev;
3768
3769 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3770 BTRFS_BLOCK_GROUP_RAID0 |
3771 BTRFS_BLOCK_GROUP_RAID5 |
3772 BTRFS_BLOCK_GROUP_RAID6))
3773 num_dev = root->fs_info->fs_devices->rw_devices;
3774 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3775 num_dev = 2;
3776 else
3777 num_dev = 1; /* DUP or single */
3778
3779 /* metadata for updaing devices and chunk tree */
3780 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3781 }
3782
3783 static void check_system_chunk(struct btrfs_trans_handle *trans,
3784 struct btrfs_root *root, u64 type)
3785 {
3786 struct btrfs_space_info *info;
3787 u64 left;
3788 u64 thresh;
3789
3790 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3791 spin_lock(&info->lock);
3792 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3793 info->bytes_reserved - info->bytes_readonly;
3794 spin_unlock(&info->lock);
3795
3796 thresh = get_system_chunk_thresh(root, type);
3797 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3798 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3799 left, thresh, type);
3800 dump_space_info(info, 0, 0);
3801 }
3802
3803 if (left < thresh) {
3804 u64 flags;
3805
3806 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3807 btrfs_alloc_chunk(trans, root, flags);
3808 }
3809 }
3810
3811 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3812 struct btrfs_root *extent_root, u64 flags, int force)
3813 {
3814 struct btrfs_space_info *space_info;
3815 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3816 int wait_for_alloc = 0;
3817 int ret = 0;
3818
3819 /* Don't re-enter if we're already allocating a chunk */
3820 if (trans->allocating_chunk)
3821 return -ENOSPC;
3822
3823 space_info = __find_space_info(extent_root->fs_info, flags);
3824 if (!space_info) {
3825 ret = update_space_info(extent_root->fs_info, flags,
3826 0, 0, &space_info);
3827 BUG_ON(ret); /* -ENOMEM */
3828 }
3829 BUG_ON(!space_info); /* Logic error */
3830
3831 again:
3832 spin_lock(&space_info->lock);
3833 if (force < space_info->force_alloc)
3834 force = space_info->force_alloc;
3835 if (space_info->full) {
3836 if (should_alloc_chunk(extent_root, space_info, force))
3837 ret = -ENOSPC;
3838 else
3839 ret = 0;
3840 spin_unlock(&space_info->lock);
3841 return ret;
3842 }
3843
3844 if (!should_alloc_chunk(extent_root, space_info, force)) {
3845 spin_unlock(&space_info->lock);
3846 return 0;
3847 } else if (space_info->chunk_alloc) {
3848 wait_for_alloc = 1;
3849 } else {
3850 space_info->chunk_alloc = 1;
3851 }
3852
3853 spin_unlock(&space_info->lock);
3854
3855 mutex_lock(&fs_info->chunk_mutex);
3856
3857 /*
3858 * The chunk_mutex is held throughout the entirety of a chunk
3859 * allocation, so once we've acquired the chunk_mutex we know that the
3860 * other guy is done and we need to recheck and see if we should
3861 * allocate.
3862 */
3863 if (wait_for_alloc) {
3864 mutex_unlock(&fs_info->chunk_mutex);
3865 wait_for_alloc = 0;
3866 goto again;
3867 }
3868
3869 trans->allocating_chunk = true;
3870
3871 /*
3872 * If we have mixed data/metadata chunks we want to make sure we keep
3873 * allocating mixed chunks instead of individual chunks.
3874 */
3875 if (btrfs_mixed_space_info(space_info))
3876 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3877
3878 /*
3879 * if we're doing a data chunk, go ahead and make sure that
3880 * we keep a reasonable number of metadata chunks allocated in the
3881 * FS as well.
3882 */
3883 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3884 fs_info->data_chunk_allocations++;
3885 if (!(fs_info->data_chunk_allocations %
3886 fs_info->metadata_ratio))
3887 force_metadata_allocation(fs_info);
3888 }
3889
3890 /*
3891 * Check if we have enough space in SYSTEM chunk because we may need
3892 * to update devices.
3893 */
3894 check_system_chunk(trans, extent_root, flags);
3895
3896 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3897 trans->allocating_chunk = false;
3898
3899 spin_lock(&space_info->lock);
3900 if (ret < 0 && ret != -ENOSPC)
3901 goto out;
3902 if (ret)
3903 space_info->full = 1;
3904 else
3905 ret = 1;
3906
3907 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3908 out:
3909 space_info->chunk_alloc = 0;
3910 spin_unlock(&space_info->lock);
3911 mutex_unlock(&fs_info->chunk_mutex);
3912 return ret;
3913 }
3914
3915 static int can_overcommit(struct btrfs_root *root,
3916 struct btrfs_space_info *space_info, u64 bytes,
3917 enum btrfs_reserve_flush_enum flush)
3918 {
3919 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3920 u64 profile = btrfs_get_alloc_profile(root, 0);
3921 u64 space_size;
3922 u64 avail;
3923 u64 used;
3924
3925 used = space_info->bytes_used + space_info->bytes_reserved +
3926 space_info->bytes_pinned + space_info->bytes_readonly;
3927
3928 /*
3929 * We only want to allow over committing if we have lots of actual space
3930 * free, but if we don't have enough space to handle the global reserve
3931 * space then we could end up having a real enospc problem when trying
3932 * to allocate a chunk or some other such important allocation.
3933 */
3934 spin_lock(&global_rsv->lock);
3935 space_size = calc_global_rsv_need_space(global_rsv);
3936 spin_unlock(&global_rsv->lock);
3937 if (used + space_size >= space_info->total_bytes)
3938 return 0;
3939
3940 used += space_info->bytes_may_use;
3941
3942 spin_lock(&root->fs_info->free_chunk_lock);
3943 avail = root->fs_info->free_chunk_space;
3944 spin_unlock(&root->fs_info->free_chunk_lock);
3945
3946 /*
3947 * If we have dup, raid1 or raid10 then only half of the free
3948 * space is actually useable. For raid56, the space info used
3949 * doesn't include the parity drive, so we don't have to
3950 * change the math
3951 */
3952 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3953 BTRFS_BLOCK_GROUP_RAID1 |
3954 BTRFS_BLOCK_GROUP_RAID10))
3955 avail >>= 1;
3956
3957 /*
3958 * If we aren't flushing all things, let us overcommit up to
3959 * 1/2th of the space. If we can flush, don't let us overcommit
3960 * too much, let it overcommit up to 1/8 of the space.
3961 */
3962 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3963 avail >>= 3;
3964 else
3965 avail >>= 1;
3966
3967 if (used + bytes < space_info->total_bytes + avail)
3968 return 1;
3969 return 0;
3970 }
3971
3972 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3973 unsigned long nr_pages)
3974 {
3975 struct super_block *sb = root->fs_info->sb;
3976
3977 if (down_read_trylock(&sb->s_umount)) {
3978 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
3979 up_read(&sb->s_umount);
3980 } else {
3981 /*
3982 * We needn't worry the filesystem going from r/w to r/o though
3983 * we don't acquire ->s_umount mutex, because the filesystem
3984 * should guarantee the delalloc inodes list be empty after
3985 * the filesystem is readonly(all dirty pages are written to
3986 * the disk).
3987 */
3988 btrfs_start_delalloc_roots(root->fs_info, 0);
3989 if (!current->journal_info)
3990 btrfs_wait_ordered_roots(root->fs_info, -1);
3991 }
3992 }
3993
3994 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
3995 {
3996 u64 bytes;
3997 int nr;
3998
3999 bytes = btrfs_calc_trans_metadata_size(root, 1);
4000 nr = (int)div64_u64(to_reclaim, bytes);
4001 if (!nr)
4002 nr = 1;
4003 return nr;
4004 }
4005
4006 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4007
4008 /*
4009 * shrink metadata reservation for delalloc
4010 */
4011 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4012 bool wait_ordered)
4013 {
4014 struct btrfs_block_rsv *block_rsv;
4015 struct btrfs_space_info *space_info;
4016 struct btrfs_trans_handle *trans;
4017 u64 delalloc_bytes;
4018 u64 max_reclaim;
4019 long time_left;
4020 unsigned long nr_pages;
4021 int loops;
4022 int items;
4023 enum btrfs_reserve_flush_enum flush;
4024
4025 /* Calc the number of the pages we need flush for space reservation */
4026 items = calc_reclaim_items_nr(root, to_reclaim);
4027 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4028
4029 trans = (struct btrfs_trans_handle *)current->journal_info;
4030 block_rsv = &root->fs_info->delalloc_block_rsv;
4031 space_info = block_rsv->space_info;
4032
4033 delalloc_bytes = percpu_counter_sum_positive(
4034 &root->fs_info->delalloc_bytes);
4035 if (delalloc_bytes == 0) {
4036 if (trans)
4037 return;
4038 if (wait_ordered)
4039 btrfs_wait_ordered_roots(root->fs_info, items);
4040 return;
4041 }
4042
4043 loops = 0;
4044 while (delalloc_bytes && loops < 3) {
4045 max_reclaim = min(delalloc_bytes, to_reclaim);
4046 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4047 btrfs_writeback_inodes_sb_nr(root, nr_pages);
4048 /*
4049 * We need to wait for the async pages to actually start before
4050 * we do anything.
4051 */
4052 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4053 if (!max_reclaim)
4054 goto skip_async;
4055
4056 if (max_reclaim <= nr_pages)
4057 max_reclaim = 0;
4058 else
4059 max_reclaim -= nr_pages;
4060
4061 wait_event(root->fs_info->async_submit_wait,
4062 atomic_read(&root->fs_info->async_delalloc_pages) <=
4063 (int)max_reclaim);
4064 skip_async:
4065 if (!trans)
4066 flush = BTRFS_RESERVE_FLUSH_ALL;
4067 else
4068 flush = BTRFS_RESERVE_NO_FLUSH;
4069 spin_lock(&space_info->lock);
4070 if (can_overcommit(root, space_info, orig, flush)) {
4071 spin_unlock(&space_info->lock);
4072 break;
4073 }
4074 spin_unlock(&space_info->lock);
4075
4076 loops++;
4077 if (wait_ordered && !trans) {
4078 btrfs_wait_ordered_roots(root->fs_info, items);
4079 } else {
4080 time_left = schedule_timeout_killable(1);
4081 if (time_left)
4082 break;
4083 }
4084 delalloc_bytes = percpu_counter_sum_positive(
4085 &root->fs_info->delalloc_bytes);
4086 }
4087 }
4088
4089 /**
4090 * maybe_commit_transaction - possibly commit the transaction if its ok to
4091 * @root - the root we're allocating for
4092 * @bytes - the number of bytes we want to reserve
4093 * @force - force the commit
4094 *
4095 * This will check to make sure that committing the transaction will actually
4096 * get us somewhere and then commit the transaction if it does. Otherwise it
4097 * will return -ENOSPC.
4098 */
4099 static int may_commit_transaction(struct btrfs_root *root,
4100 struct btrfs_space_info *space_info,
4101 u64 bytes, int force)
4102 {
4103 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4104 struct btrfs_trans_handle *trans;
4105
4106 trans = (struct btrfs_trans_handle *)current->journal_info;
4107 if (trans)
4108 return -EAGAIN;
4109
4110 if (force)
4111 goto commit;
4112
4113 /* See if there is enough pinned space to make this reservation */
4114 spin_lock(&space_info->lock);
4115 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4116 bytes) >= 0) {
4117 spin_unlock(&space_info->lock);
4118 goto commit;
4119 }
4120 spin_unlock(&space_info->lock);
4121
4122 /*
4123 * See if there is some space in the delayed insertion reservation for
4124 * this reservation.
4125 */
4126 if (space_info != delayed_rsv->space_info)
4127 return -ENOSPC;
4128
4129 spin_lock(&space_info->lock);
4130 spin_lock(&delayed_rsv->lock);
4131 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4132 bytes - delayed_rsv->size) >= 0) {
4133 spin_unlock(&delayed_rsv->lock);
4134 spin_unlock(&space_info->lock);
4135 return -ENOSPC;
4136 }
4137 spin_unlock(&delayed_rsv->lock);
4138 spin_unlock(&space_info->lock);
4139
4140 commit:
4141 trans = btrfs_join_transaction(root);
4142 if (IS_ERR(trans))
4143 return -ENOSPC;
4144
4145 return btrfs_commit_transaction(trans, root);
4146 }
4147
4148 enum flush_state {
4149 FLUSH_DELAYED_ITEMS_NR = 1,
4150 FLUSH_DELAYED_ITEMS = 2,
4151 FLUSH_DELALLOC = 3,
4152 FLUSH_DELALLOC_WAIT = 4,
4153 ALLOC_CHUNK = 5,
4154 COMMIT_TRANS = 6,
4155 };
4156
4157 static int flush_space(struct btrfs_root *root,
4158 struct btrfs_space_info *space_info, u64 num_bytes,
4159 u64 orig_bytes, int state)
4160 {
4161 struct btrfs_trans_handle *trans;
4162 int nr;
4163 int ret = 0;
4164
4165 switch (state) {
4166 case FLUSH_DELAYED_ITEMS_NR:
4167 case FLUSH_DELAYED_ITEMS:
4168 if (state == FLUSH_DELAYED_ITEMS_NR)
4169 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4170 else
4171 nr = -1;
4172
4173 trans = btrfs_join_transaction(root);
4174 if (IS_ERR(trans)) {
4175 ret = PTR_ERR(trans);
4176 break;
4177 }
4178 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4179 btrfs_end_transaction(trans, root);
4180 break;
4181 case FLUSH_DELALLOC:
4182 case FLUSH_DELALLOC_WAIT:
4183 shrink_delalloc(root, num_bytes, orig_bytes,
4184 state == FLUSH_DELALLOC_WAIT);
4185 break;
4186 case ALLOC_CHUNK:
4187 trans = btrfs_join_transaction(root);
4188 if (IS_ERR(trans)) {
4189 ret = PTR_ERR(trans);
4190 break;
4191 }
4192 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4193 btrfs_get_alloc_profile(root, 0),
4194 CHUNK_ALLOC_NO_FORCE);
4195 btrfs_end_transaction(trans, root);
4196 if (ret == -ENOSPC)
4197 ret = 0;
4198 break;
4199 case COMMIT_TRANS:
4200 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4201 break;
4202 default:
4203 ret = -ENOSPC;
4204 break;
4205 }
4206
4207 return ret;
4208 }
4209 /**
4210 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4211 * @root - the root we're allocating for
4212 * @block_rsv - the block_rsv we're allocating for
4213 * @orig_bytes - the number of bytes we want
4214 * @flush - whether or not we can flush to make our reservation
4215 *
4216 * This will reserve orgi_bytes number of bytes from the space info associated
4217 * with the block_rsv. If there is not enough space it will make an attempt to
4218 * flush out space to make room. It will do this by flushing delalloc if
4219 * possible or committing the transaction. If flush is 0 then no attempts to
4220 * regain reservations will be made and this will fail if there is not enough
4221 * space already.
4222 */
4223 static int reserve_metadata_bytes(struct btrfs_root *root,
4224 struct btrfs_block_rsv *block_rsv,
4225 u64 orig_bytes,
4226 enum btrfs_reserve_flush_enum flush)
4227 {
4228 struct btrfs_space_info *space_info = block_rsv->space_info;
4229 u64 used;
4230 u64 num_bytes = orig_bytes;
4231 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4232 int ret = 0;
4233 bool flushing = false;
4234
4235 again:
4236 ret = 0;
4237 spin_lock(&space_info->lock);
4238 /*
4239 * We only want to wait if somebody other than us is flushing and we
4240 * are actually allowed to flush all things.
4241 */
4242 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4243 space_info->flush) {
4244 spin_unlock(&space_info->lock);
4245 /*
4246 * If we have a trans handle we can't wait because the flusher
4247 * may have to commit the transaction, which would mean we would
4248 * deadlock since we are waiting for the flusher to finish, but
4249 * hold the current transaction open.
4250 */
4251 if (current->journal_info)
4252 return -EAGAIN;
4253 ret = wait_event_killable(space_info->wait, !space_info->flush);
4254 /* Must have been killed, return */
4255 if (ret)
4256 return -EINTR;
4257
4258 spin_lock(&space_info->lock);
4259 }
4260
4261 ret = -ENOSPC;
4262 used = space_info->bytes_used + space_info->bytes_reserved +
4263 space_info->bytes_pinned + space_info->bytes_readonly +
4264 space_info->bytes_may_use;
4265
4266 /*
4267 * The idea here is that we've not already over-reserved the block group
4268 * then we can go ahead and save our reservation first and then start
4269 * flushing if we need to. Otherwise if we've already overcommitted
4270 * lets start flushing stuff first and then come back and try to make
4271 * our reservation.
4272 */
4273 if (used <= space_info->total_bytes) {
4274 if (used + orig_bytes <= space_info->total_bytes) {
4275 space_info->bytes_may_use += orig_bytes;
4276 trace_btrfs_space_reservation(root->fs_info,
4277 "space_info", space_info->flags, orig_bytes, 1);
4278 ret = 0;
4279 } else {
4280 /*
4281 * Ok set num_bytes to orig_bytes since we aren't
4282 * overocmmitted, this way we only try and reclaim what
4283 * we need.
4284 */
4285 num_bytes = orig_bytes;
4286 }
4287 } else {
4288 /*
4289 * Ok we're over committed, set num_bytes to the overcommitted
4290 * amount plus the amount of bytes that we need for this
4291 * reservation.
4292 */
4293 num_bytes = used - space_info->total_bytes +
4294 (orig_bytes * 2);
4295 }
4296
4297 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4298 space_info->bytes_may_use += orig_bytes;
4299 trace_btrfs_space_reservation(root->fs_info, "space_info",
4300 space_info->flags, orig_bytes,
4301 1);
4302 ret = 0;
4303 }
4304
4305 /*
4306 * Couldn't make our reservation, save our place so while we're trying
4307 * to reclaim space we can actually use it instead of somebody else
4308 * stealing it from us.
4309 *
4310 * We make the other tasks wait for the flush only when we can flush
4311 * all things.
4312 */
4313 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4314 flushing = true;
4315 space_info->flush = 1;
4316 }
4317
4318 spin_unlock(&space_info->lock);
4319
4320 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4321 goto out;
4322
4323 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4324 flush_state);
4325 flush_state++;
4326
4327 /*
4328 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4329 * would happen. So skip delalloc flush.
