btrfs: extent-tree: Switch to new check_data_free_space and free_reserved_data_space
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 struct btrfs_delayed_ref_node *node, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
98 int level, struct btrfs_key *ins,
99 int no_quota);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 u64 num_bytes, int reserve,
109 int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
114
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 smp_mb();
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
121 }
122
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 return (cache->flags & bits) == bits;
126 }
127
128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 atomic_inc(&cache->count);
131 }
132
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
138 kfree(cache->free_space_ctl);
139 kfree(cache);
140 }
141 }
142
143 /*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 struct btrfs_block_group_cache *block_group)
149 {
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181 }
182
183 /*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190 {
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
219 if (ret) {
220 btrfs_get_block_group(ret);
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227 }
228
229 static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
231 {
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238 }
239
240 static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242 {
243 u64 start, end;
244
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
252 }
253
254 static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
256 {
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
267 if (ret)
268 return ret;
269 }
270
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
276 if (ret)
277 return ret;
278
279 while (nr--) {
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
305 }
306
307 kfree(logical);
308 }
309 return 0;
310 }
311
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327 }
328
329 static void put_caching_control(struct btrfs_caching_control *ctl)
330 {
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333 }
334
335 /*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
340 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
341 struct btrfs_fs_info *info, u64 start, u64 end)
342 {
343 u64 extent_start, extent_end, size, total_added = 0;
344 int ret;
345
346 while (start < end) {
347 ret = find_first_extent_bit(info->pinned_extents, start,
348 &extent_start, &extent_end,
349 EXTENT_DIRTY | EXTENT_UPTODATE,
350 NULL);
351 if (ret)
352 break;
353
354 if (extent_start <= start) {
355 start = extent_end + 1;
356 } else if (extent_start > start && extent_start < end) {
357 size = extent_start - start;
358 total_added += size;
359 ret = btrfs_add_free_space(block_group, start,
360 size);
361 BUG_ON(ret); /* -ENOMEM or logic error */
362 start = extent_end + 1;
363 } else {
364 break;
365 }
366 }
367
368 if (start < end) {
369 size = end - start;
370 total_added += size;
371 ret = btrfs_add_free_space(block_group, start, size);
372 BUG_ON(ret); /* -ENOMEM or logic error */
373 }
374
375 return total_added;
376 }
377
378 static noinline void caching_thread(struct btrfs_work *work)
379 {
380 struct btrfs_block_group_cache *block_group;
381 struct btrfs_fs_info *fs_info;
382 struct btrfs_caching_control *caching_ctl;
383 struct btrfs_root *extent_root;
384 struct btrfs_path *path;
385 struct extent_buffer *leaf;
386 struct btrfs_key key;
387 u64 total_found = 0;
388 u64 last = 0;
389 u32 nritems;
390 int ret = -ENOMEM;
391
392 caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 block_group = caching_ctl->block_group;
394 fs_info = block_group->fs_info;
395 extent_root = fs_info->extent_root;
396
397 path = btrfs_alloc_path();
398 if (!path)
399 goto out;
400
401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
402
403 /*
404 * We don't want to deadlock with somebody trying to allocate a new
405 * extent for the extent root while also trying to search the extent
406 * root to add free space. So we skip locking and search the commit
407 * root, since its read-only
408 */
409 path->skip_locking = 1;
410 path->search_commit_root = 1;
411 path->reada = 1;
412
413 key.objectid = last;
414 key.offset = 0;
415 key.type = BTRFS_EXTENT_ITEM_KEY;
416 again:
417 mutex_lock(&caching_ctl->mutex);
418 /* need to make sure the commit_root doesn't disappear */
419 down_read(&fs_info->commit_root_sem);
420
421 next:
422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
423 if (ret < 0)
424 goto err;
425
426 leaf = path->nodes[0];
427 nritems = btrfs_header_nritems(leaf);
428
429 while (1) {
430 if (btrfs_fs_closing(fs_info) > 1) {
431 last = (u64)-1;
432 break;
433 }
434
435 if (path->slots[0] < nritems) {
436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 } else {
438 ret = find_next_key(path, 0, &key);
439 if (ret)
440 break;
441
442 if (need_resched() ||
443 rwsem_is_contended(&fs_info->commit_root_sem)) {
444 caching_ctl->progress = last;
445 btrfs_release_path(path);
446 up_read(&fs_info->commit_root_sem);
447 mutex_unlock(&caching_ctl->mutex);
448 cond_resched();
449 goto again;
450 }
451
452 ret = btrfs_next_leaf(extent_root, path);
453 if (ret < 0)
454 goto err;
455 if (ret)
456 break;
457 leaf = path->nodes[0];
458 nritems = btrfs_header_nritems(leaf);
459 continue;
460 }
461
462 if (key.objectid < last) {
463 key.objectid = last;
464 key.offset = 0;
465 key.type = BTRFS_EXTENT_ITEM_KEY;
466
467 caching_ctl->progress = last;
468 btrfs_release_path(path);
469 goto next;
470 }
471
472 if (key.objectid < block_group->key.objectid) {
473 path->slots[0]++;
474 continue;
475 }
476
477 if (key.objectid >= block_group->key.objectid +
478 block_group->key.offset)
479 break;
480
481 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 key.type == BTRFS_METADATA_ITEM_KEY) {
483 total_found += add_new_free_space(block_group,
484 fs_info, last,
485 key.objectid);
486 if (key.type == BTRFS_METADATA_ITEM_KEY)
487 last = key.objectid +
488 fs_info->tree_root->nodesize;
489 else
490 last = key.objectid + key.offset;
491
492 if (total_found > (1024 * 1024 * 2)) {
493 total_found = 0;
494 wake_up(&caching_ctl->wait);
495 }
496 }
497 path->slots[0]++;
498 }
499 ret = 0;
500
501 total_found += add_new_free_space(block_group, fs_info, last,
502 block_group->key.objectid +
503 block_group->key.offset);
504 caching_ctl->progress = (u64)-1;
505
506 spin_lock(&block_group->lock);
507 block_group->caching_ctl = NULL;
508 block_group->cached = BTRFS_CACHE_FINISHED;
509 spin_unlock(&block_group->lock);
510
511 err:
512 btrfs_free_path(path);
513 up_read(&fs_info->commit_root_sem);
514
515 free_excluded_extents(extent_root, block_group);
516
517 mutex_unlock(&caching_ctl->mutex);
518 out:
519 if (ret) {
520 spin_lock(&block_group->lock);
521 block_group->caching_ctl = NULL;
522 block_group->cached = BTRFS_CACHE_ERROR;
523 spin_unlock(&block_group->lock);
524 }
525 wake_up(&caching_ctl->wait);
526
527 put_caching_control(caching_ctl);
528 btrfs_put_block_group(block_group);
529 }
530
531 static int cache_block_group(struct btrfs_block_group_cache *cache,
532 int load_cache_only)
533 {
534 DEFINE_WAIT(wait);
535 struct btrfs_fs_info *fs_info = cache->fs_info;
536 struct btrfs_caching_control *caching_ctl;
537 int ret = 0;
538
539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
540 if (!caching_ctl)
541 return -ENOMEM;
542
543 INIT_LIST_HEAD(&caching_ctl->list);
544 mutex_init(&caching_ctl->mutex);
545 init_waitqueue_head(&caching_ctl->wait);
546 caching_ctl->block_group = cache;
547 caching_ctl->progress = cache->key.objectid;
548 atomic_set(&caching_ctl->count, 1);
549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 caching_thread, NULL, NULL);
551
552 spin_lock(&cache->lock);
553 /*
554 * This should be a rare occasion, but this could happen I think in the
555 * case where one thread starts to load the space cache info, and then
556 * some other thread starts a transaction commit which tries to do an
557 * allocation while the other thread is still loading the space cache
558 * info. The previous loop should have kept us from choosing this block
559 * group, but if we've moved to the state where we will wait on caching
560 * block groups we need to first check if we're doing a fast load here,
561 * so we can wait for it to finish, otherwise we could end up allocating
562 * from a block group who's cache gets evicted for one reason or
563 * another.
564 */
565 while (cache->cached == BTRFS_CACHE_FAST) {
566 struct btrfs_caching_control *ctl;
567
568 ctl = cache->caching_ctl;
569 atomic_inc(&ctl->count);
570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 spin_unlock(&cache->lock);
572
573 schedule();
574
575 finish_wait(&ctl->wait, &wait);
576 put_caching_control(ctl);
577 spin_lock(&cache->lock);
578 }
579
580 if (cache->cached != BTRFS_CACHE_NO) {
581 spin_unlock(&cache->lock);
582 kfree(caching_ctl);
583 return 0;
584 }
585 WARN_ON(cache->caching_ctl);
586 cache->caching_ctl = caching_ctl;
587 cache->cached = BTRFS_CACHE_FAST;
588 spin_unlock(&cache->lock);
589
590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
591 mutex_lock(&caching_ctl->mutex);
592 ret = load_free_space_cache(fs_info, cache);
593
594 spin_lock(&cache->lock);
595 if (ret == 1) {
596 cache->caching_ctl = NULL;
597 cache->cached = BTRFS_CACHE_FINISHED;
598 cache->last_byte_to_unpin = (u64)-1;
599 caching_ctl->progress = (u64)-1;
600 } else {
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
606 cache->has_caching_ctl = 1;
607 }
608 }
609 spin_unlock(&cache->lock);
610 mutex_unlock(&caching_ctl->mutex);
611
612 wake_up(&caching_ctl->wait);
613 if (ret == 1) {
614 put_caching_control(caching_ctl);
615 free_excluded_extents(fs_info->extent_root, cache);
616 return 0;
617 }
618 } else {
619 /*
620 * We are not going to do the fast caching, set cached to the
621 * appropriate value and wakeup any waiters.
622 */
623 spin_lock(&cache->lock);
624 if (load_cache_only) {
625 cache->caching_ctl = NULL;
626 cache->cached = BTRFS_CACHE_NO;
627 } else {
628 cache->cached = BTRFS_CACHE_STARTED;
629 cache->has_caching_ctl = 1;
630 }
631 spin_unlock(&cache->lock);
632 wake_up(&caching_ctl->wait);
633 }
634
635 if (load_cache_only) {
636 put_caching_control(caching_ctl);
637 return 0;
638 }
639
640 down_write(&fs_info->commit_root_sem);
641 atomic_inc(&caching_ctl->count);
642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
643 up_write(&fs_info->commit_root_sem);
644
645 btrfs_get_block_group(cache);
646
647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
648
649 return ret;
650 }
651
652 /*
653 * return the block group that starts at or after bytenr
654 */
655 static struct btrfs_block_group_cache *
656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
657 {
658 struct btrfs_block_group_cache *cache;
659
660 cache = block_group_cache_tree_search(info, bytenr, 0);
661
662 return cache;
663 }
664
665 /*
666 * return the block group that contains the given bytenr
667 */
668 struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 struct btrfs_fs_info *info,
670 u64 bytenr)
671 {
672 struct btrfs_block_group_cache *cache;
673
674 cache = block_group_cache_tree_search(info, bytenr, 1);
675
676 return cache;
677 }
678
679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 u64 flags)
681 {
682 struct list_head *head = &info->space_info;
683 struct btrfs_space_info *found;
684
685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
686
687 rcu_read_lock();
688 list_for_each_entry_rcu(found, head, list) {
689 if (found->flags & flags) {
690 rcu_read_unlock();
691 return found;
692 }
693 }
694 rcu_read_unlock();
695 return NULL;
696 }
697
698 /*
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
701 */
702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703 {
704 struct list_head *head = &info->space_info;
705 struct btrfs_space_info *found;
706
707 rcu_read_lock();
708 list_for_each_entry_rcu(found, head, list)
709 found->full = 0;
710 rcu_read_unlock();
711 }
712
713 /* simple helper to search for an existing data extent at a given offset */
714 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
715 {
716 int ret;
717 struct btrfs_key key;
718 struct btrfs_path *path;
719
720 path = btrfs_alloc_path();
721 if (!path)
722 return -ENOMEM;
723
724 key.objectid = start;
725 key.offset = len;
726 key.type = BTRFS_EXTENT_ITEM_KEY;
727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 0, 0);
729 btrfs_free_path(path);
730 return ret;
731 }
732
733 /*
734 * helper function to lookup reference count and flags of a tree block.
735 *
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
741 */
742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 bytenr,
744 u64 offset, int metadata, u64 *refs, u64 *flags)
745 {
746 struct btrfs_delayed_ref_head *head;
747 struct btrfs_delayed_ref_root *delayed_refs;
748 struct btrfs_path *path;
749 struct btrfs_extent_item *ei;
750 struct extent_buffer *leaf;
751 struct btrfs_key key;
752 u32 item_size;
753 u64 num_refs;
754 u64 extent_flags;
755 int ret;
756
757 /*
758 * If we don't have skinny metadata, don't bother doing anything
759 * different
760 */
761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
762 offset = root->nodesize;
763 metadata = 0;
764 }
765
766 path = btrfs_alloc_path();
767 if (!path)
768 return -ENOMEM;
769
770 if (!trans) {
771 path->skip_locking = 1;
772 path->search_commit_root = 1;
773 }
774
775 search_again:
776 key.objectid = bytenr;
777 key.offset = offset;
778 if (metadata)
779 key.type = BTRFS_METADATA_ITEM_KEY;
780 else
781 key.type = BTRFS_EXTENT_ITEM_KEY;
782
783 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 &key, path, 0, 0);
785 if (ret < 0)
786 goto out_free;
787
788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
789 if (path->slots[0]) {
790 path->slots[0]--;
791 btrfs_item_key_to_cpu(path->nodes[0], &key,
792 path->slots[0]);
793 if (key.objectid == bytenr &&
794 key.type == BTRFS_EXTENT_ITEM_KEY &&
795 key.offset == root->nodesize)
796 ret = 0;
797 }
798 }
799
800 if (ret == 0) {
801 leaf = path->nodes[0];
802 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 if (item_size >= sizeof(*ei)) {
804 ei = btrfs_item_ptr(leaf, path->slots[0],
805 struct btrfs_extent_item);
806 num_refs = btrfs_extent_refs(leaf, ei);
807 extent_flags = btrfs_extent_flags(leaf, ei);
808 } else {
809 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 struct btrfs_extent_item_v0 *ei0;
811 BUG_ON(item_size != sizeof(*ei0));
812 ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_extent_item_v0);
814 num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 /* FIXME: this isn't correct for data */
816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817 #else
818 BUG();
819 #endif
820 }
821 BUG_ON(num_refs == 0);
822 } else {
823 num_refs = 0;
824 extent_flags = 0;
825 ret = 0;
826 }
827
828 if (!trans)
829 goto out;
830
831 delayed_refs = &trans->transaction->delayed_refs;
832 spin_lock(&delayed_refs->lock);
833 head = btrfs_find_delayed_ref_head(trans, bytenr);
834 if (head) {
835 if (!mutex_trylock(&head->mutex)) {
836 atomic_inc(&head->node.refs);
837 spin_unlock(&delayed_refs->lock);
838
839 btrfs_release_path(path);
840
841 /*
842 * Mutex was contended, block until it's released and try
843 * again
844 */
845 mutex_lock(&head->mutex);
846 mutex_unlock(&head->mutex);
847 btrfs_put_delayed_ref(&head->node);
848 goto search_again;
849 }
850 spin_lock(&head->lock);
851 if (head->extent_op && head->extent_op->update_flags)
852 extent_flags |= head->extent_op->flags_to_set;
853 else
854 BUG_ON(num_refs == 0);
855
856 num_refs += head->node.ref_mod;
857 spin_unlock(&head->lock);
858 mutex_unlock(&head->mutex);
859 }
860 spin_unlock(&delayed_refs->lock);
861 out:
862 WARN_ON(num_refs == 0);
863 if (refs)
864 *refs = num_refs;
865 if (flags)
866 *flags = extent_flags;
867 out_free:
868 btrfs_free_path(path);
869 return ret;
870 }
871
872 /*
873 * Back reference rules. Back refs have three main goals:
874 *
875 * 1) differentiate between all holders of references to an extent so that
876 * when a reference is dropped we can make sure it was a valid reference
877 * before freeing the extent.
878 *
879 * 2) Provide enough information to quickly find the holders of an extent
880 * if we notice a given block is corrupted or bad.
881 *
882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883 * maintenance. This is actually the same as #2, but with a slightly
884 * different use case.
885 *
886 * There are two kinds of back refs. The implicit back refs is optimized
887 * for pointers in non-shared tree blocks. For a given pointer in a block,
888 * back refs of this kind provide information about the block's owner tree
889 * and the pointer's key. These information allow us to find the block by
890 * b-tree searching. The full back refs is for pointers in tree blocks not
891 * referenced by their owner trees. The location of tree block is recorded
892 * in the back refs. Actually the full back refs is generic, and can be
893 * used in all cases the implicit back refs is used. The major shortcoming
894 * of the full back refs is its overhead. Every time a tree block gets
895 * COWed, we have to update back refs entry for all pointers in it.
896 *
897 * For a newly allocated tree block, we use implicit back refs for
898 * pointers in it. This means most tree related operations only involve
899 * implicit back refs. For a tree block created in old transaction, the
900 * only way to drop a reference to it is COW it. So we can detect the
901 * event that tree block loses its owner tree's reference and do the
902 * back refs conversion.
903 *
904 * When a tree block is COW'd through a tree, there are four cases:
905 *
906 * The reference count of the block is one and the tree is the block's
907 * owner tree. Nothing to do in this case.
908 *
909 * The reference count of the block is one and the tree is not the
910 * block's owner tree. In this case, full back refs is used for pointers
911 * in the block. Remove these full back refs, add implicit back refs for
912 * every pointers in the new block.
913 *
914 * The reference count of the block is greater than one and the tree is
915 * the block's owner tree. In this case, implicit back refs is used for
916 * pointers in the block. Add full back refs for every pointers in the
917 * block, increase lower level extents' reference counts. The original
918 * implicit back refs are entailed to the new block.
919 *
920 * The reference count of the block is greater than one and the tree is
921 * not the block's owner tree. Add implicit back refs for every pointer in
922 * the new block, increase lower level extents' reference count.
923 *
924 * Back Reference Key composing:
925 *
926 * The key objectid corresponds to the first byte in the extent,
927 * The key type is used to differentiate between types of back refs.
928 * There are different meanings of the key offset for different types
929 * of back refs.
930 *
931 * File extents can be referenced by:
932 *
933 * - multiple snapshots, subvolumes, or different generations in one subvol
934 * - different files inside a single subvolume
935 * - different offsets inside a file (bookend extents in file.c)
936 *
937 * The extent ref structure for the implicit back refs has fields for:
938 *
939 * - Objectid of the subvolume root
940 * - objectid of the file holding the reference
941 * - original offset in the file
942 * - how many bookend extents
943 *
944 * The key offset for the implicit back refs is hash of the first
945 * three fields.
946 *
947 * The extent ref structure for the full back refs has field for:
948 *
949 * - number of pointers in the tree leaf
950 *
951 * The key offset for the implicit back refs is the first byte of
952 * the tree leaf
953 *
954 * When a file extent is allocated, The implicit back refs is used.
955 * the fields are filled in:
956 *
957 * (root_key.objectid, inode objectid, offset in file, 1)
958 *
959 * When a file extent is removed file truncation, we find the
960 * corresponding implicit back refs and check the following fields:
961 *
962 * (btrfs_header_owner(leaf), inode objectid, offset in file)
963 *
964 * Btree extents can be referenced by:
965 *
966 * - Different subvolumes
967 *
968 * Both the implicit back refs and the full back refs for tree blocks
969 * only consist of key. The key offset for the implicit back refs is
970 * objectid of block's owner tree. The key offset for the full back refs
971 * is the first byte of parent block.
972 *
973 * When implicit back refs is used, information about the lowest key and
974 * level of the tree block are required. These information are stored in
975 * tree block info structure.
976 */
977
978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct btrfs_path *path,
982 u64 owner, u32 extra_size)
983 {
984 struct btrfs_extent_item *item;
985 struct btrfs_extent_item_v0 *ei0;
986 struct btrfs_extent_ref_v0 *ref0;
987 struct btrfs_tree_block_info *bi;
988 struct extent_buffer *leaf;
989 struct btrfs_key key;
990 struct btrfs_key found_key;
991 u32 new_size = sizeof(*item);
992 u64 refs;
993 int ret;
994
995 leaf = path->nodes[0];
996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997
998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_extent_item_v0);
1001 refs = btrfs_extent_refs_v0(leaf, ei0);
1002
1003 if (owner == (u64)-1) {
1004 while (1) {
1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 ret = btrfs_next_leaf(root, path);
1007 if (ret < 0)
1008 return ret;
1009 BUG_ON(ret > 0); /* Corruption */
1010 leaf = path->nodes[0];
1011 }
1012 btrfs_item_key_to_cpu(leaf, &found_key,
1013 path->slots[0]);
1014 BUG_ON(key.objectid != found_key.objectid);
1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 path->slots[0]++;
1017 continue;
1018 }
1019 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 struct btrfs_extent_ref_v0);
1021 owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 break;
1023 }
1024 }
1025 btrfs_release_path(path);
1026
1027 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 new_size += sizeof(*bi);
1029
1030 new_size -= sizeof(*ei0);
1031 ret = btrfs_search_slot(trans, root, &key, path,
1032 new_size + extra_size, 1);
1033 if (ret < 0)
1034 return ret;
1035 BUG_ON(ret); /* Corruption */
1036
1037 btrfs_extend_item(root, path, new_size);
1038
1039 leaf = path->nodes[0];
1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 btrfs_set_extent_refs(leaf, item, refs);
1042 /* FIXME: get real generation */
1043 btrfs_set_extent_generation(leaf, item, 0);
1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 btrfs_set_extent_flags(leaf, item,
1046 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 bi = (struct btrfs_tree_block_info *)(item + 1);
1049 /* FIXME: get first key of the block */
1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 } else {
1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 }
1055 btrfs_mark_buffer_dirty(leaf);
1056 return 0;
1057 }
1058 #endif
1059
1060 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061 {
1062 u32 high_crc = ~(u32)0;
1063 u32 low_crc = ~(u32)0;
1064 __le64 lenum;
1065
1066 lenum = cpu_to_le64(root_objectid);
1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1068 lenum = cpu_to_le64(owner);
1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1070 lenum = cpu_to_le64(offset);
1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1072
1073 return ((u64)high_crc << 31) ^ (u64)low_crc;
1074 }
1075
1076 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 struct btrfs_extent_data_ref *ref)
1078 {
1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 btrfs_extent_data_ref_objectid(leaf, ref),
1081 btrfs_extent_data_ref_offset(leaf, ref));
1082 }
1083
1084 static int match_extent_data_ref(struct extent_buffer *leaf,
1085 struct btrfs_extent_data_ref *ref,
1086 u64 root_objectid, u64 owner, u64 offset)
1087 {
1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 return 0;
1092 return 1;
1093 }
1094
1095 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 u64 bytenr, u64 parent,
1099 u64 root_objectid,
1100 u64 owner, u64 offset)
1101 {
1102 struct btrfs_key key;
1103 struct btrfs_extent_data_ref *ref;
1104 struct extent_buffer *leaf;
1105 u32 nritems;
1106 int ret;
1107 int recow;
1108 int err = -ENOENT;
1109
1110 key.objectid = bytenr;
1111 if (parent) {
1112 key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 key.offset = parent;
1114 } else {
1115 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 key.offset = hash_extent_data_ref(root_objectid,
1117 owner, offset);
1118 }
1119 again:
1120 recow = 0;
1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 if (ret < 0) {
1123 err = ret;
1124 goto fail;
1125 }
1126
1127 if (parent) {
1128 if (!ret)
1129 return 0;
1130 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 key.type = BTRFS_EXTENT_REF_V0_KEY;
1132 btrfs_release_path(path);
1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 if (ret < 0) {
1135 err = ret;
1136 goto fail;
1137 }
1138 if (!ret)
1139 return 0;
1140 #endif
1141 goto fail;
1142 }
1143
1144 leaf = path->nodes[0];
1145 nritems = btrfs_header_nritems(leaf);
1146 while (1) {
1147 if (path->slots[0] >= nritems) {
1148 ret = btrfs_next_leaf(root, path);
1149 if (ret < 0)
1150 err = ret;
1151 if (ret)
1152 goto fail;
1153
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 recow = 1;
1157 }
1158
1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 if (key.objectid != bytenr ||
1161 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 goto fail;
1163
1164 ref = btrfs_item_ptr(leaf, path->slots[0],
1165 struct btrfs_extent_data_ref);
1166
1167 if (match_extent_data_ref(leaf, ref, root_objectid,
1168 owner, offset)) {
1169 if (recow) {
1170 btrfs_release_path(path);
1171 goto again;
1172 }
1173 err = 0;
1174 break;
1175 }
1176 path->slots[0]++;
1177 }
1178 fail:
1179 return err;
1180 }
1181
1182 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 struct btrfs_path *path,
1185 u64 bytenr, u64 parent,
1186 u64 root_objectid, u64 owner,
1187 u64 offset, int refs_to_add)
1188 {
1189 struct btrfs_key key;
1190 struct extent_buffer *leaf;
1191 u32 size;
1192 u32 num_refs;
1193 int ret;
1194
1195 key.objectid = bytenr;
1196 if (parent) {
1197 key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 key.offset = parent;
1199 size = sizeof(struct btrfs_shared_data_ref);
1200 } else {
1201 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 key.offset = hash_extent_data_ref(root_objectid,
1203 owner, offset);
1204 size = sizeof(struct btrfs_extent_data_ref);
1205 }
1206
1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 if (ret && ret != -EEXIST)
1209 goto fail;
1210
1211 leaf = path->nodes[0];
1212 if (parent) {
1213 struct btrfs_shared_data_ref *ref;
1214 ref = btrfs_item_ptr(leaf, path->slots[0],
1215 struct btrfs_shared_data_ref);
1216 if (ret == 0) {
1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 } else {
1219 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 num_refs += refs_to_add;
1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1222 }
1223 } else {
1224 struct btrfs_extent_data_ref *ref;
1225 while (ret == -EEXIST) {
1226 ref = btrfs_item_ptr(leaf, path->slots[0],
1227 struct btrfs_extent_data_ref);
1228 if (match_extent_data_ref(leaf, ref, root_objectid,
1229 owner, offset))
1230 break;
1231 btrfs_release_path(path);
1232 key.offset++;
1233 ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 size);
1235 if (ret && ret != -EEXIST)
1236 goto fail;
1237
1238 leaf = path->nodes[0];
1239 }
1240 ref = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_extent_data_ref);
1242 if (ret == 0) {
1243 btrfs_set_extent_data_ref_root(leaf, ref,
1244 root_objectid);
1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 } else {
1249 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 num_refs += refs_to_add;
1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1252 }
1253 }
1254 btrfs_mark_buffer_dirty(leaf);
1255 ret = 0;
1256 fail:
1257 btrfs_release_path(path);
1258 return ret;
1259 }
1260
1261 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
1264 int refs_to_drop, int *last_ref)
1265 {
1266 struct btrfs_key key;
1267 struct btrfs_extent_data_ref *ref1 = NULL;
1268 struct btrfs_shared_data_ref *ref2 = NULL;
1269 struct extent_buffer *leaf;
1270 u32 num_refs = 0;
1271 int ret = 0;
1272
1273 leaf = path->nodes[0];
1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_extent_data_ref);
1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_shared_data_ref);
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 struct btrfs_extent_ref_v0 *ref0;
1287 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_ref_v0);
1289 num_refs = btrfs_ref_count_v0(leaf, ref0);
1290 #endif
1291 } else {
1292 BUG();
1293 }
1294
1295 BUG_ON(num_refs < refs_to_drop);
1296 num_refs -= refs_to_drop;
1297
1298 if (num_refs == 0) {
1299 ret = btrfs_del_item(trans, root, path);
1300 *last_ref = 1;
1301 } else {
1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 else {
1308 struct btrfs_extent_ref_v0 *ref0;
1309 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 struct btrfs_extent_ref_v0);
1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 }
1313 #endif
1314 btrfs_mark_buffer_dirty(leaf);
1315 }
1316 return ret;
1317 }
1318
1319 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1320 struct btrfs_extent_inline_ref *iref)
1321 {
1322 struct btrfs_key key;
1323 struct extent_buffer *leaf;
1324 struct btrfs_extent_data_ref *ref1;
1325 struct btrfs_shared_data_ref *ref2;
1326 u32 num_refs = 0;
1327
1328 leaf = path->nodes[0];
1329 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1330 if (iref) {
1331 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1332 BTRFS_EXTENT_DATA_REF_KEY) {
1333 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1334 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1335 } else {
1336 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1337 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1338 }
1339 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1340 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1341 struct btrfs_extent_data_ref);
1342 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1343 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1344 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1345 struct btrfs_shared_data_ref);
1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1348 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1349 struct btrfs_extent_ref_v0 *ref0;
1350 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_extent_ref_v0);
1352 num_refs = btrfs_ref_count_v0(leaf, ref0);
1353 #endif
1354 } else {
1355 WARN_ON(1);
1356 }
1357 return num_refs;
1358 }
1359
1360 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1361 struct btrfs_root *root,
1362 struct btrfs_path *path,
1363 u64 bytenr, u64 parent,
1364 u64 root_objectid)
1365 {
1366 struct btrfs_key key;
1367 int ret;
1368
1369 key.objectid = bytenr;
1370 if (parent) {
1371 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1372 key.offset = parent;
1373 } else {
1374 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1375 key.offset = root_objectid;
1376 }
1377
1378 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1379 if (ret > 0)
1380 ret = -ENOENT;
1381 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1382 if (ret == -ENOENT && parent) {
1383 btrfs_release_path(path);
1384 key.type = BTRFS_EXTENT_REF_V0_KEY;
1385 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1386 if (ret > 0)
1387 ret = -ENOENT;
1388 }
1389 #endif
1390 return ret;
1391 }
1392
1393 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1394 struct btrfs_root *root,
1395 struct btrfs_path *path,
1396 u64 bytenr, u64 parent,
1397 u64 root_objectid)
1398 {
1399 struct btrfs_key key;
1400 int ret;
1401
1402 key.objectid = bytenr;
1403 if (parent) {
1404 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1405 key.offset = parent;
1406 } else {
1407 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1408 key.offset = root_objectid;
1409 }
1410
1411 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1412 btrfs_release_path(path);
1413 return ret;
1414 }
1415
1416 static inline int extent_ref_type(u64 parent, u64 owner)
1417 {
1418 int type;
1419 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1420 if (parent > 0)
1421 type = BTRFS_SHARED_BLOCK_REF_KEY;
1422 else
1423 type = BTRFS_TREE_BLOCK_REF_KEY;
1424 } else {
1425 if (parent > 0)
1426 type = BTRFS_SHARED_DATA_REF_KEY;
1427 else
1428 type = BTRFS_EXTENT_DATA_REF_KEY;
1429 }
1430 return type;
1431 }
1432
1433 static int find_next_key(struct btrfs_path *path, int level,
1434 struct btrfs_key *key)
1435
1436 {
1437 for (; level < BTRFS_MAX_LEVEL; level++) {
1438 if (!path->nodes[level])
1439 break;
1440 if (path->slots[level] + 1 >=
1441 btrfs_header_nritems(path->nodes[level]))
1442 continue;
1443 if (level == 0)
1444 btrfs_item_key_to_cpu(path->nodes[level], key,
1445 path->slots[level] + 1);
1446 else
1447 btrfs_node_key_to_cpu(path->nodes[level], key,
1448 path->slots[level] + 1);
1449 return 0;
1450 }
1451 return 1;
1452 }
1453
1454 /*
1455 * look for inline back ref. if back ref is found, *ref_ret is set
1456 * to the address of inline back ref, and 0 is returned.
1457 *
1458 * if back ref isn't found, *ref_ret is set to the address where it
1459 * should be inserted, and -ENOENT is returned.
1460 *
1461 * if insert is true and there are too many inline back refs, the path
1462 * points to the extent item, and -EAGAIN is returned.
1463 *
1464 * NOTE: inline back refs are ordered in the same way that back ref
1465 * items in the tree are ordered.
1466 */
1467 static noinline_for_stack
1468 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1469 struct btrfs_root *root,
1470 struct btrfs_path *path,
1471 struct btrfs_extent_inline_ref **ref_ret,
1472 u64 bytenr, u64 num_bytes,
1473 u64 parent, u64 root_objectid,
1474 u64 owner, u64 offset, int insert)
1475 {
1476 struct btrfs_key key;
1477 struct extent_buffer *leaf;
1478 struct btrfs_extent_item *ei;
1479 struct btrfs_extent_inline_ref *iref;
1480 u64 flags;
1481 u64 item_size;
1482 unsigned long ptr;
1483 unsigned long end;
1484 int extra_size;
1485 int type;
1486 int want;
1487 int ret;
1488 int err = 0;
1489 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1490 SKINNY_METADATA);
1491
1492 key.objectid = bytenr;
1493 key.type = BTRFS_EXTENT_ITEM_KEY;
1494 key.offset = num_bytes;
1495
1496 want = extent_ref_type(parent, owner);
1497 if (insert) {
1498 extra_size = btrfs_extent_inline_ref_size(want);
1499 path->keep_locks = 1;
1500 } else
1501 extra_size = -1;
1502
1503 /*
1504 * Owner is our parent level, so we can just add one to get the level
1505 * for the block we are interested in.
1506 */
1507 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1508 key.type = BTRFS_METADATA_ITEM_KEY;
1509 key.offset = owner;
1510 }
1511
1512 again:
1513 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1514 if (ret < 0) {
1515 err = ret;
1516 goto out;
1517 }
1518
1519 /*
1520 * We may be a newly converted file system which still has the old fat
1521 * extent entries for metadata, so try and see if we have one of those.
1522 */
1523 if (ret > 0 && skinny_metadata) {
1524 skinny_metadata = false;
1525 if (path->slots[0]) {
1526 path->slots[0]--;
1527 btrfs_item_key_to_cpu(path->nodes[0], &key,
1528 path->slots[0]);
1529 if (key.objectid == bytenr &&
1530 key.type == BTRFS_EXTENT_ITEM_KEY &&
1531 key.offset == num_bytes)
1532 ret = 0;
1533 }
1534 if (ret) {
1535 key.objectid = bytenr;
1536 key.type = BTRFS_EXTENT_ITEM_KEY;
1537 key.offset = num_bytes;
1538 btrfs_release_path(path);
1539 goto again;
1540 }
1541 }
1542
1543 if (ret && !insert) {
1544 err = -ENOENT;
1545 goto out;
1546 } else if (WARN_ON(ret)) {
1547 err = -EIO;
1548 goto out;
1549 }
1550
1551 leaf = path->nodes[0];
1552 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1553 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1554 if (item_size < sizeof(*ei)) {
1555 if (!insert) {
1556 err = -ENOENT;
1557 goto out;
1558 }
1559 ret = convert_extent_item_v0(trans, root, path, owner,
1560 extra_size);
1561 if (ret < 0) {
1562 err = ret;
1563 goto out;
1564 }
1565 leaf = path->nodes[0];
1566 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1567 }
1568 #endif
1569 BUG_ON(item_size < sizeof(*ei));
1570
1571 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1572 flags = btrfs_extent_flags(leaf, ei);
1573
1574 ptr = (unsigned long)(ei + 1);
1575 end = (unsigned long)ei + item_size;
1576
1577 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1578 ptr += sizeof(struct btrfs_tree_block_info);
1579 BUG_ON(ptr > end);
1580 }
1581
1582 err = -ENOENT;
1583 while (1) {
1584 if (ptr >= end) {
1585 WARN_ON(ptr > end);
1586 break;
1587 }
1588 iref = (struct btrfs_extent_inline_ref *)ptr;
1589 type = btrfs_extent_inline_ref_type(leaf, iref);
1590 if (want < type)
1591 break;
1592 if (want > type) {
1593 ptr += btrfs_extent_inline_ref_size(type);
1594 continue;
1595 }
1596
1597 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1598 struct btrfs_extent_data_ref *dref;
1599 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1600 if (match_extent_data_ref(leaf, dref, root_objectid,
1601 owner, offset)) {
1602 err = 0;
1603 break;
1604 }
1605 if (hash_extent_data_ref_item(leaf, dref) <
1606 hash_extent_data_ref(root_objectid, owner, offset))
1607 break;
1608 } else {
1609 u64 ref_offset;
1610 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1611 if (parent > 0) {
1612 if (parent == ref_offset) {
1613 err = 0;
1614 break;
1615 }
1616 if (ref_offset < parent)
1617 break;
1618 } else {
1619 if (root_objectid == ref_offset) {
1620 err = 0;
1621 break;
1622 }
1623 if (ref_offset < root_objectid)
1624 break;
1625 }
1626 }
1627 ptr += btrfs_extent_inline_ref_size(type);
1628 }
1629 if (err == -ENOENT && insert) {
1630 if (item_size + extra_size >=
1631 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1632 err = -EAGAIN;
1633 goto out;
1634 }
1635 /*
1636 * To add new inline back ref, we have to make sure
1637 * there is no corresponding back ref item.
