Btrfs: fix unprotected list operations at btrfs_write_dirty_block_groups
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 struct btrfs_delayed_ref_node *node, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
98 int level, struct btrfs_key *ins);
99 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
100 struct btrfs_root *extent_root, u64 flags,
101 int force);
102 static int find_next_key(struct btrfs_path *path, int level,
103 struct btrfs_key *key);
104 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
105 int dump_block_groups);
106 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
107 u64 num_bytes, int reserve,
108 int delalloc);
109 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
110 u64 num_bytes);
111 int btrfs_pin_extent(struct btrfs_root *root,
112 u64 bytenr, u64 num_bytes, int reserved);
113
114 static noinline int
115 block_group_cache_done(struct btrfs_block_group_cache *cache)
116 {
117 smp_mb();
118 return cache->cached == BTRFS_CACHE_FINISHED ||
119 cache->cached == BTRFS_CACHE_ERROR;
120 }
121
122 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
123 {
124 return (cache->flags & bits) == bits;
125 }
126
127 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
128 {
129 atomic_inc(&cache->count);
130 }
131
132 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
133 {
134 if (atomic_dec_and_test(&cache->count)) {
135 WARN_ON(cache->pinned > 0);
136 WARN_ON(cache->reserved > 0);
137 kfree(cache->free_space_ctl);
138 kfree(cache);
139 }
140 }
141
142 /*
143 * this adds the block group to the fs_info rb tree for the block group
144 * cache
145 */
146 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
147 struct btrfs_block_group_cache *block_group)
148 {
149 struct rb_node **p;
150 struct rb_node *parent = NULL;
151 struct btrfs_block_group_cache *cache;
152
153 spin_lock(&info->block_group_cache_lock);
154 p = &info->block_group_cache_tree.rb_node;
155
156 while (*p) {
157 parent = *p;
158 cache = rb_entry(parent, struct btrfs_block_group_cache,
159 cache_node);
160 if (block_group->key.objectid < cache->key.objectid) {
161 p = &(*p)->rb_left;
162 } else if (block_group->key.objectid > cache->key.objectid) {
163 p = &(*p)->rb_right;
164 } else {
165 spin_unlock(&info->block_group_cache_lock);
166 return -EEXIST;
167 }
168 }
169
170 rb_link_node(&block_group->cache_node, parent, p);
171 rb_insert_color(&block_group->cache_node,
172 &info->block_group_cache_tree);
173
174 if (info->first_logical_byte > block_group->key.objectid)
175 info->first_logical_byte = block_group->key.objectid;
176
177 spin_unlock(&info->block_group_cache_lock);
178
179 return 0;
180 }
181
182 /*
183 * This will return the block group at or after bytenr if contains is 0, else
184 * it will return the block group that contains the bytenr
185 */
186 static struct btrfs_block_group_cache *
187 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
188 int contains)
189 {
190 struct btrfs_block_group_cache *cache, *ret = NULL;
191 struct rb_node *n;
192 u64 end, start;
193
194 spin_lock(&info->block_group_cache_lock);
195 n = info->block_group_cache_tree.rb_node;
196
197 while (n) {
198 cache = rb_entry(n, struct btrfs_block_group_cache,
199 cache_node);
200 end = cache->key.objectid + cache->key.offset - 1;
201 start = cache->key.objectid;
202
203 if (bytenr < start) {
204 if (!contains && (!ret || start < ret->key.objectid))
205 ret = cache;
206 n = n->rb_left;
207 } else if (bytenr > start) {
208 if (contains && bytenr <= end) {
209 ret = cache;
210 break;
211 }
212 n = n->rb_right;
213 } else {
214 ret = cache;
215 break;
216 }
217 }
218 if (ret) {
219 btrfs_get_block_group(ret);
220 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
221 info->first_logical_byte = ret->key.objectid;
222 }
223 spin_unlock(&info->block_group_cache_lock);
224
225 return ret;
226 }
227
228 static int add_excluded_extent(struct btrfs_root *root,
229 u64 start, u64 num_bytes)
230 {
231 u64 end = start + num_bytes - 1;
232 set_extent_bits(&root->fs_info->freed_extents[0],
233 start, end, EXTENT_UPTODATE, GFP_NOFS);
234 set_extent_bits(&root->fs_info->freed_extents[1],
235 start, end, EXTENT_UPTODATE, GFP_NOFS);
236 return 0;
237 }
238
239 static void free_excluded_extents(struct btrfs_root *root,
240 struct btrfs_block_group_cache *cache)
241 {
242 u64 start, end;
243
244 start = cache->key.objectid;
245 end = start + cache->key.offset - 1;
246
247 clear_extent_bits(&root->fs_info->freed_extents[0],
248 start, end, EXTENT_UPTODATE, GFP_NOFS);
249 clear_extent_bits(&root->fs_info->freed_extents[1],
250 start, end, EXTENT_UPTODATE, GFP_NOFS);
251 }
252
253 static int exclude_super_stripes(struct btrfs_root *root,
254 struct btrfs_block_group_cache *cache)
255 {
256 u64 bytenr;
257 u64 *logical;
258 int stripe_len;
259 int i, nr, ret;
260
261 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
262 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
263 cache->bytes_super += stripe_len;
264 ret = add_excluded_extent(root, cache->key.objectid,
265 stripe_len);
266 if (ret)
267 return ret;
268 }
269
270 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
271 bytenr = btrfs_sb_offset(i);
272 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
273 cache->key.objectid, bytenr,
274 0, &logical, &nr, &stripe_len);
275 if (ret)
276 return ret;
277
278 while (nr--) {
279 u64 start, len;
280
281 if (logical[nr] > cache->key.objectid +
282 cache->key.offset)
283 continue;
284
285 if (logical[nr] + stripe_len <= cache->key.objectid)
286 continue;
287
288 start = logical[nr];
289 if (start < cache->key.objectid) {
290 start = cache->key.objectid;
291 len = (logical[nr] + stripe_len) - start;
292 } else {
293 len = min_t(u64, stripe_len,
294 cache->key.objectid +
295 cache->key.offset - start);
296 }
297
298 cache->bytes_super += len;
299 ret = add_excluded_extent(root, start, len);
300 if (ret) {
301 kfree(logical);
302 return ret;
303 }
304 }
305
306 kfree(logical);
307 }
308 return 0;
309 }
310
311 static struct btrfs_caching_control *
312 get_caching_control(struct btrfs_block_group_cache *cache)
313 {
314 struct btrfs_caching_control *ctl;
315
316 spin_lock(&cache->lock);
317 if (!cache->caching_ctl) {
318 spin_unlock(&cache->lock);
319 return NULL;
320 }
321
322 ctl = cache->caching_ctl;
323 atomic_inc(&ctl->count);
324 spin_unlock(&cache->lock);
325 return ctl;
326 }
327
328 static void put_caching_control(struct btrfs_caching_control *ctl)
329 {
330 if (atomic_dec_and_test(&ctl->count))
331 kfree(ctl);
332 }
333
334 #ifdef CONFIG_BTRFS_DEBUG
335 static void fragment_free_space(struct btrfs_root *root,
336 struct btrfs_block_group_cache *block_group)
337 {
338 u64 start = block_group->key.objectid;
339 u64 len = block_group->key.offset;
340 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
341 root->nodesize : root->sectorsize;
342 u64 step = chunk << 1;
343
344 while (len > chunk) {
345 btrfs_remove_free_space(block_group, start, chunk);
346 start += step;
347 if (len < step)
348 len = 0;
349 else
350 len -= step;
351 }
352 }
353 #endif
354
355 /*
356 * this is only called by cache_block_group, since we could have freed extents
357 * we need to check the pinned_extents for any extents that can't be used yet
358 * since their free space will be released as soon as the transaction commits.
359 */
360 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
361 struct btrfs_fs_info *info, u64 start, u64 end)
362 {
363 u64 extent_start, extent_end, size, total_added = 0;
364 int ret;
365
366 while (start < end) {
367 ret = find_first_extent_bit(info->pinned_extents, start,
368 &extent_start, &extent_end,
369 EXTENT_DIRTY | EXTENT_UPTODATE,
370 NULL);
371 if (ret)
372 break;
373
374 if (extent_start <= start) {
375 start = extent_end + 1;
376 } else if (extent_start > start && extent_start < end) {
377 size = extent_start - start;
378 total_added += size;
379 ret = btrfs_add_free_space(block_group, start,
380 size);
381 BUG_ON(ret); /* -ENOMEM or logic error */
382 start = extent_end + 1;
383 } else {
384 break;
385 }
386 }
387
388 if (start < end) {
389 size = end - start;
390 total_added += size;
391 ret = btrfs_add_free_space(block_group, start, size);
392 BUG_ON(ret); /* -ENOMEM or logic error */
393 }
394
395 return total_added;
396 }
397
398 static noinline void caching_thread(struct btrfs_work *work)
399 {
400 struct btrfs_block_group_cache *block_group;
401 struct btrfs_fs_info *fs_info;
402 struct btrfs_caching_control *caching_ctl;
403 struct btrfs_root *extent_root;
404 struct btrfs_path *path;
405 struct extent_buffer *leaf;
406 struct btrfs_key key;
407 u64 total_found = 0;
408 u64 last = 0;
409 u32 nritems;
410 int ret = -ENOMEM;
411 bool wakeup = true;
412
413 caching_ctl = container_of(work, struct btrfs_caching_control, work);
414 block_group = caching_ctl->block_group;
415 fs_info = block_group->fs_info;
416 extent_root = fs_info->extent_root;
417
418 path = btrfs_alloc_path();
419 if (!path)
420 goto out;
421
422 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
423
424 #ifdef CONFIG_BTRFS_DEBUG
425 /*
426 * If we're fragmenting we don't want to make anybody think we can
427 * allocate from this block group until we've had a chance to fragment
428 * the free space.
429 */
430 if (btrfs_should_fragment_free_space(extent_root, block_group))
431 wakeup = false;
432 #endif
433 /*
434 * We don't want to deadlock with somebody trying to allocate a new
435 * extent for the extent root while also trying to search the extent
436 * root to add free space. So we skip locking and search the commit
437 * root, since its read-only
438 */
439 path->skip_locking = 1;
440 path->search_commit_root = 1;
441 path->reada = 1;
442
443 key.objectid = last;
444 key.offset = 0;
445 key.type = BTRFS_EXTENT_ITEM_KEY;
446 again:
447 mutex_lock(&caching_ctl->mutex);
448 /* need to make sure the commit_root doesn't disappear */
449 down_read(&fs_info->commit_root_sem);
450
451 next:
452 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
453 if (ret < 0)
454 goto err;
455
456 leaf = path->nodes[0];
457 nritems = btrfs_header_nritems(leaf);
458
459 while (1) {
460 if (btrfs_fs_closing(fs_info) > 1) {
461 last = (u64)-1;
462 break;
463 }
464
465 if (path->slots[0] < nritems) {
466 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
467 } else {
468 ret = find_next_key(path, 0, &key);
469 if (ret)
470 break;
471
472 if (need_resched() ||
473 rwsem_is_contended(&fs_info->commit_root_sem)) {
474 if (wakeup)
475 caching_ctl->progress = last;
476 btrfs_release_path(path);
477 up_read(&fs_info->commit_root_sem);
478 mutex_unlock(&caching_ctl->mutex);
479 cond_resched();
480 goto again;
481 }
482
483 ret = btrfs_next_leaf(extent_root, path);
484 if (ret < 0)
485 goto err;
486 if (ret)
487 break;
488 leaf = path->nodes[0];
489 nritems = btrfs_header_nritems(leaf);
490 continue;
491 }
492
493 if (key.objectid < last) {
494 key.objectid = last;
495 key.offset = 0;
496 key.type = BTRFS_EXTENT_ITEM_KEY;
497
498 if (wakeup)
499 caching_ctl->progress = last;
500 btrfs_release_path(path);
501 goto next;
502 }
503
504 if (key.objectid < block_group->key.objectid) {
505 path->slots[0]++;
506 continue;
507 }
508
509 if (key.objectid >= block_group->key.objectid +
510 block_group->key.offset)
511 break;
512
513 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
514 key.type == BTRFS_METADATA_ITEM_KEY) {
515 total_found += add_new_free_space(block_group,
516 fs_info, last,
517 key.objectid);
518 if (key.type == BTRFS_METADATA_ITEM_KEY)
519 last = key.objectid +
520 fs_info->tree_root->nodesize;
521 else
522 last = key.objectid + key.offset;
523
524 if (total_found > (1024 * 1024 * 2)) {
525 total_found = 0;
526 if (wakeup)
527 wake_up(&caching_ctl->wait);
528 }
529 }
530 path->slots[0]++;
531 }
532 ret = 0;
533
534 total_found += add_new_free_space(block_group, fs_info, last,
535 block_group->key.objectid +
536 block_group->key.offset);
537 spin_lock(&block_group->lock);
538 block_group->caching_ctl = NULL;
539 block_group->cached = BTRFS_CACHE_FINISHED;
540 spin_unlock(&block_group->lock);
541
542 #ifdef CONFIG_BTRFS_DEBUG
543 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
544 u64 bytes_used;
545
546 spin_lock(&block_group->space_info->lock);
547 spin_lock(&block_group->lock);
548 bytes_used = block_group->key.offset -
549 btrfs_block_group_used(&block_group->item);
550 block_group->space_info->bytes_used += bytes_used >> 1;
551 spin_unlock(&block_group->lock);
552 spin_unlock(&block_group->space_info->lock);
553 fragment_free_space(extent_root, block_group);
554 }
555 #endif
556
557 caching_ctl->progress = (u64)-1;
558 err:
559 btrfs_free_path(path);
560 up_read(&fs_info->commit_root_sem);
561
562 free_excluded_extents(extent_root, block_group);
563
564 mutex_unlock(&caching_ctl->mutex);
565 out:
566 if (ret) {
567 spin_lock(&block_group->lock);
568 block_group->caching_ctl = NULL;
569 block_group->cached = BTRFS_CACHE_ERROR;
570 spin_unlock(&block_group->lock);
571 }
572 wake_up(&caching_ctl->wait);
573
574 put_caching_control(caching_ctl);
575 btrfs_put_block_group(block_group);
576 }
577
578 static int cache_block_group(struct btrfs_block_group_cache *cache,
579 int load_cache_only)
580 {
581 DEFINE_WAIT(wait);
582 struct btrfs_fs_info *fs_info = cache->fs_info;
583 struct btrfs_caching_control *caching_ctl;
584 int ret = 0;
585
586 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
587 if (!caching_ctl)
588 return -ENOMEM;
589
590 INIT_LIST_HEAD(&caching_ctl->list);
591 mutex_init(&caching_ctl->mutex);
592 init_waitqueue_head(&caching_ctl->wait);
593 caching_ctl->block_group = cache;
594 caching_ctl->progress = cache->key.objectid;
595 atomic_set(&caching_ctl->count, 1);
596 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
597 caching_thread, NULL, NULL);
598
599 spin_lock(&cache->lock);
600 /*
601 * This should be a rare occasion, but this could happen I think in the
602 * case where one thread starts to load the space cache info, and then
603 * some other thread starts a transaction commit which tries to do an
604 * allocation while the other thread is still loading the space cache
605 * info. The previous loop should have kept us from choosing this block
606 * group, but if we've moved to the state where we will wait on caching
607 * block groups we need to first check if we're doing a fast load here,
608 * so we can wait for it to finish, otherwise we could end up allocating
609 * from a block group who's cache gets evicted for one reason or
610 * another.
611 */
612 while (cache->cached == BTRFS_CACHE_FAST) {
613 struct btrfs_caching_control *ctl;
614
615 ctl = cache->caching_ctl;
616 atomic_inc(&ctl->count);
617 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
618 spin_unlock(&cache->lock);
619
620 schedule();
621
622 finish_wait(&ctl->wait, &wait);
623 put_caching_control(ctl);
624 spin_lock(&cache->lock);
625 }
626
627 if (cache->cached != BTRFS_CACHE_NO) {
628 spin_unlock(&cache->lock);
629 kfree(caching_ctl);
630 return 0;
631 }
632 WARN_ON(cache->caching_ctl);
633 cache->caching_ctl = caching_ctl;
634 cache->cached = BTRFS_CACHE_FAST;
635 spin_unlock(&cache->lock);
636
637 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
638 mutex_lock(&caching_ctl->mutex);
639 ret = load_free_space_cache(fs_info, cache);
640
641 spin_lock(&cache->lock);
642 if (ret == 1) {
643 cache->caching_ctl = NULL;
644 cache->cached = BTRFS_CACHE_FINISHED;
645 cache->last_byte_to_unpin = (u64)-1;
646 caching_ctl->progress = (u64)-1;
647 } else {
648 if (load_cache_only) {
649 cache->caching_ctl = NULL;
650 cache->cached = BTRFS_CACHE_NO;
651 } else {
652 cache->cached = BTRFS_CACHE_STARTED;
653 cache->has_caching_ctl = 1;
654 }
655 }
656 spin_unlock(&cache->lock);
657 #ifdef CONFIG_BTRFS_DEBUG
658 if (ret == 1 &&
659 btrfs_should_fragment_free_space(fs_info->extent_root,
660 cache)) {
661 u64 bytes_used;
662
663 spin_lock(&cache->space_info->lock);
664 spin_lock(&cache->lock);
665 bytes_used = cache->key.offset -
666 btrfs_block_group_used(&cache->item);
667 cache->space_info->bytes_used += bytes_used >> 1;
668 spin_unlock(&cache->lock);
669 spin_unlock(&cache->space_info->lock);
670 fragment_free_space(fs_info->extent_root, cache);
671 }
672 #endif
673 mutex_unlock(&caching_ctl->mutex);
674
675 wake_up(&caching_ctl->wait);
676 if (ret == 1) {
677 put_caching_control(caching_ctl);
678 free_excluded_extents(fs_info->extent_root, cache);
679 return 0;
680 }
681 } else {
682 /*
683 * We are not going to do the fast caching, set cached to the
684 * appropriate value and wakeup any waiters.
685 */
686 spin_lock(&cache->lock);
687 if (load_cache_only) {
688 cache->caching_ctl = NULL;
689 cache->cached = BTRFS_CACHE_NO;
690 } else {
691 cache->cached = BTRFS_CACHE_STARTED;
692 cache->has_caching_ctl = 1;
693 }
694 spin_unlock(&cache->lock);
695 wake_up(&caching_ctl->wait);
696 }
697
698 if (load_cache_only) {
699 put_caching_control(caching_ctl);
700 return 0;
701 }
702
703 down_write(&fs_info->commit_root_sem);
704 atomic_inc(&caching_ctl->count);
705 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
706 up_write(&fs_info->commit_root_sem);
707
708 btrfs_get_block_group(cache);
709
710 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
711
712 return ret;
713 }
714
715 /*
716 * return the block group that starts at or after bytenr
717 */
718 static struct btrfs_block_group_cache *
719 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
720 {
721 struct btrfs_block_group_cache *cache;
722
723 cache = block_group_cache_tree_search(info, bytenr, 0);
724
725 return cache;
726 }
727
728 /*
729 * return the block group that contains the given bytenr
730 */
731 struct btrfs_block_group_cache *btrfs_lookup_block_group(
732 struct btrfs_fs_info *info,
733 u64 bytenr)
734 {
735 struct btrfs_block_group_cache *cache;
736
737 cache = block_group_cache_tree_search(info, bytenr, 1);
738
739 return cache;
740 }
741
742 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
743 u64 flags)
744 {
745 struct list_head *head = &info->space_info;
746 struct btrfs_space_info *found;
747
748 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
749
750 rcu_read_lock();
751 list_for_each_entry_rcu(found, head, list) {
752 if (found->flags & flags) {
753 rcu_read_unlock();
754 return found;
755 }
756 }
757 rcu_read_unlock();
758 return NULL;
759 }
760
761 /*
762 * after adding space to the filesystem, we need to clear the full flags
763 * on all the space infos.
764 */
765 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
766 {
767 struct list_head *head = &info->space_info;
768 struct btrfs_space_info *found;
769
770 rcu_read_lock();
771 list_for_each_entry_rcu(found, head, list)
772 found->full = 0;
773 rcu_read_unlock();
774 }
775
776 /* simple helper to search for an existing data extent at a given offset */
777 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
778 {
779 int ret;
780 struct btrfs_key key;
781 struct btrfs_path *path;
782
783 path = btrfs_alloc_path();
784 if (!path)
785 return -ENOMEM;
786
787 key.objectid = start;
788 key.offset = len;
789 key.type = BTRFS_EXTENT_ITEM_KEY;
790 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
791 0, 0);
792 btrfs_free_path(path);
793 return ret;
794 }
795
796 /*
797 * helper function to lookup reference count and flags of a tree block.
798 *
799 * the head node for delayed ref is used to store the sum of all the
800 * reference count modifications queued up in the rbtree. the head
801 * node may also store the extent flags to set. This way you can check
802 * to see what the reference count and extent flags would be if all of
803 * the delayed refs are not processed.
804 */
805 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
806 struct btrfs_root *root, u64 bytenr,
807 u64 offset, int metadata, u64 *refs, u64 *flags)
808 {
809 struct btrfs_delayed_ref_head *head;
810 struct btrfs_delayed_ref_root *delayed_refs;
811 struct btrfs_path *path;
812 struct btrfs_extent_item *ei;
813 struct extent_buffer *leaf;
814 struct btrfs_key key;
815 u32 item_size;
816 u64 num_refs;
817 u64 extent_flags;
818 int ret;
819
820 /*
821 * If we don't have skinny metadata, don't bother doing anything
822 * different
823 */
824 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
825 offset = root->nodesize;
826 metadata = 0;
827 }
828
829 path = btrfs_alloc_path();
830 if (!path)
831 return -ENOMEM;
832
833 if (!trans) {
834 path->skip_locking = 1;
835 path->search_commit_root = 1;
836 }
837
838 search_again:
839 key.objectid = bytenr;
840 key.offset = offset;
841 if (metadata)
842 key.type = BTRFS_METADATA_ITEM_KEY;
843 else
844 key.type = BTRFS_EXTENT_ITEM_KEY;
845
846 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
847 &key, path, 0, 0);
848 if (ret < 0)
849 goto out_free;
850
851 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
852 if (path->slots[0]) {
853 path->slots[0]--;
854 btrfs_item_key_to_cpu(path->nodes[0], &key,
855 path->slots[0]);
856 if (key.objectid == bytenr &&
857 key.type == BTRFS_EXTENT_ITEM_KEY &&
858 key.offset == root->nodesize)
859 ret = 0;
860 }
861 }
862
863 if (ret == 0) {
864 leaf = path->nodes[0];
865 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
866 if (item_size >= sizeof(*ei)) {
867 ei = btrfs_item_ptr(leaf, path->slots[0],
868 struct btrfs_extent_item);
869 num_refs = btrfs_extent_refs(leaf, ei);
870 extent_flags = btrfs_extent_flags(leaf, ei);
871 } else {
872 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
873 struct btrfs_extent_item_v0 *ei0;
874 BUG_ON(item_size != sizeof(*ei0));
875 ei0 = btrfs_item_ptr(leaf, path->slots[0],
876 struct btrfs_extent_item_v0);
877 num_refs = btrfs_extent_refs_v0(leaf, ei0);
878 /* FIXME: this isn't correct for data */
879 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
880 #else
881 BUG();
882 #endif
883 }
884 BUG_ON(num_refs == 0);
885 } else {
886 num_refs = 0;
887 extent_flags = 0;
888 ret = 0;
889 }
890
891 if (!trans)
892 goto out;
893
894 delayed_refs = &trans->transaction->delayed_refs;
895 spin_lock(&delayed_refs->lock);
896 head = btrfs_find_delayed_ref_head(trans, bytenr);
897 if (head) {
898 if (!mutex_trylock(&head->mutex)) {
899 atomic_inc(&head->node.refs);
900 spin_unlock(&delayed_refs->lock);
901
902 btrfs_release_path(path);
903
904 /*
905 * Mutex was contended, block until it's released and try
906 * again
907 */
908 mutex_lock(&head->mutex);
909 mutex_unlock(&head->mutex);
910 btrfs_put_delayed_ref(&head->node);
911 goto search_again;
912 }
913 spin_lock(&head->lock);
914 if (head->extent_op && head->extent_op->update_flags)
915 extent_flags |= head->extent_op->flags_to_set;
916 else
917 BUG_ON(num_refs == 0);
918
919 num_refs += head->node.ref_mod;
920 spin_unlock(&head->lock);
921 mutex_unlock(&head->mutex);
922 }
923 spin_unlock(&delayed_refs->lock);
924 out:
925 WARN_ON(num_refs == 0);
926 if (refs)
927 *refs = num_refs;
928 if (flags)
929 *flags = extent_flags;
930 out_free:
931 btrfs_free_path(path);
932 return ret;
933 }
934
935 /*
936 * Back reference rules. Back refs have three main goals:
937 *
938 * 1) differentiate between all holders of references to an extent so that
939 * when a reference is dropped we can make sure it was a valid reference
940 * before freeing the extent.
941 *
942 * 2) Provide enough information to quickly find the holders of an extent
943 * if we notice a given block is corrupted or bad.
944 *
945 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
946 * maintenance. This is actually the same as #2, but with a slightly
947 * different use case.
948 *
949 * There are two kinds of back refs. The implicit back refs is optimized
950 * for pointers in non-shared tree blocks. For a given pointer in a block,
951 * back refs of this kind provide information about the block's owner tree
952 * and the pointer's key. These information allow us to find the block by
953 * b-tree searching. The full back refs is for pointers in tree blocks not
954 * referenced by their owner trees. The location of tree block is recorded
955 * in the back refs. Actually the full back refs is generic, and can be
956 * used in all cases the implicit back refs is used. The major shortcoming
957 * of the full back refs is its overhead. Every time a tree block gets
958 * COWed, we have to update back refs entry for all pointers in it.
959 *
960 * For a newly allocated tree block, we use implicit back refs for
961 * pointers in it. This means most tree related operations only involve
962 * implicit back refs. For a tree block created in old transaction, the
963 * only way to drop a reference to it is COW it. So we can detect the
964 * event that tree block loses its owner tree's reference and do the
965 * back refs conversion.
966 *
967 * When a tree block is COW'd through a tree, there are four cases:
968 *
969 * The reference count of the block is one and the tree is the block's
970 * owner tree. Nothing to do in this case.
971 *
972 * The reference count of the block is one and the tree is not the
973 * block's owner tree. In this case, full back refs is used for pointers
974 * in the block. Remove these full back refs, add implicit back refs for
975 * every pointers in the new block.
976 *
977 * The reference count of the block is greater than one and the tree is
978 * the block's owner tree. In this case, implicit back refs is used for
979 * pointers in the block. Add full back refs for every pointers in the
980 * block, increase lower level extents' reference counts. The original
981 * implicit back refs are entailed to the new block.
982 *
983 * The reference count of the block is greater than one and the tree is
984 * not the block's owner tree. Add implicit back refs for every pointer in
985 * the new block, increase lower level extents' reference count.
986 *
987 * Back Reference Key composing:
988 *
989 * The key objectid corresponds to the first byte in the extent,
990 * The key type is used to differentiate between types of back refs.
991 * There are different meanings of the key offset for different types
992 * of back refs.
993 *
994 * File extents can be referenced by:
995 *
996 * - multiple snapshots, subvolumes, or different generations in one subvol
997 * - different files inside a single subvolume
998 * - different offsets inside a file (bookend extents in file.c)
999 *
1000 * The extent ref structure for the implicit back refs has fields for:
1001 *
1002 * - Objectid of the subvolume root
1003 * - objectid of the file holding the reference
1004 * - original offset in the file
1005 * - how many bookend extents
1006 *
1007 * The key offset for the implicit back refs is hash of the first
1008 * three fields.
1009 *
1010 * The extent ref structure for the full back refs has field for:
1011 *
1012 * - number of pointers in the tree leaf
1013 *
1014 * The key offset for the implicit back refs is the first byte of
1015 * the tree leaf
1016 *
1017 * When a file extent is allocated, The implicit back refs is used.
1018 * the fields are filled in:
1019 *
1020 * (root_key.objectid, inode objectid, offset in file, 1)
1021 *
1022 * When a file extent is removed file truncation, we find the
1023 * corresponding implicit back refs and check the following fields:
1024 *
1025 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1026 *
1027 * Btree extents can be referenced by:
1028 *
1029 * - Different subvolumes
1030 *
1031 * Both the implicit back refs and the full back refs for tree blocks
1032 * only consist of key. The key offset for the implicit back refs is
1033 * objectid of block's owner tree. The key offset for the full back refs
1034 * is the first byte of parent block.
1035 *
1036 * When implicit back refs is used, information about the lowest key and
1037 * level of the tree block are required. These information are stored in
1038 * tree block info structure.
1039 */
1040
1041 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1042 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1043 struct btrfs_root *root,
1044 struct btrfs_path *path,
1045 u64 owner, u32 extra_size)
1046 {
1047 struct btrfs_extent_item *item;
1048 struct btrfs_extent_item_v0 *ei0;
1049 struct btrfs_extent_ref_v0 *ref0;
1050 struct btrfs_tree_block_info *bi;
1051 struct extent_buffer *leaf;
1052 struct btrfs_key key;
1053 struct btrfs_key found_key;
1054 u32 new_size = sizeof(*item);
1055 u64 refs;
1056 int ret;
1057
1058 leaf = path->nodes[0];
1059 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1060
1061 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1062 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1063 struct btrfs_extent_item_v0);
1064 refs = btrfs_extent_refs_v0(leaf, ei0);
1065
1066 if (owner == (u64)-1) {
1067 while (1) {
1068 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1069 ret = btrfs_next_leaf(root, path);
1070 if (ret < 0)
1071 return ret;
1072 BUG_ON(ret > 0); /* Corruption */
1073 leaf = path->nodes[0];
1074 }
1075 btrfs_item_key_to_cpu(leaf, &found_key,
1076 path->slots[0]);
1077 BUG_ON(key.objectid != found_key.objectid);
1078 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1079 path->slots[0]++;
1080 continue;
1081 }
1082 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1083 struct btrfs_extent_ref_v0);
1084 owner = btrfs_ref_objectid_v0(leaf, ref0);
1085 break;
1086 }
1087 }
1088 btrfs_release_path(path);
1089
1090 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1091 new_size += sizeof(*bi);
1092
1093 new_size -= sizeof(*ei0);
1094 ret = btrfs_search_slot(trans, root, &key, path,
1095 new_size + extra_size, 1);
1096 if (ret < 0)
1097 return ret;
1098 BUG_ON(ret); /* Corruption */
1099
1100 btrfs_extend_item(root, path, new_size);
1101
1102 leaf = path->nodes[0];
1103 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1104 btrfs_set_extent_refs(leaf, item, refs);
1105 /* FIXME: get real generation */
1106 btrfs_set_extent_generation(leaf, item, 0);
1107 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1108 btrfs_set_extent_flags(leaf, item,
1109 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1110 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1111 bi = (struct btrfs_tree_block_info *)(item + 1);
1112 /* FIXME: get first key of the block */
1113 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1114 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1115 } else {
1116 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1117 }
1118 btrfs_mark_buffer_dirty(leaf);
1119 return 0;
1120 }
1121 #endif
1122
1123 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1124 {
1125 u32 high_crc = ~(u32)0;
1126 u32 low_crc = ~(u32)0;
1127 __le64 lenum;
1128
1129 lenum = cpu_to_le64(root_objectid);
1130 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1131 lenum = cpu_to_le64(owner);
1132 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1133 lenum = cpu_to_le64(offset);
1134 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1135
1136 return ((u64)high_crc << 31) ^ (u64)low_crc;
1137 }
1138
1139 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1140 struct btrfs_extent_data_ref *ref)
1141 {
1142 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1143 btrfs_extent_data_ref_objectid(leaf, ref),
1144 btrfs_extent_data_ref_offset(leaf, ref));
1145 }
1146
1147 static int match_extent_data_ref(struct extent_buffer *leaf,
1148 struct btrfs_extent_data_ref *ref,
1149 u64 root_objectid, u64 owner, u64 offset)
1150 {
1151 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1152 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1153 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1154 return 0;
1155 return 1;
1156 }
1157
1158 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1159 struct btrfs_root *root,
1160 struct btrfs_path *path,
1161 u64 bytenr, u64 parent,
1162 u64 root_objectid,
1163 u64 owner, u64 offset)
1164 {
1165 struct btrfs_key key;
1166 struct btrfs_extent_data_ref *ref;
1167 struct extent_buffer *leaf;
1168 u32 nritems;
1169 int ret;
1170 int recow;
1171 int err = -ENOENT;
1172
1173 key.objectid = bytenr;
1174 if (parent) {
1175 key.type = BTRFS_SHARED_DATA_REF_KEY;
1176 key.offset = parent;
1177 } else {
1178 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1179 key.offset = hash_extent_data_ref(root_objectid,
1180 owner, offset);
1181 }
1182 again:
1183 recow = 0;
1184 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1185 if (ret < 0) {
1186 err = ret;
1187 goto fail;
1188 }
1189
1190 if (parent) {
1191 if (!ret)
1192 return 0;
1193 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1194 key.type = BTRFS_EXTENT_REF_V0_KEY;
1195 btrfs_release_path(path);
1196 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1197 if (ret < 0) {
1198 err = ret;
1199 goto fail;
1200 }
1201 if (!ret)
1202 return 0;
1203 #endif
1204 goto fail;
1205 }
1206
1207 leaf = path->nodes[0];
1208 nritems = btrfs_header_nritems(leaf);
1209 while (1) {
1210 if (path->slots[0] >= nritems) {
1211 ret = btrfs_next_leaf(root, path);
1212 if (ret < 0)
1213 err = ret;
1214 if (ret)
1215 goto fail;
1216
1217 leaf = path->nodes[0];
1218 nritems = btrfs_header_nritems(leaf);
1219 recow = 1;
1220 }
1221
1222 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1223 if (key.objectid != bytenr ||
1224 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1225 goto fail;
1226
1227 ref = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_data_ref);
1229
1230 if (match_extent_data_ref(leaf, ref, root_objectid,
1231 owner, offset)) {
1232 if (recow) {
1233 btrfs_release_path(path);
1234 goto again;
1235 }
1236 err = 0;
1237 break;
1238 }
1239 path->slots[0]++;
1240 }
1241 fail:
1242 return err;
1243 }
1244
1245 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1246 struct btrfs_root *root,
1247 struct btrfs_path *path,
1248 u64 bytenr, u64 parent,
1249 u64 root_objectid, u64 owner,
1250 u64 offset, int refs_to_add)
1251 {
1252 struct btrfs_key key;
1253 struct extent_buffer *leaf;
1254 u32 size;
1255 u32 num_refs;
1256 int ret;
1257
1258 key.objectid = bytenr;
1259 if (parent) {
1260 key.type = BTRFS_SHARED_DATA_REF_KEY;
1261 key.offset = parent;
1262 size = sizeof(struct btrfs_shared_data_ref);
1263 } else {
1264 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1265 key.offset = hash_extent_data_ref(root_objectid,
1266 owner, offset);
1267 size = sizeof(struct btrfs_extent_data_ref);
1268 }
1269
1270 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1271 if (ret && ret != -EEXIST)
1272 goto fail;
1273
1274 leaf = path->nodes[0];
1275 if (parent) {
1276 struct btrfs_shared_data_ref *ref;
1277 ref = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_shared_data_ref);
1279 if (ret == 0) {
1280 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1281 } else {
1282 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1283 num_refs += refs_to_add;
1284 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1285 }
1286 } else {
1287 struct btrfs_extent_data_ref *ref;
1288 while (ret == -EEXIST) {
1289 ref = btrfs_item_ptr(leaf, path->slots[0],
1290 struct btrfs_extent_data_ref);
1291 if (match_extent_data_ref(leaf, ref, root_objectid,
1292 owner, offset))
1293 break;
1294 btrfs_release_path(path);
1295 key.offset++;
1296 ret = btrfs_insert_empty_item(trans, root, path, &key,
1297 size);
1298 if (ret && ret != -EEXIST)
1299 goto fail;
1300
1301 leaf = path->nodes[0];
1302 }
1303 ref = btrfs_item_ptr(leaf, path->slots[0],
1304 struct btrfs_extent_data_ref);
1305 if (ret == 0) {
1306 btrfs_set_extent_data_ref_root(leaf, ref,
1307 root_objectid);
1308 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1309 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1310 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1311 } else {
1312 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1313 num_refs += refs_to_add;
1314 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1315 }
1316 }
1317 btrfs_mark_buffer_dirty(leaf);
1318 ret = 0;
1319 fail:
1320 btrfs_release_path(path);
1321 return ret;
1322 }
1323
1324 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1325 struct btrfs_root *root,
1326 struct btrfs_path *path,
1327 int refs_to_drop, int *last_ref)
1328 {
1329 struct btrfs_key key;
1330 struct btrfs_extent_data_ref *ref1 = NULL;
1331 struct btrfs_shared_data_ref *ref2 = NULL;
1332 struct extent_buffer *leaf;
1333 u32 num_refs = 0;
1334 int ret = 0;
1335
1336 leaf = path->nodes[0];
1337 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1338
1339 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1340 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1341 struct btrfs_extent_data_ref);
1342 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1343 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1344 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1345 struct btrfs_shared_data_ref);
1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1348 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1349 struct btrfs_extent_ref_v0 *ref0;
1350 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_extent_ref_v0);
1352 num_refs = btrfs_ref_count_v0(leaf, ref0);
1353 #endif
1354 } else {
1355 BUG();
1356 }
1357
1358 BUG_ON(num_refs < refs_to_drop);
1359 num_refs -= refs_to_drop;
1360
1361 if (num_refs == 0) {
1362 ret = btrfs_del_item(trans, root, path);
1363 *last_ref = 1;
1364 } else {
1365 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1366 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1367 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1368 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1369 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1370 else {
1371 struct btrfs_extent_ref_v0 *ref0;
1372 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1373 struct btrfs_extent_ref_v0);
1374 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1375 }
1376 #endif
1377 btrfs_mark_buffer_dirty(leaf);
1378 }
1379 return ret;
1380 }
1381
1382 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1383 struct btrfs_extent_inline_ref *iref)
1384 {
1385 struct btrfs_key key;
1386 struct extent_buffer *leaf;
1387 struct btrfs_extent_data_ref *ref1;
1388 struct btrfs_shared_data_ref *ref2;
1389 u32 num_refs = 0;
1390
1391 leaf = path->nodes[0];
1392 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1393 if (iref) {
1394 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1395 BTRFS_EXTENT_DATA_REF_KEY) {
1396 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1397 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1398 } else {
1399 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1400 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1401 }
1402 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1403 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1404 struct btrfs_extent_data_ref);
1405 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1406 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1407 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1408 struct btrfs_shared_data_ref);
1409 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1410 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1411 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1412 struct btrfs_extent_ref_v0 *ref0;
1413 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1414 struct btrfs_extent_ref_v0);
1415 num_refs = btrfs_ref_count_v0(leaf, ref0);
1416 #endif
1417 } else {
1418 WARN_ON(1);
1419 }
1420 return num_refs;
1421 }
1422
1423 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1424 struct btrfs_root *root,
1425 struct btrfs_path *path,
1426 u64 bytenr, u64 parent,
1427 u64 root_objectid)
1428 {
1429 struct btrfs_key key;
1430 int ret;
1431
1432 key.objectid = bytenr;
1433 if (parent) {
1434 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1435 key.offset = parent;
1436 } else {
1437 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1438 key.offset = root_objectid;
1439 }
1440
1441 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1442 if (ret > 0)
1443 ret = -ENOENT;
1444 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1445 if (ret == -ENOENT && parent) {
1446 btrfs_release_path(path);
1447 key.type = BTRFS_EXTENT_REF_V0_KEY;
1448 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1449 if (ret > 0)
1450 ret = -ENOENT;
1451 }
1452 #endif
1453 return ret;
1454 }
1455
1456 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1457 struct btrfs_root *root,
1458 struct btrfs_path *path,
1459 u64 bytenr, u64 parent,
1460 u64 root_objectid)
1461 {
1462 struct btrfs_key key;
1463 int ret;
1464
1465 key.objectid = bytenr;
1466 if (parent) {
1467 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1468 key.offset = parent;
1469 } else {
1470 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1471 key.offset = root_objectid;
1472 }
1473
1474 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1475 btrfs_release_path(path);
1476 return ret;
1477 }
1478
1479 static inline int extent_ref_type(u64 parent, u64 owner)
1480 {
1481 int type;
1482 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1483 if (parent > 0)
1484 type = BTRFS_SHARED_BLOCK_REF_KEY;
1485 else
1486 type = BTRFS_TREE_BLOCK_REF_KEY;
1487 } else {
1488 if (parent > 0)
1489 type = BTRFS_SHARED_DATA_REF_KEY;
1490 else
1491 type = BTRFS_EXTENT_DATA_REF_KEY;
1492 }
1493 return type;
1494 }
1495
1496 static int find_next_key(struct btrfs_path *path, int level,
1497 struct btrfs_key *key)
1498
1499 {
1500 for (; level < BTRFS_MAX_LEVEL; level++) {
1501 if (!path->nodes[level])
1502 break;
1503 if (path->slots[level] + 1 >=
1504 btrfs_header_nritems(path->nodes[level]))
1505 continue;
1506 if (level == 0)
1507 btrfs_item_key_to_cpu(path->nodes[level], key,
1508 path->slots[level] + 1);
1509 else
1510 btrfs_node_key_to_cpu(path->nodes[level], key,
1511 path->slots[level] + 1);
1512 return 0;
1513 }
1514 return 1;
1515 }
1516
1517 /*
1518 * look for inline back ref. if back ref is found, *ref_ret is set
1519 * to the address of inline back ref, and 0 is returned.
