0c23e57077c6f78ad2e79819612e7da90adac408
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26
27 static LIST_HEAD(buffers);
28 static LIST_HEAD(states);
29
30 #define LEAK_DEBUG 0
31 #if LEAK_DEBUG
32 static DEFINE_SPINLOCK(leak_lock);
33 #endif
34
35 #define BUFFER_LRU_MAX 64
36
37 struct tree_entry {
38 u64 start;
39 u64 end;
40 struct rb_node rb_node;
41 };
42
43 struct extent_page_data {
44 struct bio *bio;
45 struct extent_io_tree *tree;
46 get_extent_t *get_extent;
47
48 /* tells writepage not to lock the state bits for this range
49 * it still does the unlocking
50 */
51 unsigned int extent_locked:1;
52
53 /* tells the submit_bio code to use a WRITE_SYNC */
54 unsigned int sync_io:1;
55 };
56
57 static noinline void flush_write_bio(void *data);
58 static inline struct btrfs_fs_info *
59 tree_fs_info(struct extent_io_tree *tree)
60 {
61 return btrfs_sb(tree->mapping->host->i_sb);
62 }
63
64 int __init extent_io_init(void)
65 {
66 extent_state_cache = kmem_cache_create("extent_state",
67 sizeof(struct extent_state), 0,
68 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
69 if (!extent_state_cache)
70 return -ENOMEM;
71
72 extent_buffer_cache = kmem_cache_create("extent_buffers",
73 sizeof(struct extent_buffer), 0,
74 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
75 if (!extent_buffer_cache)
76 goto free_state_cache;
77 return 0;
78
79 free_state_cache:
80 kmem_cache_destroy(extent_state_cache);
81 return -ENOMEM;
82 }
83
84 void extent_io_exit(void)
85 {
86 struct extent_state *state;
87 struct extent_buffer *eb;
88
89 while (!list_empty(&states)) {
90 state = list_entry(states.next, struct extent_state, leak_list);
91 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
92 "state %lu in tree %p refs %d\n",
93 (unsigned long long)state->start,
94 (unsigned long long)state->end,
95 state->state, state->tree, atomic_read(&state->refs));
96 list_del(&state->leak_list);
97 kmem_cache_free(extent_state_cache, state);
98
99 }
100
101 while (!list_empty(&buffers)) {
102 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
103 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
104 "refs %d\n", (unsigned long long)eb->start,
105 eb->len, atomic_read(&eb->refs));
106 list_del(&eb->leak_list);
107 kmem_cache_free(extent_buffer_cache, eb);
108 }
109 if (extent_state_cache)
110 kmem_cache_destroy(extent_state_cache);
111 if (extent_buffer_cache)
112 kmem_cache_destroy(extent_buffer_cache);
113 }
114
115 void extent_io_tree_init(struct extent_io_tree *tree,
116 struct address_space *mapping)
117 {
118 tree->state = RB_ROOT;
119 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
120 tree->ops = NULL;
121 tree->dirty_bytes = 0;
122 spin_lock_init(&tree->lock);
123 spin_lock_init(&tree->buffer_lock);
124 tree->mapping = mapping;
125 }
126
127 static struct extent_state *alloc_extent_state(gfp_t mask)
128 {
129 struct extent_state *state;
130 #if LEAK_DEBUG
131 unsigned long flags;
132 #endif
133
134 state = kmem_cache_alloc(extent_state_cache, mask);
135 if (!state)
136 return state;
137 state->state = 0;
138 state->private = 0;
139 state->tree = NULL;
140 #if LEAK_DEBUG
141 spin_lock_irqsave(&leak_lock, flags);
142 list_add(&state->leak_list, &states);
143 spin_unlock_irqrestore(&leak_lock, flags);
144 #endif
145 atomic_set(&state->refs, 1);
146 init_waitqueue_head(&state->wq);
147 trace_alloc_extent_state(state, mask, _RET_IP_);
148 return state;
149 }
150
151 void free_extent_state(struct extent_state *state)
152 {
153 if (!state)
154 return;
155 if (atomic_dec_and_test(&state->refs)) {
156 #if LEAK_DEBUG
157 unsigned long flags;
158 #endif
159 WARN_ON(state->tree);
160 #if LEAK_DEBUG
161 spin_lock_irqsave(&leak_lock, flags);
162 list_del(&state->leak_list);
163 spin_unlock_irqrestore(&leak_lock, flags);
164 #endif
165 trace_free_extent_state(state, _RET_IP_);
166 kmem_cache_free(extent_state_cache, state);
167 }
168 }
169
170 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
171 struct rb_node *node)
172 {
173 struct rb_node **p = &root->rb_node;
174 struct rb_node *parent = NULL;
175 struct tree_entry *entry;
176
177 while (*p) {
178 parent = *p;
179 entry = rb_entry(parent, struct tree_entry, rb_node);
180
181 if (offset < entry->start)
182 p = &(*p)->rb_left;
183 else if (offset > entry->end)
184 p = &(*p)->rb_right;
185 else
186 return parent;
187 }
188
189 entry = rb_entry(node, struct tree_entry, rb_node);
190 rb_link_node(node, parent, p);
191 rb_insert_color(node, root);
192 return NULL;
193 }
194
195 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
196 struct rb_node **prev_ret,
197 struct rb_node **next_ret)
198 {
199 struct rb_root *root = &tree->state;
200 struct rb_node *n = root->rb_node;
201 struct rb_node *prev = NULL;
202 struct rb_node *orig_prev = NULL;
203 struct tree_entry *entry;
204 struct tree_entry *prev_entry = NULL;
205
206 while (n) {
207 entry = rb_entry(n, struct tree_entry, rb_node);
208 prev = n;
209 prev_entry = entry;
210
211 if (offset < entry->start)
212 n = n->rb_left;
213 else if (offset > entry->end)
214 n = n->rb_right;
215 else
216 return n;
217 }
218
219 if (prev_ret) {
220 orig_prev = prev;
221 while (prev && offset > prev_entry->end) {
222 prev = rb_next(prev);
223 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
224 }
225 *prev_ret = prev;
226 prev = orig_prev;
227 }
228
229 if (next_ret) {
230 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
231 while (prev && offset < prev_entry->start) {
232 prev = rb_prev(prev);
233 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
234 }
235 *next_ret = prev;
236 }
237 return NULL;
238 }
239
240 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
241 u64 offset)
242 {
243 struct rb_node *prev = NULL;
244 struct rb_node *ret;
245
246 ret = __etree_search(tree, offset, &prev, NULL);
247 if (!ret)
248 return prev;
249 return ret;
250 }
251
252 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
253 struct extent_state *other)
254 {
255 if (tree->ops && tree->ops->merge_extent_hook)
256 tree->ops->merge_extent_hook(tree->mapping->host, new,
257 other);
258 }
259
260 /*
261 * utility function to look for merge candidates inside a given range.
262 * Any extents with matching state are merged together into a single
263 * extent in the tree. Extents with EXTENT_IO in their state field
264 * are not merged because the end_io handlers need to be able to do
265 * operations on them without sleeping (or doing allocations/splits).
266 *
267 * This should be called with the tree lock held.
268 */
269 static void merge_state(struct extent_io_tree *tree,
270 struct extent_state *state)
271 {
272 struct extent_state *other;
273 struct rb_node *other_node;
274
275 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
276 return;
277
278 other_node = rb_prev(&state->rb_node);
279 if (other_node) {
280 other = rb_entry(other_node, struct extent_state, rb_node);
281 if (other->end == state->start - 1 &&
282 other->state == state->state) {
283 merge_cb(tree, state, other);
284 state->start = other->start;
285 other->tree = NULL;
286 rb_erase(&other->rb_node, &tree->state);
287 free_extent_state(other);
288 }
289 }
290 other_node = rb_next(&state->rb_node);
291 if (other_node) {
292 other = rb_entry(other_node, struct extent_state, rb_node);
293 if (other->start == state->end + 1 &&
294 other->state == state->state) {
295 merge_cb(tree, state, other);
296 state->end = other->end;
297 other->tree = NULL;
298 rb_erase(&other->rb_node, &tree->state);
299 free_extent_state(other);
300 }
301 }
302 }
303
304 static void set_state_cb(struct extent_io_tree *tree,
305 struct extent_state *state, int *bits)
306 {
307 if (tree->ops && tree->ops->set_bit_hook)
308 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
309 }
310
311 static void clear_state_cb(struct extent_io_tree *tree,
312 struct extent_state *state, int *bits)
313 {
314 if (tree->ops && tree->ops->clear_bit_hook)
315 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
316 }
317
318 static void set_state_bits(struct extent_io_tree *tree,
319 struct extent_state *state, int *bits);
320
321 /*
322 * insert an extent_state struct into the tree. 'bits' are set on the
323 * struct before it is inserted.
324 *
325 * This may return -EEXIST if the extent is already there, in which case the
326 * state struct is freed.
327 *
328 * The tree lock is not taken internally. This is a utility function and
329 * probably isn't what you want to call (see set/clear_extent_bit).
330 */
331 static int insert_state(struct extent_io_tree *tree,
332 struct extent_state *state, u64 start, u64 end,
333 int *bits)
334 {
335 struct rb_node *node;
336
337 if (end < start) {
338 printk(KERN_ERR "btrfs end < start %llu %llu\n",
339 (unsigned long long)end,
340 (unsigned long long)start);
341 WARN_ON(1);
342 }
343 state->start = start;
344 state->end = end;
345
346 set_state_bits(tree, state, bits);
347
348 node = tree_insert(&tree->state, end, &state->rb_node);
349 if (node) {
350 struct extent_state *found;
351 found = rb_entry(node, struct extent_state, rb_node);
352 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
353 "%llu %llu\n", (unsigned long long)found->start,
354 (unsigned long long)found->end,
355 (unsigned long long)start, (unsigned long long)end);
356 return -EEXIST;
357 }
358 state->tree = tree;
359 merge_state(tree, state);
360 return 0;
361 }
362
363 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
364 u64 split)
365 {
366 if (tree->ops && tree->ops->split_extent_hook)
367 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
368 }
369
370 /*
371 * split a given extent state struct in two, inserting the preallocated
372 * struct 'prealloc' as the newly created second half. 'split' indicates an
373 * offset inside 'orig' where it should be split.
374 *
375 * Before calling,
376 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
377 * are two extent state structs in the tree:
378 * prealloc: [orig->start, split - 1]
379 * orig: [ split, orig->end ]
380 *
381 * The tree locks are not taken by this function. They need to be held
382 * by the caller.
383 */
384 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
385 struct extent_state *prealloc, u64 split)
386 {
387 struct rb_node *node;
388
389 split_cb(tree, orig, split);
390
391 prealloc->start = orig->start;
392 prealloc->end = split - 1;
393 prealloc->state = orig->state;
394 orig->start = split;
395
396 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
397 if (node) {
398 free_extent_state(prealloc);
399 return -EEXIST;
400 }
401 prealloc->tree = tree;
402 return 0;
403 }
404
405 static struct extent_state *next_state(struct extent_state *state)
406 {
407 struct rb_node *next = rb_next(&state->rb_node);
408 if (next)
409 return rb_entry(next, struct extent_state, rb_node);
410 else
411 return NULL;
412 }
413
414 /*
415 * utility function to clear some bits in an extent state struct.
416 * it will optionally wake up any one waiting on this state (wake == 1)
417 *
418 * If no bits are set on the state struct after clearing things, the
419 * struct is freed and removed from the tree
420 */
421 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
422 struct extent_state *state,
423 int *bits, int wake)
424 {
425 struct extent_state *next;
426 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
427
428 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
429 u64 range = state->end - state->start + 1;
430 WARN_ON(range > tree->dirty_bytes);
431 tree->dirty_bytes -= range;
432 }
433 clear_state_cb(tree, state, bits);
434 state->state &= ~bits_to_clear;
435 if (wake)
436 wake_up(&state->wq);
437 if (state->state == 0) {
438 next = next_state(state);
439 if (state->tree) {
440 rb_erase(&state->rb_node, &tree->state);
441 state->tree = NULL;
442 free_extent_state(state);
443 } else {
444 WARN_ON(1);
445 }
446 } else {
447 merge_state(tree, state);
448 next = next_state(state);
449 }
450 return next;
451 }
452
453 static struct extent_state *
454 alloc_extent_state_atomic(struct extent_state *prealloc)
455 {
456 if (!prealloc)
457 prealloc = alloc_extent_state(GFP_ATOMIC);
458
459 return prealloc;
460 }
461
462 void extent_io_tree_panic(struct extent_io_tree *tree, int err)
463 {
464 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
465 "Extent tree was modified by another "
466 "thread while locked.");
467 }
468
469 /*
470 * clear some bits on a range in the tree. This may require splitting
471 * or inserting elements in the tree, so the gfp mask is used to
472 * indicate which allocations or sleeping are allowed.
