Btrfs: Fix typo in clear_state_cb
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/version.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20
21 /* temporary define until extent_map moves out of btrfs */
22 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
23 unsigned long extra_flags,
24 void (*ctor)(void *, struct kmem_cache *,
25 unsigned long));
26
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29
30 static LIST_HEAD(buffers);
31 static LIST_HEAD(states);
32
33 #define LEAK_DEBUG 0
34 #ifdef LEAK_DEBUG
35 static spinlock_t leak_lock = SPIN_LOCK_UNLOCKED;
36 #endif
37
38 #define BUFFER_LRU_MAX 64
39
40 struct tree_entry {
41 u64 start;
42 u64 end;
43 struct rb_node rb_node;
44 };
45
46 struct extent_page_data {
47 struct bio *bio;
48 struct extent_io_tree *tree;
49 get_extent_t *get_extent;
50
51 /* tells writepage not to lock the state bits for this range
52 * it still does the unlocking
53 */
54 int extent_locked;
55 };
56
57 int __init extent_io_init(void)
58 {
59 extent_state_cache = btrfs_cache_create("extent_state",
60 sizeof(struct extent_state), 0,
61 NULL);
62 if (!extent_state_cache)
63 return -ENOMEM;
64
65 extent_buffer_cache = btrfs_cache_create("extent_buffers",
66 sizeof(struct extent_buffer), 0,
67 NULL);
68 if (!extent_buffer_cache)
69 goto free_state_cache;
70 return 0;
71
72 free_state_cache:
73 kmem_cache_destroy(extent_state_cache);
74 return -ENOMEM;
75 }
76
77 void extent_io_exit(void)
78 {
79 struct extent_state *state;
80 struct extent_buffer *eb;
81
82 while (!list_empty(&states)) {
83 state = list_entry(states.next, struct extent_state, leak_list);
84 printk("state leak: start %Lu end %Lu state %lu in tree %p refs %d\n", state->start, state->end, state->state, state->tree, atomic_read(&state->refs));
85 list_del(&state->leak_list);
86 kmem_cache_free(extent_state_cache, state);
87
88 }
89
90 while (!list_empty(&buffers)) {
91 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
92 printk("buffer leak start %Lu len %lu refs %d\n", eb->start, eb->len, atomic_read(&eb->refs));
93 list_del(&eb->leak_list);
94 kmem_cache_free(extent_buffer_cache, eb);
95 }
96 if (extent_state_cache)
97 kmem_cache_destroy(extent_state_cache);
98 if (extent_buffer_cache)
99 kmem_cache_destroy(extent_buffer_cache);
100 }
101
102 void extent_io_tree_init(struct extent_io_tree *tree,
103 struct address_space *mapping, gfp_t mask)
104 {
105 tree->state.rb_node = NULL;
106 tree->buffer.rb_node = NULL;
107 tree->ops = NULL;
108 tree->dirty_bytes = 0;
109 spin_lock_init(&tree->lock);
110 spin_lock_init(&tree->buffer_lock);
111 tree->mapping = mapping;
112 }
113 EXPORT_SYMBOL(extent_io_tree_init);
114
115 static struct extent_state *alloc_extent_state(gfp_t mask)
116 {
117 struct extent_state *state;
118 #ifdef LEAK_DEBUG
119 unsigned long flags;
120 #endif
121
122 state = kmem_cache_alloc(extent_state_cache, mask);
123 if (!state)
124 return state;
125 state->state = 0;
126 state->private = 0;
127 state->tree = NULL;
128 #ifdef LEAK_DEBUG
129 spin_lock_irqsave(&leak_lock, flags);
130 list_add(&state->leak_list, &states);
131 spin_unlock_irqrestore(&leak_lock, flags);
132 #endif
133 atomic_set(&state->refs, 1);
134 init_waitqueue_head(&state->wq);
135 return state;
136 }
137 EXPORT_SYMBOL(alloc_extent_state);
138
139 static void free_extent_state(struct extent_state *state)
140 {
141 if (!state)
142 return;
143 if (atomic_dec_and_test(&state->refs)) {
144 #ifdef LEAK_DEBUG
145 unsigned long flags;
146 #endif
147 WARN_ON(state->tree);
148 #ifdef LEAK_DEBUG
149 spin_lock_irqsave(&leak_lock, flags);
150 list_del(&state->leak_list);
151 spin_unlock_irqrestore(&leak_lock, flags);
152 #endif
153 kmem_cache_free(extent_state_cache, state);
154 }
155 }
156 EXPORT_SYMBOL(free_extent_state);
157
158 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
159 struct rb_node *node)
160 {
161 struct rb_node ** p = &root->rb_node;
162 struct rb_node * parent = NULL;
163 struct tree_entry *entry;
164
165 while(*p) {
166 parent = *p;
167 entry = rb_entry(parent, struct tree_entry, rb_node);
168
169 if (offset < entry->start)
170 p = &(*p)->rb_left;
171 else if (offset > entry->end)
172 p = &(*p)->rb_right;
173 else
174 return parent;
175 }
176
177 entry = rb_entry(node, struct tree_entry, rb_node);
178 rb_link_node(node, parent, p);
179 rb_insert_color(node, root);
180 return NULL;
181 }
182
183 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
184 struct rb_node **prev_ret,
185 struct rb_node **next_ret)
186 {
187 struct rb_root *root = &tree->state;
188 struct rb_node * n = root->rb_node;
189 struct rb_node *prev = NULL;
190 struct rb_node *orig_prev = NULL;
191 struct tree_entry *entry;
192 struct tree_entry *prev_entry = NULL;
193
194 while(n) {
195 entry = rb_entry(n, struct tree_entry, rb_node);
196 prev = n;
197 prev_entry = entry;
198
199 if (offset < entry->start)
200 n = n->rb_left;
201 else if (offset > entry->end)
202 n = n->rb_right;
203 else {
204 return n;
205 }
206 }
207
208 if (prev_ret) {
209 orig_prev = prev;
210 while(prev && offset > prev_entry->end) {
211 prev = rb_next(prev);
212 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
213 }
214 *prev_ret = prev;
215 prev = orig_prev;
216 }
217
218 if (next_ret) {
219 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
220 while(prev && offset < prev_entry->start) {
221 prev = rb_prev(prev);
222 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
223 }
224 *next_ret = prev;
225 }
226 return NULL;
227 }
228
229 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
230 u64 offset)
231 {
232 struct rb_node *prev = NULL;
233 struct rb_node *ret;
234
235 ret = __etree_search(tree, offset, &prev, NULL);
236 if (!ret) {
237 return prev;
238 }
239 return ret;
240 }
241
242 static struct extent_buffer *buffer_tree_insert(struct extent_io_tree *tree,
243 u64 offset, struct rb_node *node)
244 {
245 struct rb_root *root = &tree->buffer;
246 struct rb_node ** p = &root->rb_node;
247 struct rb_node * parent = NULL;
248 struct extent_buffer *eb;
249
250 while(*p) {
251 parent = *p;
252 eb = rb_entry(parent, struct extent_buffer, rb_node);
253
254 if (offset < eb->start)
255 p = &(*p)->rb_left;
256 else if (offset > eb->start)
257 p = &(*p)->rb_right;
258 else
259 return eb;
260 }
261
262 rb_link_node(node, parent, p);
263 rb_insert_color(node, root);
264 return NULL;
265 }
266
267 static struct extent_buffer *buffer_search(struct extent_io_tree *tree,
268 u64 offset)
269 {
270 struct rb_root *root = &tree->buffer;
271 struct rb_node * n = root->rb_node;
272 struct extent_buffer *eb;
273
274 while(n) {
275 eb = rb_entry(n, struct extent_buffer, rb_node);
276 if (offset < eb->start)
277 n = n->rb_left;
278 else if (offset > eb->start)
279 n = n->rb_right;
280 else
281 return eb;
282 }
283 return NULL;
284 }
285
286 /*
287 * utility function to look for merge candidates inside a given range.
288 * Any extents with matching state are merged together into a single
289 * extent in the tree. Extents with EXTENT_IO in their state field
290 * are not merged because the end_io handlers need to be able to do
291 * operations on them without sleeping (or doing allocations/splits).
292 *
293 * This should be called with the tree lock held.
294 */
295 static int merge_state(struct extent_io_tree *tree,
296 struct extent_state *state)
297 {
298 struct extent_state *other;
299 struct rb_node *other_node;
300
301 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
302 return 0;
303
304 other_node = rb_prev(&state->rb_node);
305 if (other_node) {
306 other = rb_entry(other_node, struct extent_state, rb_node);
307 if (other->end == state->start - 1 &&
308 other->state == state->state) {
309 state->start = other->start;
310 other->tree = NULL;
311 rb_erase(&other->rb_node, &tree->state);
312 free_extent_state(other);
313 }
314 }
315 other_node = rb_next(&state->rb_node);
316 if (other_node) {
317 other = rb_entry(other_node, struct extent_state, rb_node);
318 if (other->start == state->end + 1 &&
319 other->state == state->state) {
320 other->start = state->start;
321 state->tree = NULL;
322 rb_erase(&state->rb_node, &tree->state);
323 free_extent_state(state);
324 }
325 }
326 return 0;
327 }
328
329 static void set_state_cb(struct extent_io_tree *tree,
330 struct extent_state *state,
331 unsigned long bits)
332 {
333 if (tree->ops && tree->ops->set_bit_hook) {
334 tree->ops->set_bit_hook(tree->mapping->host, state->start,
335 state->end, state->state, bits);
336 }
337 }
338
339 static void clear_state_cb(struct extent_io_tree *tree,
340 struct extent_state *state,
341 unsigned long bits)
342 {
343 if (tree->ops && tree->ops->clear_bit_hook) {
344 tree->ops->clear_bit_hook(tree->mapping->host, state->start,
345 state->end, state->state, bits);
346 }
347 }
348
349 /*
350 * insert an extent_state struct into the tree. 'bits' are set on the
351 * struct before it is inserted.
352 *
353 * This may return -EEXIST if the extent is already there, in which case the
354 * state struct is freed.
355 *
356 * The tree lock is not taken internally. This is a utility function and
357 * probably isn't what you want to call (see set/clear_extent_bit).
358 */
359 static int insert_state(struct extent_io_tree *tree,
360 struct extent_state *state, u64 start, u64 end,
361 int bits)
362 {
363 struct rb_node *node;
364
365 if (end < start) {
366 printk("end < start %Lu %Lu\n", end, start);
367 WARN_ON(1);
368 }
369 if (bits & EXTENT_DIRTY)
370 tree->dirty_bytes += end - start + 1;
371 set_state_cb(tree, state, bits);
372 state->state |= bits;
373 state->start = start;
374 state->end = end;
375 node = tree_insert(&tree->state, end, &state->rb_node);
376 if (node) {
377 struct extent_state *found;
378 found = rb_entry(node, struct extent_state, rb_node);
379 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
380 free_extent_state(state);
381 return -EEXIST;
382 }
383 state->tree = tree;
384 merge_state(tree, state);
385 return 0;
386 }
387
388 /*
389 * split a given extent state struct in two, inserting the preallocated
390 * struct 'prealloc' as the newly created second half. 'split' indicates an
391 * offset inside 'orig' where it should be split.
392 *
393 * Before calling,
394 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
395 * are two extent state structs in the tree:
396 * prealloc: [orig->start, split - 1]
397 * orig: [ split, orig->end ]
398 *
399 * The tree locks are not taken by this function. They need to be held
400 * by the caller.
401 */
402 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
403 struct extent_state *prealloc, u64 split)
404 {
405 struct rb_node *node;
406 prealloc->start = orig->start;
407 prealloc->end = split - 1;
408 prealloc->state = orig->state;
409 orig->start = split;
410
411 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
412 if (node) {
413 struct extent_state *found;
414 found = rb_entry(node, struct extent_state, rb_node);
415 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
416 free_extent_state(prealloc);
417 return -EEXIST;
418 }
419 prealloc->tree = tree;
420 return 0;
421 }
422
423 /*
424 * utility function to clear some bits in an extent state struct.
425 * it will optionally wake up any one waiting on this state (wake == 1), or
426 * forcibly remove the state from the tree (delete == 1).
427 *
428 * If no bits are set on the state struct after clearing things, the
429 * struct is freed and removed from the tree
430 */
431 static int clear_state_bit(struct extent_io_tree *tree,
432 struct extent_state *state, int bits, int wake,
433 int delete)
434 {
435 int ret = state->state & bits;
436
437 if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
438 u64 range = state->end - state->start + 1;
439 WARN_ON(range > tree->dirty_bytes);
440 tree->dirty_bytes -= range;
441 }
442 clear_state_cb(tree, state, bits);
443 state->state &= ~bits;
444 if (wake)
445 wake_up(&state->wq);
446 if (delete || state->state == 0) {
447 if (state->tree) {
448 clear_state_cb(tree, state, state->state);
449 rb_erase(&state->rb_node, &tree->state);
450 state->tree = NULL;
451 free_extent_state(state);
452 } else {
453 WARN_ON(1);
454 }
455 } else {
456 merge_state(tree, state);
457 }
458 return ret;
459 }
460
461 /*
462 * clear some bits on a range in the tree. This may require splitting
463 * or inserting elements in the tree, so the gfp mask is used to
464 * indicate which allocations or sleeping are allowed.
465 *
466 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
467 * the given range from the tree regardless of state (ie for truncate).
468 *
469 * the range [start, end] is inclusive.
470 *
471 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
472 * bits were already set, or zero if none of the bits were already set.
473 */
474 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
475 int bits, int wake, int delete, gfp_t mask)
476 {
477 struct extent_state *state;
478 struct extent_state *prealloc = NULL;
479 struct rb_node *node;
480 int err;
481 int set = 0;
482
483 again:
484 if (!prealloc && (mask & __GFP_WAIT)) {
485 prealloc = alloc_extent_state(mask);
486 if (!prealloc)
487 return -ENOMEM;
488 }
489
490 spin_lock(&tree->lock);
491 /*
492 * this search will find the extents that end after
493 * our range starts
494 */
495 node = tree_search(tree, start);
496 if (!node)
497 goto out;
498 state = rb_entry(node, struct extent_state, rb_node);
499 if (state->start > end)
500 goto out;
501 WARN_ON(state->end < start);
502
503 /*
504 * | ---- desired range ---- |
505 * | state | or
506 * | ------------- state -------------- |
507 *
508 * We need to split the extent we found, and may flip
509 * bits on second half.
