btrfs: don't BUG_ON btrfs_alloc_path() errors
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include "compat.h"
27 #include "hash.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "print-tree.h"
31 #include "transaction.h"
32 #include "volumes.h"
33 #include "locking.h"
34 #include "free-space-cache.h"
35
36 /* control flags for do_chunk_alloc's force field
37 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
38 * if we really need one.
39 *
40 * CHUNK_ALLOC_FORCE means it must try to allocate one
41 *
42 * CHUNK_ALLOC_LIMITED means to only try and allocate one
43 * if we have very few chunks already allocated. This is
44 * used as part of the clustering code to help make sure
45 * we have a good pool of storage to cluster in, without
46 * filling the FS with empty chunks
47 *
48 */
49 enum {
50 CHUNK_ALLOC_NO_FORCE = 0,
51 CHUNK_ALLOC_FORCE = 1,
52 CHUNK_ALLOC_LIMITED = 2,
53 };
54
55 static int update_block_group(struct btrfs_trans_handle *trans,
56 struct btrfs_root *root,
57 u64 bytenr, u64 num_bytes, int alloc);
58 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
59 struct btrfs_root *root,
60 u64 bytenr, u64 num_bytes, u64 parent,
61 u64 root_objectid, u64 owner_objectid,
62 u64 owner_offset, int refs_to_drop,
63 struct btrfs_delayed_extent_op *extra_op);
64 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
65 struct extent_buffer *leaf,
66 struct btrfs_extent_item *ei);
67 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
68 struct btrfs_root *root,
69 u64 parent, u64 root_objectid,
70 u64 flags, u64 owner, u64 offset,
71 struct btrfs_key *ins, int ref_mod);
72 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
73 struct btrfs_root *root,
74 u64 parent, u64 root_objectid,
75 u64 flags, struct btrfs_disk_key *key,
76 int level, struct btrfs_key *ins);
77 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
78 struct btrfs_root *extent_root, u64 alloc_bytes,
79 u64 flags, int force);
80 static int find_next_key(struct btrfs_path *path, int level,
81 struct btrfs_key *key);
82 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
83 int dump_block_groups);
84
85 static noinline int
86 block_group_cache_done(struct btrfs_block_group_cache *cache)
87 {
88 smp_mb();
89 return cache->cached == BTRFS_CACHE_FINISHED;
90 }
91
92 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
93 {
94 return (cache->flags & bits) == bits;
95 }
96
97 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
98 {
99 atomic_inc(&cache->count);
100 }
101
102 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
103 {
104 if (atomic_dec_and_test(&cache->count)) {
105 WARN_ON(cache->pinned > 0);
106 WARN_ON(cache->reserved > 0);
107 WARN_ON(cache->reserved_pinned > 0);
108 kfree(cache->free_space_ctl);
109 kfree(cache);
110 }
111 }
112
113 /*
114 * this adds the block group to the fs_info rb tree for the block group
115 * cache
116 */
117 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
118 struct btrfs_block_group_cache *block_group)
119 {
120 struct rb_node **p;
121 struct rb_node *parent = NULL;
122 struct btrfs_block_group_cache *cache;
123
124 spin_lock(&info->block_group_cache_lock);
125 p = &info->block_group_cache_tree.rb_node;
126
127 while (*p) {
128 parent = *p;
129 cache = rb_entry(parent, struct btrfs_block_group_cache,
130 cache_node);
131 if (block_group->key.objectid < cache->key.objectid) {
132 p = &(*p)->rb_left;
133 } else if (block_group->key.objectid > cache->key.objectid) {
134 p = &(*p)->rb_right;
135 } else {
136 spin_unlock(&info->block_group_cache_lock);
137 return -EEXIST;
138 }
139 }
140
141 rb_link_node(&block_group->cache_node, parent, p);
142 rb_insert_color(&block_group->cache_node,
143 &info->block_group_cache_tree);
144 spin_unlock(&info->block_group_cache_lock);
145
146 return 0;
147 }
148
149 /*
150 * This will return the block group at or after bytenr if contains is 0, else
151 * it will return the block group that contains the bytenr
152 */
153 static struct btrfs_block_group_cache *
154 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
155 int contains)
156 {
157 struct btrfs_block_group_cache *cache, *ret = NULL;
158 struct rb_node *n;
159 u64 end, start;
160
161 spin_lock(&info->block_group_cache_lock);
162 n = info->block_group_cache_tree.rb_node;
163
164 while (n) {
165 cache = rb_entry(n, struct btrfs_block_group_cache,
166 cache_node);
167 end = cache->key.objectid + cache->key.offset - 1;
168 start = cache->key.objectid;
169
170 if (bytenr < start) {
171 if (!contains && (!ret || start < ret->key.objectid))
172 ret = cache;
173 n = n->rb_left;
174 } else if (bytenr > start) {
175 if (contains && bytenr <= end) {
176 ret = cache;
177 break;
178 }
179 n = n->rb_right;
180 } else {
181 ret = cache;
182 break;
183 }
184 }
185 if (ret)
186 btrfs_get_block_group(ret);
187 spin_unlock(&info->block_group_cache_lock);
188
189 return ret;
190 }
191
192 static int add_excluded_extent(struct btrfs_root *root,
193 u64 start, u64 num_bytes)
194 {
195 u64 end = start + num_bytes - 1;
196 set_extent_bits(&root->fs_info->freed_extents[0],
197 start, end, EXTENT_UPTODATE, GFP_NOFS);
198 set_extent_bits(&root->fs_info->freed_extents[1],
199 start, end, EXTENT_UPTODATE, GFP_NOFS);
200 return 0;
201 }
202
203 static void free_excluded_extents(struct btrfs_root *root,
204 struct btrfs_block_group_cache *cache)
205 {
206 u64 start, end;
207
208 start = cache->key.objectid;
209 end = start + cache->key.offset - 1;
210
211 clear_extent_bits(&root->fs_info->freed_extents[0],
212 start, end, EXTENT_UPTODATE, GFP_NOFS);
213 clear_extent_bits(&root->fs_info->freed_extents[1],
214 start, end, EXTENT_UPTODATE, GFP_NOFS);
215 }
216
217 static int exclude_super_stripes(struct btrfs_root *root,
218 struct btrfs_block_group_cache *cache)
219 {
220 u64 bytenr;
221 u64 *logical;
222 int stripe_len;
223 int i, nr, ret;
224
225 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
226 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
227 cache->bytes_super += stripe_len;
228 ret = add_excluded_extent(root, cache->key.objectid,
229 stripe_len);
230 BUG_ON(ret);
231 }
232
233 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
234 bytenr = btrfs_sb_offset(i);
235 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
236 cache->key.objectid, bytenr,
237 0, &logical, &nr, &stripe_len);
238 BUG_ON(ret);
239
240 while (nr--) {
241 cache->bytes_super += stripe_len;
242 ret = add_excluded_extent(root, logical[nr],
243 stripe_len);
244 BUG_ON(ret);
245 }
246
247 kfree(logical);
248 }
249 return 0;
250 }
251
252 static struct btrfs_caching_control *
253 get_caching_control(struct btrfs_block_group_cache *cache)
254 {
255 struct btrfs_caching_control *ctl;
256
257 spin_lock(&cache->lock);
258 if (cache->cached != BTRFS_CACHE_STARTED) {
259 spin_unlock(&cache->lock);
260 return NULL;
261 }
262
263 /* We're loading it the fast way, so we don't have a caching_ctl. */
264 if (!cache->caching_ctl) {
265 spin_unlock(&cache->lock);
266 return NULL;
267 }
268
269 ctl = cache->caching_ctl;
270 atomic_inc(&ctl->count);
271 spin_unlock(&cache->lock);
272 return ctl;
273 }
274
275 static void put_caching_control(struct btrfs_caching_control *ctl)
276 {
277 if (atomic_dec_and_test(&ctl->count))
278 kfree(ctl);
279 }
280
281 /*
282 * this is only called by cache_block_group, since we could have freed extents
283 * we need to check the pinned_extents for any extents that can't be used yet
284 * since their free space will be released as soon as the transaction commits.
285 */
286 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
287 struct btrfs_fs_info *info, u64 start, u64 end)
288 {
289 u64 extent_start, extent_end, size, total_added = 0;
290 int ret;
291
292 while (start < end) {
293 ret = find_first_extent_bit(info->pinned_extents, start,
294 &extent_start, &extent_end,
295 EXTENT_DIRTY | EXTENT_UPTODATE);
296 if (ret)
297 break;
298
299 if (extent_start <= start) {
300 start = extent_end + 1;
301 } else if (extent_start > start && extent_start < end) {
302 size = extent_start - start;
303 total_added += size;
304 ret = btrfs_add_free_space(block_group, start,
305 size);
306 BUG_ON(ret);
307 start = extent_end + 1;
308 } else {
309 break;
310 }
311 }
312
313 if (start < end) {
314 size = end - start;
315 total_added += size;
316 ret = btrfs_add_free_space(block_group, start, size);
317 BUG_ON(ret);
318 }
319
320 return total_added;
321 }
322
323 static int caching_kthread(void *data)
324 {
325 struct btrfs_block_group_cache *block_group = data;
326 struct btrfs_fs_info *fs_info = block_group->fs_info;
327 struct btrfs_caching_control *caching_ctl = block_group->caching_ctl;
328 struct btrfs_root *extent_root = fs_info->extent_root;
329 struct btrfs_path *path;
330 struct extent_buffer *leaf;
331 struct btrfs_key key;
332 u64 total_found = 0;
333 u64 last = 0;
334 u32 nritems;
335 int ret = 0;
336
337 path = btrfs_alloc_path();
338 if (!path)
339 return -ENOMEM;
340
341 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
342
343 /*
344 * We don't want to deadlock with somebody trying to allocate a new
345 * extent for the extent root while also trying to search the extent
346 * root to add free space. So we skip locking and search the commit
347 * root, since its read-only
348 */
349 path->skip_locking = 1;
350 path->search_commit_root = 1;
351 path->reada = 1;
352
353 key.objectid = last;
354 key.offset = 0;
355 key.type = BTRFS_EXTENT_ITEM_KEY;
356 again:
357 mutex_lock(&caching_ctl->mutex);
358 /* need to make sure the commit_root doesn't disappear */
359 down_read(&fs_info->extent_commit_sem);
360
361 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
362 if (ret < 0)
363 goto err;
364
365 leaf = path->nodes[0];
366 nritems = btrfs_header_nritems(leaf);
367
368 while (1) {
369 if (btrfs_fs_closing(fs_info) > 1) {
370 last = (u64)-1;
371 break;
372 }
373
374 if (path->slots[0] < nritems) {
375 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
376 } else {
377 ret = find_next_key(path, 0, &key);
378 if (ret)
379 break;
380
381 if (need_resched() ||
382 btrfs_next_leaf(extent_root, path)) {
383 caching_ctl->progress = last;
384 btrfs_release_path(path);
385 up_read(&fs_info->extent_commit_sem);
386 mutex_unlock(&caching_ctl->mutex);
387 cond_resched();
388 goto again;
389 }
390 leaf = path->nodes[0];
391 nritems = btrfs_header_nritems(leaf);
392 continue;
393 }
394
395 if (key.objectid < block_group->key.objectid) {
396 path->slots[0]++;
397 continue;
398 }
399
400 if (key.objectid >= block_group->key.objectid +
401 block_group->key.offset)
402 break;
403
404 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
405 total_found += add_new_free_space(block_group,
406 fs_info, last,
407 key.objectid);
408 last = key.objectid + key.offset;
409
410 if (total_found > (1024 * 1024 * 2)) {
411 total_found = 0;
412 wake_up(&caching_ctl->wait);
413 }
414 }
415 path->slots[0]++;
416 }
417 ret = 0;
418
419 total_found += add_new_free_space(block_group, fs_info, last,
420 block_group->key.objectid +
421 block_group->key.offset);
422 caching_ctl->progress = (u64)-1;
423
424 spin_lock(&block_group->lock);
425 block_group->caching_ctl = NULL;
426 block_group->cached = BTRFS_CACHE_FINISHED;
427 spin_unlock(&block_group->lock);
428
429 err:
430 btrfs_free_path(path);
431 up_read(&fs_info->extent_commit_sem);
432
433 free_excluded_extents(extent_root, block_group);
434
435 mutex_unlock(&caching_ctl->mutex);
436 wake_up(&caching_ctl->wait);
437
438 put_caching_control(caching_ctl);
439 atomic_dec(&block_group->space_info->caching_threads);
440 btrfs_put_block_group(block_group);
441
442 return 0;
443 }
444
445 static int cache_block_group(struct btrfs_block_group_cache *cache,
446 struct btrfs_trans_handle *trans,
447 struct btrfs_root *root,
448 int load_cache_only)
449 {
450 struct btrfs_fs_info *fs_info = cache->fs_info;
451 struct btrfs_caching_control *caching_ctl;
452 struct task_struct *tsk;
453 int ret = 0;
454
455 smp_mb();
456 if (cache->cached != BTRFS_CACHE_NO)
457 return 0;
458
459 /*
460 * We can't do the read from on-disk cache during a commit since we need
461 * to have the normal tree locking. Also if we are currently trying to
462 * allocate blocks for the tree root we can't do the fast caching since
463 * we likely hold important locks.
464 */
465 if (trans && (!trans->transaction->in_commit) &&
466 (root && root != root->fs_info->tree_root)) {
467 spin_lock(&cache->lock);
468 if (cache->cached != BTRFS_CACHE_NO) {
469 spin_unlock(&cache->lock);
470 return 0;
471 }
472 cache->cached = BTRFS_CACHE_STARTED;
473 spin_unlock(&cache->lock);
474
475 ret = load_free_space_cache(fs_info, cache);
476
477 spin_lock(&cache->lock);
478 if (ret == 1) {
479 cache->cached = BTRFS_CACHE_FINISHED;
480 cache->last_byte_to_unpin = (u64)-1;
481 } else {
482 cache->cached = BTRFS_CACHE_NO;
483 }
484 spin_unlock(&cache->lock);
485 if (ret == 1) {
486 free_excluded_extents(fs_info->extent_root, cache);
487 return 0;
488 }
489 }
490
491 if (load_cache_only)
492 return 0;
493
494 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
495 BUG_ON(!caching_ctl);
496
497 INIT_LIST_HEAD(&caching_ctl->list);
498 mutex_init(&caching_ctl->mutex);
499 init_waitqueue_head(&caching_ctl->wait);
500 caching_ctl->block_group = cache;
501 caching_ctl->progress = cache->key.objectid;
502 /* one for caching kthread, one for caching block group list */
503 atomic_set(&caching_ctl->count, 2);
504
505 spin_lock(&cache->lock);
506 if (cache->cached != BTRFS_CACHE_NO) {
507 spin_unlock(&cache->lock);
508 kfree(caching_ctl);
509 return 0;
510 }
511 cache->caching_ctl = caching_ctl;
512 cache->cached = BTRFS_CACHE_STARTED;
513 spin_unlock(&cache->lock);
514
515 down_write(&fs_info->extent_commit_sem);
516 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
517 up_write(&fs_info->extent_commit_sem);
518
519 atomic_inc(&cache->space_info->caching_threads);
520 btrfs_get_block_group(cache);
521
522 tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n",
523 cache->key.objectid);
524 if (IS_ERR(tsk)) {
525 ret = PTR_ERR(tsk);
526 printk(KERN_ERR "error running thread %d\n", ret);
527 BUG();
528 }
529
530 return ret;
531 }
532
533 /*
534 * return the block group that starts at or after bytenr
535 */
536 static struct btrfs_block_group_cache *
537 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
538 {
539 struct btrfs_block_group_cache *cache;
540
541 cache = block_group_cache_tree_search(info, bytenr, 0);
542
543 return cache;
544 }
545
546 /*
547 * return the block group that contains the given bytenr
548 */
549 struct btrfs_block_group_cache *btrfs_lookup_block_group(
550 struct btrfs_fs_info *info,
551 u64 bytenr)
552 {
553 struct btrfs_block_group_cache *cache;
554
555 cache = block_group_cache_tree_search(info, bytenr, 1);
556
557 return cache;
558 }
559
560 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
561 u64 flags)
562 {
563 struct list_head *head = &info->space_info;
564 struct btrfs_space_info *found;
565
566 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
567 BTRFS_BLOCK_GROUP_METADATA;
568
569 rcu_read_lock();
570 list_for_each_entry_rcu(found, head, list) {
571 if (found->flags & flags) {
572 rcu_read_unlock();
573 return found;
574 }
575 }
576 rcu_read_unlock();
577 return NULL;
578 }
579
580 /*
581 * after adding space to the filesystem, we need to clear the full flags
582 * on all the space infos.
583 */
584 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
585 {
586 struct list_head *head = &info->space_info;
587 struct btrfs_space_info *found;
588
589 rcu_read_lock();
590 list_for_each_entry_rcu(found, head, list)
591 found->full = 0;
592 rcu_read_unlock();
593 }
594
595 static u64 div_factor(u64 num, int factor)
596 {
597 if (factor == 10)
598 return num;
599 num *= factor;
600 do_div(num, 10);
601 return num;
602 }
603
604 static u64 div_factor_fine(u64 num, int factor)
605 {
606 if (factor == 100)
607 return num;
608 num *= factor;
609 do_div(num, 100);
610 return num;
611 }
612
613 u64 btrfs_find_block_group(struct btrfs_root *root,
614 u64 search_start, u64 search_hint, int owner)
615 {
616 struct btrfs_block_group_cache *cache;
617 u64 used;
618 u64 last = max(search_hint, search_start);
619 u64 group_start = 0;
620 int full_search = 0;
621 int factor = 9;
622 int wrapped = 0;
623 again:
624 while (1) {
625 cache = btrfs_lookup_first_block_group(root->fs_info, last);
626 if (!cache)
627 break;
628
629 spin_lock(&cache->lock);
630 last = cache->key.objectid + cache->key.offset;
631 used = btrfs_block_group_used(&cache->item);
632
633 if ((full_search || !cache->ro) &&
634 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
635 if (used + cache->pinned + cache->reserved <
636 div_factor(cache->key.offset, factor)) {
637 group_start = cache->key.objectid;
638 spin_unlock(&cache->lock);
639 btrfs_put_block_group(cache);
640 goto found;
641 }
642 }
643 spin_unlock(&cache->lock);
644 btrfs_put_block_group(cache);
645 cond_resched();
646 }
647 if (!wrapped) {
648 last = search_start;
649 wrapped = 1;
650 goto again;
651 }
652 if (!full_search && factor < 10) {
653 last = search_start;
654 full_search = 1;
655 factor = 10;
656 goto again;
657 }
658 found:
659 return group_start;
660 }
661
662 /* simple helper to search for an existing extent at a given offset */
663 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
664 {
665 int ret;
666 struct btrfs_key key;
667 struct btrfs_path *path;
668
669 path = btrfs_alloc_path();
670 if (!path)
671 return -ENOMEM;
672
673 key.objectid = start;
674 key.offset = len;
675 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
676 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
677 0, 0);
678 btrfs_free_path(path);
679 return ret;
680 }
681
682 /*
683 * helper function to lookup reference count and flags of extent.
684 *
685 * the head node for delayed ref is used to store the sum of all the
686 * reference count modifications queued up in the rbtree. the head
687 * node may also store the extent flags to set. This way you can check
688 * to see what the reference count and extent flags would be if all of
689 * the delayed refs are not processed.
690 */
691 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
692 struct btrfs_root *root, u64 bytenr,
693 u64 num_bytes, u64 *refs, u64 *flags)
694 {
695 struct btrfs_delayed_ref_head *head;
696 struct btrfs_delayed_ref_root *delayed_refs;
697 struct btrfs_path *path;
698 struct btrfs_extent_item *ei;
699 struct extent_buffer *leaf;
700 struct btrfs_key key;
701 u32 item_size;
702 u64 num_refs;
703 u64 extent_flags;
704 int ret;
705
706 path = btrfs_alloc_path();
707 if (!path)
708 return -ENOMEM;
709
710 key.objectid = bytenr;
711 key.type = BTRFS_EXTENT_ITEM_KEY;
712 key.offset = num_bytes;
713 if (!trans) {
714 path->skip_locking = 1;
715 path->search_commit_root = 1;
716 }
717 again:
718 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
719 &key, path, 0, 0);
720 if (ret < 0)
721 goto out_free;
722
723 if (ret == 0) {
724 leaf = path->nodes[0];
725 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
726 if (item_size >= sizeof(*ei)) {
727 ei = btrfs_item_ptr(leaf, path->slots[0],
728 struct btrfs_extent_item);
729 num_refs = btrfs_extent_refs(leaf, ei);
730 extent_flags = btrfs_extent_flags(leaf, ei);
731 } else {
732 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
733 struct btrfs_extent_item_v0 *ei0;
734 BUG_ON(item_size != sizeof(*ei0));
735 ei0 = btrfs_item_ptr(leaf, path->slots[0],
736 struct btrfs_extent_item_v0);
737 num_refs = btrfs_extent_refs_v0(leaf, ei0);
738 /* FIXME: this isn't correct for data */
739 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
740 #else
741 BUG();
742 #endif
743 }
744 BUG_ON(num_refs == 0);
745 } else {
746 num_refs = 0;
747 extent_flags = 0;
748 ret = 0;
749 }
750
751 if (!trans)
752 goto out;
753
754 delayed_refs = &trans->transaction->delayed_refs;
755 spin_lock(&delayed_refs->lock);
756 head = btrfs_find_delayed_ref_head(trans, bytenr);
757 if (head) {
758 if (!mutex_trylock(&head->mutex)) {
759 atomic_inc(&head->node.refs);
760 spin_unlock(&delayed_refs->lock);
761
762 btrfs_release_path(path);
763
764 /*
765 * Mutex was contended, block until it's released and try
766 * again
767 */
768 mutex_lock(&head->mutex);
769 mutex_unlock(&head->mutex);
770 btrfs_put_delayed_ref(&head->node);
771 goto again;
772 }
773 if (head->extent_op && head->extent_op->update_flags)
774 extent_flags |= head->extent_op->flags_to_set;
775 else
776 BUG_ON(num_refs == 0);
777
778 num_refs += head->node.ref_mod;
779 mutex_unlock(&head->mutex);
780 }
781 spin_unlock(&delayed_refs->lock);
782 out:
783 WARN_ON(num_refs == 0);
784 if (refs)
785 *refs = num_refs;
786 if (flags)
787 *flags = extent_flags;
788 out_free:
789 btrfs_free_path(path);
790 return ret;
791 }
792
793 /*
794 * Back reference rules. Back refs have three main goals:
795 *
796 * 1) differentiate between all holders of references to an extent so that
797 * when a reference is dropped we can make sure it was a valid reference
798 * before freeing the extent.
799 *
800 * 2) Provide enough information to quickly find the holders of an extent
801 * if we notice a given block is corrupted or bad.
802 *
803 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
804 * maintenance. This is actually the same as #2, but with a slightly
805 * different use case.
806 *
807 * There are two kinds of back refs. The implicit back refs is optimized
808 * for pointers in non-shared tree blocks. For a given pointer in a block,
809 * back refs of this kind provide information about the block's owner tree
810 * and the pointer's key. These information allow us to find the block by
811 * b-tree searching. The full back refs is for pointers in tree blocks not
812 * referenced by their owner trees. The location of tree block is recorded
813 * in the back refs. Actually the full back refs is generic, and can be
814 * used in all cases the implicit back refs is used. The major shortcoming
815 * of the full back refs is its overhead. Every time a tree block gets
816 * COWed, we have to update back refs entry for all pointers in it.
817 *
818 * For a newly allocated tree block, we use implicit back refs for
819 * pointers in it. This means most tree related operations only involve
820 * implicit back refs. For a tree block created in old transaction, the
821 * only way to drop a reference to it is COW it. So we can detect the
822 * event that tree block loses its owner tree's reference and do the
823 * back refs conversion.
824 *
825 * When a tree block is COW'd through a tree, there are four cases:
826 *
827 * The reference count of the block is one and the tree is the block's
828 * owner tree. Nothing to do in this case.
829 *
830 * The reference count of the block is one and the tree is not the
831 * block's owner tree. In this case, full back refs is used for pointers
832 * in the block. Remove these full back refs, add implicit back refs for
833 * every pointers in the new block.
834 *
835 * The reference count of the block is greater than one and the tree is
836 * the block's owner tree. In this case, implicit back refs is used for
837 * pointers in the block. Add full back refs for every pointers in the
838 * block, increase lower level extents' reference counts. The original
839 * implicit back refs are entailed to the new block.
840 *
841 * The reference count of the block is greater than one and the tree is
842 * not the block's owner tree. Add implicit back refs for every pointer in
843 * the new block, increase lower level extents' reference count.
844 *
845 * Back Reference Key composing:
846 *
847 * The key objectid corresponds to the first byte in the extent,
848 * The key type is used to differentiate between types of back refs.
849 * There are different meanings of the key offset for different types
850 * of back refs.
851 *
852 * File extents can be referenced by:
853 *
854 * - multiple snapshots, subvolumes, or different generations in one subvol
855 * - different files inside a single subvolume
856 * - different offsets inside a file (bookend extents in file.c)
857 *
858 * The extent ref structure for the implicit back refs has fields for:
859 *
860 * - Objectid of the subvolume root
861 * - objectid of the file holding the reference
862 * - original offset in the file
863 * - how many bookend extents
864 *
865 * The key offset for the implicit back refs is hash of the first
866 * three fields.
867 *
868 * The extent ref structure for the full back refs has field for:
869 *
870 * - number of pointers in the tree leaf
871 *
872 * The key offset for the implicit back refs is the first byte of
873 * the tree leaf
874 *
875 * When a file extent is allocated, The implicit back refs is used.
876 * the fields are filled in:
877 *
878 * (root_key.objectid, inode objectid, offset in file, 1)
879 *
880 * When a file extent is removed file truncation, we find the
881 * corresponding implicit back refs and check the following fields:
882 *
883 * (btrfs_header_owner(leaf), inode objectid, offset in file)
884 *
885 * Btree extents can be referenced by:
886 *
887 * - Different subvolumes
888 *
889 * Both the implicit back refs and the full back refs for tree blocks
890 * only consist of key. The key offset for the implicit back refs is
891 * objectid of block's owner tree. The key offset for the full back refs
892 * is the first byte of parent block.
893 *
894 * When implicit back refs is used, information about the lowest key and
895 * level of the tree block are required. These information are stored in
896 * tree block info structure.