473 *
474 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
475 * the given range from the tree regardless of state (ie for truncate).
476 *
477 * the range [start, end] is inclusive.
478 *
479 * This takes the tree lock, and returns 0 on success and < 0 on error.
480 */
481 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
482 int bits, int wake, int delete,
483 struct extent_state **cached_state,
484 gfp_t mask)
485 {
486 struct extent_state *state;
487 struct extent_state *cached;
488 struct extent_state *prealloc = NULL;
489 struct rb_node *node;
490 u64 last_end;
491 int err;
492 int clear = 0;
493
494 if (delete)
495 bits |= ~EXTENT_CTLBITS;
496 bits |= EXTENT_FIRST_DELALLOC;
497
498 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
499 clear = 1;
500 again:
501 if (!prealloc && (mask & __GFP_WAIT)) {
502 prealloc = alloc_extent_state(mask);
503 if (!prealloc)
504 return -ENOMEM;
505 }
506
507 spin_lock(&tree->lock);
508 if (cached_state) {
509 cached = *cached_state;
510
511 if (clear) {
512 *cached_state = NULL;
513 cached_state = NULL;
514 }
515
516 if (cached && cached->tree && cached->start <= start &&
517 cached->end > start) {
518 if (clear)
519 atomic_dec(&cached->refs);
520 state = cached;
521 goto hit_next;
522 }
523 if (clear)
524 free_extent_state(cached);
525 }
526 /*
527 * this search will find the extents that end after
528 * our range starts
529 */
530 node = tree_search(tree, start);
531 if (!node)
532 goto out;
533 state = rb_entry(node, struct extent_state, rb_node);
534 hit_next:
535 if (state->start > end)
536 goto out;
537 WARN_ON(state->end < start);
538 last_end = state->end;
539
540 /* the state doesn't have the wanted bits, go ahead */
541 if (!(state->state & bits)) {
542 state = next_state(state);
543 goto next;
544 }
545
546 /*
547 * | ---- desired range ---- |
548 * | state | or
549 * | ------------- state -------------- |
550 *
551 * We need to split the extent we found, and may flip
552 * bits on second half.
553 *
554 * If the extent we found extends past our range, we
555 * just split and search again. It'll get split again
556 * the next time though.
557 *
558 * If the extent we found is inside our range, we clear
559 * the desired bit on it.
560 */
561
562 if (state->start < start) {
563 prealloc = alloc_extent_state_atomic(prealloc);
564 BUG_ON(!prealloc);
565 err = split_state(tree, state, prealloc, start);
566 if (err)
567 extent_io_tree_panic(tree, err);
568
569 prealloc = NULL;
570 if (err)
571 goto out;
572 if (state->end <= end) {
573 clear_state_bit(tree, state, &bits, wake);
574 if (last_end == (u64)-1)
575 goto out;
576 start = last_end + 1;
577 }
578 goto search_again;
579 }
580 /*
581 * | ---- desired range ---- |
582 * | state |
583 * We need to split the extent, and clear the bit
584 * on the first half
585 */
586 if (state->start <= end && state->end > end) {
587 prealloc = alloc_extent_state_atomic(prealloc);
588 BUG_ON(!prealloc);
589 err = split_state(tree, state, prealloc, end + 1);
590 if (err)
591 extent_io_tree_panic(tree, err);
592
593 if (wake)
594 wake_up(&state->wq);
595
596 clear_state_bit(tree, prealloc, &bits, wake);
597
598 prealloc = NULL;
599 goto out;
600 }
601
602 state = clear_state_bit(tree, state, &bits, wake);
603 next:
604 if (last_end == (u64)-1)
605 goto out;
606 start = last_end + 1;
607 if (start <= end && state && !need_resched())
608 goto hit_next;
609 goto search_again;
610
611 out:
612 spin_unlock(&tree->lock);
613 if (prealloc)
614 free_extent_state(prealloc);
615
616 return 0;
617
618 search_again:
619 if (start > end)
620 goto out;
621 spin_unlock(&tree->lock);
622 if (mask & __GFP_WAIT)
623 cond_resched();
624 goto again;
625 }
626
627 static void wait_on_state(struct extent_io_tree *tree,
628 struct extent_state *state)
629 __releases(tree->lock)
630 __acquires(tree->lock)
631 {
632 DEFINE_WAIT(wait);
633 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
634 spin_unlock(&tree->lock);
635 schedule();
636 spin_lock(&tree->lock);
637 finish_wait(&state->wq, &wait);
638 }
639
640 /*
641 * waits for one or more bits to clear on a range in the state tree.
642 * The range [start, end] is inclusive.
643 * The tree lock is taken by this function
644 */
645 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
646 {
647 struct extent_state *state;
648 struct rb_node *node;
649
650 spin_lock(&tree->lock);
651 again:
652 while (1) {
653 /*
654 * this search will find all the extents that end after
655 * our range starts
656 */
657 node = tree_search(tree, start);
658 if (!node)
659 break;
660
661 state = rb_entry(node, struct extent_state, rb_node);
662
663 if (state->start > end)
664 goto out;
665
666 if (state->state & bits) {
667 start = state->start;
668 atomic_inc(&state->refs);
669 wait_on_state(tree, state);
670 free_extent_state(state);
671 goto again;
672 }
673 start = state->end + 1;
674
675 if (start > end)
676 break;
677
678 cond_resched_lock(&tree->lock);
679 }
680 out:
681 spin_unlock(&tree->lock);
682 }
683
684 static void set_state_bits(struct extent_io_tree *tree,
685 struct extent_state *state,
686 int *bits)
687 {
688 int bits_to_set = *bits & ~EXTENT_CTLBITS;
689
690 set_state_cb(tree, state, bits);
691 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
692 u64 range = state->end - state->start + 1;
693 tree->dirty_bytes += range;
694 }
695 state->state |= bits_to_set;
696 }
697
698 static void cache_state(struct extent_state *state,
699 struct extent_state **cached_ptr)
700 {
701 if (cached_ptr && !(*cached_ptr)) {
702 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
703 *cached_ptr = state;
704 atomic_inc(&state->refs);
705 }
706 }
707 }
708
709 static void uncache_state(struct extent_state **cached_ptr)
710 {
711 if (cached_ptr && (*cached_ptr)) {
712 struct extent_state *state = *cached_ptr;
713 *cached_ptr = NULL;
714 free_extent_state(state);
715 }
716 }
717
718 /*
719 * set some bits on a range in the tree. This may require allocations or
720 * sleeping, so the gfp mask is used to indicate what is allowed.
721 *
722 * If any of the exclusive bits are set, this will fail with -EEXIST if some
723 * part of the range already has the desired bits set. The start of the
724 * existing range is returned in failed_start in this case.
725 *
726 * [start, end] is inclusive This takes the tree lock.
727 */
728
729 static int __must_check
730 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
731 int bits, int exclusive_bits, u64 *failed_start,
732 struct extent_state **cached_state, gfp_t mask)
733 {
734 struct extent_state *state;
735 struct extent_state *prealloc = NULL;
736 struct rb_node *node;
737 int err = 0;
738 u64 last_start;
739 u64 last_end;
740
741 bits |= EXTENT_FIRST_DELALLOC;
742 again:
743 if (!prealloc && (mask & __GFP_WAIT)) {
744 prealloc = alloc_extent_state(mask);
745 BUG_ON(!prealloc);
746 }
747
748 spin_lock(&tree->lock);
749 if (cached_state && *cached_state) {
750 state = *cached_state;
751 if (state->start <= start && state->end > start &&
752 state->tree) {
753 node = &state->rb_node;
754 goto hit_next;
755 }
756 }
757 /*
758 * this search will find all the extents that end after
759 * our range starts.
760 */
761 node = tree_search(tree, start);
762 if (!node) {
763 prealloc = alloc_extent_state_atomic(prealloc);
764 BUG_ON(!prealloc);
765 err = insert_state(tree, prealloc, start, end, &bits);
766 if (err)
767 extent_io_tree_panic(tree, err);
768
769 prealloc = NULL;
770 goto out;
771 }
772 state = rb_entry(node, struct extent_state, rb_node);
773 hit_next:
774 last_start = state->start;
775 last_end = state->end;
776
777 /*
778 * | ---- desired range ---- |
779 * | state |
780 *
781 * Just lock what we found and keep going
782 */
783 if (state->start == start && state->end <= end) {
784 struct rb_node *next_node;
785 if (state->state & exclusive_bits) {
786 *failed_start = state->start;
787 err = -EEXIST;
788 goto out;
789 }
790
791 set_state_bits(tree, state, &bits);
792
793 cache_state(state, cached_state);
794 merge_state(tree, state);
795 if (last_end == (u64)-1)
796 goto out;
797
798 start = last_end + 1;
799 next_node = rb_next(&state->rb_node);
800 if (next_node && start < end && prealloc && !need_resched()) {
801 state = rb_entry(next_node, struct extent_state,
802 rb_node);
803 if (state->start == start)
804 goto hit_next;
805 }
806 goto search_again;
807 }
808
809 /*
810 * | ---- desired range ---- |
811 * | state |
812 * or
813 * | ------------- state -------------- |
814 *
815 * We need to split the extent we found, and may flip bits on
816 * second half.
817 *
818 * If the extent we found extends past our
819 * range, we just split and search again. It'll get split
820 * again the next time though.
821 *
822 * If the extent we found is inside our range, we set the
823 * desired bit on it.
824 */
825 if (state->start < start) {
826 if (state->state & exclusive_bits) {
827 *failed_start = start;
828 err = -EEXIST;
829 goto out;
830 }
831
832 prealloc = alloc_extent_state_atomic(prealloc);
833 BUG_ON(!prealloc);
834 err = split_state(tree, state, prealloc, start);
835 if (err)
836 extent_io_tree_panic(tree, err);
837
838 prealloc = NULL;
839 if (err)
840 goto out;
841 if (state->end <= end) {
842 set_state_bits(tree, state, &bits);
843 cache_state(state, cached_state);
844 merge_state(tree, state);
845 if (last_end == (u64)-1)
846 goto out;
847 start = last_end + 1;
848 }
849 goto search_again;
850 }
851 /*
852 * | ---- desired range ---- |
853 * | state | or | state |
854 *
855 * There's a hole, we need to insert something in it and
856 * ignore the extent we found.
857 */
858 if (state->start > start) {
859 u64 this_end;
860 if (end < last_start)
861 this_end = end;
862 else
863 this_end = last_start - 1;
864
865 prealloc = alloc_extent_state_atomic(prealloc);
866 BUG_ON(!prealloc);
867
868 /*
869 * Avoid to free 'prealloc' if it can be merged with
870 * the later extent.