510 *
511 * If the extent we found extends past our range, we
512 * just split and search again. It'll get split again
513 * the next time though.
514 *
515 * If the extent we found is inside our range, we clear
516 * the desired bit on it.
517 */
518
519 if (state->start < start) {
520 if (!prealloc)
521 prealloc = alloc_extent_state(GFP_ATOMIC);
522 err = split_state(tree, state, prealloc, start);
523 BUG_ON(err == -EEXIST);
524 prealloc = NULL;
525 if (err)
526 goto out;
527 if (state->end <= end) {
528 start = state->end + 1;
529 set |= clear_state_bit(tree, state, bits,
530 wake, delete);
531 } else {
532 start = state->start;
533 }
534 goto search_again;
535 }
536 /*
537 * | ---- desired range ---- |
538 * | state |
539 * We need to split the extent, and clear the bit
540 * on the first half
541 */
542 if (state->start <= end && state->end > end) {
543 if (!prealloc)
544 prealloc = alloc_extent_state(GFP_ATOMIC);
545 err = split_state(tree, state, prealloc, end + 1);
546 BUG_ON(err == -EEXIST);
547
548 if (wake)
549 wake_up(&state->wq);
550 set |= clear_state_bit(tree, prealloc, bits,
551 wake, delete);
552 prealloc = NULL;
553 goto out;
554 }
555
556 start = state->end + 1;
557 set |= clear_state_bit(tree, state, bits, wake, delete);
558 goto search_again;
559
560 out:
561 spin_unlock(&tree->lock);
562 if (prealloc)
563 free_extent_state(prealloc);
564
565 return set;
566
567 search_again:
568 if (start > end)
569 goto out;
570 spin_unlock(&tree->lock);
571 if (mask & __GFP_WAIT)
572 cond_resched();
573 goto again;
574 }
575 EXPORT_SYMBOL(clear_extent_bit);
576
577 static int wait_on_state(struct extent_io_tree *tree,
578 struct extent_state *state)
579 __releases(tree->lock)
580 __acquires(tree->lock)
581 {
582 DEFINE_WAIT(wait);
583 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
584 spin_unlock(&tree->lock);
585 schedule();
586 spin_lock(&tree->lock);
587 finish_wait(&state->wq, &wait);
588 return 0;
589 }
590
591 /*
592 * waits for one or more bits to clear on a range in the state tree.
593 * The range [start, end] is inclusive.
594 * The tree lock is taken by this function
595 */
596 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
597 {
598 struct extent_state *state;
599 struct rb_node *node;
600
601 spin_lock(&tree->lock);
602 again:
603 while (1) {
604 /*
605 * this search will find all the extents that end after
606 * our range starts
607 */
608 node = tree_search(tree, start);
609 if (!node)
610 break;
611
612 state = rb_entry(node, struct extent_state, rb_node);
613
614 if (state->start > end)
615 goto out;
616
617 if (state->state & bits) {
618 start = state->start;
619 atomic_inc(&state->refs);
620 wait_on_state(tree, state);
621 free_extent_state(state);
622 goto again;
623 }
624 start = state->end + 1;
625
626 if (start > end)
627 break;
628
629 if (need_resched()) {
630 spin_unlock(&tree->lock);
631 cond_resched();
632 spin_lock(&tree->lock);
633 }
634 }
635 out:
636 spin_unlock(&tree->lock);
637 return 0;
638 }
639 EXPORT_SYMBOL(wait_extent_bit);
640
641 static void set_state_bits(struct extent_io_tree *tree,
642 struct extent_state *state,
643 int bits)
644 {
645 if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
646 u64 range = state->end - state->start + 1;
647 tree->dirty_bytes += range;
648 }
649 set_state_cb(tree, state, bits);
650 state->state |= bits;
651 }
652
653 /*
654 * set some bits on a range in the tree. This may require allocations
655 * or sleeping, so the gfp mask is used to indicate what is allowed.
656 *
657 * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
658 * range already has the desired bits set. The start of the existing
659 * range is returned in failed_start in this case.
660 *
661 * [start, end] is inclusive
662 * This takes the tree lock.
663 */
664 static int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
665 int exclusive, u64 *failed_start, gfp_t mask)
666 {
667 struct extent_state *state;
668 struct extent_state *prealloc = NULL;
669 struct rb_node *node;
670 int err = 0;
671 int set;
672 u64 last_start;
673 u64 last_end;
674 again:
675 if (!prealloc && (mask & __GFP_WAIT)) {
676 prealloc = alloc_extent_state(mask);
677 if (!prealloc)
678 return -ENOMEM;
679 }
680
681 spin_lock(&tree->lock);
682 /*
683 * this search will find all the extents that end after
684 * our range starts.
685 */
686 node = tree_search(tree, start);
687 if (!node) {
688 err = insert_state(tree, prealloc, start, end, bits);
689 prealloc = NULL;
690 BUG_ON(err == -EEXIST);
691 goto out;
692 }
693
694 state = rb_entry(node, struct extent_state, rb_node);
695 last_start = state->start;
696 last_end = state->end;
697
698 /*
699 * | ---- desired range ---- |
700 * | state |
701 *
702 * Just lock what we found and keep going
703 */
704 if (state->start == start && state->end <= end) {
705 set = state->state & bits;
706 if (set && exclusive) {
707 *failed_start = state->start;
708 err = -EEXIST;
709 goto out;
710 }
711 set_state_bits(tree, state, bits);
712 start = state->end + 1;
713 merge_state(tree, state);
714 goto search_again;
715 }
716
717 /*
718 * | ---- desired range ---- |
719 * | state |
720 * or
721 * | ------------- state -------------- |
722 *
723 * We need to split the extent we found, and may flip bits on
724 * second half.
725 *
726 * If the extent we found extends past our
727 * range, we just split and search again. It'll get split
728 * again the next time though.
729 *
730 * If the extent we found is inside our range, we set the
731 * desired bit on it.
732 */
733 if (state->start < start) {
734 set = state->state & bits;
735 if (exclusive && set) {
736 *failed_start = start;
737 err = -EEXIST;
738 goto out;
739 }
740 err = split_state(tree, state, prealloc, start);
741 BUG_ON(err == -EEXIST);
742 prealloc = NULL;
743 if (err)
744 goto out;
745 if (state->end <= end) {
746 set_state_bits(tree, state, bits);
747 start = state->end + 1;
748 merge_state(tree, state);
749 } else {
750 start = state->start;
751 }
752 goto search_again;
753 }
754 /*
755 * | ---- desired range ---- |
756 * | state | or | state |
757 *
758 * There's a hole, we need to insert something in it and
759 * ignore the extent we found.
760 */
761 if (state->start > start) {
762 u64 this_end;
763 if (end < last_start)
764 this_end = end;
765 else
766 this_end = last_start -1;
767 err = insert_state(tree, prealloc, start, this_end,
768 bits);
769 prealloc = NULL;
770 BUG_ON(err == -EEXIST);
771 if (err)
772 goto out;
773 start = this_end + 1;
774 goto search_again;
775 }
776 /*
777 * | ---- desired range ---- |
778 * | state |
779 * We need to split the extent, and set the bit
780 * on the first half
781 */
782 if (state->start <= end && state->end > end) {
783 set = state->state & bits;
784 if (exclusive && set) {
785 *failed_start = start;
786 err = -EEXIST;
787 goto out;
788 }
789 err = split_state(tree, state, prealloc, end + 1);
790 BUG_ON(err == -EEXIST);
791
792 set_state_bits(tree, prealloc, bits);
793 merge_state(tree, prealloc);
794 prealloc = NULL;
795 goto out;
796 }
797
798 goto search_again;
799
800 out:
801 spin_unlock(&tree->lock);
802 if (prealloc)
803 free_extent_state(prealloc);
804
805 return err;
806
807 search_again:
808 if (start > end)
809 goto out;
810 spin_unlock(&tree->lock);
811 if (mask & __GFP_WAIT)
812 cond_resched();
813 goto again;
814 }
815 EXPORT_SYMBOL(set_extent_bit);
816
817 /* wrappers around set/clear extent bit */
818 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
819 gfp_t mask)
820 {
821 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
822 mask);
823 }
824 EXPORT_SYMBOL(set_extent_dirty);
825
826 int set_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end,
827 gfp_t mask)
828 {
829 return set_extent_bit(tree, start, end, EXTENT_ORDERED, 0, NULL, mask);
830 }
831 EXPORT_SYMBOL(set_extent_ordered);
832
833 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
834 int bits, gfp_t mask)
835 {
836 return set_extent_bit(tree, start, end, bits, 0, NULL,
837 mask);
838 }
839 EXPORT_SYMBOL(set_extent_bits);
840
841 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
842 int bits, gfp_t mask)
843 {
844 return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
845 }
846 EXPORT_SYMBOL(clear_extent_bits);
847
848 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
849 gfp_t mask)
850 {
851 return set_extent_bit(tree, start, end,
852 EXTENT_DELALLOC | EXTENT_DIRTY,
853 0, NULL, mask);
854 }
855 EXPORT_SYMBOL(set_extent_delalloc);
856
857 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
858 gfp_t mask)
859 {
860 return clear_extent_bit(tree, start, end,
861 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
862 }
863 EXPORT_SYMBOL(clear_extent_dirty);
864
865 int clear_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end,
866 gfp_t mask)
867 {
868 return clear_extent_bit(tree, start, end, EXTENT_ORDERED, 1, 0, mask);
869 }
870 EXPORT_SYMBOL(clear_extent_ordered);
871
872 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
873 gfp_t mask)
874 {
875 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
876 mask);
877 }
878 EXPORT_SYMBOL(set_extent_new);
879
880 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
881 gfp_t mask)
882 {
883 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
884 }
885
886 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
887 gfp_t mask)
888 {
889 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
890 mask);
891 }
892 EXPORT_SYMBOL(set_extent_uptodate);
893
894 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
895 gfp_t mask)
896 {
897 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
898 }
899
900 static int set_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
901 gfp_t mask)
902 {
903 return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
904 0, NULL, mask);
905 }
906
907 static int clear_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
908 gfp_t mask)
909 {
910 return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
911 }
912
913 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
914 {
915 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
916 }
917 EXPORT_SYMBOL(wait_on_extent_writeback);
918
919 /*
920 * either insert or lock state struct between start and end use mask to tell
921 * us if waiting is desired.
922 */
923 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
924 {
925 int err;
926 u64 failed_start;
927 while (1) {
928 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
929 &failed_start, mask);
930 if (err == -EEXIST && (mask & __GFP_WAIT)) {
931 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
932 start = failed_start;
933 } else {
934 break;
935 }
936 WARN_ON(start > end);
937 }
938 return err;
939 }
940 EXPORT_SYMBOL(lock_extent);
941
942 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
943 gfp_t mask)
944 {
945 int err;
946 u64 failed_start;
947
948 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
949 &failed_start, mask);
950 if (err == -EEXIST) {
951 if (failed_start > start)
952 clear_extent_bit(tree, start, failed_start - 1,
953 EXTENT_LOCKED, 1, 0, mask);
954 return 0;
955 }
956 return 1;
957 }
958 EXPORT_SYMBOL(try_lock_extent);
959
960 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
961 gfp_t mask)
962 {
963 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
964 }
965 EXPORT_SYMBOL(unlock_extent);
966
967 /*
968 * helper function to set pages and extents in the tree dirty
969 */
970 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
971 {
972 unsigned long index = start >> PAGE_CACHE_SHIFT;
973 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
974 struct page *page;
975
976 while (index <= end_index) {
977 page = find_get_page(tree->mapping, index);
978 BUG_ON(!page);
979 __set_page_dirty_nobuffers(page);
980 page_cache_release(page);
981 index++;
982 }
983 set_extent_dirty(tree, start, end, GFP_NOFS);
984 return 0;
985 }
986 EXPORT_SYMBOL(set_range_dirty);
987
988 /*
989 * helper function to set both pages and extents in the tree writeback
990 */
991 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
992 {
993 unsigned long index = start >> PAGE_CACHE_SHIFT;
994 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
995 struct page *page;
996
997 while (index <= end_index) {
998 page = find_get_page(tree->mapping, index);
999 BUG_ON(!page);
1000 set_page_writeback(page);
1001 page_cache_release(page);
1002 index++;
1003 }
1004 set_extent_writeback(tree, start, end, GFP_NOFS);
1005 return 0;
1006 }
1007
1008 /*
1009 * find the first offset in the io tree with 'bits' set. zero is
1010 * returned if we find something, and *start_ret and *end_ret are
1011 * set to reflect the state struct that was found.
1012 *
1013 * If nothing was found, 1 is returned, < 0 on error
1014 */
1015 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1016 u64 *start_ret, u64 *end_ret, int bits)
1017 {
1018 struct rb_node *node;
1019 struct extent_state *state;
1020 int ret = 1;
1021
1022 spin_lock(&tree->lock);
1023 /*
1024 * this search will find all the extents that end after
1025 * our range starts.
1026 */
1027 node = tree_search(tree, start);
1028 if (!node) {
1029 goto out;
1030 }
1031
1032 while(1) {
1033 state = rb_entry(node, struct extent_state, rb_node);
1034 if (state->end >= start && (state->state & bits)) {
1035 *start_ret = state->start;
1036 *end_ret = state->end;
1037 ret = 0;
1038 break;
1039 }
1040 node = rb_next(node);
1041 if (!node)
1042 break;
1043 }
1044 out:
1045 spin_unlock(&tree->lock);
1046 return ret;
1047 }
1048 EXPORT_SYMBOL(find_first_extent_bit);
1049
1050 /* find the first state struct with 'bits' set after 'start', and
1051 * return it. tree->lock must be held. NULL will returned if
1052 * nothing was found after 'start'
1053 */
1054 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1055 u64 start, int bits)
1056 {
1057 struct rb_node *node;
1058 struct extent_state *state;
1059
1060 /*
1061 * this search will find all the extents that end after
1062 * our range starts.