897 */
898
899 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
900 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
901 struct btrfs_root *root,
902 struct btrfs_path *path,
903 u64 owner, u32 extra_size)
904 {
905 struct btrfs_extent_item *item;
906 struct btrfs_extent_item_v0 *ei0;
907 struct btrfs_extent_ref_v0 *ref0;
908 struct btrfs_tree_block_info *bi;
909 struct extent_buffer *leaf;
910 struct btrfs_key key;
911 struct btrfs_key found_key;
912 u32 new_size = sizeof(*item);
913 u64 refs;
914 int ret;
915
916 leaf = path->nodes[0];
917 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
918
919 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
920 ei0 = btrfs_item_ptr(leaf, path->slots[0],
921 struct btrfs_extent_item_v0);
922 refs = btrfs_extent_refs_v0(leaf, ei0);
923
924 if (owner == (u64)-1) {
925 while (1) {
926 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
927 ret = btrfs_next_leaf(root, path);
928 if (ret < 0)
929 return ret;
930 BUG_ON(ret > 0);
931 leaf = path->nodes[0];
932 }
933 btrfs_item_key_to_cpu(leaf, &found_key,
934 path->slots[0]);
935 BUG_ON(key.objectid != found_key.objectid);
936 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
937 path->slots[0]++;
938 continue;
939 }
940 ref0 = btrfs_item_ptr(leaf, path->slots[0],
941 struct btrfs_extent_ref_v0);
942 owner = btrfs_ref_objectid_v0(leaf, ref0);
943 break;
944 }
945 }
946 btrfs_release_path(path);
947
948 if (owner < BTRFS_FIRST_FREE_OBJECTID)
949 new_size += sizeof(*bi);
950
951 new_size -= sizeof(*ei0);
952 ret = btrfs_search_slot(trans, root, &key, path,
953 new_size + extra_size, 1);
954 if (ret < 0)
955 return ret;
956 BUG_ON(ret);
957
958 ret = btrfs_extend_item(trans, root, path, new_size);
959
960 leaf = path->nodes[0];
961 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
962 btrfs_set_extent_refs(leaf, item, refs);
963 /* FIXME: get real generation */
964 btrfs_set_extent_generation(leaf, item, 0);
965 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
966 btrfs_set_extent_flags(leaf, item,
967 BTRFS_EXTENT_FLAG_TREE_BLOCK |
968 BTRFS_BLOCK_FLAG_FULL_BACKREF);
969 bi = (struct btrfs_tree_block_info *)(item + 1);
970 /* FIXME: get first key of the block */
971 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
972 btrfs_set_tree_block_level(leaf, bi, (int)owner);
973 } else {
974 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
975 }
976 btrfs_mark_buffer_dirty(leaf);
977 return 0;
978 }
979 #endif
980
981 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
982 {
983 u32 high_crc = ~(u32)0;
984 u32 low_crc = ~(u32)0;
985 __le64 lenum;
986
987 lenum = cpu_to_le64(root_objectid);
988 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
989 lenum = cpu_to_le64(owner);
990 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
991 lenum = cpu_to_le64(offset);
992 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
993
994 return ((u64)high_crc << 31) ^ (u64)low_crc;
995 }
996
997 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
998 struct btrfs_extent_data_ref *ref)
999 {
1000 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1001 btrfs_extent_data_ref_objectid(leaf, ref),
1002 btrfs_extent_data_ref_offset(leaf, ref));
1003 }
1004
1005 static int match_extent_data_ref(struct extent_buffer *leaf,
1006 struct btrfs_extent_data_ref *ref,
1007 u64 root_objectid, u64 owner, u64 offset)
1008 {
1009 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1010 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1011 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1012 return 0;
1013 return 1;
1014 }
1015
1016 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1017 struct btrfs_root *root,
1018 struct btrfs_path *path,
1019 u64 bytenr, u64 parent,
1020 u64 root_objectid,
1021 u64 owner, u64 offset)
1022 {
1023 struct btrfs_key key;
1024 struct btrfs_extent_data_ref *ref;
1025 struct extent_buffer *leaf;
1026 u32 nritems;
1027 int ret;
1028 int recow;
1029 int err = -ENOENT;
1030
1031 key.objectid = bytenr;
1032 if (parent) {
1033 key.type = BTRFS_SHARED_DATA_REF_KEY;
1034 key.offset = parent;
1035 } else {
1036 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1037 key.offset = hash_extent_data_ref(root_objectid,
1038 owner, offset);
1039 }
1040 again:
1041 recow = 0;
1042 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1043 if (ret < 0) {
1044 err = ret;
1045 goto fail;
1046 }
1047
1048 if (parent) {
1049 if (!ret)
1050 return 0;
1051 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1052 key.type = BTRFS_EXTENT_REF_V0_KEY;
1053 btrfs_release_path(path);
1054 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1055 if (ret < 0) {
1056 err = ret;
1057 goto fail;
1058 }
1059 if (!ret)
1060 return 0;
1061 #endif
1062 goto fail;
1063 }
1064
1065 leaf = path->nodes[0];
1066 nritems = btrfs_header_nritems(leaf);
1067 while (1) {
1068 if (path->slots[0] >= nritems) {
1069 ret = btrfs_next_leaf(root, path);
1070 if (ret < 0)
1071 err = ret;
1072 if (ret)
1073 goto fail;
1074
1075 leaf = path->nodes[0];
1076 nritems = btrfs_header_nritems(leaf);
1077 recow = 1;
1078 }
1079
1080 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1081 if (key.objectid != bytenr ||
1082 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1083 goto fail;
1084
1085 ref = btrfs_item_ptr(leaf, path->slots[0],
1086 struct btrfs_extent_data_ref);
1087
1088 if (match_extent_data_ref(leaf, ref, root_objectid,
1089 owner, offset)) {
1090 if (recow) {
1091 btrfs_release_path(path);
1092 goto again;
1093 }
1094 err = 0;
1095 break;
1096 }
1097 path->slots[0]++;
1098 }
1099 fail:
1100 return err;
1101 }
1102
1103 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1104 struct btrfs_root *root,
1105 struct btrfs_path *path,
1106 u64 bytenr, u64 parent,
1107 u64 root_objectid, u64 owner,
1108 u64 offset, int refs_to_add)
1109 {
1110 struct btrfs_key key;
1111 struct extent_buffer *leaf;
1112 u32 size;
1113 u32 num_refs;
1114 int ret;
1115
1116 key.objectid = bytenr;
1117 if (parent) {
1118 key.type = BTRFS_SHARED_DATA_REF_KEY;
1119 key.offset = parent;
1120 size = sizeof(struct btrfs_shared_data_ref);
1121 } else {
1122 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1123 key.offset = hash_extent_data_ref(root_objectid,
1124 owner, offset);
1125 size = sizeof(struct btrfs_extent_data_ref);
1126 }
1127
1128 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1129 if (ret && ret != -EEXIST)
1130 goto fail;
1131
1132 leaf = path->nodes[0];
1133 if (parent) {
1134 struct btrfs_shared_data_ref *ref;
1135 ref = btrfs_item_ptr(leaf, path->slots[0],
1136 struct btrfs_shared_data_ref);
1137 if (ret == 0) {
1138 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1139 } else {
1140 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1141 num_refs += refs_to_add;
1142 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1143 }
1144 } else {
1145 struct btrfs_extent_data_ref *ref;
1146 while (ret == -EEXIST) {
1147 ref = btrfs_item_ptr(leaf, path->slots[0],
1148 struct btrfs_extent_data_ref);
1149 if (match_extent_data_ref(leaf, ref, root_objectid,
1150 owner, offset))
1151 break;
1152 btrfs_release_path(path);
1153 key.offset++;
1154 ret = btrfs_insert_empty_item(trans, root, path, &key,
1155 size);
1156 if (ret && ret != -EEXIST)
1157 goto fail;
1158
1159 leaf = path->nodes[0];
1160 }
1161 ref = btrfs_item_ptr(leaf, path->slots[0],
1162 struct btrfs_extent_data_ref);
1163 if (ret == 0) {
1164 btrfs_set_extent_data_ref_root(leaf, ref,
1165 root_objectid);
1166 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1167 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1168 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1169 } else {
1170 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1171 num_refs += refs_to_add;
1172 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1173 }
1174 }
1175 btrfs_mark_buffer_dirty(leaf);
1176 ret = 0;
1177 fail:
1178 btrfs_release_path(path);
1179 return ret;
1180 }
1181
1182 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 struct btrfs_path *path,
1185 int refs_to_drop)
1186 {
1187 struct btrfs_key key;
1188 struct btrfs_extent_data_ref *ref1 = NULL;
1189 struct btrfs_shared_data_ref *ref2 = NULL;
1190 struct extent_buffer *leaf;
1191 u32 num_refs = 0;
1192 int ret = 0;
1193
1194 leaf = path->nodes[0];
1195 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1196
1197 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1198 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1199 struct btrfs_extent_data_ref);
1200 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1201 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1202 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1203 struct btrfs_shared_data_ref);
1204 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1205 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1206 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1207 struct btrfs_extent_ref_v0 *ref0;
1208 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1209 struct btrfs_extent_ref_v0);
1210 num_refs = btrfs_ref_count_v0(leaf, ref0);
1211 #endif
1212 } else {
1213 BUG();
1214 }
1215
1216 BUG_ON(num_refs < refs_to_drop);
1217 num_refs -= refs_to_drop;
1218
1219 if (num_refs == 0) {
1220 ret = btrfs_del_item(trans, root, path);
1221 } else {
1222 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1223 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1224 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1225 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1226 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1227 else {
1228 struct btrfs_extent_ref_v0 *ref0;
1229 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1230 struct btrfs_extent_ref_v0);
1231 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1232 }
1233 #endif
1234 btrfs_mark_buffer_dirty(leaf);
1235 }
1236 return ret;
1237 }
1238
1239 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1240 struct btrfs_path *path,
1241 struct btrfs_extent_inline_ref *iref)
1242 {
1243 struct btrfs_key key;
1244 struct extent_buffer *leaf;
1245 struct btrfs_extent_data_ref *ref1;
1246 struct btrfs_shared_data_ref *ref2;
1247 u32 num_refs = 0;
1248
1249 leaf = path->nodes[0];
1250 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1251 if (iref) {
1252 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1253 BTRFS_EXTENT_DATA_REF_KEY) {
1254 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1255 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1256 } else {
1257 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1258 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1259 }
1260 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1261 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1262 struct btrfs_extent_data_ref);
1263 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1264 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1265 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1266 struct btrfs_shared_data_ref);
1267 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1268 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1269 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1270 struct btrfs_extent_ref_v0 *ref0;
1271 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1272 struct btrfs_extent_ref_v0);
1273 num_refs = btrfs_ref_count_v0(leaf, ref0);
1274 #endif
1275 } else {
1276 WARN_ON(1);
1277 }
1278 return num_refs;
1279 }
1280
1281 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1282 struct btrfs_root *root,
1283 struct btrfs_path *path,
1284 u64 bytenr, u64 parent,
1285 u64 root_objectid)
1286 {
1287 struct btrfs_key key;
1288 int ret;
1289
1290 key.objectid = bytenr;
1291 if (parent) {
1292 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1293 key.offset = parent;
1294 } else {
1295 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1296 key.offset = root_objectid;
1297 }
1298
1299 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1300 if (ret > 0)
1301 ret = -ENOENT;
1302 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1303 if (ret == -ENOENT && parent) {
1304 btrfs_release_path(path);
1305 key.type = BTRFS_EXTENT_REF_V0_KEY;
1306 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1307 if (ret > 0)
1308 ret = -ENOENT;
1309 }
1310 #endif
1311 return ret;
1312 }
1313
1314 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1315 struct btrfs_root *root,
1316 struct btrfs_path *path,
1317 u64 bytenr, u64 parent,
1318 u64 root_objectid)
1319 {
1320 struct btrfs_key key;
1321 int ret;
1322
1323 key.objectid = bytenr;
1324 if (parent) {
1325 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1326 key.offset = parent;
1327 } else {
1328 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1329 key.offset = root_objectid;
1330 }
1331
1332 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1333 btrfs_release_path(path);
1334 return ret;
1335 }
1336
1337 static inline int extent_ref_type(u64 parent, u64 owner)
1338 {
1339 int type;
1340 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1341 if (parent > 0)
1342 type = BTRFS_SHARED_BLOCK_REF_KEY;
1343 else
1344 type = BTRFS_TREE_BLOCK_REF_KEY;
1345 } else {
1346 if (parent > 0)
1347 type = BTRFS_SHARED_DATA_REF_KEY;
1348 else
1349 type = BTRFS_EXTENT_DATA_REF_KEY;
1350 }
1351 return type;
1352 }
1353
1354 static int find_next_key(struct btrfs_path *path, int level,
1355 struct btrfs_key *key)
1356
1357 {
1358 for (; level < BTRFS_MAX_LEVEL; level++) {
1359 if (!path->nodes[level])
1360 break;
1361 if (path->slots[level] + 1 >=
1362 btrfs_header_nritems(path->nodes[level]))
1363 continue;
1364 if (level == 0)
1365 btrfs_item_key_to_cpu(path->nodes[level], key,
1366 path->slots[level] + 1);
1367 else
1368 btrfs_node_key_to_cpu(path->nodes[level], key,
1369 path->slots[level] + 1);
1370 return 0;
1371 }
1372 return 1;
1373 }
1374
1375 /*
1376 * look for inline back ref. if back ref is found, *ref_ret is set
1377 * to the address of inline back ref, and 0 is returned.
1378 *
1379 * if back ref isn't found, *ref_ret is set to the address where it
1380 * should be inserted, and -ENOENT is returned.
1381 *
1382 * if insert is true and there are too many inline back refs, the path
1383 * points to the extent item, and -EAGAIN is returned.
1384 *
1385 * NOTE: inline back refs are ordered in the same way that back ref
1386 * items in the tree are ordered.
1387 */
1388 static noinline_for_stack
1389 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1390 struct btrfs_root *root,
1391 struct btrfs_path *path,
1392 struct btrfs_extent_inline_ref **ref_ret,
1393 u64 bytenr, u64 num_bytes,
1394 u64 parent, u64 root_objectid,
1395 u64 owner, u64 offset, int insert)
1396 {
1397 struct btrfs_key key;
1398 struct extent_buffer *leaf;
1399 struct btrfs_extent_item *ei;
1400 struct btrfs_extent_inline_ref *iref;
1401 u64 flags;
1402 u64 item_size;
1403 unsigned long ptr;
1404 unsigned long end;
1405 int extra_size;
1406 int type;
1407 int want;
1408 int ret;
1409 int err = 0;
1410
1411 key.objectid = bytenr;
1412 key.type = BTRFS_EXTENT_ITEM_KEY;
1413 key.offset = num_bytes;
1414
1415 want = extent_ref_type(parent, owner);
1416 if (insert) {
1417 extra_size = btrfs_extent_inline_ref_size(want);
1418 path->keep_locks = 1;
1419 } else
1420 extra_size = -1;
1421 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1422 if (ret < 0) {
1423 err = ret;
1424 goto out;
1425 }
1426 BUG_ON(ret);
1427
1428 leaf = path->nodes[0];
1429 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1430 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1431 if (item_size < sizeof(*ei)) {
1432 if (!insert) {
1433 err = -ENOENT;
1434 goto out;
1435 }
1436 ret = convert_extent_item_v0(trans, root, path, owner,
1437 extra_size);
1438 if (ret < 0) {
1439 err = ret;
1440 goto out;
1441 }
1442 leaf = path->nodes[0];
1443 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1444 }
1445 #endif
1446 BUG_ON(item_size < sizeof(*ei));
1447
1448 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1449 flags = btrfs_extent_flags(leaf, ei);
1450
1451 ptr = (unsigned long)(ei + 1);
1452 end = (unsigned long)ei + item_size;
1453
1454 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1455 ptr += sizeof(struct btrfs_tree_block_info);
1456 BUG_ON(ptr > end);
1457 } else {
1458 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1459 }
1460
1461 err = -ENOENT;
1462 while (1) {
1463 if (ptr >= end) {
1464 WARN_ON(ptr > end);
1465 break;
1466 }
1467 iref = (struct btrfs_extent_inline_ref *)ptr;
1468 type = btrfs_extent_inline_ref_type(leaf, iref);
1469 if (want < type)
1470 break;
1471 if (want > type) {
1472 ptr += btrfs_extent_inline_ref_size(type);
1473 continue;
1474 }
1475
1476 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1477 struct btrfs_extent_data_ref *dref;
1478 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1479 if (match_extent_data_ref(leaf, dref, root_objectid,
1480 owner, offset)) {
1481 err = 0;
1482 break;
1483 }
1484 if (hash_extent_data_ref_item(leaf, dref) <
1485 hash_extent_data_ref(root_objectid, owner, offset))
1486 break;
1487 } else {
1488 u64 ref_offset;
1489 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1490 if (parent > 0) {
1491 if (parent == ref_offset) {
1492 err = 0;
1493 break;
1494 }
1495 if (ref_offset < parent)
1496 break;
1497 } else {
1498 if (root_objectid == ref_offset) {
1499 err = 0;
1500 break;
1501 }
1502 if (ref_offset < root_objectid)
1503 break;
1504 }
1505 }
1506 ptr += btrfs_extent_inline_ref_size(type);
1507 }
1508 if (err == -ENOENT && insert) {
1509 if (item_size + extra_size >=
1510 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1511 err = -EAGAIN;
1512 goto out;
1513 }
1514 /*
1515 * To add new inline back ref, we have to make sure
1516 * there is no corresponding back ref item.
1517 * For simplicity, we just do not add new inline back
1518 * ref if there is any kind of item for this block
1519 */
1520 if (find_next_key(path, 0, &key) == 0 &&
1521 key.objectid == bytenr &&
1522 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1523 err = -EAGAIN;
1524 goto out;
1525 }
1526 }
1527 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1528 out:
1529 if (insert) {
1530 path->keep_locks = 0;
1531 btrfs_unlock_up_safe(path, 1);
1532 }
1533 return err;
1534 }
1535
1536 /*
1537 * helper to add new inline back ref
1538 */
1539 static noinline_for_stack
1540 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1541 struct btrfs_root *root,
1542 struct btrfs_path *path,
1543 struct btrfs_extent_inline_ref *iref,
1544 u64 parent, u64 root_objectid,
1545 u64 owner, u64 offset, int refs_to_add,
1546 struct btrfs_delayed_extent_op *extent_op)
1547 {
1548 struct extent_buffer *leaf;
1549 struct btrfs_extent_item *ei;
1550 unsigned long ptr;
1551 unsigned long end;
1552 unsigned long item_offset;
1553 u64 refs;
1554 int size;
1555 int type;
1556 int ret;
1557
1558 leaf = path->nodes[0];
1559 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1560 item_offset = (unsigned long)iref - (unsigned long)ei;
1561
1562 type = extent_ref_type(parent, owner);
1563 size = btrfs_extent_inline_ref_size(type);
1564
1565 ret = btrfs_extend_item(trans, root, path, size);
1566
1567 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1568 refs = btrfs_extent_refs(leaf, ei);
1569 refs += refs_to_add;
1570 btrfs_set_extent_refs(leaf, ei, refs);
1571 if (extent_op)
1572 __run_delayed_extent_op(extent_op, leaf, ei);
1573
1574 ptr = (unsigned long)ei + item_offset;
1575 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1576 if (ptr < end - size)
1577 memmove_extent_buffer(leaf, ptr + size, ptr,
1578 end - size - ptr);
1579
1580 iref = (struct btrfs_extent_inline_ref *)ptr;
1581 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1582 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1583 struct btrfs_extent_data_ref *dref;
1584 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1585 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1586 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1587 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1588 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1589 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1590 struct btrfs_shared_data_ref *sref;
1591 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1592 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1593 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1594 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1595 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1596 } else {
1597 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1598 }
1599 btrfs_mark_buffer_dirty(leaf);
1600 return 0;
1601 }
1602
1603 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1604 struct btrfs_root *root,
1605 struct btrfs_path *path,
1606 struct btrfs_extent_inline_ref **ref_ret,
1607 u64 bytenr, u64 num_bytes, u64 parent,
1608 u64 root_objectid, u64 owner, u64 offset)
1609 {
1610 int ret;
1611
1612 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1613 bytenr, num_bytes, parent,
1614 root_objectid, owner, offset, 0);
1615 if (ret != -ENOENT)
1616 return ret;
1617
1618 btrfs_release_path(path);
1619 *ref_ret = NULL;
1620
1621 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1622 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1623 root_objectid);
1624 } else {
1625 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1626 root_objectid, owner, offset);
1627 }
1628 return ret;
1629 }
1630
1631 /*
1632 * helper to update/remove inline back ref
1633 */
1634 static noinline_for_stack
1635 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1636 struct btrfs_root *root,
1637 struct btrfs_path *path,
1638 struct btrfs_extent_inline_ref *iref,
1639 int refs_to_mod,
1640 struct btrfs_delayed_extent_op *extent_op)
1641 {
1642 struct extent_buffer *leaf;
1643 struct btrfs_extent_item *ei;
1644 struct btrfs_extent_data_ref *dref = NULL;
1645 struct btrfs_shared_data_ref *sref = NULL;
1646 unsigned long ptr;
1647 unsigned long end;
1648 u32 item_size;
1649 int size;
1650 int type;
1651 int ret;
1652 u64 refs;
1653
1654 leaf = path->nodes[0];
1655 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1656 refs = btrfs_extent_refs(leaf, ei);
1657 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1658 refs += refs_to_mod;
1659 btrfs_set_extent_refs(leaf, ei, refs);
1660 if (extent_op)
1661 __run_delayed_extent_op(extent_op, leaf, ei);
1662
1663 type = btrfs_extent_inline_ref_type(leaf, iref);
1664
1665 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1666 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1667 refs = btrfs_extent_data_ref_count(leaf, dref);
1668 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1669 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1670 refs = btrfs_shared_data_ref_count(leaf, sref);
1671 } else {
1672 refs = 1;
1673 BUG_ON(refs_to_mod != -1);
1674 }
1675
1676 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1677 refs += refs_to_mod;
1678
1679 if (refs > 0) {
1680 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1681 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1682 else
1683 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1684 } else {
1685 size = btrfs_extent_inline_ref_size(type);
1686 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1687 ptr = (unsigned long)iref;
1688 end = (unsigned long)ei + item_size;
1689 if (ptr + size < end)
1690 memmove_extent_buffer(leaf, ptr, ptr + size,
1691 end - ptr - size);
1692 item_size -= size;
1693 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1694 }
1695 btrfs_mark_buffer_dirty(leaf);
1696 return 0;
1697 }
1698
1699 static noinline_for_stack
1700 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1701 struct btrfs_root *root,
1702 struct btrfs_path *path,
1703 u64 bytenr, u64 num_bytes, u64 parent,
1704 u64 root_objectid, u64 owner,
1705 u64 offset, int refs_to_add,
1706 struct btrfs_delayed_extent_op *extent_op)
1707 {
1708 struct btrfs_extent_inline_ref *iref;
1709 int ret;
1710
1711 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1712 bytenr, num_bytes, parent,
1713 root_objectid, owner, offset, 1);
1714 if (ret == 0) {
1715 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1716 ret = update_inline_extent_backref(trans, root, path, iref,
1717 refs_to_add, extent_op);
1718 } else if (ret == -ENOENT) {
1719 ret = setup_inline_extent_backref(trans, root, path, iref,
1720 parent, root_objectid,
1721 owner, offset, refs_to_add,
1722 extent_op);
1723 }
1724 return ret;
1725 }
1726
1727 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1728 struct btrfs_root *root,
1729 struct btrfs_path *path,
1730 u64 bytenr, u64 parent, u64 root_objectid,
1731 u64 owner, u64 offset, int refs_to_add)
1732 {
1733 int ret;
1734 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1735 BUG_ON(refs_to_add != 1);
1736 ret = insert_tree_block_ref(trans, root, path, bytenr,
1737 parent, root_objectid);
1738 } else {
1739 ret = insert_extent_data_ref(trans, root, path, bytenr,
1740 parent, root_objectid,
1741 owner, offset, refs_to_add);
1742 }
1743 return ret;
1744 }
1745
1746 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1747 struct btrfs_root *root,
1748 struct btrfs_path *path,
1749 struct btrfs_extent_inline_ref *iref,
1750 int refs_to_drop, int is_data)
1751 {
1752 int ret;
1753
1754 BUG_ON(!is_data && refs_to_drop != 1);
1755 if (iref) {
1756 ret = update_inline_extent_backref(trans, root, path, iref,
1757 -refs_to_drop, NULL);
1758 } else if (is_data) {
1759 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1760 } else {
1761 ret = btrfs_del_item(trans, root, path);
1762 }
1763 return ret;
1764 }
1765
1766 static int btrfs_issue_discard(struct block_device *bdev,
1767 u64 start, u64 len)
1768 {
1769 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1770 }
1771
1772 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1773 u64 num_bytes, u64 *actual_bytes)
1774 {
1775 int ret;
1776 u64 discarded_bytes = 0;
1777 struct btrfs_multi_bio *multi = NULL;
1778
1779
1780 /* Tell the block device(s) that the sectors can be discarded */
1781 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1782 bytenr, &num_bytes, &multi, 0);
1783 if (!ret) {
1784 struct btrfs_bio_stripe *stripe = multi->stripes;
1785 int i;
1786
1787
1788 for (i = 0; i < multi->num_stripes; i++, stripe++) {
1789 ret = btrfs_issue_discard(stripe->dev->bdev,
1790 stripe->physical,
1791 stripe->length);
1792 if (!ret)
1793 discarded_bytes += stripe->length;
1794 else if (ret != -EOPNOTSUPP)
1795 break;
1796 }
1797 kfree(multi);
1798 }
1799 if (discarded_bytes && ret == -EOPNOTSUPP)
1800 ret = 0;
1801
1802 if (actual_bytes)
1803 *actual_bytes = discarded_bytes;
1804
1805
1806 return ret;
1807 }
1808
1809 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1810 struct btrfs_root *root,
1811 u64 bytenr, u64 num_bytes, u64 parent,
1812 u64 root_objectid, u64 owner, u64 offset)
1813 {
1814 int ret;
1815 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1816 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1817
1818 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1819 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1820 parent, root_objectid, (int)owner,
1821 BTRFS_ADD_DELAYED_REF, NULL);
1822 } else {
1823 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1824 parent, root_objectid, owner, offset,
1825 BTRFS_ADD_DELAYED_REF, NULL);
1826 }
1827 return ret;
1828 }
1829
1830 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1831 struct btrfs_root *root,
1832 u64 bytenr, u64 num_bytes,
1833 u64 parent, u64 root_objectid,
1834 u64 owner, u64 offset, int refs_to_add,
1835 struct btrfs_delayed_extent_op *extent_op)
1836 {
1837 struct btrfs_path *path;
1838 struct extent_buffer *leaf;
1839 struct btrfs_extent_item *item;
1840 u64 refs;
1841 int ret;
1842 int err = 0;
1843
1844 path = btrfs_alloc_path();
1845 if (!path)
1846 return -ENOMEM;
1847
1848 path->reada = 1;
1849 path->leave_spinning = 1;
1850 /* this will setup the path even if it fails to insert the back ref */
1851 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1852 path, bytenr, num_bytes, parent,
1853 root_objectid, owner, offset,
1854 refs_to_add, extent_op);
1855 if (ret == 0)
1856 goto out;
1857
1858 if (ret != -EAGAIN) {
1859 err = ret;
1860 goto out;
1861 }
1862
1863 leaf = path->nodes[0];
1864 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1865 refs = btrfs_extent_refs(leaf, item);
1866 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1867 if (extent_op)
1868 __run_delayed_extent_op(extent_op, leaf, item);
1869
1870 btrfs_mark_buffer_dirty(leaf);
1871 btrfs_release_path(path);
1872
1873 path->reada = 1;
1874 path->leave_spinning = 1;
1875
1876 /* now insert the actual backref */
1877 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1878 path, bytenr, parent, root_objectid,
1879 owner, offset, refs_to_add);
1880 BUG_ON(ret);
1881 out:
1882 btrfs_free_path(path);
1883 return err;
1884 }
1885
1886 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1887 struct btrfs_root *root,
1888 struct btrfs_delayed_ref_node *node,
1889 struct btrfs_delayed_extent_op *extent_op,
1890 int insert_reserved)
1891 {
1892 int ret = 0;
1893 struct btrfs_delayed_data_ref *ref;
1894 struct btrfs_key ins;
1895 u64 parent = 0;
1896 u64 ref_root = 0;
1897 u64 flags = 0;
1898
1899 ins.objectid = node->bytenr;
1900 ins.offset = node->num_bytes;
1901 ins.type = BTRFS_EXTENT_ITEM_KEY;
1902
1903 ref = btrfs_delayed_node_to_data_ref(node);
1904 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1905 parent = ref->parent;
1906 else
1907 ref_root = ref->root;
1908
1909 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1910 if (extent_op) {
1911 BUG_ON(extent_op->update_key);
1912 flags |= extent_op->flags_to_set;
1913 }
1914 ret = alloc_reserved_file_extent(trans, root,
1915 parent, ref_root, flags,
1916 ref->objectid, ref->offset,
1917 &ins, node->ref_mod);
1918 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1919 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1920 node->num_bytes, parent,
1921 ref_root, ref->objectid,
1922 ref->offset, node->ref_mod,
1923 extent_op);
1924 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1925 ret = __btrfs_free_extent(trans, root, node->bytenr,
1926 node->num_bytes, parent,
1927 ref_root, ref->objectid,
1928 ref->offset, node->ref_mod,
1929 extent_op);
1930 } else {
1931 BUG();
1932 }
1933 return ret;
1934 }
1935
1936 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1937 struct extent_buffer *leaf,
1938 struct btrfs_extent_item *ei)
1939 {
1940 u64 flags = btrfs_extent_flags(leaf, ei);
1941 if (extent_op->update_flags) {
1942 flags |= extent_op->flags_to_set;
1943 btrfs_set_extent_flags(leaf, ei, flags);
1944 }
1945
1946 if (extent_op->update_key) {
1947 struct btrfs_tree_block_info *bi;
1948 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1949 bi = (struct btrfs_tree_block_info *)(ei + 1);
1950 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1951 }
1952 }
1953
1954 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1955 struct btrfs_root *root,
1956 struct btrfs_delayed_ref_node *node,
1957 struct btrfs_delayed_extent_op *extent_op)
1958 {
1959 struct btrfs_key key;
1960 struct btrfs_path *path;
1961 struct btrfs_extent_item *ei;
1962 struct extent_buffer *leaf;
1963 u32 item_size;
1964 int ret;
1965 int err = 0;
1966
1967 path = btrfs_alloc_path();
1968 if (!path)
1969 return -ENOMEM;
1970
1971 key.objectid = node->bytenr;
1972 key.type = BTRFS_EXTENT_ITEM_KEY;
1973 key.offset = node->num_bytes;
1974
1975 path->reada = 1;
1976 path->leave_spinning = 1;
1977 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1978 path, 0, 1);
1979 if (ret < 0) {
1980 err = ret;
1981 goto out;
1982 }
1983 if (ret > 0) {
1984 err = -EIO;
1985 goto out;
1986 }
1987
1988 leaf = path->nodes[0];
1989 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1990 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1991 if (item_size < sizeof(*ei)) {
1992 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1993 path, (u64)-1, 0);
1994 if (ret < 0) {
1995 err = ret;
1996 goto out;
1997 }
1998 leaf = path->nodes[0];
1999 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2000 }
2001 #endif
2002 BUG_ON(item_size < sizeof(*ei));
2003 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2004 __run_delayed_extent_op(extent_op, leaf, ei);
2005
2006 btrfs_mark_buffer_dirty(leaf);
2007 out:
2008 btrfs_free_path(path);
2009 return err;
2010 }
2011
2012 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2013 struct btrfs_root *root,
2014 struct btrfs_delayed_ref_node *node,
2015 struct btrfs_delayed_extent_op *extent_op,
2016 int insert_reserved)
2017 {
2018 int ret = 0;
2019 struct btrfs_delayed_tree_ref *ref;
2020 struct btrfs_key ins;
2021 u64 parent = 0;
2022 u64 ref_root = 0;
2023
2024 ins.objectid = node->bytenr;
2025 ins.offset = node->num_bytes;
2026 ins.type = BTRFS_EXTENT_ITEM_KEY;
2027
2028 ref = btrfs_delayed_node_to_tree_ref(node);
2029 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2030 parent = ref->parent;
2031 else
2032 ref_root = ref->root;
2033
2034 BUG_ON(node->ref_mod != 1);
2035 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2036 BUG_ON(!extent_op || !extent_op->update_flags ||
2037 !extent_op->update_key);
2038 ret = alloc_reserved_tree_block(trans, root,
2039 parent, ref_root,
2040 extent_op->flags_to_set,
2041 &extent_op->key,
2042 ref->level, &ins);
2043 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2044 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2045 node->num_bytes, parent, ref_root,
2046 ref->level, 0, 1, extent_op);
2047 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2048 ret = __btrfs_free_extent(trans, root, node->bytenr,
2049 node->num_bytes, parent, ref_root,
2050 ref->level, 0, 1, extent_op);
2051 } else {
2052 BUG();
2053 }
2054 return ret;
2055 }
2056
2057 /* helper function to actually process a single delayed ref entry */
2058 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2059 struct btrfs_root *root,
2060 struct btrfs_delayed_ref_node *node,
2061 struct btrfs_delayed_extent_op *extent_op,
2062 int insert_reserved)
2063 {
2064 int ret;
2065 if (btrfs_delayed_ref_is_head(node)) {
2066 struct btrfs_delayed_ref_head *head;
2067 /*
2068 * we've hit the end of the chain and we were supposed
2069 * to insert this extent into the tree. But, it got
2070 * deleted before we ever needed to insert it, so all
2071 * we have to do is clean up the accounting
2072 */
2073 BUG_ON(extent_op);
2074 head = btrfs_delayed_node_to_head(node);
2075 if (insert_reserved) {
2076 btrfs_pin_extent(root, node->bytenr,
2077 node->num_bytes, 1);
2078 if (head->is_data) {
2079 ret = btrfs_del_csums(trans, root,
2080 node->bytenr,
2081 node->num_bytes);
2082 BUG_ON(ret);
2083 }
2084 }
2085 mutex_unlock(&head->mutex);
2086 return 0;
2087 }
2088
2089 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2090 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2091 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2092 insert_reserved);
2093 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2094 node->type == BTRFS_SHARED_DATA_REF_KEY)
2095 ret = run_delayed_data_ref(trans, root, node, extent_op,
2096 insert_reserved);
2097 else
2098 BUG();
2099 return ret;
2100 }
2101
2102 static noinline struct btrfs_delayed_ref_node *
2103 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2104 {
2105 struct rb_node *node;
2106 struct btrfs_delayed_ref_node *ref;
2107 int action = BTRFS_ADD_DELAYED_REF;
2108 again:
2109 /*
2110 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2111 * this prevents ref count from going down to zero when
2112 * there still are pending delayed ref.