871 */
872 err = insert_state(tree, prealloc, start, this_end,
873 &bits);
874 if (err)
875 extent_io_tree_panic(tree, err);
876
877 cache_state(prealloc, cached_state);
878 prealloc = NULL;
879 start = this_end + 1;
880 goto search_again;
881 }
882 /*
883 * | ---- desired range ---- |
884 * | state |
885 * We need to split the extent, and set the bit
886 * on the first half
887 */
888 if (state->start <= end && state->end > end) {
889 if (state->state & exclusive_bits) {
890 *failed_start = start;
891 err = -EEXIST;
892 goto out;
893 }
894
895 prealloc = alloc_extent_state_atomic(prealloc);
896 BUG_ON(!prealloc);
897 err = split_state(tree, state, prealloc, end + 1);
898 if (err)
899 extent_io_tree_panic(tree, err);
900
901 set_state_bits(tree, prealloc, &bits);
902 cache_state(prealloc, cached_state);
903 merge_state(tree, prealloc);
904 prealloc = NULL;
905 goto out;
906 }
907
908 goto search_again;
909
910 out:
911 spin_unlock(&tree->lock);
912 if (prealloc)
913 free_extent_state(prealloc);
914
915 return err;
916
917 search_again:
918 if (start > end)
919 goto out;
920 spin_unlock(&tree->lock);
921 if (mask & __GFP_WAIT)
922 cond_resched();
923 goto again;
924 }
925
926 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
927 u64 *failed_start, struct extent_state **cached_state,
928 gfp_t mask)
929 {
930 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
931 cached_state, mask);
932 }
933
934
935 /**
936 * convert_extent - convert all bits in a given range from one bit to another
937 * @tree: the io tree to search
938 * @start: the start offset in bytes
939 * @end: the end offset in bytes (inclusive)
940 * @bits: the bits to set in this range
941 * @clear_bits: the bits to clear in this range
942 * @mask: the allocation mask
943 *
944 * This will go through and set bits for the given range. If any states exist
945 * already in this range they are set with the given bit and cleared of the
946 * clear_bits. This is only meant to be used by things that are mergeable, ie
947 * converting from say DELALLOC to DIRTY. This is not meant to be used with
948 * boundary bits like LOCK.
949 */
950 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
951 int bits, int clear_bits, gfp_t mask)
952 {
953 struct extent_state *state;
954 struct extent_state *prealloc = NULL;
955 struct rb_node *node;
956 int err = 0;
957 u64 last_start;
958 u64 last_end;
959
960 again:
961 if (!prealloc && (mask & __GFP_WAIT)) {
962 prealloc = alloc_extent_state(mask);
963 if (!prealloc)
964 return -ENOMEM;
965 }
966
967 spin_lock(&tree->lock);
968 /*
969 * this search will find all the extents that end after
970 * our range starts.
971 */
972 node = tree_search(tree, start);
973 if (!node) {
974 prealloc = alloc_extent_state_atomic(prealloc);
975 if (!prealloc) {
976 err = -ENOMEM;
977 goto out;
978 }
979 err = insert_state(tree, prealloc, start, end, &bits);
980 prealloc = NULL;
981 if (err)
982 extent_io_tree_panic(tree, err);
983 goto out;
984 }
985 state = rb_entry(node, struct extent_state, rb_node);
986 hit_next:
987 last_start = state->start;
988 last_end = state->end;
989
990 /*
991 * | ---- desired range ---- |
992 * | state |
993 *
994 * Just lock what we found and keep going
995 */
996 if (state->start == start && state->end <= end) {
997 struct rb_node *next_node;
998
999 set_state_bits(tree, state, &bits);
1000 clear_state_bit(tree, state, &clear_bits, 0);
1001 if (last_end == (u64)-1)
1002 goto out;
1003
1004 start = last_end + 1;
1005 next_node = rb_next(&state->rb_node);
1006 if (next_node && start < end && prealloc && !need_resched()) {
1007 state = rb_entry(next_node, struct extent_state,
1008 rb_node);
1009 if (state->start == start)
1010 goto hit_next;
1011 }
1012 goto search_again;
1013 }
1014
1015 /*
1016 * | ---- desired range ---- |
1017 * | state |
1018 * or
1019 * | ------------- state -------------- |
1020 *
1021 * We need to split the extent we found, and may flip bits on
1022 * second half.
1023 *
1024 * If the extent we found extends past our
1025 * range, we just split and search again. It'll get split
1026 * again the next time though.
1027 *
1028 * If the extent we found is inside our range, we set the
1029 * desired bit on it.
1030 */
1031 if (state->start < start) {
1032 prealloc = alloc_extent_state_atomic(prealloc);
1033 if (!prealloc) {
1034 err = -ENOMEM;
1035 goto out;
1036 }
1037 err = split_state(tree, state, prealloc, start);
1038 if (err)
1039 extent_io_tree_panic(tree, err);
1040 prealloc = NULL;
1041 if (err)
1042 goto out;
1043 if (state->end <= end) {
1044 set_state_bits(tree, state, &bits);
1045 clear_state_bit(tree, state, &clear_bits, 0);
1046 if (last_end == (u64)-1)
1047 goto out;
1048 start = last_end + 1;
1049 }
1050 goto search_again;
1051 }
1052 /*
1053 * | ---- desired range ---- |
1054 * | state | or | state |
1055 *
1056 * There's a hole, we need to insert something in it and
1057 * ignore the extent we found.
1058 */
1059 if (state->start > start) {
1060 u64 this_end;
1061 if (end < last_start)
1062 this_end = end;
1063 else
1064 this_end = last_start - 1;
1065
1066 prealloc = alloc_extent_state_atomic(prealloc);
1067 if (!prealloc) {
1068 err = -ENOMEM;
1069 goto out;
1070 }
1071
1072 /*
1073 * Avoid to free 'prealloc' if it can be merged with
1074 * the later extent.
1075 */
1076 err = insert_state(tree, prealloc, start, this_end,
1077 &bits);
1078 if (err)
1079 extent_io_tree_panic(tree, err);
1080 prealloc = NULL;
1081 start = this_end + 1;
1082 goto search_again;
1083 }
1084 /*
1085 * | ---- desired range ---- |
1086 * | state |
1087 * We need to split the extent, and set the bit
1088 * on the first half
1089 */
1090 if (state->start <= end && state->end > end) {
1091 prealloc = alloc_extent_state_atomic(prealloc);
1092 if (!prealloc) {
1093 err = -ENOMEM;
1094 goto out;
1095 }
1096
1097 err = split_state(tree, state, prealloc, end + 1);
1098 if (err)
1099 extent_io_tree_panic(tree, err);
1100
1101 set_state_bits(tree, prealloc, &bits);
1102 clear_state_bit(tree, prealloc, &clear_bits, 0);
1103 prealloc = NULL;
1104 goto out;
1105 }
1106
1107 goto search_again;
1108
1109 out:
1110 spin_unlock(&tree->lock);
1111 if (prealloc)
1112 free_extent_state(prealloc);
1113
1114 return err;
1115
1116 search_again:
1117 if (start > end)
1118 goto out;
1119 spin_unlock(&tree->lock);
1120 if (mask & __GFP_WAIT)
1121 cond_resched();
1122 goto again;
1123 }
1124
1125 /* wrappers around set/clear extent bit */
1126 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1127 gfp_t mask)
1128 {
1129 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1130 NULL, mask);
1131 }
1132
1133 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1134 int bits, gfp_t mask)
1135 {
1136 return set_extent_bit(tree, start, end, bits, NULL,
1137 NULL, mask);
1138 }
1139
1140 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1141 int bits, gfp_t mask)
1142 {
1143 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1144 }
1145
1146 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1147 struct extent_state **cached_state, gfp_t mask)
1148 {
1149 return set_extent_bit(tree, start, end,
1150 EXTENT_DELALLOC | EXTENT_UPTODATE,
1151 NULL, cached_state, mask);
1152 }
1153
1154 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1155 gfp_t mask)
1156 {
1157 return clear_extent_bit(tree, start, end,
1158 EXTENT_DIRTY | EXTENT_DELALLOC |
1159 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1160 }
1161
1162 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1163 gfp_t mask)
1164 {
1165 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1166 NULL, mask);
1167 }
1168
1169 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1170 struct extent_state **cached_state, gfp_t mask)
1171 {
1172 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1173 cached_state, mask);
1174 }
1175
1176 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
1177 u64 end, struct extent_state **cached_state,
1178 gfp_t mask)
1179 {
1180 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1181 cached_state, mask);
1182 }
1183
1184 /*
1185 * either insert or lock state struct between start and end use mask to tell
1186 * us if waiting is desired.
1187 */
1188 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1189 int bits, struct extent_state **cached_state)
1190 {
1191 int err;
1192 u64 failed_start;
1193 while (1) {
1194 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1195 EXTENT_LOCKED, &failed_start,
1196 cached_state, GFP_NOFS);
1197 if (err == -EEXIST) {
1198 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1199 start = failed_start;
1200 } else
1201 break;
1202 WARN_ON(start > end);
1203 }
1204 return err;
1205 }
1206
1207 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1208 {
1209 return lock_extent_bits(tree, start, end, 0, NULL);
1210 }
1211
1212 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1213 {
1214 int err;
1215 u64 failed_start;
1216
1217 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1218 &failed_start, NULL, GFP_NOFS);
1219 if (err == -EEXIST) {
1220 if (failed_start > start)
1221 clear_extent_bit(tree, start, failed_start - 1,
1222 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1223 return 0;
1224 }
1225 return 1;
1226 }
1227
1228 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1229 struct extent_state **cached, gfp_t mask)
1230 {
1231 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1232 mask);
1233 }
1234
1235 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1236 {
1237 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1238 GFP_NOFS);
1239 }
1240
1241 /*
1242 * helper function to set both pages and extents in the tree writeback
1243 */
1244 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1245 {
1246 unsigned long index = start >> PAGE_CACHE_SHIFT;
1247 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1248 struct page *page;
1249
1250 while (index <= end_index) {
1251 page = find_get_page(tree->mapping, index);
1252 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1253 set_page_writeback(page);
1254 page_cache_release(page);
1255 index++;
1256 }
1257 return 0;
1258 }
1259
1260 /* find the first state struct with 'bits' set after 'start', and
1261 * return it. tree->lock must be held. NULL will returned if
1262 * nothing was found after 'start'
1263 */
1264 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1265 u64 start, int bits)
1266 {
1267 struct rb_node *node;
1268 struct extent_state *state;
1269
1270 /*
1271 * this search will find all the extents that end after
1272 * our range starts.
1273 */
1274 node = tree_search(tree, start);
1275 if (!node)
1276 goto out;
1277
1278 while (1) {
1279 state = rb_entry(node, struct extent_state, rb_node);
1280 if (state->end >= start && (state->state & bits))
1281 return state;
1282
1283 node = rb_next(node);
1284 if (!node)
1285 break;
1286 }
1287 out:
1288 return NULL;
1289 }
1290
1291 /*
1292 * find the first offset in the io tree with 'bits' set. zero is
1293 * returned if we find something, and *start_ret and *end_ret are
1294 * set to reflect the state struct that was found.
1295 *
1296 * If nothing was found, 1 is returned, < 0 on error
1297 */
1298 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1299 u64 *start_ret, u64 *end_ret, int bits)
1300 {
1301 struct extent_state *state;
1302 int ret = 1;
1303
1304 spin_lock(&tree->lock);
1305 state = find_first_extent_bit_state(tree, start, bits);
1306 if (state) {
1307 *start_ret = state->start;
1308 *end_ret = state->end;
1309 ret = 0;
1310 }
1311 spin_unlock(&tree->lock);
1312 return ret;
1313 }
1314
1315 /*
1316 * find a contiguous range of bytes in the file marked as delalloc, not
1317 * more than 'max_bytes'. start and end are used to return the range,
1318 *
1319 * 1 is returned if we find something, 0 if nothing was in the tree
1320 */
1321 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1322 u64 *start, u64 *end, u64 max_bytes,
1323 struct extent_state **cached_state)
1324 {
1325 struct rb_node *node;
1326 struct extent_state *state;
1327 u64 cur_start = *start;
1328 u64 found = 0;
1329 u64 total_bytes = 0;
1330
1331 spin_lock(&tree->lock);
1332
1333 /*
1334 * this search will find all the extents that end after
1335 * our range starts.