1063 */
1064 node = tree_search(tree, start);
1065 if (!node) {
1066 goto out;
1067 }
1068
1069 while(1) {
1070 state = rb_entry(node, struct extent_state, rb_node);
1071 if (state->end >= start && (state->state & bits)) {
1072 return state;
1073 }
1074 node = rb_next(node);
1075 if (!node)
1076 break;
1077 }
1078 out:
1079 return NULL;
1080 }
1081 EXPORT_SYMBOL(find_first_extent_bit_state);
1082
1083 /*
1084 * find a contiguous range of bytes in the file marked as delalloc, not
1085 * more than 'max_bytes'. start and end are used to return the range,
1086 *
1087 * 1 is returned if we find something, 0 if nothing was in the tree
1088 */
1089 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1090 u64 *start, u64 *end, u64 max_bytes)
1091 {
1092 struct rb_node *node;
1093 struct extent_state *state;
1094 u64 cur_start = *start;
1095 u64 found = 0;
1096 u64 total_bytes = 0;
1097
1098 spin_lock(&tree->lock);
1099
1100 /*
1101 * this search will find all the extents that end after
1102 * our range starts.
1103 */
1104 node = tree_search(tree, cur_start);
1105 if (!node) {
1106 if (!found)
1107 *end = (u64)-1;
1108 goto out;
1109 }
1110
1111 while(1) {
1112 state = rb_entry(node, struct extent_state, rb_node);
1113 if (found && (state->start != cur_start ||
1114 (state->state & EXTENT_BOUNDARY))) {
1115 goto out;
1116 }
1117 if (!(state->state & EXTENT_DELALLOC)) {
1118 if (!found)
1119 *end = state->end;
1120 goto out;
1121 }
1122 if (!found)
1123 *start = state->start;
1124 found++;
1125 *end = state->end;
1126 cur_start = state->end + 1;
1127 node = rb_next(node);
1128 if (!node)
1129 break;
1130 total_bytes += state->end - state->start + 1;
1131 if (total_bytes >= max_bytes)
1132 break;
1133 }
1134 out:
1135 spin_unlock(&tree->lock);
1136 return found;
1137 }
1138
1139 static noinline int __unlock_for_delalloc(struct inode *inode,
1140 struct page *locked_page,
1141 u64 start, u64 end)
1142 {
1143 int ret;
1144 struct page *pages[16];
1145 unsigned long index = start >> PAGE_CACHE_SHIFT;
1146 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1147 unsigned long nr_pages = end_index - index + 1;
1148 int i;
1149
1150 if (index == locked_page->index && end_index == index)
1151 return 0;
1152
1153 while(nr_pages > 0) {
1154 ret = find_get_pages_contig(inode->i_mapping, index,
1155 min_t(unsigned long, nr_pages,
1156 ARRAY_SIZE(pages)), pages);
1157 for (i = 0; i < ret; i++) {
1158 if (pages[i] != locked_page)
1159 unlock_page(pages[i]);
1160 page_cache_release(pages[i]);
1161 }
1162 nr_pages -= ret;
1163 index += ret;
1164 cond_resched();
1165 }
1166 return 0;
1167 }
1168
1169 static noinline int lock_delalloc_pages(struct inode *inode,
1170 struct page *locked_page,
1171 u64 delalloc_start,
1172 u64 delalloc_end)
1173 {
1174 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1175 unsigned long start_index = index;
1176 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1177 unsigned long pages_locked = 0;
1178 struct page *pages[16];
1179 unsigned long nrpages;
1180 int ret;
1181 int i;
1182
1183 /* the caller is responsible for locking the start index */
1184 if (index == locked_page->index && index == end_index)
1185 return 0;
1186
1187 /* skip the page at the start index */
1188 nrpages = end_index - index + 1;
1189 while(nrpages > 0) {
1190 ret = find_get_pages_contig(inode->i_mapping, index,
1191 min_t(unsigned long,
1192 nrpages, ARRAY_SIZE(pages)), pages);
1193 if (ret == 0) {
1194 ret = -EAGAIN;
1195 goto done;
1196 }
1197 /* now we have an array of pages, lock them all */
1198 for (i = 0; i < ret; i++) {
1199 /*
1200 * the caller is taking responsibility for
1201 * locked_page
1202 */
1203 if (pages[i] != locked_page) {
1204 lock_page(pages[i]);
1205 if (!PageDirty(pages[i]) ||
1206 pages[i]->mapping != inode->i_mapping) {
1207 ret = -EAGAIN;
1208 unlock_page(pages[i]);
1209 page_cache_release(pages[i]);
1210 goto done;
1211 }
1212 }
1213 page_cache_release(pages[i]);
1214 pages_locked++;
1215 }
1216 nrpages -= ret;
1217 index += ret;
1218 cond_resched();
1219 }
1220 ret = 0;
1221 done:
1222 if (ret && pages_locked) {
1223 __unlock_for_delalloc(inode, locked_page,
1224 delalloc_start,
1225 ((u64)(start_index + pages_locked - 1)) <<
1226 PAGE_CACHE_SHIFT);
1227 }
1228 return ret;
1229 }
1230
1231 /*
1232 * find a contiguous range of bytes in the file marked as delalloc, not
1233 * more than 'max_bytes'. start and end are used to return the range,
1234 *
1235 * 1 is returned if we find something, 0 if nothing was in the tree
1236 */
1237 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1238 struct extent_io_tree *tree,
1239 struct page *locked_page,
1240 u64 *start, u64 *end,
1241 u64 max_bytes)
1242 {
1243 u64 delalloc_start;
1244 u64 delalloc_end;
1245 u64 found;
1246 int ret;
1247 int loops = 0;
1248
1249 again:
1250 /* step one, find a bunch of delalloc bytes starting at start */
1251 delalloc_start = *start;
1252 delalloc_end = 0;
1253 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1254 max_bytes);
1255 if (!found || delalloc_end <= *start) {
1256 *start = delalloc_start;
1257 *end = delalloc_end;
1258 return found;
1259 }
1260
1261 /*
1262 * start comes from the offset of locked_page. We have to lock
1263 * pages in order, so we can't process delalloc bytes before
1264 * locked_page
1265 */
1266 if (delalloc_start < *start) {
1267 delalloc_start = *start;
1268 }
1269
1270 /*
1271 * make sure to limit the number of pages we try to lock down
1272 * if we're looping.
1273 */
1274 if (delalloc_end + 1 - delalloc_start > max_bytes && loops) {
1275 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1276 }
1277 /* step two, lock all the pages after the page that has start */
1278 ret = lock_delalloc_pages(inode, locked_page,
1279 delalloc_start, delalloc_end);
1280 if (ret == -EAGAIN) {
1281 /* some of the pages are gone, lets avoid looping by
1282 * shortening the size of the delalloc range we're searching
1283 */
1284 if (!loops) {
1285 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1286 max_bytes = PAGE_CACHE_SIZE - offset;
1287 loops = 1;
1288 goto again;
1289 } else {
1290 found = 0;
1291 goto out_failed;
1292 }
1293 }
1294 BUG_ON(ret);
1295
1296 /* step three, lock the state bits for the whole range */
1297 lock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS);
1298
1299 /* then test to make sure it is all still delalloc */
1300 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1301 EXTENT_DELALLOC, 1);
1302 if (!ret) {
1303 unlock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS);
1304 __unlock_for_delalloc(inode, locked_page,
1305 delalloc_start, delalloc_end);
1306 cond_resched();
1307 goto again;
1308 }
1309 *start = delalloc_start;
1310 *end = delalloc_end;
1311 out_failed:
1312 return found;
1313 }
1314
1315 int extent_clear_unlock_delalloc(struct inode *inode,
1316 struct extent_io_tree *tree,
1317 u64 start, u64 end, struct page *locked_page,
1318 int unlock_pages,
1319 int clear_unlock,
1320 int clear_delalloc, int clear_dirty,
1321 int set_writeback,
1322 int end_writeback)
1323 {
1324 int ret;
1325 struct page *pages[16];
1326 unsigned long index = start >> PAGE_CACHE_SHIFT;
1327 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1328 unsigned long nr_pages = end_index - index + 1;
1329 int i;
1330 int clear_bits = 0;
1331
1332 if (clear_unlock)
1333 clear_bits |= EXTENT_LOCKED;
1334 if (clear_dirty)
1335 clear_bits |= EXTENT_DIRTY;
1336
1337 if (clear_delalloc)
1338 clear_bits |= EXTENT_DELALLOC;
1339
1340 clear_extent_bit(tree, start, end, clear_bits, 1, 0, GFP_NOFS);
1341 if (!(unlock_pages || clear_dirty || set_writeback || end_writeback))
1342 return 0;
1343
1344 while(nr_pages > 0) {
1345 ret = find_get_pages_contig(inode->i_mapping, index,
1346 min_t(unsigned long,
1347 nr_pages, ARRAY_SIZE(pages)), pages);
1348 for (i = 0; i < ret; i++) {
1349 if (pages[i] == locked_page) {
1350 page_cache_release(pages[i]);
1351 continue;
1352 }
1353 if (clear_dirty)
1354 clear_page_dirty_for_io(pages[i]);
1355 if (set_writeback)
1356 set_page_writeback(pages[i]);
1357 if (end_writeback)
1358 end_page_writeback(pages[i]);
1359 if (unlock_pages)
1360 unlock_page(pages[i]);
1361 page_cache_release(pages[i]);
1362 }
1363 nr_pages -= ret;
1364 index += ret;
1365 cond_resched();
1366 }
1367 return 0;
1368 }
1369 EXPORT_SYMBOL(extent_clear_unlock_delalloc);
1370
1371 /*
1372 * count the number of bytes in the tree that have a given bit(s)
1373 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1374 * cached. The total number found is returned.
1375 */
1376 u64 count_range_bits(struct extent_io_tree *tree,
1377 u64 *start, u64 search_end, u64 max_bytes,
1378 unsigned long bits)
1379 {
1380 struct rb_node *node;
1381 struct extent_state *state;
1382 u64 cur_start = *start;
1383 u64 total_bytes = 0;
1384 int found = 0;
1385
1386 if (search_end <= cur_start) {
1387 printk("search_end %Lu start %Lu\n", search_end, cur_start);
1388 WARN_ON(1);
1389 return 0;
1390 }
1391
1392 spin_lock(&tree->lock);
1393 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1394 total_bytes = tree->dirty_bytes;
1395 goto out;
1396 }
1397 /*
1398 * this search will find all the extents that end after
1399 * our range starts.
1400 */
1401 node = tree_search(tree, cur_start);
1402 if (!node) {
1403 goto out;
1404 }
1405
1406 while(1) {
1407 state = rb_entry(node, struct extent_state, rb_node);
1408 if (state->start > search_end)
1409 break;
1410 if (state->end >= cur_start && (state->state & bits)) {
1411 total_bytes += min(search_end, state->end) + 1 -
1412 max(cur_start, state->start);
1413 if (total_bytes >= max_bytes)
1414 break;
1415 if (!found) {
1416 *start = state->start;
1417 found = 1;
1418 }
1419 }
1420 node = rb_next(node);
1421 if (!node)
1422 break;
1423 }
1424 out:
1425 spin_unlock(&tree->lock);
1426 return total_bytes;
1427 }
1428
1429 #if 0
1430 /*
1431 * helper function to lock both pages and extents in the tree.
1432 * pages must be locked first.
1433 */
1434 static int lock_range(struct extent_io_tree *tree, u64 start, u64 end)
1435 {
1436 unsigned long index = start >> PAGE_CACHE_SHIFT;
1437 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1438 struct page *page;
1439 int err;
1440
1441 while (index <= end_index) {
1442 page = grab_cache_page(tree->mapping, index);
1443 if (!page) {
1444 err = -ENOMEM;
1445 goto failed;
1446 }
1447 if (IS_ERR(page)) {
1448 err = PTR_ERR(page);
1449 goto failed;
1450 }
1451 index++;
1452 }
1453 lock_extent(tree, start, end, GFP_NOFS);
1454 return 0;
1455
1456 failed:
1457 /*
1458 * we failed above in getting the page at 'index', so we undo here
1459 * up to but not including the page at 'index'
1460 */
1461 end_index = index;
1462 index = start >> PAGE_CACHE_SHIFT;
1463 while (index < end_index) {
1464 page = find_get_page(tree->mapping, index);
1465 unlock_page(page);
1466 page_cache_release(page);
1467 index++;
1468 }
1469 return err;
1470 }
1471
1472 /*
1473 * helper function to unlock both pages and extents in the tree.
1474 */
1475 static int unlock_range(struct extent_io_tree *tree, u64 start, u64 end)
1476 {
1477 unsigned long index = start >> PAGE_CACHE_SHIFT;
1478 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1479 struct page *page;
1480
1481 while (index <= end_index) {
1482 page = find_get_page(tree->mapping, index);
1483 unlock_page(page);
1484 page_cache_release(page);
1485 index++;
1486 }
1487 unlock_extent(tree, start, end, GFP_NOFS);
1488 return 0;
1489 }
1490 #endif
1491
1492 /*
1493 * set the private field for a given byte offset in the tree. If there isn't
1494 * an extent_state there already, this does nothing.
1495 */
1496 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1497 {
1498 struct rb_node *node;
1499 struct extent_state *state;
1500 int ret = 0;
1501
1502 spin_lock(&tree->lock);
1503 /*
1504 * this search will find all the extents that end after
1505 * our range starts.
1506 */
1507 node = tree_search(tree, start);
1508 if (!node) {
1509 ret = -ENOENT;
1510 goto out;
1511 }
1512 state = rb_entry(node, struct extent_state, rb_node);
1513 if (state->start != start) {
1514 ret = -ENOENT;
1515 goto out;
1516 }
1517 state->private = private;
1518 out:
1519 spin_unlock(&tree->lock);
1520 return ret;
1521 }
1522
1523 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1524 {
1525 struct rb_node *node;
1526 struct extent_state *state;
1527 int ret = 0;
1528
1529 spin_lock(&tree->lock);
1530 /*
1531 * this search will find all the extents that end after
1532 * our range starts.