4330 */
4331 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4332 (flush_state == FLUSH_DELALLOC ||
4333 flush_state == FLUSH_DELALLOC_WAIT))
4334 flush_state = ALLOC_CHUNK;
4335
4336 if (!ret)
4337 goto again;
4338 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4339 flush_state < COMMIT_TRANS)
4340 goto again;
4341 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4342 flush_state <= COMMIT_TRANS)
4343 goto again;
4344
4345 out:
4346 if (ret == -ENOSPC &&
4347 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4348 struct btrfs_block_rsv *global_rsv =
4349 &root->fs_info->global_block_rsv;
4350
4351 if (block_rsv != global_rsv &&
4352 !block_rsv_use_bytes(global_rsv, orig_bytes))
4353 ret = 0;
4354 }
4355 if (ret == -ENOSPC)
4356 trace_btrfs_space_reservation(root->fs_info,
4357 "space_info:enospc",
4358 space_info->flags, orig_bytes, 1);
4359 if (flushing) {
4360 spin_lock(&space_info->lock);
4361 space_info->flush = 0;
4362 wake_up_all(&space_info->wait);
4363 spin_unlock(&space_info->lock);
4364 }
4365 return ret;
4366 }
4367
4368 static struct btrfs_block_rsv *get_block_rsv(
4369 const struct btrfs_trans_handle *trans,
4370 const struct btrfs_root *root)
4371 {
4372 struct btrfs_block_rsv *block_rsv = NULL;
4373
4374 if (root->ref_cows)
4375 block_rsv = trans->block_rsv;
4376
4377 if (root == root->fs_info->csum_root && trans->adding_csums)
4378 block_rsv = trans->block_rsv;
4379
4380 if (root == root->fs_info->uuid_root)
4381 block_rsv = trans->block_rsv;
4382
4383 if (!block_rsv)
4384 block_rsv = root->block_rsv;
4385
4386 if (!block_rsv)
4387 block_rsv = &root->fs_info->empty_block_rsv;
4388
4389 return block_rsv;
4390 }
4391
4392 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4393 u64 num_bytes)
4394 {
4395 int ret = -ENOSPC;
4396 spin_lock(&block_rsv->lock);
4397 if (block_rsv->reserved >= num_bytes) {
4398 block_rsv->reserved -= num_bytes;
4399 if (block_rsv->reserved < block_rsv->size)
4400 block_rsv->full = 0;
4401 ret = 0;
4402 }
4403 spin_unlock(&block_rsv->lock);
4404 return ret;
4405 }
4406
4407 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4408 u64 num_bytes, int update_size)
4409 {
4410 spin_lock(&block_rsv->lock);
4411 block_rsv->reserved += num_bytes;
4412 if (update_size)
4413 block_rsv->size += num_bytes;
4414 else if (block_rsv->reserved >= block_rsv->size)
4415 block_rsv->full = 1;
4416 spin_unlock(&block_rsv->lock);
4417 }
4418
4419 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4420 struct btrfs_block_rsv *dest, u64 num_bytes,
4421 int min_factor)
4422 {
4423 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4424 u64 min_bytes;
4425
4426 if (global_rsv->space_info != dest->space_info)
4427 return -ENOSPC;
4428
4429 spin_lock(&global_rsv->lock);
4430 min_bytes = div_factor(global_rsv->size, min_factor);
4431 if (global_rsv->reserved < min_bytes + num_bytes) {
4432 spin_unlock(&global_rsv->lock);
4433 return -ENOSPC;
4434 }
4435 global_rsv->reserved -= num_bytes;
4436 if (global_rsv->reserved < global_rsv->size)
4437 global_rsv->full = 0;
4438 spin_unlock(&global_rsv->lock);
4439
4440 block_rsv_add_bytes(dest, num_bytes, 1);
4441 return 0;
4442 }
4443
4444 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4445 struct btrfs_block_rsv *block_rsv,
4446 struct btrfs_block_rsv *dest, u64 num_bytes)
4447 {
4448 struct btrfs_space_info *space_info = block_rsv->space_info;
4449
4450 spin_lock(&block_rsv->lock);
4451 if (num_bytes == (u64)-1)
4452 num_bytes = block_rsv->size;
4453 block_rsv->size -= num_bytes;
4454 if (block_rsv->reserved >= block_rsv->size) {
4455 num_bytes = block_rsv->reserved - block_rsv->size;
4456 block_rsv->reserved = block_rsv->size;
4457 block_rsv->full = 1;
4458 } else {
4459 num_bytes = 0;
4460 }
4461 spin_unlock(&block_rsv->lock);
4462
4463 if (num_bytes > 0) {
4464 if (dest) {
4465 spin_lock(&dest->lock);
4466 if (!dest->full) {
4467 u64 bytes_to_add;
4468
4469 bytes_to_add = dest->size - dest->reserved;
4470 bytes_to_add = min(num_bytes, bytes_to_add);
4471 dest->reserved += bytes_to_add;
4472 if (dest->reserved >= dest->size)
4473 dest->full = 1;
4474 num_bytes -= bytes_to_add;
4475 }
4476 spin_unlock(&dest->lock);
4477 }
4478 if (num_bytes) {
4479 spin_lock(&space_info->lock);
4480 space_info->bytes_may_use -= num_bytes;
4481 trace_btrfs_space_reservation(fs_info, "space_info",
4482 space_info->flags, num_bytes, 0);
4483 spin_unlock(&space_info->lock);
4484 }
4485 }
4486 }
4487
4488 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4489 struct btrfs_block_rsv *dst, u64 num_bytes)
4490 {
4491 int ret;
4492
4493 ret = block_rsv_use_bytes(src, num_bytes);
4494 if (ret)
4495 return ret;
4496
4497 block_rsv_add_bytes(dst, num_bytes, 1);
4498 return 0;
4499 }
4500
4501 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4502 {
4503 memset(rsv, 0, sizeof(*rsv));
4504 spin_lock_init(&rsv->lock);
4505 rsv->type = type;
4506 }
4507
4508 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4509 unsigned short type)
4510 {
4511 struct btrfs_block_rsv *block_rsv;
4512 struct btrfs_fs_info *fs_info = root->fs_info;
4513
4514 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4515 if (!block_rsv)
4516 return NULL;
4517
4518 btrfs_init_block_rsv(block_rsv, type);
4519 block_rsv->space_info = __find_space_info(fs_info,
4520 BTRFS_BLOCK_GROUP_METADATA);
4521 return block_rsv;
4522 }
4523
4524 void btrfs_free_block_rsv(struct btrfs_root *root,
4525 struct btrfs_block_rsv *rsv)
4526 {
4527 if (!rsv)
4528 return;
4529 btrfs_block_rsv_release(root, rsv, (u64)-1);
4530 kfree(rsv);
4531 }
4532
4533 int btrfs_block_rsv_add(struct btrfs_root *root,
4534 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4535 enum btrfs_reserve_flush_enum flush)
4536 {
4537 int ret;
4538
4539 if (num_bytes == 0)
4540 return 0;
4541
4542 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4543 if (!ret) {
4544 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4545 return 0;
4546 }
4547
4548 return ret;
4549 }
4550
4551 int btrfs_block_rsv_check(struct btrfs_root *root,
4552 struct btrfs_block_rsv *block_rsv, int min_factor)
4553 {
4554 u64 num_bytes = 0;
4555 int ret = -ENOSPC;
4556
4557 if (!block_rsv)
4558 return 0;
4559
4560 spin_lock(&block_rsv->lock);
4561 num_bytes = div_factor(block_rsv->size, min_factor);
4562 if (block_rsv->reserved >= num_bytes)
4563 ret = 0;
4564 spin_unlock(&block_rsv->lock);
4565
4566 return ret;
4567 }
4568
4569 int btrfs_block_rsv_refill(struct btrfs_root *root,
4570 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4571 enum btrfs_reserve_flush_enum flush)
4572 {
4573 u64 num_bytes = 0;
4574 int ret = -ENOSPC;
4575
4576 if (!block_rsv)
4577 return 0;
4578
4579 spin_lock(&block_rsv->lock);
4580 num_bytes = min_reserved;
4581 if (block_rsv->reserved >= num_bytes)
4582 ret = 0;
4583 else
4584 num_bytes -= block_rsv->reserved;
4585 spin_unlock(&block_rsv->lock);
4586
4587 if (!ret)
4588 return 0;
4589
4590 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4591 if (!ret) {
4592 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4593 return 0;
4594 }
4595
4596 return ret;
4597 }
4598
4599 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4600 struct btrfs_block_rsv *dst_rsv,
4601 u64 num_bytes)
4602 {
4603 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4604 }
4605
4606 void btrfs_block_rsv_release(struct btrfs_root *root,
4607 struct btrfs_block_rsv *block_rsv,
4608 u64 num_bytes)
4609 {
4610 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4611 if (global_rsv == block_rsv ||
4612 block_rsv->space_info != global_rsv->space_info)
4613 global_rsv = NULL;
4614 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4615 num_bytes);
4616 }
4617
4618 /*
4619 * helper to calculate size of global block reservation.
4620 * the desired value is sum of space used by extent tree,
4621 * checksum tree and root tree
4622 */
4623 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4624 {
4625 struct btrfs_space_info *sinfo;
4626 u64 num_bytes;
4627 u64 meta_used;
4628 u64 data_used;
4629 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4630
4631 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4632 spin_lock(&sinfo->lock);
4633 data_used = sinfo->bytes_used;
4634 spin_unlock(&sinfo->lock);
4635
4636 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4637 spin_lock(&sinfo->lock);
4638 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4639 data_used = 0;
4640 meta_used = sinfo->bytes_used;
4641 spin_unlock(&sinfo->lock);
4642
4643 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4644 csum_size * 2;
4645 num_bytes += div64_u64(data_used + meta_used, 50);
4646
4647 if (num_bytes * 3 > meta_used)
4648 num_bytes = div64_u64(meta_used, 3);
4649
4650 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4651 }
4652
4653 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4654 {
4655 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4656 struct btrfs_space_info *sinfo = block_rsv->space_info;
4657 u64 num_bytes;
4658
4659 num_bytes = calc_global_metadata_size(fs_info);
4660
4661 spin_lock(&sinfo->lock);
4662 spin_lock(&block_rsv->lock);
4663
4664 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4665
4666 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4667 sinfo->bytes_reserved + sinfo->bytes_readonly +
4668 sinfo->bytes_may_use;
4669
4670 if (sinfo->total_bytes > num_bytes) {
4671 num_bytes = sinfo->total_bytes - num_bytes;
4672 block_rsv->reserved += num_bytes;
4673 sinfo->bytes_may_use += num_bytes;
4674 trace_btrfs_space_reservation(fs_info, "space_info",
4675 sinfo->flags, num_bytes, 1);
4676 }
4677
4678 if (block_rsv->reserved >= block_rsv->size) {
4679 num_bytes = block_rsv->reserved - block_rsv->size;
4680 sinfo->bytes_may_use -= num_bytes;
4681 trace_btrfs_space_reservation(fs_info, "space_info",
4682 sinfo->flags, num_bytes, 0);
4683 block_rsv->reserved = block_rsv->size;
4684 block_rsv->full = 1;
4685 }
4686
4687 spin_unlock(&block_rsv->lock);
4688 spin_unlock(&sinfo->lock);
4689 }
4690
4691 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4692 {
4693 struct btrfs_space_info *space_info;
4694
4695 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4696 fs_info->chunk_block_rsv.space_info = space_info;
4697
4698 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4699 fs_info->global_block_rsv.space_info = space_info;
4700 fs_info->delalloc_block_rsv.space_info = space_info;
4701 fs_info->trans_block_rsv.space_info = space_info;
4702 fs_info->empty_block_rsv.space_info = space_info;
4703 fs_info->delayed_block_rsv.space_info = space_info;
4704
4705 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4706 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4707 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4708 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4709 if (fs_info->quota_root)
4710 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4711 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4712
4713 update_global_block_rsv(fs_info);
4714 }
4715
4716 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4717 {
4718 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4719 (u64)-1);
4720 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4721 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4722 WARN_ON(fs_info->trans_block_rsv.size > 0);
4723 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4724 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4725 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4726 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4727 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4728 }
4729
4730 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4731 struct btrfs_root *root)
4732 {
4733 if (!trans->block_rsv)
4734 return;
4735
4736 if (!trans->bytes_reserved)
4737 return;
4738
4739 trace_btrfs_space_reservation(root->fs_info, "transaction",
4740 trans->transid, trans->bytes_reserved, 0);
4741 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4742 trans->bytes_reserved = 0;
4743 }
4744
4745 /* Can only return 0 or -ENOSPC */
4746 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4747 struct inode *inode)
4748 {
4749 struct btrfs_root *root = BTRFS_I(inode)->root;
4750 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4751 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4752
4753 /*
4754 * We need to hold space in order to delete our orphan item once we've
4755 * added it, so this takes the reservation so we can release it later
4756 * when we are truly done with the orphan item.
4757 */
4758 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4759 trace_btrfs_space_reservation(root->fs_info, "orphan",
4760 btrfs_ino(inode), num_bytes, 1);
4761 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4762 }
4763
4764 void btrfs_orphan_release_metadata(struct inode *inode)
4765 {
4766 struct btrfs_root *root = BTRFS_I(inode)->root;
4767 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4768 trace_btrfs_space_reservation(root->fs_info, "orphan",
4769 btrfs_ino(inode), num_bytes, 0);
4770 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4771 }
4772
4773 /*
4774 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4775 * root: the root of the parent directory
4776 * rsv: block reservation
4777 * items: the number of items that we need do reservation
4778 * qgroup_reserved: used to return the reserved size in qgroup
4779 *
4780 * This function is used to reserve the space for snapshot/subvolume
4781 * creation and deletion. Those operations are different with the
4782 * common file/directory operations, they change two fs/file trees
4783 * and root tree, the number of items that the qgroup reserves is
4784 * different with the free space reservation. So we can not use
4785 * the space reseravtion mechanism in start_transaction().
4786 */
4787 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4788 struct btrfs_block_rsv *rsv,
4789 int items,
4790 u64 *qgroup_reserved,
4791 bool use_global_rsv)
4792 {
4793 u64 num_bytes;
4794 int ret;
4795 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4796
4797 if (root->fs_info->quota_enabled) {
4798 /* One for parent inode, two for dir entries */
4799 num_bytes = 3 * root->leafsize;
4800 ret = btrfs_qgroup_reserve(root, num_bytes);
4801 if (ret)
4802 return ret;
4803 } else {
4804 num_bytes = 0;
4805 }
4806
4807 *qgroup_reserved = num_bytes;
4808
4809 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4810 rsv->space_info = __find_space_info(root->fs_info,
4811 BTRFS_BLOCK_GROUP_METADATA);
4812 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4813 BTRFS_RESERVE_FLUSH_ALL);
4814
4815 if (ret == -ENOSPC && use_global_rsv)
4816 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4817
4818 if (ret) {
4819 if (*qgroup_reserved)
4820 btrfs_qgroup_free(root, *qgroup_reserved);
4821 }
4822
4823 return ret;
4824 }
4825
4826 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4827 struct btrfs_block_rsv *rsv,
4828 u64 qgroup_reserved)
4829 {
4830 btrfs_block_rsv_release(root, rsv, (u64)-1);
4831 if (qgroup_reserved)
4832 btrfs_qgroup_free(root, qgroup_reserved);
4833 }
4834
4835 /**
4836 * drop_outstanding_extent - drop an outstanding extent
4837 * @inode: the inode we're dropping the extent for
4838 *
4839 * This is called when we are freeing up an outstanding extent, either called
4840 * after an error or after an extent is written. This will return the number of
4841 * reserved extents that need to be freed. This must be called with
4842 * BTRFS_I(inode)->lock held.
4843 */
4844 static unsigned drop_outstanding_extent(struct inode *inode)
4845 {
4846 unsigned drop_inode_space = 0;
4847 unsigned dropped_extents = 0;
4848
4849 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4850 BTRFS_I(inode)->outstanding_extents--;
4851
4852 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4853 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4854 &BTRFS_I(inode)->runtime_flags))
4855 drop_inode_space = 1;
4856
4857 /*
4858 * If we have more or the same amount of outsanding extents than we have
4859 * reserved then we need to leave the reserved extents count alone.
4860 */
4861 if (BTRFS_I(inode)->outstanding_extents >=
4862 BTRFS_I(inode)->reserved_extents)
4863 return drop_inode_space;
4864
4865 dropped_extents = BTRFS_I(inode)->reserved_extents -
4866 BTRFS_I(inode)->outstanding_extents;
4867 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4868 return dropped_extents + drop_inode_space;
4869 }
4870
4871 /**
4872 * calc_csum_metadata_size - return the amount of metada space that must be
4873 * reserved/free'd for the given bytes.
4874 * @inode: the inode we're manipulating
4875 * @num_bytes: the number of bytes in question
4876 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4877 *
4878 * This adjusts the number of csum_bytes in the inode and then returns the
4879 * correct amount of metadata that must either be reserved or freed. We
4880 * calculate how many checksums we can fit into one leaf and then divide the
4881 * number of bytes that will need to be checksumed by this value to figure out
4882 * how many checksums will be required. If we are adding bytes then the number
4883 * may go up and we will return the number of additional bytes that must be
4884 * reserved. If it is going down we will return the number of bytes that must
4885 * be freed.
4886 *
4887 * This must be called with BTRFS_I(inode)->lock held.
4888 */
4889 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4890 int reserve)
4891 {
4892 struct btrfs_root *root = BTRFS_I(inode)->root;
4893 u64 csum_size;
4894 int num_csums_per_leaf;
4895 int num_csums;
4896 int old_csums;
4897
4898 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4899 BTRFS_I(inode)->csum_bytes == 0)
4900 return 0;
4901
4902 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4903 if (reserve)
4904 BTRFS_I(inode)->csum_bytes += num_bytes;
4905 else
4906 BTRFS_I(inode)->csum_bytes -= num_bytes;
4907 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4908 num_csums_per_leaf = (int)div64_u64(csum_size,
4909 sizeof(struct btrfs_csum_item) +
4910 sizeof(struct btrfs_disk_key));
4911 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4912 num_csums = num_csums + num_csums_per_leaf - 1;
4913 num_csums = num_csums / num_csums_per_leaf;
4914
4915 old_csums = old_csums + num_csums_per_leaf - 1;
4916 old_csums = old_csums / num_csums_per_leaf;
4917
4918 /* No change, no need to reserve more */
4919 if (old_csums == num_csums)
4920 return 0;
4921
4922 if (reserve)
4923 return btrfs_calc_trans_metadata_size(root,
4924 num_csums - old_csums);
4925
4926 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4927 }
4928
4929 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4930 {
4931 struct btrfs_root *root = BTRFS_I(inode)->root;
4932 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4933 u64 to_reserve = 0;
4934 u64 csum_bytes;
4935 unsigned nr_extents = 0;
4936 int extra_reserve = 0;
4937 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4938 int ret = 0;
4939 bool delalloc_lock = true;
4940 u64 to_free = 0;
4941 unsigned dropped;
4942
4943 /* If we are a free space inode we need to not flush since we will be in
4944 * the middle of a transaction commit. We also don't need the delalloc
4945 * mutex since we won't race with anybody. We need this mostly to make
4946 * lockdep shut its filthy mouth.
4947 */
4948 if (btrfs_is_free_space_inode(inode)) {
4949 flush = BTRFS_RESERVE_NO_FLUSH;
4950 delalloc_lock = false;
4951 }
4952
4953 if (flush != BTRFS_RESERVE_NO_FLUSH &&
4954 btrfs_transaction_in_commit(root->fs_info))
4955 schedule_timeout(1);
4956
4957 if (delalloc_lock)
4958 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4959
4960 num_bytes = ALIGN(num_bytes, root->sectorsize);
4961
4962 spin_lock(&BTRFS_I(inode)->lock);
4963 BTRFS_I(inode)->outstanding_extents++;
4964
4965 if (BTRFS_I(inode)->outstanding_extents >
4966 BTRFS_I(inode)->reserved_extents)
4967 nr_extents = BTRFS_I(inode)->outstanding_extents -
4968 BTRFS_I(inode)->reserved_extents;
4969
4970 /*
4971 * Add an item to reserve for updating the inode when we complete the
4972 * delalloc io.
4973 */
4974 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4975 &BTRFS_I(inode)->runtime_flags)) {
4976 nr_extents++;
4977 extra_reserve = 1;
4978 }
4979
4980 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4981 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4982 csum_bytes = BTRFS_I(inode)->csum_bytes;
4983 spin_unlock(&BTRFS_I(inode)->lock);
4984
4985 if (root->fs_info->quota_enabled) {
4986 ret = btrfs_qgroup_reserve(root, num_bytes +
4987 nr_extents * root->leafsize);
4988 if (ret)
4989 goto out_fail;
4990 }
4991
4992 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4993 if (unlikely(ret)) {
4994 if (root->fs_info->quota_enabled)
4995 btrfs_qgroup_free(root, num_bytes +
4996 nr_extents * root->leafsize);
4997 goto out_fail;
4998 }
4999
5000 spin_lock(&BTRFS_I(inode)->lock);
5001 if (extra_reserve) {
5002 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5003 &BTRFS_I(inode)->runtime_flags);
5004 nr_extents--;
5005 }
5006 BTRFS_I(inode)->reserved_extents += nr_extents;
5007 spin_unlock(&BTRFS_I(inode)->lock);
5008
5009 if (delalloc_lock)
5010 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5011
5012 if (to_reserve)
5013 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5014 btrfs_ino(inode), to_reserve, 1);
5015 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5016
5017 return 0;
5018
5019 out_fail:
5020 spin_lock(&BTRFS_I(inode)->lock);
5021 dropped = drop_outstanding_extent(inode);
5022 /*
5023 * If the inodes csum_bytes is the same as the original
5024 * csum_bytes then we know we haven't raced with any free()ers
5025 * so we can just reduce our inodes csum bytes and carry on.
5026 */
5027 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5028 calc_csum_metadata_size(inode, num_bytes, 0);
5029 } else {
5030 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5031 u64 bytes;
5032
5033 /*
5034 * This is tricky, but first we need to figure out how much we
5035 * free'd from any free-ers that occured during this
5036 * reservation, so we reset ->csum_bytes to the csum_bytes
5037 * before we dropped our lock, and then call the free for the
5038 * number of bytes that were freed while we were trying our
5039 * reservation.