1520 *
1521 * if back ref isn't found, *ref_ret is set to the address where it
1522 * should be inserted, and -ENOENT is returned.
1523 *
1524 * if insert is true and there are too many inline back refs, the path
1525 * points to the extent item, and -EAGAIN is returned.
1526 *
1527 * NOTE: inline back refs are ordered in the same way that back ref
1528 * items in the tree are ordered.
1529 */
1530 static noinline_for_stack
1531 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1532 struct btrfs_root *root,
1533 struct btrfs_path *path,
1534 struct btrfs_extent_inline_ref **ref_ret,
1535 u64 bytenr, u64 num_bytes,
1536 u64 parent, u64 root_objectid,
1537 u64 owner, u64 offset, int insert)
1538 {
1539 struct btrfs_key key;
1540 struct extent_buffer *leaf;
1541 struct btrfs_extent_item *ei;
1542 struct btrfs_extent_inline_ref *iref;
1543 u64 flags;
1544 u64 item_size;
1545 unsigned long ptr;
1546 unsigned long end;
1547 int extra_size;
1548 int type;
1549 int want;
1550 int ret;
1551 int err = 0;
1552 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1553 SKINNY_METADATA);
1554
1555 key.objectid = bytenr;
1556 key.type = BTRFS_EXTENT_ITEM_KEY;
1557 key.offset = num_bytes;
1558
1559 want = extent_ref_type(parent, owner);
1560 if (insert) {
1561 extra_size = btrfs_extent_inline_ref_size(want);
1562 path->keep_locks = 1;
1563 } else
1564 extra_size = -1;
1565
1566 /*
1567 * Owner is our parent level, so we can just add one to get the level
1568 * for the block we are interested in.
1569 */
1570 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1571 key.type = BTRFS_METADATA_ITEM_KEY;
1572 key.offset = owner;
1573 }
1574
1575 again:
1576 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1577 if (ret < 0) {
1578 err = ret;
1579 goto out;
1580 }
1581
1582 /*
1583 * We may be a newly converted file system which still has the old fat
1584 * extent entries for metadata, so try and see if we have one of those.
1585 */
1586 if (ret > 0 && skinny_metadata) {
1587 skinny_metadata = false;
1588 if (path->slots[0]) {
1589 path->slots[0]--;
1590 btrfs_item_key_to_cpu(path->nodes[0], &key,
1591 path->slots[0]);
1592 if (key.objectid == bytenr &&
1593 key.type == BTRFS_EXTENT_ITEM_KEY &&
1594 key.offset == num_bytes)
1595 ret = 0;
1596 }
1597 if (ret) {
1598 key.objectid = bytenr;
1599 key.type = BTRFS_EXTENT_ITEM_KEY;
1600 key.offset = num_bytes;
1601 btrfs_release_path(path);
1602 goto again;
1603 }
1604 }
1605
1606 if (ret && !insert) {
1607 err = -ENOENT;
1608 goto out;
1609 } else if (WARN_ON(ret)) {
1610 err = -EIO;
1611 goto out;
1612 }
1613
1614 leaf = path->nodes[0];
1615 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1616 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1617 if (item_size < sizeof(*ei)) {
1618 if (!insert) {
1619 err = -ENOENT;
1620 goto out;
1621 }
1622 ret = convert_extent_item_v0(trans, root, path, owner,
1623 extra_size);
1624 if (ret < 0) {
1625 err = ret;
1626 goto out;
1627 }
1628 leaf = path->nodes[0];
1629 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1630 }
1631 #endif
1632 BUG_ON(item_size < sizeof(*ei));
1633
1634 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1635 flags = btrfs_extent_flags(leaf, ei);
1636
1637 ptr = (unsigned long)(ei + 1);
1638 end = (unsigned long)ei + item_size;
1639
1640 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1641 ptr += sizeof(struct btrfs_tree_block_info);
1642 BUG_ON(ptr > end);
1643 }
1644
1645 err = -ENOENT;
1646 while (1) {
1647 if (ptr >= end) {
1648 WARN_ON(ptr > end);
1649 break;
1650 }
1651 iref = (struct btrfs_extent_inline_ref *)ptr;
1652 type = btrfs_extent_inline_ref_type(leaf, iref);
1653 if (want < type)
1654 break;
1655 if (want > type) {
1656 ptr += btrfs_extent_inline_ref_size(type);
1657 continue;
1658 }
1659
1660 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1661 struct btrfs_extent_data_ref *dref;
1662 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1663 if (match_extent_data_ref(leaf, dref, root_objectid,
1664 owner, offset)) {
1665 err = 0;
1666 break;
1667 }
1668 if (hash_extent_data_ref_item(leaf, dref) <
1669 hash_extent_data_ref(root_objectid, owner, offset))
1670 break;
1671 } else {
1672 u64 ref_offset;
1673 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1674 if (parent > 0) {
1675 if (parent == ref_offset) {
1676 err = 0;
1677 break;
1678 }
1679 if (ref_offset < parent)
1680 break;
1681 } else {
1682 if (root_objectid == ref_offset) {
1683 err = 0;
1684 break;
1685 }
1686 if (ref_offset < root_objectid)
1687 break;
1688 }
1689 }
1690 ptr += btrfs_extent_inline_ref_size(type);
1691 }
1692 if (err == -ENOENT && insert) {
1693 if (item_size + extra_size >=
1694 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1695 err = -EAGAIN;
1696 goto out;
1697 }
1698 /*
1699 * To add new inline back ref, we have to make sure
1700 * there is no corresponding back ref item.
1701 * For simplicity, we just do not add new inline back
1702 * ref if there is any kind of item for this block
1703 */
1704 if (find_next_key(path, 0, &key) == 0 &&
1705 key.objectid == bytenr &&
1706 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1707 err = -EAGAIN;
1708 goto out;
1709 }
1710 }
1711 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1712 out:
1713 if (insert) {
1714 path->keep_locks = 0;
1715 btrfs_unlock_up_safe(path, 1);
1716 }
1717 return err;
1718 }
1719
1720 /*
1721 * helper to add new inline back ref
1722 */
1723 static noinline_for_stack
1724 void setup_inline_extent_backref(struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref *iref,
1727 u64 parent, u64 root_objectid,
1728 u64 owner, u64 offset, int refs_to_add,
1729 struct btrfs_delayed_extent_op *extent_op)
1730 {
1731 struct extent_buffer *leaf;
1732 struct btrfs_extent_item *ei;
1733 unsigned long ptr;
1734 unsigned long end;
1735 unsigned long item_offset;
1736 u64 refs;
1737 int size;
1738 int type;
1739
1740 leaf = path->nodes[0];
1741 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1742 item_offset = (unsigned long)iref - (unsigned long)ei;
1743
1744 type = extent_ref_type(parent, owner);
1745 size = btrfs_extent_inline_ref_size(type);
1746
1747 btrfs_extend_item(root, path, size);
1748
1749 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1750 refs = btrfs_extent_refs(leaf, ei);
1751 refs += refs_to_add;
1752 btrfs_set_extent_refs(leaf, ei, refs);
1753 if (extent_op)
1754 __run_delayed_extent_op(extent_op, leaf, ei);
1755
1756 ptr = (unsigned long)ei + item_offset;
1757 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1758 if (ptr < end - size)
1759 memmove_extent_buffer(leaf, ptr + size, ptr,
1760 end - size - ptr);
1761
1762 iref = (struct btrfs_extent_inline_ref *)ptr;
1763 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1764 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1765 struct btrfs_extent_data_ref *dref;
1766 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1767 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1768 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1769 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1770 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1771 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1772 struct btrfs_shared_data_ref *sref;
1773 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1774 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1775 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1776 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1777 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1778 } else {
1779 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1780 }
1781 btrfs_mark_buffer_dirty(leaf);
1782 }
1783
1784 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1785 struct btrfs_root *root,
1786 struct btrfs_path *path,
1787 struct btrfs_extent_inline_ref **ref_ret,
1788 u64 bytenr, u64 num_bytes, u64 parent,
1789 u64 root_objectid, u64 owner, u64 offset)
1790 {
1791 int ret;
1792
1793 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1794 bytenr, num_bytes, parent,
1795 root_objectid, owner, offset, 0);
1796 if (ret != -ENOENT)
1797 return ret;
1798
1799 btrfs_release_path(path);
1800 *ref_ret = NULL;
1801
1802 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1803 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1804 root_objectid);
1805 } else {
1806 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1807 root_objectid, owner, offset);
1808 }
1809 return ret;
1810 }
1811
1812 /*
1813 * helper to update/remove inline back ref
1814 */
1815 static noinline_for_stack
1816 void update_inline_extent_backref(struct btrfs_root *root,
1817 struct btrfs_path *path,
1818 struct btrfs_extent_inline_ref *iref,
1819 int refs_to_mod,
1820 struct btrfs_delayed_extent_op *extent_op,
1821 int *last_ref)
1822 {
1823 struct extent_buffer *leaf;
1824 struct btrfs_extent_item *ei;
1825 struct btrfs_extent_data_ref *dref = NULL;
1826 struct btrfs_shared_data_ref *sref = NULL;
1827 unsigned long ptr;
1828 unsigned long end;
1829 u32 item_size;
1830 int size;
1831 int type;
1832 u64 refs;
1833
1834 leaf = path->nodes[0];
1835 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1836 refs = btrfs_extent_refs(leaf, ei);
1837 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1838 refs += refs_to_mod;
1839 btrfs_set_extent_refs(leaf, ei, refs);
1840 if (extent_op)
1841 __run_delayed_extent_op(extent_op, leaf, ei);
1842
1843 type = btrfs_extent_inline_ref_type(leaf, iref);
1844
1845 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1846 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1847 refs = btrfs_extent_data_ref_count(leaf, dref);
1848 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1849 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1850 refs = btrfs_shared_data_ref_count(leaf, sref);
1851 } else {
1852 refs = 1;
1853 BUG_ON(refs_to_mod != -1);
1854 }
1855
1856 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1857 refs += refs_to_mod;
1858
1859 if (refs > 0) {
1860 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1861 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1862 else
1863 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1864 } else {
1865 *last_ref = 1;
1866 size = btrfs_extent_inline_ref_size(type);
1867 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1868 ptr = (unsigned long)iref;
1869 end = (unsigned long)ei + item_size;
1870 if (ptr + size < end)
1871 memmove_extent_buffer(leaf, ptr, ptr + size,
1872 end - ptr - size);
1873 item_size -= size;
1874 btrfs_truncate_item(root, path, item_size, 1);
1875 }
1876 btrfs_mark_buffer_dirty(leaf);
1877 }
1878
1879 static noinline_for_stack
1880 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1881 struct btrfs_root *root,
1882 struct btrfs_path *path,
1883 u64 bytenr, u64 num_bytes, u64 parent,
1884 u64 root_objectid, u64 owner,
1885 u64 offset, int refs_to_add,
1886 struct btrfs_delayed_extent_op *extent_op)
1887 {
1888 struct btrfs_extent_inline_ref *iref;
1889 int ret;
1890
1891 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1892 bytenr, num_bytes, parent,
1893 root_objectid, owner, offset, 1);
1894 if (ret == 0) {
1895 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1896 update_inline_extent_backref(root, path, iref,
1897 refs_to_add, extent_op, NULL);
1898 } else if (ret == -ENOENT) {
1899 setup_inline_extent_backref(root, path, iref, parent,
1900 root_objectid, owner, offset,
1901 refs_to_add, extent_op);
1902 ret = 0;
1903 }
1904 return ret;
1905 }
1906
1907 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1908 struct btrfs_root *root,
1909 struct btrfs_path *path,
1910 u64 bytenr, u64 parent, u64 root_objectid,
1911 u64 owner, u64 offset, int refs_to_add)
1912 {
1913 int ret;
1914 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1915 BUG_ON(refs_to_add != 1);
1916 ret = insert_tree_block_ref(trans, root, path, bytenr,
1917 parent, root_objectid);
1918 } else {
1919 ret = insert_extent_data_ref(trans, root, path, bytenr,
1920 parent, root_objectid,
1921 owner, offset, refs_to_add);
1922 }
1923 return ret;
1924 }
1925
1926 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1927 struct btrfs_root *root,
1928 struct btrfs_path *path,
1929 struct btrfs_extent_inline_ref *iref,
1930 int refs_to_drop, int is_data, int *last_ref)
1931 {
1932 int ret = 0;
1933
1934 BUG_ON(!is_data && refs_to_drop != 1);
1935 if (iref) {
1936 update_inline_extent_backref(root, path, iref,
1937 -refs_to_drop, NULL, last_ref);
1938 } else if (is_data) {
1939 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1940 last_ref);
1941 } else {
1942 *last_ref = 1;
1943 ret = btrfs_del_item(trans, root, path);
1944 }
1945 return ret;
1946 }
1947
1948 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1949 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1950 u64 *discarded_bytes)
1951 {
1952 int j, ret = 0;
1953 u64 bytes_left, end;
1954 u64 aligned_start = ALIGN(start, 1 << 9);
1955
1956 if (WARN_ON(start != aligned_start)) {
1957 len -= aligned_start - start;
1958 len = round_down(len, 1 << 9);
1959 start = aligned_start;
1960 }
1961
1962 *discarded_bytes = 0;
1963
1964 if (!len)
1965 return 0;
1966
1967 end = start + len;
1968 bytes_left = len;
1969
1970 /* Skip any superblocks on this device. */
1971 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1972 u64 sb_start = btrfs_sb_offset(j);
1973 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1974 u64 size = sb_start - start;
1975
1976 if (!in_range(sb_start, start, bytes_left) &&
1977 !in_range(sb_end, start, bytes_left) &&
1978 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1979 continue;
1980
1981 /*
1982 * Superblock spans beginning of range. Adjust start and
1983 * try again.
1984 */
1985 if (sb_start <= start) {
1986 start += sb_end - start;
1987 if (start > end) {
1988 bytes_left = 0;
1989 break;
1990 }
1991 bytes_left = end - start;
1992 continue;
1993 }
1994
1995 if (size) {
1996 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1997 GFP_NOFS, 0);
1998 if (!ret)
1999 *discarded_bytes += size;
2000 else if (ret != -EOPNOTSUPP)
2001 return ret;
2002 }
2003
2004 start = sb_end;
2005 if (start > end) {
2006 bytes_left = 0;
2007 break;
2008 }
2009 bytes_left = end - start;
2010 }
2011
2012 if (bytes_left) {
2013 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2014 GFP_NOFS, 0);
2015 if (!ret)
2016 *discarded_bytes += bytes_left;
2017 }
2018 return ret;
2019 }
2020
2021 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2022 u64 num_bytes, u64 *actual_bytes)
2023 {
2024 int ret;
2025 u64 discarded_bytes = 0;
2026 struct btrfs_bio *bbio = NULL;
2027
2028
2029 /* Tell the block device(s) that the sectors can be discarded */
2030 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
2031 bytenr, &num_bytes, &bbio, 0);
2032 /* Error condition is -ENOMEM */
2033 if (!ret) {
2034 struct btrfs_bio_stripe *stripe = bbio->stripes;
2035 int i;
2036
2037
2038 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2039 u64 bytes;
2040 if (!stripe->dev->can_discard)
2041 continue;
2042
2043 ret = btrfs_issue_discard(stripe->dev->bdev,
2044 stripe->physical,
2045 stripe->length,
2046 &bytes);
2047 if (!ret)
2048 discarded_bytes += bytes;
2049 else if (ret != -EOPNOTSUPP)
2050 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2051
2052 /*
2053 * Just in case we get back EOPNOTSUPP for some reason,
2054 * just ignore the return value so we don't screw up
2055 * people calling discard_extent.
2056 */
2057 ret = 0;
2058 }
2059 btrfs_put_bbio(bbio);
2060 }
2061
2062 if (actual_bytes)
2063 *actual_bytes = discarded_bytes;
2064
2065
2066 if (ret == -EOPNOTSUPP)
2067 ret = 0;
2068 return ret;
2069 }
2070
2071 /* Can return -ENOMEM */
2072 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2073 struct btrfs_root *root,
2074 u64 bytenr, u64 num_bytes, u64 parent,
2075 u64 root_objectid, u64 owner, u64 offset)
2076 {
2077 int ret;
2078 struct btrfs_fs_info *fs_info = root->fs_info;
2079
2080 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2081 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2082
2083 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2084 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2085 num_bytes,
2086 parent, root_objectid, (int)owner,
2087 BTRFS_ADD_DELAYED_REF, NULL);
2088 } else {
2089 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2090 num_bytes, parent, root_objectid,
2091 owner, offset, 0,
2092 BTRFS_ADD_DELAYED_REF, NULL);
2093 }
2094 return ret;
2095 }
2096
2097 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2098 struct btrfs_root *root,
2099 struct btrfs_delayed_ref_node *node,
2100 u64 parent, u64 root_objectid,
2101 u64 owner, u64 offset, int refs_to_add,
2102 struct btrfs_delayed_extent_op *extent_op)
2103 {
2104 struct btrfs_fs_info *fs_info = root->fs_info;
2105 struct btrfs_path *path;
2106 struct extent_buffer *leaf;
2107 struct btrfs_extent_item *item;
2108 struct btrfs_key key;
2109 u64 bytenr = node->bytenr;
2110 u64 num_bytes = node->num_bytes;
2111 u64 refs;
2112 int ret;
2113
2114 path = btrfs_alloc_path();
2115 if (!path)
2116 return -ENOMEM;
2117
2118 path->reada = 1;
2119 path->leave_spinning = 1;
2120 /* this will setup the path even if it fails to insert the back ref */
2121 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2122 bytenr, num_bytes, parent,
2123 root_objectid, owner, offset,
2124 refs_to_add, extent_op);
2125 if ((ret < 0 && ret != -EAGAIN) || !ret)
2126 goto out;
2127
2128 /*
2129 * Ok we had -EAGAIN which means we didn't have space to insert and
2130 * inline extent ref, so just update the reference count and add a
2131 * normal backref.
2132 */
2133 leaf = path->nodes[0];
2134 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2135 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2136 refs = btrfs_extent_refs(leaf, item);
2137 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2138 if (extent_op)
2139 __run_delayed_extent_op(extent_op, leaf, item);
2140
2141 btrfs_mark_buffer_dirty(leaf);
2142 btrfs_release_path(path);
2143
2144 path->reada = 1;
2145 path->leave_spinning = 1;
2146 /* now insert the actual backref */
2147 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2148 path, bytenr, parent, root_objectid,
2149 owner, offset, refs_to_add);
2150 if (ret)
2151 btrfs_abort_transaction(trans, root, ret);
2152 out:
2153 btrfs_free_path(path);
2154 return ret;
2155 }
2156
2157 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2158 struct btrfs_root *root,
2159 struct btrfs_delayed_ref_node *node,
2160 struct btrfs_delayed_extent_op *extent_op,
2161 int insert_reserved)
2162 {
2163 int ret = 0;
2164 struct btrfs_delayed_data_ref *ref;
2165 struct btrfs_key ins;
2166 u64 parent = 0;
2167 u64 ref_root = 0;
2168 u64 flags = 0;
2169
2170 ins.objectid = node->bytenr;
2171 ins.offset = node->num_bytes;
2172 ins.type = BTRFS_EXTENT_ITEM_KEY;
2173
2174 ref = btrfs_delayed_node_to_data_ref(node);
2175 trace_run_delayed_data_ref(node, ref, node->action);
2176
2177 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2178 parent = ref->parent;
2179 ref_root = ref->root;
2180
2181 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2182 if (extent_op)
2183 flags |= extent_op->flags_to_set;
2184 ret = alloc_reserved_file_extent(trans, root,
2185 parent, ref_root, flags,
2186 ref->objectid, ref->offset,
2187 &ins, node->ref_mod);
2188 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2189 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2190 ref_root, ref->objectid,
2191 ref->offset, node->ref_mod,
2192 extent_op);
2193 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2194 ret = __btrfs_free_extent(trans, root, node, parent,
2195 ref_root, ref->objectid,
2196 ref->offset, node->ref_mod,
2197 extent_op);
2198 } else {
2199 BUG();
2200 }
2201 return ret;
2202 }
2203
2204 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2205 struct extent_buffer *leaf,
2206 struct btrfs_extent_item *ei)
2207 {
2208 u64 flags = btrfs_extent_flags(leaf, ei);
2209 if (extent_op->update_flags) {
2210 flags |= extent_op->flags_to_set;
2211 btrfs_set_extent_flags(leaf, ei, flags);
2212 }
2213
2214 if (extent_op->update_key) {
2215 struct btrfs_tree_block_info *bi;
2216 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2217 bi = (struct btrfs_tree_block_info *)(ei + 1);
2218 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2219 }
2220 }
2221
2222 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2223 struct btrfs_root *root,
2224 struct btrfs_delayed_ref_node *node,
2225 struct btrfs_delayed_extent_op *extent_op)
2226 {
2227 struct btrfs_key key;
2228 struct btrfs_path *path;
2229 struct btrfs_extent_item *ei;
2230 struct extent_buffer *leaf;
2231 u32 item_size;
2232 int ret;
2233 int err = 0;
2234 int metadata = !extent_op->is_data;
2235
2236 if (trans->aborted)
2237 return 0;
2238
2239 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2240 metadata = 0;
2241
2242 path = btrfs_alloc_path();
2243 if (!path)
2244 return -ENOMEM;
2245
2246 key.objectid = node->bytenr;
2247
2248 if (metadata) {
2249 key.type = BTRFS_METADATA_ITEM_KEY;
2250 key.offset = extent_op->level;
2251 } else {
2252 key.type = BTRFS_EXTENT_ITEM_KEY;
2253 key.offset = node->num_bytes;
2254 }
2255
2256 again:
2257 path->reada = 1;
2258 path->leave_spinning = 1;
2259 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2260 path, 0, 1);
2261 if (ret < 0) {
2262 err = ret;
2263 goto out;
2264 }
2265 if (ret > 0) {
2266 if (metadata) {
2267 if (path->slots[0] > 0) {
2268 path->slots[0]--;
2269 btrfs_item_key_to_cpu(path->nodes[0], &key,
2270 path->slots[0]);
2271 if (key.objectid == node->bytenr &&
2272 key.type == BTRFS_EXTENT_ITEM_KEY &&
2273 key.offset == node->num_bytes)
2274 ret = 0;
2275 }
2276 if (ret > 0) {
2277 btrfs_release_path(path);
2278 metadata = 0;
2279
2280 key.objectid = node->bytenr;
2281 key.offset = node->num_bytes;
2282 key.type = BTRFS_EXTENT_ITEM_KEY;
2283 goto again;
2284 }
2285 } else {
2286 err = -EIO;
2287 goto out;
2288 }
2289 }
2290
2291 leaf = path->nodes[0];
2292 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2293 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2294 if (item_size < sizeof(*ei)) {
2295 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2296 path, (u64)-1, 0);
2297 if (ret < 0) {
2298 err = ret;
2299 goto out;
2300 }
2301 leaf = path->nodes[0];
2302 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2303 }
2304 #endif
2305 BUG_ON(item_size < sizeof(*ei));
2306 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2307 __run_delayed_extent_op(extent_op, leaf, ei);
2308
2309 btrfs_mark_buffer_dirty(leaf);
2310 out:
2311 btrfs_free_path(path);
2312 return err;
2313 }
2314
2315 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2316 struct btrfs_root *root,
2317 struct btrfs_delayed_ref_node *node,
2318 struct btrfs_delayed_extent_op *extent_op,
2319 int insert_reserved)
2320 {
2321 int ret = 0;
2322 struct btrfs_delayed_tree_ref *ref;
2323 struct btrfs_key ins;
2324 u64 parent = 0;
2325 u64 ref_root = 0;
2326 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2327 SKINNY_METADATA);
2328
2329 ref = btrfs_delayed_node_to_tree_ref(node);
2330 trace_run_delayed_tree_ref(node, ref, node->action);
2331
2332 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2333 parent = ref->parent;
2334 ref_root = ref->root;
2335
2336 ins.objectid = node->bytenr;
2337 if (skinny_metadata) {
2338 ins.offset = ref->level;
2339 ins.type = BTRFS_METADATA_ITEM_KEY;
2340 } else {
2341 ins.offset = node->num_bytes;
2342 ins.type = BTRFS_EXTENT_ITEM_KEY;
2343 }
2344
2345 BUG_ON(node->ref_mod != 1);
2346 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2347 BUG_ON(!extent_op || !extent_op->update_flags);
2348 ret = alloc_reserved_tree_block(trans, root,
2349 parent, ref_root,
2350 extent_op->flags_to_set,
2351 &extent_op->key,
2352 ref->level, &ins);
2353 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2354 ret = __btrfs_inc_extent_ref(trans, root, node,
2355 parent, ref_root,
2356 ref->level, 0, 1,
2357 extent_op);
2358 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2359 ret = __btrfs_free_extent(trans, root, node,
2360 parent, ref_root,
2361 ref->level, 0, 1, extent_op);
2362 } else {
2363 BUG();
2364 }
2365 return ret;
2366 }
2367
2368 /* helper function to actually process a single delayed ref entry */
2369 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2370 struct btrfs_root *root,
2371 struct btrfs_delayed_ref_node *node,
2372 struct btrfs_delayed_extent_op *extent_op,
2373 int insert_reserved)
2374 {
2375 int ret = 0;
2376
2377 if (trans->aborted) {
2378 if (insert_reserved)
2379 btrfs_pin_extent(root, node->bytenr,
2380 node->num_bytes, 1);
2381 return 0;
2382 }
2383
2384 if (btrfs_delayed_ref_is_head(node)) {
2385 struct btrfs_delayed_ref_head *head;
2386 /*
2387 * we've hit the end of the chain and we were supposed
2388 * to insert this extent into the tree. But, it got
2389 * deleted before we ever needed to insert it, so all
2390 * we have to do is clean up the accounting
2391 */
2392 BUG_ON(extent_op);
2393 head = btrfs_delayed_node_to_head(node);
2394 trace_run_delayed_ref_head(node, head, node->action);
2395
2396 if (insert_reserved) {
2397 btrfs_pin_extent(root, node->bytenr,
2398 node->num_bytes, 1);
2399 if (head->is_data) {
2400 ret = btrfs_del_csums(trans, root,
2401 node->bytenr,
2402 node->num_bytes);
2403 }
2404 }
2405
2406 /* Also free its reserved qgroup space */
2407 btrfs_qgroup_free_delayed_ref(root->fs_info,
2408 head->qgroup_ref_root,
2409 head->qgroup_reserved);
2410 return ret;
2411 }
2412
2413 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2414 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2415 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2416 insert_reserved);
2417 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2418 node->type == BTRFS_SHARED_DATA_REF_KEY)
2419 ret = run_delayed_data_ref(trans, root, node, extent_op,
2420 insert_reserved);
2421 else
2422 BUG();
2423 return ret;
2424 }
2425
2426 static inline struct btrfs_delayed_ref_node *
2427 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2428 {
2429 struct btrfs_delayed_ref_node *ref;
2430
2431 if (list_empty(&head->ref_list))
2432 return NULL;
2433
2434 /*
2435 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2436 * This is to prevent a ref count from going down to zero, which deletes
2437 * the extent item from the extent tree, when there still are references
2438 * to add, which would fail because they would not find the extent item.
2439 */
2440 list_for_each_entry(ref, &head->ref_list, list) {
2441 if (ref->action == BTRFS_ADD_DELAYED_REF)
2442 return ref;
2443 }
2444
2445 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2446 list);
2447 }
2448
2449 /*
2450 * Returns 0 on success or if called with an already aborted transaction.
2451 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2452 */
2453 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2454 struct btrfs_root *root,
2455 unsigned long nr)
2456 {
2457 struct btrfs_delayed_ref_root *delayed_refs;
2458 struct btrfs_delayed_ref_node *ref;
2459 struct btrfs_delayed_ref_head *locked_ref = NULL;
2460 struct btrfs_delayed_extent_op *extent_op;
2461 struct btrfs_fs_info *fs_info = root->fs_info;
2462 ktime_t start = ktime_get();
2463 int ret;
2464 unsigned long count = 0;
2465 unsigned long actual_count = 0;
2466 int must_insert_reserved = 0;
2467
2468 delayed_refs = &trans->transaction->delayed_refs;
2469 while (1) {
2470 if (!locked_ref) {
2471 if (count >= nr)
2472 break;
2473
2474 spin_lock(&delayed_refs->lock);
2475 locked_ref = btrfs_select_ref_head(trans);
2476 if (!locked_ref) {
2477 spin_unlock(&delayed_refs->lock);
2478 break;
2479 }
2480
2481 /* grab the lock that says we are going to process
2482 * all the refs for this head */
2483 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2484 spin_unlock(&delayed_refs->lock);
2485 /*
2486 * we may have dropped the spin lock to get the head
2487 * mutex lock, and that might have given someone else
2488 * time to free the head. If that's true, it has been
2489 * removed from our list and we can move on.
2490 */
2491 if (ret == -EAGAIN) {
2492 locked_ref = NULL;
2493 count++;
2494 continue;
2495 }
2496 }
2497
2498 /*
2499 * We need to try and merge add/drops of the same ref since we
2500 * can run into issues with relocate dropping the implicit ref
2501 * and then it being added back again before the drop can
2502 * finish. If we merged anything we need to re-loop so we can
2503 * get a good ref.
2504 * Or we can get node references of the same type that weren't
2505 * merged when created due to bumps in the tree mod seq, and
2506 * we need to merge them to prevent adding an inline extent
2507 * backref before dropping it (triggering a BUG_ON at
2508 * insert_inline_extent_backref()).
2509 */
2510 spin_lock(&locked_ref->lock);
2511 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2512 locked_ref);
2513
2514 /*
2515 * locked_ref is the head node, so we have to go one
2516 * node back for any delayed ref updates
2517 */
2518 ref = select_delayed_ref(locked_ref);
2519
2520 if (ref && ref->seq &&
2521 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2522 spin_unlock(&locked_ref->lock);
2523 btrfs_delayed_ref_unlock(locked_ref);
2524 spin_lock(&delayed_refs->lock);
2525 locked_ref->processing = 0;
2526 delayed_refs->num_heads_ready++;
2527 spin_unlock(&delayed_refs->lock);
2528 locked_ref = NULL;
2529 cond_resched();
2530 count++;
2531 continue;
2532 }
2533
2534 /*
2535 * record the must insert reserved flag before we
2536 * drop the spin lock.
2537 */
2538 must_insert_reserved = locked_ref->must_insert_reserved;
2539 locked_ref->must_insert_reserved = 0;
2540
2541 extent_op = locked_ref->extent_op;
2542 locked_ref->extent_op = NULL;
2543
2544 if (!ref) {
2545
2546
2547 /* All delayed refs have been processed, Go ahead
2548 * and send the head node to run_one_delayed_ref,
2549 * so that any accounting fixes can happen
2550 */
2551 ref = &locked_ref->node;
2552
2553 if (extent_op && must_insert_reserved) {
2554 btrfs_free_delayed_extent_op(extent_op);
2555 extent_op = NULL;
2556 }
2557
2558 if (extent_op) {
2559 spin_unlock(&locked_ref->lock);
2560 ret = run_delayed_extent_op(trans, root,
2561 ref, extent_op);
2562 btrfs_free_delayed_extent_op(extent_op);
2563
2564 if (ret) {
2565 /*
2566 * Need to reset must_insert_reserved if
2567 * there was an error so the abort stuff
2568 * can cleanup the reserved space
2569 * properly.
2570 */
2571 if (must_insert_reserved)
2572 locked_ref->must_insert_reserved = 1;
2573 locked_ref->processing = 0;
2574 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2575 btrfs_delayed_ref_unlock(locked_ref);
2576 return ret;
2577 }
2578 continue;
2579 }
2580
2581 /*
2582 * Need to drop our head ref lock and re-aqcuire the
2583 * delayed ref lock and then re-check to make sure
2584 * nobody got added.
2585 */
2586 spin_unlock(&locked_ref->lock);
2587 spin_lock(&delayed_refs->lock);
2588 spin_lock(&locked_ref->lock);
2589 if (!list_empty(&locked_ref->ref_list) ||
2590 locked_ref->extent_op) {
2591 spin_unlock(&locked_ref->lock);
2592 spin_unlock(&delayed_refs->lock);
2593 continue;
2594 }
2595 ref->in_tree = 0;
2596 delayed_refs->num_heads--;
2597 rb_erase(&locked_ref->href_node,
2598 &delayed_refs->href_root);
2599 spin_unlock(&delayed_refs->lock);
2600 } else {
2601 actual_count++;
2602 ref->in_tree = 0;
2603 list_del(&ref->list);
2604 }
2605 atomic_dec(&delayed_refs->num_entries);
2606
2607 if (!btrfs_delayed_ref_is_head(ref)) {
2608 /*
2609 * when we play the delayed ref, also correct the
2610 * ref_mod on head
2611 */
2612 switch (ref->action) {
2613 case BTRFS_ADD_DELAYED_REF:
2614 case BTRFS_ADD_DELAYED_EXTENT:
2615 locked_ref->node.ref_mod -= ref->ref_mod;
2616 break;
2617 case BTRFS_DROP_DELAYED_REF:
2618 locked_ref->node.ref_mod += ref->ref_mod;
2619 break;
2620 default:
2621 WARN_ON(1);
2622 }
2623 }
2624 spin_unlock(&locked_ref->lock);
2625
2626 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2627 must_insert_reserved);
2628
2629 btrfs_free_delayed_extent_op(extent_op);
2630 if (ret) {
2631 locked_ref->processing = 0;
2632 btrfs_delayed_ref_unlock(locked_ref);
2633 btrfs_put_delayed_ref(ref);
2634 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2635 return ret;
2636 }
2637
2638 /*
2639 * If this node is a head, that means all the refs in this head
2640 * have been dealt with, and we will pick the next head to deal
2641 * with, so we must unlock the head and drop it from the cluster
2642 * list before we release it.
2643 */
2644 if (btrfs_delayed_ref_is_head(ref)) {
2645 if (locked_ref->is_data &&
2646 locked_ref->total_ref_mod < 0) {
2647 spin_lock(&delayed_refs->lock);
2648 delayed_refs->pending_csums -= ref->num_bytes;
2649 spin_unlock(&delayed_refs->lock);
2650 }
2651 btrfs_delayed_ref_unlock(locked_ref);
2652 locked_ref = NULL;
2653 }
2654 btrfs_put_delayed_ref(ref);
2655 count++;
2656 cond_resched();
2657 }
2658
2659 /*
2660 * We don't want to include ref heads since we can have empty ref heads
2661 * and those will drastically skew our runtime down since we just do
2662 * accounting, no actual extent tree updates.
2663 */
2664 if (actual_count > 0) {
2665 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2666 u64 avg;
2667
2668 /*
2669 * We weigh the current average higher than our current runtime
2670 * to avoid large swings in the average.
2671 */
2672 spin_lock(&delayed_refs->lock);
2673 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2674 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2675 spin_unlock(&delayed_refs->lock);
2676 }
2677 return 0;
2678 }
2679
2680 #ifdef SCRAMBLE_DELAYED_REFS
2681 /*
2682 * Normally delayed refs get processed in ascending bytenr order. This
2683 * correlates in most cases to the order added. To expose dependencies on this
2684 * order, we start to process the tree in the middle instead of the beginning
2685 */
2686 static u64 find_middle(struct rb_root *root)
2687 {
2688 struct rb_node *n = root->rb_node;
2689 struct btrfs_delayed_ref_node *entry;
2690 int alt = 1;
2691 u64 middle;
2692 u64 first = 0, last = 0;
2693
2694 n = rb_first(root);
2695 if (n) {
2696 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2697 first = entry->bytenr;
2698 }
2699 n = rb_last(root);
2700 if (n) {
2701 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2702 last = entry->bytenr;
2703 }
2704 n = root->rb_node;
2705
2706 while (n) {
2707 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2708 WARN_ON(!entry->in_tree);
2709
2710 middle = entry->bytenr;
2711
2712 if (alt)
2713 n = n->rb_left;
2714 else
2715 n = n->rb_right;
2716
2717 alt = 1 - alt;
2718 }
2719 return middle;
2720 }
2721 #endif
2722
2723 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2724 {
2725 u64 num_bytes;
2726
2727 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2728 sizeof(struct btrfs_extent_inline_ref));
2729 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2730 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2731
2732 /*
2733 * We don't ever fill up leaves all the way so multiply by 2 just to be
2734 * closer to what we're really going to want to ouse.
2735 */
2736 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2737 }
2738
2739 /*
2740 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2741 * would require to store the csums for that many bytes.
2742 */
2743 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2744 {
2745 u64 csum_size;
2746 u64 num_csums_per_leaf;
2747 u64 num_csums;
2748
2749 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2750 num_csums_per_leaf = div64_u64(csum_size,
2751 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2752 num_csums = div64_u64(csum_bytes, root->sectorsize);
2753 num_csums += num_csums_per_leaf - 1;
2754 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2755 return num_csums;
2756 }
2757
2758 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2759 struct btrfs_root *root)
2760 {
2761 struct btrfs_block_rsv *global_rsv;
2762 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2763 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2764 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2765 u64 num_bytes, num_dirty_bgs_bytes;
2766 int ret = 0;
2767
2768 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2769 num_heads = heads_to_leaves(root, num_heads);
2770 if (num_heads > 1)
2771 num_bytes += (num_heads - 1) * root->nodesize;
2772 num_bytes <<= 1;
2773 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2774 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2775 num_dirty_bgs);
2776 global_rsv = &root->fs_info->global_block_rsv;
2777
2778 /*
2779 * If we can't allocate any more chunks lets make sure we have _lots_ of
2780 * wiggle room since running delayed refs can create more delayed refs.
2781 */
2782 if (global_rsv->space_info->full) {
2783 num_dirty_bgs_bytes <<= 1;
2784 num_bytes <<= 1;
2785 }
2786
2787 spin_lock(&global_rsv->lock);
2788 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2789 ret = 1;
2790 spin_unlock(&global_rsv->lock);
2791 return ret;
2792 }
2793
2794 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2795 struct btrfs_root *root)
2796 {
2797 struct btrfs_fs_info *fs_info = root->fs_info;
2798 u64 num_entries =
2799 atomic_read(&trans->transaction->delayed_refs.num_entries);
2800 u64 avg_runtime;
2801 u64 val;
2802
2803 smp_mb();
2804 avg_runtime = fs_info->avg_delayed_ref_runtime;
2805 val = num_entries * avg_runtime;
2806 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2807 return 1;
2808 if (val >= NSEC_PER_SEC / 2)
2809 return 2;
2810
2811 return btrfs_check_space_for_delayed_refs(trans, root);
2812 }
2813
2814 struct async_delayed_refs {
2815 struct btrfs_root *root;
2816 int count;
2817 int error;
2818 int sync;
2819 struct completion wait;
2820 struct btrfs_work work;
2821 };
2822
2823 static void delayed_ref_async_start(struct btrfs_work *work)
2824 {
2825 struct async_delayed_refs *async;
2826 struct btrfs_trans_handle *trans;
2827 int ret;
2828
2829 async = container_of(work, struct async_delayed_refs, work);
2830
2831 trans = btrfs_join_transaction(async->root);
2832 if (IS_ERR(trans)) {
2833 async->error = PTR_ERR(trans);
2834 goto done;
2835 }
2836
2837 /*
2838 * trans->sync means that when we call end_transaciton, we won't
2839 * wait on delayed refs
2840 */
2841 trans->sync = true;
2842 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2843 if (ret)
2844 async->error = ret;
2845
2846 ret = btrfs_end_transaction(trans, async->root);
2847 if (ret && !async->error)
2848 async->error = ret;
2849 done:
2850 if (async->sync)
2851 complete(&async->wait);
2852 else
2853 kfree(async);
2854 }
2855
2856 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2857 unsigned long count, int wait)
2858 {
2859 struct async_delayed_refs *async;
2860 int ret;
2861
2862 async = kmalloc(sizeof(*async), GFP_NOFS);
2863 if (!async)
2864 return -ENOMEM;
2865
2866 async->root = root->fs_info->tree_root;
2867 async->count = count;
2868 async->error = 0;
2869 if (wait)
2870 async->sync = 1;
2871 else
2872 async->sync = 0;
2873 init_completion(&async->wait);
2874
2875 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2876 delayed_ref_async_start, NULL, NULL);
2877
2878 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2879
2880 if (wait) {
2881 wait_for_completion(&async->wait);
2882 ret = async->error;
2883 kfree(async);
2884 return ret;
2885 }
2886 return 0;
2887 }
2888
2889 /*
2890 * this starts processing the delayed reference count updates and
2891 * extent insertions we have queued up so far. count can be
2892 * 0, which means to process everything in the tree at the start
2893 * of the run (but not newly added entries), or it can be some target
2894 * number you'd like to process.