1638 * For simplicity, we just do not add new inline back
1639 * ref if there is any kind of item for this block
1640 */
1641 if (find_next_key(path, 0, &key) == 0 &&
1642 key.objectid == bytenr &&
1643 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1644 err = -EAGAIN;
1645 goto out;
1646 }
1647 }
1648 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1649 out:
1650 if (insert) {
1651 path->keep_locks = 0;
1652 btrfs_unlock_up_safe(path, 1);
1653 }
1654 return err;
1655 }
1656
1657 /*
1658 * helper to add new inline back ref
1659 */
1660 static noinline_for_stack
1661 void setup_inline_extent_backref(struct btrfs_root *root,
1662 struct btrfs_path *path,
1663 struct btrfs_extent_inline_ref *iref,
1664 u64 parent, u64 root_objectid,
1665 u64 owner, u64 offset, int refs_to_add,
1666 struct btrfs_delayed_extent_op *extent_op)
1667 {
1668 struct extent_buffer *leaf;
1669 struct btrfs_extent_item *ei;
1670 unsigned long ptr;
1671 unsigned long end;
1672 unsigned long item_offset;
1673 u64 refs;
1674 int size;
1675 int type;
1676
1677 leaf = path->nodes[0];
1678 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1679 item_offset = (unsigned long)iref - (unsigned long)ei;
1680
1681 type = extent_ref_type(parent, owner);
1682 size = btrfs_extent_inline_ref_size(type);
1683
1684 btrfs_extend_item(root, path, size);
1685
1686 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1687 refs = btrfs_extent_refs(leaf, ei);
1688 refs += refs_to_add;
1689 btrfs_set_extent_refs(leaf, ei, refs);
1690 if (extent_op)
1691 __run_delayed_extent_op(extent_op, leaf, ei);
1692
1693 ptr = (unsigned long)ei + item_offset;
1694 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1695 if (ptr < end - size)
1696 memmove_extent_buffer(leaf, ptr + size, ptr,
1697 end - size - ptr);
1698
1699 iref = (struct btrfs_extent_inline_ref *)ptr;
1700 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1701 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1702 struct btrfs_extent_data_ref *dref;
1703 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1704 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1705 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1706 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1707 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1708 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1709 struct btrfs_shared_data_ref *sref;
1710 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1711 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1712 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1713 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1717 }
1718 btrfs_mark_buffer_dirty(leaf);
1719 }
1720
1721 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1722 struct btrfs_root *root,
1723 struct btrfs_path *path,
1724 struct btrfs_extent_inline_ref **ref_ret,
1725 u64 bytenr, u64 num_bytes, u64 parent,
1726 u64 root_objectid, u64 owner, u64 offset)
1727 {
1728 int ret;
1729
1730 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1731 bytenr, num_bytes, parent,
1732 root_objectid, owner, offset, 0);
1733 if (ret != -ENOENT)
1734 return ret;
1735
1736 btrfs_release_path(path);
1737 *ref_ret = NULL;
1738
1739 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1740 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1741 root_objectid);
1742 } else {
1743 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1744 root_objectid, owner, offset);
1745 }
1746 return ret;
1747 }
1748
1749 /*
1750 * helper to update/remove inline back ref
1751 */
1752 static noinline_for_stack
1753 void update_inline_extent_backref(struct btrfs_root *root,
1754 struct btrfs_path *path,
1755 struct btrfs_extent_inline_ref *iref,
1756 int refs_to_mod,
1757 struct btrfs_delayed_extent_op *extent_op,
1758 int *last_ref)
1759 {
1760 struct extent_buffer *leaf;
1761 struct btrfs_extent_item *ei;
1762 struct btrfs_extent_data_ref *dref = NULL;
1763 struct btrfs_shared_data_ref *sref = NULL;
1764 unsigned long ptr;
1765 unsigned long end;
1766 u32 item_size;
1767 int size;
1768 int type;
1769 u64 refs;
1770
1771 leaf = path->nodes[0];
1772 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1773 refs = btrfs_extent_refs(leaf, ei);
1774 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1775 refs += refs_to_mod;
1776 btrfs_set_extent_refs(leaf, ei, refs);
1777 if (extent_op)
1778 __run_delayed_extent_op(extent_op, leaf, ei);
1779
1780 type = btrfs_extent_inline_ref_type(leaf, iref);
1781
1782 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1783 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1784 refs = btrfs_extent_data_ref_count(leaf, dref);
1785 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1786 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1787 refs = btrfs_shared_data_ref_count(leaf, sref);
1788 } else {
1789 refs = 1;
1790 BUG_ON(refs_to_mod != -1);
1791 }
1792
1793 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1794 refs += refs_to_mod;
1795
1796 if (refs > 0) {
1797 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1798 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1799 else
1800 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1801 } else {
1802 *last_ref = 1;
1803 size = btrfs_extent_inline_ref_size(type);
1804 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1805 ptr = (unsigned long)iref;
1806 end = (unsigned long)ei + item_size;
1807 if (ptr + size < end)
1808 memmove_extent_buffer(leaf, ptr, ptr + size,
1809 end - ptr - size);
1810 item_size -= size;
1811 btrfs_truncate_item(root, path, item_size, 1);
1812 }
1813 btrfs_mark_buffer_dirty(leaf);
1814 }
1815
1816 static noinline_for_stack
1817 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1818 struct btrfs_root *root,
1819 struct btrfs_path *path,
1820 u64 bytenr, u64 num_bytes, u64 parent,
1821 u64 root_objectid, u64 owner,
1822 u64 offset, int refs_to_add,
1823 struct btrfs_delayed_extent_op *extent_op)
1824 {
1825 struct btrfs_extent_inline_ref *iref;
1826 int ret;
1827
1828 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1829 bytenr, num_bytes, parent,
1830 root_objectid, owner, offset, 1);
1831 if (ret == 0) {
1832 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1833 update_inline_extent_backref(root, path, iref,
1834 refs_to_add, extent_op, NULL);
1835 } else if (ret == -ENOENT) {
1836 setup_inline_extent_backref(root, path, iref, parent,
1837 root_objectid, owner, offset,
1838 refs_to_add, extent_op);
1839 ret = 0;
1840 }
1841 return ret;
1842 }
1843
1844 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1845 struct btrfs_root *root,
1846 struct btrfs_path *path,
1847 u64 bytenr, u64 parent, u64 root_objectid,
1848 u64 owner, u64 offset, int refs_to_add)
1849 {
1850 int ret;
1851 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1852 BUG_ON(refs_to_add != 1);
1853 ret = insert_tree_block_ref(trans, root, path, bytenr,
1854 parent, root_objectid);
1855 } else {
1856 ret = insert_extent_data_ref(trans, root, path, bytenr,
1857 parent, root_objectid,
1858 owner, offset, refs_to_add);
1859 }
1860 return ret;
1861 }
1862
1863 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1864 struct btrfs_root *root,
1865 struct btrfs_path *path,
1866 struct btrfs_extent_inline_ref *iref,
1867 int refs_to_drop, int is_data, int *last_ref)
1868 {
1869 int ret = 0;
1870
1871 BUG_ON(!is_data && refs_to_drop != 1);
1872 if (iref) {
1873 update_inline_extent_backref(root, path, iref,
1874 -refs_to_drop, NULL, last_ref);
1875 } else if (is_data) {
1876 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1877 last_ref);
1878 } else {
1879 *last_ref = 1;
1880 ret = btrfs_del_item(trans, root, path);
1881 }
1882 return ret;
1883 }
1884
1885 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1886 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1887 u64 *discarded_bytes)
1888 {
1889 int j, ret = 0;
1890 u64 bytes_left, end;
1891 u64 aligned_start = ALIGN(start, 1 << 9);
1892
1893 if (WARN_ON(start != aligned_start)) {
1894 len -= aligned_start - start;
1895 len = round_down(len, 1 << 9);
1896 start = aligned_start;
1897 }
1898
1899 *discarded_bytes = 0;
1900
1901 if (!len)
1902 return 0;
1903
1904 end = start + len;
1905 bytes_left = len;
1906
1907 /* Skip any superblocks on this device. */
1908 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1909 u64 sb_start = btrfs_sb_offset(j);
1910 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1911 u64 size = sb_start - start;
1912
1913 if (!in_range(sb_start, start, bytes_left) &&
1914 !in_range(sb_end, start, bytes_left) &&
1915 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1916 continue;
1917
1918 /*
1919 * Superblock spans beginning of range. Adjust start and
1920 * try again.
1921 */
1922 if (sb_start <= start) {
1923 start += sb_end - start;
1924 if (start > end) {
1925 bytes_left = 0;
1926 break;
1927 }
1928 bytes_left = end - start;
1929 continue;
1930 }
1931
1932 if (size) {
1933 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1934 GFP_NOFS, 0);
1935 if (!ret)
1936 *discarded_bytes += size;
1937 else if (ret != -EOPNOTSUPP)
1938 return ret;
1939 }
1940
1941 start = sb_end;
1942 if (start > end) {
1943 bytes_left = 0;
1944 break;
1945 }
1946 bytes_left = end - start;
1947 }
1948
1949 if (bytes_left) {
1950 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1951 GFP_NOFS, 0);
1952 if (!ret)
1953 *discarded_bytes += bytes_left;
1954 }
1955 return ret;
1956 }
1957
1958 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1959 u64 num_bytes, u64 *actual_bytes)
1960 {
1961 int ret;
1962 u64 discarded_bytes = 0;
1963 struct btrfs_bio *bbio = NULL;
1964
1965
1966 /* Tell the block device(s) that the sectors can be discarded */
1967 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1968 bytenr, &num_bytes, &bbio, 0);
1969 /* Error condition is -ENOMEM */
1970 if (!ret) {
1971 struct btrfs_bio_stripe *stripe = bbio->stripes;
1972 int i;
1973
1974
1975 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1976 u64 bytes;
1977 if (!stripe->dev->can_discard)
1978 continue;
1979
1980 ret = btrfs_issue_discard(stripe->dev->bdev,
1981 stripe->physical,
1982 stripe->length,
1983 &bytes);
1984 if (!ret)
1985 discarded_bytes += bytes;
1986 else if (ret != -EOPNOTSUPP)
1987 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1988
1989 /*
1990 * Just in case we get back EOPNOTSUPP for some reason,
1991 * just ignore the return value so we don't screw up
1992 * people calling discard_extent.
1993 */
1994 ret = 0;
1995 }
1996 btrfs_put_bbio(bbio);
1997 }
1998
1999 if (actual_bytes)
2000 *actual_bytes = discarded_bytes;
2001
2002
2003 if (ret == -EOPNOTSUPP)
2004 ret = 0;
2005 return ret;
2006 }
2007
2008 /* Can return -ENOMEM */
2009 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2010 struct btrfs_root *root,
2011 u64 bytenr, u64 num_bytes, u64 parent,
2012 u64 root_objectid, u64 owner, u64 offset,
2013 int no_quota)
2014 {
2015 int ret;
2016 struct btrfs_fs_info *fs_info = root->fs_info;
2017
2018 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2019 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2020
2021 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2022 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2023 num_bytes,
2024 parent, root_objectid, (int)owner,
2025 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
2026 } else {
2027 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2028 num_bytes,
2029 parent, root_objectid, owner, offset,
2030 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
2031 }
2032 return ret;
2033 }
2034
2035 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2036 struct btrfs_root *root,
2037 struct btrfs_delayed_ref_node *node,
2038 u64 parent, u64 root_objectid,
2039 u64 owner, u64 offset, int refs_to_add,
2040 struct btrfs_delayed_extent_op *extent_op)
2041 {
2042 struct btrfs_fs_info *fs_info = root->fs_info;
2043 struct btrfs_path *path;
2044 struct extent_buffer *leaf;
2045 struct btrfs_extent_item *item;
2046 struct btrfs_key key;
2047 u64 bytenr = node->bytenr;
2048 u64 num_bytes = node->num_bytes;
2049 u64 refs;
2050 int ret;
2051 int no_quota = node->no_quota;
2052
2053 path = btrfs_alloc_path();
2054 if (!path)
2055 return -ENOMEM;
2056
2057 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2058 no_quota = 1;
2059
2060 path->reada = 1;
2061 path->leave_spinning = 1;
2062 /* this will setup the path even if it fails to insert the back ref */
2063 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2064 bytenr, num_bytes, parent,
2065 root_objectid, owner, offset,
2066 refs_to_add, extent_op);
2067 if ((ret < 0 && ret != -EAGAIN) || !ret)
2068 goto out;
2069
2070 /*
2071 * Ok we had -EAGAIN which means we didn't have space to insert and
2072 * inline extent ref, so just update the reference count and add a
2073 * normal backref.
2074 */
2075 leaf = path->nodes[0];
2076 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2077 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2078 refs = btrfs_extent_refs(leaf, item);
2079 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2080 if (extent_op)
2081 __run_delayed_extent_op(extent_op, leaf, item);
2082
2083 btrfs_mark_buffer_dirty(leaf);
2084 btrfs_release_path(path);
2085
2086 path->reada = 1;
2087 path->leave_spinning = 1;
2088 /* now insert the actual backref */
2089 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2090 path, bytenr, parent, root_objectid,
2091 owner, offset, refs_to_add);
2092 if (ret)
2093 btrfs_abort_transaction(trans, root, ret);
2094 out:
2095 btrfs_free_path(path);
2096 return ret;
2097 }
2098
2099 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *root,
2101 struct btrfs_delayed_ref_node *node,
2102 struct btrfs_delayed_extent_op *extent_op,
2103 int insert_reserved)
2104 {
2105 int ret = 0;
2106 struct btrfs_delayed_data_ref *ref;
2107 struct btrfs_key ins;
2108 u64 parent = 0;
2109 u64 ref_root = 0;
2110 u64 flags = 0;
2111
2112 ins.objectid = node->bytenr;
2113 ins.offset = node->num_bytes;
2114 ins.type = BTRFS_EXTENT_ITEM_KEY;
2115
2116 ref = btrfs_delayed_node_to_data_ref(node);
2117 trace_run_delayed_data_ref(node, ref, node->action);
2118
2119 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2120 parent = ref->parent;
2121 ref_root = ref->root;
2122
2123 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2124 if (extent_op)
2125 flags |= extent_op->flags_to_set;
2126 ret = alloc_reserved_file_extent(trans, root,
2127 parent, ref_root, flags,
2128 ref->objectid, ref->offset,
2129 &ins, node->ref_mod);
2130 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2131 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2132 ref_root, ref->objectid,
2133 ref->offset, node->ref_mod,
2134 extent_op);
2135 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2136 ret = __btrfs_free_extent(trans, root, node, parent,
2137 ref_root, ref->objectid,
2138 ref->offset, node->ref_mod,
2139 extent_op);
2140 } else {
2141 BUG();
2142 }
2143 return ret;
2144 }
2145
2146 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2147 struct extent_buffer *leaf,
2148 struct btrfs_extent_item *ei)
2149 {
2150 u64 flags = btrfs_extent_flags(leaf, ei);
2151 if (extent_op->update_flags) {
2152 flags |= extent_op->flags_to_set;
2153 btrfs_set_extent_flags(leaf, ei, flags);
2154 }
2155
2156 if (extent_op->update_key) {
2157 struct btrfs_tree_block_info *bi;
2158 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2159 bi = (struct btrfs_tree_block_info *)(ei + 1);
2160 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2161 }
2162 }
2163
2164 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2165 struct btrfs_root *root,
2166 struct btrfs_delayed_ref_node *node,
2167 struct btrfs_delayed_extent_op *extent_op)
2168 {
2169 struct btrfs_key key;
2170 struct btrfs_path *path;
2171 struct btrfs_extent_item *ei;
2172 struct extent_buffer *leaf;
2173 u32 item_size;
2174 int ret;
2175 int err = 0;
2176 int metadata = !extent_op->is_data;
2177
2178 if (trans->aborted)
2179 return 0;
2180
2181 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2182 metadata = 0;
2183
2184 path = btrfs_alloc_path();
2185 if (!path)
2186 return -ENOMEM;
2187
2188 key.objectid = node->bytenr;
2189
2190 if (metadata) {
2191 key.type = BTRFS_METADATA_ITEM_KEY;
2192 key.offset = extent_op->level;
2193 } else {
2194 key.type = BTRFS_EXTENT_ITEM_KEY;
2195 key.offset = node->num_bytes;
2196 }
2197
2198 again:
2199 path->reada = 1;
2200 path->leave_spinning = 1;
2201 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2202 path, 0, 1);
2203 if (ret < 0) {
2204 err = ret;
2205 goto out;
2206 }
2207 if (ret > 0) {
2208 if (metadata) {
2209 if (path->slots[0] > 0) {
2210 path->slots[0]--;
2211 btrfs_item_key_to_cpu(path->nodes[0], &key,
2212 path->slots[0]);
2213 if (key.objectid == node->bytenr &&
2214 key.type == BTRFS_EXTENT_ITEM_KEY &&
2215 key.offset == node->num_bytes)
2216 ret = 0;
2217 }
2218 if (ret > 0) {
2219 btrfs_release_path(path);
2220 metadata = 0;
2221
2222 key.objectid = node->bytenr;
2223 key.offset = node->num_bytes;
2224 key.type = BTRFS_EXTENT_ITEM_KEY;
2225 goto again;
2226 }
2227 } else {
2228 err = -EIO;
2229 goto out;
2230 }
2231 }
2232
2233 leaf = path->nodes[0];
2234 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2235 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2236 if (item_size < sizeof(*ei)) {
2237 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2238 path, (u64)-1, 0);
2239 if (ret < 0) {
2240 err = ret;
2241 goto out;
2242 }
2243 leaf = path->nodes[0];
2244 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2245 }
2246 #endif
2247 BUG_ON(item_size < sizeof(*ei));
2248 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2249 __run_delayed_extent_op(extent_op, leaf, ei);
2250
2251 btrfs_mark_buffer_dirty(leaf);
2252 out:
2253 btrfs_free_path(path);
2254 return err;
2255 }
2256
2257 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2258 struct btrfs_root *root,
2259 struct btrfs_delayed_ref_node *node,
2260 struct btrfs_delayed_extent_op *extent_op,
2261 int insert_reserved)
2262 {
2263 int ret = 0;
2264 struct btrfs_delayed_tree_ref *ref;
2265 struct btrfs_key ins;
2266 u64 parent = 0;
2267 u64 ref_root = 0;
2268 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2269 SKINNY_METADATA);
2270
2271 ref = btrfs_delayed_node_to_tree_ref(node);
2272 trace_run_delayed_tree_ref(node, ref, node->action);
2273
2274 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2275 parent = ref->parent;
2276 ref_root = ref->root;
2277
2278 ins.objectid = node->bytenr;
2279 if (skinny_metadata) {
2280 ins.offset = ref->level;
2281 ins.type = BTRFS_METADATA_ITEM_KEY;
2282 } else {
2283 ins.offset = node->num_bytes;
2284 ins.type = BTRFS_EXTENT_ITEM_KEY;
2285 }
2286
2287 BUG_ON(node->ref_mod != 1);
2288 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2289 BUG_ON(!extent_op || !extent_op->update_flags);
2290 ret = alloc_reserved_tree_block(trans, root,
2291 parent, ref_root,
2292 extent_op->flags_to_set,
2293 &extent_op->key,
2294 ref->level, &ins,
2295 node->no_quota);
2296 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2297 ret = __btrfs_inc_extent_ref(trans, root, node,
2298 parent, ref_root,
2299 ref->level, 0, 1,
2300 extent_op);
2301 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2302 ret = __btrfs_free_extent(trans, root, node,
2303 parent, ref_root,
2304 ref->level, 0, 1, extent_op);
2305 } else {
2306 BUG();
2307 }
2308 return ret;
2309 }
2310
2311 /* helper function to actually process a single delayed ref entry */
2312 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2313 struct btrfs_root *root,
2314 struct btrfs_delayed_ref_node *node,
2315 struct btrfs_delayed_extent_op *extent_op,
2316 int insert_reserved)
2317 {
2318 int ret = 0;
2319
2320 if (trans->aborted) {
2321 if (insert_reserved)
2322 btrfs_pin_extent(root, node->bytenr,
2323 node->num_bytes, 1);
2324 return 0;
2325 }
2326
2327 if (btrfs_delayed_ref_is_head(node)) {
2328 struct btrfs_delayed_ref_head *head;
2329 /*
2330 * we've hit the end of the chain and we were supposed
2331 * to insert this extent into the tree. But, it got
2332 * deleted before we ever needed to insert it, so all
2333 * we have to do is clean up the accounting
2334 */
2335 BUG_ON(extent_op);
2336 head = btrfs_delayed_node_to_head(node);
2337 trace_run_delayed_ref_head(node, head, node->action);
2338
2339 if (insert_reserved) {
2340 btrfs_pin_extent(root, node->bytenr,
2341 node->num_bytes, 1);
2342 if (head->is_data) {
2343 ret = btrfs_del_csums(trans, root,
2344 node->bytenr,
2345 node->num_bytes);
2346 }
2347 }
2348
2349 /* Also free its reserved qgroup space */
2350 btrfs_qgroup_free_delayed_ref(root->fs_info,
2351 head->qgroup_ref_root,
2352 head->qgroup_reserved);
2353 return ret;
2354 }
2355
2356 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2357 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2358 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2359 insert_reserved);
2360 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2361 node->type == BTRFS_SHARED_DATA_REF_KEY)
2362 ret = run_delayed_data_ref(trans, root, node, extent_op,
2363 insert_reserved);
2364 else
2365 BUG();
2366 return ret;
2367 }
2368
2369 static inline struct btrfs_delayed_ref_node *
2370 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2371 {
2372 struct btrfs_delayed_ref_node *ref;
2373
2374 if (list_empty(&head->ref_list))
2375 return NULL;
2376
2377 /*
2378 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2379 * This is to prevent a ref count from going down to zero, which deletes
2380 * the extent item from the extent tree, when there still are references
2381 * to add, which would fail because they would not find the extent item.
2382 */
2383 list_for_each_entry(ref, &head->ref_list, list) {
2384 if (ref->action == BTRFS_ADD_DELAYED_REF)
2385 return ref;
2386 }
2387
2388 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2389 list);
2390 }
2391
2392 /*
2393 * Returns 0 on success or if called with an already aborted transaction.
2394 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2395 */
2396 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2397 struct btrfs_root *root,
2398 unsigned long nr)
2399 {
2400 struct btrfs_delayed_ref_root *delayed_refs;
2401 struct btrfs_delayed_ref_node *ref;
2402 struct btrfs_delayed_ref_head *locked_ref = NULL;
2403 struct btrfs_delayed_extent_op *extent_op;
2404 struct btrfs_fs_info *fs_info = root->fs_info;
2405 ktime_t start = ktime_get();
2406 int ret;
2407 unsigned long count = 0;
2408 unsigned long actual_count = 0;
2409 int must_insert_reserved = 0;
2410
2411 delayed_refs = &trans->transaction->delayed_refs;
2412 while (1) {
2413 if (!locked_ref) {
2414 if (count >= nr)
2415 break;
2416
2417 spin_lock(&delayed_refs->lock);
2418 locked_ref = btrfs_select_ref_head(trans);
2419 if (!locked_ref) {
2420 spin_unlock(&delayed_refs->lock);
2421 break;
2422 }
2423
2424 /* grab the lock that says we are going to process
2425 * all the refs for this head */
2426 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2427 spin_unlock(&delayed_refs->lock);
2428 /*
2429 * we may have dropped the spin lock to get the head
2430 * mutex lock, and that might have given someone else
2431 * time to free the head. If that's true, it has been
2432 * removed from our list and we can move on.
2433 */
2434 if (ret == -EAGAIN) {
2435 locked_ref = NULL;
2436 count++;
2437 continue;
2438 }
2439 }
2440
2441 spin_lock(&locked_ref->lock);
2442
2443 /*
2444 * locked_ref is the head node, so we have to go one
2445 * node back for any delayed ref updates
2446 */
2447 ref = select_delayed_ref(locked_ref);
2448
2449 if (ref && ref->seq &&
2450 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2451 spin_unlock(&locked_ref->lock);
2452 btrfs_delayed_ref_unlock(locked_ref);
2453 spin_lock(&delayed_refs->lock);
2454 locked_ref->processing = 0;
2455 delayed_refs->num_heads_ready++;
2456 spin_unlock(&delayed_refs->lock);
2457 locked_ref = NULL;
2458 cond_resched();
2459 count++;
2460 continue;
2461 }
2462
2463 /*
2464 * record the must insert reserved flag before we
2465 * drop the spin lock.
2466 */
2467 must_insert_reserved = locked_ref->must_insert_reserved;
2468 locked_ref->must_insert_reserved = 0;
2469
2470 extent_op = locked_ref->extent_op;
2471 locked_ref->extent_op = NULL;
2472
2473 if (!ref) {
2474
2475
2476 /* All delayed refs have been processed, Go ahead
2477 * and send the head node to run_one_delayed_ref,
2478 * so that any accounting fixes can happen
2479 */
2480 ref = &locked_ref->node;
2481
2482 if (extent_op && must_insert_reserved) {
2483 btrfs_free_delayed_extent_op(extent_op);
2484 extent_op = NULL;
2485 }
2486
2487 if (extent_op) {
2488 spin_unlock(&locked_ref->lock);
2489 ret = run_delayed_extent_op(trans, root,
2490 ref, extent_op);
2491 btrfs_free_delayed_extent_op(extent_op);
2492
2493 if (ret) {
2494 /*
2495 * Need to reset must_insert_reserved if
2496 * there was an error so the abort stuff
2497 * can cleanup the reserved space
2498 * properly.
2499 */
2500 if (must_insert_reserved)
2501 locked_ref->must_insert_reserved = 1;
2502 locked_ref->processing = 0;
2503 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2504 btrfs_delayed_ref_unlock(locked_ref);
2505 return ret;
2506 }
2507 continue;
2508 }
2509
2510 /*
2511 * Need to drop our head ref lock and re-aqcuire the
2512 * delayed ref lock and then re-check to make sure
2513 * nobody got added.
2514 */
2515 spin_unlock(&locked_ref->lock);
2516 spin_lock(&delayed_refs->lock);
2517 spin_lock(&locked_ref->lock);
2518 if (!list_empty(&locked_ref->ref_list) ||
2519 locked_ref->extent_op) {
2520 spin_unlock(&locked_ref->lock);
2521 spin_unlock(&delayed_refs->lock);
2522 continue;
2523 }
2524 ref->in_tree = 0;
2525 delayed_refs->num_heads--;
2526 rb_erase(&locked_ref->href_node,
2527 &delayed_refs->href_root);
2528 spin_unlock(&delayed_refs->lock);
2529 } else {
2530 actual_count++;
2531 ref->in_tree = 0;
2532 list_del(&ref->list);
2533 }
2534 atomic_dec(&delayed_refs->num_entries);
2535
2536 if (!btrfs_delayed_ref_is_head(ref)) {
2537 /*
2538 * when we play the delayed ref, also correct the
2539 * ref_mod on head
2540 */
2541 switch (ref->action) {
2542 case BTRFS_ADD_DELAYED_REF:
2543 case BTRFS_ADD_DELAYED_EXTENT:
2544 locked_ref->node.ref_mod -= ref->ref_mod;
2545 break;
2546 case BTRFS_DROP_DELAYED_REF:
2547 locked_ref->node.ref_mod += ref->ref_mod;
2548 break;
2549 default:
2550 WARN_ON(1);
2551 }
2552 }
2553 spin_unlock(&locked_ref->lock);
2554
2555 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2556 must_insert_reserved);
2557
2558 btrfs_free_delayed_extent_op(extent_op);
2559 if (ret) {
2560 locked_ref->processing = 0;
2561 btrfs_delayed_ref_unlock(locked_ref);
2562 btrfs_put_delayed_ref(ref);
2563 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2564 return ret;
2565 }
2566
2567 /*
2568 * If this node is a head, that means all the refs in this head
2569 * have been dealt with, and we will pick the next head to deal
2570 * with, so we must unlock the head and drop it from the cluster
2571 * list before we release it.
2572 */
2573 if (btrfs_delayed_ref_is_head(ref)) {
2574 if (locked_ref->is_data &&
2575 locked_ref->total_ref_mod < 0) {
2576 spin_lock(&delayed_refs->lock);
2577 delayed_refs->pending_csums -= ref->num_bytes;
2578 spin_unlock(&delayed_refs->lock);
2579 }
2580 btrfs_delayed_ref_unlock(locked_ref);
2581 locked_ref = NULL;
2582 }
2583 btrfs_put_delayed_ref(ref);
2584 count++;
2585 cond_resched();
2586 }
2587
2588 /*
2589 * We don't want to include ref heads since we can have empty ref heads
2590 * and those will drastically skew our runtime down since we just do
2591 * accounting, no actual extent tree updates.
2592 */
2593 if (actual_count > 0) {
2594 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2595 u64 avg;
2596
2597 /*
2598 * We weigh the current average higher than our current runtime
2599 * to avoid large swings in the average.
2600 */
2601 spin_lock(&delayed_refs->lock);
2602 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2603 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2604 spin_unlock(&delayed_refs->lock);
2605 }
2606 return 0;
2607 }
2608
2609 #ifdef SCRAMBLE_DELAYED_REFS
2610 /*
2611 * Normally delayed refs get processed in ascending bytenr order. This
2612 * correlates in most cases to the order added. To expose dependencies on this
2613 * order, we start to process the tree in the middle instead of the beginning
2614 */
2615 static u64 find_middle(struct rb_root *root)
2616 {
2617 struct rb_node *n = root->rb_node;
2618 struct btrfs_delayed_ref_node *entry;
2619 int alt = 1;
2620 u64 middle;
2621 u64 first = 0, last = 0;
2622
2623 n = rb_first(root);
2624 if (n) {
2625 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2626 first = entry->bytenr;
2627 }
2628 n = rb_last(root);
2629 if (n) {
2630 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2631 last = entry->bytenr;
2632 }
2633 n = root->rb_node;
2634
2635 while (n) {
2636 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2637 WARN_ON(!entry->in_tree);
2638
2639 middle = entry->bytenr;
2640
2641 if (alt)
2642 n = n->rb_left;
2643 else
2644 n = n->rb_right;
2645
2646 alt = 1 - alt;
2647 }
2648 return middle;
2649 }
2650 #endif
2651
2652 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2653 {
2654 u64 num_bytes;
2655
2656 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2657 sizeof(struct btrfs_extent_inline_ref));
2658 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2659 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2660
2661 /*
2662 * We don't ever fill up leaves all the way so multiply by 2 just to be
2663 * closer to what we're really going to want to ouse.
2664 */
2665 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2666 }
2667
2668 /*
2669 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2670 * would require to store the csums for that many bytes.
2671 */
2672 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2673 {
2674 u64 csum_size;
2675 u64 num_csums_per_leaf;
2676 u64 num_csums;
2677
2678 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2679 num_csums_per_leaf = div64_u64(csum_size,
2680 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2681 num_csums = div64_u64(csum_bytes, root->sectorsize);
2682 num_csums += num_csums_per_leaf - 1;
2683 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2684 return num_csums;
2685 }
2686
2687 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2688 struct btrfs_root *root)
2689 {
2690 struct btrfs_block_rsv *global_rsv;
2691 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2692 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2693 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2694 u64 num_bytes, num_dirty_bgs_bytes;
2695 int ret = 0;
2696
2697 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2698 num_heads = heads_to_leaves(root, num_heads);
2699 if (num_heads > 1)
2700 num_bytes += (num_heads - 1) * root->nodesize;
2701 num_bytes <<= 1;
2702 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2703 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2704 num_dirty_bgs);
2705 global_rsv = &root->fs_info->global_block_rsv;
2706
2707 /*
2708 * If we can't allocate any more chunks lets make sure we have _lots_ of
2709 * wiggle room since running delayed refs can create more delayed refs.
2710 */
2711 if (global_rsv->space_info->full) {
2712 num_dirty_bgs_bytes <<= 1;
2713 num_bytes <<= 1;
2714 }
2715
2716 spin_lock(&global_rsv->lock);
2717 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2718 ret = 1;
2719 spin_unlock(&global_rsv->lock);
2720 return ret;
2721 }
2722
2723 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2724 struct btrfs_root *root)
2725 {
2726 struct btrfs_fs_info *fs_info = root->fs_info;
2727 u64 num_entries =
2728 atomic_read(&trans->transaction->delayed_refs.num_entries);
2729 u64 avg_runtime;
2730 u64 val;
2731
2732 smp_mb();
2733 avg_runtime = fs_info->avg_delayed_ref_runtime;
2734 val = num_entries * avg_runtime;
2735 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2736 return 1;
2737 if (val >= NSEC_PER_SEC / 2)
2738 return 2;
2739
2740 return btrfs_check_space_for_delayed_refs(trans, root);
2741 }
2742
2743 struct async_delayed_refs {
2744 struct btrfs_root *root;
2745 int count;
2746 int error;
2747 int sync;
2748 struct completion wait;
2749 struct btrfs_work work;
2750 };
2751
2752 static void delayed_ref_async_start(struct btrfs_work *work)
2753 {
2754 struct async_delayed_refs *async;
2755 struct btrfs_trans_handle *trans;
2756 int ret;
2757
2758 async = container_of(work, struct async_delayed_refs, work);
2759
2760 trans = btrfs_join_transaction(async->root);
2761 if (IS_ERR(trans)) {
2762 async->error = PTR_ERR(trans);
2763 goto done;
2764 }
2765
2766 /*
2767 * trans->sync means that when we call end_transaciton, we won't
2768 * wait on delayed refs
2769 */
2770 trans->sync = true;
2771 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2772 if (ret)
2773 async->error = ret;
2774
2775 ret = btrfs_end_transaction(trans, async->root);
2776 if (ret && !async->error)
2777 async->error = ret;
2778 done:
2779 if (async->sync)
2780 complete(&async->wait);
2781 else
2782 kfree(async);
2783 }
2784
2785 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2786 unsigned long count, int wait)
2787 {
2788 struct async_delayed_refs *async;
2789 int ret;
2790
2791 async = kmalloc(sizeof(*async), GFP_NOFS);
2792 if (!async)
2793 return -ENOMEM;
2794
2795 async->root = root->fs_info->tree_root;
2796 async->count = count;
2797 async->error = 0;
2798 if (wait)
2799 async->sync = 1;
2800 else
2801 async->sync = 0;
2802 init_completion(&async->wait);
2803
2804 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2805 delayed_ref_async_start, NULL, NULL);
2806
2807 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2808
2809 if (wait) {
2810 wait_for_completion(&async->wait);
2811 ret = async->error;
2812 kfree(async);
2813 return ret;
2814 }
2815 return 0;
2816 }
2817
2818 /*
2819 * this starts processing the delayed reference count updates and
2820 * extent insertions we have queued up so far. count can be
2821 * 0, which means to process everything in the tree at the start
2822 * of the run (but not newly added entries), or it can be some target
2823 * number you'd like to process.
2824 *
2825 * Returns 0 on success or if called with an aborted transaction
2826 * Returns <0 on error and aborts the transaction
2827 */
2828 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2829 struct btrfs_root *root, unsigned long count)
2830 {
2831 struct rb_node *node;
2832 struct btrfs_delayed_ref_root *delayed_refs;
2833 struct btrfs_delayed_ref_head *head;
2834 int ret;
2835 int run_all = count == (unsigned long)-1;
2836 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2837
2838 /* We'll clean this up in btrfs_cleanup_transaction */
2839 if (trans->aborted)
2840 return 0;
2841
2842 if (root == root->fs_info->extent_root)
2843 root = root->fs_info->tree_root;
2844
2845 delayed_refs = &trans->transaction->delayed_refs;
2846 if (count == 0)
2847 count = atomic_read(&delayed_refs->num_entries) * 2;
2848
2849 again:
2850 #ifdef SCRAMBLE_DELAYED_REFS
2851 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2852 #endif
2853 trans->can_flush_pending_bgs = false;
2854 ret = __btrfs_run_delayed_refs(trans, root, count);
2855 if (ret < 0) {
2856 btrfs_abort_transaction(trans, root, ret);
2857 return ret;
2858 }
2859
2860 if (run_all) {
2861 if (!list_empty(&trans->new_bgs))
2862 btrfs_create_pending_block_groups(trans, root);
2863
2864 spin_lock(&delayed_refs->lock);
2865 node = rb_first(&delayed_refs->href_root);
2866 if (!node) {
2867 spin_unlock(&delayed_refs->lock);
2868 goto out;
2869 }
2870 count = (unsigned long)-1;
2871
2872 while (node) {
2873 head = rb_entry(node, struct btrfs_delayed_ref_head,
2874 href_node);
2875 if (btrfs_delayed_ref_is_head(&head->node)) {
2876 struct btrfs_delayed_ref_node *ref;
2877
2878 ref = &head->node;
2879 atomic_inc(&ref->refs);
2880
2881 spin_unlock(&delayed_refs->lock);
2882 /*
2883 * Mutex was contended, block until it's
2884 * released and try again
2885 */
2886 mutex_lock(&head->mutex);
2887 mutex_unlock(&head->mutex);
2888
2889 btrfs_put_delayed_ref(ref);
2890 cond_resched();
2891 goto again;
2892 } else {
2893 WARN_ON(1);
2894 }
2895 node = rb_next(node);
2896 }
2897 spin_unlock(&delayed_refs->lock);
2898 cond_resched();
2899 goto again;
2900 }
2901 out:
2902 assert_qgroups_uptodate(trans);
2903 trans->can_flush_pending_bgs = can_flush_pending_bgs;
2904 return 0;
2905 }
2906
2907 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2908 struct btrfs_root *root,
2909 u64 bytenr, u64 num_bytes, u64 flags,
2910 int level, int is_data)
2911 {
2912 struct btrfs_delayed_extent_op *extent_op;
2913 int ret;
2914
2915 extent_op = btrfs_alloc_delayed_extent_op();
2916 if (!extent_op)
2917 return -ENOMEM;
2918
2919 extent_op->flags_to_set = flags;
2920 extent_op->update_flags = 1;
2921 extent_op->update_key = 0;
2922 extent_op->is_data = is_data ? 1 : 0;
2923 extent_op->level = level;
2924
2925 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2926 num_bytes, extent_op);
2927 if (ret)
2928 btrfs_free_delayed_extent_op(extent_op);
2929 return ret;
2930 }
2931
2932 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2933 struct btrfs_root *root,
2934 struct btrfs_path *path,
2935 u64 objectid, u64 offset, u64 bytenr)
2936 {
2937 struct btrfs_delayed_ref_head *head;
2938 struct btrfs_delayed_ref_node *ref;
2939 struct btrfs_delayed_data_ref *data_ref;
2940 struct btrfs_delayed_ref_root *delayed_refs;
2941 int ret = 0;
2942
2943 delayed_refs = &trans->transaction->delayed_refs;
2944 spin_lock(&delayed_refs->lock);
2945 head = btrfs_find_delayed_ref_head(trans, bytenr);
2946 if (!head) {
2947 spin_unlock(&delayed_refs->lock);
2948 return 0;
2949 }
2950
2951 if (!mutex_trylock(&head->mutex)) {
2952 atomic_inc(&head->node.refs);
2953 spin_unlock(&delayed_refs->lock);
2954
2955 btrfs_release_path(path);
2956
2957 /*
2958 * Mutex was contended, block until it's released and let
2959 * caller try again
2960 */
2961 mutex_lock(&head->mutex);
2962 mutex_unlock(&head->mutex);
2963 btrfs_put_delayed_ref(&head->node);
2964 return -EAGAIN;
2965 }
2966 spin_unlock(&delayed_refs->lock);
2967
2968 spin_lock(&head->lock);
2969 list_for_each_entry(ref, &head->ref_list, list) {
2970 /* If it's a shared ref we know a cross reference exists */
2971 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2972 ret = 1;
2973 break;
2974 }
2975
2976 data_ref = btrfs_delayed_node_to_data_ref(ref);
2977
2978 /*
2979 * If our ref doesn't match the one we're currently looking at
2980 * then we have a cross reference.