5040 */
5041 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5042 BTRFS_I(inode)->csum_bytes = csum_bytes;
5043 to_free = calc_csum_metadata_size(inode, bytes, 0);
5044
5045
5046 /*
5047 * Now we need to see how much we would have freed had we not
5048 * been making this reservation and our ->csum_bytes were not
5049 * artificially inflated.
5050 */
5051 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5052 bytes = csum_bytes - orig_csum_bytes;
5053 bytes = calc_csum_metadata_size(inode, bytes, 0);
5054
5055 /*
5056 * Now reset ->csum_bytes to what it should be. If bytes is
5057 * more than to_free then we would have free'd more space had we
5058 * not had an artificially high ->csum_bytes, so we need to free
5059 * the remainder. If bytes is the same or less then we don't
5060 * need to do anything, the other free-ers did the correct
5061 * thing.
5062 */
5063 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5064 if (bytes > to_free)
5065 to_free = bytes - to_free;
5066 else
5067 to_free = 0;
5068 }
5069 spin_unlock(&BTRFS_I(inode)->lock);
5070 if (dropped)
5071 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5072
5073 if (to_free) {
5074 btrfs_block_rsv_release(root, block_rsv, to_free);
5075 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5076 btrfs_ino(inode), to_free, 0);
5077 }
5078 if (delalloc_lock)
5079 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5080 return ret;
5081 }
5082
5083 /**
5084 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5085 * @inode: the inode to release the reservation for
5086 * @num_bytes: the number of bytes we're releasing
5087 *
5088 * This will release the metadata reservation for an inode. This can be called
5089 * once we complete IO for a given set of bytes to release their metadata
5090 * reservations.
5091 */
5092 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5093 {
5094 struct btrfs_root *root = BTRFS_I(inode)->root;
5095 u64 to_free = 0;
5096 unsigned dropped;
5097
5098 num_bytes = ALIGN(num_bytes, root->sectorsize);
5099 spin_lock(&BTRFS_I(inode)->lock);
5100 dropped = drop_outstanding_extent(inode);
5101
5102 if (num_bytes)
5103 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5104 spin_unlock(&BTRFS_I(inode)->lock);
5105 if (dropped > 0)
5106 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5107
5108 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5109 btrfs_ino(inode), to_free, 0);
5110 if (root->fs_info->quota_enabled) {
5111 btrfs_qgroup_free(root, num_bytes +
5112 dropped * root->leafsize);
5113 }
5114
5115 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5116 to_free);
5117 }
5118
5119 /**
5120 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5121 * @inode: inode we're writing to
5122 * @num_bytes: the number of bytes we want to allocate
5123 *
5124 * This will do the following things
5125 *
5126 * o reserve space in the data space info for num_bytes
5127 * o reserve space in the metadata space info based on number of outstanding
5128 * extents and how much csums will be needed
5129 * o add to the inodes ->delalloc_bytes
5130 * o add it to the fs_info's delalloc inodes list.
5131 *
5132 * This will return 0 for success and -ENOSPC if there is no space left.
5133 */
5134 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5135 {
5136 int ret;
5137
5138 ret = btrfs_check_data_free_space(inode, num_bytes);
5139 if (ret)
5140 return ret;
5141
5142 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5143 if (ret) {
5144 btrfs_free_reserved_data_space(inode, num_bytes);
5145 return ret;
5146 }
5147
5148 return 0;
5149 }
5150
5151 /**
5152 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5153 * @inode: inode we're releasing space for
5154 * @num_bytes: the number of bytes we want to free up
5155 *
5156 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5157 * called in the case that we don't need the metadata AND data reservations
5158 * anymore. So if there is an error or we insert an inline extent.
5159 *
5160 * This function will release the metadata space that was not used and will
5161 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5162 * list if there are no delalloc bytes left.
5163 */
5164 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5165 {
5166 btrfs_delalloc_release_metadata(inode, num_bytes);
5167 btrfs_free_reserved_data_space(inode, num_bytes);
5168 }
5169
5170 static int update_block_group(struct btrfs_root *root,
5171 u64 bytenr, u64 num_bytes, int alloc)
5172 {
5173 struct btrfs_block_group_cache *cache = NULL;
5174 struct btrfs_fs_info *info = root->fs_info;
5175 u64 total = num_bytes;
5176 u64 old_val;
5177 u64 byte_in_group;
5178 int factor;
5179
5180 /* block accounting for super block */
5181 spin_lock(&info->delalloc_root_lock);
5182 old_val = btrfs_super_bytes_used(info->super_copy);
5183 if (alloc)
5184 old_val += num_bytes;
5185 else
5186 old_val -= num_bytes;
5187 btrfs_set_super_bytes_used(info->super_copy, old_val);
5188 spin_unlock(&info->delalloc_root_lock);
5189
5190 while (total) {
5191 cache = btrfs_lookup_block_group(info, bytenr);
5192 if (!cache)
5193 return -ENOENT;
5194 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5195 BTRFS_BLOCK_GROUP_RAID1 |
5196 BTRFS_BLOCK_GROUP_RAID10))
5197 factor = 2;
5198 else
5199 factor = 1;
5200 /*
5201 * If this block group has free space cache written out, we
5202 * need to make sure to load it if we are removing space. This
5203 * is because we need the unpinning stage to actually add the
5204 * space back to the block group, otherwise we will leak space.
5205 */
5206 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5207 cache_block_group(cache, 1);
5208
5209 byte_in_group = bytenr - cache->key.objectid;
5210 WARN_ON(byte_in_group > cache->key.offset);
5211
5212 spin_lock(&cache->space_info->lock);
5213 spin_lock(&cache->lock);
5214
5215 if (btrfs_test_opt(root, SPACE_CACHE) &&
5216 cache->disk_cache_state < BTRFS_DC_CLEAR)
5217 cache->disk_cache_state = BTRFS_DC_CLEAR;
5218
5219 cache->dirty = 1;
5220 old_val = btrfs_block_group_used(&cache->item);
5221 num_bytes = min(total, cache->key.offset - byte_in_group);
5222 if (alloc) {
5223 old_val += num_bytes;
5224 btrfs_set_block_group_used(&cache->item, old_val);
5225 cache->reserved -= num_bytes;
5226 cache->space_info->bytes_reserved -= num_bytes;
5227 cache->space_info->bytes_used += num_bytes;
5228 cache->space_info->disk_used += num_bytes * factor;
5229 spin_unlock(&cache->lock);
5230 spin_unlock(&cache->space_info->lock);
5231 } else {
5232 old_val -= num_bytes;
5233 btrfs_set_block_group_used(&cache->item, old_val);
5234 cache->pinned += num_bytes;
5235 cache->space_info->bytes_pinned += num_bytes;
5236 cache->space_info->bytes_used -= num_bytes;
5237 cache->space_info->disk_used -= num_bytes * factor;
5238 spin_unlock(&cache->lock);
5239 spin_unlock(&cache->space_info->lock);
5240
5241 set_extent_dirty(info->pinned_extents,
5242 bytenr, bytenr + num_bytes - 1,
5243 GFP_NOFS | __GFP_NOFAIL);
5244 }
5245 btrfs_put_block_group(cache);
5246 total -= num_bytes;
5247 bytenr += num_bytes;
5248 }
5249 return 0;
5250 }
5251
5252 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5253 {
5254 struct btrfs_block_group_cache *cache;
5255 u64 bytenr;
5256
5257 spin_lock(&root->fs_info->block_group_cache_lock);
5258 bytenr = root->fs_info->first_logical_byte;
5259 spin_unlock(&root->fs_info->block_group_cache_lock);
5260
5261 if (bytenr < (u64)-1)
5262 return bytenr;
5263
5264 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5265 if (!cache)
5266 return 0;
5267
5268 bytenr = cache->key.objectid;
5269 btrfs_put_block_group(cache);
5270
5271 return bytenr;
5272 }
5273
5274 static int pin_down_extent(struct btrfs_root *root,
5275 struct btrfs_block_group_cache *cache,
5276 u64 bytenr, u64 num_bytes, int reserved)
5277 {
5278 spin_lock(&cache->space_info->lock);
5279 spin_lock(&cache->lock);
5280 cache->pinned += num_bytes;
5281 cache->space_info->bytes_pinned += num_bytes;
5282 if (reserved) {
5283 cache->reserved -= num_bytes;
5284 cache->space_info->bytes_reserved -= num_bytes;
5285 }
5286 spin_unlock(&cache->lock);
5287 spin_unlock(&cache->space_info->lock);
5288
5289 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5290 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5291 if (reserved)
5292 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5293 return 0;
5294 }
5295
5296 /*
5297 * this function must be called within transaction
5298 */
5299 int btrfs_pin_extent(struct btrfs_root *root,
5300 u64 bytenr, u64 num_bytes, int reserved)
5301 {
5302 struct btrfs_block_group_cache *cache;
5303
5304 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5305 BUG_ON(!cache); /* Logic error */
5306
5307 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5308
5309 btrfs_put_block_group(cache);
5310 return 0;
5311 }
5312
5313 /*
5314 * this function must be called within transaction
5315 */
5316 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5317 u64 bytenr, u64 num_bytes)
5318 {
5319 struct btrfs_block_group_cache *cache;
5320 int ret;
5321
5322 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5323 if (!cache)
5324 return -EINVAL;
5325
5326 /*
5327 * pull in the free space cache (if any) so that our pin
5328 * removes the free space from the cache. We have load_only set
5329 * to one because the slow code to read in the free extents does check
5330 * the pinned extents.
5331 */
5332 cache_block_group(cache, 1);
5333
5334 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5335
5336 /* remove us from the free space cache (if we're there at all) */
5337 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5338 btrfs_put_block_group(cache);
5339 return ret;
5340 }
5341
5342 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5343 {
5344 int ret;
5345 struct btrfs_block_group_cache *block_group;
5346 struct btrfs_caching_control *caching_ctl;
5347
5348 block_group = btrfs_lookup_block_group(root->fs_info, start);
5349 if (!block_group)
5350 return -EINVAL;
5351
5352 cache_block_group(block_group, 0);
5353 caching_ctl = get_caching_control(block_group);
5354
5355 if (!caching_ctl) {
5356 /* Logic error */
5357 BUG_ON(!block_group_cache_done(block_group));
5358 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5359 } else {
5360 mutex_lock(&caching_ctl->mutex);
5361
5362 if (start >= caching_ctl->progress) {
5363 ret = add_excluded_extent(root, start, num_bytes);
5364 } else if (start + num_bytes <= caching_ctl->progress) {
5365 ret = btrfs_remove_free_space(block_group,
5366 start, num_bytes);
5367 } else {
5368 num_bytes = caching_ctl->progress - start;
5369 ret = btrfs_remove_free_space(block_group,
5370 start, num_bytes);
5371 if (ret)
5372 goto out_lock;
5373
5374 num_bytes = (start + num_bytes) -
5375 caching_ctl->progress;
5376 start = caching_ctl->progress;
5377 ret = add_excluded_extent(root, start, num_bytes);
5378 }
5379 out_lock:
5380 mutex_unlock(&caching_ctl->mutex);
5381 put_caching_control(caching_ctl);
5382 }
5383 btrfs_put_block_group(block_group);
5384 return ret;
5385 }
5386
5387 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5388 struct extent_buffer *eb)
5389 {
5390 struct btrfs_file_extent_item *item;
5391 struct btrfs_key key;
5392 int found_type;
5393 int i;
5394
5395 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5396 return 0;
5397
5398 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5399 btrfs_item_key_to_cpu(eb, &key, i);
5400 if (key.type != BTRFS_EXTENT_DATA_KEY)
5401 continue;
5402 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5403 found_type = btrfs_file_extent_type(eb, item);
5404 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5405 continue;
5406 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5407 continue;
5408 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5409 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5410 __exclude_logged_extent(log, key.objectid, key.offset);
5411 }
5412
5413 return 0;
5414 }
5415
5416 /**
5417 * btrfs_update_reserved_bytes - update the block_group and space info counters
5418 * @cache: The cache we are manipulating
5419 * @num_bytes: The number of bytes in question
5420 * @reserve: One of the reservation enums
5421 *
5422 * This is called by the allocator when it reserves space, or by somebody who is
5423 * freeing space that was never actually used on disk. For example if you
5424 * reserve some space for a new leaf in transaction A and before transaction A
5425 * commits you free that leaf, you call this with reserve set to 0 in order to
5426 * clear the reservation.
5427 *
5428 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5429 * ENOSPC accounting. For data we handle the reservation through clearing the
5430 * delalloc bits in the io_tree. We have to do this since we could end up
5431 * allocating less disk space for the amount of data we have reserved in the
5432 * case of compression.
5433 *
5434 * If this is a reservation and the block group has become read only we cannot
5435 * make the reservation and return -EAGAIN, otherwise this function always
5436 * succeeds.
5437 */
5438 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5439 u64 num_bytes, int reserve)
5440 {
5441 struct btrfs_space_info *space_info = cache->space_info;
5442 int ret = 0;
5443
5444 spin_lock(&space_info->lock);
5445 spin_lock(&cache->lock);
5446 if (reserve != RESERVE_FREE) {
5447 if (cache->ro) {
5448 ret = -EAGAIN;
5449 } else {
5450 cache->reserved += num_bytes;
5451 space_info->bytes_reserved += num_bytes;
5452 if (reserve == RESERVE_ALLOC) {
5453 trace_btrfs_space_reservation(cache->fs_info,
5454 "space_info", space_info->flags,
5455 num_bytes, 0);
5456 space_info->bytes_may_use -= num_bytes;
5457 }
5458 }
5459 } else {
5460 if (cache->ro)
5461 space_info->bytes_readonly += num_bytes;
5462 cache->reserved -= num_bytes;
5463 space_info->bytes_reserved -= num_bytes;
5464 }
5465 spin_unlock(&cache->lock);
5466 spin_unlock(&space_info->lock);
5467 return ret;
5468 }
5469
5470 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5471 struct btrfs_root *root)
5472 {
5473 struct btrfs_fs_info *fs_info = root->fs_info;
5474 struct btrfs_caching_control *next;
5475 struct btrfs_caching_control *caching_ctl;
5476 struct btrfs_block_group_cache *cache;
5477 struct btrfs_space_info *space_info;
5478
5479 down_write(&fs_info->extent_commit_sem);
5480
5481 list_for_each_entry_safe(caching_ctl, next,
5482 &fs_info->caching_block_groups, list) {
5483 cache = caching_ctl->block_group;
5484 if (block_group_cache_done(cache)) {
5485 cache->last_byte_to_unpin = (u64)-1;
5486 list_del_init(&caching_ctl->list);
5487 put_caching_control(caching_ctl);
5488 } else {
5489 cache->last_byte_to_unpin = caching_ctl->progress;
5490 }
5491 }
5492
5493 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5494 fs_info->pinned_extents = &fs_info->freed_extents[1];
5495 else
5496 fs_info->pinned_extents = &fs_info->freed_extents[0];
5497
5498 up_write(&fs_info->extent_commit_sem);
5499
5500 list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5501 percpu_counter_set(&space_info->total_bytes_pinned, 0);
5502
5503 update_global_block_rsv(fs_info);
5504 }
5505
5506 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5507 {
5508 struct btrfs_fs_info *fs_info = root->fs_info;
5509 struct btrfs_block_group_cache *cache = NULL;
5510 struct btrfs_space_info *space_info;
5511 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5512 u64 len;
5513 bool readonly;
5514
5515 while (start <= end) {
5516 readonly = false;
5517 if (!cache ||
5518 start >= cache->key.objectid + cache->key.offset) {
5519 if (cache)
5520 btrfs_put_block_group(cache);
5521 cache = btrfs_lookup_block_group(fs_info, start);
5522 BUG_ON(!cache); /* Logic error */
5523 }
5524
5525 len = cache->key.objectid + cache->key.offset - start;
5526 len = min(len, end + 1 - start);
5527
5528 if (start < cache->last_byte_to_unpin) {
5529 len = min(len, cache->last_byte_to_unpin - start);
5530 btrfs_add_free_space(cache, start, len);
5531 }
5532
5533 start += len;
5534 space_info = cache->space_info;
5535
5536 spin_lock(&space_info->lock);
5537 spin_lock(&cache->lock);
5538 cache->pinned -= len;
5539 space_info->bytes_pinned -= len;
5540 if (cache->ro) {
5541 space_info->bytes_readonly += len;
5542 readonly = true;
5543 }
5544 spin_unlock(&cache->lock);
5545 if (!readonly && global_rsv->space_info == space_info) {
5546 spin_lock(&global_rsv->lock);
5547 if (!global_rsv->full) {
5548 len = min(len, global_rsv->size -
5549 global_rsv->reserved);
5550 global_rsv->reserved += len;
5551 space_info->bytes_may_use += len;
5552 if (global_rsv->reserved >= global_rsv->size)
5553 global_rsv->full = 1;
5554 }
5555 spin_unlock(&global_rsv->lock);
5556 }
5557 spin_unlock(&space_info->lock);
5558 }
5559
5560 if (cache)
5561 btrfs_put_block_group(cache);
5562 return 0;
5563 }
5564
5565 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5566 struct btrfs_root *root)
5567 {
5568 struct btrfs_fs_info *fs_info = root->fs_info;
5569 struct extent_io_tree *unpin;
5570 u64 start;
5571 u64 end;
5572 int ret;
5573
5574 if (trans->aborted)
5575 return 0;
5576
5577 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5578 unpin = &fs_info->freed_extents[1];
5579 else
5580 unpin = &fs_info->freed_extents[0];
5581
5582 while (1) {
5583 ret = find_first_extent_bit(unpin, 0, &start, &end,
5584 EXTENT_DIRTY, NULL);
5585 if (ret)
5586 break;
5587
5588 if (btrfs_test_opt(root, DISCARD))
5589 ret = btrfs_discard_extent(root, start,
5590 end + 1 - start, NULL);
5591
5592 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5593 unpin_extent_range(root, start, end);
5594 cond_resched();
5595 }
5596
5597 return 0;
5598 }
5599
5600 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5601 u64 owner, u64 root_objectid)
5602 {
5603 struct btrfs_space_info *space_info;
5604 u64 flags;
5605
5606 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5607 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5608 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5609 else
5610 flags = BTRFS_BLOCK_GROUP_METADATA;
5611 } else {
5612 flags = BTRFS_BLOCK_GROUP_DATA;
5613 }
5614
5615 space_info = __find_space_info(fs_info, flags);
5616 BUG_ON(!space_info); /* Logic bug */
5617 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5618 }
5619
5620
5621 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5622 struct btrfs_root *root,
5623 u64 bytenr, u64 num_bytes, u64 parent,
5624 u64 root_objectid, u64 owner_objectid,
5625 u64 owner_offset, int refs_to_drop,
5626 struct btrfs_delayed_extent_op *extent_op)
5627 {
5628 struct btrfs_key key;
5629 struct btrfs_path *path;
5630 struct btrfs_fs_info *info = root->fs_info;
5631 struct btrfs_root *extent_root = info->extent_root;
5632 struct extent_buffer *leaf;
5633 struct btrfs_extent_item *ei;
5634 struct btrfs_extent_inline_ref *iref;
5635 int ret;
5636 int is_data;
5637 int extent_slot = 0;
5638 int found_extent = 0;
5639 int num_to_del = 1;
5640 u32 item_size;
5641 u64 refs;
5642 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5643 SKINNY_METADATA);
5644
5645 path = btrfs_alloc_path();
5646 if (!path)
5647 return -ENOMEM;
5648
5649 path->reada = 1;
5650 path->leave_spinning = 1;
5651
5652 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5653 BUG_ON(!is_data && refs_to_drop != 1);
5654
5655 if (is_data)
5656 skinny_metadata = 0;
5657
5658 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5659 bytenr, num_bytes, parent,
5660 root_objectid, owner_objectid,
5661 owner_offset);
5662 if (ret == 0) {
5663 extent_slot = path->slots[0];
5664 while (extent_slot >= 0) {
5665 btrfs_item_key_to_cpu(path->nodes[0], &key,
5666 extent_slot);
5667 if (key.objectid != bytenr)
5668 break;
5669 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5670 key.offset == num_bytes) {
5671 found_extent = 1;
5672 break;
5673 }
5674 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5675 key.offset == owner_objectid) {
5676 found_extent = 1;
5677 break;
5678 }
5679 if (path->slots[0] - extent_slot > 5)
5680 break;
5681 extent_slot--;
5682 }
5683 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5684 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5685 if (found_extent && item_size < sizeof(*ei))
5686 found_extent = 0;
5687 #endif
5688 if (!found_extent) {
5689 BUG_ON(iref);
5690 ret = remove_extent_backref(trans, extent_root, path,
5691 NULL, refs_to_drop,
5692 is_data);
5693 if (ret) {
5694 btrfs_abort_transaction(trans, extent_root, ret);
5695 goto out;
5696 }
5697 btrfs_release_path(path);
5698 path->leave_spinning = 1;
5699
5700 key.objectid = bytenr;
5701 key.type = BTRFS_EXTENT_ITEM_KEY;
5702 key.offset = num_bytes;
5703
5704 if (!is_data && skinny_metadata) {
5705 key.type = BTRFS_METADATA_ITEM_KEY;
5706 key.offset = owner_objectid;
5707 }
5708
5709 ret = btrfs_search_slot(trans, extent_root,
5710 &key, path, -1, 1);
5711 if (ret > 0 && skinny_metadata && path->slots[0]) {
5712 /*
5713 * Couldn't find our skinny metadata item,
5714 * see if we have ye olde extent item.