1336 */
1337 node = tree_search(tree, cur_start);
1338 if (!node) {
1339 if (!found)
1340 *end = (u64)-1;
1341 goto out;
1342 }
1343
1344 while (1) {
1345 state = rb_entry(node, struct extent_state, rb_node);
1346 if (found && (state->start != cur_start ||
1347 (state->state & EXTENT_BOUNDARY))) {
1348 goto out;
1349 }
1350 if (!(state->state & EXTENT_DELALLOC)) {
1351 if (!found)
1352 *end = state->end;
1353 goto out;
1354 }
1355 if (!found) {
1356 *start = state->start;
1357 *cached_state = state;
1358 atomic_inc(&state->refs);
1359 }
1360 found++;
1361 *end = state->end;
1362 cur_start = state->end + 1;
1363 node = rb_next(node);
1364 if (!node)
1365 break;
1366 total_bytes += state->end - state->start + 1;
1367 if (total_bytes >= max_bytes)
1368 break;
1369 }
1370 out:
1371 spin_unlock(&tree->lock);
1372 return found;
1373 }
1374
1375 static noinline void __unlock_for_delalloc(struct inode *inode,
1376 struct page *locked_page,
1377 u64 start, u64 end)
1378 {
1379 int ret;
1380 struct page *pages[16];
1381 unsigned long index = start >> PAGE_CACHE_SHIFT;
1382 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1383 unsigned long nr_pages = end_index - index + 1;
1384 int i;
1385
1386 if (index == locked_page->index && end_index == index)
1387 return;
1388
1389 while (nr_pages > 0) {
1390 ret = find_get_pages_contig(inode->i_mapping, index,
1391 min_t(unsigned long, nr_pages,
1392 ARRAY_SIZE(pages)), pages);
1393 for (i = 0; i < ret; i++) {
1394 if (pages[i] != locked_page)
1395 unlock_page(pages[i]);
1396 page_cache_release(pages[i]);
1397 }
1398 nr_pages -= ret;
1399 index += ret;
1400 cond_resched();
1401 }
1402 }
1403
1404 static noinline int lock_delalloc_pages(struct inode *inode,
1405 struct page *locked_page,
1406 u64 delalloc_start,
1407 u64 delalloc_end)
1408 {
1409 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1410 unsigned long start_index = index;
1411 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1412 unsigned long pages_locked = 0;
1413 struct page *pages[16];
1414 unsigned long nrpages;
1415 int ret;
1416 int i;
1417
1418 /* the caller is responsible for locking the start index */
1419 if (index == locked_page->index && index == end_index)
1420 return 0;
1421
1422 /* skip the page at the start index */
1423 nrpages = end_index - index + 1;
1424 while (nrpages > 0) {
1425 ret = find_get_pages_contig(inode->i_mapping, index,
1426 min_t(unsigned long,
1427 nrpages, ARRAY_SIZE(pages)), pages);
1428 if (ret == 0) {
1429 ret = -EAGAIN;
1430 goto done;
1431 }
1432 /* now we have an array of pages, lock them all */
1433 for (i = 0; i < ret; i++) {
1434 /*
1435 * the caller is taking responsibility for
1436 * locked_page
1437 */
1438 if (pages[i] != locked_page) {
1439 lock_page(pages[i]);
1440 if (!PageDirty(pages[i]) ||
1441 pages[i]->mapping != inode->i_mapping) {
1442 ret = -EAGAIN;
1443 unlock_page(pages[i]);
1444 page_cache_release(pages[i]);
1445 goto done;
1446 }
1447 }
1448 page_cache_release(pages[i]);
1449 pages_locked++;
1450 }
1451 nrpages -= ret;
1452 index += ret;
1453 cond_resched();
1454 }
1455 ret = 0;
1456 done:
1457 if (ret && pages_locked) {
1458 __unlock_for_delalloc(inode, locked_page,
1459 delalloc_start,
1460 ((u64)(start_index + pages_locked - 1)) <<
1461 PAGE_CACHE_SHIFT);
1462 }
1463 return ret;
1464 }
1465
1466 /*
1467 * find a contiguous range of bytes in the file marked as delalloc, not
1468 * more than 'max_bytes'. start and end are used to return the range,
1469 *
1470 * 1 is returned if we find something, 0 if nothing was in the tree
1471 */
1472 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1473 struct extent_io_tree *tree,
1474 struct page *locked_page,
1475 u64 *start, u64 *end,
1476 u64 max_bytes)
1477 {
1478 u64 delalloc_start;
1479 u64 delalloc_end;
1480 u64 found;
1481 struct extent_state *cached_state = NULL;
1482 int ret;
1483 int loops = 0;
1484
1485 again:
1486 /* step one, find a bunch of delalloc bytes starting at start */
1487 delalloc_start = *start;
1488 delalloc_end = 0;
1489 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1490 max_bytes, &cached_state);
1491 if (!found || delalloc_end <= *start) {
1492 *start = delalloc_start;
1493 *end = delalloc_end;
1494 free_extent_state(cached_state);
1495 return found;
1496 }
1497
1498 /*
1499 * start comes from the offset of locked_page. We have to lock
1500 * pages in order, so we can't process delalloc bytes before
1501 * locked_page
1502 */
1503 if (delalloc_start < *start)
1504 delalloc_start = *start;
1505
1506 /*
1507 * make sure to limit the number of pages we try to lock down
1508 * if we're looping.
1509 */
1510 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1511 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1512
1513 /* step two, lock all the pages after the page that has start */
1514 ret = lock_delalloc_pages(inode, locked_page,
1515 delalloc_start, delalloc_end);
1516 if (ret == -EAGAIN) {
1517 /* some of the pages are gone, lets avoid looping by
1518 * shortening the size of the delalloc range we're searching
1519 */
1520 free_extent_state(cached_state);
1521 if (!loops) {
1522 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1523 max_bytes = PAGE_CACHE_SIZE - offset;
1524 loops = 1;
1525 goto again;
1526 } else {
1527 found = 0;
1528 goto out_failed;
1529 }
1530 }
1531 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1532
1533 /* step three, lock the state bits for the whole range */
1534 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1535
1536 /* then test to make sure it is all still delalloc */
1537 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1538 EXTENT_DELALLOC, 1, cached_state);
1539 if (!ret) {
1540 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1541 &cached_state, GFP_NOFS);
1542 __unlock_for_delalloc(inode, locked_page,
1543 delalloc_start, delalloc_end);
1544 cond_resched();
1545 goto again;
1546 }
1547 free_extent_state(cached_state);
1548 *start = delalloc_start;
1549 *end = delalloc_end;
1550 out_failed:
1551 return found;
1552 }
1553
1554 int extent_clear_unlock_delalloc(struct inode *inode,
1555 struct extent_io_tree *tree,
1556 u64 start, u64 end, struct page *locked_page,
1557 unsigned long op)
1558 {
1559 int ret;
1560 struct page *pages[16];
1561 unsigned long index = start >> PAGE_CACHE_SHIFT;
1562 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1563 unsigned long nr_pages = end_index - index + 1;
1564 int i;
1565 int clear_bits = 0;
1566
1567 if (op & EXTENT_CLEAR_UNLOCK)
1568 clear_bits |= EXTENT_LOCKED;
1569 if (op & EXTENT_CLEAR_DIRTY)
1570 clear_bits |= EXTENT_DIRTY;
1571
1572 if (op & EXTENT_CLEAR_DELALLOC)
1573 clear_bits |= EXTENT_DELALLOC;
1574
1575 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1576 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1577 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1578 EXTENT_SET_PRIVATE2)))
1579 return 0;
1580
1581 while (nr_pages > 0) {
1582 ret = find_get_pages_contig(inode->i_mapping, index,
1583 min_t(unsigned long,
1584 nr_pages, ARRAY_SIZE(pages)), pages);
1585 for (i = 0; i < ret; i++) {
1586
1587 if (op & EXTENT_SET_PRIVATE2)
1588 SetPagePrivate2(pages[i]);
1589
1590 if (pages[i] == locked_page) {
1591 page_cache_release(pages[i]);
1592 continue;
1593 }
1594 if (op & EXTENT_CLEAR_DIRTY)
1595 clear_page_dirty_for_io(pages[i]);
1596 if (op & EXTENT_SET_WRITEBACK)
1597 set_page_writeback(pages[i]);
1598 if (op & EXTENT_END_WRITEBACK)
1599 end_page_writeback(pages[i]);
1600 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1601 unlock_page(pages[i]);
1602 page_cache_release(pages[i]);
1603 }
1604 nr_pages -= ret;
1605 index += ret;
1606 cond_resched();
1607 }
1608 return 0;
1609 }
1610
1611 /*
1612 * count the number of bytes in the tree that have a given bit(s)
1613 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1614 * cached. The total number found is returned.
1615 */
1616 u64 count_range_bits(struct extent_io_tree *tree,
1617 u64 *start, u64 search_end, u64 max_bytes,
1618 unsigned long bits, int contig)
1619 {
1620 struct rb_node *node;
1621 struct extent_state *state;
1622 u64 cur_start = *start;
1623 u64 total_bytes = 0;
1624 u64 last = 0;
1625 int found = 0;
1626
1627 if (search_end <= cur_start) {
1628 WARN_ON(1);
1629 return 0;
1630 }
1631
1632 spin_lock(&tree->lock);
1633 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1634 total_bytes = tree->dirty_bytes;
1635 goto out;
1636 }
1637 /*
1638 * this search will find all the extents that end after
1639 * our range starts.
1640 */
1641 node = tree_search(tree, cur_start);
1642 if (!node)
1643 goto out;
1644
1645 while (1) {
1646 state = rb_entry(node, struct extent_state, rb_node);
1647 if (state->start > search_end)
1648 break;
1649 if (contig && found && state->start > last + 1)
1650 break;
1651 if (state->end >= cur_start && (state->state & bits) == bits) {
1652 total_bytes += min(search_end, state->end) + 1 -
1653 max(cur_start, state->start);
1654 if (total_bytes >= max_bytes)
1655 break;
1656 if (!found) {
1657 *start = max(cur_start, state->start);
1658 found = 1;
1659 }
1660 last = state->end;
1661 } else if (contig && found) {
1662 break;
1663 }
1664 node = rb_next(node);
1665 if (!node)
1666 break;
1667 }
1668 out:
1669 spin_unlock(&tree->lock);
1670 return total_bytes;
1671 }
1672
1673 /*
1674 * set the private field for a given byte offset in the tree. If there isn't
1675 * an extent_state there already, this does nothing.
1676 */
1677 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1678 {
1679 struct rb_node *node;
1680 struct extent_state *state;
1681 int ret = 0;
1682
1683 spin_lock(&tree->lock);
1684 /*
1685 * this search will find all the extents that end after
1686 * our range starts.
1687 */
1688 node = tree_search(tree, start);
1689 if (!node) {
1690 ret = -ENOENT;
1691 goto out;
1692 }
1693 state = rb_entry(node, struct extent_state, rb_node);
1694 if (state->start != start) {
1695 ret = -ENOENT;
1696 goto out;
1697 }
1698 state->private = private;
1699 out:
1700 spin_unlock(&tree->lock);
1701 return ret;
1702 }
1703
1704 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1705 {
1706 struct rb_node *node;
1707 struct extent_state *state;
1708 int ret = 0;
1709
1710 spin_lock(&tree->lock);
1711 /*
1712 * this search will find all the extents that end after
1713 * our range starts.
1714 */
1715 node = tree_search(tree, start);
1716 if (!node) {
1717 ret = -ENOENT;
1718 goto out;
1719 }
1720 state = rb_entry(node, struct extent_state, rb_node);
1721 if (state->start != start) {
1722 ret = -ENOENT;
1723 goto out;
1724 }
1725 *private = state->private;
1726 out:
1727 spin_unlock(&tree->lock);
1728 return ret;
1729 }
1730
1731 /*
1732 * searches a range in the state tree for a given mask.
1733 * If 'filled' == 1, this returns 1 only if every extent in the tree
1734 * has the bits set. Otherwise, 1 is returned if any bit in the
1735 * range is found set.