2895 *
2896 * Returns 0 on success or if called with an aborted transaction
2897 * Returns <0 on error and aborts the transaction
2898 */
2899 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2900 struct btrfs_root *root, unsigned long count)
2901 {
2902 struct rb_node *node;
2903 struct btrfs_delayed_ref_root *delayed_refs;
2904 struct btrfs_delayed_ref_head *head;
2905 int ret;
2906 int run_all = count == (unsigned long)-1;
2907 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2908
2909 /* We'll clean this up in btrfs_cleanup_transaction */
2910 if (trans->aborted)
2911 return 0;
2912
2913 if (root == root->fs_info->extent_root)
2914 root = root->fs_info->tree_root;
2915
2916 delayed_refs = &trans->transaction->delayed_refs;
2917 if (count == 0)
2918 count = atomic_read(&delayed_refs->num_entries) * 2;
2919
2920 again:
2921 #ifdef SCRAMBLE_DELAYED_REFS
2922 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2923 #endif
2924 trans->can_flush_pending_bgs = false;
2925 ret = __btrfs_run_delayed_refs(trans, root, count);
2926 if (ret < 0) {
2927 btrfs_abort_transaction(trans, root, ret);
2928 return ret;
2929 }
2930
2931 if (run_all) {
2932 if (!list_empty(&trans->new_bgs))
2933 btrfs_create_pending_block_groups(trans, root);
2934
2935 spin_lock(&delayed_refs->lock);
2936 node = rb_first(&delayed_refs->href_root);
2937 if (!node) {
2938 spin_unlock(&delayed_refs->lock);
2939 goto out;
2940 }
2941 count = (unsigned long)-1;
2942
2943 while (node) {
2944 head = rb_entry(node, struct btrfs_delayed_ref_head,
2945 href_node);
2946 if (btrfs_delayed_ref_is_head(&head->node)) {
2947 struct btrfs_delayed_ref_node *ref;
2948
2949 ref = &head->node;
2950 atomic_inc(&ref->refs);
2951
2952 spin_unlock(&delayed_refs->lock);
2953 /*
2954 * Mutex was contended, block until it's
2955 * released and try again
2956 */
2957 mutex_lock(&head->mutex);
2958 mutex_unlock(&head->mutex);
2959
2960 btrfs_put_delayed_ref(ref);
2961 cond_resched();
2962 goto again;
2963 } else {
2964 WARN_ON(1);
2965 }
2966 node = rb_next(node);
2967 }
2968 spin_unlock(&delayed_refs->lock);
2969 cond_resched();
2970 goto again;
2971 }
2972 out:
2973 assert_qgroups_uptodate(trans);
2974 trans->can_flush_pending_bgs = can_flush_pending_bgs;
2975 return 0;
2976 }
2977
2978 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2979 struct btrfs_root *root,
2980 u64 bytenr, u64 num_bytes, u64 flags,
2981 int level, int is_data)
2982 {
2983 struct btrfs_delayed_extent_op *extent_op;
2984 int ret;
2985
2986 extent_op = btrfs_alloc_delayed_extent_op();
2987 if (!extent_op)
2988 return -ENOMEM;
2989
2990 extent_op->flags_to_set = flags;
2991 extent_op->update_flags = 1;
2992 extent_op->update_key = 0;
2993 extent_op->is_data = is_data ? 1 : 0;
2994 extent_op->level = level;
2995
2996 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2997 num_bytes, extent_op);
2998 if (ret)
2999 btrfs_free_delayed_extent_op(extent_op);
3000 return ret;
3001 }
3002
3003 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3004 struct btrfs_root *root,
3005 struct btrfs_path *path,
3006 u64 objectid, u64 offset, u64 bytenr)
3007 {
3008 struct btrfs_delayed_ref_head *head;
3009 struct btrfs_delayed_ref_node *ref;
3010 struct btrfs_delayed_data_ref *data_ref;
3011 struct btrfs_delayed_ref_root *delayed_refs;
3012 int ret = 0;
3013
3014 delayed_refs = &trans->transaction->delayed_refs;
3015 spin_lock(&delayed_refs->lock);
3016 head = btrfs_find_delayed_ref_head(trans, bytenr);
3017 if (!head) {
3018 spin_unlock(&delayed_refs->lock);
3019 return 0;
3020 }
3021
3022 if (!mutex_trylock(&head->mutex)) {
3023 atomic_inc(&head->node.refs);
3024 spin_unlock(&delayed_refs->lock);
3025
3026 btrfs_release_path(path);
3027
3028 /*
3029 * Mutex was contended, block until it's released and let
3030 * caller try again
3031 */
3032 mutex_lock(&head->mutex);
3033 mutex_unlock(&head->mutex);
3034 btrfs_put_delayed_ref(&head->node);
3035 return -EAGAIN;
3036 }
3037 spin_unlock(&delayed_refs->lock);
3038
3039 spin_lock(&head->lock);
3040 list_for_each_entry(ref, &head->ref_list, list) {
3041 /* If it's a shared ref we know a cross reference exists */
3042 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3043 ret = 1;
3044 break;
3045 }
3046
3047 data_ref = btrfs_delayed_node_to_data_ref(ref);
3048
3049 /*
3050 * If our ref doesn't match the one we're currently looking at
3051 * then we have a cross reference.
3052 */
3053 if (data_ref->root != root->root_key.objectid ||
3054 data_ref->objectid != objectid ||
3055 data_ref->offset != offset) {
3056 ret = 1;
3057 break;
3058 }
3059 }
3060 spin_unlock(&head->lock);
3061 mutex_unlock(&head->mutex);
3062 return ret;
3063 }
3064
3065 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3066 struct btrfs_root *root,
3067 struct btrfs_path *path,
3068 u64 objectid, u64 offset, u64 bytenr)
3069 {
3070 struct btrfs_root *extent_root = root->fs_info->extent_root;
3071 struct extent_buffer *leaf;
3072 struct btrfs_extent_data_ref *ref;
3073 struct btrfs_extent_inline_ref *iref;
3074 struct btrfs_extent_item *ei;
3075 struct btrfs_key key;
3076 u32 item_size;
3077 int ret;
3078
3079 key.objectid = bytenr;
3080 key.offset = (u64)-1;
3081 key.type = BTRFS_EXTENT_ITEM_KEY;
3082
3083 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3084 if (ret < 0)
3085 goto out;
3086 BUG_ON(ret == 0); /* Corruption */
3087
3088 ret = -ENOENT;
3089 if (path->slots[0] == 0)
3090 goto out;
3091
3092 path->slots[0]--;
3093 leaf = path->nodes[0];
3094 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3095
3096 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3097 goto out;
3098
3099 ret = 1;
3100 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3101 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3102 if (item_size < sizeof(*ei)) {
3103 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3104 goto out;
3105 }
3106 #endif
3107 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3108
3109 if (item_size != sizeof(*ei) +
3110 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3111 goto out;
3112
3113 if (btrfs_extent_generation(leaf, ei) <=
3114 btrfs_root_last_snapshot(&root->root_item))
3115 goto out;
3116
3117 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3118 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3119 BTRFS_EXTENT_DATA_REF_KEY)
3120 goto out;
3121
3122 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3123 if (btrfs_extent_refs(leaf, ei) !=
3124 btrfs_extent_data_ref_count(leaf, ref) ||
3125 btrfs_extent_data_ref_root(leaf, ref) !=
3126 root->root_key.objectid ||
3127 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3128 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3129 goto out;
3130
3131 ret = 0;
3132 out:
3133 return ret;
3134 }
3135
3136 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3137 struct btrfs_root *root,
3138 u64 objectid, u64 offset, u64 bytenr)
3139 {
3140 struct btrfs_path *path;
3141 int ret;
3142 int ret2;
3143
3144 path = btrfs_alloc_path();
3145 if (!path)
3146 return -ENOENT;
3147
3148 do {
3149 ret = check_committed_ref(trans, root, path, objectid,
3150 offset, bytenr);
3151 if (ret && ret != -ENOENT)
3152 goto out;
3153
3154 ret2 = check_delayed_ref(trans, root, path, objectid,
3155 offset, bytenr);
3156 } while (ret2 == -EAGAIN);
3157
3158 if (ret2 && ret2 != -ENOENT) {
3159 ret = ret2;
3160 goto out;
3161 }
3162
3163 if (ret != -ENOENT || ret2 != -ENOENT)
3164 ret = 0;
3165 out:
3166 btrfs_free_path(path);
3167 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3168 WARN_ON(ret > 0);
3169 return ret;
3170 }
3171
3172 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3173 struct btrfs_root *root,
3174 struct extent_buffer *buf,
3175 int full_backref, int inc)
3176 {
3177 u64 bytenr;
3178 u64 num_bytes;
3179 u64 parent;
3180 u64 ref_root;
3181 u32 nritems;
3182 struct btrfs_key key;
3183 struct btrfs_file_extent_item *fi;
3184 int i;
3185 int level;
3186 int ret = 0;
3187 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3188 u64, u64, u64, u64, u64, u64);
3189
3190
3191 if (btrfs_test_is_dummy_root(root))
3192 return 0;
3193
3194 ref_root = btrfs_header_owner(buf);
3195 nritems = btrfs_header_nritems(buf);
3196 level = btrfs_header_level(buf);
3197
3198 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3199 return 0;
3200
3201 if (inc)
3202 process_func = btrfs_inc_extent_ref;
3203 else
3204 process_func = btrfs_free_extent;
3205
3206 if (full_backref)
3207 parent = buf->start;
3208 else
3209 parent = 0;
3210
3211 for (i = 0; i < nritems; i++) {
3212 if (level == 0) {
3213 btrfs_item_key_to_cpu(buf, &key, i);
3214 if (key.type != BTRFS_EXTENT_DATA_KEY)
3215 continue;
3216 fi = btrfs_item_ptr(buf, i,
3217 struct btrfs_file_extent_item);
3218 if (btrfs_file_extent_type(buf, fi) ==
3219 BTRFS_FILE_EXTENT_INLINE)
3220 continue;
3221 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3222 if (bytenr == 0)
3223 continue;
3224
3225 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3226 key.offset -= btrfs_file_extent_offset(buf, fi);
3227 ret = process_func(trans, root, bytenr, num_bytes,
3228 parent, ref_root, key.objectid,
3229 key.offset);
3230 if (ret)
3231 goto fail;
3232 } else {
3233 bytenr = btrfs_node_blockptr(buf, i);
3234 num_bytes = root->nodesize;
3235 ret = process_func(trans, root, bytenr, num_bytes,
3236 parent, ref_root, level - 1, 0);
3237 if (ret)
3238 goto fail;
3239 }
3240 }
3241 return 0;
3242 fail:
3243 return ret;
3244 }
3245
3246 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3247 struct extent_buffer *buf, int full_backref)
3248 {
3249 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3250 }
3251
3252 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3253 struct extent_buffer *buf, int full_backref)
3254 {
3255 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3256 }
3257
3258 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3259 struct btrfs_root *root,
3260 struct btrfs_path *path,
3261 struct btrfs_block_group_cache *cache)
3262 {
3263 int ret;
3264 struct btrfs_root *extent_root = root->fs_info->extent_root;
3265 unsigned long bi;
3266 struct extent_buffer *leaf;
3267
3268 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3269 if (ret) {
3270 if (ret > 0)
3271 ret = -ENOENT;
3272 goto fail;
3273 }
3274
3275 leaf = path->nodes[0];
3276 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3277 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3278 btrfs_mark_buffer_dirty(leaf);
3279 fail:
3280 btrfs_release_path(path);
3281 return ret;
3282
3283 }
3284
3285 static struct btrfs_block_group_cache *
3286 next_block_group(struct btrfs_root *root,
3287 struct btrfs_block_group_cache *cache)
3288 {
3289 struct rb_node *node;
3290
3291 spin_lock(&root->fs_info->block_group_cache_lock);
3292
3293 /* If our block group was removed, we need a full search. */
3294 if (RB_EMPTY_NODE(&cache->cache_node)) {
3295 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3296
3297 spin_unlock(&root->fs_info->block_group_cache_lock);
3298 btrfs_put_block_group(cache);
3299 cache = btrfs_lookup_first_block_group(root->fs_info,
3300 next_bytenr);
3301 return cache;
3302 }
3303 node = rb_next(&cache->cache_node);
3304 btrfs_put_block_group(cache);
3305 if (node) {
3306 cache = rb_entry(node, struct btrfs_block_group_cache,
3307 cache_node);
3308 btrfs_get_block_group(cache);
3309 } else
3310 cache = NULL;
3311 spin_unlock(&root->fs_info->block_group_cache_lock);
3312 return cache;
3313 }
3314
3315 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3316 struct btrfs_trans_handle *trans,
3317 struct btrfs_path *path)
3318 {
3319 struct btrfs_root *root = block_group->fs_info->tree_root;
3320 struct inode *inode = NULL;
3321 u64 alloc_hint = 0;
3322 int dcs = BTRFS_DC_ERROR;
3323 u64 num_pages = 0;
3324 int retries = 0;
3325 int ret = 0;
3326
3327 /*
3328 * If this block group is smaller than 100 megs don't bother caching the
3329 * block group.
3330 */
3331 if (block_group->key.offset < (100 * 1024 * 1024)) {
3332 spin_lock(&block_group->lock);
3333 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3334 spin_unlock(&block_group->lock);
3335 return 0;
3336 }
3337
3338 if (trans->aborted)
3339 return 0;
3340 again:
3341 inode = lookup_free_space_inode(root, block_group, path);
3342 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3343 ret = PTR_ERR(inode);
3344 btrfs_release_path(path);
3345 goto out;
3346 }
3347
3348 if (IS_ERR(inode)) {
3349 BUG_ON(retries);
3350 retries++;
3351
3352 if (block_group->ro)
3353 goto out_free;
3354
3355 ret = create_free_space_inode(root, trans, block_group, path);
3356 if (ret)
3357 goto out_free;
3358 goto again;
3359 }
3360
3361 /* We've already setup this transaction, go ahead and exit */
3362 if (block_group->cache_generation == trans->transid &&
3363 i_size_read(inode)) {
3364 dcs = BTRFS_DC_SETUP;
3365 goto out_put;
3366 }
3367
3368 /*
3369 * We want to set the generation to 0, that way if anything goes wrong
3370 * from here on out we know not to trust this cache when we load up next
3371 * time.
3372 */
3373 BTRFS_I(inode)->generation = 0;
3374 ret = btrfs_update_inode(trans, root, inode);
3375 if (ret) {
3376 /*
3377 * So theoretically we could recover from this, simply set the
3378 * super cache generation to 0 so we know to invalidate the
3379 * cache, but then we'd have to keep track of the block groups
3380 * that fail this way so we know we _have_ to reset this cache
3381 * before the next commit or risk reading stale cache. So to
3382 * limit our exposure to horrible edge cases lets just abort the
3383 * transaction, this only happens in really bad situations
3384 * anyway.
3385 */
3386 btrfs_abort_transaction(trans, root, ret);
3387 goto out_put;
3388 }
3389 WARN_ON(ret);
3390
3391 if (i_size_read(inode) > 0) {
3392 ret = btrfs_check_trunc_cache_free_space(root,
3393 &root->fs_info->global_block_rsv);
3394 if (ret)
3395 goto out_put;
3396
3397 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3398 if (ret)
3399 goto out_put;
3400 }
3401
3402 spin_lock(&block_group->lock);
3403 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3404 !btrfs_test_opt(root, SPACE_CACHE)) {
3405 /*
3406 * don't bother trying to write stuff out _if_
3407 * a) we're not cached,
3408 * b) we're with nospace_cache mount option.
3409 */
3410 dcs = BTRFS_DC_WRITTEN;
3411 spin_unlock(&block_group->lock);
3412 goto out_put;
3413 }
3414 spin_unlock(&block_group->lock);
3415
3416 /*
3417 * We hit an ENOSPC when setting up the cache in this transaction, just
3418 * skip doing the setup, we've already cleared the cache so we're safe.
3419 */
3420 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3421 ret = -ENOSPC;
3422 goto out_put;
3423 }
3424
3425 /*
3426 * Try to preallocate enough space based on how big the block group is.
3427 * Keep in mind this has to include any pinned space which could end up
3428 * taking up quite a bit since it's not folded into the other space
3429 * cache.
3430 */
3431 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3432 if (!num_pages)
3433 num_pages = 1;
3434
3435 num_pages *= 16;
3436 num_pages *= PAGE_CACHE_SIZE;
3437
3438 ret = btrfs_check_data_free_space(inode, 0, num_pages);
3439 if (ret)
3440 goto out_put;
3441
3442 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3443 num_pages, num_pages,
3444 &alloc_hint);
3445 /*
3446 * Our cache requires contiguous chunks so that we don't modify a bunch
3447 * of metadata or split extents when writing the cache out, which means
3448 * we can enospc if we are heavily fragmented in addition to just normal
3449 * out of space conditions. So if we hit this just skip setting up any
3450 * other block groups for this transaction, maybe we'll unpin enough
3451 * space the next time around.
3452 */
3453 if (!ret)
3454 dcs = BTRFS_DC_SETUP;
3455 else if (ret == -ENOSPC)
3456 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3457 btrfs_free_reserved_data_space(inode, 0, num_pages);
3458
3459 out_put:
3460 iput(inode);
3461 out_free:
3462 btrfs_release_path(path);
3463 out:
3464 spin_lock(&block_group->lock);
3465 if (!ret && dcs == BTRFS_DC_SETUP)
3466 block_group->cache_generation = trans->transid;
3467 block_group->disk_cache_state = dcs;
3468 spin_unlock(&block_group->lock);
3469
3470 return ret;
3471 }
3472
3473 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3474 struct btrfs_root *root)
3475 {
3476 struct btrfs_block_group_cache *cache, *tmp;
3477 struct btrfs_transaction *cur_trans = trans->transaction;
3478 struct btrfs_path *path;
3479
3480 if (list_empty(&cur_trans->dirty_bgs) ||
3481 !btrfs_test_opt(root, SPACE_CACHE))
3482 return 0;
3483
3484 path = btrfs_alloc_path();
3485 if (!path)
3486 return -ENOMEM;
3487
3488 /* Could add new block groups, use _safe just in case */
3489 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3490 dirty_list) {
3491 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3492 cache_save_setup(cache, trans, path);
3493 }
3494
3495 btrfs_free_path(path);
3496 return 0;
3497 }
3498
3499 /*
3500 * transaction commit does final block group cache writeback during a
3501 * critical section where nothing is allowed to change the FS. This is
3502 * required in order for the cache to actually match the block group,
3503 * but can introduce a lot of latency into the commit.
3504 *
3505 * So, btrfs_start_dirty_block_groups is here to kick off block group
3506 * cache IO. There's a chance we'll have to redo some of it if the
3507 * block group changes again during the commit, but it greatly reduces
3508 * the commit latency by getting rid of the easy block groups while
3509 * we're still allowing others to join the commit.
3510 */
3511 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3512 struct btrfs_root *root)
3513 {
3514 struct btrfs_block_group_cache *cache;
3515 struct btrfs_transaction *cur_trans = trans->transaction;
3516 int ret = 0;
3517 int should_put;
3518 struct btrfs_path *path = NULL;
3519 LIST_HEAD(dirty);
3520 struct list_head *io = &cur_trans->io_bgs;
3521 int num_started = 0;
3522 int loops = 0;
3523
3524 spin_lock(&cur_trans->dirty_bgs_lock);
3525 if (list_empty(&cur_trans->dirty_bgs)) {
3526 spin_unlock(&cur_trans->dirty_bgs_lock);
3527 return 0;
3528 }
3529 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3530 spin_unlock(&cur_trans->dirty_bgs_lock);
3531
3532 again:
3533 /*
3534 * make sure all the block groups on our dirty list actually
3535 * exist
3536 */
3537 btrfs_create_pending_block_groups(trans, root);
3538
3539 if (!path) {
3540 path = btrfs_alloc_path();
3541 if (!path)
3542 return -ENOMEM;
3543 }
3544
3545 /*
3546 * cache_write_mutex is here only to save us from balance or automatic
3547 * removal of empty block groups deleting this block group while we are
3548 * writing out the cache
3549 */
3550 mutex_lock(&trans->transaction->cache_write_mutex);
3551 while (!list_empty(&dirty)) {
3552 cache = list_first_entry(&dirty,
3553 struct btrfs_block_group_cache,
3554 dirty_list);
3555 /*
3556 * this can happen if something re-dirties a block
3557 * group that is already under IO. Just wait for it to
3558 * finish and then do it all again
3559 */
3560 if (!list_empty(&cache->io_list)) {
3561 list_del_init(&cache->io_list);
3562 btrfs_wait_cache_io(root, trans, cache,
3563 &cache->io_ctl, path,
3564 cache->key.objectid);
3565 btrfs_put_block_group(cache);
3566 }
3567
3568
3569 /*
3570 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3571 * if it should update the cache_state. Don't delete
3572 * until after we wait.
3573 *
3574 * Since we're not running in the commit critical section
3575 * we need the dirty_bgs_lock to protect from update_block_group
3576 */
3577 spin_lock(&cur_trans->dirty_bgs_lock);
3578 list_del_init(&cache->dirty_list);
3579 spin_unlock(&cur_trans->dirty_bgs_lock);
3580
3581 should_put = 1;
3582
3583 cache_save_setup(cache, trans, path);
3584
3585 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3586 cache->io_ctl.inode = NULL;
3587 ret = btrfs_write_out_cache(root, trans, cache, path);
3588 if (ret == 0 && cache->io_ctl.inode) {
3589 num_started++;
3590 should_put = 0;
3591
3592 /*
3593 * the cache_write_mutex is protecting
3594 * the io_list
3595 */
3596 list_add_tail(&cache->io_list, io);
3597 } else {
3598 /*
3599 * if we failed to write the cache, the
3600 * generation will be bad and life goes on
3601 */
3602 ret = 0;
3603 }
3604 }
3605 if (!ret) {
3606 ret = write_one_cache_group(trans, root, path, cache);
3607 /*
3608 * Our block group might still be attached to the list
3609 * of new block groups in the transaction handle of some
3610 * other task (struct btrfs_trans_handle->new_bgs). This
3611 * means its block group item isn't yet in the extent
3612 * tree. If this happens ignore the error, as we will
3613 * try again later in the critical section of the
3614 * transaction commit.
3615 */
3616 if (ret == -ENOENT) {
3617 ret = 0;
3618 spin_lock(&cur_trans->dirty_bgs_lock);
3619 if (list_empty(&cache->dirty_list)) {
3620 list_add_tail(&cache->dirty_list,
3621 &cur_trans->dirty_bgs);
3622 btrfs_get_block_group(cache);
3623 }
3624 spin_unlock(&cur_trans->dirty_bgs_lock);
3625 } else if (ret) {
3626 btrfs_abort_transaction(trans, root, ret);
3627 }
3628 }
3629
3630 /* if its not on the io list, we need to put the block group */
3631 if (should_put)
3632 btrfs_put_block_group(cache);
3633
3634 if (ret)
3635 break;
3636
3637 /*
3638 * Avoid blocking other tasks for too long. It might even save
3639 * us from writing caches for block groups that are going to be
3640 * removed.
3641 */
3642 mutex_unlock(&trans->transaction->cache_write_mutex);
3643 mutex_lock(&trans->transaction->cache_write_mutex);
3644 }
3645 mutex_unlock(&trans->transaction->cache_write_mutex);
3646
3647 /*
3648 * go through delayed refs for all the stuff we've just kicked off
3649 * and then loop back (just once)
3650 */
3651 ret = btrfs_run_delayed_refs(trans, root, 0);
3652 if (!ret && loops == 0) {
3653 loops++;
3654 spin_lock(&cur_trans->dirty_bgs_lock);
3655 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3656 /*
3657 * dirty_bgs_lock protects us from concurrent block group
3658 * deletes too (not just cache_write_mutex).
3659 */
3660 if (!list_empty(&dirty)) {
3661 spin_unlock(&cur_trans->dirty_bgs_lock);
3662 goto again;
3663 }
3664 spin_unlock(&cur_trans->dirty_bgs_lock);
3665 }
3666
3667 btrfs_free_path(path);
3668 return ret;
3669 }
3670
3671 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3672 struct btrfs_root *root)
3673 {
3674 struct btrfs_block_group_cache *cache;
3675 struct btrfs_transaction *cur_trans = trans->transaction;
3676 int ret = 0;
3677 int should_put;
3678 struct btrfs_path *path;
3679 struct list_head *io = &cur_trans->io_bgs;
3680 int num_started = 0;
3681
3682 path = btrfs_alloc_path();
3683 if (!path)
3684 return -ENOMEM;
3685
3686 /*
3687 * Even though we are in the critical section of the transaction commit,
3688 * we can still have concurrent tasks adding elements to this
3689 * transaction's list of dirty block groups. These tasks correspond to
3690 * endio free space workers started when writeback finishes for a
3691 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3692 * allocate new block groups as a result of COWing nodes of the root
3693 * tree when updating the free space inode. The writeback for the space
3694 * caches is triggered by an earlier call to
3695 * btrfs_start_dirty_block_groups() and iterations of the following
3696 * loop.
3697 * Also we want to do the cache_save_setup first and then run the
3698 * delayed refs to make sure we have the best chance at doing this all
3699 * in one shot.
3700 */
3701 spin_lock(&cur_trans->dirty_bgs_lock);
3702 while (!list_empty(&cur_trans->dirty_bgs)) {
3703 cache = list_first_entry(&cur_trans->dirty_bgs,
3704 struct btrfs_block_group_cache,
3705 dirty_list);
3706
3707 /*
3708 * this can happen if cache_save_setup re-dirties a block
3709 * group that is already under IO. Just wait for it to
3710 * finish and then do it all again
3711 */
3712 if (!list_empty(&cache->io_list)) {
3713 spin_unlock(&cur_trans->dirty_bgs_lock);
3714 list_del_init(&cache->io_list);
3715 btrfs_wait_cache_io(root, trans, cache,
3716 &cache->io_ctl, path,
3717 cache->key.objectid);
3718 btrfs_put_block_group(cache);
3719 spin_lock(&cur_trans->dirty_bgs_lock);
3720 }
3721
3722 /*
3723 * don't remove from the dirty list until after we've waited
3724 * on any pending IO
3725 */
3726 list_del_init(&cache->dirty_list);
3727 spin_unlock(&cur_trans->dirty_bgs_lock);
3728 should_put = 1;
3729
3730 cache_save_setup(cache, trans, path);
3731
3732 if (!ret)
3733 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3734
3735 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3736 cache->io_ctl.inode = NULL;
3737 ret = btrfs_write_out_cache(root, trans, cache, path);
3738 if (ret == 0 && cache->io_ctl.inode) {
3739 num_started++;
3740 should_put = 0;
3741 list_add_tail(&cache->io_list, io);
3742 } else {
3743 /*
3744 * if we failed to write the cache, the
3745 * generation will be bad and life goes on
3746 */
3747 ret = 0;
3748 }
3749 }
3750 if (!ret) {
3751 ret = write_one_cache_group(trans, root, path, cache);
3752 if (ret)
3753 btrfs_abort_transaction(trans, root, ret);
3754 }
3755
3756 /* if its not on the io list, we need to put the block group */
3757 if (should_put)
3758 btrfs_put_block_group(cache);
3759 spin_lock(&cur_trans->dirty_bgs_lock);
3760 }
3761 spin_unlock(&cur_trans->dirty_bgs_lock);
3762
3763 while (!list_empty(io)) {
3764 cache = list_first_entry(io, struct btrfs_block_group_cache,
3765 io_list);
3766 list_del_init(&cache->io_list);
3767 btrfs_wait_cache_io(root, trans, cache,
3768 &cache->io_ctl, path, cache->key.objectid);
3769 btrfs_put_block_group(cache);
3770 }
3771
3772 btrfs_free_path(path);
3773 return ret;
3774 }
3775
3776 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3777 {
3778 struct btrfs_block_group_cache *block_group;
3779 int readonly = 0;
3780
3781 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3782 if (!block_group || block_group->ro)
3783 readonly = 1;
3784 if (block_group)
3785 btrfs_put_block_group(block_group);
3786 return readonly;
3787 }
3788
3789 static const char *alloc_name(u64 flags)
3790 {
3791 switch (flags) {
3792 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3793 return "mixed";
3794 case BTRFS_BLOCK_GROUP_METADATA:
3795 return "metadata";
3796 case BTRFS_BLOCK_GROUP_DATA:
3797 return "data";
3798 case BTRFS_BLOCK_GROUP_SYSTEM:
3799 return "system";
3800 default:
3801 WARN_ON(1);
3802 return "invalid-combination";
3803 };
3804 }
3805
3806 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3807 u64 total_bytes, u64 bytes_used,
3808 struct btrfs_space_info **space_info)
3809 {
3810 struct btrfs_space_info *found;
3811 int i;
3812 int factor;
3813 int ret;
3814
3815 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3816 BTRFS_BLOCK_GROUP_RAID10))
3817 factor = 2;
3818 else
3819 factor = 1;
3820
3821 found = __find_space_info(info, flags);
3822 if (found) {
3823 spin_lock(&found->lock);
3824 found->total_bytes += total_bytes;
3825 found->disk_total += total_bytes * factor;
3826 found->bytes_used += bytes_used;
3827 found->disk_used += bytes_used * factor;
3828 if (total_bytes > 0)
3829 found->full = 0;
3830 spin_unlock(&found->lock);
3831 *space_info = found;
3832 return 0;
3833 }
3834 found = kzalloc(sizeof(*found), GFP_NOFS);
3835 if (!found)
3836 return -ENOMEM;
3837
3838 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3839 if (ret) {
3840 kfree(found);
3841 return ret;
3842 }
3843
3844 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3845 INIT_LIST_HEAD(&found->block_groups[i]);
3846 init_rwsem(&found->groups_sem);
3847 spin_lock_init(&found->lock);
3848 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3849 found->total_bytes = total_bytes;
3850 found->disk_total = total_bytes * factor;
3851 found->bytes_used = bytes_used;
3852 found->disk_used = bytes_used * factor;
3853 found->bytes_pinned = 0;
3854 found->bytes_reserved = 0;
3855 found->bytes_readonly = 0;
3856 found->bytes_may_use = 0;
3857 found->full = 0;
3858 found->max_extent_size = 0;
3859 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3860 found->chunk_alloc = 0;
3861 found->flush = 0;
3862 init_waitqueue_head(&found->wait);
3863 INIT_LIST_HEAD(&found->ro_bgs);
3864
3865 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3866 info->space_info_kobj, "%s",
3867 alloc_name(found->flags));
3868 if (ret) {
3869 kfree(found);
3870 return ret;
3871 }
3872
3873 *space_info = found;
3874 list_add_rcu(&found->list, &info->space_info);
3875 if (flags & BTRFS_BLOCK_GROUP_DATA)
3876 info->data_sinfo = found;
3877
3878 return ret;
3879 }
3880
3881 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3882 {
3883 u64 extra_flags = chunk_to_extended(flags) &
3884 BTRFS_EXTENDED_PROFILE_MASK;
3885
3886 write_seqlock(&fs_info->profiles_lock);
3887 if (flags & BTRFS_BLOCK_GROUP_DATA)
3888 fs_info->avail_data_alloc_bits |= extra_flags;
3889 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3890 fs_info->avail_metadata_alloc_bits |= extra_flags;
3891 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3892 fs_info->avail_system_alloc_bits |= extra_flags;
3893 write_sequnlock(&fs_info->profiles_lock);
3894 }
3895
3896 /*
3897 * returns target flags in extended format or 0 if restripe for this
3898 * chunk_type is not in progress
3899 *
3900 * should be called with either volume_mutex or balance_lock held
3901 */
3902 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3903 {
3904 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3905 u64 target = 0;
3906
3907 if (!bctl)
3908 return 0;
3909
3910 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3911 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3912 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3913 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3914 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3915 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3916 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3917 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3918 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3919 }
3920
3921 return target;
3922 }
3923
3924 /*
3925 * @flags: available profiles in extended format (see ctree.h)
3926 *
3927 * Returns reduced profile in chunk format. If profile changing is in
3928 * progress (either running or paused) picks the target profile (if it's
3929 * already available), otherwise falls back to plain reducing.
3930 */
3931 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3932 {
3933 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3934 u64 target;
3935 u64 raid_type;
3936 u64 allowed = 0;
3937
3938 /*
3939 * see if restripe for this chunk_type is in progress, if so
3940 * try to reduce to the target profile
3941 */
3942 spin_lock(&root->fs_info->balance_lock);
3943 target = get_restripe_target(root->fs_info, flags);
3944 if (target) {
3945 /* pick target profile only if it's already available */
3946 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3947 spin_unlock(&root->fs_info->balance_lock);
3948 return extended_to_chunk(target);
3949 }
3950 }
3951 spin_unlock(&root->fs_info->balance_lock);
3952
3953 /* First, mask out the RAID levels which aren't possible */
3954 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3955 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3956 allowed |= btrfs_raid_group[raid_type];
3957 }
3958 allowed &= flags;
3959
3960 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3961 allowed = BTRFS_BLOCK_GROUP_RAID6;
3962 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
3963 allowed = BTRFS_BLOCK_GROUP_RAID5;
3964 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
3965 allowed = BTRFS_BLOCK_GROUP_RAID10;
3966 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
3967 allowed = BTRFS_BLOCK_GROUP_RAID1;
3968 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
3969 allowed = BTRFS_BLOCK_GROUP_RAID0;
3970
3971 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
3972
3973 return extended_to_chunk(flags | allowed);
3974 }
3975
3976 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3977 {
3978 unsigned seq;
3979 u64 flags;
3980
3981 do {
3982 flags = orig_flags;
3983 seq = read_seqbegin(&root->fs_info->profiles_lock);
3984
3985 if (flags & BTRFS_BLOCK_GROUP_DATA)
3986 flags |= root->fs_info->avail_data_alloc_bits;
3987 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3988 flags |= root->fs_info->avail_system_alloc_bits;
3989 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3990 flags |= root->fs_info->avail_metadata_alloc_bits;
3991 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3992
3993 return btrfs_reduce_alloc_profile(root, flags);
3994 }
3995
3996 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3997 {
3998 u64 flags;
3999 u64 ret;
4000
4001 if (data)
4002 flags = BTRFS_BLOCK_GROUP_DATA;
4003 else if (root == root->fs_info->chunk_root)
4004 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4005 else
4006 flags = BTRFS_BLOCK_GROUP_METADATA;
4007
4008 ret = get_alloc_profile(root, flags);
4009 return ret;
4010 }
4011
4012 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4013 {
4014 struct btrfs_space_info *data_sinfo;
4015 struct btrfs_root *root = BTRFS_I(inode)->root;
4016 struct btrfs_fs_info *fs_info = root->fs_info;
4017 u64 used;
4018 int ret = 0;
4019 int need_commit = 2;
4020 int have_pinned_space;
4021
4022 /* make sure bytes are sectorsize aligned */
4023 bytes = ALIGN(bytes, root->sectorsize);
4024
4025 if (btrfs_is_free_space_inode(inode)) {
4026 need_commit = 0;
4027 ASSERT(current->journal_info);
4028 }
4029
4030 data_sinfo = fs_info->data_sinfo;
4031 if (!data_sinfo)
4032 goto alloc;
4033
4034 again:
4035 /* make sure we have enough space to handle the data first */
4036 spin_lock(&data_sinfo->lock);
4037 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4038 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4039 data_sinfo->bytes_may_use;
4040
4041 if (used + bytes > data_sinfo->total_bytes) {
4042 struct btrfs_trans_handle *trans;
4043
4044 /*
4045 * if we don't have enough free bytes in this space then we need
4046 * to alloc a new chunk.
4047 */
4048 if (!data_sinfo->full) {
4049 u64 alloc_target;
4050
4051 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4052 spin_unlock(&data_sinfo->lock);
4053 alloc:
4054 alloc_target = btrfs_get_alloc_profile(root, 1);
4055 /*
4056 * It is ugly that we don't call nolock join
4057 * transaction for the free space inode case here.
4058 * But it is safe because we only do the data space
4059 * reservation for the free space cache in the
4060 * transaction context, the common join transaction
4061 * just increase the counter of the current transaction
4062 * handler, doesn't try to acquire the trans_lock of
4063 * the fs.
4064 */
4065 trans = btrfs_join_transaction(root);
4066 if (IS_ERR(trans))
4067 return PTR_ERR(trans);
4068
4069 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4070 alloc_target,
4071 CHUNK_ALLOC_NO_FORCE);
4072 btrfs_end_transaction(trans, root);
4073 if (ret < 0) {
4074 if (ret != -ENOSPC)
4075 return ret;
4076 else {
4077 have_pinned_space = 1;
4078 goto commit_trans;
4079 }
4080 }
4081
4082 if (!data_sinfo)
4083 data_sinfo = fs_info->data_sinfo;
4084
4085 goto again;
4086 }
4087
4088 /*
4089 * If we don't have enough pinned space to deal with this
4090 * allocation, and no removed chunk in current transaction,
4091 * don't bother committing the transaction.
4092 */
4093 have_pinned_space = percpu_counter_compare(
4094 &data_sinfo->total_bytes_pinned,
4095 used + bytes - data_sinfo->total_bytes);
4096 spin_unlock(&data_sinfo->lock);
4097
4098 /* commit the current transaction and try again */
4099 commit_trans:
4100 if (need_commit &&
4101 !atomic_read(&root->fs_info->open_ioctl_trans)) {
4102 need_commit--;
4103
4104 if (need_commit > 0)
4105 btrfs_wait_ordered_roots(fs_info, -1);
4106
4107 trans = btrfs_join_transaction(root);
4108 if (IS_ERR(trans))
4109 return PTR_ERR(trans);
4110 if (have_pinned_space >= 0 ||
4111 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4112 &trans->transaction->flags) ||
4113 need_commit > 0) {
4114 ret = btrfs_commit_transaction(trans, root);
4115 if (ret)
4116 return ret;
4117 /*
4118 * make sure that all running delayed iput are
4119 * done
4120 */
4121 down_write(&root->fs_info->delayed_iput_sem);
4122 up_write(&root->fs_info->delayed_iput_sem);
4123 goto again;
4124 } else {
4125 btrfs_end_transaction(trans, root);
4126 }
4127 }
4128
4129 trace_btrfs_space_reservation(root->fs_info,
4130 "space_info:enospc",
4131 data_sinfo->flags, bytes, 1);
4132 return -ENOSPC;
4133 }
4134 data_sinfo->bytes_may_use += bytes;
4135 trace_btrfs_space_reservation(root->fs_info, "space_info",
4136 data_sinfo->flags, bytes, 1);
4137 spin_unlock(&data_sinfo->lock);
4138
4139 return ret;
4140 }
4141
4142 /*
4143 * New check_data_free_space() with ability for precious data reservation
4144 * Will replace old btrfs_check_data_free_space(), but for patch split,
4145 * add a new function first and then replace it.
4146 */
4147 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4148 {
4149 struct btrfs_root *root = BTRFS_I(inode)->root;
4150 int ret;
4151
4152 /* align the range */
4153 len = round_up(start + len, root->sectorsize) -
4154 round_down(start, root->sectorsize);
4155 start = round_down(start, root->sectorsize);
4156
4157 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4158 if (ret < 0)
4159 return ret;
4160
4161 /*
4162 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4163 *
4164 * TODO: Find a good method to avoid reserve data space for NOCOW
4165 * range, but don't impact performance on quota disable case.
4166 */
4167 ret = btrfs_qgroup_reserve_data(inode, start, len);
4168 return ret;
4169 }
4170
4171 /*
4172 * Called if we need to clear a data reservation for this inode
4173 * Normally in a error case.
4174 *
4175 * This one will *NOT* use accurate qgroup reserved space API, just for case
4176 * which we can't sleep and is sure it won't affect qgroup reserved space.
4177 * Like clear_bit_hook().
4178 */
4179 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4180 u64 len)
4181 {
4182 struct btrfs_root *root = BTRFS_I(inode)->root;
4183 struct btrfs_space_info *data_sinfo;
4184
4185 /* Make sure the range is aligned to sectorsize */
4186 len = round_up(start + len, root->sectorsize) -
4187 round_down(start, root->sectorsize);
4188 start = round_down(start, root->sectorsize);
4189
4190 data_sinfo = root->fs_info->data_sinfo;
4191 spin_lock(&data_sinfo->lock);
4192 if (WARN_ON(data_sinfo->bytes_may_use < len))
4193 data_sinfo->bytes_may_use = 0;
4194 else
4195 data_sinfo->bytes_may_use -= len;
4196 trace_btrfs_space_reservation(root->fs_info, "space_info",
4197 data_sinfo->flags, len, 0);
4198 spin_unlock(&data_sinfo->lock);
4199 }
4200
4201 /*
4202 * Called if we need to clear a data reservation for this inode
4203 * Normally in a error case.