1533 */
1534 node = tree_search(tree, start);
1535 if (!node) {
1536 ret = -ENOENT;
1537 goto out;
1538 }
1539 state = rb_entry(node, struct extent_state, rb_node);
1540 if (state->start != start) {
1541 ret = -ENOENT;
1542 goto out;
1543 }
1544 *private = state->private;
1545 out:
1546 spin_unlock(&tree->lock);
1547 return ret;
1548 }
1549
1550 /*
1551 * searches a range in the state tree for a given mask.
1552 * If 'filled' == 1, this returns 1 only if every extent in the tree
1553 * has the bits set. Otherwise, 1 is returned if any bit in the
1554 * range is found set.
1555 */
1556 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1557 int bits, int filled)
1558 {
1559 struct extent_state *state = NULL;
1560 struct rb_node *node;
1561 int bitset = 0;
1562
1563 spin_lock(&tree->lock);
1564 node = tree_search(tree, start);
1565 while (node && start <= end) {
1566 state = rb_entry(node, struct extent_state, rb_node);
1567
1568 if (filled && state->start > start) {
1569 bitset = 0;
1570 break;
1571 }
1572
1573 if (state->start > end)
1574 break;
1575
1576 if (state->state & bits) {
1577 bitset = 1;
1578 if (!filled)
1579 break;
1580 } else if (filled) {
1581 bitset = 0;
1582 break;
1583 }
1584 start = state->end + 1;
1585 if (start > end)
1586 break;
1587 node = rb_next(node);
1588 if (!node) {
1589 if (filled)
1590 bitset = 0;
1591 break;
1592 }
1593 }
1594 spin_unlock(&tree->lock);
1595 return bitset;
1596 }
1597 EXPORT_SYMBOL(test_range_bit);
1598
1599 /*
1600 * helper function to set a given page up to date if all the
1601 * extents in the tree for that page are up to date
1602 */
1603 static int check_page_uptodate(struct extent_io_tree *tree,
1604 struct page *page)
1605 {
1606 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1607 u64 end = start + PAGE_CACHE_SIZE - 1;
1608 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1609 SetPageUptodate(page);
1610 return 0;
1611 }
1612
1613 /*
1614 * helper function to unlock a page if all the extents in the tree
1615 * for that page are unlocked
1616 */
1617 static int check_page_locked(struct extent_io_tree *tree,
1618 struct page *page)
1619 {
1620 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1621 u64 end = start + PAGE_CACHE_SIZE - 1;
1622 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1623 unlock_page(page);
1624 return 0;
1625 }
1626
1627 /*
1628 * helper function to end page writeback if all the extents
1629 * in the tree for that page are done with writeback
1630 */
1631 static int check_page_writeback(struct extent_io_tree *tree,
1632 struct page *page)
1633 {
1634 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1635 u64 end = start + PAGE_CACHE_SIZE - 1;
1636 if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1637 end_page_writeback(page);
1638 return 0;
1639 }
1640
1641 /* lots and lots of room for performance fixes in the end_bio funcs */
1642
1643 /*
1644 * after a writepage IO is done, we need to:
1645 * clear the uptodate bits on error
1646 * clear the writeback bits in the extent tree for this IO
1647 * end_page_writeback if the page has no more pending IO
1648 *
1649 * Scheduling is not allowed, so the extent state tree is expected
1650 * to have one and only one object corresponding to this IO.
1651 */
1652 static void end_bio_extent_writepage(struct bio *bio, int err)
1653 {
1654 int uptodate = err == 0;
1655 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1656 struct extent_io_tree *tree;
1657 u64 start;
1658 u64 end;
1659 int whole_page;
1660 int ret;
1661
1662 do {
1663 struct page *page = bvec->bv_page;
1664 tree = &BTRFS_I(page->mapping->host)->io_tree;
1665
1666 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1667 bvec->bv_offset;
1668 end = start + bvec->bv_len - 1;
1669
1670 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1671 whole_page = 1;
1672 else
1673 whole_page = 0;
1674
1675 if (--bvec >= bio->bi_io_vec)
1676 prefetchw(&bvec->bv_page->flags);
1677 if (tree->ops && tree->ops->writepage_end_io_hook) {
1678 ret = tree->ops->writepage_end_io_hook(page, start,
1679 end, NULL, uptodate);
1680 if (ret)
1681 uptodate = 0;
1682 }
1683
1684 if (!uptodate && tree->ops &&
1685 tree->ops->writepage_io_failed_hook) {
1686 ret = tree->ops->writepage_io_failed_hook(bio, page,
1687 start, end, NULL);
1688 if (ret == 0) {
1689 uptodate = (err == 0);
1690 continue;
1691 }
1692 }
1693
1694 if (!uptodate) {
1695 clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1696 ClearPageUptodate(page);
1697 SetPageError(page);
1698 }
1699
1700 clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1701
1702 if (whole_page)
1703 end_page_writeback(page);
1704 else
1705 check_page_writeback(tree, page);
1706 } while (bvec >= bio->bi_io_vec);
1707
1708 bio_put(bio);
1709 }
1710
1711 /*
1712 * after a readpage IO is done, we need to:
1713 * clear the uptodate bits on error
1714 * set the uptodate bits if things worked
1715 * set the page up to date if all extents in the tree are uptodate
1716 * clear the lock bit in the extent tree
1717 * unlock the page if there are no other extents locked for it
1718 *
1719 * Scheduling is not allowed, so the extent state tree is expected
1720 * to have one and only one object corresponding to this IO.
1721 */
1722 static void end_bio_extent_readpage(struct bio *bio, int err)
1723 {
1724 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1725 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1726 struct extent_io_tree *tree;
1727 u64 start;
1728 u64 end;
1729 int whole_page;
1730 int ret;
1731
1732 if (err)
1733 uptodate = 0;
1734
1735 do {
1736 struct page *page = bvec->bv_page;
1737 tree = &BTRFS_I(page->mapping->host)->io_tree;
1738
1739 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1740 bvec->bv_offset;
1741 end = start + bvec->bv_len - 1;
1742
1743 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1744 whole_page = 1;
1745 else
1746 whole_page = 0;
1747
1748 if (--bvec >= bio->bi_io_vec)
1749 prefetchw(&bvec->bv_page->flags);
1750
1751 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1752 ret = tree->ops->readpage_end_io_hook(page, start, end,
1753 NULL);
1754 if (ret)
1755 uptodate = 0;
1756 }
1757 if (!uptodate && tree->ops &&
1758 tree->ops->readpage_io_failed_hook) {
1759 ret = tree->ops->readpage_io_failed_hook(bio, page,
1760 start, end, NULL);
1761 if (ret == 0) {
1762 uptodate =
1763 test_bit(BIO_UPTODATE, &bio->bi_flags);
1764 if (err)
1765 uptodate = 0;
1766 continue;
1767 }
1768 }
1769
1770 if (uptodate) {
1771 set_extent_uptodate(tree, start, end,
1772 GFP_ATOMIC);
1773 }
1774 unlock_extent(tree, start, end, GFP_ATOMIC);
1775
1776 if (whole_page) {
1777 if (uptodate) {
1778 SetPageUptodate(page);
1779 } else {
1780 ClearPageUptodate(page);
1781 SetPageError(page);
1782 }
1783 unlock_page(page);
1784 } else {
1785 if (uptodate) {
1786 check_page_uptodate(tree, page);
1787 } else {
1788 ClearPageUptodate(page);
1789 SetPageError(page);
1790 }
1791 check_page_locked(tree, page);
1792 }
1793 } while (bvec >= bio->bi_io_vec);
1794
1795 bio_put(bio);
1796 }
1797
1798 /*
1799 * IO done from prepare_write is pretty simple, we just unlock
1800 * the structs in the extent tree when done, and set the uptodate bits
1801 * as appropriate.
1802 */
1803 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1804 {
1805 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1806 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1807 struct extent_io_tree *tree;
1808 u64 start;
1809 u64 end;
1810
1811 do {
1812 struct page *page = bvec->bv_page;
1813 tree = &BTRFS_I(page->mapping->host)->io_tree;
1814
1815 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1816 bvec->bv_offset;
1817 end = start + bvec->bv_len - 1;
1818
1819 if (--bvec >= bio->bi_io_vec)
1820 prefetchw(&bvec->bv_page->flags);
1821
1822 if (uptodate) {
1823 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1824 } else {
1825 ClearPageUptodate(page);
1826 SetPageError(page);
1827 }
1828
1829 unlock_extent(tree, start, end, GFP_ATOMIC);
1830
1831 } while (bvec >= bio->bi_io_vec);
1832
1833 bio_put(bio);
1834 }
1835
1836 static struct bio *
1837 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1838 gfp_t gfp_flags)
1839 {
1840 struct bio *bio;
1841
1842 bio = bio_alloc(gfp_flags, nr_vecs);
1843
1844 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1845 while (!bio && (nr_vecs /= 2))
1846 bio = bio_alloc(gfp_flags, nr_vecs);
1847 }
1848
1849 if (bio) {
1850 bio->bi_size = 0;
1851 bio->bi_bdev = bdev;
1852 bio->bi_sector = first_sector;
1853 }
1854 return bio;
1855 }
1856
1857 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1858 unsigned long bio_flags)
1859 {
1860 int ret = 0;
1861 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1862 struct page *page = bvec->bv_page;
1863 struct extent_io_tree *tree = bio->bi_private;
1864 u64 start;
1865 u64 end;
1866
1867 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1868 end = start + bvec->bv_len - 1;
1869
1870 bio->bi_private = NULL;
1871
1872 bio_get(bio);
1873
1874 if (tree->ops && tree->ops->submit_bio_hook)
1875 tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1876 mirror_num, bio_flags);
1877 else
1878 submit_bio(rw, bio);
1879 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1880 ret = -EOPNOTSUPP;
1881 bio_put(bio);
1882 return ret;
1883 }
1884
1885 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1886 struct page *page, sector_t sector,
1887 size_t size, unsigned long offset,
1888 struct block_device *bdev,
1889 struct bio **bio_ret,
1890 unsigned long max_pages,
1891 bio_end_io_t end_io_func,
1892 int mirror_num,
1893 unsigned long prev_bio_flags,
1894 unsigned long bio_flags)
1895 {
1896 int ret = 0;
1897 struct bio *bio;
1898 int nr;
1899 int contig = 0;
1900 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1901 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1902 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1903
1904 if (bio_ret && *bio_ret) {
1905 bio = *bio_ret;
1906 if (old_compressed)
1907 contig = bio->bi_sector == sector;
1908 else
1909 contig = bio->bi_sector + (bio->bi_size >> 9) ==
1910 sector;
1911
1912 if (prev_bio_flags != bio_flags || !contig ||
1913 (tree->ops && tree->ops->merge_bio_hook &&
1914 tree->ops->merge_bio_hook(page, offset, page_size, bio,
1915 bio_flags)) ||
1916 bio_add_page(bio, page, page_size, offset) < page_size) {
1917 ret = submit_one_bio(rw, bio, mirror_num,
1918 prev_bio_flags);
1919 bio = NULL;
1920 } else {
1921 return 0;
1922 }
1923 }
1924 if (this_compressed)
1925 nr = BIO_MAX_PAGES;
1926 else
1927 nr = bio_get_nr_vecs(bdev);
1928
1929 bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1930 if (!bio) {
1931 printk("failed to allocate bio nr %d\n", nr);
1932 }
1933
1934 bio_add_page(bio, page, page_size, offset);
1935 bio->bi_end_io = end_io_func;
1936 bio->bi_private = tree;
1937
1938 if (bio_ret) {
1939 *bio_ret = bio;
1940 } else {
1941 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1942 }
1943
1944 return ret;
1945 }
1946
1947 void set_page_extent_mapped(struct page *page)
1948 {
1949 if (!PagePrivate(page)) {
1950 SetPagePrivate(page);
1951 page_cache_get(page);
1952 set_page_private(page, EXTENT_PAGE_PRIVATE);
1953 }
1954 }
1955 EXPORT_SYMBOL(set_page_extent_mapped);
1956
1957 static void set_page_extent_head(struct page *page, unsigned long len)
1958 {
1959 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1960 }
1961
1962 /*
1963 * basic readpage implementation. Locked extent state structs are inserted
1964 * into the tree that are removed when the IO is done (by the end_io
1965 * handlers)
1966 */
1967 static int __extent_read_full_page(struct extent_io_tree *tree,
1968 struct page *page,
1969 get_extent_t *get_extent,
1970 struct bio **bio, int mirror_num,
1971 unsigned long *bio_flags)
1972 {
1973 struct inode *inode = page->mapping->host;
1974 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1975 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1976 u64 end;
1977 u64 cur = start;
1978 u64 extent_offset;
1979 u64 last_byte = i_size_read(inode);
1980 u64 block_start;
1981 u64 cur_end;
1982 sector_t sector;
1983 struct extent_map *em;
1984 struct block_device *bdev;
1985 int ret;
1986 int nr = 0;