2113 */
2114 node = rb_prev(&head->node.rb_node);
2115 while (1) {
2116 if (!node)
2117 break;
2118 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2119 rb_node);
2120 if (ref->bytenr != head->node.bytenr)
2121 break;
2122 if (ref->action == action)
2123 return ref;
2124 node = rb_prev(node);
2125 }
2126 if (action == BTRFS_ADD_DELAYED_REF) {
2127 action = BTRFS_DROP_DELAYED_REF;
2128 goto again;
2129 }
2130 return NULL;
2131 }
2132
2133 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2134 struct btrfs_root *root,
2135 struct list_head *cluster)
2136 {
2137 struct btrfs_delayed_ref_root *delayed_refs;
2138 struct btrfs_delayed_ref_node *ref;
2139 struct btrfs_delayed_ref_head *locked_ref = NULL;
2140 struct btrfs_delayed_extent_op *extent_op;
2141 int ret;
2142 int count = 0;
2143 int must_insert_reserved = 0;
2144
2145 delayed_refs = &trans->transaction->delayed_refs;
2146 while (1) {
2147 if (!locked_ref) {
2148 /* pick a new head ref from the cluster list */
2149 if (list_empty(cluster))
2150 break;
2151
2152 locked_ref = list_entry(cluster->next,
2153 struct btrfs_delayed_ref_head, cluster);
2154
2155 /* grab the lock that says we are going to process
2156 * all the refs for this head */
2157 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2158
2159 /*
2160 * we may have dropped the spin lock to get the head
2161 * mutex lock, and that might have given someone else
2162 * time to free the head. If that's true, it has been
2163 * removed from our list and we can move on.
2164 */
2165 if (ret == -EAGAIN) {
2166 locked_ref = NULL;
2167 count++;
2168 continue;
2169 }
2170 }
2171
2172 /*
2173 * record the must insert reserved flag before we
2174 * drop the spin lock.
2175 */
2176 must_insert_reserved = locked_ref->must_insert_reserved;
2177 locked_ref->must_insert_reserved = 0;
2178
2179 extent_op = locked_ref->extent_op;
2180 locked_ref->extent_op = NULL;
2181
2182 /*
2183 * locked_ref is the head node, so we have to go one
2184 * node back for any delayed ref updates
2185 */
2186 ref = select_delayed_ref(locked_ref);
2187 if (!ref) {
2188 /* All delayed refs have been processed, Go ahead
2189 * and send the head node to run_one_delayed_ref,
2190 * so that any accounting fixes can happen
2191 */
2192 ref = &locked_ref->node;
2193
2194 if (extent_op && must_insert_reserved) {
2195 kfree(extent_op);
2196 extent_op = NULL;
2197 }
2198
2199 if (extent_op) {
2200 spin_unlock(&delayed_refs->lock);
2201
2202 ret = run_delayed_extent_op(trans, root,
2203 ref, extent_op);
2204 BUG_ON(ret);
2205 kfree(extent_op);
2206
2207 cond_resched();
2208 spin_lock(&delayed_refs->lock);
2209 continue;
2210 }
2211
2212 list_del_init(&locked_ref->cluster);
2213 locked_ref = NULL;
2214 }
2215
2216 ref->in_tree = 0;
2217 rb_erase(&ref->rb_node, &delayed_refs->root);
2218 delayed_refs->num_entries--;
2219
2220 spin_unlock(&delayed_refs->lock);
2221
2222 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2223 must_insert_reserved);
2224 BUG_ON(ret);
2225
2226 btrfs_put_delayed_ref(ref);
2227 kfree(extent_op);
2228 count++;
2229
2230 cond_resched();
2231 spin_lock(&delayed_refs->lock);
2232 }
2233 return count;
2234 }
2235
2236 /*
2237 * this starts processing the delayed reference count updates and
2238 * extent insertions we have queued up so far. count can be
2239 * 0, which means to process everything in the tree at the start
2240 * of the run (but not newly added entries), or it can be some target
2241 * number you'd like to process.
2242 */
2243 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2244 struct btrfs_root *root, unsigned long count)
2245 {
2246 struct rb_node *node;
2247 struct btrfs_delayed_ref_root *delayed_refs;
2248 struct btrfs_delayed_ref_node *ref;
2249 struct list_head cluster;
2250 int ret;
2251 int run_all = count == (unsigned long)-1;
2252 int run_most = 0;
2253
2254 if (root == root->fs_info->extent_root)
2255 root = root->fs_info->tree_root;
2256
2257 delayed_refs = &trans->transaction->delayed_refs;
2258 INIT_LIST_HEAD(&cluster);
2259 again:
2260 spin_lock(&delayed_refs->lock);
2261 if (count == 0) {
2262 count = delayed_refs->num_entries * 2;
2263 run_most = 1;
2264 }
2265 while (1) {
2266 if (!(run_all || run_most) &&
2267 delayed_refs->num_heads_ready < 64)
2268 break;
2269
2270 /*
2271 * go find something we can process in the rbtree. We start at
2272 * the beginning of the tree, and then build a cluster
2273 * of refs to process starting at the first one we are able to
2274 * lock
2275 */
2276 ret = btrfs_find_ref_cluster(trans, &cluster,
2277 delayed_refs->run_delayed_start);
2278 if (ret)
2279 break;
2280
2281 ret = run_clustered_refs(trans, root, &cluster);
2282 BUG_ON(ret < 0);
2283
2284 count -= min_t(unsigned long, ret, count);
2285
2286 if (count == 0)
2287 break;
2288 }
2289
2290 if (run_all) {
2291 node = rb_first(&delayed_refs->root);
2292 if (!node)
2293 goto out;
2294 count = (unsigned long)-1;
2295
2296 while (node) {
2297 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2298 rb_node);
2299 if (btrfs_delayed_ref_is_head(ref)) {
2300 struct btrfs_delayed_ref_head *head;
2301
2302 head = btrfs_delayed_node_to_head(ref);
2303 atomic_inc(&ref->refs);
2304
2305 spin_unlock(&delayed_refs->lock);
2306 /*
2307 * Mutex was contended, block until it's
2308 * released and try again
2309 */
2310 mutex_lock(&head->mutex);
2311 mutex_unlock(&head->mutex);
2312
2313 btrfs_put_delayed_ref(ref);
2314 cond_resched();
2315 goto again;
2316 }
2317 node = rb_next(node);
2318 }
2319 spin_unlock(&delayed_refs->lock);
2320 schedule_timeout(1);
2321 goto again;
2322 }
2323 out:
2324 spin_unlock(&delayed_refs->lock);
2325 return 0;
2326 }
2327
2328 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2329 struct btrfs_root *root,
2330 u64 bytenr, u64 num_bytes, u64 flags,
2331 int is_data)
2332 {
2333 struct btrfs_delayed_extent_op *extent_op;
2334 int ret;
2335
2336 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2337 if (!extent_op)
2338 return -ENOMEM;
2339
2340 extent_op->flags_to_set = flags;
2341 extent_op->update_flags = 1;
2342 extent_op->update_key = 0;
2343 extent_op->is_data = is_data ? 1 : 0;
2344
2345 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2346 if (ret)
2347 kfree(extent_op);
2348 return ret;
2349 }
2350
2351 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2352 struct btrfs_root *root,
2353 struct btrfs_path *path,
2354 u64 objectid, u64 offset, u64 bytenr)
2355 {
2356 struct btrfs_delayed_ref_head *head;
2357 struct btrfs_delayed_ref_node *ref;
2358 struct btrfs_delayed_data_ref *data_ref;
2359 struct btrfs_delayed_ref_root *delayed_refs;
2360 struct rb_node *node;
2361 int ret = 0;
2362
2363 ret = -ENOENT;
2364 delayed_refs = &trans->transaction->delayed_refs;
2365 spin_lock(&delayed_refs->lock);
2366 head = btrfs_find_delayed_ref_head(trans, bytenr);
2367 if (!head)
2368 goto out;
2369
2370 if (!mutex_trylock(&head->mutex)) {
2371 atomic_inc(&head->node.refs);
2372 spin_unlock(&delayed_refs->lock);
2373
2374 btrfs_release_path(path);
2375
2376 /*
2377 * Mutex was contended, block until it's released and let
2378 * caller try again
2379 */
2380 mutex_lock(&head->mutex);
2381 mutex_unlock(&head->mutex);
2382 btrfs_put_delayed_ref(&head->node);
2383 return -EAGAIN;
2384 }
2385
2386 node = rb_prev(&head->node.rb_node);
2387 if (!node)
2388 goto out_unlock;
2389
2390 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2391
2392 if (ref->bytenr != bytenr)
2393 goto out_unlock;
2394
2395 ret = 1;
2396 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2397 goto out_unlock;
2398
2399 data_ref = btrfs_delayed_node_to_data_ref(ref);
2400
2401 node = rb_prev(node);
2402 if (node) {
2403 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2404 if (ref->bytenr == bytenr)
2405 goto out_unlock;
2406 }
2407
2408 if (data_ref->root != root->root_key.objectid ||
2409 data_ref->objectid != objectid || data_ref->offset != offset)
2410 goto out_unlock;
2411
2412 ret = 0;
2413 out_unlock:
2414 mutex_unlock(&head->mutex);
2415 out:
2416 spin_unlock(&delayed_refs->lock);
2417 return ret;
2418 }
2419
2420 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2421 struct btrfs_root *root,
2422 struct btrfs_path *path,
2423 u64 objectid, u64 offset, u64 bytenr)
2424 {
2425 struct btrfs_root *extent_root = root->fs_info->extent_root;
2426 struct extent_buffer *leaf;
2427 struct btrfs_extent_data_ref *ref;
2428 struct btrfs_extent_inline_ref *iref;
2429 struct btrfs_extent_item *ei;
2430 struct btrfs_key key;
2431 u32 item_size;
2432 int ret;
2433
2434 key.objectid = bytenr;
2435 key.offset = (u64)-1;
2436 key.type = BTRFS_EXTENT_ITEM_KEY;
2437
2438 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2439 if (ret < 0)
2440 goto out;
2441 BUG_ON(ret == 0);
2442
2443 ret = -ENOENT;
2444 if (path->slots[0] == 0)
2445 goto out;
2446
2447 path->slots[0]--;
2448 leaf = path->nodes[0];
2449 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2450
2451 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2452 goto out;
2453
2454 ret = 1;
2455 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2456 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2457 if (item_size < sizeof(*ei)) {
2458 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2459 goto out;
2460 }
2461 #endif
2462 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2463
2464 if (item_size != sizeof(*ei) +
2465 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2466 goto out;
2467
2468 if (btrfs_extent_generation(leaf, ei) <=
2469 btrfs_root_last_snapshot(&root->root_item))
2470 goto out;
2471
2472 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2473 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2474 BTRFS_EXTENT_DATA_REF_KEY)
2475 goto out;
2476
2477 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2478 if (btrfs_extent_refs(leaf, ei) !=
2479 btrfs_extent_data_ref_count(leaf, ref) ||
2480 btrfs_extent_data_ref_root(leaf, ref) !=
2481 root->root_key.objectid ||
2482 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2483 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2484 goto out;
2485
2486 ret = 0;
2487 out:
2488 return ret;
2489 }
2490
2491 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2492 struct btrfs_root *root,
2493 u64 objectid, u64 offset, u64 bytenr)
2494 {
2495 struct btrfs_path *path;
2496 int ret;
2497 int ret2;
2498
2499 path = btrfs_alloc_path();
2500 if (!path)
2501 return -ENOENT;
2502
2503 do {
2504 ret = check_committed_ref(trans, root, path, objectid,
2505 offset, bytenr);
2506 if (ret && ret != -ENOENT)
2507 goto out;
2508
2509 ret2 = check_delayed_ref(trans, root, path, objectid,
2510 offset, bytenr);
2511 } while (ret2 == -EAGAIN);
2512
2513 if (ret2 && ret2 != -ENOENT) {
2514 ret = ret2;
2515 goto out;
2516 }
2517
2518 if (ret != -ENOENT || ret2 != -ENOENT)
2519 ret = 0;
2520 out:
2521 btrfs_free_path(path);
2522 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2523 WARN_ON(ret > 0);
2524 return ret;
2525 }
2526
2527 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2528 struct btrfs_root *root,
2529 struct extent_buffer *buf,
2530 int full_backref, int inc)
2531 {
2532 u64 bytenr;
2533 u64 num_bytes;
2534 u64 parent;
2535 u64 ref_root;
2536 u32 nritems;
2537 struct btrfs_key key;
2538 struct btrfs_file_extent_item *fi;
2539 int i;
2540 int level;
2541 int ret = 0;
2542 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2543 u64, u64, u64, u64, u64, u64);
2544
2545 ref_root = btrfs_header_owner(buf);
2546 nritems = btrfs_header_nritems(buf);
2547 level = btrfs_header_level(buf);
2548
2549 if (!root->ref_cows && level == 0)
2550 return 0;
2551
2552 if (inc)
2553 process_func = btrfs_inc_extent_ref;
2554 else
2555 process_func = btrfs_free_extent;
2556
2557 if (full_backref)
2558 parent = buf->start;
2559 else
2560 parent = 0;
2561
2562 for (i = 0; i < nritems; i++) {
2563 if (level == 0) {
2564 btrfs_item_key_to_cpu(buf, &key, i);
2565 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2566 continue;
2567 fi = btrfs_item_ptr(buf, i,
2568 struct btrfs_file_extent_item);
2569 if (btrfs_file_extent_type(buf, fi) ==
2570 BTRFS_FILE_EXTENT_INLINE)
2571 continue;
2572 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2573 if (bytenr == 0)
2574 continue;
2575
2576 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2577 key.offset -= btrfs_file_extent_offset(buf, fi);
2578 ret = process_func(trans, root, bytenr, num_bytes,
2579 parent, ref_root, key.objectid,
2580 key.offset);
2581 if (ret)
2582 goto fail;
2583 } else {
2584 bytenr = btrfs_node_blockptr(buf, i);
2585 num_bytes = btrfs_level_size(root, level - 1);
2586 ret = process_func(trans, root, bytenr, num_bytes,
2587 parent, ref_root, level - 1, 0);
2588 if (ret)
2589 goto fail;
2590 }
2591 }
2592 return 0;
2593 fail:
2594 BUG();
2595 return ret;
2596 }
2597
2598 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2599 struct extent_buffer *buf, int full_backref)
2600 {
2601 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2602 }
2603
2604 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2605 struct extent_buffer *buf, int full_backref)
2606 {
2607 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2608 }
2609
2610 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2611 struct btrfs_root *root,
2612 struct btrfs_path *path,
2613 struct btrfs_block_group_cache *cache)
2614 {
2615 int ret;
2616 struct btrfs_root *extent_root = root->fs_info->extent_root;
2617 unsigned long bi;
2618 struct extent_buffer *leaf;
2619
2620 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2621 if (ret < 0)
2622 goto fail;
2623 BUG_ON(ret);
2624
2625 leaf = path->nodes[0];
2626 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2627 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2628 btrfs_mark_buffer_dirty(leaf);
2629 btrfs_release_path(path);
2630 fail:
2631 if (ret)
2632 return ret;
2633 return 0;
2634
2635 }
2636
2637 static struct btrfs_block_group_cache *
2638 next_block_group(struct btrfs_root *root,
2639 struct btrfs_block_group_cache *cache)
2640 {
2641 struct rb_node *node;
2642 spin_lock(&root->fs_info->block_group_cache_lock);
2643 node = rb_next(&cache->cache_node);
2644 btrfs_put_block_group(cache);
2645 if (node) {
2646 cache = rb_entry(node, struct btrfs_block_group_cache,
2647 cache_node);
2648 btrfs_get_block_group(cache);
2649 } else
2650 cache = NULL;
2651 spin_unlock(&root->fs_info->block_group_cache_lock);
2652 return cache;
2653 }
2654
2655 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2656 struct btrfs_trans_handle *trans,
2657 struct btrfs_path *path)
2658 {
2659 struct btrfs_root *root = block_group->fs_info->tree_root;
2660 struct inode *inode = NULL;
2661 u64 alloc_hint = 0;
2662 int dcs = BTRFS_DC_ERROR;
2663 int num_pages = 0;
2664 int retries = 0;
2665 int ret = 0;
2666
2667 /*
2668 * If this block group is smaller than 100 megs don't bother caching the
2669 * block group.
2670 */
2671 if (block_group->key.offset < (100 * 1024 * 1024)) {
2672 spin_lock(&block_group->lock);
2673 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2674 spin_unlock(&block_group->lock);
2675 return 0;
2676 }
2677
2678 again:
2679 inode = lookup_free_space_inode(root, block_group, path);
2680 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2681 ret = PTR_ERR(inode);
2682 btrfs_release_path(path);
2683 goto out;
2684 }
2685
2686 if (IS_ERR(inode)) {
2687 BUG_ON(retries);
2688 retries++;
2689
2690 if (block_group->ro)
2691 goto out_free;
2692
2693 ret = create_free_space_inode(root, trans, block_group, path);
2694 if (ret)
2695 goto out_free;
2696 goto again;
2697 }
2698
2699 /*
2700 * We want to set the generation to 0, that way if anything goes wrong
2701 * from here on out we know not to trust this cache when we load up next
2702 * time.
2703 */
2704 BTRFS_I(inode)->generation = 0;
2705 ret = btrfs_update_inode(trans, root, inode);
2706 WARN_ON(ret);
2707
2708 if (i_size_read(inode) > 0) {
2709 ret = btrfs_truncate_free_space_cache(root, trans, path,
2710 inode);
2711 if (ret)
2712 goto out_put;
2713 }
2714
2715 spin_lock(&block_group->lock);
2716 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2717 /* We're not cached, don't bother trying to write stuff out */
2718 dcs = BTRFS_DC_WRITTEN;
2719 spin_unlock(&block_group->lock);
2720 goto out_put;
2721 }
2722 spin_unlock(&block_group->lock);
2723
2724 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2725 if (!num_pages)
2726 num_pages = 1;
2727
2728 /*
2729 * Just to make absolutely sure we have enough space, we're going to
2730 * preallocate 12 pages worth of space for each block group. In
2731 * practice we ought to use at most 8, but we need extra space so we can
2732 * add our header and have a terminator between the extents and the
2733 * bitmaps.
2734 */
2735 num_pages *= 16;
2736 num_pages *= PAGE_CACHE_SIZE;
2737
2738 ret = btrfs_check_data_free_space(inode, num_pages);
2739 if (ret)
2740 goto out_put;
2741
2742 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2743 num_pages, num_pages,
2744 &alloc_hint);
2745 if (!ret)
2746 dcs = BTRFS_DC_SETUP;
2747 btrfs_free_reserved_data_space(inode, num_pages);
2748 out_put:
2749 iput(inode);
2750 out_free:
2751 btrfs_release_path(path);
2752 out:
2753 spin_lock(&block_group->lock);
2754 block_group->disk_cache_state = dcs;
2755 spin_unlock(&block_group->lock);
2756
2757 return ret;
2758 }
2759
2760 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2761 struct btrfs_root *root)
2762 {
2763 struct btrfs_block_group_cache *cache;
2764 int err = 0;
2765 struct btrfs_path *path;
2766 u64 last = 0;
2767
2768 path = btrfs_alloc_path();
2769 if (!path)
2770 return -ENOMEM;
2771
2772 again:
2773 while (1) {
2774 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2775 while (cache) {
2776 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2777 break;
2778 cache = next_block_group(root, cache);
2779 }
2780 if (!cache) {
2781 if (last == 0)
2782 break;
2783 last = 0;
2784 continue;
2785 }
2786 err = cache_save_setup(cache, trans, path);
2787 last = cache->key.objectid + cache->key.offset;
2788 btrfs_put_block_group(cache);
2789 }
2790
2791 while (1) {
2792 if (last == 0) {
2793 err = btrfs_run_delayed_refs(trans, root,
2794 (unsigned long)-1);
2795 BUG_ON(err);
2796 }
2797
2798 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2799 while (cache) {
2800 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2801 btrfs_put_block_group(cache);
2802 goto again;
2803 }
2804
2805 if (cache->dirty)
2806 break;
2807 cache = next_block_group(root, cache);
2808 }
2809 if (!cache) {
2810 if (last == 0)
2811 break;
2812 last = 0;
2813 continue;
2814 }
2815
2816 if (cache->disk_cache_state == BTRFS_DC_SETUP)
2817 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2818 cache->dirty = 0;
2819 last = cache->key.objectid + cache->key.offset;
2820
2821 err = write_one_cache_group(trans, root, path, cache);
2822 BUG_ON(err);
2823 btrfs_put_block_group(cache);
2824 }
2825
2826 while (1) {
2827 /*
2828 * I don't think this is needed since we're just marking our
2829 * preallocated extent as written, but just in case it can't
2830 * hurt.
2831 */
2832 if (last == 0) {
2833 err = btrfs_run_delayed_refs(trans, root,
2834 (unsigned long)-1);
2835 BUG_ON(err);
2836 }
2837
2838 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2839 while (cache) {
2840 /*
2841 * Really this shouldn't happen, but it could if we
2842 * couldn't write the entire preallocated extent and
2843 * splitting the extent resulted in a new block.
2844 */
2845 if (cache->dirty) {
2846 btrfs_put_block_group(cache);
2847 goto again;
2848 }
2849 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2850 break;
2851 cache = next_block_group(root, cache);
2852 }
2853 if (!cache) {
2854 if (last == 0)
2855 break;
2856 last = 0;
2857 continue;
2858 }
2859
2860 btrfs_write_out_cache(root, trans, cache, path);
2861
2862 /*
2863 * If we didn't have an error then the cache state is still
2864 * NEED_WRITE, so we can set it to WRITTEN.