4204 *
4205 * This one will handle the per-indoe data rsv map for accurate reserved
4206 * space framework.
4207 */
4208 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4209 {
4210 btrfs_free_reserved_data_space_noquota(inode, start, len);
4211 btrfs_qgroup_free_data(inode, start, len);
4212 }
4213
4214 static void force_metadata_allocation(struct btrfs_fs_info *info)
4215 {
4216 struct list_head *head = &info->space_info;
4217 struct btrfs_space_info *found;
4218
4219 rcu_read_lock();
4220 list_for_each_entry_rcu(found, head, list) {
4221 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4222 found->force_alloc = CHUNK_ALLOC_FORCE;
4223 }
4224 rcu_read_unlock();
4225 }
4226
4227 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4228 {
4229 return (global->size << 1);
4230 }
4231
4232 static int should_alloc_chunk(struct btrfs_root *root,
4233 struct btrfs_space_info *sinfo, int force)
4234 {
4235 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4236 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4237 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4238 u64 thresh;
4239
4240 if (force == CHUNK_ALLOC_FORCE)
4241 return 1;
4242
4243 /*
4244 * We need to take into account the global rsv because for all intents
4245 * and purposes it's used space. Don't worry about locking the
4246 * global_rsv, it doesn't change except when the transaction commits.
4247 */
4248 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4249 num_allocated += calc_global_rsv_need_space(global_rsv);
4250
4251 /*
4252 * in limited mode, we want to have some free space up to
4253 * about 1% of the FS size.
4254 */
4255 if (force == CHUNK_ALLOC_LIMITED) {
4256 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4257 thresh = max_t(u64, 64 * 1024 * 1024,
4258 div_factor_fine(thresh, 1));
4259
4260 if (num_bytes - num_allocated < thresh)
4261 return 1;
4262 }
4263
4264 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4265 return 0;
4266 return 1;
4267 }
4268
4269 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4270 {
4271 u64 num_dev;
4272
4273 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4274 BTRFS_BLOCK_GROUP_RAID0 |
4275 BTRFS_BLOCK_GROUP_RAID5 |
4276 BTRFS_BLOCK_GROUP_RAID6))
4277 num_dev = root->fs_info->fs_devices->rw_devices;
4278 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4279 num_dev = 2;
4280 else
4281 num_dev = 1; /* DUP or single */
4282
4283 return num_dev;
4284 }
4285
4286 /*
4287 * If @is_allocation is true, reserve space in the system space info necessary
4288 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4289 * removing a chunk.
4290 */
4291 void check_system_chunk(struct btrfs_trans_handle *trans,
4292 struct btrfs_root *root,
4293 u64 type)
4294 {
4295 struct btrfs_space_info *info;
4296 u64 left;
4297 u64 thresh;
4298 int ret = 0;
4299 u64 num_devs;
4300
4301 /*
4302 * Needed because we can end up allocating a system chunk and for an
4303 * atomic and race free space reservation in the chunk block reserve.
4304 */
4305 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4306
4307 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4308 spin_lock(&info->lock);
4309 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4310 info->bytes_reserved - info->bytes_readonly -
4311 info->bytes_may_use;
4312 spin_unlock(&info->lock);
4313
4314 num_devs = get_profile_num_devs(root, type);
4315
4316 /* num_devs device items to update and 1 chunk item to add or remove */
4317 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4318 btrfs_calc_trans_metadata_size(root, 1);
4319
4320 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4321 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4322 left, thresh, type);
4323 dump_space_info(info, 0, 0);
4324 }
4325
4326 if (left < thresh) {
4327 u64 flags;
4328
4329 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4330 /*
4331 * Ignore failure to create system chunk. We might end up not
4332 * needing it, as we might not need to COW all nodes/leafs from
4333 * the paths we visit in the chunk tree (they were already COWed
4334 * or created in the current transaction for example).
4335 */
4336 ret = btrfs_alloc_chunk(trans, root, flags);
4337 }
4338
4339 if (!ret) {
4340 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4341 &root->fs_info->chunk_block_rsv,
4342 thresh, BTRFS_RESERVE_NO_FLUSH);
4343 if (!ret)
4344 trans->chunk_bytes_reserved += thresh;
4345 }
4346 }
4347
4348 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4349 struct btrfs_root *extent_root, u64 flags, int force)
4350 {
4351 struct btrfs_space_info *space_info;
4352 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4353 int wait_for_alloc = 0;
4354 int ret = 0;
4355
4356 /* Don't re-enter if we're already allocating a chunk */
4357 if (trans->allocating_chunk)
4358 return -ENOSPC;
4359
4360 space_info = __find_space_info(extent_root->fs_info, flags);
4361 if (!space_info) {
4362 ret = update_space_info(extent_root->fs_info, flags,
4363 0, 0, &space_info);
4364 BUG_ON(ret); /* -ENOMEM */
4365 }
4366 BUG_ON(!space_info); /* Logic error */
4367
4368 again:
4369 spin_lock(&space_info->lock);
4370 if (force < space_info->force_alloc)
4371 force = space_info->force_alloc;
4372 if (space_info->full) {
4373 if (should_alloc_chunk(extent_root, space_info, force))
4374 ret = -ENOSPC;
4375 else
4376 ret = 0;
4377 spin_unlock(&space_info->lock);
4378 return ret;
4379 }
4380
4381 if (!should_alloc_chunk(extent_root, space_info, force)) {
4382 spin_unlock(&space_info->lock);
4383 return 0;
4384 } else if (space_info->chunk_alloc) {
4385 wait_for_alloc = 1;
4386 } else {
4387 space_info->chunk_alloc = 1;
4388 }
4389
4390 spin_unlock(&space_info->lock);
4391
4392 mutex_lock(&fs_info->chunk_mutex);
4393
4394 /*
4395 * The chunk_mutex is held throughout the entirety of a chunk
4396 * allocation, so once we've acquired the chunk_mutex we know that the
4397 * other guy is done and we need to recheck and see if we should
4398 * allocate.
4399 */
4400 if (wait_for_alloc) {
4401 mutex_unlock(&fs_info->chunk_mutex);
4402 wait_for_alloc = 0;
4403 goto again;
4404 }
4405
4406 trans->allocating_chunk = true;
4407
4408 /*
4409 * If we have mixed data/metadata chunks we want to make sure we keep
4410 * allocating mixed chunks instead of individual chunks.
4411 */
4412 if (btrfs_mixed_space_info(space_info))
4413 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4414
4415 /*
4416 * if we're doing a data chunk, go ahead and make sure that
4417 * we keep a reasonable number of metadata chunks allocated in the
4418 * FS as well.
4419 */
4420 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4421 fs_info->data_chunk_allocations++;
4422 if (!(fs_info->data_chunk_allocations %
4423 fs_info->metadata_ratio))
4424 force_metadata_allocation(fs_info);
4425 }
4426
4427 /*
4428 * Check if we have enough space in SYSTEM chunk because we may need
4429 * to update devices.
4430 */
4431 check_system_chunk(trans, extent_root, flags);
4432
4433 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4434 trans->allocating_chunk = false;
4435
4436 spin_lock(&space_info->lock);
4437 if (ret < 0 && ret != -ENOSPC)
4438 goto out;
4439 if (ret)
4440 space_info->full = 1;
4441 else
4442 ret = 1;
4443
4444 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4445 out:
4446 space_info->chunk_alloc = 0;
4447 spin_unlock(&space_info->lock);
4448 mutex_unlock(&fs_info->chunk_mutex);
4449 /*
4450 * When we allocate a new chunk we reserve space in the chunk block
4451 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4452 * add new nodes/leafs to it if we end up needing to do it when
4453 * inserting the chunk item and updating device items as part of the
4454 * second phase of chunk allocation, performed by
4455 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4456 * large number of new block groups to create in our transaction
4457 * handle's new_bgs list to avoid exhausting the chunk block reserve
4458 * in extreme cases - like having a single transaction create many new
4459 * block groups when starting to write out the free space caches of all
4460 * the block groups that were made dirty during the lifetime of the
4461 * transaction.
4462 */
4463 if (trans->can_flush_pending_bgs &&
4464 trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
4465 btrfs_create_pending_block_groups(trans, trans->root);
4466 btrfs_trans_release_chunk_metadata(trans);
4467 }
4468 return ret;
4469 }
4470
4471 static int can_overcommit(struct btrfs_root *root,
4472 struct btrfs_space_info *space_info, u64 bytes,
4473 enum btrfs_reserve_flush_enum flush)
4474 {
4475 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4476 u64 profile = btrfs_get_alloc_profile(root, 0);
4477 u64 space_size;
4478 u64 avail;
4479 u64 used;
4480
4481 used = space_info->bytes_used + space_info->bytes_reserved +
4482 space_info->bytes_pinned + space_info->bytes_readonly;
4483
4484 /*
4485 * We only want to allow over committing if we have lots of actual space
4486 * free, but if we don't have enough space to handle the global reserve
4487 * space then we could end up having a real enospc problem when trying
4488 * to allocate a chunk or some other such important allocation.
4489 */
4490 spin_lock(&global_rsv->lock);
4491 space_size = calc_global_rsv_need_space(global_rsv);
4492 spin_unlock(&global_rsv->lock);
4493 if (used + space_size >= space_info->total_bytes)
4494 return 0;
4495
4496 used += space_info->bytes_may_use;
4497
4498 spin_lock(&root->fs_info->free_chunk_lock);
4499 avail = root->fs_info->free_chunk_space;
4500 spin_unlock(&root->fs_info->free_chunk_lock);
4501
4502 /*
4503 * If we have dup, raid1 or raid10 then only half of the free
4504 * space is actually useable. For raid56, the space info used
4505 * doesn't include the parity drive, so we don't have to
4506 * change the math
4507 */
4508 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4509 BTRFS_BLOCK_GROUP_RAID1 |
4510 BTRFS_BLOCK_GROUP_RAID10))
4511 avail >>= 1;
4512
4513 /*
4514 * If we aren't flushing all things, let us overcommit up to
4515 * 1/2th of the space. If we can flush, don't let us overcommit
4516 * too much, let it overcommit up to 1/8 of the space.
4517 */
4518 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4519 avail >>= 3;
4520 else
4521 avail >>= 1;
4522
4523 if (used + bytes < space_info->total_bytes + avail)
4524 return 1;
4525 return 0;
4526 }
4527
4528 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4529 unsigned long nr_pages, int nr_items)
4530 {
4531 struct super_block *sb = root->fs_info->sb;
4532
4533 if (down_read_trylock(&sb->s_umount)) {
4534 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4535 up_read(&sb->s_umount);
4536 } else {
4537 /*
4538 * We needn't worry the filesystem going from r/w to r/o though
4539 * we don't acquire ->s_umount mutex, because the filesystem
4540 * should guarantee the delalloc inodes list be empty after
4541 * the filesystem is readonly(all dirty pages are written to
4542 * the disk).
4543 */
4544 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4545 if (!current->journal_info)
4546 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4547 }
4548 }
4549
4550 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4551 {
4552 u64 bytes;
4553 int nr;
4554
4555 bytes = btrfs_calc_trans_metadata_size(root, 1);
4556 nr = (int)div64_u64(to_reclaim, bytes);
4557 if (!nr)
4558 nr = 1;
4559 return nr;
4560 }
4561
4562 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4563
4564 /*
4565 * shrink metadata reservation for delalloc
4566 */
4567 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4568 bool wait_ordered)
4569 {
4570 struct btrfs_block_rsv *block_rsv;
4571 struct btrfs_space_info *space_info;
4572 struct btrfs_trans_handle *trans;
4573 u64 delalloc_bytes;
4574 u64 max_reclaim;
4575 long time_left;
4576 unsigned long nr_pages;
4577 int loops;
4578 int items;
4579 enum btrfs_reserve_flush_enum flush;
4580
4581 /* Calc the number of the pages we need flush for space reservation */
4582 items = calc_reclaim_items_nr(root, to_reclaim);
4583 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4584
4585 trans = (struct btrfs_trans_handle *)current->journal_info;
4586 block_rsv = &root->fs_info->delalloc_block_rsv;
4587 space_info = block_rsv->space_info;
4588
4589 delalloc_bytes = percpu_counter_sum_positive(
4590 &root->fs_info->delalloc_bytes);
4591 if (delalloc_bytes == 0) {
4592 if (trans)
4593 return;
4594 if (wait_ordered)
4595 btrfs_wait_ordered_roots(root->fs_info, items);
4596 return;
4597 }
4598
4599 loops = 0;
4600 while (delalloc_bytes && loops < 3) {
4601 max_reclaim = min(delalloc_bytes, to_reclaim);
4602 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4603 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4604 /*
4605 * We need to wait for the async pages to actually start before
4606 * we do anything.
4607 */
4608 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4609 if (!max_reclaim)
4610 goto skip_async;
4611
4612 if (max_reclaim <= nr_pages)
4613 max_reclaim = 0;
4614 else
4615 max_reclaim -= nr_pages;
4616
4617 wait_event(root->fs_info->async_submit_wait,
4618 atomic_read(&root->fs_info->async_delalloc_pages) <=
4619 (int)max_reclaim);
4620 skip_async:
4621 if (!trans)
4622 flush = BTRFS_RESERVE_FLUSH_ALL;
4623 else
4624 flush = BTRFS_RESERVE_NO_FLUSH;
4625 spin_lock(&space_info->lock);
4626 if (can_overcommit(root, space_info, orig, flush)) {
4627 spin_unlock(&space_info->lock);
4628 break;
4629 }
4630 spin_unlock(&space_info->lock);
4631
4632 loops++;
4633 if (wait_ordered && !trans) {
4634 btrfs_wait_ordered_roots(root->fs_info, items);
4635 } else {
4636 time_left = schedule_timeout_killable(1);
4637 if (time_left)
4638 break;
4639 }
4640 delalloc_bytes = percpu_counter_sum_positive(
4641 &root->fs_info->delalloc_bytes);
4642 }
4643 }
4644
4645 /**
4646 * maybe_commit_transaction - possibly commit the transaction if its ok to
4647 * @root - the root we're allocating for
4648 * @bytes - the number of bytes we want to reserve
4649 * @force - force the commit
4650 *
4651 * This will check to make sure that committing the transaction will actually
4652 * get us somewhere and then commit the transaction if it does. Otherwise it
4653 * will return -ENOSPC.
4654 */
4655 static int may_commit_transaction(struct btrfs_root *root,
4656 struct btrfs_space_info *space_info,
4657 u64 bytes, int force)
4658 {
4659 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4660 struct btrfs_trans_handle *trans;
4661
4662 trans = (struct btrfs_trans_handle *)current->journal_info;
4663 if (trans)
4664 return -EAGAIN;
4665
4666 if (force)
4667 goto commit;
4668
4669 /* See if there is enough pinned space to make this reservation */
4670 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4671 bytes) >= 0)
4672 goto commit;
4673
4674 /*
4675 * See if there is some space in the delayed insertion reservation for
4676 * this reservation.
4677 */
4678 if (space_info != delayed_rsv->space_info)
4679 return -ENOSPC;
4680
4681 spin_lock(&delayed_rsv->lock);
4682 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4683 bytes - delayed_rsv->size) >= 0) {
4684 spin_unlock(&delayed_rsv->lock);
4685 return -ENOSPC;
4686 }
4687 spin_unlock(&delayed_rsv->lock);
4688
4689 commit:
4690 trans = btrfs_join_transaction(root);
4691 if (IS_ERR(trans))
4692 return -ENOSPC;
4693
4694 return btrfs_commit_transaction(trans, root);
4695 }
4696
4697 enum flush_state {
4698 FLUSH_DELAYED_ITEMS_NR = 1,
4699 FLUSH_DELAYED_ITEMS = 2,
4700 FLUSH_DELALLOC = 3,
4701 FLUSH_DELALLOC_WAIT = 4,
4702 ALLOC_CHUNK = 5,
4703 COMMIT_TRANS = 6,
4704 };
4705
4706 static int flush_space(struct btrfs_root *root,
4707 struct btrfs_space_info *space_info, u64 num_bytes,
4708 u64 orig_bytes, int state)
4709 {
4710 struct btrfs_trans_handle *trans;
4711 int nr;
4712 int ret = 0;
4713
4714 switch (state) {
4715 case FLUSH_DELAYED_ITEMS_NR:
4716 case FLUSH_DELAYED_ITEMS:
4717 if (state == FLUSH_DELAYED_ITEMS_NR)
4718 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4719 else
4720 nr = -1;
4721
4722 trans = btrfs_join_transaction(root);
4723 if (IS_ERR(trans)) {
4724 ret = PTR_ERR(trans);
4725 break;
4726 }
4727 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4728 btrfs_end_transaction(trans, root);
4729 break;
4730 case FLUSH_DELALLOC:
4731 case FLUSH_DELALLOC_WAIT:
4732 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4733 state == FLUSH_DELALLOC_WAIT);
4734 break;
4735 case ALLOC_CHUNK:
4736 trans = btrfs_join_transaction(root);
4737 if (IS_ERR(trans)) {
4738 ret = PTR_ERR(trans);
4739 break;
4740 }
4741 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4742 btrfs_get_alloc_profile(root, 0),
4743 CHUNK_ALLOC_NO_FORCE);
4744 btrfs_end_transaction(trans, root);
4745 if (ret == -ENOSPC)
4746 ret = 0;
4747 break;
4748 case COMMIT_TRANS:
4749 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4750 break;
4751 default:
4752 ret = -ENOSPC;
4753 break;
4754 }
4755
4756 return ret;
4757 }
4758
4759 static inline u64
4760 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4761 struct btrfs_space_info *space_info)
4762 {
4763 u64 used;
4764 u64 expected;
4765 u64 to_reclaim;
4766
4767 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4768 16 * 1024 * 1024);
4769 spin_lock(&space_info->lock);
4770 if (can_overcommit(root, space_info, to_reclaim,
4771 BTRFS_RESERVE_FLUSH_ALL)) {
4772 to_reclaim = 0;
4773 goto out;
4774 }
4775
4776 used = space_info->bytes_used + space_info->bytes_reserved +
4777 space_info->bytes_pinned + space_info->bytes_readonly +
4778 space_info->bytes_may_use;
4779 if (can_overcommit(root, space_info, 1024 * 1024,
4780 BTRFS_RESERVE_FLUSH_ALL))
4781 expected = div_factor_fine(space_info->total_bytes, 95);
4782 else
4783 expected = div_factor_fine(space_info->total_bytes, 90);
4784
4785 if (used > expected)
4786 to_reclaim = used - expected;
4787 else
4788 to_reclaim = 0;
4789 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4790 space_info->bytes_reserved);
4791 out:
4792 spin_unlock(&space_info->lock);
4793
4794 return to_reclaim;
4795 }
4796
4797 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4798 struct btrfs_fs_info *fs_info, u64 used)
4799 {
4800 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4801
4802 /* If we're just plain full then async reclaim just slows us down. */
4803 if (space_info->bytes_used >= thresh)
4804 return 0;
4805
4806 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4807 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4808 }
4809
4810 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4811 struct btrfs_fs_info *fs_info,
4812 int flush_state)
4813 {
4814 u64 used;
4815
4816 spin_lock(&space_info->lock);
4817 /*
4818 * We run out of space and have not got any free space via flush_space,
4819 * so don't bother doing async reclaim.
4820 */
4821 if (flush_state > COMMIT_TRANS && space_info->full) {
4822 spin_unlock(&space_info->lock);
4823 return 0;
4824 }
4825
4826 used = space_info->bytes_used + space_info->bytes_reserved +
4827 space_info->bytes_pinned + space_info->bytes_readonly +
4828 space_info->bytes_may_use;
4829 if (need_do_async_reclaim(space_info, fs_info, used)) {
4830 spin_unlock(&space_info->lock);
4831 return 1;
4832 }
4833 spin_unlock(&space_info->lock);
4834
4835 return 0;
4836 }
4837
4838 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4839 {
4840 struct btrfs_fs_info *fs_info;
4841 struct btrfs_space_info *space_info;
4842 u64 to_reclaim;
4843 int flush_state;
4844
4845 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4846 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4847
4848 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4849 space_info);
4850 if (!to_reclaim)
4851 return;
4852
4853 flush_state = FLUSH_DELAYED_ITEMS_NR;
4854 do {
4855 flush_space(fs_info->fs_root, space_info, to_reclaim,
4856 to_reclaim, flush_state);
4857 flush_state++;
4858 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4859 flush_state))
4860 return;
4861 } while (flush_state < COMMIT_TRANS);
4862 }
4863
4864 void btrfs_init_async_reclaim_work(struct work_struct *work)
4865 {
4866 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4867 }
4868
4869 /**
4870 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4871 * @root - the root we're allocating for
4872 * @block_rsv - the block_rsv we're allocating for
4873 * @orig_bytes - the number of bytes we want
4874 * @flush - whether or not we can flush to make our reservation
4875 *
4876 * This will reserve orgi_bytes number of bytes from the space info associated
4877 * with the block_rsv. If there is not enough space it will make an attempt to
4878 * flush out space to make room. It will do this by flushing delalloc if
4879 * possible or committing the transaction. If flush is 0 then no attempts to
4880 * regain reservations will be made and this will fail if there is not enough
4881 * space already.
4882 */
4883 static int reserve_metadata_bytes(struct btrfs_root *root,
4884 struct btrfs_block_rsv *block_rsv,
4885 u64 orig_bytes,
4886 enum btrfs_reserve_flush_enum flush)
4887 {
4888 struct btrfs_space_info *space_info = block_rsv->space_info;
4889 u64 used;
4890 u64 num_bytes = orig_bytes;
4891 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4892 int ret = 0;
4893 bool flushing = false;
4894
4895 again:
4896 ret = 0;
4897 spin_lock(&space_info->lock);
4898 /*
4899 * We only want to wait if somebody other than us is flushing and we
4900 * are actually allowed to flush all things.
4901 */
4902 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4903 space_info->flush) {
4904 spin_unlock(&space_info->lock);
4905 /*
4906 * If we have a trans handle we can't wait because the flusher
4907 * may have to commit the transaction, which would mean we would
4908 * deadlock since we are waiting for the flusher to finish, but
4909 * hold the current transaction open.
4910 */
4911 if (current->journal_info)
4912 return -EAGAIN;
4913 ret = wait_event_killable(space_info->wait, !space_info->flush);
4914 /* Must have been killed, return */
4915 if (ret)
4916 return -EINTR;
4917
4918 spin_lock(&space_info->lock);
4919 }
4920
4921 ret = -ENOSPC;
4922 used = space_info->bytes_used + space_info->bytes_reserved +
4923 space_info->bytes_pinned + space_info->bytes_readonly +
4924 space_info->bytes_may_use;
4925
4926 /*
4927 * The idea here is that we've not already over-reserved the block group
4928 * then we can go ahead and save our reservation first and then start
4929 * flushing if we need to. Otherwise if we've already overcommitted
4930 * lets start flushing stuff first and then come back and try to make
4931 * our reservation.
4932 */
4933 if (used <= space_info->total_bytes) {
4934 if (used + orig_bytes <= space_info->total_bytes) {
4935 space_info->bytes_may_use += orig_bytes;
4936 trace_btrfs_space_reservation(root->fs_info,
4937 "space_info", space_info->flags, orig_bytes, 1);
4938 ret = 0;
4939 } else {
4940 /*
4941 * Ok set num_bytes to orig_bytes since we aren't
4942 * overocmmitted, this way we only try and reclaim what
4943 * we need.
4944 */
4945 num_bytes = orig_bytes;
4946 }
4947 } else {
4948 /*
4949 * Ok we're over committed, set num_bytes to the overcommitted
4950 * amount plus the amount of bytes that we need for this
4951 * reservation.
4952 */
4953 num_bytes = used - space_info->total_bytes +
4954 (orig_bytes * 2);
4955 }
4956
4957 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4958 space_info->bytes_may_use += orig_bytes;
4959 trace_btrfs_space_reservation(root->fs_info, "space_info",
4960 space_info->flags, orig_bytes,
4961 1);
4962 ret = 0;
4963 }
4964
4965 /*
4966 * Couldn't make our reservation, save our place so while we're trying
4967 * to reclaim space we can actually use it instead of somebody else
4968 * stealing it from us.
4969 *
4970 * We make the other tasks wait for the flush only when we can flush
4971 * all things.
4972 */
4973 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4974 flushing = true;
4975 space_info->flush = 1;
4976 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4977 used += orig_bytes;
4978 /*
4979 * We will do the space reservation dance during log replay,
4980 * which means we won't have fs_info->fs_root set, so don't do
4981 * the async reclaim as we will panic.
4982 */
4983 if (!root->fs_info->log_root_recovering &&
4984 need_do_async_reclaim(space_info, root->fs_info, used) &&
4985 !work_busy(&root->fs_info->async_reclaim_work))
4986 queue_work(system_unbound_wq,
4987 &root->fs_info->async_reclaim_work);
4988 }
4989 spin_unlock(&space_info->lock);
4990
4991 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4992 goto out;
4993
4994 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4995 flush_state);
4996 flush_state++;
4997
4998 /*
4999 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
5000 * would happen. So skip delalloc flush.
5001 */
5002 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5003 (flush_state == FLUSH_DELALLOC ||
5004 flush_state == FLUSH_DELALLOC_WAIT))
5005 flush_state = ALLOC_CHUNK;
5006
5007 if (!ret)
5008 goto again;
5009 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5010 flush_state < COMMIT_TRANS)
5011 goto again;
5012 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
5013 flush_state <= COMMIT_TRANS)
5014 goto again;
5015
5016 out:
5017 if (ret == -ENOSPC &&
5018 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5019 struct btrfs_block_rsv *global_rsv =
5020 &root->fs_info->global_block_rsv;
5021
5022 if (block_rsv != global_rsv &&
5023 !block_rsv_use_bytes(global_rsv, orig_bytes))
5024 ret = 0;
5025 }
5026 if (ret == -ENOSPC)
5027 trace_btrfs_space_reservation(root->fs_info,
5028 "space_info:enospc",
5029 space_info->flags, orig_bytes, 1);
5030 if (flushing) {
5031 spin_lock(&space_info->lock);
5032 space_info->flush = 0;
5033 wake_up_all(&space_info->wait);
5034 spin_unlock(&space_info->lock);
5035 }
5036 return ret;
5037 }
5038
5039 static struct btrfs_block_rsv *get_block_rsv(
5040 const struct btrfs_trans_handle *trans,
5041 const struct btrfs_root *root)
5042 {
5043 struct btrfs_block_rsv *block_rsv = NULL;
5044
5045 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5046 (root == root->fs_info->csum_root && trans->adding_csums) ||
5047 (root == root->fs_info->uuid_root))
5048 block_rsv = trans->block_rsv;
5049
5050 if (!block_rsv)
5051 block_rsv = root->block_rsv;
5052
5053 if (!block_rsv)
5054 block_rsv = &root->fs_info->empty_block_rsv;
5055
5056 return block_rsv;
5057 }
5058
5059 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5060 u64 num_bytes)
5061 {
5062 int ret = -ENOSPC;
5063 spin_lock(&block_rsv->lock);
5064 if (block_rsv->reserved >= num_bytes) {
5065 block_rsv->reserved -= num_bytes;
5066 if (block_rsv->reserved < block_rsv->size)
5067 block_rsv->full = 0;
5068 ret = 0;
5069 }
5070 spin_unlock(&block_rsv->lock);
5071 return ret;
5072 }
5073
5074 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5075 u64 num_bytes, int update_size)
5076 {
5077 spin_lock(&block_rsv->lock);
5078 block_rsv->reserved += num_bytes;
5079 if (update_size)
5080 block_rsv->size += num_bytes;
5081 else if (block_rsv->reserved >= block_rsv->size)
5082 block_rsv->full = 1;
5083 spin_unlock(&block_rsv->lock);
5084 }
5085
5086 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5087 struct btrfs_block_rsv *dest, u64 num_bytes,
5088 int min_factor)
5089 {
5090 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5091 u64 min_bytes;
5092
5093 if (global_rsv->space_info != dest->space_info)
5094 return -ENOSPC;
5095
5096 spin_lock(&global_rsv->lock);
5097 min_bytes = div_factor(global_rsv->size, min_factor);
5098 if (global_rsv->reserved < min_bytes + num_bytes) {
5099 spin_unlock(&global_rsv->lock);
5100 return -ENOSPC;
5101 }
5102 global_rsv->reserved -= num_bytes;
5103 if (global_rsv->reserved < global_rsv->size)
5104 global_rsv->full = 0;
5105 spin_unlock(&global_rsv->lock);
5106
5107 block_rsv_add_bytes(dest, num_bytes, 1);
5108 return 0;
5109 }
5110
5111 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5112 struct btrfs_block_rsv *block_rsv,
5113 struct btrfs_block_rsv *dest, u64 num_bytes)
5114 {
5115 struct btrfs_space_info *space_info = block_rsv->space_info;
5116
5117 spin_lock(&block_rsv->lock);
5118 if (num_bytes == (u64)-1)
5119 num_bytes = block_rsv->size;
5120 block_rsv->size -= num_bytes;
5121 if (block_rsv->reserved >= block_rsv->size) {
5122 num_bytes = block_rsv->reserved - block_rsv->size;
5123 block_rsv->reserved = block_rsv->size;
5124 block_rsv->full = 1;
5125 } else {
5126 num_bytes = 0;
5127 }
5128 spin_unlock(&block_rsv->lock);
5129
5130 if (num_bytes > 0) {
5131 if (dest) {
5132 spin_lock(&dest->lock);
5133 if (!dest->full) {
5134 u64 bytes_to_add;
5135
5136 bytes_to_add = dest->size - dest->reserved;
5137 bytes_to_add = min(num_bytes, bytes_to_add);
5138 dest->reserved += bytes_to_add;
5139 if (dest->reserved >= dest->size)
5140 dest->full = 1;
5141 num_bytes -= bytes_to_add;
5142 }
5143 spin_unlock(&dest->lock);
5144 }
5145 if (num_bytes) {
5146 spin_lock(&space_info->lock);
5147 space_info->bytes_may_use -= num_bytes;
5148 trace_btrfs_space_reservation(fs_info, "space_info",
5149 space_info->flags, num_bytes, 0);
5150 spin_unlock(&space_info->lock);
5151 }
5152 }
5153 }
5154
5155 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5156 struct btrfs_block_rsv *dst, u64 num_bytes)
5157 {
5158 int ret;
5159
5160 ret = block_rsv_use_bytes(src, num_bytes);
5161 if (ret)
5162 return ret;
5163
5164 block_rsv_add_bytes(dst, num_bytes, 1);
5165 return 0;
5166 }
5167
5168 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5169 {
5170 memset(rsv, 0, sizeof(*rsv));
5171 spin_lock_init(&rsv->lock);
5172 rsv->type = type;
5173 }
5174
5175 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5176 unsigned short type)
5177 {
5178 struct btrfs_block_rsv *block_rsv;
5179 struct btrfs_fs_info *fs_info = root->fs_info;
5180
5181 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5182 if (!block_rsv)
5183 return NULL;
5184
5185 btrfs_init_block_rsv(block_rsv, type);
5186 block_rsv->space_info = __find_space_info(fs_info,
5187 BTRFS_BLOCK_GROUP_METADATA);
5188 return block_rsv;
5189 }
5190
5191 void btrfs_free_block_rsv(struct btrfs_root *root,
5192 struct btrfs_block_rsv *rsv)
5193 {
5194 if (!rsv)
5195 return;
5196 btrfs_block_rsv_release(root, rsv, (u64)-1);
5197 kfree(rsv);
5198 }
5199
5200 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5201 {
5202 kfree(rsv);
5203 }
5204
5205 int btrfs_block_rsv_add(struct btrfs_root *root,
5206 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5207 enum btrfs_reserve_flush_enum flush)
5208 {
5209 int ret;
5210
5211 if (num_bytes == 0)
5212 return 0;
5213
5214 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5215 if (!ret) {
5216 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5217 return 0;
5218 }
5219
5220 return ret;
5221 }
5222
5223 int btrfs_block_rsv_check(struct btrfs_root *root,
5224 struct btrfs_block_rsv *block_rsv, int min_factor)
5225 {
5226 u64 num_bytes = 0;
5227 int ret = -ENOSPC;
5228
5229 if (!block_rsv)
5230 return 0;
5231
5232 spin_lock(&block_rsv->lock);
5233 num_bytes = div_factor(block_rsv->size, min_factor);
5234 if (block_rsv->reserved >= num_bytes)
5235 ret = 0;
5236 spin_unlock(&block_rsv->lock);
5237
5238 return ret;
5239 }
5240
5241 int btrfs_block_rsv_refill(struct btrfs_root *root,
5242 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5243 enum btrfs_reserve_flush_enum flush)
5244 {
5245 u64 num_bytes = 0;
5246 int ret = -ENOSPC;
5247
5248 if (!block_rsv)
5249 return 0;
5250
5251 spin_lock(&block_rsv->lock);
5252 num_bytes = min_reserved;
5253 if (block_rsv->reserved >= num_bytes)
5254 ret = 0;
5255 else
5256 num_bytes -= block_rsv->reserved;
5257 spin_unlock(&block_rsv->lock);
5258
5259 if (!ret)
5260 return 0;
5261
5262 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5263 if (!ret) {
5264 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5265 return 0;
5266 }
5267
5268 return ret;
5269 }
5270
5271 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5272 struct btrfs_block_rsv *dst_rsv,
5273 u64 num_bytes)
5274 {
5275 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5276 }
5277
5278 void btrfs_block_rsv_release(struct btrfs_root *root,
5279 struct btrfs_block_rsv *block_rsv,
5280 u64 num_bytes)
5281 {
5282 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5283 if (global_rsv == block_rsv ||
5284 block_rsv->space_info != global_rsv->space_info)
5285 global_rsv = NULL;
5286 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5287 num_bytes);
5288 }
5289
5290 /*
5291 * helper to calculate size of global block reservation.
5292 * the desired value is sum of space used by extent tree,
5293 * checksum tree and root tree
5294 */
5295 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5296 {
5297 struct btrfs_space_info *sinfo;
5298 u64 num_bytes;
5299 u64 meta_used;
5300 u64 data_used;
5301 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5302
5303 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5304 spin_lock(&sinfo->lock);
5305 data_used = sinfo->bytes_used;
5306 spin_unlock(&sinfo->lock);
5307
5308 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5309 spin_lock(&sinfo->lock);
5310 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5311 data_used = 0;
5312 meta_used = sinfo->bytes_used;
5313 spin_unlock(&sinfo->lock);
5314
5315 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5316 csum_size * 2;
5317 num_bytes += div_u64(data_used + meta_used, 50);
5318
5319 if (num_bytes * 3 > meta_used)
5320 num_bytes = div_u64(meta_used, 3);
5321
5322 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5323 }
5324
5325 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5326 {
5327 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5328 struct btrfs_space_info *sinfo = block_rsv->space_info;
5329 u64 num_bytes;
5330
5331 num_bytes = calc_global_metadata_size(fs_info);
5332
5333 spin_lock(&sinfo->lock);
5334 spin_lock(&block_rsv->lock);
5335
5336 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5337
5338 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5339 sinfo->bytes_reserved + sinfo->bytes_readonly +
5340 sinfo->bytes_may_use;
5341
5342 if (sinfo->total_bytes > num_bytes) {
5343 num_bytes = sinfo->total_bytes - num_bytes;
5344 block_rsv->reserved += num_bytes;
5345 sinfo->bytes_may_use += num_bytes;
5346 trace_btrfs_space_reservation(fs_info, "space_info",
5347 sinfo->flags, num_bytes, 1);
5348 }
5349
5350 if (block_rsv->reserved >= block_rsv->size) {
5351 num_bytes = block_rsv->reserved - block_rsv->size;
5352 sinfo->bytes_may_use -= num_bytes;
5353 trace_btrfs_space_reservation(fs_info, "space_info",
5354 sinfo->flags, num_bytes, 0);
5355 block_rsv->reserved = block_rsv->size;
5356 block_rsv->full = 1;
5357 }
5358
5359 spin_unlock(&block_rsv->lock);
5360 spin_unlock(&sinfo->lock);
5361 }
5362
5363 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5364 {
5365 struct btrfs_space_info *space_info;
5366
5367 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5368 fs_info->chunk_block_rsv.space_info = space_info;
5369
5370 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5371 fs_info->global_block_rsv.space_info = space_info;
5372 fs_info->delalloc_block_rsv.space_info = space_info;
5373 fs_info->trans_block_rsv.space_info = space_info;
5374 fs_info->empty_block_rsv.space_info = space_info;
5375 fs_info->delayed_block_rsv.space_info = space_info;
5376
5377 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5378 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5379 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5380 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5381 if (fs_info->quota_root)
5382 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5383 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5384
5385 update_global_block_rsv(fs_info);
5386 }
5387
5388 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5389 {
5390 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5391 (u64)-1);
5392 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5393 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5394 WARN_ON(fs_info->trans_block_rsv.size > 0);
5395 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5396 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5397 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5398 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5399 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5400 }
5401
5402 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5403 struct btrfs_root *root)
5404 {
5405 if (!trans->block_rsv)
5406 return;
5407
5408 if (!trans->bytes_reserved)
5409 return;
5410
5411 trace_btrfs_space_reservation(root->fs_info, "transaction",
5412 trans->transid, trans->bytes_reserved, 0);
5413 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5414 trans->bytes_reserved = 0;
5415 }
5416
5417 /*
5418 * To be called after all the new block groups attached to the transaction
5419 * handle have been created (btrfs_create_pending_block_groups()).
5420 */
5421 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5422 {
5423 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5424
5425 if (!trans->chunk_bytes_reserved)
5426 return;
5427
5428 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5429
5430 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5431 trans->chunk_bytes_reserved);
5432 trans->chunk_bytes_reserved = 0;
5433 }
5434
5435 /* Can only return 0 or -ENOSPC */
5436 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5437 struct inode *inode)
5438 {
5439 struct btrfs_root *root = BTRFS_I(inode)->root;
5440 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5441 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5442
5443 /*
5444 * We need to hold space in order to delete our orphan item once we've
5445 * added it, so this takes the reservation so we can release it later
5446 * when we are truly done with the orphan item.
5447 */
5448 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5449 trace_btrfs_space_reservation(root->fs_info, "orphan",
5450 btrfs_ino(inode), num_bytes, 1);
5451 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5452 }
5453
5454 void btrfs_orphan_release_metadata(struct inode *inode)
5455 {
5456 struct btrfs_root *root = BTRFS_I(inode)->root;
5457 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5458 trace_btrfs_space_reservation(root->fs_info, "orphan",
5459 btrfs_ino(inode), num_bytes, 0);
5460 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5461 }
5462
5463 /*
5464 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5465 * root: the root of the parent directory
5466 * rsv: block reservation
5467 * items: the number of items that we need do reservation
5468 * qgroup_reserved: used to return the reserved size in qgroup
5469 *
5470 * This function is used to reserve the space for snapshot/subvolume
5471 * creation and deletion. Those operations are different with the
5472 * common file/directory operations, they change two fs/file trees
5473 * and root tree, the number of items that the qgroup reserves is
5474 * different with the free space reservation. So we can not use
5475 * the space reseravtion mechanism in start_transaction().
5476 */
5477 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5478 struct btrfs_block_rsv *rsv,
5479 int items,
5480 u64 *qgroup_reserved,
5481 bool use_global_rsv)
5482 {
5483 u64 num_bytes;
5484 int ret;
5485 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5486
5487 if (root->fs_info->quota_enabled) {
5488 /* One for parent inode, two for dir entries */
5489 num_bytes = 3 * root->nodesize;
5490 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5491 if (ret)
5492 return ret;
5493 } else {
5494 num_bytes = 0;
5495 }
5496
5497 *qgroup_reserved = num_bytes;
5498
5499 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5500 rsv->space_info = __find_space_info(root->fs_info,
5501 BTRFS_BLOCK_GROUP_METADATA);
5502 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5503 BTRFS_RESERVE_FLUSH_ALL);
5504
5505 if (ret == -ENOSPC && use_global_rsv)
5506 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5507
5508 if (ret && *qgroup_reserved)
5509 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5510
5511 return ret;
5512 }
5513
5514 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5515 struct btrfs_block_rsv *rsv,
5516 u64 qgroup_reserved)
5517 {
5518 btrfs_block_rsv_release(root, rsv, (u64)-1);
5519 }
5520
5521 /**
5522 * drop_outstanding_extent - drop an outstanding extent
5523 * @inode: the inode we're dropping the extent for
5524 * @num_bytes: the number of bytes we're relaseing.
5525 *
5526 * This is called when we are freeing up an outstanding extent, either called
5527 * after an error or after an extent is written. This will return the number of
5528 * reserved extents that need to be freed. This must be called with
5529 * BTRFS_I(inode)->lock held.