5715 */
5716 path->slots[0]--;
5717 btrfs_item_key_to_cpu(path->nodes[0], &key,
5718 path->slots[0]);
5719 if (key.objectid == bytenr &&
5720 key.type == BTRFS_EXTENT_ITEM_KEY &&
5721 key.offset == num_bytes)
5722 ret = 0;
5723 }
5724
5725 if (ret > 0 && skinny_metadata) {
5726 skinny_metadata = false;
5727 key.type = BTRFS_EXTENT_ITEM_KEY;
5728 key.offset = num_bytes;
5729 btrfs_release_path(path);
5730 ret = btrfs_search_slot(trans, extent_root,
5731 &key, path, -1, 1);
5732 }
5733
5734 if (ret) {
5735 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5736 ret, bytenr);
5737 if (ret > 0)
5738 btrfs_print_leaf(extent_root,
5739 path->nodes[0]);
5740 }
5741 if (ret < 0) {
5742 btrfs_abort_transaction(trans, extent_root, ret);
5743 goto out;
5744 }
5745 extent_slot = path->slots[0];
5746 }
5747 } else if (WARN_ON(ret == -ENOENT)) {
5748 btrfs_print_leaf(extent_root, path->nodes[0]);
5749 btrfs_err(info,
5750 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5751 bytenr, parent, root_objectid, owner_objectid,
5752 owner_offset);
5753 } else {
5754 btrfs_abort_transaction(trans, extent_root, ret);
5755 goto out;
5756 }
5757
5758 leaf = path->nodes[0];
5759 item_size = btrfs_item_size_nr(leaf, extent_slot);
5760 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5761 if (item_size < sizeof(*ei)) {
5762 BUG_ON(found_extent || extent_slot != path->slots[0]);
5763 ret = convert_extent_item_v0(trans, extent_root, path,
5764 owner_objectid, 0);
5765 if (ret < 0) {
5766 btrfs_abort_transaction(trans, extent_root, ret);
5767 goto out;
5768 }
5769
5770 btrfs_release_path(path);
5771 path->leave_spinning = 1;
5772
5773 key.objectid = bytenr;
5774 key.type = BTRFS_EXTENT_ITEM_KEY;
5775 key.offset = num_bytes;
5776
5777 ret = btrfs_search_slot(trans, extent_root, &key, path,
5778 -1, 1);
5779 if (ret) {
5780 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5781 ret, bytenr);
5782 btrfs_print_leaf(extent_root, path->nodes[0]);
5783 }
5784 if (ret < 0) {
5785 btrfs_abort_transaction(trans, extent_root, ret);
5786 goto out;
5787 }
5788
5789 extent_slot = path->slots[0];
5790 leaf = path->nodes[0];
5791 item_size = btrfs_item_size_nr(leaf, extent_slot);
5792 }
5793 #endif
5794 BUG_ON(item_size < sizeof(*ei));
5795 ei = btrfs_item_ptr(leaf, extent_slot,
5796 struct btrfs_extent_item);
5797 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5798 key.type == BTRFS_EXTENT_ITEM_KEY) {
5799 struct btrfs_tree_block_info *bi;
5800 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5801 bi = (struct btrfs_tree_block_info *)(ei + 1);
5802 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5803 }
5804
5805 refs = btrfs_extent_refs(leaf, ei);
5806 if (refs < refs_to_drop) {
5807 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5808 "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5809 ret = -EINVAL;
5810 btrfs_abort_transaction(trans, extent_root, ret);
5811 goto out;
5812 }
5813 refs -= refs_to_drop;
5814
5815 if (refs > 0) {
5816 if (extent_op)
5817 __run_delayed_extent_op(extent_op, leaf, ei);
5818 /*
5819 * In the case of inline back ref, reference count will
5820 * be updated by remove_extent_backref
5821 */
5822 if (iref) {
5823 BUG_ON(!found_extent);
5824 } else {
5825 btrfs_set_extent_refs(leaf, ei, refs);
5826 btrfs_mark_buffer_dirty(leaf);
5827 }
5828 if (found_extent) {
5829 ret = remove_extent_backref(trans, extent_root, path,
5830 iref, refs_to_drop,
5831 is_data);
5832 if (ret) {
5833 btrfs_abort_transaction(trans, extent_root, ret);
5834 goto out;
5835 }
5836 }
5837 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5838 root_objectid);
5839 } else {
5840 if (found_extent) {
5841 BUG_ON(is_data && refs_to_drop !=
5842 extent_data_ref_count(root, path, iref));
5843 if (iref) {
5844 BUG_ON(path->slots[0] != extent_slot);
5845 } else {
5846 BUG_ON(path->slots[0] != extent_slot + 1);
5847 path->slots[0] = extent_slot;
5848 num_to_del = 2;
5849 }
5850 }
5851
5852 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5853 num_to_del);
5854 if (ret) {
5855 btrfs_abort_transaction(trans, extent_root, ret);
5856 goto out;
5857 }
5858 btrfs_release_path(path);
5859
5860 if (is_data) {
5861 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5862 if (ret) {
5863 btrfs_abort_transaction(trans, extent_root, ret);
5864 goto out;
5865 }
5866 }
5867
5868 ret = update_block_group(root, bytenr, num_bytes, 0);
5869 if (ret) {
5870 btrfs_abort_transaction(trans, extent_root, ret);
5871 goto out;
5872 }
5873 }
5874 out:
5875 btrfs_free_path(path);
5876 return ret;
5877 }
5878
5879 /*
5880 * when we free an block, it is possible (and likely) that we free the last
5881 * delayed ref for that extent as well. This searches the delayed ref tree for
5882 * a given extent, and if there are no other delayed refs to be processed, it
5883 * removes it from the tree.
5884 */
5885 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5886 struct btrfs_root *root, u64 bytenr)
5887 {
5888 struct btrfs_delayed_ref_head *head;
5889 struct btrfs_delayed_ref_root *delayed_refs;
5890 int ret = 0;
5891
5892 delayed_refs = &trans->transaction->delayed_refs;
5893 spin_lock(&delayed_refs->lock);
5894 head = btrfs_find_delayed_ref_head(trans, bytenr);
5895 if (!head)
5896 goto out;
5897
5898 spin_lock(&head->lock);
5899 if (rb_first(&head->ref_root))
5900 goto out;
5901
5902 if (head->extent_op) {
5903 if (!head->must_insert_reserved)
5904 goto out;
5905 btrfs_free_delayed_extent_op(head->extent_op);
5906 head->extent_op = NULL;
5907 }
5908
5909 /*
5910 * waiting for the lock here would deadlock. If someone else has it
5911 * locked they are already in the process of dropping it anyway
5912 */
5913 if (!mutex_trylock(&head->mutex))
5914 goto out;
5915
5916 /*
5917 * at this point we have a head with no other entries. Go
5918 * ahead and process it.
5919 */
5920 head->node.in_tree = 0;
5921 rb_erase(&head->href_node, &delayed_refs->href_root);
5922
5923 atomic_dec(&delayed_refs->num_entries);
5924
5925 /*
5926 * we don't take a ref on the node because we're removing it from the
5927 * tree, so we just steal the ref the tree was holding.
5928 */
5929 delayed_refs->num_heads--;
5930 if (head->processing == 0)
5931 delayed_refs->num_heads_ready--;
5932 head->processing = 0;
5933 spin_unlock(&head->lock);
5934 spin_unlock(&delayed_refs->lock);
5935
5936 BUG_ON(head->extent_op);
5937 if (head->must_insert_reserved)
5938 ret = 1;
5939
5940 mutex_unlock(&head->mutex);
5941 btrfs_put_delayed_ref(&head->node);
5942 return ret;
5943 out:
5944 spin_unlock(&head->lock);
5945 spin_unlock(&delayed_refs->lock);
5946 return 0;
5947 }
5948
5949 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5950 struct btrfs_root *root,
5951 struct extent_buffer *buf,
5952 u64 parent, int last_ref)
5953 {
5954 struct btrfs_block_group_cache *cache = NULL;
5955 int pin = 1;
5956 int ret;
5957
5958 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5959 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5960 buf->start, buf->len,
5961 parent, root->root_key.objectid,
5962 btrfs_header_level(buf),
5963 BTRFS_DROP_DELAYED_REF, NULL, 0);
5964 BUG_ON(ret); /* -ENOMEM */
5965 }
5966
5967 if (!last_ref)
5968 return;
5969
5970 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5971
5972 if (btrfs_header_generation(buf) == trans->transid) {
5973 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5974 ret = check_ref_cleanup(trans, root, buf->start);
5975 if (!ret)
5976 goto out;
5977 }
5978
5979 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5980 pin_down_extent(root, cache, buf->start, buf->len, 1);
5981 goto out;
5982 }
5983
5984 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5985
5986 btrfs_add_free_space(cache, buf->start, buf->len);
5987 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5988 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
5989 pin = 0;
5990 }
5991 out:
5992 if (pin)
5993 add_pinned_bytes(root->fs_info, buf->len,
5994 btrfs_header_level(buf),
5995 root->root_key.objectid);
5996
5997 /*
5998 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5999 * anymore.
6000 */
6001 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6002 btrfs_put_block_group(cache);
6003 }
6004
6005 /* Can return -ENOMEM */
6006 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6007 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6008 u64 owner, u64 offset, int for_cow)
6009 {
6010 int ret;
6011 struct btrfs_fs_info *fs_info = root->fs_info;
6012
6013 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6014
6015 /*
6016 * tree log blocks never actually go into the extent allocation
6017 * tree, just update pinning info and exit early.
6018 */
6019 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6020 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6021 /* unlocks the pinned mutex */
6022 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6023 ret = 0;
6024 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6025 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6026 num_bytes,
6027 parent, root_objectid, (int)owner,
6028 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
6029 } else {
6030 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6031 num_bytes,
6032 parent, root_objectid, owner,
6033 offset, BTRFS_DROP_DELAYED_REF,
6034 NULL, for_cow);
6035 }
6036 return ret;
6037 }
6038
6039 static u64 stripe_align(struct btrfs_root *root,
6040 struct btrfs_block_group_cache *cache,
6041 u64 val, u64 num_bytes)
6042 {
6043 u64 ret = ALIGN(val, root->stripesize);
6044 return ret;
6045 }
6046
6047 /*
6048 * when we wait for progress in the block group caching, its because
6049 * our allocation attempt failed at least once. So, we must sleep
6050 * and let some progress happen before we try again.
6051 *
6052 * This function will sleep at least once waiting for new free space to
6053 * show up, and then it will check the block group free space numbers
6054 * for our min num_bytes. Another option is to have it go ahead
6055 * and look in the rbtree for a free extent of a given size, but this
6056 * is a good start.
6057 *
6058 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6059 * any of the information in this block group.
6060 */
6061 static noinline void
6062 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6063 u64 num_bytes)
6064 {
6065 struct btrfs_caching_control *caching_ctl;
6066
6067 caching_ctl = get_caching_control(cache);
6068 if (!caching_ctl)
6069 return;
6070
6071 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6072 (cache->free_space_ctl->free_space >= num_bytes));
6073
6074 put_caching_control(caching_ctl);
6075 }
6076
6077 static noinline int
6078 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6079 {
6080 struct btrfs_caching_control *caching_ctl;
6081 int ret = 0;
6082
6083 caching_ctl = get_caching_control(cache);
6084 if (!caching_ctl)
6085 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6086
6087 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6088 if (cache->cached == BTRFS_CACHE_ERROR)
6089 ret = -EIO;
6090 put_caching_control(caching_ctl);
6091 return ret;
6092 }
6093
6094 int __get_raid_index(u64 flags)
6095 {
6096 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6097 return BTRFS_RAID_RAID10;
6098 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6099 return BTRFS_RAID_RAID1;
6100 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6101 return BTRFS_RAID_DUP;
6102 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6103 return BTRFS_RAID_RAID0;
6104 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6105 return BTRFS_RAID_RAID5;
6106 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6107 return BTRFS_RAID_RAID6;
6108
6109 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6110 }
6111
6112 int get_block_group_index(struct btrfs_block_group_cache *cache)
6113 {
6114 return __get_raid_index(cache->flags);
6115 }
6116
6117 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6118 [BTRFS_RAID_RAID10] = "raid10",
6119 [BTRFS_RAID_RAID1] = "raid1",
6120 [BTRFS_RAID_DUP] = "dup",
6121 [BTRFS_RAID_RAID0] = "raid0",
6122 [BTRFS_RAID_SINGLE] = "single",
6123 [BTRFS_RAID_RAID5] = "raid5",
6124 [BTRFS_RAID_RAID6] = "raid6",
6125 };
6126
6127 static const char *get_raid_name(enum btrfs_raid_types type)
6128 {
6129 if (type >= BTRFS_NR_RAID_TYPES)
6130 return NULL;
6131
6132 return btrfs_raid_type_names[type];
6133 }
6134
6135 enum btrfs_loop_type {
6136 LOOP_CACHING_NOWAIT = 0,
6137 LOOP_CACHING_WAIT = 1,
6138 LOOP_ALLOC_CHUNK = 2,
6139 LOOP_NO_EMPTY_SIZE = 3,
6140 };
6141
6142 /*
6143 * walks the btree of allocated extents and find a hole of a given size.
6144 * The key ins is changed to record the hole:
6145 * ins->objectid == start position
6146 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6147 * ins->offset == the size of the hole.
6148 * Any available blocks before search_start are skipped.
6149 *
6150 * If there is no suitable free space, we will record the max size of
6151 * the free space extent currently.
6152 */
6153 static noinline int find_free_extent(struct btrfs_root *orig_root,
6154 u64 num_bytes, u64 empty_size,
6155 u64 hint_byte, struct btrfs_key *ins,
6156 u64 flags)
6157 {
6158 int ret = 0;
6159 struct btrfs_root *root = orig_root->fs_info->extent_root;
6160 struct btrfs_free_cluster *last_ptr = NULL;
6161 struct btrfs_block_group_cache *block_group = NULL;
6162 struct btrfs_block_group_cache *used_block_group;
6163 u64 search_start = 0;
6164 u64 max_extent_size = 0;
6165 int empty_cluster = 2 * 1024 * 1024;
6166 struct btrfs_space_info *space_info;
6167 int loop = 0;
6168 int index = __get_raid_index(flags);
6169 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6170 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6171 bool failed_cluster_refill = false;
6172 bool failed_alloc = false;
6173 bool use_cluster = true;
6174 bool have_caching_bg = false;
6175
6176 WARN_ON(num_bytes < root->sectorsize);
6177 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6178 ins->objectid = 0;
6179 ins->offset = 0;
6180
6181 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6182
6183 space_info = __find_space_info(root->fs_info, flags);
6184 if (!space_info) {
6185 btrfs_err(root->fs_info, "No space info for %llu", flags);
6186 return -ENOSPC;
6187 }
6188
6189 /*
6190 * If the space info is for both data and metadata it means we have a
6191 * small filesystem and we can't use the clustering stuff.
6192 */
6193 if (btrfs_mixed_space_info(space_info))
6194 use_cluster = false;
6195
6196 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6197 last_ptr = &root->fs_info->meta_alloc_cluster;
6198 if (!btrfs_test_opt(root, SSD))
6199 empty_cluster = 64 * 1024;
6200 }
6201
6202 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6203 btrfs_test_opt(root, SSD)) {
6204 last_ptr = &root->fs_info->data_alloc_cluster;
6205 }
6206
6207 if (last_ptr) {
6208 spin_lock(&last_ptr->lock);
6209 if (last_ptr->block_group)
6210 hint_byte = last_ptr->window_start;
6211 spin_unlock(&last_ptr->lock);
6212 }
6213
6214 search_start = max(search_start, first_logical_byte(root, 0));
6215 search_start = max(search_start, hint_byte);
6216
6217 if (!last_ptr)
6218 empty_cluster = 0;
6219
6220 if (search_start == hint_byte) {
6221 block_group = btrfs_lookup_block_group(root->fs_info,
6222 search_start);
6223 used_block_group = block_group;
6224 /*
6225 * we don't want to use the block group if it doesn't match our
6226 * allocation bits, or if its not cached.
6227 *
6228 * However if we are re-searching with an ideal block group
6229 * picked out then we don't care that the block group is cached.
6230 */
6231 if (block_group && block_group_bits(block_group, flags) &&
6232 block_group->cached != BTRFS_CACHE_NO) {
6233 down_read(&space_info->groups_sem);
6234 if (list_empty(&block_group->list) ||
6235 block_group->ro) {
6236 /*
6237 * someone is removing this block group,
6238 * we can't jump into the have_block_group
6239 * target because our list pointers are not
6240 * valid
6241 */
6242 btrfs_put_block_group(block_group);
6243 up_read(&space_info->groups_sem);
6244 } else {
6245 index = get_block_group_index(block_group);
6246 goto have_block_group;
6247 }
6248 } else if (block_group) {
6249 btrfs_put_block_group(block_group);
6250 }
6251 }
6252 search:
6253 have_caching_bg = false;
6254 down_read(&space_info->groups_sem);
6255 list_for_each_entry(block_group, &space_info->block_groups[index],
6256 list) {
6257 u64 offset;
6258 int cached;
6259
6260 used_block_group = block_group;
6261 btrfs_get_block_group(block_group);
6262 search_start = block_group->key.objectid;
6263
6264 /*
6265 * this can happen if we end up cycling through all the
6266 * raid types, but we want to make sure we only allocate
6267 * for the proper type.
6268 */
6269 if (!block_group_bits(block_group, flags)) {
6270 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6271 BTRFS_BLOCK_GROUP_RAID1 |
6272 BTRFS_BLOCK_GROUP_RAID5 |
6273 BTRFS_BLOCK_GROUP_RAID6 |
6274 BTRFS_BLOCK_GROUP_RAID10;
6275
6276 /*
6277 * if they asked for extra copies and this block group
6278 * doesn't provide them, bail. This does allow us to
6279 * fill raid0 from raid1.
6280 */
6281 if ((flags & extra) && !(block_group->flags & extra))
6282 goto loop;
6283 }
6284
6285 have_block_group:
6286 cached = block_group_cache_done(block_group);
6287 if (unlikely(!cached)) {
6288 ret = cache_block_group(block_group, 0);
6289 BUG_ON(ret < 0);
6290 ret = 0;
6291 }
6292
6293 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6294 goto loop;
6295 if (unlikely(block_group->ro))
6296 goto loop;
6297
6298 /*
6299 * Ok we want to try and use the cluster allocator, so
6300 * lets look there
6301 */
6302 if (last_ptr) {
6303 unsigned long aligned_cluster;
6304 /*
6305 * the refill lock keeps out other
6306 * people trying to start a new cluster
6307 */
6308 spin_lock(&last_ptr->refill_lock);
6309 used_block_group = last_ptr->block_group;
6310 if (used_block_group != block_group &&
6311 (!used_block_group ||
6312 used_block_group->ro ||
6313 !block_group_bits(used_block_group, flags))) {
6314 used_block_group = block_group;
6315 goto refill_cluster;
6316 }
6317
6318 if (used_block_group != block_group)
6319 btrfs_get_block_group(used_block_group);
6320
6321 offset = btrfs_alloc_from_cluster(used_block_group,
6322 last_ptr,
6323 num_bytes,
6324 used_block_group->key.objectid,
6325 &max_extent_size);
6326 if (offset) {
6327 /* we have a block, we're done */
6328 spin_unlock(&last_ptr->refill_lock);
6329 trace_btrfs_reserve_extent_cluster(root,
6330 block_group, search_start, num_bytes);
6331 goto checks;
6332 }
6333
6334 WARN_ON(last_ptr->block_group != used_block_group);
6335 if (used_block_group != block_group) {
6336 btrfs_put_block_group(used_block_group);
6337 used_block_group = block_group;
6338 }
6339 refill_cluster:
6340 BUG_ON(used_block_group != block_group);
6341 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6342 * set up a new clusters, so lets just skip it
6343 * and let the allocator find whatever block
6344 * it can find. If we reach this point, we
6345 * will have tried the cluster allocator
6346 * plenty of times and not have found
6347 * anything, so we are likely way too
6348 * fragmented for the clustering stuff to find
6349 * anything.