1736 */
1737 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1738 int bits, int filled, struct extent_state *cached)
1739 {
1740 struct extent_state *state = NULL;
1741 struct rb_node *node;
1742 int bitset = 0;
1743
1744 spin_lock(&tree->lock);
1745 if (cached && cached->tree && cached->start <= start &&
1746 cached->end > start)
1747 node = &cached->rb_node;
1748 else
1749 node = tree_search(tree, start);
1750 while (node && start <= end) {
1751 state = rb_entry(node, struct extent_state, rb_node);
1752
1753 if (filled && state->start > start) {
1754 bitset = 0;
1755 break;
1756 }
1757
1758 if (state->start > end)
1759 break;
1760
1761 if (state->state & bits) {
1762 bitset = 1;
1763 if (!filled)
1764 break;
1765 } else if (filled) {
1766 bitset = 0;
1767 break;
1768 }
1769
1770 if (state->end == (u64)-1)
1771 break;
1772
1773 start = state->end + 1;
1774 if (start > end)
1775 break;
1776 node = rb_next(node);
1777 if (!node) {
1778 if (filled)
1779 bitset = 0;
1780 break;
1781 }
1782 }
1783 spin_unlock(&tree->lock);
1784 return bitset;
1785 }
1786
1787 /*
1788 * helper function to set a given page up to date if all the
1789 * extents in the tree for that page are up to date
1790 */
1791 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1792 {
1793 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1794 u64 end = start + PAGE_CACHE_SIZE - 1;
1795 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1796 SetPageUptodate(page);
1797 }
1798
1799 /*
1800 * helper function to unlock a page if all the extents in the tree
1801 * for that page are unlocked
1802 */
1803 static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1804 {
1805 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1806 u64 end = start + PAGE_CACHE_SIZE - 1;
1807 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1808 unlock_page(page);
1809 }
1810
1811 /*
1812 * helper function to end page writeback if all the extents
1813 * in the tree for that page are done with writeback
1814 */
1815 static void check_page_writeback(struct extent_io_tree *tree,
1816 struct page *page)
1817 {
1818 end_page_writeback(page);
1819 }
1820
1821 /*
1822 * When IO fails, either with EIO or csum verification fails, we
1823 * try other mirrors that might have a good copy of the data. This
1824 * io_failure_record is used to record state as we go through all the
1825 * mirrors. If another mirror has good data, the page is set up to date
1826 * and things continue. If a good mirror can't be found, the original
1827 * bio end_io callback is called to indicate things have failed.
1828 */
1829 struct io_failure_record {
1830 struct page *page;
1831 u64 start;
1832 u64 len;
1833 u64 logical;
1834 unsigned long bio_flags;
1835 int this_mirror;
1836 int failed_mirror;
1837 int in_validation;
1838 };
1839
1840 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1841 int did_repair)
1842 {
1843 int ret;
1844 int err = 0;
1845 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1846
1847 set_state_private(failure_tree, rec->start, 0);
1848 ret = clear_extent_bits(failure_tree, rec->start,
1849 rec->start + rec->len - 1,
1850 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1851 if (ret)
1852 err = ret;
1853
1854 if (did_repair) {
1855 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1856 rec->start + rec->len - 1,
1857 EXTENT_DAMAGED, GFP_NOFS);
1858 if (ret && !err)
1859 err = ret;
1860 }
1861
1862 kfree(rec);
1863 return err;
1864 }
1865
1866 static void repair_io_failure_callback(struct bio *bio, int err)
1867 {
1868 complete(bio->bi_private);
1869 }
1870
1871 /*
1872 * this bypasses the standard btrfs submit functions deliberately, as
1873 * the standard behavior is to write all copies in a raid setup. here we only
1874 * want to write the one bad copy. so we do the mapping for ourselves and issue
1875 * submit_bio directly.
1876 * to avoid any synchonization issues, wait for the data after writing, which
1877 * actually prevents the read that triggered the error from finishing.
1878 * currently, there can be no more than two copies of every data bit. thus,
1879 * exactly one rewrite is required.
1880 */
1881 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1882 u64 length, u64 logical, struct page *page,
1883 int mirror_num)
1884 {
1885 struct bio *bio;
1886 struct btrfs_device *dev;
1887 DECLARE_COMPLETION_ONSTACK(compl);
1888 u64 map_length = 0;
1889 u64 sector;
1890 struct btrfs_bio *bbio = NULL;
1891 int ret;
1892
1893 BUG_ON(!mirror_num);
1894
1895 bio = bio_alloc(GFP_NOFS, 1);
1896 if (!bio)
1897 return -EIO;
1898 bio->bi_private = &compl;
1899 bio->bi_end_io = repair_io_failure_callback;
1900 bio->bi_size = 0;
1901 map_length = length;
1902
1903 ret = btrfs_map_block(map_tree, WRITE, logical,
1904 &map_length, &bbio, mirror_num);
1905 if (ret) {
1906 bio_put(bio);
1907 return -EIO;
1908 }
1909 BUG_ON(mirror_num != bbio->mirror_num);
1910 sector = bbio->stripes[mirror_num-1].physical >> 9;
1911 bio->bi_sector = sector;
1912 dev = bbio->stripes[mirror_num-1].dev;
1913 kfree(bbio);
1914 if (!dev || !dev->bdev || !dev->writeable) {
1915 bio_put(bio);
1916 return -EIO;
1917 }
1918 bio->bi_bdev = dev->bdev;
1919 bio_add_page(bio, page, length, start-page_offset(page));
1920 btrfsic_submit_bio(WRITE_SYNC, bio);
1921 wait_for_completion(&compl);
1922
1923 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1924 /* try to remap that extent elsewhere? */
1925 bio_put(bio);
1926 return -EIO;
1927 }
1928
1929 printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s "
1930 "sector %llu)\n", page->mapping->host->i_ino, start,
1931 dev->name, sector);
1932
1933 bio_put(bio);
1934 return 0;
1935 }
1936
1937 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1938 int mirror_num)
1939 {
1940 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1941 u64 start = eb->start;
1942 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
1943 int ret = 0;
1944
1945 for (i = 0; i < num_pages; i++) {
1946 struct page *p = extent_buffer_page(eb, i);
1947 ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1948 start, p, mirror_num);
1949 if (ret)
1950 break;
1951 start += PAGE_CACHE_SIZE;
1952 }
1953
1954 return ret;
1955 }
1956
1957 /*
1958 * each time an IO finishes, we do a fast check in the IO failure tree
1959 * to see if we need to process or clean up an io_failure_record
1960 */
1961 static int clean_io_failure(u64 start, struct page *page)
1962 {
1963 u64 private;
1964 u64 private_failure;
1965 struct io_failure_record *failrec;
1966 struct btrfs_mapping_tree *map_tree;
1967 struct extent_state *state;
1968 int num_copies;
1969 int did_repair = 0;
1970 int ret;
1971 struct inode *inode = page->mapping->host;
1972
1973 private = 0;
1974 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1975 (u64)-1, 1, EXTENT_DIRTY, 0);
1976 if (!ret)
1977 return 0;
1978
1979 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1980 &private_failure);
1981 if (ret)
1982 return 0;
1983
1984 failrec = (struct io_failure_record *)(unsigned long) private_failure;
1985 BUG_ON(!failrec->this_mirror);
1986
1987 if (failrec->in_validation) {
1988 /* there was no real error, just free the record */
1989 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1990 failrec->start);
1991 did_repair = 1;
1992 goto out;
1993 }
1994
1995 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1996 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1997 failrec->start,
1998 EXTENT_LOCKED);
1999 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2000
2001 if (state && state->start == failrec->start) {
2002 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
2003 num_copies = btrfs_num_copies(map_tree, failrec->logical,
2004 failrec->len);
2005 if (num_copies > 1) {
2006 ret = repair_io_failure(map_tree, start, failrec->len,
2007 failrec->logical, page,
2008 failrec->failed_mirror);
2009 did_repair = !ret;
2010 }
2011 }
2012
2013 out:
2014 if (!ret)
2015 ret = free_io_failure(inode, failrec, did_repair);
2016
2017 return ret;
2018 }
2019
2020 /*
2021 * this is a generic handler for readpage errors (default
2022 * readpage_io_failed_hook). if other copies exist, read those and write back
2023 * good data to the failed position. does not investigate in remapping the
2024 * failed extent elsewhere, hoping the device will be smart enough to do this as
2025 * needed
2026 */
2027
2028 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2029 u64 start, u64 end, int failed_mirror,
2030 struct extent_state *state)
2031 {
2032 struct io_failure_record *failrec = NULL;
2033 u64 private;
2034 struct extent_map *em;
2035 struct inode *inode = page->mapping->host;
2036 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2037 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2038 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2039 struct bio *bio;
2040 int num_copies;
2041 int ret;
2042 int read_mode;
2043 u64 logical;
2044
2045 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2046
2047 ret = get_state_private(failure_tree, start, &private);
2048 if (ret) {
2049 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2050 if (!failrec)
2051 return -ENOMEM;
2052 failrec->start = start;
2053 failrec->len = end - start + 1;
2054 failrec->this_mirror = 0;
2055 failrec->bio_flags = 0;
2056 failrec->in_validation = 0;
2057
2058 read_lock(&em_tree->lock);
2059 em = lookup_extent_mapping(em_tree, start, failrec->len);
2060 if (!em) {
2061 read_unlock(&em_tree->lock);
2062 kfree(failrec);
2063 return -EIO;
2064 }
2065
2066 if (em->start > start || em->start + em->len < start) {
2067 free_extent_map(em);
2068 em = NULL;
2069 }
2070 read_unlock(&em_tree->lock);
2071
2072 if (!em || IS_ERR(em)) {
2073 kfree(failrec);
2074 return -EIO;
2075 }
2076 logical = start - em->start;
2077 logical = em->block_start + logical;
2078 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2079 logical = em->block_start;
2080 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2081 extent_set_compress_type(&failrec->bio_flags,
2082 em->compress_type);
2083 }
2084 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2085 "len=%llu\n", logical, start, failrec->len);
2086 failrec->logical = logical;
2087 free_extent_map(em);
2088
2089 /* set the bits in the private failure tree */
2090 ret = set_extent_bits(failure_tree, start, end,
2091 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2092 if (ret >= 0)
2093 ret = set_state_private(failure_tree, start,
2094 (u64)(unsigned long)failrec);
2095 /* set the bits in the inode's tree */
2096 if (ret >= 0)
2097 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2098 GFP_NOFS);
2099 if (ret < 0) {
2100 kfree(failrec);
2101 return ret;
2102 }
2103 } else {
2104 failrec = (struct io_failure_record *)(unsigned long)private;
2105 pr_debug("bio_readpage_error: (found) logical=%llu, "
2106 "start=%llu, len=%llu, validation=%d\n",
2107 failrec->logical, failrec->start, failrec->len,
2108 failrec->in_validation);
2109 /*
2110 * when data can be on disk more than twice, add to failrec here
2111 * (e.g. with a list for failed_mirror) to make
2112 * clean_io_failure() clean all those errors at once.
2113 */
2114 }
2115 num_copies = btrfs_num_copies(
2116 &BTRFS_I(inode)->root->fs_info->mapping_tree,
2117 failrec->logical, failrec->len);
2118 if (num_copies == 1) {
2119 /*
2120 * we only have a single copy of the data, so don't bother with
2121 * all the retry and error correction code that follows. no
2122 * matter what the error is, it is very likely to persist.
2123 */
2124 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2125 "state=%p, num_copies=%d, next_mirror %d, "
2126 "failed_mirror %d\n", state, num_copies,
2127 failrec->this_mirror, failed_mirror);
2128 free_io_failure(inode, failrec, 0);
2129 return -EIO;
2130 }
2131
2132 if (!state) {
2133 spin_lock(&tree->lock);
2134 state = find_first_extent_bit_state(tree, failrec->start,
2135 EXTENT_LOCKED);
2136 if (state && state->start != failrec->start)
2137 state = NULL;
2138 spin_unlock(&tree->lock);
2139 }
2140
2141 /*
2142 * there are two premises:
2143 * a) deliver good data to the caller
2144 * b) correct the bad sectors on disk
2145 */
2146 if (failed_bio->bi_vcnt > 1) {
2147 /*
2148 * to fulfill b), we need to know the exact failing sectors, as
2149 * we don't want to rewrite any more than the failed ones. thus,
2150 * we need separate read requests for the failed bio
2151 *
2152 * if the following BUG_ON triggers, our validation request got
2153 * merged. we need separate requests for our algorithm to work.
2154 */
2155 BUG_ON(failrec->in_validation);
2156 failrec->in_validation = 1;
2157 failrec->this_mirror = failed_mirror;
2158 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2159 } else {
2160 /*
2161 * we're ready to fulfill a) and b) alongside. get a good copy
2162 * of the failed sector and if we succeed, we have setup
2163 * everything for repair_io_failure to do the rest for us.