1987 size_t page_offset = 0;
1988 size_t iosize;
1989 size_t disk_io_size;
1990 size_t blocksize = inode->i_sb->s_blocksize;
1991 unsigned long this_bio_flag = 0;
1992
1993 set_page_extent_mapped(page);
1994
1995 end = page_end;
1996 lock_extent(tree, start, end, GFP_NOFS);
1997
1998 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
1999 char *userpage;
2000 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2001
2002 if (zero_offset) {
2003 iosize = PAGE_CACHE_SIZE - zero_offset;
2004 userpage = kmap_atomic(page, KM_USER0);
2005 memset(userpage + zero_offset, 0, iosize);
2006 flush_dcache_page(page);
2007 kunmap_atomic(userpage, KM_USER0);
2008 }
2009 }
2010 while (cur <= end) {
2011 if (cur >= last_byte) {
2012 char *userpage;
2013 iosize = PAGE_CACHE_SIZE - page_offset;
2014 userpage = kmap_atomic(page, KM_USER0);
2015 memset(userpage + page_offset, 0, iosize);
2016 flush_dcache_page(page);
2017 kunmap_atomic(userpage, KM_USER0);
2018 set_extent_uptodate(tree, cur, cur + iosize - 1,
2019 GFP_NOFS);
2020 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2021 break;
2022 }
2023 em = get_extent(inode, page, page_offset, cur,
2024 end - cur + 1, 0);
2025 if (IS_ERR(em) || !em) {
2026 SetPageError(page);
2027 unlock_extent(tree, cur, end, GFP_NOFS);
2028 break;
2029 }
2030 extent_offset = cur - em->start;
2031 if (extent_map_end(em) <= cur) {
2032 printk("bad mapping em [%Lu %Lu] cur %Lu\n", em->start, extent_map_end(em), cur);
2033 }
2034 BUG_ON(extent_map_end(em) <= cur);
2035 if (end < cur) {
2036 printk("2bad mapping end %Lu cur %Lu\n", end, cur);
2037 }
2038 BUG_ON(end < cur);
2039
2040 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2041 this_bio_flag = EXTENT_BIO_COMPRESSED;
2042
2043 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2044 cur_end = min(extent_map_end(em) - 1, end);
2045 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2046 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2047 disk_io_size = em->block_len;
2048 sector = em->block_start >> 9;
2049 } else {
2050 sector = (em->block_start + extent_offset) >> 9;
2051 disk_io_size = iosize;
2052 }
2053 bdev = em->bdev;
2054 block_start = em->block_start;
2055 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2056 block_start = EXTENT_MAP_HOLE;
2057 free_extent_map(em);
2058 em = NULL;
2059
2060 /* we've found a hole, just zero and go on */
2061 if (block_start == EXTENT_MAP_HOLE) {
2062 char *userpage;
2063 userpage = kmap_atomic(page, KM_USER0);
2064 memset(userpage + page_offset, 0, iosize);
2065 flush_dcache_page(page);
2066 kunmap_atomic(userpage, KM_USER0);
2067
2068 set_extent_uptodate(tree, cur, cur + iosize - 1,
2069 GFP_NOFS);
2070 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2071 cur = cur + iosize;
2072 page_offset += iosize;
2073 continue;
2074 }
2075 /* the get_extent function already copied into the page */
2076 if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
2077 check_page_uptodate(tree, page);
2078 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2079 cur = cur + iosize;
2080 page_offset += iosize;
2081 continue;
2082 }
2083 /* we have an inline extent but it didn't get marked up
2084 * to date. Error out
2085 */
2086 if (block_start == EXTENT_MAP_INLINE) {
2087 SetPageError(page);
2088 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2089 cur = cur + iosize;
2090 page_offset += iosize;
2091 continue;
2092 }
2093
2094 ret = 0;
2095 if (tree->ops && tree->ops->readpage_io_hook) {
2096 ret = tree->ops->readpage_io_hook(page, cur,
2097 cur + iosize - 1);
2098 }
2099 if (!ret) {
2100 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2101 pnr -= page->index;
2102 ret = submit_extent_page(READ, tree, page,
2103 sector, disk_io_size, page_offset,
2104 bdev, bio, pnr,
2105 end_bio_extent_readpage, mirror_num,
2106 *bio_flags,
2107 this_bio_flag);
2108 nr++;
2109 *bio_flags = this_bio_flag;
2110 }
2111 if (ret)
2112 SetPageError(page);
2113 cur = cur + iosize;
2114 page_offset += iosize;
2115 }
2116 if (!nr) {
2117 if (!PageError(page))
2118 SetPageUptodate(page);
2119 unlock_page(page);
2120 }
2121 return 0;
2122 }
2123
2124 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2125 get_extent_t *get_extent)
2126 {
2127 struct bio *bio = NULL;
2128 unsigned long bio_flags = 0;
2129 int ret;
2130
2131 ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2132 &bio_flags);
2133 if (bio)
2134 submit_one_bio(READ, bio, 0, bio_flags);
2135 return ret;
2136 }
2137 EXPORT_SYMBOL(extent_read_full_page);
2138
2139 /*
2140 * the writepage semantics are similar to regular writepage. extent
2141 * records are inserted to lock ranges in the tree, and as dirty areas
2142 * are found, they are marked writeback. Then the lock bits are removed
2143 * and the end_io handler clears the writeback ranges
2144 */
2145 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2146 void *data)
2147 {
2148 struct inode *inode = page->mapping->host;
2149 struct extent_page_data *epd = data;
2150 struct extent_io_tree *tree = epd->tree;
2151 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2152 u64 delalloc_start;
2153 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2154 u64 end;
2155 u64 cur = start;
2156 u64 extent_offset;
2157 u64 last_byte = i_size_read(inode);
2158 u64 block_start;
2159 u64 iosize;
2160 u64 unlock_start;
2161 sector_t sector;
2162 struct extent_map *em;
2163 struct block_device *bdev;
2164 int ret;
2165 int nr = 0;
2166 size_t pg_offset = 0;
2167 size_t blocksize;
2168 loff_t i_size = i_size_read(inode);
2169 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2170 u64 nr_delalloc;
2171 u64 delalloc_end;
2172 int page_started;
2173 int compressed;
2174 unsigned long nr_written = 0;
2175
2176 WARN_ON(!PageLocked(page));
2177 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2178 if (page->index > end_index ||
2179 (page->index == end_index && !pg_offset)) {
2180 page->mapping->a_ops->invalidatepage(page, 0);
2181 unlock_page(page);
2182 return 0;
2183 }
2184
2185 if (page->index == end_index) {
2186 char *userpage;
2187
2188 userpage = kmap_atomic(page, KM_USER0);
2189 memset(userpage + pg_offset, 0,
2190 PAGE_CACHE_SIZE - pg_offset);
2191 kunmap_atomic(userpage, KM_USER0);
2192 flush_dcache_page(page);
2193 }
2194 pg_offset = 0;
2195
2196 set_page_extent_mapped(page);
2197
2198 delalloc_start = start;
2199 delalloc_end = 0;
2200 page_started = 0;
2201 if (!epd->extent_locked) {
2202 while(delalloc_end < page_end) {
2203 nr_delalloc = find_lock_delalloc_range(inode, tree,
2204 page,
2205 &delalloc_start,
2206 &delalloc_end,
2207 128 * 1024 * 1024);
2208 if (nr_delalloc == 0) {
2209 delalloc_start = delalloc_end + 1;
2210 continue;
2211 }
2212 tree->ops->fill_delalloc(inode, page, delalloc_start,
2213 delalloc_end, &page_started,
2214 &nr_written);
2215 delalloc_start = delalloc_end + 1;
2216 }
2217
2218 /* did the fill delalloc function already unlock and start
2219 * the IO?
2220 */
2221 if (page_started) {
2222 ret = 0;
2223 goto update_nr_written;
2224 }
2225 }
2226 lock_extent(tree, start, page_end, GFP_NOFS);
2227
2228 unlock_start = start;
2229
2230 if (tree->ops && tree->ops->writepage_start_hook) {
2231 ret = tree->ops->writepage_start_hook(page, start,
2232 page_end);
2233 if (ret == -EAGAIN) {
2234 unlock_extent(tree, start, page_end, GFP_NOFS);
2235 redirty_page_for_writepage(wbc, page);
2236 unlock_page(page);
2237 ret = 0;
2238 goto update_nr_written;
2239 }
2240 }
2241
2242 nr_written++;
2243
2244 end = page_end;
2245 if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
2246 printk("found delalloc bits after lock_extent\n");
2247 }
2248
2249 if (last_byte <= start) {
2250 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
2251 unlock_extent(tree, start, page_end, GFP_NOFS);
2252 if (tree->ops && tree->ops->writepage_end_io_hook)
2253 tree->ops->writepage_end_io_hook(page, start,
2254 page_end, NULL, 1);
2255 unlock_start = page_end + 1;
2256 goto done;
2257 }
2258
2259 set_extent_uptodate(tree, start, page_end, GFP_NOFS);
2260 blocksize = inode->i_sb->s_blocksize;
2261
2262 while (cur <= end) {
2263 if (cur >= last_byte) {
2264 clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
2265 unlock_extent(tree, unlock_start, page_end, GFP_NOFS);
2266 if (tree->ops && tree->ops->writepage_end_io_hook)
2267 tree->ops->writepage_end_io_hook(page, cur,
2268 page_end, NULL, 1);
2269 unlock_start = page_end + 1;
2270 break;
2271 }
2272 em = epd->get_extent(inode, page, pg_offset, cur,
2273 end - cur + 1, 1);
2274 if (IS_ERR(em) || !em) {
2275 SetPageError(page);
2276 break;
2277 }
2278
2279 extent_offset = cur - em->start;
2280 BUG_ON(extent_map_end(em) <= cur);
2281 BUG_ON(end < cur);
2282 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2283 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2284 sector = (em->block_start + extent_offset) >> 9;
2285 bdev = em->bdev;
2286 block_start = em->block_start;
2287 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2288 free_extent_map(em);
2289 em = NULL;
2290
2291 /*
2292 * compressed and inline extents are written through other
2293 * paths in the FS
2294 */
2295 if (compressed || block_start == EXTENT_MAP_HOLE ||
2296 block_start == EXTENT_MAP_INLINE) {
2297 clear_extent_dirty(tree, cur,
2298 cur + iosize - 1, GFP_NOFS);
2299
2300 unlock_extent(tree, unlock_start, cur + iosize -1,
2301 GFP_NOFS);
2302
2303 /*
2304 * end_io notification does not happen here for
2305 * compressed extents
2306 */
2307 if (!compressed && tree->ops &&
2308 tree->ops->writepage_end_io_hook)
2309 tree->ops->writepage_end_io_hook(page, cur,
2310 cur + iosize - 1,
2311 NULL, 1);
2312 else if (compressed) {
2313 /* we don't want to end_page_writeback on
2314 * a compressed extent. this happens
2315 * elsewhere
2316 */
2317 nr++;
2318 }
2319
2320 cur += iosize;
2321 pg_offset += iosize;
2322 unlock_start = cur;
2323 continue;
2324 }
2325 /* leave this out until we have a page_mkwrite call */
2326 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2327 EXTENT_DIRTY, 0)) {
2328 cur = cur + iosize;
2329 pg_offset += iosize;
2330 continue;
2331 }
2332
2333 clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
2334 if (tree->ops && tree->ops->writepage_io_hook) {
2335 ret = tree->ops->writepage_io_hook(page, cur,
2336 cur + iosize - 1);
2337 } else {
2338 ret = 0;
2339 }
2340 if (ret) {
2341 SetPageError(page);
2342 } else {
2343 unsigned long max_nr = end_index + 1;
2344
2345 set_range_writeback(tree, cur, cur + iosize - 1);
2346 if (!PageWriteback(page)) {
2347 printk("warning page %lu not writeback, "
2348 "cur %llu end %llu\n", page->index,
2349 (unsigned long long)cur,
2350 (unsigned long long)end);
2351 }
2352
2353 ret = submit_extent_page(WRITE, tree, page, sector,
2354 iosize, pg_offset, bdev,
2355 &epd->bio, max_nr,
2356 end_bio_extent_writepage,
2357 0, 0, 0);
2358 if (ret)
2359 SetPageError(page);
2360 }
2361 cur = cur + iosize;
2362 pg_offset += iosize;
2363 nr++;
2364 }
2365 done:
2366 if (nr == 0) {
2367 /* make sure the mapping tag for page dirty gets cleared */
2368 set_page_writeback(page);
2369 end_page_writeback(page);
2370 }
2371 if (unlock_start <= page_end)
2372 unlock_extent(tree, unlock_start, page_end, GFP_NOFS);
2373 unlock_page(page);
2374
2375 update_nr_written:
2376 wbc->nr_to_write -= nr_written;
2377 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2378 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2379 page->mapping->writeback_index = page->index + nr_written;
2380 return 0;
2381 }
2382
2383 /**
2384 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2385 * @mapping: address space structure to write
2386 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2387 * @writepage: function called for each page
2388 * @data: data passed to writepage function
2389 *
2390 * If a page is already under I/O, write_cache_pages() skips it, even
2391 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2392 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2393 * and msync() need to guarantee that all the data which was dirty at the time
2394 * the call was made get new I/O started against them. If wbc->sync_mode is
2395 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2396 * existing IO to complete.