2865 */
2866 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2867 cache->disk_cache_state = BTRFS_DC_WRITTEN;
2868 last = cache->key.objectid + cache->key.offset;
2869 btrfs_put_block_group(cache);
2870 }
2871
2872 btrfs_free_path(path);
2873 return 0;
2874 }
2875
2876 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2877 {
2878 struct btrfs_block_group_cache *block_group;
2879 int readonly = 0;
2880
2881 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2882 if (!block_group || block_group->ro)
2883 readonly = 1;
2884 if (block_group)
2885 btrfs_put_block_group(block_group);
2886 return readonly;
2887 }
2888
2889 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2890 u64 total_bytes, u64 bytes_used,
2891 struct btrfs_space_info **space_info)
2892 {
2893 struct btrfs_space_info *found;
2894 int i;
2895 int factor;
2896
2897 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2898 BTRFS_BLOCK_GROUP_RAID10))
2899 factor = 2;
2900 else
2901 factor = 1;
2902
2903 found = __find_space_info(info, flags);
2904 if (found) {
2905 spin_lock(&found->lock);
2906 found->total_bytes += total_bytes;
2907 found->disk_total += total_bytes * factor;
2908 found->bytes_used += bytes_used;
2909 found->disk_used += bytes_used * factor;
2910 found->full = 0;
2911 spin_unlock(&found->lock);
2912 *space_info = found;
2913 return 0;
2914 }
2915 found = kzalloc(sizeof(*found), GFP_NOFS);
2916 if (!found)
2917 return -ENOMEM;
2918
2919 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
2920 INIT_LIST_HEAD(&found->block_groups[i]);
2921 init_rwsem(&found->groups_sem);
2922 spin_lock_init(&found->lock);
2923 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
2924 BTRFS_BLOCK_GROUP_SYSTEM |
2925 BTRFS_BLOCK_GROUP_METADATA);
2926 found->total_bytes = total_bytes;
2927 found->disk_total = total_bytes * factor;
2928 found->bytes_used = bytes_used;
2929 found->disk_used = bytes_used * factor;
2930 found->bytes_pinned = 0;
2931 found->bytes_reserved = 0;
2932 found->bytes_readonly = 0;
2933 found->bytes_may_use = 0;
2934 found->full = 0;
2935 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
2936 found->chunk_alloc = 0;
2937 *space_info = found;
2938 list_add_rcu(&found->list, &info->space_info);
2939 atomic_set(&found->caching_threads, 0);
2940 return 0;
2941 }
2942
2943 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2944 {
2945 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
2946 BTRFS_BLOCK_GROUP_RAID1 |
2947 BTRFS_BLOCK_GROUP_RAID10 |
2948 BTRFS_BLOCK_GROUP_DUP);
2949 if (extra_flags) {
2950 if (flags & BTRFS_BLOCK_GROUP_DATA)
2951 fs_info->avail_data_alloc_bits |= extra_flags;
2952 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2953 fs_info->avail_metadata_alloc_bits |= extra_flags;
2954 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2955 fs_info->avail_system_alloc_bits |= extra_flags;
2956 }
2957 }
2958
2959 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
2960 {
2961 /*
2962 * we add in the count of missing devices because we want
2963 * to make sure that any RAID levels on a degraded FS
2964 * continue to be honored.
2965 */
2966 u64 num_devices = root->fs_info->fs_devices->rw_devices +
2967 root->fs_info->fs_devices->missing_devices;
2968
2969 if (num_devices == 1)
2970 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
2971 if (num_devices < 4)
2972 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
2973
2974 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
2975 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
2976 BTRFS_BLOCK_GROUP_RAID10))) {
2977 flags &= ~BTRFS_BLOCK_GROUP_DUP;
2978 }
2979
2980 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
2981 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
2982 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
2983 }
2984
2985 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
2986 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
2987 (flags & BTRFS_BLOCK_GROUP_RAID10) |
2988 (flags & BTRFS_BLOCK_GROUP_DUP)))
2989 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
2990 return flags;
2991 }
2992
2993 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
2994 {
2995 if (flags & BTRFS_BLOCK_GROUP_DATA)
2996 flags |= root->fs_info->avail_data_alloc_bits &
2997 root->fs_info->data_alloc_profile;
2998 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2999 flags |= root->fs_info->avail_system_alloc_bits &
3000 root->fs_info->system_alloc_profile;
3001 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3002 flags |= root->fs_info->avail_metadata_alloc_bits &
3003 root->fs_info->metadata_alloc_profile;
3004 return btrfs_reduce_alloc_profile(root, flags);
3005 }
3006
3007 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3008 {
3009 u64 flags;
3010
3011 if (data)
3012 flags = BTRFS_BLOCK_GROUP_DATA;
3013 else if (root == root->fs_info->chunk_root)
3014 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3015 else
3016 flags = BTRFS_BLOCK_GROUP_METADATA;
3017
3018 return get_alloc_profile(root, flags);
3019 }
3020
3021 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3022 {
3023 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3024 BTRFS_BLOCK_GROUP_DATA);
3025 }
3026
3027 /*
3028 * This will check the space that the inode allocates from to make sure we have
3029 * enough space for bytes.
3030 */
3031 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3032 {
3033 struct btrfs_space_info *data_sinfo;
3034 struct btrfs_root *root = BTRFS_I(inode)->root;
3035 u64 used;
3036 int ret = 0, committed = 0, alloc_chunk = 1;
3037
3038 /* make sure bytes are sectorsize aligned */
3039 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3040
3041 if (root == root->fs_info->tree_root ||
3042 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3043 alloc_chunk = 0;
3044 committed = 1;
3045 }
3046
3047 data_sinfo = BTRFS_I(inode)->space_info;
3048 if (!data_sinfo)
3049 goto alloc;
3050
3051 again:
3052 /* make sure we have enough space to handle the data first */
3053 spin_lock(&data_sinfo->lock);
3054 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3055 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3056 data_sinfo->bytes_may_use;
3057
3058 if (used + bytes > data_sinfo->total_bytes) {
3059 struct btrfs_trans_handle *trans;
3060
3061 /*
3062 * if we don't have enough free bytes in this space then we need
3063 * to alloc a new chunk.
3064 */
3065 if (!data_sinfo->full && alloc_chunk) {
3066 u64 alloc_target;
3067
3068 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3069 spin_unlock(&data_sinfo->lock);
3070 alloc:
3071 alloc_target = btrfs_get_alloc_profile(root, 1);
3072 trans = btrfs_join_transaction(root);
3073 if (IS_ERR(trans))
3074 return PTR_ERR(trans);
3075
3076 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3077 bytes + 2 * 1024 * 1024,
3078 alloc_target,
3079 CHUNK_ALLOC_NO_FORCE);
3080 btrfs_end_transaction(trans, root);
3081 if (ret < 0) {
3082 if (ret != -ENOSPC)
3083 return ret;
3084 else
3085 goto commit_trans;
3086 }
3087
3088 if (!data_sinfo) {
3089 btrfs_set_inode_space_info(root, inode);
3090 data_sinfo = BTRFS_I(inode)->space_info;
3091 }
3092 goto again;
3093 }
3094
3095 /*
3096 * If we have less pinned bytes than we want to allocate then
3097 * don't bother committing the transaction, it won't help us.
3098 */
3099 if (data_sinfo->bytes_pinned < bytes)
3100 committed = 1;
3101 spin_unlock(&data_sinfo->lock);
3102
3103 /* commit the current transaction and try again */
3104 commit_trans:
3105 if (!committed &&
3106 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3107 committed = 1;
3108 trans = btrfs_join_transaction(root);
3109 if (IS_ERR(trans))
3110 return PTR_ERR(trans);
3111 ret = btrfs_commit_transaction(trans, root);
3112 if (ret)
3113 return ret;
3114 goto again;
3115 }
3116
3117 return -ENOSPC;
3118 }
3119 data_sinfo->bytes_may_use += bytes;
3120 BTRFS_I(inode)->reserved_bytes += bytes;
3121 spin_unlock(&data_sinfo->lock);
3122
3123 return 0;
3124 }
3125
3126 /*
3127 * called when we are clearing an delalloc extent from the
3128 * inode's io_tree or there was an error for whatever reason
3129 * after calling btrfs_check_data_free_space
3130 */
3131 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3132 {
3133 struct btrfs_root *root = BTRFS_I(inode)->root;
3134 struct btrfs_space_info *data_sinfo;
3135
3136 /* make sure bytes are sectorsize aligned */
3137 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3138
3139 data_sinfo = BTRFS_I(inode)->space_info;
3140 spin_lock(&data_sinfo->lock);
3141 data_sinfo->bytes_may_use -= bytes;
3142 BTRFS_I(inode)->reserved_bytes -= bytes;
3143 spin_unlock(&data_sinfo->lock);
3144 }
3145
3146 static void force_metadata_allocation(struct btrfs_fs_info *info)
3147 {
3148 struct list_head *head = &info->space_info;
3149 struct btrfs_space_info *found;
3150
3151 rcu_read_lock();
3152 list_for_each_entry_rcu(found, head, list) {
3153 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3154 found->force_alloc = CHUNK_ALLOC_FORCE;
3155 }
3156 rcu_read_unlock();
3157 }
3158
3159 static int should_alloc_chunk(struct btrfs_root *root,
3160 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3161 int force)
3162 {
3163 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3164 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3165 u64 thresh;
3166
3167 if (force == CHUNK_ALLOC_FORCE)
3168 return 1;
3169
3170 /*
3171 * in limited mode, we want to have some free space up to
3172 * about 1% of the FS size.
3173 */
3174 if (force == CHUNK_ALLOC_LIMITED) {
3175 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3176 thresh = max_t(u64, 64 * 1024 * 1024,
3177 div_factor_fine(thresh, 1));
3178
3179 if (num_bytes - num_allocated < thresh)
3180 return 1;
3181 }
3182
3183 /*
3184 * we have two similar checks here, one based on percentage
3185 * and once based on a hard number of 256MB. The idea
3186 * is that if we have a good amount of free
3187 * room, don't allocate a chunk. A good mount is
3188 * less than 80% utilized of the chunks we have allocated,
3189 * or more than 256MB free
3190 */
3191 if (num_allocated + alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3192 return 0;
3193
3194 if (num_allocated + alloc_bytes < div_factor(num_bytes, 8))
3195 return 0;
3196
3197 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3198
3199 /* 256MB or 5% of the FS */
3200 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
3201
3202 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
3203 return 0;
3204 return 1;
3205 }
3206
3207 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3208 struct btrfs_root *extent_root, u64 alloc_bytes,
3209 u64 flags, int force)
3210 {
3211 struct btrfs_space_info *space_info;
3212 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3213 int wait_for_alloc = 0;
3214 int ret = 0;
3215
3216 flags = btrfs_reduce_alloc_profile(extent_root, flags);
3217
3218 space_info = __find_space_info(extent_root->fs_info, flags);
3219 if (!space_info) {
3220 ret = update_space_info(extent_root->fs_info, flags,
3221 0, 0, &space_info);
3222 BUG_ON(ret);
3223 }
3224 BUG_ON(!space_info);
3225
3226 again:
3227 spin_lock(&space_info->lock);
3228 if (space_info->force_alloc)
3229 force = space_info->force_alloc;
3230 if (space_info->full) {
3231 spin_unlock(&space_info->lock);
3232 return 0;
3233 }
3234
3235 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3236 spin_unlock(&space_info->lock);
3237 return 0;
3238 } else if (space_info->chunk_alloc) {
3239 wait_for_alloc = 1;
3240 } else {
3241 space_info->chunk_alloc = 1;
3242 }
3243
3244 spin_unlock(&space_info->lock);
3245
3246 mutex_lock(&fs_info->chunk_mutex);
3247
3248 /*
3249 * The chunk_mutex is held throughout the entirety of a chunk
3250 * allocation, so once we've acquired the chunk_mutex we know that the
3251 * other guy is done and we need to recheck and see if we should
3252 * allocate.
3253 */
3254 if (wait_for_alloc) {
3255 mutex_unlock(&fs_info->chunk_mutex);
3256 wait_for_alloc = 0;
3257 goto again;
3258 }
3259
3260 /*
3261 * If we have mixed data/metadata chunks we want to make sure we keep
3262 * allocating mixed chunks instead of individual chunks.
3263 */
3264 if (btrfs_mixed_space_info(space_info))
3265 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3266
3267 /*
3268 * if we're doing a data chunk, go ahead and make sure that
3269 * we keep a reasonable number of metadata chunks allocated in the
3270 * FS as well.
3271 */
3272 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3273 fs_info->data_chunk_allocations++;
3274 if (!(fs_info->data_chunk_allocations %
3275 fs_info->metadata_ratio))
3276 force_metadata_allocation(fs_info);
3277 }
3278
3279 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3280 spin_lock(&space_info->lock);
3281 if (ret)
3282 space_info->full = 1;
3283 else
3284 ret = 1;
3285
3286 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3287 space_info->chunk_alloc = 0;
3288 spin_unlock(&space_info->lock);
3289 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3290 return ret;
3291 }
3292
3293 /*
3294 * shrink metadata reservation for delalloc
3295 */
3296 static int shrink_delalloc(struct btrfs_trans_handle *trans,
3297 struct btrfs_root *root, u64 to_reclaim, int sync)
3298 {
3299 struct btrfs_block_rsv *block_rsv;
3300 struct btrfs_space_info *space_info;
3301 u64 reserved;
3302 u64 max_reclaim;
3303 u64 reclaimed = 0;
3304 long time_left;
3305 int nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3306 int loops = 0;
3307 unsigned long progress;
3308
3309 block_rsv = &root->fs_info->delalloc_block_rsv;
3310 space_info = block_rsv->space_info;
3311
3312 smp_mb();
3313 reserved = space_info->bytes_reserved;
3314 progress = space_info->reservation_progress;
3315
3316 if (reserved == 0)
3317 return 0;
3318
3319 max_reclaim = min(reserved, to_reclaim);
3320
3321 while (loops < 1024) {
3322 /* have the flusher threads jump in and do some IO */
3323 smp_mb();
3324 nr_pages = min_t(unsigned long, nr_pages,
3325 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3326 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages);
3327
3328 spin_lock(&space_info->lock);
3329 if (reserved > space_info->bytes_reserved)
3330 reclaimed += reserved - space_info->bytes_reserved;
3331 reserved = space_info->bytes_reserved;
3332 spin_unlock(&space_info->lock);
3333
3334 loops++;
3335
3336 if (reserved == 0 || reclaimed >= max_reclaim)
3337 break;
3338
3339 if (trans && trans->transaction->blocked)
3340 return -EAGAIN;
3341
3342 time_left = schedule_timeout_interruptible(1);
3343
3344 /* We were interrupted, exit */
3345 if (time_left)
3346 break;
3347
3348 /* we've kicked the IO a few times, if anything has been freed,
3349 * exit. There is no sense in looping here for a long time
3350 * when we really need to commit the transaction, or there are
3351 * just too many writers without enough free space
3352 */
3353
3354 if (loops > 3) {
3355 smp_mb();
3356 if (progress != space_info->reservation_progress)
3357 break;
3358 }
3359
3360 }
3361 return reclaimed >= to_reclaim;
3362 }
3363
3364 /*
3365 * Retries tells us how many times we've called reserve_metadata_bytes. The
3366 * idea is if this is the first call (retries == 0) then we will add to our
3367 * reserved count if we can't make the allocation in order to hold our place
3368 * while we go and try and free up space. That way for retries > 1 we don't try
3369 * and add space, we just check to see if the amount of unused space is >= the
3370 * total space, meaning that our reservation is valid.
3371 *
3372 * However if we don't intend to retry this reservation, pass -1 as retries so
3373 * that it short circuits this logic.
3374 */
3375 static int reserve_metadata_bytes(struct btrfs_trans_handle *trans,
3376 struct btrfs_root *root,
3377 struct btrfs_block_rsv *block_rsv,
3378 u64 orig_bytes, int flush)
3379 {
3380 struct btrfs_space_info *space_info = block_rsv->space_info;
3381 u64 unused;
3382 u64 num_bytes = orig_bytes;
3383 int retries = 0;
3384 int ret = 0;
3385 bool reserved = false;
3386 bool committed = false;
3387
3388 again:
3389 ret = -ENOSPC;
3390 if (reserved)
3391 num_bytes = 0;
3392
3393 spin_lock(&space_info->lock);
3394 unused = space_info->bytes_used + space_info->bytes_reserved +
3395 space_info->bytes_pinned + space_info->bytes_readonly +
3396 space_info->bytes_may_use;
3397
3398 /*
3399 * The idea here is that we've not already over-reserved the block group
3400 * then we can go ahead and save our reservation first and then start
3401 * flushing if we need to. Otherwise if we've already overcommitted
3402 * lets start flushing stuff first and then come back and try to make
3403 * our reservation.
3404 */
3405 if (unused <= space_info->total_bytes) {
3406 unused = space_info->total_bytes - unused;
3407 if (unused >= num_bytes) {
3408 if (!reserved)
3409 space_info->bytes_reserved += orig_bytes;
3410 ret = 0;
3411 } else {
3412 /*
3413 * Ok set num_bytes to orig_bytes since we aren't
3414 * overocmmitted, this way we only try and reclaim what
3415 * we need.
3416 */
3417 num_bytes = orig_bytes;
3418 }
3419 } else {
3420 /*
3421 * Ok we're over committed, set num_bytes to the overcommitted
3422 * amount plus the amount of bytes that we need for this
3423 * reservation.
3424 */
3425 num_bytes = unused - space_info->total_bytes +
3426 (orig_bytes * (retries + 1));
3427 }
3428
3429 /*
3430 * Couldn't make our reservation, save our place so while we're trying
3431 * to reclaim space we can actually use it instead of somebody else
3432 * stealing it from us.
3433 */
3434 if (ret && !reserved) {
3435 space_info->bytes_reserved += orig_bytes;
3436 reserved = true;
3437 }
3438
3439 spin_unlock(&space_info->lock);
3440
3441 if (!ret)
3442 return 0;
3443
3444 if (!flush)
3445 goto out;
3446
3447 /*
3448 * We do synchronous shrinking since we don't actually unreserve
3449 * metadata until after the IO is completed.
3450 */
3451 ret = shrink_delalloc(trans, root, num_bytes, 1);
3452 if (ret > 0)
3453 return 0;
3454 else if (ret < 0)
3455 goto out;
3456
3457 /*
3458 * So if we were overcommitted it's possible that somebody else flushed
3459 * out enough space and we simply didn't have enough space to reclaim,
3460 * so go back around and try again.
3461 */
3462 if (retries < 2) {
3463 retries++;
3464 goto again;
3465 }
3466
3467 spin_lock(&space_info->lock);
3468 /*
3469 * Not enough space to be reclaimed, don't bother committing the
3470 * transaction.
3471 */
3472 if (space_info->bytes_pinned < orig_bytes)
3473 ret = -ENOSPC;
3474 spin_unlock(&space_info->lock);
3475 if (ret)
3476 goto out;
3477
3478 ret = -EAGAIN;
3479 if (trans || committed)
3480 goto out;
3481
3482 ret = -ENOSPC;
3483 trans = btrfs_join_transaction(root);
3484 if (IS_ERR(trans))
3485 goto out;
3486 ret = btrfs_commit_transaction(trans, root);
3487 if (!ret) {
3488 trans = NULL;
3489 committed = true;
3490 goto again;
3491 }
3492
3493 out:
3494 if (reserved) {
3495 spin_lock(&space_info->lock);
3496 space_info->bytes_reserved -= orig_bytes;
3497 spin_unlock(&space_info->lock);
3498 }
3499
3500 return ret;
3501 }
3502
3503 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3504 struct btrfs_root *root)
3505 {
3506 struct btrfs_block_rsv *block_rsv;
3507 if (root->ref_cows)
3508 block_rsv = trans->block_rsv;
3509 else
3510 block_rsv = root->block_rsv;
3511
3512 if (!block_rsv)
3513 block_rsv = &root->fs_info->empty_block_rsv;
3514
3515 return block_rsv;
3516 }
3517
3518 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3519 u64 num_bytes)
3520 {
3521 int ret = -ENOSPC;
3522 spin_lock(&block_rsv->lock);
3523 if (block_rsv->reserved >= num_bytes) {
3524 block_rsv->reserved -= num_bytes;
3525 if (block_rsv->reserved < block_rsv->size)
3526 block_rsv->full = 0;
3527 ret = 0;
3528 }
3529 spin_unlock(&block_rsv->lock);
3530 return ret;
3531 }
3532
3533 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3534 u64 num_bytes, int update_size)
3535 {
3536 spin_lock(&block_rsv->lock);
3537 block_rsv->reserved += num_bytes;
3538 if (update_size)
3539 block_rsv->size += num_bytes;
3540 else if (block_rsv->reserved >= block_rsv->size)
3541 block_rsv->full = 1;
3542 spin_unlock(&block_rsv->lock);
3543 }
3544
3545 static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3546 struct btrfs_block_rsv *dest, u64 num_bytes)
3547 {
3548 struct btrfs_space_info *space_info = block_rsv->space_info;
3549
3550 spin_lock(&block_rsv->lock);
3551 if (num_bytes == (u64)-1)
3552 num_bytes = block_rsv->size;
3553 block_rsv->size -= num_bytes;
3554 if (block_rsv->reserved >= block_rsv->size) {
3555 num_bytes = block_rsv->reserved - block_rsv->size;
3556 block_rsv->reserved = block_rsv->size;
3557 block_rsv->full = 1;
3558 } else {
3559 num_bytes = 0;
3560 }
3561 spin_unlock(&block_rsv->lock);
3562
3563 if (num_bytes > 0) {
3564 if (dest) {
3565 spin_lock(&dest->lock);
3566 if (!dest->full) {
3567 u64 bytes_to_add;
3568
3569 bytes_to_add = dest->size - dest->reserved;
3570 bytes_to_add = min(num_bytes, bytes_to_add);
3571 dest->reserved += bytes_to_add;
3572 if (dest->reserved >= dest->size)
3573 dest->full = 1;
3574 num_bytes -= bytes_to_add;
3575 }
3576 spin_unlock(&dest->lock);
3577 }
3578 if (num_bytes) {
3579 spin_lock(&space_info->lock);
3580 space_info->bytes_reserved -= num_bytes;
3581 space_info->reservation_progress++;
3582 spin_unlock(&space_info->lock);
3583 }
3584 }
3585 }
3586
3587 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3588 struct btrfs_block_rsv *dst, u64 num_bytes)
3589 {
3590 int ret;
3591
3592 ret = block_rsv_use_bytes(src, num_bytes);
3593 if (ret)
3594 return ret;
3595
3596 block_rsv_add_bytes(dst, num_bytes, 1);
3597 return 0;
3598 }
3599
3600 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3601 {
3602 memset(rsv, 0, sizeof(*rsv));
3603 spin_lock_init(&rsv->lock);
3604 atomic_set(&rsv->usage, 1);
3605 rsv->priority = 6;
3606 INIT_LIST_HEAD(&rsv->list);
3607 }
3608
3609 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3610 {
3611 struct btrfs_block_rsv *block_rsv;
3612 struct btrfs_fs_info *fs_info = root->fs_info;
3613
3614 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3615 if (!block_rsv)
3616 return NULL;
3617
3618 btrfs_init_block_rsv(block_rsv);
3619 block_rsv->space_info = __find_space_info(fs_info,
3620 BTRFS_BLOCK_GROUP_METADATA);
3621 return block_rsv;
3622 }
3623
3624 void btrfs_free_block_rsv(struct btrfs_root *root,
3625 struct btrfs_block_rsv *rsv)
3626 {
3627 if (rsv && atomic_dec_and_test(&rsv->usage)) {
3628 btrfs_block_rsv_release(root, rsv, (u64)-1);
3629 if (!rsv->durable)
3630 kfree(rsv);
3631 }
3632 }
3633
3634 /*
3635 * make the block_rsv struct be able to capture freed space.
3636 * the captured space will re-add to the the block_rsv struct
3637 * after transaction commit
3638 */
3639 void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info,
3640 struct btrfs_block_rsv *block_rsv)
3641 {
3642 block_rsv->durable = 1;
3643 mutex_lock(&fs_info->durable_block_rsv_mutex);
3644 list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list);
3645 mutex_unlock(&fs_info->durable_block_rsv_mutex);
3646 }
3647
3648 int btrfs_block_rsv_add(struct btrfs_trans_handle *trans,
3649 struct btrfs_root *root,
3650 struct btrfs_block_rsv *block_rsv,
3651 u64 num_bytes)
3652 {
3653 int ret;
3654
3655 if (num_bytes == 0)
3656 return 0;
3657
3658 ret = reserve_metadata_bytes(trans, root, block_rsv, num_bytes, 1);
3659 if (!ret) {
3660 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3661 return 0;
3662 }
3663
3664 return ret;
3665 }
3666
3667 int btrfs_block_rsv_check(struct btrfs_trans_handle *trans,
3668 struct btrfs_root *root,
3669 struct btrfs_block_rsv *block_rsv,
3670 u64 min_reserved, int min_factor)
3671 {
3672 u64 num_bytes = 0;
3673 int commit_trans = 0;
3674 int ret = -ENOSPC;
3675
3676 if (!block_rsv)
3677 return 0;
3678
3679 spin_lock(&block_rsv->lock);
3680 if (min_factor > 0)
3681 num_bytes = div_factor(block_rsv->size, min_factor);
3682 if (min_reserved > num_bytes)
3683 num_bytes = min_reserved;
3684
3685 if (block_rsv->reserved >= num_bytes) {
3686 ret = 0;
3687 } else {
3688 num_bytes -= block_rsv->reserved;
3689 if (block_rsv->durable &&
3690 block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes)
3691 commit_trans = 1;
3692 }
3693 spin_unlock(&block_rsv->lock);
3694 if (!ret)
3695 return 0;
3696
3697 if (block_rsv->refill_used) {
3698 ret = reserve_metadata_bytes(trans, root, block_rsv,
3699 num_bytes, 0);
3700 if (!ret) {
3701 block_rsv_add_bytes(block_rsv, num_bytes, 0);
3702 return 0;
3703 }
3704 }
3705
3706 if (commit_trans) {
3707 if (trans)
3708 return -EAGAIN;
3709
3710 trans = btrfs_join_transaction(root);
3711 BUG_ON(IS_ERR(trans));
3712 ret = btrfs_commit_transaction(trans, root);
3713 return 0;
3714 }
3715
3716 return -ENOSPC;
3717 }
3718
3719 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3720 struct btrfs_block_rsv *dst_rsv,
3721 u64 num_bytes)
3722 {
3723 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3724 }
3725
3726 void btrfs_block_rsv_release(struct btrfs_root *root,
3727 struct btrfs_block_rsv *block_rsv,
3728 u64 num_bytes)
3729 {
3730 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3731 if (global_rsv->full || global_rsv == block_rsv ||
3732 block_rsv->space_info != global_rsv->space_info)
3733 global_rsv = NULL;
3734 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3735 }
3736
3737 /*
3738 * helper to calculate size of global block reservation.
3739 * the desired value is sum of space used by extent tree,
3740 * checksum tree and root tree
3741 */
3742 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3743 {
3744 struct btrfs_space_info *sinfo;
3745 u64 num_bytes;
3746 u64 meta_used;
3747 u64 data_used;
3748 int csum_size = btrfs_super_csum_size(&fs_info->super_copy);
3749
3750 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3751 spin_lock(&sinfo->lock);
3752 data_used = sinfo->bytes_used;
3753 spin_unlock(&sinfo->lock);
3754
3755 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3756 spin_lock(&sinfo->lock);
3757 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
3758 data_used = 0;
3759 meta_used = sinfo->bytes_used;
3760 spin_unlock(&sinfo->lock);
3761
3762 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3763 csum_size * 2;
3764 num_bytes += div64_u64(data_used + meta_used, 50);
3765
3766 if (num_bytes * 3 > meta_used)
3767 num_bytes = div64_u64(meta_used, 3);
3768
3769 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3770 }
3771
3772 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3773 {
3774 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3775 struct btrfs_space_info *sinfo = block_rsv->space_info;
3776 u64 num_bytes;
3777
3778 num_bytes = calc_global_metadata_size(fs_info);
3779
3780 spin_lock(&block_rsv->lock);
3781 spin_lock(&sinfo->lock);
3782
3783 block_rsv->size = num_bytes;
3784
3785 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3786 sinfo->bytes_reserved + sinfo->bytes_readonly +
3787 sinfo->bytes_may_use;
3788
3789 if (sinfo->total_bytes > num_bytes) {
3790 num_bytes = sinfo->total_bytes - num_bytes;
3791 block_rsv->reserved += num_bytes;
3792 sinfo->bytes_reserved += num_bytes;
3793 }
3794
3795 if (block_rsv->reserved >= block_rsv->size) {
3796 num_bytes = block_rsv->reserved - block_rsv->size;
3797 sinfo->bytes_reserved -= num_bytes;
3798 sinfo->reservation_progress++;
3799 block_rsv->reserved = block_rsv->size;
3800 block_rsv->full = 1;
3801 }
3802
3803 spin_unlock(&sinfo->lock);
3804 spin_unlock(&block_rsv->lock);
3805 }
3806
3807 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
3808 {
3809 struct btrfs_space_info *space_info;
3810
3811 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3812 fs_info->chunk_block_rsv.space_info = space_info;
3813 fs_info->chunk_block_rsv.priority = 10;
3814
3815 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3816 fs_info->global_block_rsv.space_info = space_info;
3817 fs_info->global_block_rsv.priority = 10;
3818 fs_info->global_block_rsv.refill_used = 1;
3819 fs_info->delalloc_block_rsv.space_info = space_info;
3820 fs_info->trans_block_rsv.space_info = space_info;
3821 fs_info->empty_block_rsv.space_info = space_info;
3822 fs_info->empty_block_rsv.priority = 10;
3823
3824 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
3825 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
3826 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
3827 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3828 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
3829
3830 btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv);
3831
3832 btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv);
3833
3834 update_global_block_rsv(fs_info);
3835 }
3836
3837 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
3838 {
3839 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
3840 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
3841 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
3842 WARN_ON(fs_info->trans_block_rsv.size > 0);
3843 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
3844 WARN_ON(fs_info->chunk_block_rsv.size > 0);
3845 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
3846 }
3847
3848 int btrfs_truncate_reserve_metadata(struct btrfs_trans_handle *trans,
3849 struct btrfs_root *root,
3850 struct btrfs_block_rsv *rsv)
3851 {
3852 struct btrfs_block_rsv *trans_rsv = &root->fs_info->trans_block_rsv;
3853 u64 num_bytes;
3854 int ret;
3855
3856 /*
3857 * Truncate should be freeing data, but give us 2 items just in case it
3858 * needs to use some space. We may want to be smarter about this in the
3859 * future.