6350 *
6351 * However, if the cluster is taken from the
6352 * current block group, release the cluster
6353 * first, so that we stand a better chance of
6354 * succeeding in the unclustered
6355 * allocation. */
6356 if (loop >= LOOP_NO_EMPTY_SIZE &&
6357 last_ptr->block_group != block_group) {
6358 spin_unlock(&last_ptr->refill_lock);
6359 goto unclustered_alloc;
6360 }
6361
6362 /*
6363 * this cluster didn't work out, free it and
6364 * start over
6365 */
6366 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6367
6368 if (loop >= LOOP_NO_EMPTY_SIZE) {
6369 spin_unlock(&last_ptr->refill_lock);
6370 goto unclustered_alloc;
6371 }
6372
6373 aligned_cluster = max_t(unsigned long,
6374 empty_cluster + empty_size,
6375 block_group->full_stripe_len);
6376
6377 /* allocate a cluster in this block group */
6378 ret = btrfs_find_space_cluster(root, block_group,
6379 last_ptr, search_start,
6380 num_bytes,
6381 aligned_cluster);
6382 if (ret == 0) {
6383 /*
6384 * now pull our allocation out of this
6385 * cluster
6386 */
6387 offset = btrfs_alloc_from_cluster(block_group,
6388 last_ptr,
6389 num_bytes,
6390 search_start,
6391 &max_extent_size);
6392 if (offset) {
6393 /* we found one, proceed */
6394 spin_unlock(&last_ptr->refill_lock);
6395 trace_btrfs_reserve_extent_cluster(root,
6396 block_group, search_start,
6397 num_bytes);
6398 goto checks;
6399 }
6400 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6401 && !failed_cluster_refill) {
6402 spin_unlock(&last_ptr->refill_lock);
6403
6404 failed_cluster_refill = true;
6405 wait_block_group_cache_progress(block_group,
6406 num_bytes + empty_cluster + empty_size);
6407 goto have_block_group;
6408 }
6409
6410 /*
6411 * at this point we either didn't find a cluster
6412 * or we weren't able to allocate a block from our
6413 * cluster. Free the cluster we've been trying
6414 * to use, and go to the next block group
6415 */
6416 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6417 spin_unlock(&last_ptr->refill_lock);
6418 goto loop;
6419 }
6420
6421 unclustered_alloc:
6422 spin_lock(&block_group->free_space_ctl->tree_lock);
6423 if (cached &&
6424 block_group->free_space_ctl->free_space <
6425 num_bytes + empty_cluster + empty_size) {
6426 if (block_group->free_space_ctl->free_space >
6427 max_extent_size)
6428 max_extent_size =
6429 block_group->free_space_ctl->free_space;
6430 spin_unlock(&block_group->free_space_ctl->tree_lock);
6431 goto loop;
6432 }
6433 spin_unlock(&block_group->free_space_ctl->tree_lock);
6434
6435 offset = btrfs_find_space_for_alloc(block_group, search_start,
6436 num_bytes, empty_size,
6437 &max_extent_size);
6438 /*
6439 * If we didn't find a chunk, and we haven't failed on this
6440 * block group before, and this block group is in the middle of
6441 * caching and we are ok with waiting, then go ahead and wait
6442 * for progress to be made, and set failed_alloc to true.
6443 *
6444 * If failed_alloc is true then we've already waited on this
6445 * block group once and should move on to the next block group.
6446 */
6447 if (!offset && !failed_alloc && !cached &&
6448 loop > LOOP_CACHING_NOWAIT) {
6449 wait_block_group_cache_progress(block_group,
6450 num_bytes + empty_size);
6451 failed_alloc = true;
6452 goto have_block_group;
6453 } else if (!offset) {
6454 if (!cached)
6455 have_caching_bg = true;
6456 goto loop;
6457 }
6458 checks:
6459 search_start = stripe_align(root, used_block_group,
6460 offset, num_bytes);
6461
6462 /* move on to the next group */
6463 if (search_start + num_bytes >
6464 used_block_group->key.objectid + used_block_group->key.offset) {
6465 btrfs_add_free_space(used_block_group, offset, num_bytes);
6466 goto loop;
6467 }
6468
6469 if (offset < search_start)
6470 btrfs_add_free_space(used_block_group, offset,
6471 search_start - offset);
6472 BUG_ON(offset > search_start);
6473
6474 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
6475 alloc_type);
6476 if (ret == -EAGAIN) {
6477 btrfs_add_free_space(used_block_group, offset, num_bytes);
6478 goto loop;
6479 }
6480
6481 /* we are all good, lets return */
6482 ins->objectid = search_start;
6483 ins->offset = num_bytes;
6484
6485 trace_btrfs_reserve_extent(orig_root, block_group,
6486 search_start, num_bytes);
6487 if (used_block_group != block_group)
6488 btrfs_put_block_group(used_block_group);
6489 btrfs_put_block_group(block_group);
6490 break;
6491 loop:
6492 failed_cluster_refill = false;
6493 failed_alloc = false;
6494 BUG_ON(index != get_block_group_index(block_group));
6495 if (used_block_group != block_group)
6496 btrfs_put_block_group(used_block_group);
6497 btrfs_put_block_group(block_group);
6498 }
6499 up_read(&space_info->groups_sem);
6500
6501 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6502 goto search;
6503
6504 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6505 goto search;
6506
6507 /*
6508 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6509 * caching kthreads as we move along
6510 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6511 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6512 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6513 * again
6514 */
6515 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6516 index = 0;
6517 loop++;
6518 if (loop == LOOP_ALLOC_CHUNK) {
6519 struct btrfs_trans_handle *trans;
6520
6521 trans = btrfs_join_transaction(root);
6522 if (IS_ERR(trans)) {
6523 ret = PTR_ERR(trans);
6524 goto out;
6525 }
6526
6527 ret = do_chunk_alloc(trans, root, flags,
6528 CHUNK_ALLOC_FORCE);
6529 /*
6530 * Do not bail out on ENOSPC since we
6531 * can do more things.
6532 */
6533 if (ret < 0 && ret != -ENOSPC)
6534 btrfs_abort_transaction(trans,
6535 root, ret);
6536 else
6537 ret = 0;
6538 btrfs_end_transaction(trans, root);
6539 if (ret)
6540 goto out;
6541 }
6542
6543 if (loop == LOOP_NO_EMPTY_SIZE) {
6544 empty_size = 0;
6545 empty_cluster = 0;
6546 }
6547
6548 goto search;
6549 } else if (!ins->objectid) {
6550 ret = -ENOSPC;
6551 } else if (ins->objectid) {
6552 ret = 0;
6553 }
6554 out:
6555 if (ret == -ENOSPC)
6556 ins->offset = max_extent_size;
6557 return ret;
6558 }
6559
6560 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6561 int dump_block_groups)
6562 {
6563 struct btrfs_block_group_cache *cache;
6564 int index = 0;
6565
6566 spin_lock(&info->lock);
6567 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6568 info->flags,
6569 info->total_bytes - info->bytes_used - info->bytes_pinned -
6570 info->bytes_reserved - info->bytes_readonly,
6571 (info->full) ? "" : "not ");
6572 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6573 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6574 info->total_bytes, info->bytes_used, info->bytes_pinned,
6575 info->bytes_reserved, info->bytes_may_use,
6576 info->bytes_readonly);
6577 spin_unlock(&info->lock);
6578
6579 if (!dump_block_groups)
6580 return;
6581
6582 down_read(&info->groups_sem);
6583 again:
6584 list_for_each_entry(cache, &info->block_groups[index], list) {
6585 spin_lock(&cache->lock);
6586 printk(KERN_INFO "BTRFS: "
6587 "block group %llu has %llu bytes, "
6588 "%llu used %llu pinned %llu reserved %s\n",
6589 cache->key.objectid, cache->key.offset,
6590 btrfs_block_group_used(&cache->item), cache->pinned,
6591 cache->reserved, cache->ro ? "[readonly]" : "");
6592 btrfs_dump_free_space(cache, bytes);
6593 spin_unlock(&cache->lock);
6594 }
6595 if (++index < BTRFS_NR_RAID_TYPES)
6596 goto again;
6597 up_read(&info->groups_sem);
6598 }
6599
6600 int btrfs_reserve_extent(struct btrfs_root *root,
6601 u64 num_bytes, u64 min_alloc_size,
6602 u64 empty_size, u64 hint_byte,
6603 struct btrfs_key *ins, int is_data)
6604 {
6605 bool final_tried = false;
6606 u64 flags;
6607 int ret;
6608
6609 flags = btrfs_get_alloc_profile(root, is_data);
6610 again:
6611 WARN_ON(num_bytes < root->sectorsize);
6612 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6613 flags);
6614
6615 if (ret == -ENOSPC) {
6616 if (!final_tried && ins->offset) {
6617 num_bytes = min(num_bytes >> 1, ins->offset);
6618 num_bytes = round_down(num_bytes, root->sectorsize);
6619 num_bytes = max(num_bytes, min_alloc_size);
6620 if (num_bytes == min_alloc_size)
6621 final_tried = true;
6622 goto again;
6623 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6624 struct btrfs_space_info *sinfo;
6625
6626 sinfo = __find_space_info(root->fs_info, flags);
6627 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6628 flags, num_bytes);
6629 if (sinfo)
6630 dump_space_info(sinfo, num_bytes, 1);
6631 }
6632 }
6633
6634 return ret;
6635 }
6636
6637 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6638 u64 start, u64 len, int pin)
6639 {
6640 struct btrfs_block_group_cache *cache;
6641 int ret = 0;
6642
6643 cache = btrfs_lookup_block_group(root->fs_info, start);
6644 if (!cache) {
6645 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6646 start);
6647 return -ENOSPC;
6648 }
6649
6650 if (btrfs_test_opt(root, DISCARD))
6651 ret = btrfs_discard_extent(root, start, len, NULL);
6652
6653 if (pin)
6654 pin_down_extent(root, cache, start, len, 1);
6655 else {
6656 btrfs_add_free_space(cache, start, len);
6657 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6658 }
6659 btrfs_put_block_group(cache);
6660
6661 trace_btrfs_reserved_extent_free(root, start, len);
6662
6663 return ret;
6664 }
6665
6666 int btrfs_free_reserved_extent(struct btrfs_root *root,
6667 u64 start, u64 len)
6668 {
6669 return __btrfs_free_reserved_extent(root, start, len, 0);
6670 }
6671
6672 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6673 u64 start, u64 len)
6674 {
6675 return __btrfs_free_reserved_extent(root, start, len, 1);
6676 }
6677
6678 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6679 struct btrfs_root *root,
6680 u64 parent, u64 root_objectid,
6681 u64 flags, u64 owner, u64 offset,
6682 struct btrfs_key *ins, int ref_mod)
6683 {
6684 int ret;
6685 struct btrfs_fs_info *fs_info = root->fs_info;
6686 struct btrfs_extent_item *extent_item;
6687 struct btrfs_extent_inline_ref *iref;
6688 struct btrfs_path *path;
6689 struct extent_buffer *leaf;
6690 int type;
6691 u32 size;
6692
6693 if (parent > 0)
6694 type = BTRFS_SHARED_DATA_REF_KEY;
6695 else
6696 type = BTRFS_EXTENT_DATA_REF_KEY;
6697
6698 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6699
6700 path = btrfs_alloc_path();
6701 if (!path)
6702 return -ENOMEM;
6703
6704 path->leave_spinning = 1;
6705 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6706 ins, size);
6707 if (ret) {
6708 btrfs_free_path(path);
6709 return ret;
6710 }
6711
6712 leaf = path->nodes[0];
6713 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6714 struct btrfs_extent_item);
6715 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6716 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6717 btrfs_set_extent_flags(leaf, extent_item,
6718 flags | BTRFS_EXTENT_FLAG_DATA);
6719
6720 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6721 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6722 if (parent > 0) {
6723 struct btrfs_shared_data_ref *ref;
6724 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6725 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6726 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6727 } else {
6728 struct btrfs_extent_data_ref *ref;
6729 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6730 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6731 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6732 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6733 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6734 }
6735
6736 btrfs_mark_buffer_dirty(path->nodes[0]);
6737 btrfs_free_path(path);
6738
6739 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6740 if (ret) { /* -ENOENT, logic error */
6741 btrfs_err(fs_info, "update block group failed for %llu %llu",
6742 ins->objectid, ins->offset);
6743 BUG();
6744 }
6745 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6746 return ret;
6747 }
6748
6749 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6750 struct btrfs_root *root,
6751 u64 parent, u64 root_objectid,
6752 u64 flags, struct btrfs_disk_key *key,
6753 int level, struct btrfs_key *ins)
6754 {
6755 int ret;
6756 struct btrfs_fs_info *fs_info = root->fs_info;
6757 struct btrfs_extent_item *extent_item;
6758 struct btrfs_tree_block_info *block_info;
6759 struct btrfs_extent_inline_ref *iref;
6760 struct btrfs_path *path;
6761 struct extent_buffer *leaf;
6762 u32 size = sizeof(*extent_item) + sizeof(*iref);
6763 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6764 SKINNY_METADATA);
6765
6766 if (!skinny_metadata)
6767 size += sizeof(*block_info);
6768
6769 path = btrfs_alloc_path();
6770 if (!path) {
6771 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6772 root->leafsize);
6773 return -ENOMEM;
6774 }
6775
6776 path->leave_spinning = 1;
6777 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6778 ins, size);
6779 if (ret) {
6780 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6781 root->leafsize);
6782 btrfs_free_path(path);
6783 return ret;
6784 }
6785
6786 leaf = path->nodes[0];
6787 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6788 struct btrfs_extent_item);
6789 btrfs_set_extent_refs(leaf, extent_item, 1);
6790 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6791 btrfs_set_extent_flags(leaf, extent_item,
6792 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6793
6794 if (skinny_metadata) {
6795 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6796 } else {
6797 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6798 btrfs_set_tree_block_key(leaf, block_info, key);
6799 btrfs_set_tree_block_level(leaf, block_info, level);
6800 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6801 }
6802
6803 if (parent > 0) {
6804 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6805 btrfs_set_extent_inline_ref_type(leaf, iref,
6806 BTRFS_SHARED_BLOCK_REF_KEY);
6807 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6808 } else {
6809 btrfs_set_extent_inline_ref_type(leaf, iref,
6810 BTRFS_TREE_BLOCK_REF_KEY);
6811 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6812 }
6813
6814 btrfs_mark_buffer_dirty(leaf);
6815 btrfs_free_path(path);
6816
6817 ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6818 if (ret) { /* -ENOENT, logic error */
6819 btrfs_err(fs_info, "update block group failed for %llu %llu",
6820 ins->objectid, ins->offset);
6821 BUG();
6822 }
6823
6824 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize);
6825 return ret;
6826 }
6827
6828 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6829 struct btrfs_root *root,
6830 u64 root_objectid, u64 owner,
6831 u64 offset, struct btrfs_key *ins)
6832 {
6833 int ret;
6834
6835 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6836
6837 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6838 ins->offset, 0,
6839 root_objectid, owner, offset,
6840 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6841 return ret;
6842 }
6843
6844 /*
6845 * this is used by the tree logging recovery code. It records that
6846 * an extent has been allocated and makes sure to clear the free
6847 * space cache bits as well
6848 */
6849 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6850 struct btrfs_root *root,
6851 u64 root_objectid, u64 owner, u64 offset,
6852 struct btrfs_key *ins)
6853 {
6854 int ret;
6855 struct btrfs_block_group_cache *block_group;
6856
6857 /*
6858 * Mixed block groups will exclude before processing the log so we only
6859 * need to do the exlude dance if this fs isn't mixed.
6860 */
6861 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6862 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6863 if (ret)
6864 return ret;
6865 }
6866
6867 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6868 if (!block_group)
6869 return -EINVAL;
6870
6871 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6872 RESERVE_ALLOC_NO_ACCOUNT);
6873 BUG_ON(ret); /* logic error */
6874 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6875 0, owner, offset, ins, 1);
6876 btrfs_put_block_group(block_group);
6877 return ret;
6878 }
6879
6880 static struct extent_buffer *
6881 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6882 u64 bytenr, u32 blocksize, int level)
6883 {
6884 struct extent_buffer *buf;
6885
6886 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6887 if (!buf)
6888 return ERR_PTR(-ENOMEM);
6889 btrfs_set_header_generation(buf, trans->transid);
6890 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6891 btrfs_tree_lock(buf);
6892 clean_tree_block(trans, root, buf);
6893 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6894
6895 btrfs_set_lock_blocking(buf);
6896 btrfs_set_buffer_uptodate(buf);
6897
6898 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6899 /*
6900 * we allow two log transactions at a time, use different
6901 * EXENT bit to differentiate dirty pages.
6902 */
6903 if (root->log_transid % 2 == 0)
6904 set_extent_dirty(&root->dirty_log_pages, buf->start,
6905 buf->start + buf->len - 1, GFP_NOFS);
6906 else
6907 set_extent_new(&root->dirty_log_pages, buf->start,
6908 buf->start + buf->len - 1, GFP_NOFS);
6909 } else {
6910 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6911 buf->start + buf->len - 1, GFP_NOFS);
6912 }
6913 trans->blocks_used++;
6914 /* this returns a buffer locked for blocking */
6915 return buf;
6916 }
6917
6918 static struct btrfs_block_rsv *
6919 use_block_rsv(struct btrfs_trans_handle *trans,
6920 struct btrfs_root *root, u32 blocksize)
6921 {
6922 struct btrfs_block_rsv *block_rsv;
6923 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6924 int ret;
6925 bool global_updated = false;
6926
6927 block_rsv = get_block_rsv(trans, root);
6928
6929 if (unlikely(block_rsv->size == 0))
6930 goto try_reserve;
6931 again:
6932 ret = block_rsv_use_bytes(block_rsv, blocksize);
6933 if (!ret)
6934 return block_rsv;
6935
6936 if (block_rsv->failfast)
6937 return ERR_PTR(ret);
6938
6939 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
6940 global_updated = true;
6941 update_global_block_rsv(root->fs_info);
6942 goto again;
6943 }
6944
6945 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6946 static DEFINE_RATELIMIT_STATE(_rs,
6947 DEFAULT_RATELIMIT_INTERVAL * 10,
6948 /*DEFAULT_RATELIMIT_BURST*/ 1);
6949 if (__ratelimit(&_rs))
6950 WARN(1, KERN_DEBUG
6951 "BTRFS: block rsv returned %d\n", ret);
6952 }
6953 try_reserve:
6954 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6955 BTRFS_RESERVE_NO_FLUSH);
6956 if (!ret)
6957 return block_rsv;
6958 /*
6959 * If we couldn't reserve metadata bytes try and use some from
6960 * the global reserve if its space type is the same as the global
6961 * reservation.
6962 */
6963 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
6964 block_rsv->space_info == global_rsv->space_info) {
6965 ret = block_rsv_use_bytes(global_rsv, blocksize);
6966 if (!ret)
6967 return global_rsv;
6968 }
6969 return ERR_PTR(ret);
6970 }
6971
6972 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6973 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6974 {
6975 block_rsv_add_bytes(block_rsv, blocksize, 0);
6976 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6977 }
6978
6979 /*
6980 * finds a free extent and does all the dirty work required for allocation
6981 * returns the key for the extent through ins, and a tree buffer for
6982 * the first block of the extent through buf.
6983 *
6984 * returns the tree buffer or NULL.