2397 */
2398 static int extent_write_cache_pages(struct extent_io_tree *tree,
2399 struct address_space *mapping,
2400 struct writeback_control *wbc,
2401 writepage_t writepage, void *data,
2402 void (*flush_fn)(void *))
2403 {
2404 struct backing_dev_info *bdi = mapping->backing_dev_info;
2405 int ret = 0;
2406 int done = 0;
2407 struct pagevec pvec;
2408 int nr_pages;
2409 pgoff_t index;
2410 pgoff_t end; /* Inclusive */
2411 int scanned = 0;
2412 int range_whole = 0;
2413
2414 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2415 wbc->encountered_congestion = 1;
2416 return 0;
2417 }
2418
2419 pagevec_init(&pvec, 0);
2420 if (wbc->range_cyclic) {
2421 index = mapping->writeback_index; /* Start from prev offset */
2422 end = -1;
2423 } else {
2424 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2425 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2426 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2427 range_whole = 1;
2428 scanned = 1;
2429 }
2430 retry:
2431 while (!done && (index <= end) &&
2432 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2433 PAGECACHE_TAG_DIRTY,
2434 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2435 unsigned i;
2436
2437 scanned = 1;
2438 for (i = 0; i < nr_pages; i++) {
2439 struct page *page = pvec.pages[i];
2440
2441 /*
2442 * At this point we hold neither mapping->tree_lock nor
2443 * lock on the page itself: the page may be truncated or
2444 * invalidated (changing page->mapping to NULL), or even
2445 * swizzled back from swapper_space to tmpfs file
2446 * mapping
2447 */
2448 if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2449 tree->ops->write_cache_pages_lock_hook(page);
2450 else
2451 lock_page(page);
2452
2453 if (unlikely(page->mapping != mapping)) {
2454 unlock_page(page);
2455 continue;
2456 }
2457
2458 if (!wbc->range_cyclic && page->index > end) {
2459 done = 1;
2460 unlock_page(page);
2461 continue;
2462 }
2463
2464 if (wbc->sync_mode != WB_SYNC_NONE) {
2465 if (PageWriteback(page))
2466 flush_fn(data);
2467 wait_on_page_writeback(page);
2468 }
2469
2470 if (PageWriteback(page) ||
2471 !clear_page_dirty_for_io(page)) {
2472 unlock_page(page);
2473 continue;
2474 }
2475
2476 ret = (*writepage)(page, wbc, data);
2477
2478 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2479 unlock_page(page);
2480 ret = 0;
2481 }
2482 if (ret || wbc->nr_to_write <= 0)
2483 done = 1;
2484 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2485 wbc->encountered_congestion = 1;
2486 done = 1;
2487 }
2488 }
2489 pagevec_release(&pvec);
2490 cond_resched();
2491 }
2492 if (!scanned && !done) {
2493 /*
2494 * We hit the last page and there is more work to be done: wrap
2495 * back to the start of the file
2496 */
2497 scanned = 1;
2498 index = 0;
2499 goto retry;
2500 }
2501 return ret;
2502 }
2503
2504 static noinline void flush_write_bio(void *data)
2505 {
2506 struct extent_page_data *epd = data;
2507 if (epd->bio) {
2508 submit_one_bio(WRITE, epd->bio, 0, 0);
2509 epd->bio = NULL;
2510 }
2511 }
2512
2513 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2514 get_extent_t *get_extent,
2515 struct writeback_control *wbc)
2516 {
2517 int ret;
2518 struct address_space *mapping = page->mapping;
2519 struct extent_page_data epd = {
2520 .bio = NULL,
2521 .tree = tree,
2522 .get_extent = get_extent,
2523 .extent_locked = 0,
2524 };
2525 struct writeback_control wbc_writepages = {
2526 .bdi = wbc->bdi,
2527 .sync_mode = WB_SYNC_NONE,
2528 .older_than_this = NULL,
2529 .nr_to_write = 64,
2530 .range_start = page_offset(page) + PAGE_CACHE_SIZE,
2531 .range_end = (loff_t)-1,
2532 };
2533
2534
2535 ret = __extent_writepage(page, wbc, &epd);
2536
2537 extent_write_cache_pages(tree, mapping, &wbc_writepages,
2538 __extent_writepage, &epd, flush_write_bio);
2539 if (epd.bio) {
2540 submit_one_bio(WRITE, epd.bio, 0, 0);
2541 }
2542 return ret;
2543 }
2544 EXPORT_SYMBOL(extent_write_full_page);
2545
2546 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2547 u64 start, u64 end, get_extent_t *get_extent,
2548 int mode)
2549 {
2550 int ret = 0;
2551 struct address_space *mapping = inode->i_mapping;
2552 struct page *page;
2553 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2554 PAGE_CACHE_SHIFT;
2555
2556 struct extent_page_data epd = {
2557 .bio = NULL,
2558 .tree = tree,
2559 .get_extent = get_extent,
2560 .extent_locked = 1,
2561 };
2562 struct writeback_control wbc_writepages = {
2563 .bdi = inode->i_mapping->backing_dev_info,
2564 .sync_mode = mode,
2565 .older_than_this = NULL,
2566 .nr_to_write = nr_pages * 2,
2567 .range_start = start,
2568 .range_end = end + 1,
2569 };
2570
2571 while(start <= end) {
2572 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2573 if (clear_page_dirty_for_io(page))
2574 ret = __extent_writepage(page, &wbc_writepages, &epd);
2575 else {
2576 if (tree->ops && tree->ops->writepage_end_io_hook)
2577 tree->ops->writepage_end_io_hook(page, start,
2578 start + PAGE_CACHE_SIZE - 1,
2579 NULL, 1);
2580 unlock_page(page);
2581 }
2582 page_cache_release(page);
2583 start += PAGE_CACHE_SIZE;
2584 }
2585
2586 if (epd.bio)
2587 submit_one_bio(WRITE, epd.bio, 0, 0);
2588 return ret;
2589 }
2590 EXPORT_SYMBOL(extent_write_locked_range);
2591
2592
2593 int extent_writepages(struct extent_io_tree *tree,
2594 struct address_space *mapping,
2595 get_extent_t *get_extent,
2596 struct writeback_control *wbc)
2597 {
2598 int ret = 0;
2599 struct extent_page_data epd = {
2600 .bio = NULL,
2601 .tree = tree,
2602 .get_extent = get_extent,
2603 .extent_locked = 0,
2604 };
2605
2606 ret = extent_write_cache_pages(tree, mapping, wbc,
2607 __extent_writepage, &epd,
2608 flush_write_bio);
2609 if (epd.bio) {
2610 submit_one_bio(WRITE, epd.bio, 0, 0);
2611 }
2612 return ret;
2613 }
2614 EXPORT_SYMBOL(extent_writepages);
2615
2616 int extent_readpages(struct extent_io_tree *tree,
2617 struct address_space *mapping,
2618 struct list_head *pages, unsigned nr_pages,
2619 get_extent_t get_extent)
2620 {
2621 struct bio *bio = NULL;
2622 unsigned page_idx;
2623 struct pagevec pvec;
2624 unsigned long bio_flags = 0;
2625
2626 pagevec_init(&pvec, 0);
2627 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2628 struct page *page = list_entry(pages->prev, struct page, lru);
2629
2630 prefetchw(&page->flags);
2631 list_del(&page->lru);
2632 /*
2633 * what we want to do here is call add_to_page_cache_lru,
2634 * but that isn't exported, so we reproduce it here
2635 */
2636 if (!add_to_page_cache(page, mapping,
2637 page->index, GFP_KERNEL)) {
2638
2639 /* open coding of lru_cache_add, also not exported */
2640 page_cache_get(page);
2641 if (!pagevec_add(&pvec, page))
2642 __pagevec_lru_add_file(&pvec);
2643 __extent_read_full_page(tree, page, get_extent,
2644 &bio, 0, &bio_flags);
2645 }
2646 page_cache_release(page);
2647 }
2648 if (pagevec_count(&pvec))
2649 __pagevec_lru_add_file(&pvec);
2650 BUG_ON(!list_empty(pages));
2651 if (bio)
2652 submit_one_bio(READ, bio, 0, bio_flags);
2653 return 0;
2654 }
2655 EXPORT_SYMBOL(extent_readpages);
2656
2657 /*
2658 * basic invalidatepage code, this waits on any locked or writeback
2659 * ranges corresponding to the page, and then deletes any extent state
2660 * records from the tree
2661 */
2662 int extent_invalidatepage(struct extent_io_tree *tree,
2663 struct page *page, unsigned long offset)
2664 {
2665 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2666 u64 end = start + PAGE_CACHE_SIZE - 1;
2667 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2668
2669 start += (offset + blocksize -1) & ~(blocksize - 1);
2670 if (start > end)
2671 return 0;
2672
2673 lock_extent(tree, start, end, GFP_NOFS);
2674 wait_on_extent_writeback(tree, start, end);
2675 clear_extent_bit(tree, start, end,
2676 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2677 1, 1, GFP_NOFS);
2678 return 0;
2679 }
2680 EXPORT_SYMBOL(extent_invalidatepage);
2681
2682 /*
2683 * simple commit_write call, set_range_dirty is used to mark both
2684 * the pages and the extent records as dirty
2685 */
2686 int extent_commit_write(struct extent_io_tree *tree,
2687 struct inode *inode, struct page *page,
2688 unsigned from, unsigned to)
2689 {
2690 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2691
2692 set_page_extent_mapped(page);
2693 set_page_dirty(page);
2694
2695 if (pos > inode->i_size) {
2696 i_size_write(inode, pos);
2697 mark_inode_dirty(inode);
2698 }
2699 return 0;
2700 }
2701 EXPORT_SYMBOL(extent_commit_write);
2702
2703 int extent_prepare_write(struct extent_io_tree *tree,
2704 struct inode *inode, struct page *page,
2705 unsigned from, unsigned to, get_extent_t *get_extent)
2706 {
2707 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2708 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2709 u64 block_start;
2710 u64 orig_block_start;
2711 u64 block_end;
2712 u64 cur_end;
2713 struct extent_map *em;
2714 unsigned blocksize = 1 << inode->i_blkbits;
2715 size_t page_offset = 0;
2716 size_t block_off_start;
2717 size_t block_off_end;
2718 int err = 0;
2719 int iocount = 0;
2720 int ret = 0;
2721 int isnew;
2722
2723 set_page_extent_mapped(page);
2724
2725 block_start = (page_start + from) & ~((u64)blocksize - 1);
2726 block_end = (page_start + to - 1) | (blocksize - 1);
2727 orig_block_start = block_start;
2728
2729 lock_extent(tree, page_start, page_end, GFP_NOFS);
2730 while(block_start <= block_end) {
2731 em = get_extent(inode, page, page_offset, block_start,
2732 block_end - block_start + 1, 1);
2733 if (IS_ERR(em) || !em) {
2734 goto err;
2735 }
2736 cur_end = min(block_end, extent_map_end(em) - 1);
2737 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2738 block_off_end = block_off_start + blocksize;
2739 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2740
2741 if (!PageUptodate(page) && isnew &&
2742 (block_off_end > to || block_off_start < from)) {
2743 void *kaddr;
2744
2745 kaddr = kmap_atomic(page, KM_USER0);
2746 if (block_off_end > to)
2747 memset(kaddr + to, 0, block_off_end - to);
2748 if (block_off_start < from)
2749 memset(kaddr + block_off_start, 0,
2750 from - block_off_start);
2751 flush_dcache_page(page);
2752 kunmap_atomic(kaddr, KM_USER0);
2753 }
2754 if ((em->block_start != EXTENT_MAP_HOLE &&
2755 em->block_start != EXTENT_MAP_INLINE) &&
2756 !isnew && !PageUptodate(page) &&
2757 (block_off_end > to || block_off_start < from) &&
2758 !test_range_bit(tree, block_start, cur_end,
2759 EXTENT_UPTODATE, 1)) {
2760 u64 sector;
2761 u64 extent_offset = block_start - em->start;
2762 size_t iosize;
2763 sector = (em->block_start + extent_offset) >> 9;
2764 iosize = (cur_end - block_start + blocksize) &
2765 ~((u64)blocksize - 1);
2766 /*
2767 * we've already got the extent locked, but we
2768 * need to split the state such that our end_bio
2769 * handler can clear the lock.
2770 */
2771 set_extent_bit(tree, block_start,
2772 block_start + iosize - 1,
2773 EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2774 ret = submit_extent_page(READ, tree, page,
2775 sector, iosize, page_offset, em->bdev,
2776 NULL, 1,
2777 end_bio_extent_preparewrite, 0,
2778 0, 0);
2779 iocount++;
2780 block_start = block_start + iosize;
2781 } else {
2782 set_extent_uptodate(tree, block_start, cur_end,
2783 GFP_NOFS);
2784 unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2785 block_start = cur_end + 1;
2786 }
2787 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2788 free_extent_map(em);
2789 }
2790 if (iocount) {
2791 wait_extent_bit(tree, orig_block_start,
2792 block_end, EXTENT_LOCKED);
2793 }
2794 check_page_uptodate(tree, page);
2795 err:
2796 /* FIXME, zero out newly allocated blocks on error */
2797 return err;
2798 }
2799 EXPORT_SYMBOL(extent_prepare_write);
2800
2801 /*
2802 * a helper for releasepage, this tests for areas of the page that
2803 * are locked or under IO and drops the related state bits if it is safe
2804 * to drop the page.
2805 */
2806 int try_release_extent_state(struct extent_map_tree *map,
2807 struct extent_io_tree *tree, struct page *page,
2808 gfp_t mask)
2809 {
2810 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2811 u64 end = start + PAGE_CACHE_SIZE - 1;
2812 int ret = 1;
2813
2814 if (test_range_bit(tree, start, end,
2815 EXTENT_IOBITS | EXTENT_ORDERED, 0))
2816 ret = 0;
2817 else {
2818 if ((mask & GFP_NOFS) == GFP_NOFS)
2819 mask = GFP_NOFS;
2820 clear_extent_bit(tree, start, end, EXTENT_UPTODATE,
2821 1, 1, mask);
2822 }
2823 return ret;
2824 }
2825 EXPORT_SYMBOL(try_release_extent_state);
2826
2827 /*
2828 * a helper for releasepage. As long as there are no locked extents
2829 * in the range corresponding to the page, both state records and extent
2830 * map records are removed
2831 */
2832 int try_release_extent_mapping(struct extent_map_tree *map,
2833 struct extent_io_tree *tree, struct page *page,
2834 gfp_t mask)
2835 {
2836 struct extent_map *em;
2837 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2838 u64 end = start + PAGE_CACHE_SIZE - 1;
2839
2840 if ((mask & __GFP_WAIT) &&
2841 page->mapping->host->i_size > 16 * 1024 * 1024) {
2842 u64 len;
2843 while (start <= end) {
2844 len = end - start + 1;
2845 spin_lock(&map->lock);
2846 em = lookup_extent_mapping(map, start, len);
2847 if (!em || IS_ERR(em)) {
2848 spin_unlock(&map->lock);
2849 break;
2850 }
2851 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2852 em->start != start) {
2853 spin_unlock(&map->lock);
2854 free_extent_map(em);
2855 break;
2856 }
2857 if (!test_range_bit(tree, em->start,
2858 extent_map_end(em) - 1,
2859 EXTENT_LOCKED | EXTENT_WRITEBACK |
2860 EXTENT_ORDERED,
2861 0)) {
2862 remove_extent_mapping(map, em);
2863 /* once for the rb tree */
2864 free_extent_map(em);
2865 }
2866 start = extent_map_end(em);
2867 spin_unlock(&map->lock);
2868
2869 /* once for us */
2870 free_extent_map(em);
2871 }
2872 }
2873 return try_release_extent_state(map, tree, page, mask);
2874 }
2875 EXPORT_SYMBOL(try_release_extent_mapping);
2876
2877 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2878 get_extent_t *get_extent)
2879 {
2880 struct inode *inode = mapping->host;
2881 u64 start = iblock << inode->i_blkbits;
2882 sector_t sector = 0;
2883 size_t blksize = (1 << inode->i_blkbits);
2884 struct extent_map *em;
2885
2886 lock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2887 GFP_NOFS);
2888 em = get_extent(inode, NULL, 0, start, blksize, 0);
2889 unlock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2890 GFP_NOFS);
2891 if (!em || IS_ERR(em))
2892 return 0;
2893
2894 if (em->block_start > EXTENT_MAP_LAST_BYTE)
2895 goto out;
2896
2897 sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2898 out:
2899 free_extent_map(em);
2900 return sector;
2901 }
2902
2903 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2904 unsigned long i)
2905 {
2906 struct page *p;
2907 struct address_space *mapping;
2908
2909 if (i == 0)
2910 return eb->first_page;
2911 i += eb->start >> PAGE_CACHE_SHIFT;
2912 mapping = eb->first_page->mapping;
2913 if (!mapping)
2914 return NULL;
2915
2916 /*
2917 * extent_buffer_page is only called after pinning the page
2918 * by increasing the reference count. So we know the page must
2919 * be in the radix tree.