3860 */
3861 num_bytes = btrfs_calc_trans_metadata_size(root, 2);
3862
3863 /* We already have enough bytes, just return */
3864 if (rsv->reserved >= num_bytes)
3865 return 0;
3866
3867 num_bytes -= rsv->reserved;
3868
3869 /*
3870 * You should have reserved enough space before hand to do this, so this
3871 * should not fail.
3872 */
3873 ret = block_rsv_migrate_bytes(trans_rsv, rsv, num_bytes);
3874 BUG_ON(ret);
3875
3876 return 0;
3877 }
3878
3879 int btrfs_trans_reserve_metadata(struct btrfs_trans_handle *trans,
3880 struct btrfs_root *root,
3881 int num_items)
3882 {
3883 u64 num_bytes;
3884 int ret;
3885
3886 if (num_items == 0 || root->fs_info->chunk_root == root)
3887 return 0;
3888
3889 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
3890 ret = btrfs_block_rsv_add(trans, root, &root->fs_info->trans_block_rsv,
3891 num_bytes);
3892 if (!ret) {
3893 trans->bytes_reserved += num_bytes;
3894 trans->block_rsv = &root->fs_info->trans_block_rsv;
3895 }
3896 return ret;
3897 }
3898
3899 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3900 struct btrfs_root *root)
3901 {
3902 if (!trans->bytes_reserved)
3903 return;
3904
3905 BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv);
3906 btrfs_block_rsv_release(root, trans->block_rsv,
3907 trans->bytes_reserved);
3908 trans->bytes_reserved = 0;
3909 }
3910
3911 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3912 struct inode *inode)
3913 {
3914 struct btrfs_root *root = BTRFS_I(inode)->root;
3915 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3916 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
3917
3918 /*
3919 * We need to hold space in order to delete our orphan item once we've
3920 * added it, so this takes the reservation so we can release it later
3921 * when we are truly done with the orphan item.
3922 */
3923 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3924 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3925 }
3926
3927 void btrfs_orphan_release_metadata(struct inode *inode)
3928 {
3929 struct btrfs_root *root = BTRFS_I(inode)->root;
3930 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3931 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
3932 }
3933
3934 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
3935 struct btrfs_pending_snapshot *pending)
3936 {
3937 struct btrfs_root *root = pending->root;
3938 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3939 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
3940 /*
3941 * two for root back/forward refs, two for directory entries
3942 * and one for root of the snapshot.
3943 */
3944 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3945 dst_rsv->space_info = src_rsv->space_info;
3946 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3947 }
3948
3949 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes)
3950 {
3951 return num_bytes >>= 3;
3952 }
3953
3954 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
3955 {
3956 struct btrfs_root *root = BTRFS_I(inode)->root;
3957 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
3958 u64 to_reserve;
3959 int nr_extents;
3960 int reserved_extents;
3961 int ret;
3962
3963 if (btrfs_transaction_in_commit(root->fs_info))
3964 schedule_timeout(1);
3965
3966 num_bytes = ALIGN(num_bytes, root->sectorsize);
3967
3968 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents) + 1;
3969 reserved_extents = atomic_read(&BTRFS_I(inode)->reserved_extents);
3970
3971 if (nr_extents > reserved_extents) {
3972 nr_extents -= reserved_extents;
3973 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
3974 } else {
3975 nr_extents = 0;
3976 to_reserve = 0;
3977 }
3978
3979 to_reserve += calc_csum_metadata_size(inode, num_bytes);
3980 ret = reserve_metadata_bytes(NULL, root, block_rsv, to_reserve, 1);
3981 if (ret)
3982 return ret;
3983
3984 atomic_add(nr_extents, &BTRFS_I(inode)->reserved_extents);
3985 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
3986
3987 block_rsv_add_bytes(block_rsv, to_reserve, 1);
3988
3989 if (block_rsv->size > 512 * 1024 * 1024)
3990 shrink_delalloc(NULL, root, to_reserve, 0);
3991
3992 return 0;
3993 }
3994
3995 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
3996 {
3997 struct btrfs_root *root = BTRFS_I(inode)->root;
3998 u64 to_free;
3999 int nr_extents;
4000 int reserved_extents;
4001
4002 num_bytes = ALIGN(num_bytes, root->sectorsize);
4003 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
4004 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents) < 0);
4005
4006 reserved_extents = atomic_read(&BTRFS_I(inode)->reserved_extents);
4007 do {
4008 int old, new;
4009
4010 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents);
4011 if (nr_extents >= reserved_extents) {
4012 nr_extents = 0;
4013 break;
4014 }
4015 old = reserved_extents;
4016 nr_extents = reserved_extents - nr_extents;
4017 new = reserved_extents - nr_extents;
4018 old = atomic_cmpxchg(&BTRFS_I(inode)->reserved_extents,
4019 reserved_extents, new);
4020 if (likely(old == reserved_extents))
4021 break;
4022 reserved_extents = old;
4023 } while (1);
4024
4025 to_free = calc_csum_metadata_size(inode, num_bytes);
4026 if (nr_extents > 0)
4027 to_free += btrfs_calc_trans_metadata_size(root, nr_extents);
4028
4029 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4030 to_free);
4031 }
4032
4033 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4034 {
4035 int ret;
4036
4037 ret = btrfs_check_data_free_space(inode, num_bytes);
4038 if (ret)
4039 return ret;
4040
4041 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4042 if (ret) {
4043 btrfs_free_reserved_data_space(inode, num_bytes);
4044 return ret;
4045 }
4046
4047 return 0;
4048 }
4049
4050 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4051 {
4052 btrfs_delalloc_release_metadata(inode, num_bytes);
4053 btrfs_free_reserved_data_space(inode, num_bytes);
4054 }
4055
4056 static int update_block_group(struct btrfs_trans_handle *trans,
4057 struct btrfs_root *root,
4058 u64 bytenr, u64 num_bytes, int alloc)
4059 {
4060 struct btrfs_block_group_cache *cache = NULL;
4061 struct btrfs_fs_info *info = root->fs_info;
4062 u64 total = num_bytes;
4063 u64 old_val;
4064 u64 byte_in_group;
4065 int factor;
4066
4067 /* block accounting for super block */
4068 spin_lock(&info->delalloc_lock);
4069 old_val = btrfs_super_bytes_used(&info->super_copy);
4070 if (alloc)
4071 old_val += num_bytes;
4072 else
4073 old_val -= num_bytes;
4074 btrfs_set_super_bytes_used(&info->super_copy, old_val);
4075 spin_unlock(&info->delalloc_lock);
4076
4077 while (total) {
4078 cache = btrfs_lookup_block_group(info, bytenr);
4079 if (!cache)
4080 return -1;
4081 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4082 BTRFS_BLOCK_GROUP_RAID1 |
4083 BTRFS_BLOCK_GROUP_RAID10))
4084 factor = 2;
4085 else
4086 factor = 1;
4087 /*
4088 * If this block group has free space cache written out, we
4089 * need to make sure to load it if we are removing space. This
4090 * is because we need the unpinning stage to actually add the
4091 * space back to the block group, otherwise we will leak space.
4092 */
4093 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4094 cache_block_group(cache, trans, NULL, 1);
4095
4096 byte_in_group = bytenr - cache->key.objectid;
4097 WARN_ON(byte_in_group > cache->key.offset);
4098
4099 spin_lock(&cache->space_info->lock);
4100 spin_lock(&cache->lock);
4101
4102 if (btrfs_super_cache_generation(&info->super_copy) != 0 &&
4103 cache->disk_cache_state < BTRFS_DC_CLEAR)
4104 cache->disk_cache_state = BTRFS_DC_CLEAR;
4105
4106 cache->dirty = 1;
4107 old_val = btrfs_block_group_used(&cache->item);
4108 num_bytes = min(total, cache->key.offset - byte_in_group);
4109 if (alloc) {
4110 old_val += num_bytes;
4111 btrfs_set_block_group_used(&cache->item, old_val);
4112 cache->reserved -= num_bytes;
4113 cache->space_info->bytes_reserved -= num_bytes;
4114 cache->space_info->reservation_progress++;
4115 cache->space_info->bytes_used += num_bytes;
4116 cache->space_info->disk_used += num_bytes * factor;
4117 spin_unlock(&cache->lock);
4118 spin_unlock(&cache->space_info->lock);
4119 } else {
4120 old_val -= num_bytes;
4121 btrfs_set_block_group_used(&cache->item, old_val);
4122 cache->pinned += num_bytes;
4123 cache->space_info->bytes_pinned += num_bytes;
4124 cache->space_info->bytes_used -= num_bytes;
4125 cache->space_info->disk_used -= num_bytes * factor;
4126 spin_unlock(&cache->lock);
4127 spin_unlock(&cache->space_info->lock);
4128
4129 set_extent_dirty(info->pinned_extents,
4130 bytenr, bytenr + num_bytes - 1,
4131 GFP_NOFS | __GFP_NOFAIL);
4132 }
4133 btrfs_put_block_group(cache);
4134 total -= num_bytes;
4135 bytenr += num_bytes;
4136 }
4137 return 0;
4138 }
4139
4140 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4141 {
4142 struct btrfs_block_group_cache *cache;
4143 u64 bytenr;
4144
4145 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4146 if (!cache)
4147 return 0;
4148
4149 bytenr = cache->key.objectid;
4150 btrfs_put_block_group(cache);
4151
4152 return bytenr;
4153 }
4154
4155 static int pin_down_extent(struct btrfs_root *root,
4156 struct btrfs_block_group_cache *cache,
4157 u64 bytenr, u64 num_bytes, int reserved)
4158 {
4159 spin_lock(&cache->space_info->lock);
4160 spin_lock(&cache->lock);
4161 cache->pinned += num_bytes;
4162 cache->space_info->bytes_pinned += num_bytes;
4163 if (reserved) {
4164 cache->reserved -= num_bytes;
4165 cache->space_info->bytes_reserved -= num_bytes;
4166 cache->space_info->reservation_progress++;
4167 }
4168 spin_unlock(&cache->lock);
4169 spin_unlock(&cache->space_info->lock);
4170
4171 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4172 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4173 return 0;
4174 }
4175
4176 /*
4177 * this function must be called within transaction
4178 */
4179 int btrfs_pin_extent(struct btrfs_root *root,
4180 u64 bytenr, u64 num_bytes, int reserved)
4181 {
4182 struct btrfs_block_group_cache *cache;
4183
4184 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4185 BUG_ON(!cache);
4186
4187 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4188
4189 btrfs_put_block_group(cache);
4190 return 0;
4191 }
4192
4193 /*
4194 * update size of reserved extents. this function may return -EAGAIN
4195 * if 'reserve' is true or 'sinfo' is false.
4196 */
4197 int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4198 u64 num_bytes, int reserve, int sinfo)
4199 {
4200 int ret = 0;
4201 if (sinfo) {
4202 struct btrfs_space_info *space_info = cache->space_info;
4203 spin_lock(&space_info->lock);
4204 spin_lock(&cache->lock);
4205 if (reserve) {
4206 if (cache->ro) {
4207 ret = -EAGAIN;
4208 } else {
4209 cache->reserved += num_bytes;
4210 space_info->bytes_reserved += num_bytes;
4211 }
4212 } else {
4213 if (cache->ro)
4214 space_info->bytes_readonly += num_bytes;
4215 cache->reserved -= num_bytes;
4216 space_info->bytes_reserved -= num_bytes;
4217 space_info->reservation_progress++;
4218 }
4219 spin_unlock(&cache->lock);
4220 spin_unlock(&space_info->lock);
4221 } else {
4222 spin_lock(&cache->lock);
4223 if (cache->ro) {
4224 ret = -EAGAIN;
4225 } else {
4226 if (reserve)
4227 cache->reserved += num_bytes;
4228 else
4229 cache->reserved -= num_bytes;
4230 }
4231 spin_unlock(&cache->lock);
4232 }
4233 return ret;
4234 }
4235
4236 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4237 struct btrfs_root *root)
4238 {
4239 struct btrfs_fs_info *fs_info = root->fs_info;
4240 struct btrfs_caching_control *next;
4241 struct btrfs_caching_control *caching_ctl;
4242 struct btrfs_block_group_cache *cache;
4243
4244 down_write(&fs_info->extent_commit_sem);
4245
4246 list_for_each_entry_safe(caching_ctl, next,
4247 &fs_info->caching_block_groups, list) {
4248 cache = caching_ctl->block_group;
4249 if (block_group_cache_done(cache)) {
4250 cache->last_byte_to_unpin = (u64)-1;
4251 list_del_init(&caching_ctl->list);
4252 put_caching_control(caching_ctl);
4253 } else {
4254 cache->last_byte_to_unpin = caching_ctl->progress;
4255 }
4256 }
4257
4258 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4259 fs_info->pinned_extents = &fs_info->freed_extents[1];
4260 else
4261 fs_info->pinned_extents = &fs_info->freed_extents[0];
4262
4263 up_write(&fs_info->extent_commit_sem);
4264
4265 update_global_block_rsv(fs_info);
4266 return 0;
4267 }
4268
4269 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4270 {
4271 struct btrfs_fs_info *fs_info = root->fs_info;
4272 struct btrfs_block_group_cache *cache = NULL;
4273 u64 len;
4274
4275 while (start <= end) {
4276 if (!cache ||
4277 start >= cache->key.objectid + cache->key.offset) {
4278 if (cache)
4279 btrfs_put_block_group(cache);
4280 cache = btrfs_lookup_block_group(fs_info, start);
4281 BUG_ON(!cache);
4282 }
4283
4284 len = cache->key.objectid + cache->key.offset - start;
4285 len = min(len, end + 1 - start);
4286
4287 if (start < cache->last_byte_to_unpin) {
4288 len = min(len, cache->last_byte_to_unpin - start);
4289 btrfs_add_free_space(cache, start, len);
4290 }
4291
4292 start += len;
4293
4294 spin_lock(&cache->space_info->lock);
4295 spin_lock(&cache->lock);
4296 cache->pinned -= len;
4297 cache->space_info->bytes_pinned -= len;
4298 if (cache->ro) {
4299 cache->space_info->bytes_readonly += len;
4300 } else if (cache->reserved_pinned > 0) {
4301 len = min(len, cache->reserved_pinned);
4302 cache->reserved_pinned -= len;
4303 cache->space_info->bytes_reserved += len;
4304 }
4305 spin_unlock(&cache->lock);
4306 spin_unlock(&cache->space_info->lock);
4307 }
4308
4309 if (cache)
4310 btrfs_put_block_group(cache);
4311 return 0;
4312 }
4313
4314 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4315 struct btrfs_root *root)
4316 {
4317 struct btrfs_fs_info *fs_info = root->fs_info;
4318 struct extent_io_tree *unpin;
4319 struct btrfs_block_rsv *block_rsv;
4320 struct btrfs_block_rsv *next_rsv;
4321 u64 start;
4322 u64 end;
4323 int idx;
4324 int ret;
4325
4326 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4327 unpin = &fs_info->freed_extents[1];
4328 else
4329 unpin = &fs_info->freed_extents[0];
4330
4331 while (1) {
4332 ret = find_first_extent_bit(unpin, 0, &start, &end,
4333 EXTENT_DIRTY);
4334 if (ret)
4335 break;
4336
4337 if (btrfs_test_opt(root, DISCARD))
4338 ret = btrfs_discard_extent(root, start,
4339 end + 1 - start, NULL);
4340
4341 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4342 unpin_extent_range(root, start, end);
4343 cond_resched();
4344 }
4345
4346 mutex_lock(&fs_info->durable_block_rsv_mutex);
4347 list_for_each_entry_safe(block_rsv, next_rsv,
4348 &fs_info->durable_block_rsv_list, list) {
4349
4350 idx = trans->transid & 0x1;
4351 if (block_rsv->freed[idx] > 0) {
4352 block_rsv_add_bytes(block_rsv,
4353 block_rsv->freed[idx], 0);
4354 block_rsv->freed[idx] = 0;
4355 }
4356 if (atomic_read(&block_rsv->usage) == 0) {
4357 btrfs_block_rsv_release(root, block_rsv, (u64)-1);
4358
4359 if (block_rsv->freed[0] == 0 &&
4360 block_rsv->freed[1] == 0) {
4361 list_del_init(&block_rsv->list);
4362 kfree(block_rsv);
4363 }
4364 } else {
4365 btrfs_block_rsv_release(root, block_rsv, 0);
4366 }
4367 }
4368 mutex_unlock(&fs_info->durable_block_rsv_mutex);
4369
4370 return 0;
4371 }
4372
4373 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4374 struct btrfs_root *root,
4375 u64 bytenr, u64 num_bytes, u64 parent,
4376 u64 root_objectid, u64 owner_objectid,
4377 u64 owner_offset, int refs_to_drop,
4378 struct btrfs_delayed_extent_op *extent_op)
4379 {
4380 struct btrfs_key key;
4381 struct btrfs_path *path;
4382 struct btrfs_fs_info *info = root->fs_info;
4383 struct btrfs_root *extent_root = info->extent_root;
4384 struct extent_buffer *leaf;
4385 struct btrfs_extent_item *ei;
4386 struct btrfs_extent_inline_ref *iref;
4387 int ret;
4388 int is_data;
4389 int extent_slot = 0;
4390 int found_extent = 0;
4391 int num_to_del = 1;
4392 u32 item_size;
4393 u64 refs;
4394
4395 path = btrfs_alloc_path();
4396 if (!path)
4397 return -ENOMEM;
4398
4399 path->reada = 1;
4400 path->leave_spinning = 1;
4401
4402 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4403 BUG_ON(!is_data && refs_to_drop != 1);
4404
4405 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4406 bytenr, num_bytes, parent,
4407 root_objectid, owner_objectid,
4408 owner_offset);
4409 if (ret == 0) {
4410 extent_slot = path->slots[0];
4411 while (extent_slot >= 0) {
4412 btrfs_item_key_to_cpu(path->nodes[0], &key,
4413 extent_slot);
4414 if (key.objectid != bytenr)
4415 break;
4416 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4417 key.offset == num_bytes) {
4418 found_extent = 1;
4419 break;
4420 }
4421 if (path->slots[0] - extent_slot > 5)
4422 break;
4423 extent_slot--;
4424 }
4425 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4426 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4427 if (found_extent && item_size < sizeof(*ei))
4428 found_extent = 0;
4429 #endif
4430 if (!found_extent) {
4431 BUG_ON(iref);
4432 ret = remove_extent_backref(trans, extent_root, path,
4433 NULL, refs_to_drop,
4434 is_data);
4435 BUG_ON(ret);
4436 btrfs_release_path(path);
4437 path->leave_spinning = 1;
4438
4439 key.objectid = bytenr;
4440 key.type = BTRFS_EXTENT_ITEM_KEY;
4441 key.offset = num_bytes;
4442
4443 ret = btrfs_search_slot(trans, extent_root,
4444 &key, path, -1, 1);
4445 if (ret) {
4446 printk(KERN_ERR "umm, got %d back from search"
4447 ", was looking for %llu\n", ret,
4448 (unsigned long long)bytenr);
4449 btrfs_print_leaf(extent_root, path->nodes[0]);
4450 }
4451 BUG_ON(ret);
4452 extent_slot = path->slots[0];
4453 }
4454 } else {
4455 btrfs_print_leaf(extent_root, path->nodes[0]);
4456 WARN_ON(1);
4457 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4458 "parent %llu root %llu owner %llu offset %llu\n",
4459 (unsigned long long)bytenr,
4460 (unsigned long long)parent,
4461 (unsigned long long)root_objectid,
4462 (unsigned long long)owner_objectid,
4463 (unsigned long long)owner_offset);
4464 }
4465
4466 leaf = path->nodes[0];
4467 item_size = btrfs_item_size_nr(leaf, extent_slot);
4468 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4469 if (item_size < sizeof(*ei)) {
4470 BUG_ON(found_extent || extent_slot != path->slots[0]);
4471 ret = convert_extent_item_v0(trans, extent_root, path,
4472 owner_objectid, 0);
4473 BUG_ON(ret < 0);
4474
4475 btrfs_release_path(path);
4476 path->leave_spinning = 1;
4477
4478 key.objectid = bytenr;
4479 key.type = BTRFS_EXTENT_ITEM_KEY;
4480 key.offset = num_bytes;
4481
4482 ret = btrfs_search_slot(trans, extent_root, &key, path,
4483 -1, 1);
4484 if (ret) {
4485 printk(KERN_ERR "umm, got %d back from search"
4486 ", was looking for %llu\n", ret,
4487 (unsigned long long)bytenr);
4488 btrfs_print_leaf(extent_root, path->nodes[0]);
4489 }
4490 BUG_ON(ret);
4491 extent_slot = path->slots[0];
4492 leaf = path->nodes[0];
4493 item_size = btrfs_item_size_nr(leaf, extent_slot);
4494 }
4495 #endif
4496 BUG_ON(item_size < sizeof(*ei));
4497 ei = btrfs_item_ptr(leaf, extent_slot,
4498 struct btrfs_extent_item);
4499 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4500 struct btrfs_tree_block_info *bi;
4501 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4502 bi = (struct btrfs_tree_block_info *)(ei + 1);
4503 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4504 }
4505
4506 refs = btrfs_extent_refs(leaf, ei);
4507 BUG_ON(refs < refs_to_drop);
4508 refs -= refs_to_drop;
4509
4510 if (refs > 0) {
4511 if (extent_op)
4512 __run_delayed_extent_op(extent_op, leaf, ei);
4513 /*
4514 * In the case of inline back ref, reference count will
4515 * be updated by remove_extent_backref
4516 */
4517 if (iref) {
4518 BUG_ON(!found_extent);
4519 } else {
4520 btrfs_set_extent_refs(leaf, ei, refs);
4521 btrfs_mark_buffer_dirty(leaf);
4522 }
4523 if (found_extent) {
4524 ret = remove_extent_backref(trans, extent_root, path,
4525 iref, refs_to_drop,
4526 is_data);
4527 BUG_ON(ret);
4528 }
4529 } else {
4530 if (found_extent) {
4531 BUG_ON(is_data && refs_to_drop !=
4532 extent_data_ref_count(root, path, iref));
4533 if (iref) {
4534 BUG_ON(path->slots[0] != extent_slot);
4535 } else {
4536 BUG_ON(path->slots[0] != extent_slot + 1);
4537 path->slots[0] = extent_slot;
4538 num_to_del = 2;
4539 }
4540 }
4541
4542 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4543 num_to_del);
4544 BUG_ON(ret);
4545 btrfs_release_path(path);
4546
4547 if (is_data) {
4548 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4549 BUG_ON(ret);
4550 } else {
4551 invalidate_mapping_pages(info->btree_inode->i_mapping,
4552 bytenr >> PAGE_CACHE_SHIFT,
4553 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4554 }
4555
4556 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4557 BUG_ON(ret);
4558 }
4559 btrfs_free_path(path);
4560 return ret;
4561 }
4562
4563 /*
4564 * when we free an block, it is possible (and likely) that we free the last
4565 * delayed ref for that extent as well. This searches the delayed ref tree for
4566 * a given extent, and if there are no other delayed refs to be processed, it
4567 * removes it from the tree.
4568 */
4569 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4570 struct btrfs_root *root, u64 bytenr)
4571 {
4572 struct btrfs_delayed_ref_head *head;
4573 struct btrfs_delayed_ref_root *delayed_refs;
4574 struct btrfs_delayed_ref_node *ref;
4575 struct rb_node *node;
4576 int ret = 0;
4577
4578 delayed_refs = &trans->transaction->delayed_refs;
4579 spin_lock(&delayed_refs->lock);
4580 head = btrfs_find_delayed_ref_head(trans, bytenr);
4581 if (!head)
4582 goto out;
4583
4584 node = rb_prev(&head->node.rb_node);
4585 if (!node)
4586 goto out;
4587
4588 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4589
4590 /* there are still entries for this ref, we can't drop it */
4591 if (ref->bytenr == bytenr)
4592 goto out;
4593
4594 if (head->extent_op) {
4595 if (!head->must_insert_reserved)
4596 goto out;
4597 kfree(head->extent_op);
4598 head->extent_op = NULL;
4599 }
4600
4601 /*
4602 * waiting for the lock here would deadlock. If someone else has it
4603 * locked they are already in the process of dropping it anyway
4604 */
4605 if (!mutex_trylock(&head->mutex))
4606 goto out;
4607
4608 /*
4609 * at this point we have a head with no other entries. Go
4610 * ahead and process it.
4611 */
4612 head->node.in_tree = 0;
4613 rb_erase(&head->node.rb_node, &delayed_refs->root);
4614
4615 delayed_refs->num_entries--;
4616
4617 /*
4618 * we don't take a ref on the node because we're removing it from the
4619 * tree, so we just steal the ref the tree was holding.
4620 */
4621 delayed_refs->num_heads--;
4622 if (list_empty(&head->cluster))
4623 delayed_refs->num_heads_ready--;
4624
4625 list_del_init(&head->cluster);
4626 spin_unlock(&delayed_refs->lock);
4627
4628 BUG_ON(head->extent_op);
4629 if (head->must_insert_reserved)
4630 ret = 1;
4631
4632 mutex_unlock(&head->mutex);
4633 btrfs_put_delayed_ref(&head->node);
4634 return ret;
4635 out:
4636 spin_unlock(&delayed_refs->lock);
4637 return 0;
4638 }
4639
4640 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4641 struct btrfs_root *root,
4642 struct extent_buffer *buf,
4643 u64 parent, int last_ref)
4644 {
4645 struct btrfs_block_rsv *block_rsv;
4646 struct btrfs_block_group_cache *cache = NULL;
4647 int ret;
4648
4649 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4650 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4651 parent, root->root_key.objectid,
4652 btrfs_header_level(buf),
4653 BTRFS_DROP_DELAYED_REF, NULL);
4654 BUG_ON(ret);
4655 }
4656
4657 if (!last_ref)
4658 return;
4659
4660 block_rsv = get_block_rsv(trans, root);
4661 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4662 if (block_rsv->space_info != cache->space_info)
4663 goto out;
4664
4665 if (btrfs_header_generation(buf) == trans->transid) {
4666 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4667 ret = check_ref_cleanup(trans, root, buf->start);
4668 if (!ret)
4669 goto pin;
4670 }
4671
4672 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4673 pin_down_extent(root, cache, buf->start, buf->len, 1);
4674 goto pin;
4675 }
4676
4677 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4678
4679 btrfs_add_free_space(cache, buf->start, buf->len);
4680 ret = btrfs_update_reserved_bytes(cache, buf->len, 0, 0);
4681 if (ret == -EAGAIN) {
4682 /* block group became read-only */
4683 btrfs_update_reserved_bytes(cache, buf->len, 0, 1);
4684 goto out;
4685 }
4686
4687 ret = 1;
4688 spin_lock(&block_rsv->lock);
4689 if (block_rsv->reserved < block_rsv->size) {
4690 block_rsv->reserved += buf->len;
4691 ret = 0;
4692 }
4693 spin_unlock(&block_rsv->lock);
4694
4695 if (ret) {
4696 spin_lock(&cache->space_info->lock);
4697 cache->space_info->bytes_reserved -= buf->len;
4698 cache->space_info->reservation_progress++;
4699 spin_unlock(&cache->space_info->lock);
4700 }
4701 goto out;
4702 }
4703 pin:
4704 if (block_rsv->durable && !cache->ro) {
4705 ret = 0;
4706 spin_lock(&cache->lock);
4707 if (!cache->ro) {
4708 cache->reserved_pinned += buf->len;
4709 ret = 1;
4710 }
4711 spin_unlock(&cache->lock);
4712
4713 if (ret) {
4714 spin_lock(&block_rsv->lock);
4715 block_rsv->freed[trans->transid & 0x1] += buf->len;
4716 spin_unlock(&block_rsv->lock);
4717 }
4718 }
4719 out:
4720 /*
4721 * Deleting the buffer, clear the corrupt flag since it doesn't matter
4722 * anymore.