6985 */
6986 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6987 struct btrfs_root *root, u32 blocksize,
6988 u64 parent, u64 root_objectid,
6989 struct btrfs_disk_key *key, int level,
6990 u64 hint, u64 empty_size)
6991 {
6992 struct btrfs_key ins;
6993 struct btrfs_block_rsv *block_rsv;
6994 struct extent_buffer *buf;
6995 u64 flags = 0;
6996 int ret;
6997 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6998 SKINNY_METADATA);
6999
7000 block_rsv = use_block_rsv(trans, root, blocksize);
7001 if (IS_ERR(block_rsv))
7002 return ERR_CAST(block_rsv);
7003
7004 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7005 empty_size, hint, &ins, 0);
7006 if (ret) {
7007 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7008 return ERR_PTR(ret);
7009 }
7010
7011 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7012 blocksize, level);
7013 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7014
7015 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7016 if (parent == 0)
7017 parent = ins.objectid;
7018 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7019 } else
7020 BUG_ON(parent > 0);
7021
7022 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7023 struct btrfs_delayed_extent_op *extent_op;
7024 extent_op = btrfs_alloc_delayed_extent_op();
7025 BUG_ON(!extent_op); /* -ENOMEM */
7026 if (key)
7027 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7028 else
7029 memset(&extent_op->key, 0, sizeof(extent_op->key));
7030 extent_op->flags_to_set = flags;
7031 if (skinny_metadata)
7032 extent_op->update_key = 0;
7033 else
7034 extent_op->update_key = 1;
7035 extent_op->update_flags = 1;
7036 extent_op->is_data = 0;
7037 extent_op->level = level;
7038
7039 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7040 ins.objectid,
7041 ins.offset, parent, root_objectid,
7042 level, BTRFS_ADD_DELAYED_EXTENT,
7043 extent_op, 0);
7044 BUG_ON(ret); /* -ENOMEM */
7045 }
7046 return buf;
7047 }
7048
7049 struct walk_control {
7050 u64 refs[BTRFS_MAX_LEVEL];
7051 u64 flags[BTRFS_MAX_LEVEL];
7052 struct btrfs_key update_progress;
7053 int stage;
7054 int level;
7055 int shared_level;
7056 int update_ref;
7057 int keep_locks;
7058 int reada_slot;
7059 int reada_count;
7060 int for_reloc;
7061 };
7062
7063 #define DROP_REFERENCE 1
7064 #define UPDATE_BACKREF 2
7065
7066 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7067 struct btrfs_root *root,
7068 struct walk_control *wc,
7069 struct btrfs_path *path)
7070 {
7071 u64 bytenr;
7072 u64 generation;
7073 u64 refs;
7074 u64 flags;
7075 u32 nritems;
7076 u32 blocksize;
7077 struct btrfs_key key;
7078 struct extent_buffer *eb;
7079 int ret;
7080 int slot;
7081 int nread = 0;
7082
7083 if (path->slots[wc->level] < wc->reada_slot) {
7084 wc->reada_count = wc->reada_count * 2 / 3;
7085 wc->reada_count = max(wc->reada_count, 2);
7086 } else {
7087 wc->reada_count = wc->reada_count * 3 / 2;
7088 wc->reada_count = min_t(int, wc->reada_count,
7089 BTRFS_NODEPTRS_PER_BLOCK(root));
7090 }
7091
7092 eb = path->nodes[wc->level];
7093 nritems = btrfs_header_nritems(eb);
7094 blocksize = btrfs_level_size(root, wc->level - 1);
7095
7096 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7097 if (nread >= wc->reada_count)
7098 break;
7099
7100 cond_resched();
7101 bytenr = btrfs_node_blockptr(eb, slot);
7102 generation = btrfs_node_ptr_generation(eb, slot);
7103
7104 if (slot == path->slots[wc->level])
7105 goto reada;
7106
7107 if (wc->stage == UPDATE_BACKREF &&
7108 generation <= root->root_key.offset)
7109 continue;
7110
7111 /* We don't lock the tree block, it's OK to be racy here */
7112 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7113 wc->level - 1, 1, &refs,
7114 &flags);
7115 /* We don't care about errors in readahead. */
7116 if (ret < 0)
7117 continue;
7118 BUG_ON(refs == 0);
7119
7120 if (wc->stage == DROP_REFERENCE) {
7121 if (refs == 1)
7122 goto reada;
7123
7124 if (wc->level == 1 &&
7125 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7126 continue;
7127 if (!wc->update_ref ||
7128 generation <= root->root_key.offset)
7129 continue;
7130 btrfs_node_key_to_cpu(eb, &key, slot);
7131 ret = btrfs_comp_cpu_keys(&key,
7132 &wc->update_progress);
7133 if (ret < 0)
7134 continue;
7135 } else {
7136 if (wc->level == 1 &&
7137 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7138 continue;
7139 }
7140 reada:
7141 ret = readahead_tree_block(root, bytenr, blocksize,
7142 generation);
7143 if (ret)
7144 break;
7145 nread++;
7146 }
7147 wc->reada_slot = slot;
7148 }
7149
7150 /*
7151 * helper to process tree block while walking down the tree.
7152 *
7153 * when wc->stage == UPDATE_BACKREF, this function updates
7154 * back refs for pointers in the block.
7155 *
7156 * NOTE: return value 1 means we should stop walking down.
7157 */
7158 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7159 struct btrfs_root *root,
7160 struct btrfs_path *path,
7161 struct walk_control *wc, int lookup_info)
7162 {
7163 int level = wc->level;
7164 struct extent_buffer *eb = path->nodes[level];
7165 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7166 int ret;
7167
7168 if (wc->stage == UPDATE_BACKREF &&
7169 btrfs_header_owner(eb) != root->root_key.objectid)
7170 return 1;
7171
7172 /*
7173 * when reference count of tree block is 1, it won't increase
7174 * again. once full backref flag is set, we never clear it.
7175 */
7176 if (lookup_info &&
7177 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7178 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7179 BUG_ON(!path->locks[level]);
7180 ret = btrfs_lookup_extent_info(trans, root,
7181 eb->start, level, 1,
7182 &wc->refs[level],
7183 &wc->flags[level]);
7184 BUG_ON(ret == -ENOMEM);
7185 if (ret)
7186 return ret;
7187 BUG_ON(wc->refs[level] == 0);
7188 }
7189
7190 if (wc->stage == DROP_REFERENCE) {
7191 if (wc->refs[level] > 1)
7192 return 1;
7193
7194 if (path->locks[level] && !wc->keep_locks) {
7195 btrfs_tree_unlock_rw(eb, path->locks[level]);
7196 path->locks[level] = 0;
7197 }
7198 return 0;
7199 }
7200
7201 /* wc->stage == UPDATE_BACKREF */
7202 if (!(wc->flags[level] & flag)) {
7203 BUG_ON(!path->locks[level]);
7204 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7205 BUG_ON(ret); /* -ENOMEM */
7206 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7207 BUG_ON(ret); /* -ENOMEM */
7208 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7209 eb->len, flag,
7210 btrfs_header_level(eb), 0);
7211 BUG_ON(ret); /* -ENOMEM */
7212 wc->flags[level] |= flag;
7213 }
7214
7215 /*
7216 * the block is shared by multiple trees, so it's not good to
7217 * keep the tree lock
7218 */
7219 if (path->locks[level] && level > 0) {
7220 btrfs_tree_unlock_rw(eb, path->locks[level]);
7221 path->locks[level] = 0;
7222 }
7223 return 0;
7224 }
7225
7226 /*
7227 * helper to process tree block pointer.
7228 *
7229 * when wc->stage == DROP_REFERENCE, this function checks
7230 * reference count of the block pointed to. if the block
7231 * is shared and we need update back refs for the subtree
7232 * rooted at the block, this function changes wc->stage to
7233 * UPDATE_BACKREF. if the block is shared and there is no
7234 * need to update back, this function drops the reference
7235 * to the block.
7236 *
7237 * NOTE: return value 1 means we should stop walking down.
7238 */
7239 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7240 struct btrfs_root *root,
7241 struct btrfs_path *path,
7242 struct walk_control *wc, int *lookup_info)
7243 {
7244 u64 bytenr;
7245 u64 generation;
7246 u64 parent;
7247 u32 blocksize;
7248 struct btrfs_key key;
7249 struct extent_buffer *next;
7250 int level = wc->level;
7251 int reada = 0;
7252 int ret = 0;
7253
7254 generation = btrfs_node_ptr_generation(path->nodes[level],
7255 path->slots[level]);
7256 /*
7257 * if the lower level block was created before the snapshot
7258 * was created, we know there is no need to update back refs
7259 * for the subtree
7260 */
7261 if (wc->stage == UPDATE_BACKREF &&
7262 generation <= root->root_key.offset) {
7263 *lookup_info = 1;
7264 return 1;
7265 }
7266
7267 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7268 blocksize = btrfs_level_size(root, level - 1);
7269
7270 next = btrfs_find_tree_block(root, bytenr, blocksize);
7271 if (!next) {
7272 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7273 if (!next)
7274 return -ENOMEM;
7275 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7276 level - 1);
7277 reada = 1;
7278 }
7279 btrfs_tree_lock(next);
7280 btrfs_set_lock_blocking(next);
7281
7282 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7283 &wc->refs[level - 1],
7284 &wc->flags[level - 1]);
7285 if (ret < 0) {
7286 btrfs_tree_unlock(next);
7287 return ret;
7288 }
7289
7290 if (unlikely(wc->refs[level - 1] == 0)) {
7291 btrfs_err(root->fs_info, "Missing references.");
7292 BUG();
7293 }
7294 *lookup_info = 0;
7295
7296 if (wc->stage == DROP_REFERENCE) {
7297 if (wc->refs[level - 1] > 1) {
7298 if (level == 1 &&
7299 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7300 goto skip;
7301
7302 if (!wc->update_ref ||
7303 generation <= root->root_key.offset)
7304 goto skip;
7305
7306 btrfs_node_key_to_cpu(path->nodes[level], &key,
7307 path->slots[level]);
7308 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7309 if (ret < 0)
7310 goto skip;
7311
7312 wc->stage = UPDATE_BACKREF;
7313 wc->shared_level = level - 1;
7314 }
7315 } else {
7316 if (level == 1 &&
7317 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7318 goto skip;
7319 }
7320
7321 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7322 btrfs_tree_unlock(next);
7323 free_extent_buffer(next);
7324 next = NULL;
7325 *lookup_info = 1;
7326 }
7327
7328 if (!next) {
7329 if (reada && level == 1)
7330 reada_walk_down(trans, root, wc, path);
7331 next = read_tree_block(root, bytenr, blocksize, generation);
7332 if (!next || !extent_buffer_uptodate(next)) {
7333 free_extent_buffer(next);
7334 return -EIO;
7335 }
7336 btrfs_tree_lock(next);
7337 btrfs_set_lock_blocking(next);
7338 }
7339
7340 level--;
7341 BUG_ON(level != btrfs_header_level(next));
7342 path->nodes[level] = next;
7343 path->slots[level] = 0;
7344 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7345 wc->level = level;
7346 if (wc->level == 1)
7347 wc->reada_slot = 0;
7348 return 0;
7349 skip:
7350 wc->refs[level - 1] = 0;
7351 wc->flags[level - 1] = 0;
7352 if (wc->stage == DROP_REFERENCE) {
7353 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7354 parent = path->nodes[level]->start;
7355 } else {
7356 BUG_ON(root->root_key.objectid !=
7357 btrfs_header_owner(path->nodes[level]));
7358 parent = 0;
7359 }
7360
7361 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7362 root->root_key.objectid, level - 1, 0, 0);
7363 BUG_ON(ret); /* -ENOMEM */
7364 }
7365 btrfs_tree_unlock(next);
7366 free_extent_buffer(next);
7367 *lookup_info = 1;
7368 return 1;
7369 }
7370
7371 /*
7372 * helper to process tree block while walking up the tree.
7373 *
7374 * when wc->stage == DROP_REFERENCE, this function drops
7375 * reference count on the block.
7376 *
7377 * when wc->stage == UPDATE_BACKREF, this function changes
7378 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7379 * to UPDATE_BACKREF previously while processing the block.
7380 *
7381 * NOTE: return value 1 means we should stop walking up.
7382 */
7383 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7384 struct btrfs_root *root,
7385 struct btrfs_path *path,
7386 struct walk_control *wc)
7387 {
7388 int ret;
7389 int level = wc->level;
7390 struct extent_buffer *eb = path->nodes[level];
7391 u64 parent = 0;
7392
7393 if (wc->stage == UPDATE_BACKREF) {
7394 BUG_ON(wc->shared_level < level);
7395 if (level < wc->shared_level)
7396 goto out;
7397
7398 ret = find_next_key(path, level + 1, &wc->update_progress);
7399 if (ret > 0)
7400 wc->update_ref = 0;
7401
7402 wc->stage = DROP_REFERENCE;
7403 wc->shared_level = -1;
7404 path->slots[level] = 0;
7405
7406 /*
7407 * check reference count again if the block isn't locked.
7408 * we should start walking down the tree again if reference
7409 * count is one.
7410 */
7411 if (!path->locks[level]) {
7412 BUG_ON(level == 0);
7413 btrfs_tree_lock(eb);
7414 btrfs_set_lock_blocking(eb);
7415 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7416
7417 ret = btrfs_lookup_extent_info(trans, root,
7418 eb->start, level, 1,
7419 &wc->refs[level],
7420 &wc->flags[level]);
7421 if (ret < 0) {
7422 btrfs_tree_unlock_rw(eb, path->locks[level]);
7423 path->locks[level] = 0;
7424 return ret;
7425 }
7426 BUG_ON(wc->refs[level] == 0);
7427 if (wc->refs[level] == 1) {
7428 btrfs_tree_unlock_rw(eb, path->locks[level]);
7429 path->locks[level] = 0;
7430 return 1;
7431 }
7432 }
7433 }
7434
7435 /* wc->stage == DROP_REFERENCE */
7436 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7437
7438 if (wc->refs[level] == 1) {
7439 if (level == 0) {
7440 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7441 ret = btrfs_dec_ref(trans, root, eb, 1,
7442 wc->for_reloc);
7443 else
7444 ret = btrfs_dec_ref(trans, root, eb, 0,
7445 wc->for_reloc);
7446 BUG_ON(ret); /* -ENOMEM */
7447 }
7448 /* make block locked assertion in clean_tree_block happy */
7449 if (!path->locks[level] &&
7450 btrfs_header_generation(eb) == trans->transid) {
7451 btrfs_tree_lock(eb);
7452 btrfs_set_lock_blocking(eb);
7453 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7454 }
7455 clean_tree_block(trans, root, eb);
7456 }
7457
7458 if (eb == root->node) {
7459 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7460 parent = eb->start;
7461 else
7462 BUG_ON(root->root_key.objectid !=
7463 btrfs_header_owner(eb));
7464 } else {
7465 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7466 parent = path->nodes[level + 1]->start;
7467 else
7468 BUG_ON(root->root_key.objectid !=
7469 btrfs_header_owner(path->nodes[level + 1]));
7470 }
7471
7472 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7473 out:
7474 wc->refs[level] = 0;
7475 wc->flags[level] = 0;
7476 return 0;
7477 }
7478
7479 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7480 struct btrfs_root *root,
7481 struct btrfs_path *path,
7482 struct walk_control *wc)
7483 {
7484 int level = wc->level;
7485 int lookup_info = 1;
7486 int ret;
7487
7488 while (level >= 0) {
7489 ret = walk_down_proc(trans, root, path, wc, lookup_info);
7490 if (ret > 0)
7491 break;
7492
7493 if (level == 0)
7494 break;
7495
7496 if (path->slots[level] >=
7497 btrfs_header_nritems(path->nodes[level]))
7498 break;
7499
7500 ret = do_walk_down(trans, root, path, wc, &lookup_info);
7501 if (ret > 0) {
7502 path->slots[level]++;
7503 continue;
7504 } else if (ret < 0)
7505 return ret;
7506 level = wc->level;
7507 }
7508 return 0;
7509 }
7510
7511 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7512 struct btrfs_root *root,
7513 struct btrfs_path *path,
7514 struct walk_control *wc, int max_level)
7515 {
7516 int level = wc->level;
7517 int ret;
7518
7519 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7520 while (level < max_level && path->nodes[level]) {
7521 wc->level = level;
7522 if (path->slots[level] + 1 <
7523 btrfs_header_nritems(path->nodes[level])) {
7524 path->slots[level]++;
7525 return 0;
7526 } else {
7527 ret = walk_up_proc(trans, root, path, wc);
7528 if (ret > 0)
7529 return 0;
7530
7531 if (path->locks[level]) {
7532 btrfs_tree_unlock_rw(path->nodes[level],
7533 path->locks[level]);
7534 path->locks[level] = 0;
7535 }
7536 free_extent_buffer(path->nodes[level]);
7537 path->nodes[level] = NULL;
7538 level++;
7539 }
7540 }
7541 return 1;
7542 }
7543
7544 /*
7545 * drop a subvolume tree.
7546 *
7547 * this function traverses the tree freeing any blocks that only
7548 * referenced by the tree.
7549 *
7550 * when a shared tree block is found. this function decreases its
7551 * reference count by one. if update_ref is true, this function
7552 * also make sure backrefs for the shared block and all lower level
7553 * blocks are properly updated.
7554 *
7555 * If called with for_reloc == 0, may exit early with -EAGAIN
7556 */
7557 int btrfs_drop_snapshot(struct btrfs_root *root,
7558 struct btrfs_block_rsv *block_rsv, int update_ref,
7559 int for_reloc)
7560 {
7561 struct btrfs_path *path;
7562 struct btrfs_trans_handle *trans;
7563 struct btrfs_root *tree_root = root->fs_info->tree_root;
7564 struct btrfs_root_item *root_item = &root->root_item;
7565 struct walk_control *wc;
7566 struct btrfs_key key;
7567 int err = 0;
7568 int ret;
7569 int level;
7570 bool root_dropped = false;
7571
7572 path = btrfs_alloc_path();
7573 if (!path) {
7574 err = -ENOMEM;
7575 goto out;
7576 }
7577
7578 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7579 if (!wc) {
7580 btrfs_free_path(path);
7581 err = -ENOMEM;
7582 goto out;
7583 }
7584
7585 trans = btrfs_start_transaction(tree_root, 0);
7586 if (IS_ERR(trans)) {
7587 err = PTR_ERR(trans);
7588 goto out_free;
7589 }
7590
7591 if (block_rsv)
7592 trans->block_rsv = block_rsv;
7593
7594 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7595 level = btrfs_header_level(root->node);
7596 path->nodes[level] = btrfs_lock_root_node(root);
7597 btrfs_set_lock_blocking(path->nodes[level]);
7598 path->slots[level] = 0;
7599 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7600 memset(&wc->update_progress, 0,
7601 sizeof(wc->update_progress));
7602 } else {
7603 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7604 memcpy(&wc->update_progress, &key,
7605 sizeof(wc->update_progress));
7606
7607 level = root_item->drop_level;
7608 BUG_ON(level == 0);
7609 path->lowest_level = level;
7610 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7611 path->lowest_level = 0;
7612 if (ret < 0) {
7613 err = ret;
7614 goto out_end_trans;
7615 }
7616 WARN_ON(ret > 0);
7617
7618 /*
7619 * unlock our path, this is safe because only this
7620 * function is allowed to delete this snapshot
7621 */
7622 btrfs_unlock_up_safe(path, 0);
7623
7624 level = btrfs_header_level(root->node);
7625 while (1) {
7626 btrfs_tree_lock(path->nodes[level]);
7627 btrfs_set_lock_blocking(path->nodes[level]);
7628 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7629
7630 ret = btrfs_lookup_extent_info(trans, root,
7631 path->nodes[level]->start,
7632 level, 1, &wc->refs[level],
7633 &wc->flags[level]);
7634 if (ret < 0) {
7635 err = ret;
7636 goto out_end_trans;
7637 }
7638 BUG_ON(wc->refs[level] == 0);
7639
7640 if (level == root_item->drop_level)
7641 break;
7642
7643 btrfs_tree_unlock(path->nodes[level]);
7644 path->locks[level] = 0;
7645 WARN_ON(wc->refs[level] != 1);
7646 level--;
7647 }
7648 }
7649
7650 wc->level = level;
7651 wc->shared_level = -1;
7652 wc->stage = DROP_REFERENCE;
7653 wc->update_ref = update_ref;
7654 wc->keep_locks = 0;
7655 wc->for_reloc = for_reloc;
7656 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7657
7658 while (1) {
7659
7660 ret = walk_down_tree(trans, root, path, wc);
7661 if (ret < 0) {
7662 err = ret;
7663 break;
7664 }
7665
7666 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7667 if (ret < 0) {
7668 err = ret;
7669 break;
7670 }
7671
7672 if (ret > 0) {
7673 BUG_ON(wc->stage != DROP_REFERENCE);
7674 break;
7675 }
7676
7677 if (wc->stage == DROP_REFERENCE) {
7678 level = wc->level;
7679 btrfs_node_key(path->nodes[level],
7680 &root_item->drop_progress,
7681 path->slots[level]);
7682 root_item->drop_level = level;
7683 }
7684
7685 BUG_ON(wc->level == 0);
7686 if (btrfs_should_end_transaction(trans, tree_root) ||
7687 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7688 ret = btrfs_update_root(trans, tree_root,
7689 &root->root_key,
7690 root_item);
7691 if (ret) {
7692 btrfs_abort_transaction(trans, tree_root, ret);
7693 err = ret;
7694 goto out_end_trans;
7695 }
7696
7697 btrfs_end_transaction_throttle(trans, tree_root);
7698 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7699 pr_debug("BTRFS: drop snapshot early exit\n");
7700 err = -EAGAIN;
7701 goto out_free;
7702 }
7703
7704 trans = btrfs_start_transaction(tree_root, 0);
7705 if (IS_ERR(trans)) {
7706 err = PTR_ERR(trans);
7707 goto out_free;
7708 }
7709 if (block_rsv)
7710 trans->block_rsv = block_rsv;
7711 }
7712 }
7713 btrfs_release_path(path);
7714 if (err)
7715 goto out_end_trans;
7716
7717 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7718 if (ret) {
7719 btrfs_abort_transaction(trans, tree_root, ret);
7720 goto out_end_trans;
7721 }
7722
7723 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7724 ret = btrfs_find_root(tree_root, &root->root_key, path,
7725 NULL, NULL);
7726 if (ret < 0) {
7727 btrfs_abort_transaction(trans, tree_root, ret);
7728 err = ret;
7729 goto out_end_trans;
7730 } else if (ret > 0) {
7731 /* if we fail to delete the orphan item this time
7732 * around, it'll get picked up the next time.