2981 */
2982 if (data_ref->root != root->root_key.objectid ||
2983 data_ref->objectid != objectid ||
2984 data_ref->offset != offset) {
2985 ret = 1;
2986 break;
2987 }
2988 }
2989 spin_unlock(&head->lock);
2990 mutex_unlock(&head->mutex);
2991 return ret;
2992 }
2993
2994 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2995 struct btrfs_root *root,
2996 struct btrfs_path *path,
2997 u64 objectid, u64 offset, u64 bytenr)
2998 {
2999 struct btrfs_root *extent_root = root->fs_info->extent_root;
3000 struct extent_buffer *leaf;
3001 struct btrfs_extent_data_ref *ref;
3002 struct btrfs_extent_inline_ref *iref;
3003 struct btrfs_extent_item *ei;
3004 struct btrfs_key key;
3005 u32 item_size;
3006 int ret;
3007
3008 key.objectid = bytenr;
3009 key.offset = (u64)-1;
3010 key.type = BTRFS_EXTENT_ITEM_KEY;
3011
3012 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3013 if (ret < 0)
3014 goto out;
3015 BUG_ON(ret == 0); /* Corruption */
3016
3017 ret = -ENOENT;
3018 if (path->slots[0] == 0)
3019 goto out;
3020
3021 path->slots[0]--;
3022 leaf = path->nodes[0];
3023 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3024
3025 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3026 goto out;
3027
3028 ret = 1;
3029 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3030 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3031 if (item_size < sizeof(*ei)) {
3032 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3033 goto out;
3034 }
3035 #endif
3036 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3037
3038 if (item_size != sizeof(*ei) +
3039 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3040 goto out;
3041
3042 if (btrfs_extent_generation(leaf, ei) <=
3043 btrfs_root_last_snapshot(&root->root_item))
3044 goto out;
3045
3046 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3047 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3048 BTRFS_EXTENT_DATA_REF_KEY)
3049 goto out;
3050
3051 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3052 if (btrfs_extent_refs(leaf, ei) !=
3053 btrfs_extent_data_ref_count(leaf, ref) ||
3054 btrfs_extent_data_ref_root(leaf, ref) !=
3055 root->root_key.objectid ||
3056 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3057 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3058 goto out;
3059
3060 ret = 0;
3061 out:
3062 return ret;
3063 }
3064
3065 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3066 struct btrfs_root *root,
3067 u64 objectid, u64 offset, u64 bytenr)
3068 {
3069 struct btrfs_path *path;
3070 int ret;
3071 int ret2;
3072
3073 path = btrfs_alloc_path();
3074 if (!path)
3075 return -ENOENT;
3076
3077 do {
3078 ret = check_committed_ref(trans, root, path, objectid,
3079 offset, bytenr);
3080 if (ret && ret != -ENOENT)
3081 goto out;
3082
3083 ret2 = check_delayed_ref(trans, root, path, objectid,
3084 offset, bytenr);
3085 } while (ret2 == -EAGAIN);
3086
3087 if (ret2 && ret2 != -ENOENT) {
3088 ret = ret2;
3089 goto out;
3090 }
3091
3092 if (ret != -ENOENT || ret2 != -ENOENT)
3093 ret = 0;
3094 out:
3095 btrfs_free_path(path);
3096 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3097 WARN_ON(ret > 0);
3098 return ret;
3099 }
3100
3101 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3102 struct btrfs_root *root,
3103 struct extent_buffer *buf,
3104 int full_backref, int inc)
3105 {
3106 u64 bytenr;
3107 u64 num_bytes;
3108 u64 parent;
3109 u64 ref_root;
3110 u32 nritems;
3111 struct btrfs_key key;
3112 struct btrfs_file_extent_item *fi;
3113 int i;
3114 int level;
3115 int ret = 0;
3116 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3117 u64, u64, u64, u64, u64, u64, int);
3118
3119
3120 if (btrfs_test_is_dummy_root(root))
3121 return 0;
3122
3123 ref_root = btrfs_header_owner(buf);
3124 nritems = btrfs_header_nritems(buf);
3125 level = btrfs_header_level(buf);
3126
3127 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3128 return 0;
3129
3130 if (inc)
3131 process_func = btrfs_inc_extent_ref;
3132 else
3133 process_func = btrfs_free_extent;
3134
3135 if (full_backref)
3136 parent = buf->start;
3137 else
3138 parent = 0;
3139
3140 for (i = 0; i < nritems; i++) {
3141 if (level == 0) {
3142 btrfs_item_key_to_cpu(buf, &key, i);
3143 if (key.type != BTRFS_EXTENT_DATA_KEY)
3144 continue;
3145 fi = btrfs_item_ptr(buf, i,
3146 struct btrfs_file_extent_item);
3147 if (btrfs_file_extent_type(buf, fi) ==
3148 BTRFS_FILE_EXTENT_INLINE)
3149 continue;
3150 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3151 if (bytenr == 0)
3152 continue;
3153
3154 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3155 key.offset -= btrfs_file_extent_offset(buf, fi);
3156 ret = process_func(trans, root, bytenr, num_bytes,
3157 parent, ref_root, key.objectid,
3158 key.offset, 1);
3159 if (ret)
3160 goto fail;
3161 } else {
3162 bytenr = btrfs_node_blockptr(buf, i);
3163 num_bytes = root->nodesize;
3164 ret = process_func(trans, root, bytenr, num_bytes,
3165 parent, ref_root, level - 1, 0,
3166 1);
3167 if (ret)
3168 goto fail;
3169 }
3170 }
3171 return 0;
3172 fail:
3173 return ret;
3174 }
3175
3176 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3177 struct extent_buffer *buf, int full_backref)
3178 {
3179 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3180 }
3181
3182 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3183 struct extent_buffer *buf, int full_backref)
3184 {
3185 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3186 }
3187
3188 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3189 struct btrfs_root *root,
3190 struct btrfs_path *path,
3191 struct btrfs_block_group_cache *cache)
3192 {
3193 int ret;
3194 struct btrfs_root *extent_root = root->fs_info->extent_root;
3195 unsigned long bi;
3196 struct extent_buffer *leaf;
3197
3198 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3199 if (ret) {
3200 if (ret > 0)
3201 ret = -ENOENT;
3202 goto fail;
3203 }
3204
3205 leaf = path->nodes[0];
3206 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3207 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3208 btrfs_mark_buffer_dirty(leaf);
3209 fail:
3210 btrfs_release_path(path);
3211 return ret;
3212
3213 }
3214
3215 static struct btrfs_block_group_cache *
3216 next_block_group(struct btrfs_root *root,
3217 struct btrfs_block_group_cache *cache)
3218 {
3219 struct rb_node *node;
3220
3221 spin_lock(&root->fs_info->block_group_cache_lock);
3222
3223 /* If our block group was removed, we need a full search. */
3224 if (RB_EMPTY_NODE(&cache->cache_node)) {
3225 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3226
3227 spin_unlock(&root->fs_info->block_group_cache_lock);
3228 btrfs_put_block_group(cache);
3229 cache = btrfs_lookup_first_block_group(root->fs_info,
3230 next_bytenr);
3231 return cache;
3232 }
3233 node = rb_next(&cache->cache_node);
3234 btrfs_put_block_group(cache);
3235 if (node) {
3236 cache = rb_entry(node, struct btrfs_block_group_cache,
3237 cache_node);
3238 btrfs_get_block_group(cache);
3239 } else
3240 cache = NULL;
3241 spin_unlock(&root->fs_info->block_group_cache_lock);
3242 return cache;
3243 }
3244
3245 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3246 struct btrfs_trans_handle *trans,
3247 struct btrfs_path *path)
3248 {
3249 struct btrfs_root *root = block_group->fs_info->tree_root;
3250 struct inode *inode = NULL;
3251 u64 alloc_hint = 0;
3252 int dcs = BTRFS_DC_ERROR;
3253 u64 num_pages = 0;
3254 int retries = 0;
3255 int ret = 0;
3256
3257 /*
3258 * If this block group is smaller than 100 megs don't bother caching the
3259 * block group.
3260 */
3261 if (block_group->key.offset < (100 * 1024 * 1024)) {
3262 spin_lock(&block_group->lock);
3263 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3264 spin_unlock(&block_group->lock);
3265 return 0;
3266 }
3267
3268 if (trans->aborted)
3269 return 0;
3270 again:
3271 inode = lookup_free_space_inode(root, block_group, path);
3272 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3273 ret = PTR_ERR(inode);
3274 btrfs_release_path(path);
3275 goto out;
3276 }
3277
3278 if (IS_ERR(inode)) {
3279 BUG_ON(retries);
3280 retries++;
3281
3282 if (block_group->ro)
3283 goto out_free;
3284
3285 ret = create_free_space_inode(root, trans, block_group, path);
3286 if (ret)
3287 goto out_free;
3288 goto again;
3289 }
3290
3291 /* We've already setup this transaction, go ahead and exit */
3292 if (block_group->cache_generation == trans->transid &&
3293 i_size_read(inode)) {
3294 dcs = BTRFS_DC_SETUP;
3295 goto out_put;
3296 }
3297
3298 /*
3299 * We want to set the generation to 0, that way if anything goes wrong
3300 * from here on out we know not to trust this cache when we load up next
3301 * time.
3302 */
3303 BTRFS_I(inode)->generation = 0;
3304 ret = btrfs_update_inode(trans, root, inode);
3305 if (ret) {
3306 /*
3307 * So theoretically we could recover from this, simply set the
3308 * super cache generation to 0 so we know to invalidate the
3309 * cache, but then we'd have to keep track of the block groups
3310 * that fail this way so we know we _have_ to reset this cache
3311 * before the next commit or risk reading stale cache. So to
3312 * limit our exposure to horrible edge cases lets just abort the
3313 * transaction, this only happens in really bad situations
3314 * anyway.
3315 */
3316 btrfs_abort_transaction(trans, root, ret);
3317 goto out_put;
3318 }
3319 WARN_ON(ret);
3320
3321 if (i_size_read(inode) > 0) {
3322 ret = btrfs_check_trunc_cache_free_space(root,
3323 &root->fs_info->global_block_rsv);
3324 if (ret)
3325 goto out_put;
3326
3327 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3328 if (ret)
3329 goto out_put;
3330 }
3331
3332 spin_lock(&block_group->lock);
3333 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3334 !btrfs_test_opt(root, SPACE_CACHE)) {
3335 /*
3336 * don't bother trying to write stuff out _if_
3337 * a) we're not cached,
3338 * b) we're with nospace_cache mount option.
3339 */
3340 dcs = BTRFS_DC_WRITTEN;
3341 spin_unlock(&block_group->lock);
3342 goto out_put;
3343 }
3344 spin_unlock(&block_group->lock);
3345
3346 /*
3347 * Try to preallocate enough space based on how big the block group is.
3348 * Keep in mind this has to include any pinned space which could end up
3349 * taking up quite a bit since it's not folded into the other space
3350 * cache.
3351 */
3352 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3353 if (!num_pages)
3354 num_pages = 1;
3355
3356 num_pages *= 16;
3357 num_pages *= PAGE_CACHE_SIZE;
3358
3359 ret = __btrfs_check_data_free_space(inode, 0, num_pages);
3360 if (ret)
3361 goto out_put;
3362
3363 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3364 num_pages, num_pages,
3365 &alloc_hint);
3366 if (!ret)
3367 dcs = BTRFS_DC_SETUP;
3368 __btrfs_free_reserved_data_space(inode, 0, num_pages);
3369
3370 out_put:
3371 iput(inode);
3372 out_free:
3373 btrfs_release_path(path);
3374 out:
3375 spin_lock(&block_group->lock);
3376 if (!ret && dcs == BTRFS_DC_SETUP)
3377 block_group->cache_generation = trans->transid;
3378 block_group->disk_cache_state = dcs;
3379 spin_unlock(&block_group->lock);
3380
3381 return ret;
3382 }
3383
3384 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3385 struct btrfs_root *root)
3386 {
3387 struct btrfs_block_group_cache *cache, *tmp;
3388 struct btrfs_transaction *cur_trans = trans->transaction;
3389 struct btrfs_path *path;
3390
3391 if (list_empty(&cur_trans->dirty_bgs) ||
3392 !btrfs_test_opt(root, SPACE_CACHE))
3393 return 0;
3394
3395 path = btrfs_alloc_path();
3396 if (!path)
3397 return -ENOMEM;
3398
3399 /* Could add new block groups, use _safe just in case */
3400 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3401 dirty_list) {
3402 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3403 cache_save_setup(cache, trans, path);
3404 }
3405
3406 btrfs_free_path(path);
3407 return 0;
3408 }
3409
3410 /*
3411 * transaction commit does final block group cache writeback during a
3412 * critical section where nothing is allowed to change the FS. This is
3413 * required in order for the cache to actually match the block group,
3414 * but can introduce a lot of latency into the commit.
3415 *
3416 * So, btrfs_start_dirty_block_groups is here to kick off block group
3417 * cache IO. There's a chance we'll have to redo some of it if the
3418 * block group changes again during the commit, but it greatly reduces
3419 * the commit latency by getting rid of the easy block groups while
3420 * we're still allowing others to join the commit.
3421 */
3422 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3423 struct btrfs_root *root)
3424 {
3425 struct btrfs_block_group_cache *cache;
3426 struct btrfs_transaction *cur_trans = trans->transaction;
3427 int ret = 0;
3428 int should_put;
3429 struct btrfs_path *path = NULL;
3430 LIST_HEAD(dirty);
3431 struct list_head *io = &cur_trans->io_bgs;
3432 int num_started = 0;
3433 int loops = 0;
3434
3435 spin_lock(&cur_trans->dirty_bgs_lock);
3436 if (list_empty(&cur_trans->dirty_bgs)) {
3437 spin_unlock(&cur_trans->dirty_bgs_lock);
3438 return 0;
3439 }
3440 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3441 spin_unlock(&cur_trans->dirty_bgs_lock);
3442
3443 again:
3444 /*
3445 * make sure all the block groups on our dirty list actually
3446 * exist
3447 */
3448 btrfs_create_pending_block_groups(trans, root);
3449
3450 if (!path) {
3451 path = btrfs_alloc_path();
3452 if (!path)
3453 return -ENOMEM;
3454 }
3455
3456 /*
3457 * cache_write_mutex is here only to save us from balance or automatic
3458 * removal of empty block groups deleting this block group while we are
3459 * writing out the cache
3460 */
3461 mutex_lock(&trans->transaction->cache_write_mutex);
3462 while (!list_empty(&dirty)) {
3463 cache = list_first_entry(&dirty,
3464 struct btrfs_block_group_cache,
3465 dirty_list);
3466 /*
3467 * this can happen if something re-dirties a block
3468 * group that is already under IO. Just wait for it to
3469 * finish and then do it all again
3470 */
3471 if (!list_empty(&cache->io_list)) {
3472 list_del_init(&cache->io_list);
3473 btrfs_wait_cache_io(root, trans, cache,
3474 &cache->io_ctl, path,
3475 cache->key.objectid);
3476 btrfs_put_block_group(cache);
3477 }
3478
3479
3480 /*
3481 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3482 * if it should update the cache_state. Don't delete
3483 * until after we wait.
3484 *
3485 * Since we're not running in the commit critical section
3486 * we need the dirty_bgs_lock to protect from update_block_group
3487 */
3488 spin_lock(&cur_trans->dirty_bgs_lock);
3489 list_del_init(&cache->dirty_list);
3490 spin_unlock(&cur_trans->dirty_bgs_lock);
3491
3492 should_put = 1;
3493
3494 cache_save_setup(cache, trans, path);
3495
3496 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3497 cache->io_ctl.inode = NULL;
3498 ret = btrfs_write_out_cache(root, trans, cache, path);
3499 if (ret == 0 && cache->io_ctl.inode) {
3500 num_started++;
3501 should_put = 0;
3502
3503 /*
3504 * the cache_write_mutex is protecting
3505 * the io_list
3506 */
3507 list_add_tail(&cache->io_list, io);
3508 } else {
3509 /*
3510 * if we failed to write the cache, the
3511 * generation will be bad and life goes on
3512 */
3513 ret = 0;
3514 }
3515 }
3516 if (!ret) {
3517 ret = write_one_cache_group(trans, root, path, cache);
3518 /*
3519 * Our block group might still be attached to the list
3520 * of new block groups in the transaction handle of some
3521 * other task (struct btrfs_trans_handle->new_bgs). This
3522 * means its block group item isn't yet in the extent
3523 * tree. If this happens ignore the error, as we will
3524 * try again later in the critical section of the
3525 * transaction commit.
3526 */
3527 if (ret == -ENOENT) {
3528 ret = 0;
3529 spin_lock(&cur_trans->dirty_bgs_lock);
3530 if (list_empty(&cache->dirty_list)) {
3531 list_add_tail(&cache->dirty_list,
3532 &cur_trans->dirty_bgs);
3533 btrfs_get_block_group(cache);
3534 }
3535 spin_unlock(&cur_trans->dirty_bgs_lock);
3536 } else if (ret) {
3537 btrfs_abort_transaction(trans, root, ret);
3538 }
3539 }
3540
3541 /* if its not on the io list, we need to put the block group */
3542 if (should_put)
3543 btrfs_put_block_group(cache);
3544
3545 if (ret)
3546 break;
3547
3548 /*
3549 * Avoid blocking other tasks for too long. It might even save
3550 * us from writing caches for block groups that are going to be
3551 * removed.
3552 */
3553 mutex_unlock(&trans->transaction->cache_write_mutex);
3554 mutex_lock(&trans->transaction->cache_write_mutex);
3555 }
3556 mutex_unlock(&trans->transaction->cache_write_mutex);
3557
3558 /*
3559 * go through delayed refs for all the stuff we've just kicked off
3560 * and then loop back (just once)
3561 */
3562 ret = btrfs_run_delayed_refs(trans, root, 0);
3563 if (!ret && loops == 0) {
3564 loops++;
3565 spin_lock(&cur_trans->dirty_bgs_lock);
3566 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3567 /*
3568 * dirty_bgs_lock protects us from concurrent block group
3569 * deletes too (not just cache_write_mutex).
3570 */
3571 if (!list_empty(&dirty)) {
3572 spin_unlock(&cur_trans->dirty_bgs_lock);
3573 goto again;
3574 }
3575 spin_unlock(&cur_trans->dirty_bgs_lock);
3576 }
3577
3578 btrfs_free_path(path);
3579 return ret;
3580 }
3581
3582 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3583 struct btrfs_root *root)
3584 {
3585 struct btrfs_block_group_cache *cache;
3586 struct btrfs_transaction *cur_trans = trans->transaction;
3587 int ret = 0;
3588 int should_put;
3589 struct btrfs_path *path;
3590 struct list_head *io = &cur_trans->io_bgs;
3591 int num_started = 0;
3592
3593 path = btrfs_alloc_path();
3594 if (!path)
3595 return -ENOMEM;
3596
3597 /*
3598 * We don't need the lock here since we are protected by the transaction
3599 * commit. We want to do the cache_save_setup first and then run the
3600 * delayed refs to make sure we have the best chance at doing this all
3601 * in one shot.
3602 */
3603 while (!list_empty(&cur_trans->dirty_bgs)) {
3604 cache = list_first_entry(&cur_trans->dirty_bgs,
3605 struct btrfs_block_group_cache,
3606 dirty_list);
3607
3608 /*
3609 * this can happen if cache_save_setup re-dirties a block
3610 * group that is already under IO. Just wait for it to
3611 * finish and then do it all again
3612 */
3613 if (!list_empty(&cache->io_list)) {
3614 list_del_init(&cache->io_list);
3615 btrfs_wait_cache_io(root, trans, cache,
3616 &cache->io_ctl, path,
3617 cache->key.objectid);
3618 btrfs_put_block_group(cache);
3619 }
3620
3621 /*
3622 * don't remove from the dirty list until after we've waited
3623 * on any pending IO
3624 */
3625 list_del_init(&cache->dirty_list);
3626 should_put = 1;
3627
3628 cache_save_setup(cache, trans, path);
3629
3630 if (!ret)
3631 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3632
3633 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3634 cache->io_ctl.inode = NULL;
3635 ret = btrfs_write_out_cache(root, trans, cache, path);
3636 if (ret == 0 && cache->io_ctl.inode) {
3637 num_started++;
3638 should_put = 0;
3639 list_add_tail(&cache->io_list, io);
3640 } else {
3641 /*
3642 * if we failed to write the cache, the
3643 * generation will be bad and life goes on
3644 */
3645 ret = 0;
3646 }
3647 }
3648 if (!ret) {
3649 ret = write_one_cache_group(trans, root, path, cache);
3650 if (ret)
3651 btrfs_abort_transaction(trans, root, ret);
3652 }
3653
3654 /* if its not on the io list, we need to put the block group */
3655 if (should_put)
3656 btrfs_put_block_group(cache);
3657 }
3658
3659 while (!list_empty(io)) {
3660 cache = list_first_entry(io, struct btrfs_block_group_cache,
3661 io_list);
3662 list_del_init(&cache->io_list);
3663 btrfs_wait_cache_io(root, trans, cache,
3664 &cache->io_ctl, path, cache->key.objectid);
3665 btrfs_put_block_group(cache);
3666 }
3667
3668 btrfs_free_path(path);
3669 return ret;
3670 }
3671
3672 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3673 {
3674 struct btrfs_block_group_cache *block_group;
3675 int readonly = 0;
3676
3677 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3678 if (!block_group || block_group->ro)
3679 readonly = 1;
3680 if (block_group)
3681 btrfs_put_block_group(block_group);
3682 return readonly;
3683 }
3684
3685 static const char *alloc_name(u64 flags)
3686 {
3687 switch (flags) {
3688 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3689 return "mixed";
3690 case BTRFS_BLOCK_GROUP_METADATA:
3691 return "metadata";
3692 case BTRFS_BLOCK_GROUP_DATA:
3693 return "data";
3694 case BTRFS_BLOCK_GROUP_SYSTEM:
3695 return "system";
3696 default:
3697 WARN_ON(1);
3698 return "invalid-combination";
3699 };
3700 }
3701
3702 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3703 u64 total_bytes, u64 bytes_used,
3704 struct btrfs_space_info **space_info)
3705 {
3706 struct btrfs_space_info *found;
3707 int i;
3708 int factor;
3709 int ret;
3710
3711 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3712 BTRFS_BLOCK_GROUP_RAID10))
3713 factor = 2;
3714 else
3715 factor = 1;
3716
3717 found = __find_space_info(info, flags);
3718 if (found) {
3719 spin_lock(&found->lock);
3720 found->total_bytes += total_bytes;
3721 found->disk_total += total_bytes * factor;
3722 found->bytes_used += bytes_used;
3723 found->disk_used += bytes_used * factor;
3724 if (total_bytes > 0)
3725 found->full = 0;
3726 spin_unlock(&found->lock);
3727 *space_info = found;
3728 return 0;
3729 }
3730 found = kzalloc(sizeof(*found), GFP_NOFS);
3731 if (!found)
3732 return -ENOMEM;
3733
3734 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3735 if (ret) {
3736 kfree(found);
3737 return ret;
3738 }
3739
3740 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3741 INIT_LIST_HEAD(&found->block_groups[i]);
3742 init_rwsem(&found->groups_sem);
3743 spin_lock_init(&found->lock);
3744 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3745 found->total_bytes = total_bytes;
3746 found->disk_total = total_bytes * factor;
3747 found->bytes_used = bytes_used;
3748 found->disk_used = bytes_used * factor;
3749 found->bytes_pinned = 0;
3750 found->bytes_reserved = 0;
3751 found->bytes_readonly = 0;
3752 found->bytes_may_use = 0;
3753 found->full = 0;
3754 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3755 found->chunk_alloc = 0;
3756 found->flush = 0;
3757 init_waitqueue_head(&found->wait);
3758 INIT_LIST_HEAD(&found->ro_bgs);
3759
3760 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3761 info->space_info_kobj, "%s",
3762 alloc_name(found->flags));
3763 if (ret) {
3764 kfree(found);
3765 return ret;
3766 }
3767
3768 *space_info = found;
3769 list_add_rcu(&found->list, &info->space_info);
3770 if (flags & BTRFS_BLOCK_GROUP_DATA)
3771 info->data_sinfo = found;
3772
3773 return ret;
3774 }
3775
3776 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3777 {
3778 u64 extra_flags = chunk_to_extended(flags) &
3779 BTRFS_EXTENDED_PROFILE_MASK;
3780
3781 write_seqlock(&fs_info->profiles_lock);
3782 if (flags & BTRFS_BLOCK_GROUP_DATA)
3783 fs_info->avail_data_alloc_bits |= extra_flags;
3784 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3785 fs_info->avail_metadata_alloc_bits |= extra_flags;
3786 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3787 fs_info->avail_system_alloc_bits |= extra_flags;
3788 write_sequnlock(&fs_info->profiles_lock);
3789 }
3790
3791 /*
3792 * returns target flags in extended format or 0 if restripe for this
3793 * chunk_type is not in progress
3794 *
3795 * should be called with either volume_mutex or balance_lock held
3796 */
3797 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3798 {
3799 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3800 u64 target = 0;
3801
3802 if (!bctl)
3803 return 0;
3804
3805 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3806 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3807 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3808 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3809 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3810 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3811 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3812 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3813 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3814 }
3815
3816 return target;
3817 }
3818
3819 /*
3820 * @flags: available profiles in extended format (see ctree.h)
3821 *
3822 * Returns reduced profile in chunk format. If profile changing is in
3823 * progress (either running or paused) picks the target profile (if it's
3824 * already available), otherwise falls back to plain reducing.
3825 */
3826 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3827 {
3828 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3829 u64 target;
3830 u64 raid_type;
3831 u64 allowed = 0;
3832
3833 /*
3834 * see if restripe for this chunk_type is in progress, if so
3835 * try to reduce to the target profile
3836 */
3837 spin_lock(&root->fs_info->balance_lock);
3838 target = get_restripe_target(root->fs_info, flags);
3839 if (target) {
3840 /* pick target profile only if it's already available */
3841 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3842 spin_unlock(&root->fs_info->balance_lock);
3843 return extended_to_chunk(target);
3844 }
3845 }
3846 spin_unlock(&root->fs_info->balance_lock);
3847
3848 /* First, mask out the RAID levels which aren't possible */
3849 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3850 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3851 allowed |= btrfs_raid_group[raid_type];
3852 }
3853 allowed &= flags;
3854
3855 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3856 allowed = BTRFS_BLOCK_GROUP_RAID6;
3857 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
3858 allowed = BTRFS_BLOCK_GROUP_RAID5;
3859 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
3860 allowed = BTRFS_BLOCK_GROUP_RAID10;
3861 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
3862 allowed = BTRFS_BLOCK_GROUP_RAID1;
3863 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
3864 allowed = BTRFS_BLOCK_GROUP_RAID0;
3865
3866 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
3867
3868 return extended_to_chunk(flags | allowed);
3869 }
3870
3871 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3872 {
3873 unsigned seq;
3874 u64 flags;
3875
3876 do {
3877 flags = orig_flags;
3878 seq = read_seqbegin(&root->fs_info->profiles_lock);
3879
3880 if (flags & BTRFS_BLOCK_GROUP_DATA)
3881 flags |= root->fs_info->avail_data_alloc_bits;
3882 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3883 flags |= root->fs_info->avail_system_alloc_bits;
3884 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3885 flags |= root->fs_info->avail_metadata_alloc_bits;
3886 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3887
3888 return btrfs_reduce_alloc_profile(root, flags);
3889 }
3890
3891 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3892 {
3893 u64 flags;
3894 u64 ret;
3895
3896 if (data)
3897 flags = BTRFS_BLOCK_GROUP_DATA;
3898 else if (root == root->fs_info->chunk_root)
3899 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3900 else
3901 flags = BTRFS_BLOCK_GROUP_METADATA;
3902
3903 ret = get_alloc_profile(root, flags);
3904 return ret;
3905 }
3906
3907 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
3908 {
3909 struct btrfs_space_info *data_sinfo;
3910 struct btrfs_root *root = BTRFS_I(inode)->root;
3911 struct btrfs_fs_info *fs_info = root->fs_info;
3912 u64 used;
3913 int ret = 0;
3914 int need_commit = 2;
3915 int have_pinned_space;
3916
3917 /* make sure bytes are sectorsize aligned */
3918 bytes = ALIGN(bytes, root->sectorsize);
3919
3920 if (btrfs_is_free_space_inode(inode)) {
3921 need_commit = 0;
3922 ASSERT(current->journal_info);
3923 }
3924
3925 data_sinfo = fs_info->data_sinfo;
3926 if (!data_sinfo)
3927 goto alloc;
3928
3929 again:
3930 /* make sure we have enough space to handle the data first */
3931 spin_lock(&data_sinfo->lock);
3932 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3933 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3934 data_sinfo->bytes_may_use;
3935
3936 if (used + bytes > data_sinfo->total_bytes) {
3937 struct btrfs_trans_handle *trans;
3938
3939 /*
3940 * if we don't have enough free bytes in this space then we need
3941 * to alloc a new chunk.
3942 */
3943 if (!data_sinfo->full) {
3944 u64 alloc_target;
3945
3946 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3947 spin_unlock(&data_sinfo->lock);
3948 alloc:
3949 alloc_target = btrfs_get_alloc_profile(root, 1);
3950 /*
3951 * It is ugly that we don't call nolock join
3952 * transaction for the free space inode case here.
3953 * But it is safe because we only do the data space
3954 * reservation for the free space cache in the
3955 * transaction context, the common join transaction
3956 * just increase the counter of the current transaction
3957 * handler, doesn't try to acquire the trans_lock of
3958 * the fs.
3959 */
3960 trans = btrfs_join_transaction(root);
3961 if (IS_ERR(trans))
3962 return PTR_ERR(trans);
3963
3964 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3965 alloc_target,
3966 CHUNK_ALLOC_NO_FORCE);
3967 btrfs_end_transaction(trans, root);
3968 if (ret < 0) {
3969 if (ret != -ENOSPC)
3970 return ret;
3971 else {
3972 have_pinned_space = 1;
3973 goto commit_trans;
3974 }
3975 }
3976
3977 if (!data_sinfo)
3978 data_sinfo = fs_info->data_sinfo;
3979
3980 goto again;
3981 }
3982
3983 /*
3984 * If we don't have enough pinned space to deal with this
3985 * allocation, and no removed chunk in current transaction,
3986 * don't bother committing the transaction.
3987 */
3988 have_pinned_space = percpu_counter_compare(
3989 &data_sinfo->total_bytes_pinned,
3990 used + bytes - data_sinfo->total_bytes);
3991 spin_unlock(&data_sinfo->lock);
3992
3993 /* commit the current transaction and try again */
3994 commit_trans:
3995 if (need_commit &&
3996 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3997 need_commit--;
3998
3999 if (need_commit > 0)
4000 btrfs_wait_ordered_roots(fs_info, -1);
4001
4002 trans = btrfs_join_transaction(root);
4003 if (IS_ERR(trans))
4004 return PTR_ERR(trans);
4005 if (have_pinned_space >= 0 ||
4006 trans->transaction->have_free_bgs ||
4007 need_commit > 0) {
4008 ret = btrfs_commit_transaction(trans, root);
4009 if (ret)
4010 return ret;
4011 /*
4012 * make sure that all running delayed iput are
4013 * done
4014 */
4015 down_write(&root->fs_info->delayed_iput_sem);
4016 up_write(&root->fs_info->delayed_iput_sem);
4017 goto again;
4018 } else {
4019 btrfs_end_transaction(trans, root);
4020 }
4021 }
4022
4023 trace_btrfs_space_reservation(root->fs_info,
4024 "space_info:enospc",
4025 data_sinfo->flags, bytes, 1);
4026 return -ENOSPC;
4027 }
4028 data_sinfo->bytes_may_use += bytes;
4029 trace_btrfs_space_reservation(root->fs_info, "space_info",
4030 data_sinfo->flags, bytes, 1);
4031 spin_unlock(&data_sinfo->lock);
4032
4033 return ret;
4034 }
4035
4036 /*
4037 * This will check the space that the inode allocates from to make sure we have
4038 * enough space for bytes.
4039 */
4040 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
4041 {
4042 struct btrfs_root *root = BTRFS_I(inode)->root;
4043 int ret;
4044
4045 ret = btrfs_alloc_data_chunk_ondemand(inode, bytes);
4046 if (ret < 0)
4047 return ret;
4048 ret = btrfs_qgroup_reserve(root, write_bytes);
4049 return ret;
4050 }
4051
4052 /*
4053 * New check_data_free_space() with ability for precious data reservation
4054 * Will replace old btrfs_check_data_free_space(), but for patch split,
4055 * add a new function first and then replace it.
4056 */
4057 int __btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4058 {
4059 struct btrfs_root *root = BTRFS_I(inode)->root;
4060 int ret;
4061
4062 /* align the range */
4063 len = round_up(start + len, root->sectorsize) -
4064 round_down(start, root->sectorsize);
4065 start = round_down(start, root->sectorsize);
4066
4067 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4068 if (ret < 0)
4069 return ret;
4070
4071 /* Use new btrfs_qgroup_reserve_data to reserve precious data space */
4072 ret = btrfs_qgroup_reserve_data(inode, start, len);
4073 return ret;
4074 }
4075
4076 /*
4077 * Called if we need to clear a data reservation for this inode.
4078 */
4079 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
4080 {
4081 struct btrfs_root *root = BTRFS_I(inode)->root;
4082 struct btrfs_space_info *data_sinfo;
4083
4084 /* make sure bytes are sectorsize aligned */
4085 bytes = ALIGN(bytes, root->sectorsize);
4086
4087 data_sinfo = root->fs_info->data_sinfo;
4088 spin_lock(&data_sinfo->lock);
4089 WARN_ON(data_sinfo->bytes_may_use < bytes);
4090 data_sinfo->bytes_may_use -= bytes;
4091 trace_btrfs_space_reservation(root->fs_info, "space_info",
4092 data_sinfo->flags, bytes, 0);
4093 spin_unlock(&data_sinfo->lock);
4094 }
4095
4096 /*
4097 * Called if we need to clear a data reservation for this inode
4098 * Normally in a error case.
4099 *
4100 * This one will handle the per-indoe data rsv map for accurate reserved
4101 * space framework.
4102 */
4103 void __btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4104 {
4105 struct btrfs_root *root = BTRFS_I(inode)->root;
4106 struct btrfs_space_info *data_sinfo;
4107
4108 /* Make sure the range is aligned to sectorsize */
4109 len = round_up(start + len, root->sectorsize) -
4110 round_down(start, root->sectorsize);
4111 start = round_down(start, root->sectorsize);
4112
4113 /*
4114 * Free any reserved qgroup data space first
4115 * As it will alloc memory, we can't do it with data sinfo
4116 * spinlock hold.
4117 */
4118 btrfs_qgroup_free_data(inode, start, len);
4119
4120 data_sinfo = root->fs_info->data_sinfo;
4121 spin_lock(&data_sinfo->lock);
4122 if (WARN_ON(data_sinfo->bytes_may_use < len))
4123 data_sinfo->bytes_may_use = 0;
4124 else
4125 data_sinfo->bytes_may_use -= len;
4126 trace_btrfs_space_reservation(root->fs_info, "space_info",
4127 data_sinfo->flags, len, 0);
4128 spin_unlock(&data_sinfo->lock);
4129 }
4130
4131 static void force_metadata_allocation(struct btrfs_fs_info *info)
4132 {
4133 struct list_head *head = &info->space_info;
4134 struct btrfs_space_info *found;
4135
4136 rcu_read_lock();
4137 list_for_each_entry_rcu(found, head, list) {
4138 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4139 found->force_alloc = CHUNK_ALLOC_FORCE;
4140 }
4141 rcu_read_unlock();
4142 }
4143
4144 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4145 {
4146 return (global->size << 1);
4147 }
4148
4149 static int should_alloc_chunk(struct btrfs_root *root,
4150 struct btrfs_space_info *sinfo, int force)
4151 {
4152 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4153 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4154 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4155 u64 thresh;
4156
4157 if (force == CHUNK_ALLOC_FORCE)
4158 return 1;
4159
4160 /*
4161 * We need to take into account the global rsv because for all intents
4162 * and purposes it's used space. Don't worry about locking the
4163 * global_rsv, it doesn't change except when the transaction commits.
4164 */
4165 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4166 num_allocated += calc_global_rsv_need_space(global_rsv);
4167
4168 /*
4169 * in limited mode, we want to have some free space up to
4170 * about 1% of the FS size.
4171 */
4172 if (force == CHUNK_ALLOC_LIMITED) {
4173 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4174 thresh = max_t(u64, 64 * 1024 * 1024,
4175 div_factor_fine(thresh, 1));
4176
4177 if (num_bytes - num_allocated < thresh)
4178 return 1;
4179 }
4180
4181 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4182 return 0;
4183 return 1;
4184 }
4185
4186 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4187 {
4188 u64 num_dev;
4189
4190 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4191 BTRFS_BLOCK_GROUP_RAID0 |
4192 BTRFS_BLOCK_GROUP_RAID5 |
4193 BTRFS_BLOCK_GROUP_RAID6))
4194 num_dev = root->fs_info->fs_devices->rw_devices;
4195 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4196 num_dev = 2;
4197 else
4198 num_dev = 1; /* DUP or single */
4199
4200 return num_dev;
4201 }
4202
4203 /*
4204 * If @is_allocation is true, reserve space in the system space info necessary
4205 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4206 * removing a chunk.
4207 */
4208 void check_system_chunk(struct btrfs_trans_handle *trans,
4209 struct btrfs_root *root,
4210 u64 type)
4211 {
4212 struct btrfs_space_info *info;
4213 u64 left;
4214 u64 thresh;
4215 int ret = 0;
4216 u64 num_devs;
4217
4218 /*
4219 * Needed because we can end up allocating a system chunk and for an
4220 * atomic and race free space reservation in the chunk block reserve.
4221 */
4222 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4223
4224 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4225 spin_lock(&info->lock);
4226 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4227 info->bytes_reserved - info->bytes_readonly -
4228 info->bytes_may_use;
4229 spin_unlock(&info->lock);
4230
4231 num_devs = get_profile_num_devs(root, type);
4232
4233 /* num_devs device items to update and 1 chunk item to add or remove */
4234 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4235 btrfs_calc_trans_metadata_size(root, 1);
4236
4237 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4238 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4239 left, thresh, type);
4240 dump_space_info(info, 0, 0);
4241 }
4242
4243 if (left < thresh) {
4244 u64 flags;
4245
4246 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4247 /*
4248 * Ignore failure to create system chunk. We might end up not
4249 * needing it, as we might not need to COW all nodes/leafs from
4250 * the paths we visit in the chunk tree (they were already COWed
4251 * or created in the current transaction for example).