5530 */
5531 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5532 {
5533 unsigned drop_inode_space = 0;
5534 unsigned dropped_extents = 0;
5535 unsigned num_extents = 0;
5536
5537 num_extents = (unsigned)div64_u64(num_bytes +
5538 BTRFS_MAX_EXTENT_SIZE - 1,
5539 BTRFS_MAX_EXTENT_SIZE);
5540 ASSERT(num_extents);
5541 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5542 BTRFS_I(inode)->outstanding_extents -= num_extents;
5543
5544 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5545 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5546 &BTRFS_I(inode)->runtime_flags))
5547 drop_inode_space = 1;
5548
5549 /*
5550 * If we have more or the same amount of outsanding extents than we have
5551 * reserved then we need to leave the reserved extents count alone.
5552 */
5553 if (BTRFS_I(inode)->outstanding_extents >=
5554 BTRFS_I(inode)->reserved_extents)
5555 return drop_inode_space;
5556
5557 dropped_extents = BTRFS_I(inode)->reserved_extents -
5558 BTRFS_I(inode)->outstanding_extents;
5559 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5560 return dropped_extents + drop_inode_space;
5561 }
5562
5563 /**
5564 * calc_csum_metadata_size - return the amount of metada space that must be
5565 * reserved/free'd for the given bytes.
5566 * @inode: the inode we're manipulating
5567 * @num_bytes: the number of bytes in question
5568 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5569 *
5570 * This adjusts the number of csum_bytes in the inode and then returns the
5571 * correct amount of metadata that must either be reserved or freed. We
5572 * calculate how many checksums we can fit into one leaf and then divide the
5573 * number of bytes that will need to be checksumed by this value to figure out
5574 * how many checksums will be required. If we are adding bytes then the number
5575 * may go up and we will return the number of additional bytes that must be
5576 * reserved. If it is going down we will return the number of bytes that must
5577 * be freed.
5578 *
5579 * This must be called with BTRFS_I(inode)->lock held.
5580 */
5581 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5582 int reserve)
5583 {
5584 struct btrfs_root *root = BTRFS_I(inode)->root;
5585 u64 old_csums, num_csums;
5586
5587 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5588 BTRFS_I(inode)->csum_bytes == 0)
5589 return 0;
5590
5591 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5592 if (reserve)
5593 BTRFS_I(inode)->csum_bytes += num_bytes;
5594 else
5595 BTRFS_I(inode)->csum_bytes -= num_bytes;
5596 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5597
5598 /* No change, no need to reserve more */
5599 if (old_csums == num_csums)
5600 return 0;
5601
5602 if (reserve)
5603 return btrfs_calc_trans_metadata_size(root,
5604 num_csums - old_csums);
5605
5606 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5607 }
5608
5609 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5610 {
5611 struct btrfs_root *root = BTRFS_I(inode)->root;
5612 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5613 u64 to_reserve = 0;
5614 u64 csum_bytes;
5615 unsigned nr_extents = 0;
5616 int extra_reserve = 0;
5617 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5618 int ret = 0;
5619 bool delalloc_lock = true;
5620 u64 to_free = 0;
5621 unsigned dropped;
5622
5623 /* If we are a free space inode we need to not flush since we will be in
5624 * the middle of a transaction commit. We also don't need the delalloc
5625 * mutex since we won't race with anybody. We need this mostly to make
5626 * lockdep shut its filthy mouth.
5627 */
5628 if (btrfs_is_free_space_inode(inode)) {
5629 flush = BTRFS_RESERVE_NO_FLUSH;
5630 delalloc_lock = false;
5631 }
5632
5633 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5634 btrfs_transaction_in_commit(root->fs_info))
5635 schedule_timeout(1);
5636
5637 if (delalloc_lock)
5638 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5639
5640 num_bytes = ALIGN(num_bytes, root->sectorsize);
5641
5642 spin_lock(&BTRFS_I(inode)->lock);
5643 nr_extents = (unsigned)div64_u64(num_bytes +
5644 BTRFS_MAX_EXTENT_SIZE - 1,
5645 BTRFS_MAX_EXTENT_SIZE);
5646 BTRFS_I(inode)->outstanding_extents += nr_extents;
5647 nr_extents = 0;
5648
5649 if (BTRFS_I(inode)->outstanding_extents >
5650 BTRFS_I(inode)->reserved_extents)
5651 nr_extents = BTRFS_I(inode)->outstanding_extents -
5652 BTRFS_I(inode)->reserved_extents;
5653
5654 /*
5655 * Add an item to reserve for updating the inode when we complete the
5656 * delalloc io.
5657 */
5658 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5659 &BTRFS_I(inode)->runtime_flags)) {
5660 nr_extents++;
5661 extra_reserve = 1;
5662 }
5663
5664 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5665 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5666 csum_bytes = BTRFS_I(inode)->csum_bytes;
5667 spin_unlock(&BTRFS_I(inode)->lock);
5668
5669 if (root->fs_info->quota_enabled) {
5670 ret = btrfs_qgroup_reserve_meta(root,
5671 nr_extents * root->nodesize);
5672 if (ret)
5673 goto out_fail;
5674 }
5675
5676 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5677 if (unlikely(ret)) {
5678 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5679 goto out_fail;
5680 }
5681
5682 spin_lock(&BTRFS_I(inode)->lock);
5683 if (extra_reserve) {
5684 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5685 &BTRFS_I(inode)->runtime_flags);
5686 nr_extents--;
5687 }
5688 BTRFS_I(inode)->reserved_extents += nr_extents;
5689 spin_unlock(&BTRFS_I(inode)->lock);
5690
5691 if (delalloc_lock)
5692 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5693
5694 if (to_reserve)
5695 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5696 btrfs_ino(inode), to_reserve, 1);
5697 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5698
5699 return 0;
5700
5701 out_fail:
5702 spin_lock(&BTRFS_I(inode)->lock);
5703 dropped = drop_outstanding_extent(inode, num_bytes);
5704 /*
5705 * If the inodes csum_bytes is the same as the original
5706 * csum_bytes then we know we haven't raced with any free()ers
5707 * so we can just reduce our inodes csum bytes and carry on.
5708 */
5709 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5710 calc_csum_metadata_size(inode, num_bytes, 0);
5711 } else {
5712 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5713 u64 bytes;
5714
5715 /*
5716 * This is tricky, but first we need to figure out how much we
5717 * free'd from any free-ers that occured during this
5718 * reservation, so we reset ->csum_bytes to the csum_bytes
5719 * before we dropped our lock, and then call the free for the
5720 * number of bytes that were freed while we were trying our
5721 * reservation.
5722 */
5723 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5724 BTRFS_I(inode)->csum_bytes = csum_bytes;
5725 to_free = calc_csum_metadata_size(inode, bytes, 0);
5726
5727
5728 /*
5729 * Now we need to see how much we would have freed had we not
5730 * been making this reservation and our ->csum_bytes were not
5731 * artificially inflated.
5732 */
5733 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5734 bytes = csum_bytes - orig_csum_bytes;
5735 bytes = calc_csum_metadata_size(inode, bytes, 0);
5736
5737 /*
5738 * Now reset ->csum_bytes to what it should be. If bytes is
5739 * more than to_free then we would have free'd more space had we
5740 * not had an artificially high ->csum_bytes, so we need to free
5741 * the remainder. If bytes is the same or less then we don't
5742 * need to do anything, the other free-ers did the correct
5743 * thing.
5744 */
5745 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5746 if (bytes > to_free)
5747 to_free = bytes - to_free;
5748 else
5749 to_free = 0;
5750 }
5751 spin_unlock(&BTRFS_I(inode)->lock);
5752 if (dropped)
5753 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5754
5755 if (to_free) {
5756 btrfs_block_rsv_release(root, block_rsv, to_free);
5757 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5758 btrfs_ino(inode), to_free, 0);
5759 }
5760 if (delalloc_lock)
5761 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5762 return ret;
5763 }
5764
5765 /**
5766 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5767 * @inode: the inode to release the reservation for
5768 * @num_bytes: the number of bytes we're releasing
5769 *
5770 * This will release the metadata reservation for an inode. This can be called
5771 * once we complete IO for a given set of bytes to release their metadata
5772 * reservations.
5773 */
5774 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5775 {
5776 struct btrfs_root *root = BTRFS_I(inode)->root;
5777 u64 to_free = 0;
5778 unsigned dropped;
5779
5780 num_bytes = ALIGN(num_bytes, root->sectorsize);
5781 spin_lock(&BTRFS_I(inode)->lock);
5782 dropped = drop_outstanding_extent(inode, num_bytes);
5783
5784 if (num_bytes)
5785 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5786 spin_unlock(&BTRFS_I(inode)->lock);
5787 if (dropped > 0)
5788 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5789
5790 if (btrfs_test_is_dummy_root(root))
5791 return;
5792
5793 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5794 btrfs_ino(inode), to_free, 0);
5795
5796 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5797 to_free);
5798 }
5799
5800 /**
5801 * btrfs_delalloc_reserve_space - reserve data and metadata space for
5802 * delalloc
5803 * @inode: inode we're writing to
5804 * @start: start range we are writing to
5805 * @len: how long the range we are writing to
5806 *
5807 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5808 *
5809 * This will do the following things
5810 *
5811 * o reserve space in data space info for num bytes
5812 * and reserve precious corresponding qgroup space
5813 * (Done in check_data_free_space)
5814 *
5815 * o reserve space for metadata space, based on the number of outstanding
5816 * extents and how much csums will be needed
5817 * also reserve metadata space in a per root over-reserve method.
5818 * o add to the inodes->delalloc_bytes
5819 * o add it to the fs_info's delalloc inodes list.
5820 * (Above 3 all done in delalloc_reserve_metadata)
5821 *
5822 * Return 0 for success
5823 * Return <0 for error(-ENOSPC or -EQUOT)
5824 */
5825 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
5826 {
5827 int ret;
5828
5829 ret = btrfs_check_data_free_space(inode, start, len);
5830 if (ret < 0)
5831 return ret;
5832 ret = btrfs_delalloc_reserve_metadata(inode, len);
5833 if (ret < 0)
5834 btrfs_free_reserved_data_space(inode, start, len);
5835 return ret;
5836 }
5837
5838 /**
5839 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5840 * @inode: inode we're releasing space for
5841 * @start: start position of the space already reserved
5842 * @len: the len of the space already reserved
5843 *
5844 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5845 * called in the case that we don't need the metadata AND data reservations
5846 * anymore. So if there is an error or we insert an inline extent.
5847 *
5848 * This function will release the metadata space that was not used and will
5849 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5850 * list if there are no delalloc bytes left.
5851 * Also it will handle the qgroup reserved space.
5852 */
5853 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
5854 {
5855 btrfs_delalloc_release_metadata(inode, len);
5856 btrfs_free_reserved_data_space(inode, start, len);
5857 }
5858
5859 static int update_block_group(struct btrfs_trans_handle *trans,
5860 struct btrfs_root *root, u64 bytenr,
5861 u64 num_bytes, int alloc)
5862 {
5863 struct btrfs_block_group_cache *cache = NULL;
5864 struct btrfs_fs_info *info = root->fs_info;
5865 u64 total = num_bytes;
5866 u64 old_val;
5867 u64 byte_in_group;
5868 int factor;
5869
5870 /* block accounting for super block */
5871 spin_lock(&info->delalloc_root_lock);
5872 old_val = btrfs_super_bytes_used(info->super_copy);
5873 if (alloc)
5874 old_val += num_bytes;
5875 else
5876 old_val -= num_bytes;
5877 btrfs_set_super_bytes_used(info->super_copy, old_val);
5878 spin_unlock(&info->delalloc_root_lock);
5879
5880 while (total) {
5881 cache = btrfs_lookup_block_group(info, bytenr);
5882 if (!cache)
5883 return -ENOENT;
5884 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5885 BTRFS_BLOCK_GROUP_RAID1 |
5886 BTRFS_BLOCK_GROUP_RAID10))
5887 factor = 2;
5888 else
5889 factor = 1;
5890 /*
5891 * If this block group has free space cache written out, we
5892 * need to make sure to load it if we are removing space. This
5893 * is because we need the unpinning stage to actually add the
5894 * space back to the block group, otherwise we will leak space.
5895 */
5896 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5897 cache_block_group(cache, 1);
5898
5899 byte_in_group = bytenr - cache->key.objectid;
5900 WARN_ON(byte_in_group > cache->key.offset);
5901
5902 spin_lock(&cache->space_info->lock);
5903 spin_lock(&cache->lock);
5904
5905 if (btrfs_test_opt(root, SPACE_CACHE) &&
5906 cache->disk_cache_state < BTRFS_DC_CLEAR)
5907 cache->disk_cache_state = BTRFS_DC_CLEAR;
5908
5909 old_val = btrfs_block_group_used(&cache->item);
5910 num_bytes = min(total, cache->key.offset - byte_in_group);
5911 if (alloc) {
5912 old_val += num_bytes;
5913 btrfs_set_block_group_used(&cache->item, old_val);
5914 cache->reserved -= num_bytes;
5915 cache->space_info->bytes_reserved -= num_bytes;
5916 cache->space_info->bytes_used += num_bytes;
5917 cache->space_info->disk_used += num_bytes * factor;
5918 spin_unlock(&cache->lock);
5919 spin_unlock(&cache->space_info->lock);
5920 } else {
5921 old_val -= num_bytes;
5922 btrfs_set_block_group_used(&cache->item, old_val);
5923 cache->pinned += num_bytes;
5924 cache->space_info->bytes_pinned += num_bytes;
5925 cache->space_info->bytes_used -= num_bytes;
5926 cache->space_info->disk_used -= num_bytes * factor;
5927 spin_unlock(&cache->lock);
5928 spin_unlock(&cache->space_info->lock);
5929
5930 set_extent_dirty(info->pinned_extents,
5931 bytenr, bytenr + num_bytes - 1,
5932 GFP_NOFS | __GFP_NOFAIL);
5933 }
5934
5935 spin_lock(&trans->transaction->dirty_bgs_lock);
5936 if (list_empty(&cache->dirty_list)) {
5937 list_add_tail(&cache->dirty_list,
5938 &trans->transaction->dirty_bgs);
5939 trans->transaction->num_dirty_bgs++;
5940 btrfs_get_block_group(cache);
5941 }
5942 spin_unlock(&trans->transaction->dirty_bgs_lock);
5943
5944 /*
5945 * No longer have used bytes in this block group, queue it for
5946 * deletion. We do this after adding the block group to the
5947 * dirty list to avoid races between cleaner kthread and space
5948 * cache writeout.
5949 */
5950 if (!alloc && old_val == 0) {
5951 spin_lock(&info->unused_bgs_lock);
5952 if (list_empty(&cache->bg_list)) {
5953 btrfs_get_block_group(cache);
5954 list_add_tail(&cache->bg_list,
5955 &info->unused_bgs);
5956 }
5957 spin_unlock(&info->unused_bgs_lock);
5958 }
5959
5960 btrfs_put_block_group(cache);
5961 total -= num_bytes;
5962 bytenr += num_bytes;
5963 }
5964 return 0;
5965 }
5966
5967 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5968 {
5969 struct btrfs_block_group_cache *cache;
5970 u64 bytenr;
5971
5972 spin_lock(&root->fs_info->block_group_cache_lock);
5973 bytenr = root->fs_info->first_logical_byte;
5974 spin_unlock(&root->fs_info->block_group_cache_lock);
5975
5976 if (bytenr < (u64)-1)
5977 return bytenr;
5978
5979 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5980 if (!cache)
5981 return 0;
5982
5983 bytenr = cache->key.objectid;
5984 btrfs_put_block_group(cache);
5985
5986 return bytenr;
5987 }
5988
5989 static int pin_down_extent(struct btrfs_root *root,
5990 struct btrfs_block_group_cache *cache,
5991 u64 bytenr, u64 num_bytes, int reserved)
5992 {
5993 spin_lock(&cache->space_info->lock);
5994 spin_lock(&cache->lock);
5995 cache->pinned += num_bytes;
5996 cache->space_info->bytes_pinned += num_bytes;
5997 if (reserved) {
5998 cache->reserved -= num_bytes;
5999 cache->space_info->bytes_reserved -= num_bytes;
6000 }
6001 spin_unlock(&cache->lock);
6002 spin_unlock(&cache->space_info->lock);
6003
6004 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6005 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6006 if (reserved)
6007 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
6008 return 0;
6009 }
6010
6011 /*
6012 * this function must be called within transaction
6013 */
6014 int btrfs_pin_extent(struct btrfs_root *root,
6015 u64 bytenr, u64 num_bytes, int reserved)
6016 {
6017 struct btrfs_block_group_cache *cache;
6018
6019 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6020 BUG_ON(!cache); /* Logic error */
6021
6022 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6023
6024 btrfs_put_block_group(cache);
6025 return 0;
6026 }
6027
6028 /*
6029 * this function must be called within transaction
6030 */
6031 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6032 u64 bytenr, u64 num_bytes)
6033 {
6034 struct btrfs_block_group_cache *cache;
6035 int ret;
6036
6037 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6038 if (!cache)
6039 return -EINVAL;
6040
6041 /*
6042 * pull in the free space cache (if any) so that our pin
6043 * removes the free space from the cache. We have load_only set
6044 * to one because the slow code to read in the free extents does check
6045 * the pinned extents.
6046 */
6047 cache_block_group(cache, 1);
6048
6049 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6050
6051 /* remove us from the free space cache (if we're there at all) */
6052 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6053 btrfs_put_block_group(cache);
6054 return ret;
6055 }
6056
6057 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6058 {
6059 int ret;
6060 struct btrfs_block_group_cache *block_group;
6061 struct btrfs_caching_control *caching_ctl;
6062
6063 block_group = btrfs_lookup_block_group(root->fs_info, start);
6064 if (!block_group)
6065 return -EINVAL;
6066
6067 cache_block_group(block_group, 0);
6068 caching_ctl = get_caching_control(block_group);
6069
6070 if (!caching_ctl) {
6071 /* Logic error */
6072 BUG_ON(!block_group_cache_done(block_group));
6073 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6074 } else {
6075 mutex_lock(&caching_ctl->mutex);
6076
6077 if (start >= caching_ctl->progress) {
6078 ret = add_excluded_extent(root, start, num_bytes);
6079 } else if (start + num_bytes <= caching_ctl->progress) {
6080 ret = btrfs_remove_free_space(block_group,
6081 start, num_bytes);
6082 } else {
6083 num_bytes = caching_ctl->progress - start;
6084 ret = btrfs_remove_free_space(block_group,
6085 start, num_bytes);
6086 if (ret)
6087 goto out_lock;
6088
6089 num_bytes = (start + num_bytes) -
6090 caching_ctl->progress;
6091 start = caching_ctl->progress;
6092 ret = add_excluded_extent(root, start, num_bytes);
6093 }
6094 out_lock:
6095 mutex_unlock(&caching_ctl->mutex);
6096 put_caching_control(caching_ctl);
6097 }
6098 btrfs_put_block_group(block_group);
6099 return ret;
6100 }
6101
6102 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6103 struct extent_buffer *eb)
6104 {
6105 struct btrfs_file_extent_item *item;
6106 struct btrfs_key key;
6107 int found_type;
6108 int i;
6109
6110 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6111 return 0;
6112
6113 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6114 btrfs_item_key_to_cpu(eb, &key, i);
6115 if (key.type != BTRFS_EXTENT_DATA_KEY)
6116 continue;
6117 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6118 found_type = btrfs_file_extent_type(eb, item);
6119 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6120 continue;
6121 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6122 continue;
6123 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6124 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6125 __exclude_logged_extent(log, key.objectid, key.offset);
6126 }
6127
6128 return 0;
6129 }
6130
6131 /**
6132 * btrfs_update_reserved_bytes - update the block_group and space info counters
6133 * @cache: The cache we are manipulating
6134 * @num_bytes: The number of bytes in question
6135 * @reserve: One of the reservation enums
6136 * @delalloc: The blocks are allocated for the delalloc write
6137 *
6138 * This is called by the allocator when it reserves space, or by somebody who is
6139 * freeing space that was never actually used on disk. For example if you
6140 * reserve some space for a new leaf in transaction A and before transaction A
6141 * commits you free that leaf, you call this with reserve set to 0 in order to
6142 * clear the reservation.
6143 *
6144 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6145 * ENOSPC accounting. For data we handle the reservation through clearing the
6146 * delalloc bits in the io_tree. We have to do this since we could end up
6147 * allocating less disk space for the amount of data we have reserved in the
6148 * case of compression.
6149 *
6150 * If this is a reservation and the block group has become read only we cannot
6151 * make the reservation and return -EAGAIN, otherwise this function always
6152 * succeeds.
6153 */
6154 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
6155 u64 num_bytes, int reserve, int delalloc)
6156 {
6157 struct btrfs_space_info *space_info = cache->space_info;
6158 int ret = 0;
6159
6160 spin_lock(&space_info->lock);
6161 spin_lock(&cache->lock);
6162 if (reserve != RESERVE_FREE) {
6163 if (cache->ro) {
6164 ret = -EAGAIN;
6165 } else {
6166 cache->reserved += num_bytes;
6167 space_info->bytes_reserved += num_bytes;
6168 if (reserve == RESERVE_ALLOC) {
6169 trace_btrfs_space_reservation(cache->fs_info,
6170 "space_info", space_info->flags,
6171 num_bytes, 0);
6172 space_info->bytes_may_use -= num_bytes;
6173 }
6174
6175 if (delalloc)
6176 cache->delalloc_bytes += num_bytes;
6177 }
6178 } else {
6179 if (cache->ro)
6180 space_info->bytes_readonly += num_bytes;
6181 cache->reserved -= num_bytes;
6182 space_info->bytes_reserved -= num_bytes;
6183
6184 if (delalloc)
6185 cache->delalloc_bytes -= num_bytes;
6186 }
6187 spin_unlock(&cache->lock);
6188 spin_unlock(&space_info->lock);
6189 return ret;
6190 }
6191
6192 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6193 struct btrfs_root *root)
6194 {
6195 struct btrfs_fs_info *fs_info = root->fs_info;
6196 struct btrfs_caching_control *next;
6197 struct btrfs_caching_control *caching_ctl;
6198 struct btrfs_block_group_cache *cache;
6199
6200 down_write(&fs_info->commit_root_sem);
6201
6202 list_for_each_entry_safe(caching_ctl, next,
6203 &fs_info->caching_block_groups, list) {
6204 cache = caching_ctl->block_group;
6205 if (block_group_cache_done(cache)) {
6206 cache->last_byte_to_unpin = (u64)-1;
6207 list_del_init(&caching_ctl->list);
6208 put_caching_control(caching_ctl);
6209 } else {
6210 cache->last_byte_to_unpin = caching_ctl->progress;
6211 }
6212 }
6213
6214 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6215 fs_info->pinned_extents = &fs_info->freed_extents[1];
6216 else
6217 fs_info->pinned_extents = &fs_info->freed_extents[0];
6218
6219 up_write(&fs_info->commit_root_sem);
6220
6221 update_global_block_rsv(fs_info);
6222 }
6223
6224 /*
6225 * Returns the free cluster for the given space info and sets empty_cluster to
6226 * what it should be based on the mount options.
6227 */
6228 static struct btrfs_free_cluster *
6229 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6230 u64 *empty_cluster)
6231 {
6232 struct btrfs_free_cluster *ret = NULL;
6233 bool ssd = btrfs_test_opt(root, SSD);
6234
6235 *empty_cluster = 0;
6236 if (btrfs_mixed_space_info(space_info))
6237 return ret;
6238
6239 if (ssd)
6240 *empty_cluster = 2 * 1024 * 1024;
6241 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6242 ret = &root->fs_info->meta_alloc_cluster;
6243 if (!ssd)
6244 *empty_cluster = 64 * 1024;
6245 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6246 ret = &root->fs_info->data_alloc_cluster;
6247 }
6248
6249 return ret;
6250 }
6251
6252 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6253 const bool return_free_space)
6254 {
6255 struct btrfs_fs_info *fs_info = root->fs_info;
6256 struct btrfs_block_group_cache *cache = NULL;
6257 struct btrfs_space_info *space_info;
6258 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6259 struct btrfs_free_cluster *cluster = NULL;
6260 u64 len;
6261 u64 total_unpinned = 0;
6262 u64 empty_cluster = 0;
6263 bool readonly;
6264
6265 while (start <= end) {
6266 readonly = false;
6267 if (!cache ||
6268 start >= cache->key.objectid + cache->key.offset) {
6269 if (cache)
6270 btrfs_put_block_group(cache);
6271 total_unpinned = 0;
6272 cache = btrfs_lookup_block_group(fs_info, start);
6273 BUG_ON(!cache); /* Logic error */
6274
6275 cluster = fetch_cluster_info(root,
6276 cache->space_info,
6277 &empty_cluster);
6278 empty_cluster <<= 1;
6279 }
6280
6281 len = cache->key.objectid + cache->key.offset - start;
6282 len = min(len, end + 1 - start);
6283
6284 if (start < cache->last_byte_to_unpin) {
6285 len = min(len, cache->last_byte_to_unpin - start);
6286 if (return_free_space)
6287 btrfs_add_free_space(cache, start, len);
6288 }
6289
6290 start += len;
6291 total_unpinned += len;
6292 space_info = cache->space_info;
6293
6294 /*
6295 * If this space cluster has been marked as fragmented and we've
6296 * unpinned enough in this block group to potentially allow a
6297 * cluster to be created inside of it go ahead and clear the
6298 * fragmented check.
6299 */
6300 if (cluster && cluster->fragmented &&
6301 total_unpinned > empty_cluster) {
6302 spin_lock(&cluster->lock);
6303 cluster->fragmented = 0;
6304 spin_unlock(&cluster->lock);
6305 }
6306
6307 spin_lock(&space_info->lock);
6308 spin_lock(&cache->lock);
6309 cache->pinned -= len;
6310 space_info->bytes_pinned -= len;
6311 space_info->max_extent_size = 0;
6312 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6313 if (cache->ro) {
6314 space_info->bytes_readonly += len;
6315 readonly = true;
6316 }
6317 spin_unlock(&cache->lock);
6318 if (!readonly && global_rsv->space_info == space_info) {
6319 spin_lock(&global_rsv->lock);
6320 if (!global_rsv->full) {
6321 len = min(len, global_rsv->size -
6322 global_rsv->reserved);
6323 global_rsv->reserved += len;
6324 space_info->bytes_may_use += len;
6325 if (global_rsv->reserved >= global_rsv->size)
6326 global_rsv->full = 1;
6327 }
6328 spin_unlock(&global_rsv->lock);
6329 }
6330 spin_unlock(&space_info->lock);
6331 }
6332
6333 if (cache)
6334 btrfs_put_block_group(cache);
6335 return 0;
6336 }
6337
6338 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6339 struct btrfs_root *root)
6340 {
6341 struct btrfs_fs_info *fs_info = root->fs_info;
6342 struct btrfs_block_group_cache *block_group, *tmp;
6343 struct list_head *deleted_bgs;
6344 struct extent_io_tree *unpin;
6345 u64 start;
6346 u64 end;
6347 int ret;
6348
6349 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6350 unpin = &fs_info->freed_extents[1];
6351 else
6352 unpin = &fs_info->freed_extents[0];
6353
6354 while (!trans->aborted) {
6355 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6356 ret = find_first_extent_bit(unpin, 0, &start, &end,
6357 EXTENT_DIRTY, NULL);
6358 if (ret) {
6359 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6360 break;
6361 }
6362
6363 if (btrfs_test_opt(root, DISCARD))
6364 ret = btrfs_discard_extent(root, start,
6365 end + 1 - start, NULL);
6366
6367 clear_extent_dirty(unpin, start, end, GFP_NOFS);
6368 unpin_extent_range(root, start, end, true);
6369 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6370 cond_resched();
6371 }
6372
6373 /*
6374 * Transaction is finished. We don't need the lock anymore. We
6375 * do need to clean up the block groups in case of a transaction
6376 * abort.
6377 */
6378 deleted_bgs = &trans->transaction->deleted_bgs;
6379 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6380 u64 trimmed = 0;
6381
6382 ret = -EROFS;
6383 if (!trans->aborted)
6384 ret = btrfs_discard_extent(root,
6385 block_group->key.objectid,
6386 block_group->key.offset,
6387 &trimmed);
6388
6389 list_del_init(&block_group->bg_list);
6390 btrfs_put_block_group_trimming(block_group);
6391 btrfs_put_block_group(block_group);
6392
6393 if (ret) {
6394 const char *errstr = btrfs_decode_error(ret);
6395 btrfs_warn(fs_info,
6396 "Discard failed while removing blockgroup: errno=%d %s\n",
6397 ret, errstr);
6398 }
6399 }
6400
6401 return 0;
6402 }
6403
6404 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6405 u64 owner, u64 root_objectid)
6406 {
6407 struct btrfs_space_info *space_info;
6408 u64 flags;
6409
6410 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6411 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6412 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6413 else
6414 flags = BTRFS_BLOCK_GROUP_METADATA;
6415 } else {
6416 flags = BTRFS_BLOCK_GROUP_DATA;
6417 }
6418
6419 space_info = __find_space_info(fs_info, flags);
6420 BUG_ON(!space_info); /* Logic bug */
6421 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6422 }
6423
6424
6425 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6426 struct btrfs_root *root,
6427 struct btrfs_delayed_ref_node *node, u64 parent,
6428 u64 root_objectid, u64 owner_objectid,
6429 u64 owner_offset, int refs_to_drop,
6430 struct btrfs_delayed_extent_op *extent_op)
6431 {
6432 struct btrfs_key key;
6433 struct btrfs_path *path;
6434 struct btrfs_fs_info *info = root->fs_info;
6435 struct btrfs_root *extent_root = info->extent_root;
6436 struct extent_buffer *leaf;
6437 struct btrfs_extent_item *ei;
6438 struct btrfs_extent_inline_ref *iref;
6439 int ret;
6440 int is_data;
6441 int extent_slot = 0;
6442 int found_extent = 0;
6443 int num_to_del = 1;
6444 u32 item_size;
6445 u64 refs;
6446 u64 bytenr = node->bytenr;
6447 u64 num_bytes = node->num_bytes;
6448 int last_ref = 0;
6449 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6450 SKINNY_METADATA);
6451
6452 path = btrfs_alloc_path();
6453 if (!path)
6454 return -ENOMEM;
6455
6456 path->reada = 1;
6457 path->leave_spinning = 1;
6458
6459 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6460 BUG_ON(!is_data && refs_to_drop != 1);
6461
6462 if (is_data)
6463 skinny_metadata = 0;
6464
6465 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6466 bytenr, num_bytes, parent,
6467 root_objectid, owner_objectid,
6468 owner_offset);
6469 if (ret == 0) {
6470 extent_slot = path->slots[0];
6471 while (extent_slot >= 0) {
6472 btrfs_item_key_to_cpu(path->nodes[0], &key,
6473 extent_slot);
6474 if (key.objectid != bytenr)
6475 break;
6476 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6477 key.offset == num_bytes) {
6478 found_extent = 1;
6479 break;
6480 }
6481 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6482 key.offset == owner_objectid) {
6483 found_extent = 1;
6484 break;
6485 }
6486 if (path->slots[0] - extent_slot > 5)
6487 break;
6488 extent_slot--;
6489 }
6490 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6491 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6492 if (found_extent && item_size < sizeof(*ei))
6493 found_extent = 0;
6494 #endif
6495 if (!found_extent) {
6496 BUG_ON(iref);
6497 ret = remove_extent_backref(trans, extent_root, path,
6498 NULL, refs_to_drop,
6499 is_data, &last_ref);
6500 if (ret) {
6501 btrfs_abort_transaction(trans, extent_root, ret);
6502 goto out;
6503 }
6504 btrfs_release_path(path);
6505 path->leave_spinning = 1;
6506
6507 key.objectid = bytenr;
6508 key.type = BTRFS_EXTENT_ITEM_KEY;
6509 key.offset = num_bytes;
6510
6511 if (!is_data && skinny_metadata) {
6512 key.type = BTRFS_METADATA_ITEM_KEY;
6513 key.offset = owner_objectid;
6514 }
6515
6516 ret = btrfs_search_slot(trans, extent_root,
6517 &key, path, -1, 1);
6518 if (ret > 0 && skinny_metadata && path->slots[0]) {
6519 /*
6520 * Couldn't find our skinny metadata item,
6521 * see if we have ye olde extent item.
6522 */
6523 path->slots[0]--;
6524 btrfs_item_key_to_cpu(path->nodes[0], &key,
6525 path->slots[0]);
6526 if (key.objectid == bytenr &&
6527 key.type == BTRFS_EXTENT_ITEM_KEY &&
6528 key.offset == num_bytes)
6529 ret = 0;
6530 }
6531
6532 if (ret > 0 && skinny_metadata) {
6533 skinny_metadata = false;
6534 key.objectid = bytenr;
6535 key.type = BTRFS_EXTENT_ITEM_KEY;
6536 key.offset = num_bytes;
6537 btrfs_release_path(path);
6538 ret = btrfs_search_slot(trans, extent_root,
6539 &key, path, -1, 1);
6540 }
6541
6542 if (ret) {
6543 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6544 ret, bytenr);
6545 if (ret > 0)
6546 btrfs_print_leaf(extent_root,
6547 path->nodes[0]);
6548 }
6549 if (ret < 0) {
6550 btrfs_abort_transaction(trans, extent_root, ret);
6551 goto out;
6552 }
6553 extent_slot = path->slots[0];
6554 }
6555 } else if (WARN_ON(ret == -ENOENT)) {
6556 btrfs_print_leaf(extent_root, path->nodes[0]);
6557 btrfs_err(info,
6558 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6559 bytenr, parent, root_objectid, owner_objectid,
6560 owner_offset);
6561 btrfs_abort_transaction(trans, extent_root, ret);
6562 goto out;
6563 } else {
6564 btrfs_abort_transaction(trans, extent_root, ret);
6565 goto out;
6566 }
6567
6568 leaf = path->nodes[0];
6569 item_size = btrfs_item_size_nr(leaf, extent_slot);
6570 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6571 if (item_size < sizeof(*ei)) {
6572 BUG_ON(found_extent || extent_slot != path->slots[0]);
6573 ret = convert_extent_item_v0(trans, extent_root, path,
6574 owner_objectid, 0);
6575 if (ret < 0) {
6576 btrfs_abort_transaction(trans, extent_root, ret);
6577 goto out;
6578 }
6579
6580 btrfs_release_path(path);
6581 path->leave_spinning = 1;
6582
6583 key.objectid = bytenr;
6584 key.type = BTRFS_EXTENT_ITEM_KEY;
6585 key.offset = num_bytes;
6586
6587 ret = btrfs_search_slot(trans, extent_root, &key, path,
6588 -1, 1);
6589 if (ret) {
6590 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6591 ret, bytenr);
6592 btrfs_print_leaf(extent_root, path->nodes[0]);
6593 }
6594 if (ret < 0) {
6595 btrfs_abort_transaction(trans, extent_root, ret);
6596 goto out;
6597 }
6598
6599 extent_slot = path->slots[0];
6600 leaf = path->nodes[0];
6601 item_size = btrfs_item_size_nr(leaf, extent_slot);
6602 }
6603 #endif
6604 BUG_ON(item_size < sizeof(*ei));
6605 ei = btrfs_item_ptr(leaf, extent_slot,
6606 struct btrfs_extent_item);
6607 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6608 key.type == BTRFS_EXTENT_ITEM_KEY) {
6609 struct btrfs_tree_block_info *bi;
6610 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6611 bi = (struct btrfs_tree_block_info *)(ei + 1);
6612 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6613 }
6614
6615 refs = btrfs_extent_refs(leaf, ei);
6616 if (refs < refs_to_drop) {
6617 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6618 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6619 ret = -EINVAL;
6620 btrfs_abort_transaction(trans, extent_root, ret);
6621 goto out;
6622 }
6623 refs -= refs_to_drop;
6624
6625 if (refs > 0) {
6626 if (extent_op)
6627 __run_delayed_extent_op(extent_op, leaf, ei);
6628 /*
6629 * In the case of inline back ref, reference count will
6630 * be updated by remove_extent_backref
6631 */
6632 if (iref) {
6633 BUG_ON(!found_extent);
6634 } else {
6635 btrfs_set_extent_refs(leaf, ei, refs);
6636 btrfs_mark_buffer_dirty(leaf);
6637 }
6638 if (found_extent) {
6639 ret = remove_extent_backref(trans, extent_root, path,
6640 iref, refs_to_drop,
6641 is_data, &last_ref);
6642 if (ret) {
6643 btrfs_abort_transaction(trans, extent_root, ret);
6644 goto out;
6645 }
6646 }
6647 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6648 root_objectid);
6649 } else {
6650 if (found_extent) {
6651 BUG_ON(is_data && refs_to_drop !=
6652 extent_data_ref_count(path, iref));
6653 if (iref) {
6654 BUG_ON(path->slots[0] != extent_slot);
6655 } else {
6656 BUG_ON(path->slots[0] != extent_slot + 1);
6657 path->slots[0] = extent_slot;
6658 num_to_del = 2;
6659 }
6660 }
6661
6662 last_ref = 1;
6663 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6664 num_to_del);
6665 if (ret) {
6666 btrfs_abort_transaction(trans, extent_root, ret);
6667 goto out;
6668 }
6669 btrfs_release_path(path);
6670
6671 if (is_data) {
6672 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6673 if (ret) {
6674 btrfs_abort_transaction(trans, extent_root, ret);
6675 goto out;
6676 }
6677 }
6678
6679 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6680 if (ret) {
6681 btrfs_abort_transaction(trans, extent_root, ret);
6682 goto out;
6683 }
6684 }
6685 btrfs_release_path(path);
6686
6687 out:
6688 btrfs_free_path(path);
6689 return ret;
6690 }
6691
6692 /*
6693 * when we free an block, it is possible (and likely) that we free the last
6694 * delayed ref for that extent as well. This searches the delayed ref tree for
6695 * a given extent, and if there are no other delayed refs to be processed, it
6696 * removes it from the tree.
6697 */
6698 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6699 struct btrfs_root *root, u64 bytenr)
6700 {
6701 struct btrfs_delayed_ref_head *head;
6702 struct btrfs_delayed_ref_root *delayed_refs;
6703 int ret = 0;
6704
6705 delayed_refs = &trans->transaction->delayed_refs;
6706 spin_lock(&delayed_refs->lock);
6707 head = btrfs_find_delayed_ref_head(trans, bytenr);
6708 if (!head)
6709 goto out_delayed_unlock;
6710
6711 spin_lock(&head->lock);
6712 if (!list_empty(&head->ref_list))
6713 goto out;
6714
6715 if (head->extent_op) {
6716 if (!head->must_insert_reserved)
6717 goto out;
6718 btrfs_free_delayed_extent_op(head->extent_op);
6719 head->extent_op = NULL;
6720 }
6721
6722 /*
6723 * waiting for the lock here would deadlock. If someone else has it
6724 * locked they are already in the process of dropping it anyway
6725 */
6726 if (!mutex_trylock(&head->mutex))
6727 goto out;
6728
6729 /*
6730 * at this point we have a head with no other entries. Go
6731 * ahead and process it.
6732 */
6733 head->node.in_tree = 0;
6734 rb_erase(&head->href_node, &delayed_refs->href_root);
6735
6736 atomic_dec(&delayed_refs->num_entries);
6737
6738 /*
6739 * we don't take a ref on the node because we're removing it from the
6740 * tree, so we just steal the ref the tree was holding.
6741 */
6742 delayed_refs->num_heads--;
6743 if (head->processing == 0)
6744 delayed_refs->num_heads_ready--;
6745 head->processing = 0;
6746 spin_unlock(&head->lock);
6747 spin_unlock(&delayed_refs->lock);
6748
6749 BUG_ON(head->extent_op);
6750 if (head->must_insert_reserved)
6751 ret = 1;
6752
6753 mutex_unlock(&head->mutex);
6754 btrfs_put_delayed_ref(&head->node);
6755 return ret;
6756 out:
6757 spin_unlock(&head->lock);
6758
6759 out_delayed_unlock:
6760 spin_unlock(&delayed_refs->lock);
6761 return 0;
6762 }
6763
6764 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6765 struct btrfs_root *root,
6766 struct extent_buffer *buf,
6767 u64 parent, int last_ref)
6768 {
6769 int pin = 1;
6770 int ret;
6771
6772 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6773 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6774 buf->start, buf->len,
6775 parent, root->root_key.objectid,
6776 btrfs_header_level(buf),
6777 BTRFS_DROP_DELAYED_REF, NULL);
6778 BUG_ON(ret); /* -ENOMEM */
6779 }
6780
6781 if (!last_ref)
6782 return;
6783
6784 if (btrfs_header_generation(buf) == trans->transid) {
6785 struct btrfs_block_group_cache *cache;
6786
6787 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6788 ret = check_ref_cleanup(trans, root, buf->start);
6789 if (!ret)
6790 goto out;
6791 }
6792
6793 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6794
6795 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6796 pin_down_extent(root, cache, buf->start, buf->len, 1);
6797 btrfs_put_block_group(cache);
6798 goto out;
6799 }
6800
6801 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6802
6803 btrfs_add_free_space(cache, buf->start, buf->len);
6804 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6805 btrfs_put_block_group(cache);
6806 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6807 pin = 0;
6808 }
6809 out:
6810 if (pin)
6811 add_pinned_bytes(root->fs_info, buf->len,
6812 btrfs_header_level(buf),
6813 root->root_key.objectid);
6814
6815 /*
6816 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6817 * anymore.