2920 */
2921 rcu_read_lock();
2922 p = radix_tree_lookup(&mapping->page_tree, i);
2923 rcu_read_unlock();
2924
2925 return p;
2926 }
2927
2928 static inline unsigned long num_extent_pages(u64 start, u64 len)
2929 {
2930 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2931 (start >> PAGE_CACHE_SHIFT);
2932 }
2933
2934 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
2935 u64 start,
2936 unsigned long len,
2937 gfp_t mask)
2938 {
2939 struct extent_buffer *eb = NULL;
2940 #ifdef LEAK_DEBUG
2941 unsigned long flags;
2942 #endif
2943
2944 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2945 eb->start = start;
2946 eb->len = len;
2947 mutex_init(&eb->mutex);
2948 #ifdef LEAK_DEBUG
2949 spin_lock_irqsave(&leak_lock, flags);
2950 list_add(&eb->leak_list, &buffers);
2951 spin_unlock_irqrestore(&leak_lock, flags);
2952 #endif
2953 atomic_set(&eb->refs, 1);
2954
2955 return eb;
2956 }
2957
2958 static void __free_extent_buffer(struct extent_buffer *eb)
2959 {
2960 #ifdef LEAK_DEBUG
2961 unsigned long flags;
2962 spin_lock_irqsave(&leak_lock, flags);
2963 list_del(&eb->leak_list);
2964 spin_unlock_irqrestore(&leak_lock, flags);
2965 #endif
2966 kmem_cache_free(extent_buffer_cache, eb);
2967 }
2968
2969 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
2970 u64 start, unsigned long len,
2971 struct page *page0,
2972 gfp_t mask)
2973 {
2974 unsigned long num_pages = num_extent_pages(start, len);
2975 unsigned long i;
2976 unsigned long index = start >> PAGE_CACHE_SHIFT;
2977 struct extent_buffer *eb;
2978 struct extent_buffer *exists = NULL;
2979 struct page *p;
2980 struct address_space *mapping = tree->mapping;
2981 int uptodate = 1;
2982
2983 spin_lock(&tree->buffer_lock);
2984 eb = buffer_search(tree, start);
2985 if (eb) {
2986 atomic_inc(&eb->refs);
2987 spin_unlock(&tree->buffer_lock);
2988 mark_page_accessed(eb->first_page);
2989 return eb;
2990 }
2991 spin_unlock(&tree->buffer_lock);
2992
2993 eb = __alloc_extent_buffer(tree, start, len, mask);
2994 if (!eb)
2995 return NULL;
2996
2997 if (page0) {
2998 eb->first_page = page0;
2999 i = 1;
3000 index++;
3001 page_cache_get(page0);
3002 mark_page_accessed(page0);
3003 set_page_extent_mapped(page0);
3004 set_page_extent_head(page0, len);
3005 uptodate = PageUptodate(page0);
3006 } else {
3007 i = 0;
3008 }
3009 for (; i < num_pages; i++, index++) {
3010 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3011 if (!p) {
3012 WARN_ON(1);
3013 goto free_eb;
3014 }
3015 set_page_extent_mapped(p);
3016 mark_page_accessed(p);
3017 if (i == 0) {
3018 eb->first_page = p;
3019 set_page_extent_head(p, len);
3020 } else {
3021 set_page_private(p, EXTENT_PAGE_PRIVATE);
3022 }
3023 if (!PageUptodate(p))
3024 uptodate = 0;
3025 unlock_page(p);
3026 }
3027 if (uptodate)
3028 eb->flags |= EXTENT_UPTODATE;
3029 eb->flags |= EXTENT_BUFFER_FILLED;
3030
3031 spin_lock(&tree->buffer_lock);
3032 exists = buffer_tree_insert(tree, start, &eb->rb_node);
3033 if (exists) {
3034 /* add one reference for the caller */
3035 atomic_inc(&exists->refs);
3036 spin_unlock(&tree->buffer_lock);
3037 goto free_eb;
3038 }
3039 spin_unlock(&tree->buffer_lock);
3040
3041 /* add one reference for the tree */
3042 atomic_inc(&eb->refs);
3043 return eb;
3044
3045 free_eb:
3046 if (!atomic_dec_and_test(&eb->refs))
3047 return exists;
3048 for (index = 1; index < i; index++)
3049 page_cache_release(extent_buffer_page(eb, index));
3050 page_cache_release(extent_buffer_page(eb, 0));
3051 __free_extent_buffer(eb);
3052 return exists;
3053 }
3054 EXPORT_SYMBOL(alloc_extent_buffer);
3055
3056 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3057 u64 start, unsigned long len,
3058 gfp_t mask)
3059 {
3060 struct extent_buffer *eb;
3061
3062 spin_lock(&tree->buffer_lock);
3063 eb = buffer_search(tree, start);
3064 if (eb)
3065 atomic_inc(&eb->refs);
3066 spin_unlock(&tree->buffer_lock);
3067
3068 if (eb)
3069 mark_page_accessed(eb->first_page);
3070
3071 return eb;
3072 }
3073 EXPORT_SYMBOL(find_extent_buffer);
3074
3075 void free_extent_buffer(struct extent_buffer *eb)
3076 {
3077 if (!eb)
3078 return;
3079
3080 if (!atomic_dec_and_test(&eb->refs))
3081 return;
3082
3083 WARN_ON(1);
3084 }
3085 EXPORT_SYMBOL(free_extent_buffer);
3086
3087 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3088 struct extent_buffer *eb)
3089 {
3090 int set;
3091 unsigned long i;
3092 unsigned long num_pages;
3093 struct page *page;
3094
3095 u64 start = eb->start;
3096 u64 end = start + eb->len - 1;
3097
3098 set = clear_extent_dirty(tree, start, end, GFP_NOFS);
3099 num_pages = num_extent_pages(eb->start, eb->len);
3100
3101 for (i = 0; i < num_pages; i++) {
3102 page = extent_buffer_page(eb, i);
3103 if (!set && !PageDirty(page))
3104 continue;
3105
3106 lock_page(page);
3107 if (i == 0)
3108 set_page_extent_head(page, eb->len);
3109 else
3110 set_page_private(page, EXTENT_PAGE_PRIVATE);
3111
3112 /*
3113 * if we're on the last page or the first page and the
3114 * block isn't aligned on a page boundary, do extra checks
3115 * to make sure we don't clean page that is partially dirty
3116 */
3117 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3118 ((i == num_pages - 1) &&
3119 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3120 start = (u64)page->index << PAGE_CACHE_SHIFT;
3121 end = start + PAGE_CACHE_SIZE - 1;
3122 if (test_range_bit(tree, start, end,
3123 EXTENT_DIRTY, 0)) {
3124 unlock_page(page);
3125 continue;
3126 }
3127 }
3128 clear_page_dirty_for_io(page);
3129 spin_lock_irq(&page->mapping->tree_lock);
3130 if (!PageDirty(page)) {
3131 radix_tree_tag_clear(&page->mapping->page_tree,
3132 page_index(page),
3133 PAGECACHE_TAG_DIRTY);
3134 }
3135 spin_unlock_irq(&page->mapping->tree_lock);
3136 unlock_page(page);
3137 }
3138 return 0;
3139 }
3140 EXPORT_SYMBOL(clear_extent_buffer_dirty);
3141
3142 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3143 struct extent_buffer *eb)
3144 {
3145 return wait_on_extent_writeback(tree, eb->start,
3146 eb->start + eb->len - 1);
3147 }
3148 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
3149
3150 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3151 struct extent_buffer *eb)
3152 {
3153 unsigned long i;
3154 unsigned long num_pages;
3155
3156 num_pages = num_extent_pages(eb->start, eb->len);
3157 for (i = 0; i < num_pages; i++) {
3158 struct page *page = extent_buffer_page(eb, i);
3159 /* writepage may need to do something special for the
3160 * first page, we have to make sure page->private is
3161 * properly set. releasepage may drop page->private
3162 * on us if the page isn't already dirty.
3163 */
3164 lock_page(page);
3165 if (i == 0) {
3166 set_page_extent_head(page, eb->len);
3167 } else if (PagePrivate(page) &&
3168 page->private != EXTENT_PAGE_PRIVATE) {
3169 set_page_extent_mapped(page);
3170 }
3171 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3172 set_extent_dirty(tree, page_offset(page),
3173 page_offset(page) + PAGE_CACHE_SIZE -1,
3174 GFP_NOFS);
3175 unlock_page(page);
3176 }
3177 return 0;
3178 }
3179 EXPORT_SYMBOL(set_extent_buffer_dirty);
3180
3181 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3182 struct extent_buffer *eb)
3183 {
3184 unsigned long i;
3185 struct page *page;
3186 unsigned long num_pages;
3187
3188 num_pages = num_extent_pages(eb->start, eb->len);
3189 eb->flags &= ~EXTENT_UPTODATE;
3190
3191 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3192 GFP_NOFS);
3193 for (i = 0; i < num_pages; i++) {
3194 page = extent_buffer_page(eb, i);
3195 if (page)
3196 ClearPageUptodate(page);
3197 }
3198 return 0;
3199 }
3200
3201 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3202 struct extent_buffer *eb)
3203 {
3204 unsigned long i;
3205 struct page *page;
3206 unsigned long num_pages;
3207
3208 num_pages = num_extent_pages(eb->start, eb->len);
3209
3210 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3211 GFP_NOFS);
3212 for (i = 0; i < num_pages; i++) {
3213 page = extent_buffer_page(eb, i);
3214 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3215 ((i == num_pages - 1) &&
3216 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3217 check_page_uptodate(tree, page);
3218 continue;
3219 }
3220 SetPageUptodate(page);
3221 }
3222 return 0;
3223 }
3224 EXPORT_SYMBOL(set_extent_buffer_uptodate);
3225
3226 int extent_range_uptodate(struct extent_io_tree *tree,
3227 u64 start, u64 end)
3228 {
3229 struct page *page;
3230 int ret;
3231 int pg_uptodate = 1;
3232 int uptodate;
3233 unsigned long index;
3234
3235 ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1);
3236 if (ret)
3237 return 1;
3238 while(start <= end) {
3239 index = start >> PAGE_CACHE_SHIFT;
3240 page = find_get_page(tree->mapping, index);
3241 uptodate = PageUptodate(page);
3242 page_cache_release(page);
3243 if (!uptodate) {
3244 pg_uptodate = 0;
3245 break;
3246 }
3247 start += PAGE_CACHE_SIZE;
3248 }
3249 return pg_uptodate;
3250 }
3251
3252 int extent_buffer_uptodate(struct extent_io_tree *tree,
3253 struct extent_buffer *eb)
3254 {
3255 int ret = 0;
3256 unsigned long num_pages;
3257 unsigned long i;
3258 struct page *page;
3259 int pg_uptodate = 1;
3260
3261 if (eb->flags & EXTENT_UPTODATE)
3262 return 1;
3263
3264 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3265 EXTENT_UPTODATE, 1);
3266 if (ret)
3267 return ret;
3268
3269 num_pages = num_extent_pages(eb->start, eb->len);
3270 for (i = 0; i < num_pages; i++) {
3271 page = extent_buffer_page(eb, i);
3272 if (!PageUptodate(page)) {
3273 pg_uptodate = 0;
3274 break;
3275 }
3276 }
3277 return pg_uptodate;
3278 }
3279 EXPORT_SYMBOL(extent_buffer_uptodate);
3280
3281 int read_extent_buffer_pages(struct extent_io_tree *tree,
3282 struct extent_buffer *eb,
3283 u64 start, int wait,
3284 get_extent_t *get_extent, int mirror_num)
3285 {
3286 unsigned long i;
3287 unsigned long start_i;
3288 struct page *page;
3289 int err;
3290 int ret = 0;
3291 int locked_pages = 0;
3292 int all_uptodate = 1;
3293 int inc_all_pages = 0;
3294 unsigned long num_pages;
3295 struct bio *bio = NULL;
3296 unsigned long bio_flags = 0;
3297
3298 if (eb->flags & EXTENT_UPTODATE)
3299 return 0;
3300
3301 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3302 EXTENT_UPTODATE, 1)) {
3303 return 0;
3304 }
3305
3306 if (start) {
3307 WARN_ON(start < eb->start);
3308 start_i = (start >> PAGE_CACHE_SHIFT) -
3309 (eb->start >> PAGE_CACHE_SHIFT);
3310 } else {
3311 start_i = 0;
3312 }
3313
3314 num_pages = num_extent_pages(eb->start, eb->len);
3315 for (i = start_i; i < num_pages; i++) {
3316 page = extent_buffer_page(eb, i);
3317 if (!wait) {
3318 if (!trylock_page(page))
3319 goto unlock_exit;
3320 } else {
3321 lock_page(page);
3322 }
3323 locked_pages++;
3324 if (!PageUptodate(page)) {
3325 all_uptodate = 0;
3326 }
3327 }
3328 if (all_uptodate) {
3329 if (start_i == 0)
3330 eb->flags |= EXTENT_UPTODATE;
3331 if (ret) {
3332 printk("all up to date but ret is %d\n", ret);
3333 }
3334 goto unlock_exit;
3335 }
3336
3337 for (i = start_i; i < num_pages; i++) {
3338 page = extent_buffer_page(eb, i);
3339 if (inc_all_pages)
3340 page_cache_get(page);
3341 if (!PageUptodate(page)) {
3342 if (start_i == 0)
3343 inc_all_pages = 1;
3344 ClearPageError(page);
3345 err = __extent_read_full_page(tree, page,
3346 get_extent, &bio,
3347 mirror_num, &bio_flags);
3348 if (err) {
3349 ret = err;
3350 printk("err %d from __extent_read_full_page\n", ret);
3351 }
3352 } else {
3353 unlock_page(page);
3354 }
3355 }
3356
3357 if (bio)
3358 submit_one_bio(READ, bio, mirror_num, bio_flags);
3359
3360 if (ret || !wait) {
3361 if (ret)
3362 printk("ret %d wait %d returning\n", ret, wait);
3363 return ret;
3364 }
3365 for (i = start_i; i < num_pages; i++) {
3366 page = extent_buffer_page(eb, i);
3367 wait_on_page_locked(page);