4252 */
4253 ret = btrfs_alloc_chunk(trans, root, flags);
4254 }
4255
4256 if (!ret) {
4257 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4258 &root->fs_info->chunk_block_rsv,
4259 thresh, BTRFS_RESERVE_NO_FLUSH);
4260 if (!ret)
4261 trans->chunk_bytes_reserved += thresh;
4262 }
4263 }
4264
4265 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4266 struct btrfs_root *extent_root, u64 flags, int force)
4267 {
4268 struct btrfs_space_info *space_info;
4269 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4270 int wait_for_alloc = 0;
4271 int ret = 0;
4272
4273 /* Don't re-enter if we're already allocating a chunk */
4274 if (trans->allocating_chunk)
4275 return -ENOSPC;
4276
4277 space_info = __find_space_info(extent_root->fs_info, flags);
4278 if (!space_info) {
4279 ret = update_space_info(extent_root->fs_info, flags,
4280 0, 0, &space_info);
4281 BUG_ON(ret); /* -ENOMEM */
4282 }
4283 BUG_ON(!space_info); /* Logic error */
4284
4285 again:
4286 spin_lock(&space_info->lock);
4287 if (force < space_info->force_alloc)
4288 force = space_info->force_alloc;
4289 if (space_info->full) {
4290 if (should_alloc_chunk(extent_root, space_info, force))
4291 ret = -ENOSPC;
4292 else
4293 ret = 0;
4294 spin_unlock(&space_info->lock);
4295 return ret;
4296 }
4297
4298 if (!should_alloc_chunk(extent_root, space_info, force)) {
4299 spin_unlock(&space_info->lock);
4300 return 0;
4301 } else if (space_info->chunk_alloc) {
4302 wait_for_alloc = 1;
4303 } else {
4304 space_info->chunk_alloc = 1;
4305 }
4306
4307 spin_unlock(&space_info->lock);
4308
4309 mutex_lock(&fs_info->chunk_mutex);
4310
4311 /*
4312 * The chunk_mutex is held throughout the entirety of a chunk
4313 * allocation, so once we've acquired the chunk_mutex we know that the
4314 * other guy is done and we need to recheck and see if we should
4315 * allocate.
4316 */
4317 if (wait_for_alloc) {
4318 mutex_unlock(&fs_info->chunk_mutex);
4319 wait_for_alloc = 0;
4320 goto again;
4321 }
4322
4323 trans->allocating_chunk = true;
4324
4325 /*
4326 * If we have mixed data/metadata chunks we want to make sure we keep
4327 * allocating mixed chunks instead of individual chunks.
4328 */
4329 if (btrfs_mixed_space_info(space_info))
4330 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4331
4332 /*
4333 * if we're doing a data chunk, go ahead and make sure that
4334 * we keep a reasonable number of metadata chunks allocated in the
4335 * FS as well.
4336 */
4337 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4338 fs_info->data_chunk_allocations++;
4339 if (!(fs_info->data_chunk_allocations %
4340 fs_info->metadata_ratio))
4341 force_metadata_allocation(fs_info);
4342 }
4343
4344 /*
4345 * Check if we have enough space in SYSTEM chunk because we may need
4346 * to update devices.
4347 */
4348 check_system_chunk(trans, extent_root, flags);
4349
4350 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4351 trans->allocating_chunk = false;
4352
4353 spin_lock(&space_info->lock);
4354 if (ret < 0 && ret != -ENOSPC)
4355 goto out;
4356 if (ret)
4357 space_info->full = 1;
4358 else
4359 ret = 1;
4360
4361 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4362 out:
4363 space_info->chunk_alloc = 0;
4364 spin_unlock(&space_info->lock);
4365 mutex_unlock(&fs_info->chunk_mutex);
4366 /*
4367 * When we allocate a new chunk we reserve space in the chunk block
4368 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4369 * add new nodes/leafs to it if we end up needing to do it when
4370 * inserting the chunk item and updating device items as part of the
4371 * second phase of chunk allocation, performed by
4372 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4373 * large number of new block groups to create in our transaction
4374 * handle's new_bgs list to avoid exhausting the chunk block reserve
4375 * in extreme cases - like having a single transaction create many new
4376 * block groups when starting to write out the free space caches of all
4377 * the block groups that were made dirty during the lifetime of the
4378 * transaction.
4379 */
4380 if (trans->can_flush_pending_bgs &&
4381 trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
4382 btrfs_create_pending_block_groups(trans, trans->root);
4383 btrfs_trans_release_chunk_metadata(trans);
4384 }
4385 return ret;
4386 }
4387
4388 static int can_overcommit(struct btrfs_root *root,
4389 struct btrfs_space_info *space_info, u64 bytes,
4390 enum btrfs_reserve_flush_enum flush)
4391 {
4392 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4393 u64 profile = btrfs_get_alloc_profile(root, 0);
4394 u64 space_size;
4395 u64 avail;
4396 u64 used;
4397
4398 used = space_info->bytes_used + space_info->bytes_reserved +
4399 space_info->bytes_pinned + space_info->bytes_readonly;
4400
4401 /*
4402 * We only want to allow over committing if we have lots of actual space
4403 * free, but if we don't have enough space to handle the global reserve
4404 * space then we could end up having a real enospc problem when trying
4405 * to allocate a chunk or some other such important allocation.
4406 */
4407 spin_lock(&global_rsv->lock);
4408 space_size = calc_global_rsv_need_space(global_rsv);
4409 spin_unlock(&global_rsv->lock);
4410 if (used + space_size >= space_info->total_bytes)
4411 return 0;
4412
4413 used += space_info->bytes_may_use;
4414
4415 spin_lock(&root->fs_info->free_chunk_lock);
4416 avail = root->fs_info->free_chunk_space;
4417 spin_unlock(&root->fs_info->free_chunk_lock);
4418
4419 /*
4420 * If we have dup, raid1 or raid10 then only half of the free
4421 * space is actually useable. For raid56, the space info used
4422 * doesn't include the parity drive, so we don't have to
4423 * change the math
4424 */
4425 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4426 BTRFS_BLOCK_GROUP_RAID1 |
4427 BTRFS_BLOCK_GROUP_RAID10))
4428 avail >>= 1;
4429
4430 /*
4431 * If we aren't flushing all things, let us overcommit up to
4432 * 1/2th of the space. If we can flush, don't let us overcommit
4433 * too much, let it overcommit up to 1/8 of the space.
4434 */
4435 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4436 avail >>= 3;
4437 else
4438 avail >>= 1;
4439
4440 if (used + bytes < space_info->total_bytes + avail)
4441 return 1;
4442 return 0;
4443 }
4444
4445 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4446 unsigned long nr_pages, int nr_items)
4447 {
4448 struct super_block *sb = root->fs_info->sb;
4449
4450 if (down_read_trylock(&sb->s_umount)) {
4451 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4452 up_read(&sb->s_umount);
4453 } else {
4454 /*
4455 * We needn't worry the filesystem going from r/w to r/o though
4456 * we don't acquire ->s_umount mutex, because the filesystem
4457 * should guarantee the delalloc inodes list be empty after
4458 * the filesystem is readonly(all dirty pages are written to
4459 * the disk).
4460 */
4461 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4462 if (!current->journal_info)
4463 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4464 }
4465 }
4466
4467 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4468 {
4469 u64 bytes;
4470 int nr;
4471
4472 bytes = btrfs_calc_trans_metadata_size(root, 1);
4473 nr = (int)div64_u64(to_reclaim, bytes);
4474 if (!nr)
4475 nr = 1;
4476 return nr;
4477 }
4478
4479 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4480
4481 /*
4482 * shrink metadata reservation for delalloc
4483 */
4484 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4485 bool wait_ordered)
4486 {
4487 struct btrfs_block_rsv *block_rsv;
4488 struct btrfs_space_info *space_info;
4489 struct btrfs_trans_handle *trans;
4490 u64 delalloc_bytes;
4491 u64 max_reclaim;
4492 long time_left;
4493 unsigned long nr_pages;
4494 int loops;
4495 int items;
4496 enum btrfs_reserve_flush_enum flush;
4497
4498 /* Calc the number of the pages we need flush for space reservation */
4499 items = calc_reclaim_items_nr(root, to_reclaim);
4500 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4501
4502 trans = (struct btrfs_trans_handle *)current->journal_info;
4503 block_rsv = &root->fs_info->delalloc_block_rsv;
4504 space_info = block_rsv->space_info;
4505
4506 delalloc_bytes = percpu_counter_sum_positive(
4507 &root->fs_info->delalloc_bytes);
4508 if (delalloc_bytes == 0) {
4509 if (trans)
4510 return;
4511 if (wait_ordered)
4512 btrfs_wait_ordered_roots(root->fs_info, items);
4513 return;
4514 }
4515
4516 loops = 0;
4517 while (delalloc_bytes && loops < 3) {
4518 max_reclaim = min(delalloc_bytes, to_reclaim);
4519 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4520 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4521 /*
4522 * We need to wait for the async pages to actually start before
4523 * we do anything.
4524 */
4525 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4526 if (!max_reclaim)
4527 goto skip_async;
4528
4529 if (max_reclaim <= nr_pages)
4530 max_reclaim = 0;
4531 else
4532 max_reclaim -= nr_pages;
4533
4534 wait_event(root->fs_info->async_submit_wait,
4535 atomic_read(&root->fs_info->async_delalloc_pages) <=
4536 (int)max_reclaim);
4537 skip_async:
4538 if (!trans)
4539 flush = BTRFS_RESERVE_FLUSH_ALL;
4540 else
4541 flush = BTRFS_RESERVE_NO_FLUSH;
4542 spin_lock(&space_info->lock);
4543 if (can_overcommit(root, space_info, orig, flush)) {
4544 spin_unlock(&space_info->lock);
4545 break;
4546 }
4547 spin_unlock(&space_info->lock);
4548
4549 loops++;
4550 if (wait_ordered && !trans) {
4551 btrfs_wait_ordered_roots(root->fs_info, items);
4552 } else {
4553 time_left = schedule_timeout_killable(1);
4554 if (time_left)
4555 break;
4556 }
4557 delalloc_bytes = percpu_counter_sum_positive(
4558 &root->fs_info->delalloc_bytes);
4559 }
4560 }
4561
4562 /**
4563 * maybe_commit_transaction - possibly commit the transaction if its ok to
4564 * @root - the root we're allocating for
4565 * @bytes - the number of bytes we want to reserve
4566 * @force - force the commit
4567 *
4568 * This will check to make sure that committing the transaction will actually
4569 * get us somewhere and then commit the transaction if it does. Otherwise it
4570 * will return -ENOSPC.
4571 */
4572 static int may_commit_transaction(struct btrfs_root *root,
4573 struct btrfs_space_info *space_info,
4574 u64 bytes, int force)
4575 {
4576 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4577 struct btrfs_trans_handle *trans;
4578
4579 trans = (struct btrfs_trans_handle *)current->journal_info;
4580 if (trans)
4581 return -EAGAIN;
4582
4583 if (force)
4584 goto commit;
4585
4586 /* See if there is enough pinned space to make this reservation */
4587 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4588 bytes) >= 0)
4589 goto commit;
4590
4591 /*
4592 * See if there is some space in the delayed insertion reservation for
4593 * this reservation.
4594 */
4595 if (space_info != delayed_rsv->space_info)
4596 return -ENOSPC;
4597
4598 spin_lock(&delayed_rsv->lock);
4599 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4600 bytes - delayed_rsv->size) >= 0) {
4601 spin_unlock(&delayed_rsv->lock);
4602 return -ENOSPC;
4603 }
4604 spin_unlock(&delayed_rsv->lock);
4605
4606 commit:
4607 trans = btrfs_join_transaction(root);
4608 if (IS_ERR(trans))
4609 return -ENOSPC;
4610
4611 return btrfs_commit_transaction(trans, root);
4612 }
4613
4614 enum flush_state {
4615 FLUSH_DELAYED_ITEMS_NR = 1,
4616 FLUSH_DELAYED_ITEMS = 2,
4617 FLUSH_DELALLOC = 3,
4618 FLUSH_DELALLOC_WAIT = 4,
4619 ALLOC_CHUNK = 5,
4620 COMMIT_TRANS = 6,
4621 };
4622
4623 static int flush_space(struct btrfs_root *root,
4624 struct btrfs_space_info *space_info, u64 num_bytes,
4625 u64 orig_bytes, int state)
4626 {
4627 struct btrfs_trans_handle *trans;
4628 int nr;
4629 int ret = 0;
4630
4631 switch (state) {
4632 case FLUSH_DELAYED_ITEMS_NR:
4633 case FLUSH_DELAYED_ITEMS:
4634 if (state == FLUSH_DELAYED_ITEMS_NR)
4635 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4636 else
4637 nr = -1;
4638
4639 trans = btrfs_join_transaction(root);
4640 if (IS_ERR(trans)) {
4641 ret = PTR_ERR(trans);
4642 break;
4643 }
4644 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4645 btrfs_end_transaction(trans, root);
4646 break;
4647 case FLUSH_DELALLOC:
4648 case FLUSH_DELALLOC_WAIT:
4649 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4650 state == FLUSH_DELALLOC_WAIT);
4651 break;
4652 case ALLOC_CHUNK:
4653 trans = btrfs_join_transaction(root);
4654 if (IS_ERR(trans)) {
4655 ret = PTR_ERR(trans);
4656 break;
4657 }
4658 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4659 btrfs_get_alloc_profile(root, 0),
4660 CHUNK_ALLOC_NO_FORCE);
4661 btrfs_end_transaction(trans, root);
4662 if (ret == -ENOSPC)
4663 ret = 0;
4664 break;
4665 case COMMIT_TRANS:
4666 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4667 break;
4668 default:
4669 ret = -ENOSPC;
4670 break;
4671 }
4672
4673 return ret;
4674 }
4675
4676 static inline u64
4677 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4678 struct btrfs_space_info *space_info)
4679 {
4680 u64 used;
4681 u64 expected;
4682 u64 to_reclaim;
4683
4684 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4685 16 * 1024 * 1024);
4686 spin_lock(&space_info->lock);
4687 if (can_overcommit(root, space_info, to_reclaim,
4688 BTRFS_RESERVE_FLUSH_ALL)) {
4689 to_reclaim = 0;
4690 goto out;
4691 }
4692
4693 used = space_info->bytes_used + space_info->bytes_reserved +
4694 space_info->bytes_pinned + space_info->bytes_readonly +
4695 space_info->bytes_may_use;
4696 if (can_overcommit(root, space_info, 1024 * 1024,
4697 BTRFS_RESERVE_FLUSH_ALL))
4698 expected = div_factor_fine(space_info->total_bytes, 95);
4699 else
4700 expected = div_factor_fine(space_info->total_bytes, 90);
4701
4702 if (used > expected)
4703 to_reclaim = used - expected;
4704 else
4705 to_reclaim = 0;
4706 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4707 space_info->bytes_reserved);
4708 out:
4709 spin_unlock(&space_info->lock);
4710
4711 return to_reclaim;
4712 }
4713
4714 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4715 struct btrfs_fs_info *fs_info, u64 used)
4716 {
4717 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4718
4719 /* If we're just plain full then async reclaim just slows us down. */
4720 if (space_info->bytes_used >= thresh)
4721 return 0;
4722
4723 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4724 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4725 }
4726
4727 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4728 struct btrfs_fs_info *fs_info,
4729 int flush_state)
4730 {
4731 u64 used;
4732
4733 spin_lock(&space_info->lock);
4734 /*
4735 * We run out of space and have not got any free space via flush_space,
4736 * so don't bother doing async reclaim.
4737 */
4738 if (flush_state > COMMIT_TRANS && space_info->full) {
4739 spin_unlock(&space_info->lock);
4740 return 0;
4741 }
4742
4743 used = space_info->bytes_used + space_info->bytes_reserved +
4744 space_info->bytes_pinned + space_info->bytes_readonly +
4745 space_info->bytes_may_use;
4746 if (need_do_async_reclaim(space_info, fs_info, used)) {
4747 spin_unlock(&space_info->lock);
4748 return 1;
4749 }
4750 spin_unlock(&space_info->lock);
4751
4752 return 0;
4753 }
4754
4755 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4756 {
4757 struct btrfs_fs_info *fs_info;
4758 struct btrfs_space_info *space_info;
4759 u64 to_reclaim;
4760 int flush_state;
4761
4762 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4763 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4764
4765 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4766 space_info);
4767 if (!to_reclaim)
4768 return;
4769
4770 flush_state = FLUSH_DELAYED_ITEMS_NR;
4771 do {
4772 flush_space(fs_info->fs_root, space_info, to_reclaim,
4773 to_reclaim, flush_state);
4774 flush_state++;
4775 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4776 flush_state))
4777 return;
4778 } while (flush_state < COMMIT_TRANS);
4779 }
4780
4781 void btrfs_init_async_reclaim_work(struct work_struct *work)
4782 {
4783 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4784 }
4785
4786 /**
4787 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4788 * @root - the root we're allocating for
4789 * @block_rsv - the block_rsv we're allocating for
4790 * @orig_bytes - the number of bytes we want
4791 * @flush - whether or not we can flush to make our reservation
4792 *
4793 * This will reserve orgi_bytes number of bytes from the space info associated
4794 * with the block_rsv. If there is not enough space it will make an attempt to
4795 * flush out space to make room. It will do this by flushing delalloc if
4796 * possible or committing the transaction. If flush is 0 then no attempts to
4797 * regain reservations will be made and this will fail if there is not enough
4798 * space already.
4799 */
4800 static int reserve_metadata_bytes(struct btrfs_root *root,
4801 struct btrfs_block_rsv *block_rsv,
4802 u64 orig_bytes,
4803 enum btrfs_reserve_flush_enum flush)
4804 {
4805 struct btrfs_space_info *space_info = block_rsv->space_info;
4806 u64 used;
4807 u64 num_bytes = orig_bytes;
4808 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4809 int ret = 0;
4810 bool flushing = false;
4811
4812 again:
4813 ret = 0;
4814 spin_lock(&space_info->lock);
4815 /*
4816 * We only want to wait if somebody other than us is flushing and we
4817 * are actually allowed to flush all things.
4818 */
4819 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4820 space_info->flush) {
4821 spin_unlock(&space_info->lock);
4822 /*
4823 * If we have a trans handle we can't wait because the flusher
4824 * may have to commit the transaction, which would mean we would
4825 * deadlock since we are waiting for the flusher to finish, but
4826 * hold the current transaction open.
4827 */
4828 if (current->journal_info)
4829 return -EAGAIN;
4830 ret = wait_event_killable(space_info->wait, !space_info->flush);
4831 /* Must have been killed, return */
4832 if (ret)
4833 return -EINTR;
4834
4835 spin_lock(&space_info->lock);
4836 }
4837
4838 ret = -ENOSPC;
4839 used = space_info->bytes_used + space_info->bytes_reserved +
4840 space_info->bytes_pinned + space_info->bytes_readonly +
4841 space_info->bytes_may_use;
4842
4843 /*
4844 * The idea here is that we've not already over-reserved the block group
4845 * then we can go ahead and save our reservation first and then start
4846 * flushing if we need to. Otherwise if we've already overcommitted
4847 * lets start flushing stuff first and then come back and try to make
4848 * our reservation.
4849 */
4850 if (used <= space_info->total_bytes) {
4851 if (used + orig_bytes <= space_info->total_bytes) {
4852 space_info->bytes_may_use += orig_bytes;
4853 trace_btrfs_space_reservation(root->fs_info,
4854 "space_info", space_info->flags, orig_bytes, 1);
4855 ret = 0;
4856 } else {
4857 /*
4858 * Ok set num_bytes to orig_bytes since we aren't
4859 * overocmmitted, this way we only try and reclaim what
4860 * we need.
4861 */
4862 num_bytes = orig_bytes;
4863 }
4864 } else {
4865 /*
4866 * Ok we're over committed, set num_bytes to the overcommitted
4867 * amount plus the amount of bytes that we need for this
4868 * reservation.
4869 */
4870 num_bytes = used - space_info->total_bytes +
4871 (orig_bytes * 2);
4872 }
4873
4874 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4875 space_info->bytes_may_use += orig_bytes;
4876 trace_btrfs_space_reservation(root->fs_info, "space_info",
4877 space_info->flags, orig_bytes,
4878 1);
4879 ret = 0;
4880 }
4881
4882 /*
4883 * Couldn't make our reservation, save our place so while we're trying
4884 * to reclaim space we can actually use it instead of somebody else
4885 * stealing it from us.
4886 *
4887 * We make the other tasks wait for the flush only when we can flush
4888 * all things.
4889 */
4890 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4891 flushing = true;
4892 space_info->flush = 1;
4893 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4894 used += orig_bytes;
4895 /*
4896 * We will do the space reservation dance during log replay,
4897 * which means we won't have fs_info->fs_root set, so don't do
4898 * the async reclaim as we will panic.
4899 */
4900 if (!root->fs_info->log_root_recovering &&
4901 need_do_async_reclaim(space_info, root->fs_info, used) &&
4902 !work_busy(&root->fs_info->async_reclaim_work))
4903 queue_work(system_unbound_wq,
4904 &root->fs_info->async_reclaim_work);
4905 }
4906 spin_unlock(&space_info->lock);
4907
4908 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4909 goto out;
4910
4911 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4912 flush_state);
4913 flush_state++;
4914
4915 /*
4916 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4917 * would happen. So skip delalloc flush.
4918 */
4919 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4920 (flush_state == FLUSH_DELALLOC ||
4921 flush_state == FLUSH_DELALLOC_WAIT))
4922 flush_state = ALLOC_CHUNK;
4923
4924 if (!ret)
4925 goto again;
4926 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4927 flush_state < COMMIT_TRANS)
4928 goto again;
4929 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4930 flush_state <= COMMIT_TRANS)
4931 goto again;
4932
4933 out:
4934 if (ret == -ENOSPC &&
4935 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4936 struct btrfs_block_rsv *global_rsv =
4937 &root->fs_info->global_block_rsv;
4938
4939 if (block_rsv != global_rsv &&
4940 !block_rsv_use_bytes(global_rsv, orig_bytes))
4941 ret = 0;
4942 }
4943 if (ret == -ENOSPC)
4944 trace_btrfs_space_reservation(root->fs_info,
4945 "space_info:enospc",
4946 space_info->flags, orig_bytes, 1);
4947 if (flushing) {
4948 spin_lock(&space_info->lock);
4949 space_info->flush = 0;
4950 wake_up_all(&space_info->wait);
4951 spin_unlock(&space_info->lock);
4952 }
4953 return ret;
4954 }
4955
4956 static struct btrfs_block_rsv *get_block_rsv(
4957 const struct btrfs_trans_handle *trans,
4958 const struct btrfs_root *root)
4959 {
4960 struct btrfs_block_rsv *block_rsv = NULL;
4961
4962 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4963 (root == root->fs_info->csum_root && trans->adding_csums) ||
4964 (root == root->fs_info->uuid_root))
4965 block_rsv = trans->block_rsv;
4966
4967 if (!block_rsv)
4968 block_rsv = root->block_rsv;
4969
4970 if (!block_rsv)
4971 block_rsv = &root->fs_info->empty_block_rsv;
4972
4973 return block_rsv;
4974 }
4975
4976 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4977 u64 num_bytes)
4978 {
4979 int ret = -ENOSPC;
4980 spin_lock(&block_rsv->lock);
4981 if (block_rsv->reserved >= num_bytes) {
4982 block_rsv->reserved -= num_bytes;
4983 if (block_rsv->reserved < block_rsv->size)
4984 block_rsv->full = 0;
4985 ret = 0;
4986 }
4987 spin_unlock(&block_rsv->lock);
4988 return ret;
4989 }
4990
4991 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4992 u64 num_bytes, int update_size)
4993 {
4994 spin_lock(&block_rsv->lock);
4995 block_rsv->reserved += num_bytes;
4996 if (update_size)
4997 block_rsv->size += num_bytes;
4998 else if (block_rsv->reserved >= block_rsv->size)
4999 block_rsv->full = 1;
5000 spin_unlock(&block_rsv->lock);
5001 }
5002
5003 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5004 struct btrfs_block_rsv *dest, u64 num_bytes,
5005 int min_factor)
5006 {
5007 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5008 u64 min_bytes;
5009
5010 if (global_rsv->space_info != dest->space_info)
5011 return -ENOSPC;
5012
5013 spin_lock(&global_rsv->lock);
5014 min_bytes = div_factor(global_rsv->size, min_factor);
5015 if (global_rsv->reserved < min_bytes + num_bytes) {
5016 spin_unlock(&global_rsv->lock);
5017 return -ENOSPC;
5018 }
5019 global_rsv->reserved -= num_bytes;
5020 if (global_rsv->reserved < global_rsv->size)
5021 global_rsv->full = 0;
5022 spin_unlock(&global_rsv->lock);
5023
5024 block_rsv_add_bytes(dest, num_bytes, 1);
5025 return 0;
5026 }
5027
5028 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5029 struct btrfs_block_rsv *block_rsv,
5030 struct btrfs_block_rsv *dest, u64 num_bytes)
5031 {
5032 struct btrfs_space_info *space_info = block_rsv->space_info;
5033
5034 spin_lock(&block_rsv->lock);
5035 if (num_bytes == (u64)-1)
5036 num_bytes = block_rsv->size;
5037 block_rsv->size -= num_bytes;
5038 if (block_rsv->reserved >= block_rsv->size) {
5039 num_bytes = block_rsv->reserved - block_rsv->size;
5040 block_rsv->reserved = block_rsv->size;
5041 block_rsv->full = 1;
5042 } else {
5043 num_bytes = 0;
5044 }
5045 spin_unlock(&block_rsv->lock);
5046
5047 if (num_bytes > 0) {
5048 if (dest) {
5049 spin_lock(&dest->lock);
5050 if (!dest->full) {
5051 u64 bytes_to_add;
5052
5053 bytes_to_add = dest->size - dest->reserved;
5054 bytes_to_add = min(num_bytes, bytes_to_add);
5055 dest->reserved += bytes_to_add;
5056 if (dest->reserved >= dest->size)
5057 dest->full = 1;
5058 num_bytes -= bytes_to_add;
5059 }
5060 spin_unlock(&dest->lock);
5061 }
5062 if (num_bytes) {
5063 spin_lock(&space_info->lock);
5064 space_info->bytes_may_use -= num_bytes;
5065 trace_btrfs_space_reservation(fs_info, "space_info",
5066 space_info->flags, num_bytes, 0);
5067 spin_unlock(&space_info->lock);
5068 }
5069 }
5070 }
5071
5072 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5073 struct btrfs_block_rsv *dst, u64 num_bytes)
5074 {
5075 int ret;
5076
5077 ret = block_rsv_use_bytes(src, num_bytes);
5078 if (ret)
5079 return ret;
5080
5081 block_rsv_add_bytes(dst, num_bytes, 1);
5082 return 0;
5083 }
5084
5085 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5086 {
5087 memset(rsv, 0, sizeof(*rsv));
5088 spin_lock_init(&rsv->lock);
5089 rsv->type = type;
5090 }
5091
5092 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5093 unsigned short type)
5094 {
5095 struct btrfs_block_rsv *block_rsv;
5096 struct btrfs_fs_info *fs_info = root->fs_info;
5097
5098 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5099 if (!block_rsv)
5100 return NULL;
5101
5102 btrfs_init_block_rsv(block_rsv, type);
5103 block_rsv->space_info = __find_space_info(fs_info,
5104 BTRFS_BLOCK_GROUP_METADATA);
5105 return block_rsv;
5106 }
5107
5108 void btrfs_free_block_rsv(struct btrfs_root *root,
5109 struct btrfs_block_rsv *rsv)
5110 {
5111 if (!rsv)
5112 return;
5113 btrfs_block_rsv_release(root, rsv, (u64)-1);
5114 kfree(rsv);
5115 }
5116
5117 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5118 {
5119 kfree(rsv);
5120 }
5121
5122 int btrfs_block_rsv_add(struct btrfs_root *root,
5123 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5124 enum btrfs_reserve_flush_enum flush)
5125 {
5126 int ret;
5127
5128 if (num_bytes == 0)
5129 return 0;
5130
5131 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5132 if (!ret) {
5133 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5134 return 0;
5135 }
5136
5137 return ret;
5138 }
5139
5140 int btrfs_block_rsv_check(struct btrfs_root *root,
5141 struct btrfs_block_rsv *block_rsv, int min_factor)
5142 {
5143 u64 num_bytes = 0;
5144 int ret = -ENOSPC;
5145
5146 if (!block_rsv)
5147 return 0;
5148
5149 spin_lock(&block_rsv->lock);
5150 num_bytes = div_factor(block_rsv->size, min_factor);
5151 if (block_rsv->reserved >= num_bytes)
5152 ret = 0;
5153 spin_unlock(&block_rsv->lock);
5154
5155 return ret;
5156 }
5157
5158 int btrfs_block_rsv_refill(struct btrfs_root *root,
5159 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5160 enum btrfs_reserve_flush_enum flush)
5161 {
5162 u64 num_bytes = 0;
5163 int ret = -ENOSPC;
5164
5165 if (!block_rsv)
5166 return 0;
5167
5168 spin_lock(&block_rsv->lock);
5169 num_bytes = min_reserved;
5170 if (block_rsv->reserved >= num_bytes)
5171 ret = 0;
5172 else
5173 num_bytes -= block_rsv->reserved;
5174 spin_unlock(&block_rsv->lock);
5175
5176 if (!ret)
5177 return 0;
5178
5179 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5180 if (!ret) {
5181 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5182 return 0;
5183 }
5184
5185 return ret;
5186 }
5187
5188 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5189 struct btrfs_block_rsv *dst_rsv,
5190 u64 num_bytes)
5191 {
5192 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5193 }
5194
5195 void btrfs_block_rsv_release(struct btrfs_root *root,
5196 struct btrfs_block_rsv *block_rsv,
5197 u64 num_bytes)
5198 {
5199 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5200 if (global_rsv == block_rsv ||
5201 block_rsv->space_info != global_rsv->space_info)
5202 global_rsv = NULL;
5203 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5204 num_bytes);
5205 }
5206
5207 /*
5208 * helper to calculate size of global block reservation.
5209 * the desired value is sum of space used by extent tree,
5210 * checksum tree and root tree
5211 */
5212 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5213 {
5214 struct btrfs_space_info *sinfo;
5215 u64 num_bytes;
5216 u64 meta_used;
5217 u64 data_used;
5218 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5219
5220 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5221 spin_lock(&sinfo->lock);
5222 data_used = sinfo->bytes_used;
5223 spin_unlock(&sinfo->lock);
5224
5225 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5226 spin_lock(&sinfo->lock);
5227 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5228 data_used = 0;
5229 meta_used = sinfo->bytes_used;
5230 spin_unlock(&sinfo->lock);
5231
5232 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5233 csum_size * 2;
5234 num_bytes += div_u64(data_used + meta_used, 50);
5235
5236 if (num_bytes * 3 > meta_used)
5237 num_bytes = div_u64(meta_used, 3);
5238
5239 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5240 }
5241
5242 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5243 {
5244 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5245 struct btrfs_space_info *sinfo = block_rsv->space_info;
5246 u64 num_bytes;
5247
5248 num_bytes = calc_global_metadata_size(fs_info);
5249
5250 spin_lock(&sinfo->lock);
5251 spin_lock(&block_rsv->lock);
5252
5253 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5254
5255 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5256 sinfo->bytes_reserved + sinfo->bytes_readonly +
5257 sinfo->bytes_may_use;
5258
5259 if (sinfo->total_bytes > num_bytes) {
5260 num_bytes = sinfo->total_bytes - num_bytes;
5261 block_rsv->reserved += num_bytes;
5262 sinfo->bytes_may_use += num_bytes;
5263 trace_btrfs_space_reservation(fs_info, "space_info",
5264 sinfo->flags, num_bytes, 1);
5265 }
5266
5267 if (block_rsv->reserved >= block_rsv->size) {
5268 num_bytes = block_rsv->reserved - block_rsv->size;
5269 sinfo->bytes_may_use -= num_bytes;
5270 trace_btrfs_space_reservation(fs_info, "space_info",
5271 sinfo->flags, num_bytes, 0);
5272 block_rsv->reserved = block_rsv->size;
5273 block_rsv->full = 1;
5274 }
5275
5276 spin_unlock(&block_rsv->lock);
5277 spin_unlock(&sinfo->lock);
5278 }
5279
5280 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5281 {
5282 struct btrfs_space_info *space_info;
5283
5284 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5285 fs_info->chunk_block_rsv.space_info = space_info;
5286
5287 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5288 fs_info->global_block_rsv.space_info = space_info;
5289 fs_info->delalloc_block_rsv.space_info = space_info;
5290 fs_info->trans_block_rsv.space_info = space_info;
5291 fs_info->empty_block_rsv.space_info = space_info;
5292 fs_info->delayed_block_rsv.space_info = space_info;
5293
5294 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5295 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5296 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5297 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5298 if (fs_info->quota_root)
5299 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5300 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5301
5302 update_global_block_rsv(fs_info);
5303 }
5304
5305 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5306 {
5307 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5308 (u64)-1);
5309 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5310 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5311 WARN_ON(fs_info->trans_block_rsv.size > 0);
5312 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5313 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5314 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5315 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5316 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5317 }
5318
5319 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5320 struct btrfs_root *root)
5321 {
5322 if (!trans->block_rsv)
5323 return;
5324
5325 if (!trans->bytes_reserved)
5326 return;
5327
5328 trace_btrfs_space_reservation(root->fs_info, "transaction",
5329 trans->transid, trans->bytes_reserved, 0);
5330 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5331 trans->bytes_reserved = 0;
5332 }
5333
5334 /*
5335 * To be called after all the new block groups attached to the transaction
5336 * handle have been created (btrfs_create_pending_block_groups()).
5337 */
5338 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5339 {
5340 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5341
5342 if (!trans->chunk_bytes_reserved)
5343 return;
5344
5345 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5346
5347 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5348 trans->chunk_bytes_reserved);
5349 trans->chunk_bytes_reserved = 0;
5350 }
5351
5352 /* Can only return 0 or -ENOSPC */
5353 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5354 struct inode *inode)
5355 {
5356 struct btrfs_root *root = BTRFS_I(inode)->root;
5357 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5358 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5359
5360 /*
5361 * We need to hold space in order to delete our orphan item once we've
5362 * added it, so this takes the reservation so we can release it later
5363 * when we are truly done with the orphan item.
5364 */
5365 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5366 trace_btrfs_space_reservation(root->fs_info, "orphan",
5367 btrfs_ino(inode), num_bytes, 1);
5368 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5369 }
5370
5371 void btrfs_orphan_release_metadata(struct inode *inode)
5372 {
5373 struct btrfs_root *root = BTRFS_I(inode)->root;
5374 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5375 trace_btrfs_space_reservation(root->fs_info, "orphan",
5376 btrfs_ino(inode), num_bytes, 0);
5377 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5378 }
5379
5380 /*
5381 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5382 * root: the root of the parent directory
5383 * rsv: block reservation
5384 * items: the number of items that we need do reservation
5385 * qgroup_reserved: used to return the reserved size in qgroup
5386 *
5387 * This function is used to reserve the space for snapshot/subvolume
5388 * creation and deletion. Those operations are different with the
5389 * common file/directory operations, they change two fs/file trees
5390 * and root tree, the number of items that the qgroup reserves is
5391 * different with the free space reservation. So we can not use
5392 * the space reseravtion mechanism in start_transaction().
5393 */
5394 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5395 struct btrfs_block_rsv *rsv,
5396 int items,
5397 u64 *qgroup_reserved,
5398 bool use_global_rsv)
5399 {
5400 u64 num_bytes;
5401 int ret;
5402 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5403
5404 if (root->fs_info->quota_enabled) {
5405 /* One for parent inode, two for dir entries */
5406 num_bytes = 3 * root->nodesize;
5407 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5408 if (ret)
5409 return ret;
5410 } else {
5411 num_bytes = 0;
5412 }
5413
5414 *qgroup_reserved = num_bytes;
5415
5416 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5417 rsv->space_info = __find_space_info(root->fs_info,
5418 BTRFS_BLOCK_GROUP_METADATA);
5419 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5420 BTRFS_RESERVE_FLUSH_ALL);
5421
5422 if (ret == -ENOSPC && use_global_rsv)
5423 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5424
5425 if (ret && *qgroup_reserved)
5426 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5427
5428 return ret;
5429 }
5430
5431 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5432 struct btrfs_block_rsv *rsv,
5433 u64 qgroup_reserved)
5434 {
5435 btrfs_block_rsv_release(root, rsv, (u64)-1);
5436 }
5437
5438 /**
5439 * drop_outstanding_extent - drop an outstanding extent
5440 * @inode: the inode we're dropping the extent for
5441 * @num_bytes: the number of bytes we're relaseing.
5442 *
5443 * This is called when we are freeing up an outstanding extent, either called
5444 * after an error or after an extent is written. This will return the number of
5445 * reserved extents that need to be freed. This must be called with
5446 * BTRFS_I(inode)->lock held.
5447 */
5448 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5449 {
5450 unsigned drop_inode_space = 0;
5451 unsigned dropped_extents = 0;
5452 unsigned num_extents = 0;
5453
5454 num_extents = (unsigned)div64_u64(num_bytes +
5455 BTRFS_MAX_EXTENT_SIZE - 1,
5456 BTRFS_MAX_EXTENT_SIZE);
5457 ASSERT(num_extents);
5458 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5459 BTRFS_I(inode)->outstanding_extents -= num_extents;
5460
5461 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5462 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5463 &BTRFS_I(inode)->runtime_flags))
5464 drop_inode_space = 1;
5465
5466 /*
5467 * If we have more or the same amount of outsanding extents than we have
5468 * reserved then we need to leave the reserved extents count alone.
5469 */
5470 if (BTRFS_I(inode)->outstanding_extents >=
5471 BTRFS_I(inode)->reserved_extents)
5472 return drop_inode_space;
5473
5474 dropped_extents = BTRFS_I(inode)->reserved_extents -
5475 BTRFS_I(inode)->outstanding_extents;
5476 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5477 return dropped_extents + drop_inode_space;
5478 }
5479
5480 /**
5481 * calc_csum_metadata_size - return the amount of metada space that must be
5482 * reserved/free'd for the given bytes.
5483 * @inode: the inode we're manipulating
5484 * @num_bytes: the number of bytes in question
5485 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5486 *
5487 * This adjusts the number of csum_bytes in the inode and then returns the
5488 * correct amount of metadata that must either be reserved or freed. We
5489 * calculate how many checksums we can fit into one leaf and then divide the
5490 * number of bytes that will need to be checksumed by this value to figure out
5491 * how many checksums will be required. If we are adding bytes then the number
5492 * may go up and we will return the number of additional bytes that must be
5493 * reserved. If it is going down we will return the number of bytes that must
5494 * be freed.