6818 */
6819 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6820 }
6821
6822 /* Can return -ENOMEM */
6823 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6824 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6825 u64 owner, u64 offset)
6826 {
6827 int ret;
6828 struct btrfs_fs_info *fs_info = root->fs_info;
6829
6830 if (btrfs_test_is_dummy_root(root))
6831 return 0;
6832
6833 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6834
6835 /*
6836 * tree log blocks never actually go into the extent allocation
6837 * tree, just update pinning info and exit early.
6838 */
6839 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6840 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6841 /* unlocks the pinned mutex */
6842 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6843 ret = 0;
6844 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6845 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6846 num_bytes,
6847 parent, root_objectid, (int)owner,
6848 BTRFS_DROP_DELAYED_REF, NULL);
6849 } else {
6850 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6851 num_bytes,
6852 parent, root_objectid, owner,
6853 offset, 0,
6854 BTRFS_DROP_DELAYED_REF, NULL);
6855 }
6856 return ret;
6857 }
6858
6859 /*
6860 * when we wait for progress in the block group caching, its because
6861 * our allocation attempt failed at least once. So, we must sleep
6862 * and let some progress happen before we try again.
6863 *
6864 * This function will sleep at least once waiting for new free space to
6865 * show up, and then it will check the block group free space numbers
6866 * for our min num_bytes. Another option is to have it go ahead
6867 * and look in the rbtree for a free extent of a given size, but this
6868 * is a good start.
6869 *
6870 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6871 * any of the information in this block group.
6872 */
6873 static noinline void
6874 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6875 u64 num_bytes)
6876 {
6877 struct btrfs_caching_control *caching_ctl;
6878
6879 caching_ctl = get_caching_control(cache);
6880 if (!caching_ctl)
6881 return;
6882
6883 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6884 (cache->free_space_ctl->free_space >= num_bytes));
6885
6886 put_caching_control(caching_ctl);
6887 }
6888
6889 static noinline int
6890 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6891 {
6892 struct btrfs_caching_control *caching_ctl;
6893 int ret = 0;
6894
6895 caching_ctl = get_caching_control(cache);
6896 if (!caching_ctl)
6897 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6898
6899 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6900 if (cache->cached == BTRFS_CACHE_ERROR)
6901 ret = -EIO;
6902 put_caching_control(caching_ctl);
6903 return ret;
6904 }
6905
6906 int __get_raid_index(u64 flags)
6907 {
6908 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6909 return BTRFS_RAID_RAID10;
6910 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6911 return BTRFS_RAID_RAID1;
6912 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6913 return BTRFS_RAID_DUP;
6914 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6915 return BTRFS_RAID_RAID0;
6916 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6917 return BTRFS_RAID_RAID5;
6918 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6919 return BTRFS_RAID_RAID6;
6920
6921 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6922 }
6923
6924 int get_block_group_index(struct btrfs_block_group_cache *cache)
6925 {
6926 return __get_raid_index(cache->flags);
6927 }
6928
6929 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6930 [BTRFS_RAID_RAID10] = "raid10",
6931 [BTRFS_RAID_RAID1] = "raid1",
6932 [BTRFS_RAID_DUP] = "dup",
6933 [BTRFS_RAID_RAID0] = "raid0",
6934 [BTRFS_RAID_SINGLE] = "single",
6935 [BTRFS_RAID_RAID5] = "raid5",
6936 [BTRFS_RAID_RAID6] = "raid6",
6937 };
6938
6939 static const char *get_raid_name(enum btrfs_raid_types type)
6940 {
6941 if (type >= BTRFS_NR_RAID_TYPES)
6942 return NULL;
6943
6944 return btrfs_raid_type_names[type];
6945 }
6946
6947 enum btrfs_loop_type {
6948 LOOP_CACHING_NOWAIT = 0,
6949 LOOP_CACHING_WAIT = 1,
6950 LOOP_ALLOC_CHUNK = 2,
6951 LOOP_NO_EMPTY_SIZE = 3,
6952 };
6953
6954 static inline void
6955 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6956 int delalloc)
6957 {
6958 if (delalloc)
6959 down_read(&cache->data_rwsem);
6960 }
6961
6962 static inline void
6963 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6964 int delalloc)
6965 {
6966 btrfs_get_block_group(cache);
6967 if (delalloc)
6968 down_read(&cache->data_rwsem);
6969 }
6970
6971 static struct btrfs_block_group_cache *
6972 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6973 struct btrfs_free_cluster *cluster,
6974 int delalloc)
6975 {
6976 struct btrfs_block_group_cache *used_bg;
6977 bool locked = false;
6978 again:
6979 spin_lock(&cluster->refill_lock);
6980 if (locked) {
6981 if (used_bg == cluster->block_group)
6982 return used_bg;
6983
6984 up_read(&used_bg->data_rwsem);
6985 btrfs_put_block_group(used_bg);
6986 }
6987
6988 used_bg = cluster->block_group;
6989 if (!used_bg)
6990 return NULL;
6991
6992 if (used_bg == block_group)
6993 return used_bg;
6994
6995 btrfs_get_block_group(used_bg);
6996
6997 if (!delalloc)
6998 return used_bg;
6999
7000 if (down_read_trylock(&used_bg->data_rwsem))
7001 return used_bg;
7002
7003 spin_unlock(&cluster->refill_lock);
7004 down_read(&used_bg->data_rwsem);
7005 locked = true;
7006 goto again;
7007 }
7008
7009 static inline void
7010 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7011 int delalloc)
7012 {
7013 if (delalloc)
7014 up_read(&cache->data_rwsem);
7015 btrfs_put_block_group(cache);
7016 }
7017
7018 /*
7019 * walks the btree of allocated extents and find a hole of a given size.
7020 * The key ins is changed to record the hole:
7021 * ins->objectid == start position
7022 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7023 * ins->offset == the size of the hole.
7024 * Any available blocks before search_start are skipped.
7025 *
7026 * If there is no suitable free space, we will record the max size of
7027 * the free space extent currently.
7028 */
7029 static noinline int find_free_extent(struct btrfs_root *orig_root,
7030 u64 num_bytes, u64 empty_size,
7031 u64 hint_byte, struct btrfs_key *ins,
7032 u64 flags, int delalloc)
7033 {
7034 int ret = 0;
7035 struct btrfs_root *root = orig_root->fs_info->extent_root;
7036 struct btrfs_free_cluster *last_ptr = NULL;
7037 struct btrfs_block_group_cache *block_group = NULL;
7038 u64 search_start = 0;
7039 u64 max_extent_size = 0;
7040 u64 empty_cluster = 0;
7041 struct btrfs_space_info *space_info;
7042 int loop = 0;
7043 int index = __get_raid_index(flags);
7044 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
7045 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
7046 bool failed_cluster_refill = false;
7047 bool failed_alloc = false;
7048 bool use_cluster = true;
7049 bool have_caching_bg = false;
7050 bool orig_have_caching_bg = false;
7051 bool full_search = false;
7052
7053 WARN_ON(num_bytes < root->sectorsize);
7054 ins->type = BTRFS_EXTENT_ITEM_KEY;
7055 ins->objectid = 0;
7056 ins->offset = 0;
7057
7058 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7059
7060 space_info = __find_space_info(root->fs_info, flags);
7061 if (!space_info) {
7062 btrfs_err(root->fs_info, "No space info for %llu", flags);
7063 return -ENOSPC;
7064 }
7065
7066 /*
7067 * If our free space is heavily fragmented we may not be able to make
7068 * big contiguous allocations, so instead of doing the expensive search
7069 * for free space, simply return ENOSPC with our max_extent_size so we
7070 * can go ahead and search for a more manageable chunk.
7071 *
7072 * If our max_extent_size is large enough for our allocation simply
7073 * disable clustering since we will likely not be able to find enough
7074 * space to create a cluster and induce latency trying.
7075 */
7076 if (unlikely(space_info->max_extent_size)) {
7077 spin_lock(&space_info->lock);
7078 if (space_info->max_extent_size &&
7079 num_bytes > space_info->max_extent_size) {
7080 ins->offset = space_info->max_extent_size;
7081 spin_unlock(&space_info->lock);
7082 return -ENOSPC;
7083 } else if (space_info->max_extent_size) {
7084 use_cluster = false;
7085 }
7086 spin_unlock(&space_info->lock);
7087 }
7088
7089 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7090 if (last_ptr) {
7091 spin_lock(&last_ptr->lock);
7092 if (last_ptr->block_group)
7093 hint_byte = last_ptr->window_start;
7094 if (last_ptr->fragmented) {
7095 /*
7096 * We still set window_start so we can keep track of the
7097 * last place we found an allocation to try and save
7098 * some time.
7099 */
7100 hint_byte = last_ptr->window_start;
7101 use_cluster = false;
7102 }
7103 spin_unlock(&last_ptr->lock);
7104 }
7105
7106 search_start = max(search_start, first_logical_byte(root, 0));
7107 search_start = max(search_start, hint_byte);
7108 if (search_start == hint_byte) {
7109 block_group = btrfs_lookup_block_group(root->fs_info,
7110 search_start);
7111 /*
7112 * we don't want to use the block group if it doesn't match our
7113 * allocation bits, or if its not cached.
7114 *
7115 * However if we are re-searching with an ideal block group
7116 * picked out then we don't care that the block group is cached.
7117 */
7118 if (block_group && block_group_bits(block_group, flags) &&
7119 block_group->cached != BTRFS_CACHE_NO) {
7120 down_read(&space_info->groups_sem);
7121 if (list_empty(&block_group->list) ||
7122 block_group->ro) {
7123 /*
7124 * someone is removing this block group,
7125 * we can't jump into the have_block_group
7126 * target because our list pointers are not
7127 * valid
7128 */
7129 btrfs_put_block_group(block_group);
7130 up_read(&space_info->groups_sem);
7131 } else {
7132 index = get_block_group_index(block_group);
7133 btrfs_lock_block_group(block_group, delalloc);
7134 goto have_block_group;
7135 }
7136 } else if (block_group) {
7137 btrfs_put_block_group(block_group);
7138 }
7139 }
7140 search:
7141 have_caching_bg = false;
7142 if (index == 0 || index == __get_raid_index(flags))
7143 full_search = true;
7144 down_read(&space_info->groups_sem);
7145 list_for_each_entry(block_group, &space_info->block_groups[index],
7146 list) {
7147 u64 offset;
7148 int cached;
7149
7150 btrfs_grab_block_group(block_group, delalloc);
7151 search_start = block_group->key.objectid;
7152
7153 /*
7154 * this can happen if we end up cycling through all the
7155 * raid types, but we want to make sure we only allocate
7156 * for the proper type.
7157 */
7158 if (!block_group_bits(block_group, flags)) {
7159 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7160 BTRFS_BLOCK_GROUP_RAID1 |
7161 BTRFS_BLOCK_GROUP_RAID5 |
7162 BTRFS_BLOCK_GROUP_RAID6 |
7163 BTRFS_BLOCK_GROUP_RAID10;
7164
7165 /*
7166 * if they asked for extra copies and this block group
7167 * doesn't provide them, bail. This does allow us to
7168 * fill raid0 from raid1.
7169 */
7170 if ((flags & extra) && !(block_group->flags & extra))
7171 goto loop;
7172 }
7173
7174 have_block_group:
7175 cached = block_group_cache_done(block_group);
7176 if (unlikely(!cached)) {
7177 have_caching_bg = true;
7178 ret = cache_block_group(block_group, 0);
7179 BUG_ON(ret < 0);
7180 ret = 0;
7181 }
7182
7183 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7184 goto loop;
7185 if (unlikely(block_group->ro))
7186 goto loop;
7187
7188 /*
7189 * Ok we want to try and use the cluster allocator, so
7190 * lets look there
7191 */
7192 if (last_ptr && use_cluster) {
7193 struct btrfs_block_group_cache *used_block_group;
7194 unsigned long aligned_cluster;
7195 /*
7196 * the refill lock keeps out other
7197 * people trying to start a new cluster
7198 */
7199 used_block_group = btrfs_lock_cluster(block_group,
7200 last_ptr,
7201 delalloc);
7202 if (!used_block_group)
7203 goto refill_cluster;
7204
7205 if (used_block_group != block_group &&
7206 (used_block_group->ro ||
7207 !block_group_bits(used_block_group, flags)))
7208 goto release_cluster;
7209
7210 offset = btrfs_alloc_from_cluster(used_block_group,
7211 last_ptr,
7212 num_bytes,
7213 used_block_group->key.objectid,
7214 &max_extent_size);
7215 if (offset) {
7216 /* we have a block, we're done */
7217 spin_unlock(&last_ptr->refill_lock);
7218 trace_btrfs_reserve_extent_cluster(root,
7219 used_block_group,
7220 search_start, num_bytes);
7221 if (used_block_group != block_group) {
7222 btrfs_release_block_group(block_group,
7223 delalloc);
7224 block_group = used_block_group;
7225 }
7226 goto checks;
7227 }
7228
7229 WARN_ON(last_ptr->block_group != used_block_group);
7230 release_cluster:
7231 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7232 * set up a new clusters, so lets just skip it
7233 * and let the allocator find whatever block
7234 * it can find. If we reach this point, we
7235 * will have tried the cluster allocator
7236 * plenty of times and not have found
7237 * anything, so we are likely way too
7238 * fragmented for the clustering stuff to find
7239 * anything.
7240 *
7241 * However, if the cluster is taken from the
7242 * current block group, release the cluster
7243 * first, so that we stand a better chance of
7244 * succeeding in the unclustered
7245 * allocation. */
7246 if (loop >= LOOP_NO_EMPTY_SIZE &&
7247 used_block_group != block_group) {
7248 spin_unlock(&last_ptr->refill_lock);
7249 btrfs_release_block_group(used_block_group,
7250 delalloc);
7251 goto unclustered_alloc;
7252 }
7253
7254 /*
7255 * this cluster didn't work out, free it and
7256 * start over
7257 */
7258 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7259
7260 if (used_block_group != block_group)
7261 btrfs_release_block_group(used_block_group,
7262 delalloc);
7263 refill_cluster:
7264 if (loop >= LOOP_NO_EMPTY_SIZE) {
7265 spin_unlock(&last_ptr->refill_lock);
7266 goto unclustered_alloc;
7267 }
7268
7269 aligned_cluster = max_t(unsigned long,
7270 empty_cluster + empty_size,
7271 block_group->full_stripe_len);
7272
7273 /* allocate a cluster in this block group */
7274 ret = btrfs_find_space_cluster(root, block_group,
7275 last_ptr, search_start,
7276 num_bytes,
7277 aligned_cluster);
7278 if (ret == 0) {
7279 /*
7280 * now pull our allocation out of this
7281 * cluster
7282 */
7283 offset = btrfs_alloc_from_cluster(block_group,
7284 last_ptr,
7285 num_bytes,
7286 search_start,
7287 &max_extent_size);
7288 if (offset) {
7289 /* we found one, proceed */
7290 spin_unlock(&last_ptr->refill_lock);
7291 trace_btrfs_reserve_extent_cluster(root,
7292 block_group, search_start,
7293 num_bytes);
7294 goto checks;
7295 }
7296 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7297 && !failed_cluster_refill) {
7298 spin_unlock(&last_ptr->refill_lock);
7299
7300 failed_cluster_refill = true;
7301 wait_block_group_cache_progress(block_group,
7302 num_bytes + empty_cluster + empty_size);
7303 goto have_block_group;
7304 }
7305
7306 /*
7307 * at this point we either didn't find a cluster
7308 * or we weren't able to allocate a block from our
7309 * cluster. Free the cluster we've been trying
7310 * to use, and go to the next block group
7311 */
7312 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7313 spin_unlock(&last_ptr->refill_lock);
7314 goto loop;
7315 }
7316
7317 unclustered_alloc:
7318 /*
7319 * We are doing an unclustered alloc, set the fragmented flag so
7320 * we don't bother trying to setup a cluster again until we get
7321 * more space.
7322 */
7323 if (unlikely(last_ptr)) {
7324 spin_lock(&last_ptr->lock);
7325 last_ptr->fragmented = 1;
7326 spin_unlock(&last_ptr->lock);
7327 }
7328 spin_lock(&block_group->free_space_ctl->tree_lock);
7329 if (cached &&
7330 block_group->free_space_ctl->free_space <
7331 num_bytes + empty_cluster + empty_size) {
7332 if (block_group->free_space_ctl->free_space >
7333 max_extent_size)
7334 max_extent_size =
7335 block_group->free_space_ctl->free_space;
7336 spin_unlock(&block_group->free_space_ctl->tree_lock);
7337 goto loop;
7338 }
7339 spin_unlock(&block_group->free_space_ctl->tree_lock);
7340
7341 offset = btrfs_find_space_for_alloc(block_group, search_start,
7342 num_bytes, empty_size,
7343 &max_extent_size);
7344 /*
7345 * If we didn't find a chunk, and we haven't failed on this
7346 * block group before, and this block group is in the middle of
7347 * caching and we are ok with waiting, then go ahead and wait
7348 * for progress to be made, and set failed_alloc to true.
7349 *
7350 * If failed_alloc is true then we've already waited on this
7351 * block group once and should move on to the next block group.
7352 */
7353 if (!offset && !failed_alloc && !cached &&
7354 loop > LOOP_CACHING_NOWAIT) {
7355 wait_block_group_cache_progress(block_group,
7356 num_bytes + empty_size);
7357 failed_alloc = true;
7358 goto have_block_group;
7359 } else if (!offset) {
7360 goto loop;
7361 }
7362 checks:
7363 search_start = ALIGN(offset, root->stripesize);
7364
7365 /* move on to the next group */
7366 if (search_start + num_bytes >
7367 block_group->key.objectid + block_group->key.offset) {
7368 btrfs_add_free_space(block_group, offset, num_bytes);
7369 goto loop;
7370 }
7371
7372 if (offset < search_start)
7373 btrfs_add_free_space(block_group, offset,
7374 search_start - offset);
7375 BUG_ON(offset > search_start);
7376
7377 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7378 alloc_type, delalloc);
7379 if (ret == -EAGAIN) {
7380 btrfs_add_free_space(block_group, offset, num_bytes);
7381 goto loop;
7382 }
7383
7384 /* we are all good, lets return */
7385 ins->objectid = search_start;
7386 ins->offset = num_bytes;
7387
7388 trace_btrfs_reserve_extent(orig_root, block_group,
7389 search_start, num_bytes);
7390 btrfs_release_block_group(block_group, delalloc);
7391 break;
7392 loop:
7393 failed_cluster_refill = false;
7394 failed_alloc = false;
7395 BUG_ON(index != get_block_group_index(block_group));
7396 btrfs_release_block_group(block_group, delalloc);
7397 }
7398 up_read(&space_info->groups_sem);
7399
7400 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7401 && !orig_have_caching_bg)
7402 orig_have_caching_bg = true;
7403
7404 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7405 goto search;
7406
7407 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7408 goto search;
7409
7410 /*
7411 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7412 * caching kthreads as we move along
7413 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7414 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7415 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7416 * again
7417 */
7418 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7419 index = 0;
7420 if (loop == LOOP_CACHING_NOWAIT) {
7421 /*
7422 * We want to skip the LOOP_CACHING_WAIT step if we
7423 * don't have any unached bgs and we've alrelady done a
7424 * full search through.
7425 */
7426 if (orig_have_caching_bg || !full_search)
7427 loop = LOOP_CACHING_WAIT;
7428 else
7429 loop = LOOP_ALLOC_CHUNK;
7430 } else {
7431 loop++;
7432 }
7433
7434 if (loop == LOOP_ALLOC_CHUNK) {
7435 struct btrfs_trans_handle *trans;
7436 int exist = 0;
7437
7438 trans = current->journal_info;
7439 if (trans)
7440 exist = 1;
7441 else
7442 trans = btrfs_join_transaction(root);
7443
7444 if (IS_ERR(trans)) {
7445 ret = PTR_ERR(trans);
7446 goto out;
7447 }
7448
7449 ret = do_chunk_alloc(trans, root, flags,
7450 CHUNK_ALLOC_FORCE);
7451
7452 /*
7453 * If we can't allocate a new chunk we've already looped
7454 * through at least once, move on to the NO_EMPTY_SIZE
7455 * case.
7456 */
7457 if (ret == -ENOSPC)
7458 loop = LOOP_NO_EMPTY_SIZE;
7459
7460 /*
7461 * Do not bail out on ENOSPC since we
7462 * can do more things.
7463 */
7464 if (ret < 0 && ret != -ENOSPC)
7465 btrfs_abort_transaction(trans,
7466 root, ret);
7467 else
7468 ret = 0;
7469 if (!exist)
7470 btrfs_end_transaction(trans, root);
7471 if (ret)
7472 goto out;
7473 }
7474
7475 if (loop == LOOP_NO_EMPTY_SIZE) {
7476 /*
7477 * Don't loop again if we already have no empty_size and
7478 * no empty_cluster.
7479 */
7480 if (empty_size == 0 &&
7481 empty_cluster == 0) {
7482 ret = -ENOSPC;
7483 goto out;
7484 }
7485 empty_size = 0;
7486 empty_cluster = 0;
7487 }
7488
7489 goto search;
7490 } else if (!ins->objectid) {
7491 ret = -ENOSPC;
7492 } else if (ins->objectid) {
7493 if (!use_cluster && last_ptr) {
7494 spin_lock(&last_ptr->lock);
7495 last_ptr->window_start = ins->objectid;
7496 spin_unlock(&last_ptr->lock);
7497 }
7498 ret = 0;
7499 }
7500 out:
7501 if (ret == -ENOSPC) {
7502 spin_lock(&space_info->lock);
7503 space_info->max_extent_size = max_extent_size;
7504 spin_unlock(&space_info->lock);
7505 ins->offset = max_extent_size;
7506 }
7507 return ret;
7508 }
7509
7510 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7511 int dump_block_groups)
7512 {
7513 struct btrfs_block_group_cache *cache;
7514 int index = 0;
7515
7516 spin_lock(&info->lock);
7517 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7518 info->flags,
7519 info->total_bytes - info->bytes_used - info->bytes_pinned -
7520 info->bytes_reserved - info->bytes_readonly,
7521 (info->full) ? "" : "not ");
7522 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7523 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7524 info->total_bytes, info->bytes_used, info->bytes_pinned,
7525 info->bytes_reserved, info->bytes_may_use,
7526 info->bytes_readonly);
7527 spin_unlock(&info->lock);
7528
7529 if (!dump_block_groups)
7530 return;
7531
7532 down_read(&info->groups_sem);
7533 again:
7534 list_for_each_entry(cache, &info->block_groups[index], list) {
7535 spin_lock(&cache->lock);
7536 printk(KERN_INFO "BTRFS: "
7537 "block group %llu has %llu bytes, "
7538 "%llu used %llu pinned %llu reserved %s\n",
7539 cache->key.objectid, cache->key.offset,
7540 btrfs_block_group_used(&cache->item), cache->pinned,
7541 cache->reserved, cache->ro ? "[readonly]" : "");
7542 btrfs_dump_free_space(cache, bytes);
7543 spin_unlock(&cache->lock);
7544 }
7545 if (++index < BTRFS_NR_RAID_TYPES)
7546 goto again;
7547 up_read(&info->groups_sem);
7548 }
7549
7550 int btrfs_reserve_extent(struct btrfs_root *root,
7551 u64 num_bytes, u64 min_alloc_size,
7552 u64 empty_size, u64 hint_byte,
7553 struct btrfs_key *ins, int is_data, int delalloc)
7554 {
7555 bool final_tried = num_bytes == min_alloc_size;
7556 u64 flags;
7557 int ret;
7558
7559 flags = btrfs_get_alloc_profile(root, is_data);
7560 again:
7561 WARN_ON(num_bytes < root->sectorsize);
7562 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7563 flags, delalloc);
7564
7565 if (ret == -ENOSPC) {
7566 if (!final_tried && ins->offset) {
7567 num_bytes = min(num_bytes >> 1, ins->offset);
7568 num_bytes = round_down(num_bytes, root->sectorsize);
7569 num_bytes = max(num_bytes, min_alloc_size);
7570 if (num_bytes == min_alloc_size)
7571 final_tried = true;
7572 goto again;
7573 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7574 struct btrfs_space_info *sinfo;
7575
7576 sinfo = __find_space_info(root->fs_info, flags);
7577 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7578 flags, num_bytes);
7579 if (sinfo)
7580 dump_space_info(sinfo, num_bytes, 1);
7581 }
7582 }
7583
7584 return ret;
7585 }
7586
7587 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7588 u64 start, u64 len,
7589 int pin, int delalloc)
7590 {
7591 struct btrfs_block_group_cache *cache;
7592 int ret = 0;
7593
7594 cache = btrfs_lookup_block_group(root->fs_info, start);
7595 if (!cache) {
7596 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7597 start);
7598 return -ENOSPC;
7599 }
7600
7601 if (pin)
7602 pin_down_extent(root, cache, start, len, 1);
7603 else {
7604 if (btrfs_test_opt(root, DISCARD))
7605 ret = btrfs_discard_extent(root, start, len, NULL);
7606 btrfs_add_free_space(cache, start, len);
7607 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7608 }
7609
7610 btrfs_put_block_group(cache);
7611
7612 trace_btrfs_reserved_extent_free(root, start, len);
7613
7614 return ret;
7615 }
7616
7617 int btrfs_free_reserved_extent(struct btrfs_root *root,
7618 u64 start, u64 len, int delalloc)
7619 {
7620 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7621 }
7622
7623 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7624 u64 start, u64 len)
7625 {
7626 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7627 }
7628
7629 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7630 struct btrfs_root *root,
7631 u64 parent, u64 root_objectid,
7632 u64 flags, u64 owner, u64 offset,
7633 struct btrfs_key *ins, int ref_mod)
7634 {
7635 int ret;
7636 struct btrfs_fs_info *fs_info = root->fs_info;
7637 struct btrfs_extent_item *extent_item;
7638 struct btrfs_extent_inline_ref *iref;
7639 struct btrfs_path *path;
7640 struct extent_buffer *leaf;
7641 int type;
7642 u32 size;
7643
7644 if (parent > 0)
7645 type = BTRFS_SHARED_DATA_REF_KEY;
7646 else
7647 type = BTRFS_EXTENT_DATA_REF_KEY;
7648
7649 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7650
7651 path = btrfs_alloc_path();
7652 if (!path)
7653 return -ENOMEM;
7654
7655 path->leave_spinning = 1;
7656 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7657 ins, size);
7658 if (ret) {
7659 btrfs_free_path(path);
7660 return ret;
7661 }
7662
7663 leaf = path->nodes[0];
7664 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7665 struct btrfs_extent_item);
7666 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7667 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7668 btrfs_set_extent_flags(leaf, extent_item,
7669 flags | BTRFS_EXTENT_FLAG_DATA);
7670
7671 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7672 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7673 if (parent > 0) {
7674 struct btrfs_shared_data_ref *ref;
7675 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7676 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7677 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7678 } else {
7679 struct btrfs_extent_data_ref *ref;
7680 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7681 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7682 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7683 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7684 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7685 }
7686
7687 btrfs_mark_buffer_dirty(path->nodes[0]);
7688 btrfs_free_path(path);
7689
7690 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7691 if (ret) { /* -ENOENT, logic error */
7692 btrfs_err(fs_info, "update block group failed for %llu %llu",
7693 ins->objectid, ins->offset);
7694 BUG();
7695 }
7696 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7697 return ret;
7698 }
7699
7700 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7701 struct btrfs_root *root,
7702 u64 parent, u64 root_objectid,
7703 u64 flags, struct btrfs_disk_key *key,
7704 int level, struct btrfs_key *ins)
7705 {
7706 int ret;
7707 struct btrfs_fs_info *fs_info = root->fs_info;
7708 struct btrfs_extent_item *extent_item;
7709 struct btrfs_tree_block_info *block_info;
7710 struct btrfs_extent_inline_ref *iref;
7711 struct btrfs_path *path;
7712 struct extent_buffer *leaf;
7713 u32 size = sizeof(*extent_item) + sizeof(*iref);
7714 u64 num_bytes = ins->offset;
7715 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7716 SKINNY_METADATA);
7717
7718 if (!skinny_metadata)
7719 size += sizeof(*block_info);
7720
7721 path = btrfs_alloc_path();
7722 if (!path) {
7723 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7724 root->nodesize);
7725 return -ENOMEM;
7726 }
7727
7728 path->leave_spinning = 1;
7729 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7730 ins, size);
7731 if (ret) {
7732 btrfs_free_path(path);
7733 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7734 root->nodesize);
7735 return ret;
7736 }
7737
7738 leaf = path->nodes[0];
7739 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7740 struct btrfs_extent_item);
7741 btrfs_set_extent_refs(leaf, extent_item, 1);
7742 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7743 btrfs_set_extent_flags(leaf, extent_item,
7744 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7745
7746 if (skinny_metadata) {
7747 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7748 num_bytes = root->nodesize;
7749 } else {
7750 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7751 btrfs_set_tree_block_key(leaf, block_info, key);
7752 btrfs_set_tree_block_level(leaf, block_info, level);
7753 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7754 }
7755
7756 if (parent > 0) {
7757 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7758 btrfs_set_extent_inline_ref_type(leaf, iref,
7759 BTRFS_SHARED_BLOCK_REF_KEY);
7760 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7761 } else {
7762 btrfs_set_extent_inline_ref_type(leaf, iref,
7763 BTRFS_TREE_BLOCK_REF_KEY);
7764 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7765 }
7766
7767 btrfs_mark_buffer_dirty(leaf);
7768 btrfs_free_path(path);
7769
7770 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7771 1);
7772 if (ret) { /* -ENOENT, logic error */
7773 btrfs_err(fs_info, "update block group failed for %llu %llu",
7774 ins->objectid, ins->offset);
7775 BUG();
7776 }
7777
7778 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7779 return ret;
7780 }
7781
7782 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7783 struct btrfs_root *root,
7784 u64 root_objectid, u64 owner,
7785 u64 offset, u64 ram_bytes,
7786 struct btrfs_key *ins)
7787 {
7788 int ret;
7789
7790 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7791
7792 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7793 ins->offset, 0,
7794 root_objectid, owner, offset,
7795 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7796 NULL);
7797 return ret;
7798 }
7799
7800 /*
7801 * this is used by the tree logging recovery code. It records that
7802 * an extent has been allocated and makes sure to clear the free
7803 * space cache bits as well
7804 */
7805 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7806 struct btrfs_root *root,
7807 u64 root_objectid, u64 owner, u64 offset,
7808 struct btrfs_key *ins)
7809 {
7810 int ret;
7811 struct btrfs_block_group_cache *block_group;
7812
7813 /*
7814 * Mixed block groups will exclude before processing the log so we only
7815 * need to do the exlude dance if this fs isn't mixed.
7816 */
7817 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7818 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7819 if (ret)
7820 return ret;
7821 }
7822
7823 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7824 if (!block_group)
7825 return -EINVAL;
7826
7827 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7828 RESERVE_ALLOC_NO_ACCOUNT, 0);
7829 BUG_ON(ret); /* logic error */
7830 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7831 0, owner, offset, ins, 1);
7832 btrfs_put_block_group(block_group);
7833 return ret;
7834 }
7835
7836 static struct extent_buffer *
7837 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7838 u64 bytenr, int level)
7839 {
7840 struct extent_buffer *buf;
7841
7842 buf = btrfs_find_create_tree_block(root, bytenr);
7843 if (!buf)
7844 return ERR_PTR(-ENOMEM);
7845 btrfs_set_header_generation(buf, trans->transid);
7846 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7847 btrfs_tree_lock(buf);
7848 clean_tree_block(trans, root->fs_info, buf);
7849 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7850
7851 btrfs_set_lock_blocking(buf);
7852 btrfs_set_buffer_uptodate(buf);
7853
7854 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7855 buf->log_index = root->log_transid % 2;
7856 /*
7857 * we allow two log transactions at a time, use different
7858 * EXENT bit to differentiate dirty pages.
7859 */
7860 if (buf->log_index == 0)
7861 set_extent_dirty(&root->dirty_log_pages, buf->start,
7862 buf->start + buf->len - 1, GFP_NOFS);
7863 else
7864 set_extent_new(&root->dirty_log_pages, buf->start,
7865 buf->start + buf->len - 1, GFP_NOFS);
7866 } else {
7867 buf->log_index = -1;
7868 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7869 buf->start + buf->len - 1, GFP_NOFS);
7870 }
7871 trans->blocks_used++;
7872 /* this returns a buffer locked for blocking */
7873 return buf;
7874 }
7875
7876 static struct btrfs_block_rsv *
7877 use_block_rsv(struct btrfs_trans_handle *trans,
7878 struct btrfs_root *root, u32 blocksize)
7879 {
7880 struct btrfs_block_rsv *block_rsv;
7881 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7882 int ret;
7883 bool global_updated = false;
7884
7885 block_rsv = get_block_rsv(trans, root);
7886
7887 if (unlikely(block_rsv->size == 0))
7888 goto try_reserve;
7889 again:
7890 ret = block_rsv_use_bytes(block_rsv, blocksize);
7891 if (!ret)
7892 return block_rsv;
7893
7894 if (block_rsv->failfast)
7895 return ERR_PTR(ret);
7896
7897 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7898 global_updated = true;
7899 update_global_block_rsv(root->fs_info);
7900 goto again;
7901 }
7902
7903 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7904 static DEFINE_RATELIMIT_STATE(_rs,
7905 DEFAULT_RATELIMIT_INTERVAL * 10,
7906 /*DEFAULT_RATELIMIT_BURST*/ 1);
7907 if (__ratelimit(&_rs))
7908 WARN(1, KERN_DEBUG
7909 "BTRFS: block rsv returned %d\n", ret);
7910 }
7911 try_reserve:
7912 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7913 BTRFS_RESERVE_NO_FLUSH);
7914 if (!ret)
7915 return block_rsv;
7916 /*
7917 * If we couldn't reserve metadata bytes try and use some from
7918 * the global reserve if its space type is the same as the global
7919 * reservation.
7920 */
7921 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7922 block_rsv->space_info == global_rsv->space_info) {
7923 ret = block_rsv_use_bytes(global_rsv, blocksize);
7924 if (!ret)
7925 return global_rsv;
7926 }
7927 return ERR_PTR(ret);
7928 }
7929
7930 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7931 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7932 {
7933 block_rsv_add_bytes(block_rsv, blocksize, 0);
7934 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7935 }
7936
7937 /*
7938 * finds a free extent and does all the dirty work required for allocation
7939 * returns the tree buffer or an ERR_PTR on error.
7940 */
7941 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7942 struct btrfs_root *root,
7943 u64 parent, u64 root_objectid,
7944 struct btrfs_disk_key *key, int level,
7945 u64 hint, u64 empty_size)
7946 {
7947 struct btrfs_key ins;
7948 struct btrfs_block_rsv *block_rsv;
7949 struct extent_buffer *buf;
7950 struct btrfs_delayed_extent_op *extent_op;
7951 u64 flags = 0;
7952 int ret;
7953 u32 blocksize = root->nodesize;
7954 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7955 SKINNY_METADATA);
7956
7957 if (btrfs_test_is_dummy_root(root)) {
7958 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7959 level);
7960 if (!IS_ERR(buf))
7961 root->alloc_bytenr += blocksize;
7962 return buf;
7963 }
7964
7965 block_rsv = use_block_rsv(trans, root, blocksize);
7966 if (IS_ERR(block_rsv))
7967 return ERR_CAST(block_rsv);
7968
7969 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7970 empty_size, hint, &ins, 0, 0);
7971 if (ret)
7972 goto out_unuse;
7973
7974 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7975 if (IS_ERR(buf)) {
7976 ret = PTR_ERR(buf);
7977 goto out_free_reserved;
7978 }
7979
7980 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7981 if (parent == 0)
7982 parent = ins.objectid;
7983 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7984 } else
7985 BUG_ON(parent > 0);
7986
7987 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7988 extent_op = btrfs_alloc_delayed_extent_op();
7989 if (!extent_op) {
7990 ret = -ENOMEM;
7991 goto out_free_buf;
7992 }
7993 if (key)
7994 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7995 else
7996 memset(&extent_op->key, 0, sizeof(extent_op->key));
7997 extent_op->flags_to_set = flags;
7998 if (skinny_metadata)
7999 extent_op->update_key = 0;
8000 else
8001 extent_op->update_key = 1;
8002 extent_op->update_flags = 1;
8003 extent_op->is_data = 0;
8004 extent_op->level = level;
8005
8006 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8007 ins.objectid, ins.offset,
8008 parent, root_objectid, level,
8009 BTRFS_ADD_DELAYED_EXTENT,
8010 extent_op);
8011 if (ret)
8012 goto out_free_delayed;
8013 }
8014 return buf;
8015
8016 out_free_delayed:
8017 btrfs_free_delayed_extent_op(extent_op);
8018 out_free_buf:
8019 free_extent_buffer(buf);
8020 out_free_reserved:
8021 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8022 out_unuse:
8023 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8024 return ERR_PTR(ret);
8025 }
8026
8027 struct walk_control {
8028 u64 refs[BTRFS_MAX_LEVEL];
8029 u64 flags[BTRFS_MAX_LEVEL];
8030 struct btrfs_key update_progress;
8031 int stage;
8032 int level;
8033 int shared_level;
8034 int update_ref;
8035 int keep_locks;
8036 int reada_slot;
8037 int reada_count;
8038 int for_reloc;
8039 };
8040
8041 #define DROP_REFERENCE 1
8042 #define UPDATE_BACKREF 2
8043
8044 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8045 struct btrfs_root *root,
8046 struct walk_control *wc,
8047 struct btrfs_path *path)
8048 {
8049 u64 bytenr;
8050 u64 generation;
8051 u64 refs;
8052 u64 flags;
8053 u32 nritems;
8054 u32 blocksize;
8055 struct btrfs_key key;
8056 struct extent_buffer *eb;
8057 int ret;
8058 int slot;
8059 int nread = 0;
8060
8061 if (path->slots[wc->level] < wc->reada_slot) {
8062 wc->reada_count = wc->reada_count * 2 / 3;
8063 wc->reada_count = max(wc->reada_count, 2);
8064 } else {
8065 wc->reada_count = wc->reada_count * 3 / 2;
8066 wc->reada_count = min_t(int, wc->reada_count,
8067 BTRFS_NODEPTRS_PER_BLOCK(root));
8068 }
8069
8070 eb = path->nodes[wc->level];
8071 nritems = btrfs_header_nritems(eb);
8072 blocksize = root->nodesize;
8073
8074 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8075 if (nread >= wc->reada_count)
8076 break;
8077
8078 cond_resched();
8079 bytenr = btrfs_node_blockptr(eb, slot);
8080 generation = btrfs_node_ptr_generation(eb, slot);
8081
8082 if (slot == path->slots[wc->level])
8083 goto reada;
8084
8085 if (wc->stage == UPDATE_BACKREF &&
8086 generation <= root->root_key.offset)
8087 continue;
8088
8089 /* We don't lock the tree block, it's OK to be racy here */
8090 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8091 wc->level - 1, 1, &refs,
8092 &flags);
8093 /* We don't care about errors in readahead. */
8094 if (ret < 0)
8095 continue;
8096 BUG_ON(refs == 0);
8097
8098 if (wc->stage == DROP_REFERENCE) {
8099 if (refs == 1)
8100 goto reada;
8101
8102 if (wc->level == 1 &&
8103 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8104 continue;
8105 if (!wc->update_ref ||
8106 generation <= root->root_key.offset)
8107 continue;
8108 btrfs_node_key_to_cpu(eb, &key, slot);
8109 ret = btrfs_comp_cpu_keys(&key,
8110 &wc->update_progress);
8111 if (ret < 0)
8112 continue;
8113 } else {
8114 if (wc->level == 1 &&
8115 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8116 continue;
8117 }
8118 reada:
8119 readahead_tree_block(root, bytenr);
8120 nread++;
8121 }
8122 wc->reada_slot = slot;
8123 }
8124
8125 /*
8126 * These may not be seen by the usual inc/dec ref code so we have to
8127 * add them here.