4723 */
4724 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
4725 btrfs_put_block_group(cache);
4726 }
4727
4728 int btrfs_free_extent(struct btrfs_trans_handle *trans,
4729 struct btrfs_root *root,
4730 u64 bytenr, u64 num_bytes, u64 parent,
4731 u64 root_objectid, u64 owner, u64 offset)
4732 {
4733 int ret;
4734
4735 /*
4736 * tree log blocks never actually go into the extent allocation
4737 * tree, just update pinning info and exit early.
4738 */
4739 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4740 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4741 /* unlocks the pinned mutex */
4742 btrfs_pin_extent(root, bytenr, num_bytes, 1);
4743 ret = 0;
4744 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4745 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4746 parent, root_objectid, (int)owner,
4747 BTRFS_DROP_DELAYED_REF, NULL);
4748 BUG_ON(ret);
4749 } else {
4750 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4751 parent, root_objectid, owner,
4752 offset, BTRFS_DROP_DELAYED_REF, NULL);
4753 BUG_ON(ret);
4754 }
4755 return ret;
4756 }
4757
4758 static u64 stripe_align(struct btrfs_root *root, u64 val)
4759 {
4760 u64 mask = ((u64)root->stripesize - 1);
4761 u64 ret = (val + mask) & ~mask;
4762 return ret;
4763 }
4764
4765 /*
4766 * when we wait for progress in the block group caching, its because
4767 * our allocation attempt failed at least once. So, we must sleep
4768 * and let some progress happen before we try again.
4769 *
4770 * This function will sleep at least once waiting for new free space to
4771 * show up, and then it will check the block group free space numbers
4772 * for our min num_bytes. Another option is to have it go ahead
4773 * and look in the rbtree for a free extent of a given size, but this
4774 * is a good start.
4775 */
4776 static noinline int
4777 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4778 u64 num_bytes)
4779 {
4780 struct btrfs_caching_control *caching_ctl;
4781 DEFINE_WAIT(wait);
4782
4783 caching_ctl = get_caching_control(cache);
4784 if (!caching_ctl)
4785 return 0;
4786
4787 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4788 (cache->free_space_ctl->free_space >= num_bytes));
4789
4790 put_caching_control(caching_ctl);
4791 return 0;
4792 }
4793
4794 static noinline int
4795 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4796 {
4797 struct btrfs_caching_control *caching_ctl;
4798 DEFINE_WAIT(wait);
4799
4800 caching_ctl = get_caching_control(cache);
4801 if (!caching_ctl)
4802 return 0;
4803
4804 wait_event(caching_ctl->wait, block_group_cache_done(cache));
4805
4806 put_caching_control(caching_ctl);
4807 return 0;
4808 }
4809
4810 static int get_block_group_index(struct btrfs_block_group_cache *cache)
4811 {
4812 int index;
4813 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
4814 index = 0;
4815 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
4816 index = 1;
4817 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
4818 index = 2;
4819 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
4820 index = 3;
4821 else
4822 index = 4;
4823 return index;
4824 }
4825
4826 enum btrfs_loop_type {
4827 LOOP_FIND_IDEAL = 0,
4828 LOOP_CACHING_NOWAIT = 1,
4829 LOOP_CACHING_WAIT = 2,
4830 LOOP_ALLOC_CHUNK = 3,
4831 LOOP_NO_EMPTY_SIZE = 4,
4832 };
4833
4834 /*
4835 * walks the btree of allocated extents and find a hole of a given size.
4836 * The key ins is changed to record the hole:
4837 * ins->objectid == block start
4838 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4839 * ins->offset == number of blocks
4840 * Any available blocks before search_start are skipped.
4841 */
4842 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4843 struct btrfs_root *orig_root,
4844 u64 num_bytes, u64 empty_size,
4845 u64 search_start, u64 search_end,
4846 u64 hint_byte, struct btrfs_key *ins,
4847 u64 data)
4848 {
4849 int ret = 0;
4850 struct btrfs_root *root = orig_root->fs_info->extent_root;
4851 struct btrfs_free_cluster *last_ptr = NULL;
4852 struct btrfs_block_group_cache *block_group = NULL;
4853 int empty_cluster = 2 * 1024 * 1024;
4854 int allowed_chunk_alloc = 0;
4855 int done_chunk_alloc = 0;
4856 struct btrfs_space_info *space_info;
4857 int last_ptr_loop = 0;
4858 int loop = 0;
4859 int index = 0;
4860 bool found_uncached_bg = false;
4861 bool failed_cluster_refill = false;
4862 bool failed_alloc = false;
4863 bool use_cluster = true;
4864 u64 ideal_cache_percent = 0;
4865 u64 ideal_cache_offset = 0;
4866
4867 WARN_ON(num_bytes < root->sectorsize);
4868 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4869 ins->objectid = 0;
4870 ins->offset = 0;
4871
4872 space_info = __find_space_info(root->fs_info, data);
4873 if (!space_info) {
4874 printk(KERN_ERR "No space info for %llu\n", data);
4875 return -ENOSPC;
4876 }
4877
4878 /*
4879 * If the space info is for both data and metadata it means we have a
4880 * small filesystem and we can't use the clustering stuff.
4881 */
4882 if (btrfs_mixed_space_info(space_info))
4883 use_cluster = false;
4884
4885 if (orig_root->ref_cows || empty_size)
4886 allowed_chunk_alloc = 1;
4887
4888 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
4889 last_ptr = &root->fs_info->meta_alloc_cluster;
4890 if (!btrfs_test_opt(root, SSD))
4891 empty_cluster = 64 * 1024;
4892 }
4893
4894 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
4895 btrfs_test_opt(root, SSD)) {
4896 last_ptr = &root->fs_info->data_alloc_cluster;
4897 }
4898
4899 if (last_ptr) {
4900 spin_lock(&last_ptr->lock);
4901 if (last_ptr->block_group)
4902 hint_byte = last_ptr->window_start;
4903 spin_unlock(&last_ptr->lock);
4904 }
4905
4906 search_start = max(search_start, first_logical_byte(root, 0));
4907 search_start = max(search_start, hint_byte);
4908
4909 if (!last_ptr)
4910 empty_cluster = 0;
4911
4912 if (search_start == hint_byte) {
4913 ideal_cache:
4914 block_group = btrfs_lookup_block_group(root->fs_info,
4915 search_start);
4916 /*
4917 * we don't want to use the block group if it doesn't match our
4918 * allocation bits, or if its not cached.
4919 *
4920 * However if we are re-searching with an ideal block group
4921 * picked out then we don't care that the block group is cached.
4922 */
4923 if (block_group && block_group_bits(block_group, data) &&
4924 (block_group->cached != BTRFS_CACHE_NO ||
4925 search_start == ideal_cache_offset)) {
4926 down_read(&space_info->groups_sem);
4927 if (list_empty(&block_group->list) ||
4928 block_group->ro) {
4929 /*
4930 * someone is removing this block group,
4931 * we can't jump into the have_block_group
4932 * target because our list pointers are not
4933 * valid
4934 */
4935 btrfs_put_block_group(block_group);
4936 up_read(&space_info->groups_sem);
4937 } else {
4938 index = get_block_group_index(block_group);
4939 goto have_block_group;
4940 }
4941 } else if (block_group) {
4942 btrfs_put_block_group(block_group);
4943 }
4944 }
4945 search:
4946 down_read(&space_info->groups_sem);
4947 list_for_each_entry(block_group, &space_info->block_groups[index],
4948 list) {
4949 u64 offset;
4950 int cached;
4951
4952 btrfs_get_block_group(block_group);
4953 search_start = block_group->key.objectid;
4954
4955 /*
4956 * this can happen if we end up cycling through all the
4957 * raid types, but we want to make sure we only allocate
4958 * for the proper type.
4959 */
4960 if (!block_group_bits(block_group, data)) {
4961 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4962 BTRFS_BLOCK_GROUP_RAID1 |
4963 BTRFS_BLOCK_GROUP_RAID10;
4964
4965 /*
4966 * if they asked for extra copies and this block group
4967 * doesn't provide them, bail. This does allow us to
4968 * fill raid0 from raid1.
4969 */
4970 if ((data & extra) && !(block_group->flags & extra))
4971 goto loop;
4972 }
4973
4974 have_block_group:
4975 if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
4976 u64 free_percent;
4977
4978 ret = cache_block_group(block_group, trans,
4979 orig_root, 1);
4980 if (block_group->cached == BTRFS_CACHE_FINISHED)
4981 goto have_block_group;
4982
4983 free_percent = btrfs_block_group_used(&block_group->item);
4984 free_percent *= 100;
4985 free_percent = div64_u64(free_percent,
4986 block_group->key.offset);
4987 free_percent = 100 - free_percent;
4988 if (free_percent > ideal_cache_percent &&
4989 likely(!block_group->ro)) {
4990 ideal_cache_offset = block_group->key.objectid;
4991 ideal_cache_percent = free_percent;
4992 }
4993
4994 /*
4995 * We only want to start kthread caching if we are at
4996 * the point where we will wait for caching to make
4997 * progress, or if our ideal search is over and we've
4998 * found somebody to start caching.
4999 */
5000 if (loop > LOOP_CACHING_NOWAIT ||
5001 (loop > LOOP_FIND_IDEAL &&
5002 atomic_read(&space_info->caching_threads) < 2)) {
5003 ret = cache_block_group(block_group, trans,
5004 orig_root, 0);
5005 BUG_ON(ret);
5006 }
5007 found_uncached_bg = true;
5008
5009 /*
5010 * If loop is set for cached only, try the next block
5011 * group.
5012 */
5013 if (loop == LOOP_FIND_IDEAL)
5014 goto loop;
5015 }
5016
5017 cached = block_group_cache_done(block_group);
5018 if (unlikely(!cached))
5019 found_uncached_bg = true;
5020
5021 if (unlikely(block_group->ro))
5022 goto loop;
5023
5024 spin_lock(&block_group->free_space_ctl->tree_lock);
5025 if (cached &&
5026 block_group->free_space_ctl->free_space <
5027 num_bytes + empty_size) {
5028 spin_unlock(&block_group->free_space_ctl->tree_lock);
5029 goto loop;
5030 }
5031 spin_unlock(&block_group->free_space_ctl->tree_lock);
5032
5033 /*
5034 * Ok we want to try and use the cluster allocator, so lets look
5035 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5036 * have tried the cluster allocator plenty of times at this
5037 * point and not have found anything, so we are likely way too
5038 * fragmented for the clustering stuff to find anything, so lets
5039 * just skip it and let the allocator find whatever block it can
5040 * find
5041 */
5042 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
5043 /*
5044 * the refill lock keeps out other
5045 * people trying to start a new cluster
5046 */
5047 spin_lock(&last_ptr->refill_lock);
5048 if (last_ptr->block_group &&
5049 (last_ptr->block_group->ro ||
5050 !block_group_bits(last_ptr->block_group, data))) {
5051 offset = 0;
5052 goto refill_cluster;
5053 }
5054
5055 offset = btrfs_alloc_from_cluster(block_group, last_ptr,
5056 num_bytes, search_start);
5057 if (offset) {
5058 /* we have a block, we're done */
5059 spin_unlock(&last_ptr->refill_lock);
5060 goto checks;
5061 }
5062
5063 spin_lock(&last_ptr->lock);
5064 /*
5065 * whoops, this cluster doesn't actually point to
5066 * this block group. Get a ref on the block
5067 * group is does point to and try again
5068 */
5069 if (!last_ptr_loop && last_ptr->block_group &&
5070 last_ptr->block_group != block_group) {
5071
5072 btrfs_put_block_group(block_group);
5073 block_group = last_ptr->block_group;
5074 btrfs_get_block_group(block_group);
5075 spin_unlock(&last_ptr->lock);
5076 spin_unlock(&last_ptr->refill_lock);
5077
5078 last_ptr_loop = 1;
5079 search_start = block_group->key.objectid;
5080 /*
5081 * we know this block group is properly
5082 * in the list because
5083 * btrfs_remove_block_group, drops the
5084 * cluster before it removes the block
5085 * group from the list
5086 */
5087 goto have_block_group;
5088 }
5089 spin_unlock(&last_ptr->lock);
5090 refill_cluster:
5091 /*
5092 * this cluster didn't work out, free it and
5093 * start over
5094 */
5095 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5096
5097 last_ptr_loop = 0;
5098
5099 /* allocate a cluster in this block group */
5100 ret = btrfs_find_space_cluster(trans, root,
5101 block_group, last_ptr,
5102 offset, num_bytes,
5103 empty_cluster + empty_size);
5104 if (ret == 0) {
5105 /*
5106 * now pull our allocation out of this
5107 * cluster
5108 */
5109 offset = btrfs_alloc_from_cluster(block_group,
5110 last_ptr, num_bytes,
5111 search_start);
5112 if (offset) {
5113 /* we found one, proceed */
5114 spin_unlock(&last_ptr->refill_lock);
5115 goto checks;
5116 }
5117 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5118 && !failed_cluster_refill) {
5119 spin_unlock(&last_ptr->refill_lock);
5120
5121 failed_cluster_refill = true;
5122 wait_block_group_cache_progress(block_group,
5123 num_bytes + empty_cluster + empty_size);
5124 goto have_block_group;
5125 }
5126
5127 /*
5128 * at this point we either didn't find a cluster
5129 * or we weren't able to allocate a block from our
5130 * cluster. Free the cluster we've been trying
5131 * to use, and go to the next block group
5132 */
5133 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5134 spin_unlock(&last_ptr->refill_lock);
5135 goto loop;
5136 }
5137
5138 offset = btrfs_find_space_for_alloc(block_group, search_start,
5139 num_bytes, empty_size);
5140 /*
5141 * If we didn't find a chunk, and we haven't failed on this
5142 * block group before, and this block group is in the middle of
5143 * caching and we are ok with waiting, then go ahead and wait
5144 * for progress to be made, and set failed_alloc to true.
5145 *
5146 * If failed_alloc is true then we've already waited on this
5147 * block group once and should move on to the next block group.
5148 */
5149 if (!offset && !failed_alloc && !cached &&
5150 loop > LOOP_CACHING_NOWAIT) {
5151 wait_block_group_cache_progress(block_group,
5152 num_bytes + empty_size);
5153 failed_alloc = true;
5154 goto have_block_group;
5155 } else if (!offset) {
5156 goto loop;
5157 }
5158 checks:
5159 search_start = stripe_align(root, offset);
5160 /* move on to the next group */
5161 if (search_start + num_bytes >= search_end) {
5162 btrfs_add_free_space(block_group, offset, num_bytes);
5163 goto loop;
5164 }
5165
5166 /* move on to the next group */
5167 if (search_start + num_bytes >
5168 block_group->key.objectid + block_group->key.offset) {
5169 btrfs_add_free_space(block_group, offset, num_bytes);
5170 goto loop;
5171 }
5172
5173 ins->objectid = search_start;
5174 ins->offset = num_bytes;
5175
5176 if (offset < search_start)
5177 btrfs_add_free_space(block_group, offset,
5178 search_start - offset);
5179 BUG_ON(offset > search_start);
5180
5181 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 1,
5182 (data & BTRFS_BLOCK_GROUP_DATA));
5183 if (ret == -EAGAIN) {
5184 btrfs_add_free_space(block_group, offset, num_bytes);
5185 goto loop;
5186 }
5187
5188 /* we are all good, lets return */
5189 ins->objectid = search_start;
5190 ins->offset = num_bytes;
5191
5192 if (offset < search_start)
5193 btrfs_add_free_space(block_group, offset,
5194 search_start - offset);
5195 BUG_ON(offset > search_start);
5196 btrfs_put_block_group(block_group);
5197 break;
5198 loop:
5199 failed_cluster_refill = false;
5200 failed_alloc = false;
5201 BUG_ON(index != get_block_group_index(block_group));
5202 btrfs_put_block_group(block_group);
5203 }
5204 up_read(&space_info->groups_sem);
5205
5206 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5207 goto search;
5208
5209 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5210 * for them to make caching progress. Also
5211 * determine the best possible bg to cache
5212 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5213 * caching kthreads as we move along
5214 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5215 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5216 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5217 * again
5218 */
5219 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5220 index = 0;
5221 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5222 found_uncached_bg = false;
5223 loop++;
5224 if (!ideal_cache_percent &&
5225 atomic_read(&space_info->caching_threads))
5226 goto search;
5227
5228 /*
5229 * 1 of the following 2 things have happened so far
5230 *
5231 * 1) We found an ideal block group for caching that
5232 * is mostly full and will cache quickly, so we might
5233 * as well wait for it.
5234 *
5235 * 2) We searched for cached only and we didn't find
5236 * anything, and we didn't start any caching kthreads
5237 * either, so chances are we will loop through and
5238 * start a couple caching kthreads, and then come back
5239 * around and just wait for them. This will be slower
5240 * because we will have 2 caching kthreads reading at
5241 * the same time when we could have just started one
5242 * and waited for it to get far enough to give us an
5243 * allocation, so go ahead and go to the wait caching
5244 * loop.
5245 */
5246 loop = LOOP_CACHING_WAIT;
5247 search_start = ideal_cache_offset;
5248 ideal_cache_percent = 0;
5249 goto ideal_cache;
5250 } else if (loop == LOOP_FIND_IDEAL) {
5251 /*
5252 * Didn't find a uncached bg, wait on anything we find
5253 * next.
5254 */
5255 loop = LOOP_CACHING_WAIT;
5256 goto search;
5257 }
5258
5259 loop++;
5260
5261 if (loop == LOOP_ALLOC_CHUNK) {
5262 if (allowed_chunk_alloc) {
5263 ret = do_chunk_alloc(trans, root, num_bytes +
5264 2 * 1024 * 1024, data,
5265 CHUNK_ALLOC_LIMITED);
5266 allowed_chunk_alloc = 0;
5267 if (ret == 1)
5268 done_chunk_alloc = 1;
5269 } else if (!done_chunk_alloc &&
5270 space_info->force_alloc ==
5271 CHUNK_ALLOC_NO_FORCE) {
5272 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5273 }
5274
5275 /*
5276 * We didn't allocate a chunk, go ahead and drop the
5277 * empty size and loop again.
5278 */
5279 if (!done_chunk_alloc)
5280 loop = LOOP_NO_EMPTY_SIZE;
5281 }
5282
5283 if (loop == LOOP_NO_EMPTY_SIZE) {
5284 empty_size = 0;
5285 empty_cluster = 0;
5286 }
5287
5288 goto search;
5289 } else if (!ins->objectid) {
5290 ret = -ENOSPC;
5291 } else if (ins->objectid) {
5292 ret = 0;
5293 }
5294
5295 return ret;
5296 }
5297
5298 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5299 int dump_block_groups)
5300 {
5301 struct btrfs_block_group_cache *cache;
5302 int index = 0;
5303
5304 spin_lock(&info->lock);
5305 printk(KERN_INFO "space_info has %llu free, is %sfull\n",
5306 (unsigned long long)(info->total_bytes - info->bytes_used -
5307 info->bytes_pinned - info->bytes_reserved -
5308 info->bytes_readonly),
5309 (info->full) ? "" : "not ");
5310 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5311 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5312 (unsigned long long)info->total_bytes,
5313 (unsigned long long)info->bytes_used,
5314 (unsigned long long)info->bytes_pinned,
5315 (unsigned long long)info->bytes_reserved,
5316 (unsigned long long)info->bytes_may_use,
5317 (unsigned long long)info->bytes_readonly);
5318 spin_unlock(&info->lock);
5319
5320 if (!dump_block_groups)
5321 return;
5322
5323 down_read(&info->groups_sem);
5324 again:
5325 list_for_each_entry(cache, &info->block_groups[index], list) {
5326 spin_lock(&cache->lock);
5327 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5328 "%llu pinned %llu reserved\n",
5329 (unsigned long long)cache->key.objectid,
5330 (unsigned long long)cache->key.offset,
5331 (unsigned long long)btrfs_block_group_used(&cache->item),
5332 (unsigned long long)cache->pinned,
5333 (unsigned long long)cache->reserved);
5334 btrfs_dump_free_space(cache, bytes);
5335 spin_unlock(&cache->lock);
5336 }
5337 if (++index < BTRFS_NR_RAID_TYPES)
5338 goto again;
5339 up_read(&info->groups_sem);
5340 }
5341
5342 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5343 struct btrfs_root *root,
5344 u64 num_bytes, u64 min_alloc_size,
5345 u64 empty_size, u64 hint_byte,
5346 u64 search_end, struct btrfs_key *ins,
5347 u64 data)
5348 {
5349 int ret;
5350 u64 search_start = 0;
5351
5352 data = btrfs_get_alloc_profile(root, data);
5353 again:
5354 /*
5355 * the only place that sets empty_size is btrfs_realloc_node, which
5356 * is not called recursively on allocations
5357 */
5358 if (empty_size || root->ref_cows)
5359 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5360 num_bytes + 2 * 1024 * 1024, data,
5361 CHUNK_ALLOC_NO_FORCE);
5362
5363 WARN_ON(num_bytes < root->sectorsize);
5364 ret = find_free_extent(trans, root, num_bytes, empty_size,
5365 search_start, search_end, hint_byte,
5366 ins, data);
5367
5368 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5369 num_bytes = num_bytes >> 1;
5370 num_bytes = num_bytes & ~(root->sectorsize - 1);
5371 num_bytes = max(num_bytes, min_alloc_size);
5372 do_chunk_alloc(trans, root->fs_info->extent_root,
5373 num_bytes, data, CHUNK_ALLOC_FORCE);
5374 goto again;
5375 }
5376 if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
5377 struct btrfs_space_info *sinfo;
5378
5379 sinfo = __find_space_info(root->fs_info, data);
5380 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5381 "wanted %llu\n", (unsigned long long)data,
5382 (unsigned long long)num_bytes);
5383 dump_space_info(sinfo, num_bytes, 1);
5384 }
5385
5386 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5387
5388 return ret;
5389 }
5390
5391 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
5392 {
5393 struct btrfs_block_group_cache *cache;
5394 int ret = 0;
5395
5396 cache = btrfs_lookup_block_group(root->fs_info, start);
5397 if (!cache) {
5398 printk(KERN_ERR "Unable to find block group for %llu\n",
5399 (unsigned long long)start);
5400 return -ENOSPC;
5401 }
5402
5403 if (btrfs_test_opt(root, DISCARD))
5404 ret = btrfs_discard_extent(root, start, len, NULL);
5405
5406 btrfs_add_free_space(cache, start, len);
5407 btrfs_update_reserved_bytes(cache, len, 0, 1);
5408 btrfs_put_block_group(cache);
5409
5410 trace_btrfs_reserved_extent_free(root, start, len);
5411
5412 return ret;
5413 }
5414
5415 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5416 struct btrfs_root *root,
5417 u64 parent, u64 root_objectid,
5418 u64 flags, u64 owner, u64 offset,
5419 struct btrfs_key *ins, int ref_mod)
5420 {
5421 int ret;
5422 struct btrfs_fs_info *fs_info = root->fs_info;
5423 struct btrfs_extent_item *extent_item;
5424 struct btrfs_extent_inline_ref *iref;
5425 struct btrfs_path *path;
5426 struct extent_buffer *leaf;
5427 int type;
5428 u32 size;
5429
5430 if (parent > 0)
5431 type = BTRFS_SHARED_DATA_REF_KEY;
5432 else
5433 type = BTRFS_EXTENT_DATA_REF_KEY;
5434
5435 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5436
5437 path = btrfs_alloc_path();
5438 if (!path)
5439 return -ENOMEM;
5440
5441 path->leave_spinning = 1;
5442 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5443 ins, size);
5444 BUG_ON(ret);
5445
5446 leaf = path->nodes[0];
5447 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5448 struct btrfs_extent_item);
5449 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5450 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5451 btrfs_set_extent_flags(leaf, extent_item,
5452 flags | BTRFS_EXTENT_FLAG_DATA);
5453
5454 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5455 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5456 if (parent > 0) {
5457 struct btrfs_shared_data_ref *ref;
5458 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5459 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5460 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5461 } else {
5462 struct btrfs_extent_data_ref *ref;
5463 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5464 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5465 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5466 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5467 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5468 }
5469
5470 btrfs_mark_buffer_dirty(path->nodes[0]);
5471 btrfs_free_path(path);
5472
5473 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5474 if (ret) {
5475 printk(KERN_ERR "btrfs update block group failed for %llu "
5476 "%llu\n", (unsigned long long)ins->objectid,
5477 (unsigned long long)ins->offset);
5478 BUG();
5479 }
5480 return ret;
5481 }
5482
5483 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5484 struct btrfs_root *root,
5485 u64 parent, u64 root_objectid,
5486 u64 flags, struct btrfs_disk_key *key,
5487 int level, struct btrfs_key *ins)
5488 {
5489 int ret;
5490 struct btrfs_fs_info *fs_info = root->fs_info;
5491 struct btrfs_extent_item *extent_item;
5492 struct btrfs_tree_block_info *block_info;
5493 struct btrfs_extent_inline_ref *iref;
5494 struct btrfs_path *path;
5495 struct extent_buffer *leaf;
5496 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5497
5498 path = btrfs_alloc_path();
5499 if (!path)
5500 return -ENOMEM;
5501
5502 path->leave_spinning = 1;
5503 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5504 ins, size);
5505 BUG_ON(ret);
5506
5507 leaf = path->nodes[0];
5508 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5509 struct btrfs_extent_item);
5510 btrfs_set_extent_refs(leaf, extent_item, 1);
5511 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5512 btrfs_set_extent_flags(leaf, extent_item,
5513 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5514 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5515
5516 btrfs_set_tree_block_key(leaf, block_info, key);
5517 btrfs_set_tree_block_level(leaf, block_info, level);
5518
5519 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5520 if (parent > 0) {
5521 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5522 btrfs_set_extent_inline_ref_type(leaf, iref,
5523 BTRFS_SHARED_BLOCK_REF_KEY);
5524 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5525 } else {
5526 btrfs_set_extent_inline_ref_type(leaf, iref,
5527 BTRFS_TREE_BLOCK_REF_KEY);
5528 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5529 }
5530
5531 btrfs_mark_buffer_dirty(leaf);
5532 btrfs_free_path(path);
5533
5534 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5535 if (ret) {
5536 printk(KERN_ERR "btrfs update block group failed for %llu "
5537 "%llu\n", (unsigned long long)ins->objectid,
5538 (unsigned long long)ins->offset);
5539 BUG();
5540 }
5541 return ret;
5542 }
5543
5544 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5545 struct btrfs_root *root,
5546 u64 root_objectid, u64 owner,
5547 u64 offset, struct btrfs_key *ins)
5548 {
5549 int ret;
5550
5551 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5552
5553 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5554 0, root_objectid, owner, offset,
5555 BTRFS_ADD_DELAYED_EXTENT, NULL);
5556 return ret;
5557 }
5558
5559 /*
5560 * this is used by the tree logging recovery code. It records that
5561 * an extent has been allocated and makes sure to clear the free
5562 * space cache bits as well
5563 */
5564 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5565 struct btrfs_root *root,
5566 u64 root_objectid, u64 owner, u64 offset,
5567 struct btrfs_key *ins)
5568 {
5569 int ret;
5570 struct btrfs_block_group_cache *block_group;
5571 struct btrfs_caching_control *caching_ctl;
5572 u64 start = ins->objectid;
5573 u64 num_bytes = ins->offset;
5574
5575 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5576 cache_block_group(block_group, trans, NULL, 0);
5577 caching_ctl = get_caching_control(block_group);
5578
5579 if (!caching_ctl) {
5580 BUG_ON(!block_group_cache_done(block_group));
5581 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5582 BUG_ON(ret);
5583 } else {
5584 mutex_lock(&caching_ctl->mutex);
5585
5586 if (start >= caching_ctl->progress) {
5587 ret = add_excluded_extent(root, start, num_bytes);
5588 BUG_ON(ret);
5589 } else if (start + num_bytes <= caching_ctl->progress) {
5590 ret = btrfs_remove_free_space(block_group,
5591 start, num_bytes);
5592 BUG_ON(ret);
5593 } else {
5594 num_bytes = caching_ctl->progress - start;
5595 ret = btrfs_remove_free_space(block_group,
5596 start, num_bytes);
5597 BUG_ON(ret);
5598
5599 start = caching_ctl->progress;
5600 num_bytes = ins->objectid + ins->offset -
5601 caching_ctl->progress;
5602 ret = add_excluded_extent(root, start, num_bytes);
5603 BUG_ON(ret);
5604 }
5605
5606 mutex_unlock(&caching_ctl->mutex);
5607 put_caching_control(caching_ctl);
5608 }
5609
5610 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 1, 1);
5611 BUG_ON(ret);
5612 btrfs_put_block_group(block_group);
5613 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5614 0, owner, offset, ins, 1);
5615 return ret;
5616 }
5617
5618 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5619 struct btrfs_root *root,
5620 u64 bytenr, u32 blocksize,
5621 int level)
5622 {
5623 struct extent_buffer *buf;
5624
5625 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5626 if (!buf)
5627 return ERR_PTR(-ENOMEM);
5628 btrfs_set_header_generation(buf, trans->transid);
5629 btrfs_set_buffer_lockdep_class(buf, level);
5630 btrfs_tree_lock(buf);
5631 clean_tree_block(trans, root, buf);
5632
5633 btrfs_set_lock_blocking(buf);
5634 btrfs_set_buffer_uptodate(buf);
5635
5636 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5637 /*
5638 * we allow two log transactions at a time, use different
5639 * EXENT bit to differentiate dirty pages.