5495 *
5496 * This must be called with BTRFS_I(inode)->lock held.
5497 */
5498 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5499 int reserve)
5500 {
5501 struct btrfs_root *root = BTRFS_I(inode)->root;
5502 u64 old_csums, num_csums;
5503
5504 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5505 BTRFS_I(inode)->csum_bytes == 0)
5506 return 0;
5507
5508 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5509 if (reserve)
5510 BTRFS_I(inode)->csum_bytes += num_bytes;
5511 else
5512 BTRFS_I(inode)->csum_bytes -= num_bytes;
5513 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5514
5515 /* No change, no need to reserve more */
5516 if (old_csums == num_csums)
5517 return 0;
5518
5519 if (reserve)
5520 return btrfs_calc_trans_metadata_size(root,
5521 num_csums - old_csums);
5522
5523 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5524 }
5525
5526 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5527 {
5528 struct btrfs_root *root = BTRFS_I(inode)->root;
5529 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5530 u64 to_reserve = 0;
5531 u64 csum_bytes;
5532 unsigned nr_extents = 0;
5533 int extra_reserve = 0;
5534 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5535 int ret = 0;
5536 bool delalloc_lock = true;
5537 u64 to_free = 0;
5538 unsigned dropped;
5539
5540 /* If we are a free space inode we need to not flush since we will be in
5541 * the middle of a transaction commit. We also don't need the delalloc
5542 * mutex since we won't race with anybody. We need this mostly to make
5543 * lockdep shut its filthy mouth.
5544 */
5545 if (btrfs_is_free_space_inode(inode)) {
5546 flush = BTRFS_RESERVE_NO_FLUSH;
5547 delalloc_lock = false;
5548 }
5549
5550 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5551 btrfs_transaction_in_commit(root->fs_info))
5552 schedule_timeout(1);
5553
5554 if (delalloc_lock)
5555 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5556
5557 num_bytes = ALIGN(num_bytes, root->sectorsize);
5558
5559 spin_lock(&BTRFS_I(inode)->lock);
5560 nr_extents = (unsigned)div64_u64(num_bytes +
5561 BTRFS_MAX_EXTENT_SIZE - 1,
5562 BTRFS_MAX_EXTENT_SIZE);
5563 BTRFS_I(inode)->outstanding_extents += nr_extents;
5564 nr_extents = 0;
5565
5566 if (BTRFS_I(inode)->outstanding_extents >
5567 BTRFS_I(inode)->reserved_extents)
5568 nr_extents = BTRFS_I(inode)->outstanding_extents -
5569 BTRFS_I(inode)->reserved_extents;
5570
5571 /*
5572 * Add an item to reserve for updating the inode when we complete the
5573 * delalloc io.
5574 */
5575 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5576 &BTRFS_I(inode)->runtime_flags)) {
5577 nr_extents++;
5578 extra_reserve = 1;
5579 }
5580
5581 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5582 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5583 csum_bytes = BTRFS_I(inode)->csum_bytes;
5584 spin_unlock(&BTRFS_I(inode)->lock);
5585
5586 if (root->fs_info->quota_enabled) {
5587 ret = btrfs_qgroup_reserve_meta(root,
5588 nr_extents * root->nodesize);
5589 if (ret)
5590 goto out_fail;
5591 }
5592
5593 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5594 if (unlikely(ret)) {
5595 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5596 goto out_fail;
5597 }
5598
5599 spin_lock(&BTRFS_I(inode)->lock);
5600 if (extra_reserve) {
5601 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5602 &BTRFS_I(inode)->runtime_flags);
5603 nr_extents--;
5604 }
5605 BTRFS_I(inode)->reserved_extents += nr_extents;
5606 spin_unlock(&BTRFS_I(inode)->lock);
5607
5608 if (delalloc_lock)
5609 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5610
5611 if (to_reserve)
5612 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5613 btrfs_ino(inode), to_reserve, 1);
5614 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5615
5616 return 0;
5617
5618 out_fail:
5619 spin_lock(&BTRFS_I(inode)->lock);
5620 dropped = drop_outstanding_extent(inode, num_bytes);
5621 /*
5622 * If the inodes csum_bytes is the same as the original
5623 * csum_bytes then we know we haven't raced with any free()ers
5624 * so we can just reduce our inodes csum bytes and carry on.
5625 */
5626 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5627 calc_csum_metadata_size(inode, num_bytes, 0);
5628 } else {
5629 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5630 u64 bytes;
5631
5632 /*
5633 * This is tricky, but first we need to figure out how much we
5634 * free'd from any free-ers that occured during this
5635 * reservation, so we reset ->csum_bytes to the csum_bytes
5636 * before we dropped our lock, and then call the free for the
5637 * number of bytes that were freed while we were trying our
5638 * reservation.
5639 */
5640 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5641 BTRFS_I(inode)->csum_bytes = csum_bytes;
5642 to_free = calc_csum_metadata_size(inode, bytes, 0);
5643
5644
5645 /*
5646 * Now we need to see how much we would have freed had we not
5647 * been making this reservation and our ->csum_bytes were not
5648 * artificially inflated.
5649 */
5650 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5651 bytes = csum_bytes - orig_csum_bytes;
5652 bytes = calc_csum_metadata_size(inode, bytes, 0);
5653
5654 /*
5655 * Now reset ->csum_bytes to what it should be. If bytes is
5656 * more than to_free then we would have free'd more space had we
5657 * not had an artificially high ->csum_bytes, so we need to free
5658 * the remainder. If bytes is the same or less then we don't
5659 * need to do anything, the other free-ers did the correct
5660 * thing.
5661 */
5662 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5663 if (bytes > to_free)
5664 to_free = bytes - to_free;
5665 else
5666 to_free = 0;
5667 }
5668 spin_unlock(&BTRFS_I(inode)->lock);
5669 if (dropped)
5670 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5671
5672 if (to_free) {
5673 btrfs_block_rsv_release(root, block_rsv, to_free);
5674 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5675 btrfs_ino(inode), to_free, 0);
5676 }
5677 if (delalloc_lock)
5678 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5679 return ret;
5680 }
5681
5682 /**
5683 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5684 * @inode: the inode to release the reservation for
5685 * @num_bytes: the number of bytes we're releasing
5686 *
5687 * This will release the metadata reservation for an inode. This can be called
5688 * once we complete IO for a given set of bytes to release their metadata
5689 * reservations.
5690 */
5691 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5692 {
5693 struct btrfs_root *root = BTRFS_I(inode)->root;
5694 u64 to_free = 0;
5695 unsigned dropped;
5696
5697 num_bytes = ALIGN(num_bytes, root->sectorsize);
5698 spin_lock(&BTRFS_I(inode)->lock);
5699 dropped = drop_outstanding_extent(inode, num_bytes);
5700
5701 if (num_bytes)
5702 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5703 spin_unlock(&BTRFS_I(inode)->lock);
5704 if (dropped > 0)
5705 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5706
5707 if (btrfs_test_is_dummy_root(root))
5708 return;
5709
5710 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5711 btrfs_ino(inode), to_free, 0);
5712
5713 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5714 to_free);
5715 }
5716
5717 /**
5718 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5719 * @inode: inode we're writing to
5720 * @num_bytes: the number of bytes we want to allocate
5721 *
5722 * This will do the following things
5723 *
5724 * o reserve space in the data space info for num_bytes
5725 * o reserve space in the metadata space info based on number of outstanding
5726 * extents and how much csums will be needed
5727 * o add to the inodes ->delalloc_bytes
5728 * o add it to the fs_info's delalloc inodes list.
5729 *
5730 * This will return 0 for success and -ENOSPC if there is no space left.
5731 */
5732 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5733 {
5734 int ret;
5735
5736 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
5737 if (ret)
5738 return ret;
5739
5740 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5741 if (ret) {
5742 btrfs_free_reserved_data_space(inode, num_bytes);
5743 return ret;
5744 }
5745
5746 return 0;
5747 }
5748
5749 /**
5750 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5751 * @inode: inode we're releasing space for
5752 * @num_bytes: the number of bytes we want to free up
5753 *
5754 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5755 * called in the case that we don't need the metadata AND data reservations
5756 * anymore. So if there is an error or we insert an inline extent.
5757 *
5758 * This function will release the metadata space that was not used and will
5759 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5760 * list if there are no delalloc bytes left.
5761 */
5762 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5763 {
5764 btrfs_delalloc_release_metadata(inode, num_bytes);
5765 btrfs_free_reserved_data_space(inode, num_bytes);
5766 }
5767
5768 static int update_block_group(struct btrfs_trans_handle *trans,
5769 struct btrfs_root *root, u64 bytenr,
5770 u64 num_bytes, int alloc)
5771 {
5772 struct btrfs_block_group_cache *cache = NULL;
5773 struct btrfs_fs_info *info = root->fs_info;
5774 u64 total = num_bytes;
5775 u64 old_val;
5776 u64 byte_in_group;
5777 int factor;
5778
5779 /* block accounting for super block */
5780 spin_lock(&info->delalloc_root_lock);
5781 old_val = btrfs_super_bytes_used(info->super_copy);
5782 if (alloc)
5783 old_val += num_bytes;
5784 else
5785 old_val -= num_bytes;
5786 btrfs_set_super_bytes_used(info->super_copy, old_val);
5787 spin_unlock(&info->delalloc_root_lock);
5788
5789 while (total) {
5790 cache = btrfs_lookup_block_group(info, bytenr);
5791 if (!cache)
5792 return -ENOENT;
5793 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5794 BTRFS_BLOCK_GROUP_RAID1 |
5795 BTRFS_BLOCK_GROUP_RAID10))
5796 factor = 2;
5797 else
5798 factor = 1;
5799 /*
5800 * If this block group has free space cache written out, we
5801 * need to make sure to load it if we are removing space. This
5802 * is because we need the unpinning stage to actually add the
5803 * space back to the block group, otherwise we will leak space.
5804 */
5805 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5806 cache_block_group(cache, 1);
5807
5808 byte_in_group = bytenr - cache->key.objectid;
5809 WARN_ON(byte_in_group > cache->key.offset);
5810
5811 spin_lock(&cache->space_info->lock);
5812 spin_lock(&cache->lock);
5813
5814 if (btrfs_test_opt(root, SPACE_CACHE) &&
5815 cache->disk_cache_state < BTRFS_DC_CLEAR)
5816 cache->disk_cache_state = BTRFS_DC_CLEAR;
5817
5818 old_val = btrfs_block_group_used(&cache->item);
5819 num_bytes = min(total, cache->key.offset - byte_in_group);
5820 if (alloc) {
5821 old_val += num_bytes;
5822 btrfs_set_block_group_used(&cache->item, old_val);
5823 cache->reserved -= num_bytes;
5824 cache->space_info->bytes_reserved -= num_bytes;
5825 cache->space_info->bytes_used += num_bytes;
5826 cache->space_info->disk_used += num_bytes * factor;
5827 spin_unlock(&cache->lock);
5828 spin_unlock(&cache->space_info->lock);
5829 } else {
5830 old_val -= num_bytes;
5831 btrfs_set_block_group_used(&cache->item, old_val);
5832 cache->pinned += num_bytes;
5833 cache->space_info->bytes_pinned += num_bytes;
5834 cache->space_info->bytes_used -= num_bytes;
5835 cache->space_info->disk_used -= num_bytes * factor;
5836 spin_unlock(&cache->lock);
5837 spin_unlock(&cache->space_info->lock);
5838
5839 set_extent_dirty(info->pinned_extents,
5840 bytenr, bytenr + num_bytes - 1,
5841 GFP_NOFS | __GFP_NOFAIL);
5842 /*
5843 * No longer have used bytes in this block group, queue
5844 * it for deletion.
5845 */
5846 if (old_val == 0) {
5847 spin_lock(&info->unused_bgs_lock);
5848 if (list_empty(&cache->bg_list)) {
5849 btrfs_get_block_group(cache);
5850 list_add_tail(&cache->bg_list,
5851 &info->unused_bgs);
5852 }
5853 spin_unlock(&info->unused_bgs_lock);
5854 }
5855 }
5856
5857 spin_lock(&trans->transaction->dirty_bgs_lock);
5858 if (list_empty(&cache->dirty_list)) {
5859 list_add_tail(&cache->dirty_list,
5860 &trans->transaction->dirty_bgs);
5861 trans->transaction->num_dirty_bgs++;
5862 btrfs_get_block_group(cache);
5863 }
5864 spin_unlock(&trans->transaction->dirty_bgs_lock);
5865
5866 btrfs_put_block_group(cache);
5867 total -= num_bytes;
5868 bytenr += num_bytes;
5869 }
5870 return 0;
5871 }
5872
5873 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5874 {
5875 struct btrfs_block_group_cache *cache;
5876 u64 bytenr;
5877
5878 spin_lock(&root->fs_info->block_group_cache_lock);
5879 bytenr = root->fs_info->first_logical_byte;
5880 spin_unlock(&root->fs_info->block_group_cache_lock);
5881
5882 if (bytenr < (u64)-1)
5883 return bytenr;
5884
5885 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5886 if (!cache)
5887 return 0;
5888
5889 bytenr = cache->key.objectid;
5890 btrfs_put_block_group(cache);
5891
5892 return bytenr;
5893 }
5894
5895 static int pin_down_extent(struct btrfs_root *root,
5896 struct btrfs_block_group_cache *cache,
5897 u64 bytenr, u64 num_bytes, int reserved)
5898 {
5899 spin_lock(&cache->space_info->lock);
5900 spin_lock(&cache->lock);
5901 cache->pinned += num_bytes;
5902 cache->space_info->bytes_pinned += num_bytes;
5903 if (reserved) {
5904 cache->reserved -= num_bytes;
5905 cache->space_info->bytes_reserved -= num_bytes;
5906 }
5907 spin_unlock(&cache->lock);
5908 spin_unlock(&cache->space_info->lock);
5909
5910 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5911 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5912 if (reserved)
5913 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5914 return 0;
5915 }
5916
5917 /*
5918 * this function must be called within transaction
5919 */
5920 int btrfs_pin_extent(struct btrfs_root *root,
5921 u64 bytenr, u64 num_bytes, int reserved)
5922 {
5923 struct btrfs_block_group_cache *cache;
5924
5925 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5926 BUG_ON(!cache); /* Logic error */
5927
5928 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5929
5930 btrfs_put_block_group(cache);
5931 return 0;
5932 }
5933
5934 /*
5935 * this function must be called within transaction
5936 */
5937 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5938 u64 bytenr, u64 num_bytes)
5939 {
5940 struct btrfs_block_group_cache *cache;
5941 int ret;
5942
5943 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5944 if (!cache)
5945 return -EINVAL;
5946
5947 /*
5948 * pull in the free space cache (if any) so that our pin
5949 * removes the free space from the cache. We have load_only set
5950 * to one because the slow code to read in the free extents does check
5951 * the pinned extents.
5952 */
5953 cache_block_group(cache, 1);
5954
5955 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5956
5957 /* remove us from the free space cache (if we're there at all) */
5958 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5959 btrfs_put_block_group(cache);
5960 return ret;
5961 }
5962
5963 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5964 {
5965 int ret;
5966 struct btrfs_block_group_cache *block_group;
5967 struct btrfs_caching_control *caching_ctl;
5968
5969 block_group = btrfs_lookup_block_group(root->fs_info, start);
5970 if (!block_group)
5971 return -EINVAL;
5972
5973 cache_block_group(block_group, 0);
5974 caching_ctl = get_caching_control(block_group);
5975
5976 if (!caching_ctl) {
5977 /* Logic error */
5978 BUG_ON(!block_group_cache_done(block_group));
5979 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5980 } else {
5981 mutex_lock(&caching_ctl->mutex);
5982
5983 if (start >= caching_ctl->progress) {
5984 ret = add_excluded_extent(root, start, num_bytes);
5985 } else if (start + num_bytes <= caching_ctl->progress) {
5986 ret = btrfs_remove_free_space(block_group,
5987 start, num_bytes);
5988 } else {
5989 num_bytes = caching_ctl->progress - start;
5990 ret = btrfs_remove_free_space(block_group,
5991 start, num_bytes);
5992 if (ret)
5993 goto out_lock;
5994
5995 num_bytes = (start + num_bytes) -
5996 caching_ctl->progress;
5997 start = caching_ctl->progress;
5998 ret = add_excluded_extent(root, start, num_bytes);
5999 }
6000 out_lock:
6001 mutex_unlock(&caching_ctl->mutex);
6002 put_caching_control(caching_ctl);
6003 }
6004 btrfs_put_block_group(block_group);
6005 return ret;
6006 }
6007
6008 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6009 struct extent_buffer *eb)
6010 {
6011 struct btrfs_file_extent_item *item;
6012 struct btrfs_key key;
6013 int found_type;
6014 int i;
6015
6016 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6017 return 0;
6018
6019 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6020 btrfs_item_key_to_cpu(eb, &key, i);
6021 if (key.type != BTRFS_EXTENT_DATA_KEY)
6022 continue;
6023 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6024 found_type = btrfs_file_extent_type(eb, item);
6025 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6026 continue;
6027 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6028 continue;
6029 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6030 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6031 __exclude_logged_extent(log, key.objectid, key.offset);
6032 }
6033
6034 return 0;
6035 }
6036
6037 /**
6038 * btrfs_update_reserved_bytes - update the block_group and space info counters
6039 * @cache: The cache we are manipulating
6040 * @num_bytes: The number of bytes in question
6041 * @reserve: One of the reservation enums
6042 * @delalloc: The blocks are allocated for the delalloc write
6043 *
6044 * This is called by the allocator when it reserves space, or by somebody who is
6045 * freeing space that was never actually used on disk. For example if you
6046 * reserve some space for a new leaf in transaction A and before transaction A
6047 * commits you free that leaf, you call this with reserve set to 0 in order to
6048 * clear the reservation.
6049 *
6050 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6051 * ENOSPC accounting. For data we handle the reservation through clearing the
6052 * delalloc bits in the io_tree. We have to do this since we could end up
6053 * allocating less disk space for the amount of data we have reserved in the
6054 * case of compression.
6055 *
6056 * If this is a reservation and the block group has become read only we cannot
6057 * make the reservation and return -EAGAIN, otherwise this function always
6058 * succeeds.
6059 */
6060 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
6061 u64 num_bytes, int reserve, int delalloc)
6062 {
6063 struct btrfs_space_info *space_info = cache->space_info;
6064 int ret = 0;
6065
6066 spin_lock(&space_info->lock);
6067 spin_lock(&cache->lock);
6068 if (reserve != RESERVE_FREE) {
6069 if (cache->ro) {
6070 ret = -EAGAIN;
6071 } else {
6072 cache->reserved += num_bytes;
6073 space_info->bytes_reserved += num_bytes;
6074 if (reserve == RESERVE_ALLOC) {
6075 trace_btrfs_space_reservation(cache->fs_info,
6076 "space_info", space_info->flags,
6077 num_bytes, 0);
6078 space_info->bytes_may_use -= num_bytes;
6079 }
6080
6081 if (delalloc)
6082 cache->delalloc_bytes += num_bytes;
6083 }
6084 } else {
6085 if (cache->ro)
6086 space_info->bytes_readonly += num_bytes;
6087 cache->reserved -= num_bytes;
6088 space_info->bytes_reserved -= num_bytes;
6089
6090 if (delalloc)
6091 cache->delalloc_bytes -= num_bytes;
6092 }
6093 spin_unlock(&cache->lock);
6094 spin_unlock(&space_info->lock);
6095 return ret;
6096 }
6097
6098 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6099 struct btrfs_root *root)
6100 {
6101 struct btrfs_fs_info *fs_info = root->fs_info;
6102 struct btrfs_caching_control *next;
6103 struct btrfs_caching_control *caching_ctl;
6104 struct btrfs_block_group_cache *cache;
6105
6106 down_write(&fs_info->commit_root_sem);
6107
6108 list_for_each_entry_safe(caching_ctl, next,
6109 &fs_info->caching_block_groups, list) {
6110 cache = caching_ctl->block_group;
6111 if (block_group_cache_done(cache)) {
6112 cache->last_byte_to_unpin = (u64)-1;
6113 list_del_init(&caching_ctl->list);
6114 put_caching_control(caching_ctl);
6115 } else {
6116 cache->last_byte_to_unpin = caching_ctl->progress;
6117 }
6118 }
6119
6120 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6121 fs_info->pinned_extents = &fs_info->freed_extents[1];
6122 else
6123 fs_info->pinned_extents = &fs_info->freed_extents[0];
6124
6125 up_write(&fs_info->commit_root_sem);
6126
6127 update_global_block_rsv(fs_info);
6128 }
6129
6130 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6131 const bool return_free_space)
6132 {
6133 struct btrfs_fs_info *fs_info = root->fs_info;
6134 struct btrfs_block_group_cache *cache = NULL;
6135 struct btrfs_space_info *space_info;
6136 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6137 u64 len;
6138 bool readonly;
6139
6140 while (start <= end) {
6141 readonly = false;
6142 if (!cache ||
6143 start >= cache->key.objectid + cache->key.offset) {
6144 if (cache)
6145 btrfs_put_block_group(cache);
6146 cache = btrfs_lookup_block_group(fs_info, start);
6147 BUG_ON(!cache); /* Logic error */
6148 }
6149
6150 len = cache->key.objectid + cache->key.offset - start;
6151 len = min(len, end + 1 - start);
6152
6153 if (start < cache->last_byte_to_unpin) {
6154 len = min(len, cache->last_byte_to_unpin - start);
6155 if (return_free_space)
6156 btrfs_add_free_space(cache, start, len);
6157 }
6158
6159 start += len;
6160 space_info = cache->space_info;
6161
6162 spin_lock(&space_info->lock);
6163 spin_lock(&cache->lock);
6164 cache->pinned -= len;
6165 space_info->bytes_pinned -= len;
6166 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6167 if (cache->ro) {
6168 space_info->bytes_readonly += len;
6169 readonly = true;
6170 }
6171 spin_unlock(&cache->lock);
6172 if (!readonly && global_rsv->space_info == space_info) {
6173 spin_lock(&global_rsv->lock);
6174 if (!global_rsv->full) {
6175 len = min(len, global_rsv->size -
6176 global_rsv->reserved);
6177 global_rsv->reserved += len;
6178 space_info->bytes_may_use += len;
6179 if (global_rsv->reserved >= global_rsv->size)
6180 global_rsv->full = 1;
6181 }
6182 spin_unlock(&global_rsv->lock);
6183 }
6184 spin_unlock(&space_info->lock);
6185 }
6186
6187 if (cache)
6188 btrfs_put_block_group(cache);
6189 return 0;
6190 }
6191
6192 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6193 struct btrfs_root *root)
6194 {
6195 struct btrfs_fs_info *fs_info = root->fs_info;
6196 struct btrfs_block_group_cache *block_group, *tmp;
6197 struct list_head *deleted_bgs;
6198 struct extent_io_tree *unpin;
6199 u64 start;
6200 u64 end;
6201 int ret;
6202
6203 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6204 unpin = &fs_info->freed_extents[1];
6205 else
6206 unpin = &fs_info->freed_extents[0];
6207
6208 while (!trans->aborted) {
6209 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6210 ret = find_first_extent_bit(unpin, 0, &start, &end,
6211 EXTENT_DIRTY, NULL);
6212 if (ret) {
6213 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6214 break;
6215 }
6216
6217 if (btrfs_test_opt(root, DISCARD))
6218 ret = btrfs_discard_extent(root, start,
6219 end + 1 - start, NULL);
6220
6221 clear_extent_dirty(unpin, start, end, GFP_NOFS);
6222 unpin_extent_range(root, start, end, true);
6223 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6224 cond_resched();
6225 }
6226
6227 /*
6228 * Transaction is finished. We don't need the lock anymore. We
6229 * do need to clean up the block groups in case of a transaction
6230 * abort.
6231 */
6232 deleted_bgs = &trans->transaction->deleted_bgs;
6233 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6234 u64 trimmed = 0;
6235
6236 ret = -EROFS;
6237 if (!trans->aborted)
6238 ret = btrfs_discard_extent(root,
6239 block_group->key.objectid,
6240 block_group->key.offset,
6241 &trimmed);
6242
6243 list_del_init(&block_group->bg_list);
6244 btrfs_put_block_group_trimming(block_group);
6245 btrfs_put_block_group(block_group);
6246
6247 if (ret) {
6248 const char *errstr = btrfs_decode_error(ret);
6249 btrfs_warn(fs_info,
6250 "Discard failed while removing blockgroup: errno=%d %s\n",
6251 ret, errstr);
6252 }
6253 }
6254
6255 return 0;
6256 }
6257
6258 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6259 u64 owner, u64 root_objectid)
6260 {
6261 struct btrfs_space_info *space_info;
6262 u64 flags;
6263
6264 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6265 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6266 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6267 else
6268 flags = BTRFS_BLOCK_GROUP_METADATA;
6269 } else {
6270 flags = BTRFS_BLOCK_GROUP_DATA;
6271 }
6272
6273 space_info = __find_space_info(fs_info, flags);
6274 BUG_ON(!space_info); /* Logic bug */
6275 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6276 }
6277
6278
6279 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6280 struct btrfs_root *root,
6281 struct btrfs_delayed_ref_node *node, u64 parent,
6282 u64 root_objectid, u64 owner_objectid,
6283 u64 owner_offset, int refs_to_drop,
6284 struct btrfs_delayed_extent_op *extent_op)
6285 {
6286 struct btrfs_key key;
6287 struct btrfs_path *path;
6288 struct btrfs_fs_info *info = root->fs_info;
6289 struct btrfs_root *extent_root = info->extent_root;
6290 struct extent_buffer *leaf;
6291 struct btrfs_extent_item *ei;
6292 struct btrfs_extent_inline_ref *iref;
6293 int ret;
6294 int is_data;
6295 int extent_slot = 0;
6296 int found_extent = 0;
6297 int num_to_del = 1;
6298 int no_quota = node->no_quota;
6299 u32 item_size;
6300 u64 refs;
6301 u64 bytenr = node->bytenr;
6302 u64 num_bytes = node->num_bytes;
6303 int last_ref = 0;
6304 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6305 SKINNY_METADATA);
6306
6307 if (!info->quota_enabled || !is_fstree(root_objectid))
6308 no_quota = 1;
6309
6310 path = btrfs_alloc_path();
6311 if (!path)
6312 return -ENOMEM;
6313
6314 path->reada = 1;
6315 path->leave_spinning = 1;
6316
6317 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6318 BUG_ON(!is_data && refs_to_drop != 1);
6319
6320 if (is_data)
6321 skinny_metadata = 0;
6322
6323 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6324 bytenr, num_bytes, parent,
6325 root_objectid, owner_objectid,
6326 owner_offset);
6327 if (ret == 0) {
6328 extent_slot = path->slots[0];
6329 while (extent_slot >= 0) {
6330 btrfs_item_key_to_cpu(path->nodes[0], &key,
6331 extent_slot);
6332 if (key.objectid != bytenr)
6333 break;
6334 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6335 key.offset == num_bytes) {
6336 found_extent = 1;
6337 break;
6338 }
6339 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6340 key.offset == owner_objectid) {
6341 found_extent = 1;
6342 break;
6343 }
6344 if (path->slots[0] - extent_slot > 5)
6345 break;
6346 extent_slot--;
6347 }
6348 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6349 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6350 if (found_extent && item_size < sizeof(*ei))
6351 found_extent = 0;
6352 #endif
6353 if (!found_extent) {
6354 BUG_ON(iref);
6355 ret = remove_extent_backref(trans, extent_root, path,
6356 NULL, refs_to_drop,
6357 is_data, &last_ref);
6358 if (ret) {
6359 btrfs_abort_transaction(trans, extent_root, ret);
6360 goto out;
6361 }
6362 btrfs_release_path(path);
6363 path->leave_spinning = 1;
6364
6365 key.objectid = bytenr;
6366 key.type = BTRFS_EXTENT_ITEM_KEY;
6367 key.offset = num_bytes;
6368
6369 if (!is_data && skinny_metadata) {
6370 key.type = BTRFS_METADATA_ITEM_KEY;
6371 key.offset = owner_objectid;
6372 }
6373
6374 ret = btrfs_search_slot(trans, extent_root,
6375 &key, path, -1, 1);
6376 if (ret > 0 && skinny_metadata && path->slots[0]) {
6377 /*
6378 * Couldn't find our skinny metadata item,
6379 * see if we have ye olde extent item.
6380 */
6381 path->slots[0]--;
6382 btrfs_item_key_to_cpu(path->nodes[0], &key,
6383 path->slots[0]);
6384 if (key.objectid == bytenr &&
6385 key.type == BTRFS_EXTENT_ITEM_KEY &&
6386 key.offset == num_bytes)
6387 ret = 0;
6388 }
6389
6390 if (ret > 0 && skinny_metadata) {
6391 skinny_metadata = false;
6392 key.objectid = bytenr;
6393 key.type = BTRFS_EXTENT_ITEM_KEY;
6394 key.offset = num_bytes;
6395 btrfs_release_path(path);
6396 ret = btrfs_search_slot(trans, extent_root,
6397 &key, path, -1, 1);
6398 }
6399
6400 if (ret) {
6401 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6402 ret, bytenr);
6403 if (ret > 0)
6404 btrfs_print_leaf(extent_root,
6405 path->nodes[0]);
6406 }
6407 if (ret < 0) {
6408 btrfs_abort_transaction(trans, extent_root, ret);
6409 goto out;
6410 }
6411 extent_slot = path->slots[0];
6412 }
6413 } else if (WARN_ON(ret == -ENOENT)) {
6414 btrfs_print_leaf(extent_root, path->nodes[0]);
6415 btrfs_err(info,
6416 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6417 bytenr, parent, root_objectid, owner_objectid,
6418 owner_offset);
6419 btrfs_abort_transaction(trans, extent_root, ret);
6420 goto out;
6421 } else {
6422 btrfs_abort_transaction(trans, extent_root, ret);
6423 goto out;
6424 }
6425
6426 leaf = path->nodes[0];
6427 item_size = btrfs_item_size_nr(leaf, extent_slot);
6428 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6429 if (item_size < sizeof(*ei)) {
6430 BUG_ON(found_extent || extent_slot != path->slots[0]);
6431 ret = convert_extent_item_v0(trans, extent_root, path,
6432 owner_objectid, 0);
6433 if (ret < 0) {
6434 btrfs_abort_transaction(trans, extent_root, ret);
6435 goto out;
6436 }
6437
6438 btrfs_release_path(path);
6439 path->leave_spinning = 1;
6440
6441 key.objectid = bytenr;
6442 key.type = BTRFS_EXTENT_ITEM_KEY;
6443 key.offset = num_bytes;
6444
6445 ret = btrfs_search_slot(trans, extent_root, &key, path,
6446 -1, 1);
6447 if (ret) {
6448 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6449 ret, bytenr);
6450 btrfs_print_leaf(extent_root, path->nodes[0]);
6451 }
6452 if (ret < 0) {
6453 btrfs_abort_transaction(trans, extent_root, ret);
6454 goto out;
6455 }
6456
6457 extent_slot = path->slots[0];
6458 leaf = path->nodes[0];
6459 item_size = btrfs_item_size_nr(leaf, extent_slot);
6460 }
6461 #endif
6462 BUG_ON(item_size < sizeof(*ei));
6463 ei = btrfs_item_ptr(leaf, extent_slot,
6464 struct btrfs_extent_item);
6465 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6466 key.type == BTRFS_EXTENT_ITEM_KEY) {
6467 struct btrfs_tree_block_info *bi;
6468 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6469 bi = (struct btrfs_tree_block_info *)(ei + 1);
6470 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6471 }
6472
6473 refs = btrfs_extent_refs(leaf, ei);
6474 if (refs < refs_to_drop) {
6475 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6476 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6477 ret = -EINVAL;
6478 btrfs_abort_transaction(trans, extent_root, ret);
6479 goto out;
6480 }
6481 refs -= refs_to_drop;
6482
6483 if (refs > 0) {
6484 if (extent_op)
6485 __run_delayed_extent_op(extent_op, leaf, ei);
6486 /*
6487 * In the case of inline back ref, reference count will
6488 * be updated by remove_extent_backref
6489 */
6490 if (iref) {
6491 BUG_ON(!found_extent);
6492 } else {
6493 btrfs_set_extent_refs(leaf, ei, refs);
6494 btrfs_mark_buffer_dirty(leaf);
6495 }
6496 if (found_extent) {
6497 ret = remove_extent_backref(trans, extent_root, path,
6498 iref, refs_to_drop,
6499 is_data, &last_ref);
6500 if (ret) {
6501 btrfs_abort_transaction(trans, extent_root, ret);
6502 goto out;
6503 }
6504 }
6505 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6506 root_objectid);
6507 } else {
6508 if (found_extent) {
6509 BUG_ON(is_data && refs_to_drop !=
6510 extent_data_ref_count(path, iref));
6511 if (iref) {
6512 BUG_ON(path->slots[0] != extent_slot);
6513 } else {
6514 BUG_ON(path->slots[0] != extent_slot + 1);
6515 path->slots[0] = extent_slot;
6516 num_to_del = 2;
6517 }
6518 }
6519
6520 last_ref = 1;
6521 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6522 num_to_del);
6523 if (ret) {
6524 btrfs_abort_transaction(trans, extent_root, ret);
6525 goto out;
6526 }
6527 btrfs_release_path(path);
6528
6529 if (is_data) {
6530 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6531 if (ret) {
6532 btrfs_abort_transaction(trans, extent_root, ret);
6533 goto out;
6534 }
6535 }
6536
6537 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6538 if (ret) {
6539 btrfs_abort_transaction(trans, extent_root, ret);
6540 goto out;
6541 }
6542 }
6543 btrfs_release_path(path);
6544
6545 out:
6546 btrfs_free_path(path);
6547 return ret;
6548 }
6549
6550 /*
6551 * when we free an block, it is possible (and likely) that we free the last
6552 * delayed ref for that extent as well. This searches the delayed ref tree for
6553 * a given extent, and if there are no other delayed refs to be processed, it
6554 * removes it from the tree.
6555 */
6556 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6557 struct btrfs_root *root, u64 bytenr)
6558 {
6559 struct btrfs_delayed_ref_head *head;
6560 struct btrfs_delayed_ref_root *delayed_refs;
6561 int ret = 0;
6562
6563 delayed_refs = &trans->transaction->delayed_refs;
6564 spin_lock(&delayed_refs->lock);
6565 head = btrfs_find_delayed_ref_head(trans, bytenr);
6566 if (!head)
6567 goto out_delayed_unlock;
6568
6569 spin_lock(&head->lock);
6570 if (!list_empty(&head->ref_list))
6571 goto out;
6572
6573 if (head->extent_op) {
6574 if (!head->must_insert_reserved)
6575 goto out;
6576 btrfs_free_delayed_extent_op(head->extent_op);
6577 head->extent_op = NULL;
6578 }
6579
6580 /*
6581 * waiting for the lock here would deadlock. If someone else has it
6582 * locked they are already in the process of dropping it anyway
6583 */
6584 if (!mutex_trylock(&head->mutex))
6585 goto out;
6586
6587 /*
6588 * at this point we have a head with no other entries. Go
6589 * ahead and process it.
6590 */
6591 head->node.in_tree = 0;
6592 rb_erase(&head->href_node, &delayed_refs->href_root);
6593
6594 atomic_dec(&delayed_refs->num_entries);
6595
6596 /*
6597 * we don't take a ref on the node because we're removing it from the
6598 * tree, so we just steal the ref the tree was holding.
6599 */
6600 delayed_refs->num_heads--;
6601 if (head->processing == 0)
6602 delayed_refs->num_heads_ready--;
6603 head->processing = 0;
6604 spin_unlock(&head->lock);
6605 spin_unlock(&delayed_refs->lock);
6606
6607 BUG_ON(head->extent_op);
6608 if (head->must_insert_reserved)
6609 ret = 1;
6610
6611 mutex_unlock(&head->mutex);
6612 btrfs_put_delayed_ref(&head->node);
6613 return ret;
6614 out:
6615 spin_unlock(&head->lock);
6616
6617 out_delayed_unlock:
6618 spin_unlock(&delayed_refs->lock);
6619 return 0;
6620 }
6621
6622 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6623 struct btrfs_root *root,
6624 struct extent_buffer *buf,
6625 u64 parent, int last_ref)
6626 {
6627 int pin = 1;
6628 int ret;
6629
6630 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6631 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6632 buf->start, buf->len,
6633 parent, root->root_key.objectid,
6634 btrfs_header_level(buf),
6635 BTRFS_DROP_DELAYED_REF, NULL, 0);
6636 BUG_ON(ret); /* -ENOMEM */
6637 }
6638
6639 if (!last_ref)
6640 return;
6641
6642 if (btrfs_header_generation(buf) == trans->transid) {
6643 struct btrfs_block_group_cache *cache;
6644
6645 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6646 ret = check_ref_cleanup(trans, root, buf->start);
6647 if (!ret)
6648 goto out;
6649 }
6650
6651 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6652
6653 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6654 pin_down_extent(root, cache, buf->start, buf->len, 1);
6655 btrfs_put_block_group(cache);
6656 goto out;
6657 }
6658
6659 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6660
6661 btrfs_add_free_space(cache, buf->start, buf->len);
6662 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6663 btrfs_put_block_group(cache);
6664 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6665 pin = 0;
6666 }
6667 out:
6668 if (pin)
6669 add_pinned_bytes(root->fs_info, buf->len,
6670 btrfs_header_level(buf),
6671 root->root_key.objectid);
6672
6673 /*
6674 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6675 * anymore.
6676 */
6677 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6678 }
6679
6680 /* Can return -ENOMEM */
6681 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6682 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6683 u64 owner, u64 offset, int no_quota)
6684 {
6685 int ret;
6686 struct btrfs_fs_info *fs_info = root->fs_info;
6687
6688 if (btrfs_test_is_dummy_root(root))
6689 return 0;
6690
6691 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6692
6693 /*
6694 * tree log blocks never actually go into the extent allocation
6695 * tree, just update pinning info and exit early.
6696 */
6697 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6698 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6699 /* unlocks the pinned mutex */
6700 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6701 ret = 0;
6702 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6703 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6704 num_bytes,
6705 parent, root_objectid, (int)owner,
6706 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6707 } else {
6708 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6709 num_bytes,
6710 parent, root_objectid, owner,
6711 offset, BTRFS_DROP_DELAYED_REF,
6712 NULL, no_quota);
6713 }
6714 return ret;
6715 }
6716
6717 /*
6718 * when we wait for progress in the block group caching, its because
6719 * our allocation attempt failed at least once. So, we must sleep
6720 * and let some progress happen before we try again.