8128 */
8129 static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8130 struct btrfs_root *root, u64 bytenr,
8131 u64 num_bytes)
8132 {
8133 struct btrfs_qgroup_extent_record *qrecord;
8134 struct btrfs_delayed_ref_root *delayed_refs;
8135
8136 qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8137 if (!qrecord)
8138 return -ENOMEM;
8139
8140 qrecord->bytenr = bytenr;
8141 qrecord->num_bytes = num_bytes;
8142 qrecord->old_roots = NULL;
8143
8144 delayed_refs = &trans->transaction->delayed_refs;
8145 spin_lock(&delayed_refs->lock);
8146 if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8147 kfree(qrecord);
8148 spin_unlock(&delayed_refs->lock);
8149
8150 return 0;
8151 }
8152
8153 static int account_leaf_items(struct btrfs_trans_handle *trans,
8154 struct btrfs_root *root,
8155 struct extent_buffer *eb)
8156 {
8157 int nr = btrfs_header_nritems(eb);
8158 int i, extent_type, ret;
8159 struct btrfs_key key;
8160 struct btrfs_file_extent_item *fi;
8161 u64 bytenr, num_bytes;
8162
8163 /* We can be called directly from walk_up_proc() */
8164 if (!root->fs_info->quota_enabled)
8165 return 0;
8166
8167 for (i = 0; i < nr; i++) {
8168 btrfs_item_key_to_cpu(eb, &key, i);
8169
8170 if (key.type != BTRFS_EXTENT_DATA_KEY)
8171 continue;
8172
8173 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8174 /* filter out non qgroup-accountable extents */
8175 extent_type = btrfs_file_extent_type(eb, fi);
8176
8177 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8178 continue;
8179
8180 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8181 if (!bytenr)
8182 continue;
8183
8184 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8185
8186 ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8187 if (ret)
8188 return ret;
8189 }
8190 return 0;
8191 }
8192
8193 /*
8194 * Walk up the tree from the bottom, freeing leaves and any interior
8195 * nodes which have had all slots visited. If a node (leaf or
8196 * interior) is freed, the node above it will have it's slot
8197 * incremented. The root node will never be freed.
8198 *
8199 * At the end of this function, we should have a path which has all
8200 * slots incremented to the next position for a search. If we need to
8201 * read a new node it will be NULL and the node above it will have the
8202 * correct slot selected for a later read.
8203 *
8204 * If we increment the root nodes slot counter past the number of
8205 * elements, 1 is returned to signal completion of the search.
8206 */
8207 static int adjust_slots_upwards(struct btrfs_root *root,
8208 struct btrfs_path *path, int root_level)
8209 {
8210 int level = 0;
8211 int nr, slot;
8212 struct extent_buffer *eb;
8213
8214 if (root_level == 0)
8215 return 1;
8216
8217 while (level <= root_level) {
8218 eb = path->nodes[level];
8219 nr = btrfs_header_nritems(eb);
8220 path->slots[level]++;
8221 slot = path->slots[level];
8222 if (slot >= nr || level == 0) {
8223 /*
8224 * Don't free the root - we will detect this
8225 * condition after our loop and return a
8226 * positive value for caller to stop walking the tree.
8227 */
8228 if (level != root_level) {
8229 btrfs_tree_unlock_rw(eb, path->locks[level]);
8230 path->locks[level] = 0;
8231
8232 free_extent_buffer(eb);
8233 path->nodes[level] = NULL;
8234 path->slots[level] = 0;
8235 }
8236 } else {
8237 /*
8238 * We have a valid slot to walk back down
8239 * from. Stop here so caller can process these
8240 * new nodes.
8241 */
8242 break;
8243 }
8244
8245 level++;
8246 }
8247
8248 eb = path->nodes[root_level];
8249 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8250 return 1;
8251
8252 return 0;
8253 }
8254
8255 /*
8256 * root_eb is the subtree root and is locked before this function is called.
8257 */
8258 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8259 struct btrfs_root *root,
8260 struct extent_buffer *root_eb,
8261 u64 root_gen,
8262 int root_level)
8263 {
8264 int ret = 0;
8265 int level;
8266 struct extent_buffer *eb = root_eb;
8267 struct btrfs_path *path = NULL;
8268
8269 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8270 BUG_ON(root_eb == NULL);
8271
8272 if (!root->fs_info->quota_enabled)
8273 return 0;
8274
8275 if (!extent_buffer_uptodate(root_eb)) {
8276 ret = btrfs_read_buffer(root_eb, root_gen);
8277 if (ret)
8278 goto out;
8279 }
8280
8281 if (root_level == 0) {
8282 ret = account_leaf_items(trans, root, root_eb);
8283 goto out;
8284 }
8285
8286 path = btrfs_alloc_path();
8287 if (!path)
8288 return -ENOMEM;
8289
8290 /*
8291 * Walk down the tree. Missing extent blocks are filled in as
8292 * we go. Metadata is accounted every time we read a new
8293 * extent block.
8294 *
8295 * When we reach a leaf, we account for file extent items in it,
8296 * walk back up the tree (adjusting slot pointers as we go)
8297 * and restart the search process.
8298 */
8299 extent_buffer_get(root_eb); /* For path */
8300 path->nodes[root_level] = root_eb;
8301 path->slots[root_level] = 0;
8302 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8303 walk_down:
8304 level = root_level;
8305 while (level >= 0) {
8306 if (path->nodes[level] == NULL) {
8307 int parent_slot;
8308 u64 child_gen;
8309 u64 child_bytenr;
8310
8311 /* We need to get child blockptr/gen from
8312 * parent before we can read it. */
8313 eb = path->nodes[level + 1];
8314 parent_slot = path->slots[level + 1];
8315 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8316 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8317
8318 eb = read_tree_block(root, child_bytenr, child_gen);
8319 if (IS_ERR(eb)) {
8320 ret = PTR_ERR(eb);
8321 goto out;
8322 } else if (!extent_buffer_uptodate(eb)) {
8323 free_extent_buffer(eb);
8324 ret = -EIO;
8325 goto out;
8326 }
8327
8328 path->nodes[level] = eb;
8329 path->slots[level] = 0;
8330
8331 btrfs_tree_read_lock(eb);
8332 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8333 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8334
8335 ret = record_one_subtree_extent(trans, root, child_bytenr,
8336 root->nodesize);
8337 if (ret)
8338 goto out;
8339 }
8340
8341 if (level == 0) {
8342 ret = account_leaf_items(trans, root, path->nodes[level]);
8343 if (ret)
8344 goto out;
8345
8346 /* Nonzero return here means we completed our search */
8347 ret = adjust_slots_upwards(root, path, root_level);
8348 if (ret)
8349 break;
8350
8351 /* Restart search with new slots */
8352 goto walk_down;
8353 }
8354
8355 level--;
8356 }
8357
8358 ret = 0;
8359 out:
8360 btrfs_free_path(path);
8361
8362 return ret;
8363 }
8364
8365 /*
8366 * helper to process tree block while walking down the tree.
8367 *
8368 * when wc->stage == UPDATE_BACKREF, this function updates
8369 * back refs for pointers in the block.
8370 *
8371 * NOTE: return value 1 means we should stop walking down.
8372 */
8373 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8374 struct btrfs_root *root,
8375 struct btrfs_path *path,
8376 struct walk_control *wc, int lookup_info)
8377 {
8378 int level = wc->level;
8379 struct extent_buffer *eb = path->nodes[level];
8380 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8381 int ret;
8382
8383 if (wc->stage == UPDATE_BACKREF &&
8384 btrfs_header_owner(eb) != root->root_key.objectid)
8385 return 1;
8386
8387 /*
8388 * when reference count of tree block is 1, it won't increase
8389 * again. once full backref flag is set, we never clear it.
8390 */
8391 if (lookup_info &&
8392 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8393 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8394 BUG_ON(!path->locks[level]);
8395 ret = btrfs_lookup_extent_info(trans, root,
8396 eb->start, level, 1,
8397 &wc->refs[level],
8398 &wc->flags[level]);
8399 BUG_ON(ret == -ENOMEM);
8400 if (ret)
8401 return ret;
8402 BUG_ON(wc->refs[level] == 0);
8403 }
8404
8405 if (wc->stage == DROP_REFERENCE) {
8406 if (wc->refs[level] > 1)
8407 return 1;
8408
8409 if (path->locks[level] && !wc->keep_locks) {
8410 btrfs_tree_unlock_rw(eb, path->locks[level]);
8411 path->locks[level] = 0;
8412 }
8413 return 0;
8414 }
8415
8416 /* wc->stage == UPDATE_BACKREF */
8417 if (!(wc->flags[level] & flag)) {
8418 BUG_ON(!path->locks[level]);
8419 ret = btrfs_inc_ref(trans, root, eb, 1);
8420 BUG_ON(ret); /* -ENOMEM */
8421 ret = btrfs_dec_ref(trans, root, eb, 0);
8422 BUG_ON(ret); /* -ENOMEM */
8423 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8424 eb->len, flag,
8425 btrfs_header_level(eb), 0);
8426 BUG_ON(ret); /* -ENOMEM */
8427 wc->flags[level] |= flag;
8428 }
8429
8430 /*
8431 * the block is shared by multiple trees, so it's not good to
8432 * keep the tree lock
8433 */
8434 if (path->locks[level] && level > 0) {
8435 btrfs_tree_unlock_rw(eb, path->locks[level]);
8436 path->locks[level] = 0;
8437 }
8438 return 0;
8439 }
8440
8441 /*
8442 * helper to process tree block pointer.
8443 *
8444 * when wc->stage == DROP_REFERENCE, this function checks
8445 * reference count of the block pointed to. if the block
8446 * is shared and we need update back refs for the subtree
8447 * rooted at the block, this function changes wc->stage to
8448 * UPDATE_BACKREF. if the block is shared and there is no
8449 * need to update back, this function drops the reference
8450 * to the block.
8451 *
8452 * NOTE: return value 1 means we should stop walking down.
8453 */
8454 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8455 struct btrfs_root *root,
8456 struct btrfs_path *path,
8457 struct walk_control *wc, int *lookup_info)
8458 {
8459 u64 bytenr;
8460 u64 generation;
8461 u64 parent;
8462 u32 blocksize;
8463 struct btrfs_key key;
8464 struct extent_buffer *next;
8465 int level = wc->level;
8466 int reada = 0;
8467 int ret = 0;
8468 bool need_account = false;
8469
8470 generation = btrfs_node_ptr_generation(path->nodes[level],
8471 path->slots[level]);
8472 /*
8473 * if the lower level block was created before the snapshot
8474 * was created, we know there is no need to update back refs
8475 * for the subtree
8476 */
8477 if (wc->stage == UPDATE_BACKREF &&
8478 generation <= root->root_key.offset) {
8479 *lookup_info = 1;
8480 return 1;
8481 }
8482
8483 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8484 blocksize = root->nodesize;
8485
8486 next = btrfs_find_tree_block(root->fs_info, bytenr);
8487 if (!next) {
8488 next = btrfs_find_create_tree_block(root, bytenr);
8489 if (!next)
8490 return -ENOMEM;
8491 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8492 level - 1);
8493 reada = 1;
8494 }
8495 btrfs_tree_lock(next);
8496 btrfs_set_lock_blocking(next);
8497
8498 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8499 &wc->refs[level - 1],
8500 &wc->flags[level - 1]);
8501 if (ret < 0) {
8502 btrfs_tree_unlock(next);
8503 return ret;
8504 }
8505
8506 if (unlikely(wc->refs[level - 1] == 0)) {
8507 btrfs_err(root->fs_info, "Missing references.");
8508 BUG();
8509 }
8510 *lookup_info = 0;
8511
8512 if (wc->stage == DROP_REFERENCE) {
8513 if (wc->refs[level - 1] > 1) {
8514 need_account = true;
8515 if (level == 1 &&
8516 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8517 goto skip;
8518
8519 if (!wc->update_ref ||
8520 generation <= root->root_key.offset)
8521 goto skip;
8522
8523 btrfs_node_key_to_cpu(path->nodes[level], &key,
8524 path->slots[level]);
8525 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8526 if (ret < 0)
8527 goto skip;
8528
8529 wc->stage = UPDATE_BACKREF;
8530 wc->shared_level = level - 1;
8531 }
8532 } else {
8533 if (level == 1 &&
8534 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8535 goto skip;
8536 }
8537
8538 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8539 btrfs_tree_unlock(next);
8540 free_extent_buffer(next);
8541 next = NULL;
8542 *lookup_info = 1;
8543 }
8544
8545 if (!next) {
8546 if (reada && level == 1)
8547 reada_walk_down(trans, root, wc, path);
8548 next = read_tree_block(root, bytenr, generation);
8549 if (IS_ERR(next)) {
8550 return PTR_ERR(next);
8551 } else if (!extent_buffer_uptodate(next)) {
8552 free_extent_buffer(next);
8553 return -EIO;
8554 }
8555 btrfs_tree_lock(next);
8556 btrfs_set_lock_blocking(next);
8557 }
8558
8559 level--;
8560 BUG_ON(level != btrfs_header_level(next));
8561 path->nodes[level] = next;
8562 path->slots[level] = 0;
8563 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8564 wc->level = level;
8565 if (wc->level == 1)
8566 wc->reada_slot = 0;
8567 return 0;
8568 skip:
8569 wc->refs[level - 1] = 0;
8570 wc->flags[level - 1] = 0;
8571 if (wc->stage == DROP_REFERENCE) {
8572 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8573 parent = path->nodes[level]->start;
8574 } else {
8575 BUG_ON(root->root_key.objectid !=
8576 btrfs_header_owner(path->nodes[level]));
8577 parent = 0;
8578 }
8579
8580 if (need_account) {
8581 ret = account_shared_subtree(trans, root, next,
8582 generation, level - 1);
8583 if (ret) {
8584 btrfs_err_rl(root->fs_info,
8585 "Error "
8586 "%d accounting shared subtree. Quota "
8587 "is out of sync, rescan required.",
8588 ret);
8589 }
8590 }
8591 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8592 root->root_key.objectid, level - 1, 0);
8593 BUG_ON(ret); /* -ENOMEM */
8594 }
8595 btrfs_tree_unlock(next);
8596 free_extent_buffer(next);
8597 *lookup_info = 1;
8598 return 1;
8599 }
8600
8601 /*
8602 * helper to process tree block while walking up the tree.
8603 *
8604 * when wc->stage == DROP_REFERENCE, this function drops
8605 * reference count on the block.
8606 *
8607 * when wc->stage == UPDATE_BACKREF, this function changes
8608 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8609 * to UPDATE_BACKREF previously while processing the block.
8610 *
8611 * NOTE: return value 1 means we should stop walking up.
8612 */
8613 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8614 struct btrfs_root *root,
8615 struct btrfs_path *path,
8616 struct walk_control *wc)
8617 {
8618 int ret;
8619 int level = wc->level;
8620 struct extent_buffer *eb = path->nodes[level];
8621 u64 parent = 0;
8622
8623 if (wc->stage == UPDATE_BACKREF) {
8624 BUG_ON(wc->shared_level < level);
8625 if (level < wc->shared_level)
8626 goto out;
8627
8628 ret = find_next_key(path, level + 1, &wc->update_progress);
8629 if (ret > 0)
8630 wc->update_ref = 0;
8631
8632 wc->stage = DROP_REFERENCE;
8633 wc->shared_level = -1;
8634 path->slots[level] = 0;
8635
8636 /*
8637 * check reference count again if the block isn't locked.
8638 * we should start walking down the tree again if reference
8639 * count is one.
8640 */
8641 if (!path->locks[level]) {
8642 BUG_ON(level == 0);
8643 btrfs_tree_lock(eb);
8644 btrfs_set_lock_blocking(eb);
8645 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8646
8647 ret = btrfs_lookup_extent_info(trans, root,
8648 eb->start, level, 1,
8649 &wc->refs[level],
8650 &wc->flags[level]);
8651 if (ret < 0) {
8652 btrfs_tree_unlock_rw(eb, path->locks[level]);
8653 path->locks[level] = 0;
8654 return ret;
8655 }
8656 BUG_ON(wc->refs[level] == 0);
8657 if (wc->refs[level] == 1) {
8658 btrfs_tree_unlock_rw(eb, path->locks[level]);
8659 path->locks[level] = 0;
8660 return 1;
8661 }
8662 }
8663 }
8664
8665 /* wc->stage == DROP_REFERENCE */
8666 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8667
8668 if (wc->refs[level] == 1) {
8669 if (level == 0) {
8670 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8671 ret = btrfs_dec_ref(trans, root, eb, 1);
8672 else
8673 ret = btrfs_dec_ref(trans, root, eb, 0);
8674 BUG_ON(ret); /* -ENOMEM */
8675 ret = account_leaf_items(trans, root, eb);
8676 if (ret) {
8677 btrfs_err_rl(root->fs_info,
8678 "error "
8679 "%d accounting leaf items. Quota "
8680 "is out of sync, rescan required.",
8681 ret);
8682 }
8683 }
8684 /* make block locked assertion in clean_tree_block happy */
8685 if (!path->locks[level] &&
8686 btrfs_header_generation(eb) == trans->transid) {
8687 btrfs_tree_lock(eb);
8688 btrfs_set_lock_blocking(eb);
8689 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8690 }
8691 clean_tree_block(trans, root->fs_info, eb);
8692 }
8693
8694 if (eb == root->node) {
8695 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8696 parent = eb->start;
8697 else
8698 BUG_ON(root->root_key.objectid !=
8699 btrfs_header_owner(eb));
8700 } else {
8701 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8702 parent = path->nodes[level + 1]->start;
8703 else
8704 BUG_ON(root->root_key.objectid !=
8705 btrfs_header_owner(path->nodes[level + 1]));
8706 }
8707
8708 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8709 out:
8710 wc->refs[level] = 0;
8711 wc->flags[level] = 0;
8712 return 0;
8713 }
8714
8715 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8716 struct btrfs_root *root,
8717 struct btrfs_path *path,
8718 struct walk_control *wc)
8719 {
8720 int level = wc->level;
8721 int lookup_info = 1;
8722 int ret;
8723
8724 while (level >= 0) {
8725 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8726 if (ret > 0)
8727 break;
8728
8729 if (level == 0)
8730 break;
8731
8732 if (path->slots[level] >=
8733 btrfs_header_nritems(path->nodes[level]))
8734 break;
8735
8736 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8737 if (ret > 0) {
8738 path->slots[level]++;
8739 continue;
8740 } else if (ret < 0)
8741 return ret;
8742 level = wc->level;
8743 }
8744 return 0;
8745 }
8746
8747 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8748 struct btrfs_root *root,
8749 struct btrfs_path *path,
8750 struct walk_control *wc, int max_level)
8751 {
8752 int level = wc->level;
8753 int ret;
8754
8755 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8756 while (level < max_level && path->nodes[level]) {
8757 wc->level = level;
8758 if (path->slots[level] + 1 <
8759 btrfs_header_nritems(path->nodes[level])) {
8760 path->slots[level]++;
8761 return 0;
8762 } else {
8763 ret = walk_up_proc(trans, root, path, wc);
8764 if (ret > 0)
8765 return 0;
8766
8767 if (path->locks[level]) {
8768 btrfs_tree_unlock_rw(path->nodes[level],
8769 path->locks[level]);
8770 path->locks[level] = 0;
8771 }
8772 free_extent_buffer(path->nodes[level]);
8773 path->nodes[level] = NULL;
8774 level++;
8775 }
8776 }
8777 return 1;
8778 }
8779
8780 /*
8781 * drop a subvolume tree.
8782 *
8783 * this function traverses the tree freeing any blocks that only
8784 * referenced by the tree.
8785 *
8786 * when a shared tree block is found. this function decreases its
8787 * reference count by one. if update_ref is true, this function
8788 * also make sure backrefs for the shared block and all lower level
8789 * blocks are properly updated.
8790 *
8791 * If called with for_reloc == 0, may exit early with -EAGAIN
8792 */
8793 int btrfs_drop_snapshot(struct btrfs_root *root,
8794 struct btrfs_block_rsv *block_rsv, int update_ref,
8795 int for_reloc)
8796 {
8797 struct btrfs_path *path;
8798 struct btrfs_trans_handle *trans;
8799 struct btrfs_root *tree_root = root->fs_info->tree_root;
8800 struct btrfs_root_item *root_item = &root->root_item;
8801 struct walk_control *wc;
8802 struct btrfs_key key;
8803 int err = 0;
8804 int ret;
8805 int level;
8806 bool root_dropped = false;
8807
8808 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8809
8810 path = btrfs_alloc_path();
8811 if (!path) {
8812 err = -ENOMEM;
8813 goto out;
8814 }
8815
8816 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8817 if (!wc) {
8818 btrfs_free_path(path);
8819 err = -ENOMEM;
8820 goto out;
8821 }
8822
8823 trans = btrfs_start_transaction(tree_root, 0);
8824 if (IS_ERR(trans)) {
8825 err = PTR_ERR(trans);
8826 goto out_free;
8827 }
8828
8829 if (block_rsv)
8830 trans->block_rsv = block_rsv;
8831
8832 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8833 level = btrfs_header_level(root->node);
8834 path->nodes[level] = btrfs_lock_root_node(root);
8835 btrfs_set_lock_blocking(path->nodes[level]);
8836 path->slots[level] = 0;
8837 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8838 memset(&wc->update_progress, 0,
8839 sizeof(wc->update_progress));
8840 } else {
8841 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8842 memcpy(&wc->update_progress, &key,
8843 sizeof(wc->update_progress));
8844
8845 level = root_item->drop_level;
8846 BUG_ON(level == 0);
8847 path->lowest_level = level;
8848 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8849 path->lowest_level = 0;
8850 if (ret < 0) {
8851 err = ret;
8852 goto out_end_trans;
8853 }
8854 WARN_ON(ret > 0);
8855
8856 /*
8857 * unlock our path, this is safe because only this
8858 * function is allowed to delete this snapshot
8859 */
8860 btrfs_unlock_up_safe(path, 0);
8861
8862 level = btrfs_header_level(root->node);
8863 while (1) {
8864 btrfs_tree_lock(path->nodes[level]);
8865 btrfs_set_lock_blocking(path->nodes[level]);
8866 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8867
8868 ret = btrfs_lookup_extent_info(trans, root,
8869 path->nodes[level]->start,
8870 level, 1, &wc->refs[level],
8871 &wc->flags[level]);
8872 if (ret < 0) {
8873 err = ret;
8874 goto out_end_trans;
8875 }
8876 BUG_ON(wc->refs[level] == 0);
8877
8878 if (level == root_item->drop_level)
8879 break;
8880
8881 btrfs_tree_unlock(path->nodes[level]);
8882 path->locks[level] = 0;
8883 WARN_ON(wc->refs[level] != 1);
8884 level--;
8885 }
8886 }
8887
8888 wc->level = level;
8889 wc->shared_level = -1;
8890 wc->stage = DROP_REFERENCE;
8891 wc->update_ref = update_ref;
8892 wc->keep_locks = 0;
8893 wc->for_reloc = for_reloc;
8894 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8895
8896 while (1) {
8897
8898 ret = walk_down_tree(trans, root, path, wc);
8899 if (ret < 0) {
8900 err = ret;
8901 break;
8902 }
8903
8904 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8905 if (ret < 0) {
8906 err = ret;
8907 break;
8908 }
8909
8910 if (ret > 0) {
8911 BUG_ON(wc->stage != DROP_REFERENCE);
8912 break;
8913 }
8914
8915 if (wc->stage == DROP_REFERENCE) {
8916 level = wc->level;
8917 btrfs_node_key(path->nodes[level],
8918 &root_item->drop_progress,
8919 path->slots[level]);
8920 root_item->drop_level = level;
8921 }
8922
8923 BUG_ON(wc->level == 0);
8924 if (btrfs_should_end_transaction(trans, tree_root) ||
8925 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8926 ret = btrfs_update_root(trans, tree_root,
8927 &root->root_key,
8928 root_item);
8929 if (ret) {
8930 btrfs_abort_transaction(trans, tree_root, ret);
8931 err = ret;
8932 goto out_end_trans;
8933 }
8934
8935 btrfs_end_transaction_throttle(trans, tree_root);
8936 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8937 pr_debug("BTRFS: drop snapshot early exit\n");
8938 err = -EAGAIN;
8939 goto out_free;
8940 }
8941
8942 trans = btrfs_start_transaction(tree_root, 0);
8943 if (IS_ERR(trans)) {
8944 err = PTR_ERR(trans);
8945 goto out_free;
8946 }
8947 if (block_rsv)
8948 trans->block_rsv = block_rsv;
8949 }
8950 }
8951 btrfs_release_path(path);
8952 if (err)
8953 goto out_end_trans;
8954
8955 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8956 if (ret) {
8957 btrfs_abort_transaction(trans, tree_root, ret);
8958 goto out_end_trans;
8959 }
8960
8961 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8962 ret = btrfs_find_root(tree_root, &root->root_key, path,
8963 NULL, NULL);
8964 if (ret < 0) {
8965 btrfs_abort_transaction(trans, tree_root, ret);
8966 err = ret;
8967 goto out_end_trans;
8968 } else if (ret > 0) {
8969 /* if we fail to delete the orphan item this time
8970 * around, it'll get picked up the next time.
8971 *
8972 * The most common failure here is just -ENOENT.
8973 */
8974 btrfs_del_orphan_item(trans, tree_root,
8975 root->root_key.objectid);
8976 }
8977 }
8978
8979 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8980 btrfs_add_dropped_root(trans, root);
8981 } else {
8982 free_extent_buffer(root->node);
8983 free_extent_buffer(root->commit_root);
8984 btrfs_put_fs_root(root);
8985 }
8986 root_dropped = true;
8987 out_end_trans:
8988 btrfs_end_transaction_throttle(trans, tree_root);
8989 out_free:
8990 kfree(wc);
8991 btrfs_free_path(path);
8992 out:
8993 /*
8994 * So if we need to stop dropping the snapshot for whatever reason we
8995 * need to make sure to add it back to the dead root list so that we
8996 * keep trying to do the work later. This also cleans up roots if we
8997 * don't have it in the radix (like when we recover after a power fail
8998 * or unmount) so we don't leak memory.
8999 */
9000 if (!for_reloc && root_dropped == false)
9001 btrfs_add_dead_root(root);
9002 if (err && err != -EAGAIN)
9003 btrfs_std_error(root->fs_info, err, NULL);
9004 return err;
9005 }
9006
9007 /*
9008 * drop subtree rooted at tree block 'node'.
9009 *
9010 * NOTE: this function will unlock and release tree block 'node'
9011 * only used by relocation code
9012 */
9013 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9014 struct btrfs_root *root,
9015 struct extent_buffer *node,
9016 struct extent_buffer *parent)
9017 {
9018 struct btrfs_path *path;
9019 struct walk_control *wc;
9020 int level;
9021 int parent_level;
9022 int ret = 0;
9023 int wret;
9024
9025 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9026
9027 path = btrfs_alloc_path();
9028 if (!path)
9029 return -ENOMEM;
9030
9031 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9032 if (!wc) {
9033 btrfs_free_path(path);
9034 return -ENOMEM;
9035 }
9036
9037 btrfs_assert_tree_locked(parent);
9038 parent_level = btrfs_header_level(parent);
9039 extent_buffer_get(parent);
9040 path->nodes[parent_level] = parent;
9041 path->slots[parent_level] = btrfs_header_nritems(parent);
9042
9043 btrfs_assert_tree_locked(node);
9044 level = btrfs_header_level(node);
9045 path->nodes[level] = node;
9046 path->slots[level] = 0;
9047 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9048
9049 wc->refs[parent_level] = 1;
9050 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9051 wc->level = level;
9052 wc->shared_level = -1;
9053 wc->stage = DROP_REFERENCE;
9054 wc->update_ref = 0;
9055 wc->keep_locks = 1;
9056 wc->for_reloc = 1;
9057 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9058
9059 while (1) {
9060 wret = walk_down_tree(trans, root, path, wc);
9061 if (wret < 0) {
9062 ret = wret;
9063 break;
9064 }
9065
9066 wret = walk_up_tree(trans, root, path, wc, parent_level);
9067 if (wret < 0)
9068 ret = wret;
9069 if (wret != 0)
9070 break;
9071 }
9072
9073 kfree(wc);
9074 btrfs_free_path(path);
9075 return ret;
9076 }
9077
9078 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9079 {
9080 u64 num_devices;
9081 u64 stripped;
9082
9083 /*
9084 * if restripe for this chunk_type is on pick target profile and
9085 * return, otherwise do the usual balance
9086 */
9087 stripped = get_restripe_target(root->fs_info, flags);
9088 if (stripped)
9089 return extended_to_chunk(stripped);
9090
9091 num_devices = root->fs_info->fs_devices->rw_devices;
9092
9093 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9094 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9095 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9096
9097 if (num_devices == 1) {
9098 stripped |= BTRFS_BLOCK_GROUP_DUP;
9099 stripped = flags & ~stripped;
9100
9101 /* turn raid0 into single device chunks */
9102 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9103 return stripped;
9104
9105 /* turn mirroring into duplication */
9106 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9107 BTRFS_BLOCK_GROUP_RAID10))
9108 return stripped | BTRFS_BLOCK_GROUP_DUP;
9109 } else {
9110 /* they already had raid on here, just return */
9111 if (flags & stripped)
9112 return flags;
9113
9114 stripped |= BTRFS_BLOCK_GROUP_DUP;
9115 stripped = flags & ~stripped;
9116
9117 /* switch duplicated blocks with raid1 */
9118 if (flags & BTRFS_BLOCK_GROUP_DUP)
9119 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9120
9121 /* this is drive concat, leave it alone */
9122 }
9123
9124 return flags;
9125 }
9126
9127 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9128 {
9129 struct btrfs_space_info *sinfo = cache->space_info;
9130 u64 num_bytes;
9131 u64 min_allocable_bytes;
9132 int ret = -ENOSPC;
9133
9134 /*
9135 * We need some metadata space and system metadata space for
9136 * allocating chunks in some corner cases until we force to set
9137 * it to be readonly.
9138 */
9139 if ((sinfo->flags &
9140 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9141 !force)
9142 min_allocable_bytes = 1 * 1024 * 1024;
9143 else
9144 min_allocable_bytes = 0;
9145
9146 spin_lock(&sinfo->lock);
9147 spin_lock(&cache->lock);
9148
9149 if (cache->ro) {
9150 cache->ro++;
9151 ret = 0;
9152 goto out;
9153 }
9154
9155 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9156 cache->bytes_super - btrfs_block_group_used(&cache->item);
9157
9158 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9159 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9160 min_allocable_bytes <= sinfo->total_bytes) {
9161 sinfo->bytes_readonly += num_bytes;
9162 cache->ro++;
9163 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9164 ret = 0;
9165 }
9166 out:
9167 spin_unlock(&cache->lock);
9168 spin_unlock(&sinfo->lock);
9169 return ret;
9170 }
9171
9172 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9173 struct btrfs_block_group_cache *cache)
9174
9175 {
9176 struct btrfs_trans_handle *trans;
9177 u64 alloc_flags;
9178 int ret;
9179
9180 again:
9181 trans = btrfs_join_transaction(root);
9182 if (IS_ERR(trans))
9183 return PTR_ERR(trans);
9184
9185 /*
9186 * we're not allowed to set block groups readonly after the dirty
9187 * block groups cache has started writing. If it already started,
9188 * back off and let this transaction commit
9189 */
9190 mutex_lock(&root->fs_info->ro_block_group_mutex);
9191 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9192 u64 transid = trans->transid;
9193
9194 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9195 btrfs_end_transaction(trans, root);
9196
9197 ret = btrfs_wait_for_commit(root, transid);
9198 if (ret)
9199 return ret;
9200 goto again;
9201 }
9202
9203 /*
9204 * if we are changing raid levels, try to allocate a corresponding
9205 * block group with the new raid level.
9206 */
9207 alloc_flags = update_block_group_flags(root, cache->flags);
9208 if (alloc_flags != cache->flags) {
9209 ret = do_chunk_alloc(trans, root, alloc_flags,
9210 CHUNK_ALLOC_FORCE);
9211 /*
9212 * ENOSPC is allowed here, we may have enough space
9213 * already allocated at the new raid level to
9214 * carry on
9215 */
9216 if (ret == -ENOSPC)
9217 ret = 0;
9218 if (ret < 0)
9219 goto out;
9220 }
9221
9222 ret = inc_block_group_ro(cache, 0);
9223 if (!ret)
9224 goto out;
9225 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9226 ret = do_chunk_alloc(trans, root, alloc_flags,
9227 CHUNK_ALLOC_FORCE);
9228 if (ret < 0)
9229 goto out;
9230 ret = inc_block_group_ro(cache, 0);
9231 out:
9232 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9233 alloc_flags = update_block_group_flags(root, cache->flags);
9234 lock_chunks(root->fs_info->chunk_root);
9235 check_system_chunk(trans, root, alloc_flags);
9236 unlock_chunks(root->fs_info->chunk_root);
9237 }
9238 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9239
9240 btrfs_end_transaction(trans, root);
9241 return ret;
9242 }
9243
9244 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9245 struct btrfs_root *root, u64 type)
9246 {
9247 u64 alloc_flags = get_alloc_profile(root, type);
9248 return do_chunk_alloc(trans, root, alloc_flags,
9249 CHUNK_ALLOC_FORCE);
9250 }
9251
9252 /*
9253 * helper to account the unused space of all the readonly block group in the
9254 * space_info. takes mirrors into account.
9255 */
9256 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9257 {
9258 struct btrfs_block_group_cache *block_group;
9259 u64 free_bytes = 0;
9260 int factor;
9261
9262 /* It's df, we don't care if it's racey */
9263 if (list_empty(&sinfo->ro_bgs))
9264 return 0;
9265
9266 spin_lock(&sinfo->lock);
9267 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9268 spin_lock(&block_group->lock);
9269
9270 if (!block_group->ro) {
9271 spin_unlock(&block_group->lock);
9272 continue;
9273 }
9274
9275 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9276 BTRFS_BLOCK_GROUP_RAID10 |
9277 BTRFS_BLOCK_GROUP_DUP))
9278 factor = 2;
9279 else
9280 factor = 1;
9281
9282 free_bytes += (block_group->key.offset -
9283 btrfs_block_group_used(&block_group->item)) *
9284 factor;
9285
9286 spin_unlock(&block_group->lock);
9287 }
9288 spin_unlock(&sinfo->lock);
9289
9290 return free_bytes;
9291 }
9292
9293 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9294 struct btrfs_block_group_cache *cache)
9295 {
9296 struct btrfs_space_info *sinfo = cache->space_info;
9297 u64 num_bytes;
9298
9299 BUG_ON(!cache->ro);
9300
9301 spin_lock(&sinfo->lock);
9302 spin_lock(&cache->lock);
9303 if (!--cache->ro) {
9304 num_bytes = cache->key.offset - cache->reserved -
9305 cache->pinned - cache->bytes_super -
9306 btrfs_block_group_used(&cache->item);
9307 sinfo->bytes_readonly -= num_bytes;
9308 list_del_init(&cache->ro_list);
9309 }
9310 spin_unlock(&cache->lock);
9311 spin_unlock(&sinfo->lock);
9312 }
9313
9314 /*
9315 * checks to see if its even possible to relocate this block group.
9316 *
9317 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9318 * ok to go ahead and try.
9319 */
9320 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9321 {
9322 struct btrfs_block_group_cache *block_group;
9323 struct btrfs_space_info *space_info;
9324 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9325 struct btrfs_device *device;
9326 struct btrfs_trans_handle *trans;
9327 u64 min_free;
9328 u64 dev_min = 1;
9329 u64 dev_nr = 0;
9330 u64 target;
9331 int index;
9332 int full = 0;
9333 int ret = 0;
9334
9335 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9336
9337 /* odd, couldn't find the block group, leave it alone */
9338 if (!block_group)
9339 return -1;
9340
9341 min_free = btrfs_block_group_used(&block_group->item);
9342
9343 /* no bytes used, we're good */
9344 if (!min_free)
9345 goto out;
9346
9347 space_info = block_group->space_info;
9348 spin_lock(&space_info->lock);
9349
9350 full = space_info->full;
9351
9352 /*
9353 * if this is the last block group we have in this space, we can't
9354 * relocate it unless we're able to allocate a new chunk below.
9355 *
9356 * Otherwise, we need to make sure we have room in the space to handle
9357 * all of the extents from this block group. If we can, we're good
9358 */
9359 if ((space_info->total_bytes != block_group->key.offset) &&
9360 (space_info->bytes_used + space_info->bytes_reserved +
9361 space_info->bytes_pinned + space_info->bytes_readonly +
9362 min_free < space_info->total_bytes)) {
9363 spin_unlock(&space_info->lock);
9364 goto out;
9365 }
9366 spin_unlock(&space_info->lock);
9367
9368 /*
9369 * ok we don't have enough space, but maybe we have free space on our
9370 * devices to allocate new chunks for relocation, so loop through our
9371 * alloc devices and guess if we have enough space. if this block
9372 * group is going to be restriped, run checks against the target
9373 * profile instead of the current one.
9374 */
9375 ret = -1;
9376
9377 /*
9378 * index:
9379 * 0: raid10
9380 * 1: raid1
9381 * 2: dup
9382 * 3: raid0
9383 * 4: single
9384 */
9385 target = get_restripe_target(root->fs_info, block_group->flags);
9386 if (target) {
9387 index = __get_raid_index(extended_to_chunk(target));
9388 } else {
9389 /*
9390 * this is just a balance, so if we were marked as full
9391 * we know there is no space for a new chunk
9392 */
9393 if (full)
9394 goto out;
9395
9396 index = get_block_group_index(block_group);
9397 }
9398
9399 if (index == BTRFS_RAID_RAID10) {
9400 dev_min = 4;
9401 /* Divide by 2 */
9402 min_free >>= 1;
9403 } else if (index == BTRFS_RAID_RAID1) {
9404 dev_min = 2;
9405 } else if (index == BTRFS_RAID_DUP) {
9406 /* Multiply by 2 */
9407 min_free <<= 1;
9408 } else if (index == BTRFS_RAID_RAID0) {
9409 dev_min = fs_devices->rw_devices;
9410 min_free = div64_u64(min_free, dev_min);
9411 }
9412
9413 /* We need to do this so that we can look at pending chunks */
9414 trans = btrfs_join_transaction(root);
9415 if (IS_ERR(trans)) {
9416 ret = PTR_ERR(trans);
9417 goto out;
9418 }
9419
9420 mutex_lock(&root->fs_info->chunk_mutex);
9421 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9422 u64 dev_offset;
9423
9424 /*
9425 * check to make sure we can actually find a chunk with enough
9426 * space to fit our block group in.
9427 */
9428 if (device->total_bytes > device->bytes_used + min_free &&
9429 !device->is_tgtdev_for_dev_replace) {
9430 ret = find_free_dev_extent(trans, device, min_free,
9431 &dev_offset, NULL);
9432 if (!ret)
9433 dev_nr++;
9434
9435 if (dev_nr >= dev_min)
9436 break;
9437
9438 ret = -1;
9439 }
9440 }
9441 mutex_unlock(&root->fs_info->chunk_mutex);
9442 btrfs_end_transaction(trans, root);
9443 out:
9444 btrfs_put_block_group(block_group);
9445 return ret;
9446 }
9447
9448 static int find_first_block_group(struct btrfs_root *root,
9449 struct btrfs_path *path, struct btrfs_key *key)
9450 {
9451 int ret = 0;
9452 struct btrfs_key found_key;
9453 struct extent_buffer *leaf;
9454 int slot;
9455
9456 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9457 if (ret < 0)
9458 goto out;
9459
9460 while (1) {
9461 slot = path->slots[0];
9462 leaf = path->nodes[0];
9463 if (slot >= btrfs_header_nritems(leaf)) {
9464 ret = btrfs_next_leaf(root, path);
9465 if (ret == 0)
9466 continue;
9467 if (ret < 0)
9468 goto out;
9469 break;
9470 }
9471 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9472
9473 if (found_key.objectid >= key->objectid &&
9474 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9475 ret = 0;
9476 goto out;
9477 }
9478 path->slots[0]++;
9479 }
9480 out:
9481 return ret;
9482 }
9483
9484 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9485 {
9486 struct btrfs_block_group_cache *block_group;
9487 u64 last = 0;
9488
9489 while (1) {
9490 struct inode *inode;
9491
9492 block_group = btrfs_lookup_first_block_group(info, last);
9493 while (block_group) {
9494 spin_lock(&block_group->lock);
9495 if (block_group->iref)
9496 break;
9497 spin_unlock(&block_group->lock);
9498 block_group = next_block_group(info->tree_root,
9499 block_group);
9500 }
9501 if (!block_group) {
9502 if (last == 0)
9503 break;
9504 last = 0;
9505 continue;
9506 }
9507
9508 inode = block_group->inode;
9509 block_group->iref = 0;
9510 block_group->inode = NULL;
9511 spin_unlock(&block_group->lock);
9512 iput(inode);
9513 last = block_group->key.objectid + block_group->key.offset;
9514 btrfs_put_block_group(block_group);
9515 }
9516 }
9517
9518 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9519 {
9520 struct btrfs_block_group_cache *block_group;
9521 struct btrfs_space_info *space_info;
9522 struct btrfs_caching_control *caching_ctl;
9523 struct rb_node *n;
9524
9525 down_write(&info->commit_root_sem);
9526 while (!list_empty(&info->caching_block_groups)) {
9527 caching_ctl = list_entry(info->caching_block_groups.next,
9528 struct btrfs_caching_control, list);
9529 list_del(&caching_ctl->list);
9530 put_caching_control(caching_ctl);
9531 }
9532 up_write(&info->commit_root_sem);
9533
9534 spin_lock(&info->unused_bgs_lock);
9535 while (!list_empty(&info->unused_bgs)) {
9536 block_group = list_first_entry(&info->unused_bgs,
9537 struct btrfs_block_group_cache,
9538 bg_list);
9539 list_del_init(&block_group->bg_list);
9540 btrfs_put_block_group(block_group);
9541 }
9542 spin_unlock(&info->unused_bgs_lock);
9543
9544 spin_lock(&info->block_group_cache_lock);
9545 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9546 block_group = rb_entry(n, struct btrfs_block_group_cache,
9547 cache_node);
9548 rb_erase(&block_group->cache_node,
9549 &info->block_group_cache_tree);
9550 RB_CLEAR_NODE(&block_group->cache_node);
9551 spin_unlock(&info->block_group_cache_lock);
9552
9553 down_write(&block_group->space_info->groups_sem);
9554 list_del(&block_group->list);
9555 up_write(&block_group->space_info->groups_sem);
9556
9557 if (block_group->cached == BTRFS_CACHE_STARTED)
9558 wait_block_group_cache_done(block_group);
9559
9560 /*
9561 * We haven't cached this block group, which means we could
9562 * possibly have excluded extents on this block group.