5640 */
5641 if (root->log_transid % 2 == 0)
5642 set_extent_dirty(&root->dirty_log_pages, buf->start,
5643 buf->start + buf->len - 1, GFP_NOFS);
5644 else
5645 set_extent_new(&root->dirty_log_pages, buf->start,
5646 buf->start + buf->len - 1, GFP_NOFS);
5647 } else {
5648 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5649 buf->start + buf->len - 1, GFP_NOFS);
5650 }
5651 trans->blocks_used++;
5652 /* this returns a buffer locked for blocking */
5653 return buf;
5654 }
5655
5656 static struct btrfs_block_rsv *
5657 use_block_rsv(struct btrfs_trans_handle *trans,
5658 struct btrfs_root *root, u32 blocksize)
5659 {
5660 struct btrfs_block_rsv *block_rsv;
5661 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5662 int ret;
5663
5664 block_rsv = get_block_rsv(trans, root);
5665
5666 if (block_rsv->size == 0) {
5667 ret = reserve_metadata_bytes(trans, root, block_rsv,
5668 blocksize, 0);
5669 /*
5670 * If we couldn't reserve metadata bytes try and use some from
5671 * the global reserve.
5672 */
5673 if (ret && block_rsv != global_rsv) {
5674 ret = block_rsv_use_bytes(global_rsv, blocksize);
5675 if (!ret)
5676 return global_rsv;
5677 return ERR_PTR(ret);
5678 } else if (ret) {
5679 return ERR_PTR(ret);
5680 }
5681 return block_rsv;
5682 }
5683
5684 ret = block_rsv_use_bytes(block_rsv, blocksize);
5685 if (!ret)
5686 return block_rsv;
5687 if (ret) {
5688 WARN_ON(1);
5689 ret = reserve_metadata_bytes(trans, root, block_rsv, blocksize,
5690 0);
5691 if (!ret) {
5692 spin_lock(&block_rsv->lock);
5693 block_rsv->size += blocksize;
5694 spin_unlock(&block_rsv->lock);
5695 return block_rsv;
5696 } else if (ret && block_rsv != global_rsv) {
5697 ret = block_rsv_use_bytes(global_rsv, blocksize);
5698 if (!ret)
5699 return global_rsv;
5700 }
5701 }
5702
5703 return ERR_PTR(-ENOSPC);
5704 }
5705
5706 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5707 {
5708 block_rsv_add_bytes(block_rsv, blocksize, 0);
5709 block_rsv_release_bytes(block_rsv, NULL, 0);
5710 }
5711
5712 /*
5713 * finds a free extent and does all the dirty work required for allocation
5714 * returns the key for the extent through ins, and a tree buffer for
5715 * the first block of the extent through buf.
5716 *
5717 * returns the tree buffer or NULL.
5718 */
5719 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
5720 struct btrfs_root *root, u32 blocksize,
5721 u64 parent, u64 root_objectid,
5722 struct btrfs_disk_key *key, int level,
5723 u64 hint, u64 empty_size)
5724 {
5725 struct btrfs_key ins;
5726 struct btrfs_block_rsv *block_rsv;
5727 struct extent_buffer *buf;
5728 u64 flags = 0;
5729 int ret;
5730
5731
5732 block_rsv = use_block_rsv(trans, root, blocksize);
5733 if (IS_ERR(block_rsv))
5734 return ERR_CAST(block_rsv);
5735
5736 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
5737 empty_size, hint, (u64)-1, &ins, 0);
5738 if (ret) {
5739 unuse_block_rsv(block_rsv, blocksize);
5740 return ERR_PTR(ret);
5741 }
5742
5743 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
5744 blocksize, level);
5745 BUG_ON(IS_ERR(buf));
5746
5747 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5748 if (parent == 0)
5749 parent = ins.objectid;
5750 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5751 } else
5752 BUG_ON(parent > 0);
5753
5754 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5755 struct btrfs_delayed_extent_op *extent_op;
5756 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
5757 BUG_ON(!extent_op);
5758 if (key)
5759 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5760 else
5761 memset(&extent_op->key, 0, sizeof(extent_op->key));
5762 extent_op->flags_to_set = flags;
5763 extent_op->update_key = 1;
5764 extent_op->update_flags = 1;
5765 extent_op->is_data = 0;
5766
5767 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
5768 ins.offset, parent, root_objectid,
5769 level, BTRFS_ADD_DELAYED_EXTENT,
5770 extent_op);
5771 BUG_ON(ret);
5772 }
5773 return buf;
5774 }
5775
5776 struct walk_control {
5777 u64 refs[BTRFS_MAX_LEVEL];
5778 u64 flags[BTRFS_MAX_LEVEL];
5779 struct btrfs_key update_progress;
5780 int stage;
5781 int level;
5782 int shared_level;
5783 int update_ref;
5784 int keep_locks;
5785 int reada_slot;
5786 int reada_count;
5787 };
5788
5789 #define DROP_REFERENCE 1
5790 #define UPDATE_BACKREF 2
5791
5792 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5793 struct btrfs_root *root,
5794 struct walk_control *wc,
5795 struct btrfs_path *path)
5796 {
5797 u64 bytenr;
5798 u64 generation;
5799 u64 refs;
5800 u64 flags;
5801 u32 nritems;
5802 u32 blocksize;
5803 struct btrfs_key key;
5804 struct extent_buffer *eb;
5805 int ret;
5806 int slot;
5807 int nread = 0;
5808
5809 if (path->slots[wc->level] < wc->reada_slot) {
5810 wc->reada_count = wc->reada_count * 2 / 3;
5811 wc->reada_count = max(wc->reada_count, 2);
5812 } else {
5813 wc->reada_count = wc->reada_count * 3 / 2;
5814 wc->reada_count = min_t(int, wc->reada_count,
5815 BTRFS_NODEPTRS_PER_BLOCK(root));
5816 }
5817
5818 eb = path->nodes[wc->level];
5819 nritems = btrfs_header_nritems(eb);
5820 blocksize = btrfs_level_size(root, wc->level - 1);
5821
5822 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5823 if (nread >= wc->reada_count)
5824 break;
5825
5826 cond_resched();
5827 bytenr = btrfs_node_blockptr(eb, slot);
5828 generation = btrfs_node_ptr_generation(eb, slot);
5829
5830 if (slot == path->slots[wc->level])
5831 goto reada;
5832
5833 if (wc->stage == UPDATE_BACKREF &&
5834 generation <= root->root_key.offset)
5835 continue;
5836
5837 /* We don't lock the tree block, it's OK to be racy here */
5838 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5839 &refs, &flags);
5840 BUG_ON(ret);
5841 BUG_ON(refs == 0);
5842
5843 if (wc->stage == DROP_REFERENCE) {
5844 if (refs == 1)
5845 goto reada;
5846
5847 if (wc->level == 1 &&
5848 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5849 continue;
5850 if (!wc->update_ref ||
5851 generation <= root->root_key.offset)
5852 continue;
5853 btrfs_node_key_to_cpu(eb, &key, slot);
5854 ret = btrfs_comp_cpu_keys(&key,
5855 &wc->update_progress);
5856 if (ret < 0)
5857 continue;
5858 } else {
5859 if (wc->level == 1 &&
5860 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5861 continue;
5862 }
5863 reada:
5864 ret = readahead_tree_block(root, bytenr, blocksize,
5865 generation);
5866 if (ret)
5867 break;
5868 nread++;
5869 }
5870 wc->reada_slot = slot;
5871 }
5872
5873 /*
5874 * hepler to process tree block while walking down the tree.
5875 *
5876 * when wc->stage == UPDATE_BACKREF, this function updates
5877 * back refs for pointers in the block.
5878 *
5879 * NOTE: return value 1 means we should stop walking down.
5880 */
5881 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5882 struct btrfs_root *root,
5883 struct btrfs_path *path,
5884 struct walk_control *wc, int lookup_info)
5885 {
5886 int level = wc->level;
5887 struct extent_buffer *eb = path->nodes[level];
5888 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5889 int ret;
5890
5891 if (wc->stage == UPDATE_BACKREF &&
5892 btrfs_header_owner(eb) != root->root_key.objectid)
5893 return 1;
5894
5895 /*
5896 * when reference count of tree block is 1, it won't increase
5897 * again. once full backref flag is set, we never clear it.
5898 */
5899 if (lookup_info &&
5900 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5901 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5902 BUG_ON(!path->locks[level]);
5903 ret = btrfs_lookup_extent_info(trans, root,
5904 eb->start, eb->len,
5905 &wc->refs[level],
5906 &wc->flags[level]);
5907 BUG_ON(ret);
5908 BUG_ON(wc->refs[level] == 0);
5909 }
5910
5911 if (wc->stage == DROP_REFERENCE) {
5912 if (wc->refs[level] > 1)
5913 return 1;
5914
5915 if (path->locks[level] && !wc->keep_locks) {
5916 btrfs_tree_unlock(eb);
5917 path->locks[level] = 0;
5918 }
5919 return 0;
5920 }
5921
5922 /* wc->stage == UPDATE_BACKREF */
5923 if (!(wc->flags[level] & flag)) {
5924 BUG_ON(!path->locks[level]);
5925 ret = btrfs_inc_ref(trans, root, eb, 1);
5926 BUG_ON(ret);
5927 ret = btrfs_dec_ref(trans, root, eb, 0);
5928 BUG_ON(ret);
5929 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
5930 eb->len, flag, 0);
5931 BUG_ON(ret);
5932 wc->flags[level] |= flag;
5933 }
5934
5935 /*
5936 * the block is shared by multiple trees, so it's not good to
5937 * keep the tree lock
5938 */
5939 if (path->locks[level] && level > 0) {
5940 btrfs_tree_unlock(eb);
5941 path->locks[level] = 0;
5942 }
5943 return 0;
5944 }
5945
5946 /*
5947 * hepler to process tree block pointer.
5948 *
5949 * when wc->stage == DROP_REFERENCE, this function checks
5950 * reference count of the block pointed to. if the block
5951 * is shared and we need update back refs for the subtree
5952 * rooted at the block, this function changes wc->stage to
5953 * UPDATE_BACKREF. if the block is shared and there is no
5954 * need to update back, this function drops the reference
5955 * to the block.
5956 *
5957 * NOTE: return value 1 means we should stop walking down.
5958 */
5959 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5960 struct btrfs_root *root,
5961 struct btrfs_path *path,
5962 struct walk_control *wc, int *lookup_info)
5963 {
5964 u64 bytenr;
5965 u64 generation;
5966 u64 parent;
5967 u32 blocksize;
5968 struct btrfs_key key;
5969 struct extent_buffer *next;
5970 int level = wc->level;
5971 int reada = 0;
5972 int ret = 0;
5973
5974 generation = btrfs_node_ptr_generation(path->nodes[level],
5975 path->slots[level]);
5976 /*
5977 * if the lower level block was created before the snapshot
5978 * was created, we know there is no need to update back refs
5979 * for the subtree
5980 */
5981 if (wc->stage == UPDATE_BACKREF &&
5982 generation <= root->root_key.offset) {
5983 *lookup_info = 1;
5984 return 1;
5985 }
5986
5987 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5988 blocksize = btrfs_level_size(root, level - 1);
5989
5990 next = btrfs_find_tree_block(root, bytenr, blocksize);
5991 if (!next) {
5992 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
5993 if (!next)
5994 return -ENOMEM;
5995 reada = 1;
5996 }
5997 btrfs_tree_lock(next);
5998 btrfs_set_lock_blocking(next);
5999
6000 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6001 &wc->refs[level - 1],
6002 &wc->flags[level - 1]);
6003 BUG_ON(ret);
6004 BUG_ON(wc->refs[level - 1] == 0);
6005 *lookup_info = 0;
6006
6007 if (wc->stage == DROP_REFERENCE) {
6008 if (wc->refs[level - 1] > 1) {
6009 if (level == 1 &&
6010 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6011 goto skip;
6012
6013 if (!wc->update_ref ||
6014 generation <= root->root_key.offset)
6015 goto skip;
6016
6017 btrfs_node_key_to_cpu(path->nodes[level], &key,
6018 path->slots[level]);
6019 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6020 if (ret < 0)
6021 goto skip;
6022
6023 wc->stage = UPDATE_BACKREF;
6024 wc->shared_level = level - 1;
6025 }
6026 } else {
6027 if (level == 1 &&
6028 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6029 goto skip;
6030 }
6031
6032 if (!btrfs_buffer_uptodate(next, generation)) {
6033 btrfs_tree_unlock(next);
6034 free_extent_buffer(next);
6035 next = NULL;
6036 *lookup_info = 1;
6037 }
6038
6039 if (!next) {
6040 if (reada && level == 1)
6041 reada_walk_down(trans, root, wc, path);
6042 next = read_tree_block(root, bytenr, blocksize, generation);
6043 if (!next)
6044 return -EIO;
6045 btrfs_tree_lock(next);
6046 btrfs_set_lock_blocking(next);
6047 }
6048
6049 level--;
6050 BUG_ON(level != btrfs_header_level(next));
6051 path->nodes[level] = next;
6052 path->slots[level] = 0;
6053 path->locks[level] = 1;
6054 wc->level = level;
6055 if (wc->level == 1)
6056 wc->reada_slot = 0;
6057 return 0;
6058 skip:
6059 wc->refs[level - 1] = 0;
6060 wc->flags[level - 1] = 0;
6061 if (wc->stage == DROP_REFERENCE) {
6062 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6063 parent = path->nodes[level]->start;
6064 } else {
6065 BUG_ON(root->root_key.objectid !=
6066 btrfs_header_owner(path->nodes[level]));
6067 parent = 0;
6068 }
6069
6070 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6071 root->root_key.objectid, level - 1, 0);
6072 BUG_ON(ret);
6073 }
6074 btrfs_tree_unlock(next);
6075 free_extent_buffer(next);
6076 *lookup_info = 1;
6077 return 1;
6078 }
6079
6080 /*
6081 * hepler to process tree block while walking up the tree.
6082 *
6083 * when wc->stage == DROP_REFERENCE, this function drops
6084 * reference count on the block.
6085 *
6086 * when wc->stage == UPDATE_BACKREF, this function changes
6087 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6088 * to UPDATE_BACKREF previously while processing the block.
6089 *
6090 * NOTE: return value 1 means we should stop walking up.
6091 */
6092 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6093 struct btrfs_root *root,
6094 struct btrfs_path *path,
6095 struct walk_control *wc)
6096 {
6097 int ret;
6098 int level = wc->level;
6099 struct extent_buffer *eb = path->nodes[level];
6100 u64 parent = 0;
6101
6102 if (wc->stage == UPDATE_BACKREF) {
6103 BUG_ON(wc->shared_level < level);
6104 if (level < wc->shared_level)
6105 goto out;
6106
6107 ret = find_next_key(path, level + 1, &wc->update_progress);
6108 if (ret > 0)
6109 wc->update_ref = 0;
6110
6111 wc->stage = DROP_REFERENCE;
6112 wc->shared_level = -1;
6113 path->slots[level] = 0;
6114
6115 /*
6116 * check reference count again if the block isn't locked.
6117 * we should start walking down the tree again if reference
6118 * count is one.
6119 */
6120 if (!path->locks[level]) {
6121 BUG_ON(level == 0);
6122 btrfs_tree_lock(eb);
6123 btrfs_set_lock_blocking(eb);
6124 path->locks[level] = 1;
6125
6126 ret = btrfs_lookup_extent_info(trans, root,
6127 eb->start, eb->len,
6128 &wc->refs[level],
6129 &wc->flags[level]);
6130 BUG_ON(ret);
6131 BUG_ON(wc->refs[level] == 0);
6132 if (wc->refs[level] == 1) {
6133 btrfs_tree_unlock(eb);
6134 path->locks[level] = 0;
6135 return 1;
6136 }
6137 }
6138 }
6139
6140 /* wc->stage == DROP_REFERENCE */
6141 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6142
6143 if (wc->refs[level] == 1) {
6144 if (level == 0) {
6145 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6146 ret = btrfs_dec_ref(trans, root, eb, 1);
6147 else
6148 ret = btrfs_dec_ref(trans, root, eb, 0);
6149 BUG_ON(ret);
6150 }
6151 /* make block locked assertion in clean_tree_block happy */
6152 if (!path->locks[level] &&
6153 btrfs_header_generation(eb) == trans->transid) {
6154 btrfs_tree_lock(eb);
6155 btrfs_set_lock_blocking(eb);
6156 path->locks[level] = 1;
6157 }
6158 clean_tree_block(trans, root, eb);
6159 }
6160
6161 if (eb == root->node) {
6162 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6163 parent = eb->start;
6164 else
6165 BUG_ON(root->root_key.objectid !=
6166 btrfs_header_owner(eb));
6167 } else {
6168 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6169 parent = path->nodes[level + 1]->start;
6170 else
6171 BUG_ON(root->root_key.objectid !=
6172 btrfs_header_owner(path->nodes[level + 1]));
6173 }
6174
6175 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6176 out:
6177 wc->refs[level] = 0;
6178 wc->flags[level] = 0;
6179 return 0;
6180 }
6181
6182 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6183 struct btrfs_root *root,
6184 struct btrfs_path *path,
6185 struct walk_control *wc)
6186 {
6187 int level = wc->level;
6188 int lookup_info = 1;
6189 int ret;
6190
6191 while (level >= 0) {
6192 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6193 if (ret > 0)
6194 break;
6195
6196 if (level == 0)
6197 break;
6198
6199 if (path->slots[level] >=
6200 btrfs_header_nritems(path->nodes[level]))
6201 break;
6202
6203 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6204 if (ret > 0) {
6205 path->slots[level]++;
6206 continue;
6207 } else if (ret < 0)
6208 return ret;
6209 level = wc->level;
6210 }
6211 return 0;
6212 }
6213
6214 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6215 struct btrfs_root *root,
6216 struct btrfs_path *path,
6217 struct walk_control *wc, int max_level)
6218 {
6219 int level = wc->level;
6220 int ret;
6221
6222 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6223 while (level < max_level && path->nodes[level]) {
6224 wc->level = level;
6225 if (path->slots[level] + 1 <
6226 btrfs_header_nritems(path->nodes[level])) {
6227 path->slots[level]++;
6228 return 0;
6229 } else {
6230 ret = walk_up_proc(trans, root, path, wc);
6231 if (ret > 0)
6232 return 0;
6233
6234 if (path->locks[level]) {
6235 btrfs_tree_unlock(path->nodes[level]);
6236 path->locks[level] = 0;
6237 }
6238 free_extent_buffer(path->nodes[level]);
6239 path->nodes[level] = NULL;
6240 level++;
6241 }
6242 }
6243 return 1;
6244 }
6245
6246 /*
6247 * drop a subvolume tree.
6248 *
6249 * this function traverses the tree freeing any blocks that only
6250 * referenced by the tree.
6251 *
6252 * when a shared tree block is found. this function decreases its
6253 * reference count by one. if update_ref is true, this function
6254 * also make sure backrefs for the shared block and all lower level
6255 * blocks are properly updated.
6256 */
6257 int btrfs_drop_snapshot(struct btrfs_root *root,
6258 struct btrfs_block_rsv *block_rsv, int update_ref)
6259 {
6260 struct btrfs_path *path;
6261 struct btrfs_trans_handle *trans;
6262 struct btrfs_root *tree_root = root->fs_info->tree_root;
6263 struct btrfs_root_item *root_item = &root->root_item;
6264 struct walk_control *wc;
6265 struct btrfs_key key;
6266 int err = 0;
6267 int ret;
6268 int level;
6269
6270 path = btrfs_alloc_path();
6271 BUG_ON(!path);
6272
6273 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6274 BUG_ON(!wc);
6275
6276 trans = btrfs_start_transaction(tree_root, 0);
6277 BUG_ON(IS_ERR(trans));
6278
6279 if (block_rsv)
6280 trans->block_rsv = block_rsv;
6281
6282 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6283 level = btrfs_header_level(root->node);
6284 path->nodes[level] = btrfs_lock_root_node(root);
6285 btrfs_set_lock_blocking(path->nodes[level]);
6286 path->slots[level] = 0;
6287 path->locks[level] = 1;
6288 memset(&wc->update_progress, 0,
6289 sizeof(wc->update_progress));
6290 } else {
6291 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6292 memcpy(&wc->update_progress, &key,
6293 sizeof(wc->update_progress));
6294
6295 level = root_item->drop_level;
6296 BUG_ON(level == 0);
6297 path->lowest_level = level;
6298 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6299 path->lowest_level = 0;
6300 if (ret < 0) {
6301 err = ret;
6302 goto out;
6303 }
6304 WARN_ON(ret > 0);
6305
6306 /*
6307 * unlock our path, this is safe because only this
6308 * function is allowed to delete this snapshot
6309 */
6310 btrfs_unlock_up_safe(path, 0);
6311
6312 level = btrfs_header_level(root->node);
6313 while (1) {
6314 btrfs_tree_lock(path->nodes[level]);
6315 btrfs_set_lock_blocking(path->nodes[level]);
6316
6317 ret = btrfs_lookup_extent_info(trans, root,
6318 path->nodes[level]->start,
6319 path->nodes[level]->len,
6320 &wc->refs[level],
6321 &wc->flags[level]);
6322 BUG_ON(ret);
6323 BUG_ON(wc->refs[level] == 0);
6324
6325 if (level == root_item->drop_level)
6326 break;
6327
6328 btrfs_tree_unlock(path->nodes[level]);
6329 WARN_ON(wc->refs[level] != 1);
6330 level--;
6331 }
6332 }
6333
6334 wc->level = level;
6335 wc->shared_level = -1;
6336 wc->stage = DROP_REFERENCE;
6337 wc->update_ref = update_ref;
6338 wc->keep_locks = 0;
6339 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6340
6341 while (1) {
6342 ret = walk_down_tree(trans, root, path, wc);
6343 if (ret < 0) {
6344 err = ret;
6345 break;
6346 }
6347
6348 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6349 if (ret < 0) {
6350 err = ret;
6351 break;
6352 }
6353
6354 if (ret > 0) {
6355 BUG_ON(wc->stage != DROP_REFERENCE);
6356 break;
6357 }
6358
6359 if (wc->stage == DROP_REFERENCE) {
6360 level = wc->level;
6361 btrfs_node_key(path->nodes[level],
6362 &root_item->drop_progress,
6363 path->slots[level]);
6364 root_item->drop_level = level;
6365 }
6366
6367 BUG_ON(wc->level == 0);
6368 if (btrfs_should_end_transaction(trans, tree_root)) {
6369 ret = btrfs_update_root(trans, tree_root,
6370 &root->root_key,
6371 root_item);
6372 BUG_ON(ret);
6373
6374 btrfs_end_transaction_throttle(trans, tree_root);
6375 trans = btrfs_start_transaction(tree_root, 0);
6376 BUG_ON(IS_ERR(trans));
6377 if (block_rsv)
6378 trans->block_rsv = block_rsv;
6379 }
6380 }
6381 btrfs_release_path(path);
6382 BUG_ON(err);
6383
6384 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6385 BUG_ON(ret);
6386
6387 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6388 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6389 NULL, NULL);
6390 BUG_ON(ret < 0);
6391 if (ret > 0) {
6392 /* if we fail to delete the orphan item this time
6393 * around, it'll get picked up the next time.
6394 *
6395 * The most common failure here is just -ENOENT.
6396 */
6397 btrfs_del_orphan_item(trans, tree_root,
6398 root->root_key.objectid);
6399 }
6400 }
6401
6402 if (root->in_radix) {
6403 btrfs_free_fs_root(tree_root->fs_info, root);
6404 } else {
6405 free_extent_buffer(root->node);
6406 free_extent_buffer(root->commit_root);
6407 kfree(root);
6408 }
6409 out:
6410 btrfs_end_transaction_throttle(trans, tree_root);
6411 kfree(wc);
6412 btrfs_free_path(path);
6413 return err;
6414 }
6415
6416 /*
6417 * drop subtree rooted at tree block 'node'.
6418 *
6419 * NOTE: this function will unlock and release tree block 'node'
6420 */
6421 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6422 struct btrfs_root *root,
6423 struct extent_buffer *node,
6424 struct extent_buffer *parent)
6425 {
6426 struct btrfs_path *path;
6427 struct walk_control *wc;
6428 int level;
6429 int parent_level;
6430 int ret = 0;
6431 int wret;
6432
6433 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6434
6435 path = btrfs_alloc_path();
6436 if (!path)
6437 return -ENOMEM;
6438
6439 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6440 if (!wc) {
6441 btrfs_free_path(path);
6442 return -ENOMEM;
6443 }
6444
6445 btrfs_assert_tree_locked(parent);
6446 parent_level = btrfs_header_level(parent);
6447 extent_buffer_get(parent);
6448 path->nodes[parent_level] = parent;
6449 path->slots[parent_level] = btrfs_header_nritems(parent);
6450
6451 btrfs_assert_tree_locked(node);
6452 level = btrfs_header_level(node);
6453 path->nodes[level] = node;
6454 path->slots[level] = 0;
6455 path->locks[level] = 1;
6456
6457 wc->refs[parent_level] = 1;
6458 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6459 wc->level = level;
6460 wc->shared_level = -1;
6461 wc->stage = DROP_REFERENCE;
6462 wc->update_ref = 0;
6463 wc->keep_locks = 1;
6464 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6465
6466 while (1) {
6467 wret = walk_down_tree(trans, root, path, wc);
6468 if (wret < 0) {
6469 ret = wret;
6470 break;
6471 }
6472
6473 wret = walk_up_tree(trans, root, path, wc, parent_level);
6474 if (wret < 0)
6475 ret = wret;
6476 if (wret != 0)
6477 break;
6478 }
6479
6480 kfree(wc);
6481 btrfs_free_path(path);
6482 return ret;
6483 }
6484
6485 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6486 {
6487 u64 num_devices;
6488 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6489 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6490
6491 /*
6492 * we add in the count of missing devices because we want
6493 * to make sure that any RAID levels on a degraded FS
6494 * continue to be honored.