7733 *
7734 * The most common failure here is just -ENOENT.
7735 */
7736 btrfs_del_orphan_item(trans, tree_root,
7737 root->root_key.objectid);
7738 }
7739 }
7740
7741 if (root->in_radix) {
7742 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7743 } else {
7744 free_extent_buffer(root->node);
7745 free_extent_buffer(root->commit_root);
7746 btrfs_put_fs_root(root);
7747 }
7748 root_dropped = true;
7749 out_end_trans:
7750 btrfs_end_transaction_throttle(trans, tree_root);
7751 out_free:
7752 kfree(wc);
7753 btrfs_free_path(path);
7754 out:
7755 /*
7756 * So if we need to stop dropping the snapshot for whatever reason we
7757 * need to make sure to add it back to the dead root list so that we
7758 * keep trying to do the work later. This also cleans up roots if we
7759 * don't have it in the radix (like when we recover after a power fail
7760 * or unmount) so we don't leak memory.
7761 */
7762 if (!for_reloc && root_dropped == false)
7763 btrfs_add_dead_root(root);
7764 if (err && err != -EAGAIN)
7765 btrfs_std_error(root->fs_info, err);
7766 return err;
7767 }
7768
7769 /*
7770 * drop subtree rooted at tree block 'node'.
7771 *
7772 * NOTE: this function will unlock and release tree block 'node'
7773 * only used by relocation code
7774 */
7775 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7776 struct btrfs_root *root,
7777 struct extent_buffer *node,
7778 struct extent_buffer *parent)
7779 {
7780 struct btrfs_path *path;
7781 struct walk_control *wc;
7782 int level;
7783 int parent_level;
7784 int ret = 0;
7785 int wret;
7786
7787 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7788
7789 path = btrfs_alloc_path();
7790 if (!path)
7791 return -ENOMEM;
7792
7793 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7794 if (!wc) {
7795 btrfs_free_path(path);
7796 return -ENOMEM;
7797 }
7798
7799 btrfs_assert_tree_locked(parent);
7800 parent_level = btrfs_header_level(parent);
7801 extent_buffer_get(parent);
7802 path->nodes[parent_level] = parent;
7803 path->slots[parent_level] = btrfs_header_nritems(parent);
7804
7805 btrfs_assert_tree_locked(node);
7806 level = btrfs_header_level(node);
7807 path->nodes[level] = node;
7808 path->slots[level] = 0;
7809 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7810
7811 wc->refs[parent_level] = 1;
7812 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7813 wc->level = level;
7814 wc->shared_level = -1;
7815 wc->stage = DROP_REFERENCE;
7816 wc->update_ref = 0;
7817 wc->keep_locks = 1;
7818 wc->for_reloc = 1;
7819 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7820
7821 while (1) {
7822 wret = walk_down_tree(trans, root, path, wc);
7823 if (wret < 0) {
7824 ret = wret;
7825 break;
7826 }
7827
7828 wret = walk_up_tree(trans, root, path, wc, parent_level);
7829 if (wret < 0)
7830 ret = wret;
7831 if (wret != 0)
7832 break;
7833 }
7834
7835 kfree(wc);
7836 btrfs_free_path(path);
7837 return ret;
7838 }
7839
7840 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7841 {
7842 u64 num_devices;
7843 u64 stripped;
7844
7845 /*
7846 * if restripe for this chunk_type is on pick target profile and
7847 * return, otherwise do the usual balance
7848 */
7849 stripped = get_restripe_target(root->fs_info, flags);
7850 if (stripped)
7851 return extended_to_chunk(stripped);
7852
7853 /*
7854 * we add in the count of missing devices because we want
7855 * to make sure that any RAID levels on a degraded FS
7856 * continue to be honored.
7857 */
7858 num_devices = root->fs_info->fs_devices->rw_devices +
7859 root->fs_info->fs_devices->missing_devices;
7860
7861 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7862 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7863 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7864
7865 if (num_devices == 1) {
7866 stripped |= BTRFS_BLOCK_GROUP_DUP;
7867 stripped = flags & ~stripped;
7868
7869 /* turn raid0 into single device chunks */
7870 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7871 return stripped;
7872
7873 /* turn mirroring into duplication */
7874 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7875 BTRFS_BLOCK_GROUP_RAID10))
7876 return stripped | BTRFS_BLOCK_GROUP_DUP;
7877 } else {
7878 /* they already had raid on here, just return */
7879 if (flags & stripped)
7880 return flags;
7881
7882 stripped |= BTRFS_BLOCK_GROUP_DUP;
7883 stripped = flags & ~stripped;
7884
7885 /* switch duplicated blocks with raid1 */
7886 if (flags & BTRFS_BLOCK_GROUP_DUP)
7887 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7888
7889 /* this is drive concat, leave it alone */
7890 }
7891
7892 return flags;
7893 }
7894
7895 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7896 {
7897 struct btrfs_space_info *sinfo = cache->space_info;
7898 u64 num_bytes;
7899 u64 min_allocable_bytes;
7900 int ret = -ENOSPC;
7901
7902
7903 /*
7904 * We need some metadata space and system metadata space for
7905 * allocating chunks in some corner cases until we force to set
7906 * it to be readonly.
7907 */
7908 if ((sinfo->flags &
7909 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7910 !force)
7911 min_allocable_bytes = 1 * 1024 * 1024;
7912 else
7913 min_allocable_bytes = 0;
7914
7915 spin_lock(&sinfo->lock);
7916 spin_lock(&cache->lock);
7917
7918 if (cache->ro) {
7919 ret = 0;
7920 goto out;
7921 }
7922
7923 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7924 cache->bytes_super - btrfs_block_group_used(&cache->item);
7925
7926 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7927 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7928 min_allocable_bytes <= sinfo->total_bytes) {
7929 sinfo->bytes_readonly += num_bytes;
7930 cache->ro = 1;
7931 ret = 0;
7932 }
7933 out:
7934 spin_unlock(&cache->lock);
7935 spin_unlock(&sinfo->lock);
7936 return ret;
7937 }
7938
7939 int btrfs_set_block_group_ro(struct btrfs_root *root,
7940 struct btrfs_block_group_cache *cache)
7941
7942 {
7943 struct btrfs_trans_handle *trans;
7944 u64 alloc_flags;
7945 int ret;
7946
7947 BUG_ON(cache->ro);
7948
7949 trans = btrfs_join_transaction(root);
7950 if (IS_ERR(trans))
7951 return PTR_ERR(trans);
7952
7953 alloc_flags = update_block_group_flags(root, cache->flags);
7954 if (alloc_flags != cache->flags) {
7955 ret = do_chunk_alloc(trans, root, alloc_flags,
7956 CHUNK_ALLOC_FORCE);
7957 if (ret < 0)
7958 goto out;
7959 }
7960
7961 ret = set_block_group_ro(cache, 0);
7962 if (!ret)
7963 goto out;
7964 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7965 ret = do_chunk_alloc(trans, root, alloc_flags,
7966 CHUNK_ALLOC_FORCE);
7967 if (ret < 0)
7968 goto out;
7969 ret = set_block_group_ro(cache, 0);
7970 out:
7971 btrfs_end_transaction(trans, root);
7972 return ret;
7973 }
7974
7975 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7976 struct btrfs_root *root, u64 type)
7977 {
7978 u64 alloc_flags = get_alloc_profile(root, type);
7979 return do_chunk_alloc(trans, root, alloc_flags,
7980 CHUNK_ALLOC_FORCE);
7981 }
7982
7983 /*
7984 * helper to account the unused space of all the readonly block group in the
7985 * list. takes mirrors into account.
7986 */
7987 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7988 {
7989 struct btrfs_block_group_cache *block_group;
7990 u64 free_bytes = 0;
7991 int factor;
7992
7993 list_for_each_entry(block_group, groups_list, list) {
7994 spin_lock(&block_group->lock);
7995
7996 if (!block_group->ro) {
7997 spin_unlock(&block_group->lock);
7998 continue;
7999 }
8000
8001 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8002 BTRFS_BLOCK_GROUP_RAID10 |
8003 BTRFS_BLOCK_GROUP_DUP))
8004 factor = 2;
8005 else
8006 factor = 1;
8007
8008 free_bytes += (block_group->key.offset -
8009 btrfs_block_group_used(&block_group->item)) *
8010 factor;
8011
8012 spin_unlock(&block_group->lock);
8013 }
8014
8015 return free_bytes;
8016 }
8017
8018 /*
8019 * helper to account the unused space of all the readonly block group in the
8020 * space_info. takes mirrors into account.
8021 */
8022 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8023 {
8024 int i;
8025 u64 free_bytes = 0;
8026
8027 spin_lock(&sinfo->lock);
8028
8029 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8030 if (!list_empty(&sinfo->block_groups[i]))
8031 free_bytes += __btrfs_get_ro_block_group_free_space(
8032 &sinfo->block_groups[i]);
8033
8034 spin_unlock(&sinfo->lock);
8035
8036 return free_bytes;
8037 }
8038
8039 void btrfs_set_block_group_rw(struct btrfs_root *root,
8040 struct btrfs_block_group_cache *cache)
8041 {
8042 struct btrfs_space_info *sinfo = cache->space_info;
8043 u64 num_bytes;
8044
8045 BUG_ON(!cache->ro);
8046
8047 spin_lock(&sinfo->lock);
8048 spin_lock(&cache->lock);
8049 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8050 cache->bytes_super - btrfs_block_group_used(&cache->item);
8051 sinfo->bytes_readonly -= num_bytes;
8052 cache->ro = 0;
8053 spin_unlock(&cache->lock);
8054 spin_unlock(&sinfo->lock);
8055 }
8056
8057 /*
8058 * checks to see if its even possible to relocate this block group.
8059 *
8060 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8061 * ok to go ahead and try.
8062 */
8063 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8064 {
8065 struct btrfs_block_group_cache *block_group;
8066 struct btrfs_space_info *space_info;
8067 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8068 struct btrfs_device *device;
8069 struct btrfs_trans_handle *trans;
8070 u64 min_free;
8071 u64 dev_min = 1;
8072 u64 dev_nr = 0;
8073 u64 target;
8074 int index;
8075 int full = 0;
8076 int ret = 0;
8077
8078 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8079
8080 /* odd, couldn't find the block group, leave it alone */
8081 if (!block_group)
8082 return -1;
8083
8084 min_free = btrfs_block_group_used(&block_group->item);
8085
8086 /* no bytes used, we're good */
8087 if (!min_free)
8088 goto out;
8089
8090 space_info = block_group->space_info;
8091 spin_lock(&space_info->lock);
8092
8093 full = space_info->full;
8094
8095 /*
8096 * if this is the last block group we have in this space, we can't
8097 * relocate it unless we're able to allocate a new chunk below.
8098 *
8099 * Otherwise, we need to make sure we have room in the space to handle
8100 * all of the extents from this block group. If we can, we're good
8101 */
8102 if ((space_info->total_bytes != block_group->key.offset) &&
8103 (space_info->bytes_used + space_info->bytes_reserved +
8104 space_info->bytes_pinned + space_info->bytes_readonly +
8105 min_free < space_info->total_bytes)) {
8106 spin_unlock(&space_info->lock);
8107 goto out;
8108 }
8109 spin_unlock(&space_info->lock);
8110
8111 /*
8112 * ok we don't have enough space, but maybe we have free space on our
8113 * devices to allocate new chunks for relocation, so loop through our
8114 * alloc devices and guess if we have enough space. if this block
8115 * group is going to be restriped, run checks against the target
8116 * profile instead of the current one.
8117 */
8118 ret = -1;
8119
8120 /*
8121 * index:
8122 * 0: raid10
8123 * 1: raid1
8124 * 2: dup
8125 * 3: raid0
8126 * 4: single
8127 */
8128 target = get_restripe_target(root->fs_info, block_group->flags);
8129 if (target) {
8130 index = __get_raid_index(extended_to_chunk(target));
8131 } else {
8132 /*
8133 * this is just a balance, so if we were marked as full
8134 * we know there is no space for a new chunk
8135 */
8136 if (full)
8137 goto out;
8138
8139 index = get_block_group_index(block_group);
8140 }
8141
8142 if (index == BTRFS_RAID_RAID10) {
8143 dev_min = 4;
8144 /* Divide by 2 */
8145 min_free >>= 1;
8146 } else if (index == BTRFS_RAID_RAID1) {
8147 dev_min = 2;
8148 } else if (index == BTRFS_RAID_DUP) {
8149 /* Multiply by 2 */
8150 min_free <<= 1;
8151 } else if (index == BTRFS_RAID_RAID0) {
8152 dev_min = fs_devices->rw_devices;
8153 do_div(min_free, dev_min);
8154 }
8155
8156 /* We need to do this so that we can look at pending chunks */
8157 trans = btrfs_join_transaction(root);
8158 if (IS_ERR(trans)) {
8159 ret = PTR_ERR(trans);
8160 goto out;
8161 }
8162
8163 mutex_lock(&root->fs_info->chunk_mutex);
8164 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8165 u64 dev_offset;
8166
8167 /*
8168 * check to make sure we can actually find a chunk with enough
8169 * space to fit our block group in.
8170 */
8171 if (device->total_bytes > device->bytes_used + min_free &&
8172 !device->is_tgtdev_for_dev_replace) {
8173 ret = find_free_dev_extent(trans, device, min_free,
8174 &dev_offset, NULL);
8175 if (!ret)
8176 dev_nr++;
8177
8178 if (dev_nr >= dev_min)
8179 break;
8180
8181 ret = -1;
8182 }
8183 }
8184 mutex_unlock(&root->fs_info->chunk_mutex);
8185 btrfs_end_transaction(trans, root);
8186 out:
8187 btrfs_put_block_group(block_group);
8188 return ret;
8189 }
8190
8191 static int find_first_block_group(struct btrfs_root *root,
8192 struct btrfs_path *path, struct btrfs_key *key)
8193 {
8194 int ret = 0;
8195 struct btrfs_key found_key;
8196 struct extent_buffer *leaf;
8197 int slot;
8198
8199 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8200 if (ret < 0)
8201 goto out;
8202
8203 while (1) {
8204 slot = path->slots[0];
8205 leaf = path->nodes[0];
8206 if (slot >= btrfs_header_nritems(leaf)) {
8207 ret = btrfs_next_leaf(root, path);
8208 if (ret == 0)
8209 continue;
8210 if (ret < 0)
8211 goto out;
8212 break;
8213 }
8214 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8215
8216 if (found_key.objectid >= key->objectid &&
8217 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8218 ret = 0;
8219 goto out;
8220 }
8221 path->slots[0]++;
8222 }
8223 out:
8224 return ret;
8225 }
8226
8227 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8228 {
8229 struct btrfs_block_group_cache *block_group;
8230 u64 last = 0;
8231
8232 while (1) {
8233 struct inode *inode;
8234
8235 block_group = btrfs_lookup_first_block_group(info, last);
8236 while (block_group) {
8237 spin_lock(&block_group->lock);
8238 if (block_group->iref)
8239 break;
8240 spin_unlock(&block_group->lock);
8241 block_group = next_block_group(info->tree_root,
8242 block_group);
8243 }
8244 if (!block_group) {
8245 if (last == 0)
8246 break;
8247 last = 0;
8248 continue;
8249 }
8250
8251 inode = block_group->inode;
8252 block_group->iref = 0;
8253 block_group->inode = NULL;
8254 spin_unlock(&block_group->lock);
8255 iput(inode);
8256 last = block_group->key.objectid + block_group->key.offset;
8257 btrfs_put_block_group(block_group);
8258 }
8259 }
8260
8261 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8262 {
8263 struct btrfs_block_group_cache *block_group;
8264 struct btrfs_space_info *space_info;
8265 struct btrfs_caching_control *caching_ctl;
8266 struct rb_node *n;
8267
8268 down_write(&info->extent_commit_sem);
8269 while (!list_empty(&info->caching_block_groups)) {
8270 caching_ctl = list_entry(info->caching_block_groups.next,
8271 struct btrfs_caching_control, list);
8272 list_del(&caching_ctl->list);
8273 put_caching_control(caching_ctl);
8274 }
8275 up_write(&info->extent_commit_sem);
8276
8277 spin_lock(&info->block_group_cache_lock);
8278 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8279 block_group = rb_entry(n, struct btrfs_block_group_cache,
8280 cache_node);
8281 rb_erase(&block_group->cache_node,
8282 &info->block_group_cache_tree);
8283 spin_unlock(&info->block_group_cache_lock);
8284
8285 down_write(&block_group->space_info->groups_sem);
8286 list_del(&block_group->list);
8287 up_write(&block_group->space_info->groups_sem);
8288
8289 if (block_group->cached == BTRFS_CACHE_STARTED)
8290 wait_block_group_cache_done(block_group);
8291
8292 /*
8293 * We haven't cached this block group, which means we could
8294 * possibly have excluded extents on this block group.
8295 */
8296 if (block_group->cached == BTRFS_CACHE_NO ||
8297 block_group->cached == BTRFS_CACHE_ERROR)
8298 free_excluded_extents(info->extent_root, block_group);
8299
8300 btrfs_remove_free_space_cache(block_group);
8301 btrfs_put_block_group(block_group);
8302
8303 spin_lock(&info->block_group_cache_lock);
8304 }
8305 spin_unlock(&info->block_group_cache_lock);
8306
8307 /* now that all the block groups are freed, go through and
8308 * free all the space_info structs. This is only called during
8309 * the final stages of unmount, and so we know nobody is
8310 * using them. We call synchronize_rcu() once before we start,
8311 * just to be on the safe side.