9563 */
9564 if (block_group->cached == BTRFS_CACHE_NO ||
9565 block_group->cached == BTRFS_CACHE_ERROR)
9566 free_excluded_extents(info->extent_root, block_group);
9567
9568 btrfs_remove_free_space_cache(block_group);
9569 btrfs_put_block_group(block_group);
9570
9571 spin_lock(&info->block_group_cache_lock);
9572 }
9573 spin_unlock(&info->block_group_cache_lock);
9574
9575 /* now that all the block groups are freed, go through and
9576 * free all the space_info structs. This is only called during
9577 * the final stages of unmount, and so we know nobody is
9578 * using them. We call synchronize_rcu() once before we start,
9579 * just to be on the safe side.
9580 */
9581 synchronize_rcu();
9582
9583 release_global_block_rsv(info);
9584
9585 while (!list_empty(&info->space_info)) {
9586 int i;
9587
9588 space_info = list_entry(info->space_info.next,
9589 struct btrfs_space_info,
9590 list);
9591 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9592 if (WARN_ON(space_info->bytes_pinned > 0 ||
9593 space_info->bytes_reserved > 0 ||
9594 space_info->bytes_may_use > 0)) {
9595 dump_space_info(space_info, 0, 0);
9596 }
9597 }
9598 list_del(&space_info->list);
9599 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9600 struct kobject *kobj;
9601 kobj = space_info->block_group_kobjs[i];
9602 space_info->block_group_kobjs[i] = NULL;
9603 if (kobj) {
9604 kobject_del(kobj);
9605 kobject_put(kobj);
9606 }
9607 }
9608 kobject_del(&space_info->kobj);
9609 kobject_put(&space_info->kobj);
9610 }
9611 return 0;
9612 }
9613
9614 static void __link_block_group(struct btrfs_space_info *space_info,
9615 struct btrfs_block_group_cache *cache)
9616 {
9617 int index = get_block_group_index(cache);
9618 bool first = false;
9619
9620 down_write(&space_info->groups_sem);
9621 if (list_empty(&space_info->block_groups[index]))
9622 first = true;
9623 list_add_tail(&cache->list, &space_info->block_groups[index]);
9624 up_write(&space_info->groups_sem);
9625
9626 if (first) {
9627 struct raid_kobject *rkobj;
9628 int ret;
9629
9630 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9631 if (!rkobj)
9632 goto out_err;
9633 rkobj->raid_type = index;
9634 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9635 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9636 "%s", get_raid_name(index));
9637 if (ret) {
9638 kobject_put(&rkobj->kobj);
9639 goto out_err;
9640 }
9641 space_info->block_group_kobjs[index] = &rkobj->kobj;
9642 }
9643
9644 return;
9645 out_err:
9646 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9647 }
9648
9649 static struct btrfs_block_group_cache *
9650 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9651 {
9652 struct btrfs_block_group_cache *cache;
9653
9654 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9655 if (!cache)
9656 return NULL;
9657
9658 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9659 GFP_NOFS);
9660 if (!cache->free_space_ctl) {
9661 kfree(cache);
9662 return NULL;
9663 }
9664
9665 cache->key.objectid = start;
9666 cache->key.offset = size;
9667 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9668
9669 cache->sectorsize = root->sectorsize;
9670 cache->fs_info = root->fs_info;
9671 cache->full_stripe_len = btrfs_full_stripe_len(root,
9672 &root->fs_info->mapping_tree,
9673 start);
9674 atomic_set(&cache->count, 1);
9675 spin_lock_init(&cache->lock);
9676 init_rwsem(&cache->data_rwsem);
9677 INIT_LIST_HEAD(&cache->list);
9678 INIT_LIST_HEAD(&cache->cluster_list);
9679 INIT_LIST_HEAD(&cache->bg_list);
9680 INIT_LIST_HEAD(&cache->ro_list);
9681 INIT_LIST_HEAD(&cache->dirty_list);
9682 INIT_LIST_HEAD(&cache->io_list);
9683 btrfs_init_free_space_ctl(cache);
9684 atomic_set(&cache->trimming, 0);
9685
9686 return cache;
9687 }
9688
9689 int btrfs_read_block_groups(struct btrfs_root *root)
9690 {
9691 struct btrfs_path *path;
9692 int ret;
9693 struct btrfs_block_group_cache *cache;
9694 struct btrfs_fs_info *info = root->fs_info;
9695 struct btrfs_space_info *space_info;
9696 struct btrfs_key key;
9697 struct btrfs_key found_key;
9698 struct extent_buffer *leaf;
9699 int need_clear = 0;
9700 u64 cache_gen;
9701
9702 root = info->extent_root;
9703 key.objectid = 0;
9704 key.offset = 0;
9705 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9706 path = btrfs_alloc_path();
9707 if (!path)
9708 return -ENOMEM;
9709 path->reada = 1;
9710
9711 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9712 if (btrfs_test_opt(root, SPACE_CACHE) &&
9713 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9714 need_clear = 1;
9715 if (btrfs_test_opt(root, CLEAR_CACHE))
9716 need_clear = 1;
9717
9718 while (1) {
9719 ret = find_first_block_group(root, path, &key);
9720 if (ret > 0)
9721 break;
9722 if (ret != 0)
9723 goto error;
9724
9725 leaf = path->nodes[0];
9726 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9727
9728 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9729 found_key.offset);
9730 if (!cache) {
9731 ret = -ENOMEM;
9732 goto error;
9733 }
9734
9735 if (need_clear) {
9736 /*
9737 * When we mount with old space cache, we need to
9738 * set BTRFS_DC_CLEAR and set dirty flag.
9739 *
9740 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9741 * truncate the old free space cache inode and
9742 * setup a new one.
9743 * b) Setting 'dirty flag' makes sure that we flush
9744 * the new space cache info onto disk.
9745 */
9746 if (btrfs_test_opt(root, SPACE_CACHE))
9747 cache->disk_cache_state = BTRFS_DC_CLEAR;
9748 }
9749
9750 read_extent_buffer(leaf, &cache->item,
9751 btrfs_item_ptr_offset(leaf, path->slots[0]),
9752 sizeof(cache->item));
9753 cache->flags = btrfs_block_group_flags(&cache->item);
9754
9755 key.objectid = found_key.objectid + found_key.offset;
9756 btrfs_release_path(path);
9757
9758 /*
9759 * We need to exclude the super stripes now so that the space
9760 * info has super bytes accounted for, otherwise we'll think
9761 * we have more space than we actually do.
9762 */
9763 ret = exclude_super_stripes(root, cache);
9764 if (ret) {
9765 /*
9766 * We may have excluded something, so call this just in
9767 * case.
9768 */
9769 free_excluded_extents(root, cache);
9770 btrfs_put_block_group(cache);
9771 goto error;
9772 }
9773
9774 /*
9775 * check for two cases, either we are full, and therefore
9776 * don't need to bother with the caching work since we won't
9777 * find any space, or we are empty, and we can just add all
9778 * the space in and be done with it. This saves us _alot_ of
9779 * time, particularly in the full case.
9780 */
9781 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9782 cache->last_byte_to_unpin = (u64)-1;
9783 cache->cached = BTRFS_CACHE_FINISHED;
9784 free_excluded_extents(root, cache);
9785 } else if (btrfs_block_group_used(&cache->item) == 0) {
9786 cache->last_byte_to_unpin = (u64)-1;
9787 cache->cached = BTRFS_CACHE_FINISHED;
9788 add_new_free_space(cache, root->fs_info,
9789 found_key.objectid,
9790 found_key.objectid +
9791 found_key.offset);
9792 free_excluded_extents(root, cache);
9793 }
9794
9795 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9796 if (ret) {
9797 btrfs_remove_free_space_cache(cache);
9798 btrfs_put_block_group(cache);
9799 goto error;
9800 }
9801
9802 ret = update_space_info(info, cache->flags, found_key.offset,
9803 btrfs_block_group_used(&cache->item),
9804 &space_info);
9805 if (ret) {
9806 btrfs_remove_free_space_cache(cache);
9807 spin_lock(&info->block_group_cache_lock);
9808 rb_erase(&cache->cache_node,
9809 &info->block_group_cache_tree);
9810 RB_CLEAR_NODE(&cache->cache_node);
9811 spin_unlock(&info->block_group_cache_lock);
9812 btrfs_put_block_group(cache);
9813 goto error;
9814 }
9815
9816 cache->space_info = space_info;
9817 spin_lock(&cache->space_info->lock);
9818 cache->space_info->bytes_readonly += cache->bytes_super;
9819 spin_unlock(&cache->space_info->lock);
9820
9821 __link_block_group(space_info, cache);
9822
9823 set_avail_alloc_bits(root->fs_info, cache->flags);
9824 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9825 inc_block_group_ro(cache, 1);
9826 } else if (btrfs_block_group_used(&cache->item) == 0) {
9827 spin_lock(&info->unused_bgs_lock);
9828 /* Should always be true but just in case. */
9829 if (list_empty(&cache->bg_list)) {
9830 btrfs_get_block_group(cache);
9831 list_add_tail(&cache->bg_list,
9832 &info->unused_bgs);
9833 }
9834 spin_unlock(&info->unused_bgs_lock);
9835 }
9836 }
9837
9838 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9839 if (!(get_alloc_profile(root, space_info->flags) &
9840 (BTRFS_BLOCK_GROUP_RAID10 |
9841 BTRFS_BLOCK_GROUP_RAID1 |
9842 BTRFS_BLOCK_GROUP_RAID5 |
9843 BTRFS_BLOCK_GROUP_RAID6 |
9844 BTRFS_BLOCK_GROUP_DUP)))
9845 continue;
9846 /*
9847 * avoid allocating from un-mirrored block group if there are
9848 * mirrored block groups.
9849 */
9850 list_for_each_entry(cache,
9851 &space_info->block_groups[BTRFS_RAID_RAID0],
9852 list)
9853 inc_block_group_ro(cache, 1);
9854 list_for_each_entry(cache,
9855 &space_info->block_groups[BTRFS_RAID_SINGLE],
9856 list)
9857 inc_block_group_ro(cache, 1);
9858 }
9859
9860 init_global_block_rsv(info);
9861 ret = 0;
9862 error:
9863 btrfs_free_path(path);
9864 return ret;
9865 }
9866
9867 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9868 struct btrfs_root *root)
9869 {
9870 struct btrfs_block_group_cache *block_group, *tmp;
9871 struct btrfs_root *extent_root = root->fs_info->extent_root;
9872 struct btrfs_block_group_item item;
9873 struct btrfs_key key;
9874 int ret = 0;
9875 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
9876
9877 trans->can_flush_pending_bgs = false;
9878 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9879 if (ret)
9880 goto next;
9881
9882 spin_lock(&block_group->lock);
9883 memcpy(&item, &block_group->item, sizeof(item));
9884 memcpy(&key, &block_group->key, sizeof(key));
9885 spin_unlock(&block_group->lock);
9886
9887 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9888 sizeof(item));
9889 if (ret)
9890 btrfs_abort_transaction(trans, extent_root, ret);
9891 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9892 key.objectid, key.offset);
9893 if (ret)
9894 btrfs_abort_transaction(trans, extent_root, ret);
9895 next:
9896 list_del_init(&block_group->bg_list);
9897 }
9898 trans->can_flush_pending_bgs = can_flush_pending_bgs;
9899 }
9900
9901 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9902 struct btrfs_root *root, u64 bytes_used,
9903 u64 type, u64 chunk_objectid, u64 chunk_offset,
9904 u64 size)
9905 {
9906 int ret;
9907 struct btrfs_root *extent_root;
9908 struct btrfs_block_group_cache *cache;
9909
9910 extent_root = root->fs_info->extent_root;
9911
9912 btrfs_set_log_full_commit(root->fs_info, trans);
9913
9914 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9915 if (!cache)
9916 return -ENOMEM;
9917
9918 btrfs_set_block_group_used(&cache->item, bytes_used);
9919 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9920 btrfs_set_block_group_flags(&cache->item, type);
9921
9922 cache->flags = type;
9923 cache->last_byte_to_unpin = (u64)-1;
9924 cache->cached = BTRFS_CACHE_FINISHED;
9925 ret = exclude_super_stripes(root, cache);
9926 if (ret) {
9927 /*
9928 * We may have excluded something, so call this just in
9929 * case.
9930 */
9931 free_excluded_extents(root, cache);
9932 btrfs_put_block_group(cache);
9933 return ret;
9934 }
9935
9936 add_new_free_space(cache, root->fs_info, chunk_offset,
9937 chunk_offset + size);
9938
9939 free_excluded_extents(root, cache);
9940
9941 #ifdef CONFIG_BTRFS_DEBUG
9942 if (btrfs_should_fragment_free_space(root, cache)) {
9943 u64 new_bytes_used = size - bytes_used;
9944
9945 bytes_used += new_bytes_used >> 1;
9946 fragment_free_space(root, cache);
9947 }
9948 #endif
9949 /*
9950 * Call to ensure the corresponding space_info object is created and
9951 * assigned to our block group, but don't update its counters just yet.
9952 * We want our bg to be added to the rbtree with its ->space_info set.
9953 */
9954 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9955 &cache->space_info);
9956 if (ret) {
9957 btrfs_remove_free_space_cache(cache);
9958 btrfs_put_block_group(cache);
9959 return ret;
9960 }
9961
9962 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9963 if (ret) {
9964 btrfs_remove_free_space_cache(cache);
9965 btrfs_put_block_group(cache);
9966 return ret;
9967 }
9968
9969 /*
9970 * Now that our block group has its ->space_info set and is inserted in
9971 * the rbtree, update the space info's counters.
9972 */
9973 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9974 &cache->space_info);
9975 if (ret) {
9976 btrfs_remove_free_space_cache(cache);
9977 spin_lock(&root->fs_info->block_group_cache_lock);
9978 rb_erase(&cache->cache_node,
9979 &root->fs_info->block_group_cache_tree);
9980 RB_CLEAR_NODE(&cache->cache_node);
9981 spin_unlock(&root->fs_info->block_group_cache_lock);
9982 btrfs_put_block_group(cache);
9983 return ret;
9984 }
9985 update_global_block_rsv(root->fs_info);
9986
9987 spin_lock(&cache->space_info->lock);
9988 cache->space_info->bytes_readonly += cache->bytes_super;
9989 spin_unlock(&cache->space_info->lock);
9990
9991 __link_block_group(cache->space_info, cache);
9992
9993 list_add_tail(&cache->bg_list, &trans->new_bgs);
9994
9995 set_avail_alloc_bits(extent_root->fs_info, type);
9996
9997 return 0;
9998 }
9999
10000 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10001 {
10002 u64 extra_flags = chunk_to_extended(flags) &
10003 BTRFS_EXTENDED_PROFILE_MASK;
10004
10005 write_seqlock(&fs_info->profiles_lock);
10006 if (flags & BTRFS_BLOCK_GROUP_DATA)
10007 fs_info->avail_data_alloc_bits &= ~extra_flags;
10008 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10009 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10010 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10011 fs_info->avail_system_alloc_bits &= ~extra_flags;
10012 write_sequnlock(&fs_info->profiles_lock);
10013 }
10014
10015 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10016 struct btrfs_root *root, u64 group_start,
10017 struct extent_map *em)
10018 {
10019 struct btrfs_path *path;
10020 struct btrfs_block_group_cache *block_group;
10021 struct btrfs_free_cluster *cluster;
10022 struct btrfs_root *tree_root = root->fs_info->tree_root;
10023 struct btrfs_key key;
10024 struct inode *inode;
10025 struct kobject *kobj = NULL;
10026 int ret;
10027 int index;
10028 int factor;
10029 struct btrfs_caching_control *caching_ctl = NULL;
10030 bool remove_em;
10031
10032 root = root->fs_info->extent_root;
10033
10034 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10035 BUG_ON(!block_group);
10036 BUG_ON(!block_group->ro);
10037
10038 /*
10039 * Free the reserved super bytes from this block group before
10040 * remove it.
10041 */
10042 free_excluded_extents(root, block_group);
10043
10044 memcpy(&key, &block_group->key, sizeof(key));
10045 index = get_block_group_index(block_group);
10046 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10047 BTRFS_BLOCK_GROUP_RAID1 |
10048 BTRFS_BLOCK_GROUP_RAID10))
10049 factor = 2;
10050 else
10051 factor = 1;
10052
10053 /* make sure this block group isn't part of an allocation cluster */
10054 cluster = &root->fs_info->data_alloc_cluster;
10055 spin_lock(&cluster->refill_lock);
10056 btrfs_return_cluster_to_free_space(block_group, cluster);
10057 spin_unlock(&cluster->refill_lock);
10058
10059 /*
10060 * make sure this block group isn't part of a metadata
10061 * allocation cluster
10062 */
10063 cluster = &root->fs_info->meta_alloc_cluster;
10064 spin_lock(&cluster->refill_lock);
10065 btrfs_return_cluster_to_free_space(block_group, cluster);
10066 spin_unlock(&cluster->refill_lock);
10067
10068 path = btrfs_alloc_path();
10069 if (!path) {
10070 ret = -ENOMEM;
10071 goto out;
10072 }
10073
10074 /*
10075 * get the inode first so any iput calls done for the io_list
10076 * aren't the final iput (no unlinks allowed now)
10077 */
10078 inode = lookup_free_space_inode(tree_root, block_group, path);
10079
10080 mutex_lock(&trans->transaction->cache_write_mutex);
10081 /*
10082 * make sure our free spache cache IO is done before remove the
10083 * free space inode
10084 */
10085 spin_lock(&trans->transaction->dirty_bgs_lock);
10086 if (!list_empty(&block_group->io_list)) {
10087 list_del_init(&block_group->io_list);
10088
10089 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10090
10091 spin_unlock(&trans->transaction->dirty_bgs_lock);
10092 btrfs_wait_cache_io(root, trans, block_group,
10093 &block_group->io_ctl, path,
10094 block_group->key.objectid);
10095 btrfs_put_block_group(block_group);
10096 spin_lock(&trans->transaction->dirty_bgs_lock);
10097 }
10098
10099 if (!list_empty(&block_group->dirty_list)) {
10100 list_del_init(&block_group->dirty_list);
10101 btrfs_put_block_group(block_group);
10102 }
10103 spin_unlock(&trans->transaction->dirty_bgs_lock);
10104 mutex_unlock(&trans->transaction->cache_write_mutex);
10105
10106 if (!IS_ERR(inode)) {
10107 ret = btrfs_orphan_add(trans, inode);
10108 if (ret) {
10109 btrfs_add_delayed_iput(inode);
10110 goto out;
10111 }
10112 clear_nlink(inode);
10113 /* One for the block groups ref */
10114 spin_lock(&block_group->lock);
10115 if (block_group->iref) {
10116 block_group->iref = 0;
10117 block_group->inode = NULL;
10118 spin_unlock(&block_group->lock);
10119 iput(inode);
10120 } else {
10121 spin_unlock(&block_group->lock);
10122 }
10123 /* One for our lookup ref */
10124 btrfs_add_delayed_iput(inode);
10125 }
10126
10127 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10128 key.offset = block_group->key.objectid;
10129 key.type = 0;
10130
10131 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10132 if (ret < 0)
10133 goto out;
10134 if (ret > 0)
10135 btrfs_release_path(path);
10136 if (ret == 0) {
10137 ret = btrfs_del_item(trans, tree_root, path);
10138 if (ret)
10139 goto out;
10140 btrfs_release_path(path);
10141 }
10142
10143 spin_lock(&root->fs_info->block_group_cache_lock);
10144 rb_erase(&block_group->cache_node,
10145 &root->fs_info->block_group_cache_tree);
10146 RB_CLEAR_NODE(&block_group->cache_node);
10147
10148 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10149 root->fs_info->first_logical_byte = (u64)-1;
10150 spin_unlock(&root->fs_info->block_group_cache_lock);
10151
10152 down_write(&block_group->space_info->groups_sem);
10153 /*
10154 * we must use list_del_init so people can check to see if they
10155 * are still on the list after taking the semaphore
10156 */
10157 list_del_init(&block_group->list);
10158 if (list_empty(&block_group->space_info->block_groups[index])) {
10159 kobj = block_group->space_info->block_group_kobjs[index];
10160 block_group->space_info->block_group_kobjs[index] = NULL;
10161 clear_avail_alloc_bits(root->fs_info, block_group->flags);
10162 }
10163 up_write(&block_group->space_info->groups_sem);
10164 if (kobj) {
10165 kobject_del(kobj);
10166 kobject_put(kobj);
10167 }
10168
10169 if (block_group->has_caching_ctl)
10170 caching_ctl = get_caching_control(block_group);
10171 if (block_group->cached == BTRFS_CACHE_STARTED)
10172 wait_block_group_cache_done(block_group);
10173 if (block_group->has_caching_ctl) {
10174 down_write(&root->fs_info->commit_root_sem);
10175 if (!caching_ctl) {
10176 struct btrfs_caching_control *ctl;
10177
10178 list_for_each_entry(ctl,
10179 &root->fs_info->caching_block_groups, list)
10180 if (ctl->block_group == block_group) {
10181 caching_ctl = ctl;
10182 atomic_inc(&caching_ctl->count);
10183 break;
10184 }
10185 }
10186 if (caching_ctl)
10187 list_del_init(&caching_ctl->list);
10188 up_write(&root->fs_info->commit_root_sem);
10189 if (caching_ctl) {
10190 /* Once for the caching bgs list and once for us. */
10191 put_caching_control(caching_ctl);
10192 put_caching_control(caching_ctl);
10193 }
10194 }
10195
10196 spin_lock(&trans->transaction->dirty_bgs_lock);
10197 if (!list_empty(&block_group->dirty_list)) {
10198 WARN_ON(1);
10199 }
10200 if (!list_empty(&block_group->io_list)) {
10201 WARN_ON(1);
10202 }
10203 spin_unlock(&trans->transaction->dirty_bgs_lock);
10204 btrfs_remove_free_space_cache(block_group);
10205
10206 spin_lock(&block_group->space_info->lock);
10207 list_del_init(&block_group->ro_list);
10208
10209 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10210 WARN_ON(block_group->space_info->total_bytes
10211 < block_group->key.offset);
10212 WARN_ON(block_group->space_info->bytes_readonly
10213 < block_group->key.offset);
10214 WARN_ON(block_group->space_info->disk_total
10215 < block_group->key.offset * factor);
10216 }
10217 block_group->space_info->total_bytes -= block_group->key.offset;
10218 block_group->space_info->bytes_readonly -= block_group->key.offset;
10219 block_group->space_info->disk_total -= block_group->key.offset * factor;
10220
10221 spin_unlock(&block_group->space_info->lock);
10222
10223 memcpy(&key, &block_group->key, sizeof(key));
10224
10225 lock_chunks(root);
10226 if (!list_empty(&em->list)) {
10227 /* We're in the transaction->pending_chunks list. */
10228 free_extent_map(em);
10229 }
10230 spin_lock(&block_group->lock);
10231 block_group->removed = 1;
10232 /*
10233 * At this point trimming can't start on this block group, because we
10234 * removed the block group from the tree fs_info->block_group_cache_tree
10235 * so no one can't find it anymore and even if someone already got this
10236 * block group before we removed it from the rbtree, they have already
10237 * incremented block_group->trimming - if they didn't, they won't find
10238 * any free space entries because we already removed them all when we
10239 * called btrfs_remove_free_space_cache().
10240 *
10241 * And we must not remove the extent map from the fs_info->mapping_tree
10242 * to prevent the same logical address range and physical device space
10243 * ranges from being reused for a new block group. This is because our
10244 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10245 * completely transactionless, so while it is trimming a range the
10246 * currently running transaction might finish and a new one start,
10247 * allowing for new block groups to be created that can reuse the same
10248 * physical device locations unless we take this special care.
10249 *
10250 * There may also be an implicit trim operation if the file system
10251 * is mounted with -odiscard. The same protections must remain
10252 * in place until the extents have been discarded completely when
10253 * the transaction commit has completed.
10254 */
10255 remove_em = (atomic_read(&block_group->trimming) == 0);
10256 /*
10257 * Make sure a trimmer task always sees the em in the pinned_chunks list
10258 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10259 * before checking block_group->removed).
10260 */
10261 if (!remove_em) {
10262 /*
10263 * Our em might be in trans->transaction->pending_chunks which
10264 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10265 * and so is the fs_info->pinned_chunks list.
10266 *
10267 * So at this point we must be holding the chunk_mutex to avoid
10268 * any races with chunk allocation (more specifically at
10269 * volumes.c:contains_pending_extent()), to ensure it always
10270 * sees the em, either in the pending_chunks list or in the
10271 * pinned_chunks list.
10272 */
10273 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10274 }
10275 spin_unlock(&block_group->lock);
10276
10277 if (remove_em) {
10278 struct extent_map_tree *em_tree;
10279
10280 em_tree = &root->fs_info->mapping_tree.map_tree;
10281 write_lock(&em_tree->lock);
10282 /*
10283 * The em might be in the pending_chunks list, so make sure the
10284 * chunk mutex is locked, since remove_extent_mapping() will
10285 * delete us from that list.
10286 */
10287 remove_extent_mapping(em_tree, em);
10288 write_unlock(&em_tree->lock);
10289 /* once for the tree */
10290 free_extent_map(em);
10291 }
10292
10293 unlock_chunks(root);
10294
10295 btrfs_put_block_group(block_group);
10296 btrfs_put_block_group(block_group);
10297
10298 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10299 if (ret > 0)
10300 ret = -EIO;
10301 if (ret < 0)
10302 goto out;
10303
10304 ret = btrfs_del_item(trans, root, path);
10305 out:
10306 btrfs_free_path(path);
10307 return ret;
10308 }
10309
10310 struct btrfs_trans_handle *
10311 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10312 const u64 chunk_offset)
10313 {
10314 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10315 struct extent_map *em;
10316 struct map_lookup *map;
10317 unsigned int num_items;
10318
10319 read_lock(&em_tree->lock);
10320 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10321 read_unlock(&em_tree->lock);
10322 ASSERT(em && em->start == chunk_offset);
10323
10324 /*
10325 * We need to reserve 3 + N units from the metadata space info in order
10326 * to remove a block group (done at btrfs_remove_chunk() and at
10327 * btrfs_remove_block_group()), which are used for:
10328 *
10329 * 1 unit for adding the free space inode's orphan (located in the tree
10330 * of tree roots).
10331 * 1 unit for deleting the block group item (located in the extent
10332 * tree).
10333 * 1 unit for deleting the free space item (located in tree of tree
10334 * roots).
10335 * N units for deleting N device extent items corresponding to each
10336 * stripe (located in the device tree).
10337 *
10338 * In order to remove a block group we also need to reserve units in the
10339 * system space info in order to update the chunk tree (update one or
10340 * more device items and remove one chunk item), but this is done at
10341 * btrfs_remove_chunk() through a call to check_system_chunk().
10342 */
10343 map = (struct map_lookup *)em->bdev;
10344 num_items = 3 + map->num_stripes;
10345 free_extent_map(em);
10346
10347 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10348 num_items, 1);
10349 }
10350
10351 /*
10352 * Process the unused_bgs list and remove any that don't have any allocated
10353 * space inside of them.
10354 */
10355 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10356 {
10357 struct btrfs_block_group_cache *block_group;
10358 struct btrfs_space_info *space_info;
10359 struct btrfs_root *root = fs_info->extent_root;
10360 struct btrfs_trans_handle *trans;
10361 int ret = 0;
10362
10363 if (!fs_info->open)
10364 return;
10365
10366 spin_lock(&fs_info->unused_bgs_lock);
10367 while (!list_empty(&fs_info->unused_bgs)) {
10368 u64 start, end;
10369 int trimming;
10370
10371 block_group = list_first_entry(&fs_info->unused_bgs,
10372 struct btrfs_block_group_cache,
10373 bg_list);
10374 list_del_init(&block_group->bg_list);
10375
10376 space_info = block_group->space_info;
10377
10378 if (ret || btrfs_mixed_space_info(space_info)) {
10379 btrfs_put_block_group(block_group);
10380 continue;
10381 }
10382 spin_unlock(&fs_info->unused_bgs_lock);
10383
10384 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10385
10386 /* Don't want to race with allocators so take the groups_sem */
10387 down_write(&space_info->groups_sem);
10388 spin_lock(&block_group->lock);
10389 if (block_group->reserved ||
10390 btrfs_block_group_used(&block_group->item) ||
10391 block_group->ro ||
10392 list_is_singular(&block_group->list)) {
10393 /*
10394 * We want to bail if we made new allocations or have
10395 * outstanding allocations in this block group. We do
10396 * the ro check in case balance is currently acting on
10397 * this block group.
10398 */
10399 spin_unlock(&block_group->lock);
10400 up_write(&space_info->groups_sem);
10401 goto next;
10402 }
10403 spin_unlock(&block_group->lock);
10404
10405 /* We don't want to force the issue, only flip if it's ok. */
10406 ret = inc_block_group_ro(block_group, 0);
10407 up_write(&space_info->groups_sem);
10408 if (ret < 0) {
10409 ret = 0;
10410 goto next;
10411 }
10412
10413 /*
10414 * Want to do this before we do anything else so we can recover
10415 * properly if we fail to join the transaction.
10416 */
10417 trans = btrfs_start_trans_remove_block_group(fs_info,
10418 block_group->key.objectid);
10419 if (IS_ERR(trans)) {
10420 btrfs_dec_block_group_ro(root, block_group);
10421 ret = PTR_ERR(trans);
10422 goto next;
10423 }
10424
10425 /*
10426 * We could have pending pinned extents for this block group,
10427 * just delete them, we don't care about them anymore.
10428 */
10429 start = block_group->key.objectid;
10430 end = start + block_group->key.offset - 1;
10431 /*
10432 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10433 * btrfs_finish_extent_commit(). If we are at transaction N,
10434 * another task might be running finish_extent_commit() for the
10435 * previous transaction N - 1, and have seen a range belonging
10436 * to the block group in freed_extents[] before we were able to
10437 * clear the whole block group range from freed_extents[]. This
10438 * means that task can lookup for the block group after we
10439 * unpinned it from freed_extents[] and removed it, leading to
10440 * a BUG_ON() at btrfs_unpin_extent_range().
10441 */
10442 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10443 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10444 EXTENT_DIRTY, GFP_NOFS);
10445 if (ret) {
10446 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10447 btrfs_dec_block_group_ro(root, block_group);
10448 goto end_trans;
10449 }
10450 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10451 EXTENT_DIRTY, GFP_NOFS);
10452 if (ret) {
10453 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10454 btrfs_dec_block_group_ro(root, block_group);
10455 goto end_trans;
10456 }
10457 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10458
10459 /* Reset pinned so btrfs_put_block_group doesn't complain */
10460 spin_lock(&space_info->lock);
10461 spin_lock(&block_group->lock);
10462
10463 space_info->bytes_pinned -= block_group->pinned;
10464 space_info->bytes_readonly += block_group->pinned;
10465 percpu_counter_add(&space_info->total_bytes_pinned,
10466 -block_group->pinned);
10467 block_group->pinned = 0;
10468
10469 spin_unlock(&block_group->lock);
10470 spin_unlock(&space_info->lock);
10471
10472 /* DISCARD can flip during remount */
10473 trimming = btrfs_test_opt(root, DISCARD);
10474
10475 /* Implicit trim during transaction commit. */
10476 if (trimming)
10477 btrfs_get_block_group_trimming(block_group);
10478
10479 /*
10480 * Btrfs_remove_chunk will abort the transaction if things go
10481 * horribly wrong.
10482 */
10483 ret = btrfs_remove_chunk(trans, root,
10484 block_group->key.objectid);
10485
10486 if (ret) {
10487 if (trimming)
10488 btrfs_put_block_group_trimming(block_group);
10489 goto end_trans;
10490 }
10491
10492 /*
10493 * If we're not mounted with -odiscard, we can just forget
10494 * about this block group. Otherwise we'll need to wait
10495 * until transaction commit to do the actual discard.
10496 */
10497 if (trimming) {
10498 spin_lock(&fs_info->unused_bgs_lock);
10499 /*
10500 * A concurrent scrub might have added us to the list
10501 * fs_info->unused_bgs, so use a list_move operation
10502 * to add the block group to the deleted_bgs list.
10503 */
10504 list_move(&block_group->bg_list,
10505 &trans->transaction->deleted_bgs);
10506 spin_unlock(&fs_info->unused_bgs_lock);
10507 btrfs_get_block_group(block_group);
10508 }
10509 end_trans:
10510 btrfs_end_transaction(trans, root);
10511 next:
10512 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10513 btrfs_put_block_group(block_group);
10514 spin_lock(&fs_info->unused_bgs_lock);
10515 }
10516 spin_unlock(&fs_info->unused_bgs_lock);
10517 }
10518
10519 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10520 {
10521 struct btrfs_space_info *space_info;
10522 struct btrfs_super_block *disk_super;
10523 u64 features;
10524 u64 flags;
10525 int mixed = 0;
10526 int ret;
10527
10528 disk_super = fs_info->super_copy;
10529 if (!btrfs_super_root(disk_super))
10530 return 1;
10531
10532 features = btrfs_super_incompat_flags(disk_super);
10533 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10534 mixed = 1;
10535
10536 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10537 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10538 if (ret)
10539 goto out;
10540
10541 if (mixed) {
10542 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10543 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10544 } else {
10545 flags = BTRFS_BLOCK_GROUP_METADATA;
10546 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10547 if (ret)
10548 goto out;
10549
10550 flags = BTRFS_BLOCK_GROUP_DATA;
10551 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10552 }
10553 out:
10554 return ret;
10555 }
10556
10557 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10558 {
10559 return unpin_extent_range(root, start, end, false);
10560 }
10561
10562 /*
10563 * It used to be that old block groups would be left around forever.
10564 * Iterating over them would be enough to trim unused space. Since we
10565 * now automatically remove them, we also need to iterate over unallocated
10566 * space.
10567 *
10568 * We don't want a transaction for this since the discard may take a
10569 * substantial amount of time. We don't require that a transaction be
10570 * running, but we do need to take a running transaction into account
10571 * to ensure that we're not discarding chunks that were released in
10572 * the current transaction.
10573 *
10574 * Holding the chunks lock will prevent other threads from allocating
10575 * or releasing chunks, but it won't prevent a running transaction
10576 * from committing and releasing the memory that the pending chunks
10577 * list head uses. For that, we need to take a reference to the
10578 * transaction.
10579 */
10580 static int btrfs_trim_free_extents(struct btrfs_device *device,
10581 u64 minlen, u64 *trimmed)
10582 {
10583 u64 start = 0, len = 0;
10584 int ret;
10585
10586 *trimmed = 0;
10587
10588 /* Not writeable = nothing to do. */
10589 if (!device->writeable)
10590 return 0;
10591
10592 /* No free space = nothing to do. */
10593 if (device->total_bytes <= device->bytes_used)
10594 return 0;
10595
10596 ret = 0;
10597
10598 while (1) {
10599 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10600 struct btrfs_transaction *trans;
10601 u64 bytes;
10602
10603 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10604 if (ret)
10605 return ret;
10606
10607 down_read(&fs_info->commit_root_sem);
10608
10609 spin_lock(&fs_info->trans_lock);
10610 trans = fs_info->running_transaction;
10611 if (trans)
10612 atomic_inc(&trans->use_count);
10613 spin_unlock(&fs_info->trans_lock);
10614
10615 ret = find_free_dev_extent_start(trans, device, minlen, start,
10616 &start, &len);
10617 if (trans)
10618 btrfs_put_transaction(trans);
10619
10620 if (ret) {
10621 up_read(&fs_info->commit_root_sem);
10622 mutex_unlock(&fs_info->chunk_mutex);
10623 if (ret == -ENOSPC)
10624 ret = 0;
10625 break;
10626 }
10627
10628 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10629 up_read(&fs_info->commit_root_sem);
10630 mutex_unlock(&fs_info->chunk_mutex);
10631
10632 if (ret)
10633 break;
10634
10635 start += len;
10636 *trimmed += bytes;
10637
10638 if (fatal_signal_pending(current)) {
10639 ret = -ERESTARTSYS;
10640 break;
10641 }
10642
10643 cond_resched();
10644 }
10645
10646 return ret;
10647 }
10648
10649 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10650 {
10651 struct btrfs_fs_info *fs_info = root->fs_info;
10652 struct btrfs_block_group_cache *cache = NULL;
10653 struct btrfs_device *device;
10654 struct list_head *devices;
10655 u64 group_trimmed;
10656 u64 start;
10657 u64 end;
10658 u64 trimmed = 0;
10659 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10660 int ret = 0;
10661
10662 /*
10663 * try to trim all FS space, our block group may start from non-zero.
10664 */
10665 if (range->len == total_bytes)
10666 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10667 else
10668 cache = btrfs_lookup_block_group(fs_info, range->start);
10669
10670 while (cache) {
10671 if (cache->key.objectid >= (range->start + range->len)) {
10672 btrfs_put_block_group(cache);
10673 break;
10674 }
10675
10676 start = max(range->start, cache->key.objectid);
10677 end = min(range->start + range->len,
10678 cache->key.objectid + cache->key.offset);
10679
10680 if (end - start >= range->minlen) {
10681 if (!block_group_cache_done(cache)) {
10682 ret = cache_block_group(cache, 0);
10683 if (ret) {
10684 btrfs_put_block_group(cache);
10685 break;
10686 }
10687 ret = wait_block_group_cache_done(cache);
10688 if (ret) {
10689 btrfs_put_block_group(cache);
10690 break;
10691 }
10692 }
10693 ret = btrfs_trim_block_group(cache,
10694 &group_trimmed,
10695 start,
10696 end,
10697 range->minlen);
10698
10699 trimmed += group_trimmed;
10700 if (ret) {
10701 btrfs_put_block_group(cache);
10702 break;
10703 }
10704 }
10705
10706 cache = next_block_group(fs_info->tree_root, cache);
10707 }
10708
10709 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10710 devices = &root->fs_info->fs_devices->alloc_list;
10711 list_for_each_entry(device, devices, dev_alloc_list) {
10712 ret = btrfs_trim_free_extents(device, range->minlen,
10713 &group_trimmed);
10714 if (ret)
10715 break;
10716
10717 trimmed += group_trimmed;
10718 }
10719 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10720
10721 range->len = trimmed;
10722 return ret;
10723 }
10724
10725 /*
10726 * btrfs_{start,end}_write_no_snapshoting() are similar to
10727 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10728 * data into the page cache through nocow before the subvolume is snapshoted,
10729 * but flush the data into disk after the snapshot creation, or to prevent
10730 * operations while snapshoting is ongoing and that cause the snapshot to be
10731 * inconsistent (writes followed by expanding truncates for example).
10732 */
10733 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10734 {
10735 percpu_counter_dec(&root->subv_writers->counter);
10736 /*
10737 * Make sure counter is updated before we wake up waiters.
10738 */
10739 smp_mb();
10740 if (waitqueue_active(&root->subv_writers->wait))
10741 wake_up(&root->subv_writers->wait);
10742 }
10743
10744 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10745 {
10746 if (atomic_read(&root->will_be_snapshoted))
10747 return 0;
10748
10749 percpu_counter_inc(&root->subv_writers->counter);
10750 /*
10751 * Make sure counter is updated before we check for snapshot creation.
10752 */
10753 smp_mb();
10754 if (atomic_read(&root->will_be_snapshoted)) {
10755 btrfs_end_write_no_snapshoting(root);
10756 return 0;
10757 }
10758 return 1;
10759 }
This page took 0.233679 seconds and 6 git commands to generate.