6721 *
6722 * This function will sleep at least once waiting for new free space to
6723 * show up, and then it will check the block group free space numbers
6724 * for our min num_bytes. Another option is to have it go ahead
6725 * and look in the rbtree for a free extent of a given size, but this
6726 * is a good start.
6727 *
6728 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6729 * any of the information in this block group.
6730 */
6731 static noinline void
6732 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6733 u64 num_bytes)
6734 {
6735 struct btrfs_caching_control *caching_ctl;
6736
6737 caching_ctl = get_caching_control(cache);
6738 if (!caching_ctl)
6739 return;
6740
6741 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6742 (cache->free_space_ctl->free_space >= num_bytes));
6743
6744 put_caching_control(caching_ctl);
6745 }
6746
6747 static noinline int
6748 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6749 {
6750 struct btrfs_caching_control *caching_ctl;
6751 int ret = 0;
6752
6753 caching_ctl = get_caching_control(cache);
6754 if (!caching_ctl)
6755 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6756
6757 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6758 if (cache->cached == BTRFS_CACHE_ERROR)
6759 ret = -EIO;
6760 put_caching_control(caching_ctl);
6761 return ret;
6762 }
6763
6764 int __get_raid_index(u64 flags)
6765 {
6766 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6767 return BTRFS_RAID_RAID10;
6768 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6769 return BTRFS_RAID_RAID1;
6770 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6771 return BTRFS_RAID_DUP;
6772 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6773 return BTRFS_RAID_RAID0;
6774 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6775 return BTRFS_RAID_RAID5;
6776 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6777 return BTRFS_RAID_RAID6;
6778
6779 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6780 }
6781
6782 int get_block_group_index(struct btrfs_block_group_cache *cache)
6783 {
6784 return __get_raid_index(cache->flags);
6785 }
6786
6787 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6788 [BTRFS_RAID_RAID10] = "raid10",
6789 [BTRFS_RAID_RAID1] = "raid1",
6790 [BTRFS_RAID_DUP] = "dup",
6791 [BTRFS_RAID_RAID0] = "raid0",
6792 [BTRFS_RAID_SINGLE] = "single",
6793 [BTRFS_RAID_RAID5] = "raid5",
6794 [BTRFS_RAID_RAID6] = "raid6",
6795 };
6796
6797 static const char *get_raid_name(enum btrfs_raid_types type)
6798 {
6799 if (type >= BTRFS_NR_RAID_TYPES)
6800 return NULL;
6801
6802 return btrfs_raid_type_names[type];
6803 }
6804
6805 enum btrfs_loop_type {
6806 LOOP_CACHING_NOWAIT = 0,
6807 LOOP_CACHING_WAIT = 1,
6808 LOOP_ALLOC_CHUNK = 2,
6809 LOOP_NO_EMPTY_SIZE = 3,
6810 };
6811
6812 static inline void
6813 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6814 int delalloc)
6815 {
6816 if (delalloc)
6817 down_read(&cache->data_rwsem);
6818 }
6819
6820 static inline void
6821 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6822 int delalloc)
6823 {
6824 btrfs_get_block_group(cache);
6825 if (delalloc)
6826 down_read(&cache->data_rwsem);
6827 }
6828
6829 static struct btrfs_block_group_cache *
6830 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6831 struct btrfs_free_cluster *cluster,
6832 int delalloc)
6833 {
6834 struct btrfs_block_group_cache *used_bg;
6835 bool locked = false;
6836 again:
6837 spin_lock(&cluster->refill_lock);
6838 if (locked) {
6839 if (used_bg == cluster->block_group)
6840 return used_bg;
6841
6842 up_read(&used_bg->data_rwsem);
6843 btrfs_put_block_group(used_bg);
6844 }
6845
6846 used_bg = cluster->block_group;
6847 if (!used_bg)
6848 return NULL;
6849
6850 if (used_bg == block_group)
6851 return used_bg;
6852
6853 btrfs_get_block_group(used_bg);
6854
6855 if (!delalloc)
6856 return used_bg;
6857
6858 if (down_read_trylock(&used_bg->data_rwsem))
6859 return used_bg;
6860
6861 spin_unlock(&cluster->refill_lock);
6862 down_read(&used_bg->data_rwsem);
6863 locked = true;
6864 goto again;
6865 }
6866
6867 static inline void
6868 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6869 int delalloc)
6870 {
6871 if (delalloc)
6872 up_read(&cache->data_rwsem);
6873 btrfs_put_block_group(cache);
6874 }
6875
6876 /*
6877 * walks the btree of allocated extents and find a hole of a given size.
6878 * The key ins is changed to record the hole:
6879 * ins->objectid == start position
6880 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6881 * ins->offset == the size of the hole.
6882 * Any available blocks before search_start are skipped.
6883 *
6884 * If there is no suitable free space, we will record the max size of
6885 * the free space extent currently.
6886 */
6887 static noinline int find_free_extent(struct btrfs_root *orig_root,
6888 u64 num_bytes, u64 empty_size,
6889 u64 hint_byte, struct btrfs_key *ins,
6890 u64 flags, int delalloc)
6891 {
6892 int ret = 0;
6893 struct btrfs_root *root = orig_root->fs_info->extent_root;
6894 struct btrfs_free_cluster *last_ptr = NULL;
6895 struct btrfs_block_group_cache *block_group = NULL;
6896 u64 search_start = 0;
6897 u64 max_extent_size = 0;
6898 int empty_cluster = 2 * 1024 * 1024;
6899 struct btrfs_space_info *space_info;
6900 int loop = 0;
6901 int index = __get_raid_index(flags);
6902 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6903 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6904 bool failed_cluster_refill = false;
6905 bool failed_alloc = false;
6906 bool use_cluster = true;
6907 bool have_caching_bg = false;
6908
6909 WARN_ON(num_bytes < root->sectorsize);
6910 ins->type = BTRFS_EXTENT_ITEM_KEY;
6911 ins->objectid = 0;
6912 ins->offset = 0;
6913
6914 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6915
6916 space_info = __find_space_info(root->fs_info, flags);
6917 if (!space_info) {
6918 btrfs_err(root->fs_info, "No space info for %llu", flags);
6919 return -ENOSPC;
6920 }
6921
6922 /*
6923 * If the space info is for both data and metadata it means we have a
6924 * small filesystem and we can't use the clustering stuff.
6925 */
6926 if (btrfs_mixed_space_info(space_info))
6927 use_cluster = false;
6928
6929 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6930 last_ptr = &root->fs_info->meta_alloc_cluster;
6931 if (!btrfs_test_opt(root, SSD))
6932 empty_cluster = 64 * 1024;
6933 }
6934
6935 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6936 btrfs_test_opt(root, SSD)) {
6937 last_ptr = &root->fs_info->data_alloc_cluster;
6938 }
6939
6940 if (last_ptr) {
6941 spin_lock(&last_ptr->lock);
6942 if (last_ptr->block_group)
6943 hint_byte = last_ptr->window_start;
6944 spin_unlock(&last_ptr->lock);
6945 }
6946
6947 search_start = max(search_start, first_logical_byte(root, 0));
6948 search_start = max(search_start, hint_byte);
6949
6950 if (!last_ptr)
6951 empty_cluster = 0;
6952
6953 if (search_start == hint_byte) {
6954 block_group = btrfs_lookup_block_group(root->fs_info,
6955 search_start);
6956 /*
6957 * we don't want to use the block group if it doesn't match our
6958 * allocation bits, or if its not cached.
6959 *
6960 * However if we are re-searching with an ideal block group
6961 * picked out then we don't care that the block group is cached.
6962 */
6963 if (block_group && block_group_bits(block_group, flags) &&
6964 block_group->cached != BTRFS_CACHE_NO) {
6965 down_read(&space_info->groups_sem);
6966 if (list_empty(&block_group->list) ||
6967 block_group->ro) {
6968 /*
6969 * someone is removing this block group,
6970 * we can't jump into the have_block_group
6971 * target because our list pointers are not
6972 * valid
6973 */
6974 btrfs_put_block_group(block_group);
6975 up_read(&space_info->groups_sem);
6976 } else {
6977 index = get_block_group_index(block_group);
6978 btrfs_lock_block_group(block_group, delalloc);
6979 goto have_block_group;
6980 }
6981 } else if (block_group) {
6982 btrfs_put_block_group(block_group);
6983 }
6984 }
6985 search:
6986 have_caching_bg = false;
6987 down_read(&space_info->groups_sem);
6988 list_for_each_entry(block_group, &space_info->block_groups[index],
6989 list) {
6990 u64 offset;
6991 int cached;
6992
6993 btrfs_grab_block_group(block_group, delalloc);
6994 search_start = block_group->key.objectid;
6995
6996 /*
6997 * this can happen if we end up cycling through all the
6998 * raid types, but we want to make sure we only allocate
6999 * for the proper type.
7000 */
7001 if (!block_group_bits(block_group, flags)) {
7002 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7003 BTRFS_BLOCK_GROUP_RAID1 |
7004 BTRFS_BLOCK_GROUP_RAID5 |
7005 BTRFS_BLOCK_GROUP_RAID6 |
7006 BTRFS_BLOCK_GROUP_RAID10;
7007
7008 /*
7009 * if they asked for extra copies and this block group
7010 * doesn't provide them, bail. This does allow us to
7011 * fill raid0 from raid1.
7012 */
7013 if ((flags & extra) && !(block_group->flags & extra))
7014 goto loop;
7015 }
7016
7017 have_block_group:
7018 cached = block_group_cache_done(block_group);
7019 if (unlikely(!cached)) {
7020 ret = cache_block_group(block_group, 0);
7021 BUG_ON(ret < 0);
7022 ret = 0;
7023 }
7024
7025 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7026 goto loop;
7027 if (unlikely(block_group->ro))
7028 goto loop;
7029
7030 /*
7031 * Ok we want to try and use the cluster allocator, so
7032 * lets look there
7033 */
7034 if (last_ptr) {
7035 struct btrfs_block_group_cache *used_block_group;
7036 unsigned long aligned_cluster;
7037 /*
7038 * the refill lock keeps out other
7039 * people trying to start a new cluster
7040 */
7041 used_block_group = btrfs_lock_cluster(block_group,
7042 last_ptr,
7043 delalloc);
7044 if (!used_block_group)
7045 goto refill_cluster;
7046
7047 if (used_block_group != block_group &&
7048 (used_block_group->ro ||
7049 !block_group_bits(used_block_group, flags)))
7050 goto release_cluster;
7051
7052 offset = btrfs_alloc_from_cluster(used_block_group,
7053 last_ptr,
7054 num_bytes,
7055 used_block_group->key.objectid,
7056 &max_extent_size);
7057 if (offset) {
7058 /* we have a block, we're done */
7059 spin_unlock(&last_ptr->refill_lock);
7060 trace_btrfs_reserve_extent_cluster(root,
7061 used_block_group,
7062 search_start, num_bytes);
7063 if (used_block_group != block_group) {
7064 btrfs_release_block_group(block_group,
7065 delalloc);
7066 block_group = used_block_group;
7067 }
7068 goto checks;
7069 }
7070
7071 WARN_ON(last_ptr->block_group != used_block_group);
7072 release_cluster:
7073 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7074 * set up a new clusters, so lets just skip it
7075 * and let the allocator find whatever block
7076 * it can find. If we reach this point, we
7077 * will have tried the cluster allocator
7078 * plenty of times and not have found
7079 * anything, so we are likely way too
7080 * fragmented for the clustering stuff to find
7081 * anything.
7082 *
7083 * However, if the cluster is taken from the
7084 * current block group, release the cluster
7085 * first, so that we stand a better chance of
7086 * succeeding in the unclustered
7087 * allocation. */
7088 if (loop >= LOOP_NO_EMPTY_SIZE &&
7089 used_block_group != block_group) {
7090 spin_unlock(&last_ptr->refill_lock);
7091 btrfs_release_block_group(used_block_group,
7092 delalloc);
7093 goto unclustered_alloc;
7094 }
7095
7096 /*
7097 * this cluster didn't work out, free it and
7098 * start over
7099 */
7100 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7101
7102 if (used_block_group != block_group)
7103 btrfs_release_block_group(used_block_group,
7104 delalloc);
7105 refill_cluster:
7106 if (loop >= LOOP_NO_EMPTY_SIZE) {
7107 spin_unlock(&last_ptr->refill_lock);
7108 goto unclustered_alloc;
7109 }
7110
7111 aligned_cluster = max_t(unsigned long,
7112 empty_cluster + empty_size,
7113 block_group->full_stripe_len);
7114
7115 /* allocate a cluster in this block group */
7116 ret = btrfs_find_space_cluster(root, block_group,
7117 last_ptr, search_start,
7118 num_bytes,
7119 aligned_cluster);
7120 if (ret == 0) {
7121 /*
7122 * now pull our allocation out of this
7123 * cluster
7124 */
7125 offset = btrfs_alloc_from_cluster(block_group,
7126 last_ptr,
7127 num_bytes,
7128 search_start,
7129 &max_extent_size);
7130 if (offset) {
7131 /* we found one, proceed */
7132 spin_unlock(&last_ptr->refill_lock);
7133 trace_btrfs_reserve_extent_cluster(root,
7134 block_group, search_start,
7135 num_bytes);
7136 goto checks;
7137 }
7138 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7139 && !failed_cluster_refill) {
7140 spin_unlock(&last_ptr->refill_lock);
7141
7142 failed_cluster_refill = true;
7143 wait_block_group_cache_progress(block_group,
7144 num_bytes + empty_cluster + empty_size);
7145 goto have_block_group;
7146 }
7147
7148 /*
7149 * at this point we either didn't find a cluster
7150 * or we weren't able to allocate a block from our
7151 * cluster. Free the cluster we've been trying
7152 * to use, and go to the next block group
7153 */
7154 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7155 spin_unlock(&last_ptr->refill_lock);
7156 goto loop;
7157 }
7158
7159 unclustered_alloc:
7160 spin_lock(&block_group->free_space_ctl->tree_lock);
7161 if (cached &&
7162 block_group->free_space_ctl->free_space <
7163 num_bytes + empty_cluster + empty_size) {
7164 if (block_group->free_space_ctl->free_space >
7165 max_extent_size)
7166 max_extent_size =
7167 block_group->free_space_ctl->free_space;
7168 spin_unlock(&block_group->free_space_ctl->tree_lock);
7169 goto loop;
7170 }
7171 spin_unlock(&block_group->free_space_ctl->tree_lock);
7172
7173 offset = btrfs_find_space_for_alloc(block_group, search_start,
7174 num_bytes, empty_size,
7175 &max_extent_size);
7176 /*
7177 * If we didn't find a chunk, and we haven't failed on this
7178 * block group before, and this block group is in the middle of
7179 * caching and we are ok with waiting, then go ahead and wait
7180 * for progress to be made, and set failed_alloc to true.
7181 *
7182 * If failed_alloc is true then we've already waited on this
7183 * block group once and should move on to the next block group.
7184 */
7185 if (!offset && !failed_alloc && !cached &&
7186 loop > LOOP_CACHING_NOWAIT) {
7187 wait_block_group_cache_progress(block_group,
7188 num_bytes + empty_size);
7189 failed_alloc = true;
7190 goto have_block_group;
7191 } else if (!offset) {
7192 if (!cached)
7193 have_caching_bg = true;
7194 goto loop;
7195 }
7196 checks:
7197 search_start = ALIGN(offset, root->stripesize);
7198
7199 /* move on to the next group */
7200 if (search_start + num_bytes >
7201 block_group->key.objectid + block_group->key.offset) {
7202 btrfs_add_free_space(block_group, offset, num_bytes);
7203 goto loop;
7204 }
7205
7206 if (offset < search_start)
7207 btrfs_add_free_space(block_group, offset,
7208 search_start - offset);
7209 BUG_ON(offset > search_start);
7210
7211 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7212 alloc_type, delalloc);
7213 if (ret == -EAGAIN) {
7214 btrfs_add_free_space(block_group, offset, num_bytes);
7215 goto loop;
7216 }
7217
7218 /* we are all good, lets return */
7219 ins->objectid = search_start;
7220 ins->offset = num_bytes;
7221
7222 trace_btrfs_reserve_extent(orig_root, block_group,
7223 search_start, num_bytes);
7224 btrfs_release_block_group(block_group, delalloc);
7225 break;
7226 loop:
7227 failed_cluster_refill = false;
7228 failed_alloc = false;
7229 BUG_ON(index != get_block_group_index(block_group));
7230 btrfs_release_block_group(block_group, delalloc);
7231 }
7232 up_read(&space_info->groups_sem);
7233
7234 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7235 goto search;
7236
7237 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7238 goto search;
7239
7240 /*
7241 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7242 * caching kthreads as we move along
7243 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7244 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7245 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7246 * again
7247 */
7248 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7249 index = 0;
7250 loop++;
7251 if (loop == LOOP_ALLOC_CHUNK) {
7252 struct btrfs_trans_handle *trans;
7253 int exist = 0;
7254
7255 trans = current->journal_info;
7256 if (trans)
7257 exist = 1;
7258 else
7259 trans = btrfs_join_transaction(root);
7260
7261 if (IS_ERR(trans)) {
7262 ret = PTR_ERR(trans);
7263 goto out;
7264 }
7265
7266 ret = do_chunk_alloc(trans, root, flags,
7267 CHUNK_ALLOC_FORCE);
7268 /*
7269 * Do not bail out on ENOSPC since we
7270 * can do more things.
7271 */
7272 if (ret < 0 && ret != -ENOSPC)
7273 btrfs_abort_transaction(trans,
7274 root, ret);
7275 else
7276 ret = 0;
7277 if (!exist)
7278 btrfs_end_transaction(trans, root);
7279 if (ret)
7280 goto out;
7281 }
7282
7283 if (loop == LOOP_NO_EMPTY_SIZE) {
7284 empty_size = 0;
7285 empty_cluster = 0;
7286 }
7287
7288 goto search;
7289 } else if (!ins->objectid) {
7290 ret = -ENOSPC;
7291 } else if (ins->objectid) {
7292 ret = 0;
7293 }
7294 out:
7295 if (ret == -ENOSPC)
7296 ins->offset = max_extent_size;
7297 return ret;
7298 }
7299
7300 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7301 int dump_block_groups)
7302 {
7303 struct btrfs_block_group_cache *cache;
7304 int index = 0;
7305
7306 spin_lock(&info->lock);
7307 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7308 info->flags,
7309 info->total_bytes - info->bytes_used - info->bytes_pinned -
7310 info->bytes_reserved - info->bytes_readonly,
7311 (info->full) ? "" : "not ");
7312 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7313 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7314 info->total_bytes, info->bytes_used, info->bytes_pinned,
7315 info->bytes_reserved, info->bytes_may_use,
7316 info->bytes_readonly);
7317 spin_unlock(&info->lock);
7318
7319 if (!dump_block_groups)
7320 return;
7321
7322 down_read(&info->groups_sem);
7323 again:
7324 list_for_each_entry(cache, &info->block_groups[index], list) {
7325 spin_lock(&cache->lock);
7326 printk(KERN_INFO "BTRFS: "
7327 "block group %llu has %llu bytes, "
7328 "%llu used %llu pinned %llu reserved %s\n",
7329 cache->key.objectid, cache->key.offset,
7330 btrfs_block_group_used(&cache->item), cache->pinned,
7331 cache->reserved, cache->ro ? "[readonly]" : "");
7332 btrfs_dump_free_space(cache, bytes);
7333 spin_unlock(&cache->lock);
7334 }
7335 if (++index < BTRFS_NR_RAID_TYPES)
7336 goto again;
7337 up_read(&info->groups_sem);
7338 }
7339
7340 int btrfs_reserve_extent(struct btrfs_root *root,
7341 u64 num_bytes, u64 min_alloc_size,
7342 u64 empty_size, u64 hint_byte,
7343 struct btrfs_key *ins, int is_data, int delalloc)
7344 {
7345 bool final_tried = false;
7346 u64 flags;
7347 int ret;
7348
7349 flags = btrfs_get_alloc_profile(root, is_data);
7350 again:
7351 WARN_ON(num_bytes < root->sectorsize);
7352 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7353 flags, delalloc);
7354
7355 if (ret == -ENOSPC) {
7356 if (!final_tried && ins->offset) {
7357 num_bytes = min(num_bytes >> 1, ins->offset);
7358 num_bytes = round_down(num_bytes, root->sectorsize);
7359 num_bytes = max(num_bytes, min_alloc_size);
7360 if (num_bytes == min_alloc_size)
7361 final_tried = true;
7362 goto again;
7363 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7364 struct btrfs_space_info *sinfo;
7365
7366 sinfo = __find_space_info(root->fs_info, flags);
7367 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7368 flags, num_bytes);
7369 if (sinfo)
7370 dump_space_info(sinfo, num_bytes, 1);
7371 }
7372 }
7373
7374 return ret;
7375 }
7376
7377 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7378 u64 start, u64 len,
7379 int pin, int delalloc)
7380 {
7381 struct btrfs_block_group_cache *cache;
7382 int ret = 0;
7383
7384 cache = btrfs_lookup_block_group(root->fs_info, start);
7385 if (!cache) {
7386 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7387 start);
7388 return -ENOSPC;
7389 }
7390
7391 if (pin)
7392 pin_down_extent(root, cache, start, len, 1);
7393 else {
7394 if (btrfs_test_opt(root, DISCARD))
7395 ret = btrfs_discard_extent(root, start, len, NULL);
7396 btrfs_add_free_space(cache, start, len);
7397 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7398 }
7399
7400 btrfs_put_block_group(cache);
7401
7402 trace_btrfs_reserved_extent_free(root, start, len);
7403
7404 return ret;
7405 }
7406
7407 int btrfs_free_reserved_extent(struct btrfs_root *root,
7408 u64 start, u64 len, int delalloc)
7409 {
7410 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7411 }
7412
7413 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7414 u64 start, u64 len)
7415 {
7416 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7417 }
7418
7419 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7420 struct btrfs_root *root,
7421 u64 parent, u64 root_objectid,
7422 u64 flags, u64 owner, u64 offset,
7423 struct btrfs_key *ins, int ref_mod)
7424 {
7425 int ret;
7426 struct btrfs_fs_info *fs_info = root->fs_info;
7427 struct btrfs_extent_item *extent_item;
7428 struct btrfs_extent_inline_ref *iref;
7429 struct btrfs_path *path;
7430 struct extent_buffer *leaf;
7431 int type;
7432 u32 size;
7433
7434 if (parent > 0)
7435 type = BTRFS_SHARED_DATA_REF_KEY;
7436 else
7437 type = BTRFS_EXTENT_DATA_REF_KEY;
7438
7439 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7440
7441 path = btrfs_alloc_path();
7442 if (!path)
7443 return -ENOMEM;
7444
7445 path->leave_spinning = 1;
7446 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7447 ins, size);
7448 if (ret) {
7449 btrfs_free_path(path);
7450 return ret;
7451 }
7452
7453 leaf = path->nodes[0];
7454 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7455 struct btrfs_extent_item);
7456 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7457 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7458 btrfs_set_extent_flags(leaf, extent_item,
7459 flags | BTRFS_EXTENT_FLAG_DATA);
7460
7461 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7462 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7463 if (parent > 0) {
7464 struct btrfs_shared_data_ref *ref;
7465 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7466 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7467 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7468 } else {
7469 struct btrfs_extent_data_ref *ref;
7470 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7471 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7472 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7473 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7474 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7475 }
7476
7477 btrfs_mark_buffer_dirty(path->nodes[0]);
7478 btrfs_free_path(path);
7479
7480 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7481 if (ret) { /* -ENOENT, logic error */
7482 btrfs_err(fs_info, "update block group failed for %llu %llu",
7483 ins->objectid, ins->offset);
7484 BUG();
7485 }
7486 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7487 return ret;
7488 }
7489
7490 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7491 struct btrfs_root *root,
7492 u64 parent, u64 root_objectid,
7493 u64 flags, struct btrfs_disk_key *key,
7494 int level, struct btrfs_key *ins,
7495 int no_quota)
7496 {
7497 int ret;
7498 struct btrfs_fs_info *fs_info = root->fs_info;
7499 struct btrfs_extent_item *extent_item;
7500 struct btrfs_tree_block_info *block_info;
7501 struct btrfs_extent_inline_ref *iref;
7502 struct btrfs_path *path;
7503 struct extent_buffer *leaf;
7504 u32 size = sizeof(*extent_item) + sizeof(*iref);
7505 u64 num_bytes = ins->offset;
7506 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7507 SKINNY_METADATA);
7508
7509 if (!skinny_metadata)
7510 size += sizeof(*block_info);
7511
7512 path = btrfs_alloc_path();
7513 if (!path) {
7514 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7515 root->nodesize);
7516 return -ENOMEM;
7517 }
7518
7519 path->leave_spinning = 1;
7520 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7521 ins, size);
7522 if (ret) {
7523 btrfs_free_path(path);
7524 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7525 root->nodesize);
7526 return ret;
7527 }
7528
7529 leaf = path->nodes[0];
7530 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7531 struct btrfs_extent_item);
7532 btrfs_set_extent_refs(leaf, extent_item, 1);
7533 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7534 btrfs_set_extent_flags(leaf, extent_item,
7535 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7536
7537 if (skinny_metadata) {
7538 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7539 num_bytes = root->nodesize;
7540 } else {
7541 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7542 btrfs_set_tree_block_key(leaf, block_info, key);
7543 btrfs_set_tree_block_level(leaf, block_info, level);
7544 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7545 }
7546
7547 if (parent > 0) {
7548 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7549 btrfs_set_extent_inline_ref_type(leaf, iref,
7550 BTRFS_SHARED_BLOCK_REF_KEY);
7551 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7552 } else {
7553 btrfs_set_extent_inline_ref_type(leaf, iref,
7554 BTRFS_TREE_BLOCK_REF_KEY);
7555 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7556 }
7557
7558 btrfs_mark_buffer_dirty(leaf);
7559 btrfs_free_path(path);
7560
7561 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7562 1);
7563 if (ret) { /* -ENOENT, logic error */
7564 btrfs_err(fs_info, "update block group failed for %llu %llu",
7565 ins->objectid, ins->offset);
7566 BUG();
7567 }
7568
7569 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7570 return ret;
7571 }
7572
7573 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7574 struct btrfs_root *root,
7575 u64 root_objectid, u64 owner,
7576 u64 offset, struct btrfs_key *ins)
7577 {
7578 int ret;
7579
7580 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7581
7582 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7583 ins->offset, 0,
7584 root_objectid, owner, offset,
7585 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7586 return ret;
7587 }
7588
7589 /*
7590 * this is used by the tree logging recovery code. It records that
7591 * an extent has been allocated and makes sure to clear the free
7592 * space cache bits as well
7593 */
7594 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7595 struct btrfs_root *root,
7596 u64 root_objectid, u64 owner, u64 offset,
7597 struct btrfs_key *ins)
7598 {
7599 int ret;
7600 struct btrfs_block_group_cache *block_group;
7601
7602 /*
7603 * Mixed block groups will exclude before processing the log so we only
7604 * need to do the exlude dance if this fs isn't mixed.
7605 */
7606 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7607 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7608 if (ret)
7609 return ret;
7610 }
7611
7612 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7613 if (!block_group)
7614 return -EINVAL;
7615
7616 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7617 RESERVE_ALLOC_NO_ACCOUNT, 0);
7618 BUG_ON(ret); /* logic error */
7619 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7620 0, owner, offset, ins, 1);
7621 btrfs_put_block_group(block_group);
7622 return ret;
7623 }
7624
7625 static struct extent_buffer *
7626 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7627 u64 bytenr, int level)
7628 {
7629 struct extent_buffer *buf;
7630
7631 buf = btrfs_find_create_tree_block(root, bytenr);
7632 if (!buf)
7633 return ERR_PTR(-ENOMEM);
7634 btrfs_set_header_generation(buf, trans->transid);
7635 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7636 btrfs_tree_lock(buf);
7637 clean_tree_block(trans, root->fs_info, buf);
7638 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7639
7640 btrfs_set_lock_blocking(buf);
7641 btrfs_set_buffer_uptodate(buf);
7642
7643 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7644 buf->log_index = root->log_transid % 2;
7645 /*
7646 * we allow two log transactions at a time, use different
7647 * EXENT bit to differentiate dirty pages.
7648 */
7649 if (buf->log_index == 0)
7650 set_extent_dirty(&root->dirty_log_pages, buf->start,
7651 buf->start + buf->len - 1, GFP_NOFS);
7652 else
7653 set_extent_new(&root->dirty_log_pages, buf->start,
7654 buf->start + buf->len - 1, GFP_NOFS);
7655 } else {
7656 buf->log_index = -1;
7657 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7658 buf->start + buf->len - 1, GFP_NOFS);
7659 }
7660 trans->blocks_used++;
7661 /* this returns a buffer locked for blocking */
7662 return buf;
7663 }
7664
7665 static struct btrfs_block_rsv *
7666 use_block_rsv(struct btrfs_trans_handle *trans,
7667 struct btrfs_root *root, u32 blocksize)
7668 {
7669 struct btrfs_block_rsv *block_rsv;
7670 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7671 int ret;
7672 bool global_updated = false;
7673
7674 block_rsv = get_block_rsv(trans, root);
7675
7676 if (unlikely(block_rsv->size == 0))
7677 goto try_reserve;
7678 again:
7679 ret = block_rsv_use_bytes(block_rsv, blocksize);
7680 if (!ret)
7681 return block_rsv;
7682
7683 if (block_rsv->failfast)
7684 return ERR_PTR(ret);
7685
7686 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7687 global_updated = true;
7688 update_global_block_rsv(root->fs_info);
7689 goto again;
7690 }
7691
7692 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7693 static DEFINE_RATELIMIT_STATE(_rs,
7694 DEFAULT_RATELIMIT_INTERVAL * 10,
7695 /*DEFAULT_RATELIMIT_BURST*/ 1);
7696 if (__ratelimit(&_rs))
7697 WARN(1, KERN_DEBUG
7698 "BTRFS: block rsv returned %d\n", ret);
7699 }
7700 try_reserve:
7701 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7702 BTRFS_RESERVE_NO_FLUSH);
7703 if (!ret)
7704 return block_rsv;
7705 /*
7706 * If we couldn't reserve metadata bytes try and use some from
7707 * the global reserve if its space type is the same as the global
7708 * reservation.
7709 */
7710 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7711 block_rsv->space_info == global_rsv->space_info) {
7712 ret = block_rsv_use_bytes(global_rsv, blocksize);
7713 if (!ret)
7714 return global_rsv;
7715 }
7716 return ERR_PTR(ret);
7717 }
7718
7719 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7720 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7721 {
7722 block_rsv_add_bytes(block_rsv, blocksize, 0);
7723 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7724 }
7725
7726 /*
7727 * finds a free extent and does all the dirty work required for allocation
7728 * returns the tree buffer or an ERR_PTR on error.
7729 */
7730 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7731 struct btrfs_root *root,
7732 u64 parent, u64 root_objectid,
7733 struct btrfs_disk_key *key, int level,
7734 u64 hint, u64 empty_size)
7735 {
7736 struct btrfs_key ins;
7737 struct btrfs_block_rsv *block_rsv;
7738 struct extent_buffer *buf;
7739 struct btrfs_delayed_extent_op *extent_op;
7740 u64 flags = 0;
7741 int ret;
7742 u32 blocksize = root->nodesize;
7743 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7744 SKINNY_METADATA);
7745
7746 if (btrfs_test_is_dummy_root(root)) {
7747 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7748 level);
7749 if (!IS_ERR(buf))
7750 root->alloc_bytenr += blocksize;
7751 return buf;
7752 }
7753
7754 block_rsv = use_block_rsv(trans, root, blocksize);
7755 if (IS_ERR(block_rsv))
7756 return ERR_CAST(block_rsv);
7757
7758 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7759 empty_size, hint, &ins, 0, 0);
7760 if (ret)
7761 goto out_unuse;
7762
7763 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7764 if (IS_ERR(buf)) {
7765 ret = PTR_ERR(buf);
7766 goto out_free_reserved;
7767 }
7768
7769 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7770 if (parent == 0)
7771 parent = ins.objectid;
7772 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7773 } else
7774 BUG_ON(parent > 0);
7775
7776 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7777 extent_op = btrfs_alloc_delayed_extent_op();
7778 if (!extent_op) {
7779 ret = -ENOMEM;
7780 goto out_free_buf;
7781 }
7782 if (key)
7783 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7784 else
7785 memset(&extent_op->key, 0, sizeof(extent_op->key));
7786 extent_op->flags_to_set = flags;
7787 if (skinny_metadata)
7788 extent_op->update_key = 0;
7789 else
7790 extent_op->update_key = 1;
7791 extent_op->update_flags = 1;
7792 extent_op->is_data = 0;
7793 extent_op->level = level;
7794
7795 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7796 ins.objectid, ins.offset,
7797 parent, root_objectid, level,
7798 BTRFS_ADD_DELAYED_EXTENT,
7799 extent_op, 0);
7800 if (ret)
7801 goto out_free_delayed;
7802 }
7803 return buf;
7804
7805 out_free_delayed:
7806 btrfs_free_delayed_extent_op(extent_op);
7807 out_free_buf:
7808 free_extent_buffer(buf);
7809 out_free_reserved:
7810 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7811 out_unuse:
7812 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7813 return ERR_PTR(ret);
7814 }
7815
7816 struct walk_control {
7817 u64 refs[BTRFS_MAX_LEVEL];
7818 u64 flags[BTRFS_MAX_LEVEL];
7819 struct btrfs_key update_progress;
7820 int stage;
7821 int level;
7822 int shared_level;
7823 int update_ref;
7824 int keep_locks;
7825 int reada_slot;
7826 int reada_count;
7827 int for_reloc;
7828 };
7829
7830 #define DROP_REFERENCE 1
7831 #define UPDATE_BACKREF 2
7832
7833 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7834 struct btrfs_root *root,
7835 struct walk_control *wc,
7836 struct btrfs_path *path)
7837 {
7838 u64 bytenr;
7839 u64 generation;
7840 u64 refs;
7841 u64 flags;
7842 u32 nritems;
7843 u32 blocksize;
7844 struct btrfs_key key;
7845 struct extent_buffer *eb;
7846 int ret;
7847 int slot;
7848 int nread = 0;
7849
7850 if (path->slots[wc->level] < wc->reada_slot) {
7851 wc->reada_count = wc->reada_count * 2 / 3;
7852 wc->reada_count = max(wc->reada_count, 2);
7853 } else {
7854 wc->reada_count = wc->reada_count * 3 / 2;
7855 wc->reada_count = min_t(int, wc->reada_count,
7856 BTRFS_NODEPTRS_PER_BLOCK(root));
7857 }
7858
7859 eb = path->nodes[wc->level];
7860 nritems = btrfs_header_nritems(eb);
7861 blocksize = root->nodesize;
7862
7863 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7864 if (nread >= wc->reada_count)
7865 break;
7866
7867 cond_resched();
7868 bytenr = btrfs_node_blockptr(eb, slot);
7869 generation = btrfs_node_ptr_generation(eb, slot);
7870
7871 if (slot == path->slots[wc->level])
7872 goto reada;
7873
7874 if (wc->stage == UPDATE_BACKREF &&
7875 generation <= root->root_key.offset)
7876 continue;
7877
7878 /* We don't lock the tree block, it's OK to be racy here */
7879 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7880 wc->level - 1, 1, &refs,
7881 &flags);
7882 /* We don't care about errors in readahead. */
7883 if (ret < 0)
7884 continue;
7885 BUG_ON(refs == 0);
7886
7887 if (wc->stage == DROP_REFERENCE) {
7888 if (refs == 1)
7889 goto reada;
7890
7891 if (wc->level == 1 &&
7892 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7893 continue;
7894 if (!wc->update_ref ||
7895 generation <= root->root_key.offset)
7896 continue;
7897 btrfs_node_key_to_cpu(eb, &key, slot);
7898 ret = btrfs_comp_cpu_keys(&key,
7899 &wc->update_progress);
7900 if (ret < 0)
7901 continue;
7902 } else {
7903 if (wc->level == 1 &&
7904 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7905 continue;
7906 }
7907 reada:
7908 readahead_tree_block(root, bytenr);
7909 nread++;
7910 }
7911 wc->reada_slot = slot;
7912 }
7913
7914 /*
7915 * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7916 * for later qgroup accounting.
7917 *
7918 * Current, this function does nothing.
7919 */
7920 static int account_leaf_items(struct btrfs_trans_handle *trans,
7921 struct btrfs_root *root,
7922 struct extent_buffer *eb)
7923 {
7924 int nr = btrfs_header_nritems(eb);
7925 int i, extent_type;
7926 struct btrfs_key key;
7927 struct btrfs_file_extent_item *fi;
7928 u64 bytenr, num_bytes;
7929
7930 for (i = 0; i < nr; i++) {
7931 btrfs_item_key_to_cpu(eb, &key, i);
7932
7933 if (key.type != BTRFS_EXTENT_DATA_KEY)
7934 continue;
7935
7936 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7937 /* filter out non qgroup-accountable extents */
7938 extent_type = btrfs_file_extent_type(eb, fi);
7939
7940 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7941 continue;
7942
7943 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7944 if (!bytenr)
7945 continue;
7946
7947 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7948 }
7949 return 0;
7950 }
7951
7952 /*
7953 * Walk up the tree from the bottom, freeing leaves and any interior
7954 * nodes which have had all slots visited. If a node (leaf or
7955 * interior) is freed, the node above it will have it's slot
7956 * incremented. The root node will never be freed.
7957 *
7958 * At the end of this function, we should have a path which has all
7959 * slots incremented to the next position for a search. If we need to
7960 * read a new node it will be NULL and the node above it will have the
7961 * correct slot selected for a later read.
7962 *
7963 * If we increment the root nodes slot counter past the number of
7964 * elements, 1 is returned to signal completion of the search.
7965 */
7966 static int adjust_slots_upwards(struct btrfs_root *root,
7967 struct btrfs_path *path, int root_level)
7968 {
7969 int level = 0;
7970 int nr, slot;
7971 struct extent_buffer *eb;
7972
7973 if (root_level == 0)
7974 return 1;
7975
7976 while (level <= root_level) {
7977 eb = path->nodes[level];
7978 nr = btrfs_header_nritems(eb);
7979 path->slots[level]++;
7980 slot = path->slots[level];
7981 if (slot >= nr || level == 0) {
7982 /*
7983 * Don't free the root - we will detect this
7984 * condition after our loop and return a
7985 * positive value for caller to stop walking the tree.