6495 */
6496 num_devices = root->fs_info->fs_devices->rw_devices +
6497 root->fs_info->fs_devices->missing_devices;
6498
6499 if (num_devices == 1) {
6500 stripped |= BTRFS_BLOCK_GROUP_DUP;
6501 stripped = flags & ~stripped;
6502
6503 /* turn raid0 into single device chunks */
6504 if (flags & BTRFS_BLOCK_GROUP_RAID0)
6505 return stripped;
6506
6507 /* turn mirroring into duplication */
6508 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
6509 BTRFS_BLOCK_GROUP_RAID10))
6510 return stripped | BTRFS_BLOCK_GROUP_DUP;
6511 return flags;
6512 } else {
6513 /* they already had raid on here, just return */
6514 if (flags & stripped)
6515 return flags;
6516
6517 stripped |= BTRFS_BLOCK_GROUP_DUP;
6518 stripped = flags & ~stripped;
6519
6520 /* switch duplicated blocks with raid1 */
6521 if (flags & BTRFS_BLOCK_GROUP_DUP)
6522 return stripped | BTRFS_BLOCK_GROUP_RAID1;
6523
6524 /* turn single device chunks into raid0 */
6525 return stripped | BTRFS_BLOCK_GROUP_RAID0;
6526 }
6527 return flags;
6528 }
6529
6530 static int set_block_group_ro(struct btrfs_block_group_cache *cache)
6531 {
6532 struct btrfs_space_info *sinfo = cache->space_info;
6533 u64 num_bytes;
6534 int ret = -ENOSPC;
6535
6536 if (cache->ro)
6537 return 0;
6538
6539 spin_lock(&sinfo->lock);
6540 spin_lock(&cache->lock);
6541 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6542 cache->bytes_super - btrfs_block_group_used(&cache->item);
6543
6544 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
6545 sinfo->bytes_may_use + sinfo->bytes_readonly +
6546 cache->reserved_pinned + num_bytes <= sinfo->total_bytes) {
6547 sinfo->bytes_readonly += num_bytes;
6548 sinfo->bytes_reserved += cache->reserved_pinned;
6549 cache->reserved_pinned = 0;
6550 cache->ro = 1;
6551 ret = 0;
6552 }
6553
6554 spin_unlock(&cache->lock);
6555 spin_unlock(&sinfo->lock);
6556 return ret;
6557 }
6558
6559 int btrfs_set_block_group_ro(struct btrfs_root *root,
6560 struct btrfs_block_group_cache *cache)
6561
6562 {
6563 struct btrfs_trans_handle *trans;
6564 u64 alloc_flags;
6565 int ret;
6566
6567 BUG_ON(cache->ro);
6568
6569 trans = btrfs_join_transaction(root);
6570 BUG_ON(IS_ERR(trans));
6571
6572 alloc_flags = update_block_group_flags(root, cache->flags);
6573 if (alloc_flags != cache->flags)
6574 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6575 CHUNK_ALLOC_FORCE);
6576
6577 ret = set_block_group_ro(cache);
6578 if (!ret)
6579 goto out;
6580 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
6581 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6582 CHUNK_ALLOC_FORCE);
6583 if (ret < 0)
6584 goto out;
6585 ret = set_block_group_ro(cache);
6586 out:
6587 btrfs_end_transaction(trans, root);
6588 return ret;
6589 }
6590
6591 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
6592 struct btrfs_root *root, u64 type)
6593 {
6594 u64 alloc_flags = get_alloc_profile(root, type);
6595 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6596 CHUNK_ALLOC_FORCE);
6597 }
6598
6599 /*
6600 * helper to account the unused space of all the readonly block group in the
6601 * list. takes mirrors into account.
6602 */
6603 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
6604 {
6605 struct btrfs_block_group_cache *block_group;
6606 u64 free_bytes = 0;
6607 int factor;
6608
6609 list_for_each_entry(block_group, groups_list, list) {
6610 spin_lock(&block_group->lock);
6611
6612 if (!block_group->ro) {
6613 spin_unlock(&block_group->lock);
6614 continue;
6615 }
6616
6617 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
6618 BTRFS_BLOCK_GROUP_RAID10 |
6619 BTRFS_BLOCK_GROUP_DUP))
6620 factor = 2;
6621 else
6622 factor = 1;
6623
6624 free_bytes += (block_group->key.offset -
6625 btrfs_block_group_used(&block_group->item)) *
6626 factor;
6627
6628 spin_unlock(&block_group->lock);
6629 }
6630
6631 return free_bytes;
6632 }
6633
6634 /*
6635 * helper to account the unused space of all the readonly block group in the
6636 * space_info. takes mirrors into account.
6637 */
6638 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6639 {
6640 int i;
6641 u64 free_bytes = 0;
6642
6643 spin_lock(&sinfo->lock);
6644
6645 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
6646 if (!list_empty(&sinfo->block_groups[i]))
6647 free_bytes += __btrfs_get_ro_block_group_free_space(
6648 &sinfo->block_groups[i]);
6649
6650 spin_unlock(&sinfo->lock);
6651
6652 return free_bytes;
6653 }
6654
6655 int btrfs_set_block_group_rw(struct btrfs_root *root,
6656 struct btrfs_block_group_cache *cache)
6657 {
6658 struct btrfs_space_info *sinfo = cache->space_info;
6659 u64 num_bytes;
6660
6661 BUG_ON(!cache->ro);
6662
6663 spin_lock(&sinfo->lock);
6664 spin_lock(&cache->lock);
6665 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6666 cache->bytes_super - btrfs_block_group_used(&cache->item);
6667 sinfo->bytes_readonly -= num_bytes;
6668 cache->ro = 0;
6669 spin_unlock(&cache->lock);
6670 spin_unlock(&sinfo->lock);
6671 return 0;
6672 }
6673
6674 /*
6675 * checks to see if its even possible to relocate this block group.
6676 *
6677 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
6678 * ok to go ahead and try.
6679 */
6680 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
6681 {
6682 struct btrfs_block_group_cache *block_group;
6683 struct btrfs_space_info *space_info;
6684 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6685 struct btrfs_device *device;
6686 int full = 0;
6687 int ret = 0;
6688
6689 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
6690
6691 /* odd, couldn't find the block group, leave it alone */
6692 if (!block_group)
6693 return -1;
6694
6695 /* no bytes used, we're good */
6696 if (!btrfs_block_group_used(&block_group->item))
6697 goto out;
6698
6699 space_info = block_group->space_info;
6700 spin_lock(&space_info->lock);
6701
6702 full = space_info->full;
6703
6704 /*
6705 * if this is the last block group we have in this space, we can't
6706 * relocate it unless we're able to allocate a new chunk below.
6707 *
6708 * Otherwise, we need to make sure we have room in the space to handle
6709 * all of the extents from this block group. If we can, we're good
6710 */
6711 if ((space_info->total_bytes != block_group->key.offset) &&
6712 (space_info->bytes_used + space_info->bytes_reserved +
6713 space_info->bytes_pinned + space_info->bytes_readonly +
6714 btrfs_block_group_used(&block_group->item) <
6715 space_info->total_bytes)) {
6716 spin_unlock(&space_info->lock);
6717 goto out;
6718 }
6719 spin_unlock(&space_info->lock);
6720
6721 /*
6722 * ok we don't have enough space, but maybe we have free space on our
6723 * devices to allocate new chunks for relocation, so loop through our
6724 * alloc devices and guess if we have enough space. However, if we
6725 * were marked as full, then we know there aren't enough chunks, and we
6726 * can just return.
6727 */
6728 ret = -1;
6729 if (full)
6730 goto out;
6731
6732 mutex_lock(&root->fs_info->chunk_mutex);
6733 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
6734 u64 min_free = btrfs_block_group_used(&block_group->item);
6735 u64 dev_offset;
6736
6737 /*
6738 * check to make sure we can actually find a chunk with enough
6739 * space to fit our block group in.
6740 */
6741 if (device->total_bytes > device->bytes_used + min_free) {
6742 ret = find_free_dev_extent(NULL, device, min_free,
6743 &dev_offset, NULL);
6744 if (!ret)
6745 break;
6746 ret = -1;
6747 }
6748 }
6749 mutex_unlock(&root->fs_info->chunk_mutex);
6750 out:
6751 btrfs_put_block_group(block_group);
6752 return ret;
6753 }
6754
6755 static int find_first_block_group(struct btrfs_root *root,
6756 struct btrfs_path *path, struct btrfs_key *key)
6757 {
6758 int ret = 0;
6759 struct btrfs_key found_key;
6760 struct extent_buffer *leaf;
6761 int slot;
6762
6763 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
6764 if (ret < 0)
6765 goto out;
6766
6767 while (1) {
6768 slot = path->slots[0];
6769 leaf = path->nodes[0];
6770 if (slot >= btrfs_header_nritems(leaf)) {
6771 ret = btrfs_next_leaf(root, path);
6772 if (ret == 0)
6773 continue;
6774 if (ret < 0)
6775 goto out;
6776 break;
6777 }
6778 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6779
6780 if (found_key.objectid >= key->objectid &&
6781 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6782 ret = 0;
6783 goto out;
6784 }
6785 path->slots[0]++;
6786 }
6787 out:
6788 return ret;
6789 }
6790
6791 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
6792 {
6793 struct btrfs_block_group_cache *block_group;
6794 u64 last = 0;
6795
6796 while (1) {
6797 struct inode *inode;
6798
6799 block_group = btrfs_lookup_first_block_group(info, last);
6800 while (block_group) {
6801 spin_lock(&block_group->lock);
6802 if (block_group->iref)
6803 break;
6804 spin_unlock(&block_group->lock);
6805 block_group = next_block_group(info->tree_root,
6806 block_group);
6807 }
6808 if (!block_group) {
6809 if (last == 0)
6810 break;
6811 last = 0;
6812 continue;
6813 }
6814
6815 inode = block_group->inode;
6816 block_group->iref = 0;
6817 block_group->inode = NULL;
6818 spin_unlock(&block_group->lock);
6819 iput(inode);
6820 last = block_group->key.objectid + block_group->key.offset;
6821 btrfs_put_block_group(block_group);
6822 }
6823 }
6824
6825 int btrfs_free_block_groups(struct btrfs_fs_info *info)
6826 {
6827 struct btrfs_block_group_cache *block_group;
6828 struct btrfs_space_info *space_info;
6829 struct btrfs_caching_control *caching_ctl;
6830 struct rb_node *n;
6831
6832 down_write(&info->extent_commit_sem);
6833 while (!list_empty(&info->caching_block_groups)) {
6834 caching_ctl = list_entry(info->caching_block_groups.next,
6835 struct btrfs_caching_control, list);
6836 list_del(&caching_ctl->list);
6837 put_caching_control(caching_ctl);
6838 }
6839 up_write(&info->extent_commit_sem);
6840
6841 spin_lock(&info->block_group_cache_lock);
6842 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
6843 block_group = rb_entry(n, struct btrfs_block_group_cache,
6844 cache_node);
6845 rb_erase(&block_group->cache_node,
6846 &info->block_group_cache_tree);
6847 spin_unlock(&info->block_group_cache_lock);
6848
6849 down_write(&block_group->space_info->groups_sem);
6850 list_del(&block_group->list);
6851 up_write(&block_group->space_info->groups_sem);
6852
6853 if (block_group->cached == BTRFS_CACHE_STARTED)
6854 wait_block_group_cache_done(block_group);
6855
6856 /*
6857 * We haven't cached this block group, which means we could
6858 * possibly have excluded extents on this block group.
6859 */
6860 if (block_group->cached == BTRFS_CACHE_NO)
6861 free_excluded_extents(info->extent_root, block_group);
6862
6863 btrfs_remove_free_space_cache(block_group);
6864 btrfs_put_block_group(block_group);
6865
6866 spin_lock(&info->block_group_cache_lock);
6867 }
6868 spin_unlock(&info->block_group_cache_lock);
6869
6870 /* now that all the block groups are freed, go through and
6871 * free all the space_info structs. This is only called during
6872 * the final stages of unmount, and so we know nobody is
6873 * using them. We call synchronize_rcu() once before we start,
6874 * just to be on the safe side.
6875 */
6876 synchronize_rcu();
6877
6878 release_global_block_rsv(info);
6879
6880 while(!list_empty(&info->space_info)) {
6881 space_info = list_entry(info->space_info.next,
6882 struct btrfs_space_info,
6883 list);
6884 if (space_info->bytes_pinned > 0 ||
6885 space_info->bytes_reserved > 0) {
6886 WARN_ON(1);
6887 dump_space_info(space_info, 0, 0);
6888 }
6889 list_del(&space_info->list);
6890 kfree(space_info);
6891 }
6892 return 0;
6893 }
6894
6895 static void __link_block_group(struct btrfs_space_info *space_info,
6896 struct btrfs_block_group_cache *cache)
6897 {
6898 int index = get_block_group_index(cache);
6899
6900 down_write(&space_info->groups_sem);
6901 list_add_tail(&cache->list, &space_info->block_groups[index]);
6902 up_write(&space_info->groups_sem);
6903 }
6904
6905 int btrfs_read_block_groups(struct btrfs_root *root)
6906 {
6907 struct btrfs_path *path;
6908 int ret;
6909 struct btrfs_block_group_cache *cache;
6910 struct btrfs_fs_info *info = root->fs_info;
6911 struct btrfs_space_info *space_info;
6912 struct btrfs_key key;
6913 struct btrfs_key found_key;
6914 struct extent_buffer *leaf;
6915 int need_clear = 0;
6916 u64 cache_gen;
6917
6918 root = info->extent_root;
6919 key.objectid = 0;
6920 key.offset = 0;
6921 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
6922 path = btrfs_alloc_path();
6923 if (!path)
6924 return -ENOMEM;
6925 path->reada = 1;
6926
6927 cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy);
6928 if (cache_gen != 0 &&
6929 btrfs_super_generation(&root->fs_info->super_copy) != cache_gen)
6930 need_clear = 1;
6931 if (btrfs_test_opt(root, CLEAR_CACHE))
6932 need_clear = 1;
6933 if (!btrfs_test_opt(root, SPACE_CACHE) && cache_gen)
6934 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
6935
6936 while (1) {
6937 ret = find_first_block_group(root, path, &key);
6938 if (ret > 0)
6939 break;
6940 if (ret != 0)
6941 goto error;
6942 leaf = path->nodes[0];
6943 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6944 cache = kzalloc(sizeof(*cache), GFP_NOFS);
6945 if (!cache) {
6946 ret = -ENOMEM;
6947 goto error;
6948 }
6949 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
6950 GFP_NOFS);
6951 if (!cache->free_space_ctl) {
6952 kfree(cache);
6953 ret = -ENOMEM;
6954 goto error;
6955 }
6956
6957 atomic_set(&cache->count, 1);
6958 spin_lock_init(&cache->lock);
6959 cache->fs_info = info;
6960 INIT_LIST_HEAD(&cache->list);
6961 INIT_LIST_HEAD(&cache->cluster_list);
6962
6963 if (need_clear)
6964 cache->disk_cache_state = BTRFS_DC_CLEAR;
6965
6966 read_extent_buffer(leaf, &cache->item,
6967 btrfs_item_ptr_offset(leaf, path->slots[0]),
6968 sizeof(cache->item));
6969 memcpy(&cache->key, &found_key, sizeof(found_key));
6970
6971 key.objectid = found_key.objectid + found_key.offset;
6972 btrfs_release_path(path);
6973 cache->flags = btrfs_block_group_flags(&cache->item);
6974 cache->sectorsize = root->sectorsize;
6975
6976 btrfs_init_free_space_ctl(cache);
6977
6978 /*
6979 * We need to exclude the super stripes now so that the space
6980 * info has super bytes accounted for, otherwise we'll think
6981 * we have more space than we actually do.
6982 */
6983 exclude_super_stripes(root, cache);
6984
6985 /*
6986 * check for two cases, either we are full, and therefore
6987 * don't need to bother with the caching work since we won't
6988 * find any space, or we are empty, and we can just add all
6989 * the space in and be done with it. This saves us _alot_ of
6990 * time, particularly in the full case.
6991 */
6992 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
6993 cache->last_byte_to_unpin = (u64)-1;
6994 cache->cached = BTRFS_CACHE_FINISHED;
6995 free_excluded_extents(root, cache);
6996 } else if (btrfs_block_group_used(&cache->item) == 0) {
6997 cache->last_byte_to_unpin = (u64)-1;
6998 cache->cached = BTRFS_CACHE_FINISHED;
6999 add_new_free_space(cache, root->fs_info,
7000 found_key.objectid,
7001 found_key.objectid +
7002 found_key.offset);
7003 free_excluded_extents(root, cache);
7004 }
7005
7006 ret = update_space_info(info, cache->flags, found_key.offset,
7007 btrfs_block_group_used(&cache->item),
7008 &space_info);
7009 BUG_ON(ret);
7010 cache->space_info = space_info;
7011 spin_lock(&cache->space_info->lock);
7012 cache->space_info->bytes_readonly += cache->bytes_super;
7013 spin_unlock(&cache->space_info->lock);
7014
7015 __link_block_group(space_info, cache);
7016
7017 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7018 BUG_ON(ret);
7019
7020 set_avail_alloc_bits(root->fs_info, cache->flags);
7021 if (btrfs_chunk_readonly(root, cache->key.objectid))
7022 set_block_group_ro(cache);
7023 }
7024
7025 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7026 if (!(get_alloc_profile(root, space_info->flags) &
7027 (BTRFS_BLOCK_GROUP_RAID10 |
7028 BTRFS_BLOCK_GROUP_RAID1 |
7029 BTRFS_BLOCK_GROUP_DUP)))
7030 continue;
7031 /*
7032 * avoid allocating from un-mirrored block group if there are
7033 * mirrored block groups.
7034 */
7035 list_for_each_entry(cache, &space_info->block_groups[3], list)
7036 set_block_group_ro(cache);
7037 list_for_each_entry(cache, &space_info->block_groups[4], list)
7038 set_block_group_ro(cache);
7039 }
7040
7041 init_global_block_rsv(info);
7042 ret = 0;
7043 error:
7044 btrfs_free_path(path);
7045 return ret;
7046 }
7047
7048 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7049 struct btrfs_root *root, u64 bytes_used,
7050 u64 type, u64 chunk_objectid, u64 chunk_offset,
7051 u64 size)
7052 {
7053 int ret;
7054 struct btrfs_root *extent_root;
7055 struct btrfs_block_group_cache *cache;
7056
7057 extent_root = root->fs_info->extent_root;
7058
7059 root->fs_info->last_trans_log_full_commit = trans->transid;
7060
7061 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7062 if (!cache)
7063 return -ENOMEM;
7064 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7065 GFP_NOFS);
7066 if (!cache->free_space_ctl) {
7067 kfree(cache);
7068 return -ENOMEM;
7069 }
7070
7071 cache->key.objectid = chunk_offset;
7072 cache->key.offset = size;
7073 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7074 cache->sectorsize = root->sectorsize;
7075 cache->fs_info = root->fs_info;
7076
7077 atomic_set(&cache->count, 1);
7078 spin_lock_init(&cache->lock);
7079 INIT_LIST_HEAD(&cache->list);
7080 INIT_LIST_HEAD(&cache->cluster_list);
7081
7082 btrfs_init_free_space_ctl(cache);
7083
7084 btrfs_set_block_group_used(&cache->item, bytes_used);
7085 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7086 cache->flags = type;
7087 btrfs_set_block_group_flags(&cache->item, type);
7088
7089 cache->last_byte_to_unpin = (u64)-1;
7090 cache->cached = BTRFS_CACHE_FINISHED;
7091 exclude_super_stripes(root, cache);
7092
7093 add_new_free_space(cache, root->fs_info, chunk_offset,
7094 chunk_offset + size);
7095
7096 free_excluded_extents(root, cache);
7097
7098 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7099 &cache->space_info);
7100 BUG_ON(ret);
7101
7102 spin_lock(&cache->space_info->lock);
7103 cache->space_info->bytes_readonly += cache->bytes_super;
7104 spin_unlock(&cache->space_info->lock);
7105
7106 __link_block_group(cache->space_info, cache);
7107
7108 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7109 BUG_ON(ret);
7110
7111 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7112 sizeof(cache->item));
7113 BUG_ON(ret);
7114
7115 set_avail_alloc_bits(extent_root->fs_info, type);
7116
7117 return 0;
7118 }
7119
7120 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7121 struct btrfs_root *root, u64 group_start)
7122 {
7123 struct btrfs_path *path;
7124 struct btrfs_block_group_cache *block_group;
7125 struct btrfs_free_cluster *cluster;
7126 struct btrfs_root *tree_root = root->fs_info->tree_root;
7127 struct btrfs_key key;
7128 struct inode *inode;
7129 int ret;
7130 int factor;
7131
7132 root = root->fs_info->extent_root;
7133
7134 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7135 BUG_ON(!block_group);
7136 BUG_ON(!block_group->ro);
7137
7138 /*
7139 * Free the reserved super bytes from this block group before
7140 * remove it.
7141 */
7142 free_excluded_extents(root, block_group);
7143
7144 memcpy(&key, &block_group->key, sizeof(key));
7145 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7146 BTRFS_BLOCK_GROUP_RAID1 |
7147 BTRFS_BLOCK_GROUP_RAID10))
7148 factor = 2;
7149 else
7150 factor = 1;
7151
7152 /* make sure this block group isn't part of an allocation cluster */
7153 cluster = &root->fs_info->data_alloc_cluster;
7154 spin_lock(&cluster->refill_lock);
7155 btrfs_return_cluster_to_free_space(block_group, cluster);
7156 spin_unlock(&cluster->refill_lock);
7157
7158 /*
7159 * make sure this block group isn't part of a metadata
7160 * allocation cluster
7161 */
7162 cluster = &root->fs_info->meta_alloc_cluster;
7163 spin_lock(&cluster->refill_lock);
7164 btrfs_return_cluster_to_free_space(block_group, cluster);
7165 spin_unlock(&cluster->refill_lock);
7166
7167 path = btrfs_alloc_path();
7168 if (!path) {
7169 ret = -ENOMEM;
7170 goto out;
7171 }
7172
7173 inode = lookup_free_space_inode(root, block_group, path);
7174 if (!IS_ERR(inode)) {
7175 btrfs_orphan_add(trans, inode);
7176 clear_nlink(inode);
7177 /* One for the block groups ref */
7178 spin_lock(&block_group->lock);
7179 if (block_group->iref) {
7180 block_group->iref = 0;
7181 block_group->inode = NULL;
7182 spin_unlock(&block_group->lock);
7183 iput(inode);
7184 } else {
7185 spin_unlock(&block_group->lock);
7186 }
7187 /* One for our lookup ref */
7188 iput(inode);
7189 }
7190
7191 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7192 key.offset = block_group->key.objectid;
7193 key.type = 0;
7194
7195 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7196 if (ret < 0)
7197 goto out;
7198 if (ret > 0)
7199 btrfs_release_path(path);
7200 if (ret == 0) {
7201 ret = btrfs_del_item(trans, tree_root, path);
7202 if (ret)
7203 goto out;
7204 btrfs_release_path(path);
7205 }
7206
7207 spin_lock(&root->fs_info->block_group_cache_lock);
7208 rb_erase(&block_group->cache_node,
7209 &root->fs_info->block_group_cache_tree);
7210 spin_unlock(&root->fs_info->block_group_cache_lock);
7211
7212 down_write(&block_group->space_info->groups_sem);
7213 /*
7214 * we must use list_del_init so people can check to see if they
7215 * are still on the list after taking the semaphore
7216 */
7217 list_del_init(&block_group->list);
7218 up_write(&block_group->space_info->groups_sem);
7219
7220 if (block_group->cached == BTRFS_CACHE_STARTED)
7221 wait_block_group_cache_done(block_group);
7222
7223 btrfs_remove_free_space_cache(block_group);
7224
7225 spin_lock(&block_group->space_info->lock);
7226 block_group->space_info->total_bytes -= block_group->key.offset;
7227 block_group->space_info->bytes_readonly -= block_group->key.offset;
7228 block_group->space_info->disk_total -= block_group->key.offset * factor;
7229 spin_unlock(&block_group->space_info->lock);
7230
7231 memcpy(&key, &block_group->key, sizeof(key));
7232
7233 btrfs_clear_space_info_full(root->fs_info);
7234
7235 btrfs_put_block_group(block_group);
7236 btrfs_put_block_group(block_group);
7237
7238 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7239 if (ret > 0)
7240 ret = -EIO;
7241 if (ret < 0)
7242 goto out;
7243
7244 ret = btrfs_del_item(trans, root, path);
7245 out:
7246 btrfs_free_path(path);
7247 return ret;
7248 }
7249
7250 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7251 {
7252 struct btrfs_space_info *space_info;
7253 struct btrfs_super_block *disk_super;
7254 u64 features;
7255 u64 flags;
7256 int mixed = 0;
7257 int ret;
7258
7259 disk_super = &fs_info->super_copy;
7260 if (!btrfs_super_root(disk_super))
7261 return 1;
7262
7263 features = btrfs_super_incompat_flags(disk_super);
7264 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7265 mixed = 1;
7266
7267 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7268 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7269 if (ret)
7270 goto out;
7271
7272 if (mixed) {
7273 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7274 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7275 } else {
7276 flags = BTRFS_BLOCK_GROUP_METADATA;
7277 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7278 if (ret)
7279 goto out;
7280
7281 flags = BTRFS_BLOCK_GROUP_DATA;
7282 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7283 }
7284 out:
7285 return ret;
7286 }
7287
7288 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7289 {
7290 return unpin_extent_range(root, start, end);
7291 }
7292
7293 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7294 u64 num_bytes, u64 *actual_bytes)
7295 {
7296 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7297 }
7298
7299 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7300 {
7301 struct btrfs_fs_info *fs_info = root->fs_info;
7302 struct btrfs_block_group_cache *cache = NULL;
7303 u64 group_trimmed;
7304 u64 start;
7305 u64 end;
7306 u64 trimmed = 0;
7307 int ret = 0;
7308
7309 cache = btrfs_lookup_block_group(fs_info, range->start);
7310
7311 while (cache) {
7312 if (cache->key.objectid >= (range->start + range->len)) {
7313 btrfs_put_block_group(cache);
7314 break;
7315 }
7316
7317 start = max(range->start, cache->key.objectid);
7318 end = min(range->start + range->len,
7319 cache->key.objectid + cache->key.offset);
7320
7321 if (end - start >= range->minlen) {
7322 if (!block_group_cache_done(cache)) {
7323 ret = cache_block_group(cache, NULL, root, 0);
7324 if (!ret)
7325 wait_block_group_cache_done(cache);
7326 }
7327 ret = btrfs_trim_block_group(cache,
7328 &group_trimmed,
7329 start,
7330 end,
7331 range->minlen);
7332
7333 trimmed += group_trimmed;
7334 if (ret) {
7335 btrfs_put_block_group(cache);
7336 break;
7337 }
7338 }
7339
7340 cache = next_block_group(fs_info->tree_root, cache);
7341 }
7342
7343 range->len = trimmed;
7344 return ret;
7345 }
This page took 0.196908 seconds and 6 git commands to generate.