2164 */
2165 if (failrec->in_validation) {
2166 BUG_ON(failrec->this_mirror != failed_mirror);
2167 failrec->in_validation = 0;
2168 failrec->this_mirror = 0;
2169 }
2170 failrec->failed_mirror = failed_mirror;
2171 failrec->this_mirror++;
2172 if (failrec->this_mirror == failed_mirror)
2173 failrec->this_mirror++;
2174 read_mode = READ_SYNC;
2175 }
2176
2177 if (!state || failrec->this_mirror > num_copies) {
2178 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2179 "next_mirror %d, failed_mirror %d\n", state,
2180 num_copies, failrec->this_mirror, failed_mirror);
2181 free_io_failure(inode, failrec, 0);
2182 return -EIO;
2183 }
2184
2185 bio = bio_alloc(GFP_NOFS, 1);
2186 if (!bio) {
2187 free_io_failure(inode, failrec, 0);
2188 return -EIO;
2189 }
2190 bio->bi_private = state;
2191 bio->bi_end_io = failed_bio->bi_end_io;
2192 bio->bi_sector = failrec->logical >> 9;
2193 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2194 bio->bi_size = 0;
2195
2196 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2197
2198 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2199 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2200 failrec->this_mirror, num_copies, failrec->in_validation);
2201
2202 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2203 failrec->this_mirror,
2204 failrec->bio_flags, 0);
2205 return ret;
2206 }
2207
2208 /* lots and lots of room for performance fixes in the end_bio funcs */
2209
2210 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2211 {
2212 int uptodate = (err == 0);
2213 struct extent_io_tree *tree;
2214 int ret;
2215
2216 tree = &BTRFS_I(page->mapping->host)->io_tree;
2217
2218 if (tree->ops && tree->ops->writepage_end_io_hook) {
2219 ret = tree->ops->writepage_end_io_hook(page, start,
2220 end, NULL, uptodate);
2221 if (ret)
2222 uptodate = 0;
2223 }
2224
2225 if (!uptodate && tree->ops &&
2226 tree->ops->writepage_io_failed_hook) {
2227 ret = tree->ops->writepage_io_failed_hook(NULL, page,
2228 start, end, NULL);
2229 /* Writeback already completed */
2230 if (ret == 0)
2231 return 1;
2232 }
2233
2234 if (!uptodate) {
2235 clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
2236 ClearPageUptodate(page);
2237 SetPageError(page);
2238 }
2239 return 0;
2240 }
2241
2242 /*
2243 * after a writepage IO is done, we need to:
2244 * clear the uptodate bits on error
2245 * clear the writeback bits in the extent tree for this IO
2246 * end_page_writeback if the page has no more pending IO
2247 *
2248 * Scheduling is not allowed, so the extent state tree is expected
2249 * to have one and only one object corresponding to this IO.
2250 */
2251 static void end_bio_extent_writepage(struct bio *bio, int err)
2252 {
2253 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2254 struct extent_io_tree *tree;
2255 u64 start;
2256 u64 end;
2257 int whole_page;
2258
2259 do {
2260 struct page *page = bvec->bv_page;
2261 tree = &BTRFS_I(page->mapping->host)->io_tree;
2262
2263 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2264 bvec->bv_offset;
2265 end = start + bvec->bv_len - 1;
2266
2267 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2268 whole_page = 1;
2269 else
2270 whole_page = 0;
2271
2272 if (--bvec >= bio->bi_io_vec)
2273 prefetchw(&bvec->bv_page->flags);
2274
2275 if (end_extent_writepage(page, err, start, end))
2276 continue;
2277
2278 if (whole_page)
2279 end_page_writeback(page);
2280 else
2281 check_page_writeback(tree, page);
2282 } while (bvec >= bio->bi_io_vec);
2283
2284 bio_put(bio);
2285 }
2286
2287 /*
2288 * after a readpage IO is done, we need to:
2289 * clear the uptodate bits on error
2290 * set the uptodate bits if things worked
2291 * set the page up to date if all extents in the tree are uptodate
2292 * clear the lock bit in the extent tree
2293 * unlock the page if there are no other extents locked for it
2294 *
2295 * Scheduling is not allowed, so the extent state tree is expected
2296 * to have one and only one object corresponding to this IO.
2297 */
2298 static void end_bio_extent_readpage(struct bio *bio, int err)
2299 {
2300 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2301 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2302 struct bio_vec *bvec = bio->bi_io_vec;
2303 struct extent_io_tree *tree;
2304 u64 start;
2305 u64 end;
2306 int whole_page;
2307 int mirror;
2308 int ret;
2309
2310 if (err)
2311 uptodate = 0;
2312
2313 do {
2314 struct page *page = bvec->bv_page;
2315 struct extent_state *cached = NULL;
2316 struct extent_state *state;
2317
2318 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2319 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2320 (long int)bio->bi_bdev);
2321 tree = &BTRFS_I(page->mapping->host)->io_tree;
2322
2323 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2324 bvec->bv_offset;
2325 end = start + bvec->bv_len - 1;
2326
2327 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2328 whole_page = 1;
2329 else
2330 whole_page = 0;
2331
2332 if (++bvec <= bvec_end)
2333 prefetchw(&bvec->bv_page->flags);
2334
2335 spin_lock(&tree->lock);
2336 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2337 if (state && state->start == start) {
2338 /*
2339 * take a reference on the state, unlock will drop
2340 * the ref
2341 */
2342 cache_state(state, &cached);
2343 }
2344 spin_unlock(&tree->lock);
2345
2346 mirror = (int)(unsigned long)bio->bi_bdev;
2347 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2348 ret = tree->ops->readpage_end_io_hook(page, start, end,
2349 state, mirror);
2350 if (ret)
2351 uptodate = 0;
2352 else
2353 clean_io_failure(start, page);
2354 }
2355
2356 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2357 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2358 if (!ret && !err &&
2359 test_bit(BIO_UPTODATE, &bio->bi_flags))
2360 uptodate = 1;
2361 } else if (!uptodate) {
2362 /*
2363 * The generic bio_readpage_error handles errors the
2364 * following way: If possible, new read requests are
2365 * created and submitted and will end up in
2366 * end_bio_extent_readpage as well (if we're lucky, not
2367 * in the !uptodate case). In that case it returns 0 and
2368 * we just go on with the next page in our bio. If it
2369 * can't handle the error it will return -EIO and we
2370 * remain responsible for that page.
2371 */
2372 ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2373 if (ret == 0) {
2374 uptodate =
2375 test_bit(BIO_UPTODATE, &bio->bi_flags);
2376 if (err)
2377 uptodate = 0;
2378 uncache_state(&cached);
2379 continue;
2380 }
2381 }
2382
2383 if (uptodate && tree->track_uptodate) {
2384 set_extent_uptodate(tree, start, end, &cached,
2385 GFP_ATOMIC);
2386 }
2387 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2388
2389 if (whole_page) {
2390 if (uptodate) {
2391 SetPageUptodate(page);
2392 } else {
2393 ClearPageUptodate(page);
2394 SetPageError(page);
2395 }
2396 unlock_page(page);
2397 } else {
2398 if (uptodate) {
2399 check_page_uptodate(tree, page);
2400 } else {
2401 ClearPageUptodate(page);
2402 SetPageError(page);
2403 }
2404 check_page_locked(tree, page);
2405 }
2406 } while (bvec <= bvec_end);
2407
2408 bio_put(bio);
2409 }
2410
2411 struct bio *
2412 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2413 gfp_t gfp_flags)
2414 {
2415 struct bio *bio;
2416
2417 bio = bio_alloc(gfp_flags, nr_vecs);
2418
2419 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2420 while (!bio && (nr_vecs /= 2))
2421 bio = bio_alloc(gfp_flags, nr_vecs);
2422 }
2423
2424 if (bio) {
2425 bio->bi_size = 0;
2426 bio->bi_bdev = bdev;
2427 bio->bi_sector = first_sector;
2428 }
2429 return bio;
2430 }
2431
2432 /*
2433 * Since writes are async, they will only return -ENOMEM.
2434 * Reads can return the full range of I/O error conditions.
2435 */
2436 static int __must_check submit_one_bio(int rw, struct bio *bio,
2437 int mirror_num, unsigned long bio_flags)
2438 {
2439 int ret = 0;
2440 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2441 struct page *page = bvec->bv_page;
2442 struct extent_io_tree *tree = bio->bi_private;
2443 u64 start;
2444
2445 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2446
2447 bio->bi_private = NULL;
2448
2449 bio_get(bio);
2450
2451 if (tree->ops && tree->ops->submit_bio_hook)
2452 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2453 mirror_num, bio_flags, start);
2454 else
2455 btrfsic_submit_bio(rw, bio);
2456
2457 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2458 ret = -EOPNOTSUPP;
2459 bio_put(bio);
2460 return ret;
2461 }
2462
2463 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2464 unsigned long offset, size_t size, struct bio *bio,
2465 unsigned long bio_flags)
2466 {
2467 int ret = 0;
2468 if (tree->ops && tree->ops->merge_bio_hook)
2469 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2470 bio_flags);
2471 BUG_ON(ret < 0);
2472 return ret;
2473
2474 }
2475
2476 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2477 struct page *page, sector_t sector,
2478 size_t size, unsigned long offset,
2479 struct block_device *bdev,
2480 struct bio **bio_ret,
2481 unsigned long max_pages,
2482 bio_end_io_t end_io_func,
2483 int mirror_num,
2484 unsigned long prev_bio_flags,
2485 unsigned long bio_flags)
2486 {
2487 int ret = 0;
2488 struct bio *bio;
2489 int nr;
2490 int contig = 0;
2491 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2492 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2493 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2494
2495 if (bio_ret && *bio_ret) {
2496 bio = *bio_ret;
2497 if (old_compressed)
2498 contig = bio->bi_sector == sector;
2499 else
2500 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2501 sector;
2502
2503 if (prev_bio_flags != bio_flags || !contig ||
2504 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2505 bio_add_page(bio, page, page_size, offset) < page_size) {
2506 ret = submit_one_bio(rw, bio, mirror_num,
2507 prev_bio_flags);
2508 if (ret < 0)
2509 return ret;
2510 bio = NULL;
2511 } else {
2512 return 0;
2513 }
2514 }
2515 if (this_compressed)
2516 nr = BIO_MAX_PAGES;
2517 else
2518 nr = bio_get_nr_vecs(bdev);
2519
2520 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2521 if (!bio)
2522 return -ENOMEM;
2523
2524 bio_add_page(bio, page, page_size, offset);
2525 bio->bi_end_io = end_io_func;
2526 bio->bi_private = tree;
2527
2528 if (bio_ret)
2529 *bio_ret = bio;
2530 else
2531 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2532
2533 return ret;