7986 */
7987 if (level != root_level) {
7988 btrfs_tree_unlock_rw(eb, path->locks[level]);
7989 path->locks[level] = 0;
7990
7991 free_extent_buffer(eb);
7992 path->nodes[level] = NULL;
7993 path->slots[level] = 0;
7994 }
7995 } else {
7996 /*
7997 * We have a valid slot to walk back down
7998 * from. Stop here so caller can process these
7999 * new nodes.
8000 */
8001 break;
8002 }
8003
8004 level++;
8005 }
8006
8007 eb = path->nodes[root_level];
8008 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8009 return 1;
8010
8011 return 0;
8012 }
8013
8014 /*
8015 * root_eb is the subtree root and is locked before this function is called.
8016 * TODO: Modify this function to mark all (including complete shared node)
8017 * to dirty_extent_root to allow it get accounted in qgroup.
8018 */
8019 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8020 struct btrfs_root *root,
8021 struct extent_buffer *root_eb,
8022 u64 root_gen,
8023 int root_level)
8024 {
8025 int ret = 0;
8026 int level;
8027 struct extent_buffer *eb = root_eb;
8028 struct btrfs_path *path = NULL;
8029
8030 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8031 BUG_ON(root_eb == NULL);
8032
8033 if (!root->fs_info->quota_enabled)
8034 return 0;
8035
8036 if (!extent_buffer_uptodate(root_eb)) {
8037 ret = btrfs_read_buffer(root_eb, root_gen);
8038 if (ret)
8039 goto out;
8040 }
8041
8042 if (root_level == 0) {
8043 ret = account_leaf_items(trans, root, root_eb);
8044 goto out;
8045 }
8046
8047 path = btrfs_alloc_path();
8048 if (!path)
8049 return -ENOMEM;
8050
8051 /*
8052 * Walk down the tree. Missing extent blocks are filled in as
8053 * we go. Metadata is accounted every time we read a new
8054 * extent block.
8055 *
8056 * When we reach a leaf, we account for file extent items in it,
8057 * walk back up the tree (adjusting slot pointers as we go)
8058 * and restart the search process.
8059 */
8060 extent_buffer_get(root_eb); /* For path */
8061 path->nodes[root_level] = root_eb;
8062 path->slots[root_level] = 0;
8063 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8064 walk_down:
8065 level = root_level;
8066 while (level >= 0) {
8067 if (path->nodes[level] == NULL) {
8068 int parent_slot;
8069 u64 child_gen;
8070 u64 child_bytenr;
8071
8072 /* We need to get child blockptr/gen from
8073 * parent before we can read it. */
8074 eb = path->nodes[level + 1];
8075 parent_slot = path->slots[level + 1];
8076 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8077 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8078
8079 eb = read_tree_block(root, child_bytenr, child_gen);
8080 if (IS_ERR(eb)) {
8081 ret = PTR_ERR(eb);
8082 goto out;
8083 } else if (!extent_buffer_uptodate(eb)) {
8084 free_extent_buffer(eb);
8085 ret = -EIO;
8086 goto out;
8087 }
8088
8089 path->nodes[level] = eb;
8090 path->slots[level] = 0;
8091
8092 btrfs_tree_read_lock(eb);
8093 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8094 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8095 }
8096
8097 if (level == 0) {
8098 ret = account_leaf_items(trans, root, path->nodes[level]);
8099 if (ret)
8100 goto out;
8101
8102 /* Nonzero return here means we completed our search */
8103 ret = adjust_slots_upwards(root, path, root_level);
8104 if (ret)
8105 break;
8106
8107 /* Restart search with new slots */
8108 goto walk_down;
8109 }
8110
8111 level--;
8112 }
8113
8114 ret = 0;
8115 out:
8116 btrfs_free_path(path);
8117
8118 return ret;
8119 }
8120
8121 /*
8122 * helper to process tree block while walking down the tree.
8123 *
8124 * when wc->stage == UPDATE_BACKREF, this function updates
8125 * back refs for pointers in the block.
8126 *
8127 * NOTE: return value 1 means we should stop walking down.
8128 */
8129 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8130 struct btrfs_root *root,
8131 struct btrfs_path *path,
8132 struct walk_control *wc, int lookup_info)
8133 {
8134 int level = wc->level;
8135 struct extent_buffer *eb = path->nodes[level];
8136 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8137 int ret;
8138
8139 if (wc->stage == UPDATE_BACKREF &&
8140 btrfs_header_owner(eb) != root->root_key.objectid)
8141 return 1;
8142
8143 /*
8144 * when reference count of tree block is 1, it won't increase
8145 * again. once full backref flag is set, we never clear it.
8146 */
8147 if (lookup_info &&
8148 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8149 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8150 BUG_ON(!path->locks[level]);
8151 ret = btrfs_lookup_extent_info(trans, root,
8152 eb->start, level, 1,
8153 &wc->refs[level],
8154 &wc->flags[level]);
8155 BUG_ON(ret == -ENOMEM);
8156 if (ret)
8157 return ret;
8158 BUG_ON(wc->refs[level] == 0);
8159 }
8160
8161 if (wc->stage == DROP_REFERENCE) {
8162 if (wc->refs[level] > 1)
8163 return 1;
8164
8165 if (path->locks[level] && !wc->keep_locks) {
8166 btrfs_tree_unlock_rw(eb, path->locks[level]);
8167 path->locks[level] = 0;
8168 }
8169 return 0;
8170 }
8171
8172 /* wc->stage == UPDATE_BACKREF */
8173 if (!(wc->flags[level] & flag)) {
8174 BUG_ON(!path->locks[level]);
8175 ret = btrfs_inc_ref(trans, root, eb, 1);
8176 BUG_ON(ret); /* -ENOMEM */
8177 ret = btrfs_dec_ref(trans, root, eb, 0);
8178 BUG_ON(ret); /* -ENOMEM */
8179 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8180 eb->len, flag,
8181 btrfs_header_level(eb), 0);
8182 BUG_ON(ret); /* -ENOMEM */
8183 wc->flags[level] |= flag;
8184 }
8185
8186 /*
8187 * the block is shared by multiple trees, so it's not good to
8188 * keep the tree lock
8189 */
8190 if (path->locks[level] && level > 0) {
8191 btrfs_tree_unlock_rw(eb, path->locks[level]);
8192 path->locks[level] = 0;
8193 }
8194 return 0;
8195 }
8196
8197 /*
8198 * helper to process tree block pointer.
8199 *
8200 * when wc->stage == DROP_REFERENCE, this function checks
8201 * reference count of the block pointed to. if the block
8202 * is shared and we need update back refs for the subtree
8203 * rooted at the block, this function changes wc->stage to
8204 * UPDATE_BACKREF. if the block is shared and there is no
8205 * need to update back, this function drops the reference
8206 * to the block.
8207 *
8208 * NOTE: return value 1 means we should stop walking down.
8209 */
8210 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8211 struct btrfs_root *root,
8212 struct btrfs_path *path,
8213 struct walk_control *wc, int *lookup_info)
8214 {
8215 u64 bytenr;
8216 u64 generation;
8217 u64 parent;
8218 u32 blocksize;
8219 struct btrfs_key key;
8220 struct extent_buffer *next;
8221 int level = wc->level;
8222 int reada = 0;
8223 int ret = 0;
8224 bool need_account = false;
8225
8226 generation = btrfs_node_ptr_generation(path->nodes[level],
8227 path->slots[level]);
8228 /*
8229 * if the lower level block was created before the snapshot
8230 * was created, we know there is no need to update back refs
8231 * for the subtree
8232 */
8233 if (wc->stage == UPDATE_BACKREF &&
8234 generation <= root->root_key.offset) {
8235 *lookup_info = 1;
8236 return 1;
8237 }
8238
8239 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8240 blocksize = root->nodesize;
8241
8242 next = btrfs_find_tree_block(root->fs_info, bytenr);
8243 if (!next) {
8244 next = btrfs_find_create_tree_block(root, bytenr);
8245 if (!next)
8246 return -ENOMEM;
8247 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8248 level - 1);
8249 reada = 1;
8250 }
8251 btrfs_tree_lock(next);
8252 btrfs_set_lock_blocking(next);
8253
8254 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8255 &wc->refs[level - 1],
8256 &wc->flags[level - 1]);
8257 if (ret < 0) {
8258 btrfs_tree_unlock(next);
8259 return ret;
8260 }
8261
8262 if (unlikely(wc->refs[level - 1] == 0)) {
8263 btrfs_err(root->fs_info, "Missing references.");
8264 BUG();
8265 }
8266 *lookup_info = 0;
8267
8268 if (wc->stage == DROP_REFERENCE) {
8269 if (wc->refs[level - 1] > 1) {
8270 need_account = true;
8271 if (level == 1 &&
8272 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8273 goto skip;
8274
8275 if (!wc->update_ref ||
8276 generation <= root->root_key.offset)
8277 goto skip;
8278
8279 btrfs_node_key_to_cpu(path->nodes[level], &key,
8280 path->slots[level]);
8281 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8282 if (ret < 0)
8283 goto skip;
8284
8285 wc->stage = UPDATE_BACKREF;
8286 wc->shared_level = level - 1;
8287 }
8288 } else {
8289 if (level == 1 &&
8290 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8291 goto skip;
8292 }
8293
8294 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8295 btrfs_tree_unlock(next);
8296 free_extent_buffer(next);
8297 next = NULL;
8298 *lookup_info = 1;
8299 }
8300
8301 if (!next) {
8302 if (reada && level == 1)
8303 reada_walk_down(trans, root, wc, path);
8304 next = read_tree_block(root, bytenr, generation);
8305 if (IS_ERR(next)) {
8306 return PTR_ERR(next);
8307 } else if (!extent_buffer_uptodate(next)) {
8308 free_extent_buffer(next);
8309 return -EIO;
8310 }
8311 btrfs_tree_lock(next);
8312 btrfs_set_lock_blocking(next);
8313 }
8314
8315 level--;
8316 BUG_ON(level != btrfs_header_level(next));
8317 path->nodes[level] = next;
8318 path->slots[level] = 0;
8319 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8320 wc->level = level;
8321 if (wc->level == 1)
8322 wc->reada_slot = 0;
8323 return 0;
8324 skip:
8325 wc->refs[level - 1] = 0;
8326 wc->flags[level - 1] = 0;
8327 if (wc->stage == DROP_REFERENCE) {
8328 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8329 parent = path->nodes[level]->start;
8330 } else {
8331 BUG_ON(root->root_key.objectid !=
8332 btrfs_header_owner(path->nodes[level]));
8333 parent = 0;
8334 }
8335
8336 if (need_account) {
8337 ret = account_shared_subtree(trans, root, next,
8338 generation, level - 1);
8339 if (ret) {
8340 btrfs_err_rl(root->fs_info,
8341 "Error "
8342 "%d accounting shared subtree. Quota "
8343 "is out of sync, rescan required.",
8344 ret);
8345 }
8346 }
8347 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8348 root->root_key.objectid, level - 1, 0, 0);
8349 BUG_ON(ret); /* -ENOMEM */
8350 }
8351 btrfs_tree_unlock(next);
8352 free_extent_buffer(next);
8353 *lookup_info = 1;
8354 return 1;
8355 }
8356
8357 /*
8358 * helper to process tree block while walking up the tree.
8359 *
8360 * when wc->stage == DROP_REFERENCE, this function drops
8361 * reference count on the block.
8362 *
8363 * when wc->stage == UPDATE_BACKREF, this function changes
8364 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8365 * to UPDATE_BACKREF previously while processing the block.
8366 *
8367 * NOTE: return value 1 means we should stop walking up.
8368 */
8369 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8370 struct btrfs_root *root,
8371 struct btrfs_path *path,
8372 struct walk_control *wc)
8373 {
8374 int ret;
8375 int level = wc->level;
8376 struct extent_buffer *eb = path->nodes[level];
8377 u64 parent = 0;
8378
8379 if (wc->stage == UPDATE_BACKREF) {
8380 BUG_ON(wc->shared_level < level);
8381 if (level < wc->shared_level)
8382 goto out;
8383
8384 ret = find_next_key(path, level + 1, &wc->update_progress);
8385 if (ret > 0)
8386 wc->update_ref = 0;
8387
8388 wc->stage = DROP_REFERENCE;
8389 wc->shared_level = -1;
8390 path->slots[level] = 0;
8391
8392 /*
8393 * check reference count again if the block isn't locked.
8394 * we should start walking down the tree again if reference
8395 * count is one.
8396 */
8397 if (!path->locks[level]) {
8398 BUG_ON(level == 0);
8399 btrfs_tree_lock(eb);
8400 btrfs_set_lock_blocking(eb);
8401 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8402
8403 ret = btrfs_lookup_extent_info(trans, root,
8404 eb->start, level, 1,
8405 &wc->refs[level],
8406 &wc->flags[level]);
8407 if (ret < 0) {
8408 btrfs_tree_unlock_rw(eb, path->locks[level]);
8409 path->locks[level] = 0;
8410 return ret;
8411 }
8412 BUG_ON(wc->refs[level] == 0);
8413 if (wc->refs[level] == 1) {
8414 btrfs_tree_unlock_rw(eb, path->locks[level]);
8415 path->locks[level] = 0;
8416 return 1;
8417 }
8418 }
8419 }
8420
8421 /* wc->stage == DROP_REFERENCE */
8422 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8423
8424 if (wc->refs[level] == 1) {
8425 if (level == 0) {
8426 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8427 ret = btrfs_dec_ref(trans, root, eb, 1);
8428 else
8429 ret = btrfs_dec_ref(trans, root, eb, 0);
8430 BUG_ON(ret); /* -ENOMEM */
8431 ret = account_leaf_items(trans, root, eb);
8432 if (ret) {
8433 btrfs_err_rl(root->fs_info,
8434 "error "
8435 "%d accounting leaf items. Quota "
8436 "is out of sync, rescan required.",
8437 ret);
8438 }
8439 }
8440 /* make block locked assertion in clean_tree_block happy */
8441 if (!path->locks[level] &&
8442 btrfs_header_generation(eb) == trans->transid) {
8443 btrfs_tree_lock(eb);
8444 btrfs_set_lock_blocking(eb);
8445 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8446 }
8447 clean_tree_block(trans, root->fs_info, eb);
8448 }
8449
8450 if (eb == root->node) {
8451 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8452 parent = eb->start;
8453 else
8454 BUG_ON(root->root_key.objectid !=
8455 btrfs_header_owner(eb));
8456 } else {
8457 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8458 parent = path->nodes[level + 1]->start;
8459 else
8460 BUG_ON(root->root_key.objectid !=
8461 btrfs_header_owner(path->nodes[level + 1]));
8462 }
8463
8464 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8465 out:
8466 wc->refs[level] = 0;
8467 wc->flags[level] = 0;
8468 return 0;
8469 }
8470
8471 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8472 struct btrfs_root *root,
8473 struct btrfs_path *path,
8474 struct walk_control *wc)
8475 {
8476 int level = wc->level;
8477 int lookup_info = 1;
8478 int ret;
8479
8480 while (level >= 0) {
8481 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8482 if (ret > 0)
8483 break;
8484
8485 if (level == 0)
8486 break;
8487
8488 if (path->slots[level] >=
8489 btrfs_header_nritems(path->nodes[level]))
8490 break;
8491
8492 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8493 if (ret > 0) {
8494 path->slots[level]++;
8495 continue;
8496 } else if (ret < 0)
8497 return ret;
8498 level = wc->level;
8499 }
8500 return 0;
8501 }
8502
8503 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8504 struct btrfs_root *root,
8505 struct btrfs_path *path,
8506 struct walk_control *wc, int max_level)
8507 {
8508 int level = wc->level;
8509 int ret;
8510
8511 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8512 while (level < max_level && path->nodes[level]) {
8513 wc->level = level;
8514 if (path->slots[level] + 1 <
8515 btrfs_header_nritems(path->nodes[level])) {
8516 path->slots[level]++;
8517 return 0;
8518 } else {
8519 ret = walk_up_proc(trans, root, path, wc);
8520 if (ret > 0)
8521 return 0;
8522
8523 if (path->locks[level]) {
8524 btrfs_tree_unlock_rw(path->nodes[level],
8525 path->locks[level]);
8526 path->locks[level] = 0;
8527 }
8528 free_extent_buffer(path->nodes[level]);
8529 path->nodes[level] = NULL;
8530 level++;
8531 }
8532 }
8533 return 1;
8534 }
8535
8536 /*
8537 * drop a subvolume tree.
8538 *
8539 * this function traverses the tree freeing any blocks that only
8540 * referenced by the tree.
8541 *
8542 * when a shared tree block is found. this function decreases its
8543 * reference count by one. if update_ref is true, this function
8544 * also make sure backrefs for the shared block and all lower level
8545 * blocks are properly updated.
8546 *
8547 * If called with for_reloc == 0, may exit early with -EAGAIN
8548 */
8549 int btrfs_drop_snapshot(struct btrfs_root *root,
8550 struct btrfs_block_rsv *block_rsv, int update_ref,
8551 int for_reloc)
8552 {
8553 struct btrfs_path *path;
8554 struct btrfs_trans_handle *trans;
8555 struct btrfs_root *tree_root = root->fs_info->tree_root;
8556 struct btrfs_root_item *root_item = &root->root_item;
8557 struct walk_control *wc;
8558 struct btrfs_key key;
8559 int err = 0;
8560 int ret;
8561 int level;
8562 bool root_dropped = false;
8563
8564 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8565
8566 path = btrfs_alloc_path();
8567 if (!path) {
8568 err = -ENOMEM;
8569 goto out;
8570 }
8571
8572 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8573 if (!wc) {
8574 btrfs_free_path(path);
8575 err = -ENOMEM;
8576 goto out;
8577 }
8578
8579 trans = btrfs_start_transaction(tree_root, 0);
8580 if (IS_ERR(trans)) {
8581 err = PTR_ERR(trans);
8582 goto out_free;
8583 }
8584
8585 if (block_rsv)
8586 trans->block_rsv = block_rsv;
8587
8588 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8589 level = btrfs_header_level(root->node);
8590 path->nodes[level] = btrfs_lock_root_node(root);
8591 btrfs_set_lock_blocking(path->nodes[level]);
8592 path->slots[level] = 0;
8593 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8594 memset(&wc->update_progress, 0,
8595 sizeof(wc->update_progress));
8596 } else {
8597 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8598 memcpy(&wc->update_progress, &key,
8599 sizeof(wc->update_progress));
8600
8601 level = root_item->drop_level;
8602 BUG_ON(level == 0);
8603 path->lowest_level = level;
8604 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8605 path->lowest_level = 0;
8606 if (ret < 0) {
8607 err = ret;
8608 goto out_end_trans;
8609 }
8610 WARN_ON(ret > 0);
8611
8612 /*
8613 * unlock our path, this is safe because only this
8614 * function is allowed to delete this snapshot
8615 */
8616 btrfs_unlock_up_safe(path, 0);
8617
8618 level = btrfs_header_level(root->node);
8619 while (1) {
8620 btrfs_tree_lock(path->nodes[level]);
8621 btrfs_set_lock_blocking(path->nodes[level]);
8622 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8623
8624 ret = btrfs_lookup_extent_info(trans, root,
8625 path->nodes[level]->start,
8626 level, 1, &wc->refs[level],
8627 &wc->flags[level]);
8628 if (ret < 0) {
8629 err = ret;
8630 goto out_end_trans;
8631 }
8632 BUG_ON(wc->refs[level] == 0);
8633
8634 if (level == root_item->drop_level)
8635 break;
8636
8637 btrfs_tree_unlock(path->nodes[level]);
8638 path->locks[level] = 0;
8639 WARN_ON(wc->refs[level] != 1);
8640 level--;
8641 }
8642 }
8643
8644 wc->level = level;
8645 wc->shared_level = -1;
8646 wc->stage = DROP_REFERENCE;
8647 wc->update_ref = update_ref;
8648 wc->keep_locks = 0;
8649 wc->for_reloc = for_reloc;
8650 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8651
8652 while (1) {
8653
8654 ret = walk_down_tree(trans, root, path, wc);
8655 if (ret < 0) {
8656 err = ret;
8657 break;
8658 }
8659
8660 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8661 if (ret < 0) {
8662 err = ret;
8663 break;
8664 }
8665
8666 if (ret > 0) {
8667 BUG_ON(wc->stage != DROP_REFERENCE);
8668 break;
8669 }
8670
8671 if (wc->stage == DROP_REFERENCE) {
8672 level = wc->level;
8673 btrfs_node_key(path->nodes[level],
8674 &root_item->drop_progress,
8675 path->slots[level]);
8676 root_item->drop_level = level;
8677 }
8678
8679 BUG_ON(wc->level == 0);
8680 if (btrfs_should_end_transaction(trans, tree_root) ||
8681 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8682 ret = btrfs_update_root(trans, tree_root,
8683 &root->root_key,
8684 root_item);
8685 if (ret) {
8686 btrfs_abort_transaction(trans, tree_root, ret);
8687 err = ret;
8688 goto out_end_trans;
8689 }
8690
8691 btrfs_end_transaction_throttle(trans, tree_root);
8692 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8693 pr_debug("BTRFS: drop snapshot early exit\n");
8694 err = -EAGAIN;
8695 goto out_free;
8696 }
8697
8698 trans = btrfs_start_transaction(tree_root, 0);
8699 if (IS_ERR(trans)) {
8700 err = PTR_ERR(trans);
8701 goto out_free;
8702 }
8703 if (block_rsv)
8704 trans->block_rsv = block_rsv;
8705 }
8706 }
8707 btrfs_release_path(path);
8708 if (err)
8709 goto out_end_trans;
8710
8711 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8712 if (ret) {
8713 btrfs_abort_transaction(trans, tree_root, ret);
8714 goto out_end_trans;
8715 }
8716
8717 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8718 ret = btrfs_find_root(tree_root, &root->root_key, path,
8719 NULL, NULL);
8720 if (ret < 0) {
8721 btrfs_abort_transaction(trans, tree_root, ret);
8722 err = ret;
8723 goto out_end_trans;
8724 } else if (ret > 0) {
8725 /* if we fail to delete the orphan item this time
8726 * around, it'll get picked up the next time.
8727 *
8728 * The most common failure here is just -ENOENT.
8729 */
8730 btrfs_del_orphan_item(trans, tree_root,
8731 root->root_key.objectid);
8732 }
8733 }
8734
8735 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8736 btrfs_add_dropped_root(trans, root);
8737 } else {
8738 free_extent_buffer(root->node);
8739 free_extent_buffer(root->commit_root);
8740 btrfs_put_fs_root(root);
8741 }
8742 root_dropped = true;
8743 out_end_trans:
8744 btrfs_end_transaction_throttle(trans, tree_root);
8745 out_free:
8746 kfree(wc);
8747 btrfs_free_path(path);
8748 out:
8749 /*
8750 * So if we need to stop dropping the snapshot for whatever reason we
8751 * need to make sure to add it back to the dead root list so that we
8752 * keep trying to do the work later. This also cleans up roots if we
8753 * don't have it in the radix (like when we recover after a power fail
8754 * or unmount) so we don't leak memory.
8755 */
8756 if (!for_reloc && root_dropped == false)
8757 btrfs_add_dead_root(root);
8758 if (err && err != -EAGAIN)
8759 btrfs_std_error(root->fs_info, err, NULL);
8760 return err;
8761 }
8762
8763 /*
8764 * drop subtree rooted at tree block 'node'.
8765 *
8766 * NOTE: this function will unlock and release tree block 'node'
8767 * only used by relocation code
8768 */
8769 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8770 struct btrfs_root *root,
8771 struct extent_buffer *node,
8772 struct extent_buffer *parent)
8773 {
8774 struct btrfs_path *path;
8775 struct walk_control *wc;
8776 int level;
8777 int parent_level;
8778 int ret = 0;
8779 int wret;
8780
8781 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8782
8783 path = btrfs_alloc_path();
8784 if (!path)
8785 return -ENOMEM;
8786
8787 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8788 if (!wc) {
8789 btrfs_free_path(path);
8790 return -ENOMEM;
8791 }
8792
8793 btrfs_assert_tree_locked(parent);
8794 parent_level = btrfs_header_level(parent);
8795 extent_buffer_get(parent);
8796 path->nodes[parent_level] = parent;
8797 path->slots[parent_level] = btrfs_header_nritems(parent);
8798
8799 btrfs_assert_tree_locked(node);
8800 level = btrfs_header_level(node);
8801 path->nodes[level] = node;
8802 path->slots[level] = 0;
8803 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8804
8805 wc->refs[parent_level] = 1;
8806 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8807 wc->level = level;
8808 wc->shared_level = -1;
8809 wc->stage = DROP_REFERENCE;
8810 wc->update_ref = 0;
8811 wc->keep_locks = 1;
8812 wc->for_reloc = 1;
8813 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8814
8815 while (1) {
8816 wret = walk_down_tree(trans, root, path, wc);
8817 if (wret < 0) {
8818 ret = wret;
8819 break;
8820 }
8821
8822 wret = walk_up_tree(trans, root, path, wc, parent_level);
8823 if (wret < 0)
8824 ret = wret;
8825 if (wret != 0)
8826 break;
8827 }
8828
8829 kfree(wc);
8830 btrfs_free_path(path);
8831 return ret;
8832 }
8833
8834 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8835 {
8836 u64 num_devices;
8837 u64 stripped;
8838
8839 /*
8840 * if restripe for this chunk_type is on pick target profile and
8841 * return, otherwise do the usual balance
8842 */
8843 stripped = get_restripe_target(root->fs_info, flags);
8844 if (stripped)
8845 return extended_to_chunk(stripped);
8846
8847 num_devices = root->fs_info->fs_devices->rw_devices;
8848
8849 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8850 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8851 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8852
8853 if (num_devices == 1) {
8854 stripped |= BTRFS_BLOCK_GROUP_DUP;
8855 stripped = flags & ~stripped;
8856
8857 /* turn raid0 into single device chunks */
8858 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8859 return stripped;
8860
8861 /* turn mirroring into duplication */
8862 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8863 BTRFS_BLOCK_GROUP_RAID10))
8864 return stripped | BTRFS_BLOCK_GROUP_DUP;
8865 } else {
8866 /* they already had raid on here, just return */
8867 if (flags & stripped)
8868 return flags;
8869
8870 stripped |= BTRFS_BLOCK_GROUP_DUP;
8871 stripped = flags & ~stripped;
8872
8873 /* switch duplicated blocks with raid1 */
8874 if (flags & BTRFS_BLOCK_GROUP_DUP)
8875 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8876
8877 /* this is drive concat, leave it alone */
8878 }
8879
8880 return flags;
8881 }
8882
8883 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8884 {
8885 struct btrfs_space_info *sinfo = cache->space_info;
8886 u64 num_bytes;
8887 u64 min_allocable_bytes;
8888 int ret = -ENOSPC;
8889
8890 /*
8891 * We need some metadata space and system metadata space for
8892 * allocating chunks in some corner cases until we force to set
8893 * it to be readonly.
8894 */
8895 if ((sinfo->flags &
8896 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8897 !force)
8898 min_allocable_bytes = 1 * 1024 * 1024;
8899 else
8900 min_allocable_bytes = 0;
8901
8902 spin_lock(&sinfo->lock);
8903 spin_lock(&cache->lock);
8904
8905 if (cache->ro) {
8906 cache->ro++;
8907 ret = 0;
8908 goto out;
8909 }
8910
8911 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8912 cache->bytes_super - btrfs_block_group_used(&cache->item);
8913
8914 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8915 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8916 min_allocable_bytes <= sinfo->total_bytes) {
8917 sinfo->bytes_readonly += num_bytes;
8918 cache->ro++;
8919 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8920 ret = 0;
8921 }
8922 out:
8923 spin_unlock(&cache->lock);
8924 spin_unlock(&sinfo->lock);
8925 return ret;
8926 }
8927
8928 int btrfs_inc_block_group_ro(struct btrfs_root *root,
8929 struct btrfs_block_group_cache *cache)
8930
8931 {
8932 struct btrfs_trans_handle *trans;
8933 u64 alloc_flags;
8934 int ret;
8935
8936 again:
8937 trans = btrfs_join_transaction(root);
8938 if (IS_ERR(trans))
8939 return PTR_ERR(trans);
8940
8941 /*
8942 * we're not allowed to set block groups readonly after the dirty
8943 * block groups cache has started writing. If it already started,
8944 * back off and let this transaction commit
8945 */
8946 mutex_lock(&root->fs_info->ro_block_group_mutex);
8947 if (trans->transaction->dirty_bg_run) {
8948 u64 transid = trans->transid;
8949
8950 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8951 btrfs_end_transaction(trans, root);
8952
8953 ret = btrfs_wait_for_commit(root, transid);
8954 if (ret)
8955 return ret;
8956 goto again;
8957 }
8958
8959 /*
8960 * if we are changing raid levels, try to allocate a corresponding
8961 * block group with the new raid level.
8962 */
8963 alloc_flags = update_block_group_flags(root, cache->flags);
8964 if (alloc_flags != cache->flags) {
8965 ret = do_chunk_alloc(trans, root, alloc_flags,
8966 CHUNK_ALLOC_FORCE);
8967 /*
8968 * ENOSPC is allowed here, we may have enough space
8969 * already allocated at the new raid level to
8970 * carry on
8971 */
8972 if (ret == -ENOSPC)
8973 ret = 0;
8974 if (ret < 0)
8975 goto out;
8976 }
8977
8978 ret = inc_block_group_ro(cache, 0);
8979 if (!ret)
8980 goto out;
8981 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8982 ret = do_chunk_alloc(trans, root, alloc_flags,
8983 CHUNK_ALLOC_FORCE);
8984 if (ret < 0)
8985 goto out;
8986 ret = inc_block_group_ro(cache, 0);
8987 out:
8988 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8989 alloc_flags = update_block_group_flags(root, cache->flags);
8990 lock_chunks(root->fs_info->chunk_root);
8991 check_system_chunk(trans, root, alloc_flags);
8992 unlock_chunks(root->fs_info->chunk_root);
8993 }
8994 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8995
8996 btrfs_end_transaction(trans, root);
8997 return ret;
8998 }
8999
9000 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9001 struct btrfs_root *root, u64 type)
9002 {
9003 u64 alloc_flags = get_alloc_profile(root, type);
9004 return do_chunk_alloc(trans, root, alloc_flags,
9005 CHUNK_ALLOC_FORCE);
9006 }
9007
9008 /*
9009 * helper to account the unused space of all the readonly block group in the
9010 * space_info. takes mirrors into account.
9011 */
9012 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9013 {
9014 struct btrfs_block_group_cache *block_group;
9015 u64 free_bytes = 0;
9016 int factor;
9017
9018 /* It's df, we don't care if it's racey */
9019 if (list_empty(&sinfo->ro_bgs))
9020 return 0;
9021
9022 spin_lock(&sinfo->lock);
9023 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9024 spin_lock(&block_group->lock);
9025
9026 if (!block_group->ro) {
9027 spin_unlock(&block_group->lock);
9028 continue;
9029 }
9030
9031 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9032 BTRFS_BLOCK_GROUP_RAID10 |
9033 BTRFS_BLOCK_GROUP_DUP))
9034 factor = 2;
9035 else
9036 factor = 1;
9037
9038 free_bytes += (block_group->key.offset -
9039 btrfs_block_group_used(&block_group->item)) *
9040 factor;
9041
9042 spin_unlock(&block_group->lock);
9043 }
9044 spin_unlock(&sinfo->lock);
9045
9046 return free_bytes;
9047 }
9048
9049 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9050 struct btrfs_block_group_cache *cache)
9051 {
9052 struct btrfs_space_info *sinfo = cache->space_info;
9053 u64 num_bytes;
9054
9055 BUG_ON(!cache->ro);
9056
9057 spin_lock(&sinfo->lock);
9058 spin_lock(&cache->lock);
9059 if (!--cache->ro) {
9060 num_bytes = cache->key.offset - cache->reserved -
9061 cache->pinned - cache->bytes_super -
9062 btrfs_block_group_used(&cache->item);
9063 sinfo->bytes_readonly -= num_bytes;
9064 list_del_init(&cache->ro_list);
9065 }
9066 spin_unlock(&cache->lock);
9067 spin_unlock(&sinfo->lock);
9068 }
9069
9070 /*
9071 * checks to see if its even possible to relocate this block group.
9072 *
9073 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9074 * ok to go ahead and try.
9075 */
9076 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9077 {
9078 struct btrfs_block_group_cache *block_group;
9079 struct btrfs_space_info *space_info;
9080 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9081 struct btrfs_device *device;
9082 struct btrfs_trans_handle *trans;
9083 u64 min_free;
9084 u64 dev_min = 1;
9085 u64 dev_nr = 0;
9086 u64 target;
9087 int index;
9088 int full = 0;
9089 int ret = 0;
9090
9091 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9092
9093 /* odd, couldn't find the block group, leave it alone */
9094 if (!block_group)
9095 return -1;
9096
9097 min_free = btrfs_block_group_used(&block_group->item);
9098
9099 /* no bytes used, we're good */
9100 if (!min_free)
9101 goto out;
9102
9103 space_info = block_group->space_info;
9104 spin_lock(&space_info->lock);
9105
9106 full = space_info->full;
9107
9108 /*
9109 * if this is the last block group we have in this space, we can't
9110 * relocate it unless we're able to allocate a new chunk below.
9111 *
9112 * Otherwise, we need to make sure we have room in the space to handle
9113 * all of the extents from this block group. If we can, we're good
9114 */
9115 if ((space_info->total_bytes != block_group->key.offset) &&
9116 (space_info->bytes_used + space_info->bytes_reserved +
9117 space_info->bytes_pinned + space_info->bytes_readonly +
9118 min_free < space_info->total_bytes)) {
9119 spin_unlock(&space_info->lock);
9120 goto out;
9121 }
9122 spin_unlock(&space_info->lock);
9123
9124 /*
9125 * ok we don't have enough space, but maybe we have free space on our
9126 * devices to allocate new chunks for relocation, so loop through our
9127 * alloc devices and guess if we have enough space. if this block
9128 * group is going to be restriped, run checks against the target
9129 * profile instead of the current one.
9130 */
9131 ret = -1;
9132
9133 /*
9134 * index:
9135 * 0: raid10
9136 * 1: raid1
9137 * 2: dup
9138 * 3: raid0
9139 * 4: single
9140 */
9141 target = get_restripe_target(root->fs_info, block_group->flags);
9142 if (target) {
9143 index = __get_raid_index(extended_to_chunk(target));
9144 } else {
9145 /*
9146 * this is just a balance, so if we were marked as full
9147 * we know there is no space for a new chunk
9148 */
9149 if (full)
9150 goto out;
9151
9152 index = get_block_group_index(block_group);
9153 }
9154
9155 if (index == BTRFS_RAID_RAID10) {
9156 dev_min = 4;
9157 /* Divide by 2 */
9158 min_free >>= 1;
9159 } else if (index == BTRFS_RAID_RAID1) {
9160 dev_min = 2;
9161 } else if (index == BTRFS_RAID_DUP) {
9162 /* Multiply by 2 */
9163 min_free <<= 1;
9164 } else if (index == BTRFS_RAID_RAID0) {
9165 dev_min = fs_devices->rw_devices;
9166 min_free = div64_u64(min_free, dev_min);
9167 }
9168
9169 /* We need to do this so that we can look at pending chunks */
9170 trans = btrfs_join_transaction(root);
9171 if (IS_ERR(trans)) {
9172 ret = PTR_ERR(trans);
9173 goto out;
9174 }
9175
9176 mutex_lock(&root->fs_info->chunk_mutex);
9177 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9178 u64 dev_offset;
9179
9180 /*
9181 * check to make sure we can actually find a chunk with enough
9182 * space to fit our block group in.
9183 */
9184 if (device->total_bytes > device->bytes_used + min_free &&
9185 !device->is_tgtdev_for_dev_replace) {
9186 ret = find_free_dev_extent(trans, device, min_free,
9187 &dev_offset, NULL);
9188 if (!ret)
9189 dev_nr++;
9190
9191 if (dev_nr >= dev_min)
9192 break;
9193
9194 ret = -1;
9195 }
9196 }
9197 mutex_unlock(&root->fs_info->chunk_mutex);
9198 btrfs_end_transaction(trans, root);
9199 out:
9200 btrfs_put_block_group(block_group);
9201 return ret;
9202 }
9203
9204 static int find_first_block_group(struct btrfs_root *root,
9205 struct btrfs_path *path, struct btrfs_key *key)
9206 {
9207 int ret = 0;
9208 struct btrfs_key found_key;
9209 struct extent_buffer *leaf;
9210 int slot;
9211
9212 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9213 if (ret < 0)
9214 goto out;
9215
9216 while (1) {
9217 slot = path->slots[0];
9218 leaf = path->nodes[0];
9219 if (slot >= btrfs_header_nritems(leaf)) {
9220 ret = btrfs_next_leaf(root, path);
9221 if (ret == 0)
9222 continue;
9223 if (ret < 0)
9224 goto out;
9225 break;
9226 }
9227 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9228
9229 if (found_key.objectid >= key->objectid &&
9230 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9231 ret = 0;
9232 goto out;
9233 }
9234 path->slots[0]++;
9235 }
9236 out:
9237 return ret;
9238 }
9239
9240 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9241 {
9242 struct btrfs_block_group_cache *block_group;
9243 u64 last = 0;
9244
9245 while (1) {
9246 struct inode *inode;
9247
9248 block_group = btrfs_lookup_first_block_group(info, last);
9249 while (block_group) {
9250 spin_lock(&block_group->lock);
9251 if (block_group->iref)
9252 break;
9253 spin_unlock(&block_group->lock);
9254 block_group = next_block_group(info->tree_root,
9255 block_group);
9256 }
9257 if (!block_group) {
9258 if (last == 0)
9259 break;
9260 last = 0;
9261 continue;
9262 }
9263
9264 inode = block_group->inode;
9265 block_group->iref = 0;
9266 block_group->inode = NULL;
9267 spin_unlock(&block_group->lock);
9268 iput(inode);
9269 last = block_group->key.objectid + block_group->key.offset;
9270 btrfs_put_block_group(block_group);
9271 }
9272 }
9273
9274 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9275 {
9276 struct btrfs_block_group_cache *block_group;
9277 struct btrfs_space_info *space_info;
9278 struct btrfs_caching_control *caching_ctl;
9279 struct rb_node *n;
9280
9281 down_write(&info->commit_root_sem);
9282 while (!list_empty(&info->caching_block_groups)) {
9283 caching_ctl = list_entry(info->caching_block_groups.next,
9284 struct btrfs_caching_control, list);
9285 list_del(&caching_ctl->list);
9286 put_caching_control(caching_ctl);
9287 }
9288 up_write(&info->commit_root_sem);
9289
9290 spin_lock(&info->unused_bgs_lock);
9291 while (!list_empty(&info->unused_bgs)) {
9292 block_group = list_first_entry(&info->unused_bgs,
9293 struct btrfs_block_group_cache,
9294 bg_list);
9295 list_del_init(&block_group->bg_list);
9296 btrfs_put_block_group(block_group);
9297 }
9298 spin_unlock(&info->unused_bgs_lock);
9299
9300 spin_lock(&info->block_group_cache_lock);
9301 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9302 block_group = rb_entry(n, struct btrfs_block_group_cache,
9303 cache_node);
9304 rb_erase(&block_group->cache_node,
9305 &info->block_group_cache_tree);
9306 RB_CLEAR_NODE(&block_group->cache_node);
9307 spin_unlock(&info->block_group_cache_lock);
9308
9309 down_write(&block_group->space_info->groups_sem);
9310 list_del(&block_group->list);
9311 up_write(&block_group->space_info->groups_sem);
9312
9313 if (block_group->cached == BTRFS_CACHE_STARTED)
9314 wait_block_group_cache_done(block_group);
9315
9316 /*
9317 * We haven't cached this block group, which means we could
9318 * possibly have excluded extents on this block group.