3368 if (!PageUptodate(page)) {
3369 printk("page not uptodate after wait_on_page_locked\n");
3370 ret = -EIO;
3371 }
3372 }
3373 if (!ret)
3374 eb->flags |= EXTENT_UPTODATE;
3375 return ret;
3376
3377 unlock_exit:
3378 i = start_i;
3379 while(locked_pages > 0) {
3380 page = extent_buffer_page(eb, i);
3381 i++;
3382 unlock_page(page);
3383 locked_pages--;
3384 }
3385 return ret;
3386 }
3387 EXPORT_SYMBOL(read_extent_buffer_pages);
3388
3389 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3390 unsigned long start,
3391 unsigned long len)
3392 {
3393 size_t cur;
3394 size_t offset;
3395 struct page *page;
3396 char *kaddr;
3397 char *dst = (char *)dstv;
3398 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3399 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3400
3401 WARN_ON(start > eb->len);
3402 WARN_ON(start + len > eb->start + eb->len);
3403
3404 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3405
3406 while(len > 0) {
3407 page = extent_buffer_page(eb, i);
3408
3409 cur = min(len, (PAGE_CACHE_SIZE - offset));
3410 kaddr = kmap_atomic(page, KM_USER1);
3411 memcpy(dst, kaddr + offset, cur);
3412 kunmap_atomic(kaddr, KM_USER1);
3413
3414 dst += cur;
3415 len -= cur;
3416 offset = 0;
3417 i++;
3418 }
3419 }
3420 EXPORT_SYMBOL(read_extent_buffer);
3421
3422 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3423 unsigned long min_len, char **token, char **map,
3424 unsigned long *map_start,
3425 unsigned long *map_len, int km)
3426 {
3427 size_t offset = start & (PAGE_CACHE_SIZE - 1);
3428 char *kaddr;
3429 struct page *p;
3430 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3431 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3432 unsigned long end_i = (start_offset + start + min_len - 1) >>
3433 PAGE_CACHE_SHIFT;
3434
3435 if (i != end_i)
3436 return -EINVAL;
3437
3438 if (i == 0) {
3439 offset = start_offset;
3440 *map_start = 0;
3441 } else {
3442 offset = 0;
3443 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3444 }
3445 if (start + min_len > eb->len) {
3446 printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
3447 WARN_ON(1);
3448 }
3449
3450 p = extent_buffer_page(eb, i);
3451 kaddr = kmap_atomic(p, km);
3452 *token = kaddr;
3453 *map = kaddr + offset;
3454 *map_len = PAGE_CACHE_SIZE - offset;
3455 return 0;
3456 }
3457 EXPORT_SYMBOL(map_private_extent_buffer);
3458
3459 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3460 unsigned long min_len,
3461 char **token, char **map,
3462 unsigned long *map_start,
3463 unsigned long *map_len, int km)
3464 {
3465 int err;
3466 int save = 0;
3467 if (eb->map_token) {
3468 unmap_extent_buffer(eb, eb->map_token, km);
3469 eb->map_token = NULL;
3470 save = 1;
3471 WARN_ON(!mutex_is_locked(&eb->mutex));
3472 }
3473 err = map_private_extent_buffer(eb, start, min_len, token, map,
3474 map_start, map_len, km);
3475 if (!err && save) {
3476 eb->map_token = *token;
3477 eb->kaddr = *map;
3478 eb->map_start = *map_start;
3479 eb->map_len = *map_len;
3480 }
3481 return err;
3482 }
3483 EXPORT_SYMBOL(map_extent_buffer);
3484
3485 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3486 {
3487 kunmap_atomic(token, km);
3488 }
3489 EXPORT_SYMBOL(unmap_extent_buffer);
3490
3491 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3492 unsigned long start,
3493 unsigned long len)
3494 {
3495 size_t cur;
3496 size_t offset;
3497 struct page *page;
3498 char *kaddr;
3499 char *ptr = (char *)ptrv;
3500 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3501 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3502 int ret = 0;
3503
3504 WARN_ON(start > eb->len);
3505 WARN_ON(start + len > eb->start + eb->len);
3506
3507 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3508
3509 while(len > 0) {
3510 page = extent_buffer_page(eb, i);
3511
3512 cur = min(len, (PAGE_CACHE_SIZE - offset));
3513
3514 kaddr = kmap_atomic(page, KM_USER0);
3515 ret = memcmp(ptr, kaddr + offset, cur);
3516 kunmap_atomic(kaddr, KM_USER0);
3517 if (ret)
3518 break;
3519
3520 ptr += cur;
3521 len -= cur;
3522 offset = 0;
3523 i++;
3524 }
3525 return ret;
3526 }
3527 EXPORT_SYMBOL(memcmp_extent_buffer);
3528
3529 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3530 unsigned long start, unsigned long len)
3531 {
3532 size_t cur;
3533 size_t offset;
3534 struct page *page;
3535 char *kaddr;
3536 char *src = (char *)srcv;
3537 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3538 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3539
3540 WARN_ON(start > eb->len);
3541 WARN_ON(start + len > eb->start + eb->len);
3542
3543 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3544
3545 while(len > 0) {
3546 page = extent_buffer_page(eb, i);
3547 WARN_ON(!PageUptodate(page));
3548
3549 cur = min(len, PAGE_CACHE_SIZE - offset);
3550 kaddr = kmap_atomic(page, KM_USER1);
3551 memcpy(kaddr + offset, src, cur);
3552 kunmap_atomic(kaddr, KM_USER1);
3553
3554 src += cur;
3555 len -= cur;
3556 offset = 0;
3557 i++;
3558 }
3559 }
3560 EXPORT_SYMBOL(write_extent_buffer);
3561
3562 void memset_extent_buffer(struct extent_buffer *eb, char c,
3563 unsigned long start, unsigned long len)
3564 {
3565 size_t cur;
3566 size_t offset;
3567 struct page *page;
3568 char *kaddr;
3569 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3570 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3571
3572 WARN_ON(start > eb->len);
3573 WARN_ON(start + len > eb->start + eb->len);
3574
3575 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3576
3577 while(len > 0) {
3578 page = extent_buffer_page(eb, i);
3579 WARN_ON(!PageUptodate(page));
3580
3581 cur = min(len, PAGE_CACHE_SIZE - offset);
3582 kaddr = kmap_atomic(page, KM_USER0);
3583 memset(kaddr + offset, c, cur);
3584 kunmap_atomic(kaddr, KM_USER0);
3585
3586 len -= cur;
3587 offset = 0;
3588 i++;
3589 }
3590 }
3591 EXPORT_SYMBOL(memset_extent_buffer);
3592
3593 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3594 unsigned long dst_offset, unsigned long src_offset,
3595 unsigned long len)
3596 {
3597 u64 dst_len = dst->len;
3598 size_t cur;
3599 size_t offset;
3600 struct page *page;
3601 char *kaddr;
3602 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3603 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3604
3605 WARN_ON(src->len != dst_len);
3606
3607 offset = (start_offset + dst_offset) &
3608 ((unsigned long)PAGE_CACHE_SIZE - 1);
3609
3610 while(len > 0) {
3611 page = extent_buffer_page(dst, i);
3612 WARN_ON(!PageUptodate(page));
3613
3614 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3615
3616 kaddr = kmap_atomic(page, KM_USER0);
3617 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3618 kunmap_atomic(kaddr, KM_USER0);
3619
3620 src_offset += cur;
3621 len -= cur;
3622 offset = 0;
3623 i++;
3624 }
3625 }
3626 EXPORT_SYMBOL(copy_extent_buffer);
3627
3628 static void move_pages(struct page *dst_page, struct page *src_page,
3629 unsigned long dst_off, unsigned long src_off,
3630 unsigned long len)
3631 {
3632 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3633 if (dst_page == src_page) {
3634 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3635 } else {
3636 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3637 char *p = dst_kaddr + dst_off + len;
3638 char *s = src_kaddr + src_off + len;
3639
3640 while (len--)
3641 *--p = *--s;
3642
3643 kunmap_atomic(src_kaddr, KM_USER1);
3644 }
3645 kunmap_atomic(dst_kaddr, KM_USER0);
3646 }
3647
3648 static void copy_pages(struct page *dst_page, struct page *src_page,
3649 unsigned long dst_off, unsigned long src_off,
3650 unsigned long len)
3651 {
3652 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3653 char *src_kaddr;
3654
3655 if (dst_page != src_page)
3656 src_kaddr = kmap_atomic(src_page, KM_USER1);
3657 else
3658 src_kaddr = dst_kaddr;
3659
3660 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3661 kunmap_atomic(dst_kaddr, KM_USER0);
3662 if (dst_page != src_page)
3663 kunmap_atomic(src_kaddr, KM_USER1);
3664 }
3665
3666 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3667 unsigned long src_offset, unsigned long len)
3668 {
3669 size_t cur;
3670 size_t dst_off_in_page;
3671 size_t src_off_in_page;
3672 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3673 unsigned long dst_i;
3674 unsigned long src_i;
3675
3676 if (src_offset + len > dst->len) {
3677 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3678 src_offset, len, dst->len);
3679 BUG_ON(1);
3680 }
3681 if (dst_offset + len > dst->len) {
3682 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3683 dst_offset, len, dst->len);
3684 BUG_ON(1);
3685 }
3686
3687 while(len > 0) {
3688 dst_off_in_page = (start_offset + dst_offset) &
3689 ((unsigned long)PAGE_CACHE_SIZE - 1);
3690 src_off_in_page = (start_offset + src_offset) &
3691 ((unsigned long)PAGE_CACHE_SIZE - 1);
3692
3693 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3694 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3695
3696 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3697 src_off_in_page));
3698 cur = min_t(unsigned long, cur,
3699 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3700
3701 copy_pages(extent_buffer_page(dst, dst_i),
3702 extent_buffer_page(dst, src_i),
3703 dst_off_in_page, src_off_in_page, cur);
3704
3705 src_offset += cur;
3706 dst_offset += cur;
3707 len -= cur;
3708 }
3709 }
3710 EXPORT_SYMBOL(memcpy_extent_buffer);
3711
3712 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3713 unsigned long src_offset, unsigned long len)
3714 {
3715 size_t cur;
3716 size_t dst_off_in_page;
3717 size_t src_off_in_page;
3718 unsigned long dst_end = dst_offset + len - 1;
3719 unsigned long src_end = src_offset + len - 1;
3720 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3721 unsigned long dst_i;
3722 unsigned long src_i;
3723
3724 if (src_offset + len > dst->len) {
3725 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3726 src_offset, len, dst->len);
3727 BUG_ON(1);
3728 }
3729 if (dst_offset + len > dst->len) {
3730 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3731 dst_offset, len, dst->len);
3732 BUG_ON(1);
3733 }
3734 if (dst_offset < src_offset) {
3735 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3736 return;
3737 }
3738 while(len > 0) {
3739 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3740 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3741
3742 dst_off_in_page = (start_offset + dst_end) &
3743 ((unsigned long)PAGE_CACHE_SIZE - 1);
3744 src_off_in_page = (start_offset + src_end) &
3745 ((unsigned long)PAGE_CACHE_SIZE - 1);
3746
3747 cur = min_t(unsigned long, len, src_off_in_page + 1);
3748 cur = min(cur, dst_off_in_page + 1);
3749 move_pages(extent_buffer_page(dst, dst_i),
3750 extent_buffer_page(dst, src_i),
3751 dst_off_in_page - cur + 1,
3752 src_off_in_page - cur + 1, cur);
3753
3754 dst_end -= cur;
3755 src_end -= cur;
3756 len -= cur;
3757 }
3758 }
3759 EXPORT_SYMBOL(memmove_extent_buffer);
3760
3761 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3762 {
3763 u64 start = page_offset(page);
3764 struct extent_buffer *eb;
3765 int ret = 1;
3766 unsigned long i;
3767 unsigned long num_pages;
3768
3769 spin_lock(&tree->buffer_lock);
3770 eb = buffer_search(tree, start);
3771 if (!eb)
3772 goto out;
3773
3774 if (atomic_read(&eb->refs) > 1) {
3775 ret = 0;
3776 goto out;
3777 }
3778 /* at this point we can safely release the extent buffer */
3779 num_pages = num_extent_pages(eb->start, eb->len);
3780 for (i = 0; i < num_pages; i++)
3781 page_cache_release(extent_buffer_page(eb, i));
3782 rb_erase(&eb->rb_node, &tree->buffer);
3783 __free_extent_buffer(eb);
3784 out:
3785 spin_unlock(&tree->buffer_lock);
3786 return ret;
3787 }
3788 EXPORT_SYMBOL(try_release_extent_buffer);
This page took 0.108023 seconds and 5 git commands to generate.