2534 }
2535
2536 void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
2537 {
2538 if (!PagePrivate(page)) {
2539 SetPagePrivate(page);
2540 page_cache_get(page);
2541 set_page_private(page, (unsigned long)eb);
2542 } else {
2543 WARN_ON(page->private != (unsigned long)eb);
2544 }
2545 }
2546
2547 void set_page_extent_mapped(struct page *page)
2548 {
2549 if (!PagePrivate(page)) {
2550 SetPagePrivate(page);
2551 page_cache_get(page);
2552 set_page_private(page, EXTENT_PAGE_PRIVATE);
2553 }
2554 }
2555
2556 /*
2557 * basic readpage implementation. Locked extent state structs are inserted
2558 * into the tree that are removed when the IO is done (by the end_io
2559 * handlers)
2560 * XXX JDM: This needs looking at to ensure proper page locking
2561 */
2562 static int __extent_read_full_page(struct extent_io_tree *tree,
2563 struct page *page,
2564 get_extent_t *get_extent,
2565 struct bio **bio, int mirror_num,
2566 unsigned long *bio_flags)
2567 {
2568 struct inode *inode = page->mapping->host;
2569 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2570 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2571 u64 end;
2572 u64 cur = start;
2573 u64 extent_offset;
2574 u64 last_byte = i_size_read(inode);
2575 u64 block_start;
2576 u64 cur_end;
2577 sector_t sector;
2578 struct extent_map *em;
2579 struct block_device *bdev;
2580 struct btrfs_ordered_extent *ordered;
2581 int ret;
2582 int nr = 0;
2583 size_t pg_offset = 0;
2584 size_t iosize;
2585 size_t disk_io_size;
2586 size_t blocksize = inode->i_sb->s_blocksize;
2587 unsigned long this_bio_flag = 0;
2588
2589 set_page_extent_mapped(page);
2590
2591 if (!PageUptodate(page)) {
2592 if (cleancache_get_page(page) == 0) {
2593 BUG_ON(blocksize != PAGE_SIZE);
2594 goto out;
2595 }
2596 }
2597
2598 end = page_end;
2599 while (1) {
2600 lock_extent(tree, start, end);
2601 ordered = btrfs_lookup_ordered_extent(inode, start);
2602 if (!ordered)
2603 break;
2604 unlock_extent(tree, start, end);
2605 btrfs_start_ordered_extent(inode, ordered, 1);
2606 btrfs_put_ordered_extent(ordered);
2607 }
2608
2609 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2610 char *userpage;
2611 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2612
2613 if (zero_offset) {
2614 iosize = PAGE_CACHE_SIZE - zero_offset;
2615 userpage = kmap_atomic(page, KM_USER0);
2616 memset(userpage + zero_offset, 0, iosize);
2617 flush_dcache_page(page);
2618 kunmap_atomic(userpage, KM_USER0);
2619 }
2620 }
2621 while (cur <= end) {
2622 if (cur >= last_byte) {
2623 char *userpage;
2624 struct extent_state *cached = NULL;
2625
2626 iosize = PAGE_CACHE_SIZE - pg_offset;
2627 userpage = kmap_atomic(page, KM_USER0);
2628 memset(userpage + pg_offset, 0, iosize);
2629 flush_dcache_page(page);
2630 kunmap_atomic(userpage, KM_USER0);
2631 set_extent_uptodate(tree, cur, cur + iosize - 1,
2632 &cached, GFP_NOFS);
2633 unlock_extent_cached(tree, cur, cur + iosize - 1,
2634 &cached, GFP_NOFS);
2635 break;
2636 }
2637 em = get_extent(inode, page, pg_offset, cur,
2638 end - cur + 1, 0);
2639 if (IS_ERR_OR_NULL(em)) {
2640 SetPageError(page);
2641 unlock_extent(tree, cur, end);
2642 break;
2643 }
2644 extent_offset = cur - em->start;
2645 BUG_ON(extent_map_end(em) <= cur);
2646 BUG_ON(end < cur);
2647
2648 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2649 this_bio_flag = EXTENT_BIO_COMPRESSED;
2650 extent_set_compress_type(&this_bio_flag,
2651 em->compress_type);
2652 }
2653
2654 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2655 cur_end = min(extent_map_end(em) - 1, end);
2656 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2657 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2658 disk_io_size = em->block_len;
2659 sector = em->block_start >> 9;
2660 } else {
2661 sector = (em->block_start + extent_offset) >> 9;
2662 disk_io_size = iosize;
2663 }
2664 bdev = em->bdev;
2665 block_start = em->block_start;
2666 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2667 block_start = EXTENT_MAP_HOLE;
2668 free_extent_map(em);
2669 em = NULL;
2670
2671 /* we've found a hole, just zero and go on */
2672 if (block_start == EXTENT_MAP_HOLE) {
2673 char *userpage;
2674 struct extent_state *cached = NULL;
2675
2676 userpage = kmap_atomic(page, KM_USER0);
2677 memset(userpage + pg_offset, 0, iosize);
2678 flush_dcache_page(page);
2679 kunmap_atomic(userpage, KM_USER0);
2680
2681 set_extent_uptodate(tree, cur, cur + iosize - 1,
2682 &cached, GFP_NOFS);
2683 unlock_extent_cached(tree, cur, cur + iosize - 1,
2684 &cached, GFP_NOFS);
2685 cur = cur + iosize;
2686 pg_offset += iosize;
2687 continue;
2688 }
2689 /* the get_extent function already copied into the page */
2690 if (test_range_bit(tree, cur, cur_end,
2691 EXTENT_UPTODATE, 1, NULL)) {
2692 check_page_uptodate(tree, page);
2693 unlock_extent(tree, cur, cur + iosize - 1);
2694 cur = cur + iosize;
2695 pg_offset += iosize;
2696 continue;
2697 }
2698 /* we have an inline extent but it didn't get marked up
2699 * to date. Error out
2700 */
2701 if (block_start == EXTENT_MAP_INLINE) {
2702 SetPageError(page);
2703 unlock_extent(tree, cur, cur + iosize - 1);
2704 cur = cur + iosize;
2705 pg_offset += iosize;
2706 continue;
2707 }
2708
2709 ret = 0;
2710 if (tree->ops && tree->ops->readpage_io_hook) {
2711 ret = tree->ops->readpage_io_hook(page, cur,
2712 cur + iosize - 1);
2713 }
2714 if (!ret) {
2715 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2716 pnr -= page->index;
2717 ret = submit_extent_page(READ, tree, page,
2718 sector, disk_io_size, pg_offset,
2719 bdev, bio, pnr,
2720 end_bio_extent_readpage, mirror_num,
2721 *bio_flags,
2722 this_bio_flag);
2723 BUG_ON(ret == -ENOMEM);
2724 nr++;
2725 *bio_flags = this_bio_flag;
2726 }
2727 if (ret)
2728 SetPageError(page);
2729 cur = cur + iosize;
2730 pg_offset += iosize;
2731 }
2732 out:
2733 if (!nr) {
2734 if (!PageError(page))
2735 SetPageUptodate(page);
2736 unlock_page(page);
2737 }
2738 return 0;
2739 }
2740
2741 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2742 get_extent_t *get_extent, int mirror_num)
2743 {
2744 struct bio *bio = NULL;
2745 unsigned long bio_flags = 0;
2746 int ret;
2747
2748 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2749 &bio_flags);
2750 if (bio)
2751 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2752 return ret;
2753 }
2754
2755 static noinline void update_nr_written(struct page *page,
2756 struct writeback_control *wbc,
2757 unsigned long nr_written)
2758 {
2759 wbc->nr_to_write -= nr_written;
2760 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2761 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2762 page->mapping->writeback_index = page->index + nr_written;
2763 }
2764
2765 /*
2766 * the writepage semantics are similar to regular writepage. extent
2767 * records are inserted to lock ranges in the tree, and as dirty areas
2768 * are found, they are marked writeback. Then the lock bits are removed
2769 * and the end_io handler clears the writeback ranges
2770 */
2771 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2772 void *data)
2773 {
2774 struct inode *inode = page->mapping->host;
2775 struct extent_page_data *epd = data;
2776 struct extent_io_tree *tree = epd->tree;
2777 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2778 u64 delalloc_start;
2779 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2780 u64 end;
2781 u64 cur = start;
2782 u64 extent_offset;
2783 u64 last_byte = i_size_read(inode);
2784 u64 block_start;
2785 u64 iosize;
2786 sector_t sector;
2787 struct extent_state *cached_state = NULL;
2788 struct extent_map *em;
2789 struct block_device *bdev;
2790 int ret;
2791 int nr = 0;
2792 size_t pg_offset = 0;
2793 size_t blocksize;
2794 loff_t i_size = i_size_read(inode);
2795 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2796 u64 nr_delalloc;
2797 u64 delalloc_end;
2798 int page_started;
2799 int compressed;
2800 int write_flags;
2801 unsigned long nr_written = 0;
2802 bool fill_delalloc = true;
2803
2804 if (wbc->sync_mode == WB_SYNC_ALL)
2805 write_flags = WRITE_SYNC;
2806 else
2807 write_flags = WRITE;
2808
2809 trace___extent_writepage(page, inode, wbc);
2810
2811 WARN_ON(!PageLocked(page));
2812
2813 ClearPageError(page);
2814
2815 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2816 if (page->index > end_index ||
2817 (page->index == end_index && !pg_offset)) {
2818 page->mapping->a_ops->invalidatepage(page, 0);
2819 unlock_page(page);
2820 return 0;
2821 }
2822
2823 if (page->index == end_index) {
2824 char *userpage;
2825
2826 userpage = kmap_atomic(page, KM_USER0);
2827 memset(userpage + pg_offset, 0,
2828 PAGE_CACHE_SIZE - pg_offset);
2829 kunmap_atomic(userpage, KM_USER0);
2830 flush_dcache_page(page);
2831 }
2832 pg_offset = 0;
2833
2834 set_page_extent_mapped(page);
2835
2836 if (!tree->ops || !tree->ops->fill_delalloc)
2837 fill_delalloc = false;
2838
2839 delalloc_start = start;
2840 delalloc_end = 0;
2841 page_started = 0;
2842 if (!epd->extent_locked && fill_delalloc) {
2843 u64 delalloc_to_write = 0;
2844 /*
2845 * make sure the wbc mapping index is at least updated
2846 * to this page.
2847 */
2848 update_nr_written(page, wbc, 0);
2849
2850 while (delalloc_end < page_end) {
2851 nr_delalloc = find_lock_delalloc_range(inode, tree,
2852 page,
2853 &delalloc_start,
2854 &delalloc_end,
2855 128 * 1024 * 1024);
2856 if (nr_delalloc == 0) {
2857 delalloc_start = delalloc_end + 1;
2858 continue;
2859 }
2860 ret = tree->ops->fill_delalloc(inode, page,
2861 delalloc_start,
2862 delalloc_end,
2863 &page_started,
2864 &nr_written);
2865 /* File system has been set read-only */
2866 if (ret) {
2867 SetPageError(page);
2868 goto done;
2869 }
2870 /*
2871 * delalloc_end is already one less than the total
2872 * length, so we don't subtract one from
2873 * PAGE_CACHE_SIZE
2874 */
2875 delalloc_to_write += (delalloc_end - delalloc_start +
2876 PAGE_CACHE_SIZE) >>
2877 PAGE_CACHE_SHIFT;
2878 delalloc_start = delalloc_end + 1;
2879 }
2880 if (wbc->nr_to_write < delalloc_to_write) {
2881 int thresh = 8192;
2882
2883 if (delalloc_to_write < thresh * 2)
2884 thresh = delalloc_to_write;
2885 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2886 thresh);
2887 }
2888
2889 /* did the fill delalloc function already unlock and start
2890 * the IO?
2891 */
2892 if (page_started) {
2893 ret = 0;
2894 /*
2895 * we've unlocked the page, so we can't update
2896 * the mapping's writeback index, just update
2897 * nr_to_write.