9319 */
9320 if (block_group->cached == BTRFS_CACHE_NO ||
9321 block_group->cached == BTRFS_CACHE_ERROR)
9322 free_excluded_extents(info->extent_root, block_group);
9323
9324 btrfs_remove_free_space_cache(block_group);
9325 btrfs_put_block_group(block_group);
9326
9327 spin_lock(&info->block_group_cache_lock);
9328 }
9329 spin_unlock(&info->block_group_cache_lock);
9330
9331 /* now that all the block groups are freed, go through and
9332 * free all the space_info structs. This is only called during
9333 * the final stages of unmount, and so we know nobody is
9334 * using them. We call synchronize_rcu() once before we start,
9335 * just to be on the safe side.
9336 */
9337 synchronize_rcu();
9338
9339 release_global_block_rsv(info);
9340
9341 while (!list_empty(&info->space_info)) {
9342 int i;
9343
9344 space_info = list_entry(info->space_info.next,
9345 struct btrfs_space_info,
9346 list);
9347 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9348 if (WARN_ON(space_info->bytes_pinned > 0 ||
9349 space_info->bytes_reserved > 0 ||
9350 space_info->bytes_may_use > 0)) {
9351 dump_space_info(space_info, 0, 0);
9352 }
9353 }
9354 list_del(&space_info->list);
9355 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9356 struct kobject *kobj;
9357 kobj = space_info->block_group_kobjs[i];
9358 space_info->block_group_kobjs[i] = NULL;
9359 if (kobj) {
9360 kobject_del(kobj);
9361 kobject_put(kobj);
9362 }
9363 }
9364 kobject_del(&space_info->kobj);
9365 kobject_put(&space_info->kobj);
9366 }
9367 return 0;
9368 }
9369
9370 static void __link_block_group(struct btrfs_space_info *space_info,
9371 struct btrfs_block_group_cache *cache)
9372 {
9373 int index = get_block_group_index(cache);
9374 bool first = false;
9375
9376 down_write(&space_info->groups_sem);
9377 if (list_empty(&space_info->block_groups[index]))
9378 first = true;
9379 list_add_tail(&cache->list, &space_info->block_groups[index]);
9380 up_write(&space_info->groups_sem);
9381
9382 if (first) {
9383 struct raid_kobject *rkobj;
9384 int ret;
9385
9386 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9387 if (!rkobj)
9388 goto out_err;
9389 rkobj->raid_type = index;
9390 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9391 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9392 "%s", get_raid_name(index));
9393 if (ret) {
9394 kobject_put(&rkobj->kobj);
9395 goto out_err;
9396 }
9397 space_info->block_group_kobjs[index] = &rkobj->kobj;
9398 }
9399
9400 return;
9401 out_err:
9402 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9403 }
9404
9405 static struct btrfs_block_group_cache *
9406 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9407 {
9408 struct btrfs_block_group_cache *cache;
9409
9410 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9411 if (!cache)
9412 return NULL;
9413
9414 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9415 GFP_NOFS);
9416 if (!cache->free_space_ctl) {
9417 kfree(cache);
9418 return NULL;
9419 }
9420
9421 cache->key.objectid = start;
9422 cache->key.offset = size;
9423 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9424
9425 cache->sectorsize = root->sectorsize;
9426 cache->fs_info = root->fs_info;
9427 cache->full_stripe_len = btrfs_full_stripe_len(root,
9428 &root->fs_info->mapping_tree,
9429 start);
9430 atomic_set(&cache->count, 1);
9431 spin_lock_init(&cache->lock);
9432 init_rwsem(&cache->data_rwsem);
9433 INIT_LIST_HEAD(&cache->list);
9434 INIT_LIST_HEAD(&cache->cluster_list);
9435 INIT_LIST_HEAD(&cache->bg_list);
9436 INIT_LIST_HEAD(&cache->ro_list);
9437 INIT_LIST_HEAD(&cache->dirty_list);
9438 INIT_LIST_HEAD(&cache->io_list);
9439 btrfs_init_free_space_ctl(cache);
9440 atomic_set(&cache->trimming, 0);
9441
9442 return cache;
9443 }
9444
9445 int btrfs_read_block_groups(struct btrfs_root *root)
9446 {
9447 struct btrfs_path *path;
9448 int ret;
9449 struct btrfs_block_group_cache *cache;
9450 struct btrfs_fs_info *info = root->fs_info;
9451 struct btrfs_space_info *space_info;
9452 struct btrfs_key key;
9453 struct btrfs_key found_key;
9454 struct extent_buffer *leaf;
9455 int need_clear = 0;
9456 u64 cache_gen;
9457
9458 root = info->extent_root;
9459 key.objectid = 0;
9460 key.offset = 0;
9461 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9462 path = btrfs_alloc_path();
9463 if (!path)
9464 return -ENOMEM;
9465 path->reada = 1;
9466
9467 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9468 if (btrfs_test_opt(root, SPACE_CACHE) &&
9469 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9470 need_clear = 1;
9471 if (btrfs_test_opt(root, CLEAR_CACHE))
9472 need_clear = 1;
9473
9474 while (1) {
9475 ret = find_first_block_group(root, path, &key);
9476 if (ret > 0)
9477 break;
9478 if (ret != 0)
9479 goto error;
9480
9481 leaf = path->nodes[0];
9482 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9483
9484 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9485 found_key.offset);
9486 if (!cache) {
9487 ret = -ENOMEM;
9488 goto error;
9489 }
9490
9491 if (need_clear) {
9492 /*
9493 * When we mount with old space cache, we need to
9494 * set BTRFS_DC_CLEAR and set dirty flag.
9495 *
9496 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9497 * truncate the old free space cache inode and
9498 * setup a new one.
9499 * b) Setting 'dirty flag' makes sure that we flush
9500 * the new space cache info onto disk.
9501 */
9502 if (btrfs_test_opt(root, SPACE_CACHE))
9503 cache->disk_cache_state = BTRFS_DC_CLEAR;
9504 }
9505
9506 read_extent_buffer(leaf, &cache->item,
9507 btrfs_item_ptr_offset(leaf, path->slots[0]),
9508 sizeof(cache->item));
9509 cache->flags = btrfs_block_group_flags(&cache->item);
9510
9511 key.objectid = found_key.objectid + found_key.offset;
9512 btrfs_release_path(path);
9513
9514 /*
9515 * We need to exclude the super stripes now so that the space
9516 * info has super bytes accounted for, otherwise we'll think
9517 * we have more space than we actually do.
9518 */
9519 ret = exclude_super_stripes(root, cache);
9520 if (ret) {
9521 /*
9522 * We may have excluded something, so call this just in
9523 * case.
9524 */
9525 free_excluded_extents(root, cache);
9526 btrfs_put_block_group(cache);
9527 goto error;
9528 }
9529
9530 /*
9531 * check for two cases, either we are full, and therefore
9532 * don't need to bother with the caching work since we won't
9533 * find any space, or we are empty, and we can just add all
9534 * the space in and be done with it. This saves us _alot_ of
9535 * time, particularly in the full case.
9536 */
9537 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9538 cache->last_byte_to_unpin = (u64)-1;
9539 cache->cached = BTRFS_CACHE_FINISHED;
9540 free_excluded_extents(root, cache);
9541 } else if (btrfs_block_group_used(&cache->item) == 0) {
9542 cache->last_byte_to_unpin = (u64)-1;
9543 cache->cached = BTRFS_CACHE_FINISHED;
9544 add_new_free_space(cache, root->fs_info,
9545 found_key.objectid,
9546 found_key.objectid +
9547 found_key.offset);
9548 free_excluded_extents(root, cache);
9549 }
9550
9551 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9552 if (ret) {
9553 btrfs_remove_free_space_cache(cache);
9554 btrfs_put_block_group(cache);
9555 goto error;
9556 }
9557
9558 ret = update_space_info(info, cache->flags, found_key.offset,
9559 btrfs_block_group_used(&cache->item),
9560 &space_info);
9561 if (ret) {
9562 btrfs_remove_free_space_cache(cache);
9563 spin_lock(&info->block_group_cache_lock);
9564 rb_erase(&cache->cache_node,
9565 &info->block_group_cache_tree);
9566 RB_CLEAR_NODE(&cache->cache_node);
9567 spin_unlock(&info->block_group_cache_lock);
9568 btrfs_put_block_group(cache);
9569 goto error;
9570 }
9571
9572 cache->space_info = space_info;
9573 spin_lock(&cache->space_info->lock);
9574 cache->space_info->bytes_readonly += cache->bytes_super;
9575 spin_unlock(&cache->space_info->lock);
9576
9577 __link_block_group(space_info, cache);
9578
9579 set_avail_alloc_bits(root->fs_info, cache->flags);
9580 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9581 inc_block_group_ro(cache, 1);
9582 } else if (btrfs_block_group_used(&cache->item) == 0) {
9583 spin_lock(&info->unused_bgs_lock);
9584 /* Should always be true but just in case. */
9585 if (list_empty(&cache->bg_list)) {
9586 btrfs_get_block_group(cache);
9587 list_add_tail(&cache->bg_list,
9588 &info->unused_bgs);
9589 }
9590 spin_unlock(&info->unused_bgs_lock);
9591 }
9592 }
9593
9594 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9595 if (!(get_alloc_profile(root, space_info->flags) &
9596 (BTRFS_BLOCK_GROUP_RAID10 |
9597 BTRFS_BLOCK_GROUP_RAID1 |
9598 BTRFS_BLOCK_GROUP_RAID5 |
9599 BTRFS_BLOCK_GROUP_RAID6 |
9600 BTRFS_BLOCK_GROUP_DUP)))
9601 continue;
9602 /*
9603 * avoid allocating from un-mirrored block group if there are
9604 * mirrored block groups.
9605 */
9606 list_for_each_entry(cache,
9607 &space_info->block_groups[BTRFS_RAID_RAID0],
9608 list)
9609 inc_block_group_ro(cache, 1);
9610 list_for_each_entry(cache,
9611 &space_info->block_groups[BTRFS_RAID_SINGLE],
9612 list)
9613 inc_block_group_ro(cache, 1);
9614 }
9615
9616 init_global_block_rsv(info);
9617 ret = 0;
9618 error:
9619 btrfs_free_path(path);
9620 return ret;
9621 }
9622
9623 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9624 struct btrfs_root *root)
9625 {
9626 struct btrfs_block_group_cache *block_group, *tmp;
9627 struct btrfs_root *extent_root = root->fs_info->extent_root;
9628 struct btrfs_block_group_item item;
9629 struct btrfs_key key;
9630 int ret = 0;
9631 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
9632
9633 trans->can_flush_pending_bgs = false;
9634 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9635 if (ret)
9636 goto next;
9637
9638 spin_lock(&block_group->lock);
9639 memcpy(&item, &block_group->item, sizeof(item));
9640 memcpy(&key, &block_group->key, sizeof(key));
9641 spin_unlock(&block_group->lock);
9642
9643 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9644 sizeof(item));
9645 if (ret)
9646 btrfs_abort_transaction(trans, extent_root, ret);
9647 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9648 key.objectid, key.offset);
9649 if (ret)
9650 btrfs_abort_transaction(trans, extent_root, ret);
9651 next:
9652 list_del_init(&block_group->bg_list);
9653 }
9654 trans->can_flush_pending_bgs = can_flush_pending_bgs;
9655 }
9656
9657 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9658 struct btrfs_root *root, u64 bytes_used,
9659 u64 type, u64 chunk_objectid, u64 chunk_offset,
9660 u64 size)
9661 {
9662 int ret;
9663 struct btrfs_root *extent_root;
9664 struct btrfs_block_group_cache *cache;
9665
9666 extent_root = root->fs_info->extent_root;
9667
9668 btrfs_set_log_full_commit(root->fs_info, trans);
9669
9670 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9671 if (!cache)
9672 return -ENOMEM;
9673
9674 btrfs_set_block_group_used(&cache->item, bytes_used);
9675 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9676 btrfs_set_block_group_flags(&cache->item, type);
9677
9678 cache->flags = type;
9679 cache->last_byte_to_unpin = (u64)-1;
9680 cache->cached = BTRFS_CACHE_FINISHED;
9681 ret = exclude_super_stripes(root, cache);
9682 if (ret) {
9683 /*
9684 * We may have excluded something, so call this just in
9685 * case.
9686 */
9687 free_excluded_extents(root, cache);
9688 btrfs_put_block_group(cache);
9689 return ret;
9690 }
9691
9692 add_new_free_space(cache, root->fs_info, chunk_offset,
9693 chunk_offset + size);
9694
9695 free_excluded_extents(root, cache);
9696
9697 /*
9698 * Call to ensure the corresponding space_info object is created and
9699 * assigned to our block group, but don't update its counters just yet.
9700 * We want our bg to be added to the rbtree with its ->space_info set.
9701 */
9702 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9703 &cache->space_info);
9704 if (ret) {
9705 btrfs_remove_free_space_cache(cache);
9706 btrfs_put_block_group(cache);
9707 return ret;
9708 }
9709
9710 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9711 if (ret) {
9712 btrfs_remove_free_space_cache(cache);
9713 btrfs_put_block_group(cache);
9714 return ret;
9715 }
9716
9717 /*
9718 * Now that our block group has its ->space_info set and is inserted in
9719 * the rbtree, update the space info's counters.
9720 */
9721 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9722 &cache->space_info);
9723 if (ret) {
9724 btrfs_remove_free_space_cache(cache);
9725 spin_lock(&root->fs_info->block_group_cache_lock);
9726 rb_erase(&cache->cache_node,
9727 &root->fs_info->block_group_cache_tree);
9728 RB_CLEAR_NODE(&cache->cache_node);
9729 spin_unlock(&root->fs_info->block_group_cache_lock);
9730 btrfs_put_block_group(cache);
9731 return ret;
9732 }
9733 update_global_block_rsv(root->fs_info);
9734
9735 spin_lock(&cache->space_info->lock);
9736 cache->space_info->bytes_readonly += cache->bytes_super;
9737 spin_unlock(&cache->space_info->lock);
9738
9739 __link_block_group(cache->space_info, cache);
9740
9741 list_add_tail(&cache->bg_list, &trans->new_bgs);
9742
9743 set_avail_alloc_bits(extent_root->fs_info, type);
9744
9745 return 0;
9746 }
9747
9748 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9749 {
9750 u64 extra_flags = chunk_to_extended(flags) &
9751 BTRFS_EXTENDED_PROFILE_MASK;
9752
9753 write_seqlock(&fs_info->profiles_lock);
9754 if (flags & BTRFS_BLOCK_GROUP_DATA)
9755 fs_info->avail_data_alloc_bits &= ~extra_flags;
9756 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9757 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9758 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9759 fs_info->avail_system_alloc_bits &= ~extra_flags;
9760 write_sequnlock(&fs_info->profiles_lock);
9761 }
9762
9763 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9764 struct btrfs_root *root, u64 group_start,
9765 struct extent_map *em)
9766 {
9767 struct btrfs_path *path;
9768 struct btrfs_block_group_cache *block_group;
9769 struct btrfs_free_cluster *cluster;
9770 struct btrfs_root *tree_root = root->fs_info->tree_root;
9771 struct btrfs_key key;
9772 struct inode *inode;
9773 struct kobject *kobj = NULL;
9774 int ret;
9775 int index;
9776 int factor;
9777 struct btrfs_caching_control *caching_ctl = NULL;
9778 bool remove_em;
9779
9780 root = root->fs_info->extent_root;
9781
9782 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9783 BUG_ON(!block_group);
9784 BUG_ON(!block_group->ro);
9785
9786 /*
9787 * Free the reserved super bytes from this block group before
9788 * remove it.
9789 */
9790 free_excluded_extents(root, block_group);
9791
9792 memcpy(&key, &block_group->key, sizeof(key));
9793 index = get_block_group_index(block_group);
9794 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9795 BTRFS_BLOCK_GROUP_RAID1 |
9796 BTRFS_BLOCK_GROUP_RAID10))
9797 factor = 2;
9798 else
9799 factor = 1;
9800
9801 /* make sure this block group isn't part of an allocation cluster */
9802 cluster = &root->fs_info->data_alloc_cluster;
9803 spin_lock(&cluster->refill_lock);
9804 btrfs_return_cluster_to_free_space(block_group, cluster);
9805 spin_unlock(&cluster->refill_lock);
9806
9807 /*
9808 * make sure this block group isn't part of a metadata
9809 * allocation cluster
9810 */
9811 cluster = &root->fs_info->meta_alloc_cluster;
9812 spin_lock(&cluster->refill_lock);
9813 btrfs_return_cluster_to_free_space(block_group, cluster);
9814 spin_unlock(&cluster->refill_lock);
9815
9816 path = btrfs_alloc_path();
9817 if (!path) {
9818 ret = -ENOMEM;
9819 goto out;
9820 }
9821
9822 /*
9823 * get the inode first so any iput calls done for the io_list
9824 * aren't the final iput (no unlinks allowed now)
9825 */
9826 inode = lookup_free_space_inode(tree_root, block_group, path);
9827
9828 mutex_lock(&trans->transaction->cache_write_mutex);
9829 /*
9830 * make sure our free spache cache IO is done before remove the
9831 * free space inode
9832 */
9833 spin_lock(&trans->transaction->dirty_bgs_lock);
9834 if (!list_empty(&block_group->io_list)) {
9835 list_del_init(&block_group->io_list);
9836
9837 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9838
9839 spin_unlock(&trans->transaction->dirty_bgs_lock);
9840 btrfs_wait_cache_io(root, trans, block_group,
9841 &block_group->io_ctl, path,
9842 block_group->key.objectid);
9843 btrfs_put_block_group(block_group);
9844 spin_lock(&trans->transaction->dirty_bgs_lock);
9845 }
9846
9847 if (!list_empty(&block_group->dirty_list)) {
9848 list_del_init(&block_group->dirty_list);
9849 btrfs_put_block_group(block_group);
9850 }
9851 spin_unlock(&trans->transaction->dirty_bgs_lock);
9852 mutex_unlock(&trans->transaction->cache_write_mutex);
9853
9854 if (!IS_ERR(inode)) {
9855 ret = btrfs_orphan_add(trans, inode);
9856 if (ret) {
9857 btrfs_add_delayed_iput(inode);
9858 goto out;
9859 }
9860 clear_nlink(inode);
9861 /* One for the block groups ref */
9862 spin_lock(&block_group->lock);
9863 if (block_group->iref) {
9864 block_group->iref = 0;
9865 block_group->inode = NULL;
9866 spin_unlock(&block_group->lock);
9867 iput(inode);
9868 } else {
9869 spin_unlock(&block_group->lock);
9870 }
9871 /* One for our lookup ref */
9872 btrfs_add_delayed_iput(inode);
9873 }
9874
9875 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9876 key.offset = block_group->key.objectid;
9877 key.type = 0;
9878
9879 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9880 if (ret < 0)
9881 goto out;
9882 if (ret > 0)
9883 btrfs_release_path(path);
9884 if (ret == 0) {
9885 ret = btrfs_del_item(trans, tree_root, path);
9886 if (ret)
9887 goto out;
9888 btrfs_release_path(path);
9889 }
9890
9891 spin_lock(&root->fs_info->block_group_cache_lock);
9892 rb_erase(&block_group->cache_node,
9893 &root->fs_info->block_group_cache_tree);
9894 RB_CLEAR_NODE(&block_group->cache_node);
9895
9896 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9897 root->fs_info->first_logical_byte = (u64)-1;
9898 spin_unlock(&root->fs_info->block_group_cache_lock);
9899
9900 down_write(&block_group->space_info->groups_sem);
9901 /*
9902 * we must use list_del_init so people can check to see if they
9903 * are still on the list after taking the semaphore
9904 */
9905 list_del_init(&block_group->list);
9906 if (list_empty(&block_group->space_info->block_groups[index])) {
9907 kobj = block_group->space_info->block_group_kobjs[index];
9908 block_group->space_info->block_group_kobjs[index] = NULL;
9909 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9910 }
9911 up_write(&block_group->space_info->groups_sem);
9912 if (kobj) {
9913 kobject_del(kobj);
9914 kobject_put(kobj);
9915 }
9916
9917 if (block_group->has_caching_ctl)
9918 caching_ctl = get_caching_control(block_group);
9919 if (block_group->cached == BTRFS_CACHE_STARTED)
9920 wait_block_group_cache_done(block_group);
9921 if (block_group->has_caching_ctl) {
9922 down_write(&root->fs_info->commit_root_sem);
9923 if (!caching_ctl) {
9924 struct btrfs_caching_control *ctl;
9925
9926 list_for_each_entry(ctl,
9927 &root->fs_info->caching_block_groups, list)
9928 if (ctl->block_group == block_group) {
9929 caching_ctl = ctl;
9930 atomic_inc(&caching_ctl->count);
9931 break;
9932 }
9933 }
9934 if (caching_ctl)
9935 list_del_init(&caching_ctl->list);
9936 up_write(&root->fs_info->commit_root_sem);
9937 if (caching_ctl) {
9938 /* Once for the caching bgs list and once for us. */
9939 put_caching_control(caching_ctl);
9940 put_caching_control(caching_ctl);
9941 }
9942 }
9943
9944 spin_lock(&trans->transaction->dirty_bgs_lock);
9945 if (!list_empty(&block_group->dirty_list)) {
9946 WARN_ON(1);
9947 }
9948 if (!list_empty(&block_group->io_list)) {
9949 WARN_ON(1);
9950 }
9951 spin_unlock(&trans->transaction->dirty_bgs_lock);
9952 btrfs_remove_free_space_cache(block_group);
9953
9954 spin_lock(&block_group->space_info->lock);
9955 list_del_init(&block_group->ro_list);
9956
9957 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9958 WARN_ON(block_group->space_info->total_bytes
9959 < block_group->key.offset);
9960 WARN_ON(block_group->space_info->bytes_readonly
9961 < block_group->key.offset);
9962 WARN_ON(block_group->space_info->disk_total
9963 < block_group->key.offset * factor);
9964 }
9965 block_group->space_info->total_bytes -= block_group->key.offset;
9966 block_group->space_info->bytes_readonly -= block_group->key.offset;
9967 block_group->space_info->disk_total -= block_group->key.offset * factor;
9968
9969 spin_unlock(&block_group->space_info->lock);
9970
9971 memcpy(&key, &block_group->key, sizeof(key));
9972
9973 lock_chunks(root);
9974 if (!list_empty(&em->list)) {
9975 /* We're in the transaction->pending_chunks list. */
9976 free_extent_map(em);
9977 }
9978 spin_lock(&block_group->lock);
9979 block_group->removed = 1;
9980 /*
9981 * At this point trimming can't start on this block group, because we
9982 * removed the block group from the tree fs_info->block_group_cache_tree
9983 * so no one can't find it anymore and even if someone already got this
9984 * block group before we removed it from the rbtree, they have already
9985 * incremented block_group->trimming - if they didn't, they won't find
9986 * any free space entries because we already removed them all when we
9987 * called btrfs_remove_free_space_cache().
9988 *
9989 * And we must not remove the extent map from the fs_info->mapping_tree
9990 * to prevent the same logical address range and physical device space
9991 * ranges from being reused for a new block group. This is because our
9992 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9993 * completely transactionless, so while it is trimming a range the
9994 * currently running transaction might finish and a new one start,
9995 * allowing for new block groups to be created that can reuse the same
9996 * physical device locations unless we take this special care.
9997 *
9998 * There may also be an implicit trim operation if the file system
9999 * is mounted with -odiscard. The same protections must remain
10000 * in place until the extents have been discarded completely when
10001 * the transaction commit has completed.
10002 */
10003 remove_em = (atomic_read(&block_group->trimming) == 0);
10004 /*
10005 * Make sure a trimmer task always sees the em in the pinned_chunks list
10006 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10007 * before checking block_group->removed).
10008 */
10009 if (!remove_em) {
10010 /*
10011 * Our em might be in trans->transaction->pending_chunks which
10012 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10013 * and so is the fs_info->pinned_chunks list.
10014 *
10015 * So at this point we must be holding the chunk_mutex to avoid
10016 * any races with chunk allocation (more specifically at
10017 * volumes.c:contains_pending_extent()), to ensure it always
10018 * sees the em, either in the pending_chunks list or in the
10019 * pinned_chunks list.
10020 */
10021 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10022 }
10023 spin_unlock(&block_group->lock);
10024
10025 if (remove_em) {
10026 struct extent_map_tree *em_tree;
10027
10028 em_tree = &root->fs_info->mapping_tree.map_tree;
10029 write_lock(&em_tree->lock);
10030 /*
10031 * The em might be in the pending_chunks list, so make sure the
10032 * chunk mutex is locked, since remove_extent_mapping() will
10033 * delete us from that list.
10034 */
10035 remove_extent_mapping(em_tree, em);
10036 write_unlock(&em_tree->lock);
10037 /* once for the tree */
10038 free_extent_map(em);
10039 }
10040
10041 unlock_chunks(root);
10042
10043 btrfs_put_block_group(block_group);
10044 btrfs_put_block_group(block_group);
10045
10046 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10047 if (ret > 0)
10048 ret = -EIO;
10049 if (ret < 0)
10050 goto out;
10051
10052 ret = btrfs_del_item(trans, root, path);
10053 out:
10054 btrfs_free_path(path);
10055 return ret;
10056 }
10057
10058 /*
10059 * Process the unused_bgs list and remove any that don't have any allocated
10060 * space inside of them.
10061 */
10062 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10063 {
10064 struct btrfs_block_group_cache *block_group;
10065 struct btrfs_space_info *space_info;
10066 struct btrfs_root *root = fs_info->extent_root;
10067 struct btrfs_trans_handle *trans;
10068 int ret = 0;
10069
10070 if (!fs_info->open)
10071 return;
10072
10073 spin_lock(&fs_info->unused_bgs_lock);
10074 while (!list_empty(&fs_info->unused_bgs)) {
10075 u64 start, end;
10076 int trimming;
10077
10078 block_group = list_first_entry(&fs_info->unused_bgs,
10079 struct btrfs_block_group_cache,
10080 bg_list);
10081 space_info = block_group->space_info;
10082 list_del_init(&block_group->bg_list);
10083 if (ret || btrfs_mixed_space_info(space_info)) {
10084 btrfs_put_block_group(block_group);
10085 continue;
10086 }
10087 spin_unlock(&fs_info->unused_bgs_lock);
10088
10089 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
10090
10091 /* Don't want to race with allocators so take the groups_sem */
10092 down_write(&space_info->groups_sem);
10093 spin_lock(&block_group->lock);
10094 if (block_group->reserved ||
10095 btrfs_block_group_used(&block_group->item) ||
10096 block_group->ro) {
10097 /*
10098 * We want to bail if we made new allocations or have
10099 * outstanding allocations in this block group. We do
10100 * the ro check in case balance is currently acting on
10101 * this block group.
10102 */
10103 spin_unlock(&block_group->lock);
10104 up_write(&space_info->groups_sem);
10105 goto next;
10106 }
10107 spin_unlock(&block_group->lock);
10108
10109 /* We don't want to force the issue, only flip if it's ok. */
10110 ret = inc_block_group_ro(block_group, 0);
10111 up_write(&space_info->groups_sem);
10112 if (ret < 0) {
10113 ret = 0;
10114 goto next;
10115 }
10116
10117 /*
10118 * Want to do this before we do anything else so we can recover
10119 * properly if we fail to join the transaction.
10120 */
10121 /* 1 for btrfs_orphan_reserve_metadata() */
10122 trans = btrfs_start_transaction(root, 1);
10123 if (IS_ERR(trans)) {
10124 btrfs_dec_block_group_ro(root, block_group);
10125 ret = PTR_ERR(trans);
10126 goto next;
10127 }
10128
10129 /*
10130 * We could have pending pinned extents for this block group,
10131 * just delete them, we don't care about them anymore.
10132 */
10133 start = block_group->key.objectid;
10134 end = start + block_group->key.offset - 1;
10135 /*
10136 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10137 * btrfs_finish_extent_commit(). If we are at transaction N,
10138 * another task might be running finish_extent_commit() for the
10139 * previous transaction N - 1, and have seen a range belonging
10140 * to the block group in freed_extents[] before we were able to
10141 * clear the whole block group range from freed_extents[]. This
10142 * means that task can lookup for the block group after we
10143 * unpinned it from freed_extents[] and removed it, leading to
10144 * a BUG_ON() at btrfs_unpin_extent_range().
10145 */
10146 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10147 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10148 EXTENT_DIRTY, GFP_NOFS);
10149 if (ret) {
10150 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10151 btrfs_dec_block_group_ro(root, block_group);
10152 goto end_trans;
10153 }
10154 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10155 EXTENT_DIRTY, GFP_NOFS);
10156 if (ret) {
10157 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10158 btrfs_dec_block_group_ro(root, block_group);
10159 goto end_trans;
10160 }
10161 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10162
10163 /* Reset pinned so btrfs_put_block_group doesn't complain */
10164 spin_lock(&space_info->lock);
10165 spin_lock(&block_group->lock);
10166
10167 space_info->bytes_pinned -= block_group->pinned;
10168 space_info->bytes_readonly += block_group->pinned;
10169 percpu_counter_add(&space_info->total_bytes_pinned,
10170 -block_group->pinned);
10171 block_group->pinned = 0;
10172
10173 spin_unlock(&block_group->lock);
10174 spin_unlock(&space_info->lock);
10175
10176 /* DISCARD can flip during remount */
10177 trimming = btrfs_test_opt(root, DISCARD);
10178
10179 /* Implicit trim during transaction commit. */
10180 if (trimming)
10181 btrfs_get_block_group_trimming(block_group);
10182
10183 /*
10184 * Btrfs_remove_chunk will abort the transaction if things go
10185 * horribly wrong.
10186 */
10187 ret = btrfs_remove_chunk(trans, root,
10188 block_group->key.objectid);
10189
10190 if (ret) {
10191 if (trimming)
10192 btrfs_put_block_group_trimming(block_group);
10193 goto end_trans;
10194 }
10195
10196 /*
10197 * If we're not mounted with -odiscard, we can just forget
10198 * about this block group. Otherwise we'll need to wait
10199 * until transaction commit to do the actual discard.
10200 */
10201 if (trimming) {
10202 WARN_ON(!list_empty(&block_group->bg_list));
10203 spin_lock(&trans->transaction->deleted_bgs_lock);
10204 list_move(&block_group->bg_list,
10205 &trans->transaction->deleted_bgs);
10206 spin_unlock(&trans->transaction->deleted_bgs_lock);
10207 btrfs_get_block_group(block_group);
10208 }
10209 end_trans:
10210 btrfs_end_transaction(trans, root);
10211 next:
10212 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
10213 btrfs_put_block_group(block_group);
10214 spin_lock(&fs_info->unused_bgs_lock);
10215 }
10216 spin_unlock(&fs_info->unused_bgs_lock);
10217 }
10218
10219 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10220 {
10221 struct btrfs_space_info *space_info;
10222 struct btrfs_super_block *disk_super;
10223 u64 features;
10224 u64 flags;
10225 int mixed = 0;
10226 int ret;
10227
10228 disk_super = fs_info->super_copy;
10229 if (!btrfs_super_root(disk_super))
10230 return 1;
10231
10232 features = btrfs_super_incompat_flags(disk_super);
10233 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10234 mixed = 1;
10235
10236 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10237 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10238 if (ret)
10239 goto out;
10240
10241 if (mixed) {
10242 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10243 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10244 } else {
10245 flags = BTRFS_BLOCK_GROUP_METADATA;
10246 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10247 if (ret)
10248 goto out;
10249
10250 flags = BTRFS_BLOCK_GROUP_DATA;
10251 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10252 }
10253 out:
10254 return ret;
10255 }
10256
10257 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10258 {
10259 return unpin_extent_range(root, start, end, false);
10260 }
10261
10262 /*
10263 * It used to be that old block groups would be left around forever.
10264 * Iterating over them would be enough to trim unused space. Since we
10265 * now automatically remove them, we also need to iterate over unallocated
10266 * space.
10267 *
10268 * We don't want a transaction for this since the discard may take a
10269 * substantial amount of time. We don't require that a transaction be
10270 * running, but we do need to take a running transaction into account
10271 * to ensure that we're not discarding chunks that were released in
10272 * the current transaction.
10273 *
10274 * Holding the chunks lock will prevent other threads from allocating
10275 * or releasing chunks, but it won't prevent a running transaction
10276 * from committing and releasing the memory that the pending chunks
10277 * list head uses. For that, we need to take a reference to the
10278 * transaction.
10279 */
10280 static int btrfs_trim_free_extents(struct btrfs_device *device,
10281 u64 minlen, u64 *trimmed)
10282 {
10283 u64 start = 0, len = 0;
10284 int ret;
10285
10286 *trimmed = 0;
10287
10288 /* Not writeable = nothing to do. */
10289 if (!device->writeable)
10290 return 0;
10291
10292 /* No free space = nothing to do. */
10293 if (device->total_bytes <= device->bytes_used)
10294 return 0;
10295
10296 ret = 0;
10297
10298 while (1) {
10299 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10300 struct btrfs_transaction *trans;
10301 u64 bytes;
10302
10303 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10304 if (ret)
10305 return ret;
10306
10307 down_read(&fs_info->commit_root_sem);
10308
10309 spin_lock(&fs_info->trans_lock);
10310 trans = fs_info->running_transaction;
10311 if (trans)
10312 atomic_inc(&trans->use_count);
10313 spin_unlock(&fs_info->trans_lock);
10314
10315 ret = find_free_dev_extent_start(trans, device, minlen, start,
10316 &start, &len);
10317 if (trans)
10318 btrfs_put_transaction(trans);
10319
10320 if (ret) {
10321 up_read(&fs_info->commit_root_sem);
10322 mutex_unlock(&fs_info->chunk_mutex);
10323 if (ret == -ENOSPC)
10324 ret = 0;
10325 break;
10326 }
10327
10328 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10329 up_read(&fs_info->commit_root_sem);
10330 mutex_unlock(&fs_info->chunk_mutex);
10331
10332 if (ret)
10333 break;
10334
10335 start += len;
10336 *trimmed += bytes;
10337
10338 if (fatal_signal_pending(current)) {
10339 ret = -ERESTARTSYS;
10340 break;
10341 }
10342
10343 cond_resched();
10344 }
10345
10346 return ret;
10347 }
10348
10349 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10350 {
10351 struct btrfs_fs_info *fs_info = root->fs_info;
10352 struct btrfs_block_group_cache *cache = NULL;
10353 struct btrfs_device *device;
10354 struct list_head *devices;
10355 u64 group_trimmed;
10356 u64 start;
10357 u64 end;
10358 u64 trimmed = 0;
10359 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10360 int ret = 0;
10361
10362 /*
10363 * try to trim all FS space, our block group may start from non-zero.
10364 */
10365 if (range->len == total_bytes)
10366 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10367 else
10368 cache = btrfs_lookup_block_group(fs_info, range->start);
10369
10370 while (cache) {
10371 if (cache->key.objectid >= (range->start + range->len)) {
10372 btrfs_put_block_group(cache);
10373 break;
10374 }
10375
10376 start = max(range->start, cache->key.objectid);
10377 end = min(range->start + range->len,
10378 cache->key.objectid + cache->key.offset);
10379
10380 if (end - start >= range->minlen) {
10381 if (!block_group_cache_done(cache)) {
10382 ret = cache_block_group(cache, 0);
10383 if (ret) {
10384 btrfs_put_block_group(cache);
10385 break;
10386 }
10387 ret = wait_block_group_cache_done(cache);
10388 if (ret) {
10389 btrfs_put_block_group(cache);
10390 break;
10391 }
10392 }
10393 ret = btrfs_trim_block_group(cache,
10394 &group_trimmed,
10395 start,
10396 end,
10397 range->minlen);
10398
10399 trimmed += group_trimmed;
10400 if (ret) {
10401 btrfs_put_block_group(cache);
10402 break;
10403 }
10404 }
10405
10406 cache = next_block_group(fs_info->tree_root, cache);
10407 }
10408
10409 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10410 devices = &root->fs_info->fs_devices->alloc_list;
10411 list_for_each_entry(device, devices, dev_alloc_list) {
10412 ret = btrfs_trim_free_extents(device, range->minlen,
10413 &group_trimmed);
10414 if (ret)
10415 break;
10416
10417 trimmed += group_trimmed;
10418 }
10419 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10420
10421 range->len = trimmed;
10422 return ret;
10423 }
10424
10425 /*
10426 * btrfs_{start,end}_write_no_snapshoting() are similar to
10427 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10428 * data into the page cache through nocow before the subvolume is snapshoted,
10429 * but flush the data into disk after the snapshot creation, or to prevent
10430 * operations while snapshoting is ongoing and that cause the snapshot to be
10431 * inconsistent (writes followed by expanding truncates for example).
10432 */
10433 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10434 {
10435 percpu_counter_dec(&root->subv_writers->counter);
10436 /*
10437 * Make sure counter is updated before we wake up waiters.
10438 */
10439 smp_mb();
10440 if (waitqueue_active(&root->subv_writers->wait))
10441 wake_up(&root->subv_writers->wait);
10442 }
10443
10444 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10445 {
10446 if (atomic_read(&root->will_be_snapshoted))
10447 return 0;
10448
10449 percpu_counter_inc(&root->subv_writers->counter);
10450 /*
10451 * Make sure counter is updated before we check for snapshot creation.
10452 */
10453 smp_mb();
10454 if (atomic_read(&root->will_be_snapshoted)) {
10455 btrfs_end_write_no_snapshoting(root);
10456 return 0;
10457 }
10458 return 1;
10459 }
This page took 0.993102 seconds and 6 git commands to generate.