8312 */
8313 synchronize_rcu();
8314
8315 release_global_block_rsv(info);
8316
8317 while (!list_empty(&info->space_info)) {
8318 int i;
8319
8320 space_info = list_entry(info->space_info.next,
8321 struct btrfs_space_info,
8322 list);
8323 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8324 if (WARN_ON(space_info->bytes_pinned > 0 ||
8325 space_info->bytes_reserved > 0 ||
8326 space_info->bytes_may_use > 0)) {
8327 dump_space_info(space_info, 0, 0);
8328 }
8329 }
8330 list_del(&space_info->list);
8331 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8332 struct kobject *kobj;
8333 kobj = &space_info->block_group_kobjs[i];
8334 if (kobj->parent) {
8335 kobject_del(kobj);
8336 kobject_put(kobj);
8337 }
8338 }
8339 kobject_del(&space_info->kobj);
8340 kobject_put(&space_info->kobj);
8341 }
8342 return 0;
8343 }
8344
8345 static void __link_block_group(struct btrfs_space_info *space_info,
8346 struct btrfs_block_group_cache *cache)
8347 {
8348 int index = get_block_group_index(cache);
8349
8350 down_write(&space_info->groups_sem);
8351 if (list_empty(&space_info->block_groups[index])) {
8352 struct kobject *kobj = &space_info->block_group_kobjs[index];
8353 int ret;
8354
8355 kobject_get(&space_info->kobj); /* put in release */
8356 ret = kobject_add(kobj, &space_info->kobj, "%s",
8357 get_raid_name(index));
8358 if (ret) {
8359 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8360 kobject_put(&space_info->kobj);
8361 }
8362 }
8363 list_add_tail(&cache->list, &space_info->block_groups[index]);
8364 up_write(&space_info->groups_sem);
8365 }
8366
8367 int btrfs_read_block_groups(struct btrfs_root *root)
8368 {
8369 struct btrfs_path *path;
8370 int ret;
8371 struct btrfs_block_group_cache *cache;
8372 struct btrfs_fs_info *info = root->fs_info;
8373 struct btrfs_space_info *space_info;
8374 struct btrfs_key key;
8375 struct btrfs_key found_key;
8376 struct extent_buffer *leaf;
8377 int need_clear = 0;
8378 u64 cache_gen;
8379
8380 root = info->extent_root;
8381 key.objectid = 0;
8382 key.offset = 0;
8383 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8384 path = btrfs_alloc_path();
8385 if (!path)
8386 return -ENOMEM;
8387 path->reada = 1;
8388
8389 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8390 if (btrfs_test_opt(root, SPACE_CACHE) &&
8391 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8392 need_clear = 1;
8393 if (btrfs_test_opt(root, CLEAR_CACHE))
8394 need_clear = 1;
8395
8396 while (1) {
8397 ret = find_first_block_group(root, path, &key);
8398 if (ret > 0)
8399 break;
8400 if (ret != 0)
8401 goto error;
8402 leaf = path->nodes[0];
8403 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8404 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8405 if (!cache) {
8406 ret = -ENOMEM;
8407 goto error;
8408 }
8409 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8410 GFP_NOFS);
8411 if (!cache->free_space_ctl) {
8412 kfree(cache);
8413 ret = -ENOMEM;
8414 goto error;
8415 }
8416
8417 atomic_set(&cache->count, 1);
8418 spin_lock_init(&cache->lock);
8419 cache->fs_info = info;
8420 INIT_LIST_HEAD(&cache->list);
8421 INIT_LIST_HEAD(&cache->cluster_list);
8422
8423 if (need_clear) {
8424 /*
8425 * When we mount with old space cache, we need to
8426 * set BTRFS_DC_CLEAR and set dirty flag.
8427 *
8428 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8429 * truncate the old free space cache inode and
8430 * setup a new one.
8431 * b) Setting 'dirty flag' makes sure that we flush
8432 * the new space cache info onto disk.
8433 */
8434 cache->disk_cache_state = BTRFS_DC_CLEAR;
8435 if (btrfs_test_opt(root, SPACE_CACHE))
8436 cache->dirty = 1;
8437 }
8438
8439 read_extent_buffer(leaf, &cache->item,
8440 btrfs_item_ptr_offset(leaf, path->slots[0]),
8441 sizeof(cache->item));
8442 memcpy(&cache->key, &found_key, sizeof(found_key));
8443
8444 key.objectid = found_key.objectid + found_key.offset;
8445 btrfs_release_path(path);
8446 cache->flags = btrfs_block_group_flags(&cache->item);
8447 cache->sectorsize = root->sectorsize;
8448 cache->full_stripe_len = btrfs_full_stripe_len(root,
8449 &root->fs_info->mapping_tree,
8450 found_key.objectid);
8451 btrfs_init_free_space_ctl(cache);
8452
8453 /*
8454 * We need to exclude the super stripes now so that the space
8455 * info has super bytes accounted for, otherwise we'll think
8456 * we have more space than we actually do.
8457 */
8458 ret = exclude_super_stripes(root, cache);
8459 if (ret) {
8460 /*
8461 * We may have excluded something, so call this just in
8462 * case.
8463 */
8464 free_excluded_extents(root, cache);
8465 kfree(cache->free_space_ctl);
8466 kfree(cache);
8467 goto error;
8468 }
8469
8470 /*
8471 * check for two cases, either we are full, and therefore
8472 * don't need to bother with the caching work since we won't
8473 * find any space, or we are empty, and we can just add all
8474 * the space in and be done with it. This saves us _alot_ of
8475 * time, particularly in the full case.
8476 */
8477 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8478 cache->last_byte_to_unpin = (u64)-1;
8479 cache->cached = BTRFS_CACHE_FINISHED;
8480 free_excluded_extents(root, cache);
8481 } else if (btrfs_block_group_used(&cache->item) == 0) {
8482 cache->last_byte_to_unpin = (u64)-1;
8483 cache->cached = BTRFS_CACHE_FINISHED;
8484 add_new_free_space(cache, root->fs_info,
8485 found_key.objectid,
8486 found_key.objectid +
8487 found_key.offset);
8488 free_excluded_extents(root, cache);
8489 }
8490
8491 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8492 if (ret) {
8493 btrfs_remove_free_space_cache(cache);
8494 btrfs_put_block_group(cache);
8495 goto error;
8496 }
8497
8498 ret = update_space_info(info, cache->flags, found_key.offset,
8499 btrfs_block_group_used(&cache->item),
8500 &space_info);
8501 if (ret) {
8502 btrfs_remove_free_space_cache(cache);
8503 spin_lock(&info->block_group_cache_lock);
8504 rb_erase(&cache->cache_node,
8505 &info->block_group_cache_tree);
8506 spin_unlock(&info->block_group_cache_lock);
8507 btrfs_put_block_group(cache);
8508 goto error;
8509 }
8510
8511 cache->space_info = space_info;
8512 spin_lock(&cache->space_info->lock);
8513 cache->space_info->bytes_readonly += cache->bytes_super;
8514 spin_unlock(&cache->space_info->lock);
8515
8516 __link_block_group(space_info, cache);
8517
8518 set_avail_alloc_bits(root->fs_info, cache->flags);
8519 if (btrfs_chunk_readonly(root, cache->key.objectid))
8520 set_block_group_ro(cache, 1);
8521 }
8522
8523 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8524 if (!(get_alloc_profile(root, space_info->flags) &
8525 (BTRFS_BLOCK_GROUP_RAID10 |
8526 BTRFS_BLOCK_GROUP_RAID1 |
8527 BTRFS_BLOCK_GROUP_RAID5 |
8528 BTRFS_BLOCK_GROUP_RAID6 |
8529 BTRFS_BLOCK_GROUP_DUP)))
8530 continue;
8531 /*
8532 * avoid allocating from un-mirrored block group if there are
8533 * mirrored block groups.
8534 */
8535 list_for_each_entry(cache,
8536 &space_info->block_groups[BTRFS_RAID_RAID0],
8537 list)
8538 set_block_group_ro(cache, 1);
8539 list_for_each_entry(cache,
8540 &space_info->block_groups[BTRFS_RAID_SINGLE],
8541 list)
8542 set_block_group_ro(cache, 1);
8543 }
8544
8545 init_global_block_rsv(info);
8546 ret = 0;
8547 error:
8548 btrfs_free_path(path);
8549 return ret;
8550 }
8551
8552 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8553 struct btrfs_root *root)
8554 {
8555 struct btrfs_block_group_cache *block_group, *tmp;
8556 struct btrfs_root *extent_root = root->fs_info->extent_root;
8557 struct btrfs_block_group_item item;
8558 struct btrfs_key key;
8559 int ret = 0;
8560
8561 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8562 new_bg_list) {
8563 list_del_init(&block_group->new_bg_list);
8564
8565 if (ret)
8566 continue;
8567
8568 spin_lock(&block_group->lock);
8569 memcpy(&item, &block_group->item, sizeof(item));
8570 memcpy(&key, &block_group->key, sizeof(key));
8571 spin_unlock(&block_group->lock);
8572
8573 ret = btrfs_insert_item(trans, extent_root, &key, &item,
8574 sizeof(item));
8575 if (ret)
8576 btrfs_abort_transaction(trans, extent_root, ret);
8577 ret = btrfs_finish_chunk_alloc(trans, extent_root,
8578 key.objectid, key.offset);
8579 if (ret)
8580 btrfs_abort_transaction(trans, extent_root, ret);
8581 }
8582 }
8583
8584 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8585 struct btrfs_root *root, u64 bytes_used,
8586 u64 type, u64 chunk_objectid, u64 chunk_offset,
8587 u64 size)
8588 {
8589 int ret;
8590 struct btrfs_root *extent_root;
8591 struct btrfs_block_group_cache *cache;
8592
8593 extent_root = root->fs_info->extent_root;
8594
8595 root->fs_info->last_trans_log_full_commit = trans->transid;
8596
8597 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8598 if (!cache)
8599 return -ENOMEM;
8600 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8601 GFP_NOFS);
8602 if (!cache->free_space_ctl) {
8603 kfree(cache);
8604 return -ENOMEM;
8605 }
8606
8607 cache->key.objectid = chunk_offset;
8608 cache->key.offset = size;
8609 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8610 cache->sectorsize = root->sectorsize;
8611 cache->fs_info = root->fs_info;
8612 cache->full_stripe_len = btrfs_full_stripe_len(root,
8613 &root->fs_info->mapping_tree,
8614 chunk_offset);
8615
8616 atomic_set(&cache->count, 1);
8617 spin_lock_init(&cache->lock);
8618 INIT_LIST_HEAD(&cache->list);
8619 INIT_LIST_HEAD(&cache->cluster_list);
8620 INIT_LIST_HEAD(&cache->new_bg_list);
8621
8622 btrfs_init_free_space_ctl(cache);
8623
8624 btrfs_set_block_group_used(&cache->item, bytes_used);
8625 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8626 cache->flags = type;
8627 btrfs_set_block_group_flags(&cache->item, type);
8628
8629 cache->last_byte_to_unpin = (u64)-1;
8630 cache->cached = BTRFS_CACHE_FINISHED;
8631 ret = exclude_super_stripes(root, cache);
8632 if (ret) {
8633 /*
8634 * We may have excluded something, so call this just in
8635 * case.
8636 */
8637 free_excluded_extents(root, cache);
8638 kfree(cache->free_space_ctl);
8639 kfree(cache);
8640 return ret;
8641 }
8642
8643 add_new_free_space(cache, root->fs_info, chunk_offset,
8644 chunk_offset + size);
8645
8646 free_excluded_extents(root, cache);
8647
8648 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8649 if (ret) {
8650 btrfs_remove_free_space_cache(cache);
8651 btrfs_put_block_group(cache);
8652 return ret;
8653 }
8654
8655 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8656 &cache->space_info);
8657 if (ret) {
8658 btrfs_remove_free_space_cache(cache);
8659 spin_lock(&root->fs_info->block_group_cache_lock);
8660 rb_erase(&cache->cache_node,
8661 &root->fs_info->block_group_cache_tree);
8662 spin_unlock(&root->fs_info->block_group_cache_lock);
8663 btrfs_put_block_group(cache);
8664 return ret;
8665 }
8666 update_global_block_rsv(root->fs_info);
8667
8668 spin_lock(&cache->space_info->lock);
8669 cache->space_info->bytes_readonly += cache->bytes_super;
8670 spin_unlock(&cache->space_info->lock);
8671
8672 __link_block_group(cache->space_info, cache);
8673
8674 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8675
8676 set_avail_alloc_bits(extent_root->fs_info, type);
8677
8678 return 0;
8679 }
8680
8681 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8682 {
8683 u64 extra_flags = chunk_to_extended(flags) &
8684 BTRFS_EXTENDED_PROFILE_MASK;
8685
8686 write_seqlock(&fs_info->profiles_lock);
8687 if (flags & BTRFS_BLOCK_GROUP_DATA)
8688 fs_info->avail_data_alloc_bits &= ~extra_flags;
8689 if (flags & BTRFS_BLOCK_GROUP_METADATA)
8690 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8691 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8692 fs_info->avail_system_alloc_bits &= ~extra_flags;
8693 write_sequnlock(&fs_info->profiles_lock);
8694 }
8695
8696 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8697 struct btrfs_root *root, u64 group_start)
8698 {
8699 struct btrfs_path *path;
8700 struct btrfs_block_group_cache *block_group;
8701 struct btrfs_free_cluster *cluster;
8702 struct btrfs_root *tree_root = root->fs_info->tree_root;
8703 struct btrfs_key key;
8704 struct inode *inode;
8705 int ret;
8706 int index;
8707 int factor;
8708
8709 root = root->fs_info->extent_root;
8710
8711 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8712 BUG_ON(!block_group);
8713 BUG_ON(!block_group->ro);
8714
8715 /*
8716 * Free the reserved super bytes from this block group before
8717 * remove it.
8718 */
8719 free_excluded_extents(root, block_group);
8720
8721 memcpy(&key, &block_group->key, sizeof(key));
8722 index = get_block_group_index(block_group);
8723 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8724 BTRFS_BLOCK_GROUP_RAID1 |
8725 BTRFS_BLOCK_GROUP_RAID10))
8726 factor = 2;
8727 else
8728 factor = 1;
8729
8730 /* make sure this block group isn't part of an allocation cluster */
8731 cluster = &root->fs_info->data_alloc_cluster;
8732 spin_lock(&cluster->refill_lock);
8733 btrfs_return_cluster_to_free_space(block_group, cluster);
8734 spin_unlock(&cluster->refill_lock);
8735
8736 /*
8737 * make sure this block group isn't part of a metadata
8738 * allocation cluster
8739 */
8740 cluster = &root->fs_info->meta_alloc_cluster;
8741 spin_lock(&cluster->refill_lock);
8742 btrfs_return_cluster_to_free_space(block_group, cluster);
8743 spin_unlock(&cluster->refill_lock);
8744
8745 path = btrfs_alloc_path();
8746 if (!path) {
8747 ret = -ENOMEM;
8748 goto out;
8749 }
8750
8751 inode = lookup_free_space_inode(tree_root, block_group, path);
8752 if (!IS_ERR(inode)) {
8753 ret = btrfs_orphan_add(trans, inode);
8754 if (ret) {
8755 btrfs_add_delayed_iput(inode);
8756 goto out;
8757 }
8758 clear_nlink(inode);
8759 /* One for the block groups ref */
8760 spin_lock(&block_group->lock);
8761 if (block_group->iref) {
8762 block_group->iref = 0;
8763 block_group->inode = NULL;
8764 spin_unlock(&block_group->lock);
8765 iput(inode);
8766 } else {
8767 spin_unlock(&block_group->lock);
8768 }
8769 /* One for our lookup ref */
8770 btrfs_add_delayed_iput(inode);
8771 }
8772
8773 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8774 key.offset = block_group->key.objectid;
8775 key.type = 0;
8776
8777 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8778 if (ret < 0)
8779 goto out;
8780 if (ret > 0)
8781 btrfs_release_path(path);
8782 if (ret == 0) {
8783 ret = btrfs_del_item(trans, tree_root, path);
8784 if (ret)
8785 goto out;
8786 btrfs_release_path(path);
8787 }
8788
8789 spin_lock(&root->fs_info->block_group_cache_lock);
8790 rb_erase(&block_group->cache_node,
8791 &root->fs_info->block_group_cache_tree);
8792
8793 if (root->fs_info->first_logical_byte == block_group->key.objectid)
8794 root->fs_info->first_logical_byte = (u64)-1;
8795 spin_unlock(&root->fs_info->block_group_cache_lock);
8796
8797 down_write(&block_group->space_info->groups_sem);
8798 /*
8799 * we must use list_del_init so people can check to see if they
8800 * are still on the list after taking the semaphore
8801 */
8802 list_del_init(&block_group->list);
8803 if (list_empty(&block_group->space_info->block_groups[index])) {
8804 kobject_del(&block_group->space_info->block_group_kobjs[index]);
8805 kobject_put(&block_group->space_info->block_group_kobjs[index]);
8806 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8807 }
8808 up_write(&block_group->space_info->groups_sem);
8809
8810 if (block_group->cached == BTRFS_CACHE_STARTED)
8811 wait_block_group_cache_done(block_group);
8812
8813 btrfs_remove_free_space_cache(block_group);
8814
8815 spin_lock(&block_group->space_info->lock);
8816 block_group->space_info->total_bytes -= block_group->key.offset;
8817 block_group->space_info->bytes_readonly -= block_group->key.offset;
8818 block_group->space_info->disk_total -= block_group->key.offset * factor;
8819 spin_unlock(&block_group->space_info->lock);
8820
8821 memcpy(&key, &block_group->key, sizeof(key));
8822
8823 btrfs_clear_space_info_full(root->fs_info);
8824
8825 btrfs_put_block_group(block_group);
8826 btrfs_put_block_group(block_group);
8827
8828 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8829 if (ret > 0)
8830 ret = -EIO;
8831 if (ret < 0)
8832 goto out;
8833
8834 ret = btrfs_del_item(trans, root, path);
8835 out:
8836 btrfs_free_path(path);
8837 return ret;
8838 }
8839
8840 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8841 {
8842 struct btrfs_space_info *space_info;
8843 struct btrfs_super_block *disk_super;
8844 u64 features;
8845 u64 flags;
8846 int mixed = 0;
8847 int ret;
8848
8849 disk_super = fs_info->super_copy;
8850 if (!btrfs_super_root(disk_super))
8851 return 1;
8852
8853 features = btrfs_super_incompat_flags(disk_super);
8854 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8855 mixed = 1;
8856
8857 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8858 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8859 if (ret)
8860 goto out;
8861
8862 if (mixed) {
8863 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8864 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8865 } else {
8866 flags = BTRFS_BLOCK_GROUP_METADATA;
8867 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8868 if (ret)
8869 goto out;
8870
8871 flags = BTRFS_BLOCK_GROUP_DATA;
8872 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8873 }
8874 out:
8875 return ret;
8876 }
8877
8878 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8879 {
8880 return unpin_extent_range(root, start, end);
8881 }
8882
8883 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8884 u64 num_bytes, u64 *actual_bytes)
8885 {
8886 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8887 }
8888
8889 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8890 {
8891 struct btrfs_fs_info *fs_info = root->fs_info;
8892 struct btrfs_block_group_cache *cache = NULL;
8893 u64 group_trimmed;
8894 u64 start;
8895 u64 end;
8896 u64 trimmed = 0;
8897 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8898 int ret = 0;
8899
8900 /*
8901 * try to trim all FS space, our block group may start from non-zero.
8902 */
8903 if (range->len == total_bytes)
8904 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8905 else
8906 cache = btrfs_lookup_block_group(fs_info, range->start);
8907
8908 while (cache) {
8909 if (cache->key.objectid >= (range->start + range->len)) {
8910 btrfs_put_block_group(cache);
8911 break;
8912 }
8913
8914 start = max(range->start, cache->key.objectid);
8915 end = min(range->start + range->len,
8916 cache->key.objectid + cache->key.offset);
8917
8918 if (end - start >= range->minlen) {
8919 if (!block_group_cache_done(cache)) {
8920 ret = cache_block_group(cache, 0);
8921 if (ret) {
8922 btrfs_put_block_group(cache);
8923 break;
8924 }
8925 ret = wait_block_group_cache_done(cache);
8926 if (ret) {
8927 btrfs_put_block_group(cache);
8928 break;
8929 }
8930 }
8931 ret = btrfs_trim_block_group(cache,
8932 &group_trimmed,
8933 start,
8934 end,
8935 range->minlen);
8936
8937 trimmed += group_trimmed;
8938 if (ret) {
8939 btrfs_put_block_group(cache);
8940 break;
8941 }
8942 }
8943
8944 cache = next_block_group(fs_info->tree_root, cache);
8945 }
8946
8947 range->len = trimmed;
8948 return ret;
8949 }
This page took 0.198344 seconds and 6 git commands to generate.