2898 */
2899 wbc->nr_to_write -= nr_written;
2900 goto done_unlocked;
2901 }
2902 }
2903 if (tree->ops && tree->ops->writepage_start_hook) {
2904 ret = tree->ops->writepage_start_hook(page, start,
2905 page_end);
2906 if (ret) {
2907 /* Fixup worker will requeue */
2908 if (ret == -EBUSY)
2909 wbc->pages_skipped++;
2910 else
2911 redirty_page_for_writepage(wbc, page);
2912 update_nr_written(page, wbc, nr_written);
2913 unlock_page(page);
2914 ret = 0;
2915 goto done_unlocked;
2916 }
2917 }
2918
2919 /*
2920 * we don't want to touch the inode after unlocking the page,
2921 * so we update the mapping writeback index now
2922 */
2923 update_nr_written(page, wbc, nr_written + 1);
2924
2925 end = page_end;
2926 if (last_byte <= start) {
2927 if (tree->ops && tree->ops->writepage_end_io_hook)
2928 tree->ops->writepage_end_io_hook(page, start,
2929 page_end, NULL, 1);
2930 goto done;
2931 }
2932
2933 blocksize = inode->i_sb->s_blocksize;
2934
2935 while (cur <= end) {
2936 if (cur >= last_byte) {
2937 if (tree->ops && tree->ops->writepage_end_io_hook)
2938 tree->ops->writepage_end_io_hook(page, cur,
2939 page_end, NULL, 1);
2940 break;
2941 }
2942 em = epd->get_extent(inode, page, pg_offset, cur,
2943 end - cur + 1, 1);
2944 if (IS_ERR_OR_NULL(em)) {
2945 SetPageError(page);
2946 break;
2947 }
2948
2949 extent_offset = cur - em->start;
2950 BUG_ON(extent_map_end(em) <= cur);
2951 BUG_ON(end < cur);
2952 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2953 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2954 sector = (em->block_start + extent_offset) >> 9;
2955 bdev = em->bdev;
2956 block_start = em->block_start;
2957 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2958 free_extent_map(em);
2959 em = NULL;
2960
2961 /*
2962 * compressed and inline extents are written through other
2963 * paths in the FS
2964 */
2965 if (compressed || block_start == EXTENT_MAP_HOLE ||
2966 block_start == EXTENT_MAP_INLINE) {
2967 /*
2968 * end_io notification does not happen here for
2969 * compressed extents
2970 */
2971 if (!compressed && tree->ops &&
2972 tree->ops->writepage_end_io_hook)
2973 tree->ops->writepage_end_io_hook(page, cur,
2974 cur + iosize - 1,
2975 NULL, 1);
2976 else if (compressed) {
2977 /* we don't want to end_page_writeback on
2978 * a compressed extent. this happens
2979 * elsewhere
2980 */
2981 nr++;
2982 }
2983
2984 cur += iosize;
2985 pg_offset += iosize;
2986 continue;
2987 }
2988 /* leave this out until we have a page_mkwrite call */
2989 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2990 EXTENT_DIRTY, 0, NULL)) {
2991 cur = cur + iosize;
2992 pg_offset += iosize;
2993 continue;
2994 }
2995
2996 if (tree->ops && tree->ops->writepage_io_hook) {
2997 ret = tree->ops->writepage_io_hook(page, cur,
2998 cur + iosize - 1);
2999 } else {
3000 ret = 0;
3001 }
3002 if (ret) {
3003 SetPageError(page);
3004 } else {
3005 unsigned long max_nr = end_index + 1;
3006
3007 set_range_writeback(tree, cur, cur + iosize - 1);
3008 if (!PageWriteback(page)) {
3009 printk(KERN_ERR "btrfs warning page %lu not "
3010 "writeback, cur %llu end %llu\n",
3011 page->index, (unsigned long long)cur,
3012 (unsigned long long)end);
3013 }
3014
3015 ret = submit_extent_page(write_flags, tree, page,
3016 sector, iosize, pg_offset,
3017 bdev, &epd->bio, max_nr,
3018 end_bio_extent_writepage,
3019 0, 0, 0);
3020 if (ret)
3021 SetPageError(page);
3022 }
3023 cur = cur + iosize;
3024 pg_offset += iosize;
3025 nr++;
3026 }
3027 done:
3028 if (nr == 0) {
3029 /* make sure the mapping tag for page dirty gets cleared */
3030 set_page_writeback(page);
3031 end_page_writeback(page);
3032 }
3033 unlock_page(page);
3034
3035 done_unlocked:
3036
3037 /* drop our reference on any cached states */
3038 free_extent_state(cached_state);
3039 return 0;
3040 }
3041
3042 static int eb_wait(void *word)
3043 {
3044 io_schedule();
3045 return 0;
3046 }
3047
3048 static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3049 {
3050 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3051 TASK_UNINTERRUPTIBLE);
3052 }
3053
3054 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3055 struct btrfs_fs_info *fs_info,
3056 struct extent_page_data *epd)
3057 {
3058 unsigned long i, num_pages;
3059 int flush = 0;
3060 int ret = 0;
3061
3062 if (!btrfs_try_tree_write_lock(eb)) {
3063 flush = 1;
3064 flush_write_bio(epd);
3065 btrfs_tree_lock(eb);
3066 }
3067
3068 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3069 btrfs_tree_unlock(eb);
3070 if (!epd->sync_io)
3071 return 0;
3072 if (!flush) {
3073 flush_write_bio(epd);
3074 flush = 1;
3075 }
3076 while (1) {
3077 wait_on_extent_buffer_writeback(eb);
3078 btrfs_tree_lock(eb);
3079 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3080 break;
3081 btrfs_tree_unlock(eb);
3082 }
3083 }
3084
3085 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3086 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3087 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3088 spin_lock(&fs_info->delalloc_lock);
3089 if (fs_info->dirty_metadata_bytes >= eb->len)
3090 fs_info->dirty_metadata_bytes -= eb->len;
3091 else
3092 WARN_ON(1);
3093 spin_unlock(&fs_info->delalloc_lock);
3094 ret = 1;
3095 }
3096
3097 btrfs_tree_unlock(eb);
3098
3099 if (!ret)
3100 return ret;
3101
3102 num_pages = num_extent_pages(eb->start, eb->len);
3103 for (i = 0; i < num_pages; i++) {
3104 struct page *p = extent_buffer_page(eb, i);
3105
3106 if (!trylock_page(p)) {
3107 if (!flush) {
3108 flush_write_bio(epd);
3109 flush = 1;
3110 }
3111 lock_page(p);
3112 }
3113 }
3114
3115 return ret;
3116 }
3117
3118 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3119 {
3120 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3121 smp_mb__after_clear_bit();
3122 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3123 }
3124
3125 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3126 {
3127 int uptodate = err == 0;
3128 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3129 struct extent_buffer *eb;
3130 int done;
3131
3132 do {
3133 struct page *page = bvec->bv_page;
3134
3135 bvec--;
3136 eb = (struct extent_buffer *)page->private;
3137 BUG_ON(!eb);
3138 done = atomic_dec_and_test(&eb->io_pages);
3139
3140 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3141 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3142 ClearPageUptodate(page);
3143 SetPageError(page);
3144 }
3145
3146 end_page_writeback(page);
3147
3148 if (!done)
3149 continue;
3150
3151 end_extent_buffer_writeback(eb);
3152 } while (bvec >= bio->bi_io_vec);
3153
3154 bio_put(bio);
3155
3156 }
3157
3158 static int write_one_eb(struct extent_buffer *eb,
3159 struct btrfs_fs_info *fs_info,
3160 struct writeback_control *wbc,
3161 struct extent_page_data *epd)
3162 {
3163 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3164 u64 offset = eb->start;
3165 unsigned long i, num_pages;
3166 int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3167 int ret;
3168
3169 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3170 num_pages = num_extent_pages(eb->start, eb->len);
3171 atomic_set(&eb->io_pages, num_pages);
3172 for (i = 0; i < num_pages; i++) {
3173 struct page *p = extent_buffer_page(eb, i);
3174
3175 clear_page_dirty_for_io(p);
3176 set_page_writeback(p);
3177 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3178 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3179 -1, end_bio_extent_buffer_writepage,
3180 0, 0, 0);
3181 if (ret) {
3182 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3183 SetPageError(p);
3184 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3185 end_extent_buffer_writeback(eb);
3186 ret = -EIO;
3187 break;
3188 }
3189 offset += PAGE_CACHE_SIZE;
3190 update_nr_written(p, wbc, 1);
3191 unlock_page(p);
3192 }
3193
3194 if (unlikely(ret)) {
3195 for (; i < num_pages; i++) {
3196 struct page *p = extent_buffer_page(eb, i);
3197 unlock_page(p);
3198 }
3199 }
3200
3201 return ret;
3202 }
3203
3204 int btree_write_cache_pages(struct address_space *mapping,
3205 struct writeback_control *wbc)
3206 {
3207 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3208 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3209 struct extent_buffer *eb, *prev_eb = NULL;
3210 struct extent_page_data epd = {
3211 .bio = NULL,
3212 .tree = tree,
3213 .extent_locked = 0,
3214 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3215 };
3216 int ret = 0;
3217 int done = 0;
3218 int nr_to_write_done = 0;
3219 struct pagevec pvec;
3220 int nr_pages;
3221 pgoff_t index;
3222 pgoff_t end; /* Inclusive */
3223 int scanned = 0;
3224 int tag;
3225
3226 pagevec_init(&pvec, 0);
3227 if (wbc->range_cyclic) {
3228 index = mapping->writeback_index; /* Start from prev offset */
3229 end = -1;
3230 } else {
3231 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3232 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3233 scanned = 1;
3234 }
3235 if (wbc->sync_mode == WB_SYNC_ALL)
3236 tag = PAGECACHE_TAG_TOWRITE;
3237 else
3238 tag = PAGECACHE_TAG_DIRTY;
3239 retry:
3240 if (wbc->sync_mode == WB_SYNC_ALL)
3241 tag_pages_for_writeback(mapping, index, end);
3242 while (!done && !nr_to_write_done && (index <= end) &&
3243 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3244 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3245 unsigned i;
3246
3247 scanned = 1;
3248 for (i = 0; i < nr_pages; i++) {
3249 struct page *page = pvec.pages[i];
3250
3251 if (!PagePrivate(page))
3252 continue;
3253
3254 if (!wbc->range_cyclic && page->index > end) {
3255 done = 1;
3256 break;
3257 }
3258
3259 eb = (struct extent_buffer *)page->private;
3260 if (!eb) {
3261 WARN_ON(1);
3262 continue;
3263 }
3264
3265 if (eb == prev_eb)
3266 continue;
3267
3268 if (!atomic_inc_not_zero(&eb->refs)) {
3269 WARN_ON(1);
3270 continue;
3271 }
3272
3273 prev_eb = eb;
3274 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3275 if (!ret) {
3276 free_extent_buffer(eb);
3277 continue;
3278 }
3279
3280 ret = write_one_eb(eb, fs_info, wbc, &epd);
3281 if (ret) {
3282 done = 1;
3283 free_extent_buffer(eb);
3284 break;
3285 }
3286 free_extent_buffer(eb);
3287
3288 /*
3289 * the filesystem may choose to bump up nr_to_write.
3290 * We have to make sure to honor the new nr_to_write
3291 * at any time
3292 */
3293 nr_to_write_done = wbc->nr_to_write <= 0;
3294 }
3295 pagevec_release(&pvec);
3296 cond_resched();
3297 }
3298 if (!scanned && !done) {
3299 /*
3300 * We hit the last page and there is more work to be done: wrap
3301 * back to the start of the file
3302 */
3303 scanned = 1;
3304 index = 0;
3305 goto retry;
3306 }
3307 flush_write_bio(&epd);
3308 return ret;
3309 }
3310
3311 /**
3312 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3313 * @mapping: address space structure to write
3314 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3315 * @writepage: function called for each page
3316 * @data: data passed to writepage function
3317 *
3318 * If a page is already under I/O, write_cache_pages() skips it, even
3319 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3320 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3321 * and msync() need to guarantee that all the data which was dirty at the time
3322 * the call was made get new I/O started against them. If wbc->sync_mode is
3323 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3324 * existing IO to complete.
3325 */
3326 static int extent_write_cache_pages(struct extent_io_tree *tree,
3327 struct address_space *mapping,
3328 struct writeback_control *wbc,
3329 writepage_t writepage, void *data,
3330 void (*flush_fn)(void *))
3331 {
3332 int ret = 0;
3333 int done = 0;
3334 int nr_to_write_done = 0;
3335 struct pagevec pvec;
3336 int nr_pages;
3337 pgoff_t index;
3338 pgoff_t end; /* Inclusive */
3339 int scanned = 0;
3340 int tag;
3341
3342 pagevec_init(&pvec, 0);
3343 if (wbc->range_cyclic) {
3344 index = mapping->writeback_index; /* Start from prev offset */
3345 end = -1;
3346 } else {
3347 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3348 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3349 scanned = 1;
3350 }
3351 if (wbc->sync_mode == WB_SYNC_ALL)
3352 tag = PAGECACHE_TAG_TOWRITE;
3353 else
3354 tag = PAGECACHE_TAG_DIRTY;
3355 retry:
3356 if (wbc->sync_mode == WB_SYNC_ALL)
3357 tag_pages_for_writeback(mapping, index, end);
3358 while (!done && !nr_to_write_done && (index <= end) &&
3359 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3360 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3361 unsigned i;
3362
3363 scanned = 1;
3364 for (i = 0; i < nr_pages; i++) {
3365 struct page *page = pvec.pages[i];
3366
3367 /*
3368 * At this point we hold neither mapping->tree_lock nor
3369 * lock on the page itself: the page may be truncated or
3370 * invalidated (changing page->mapping to NULL), or even
3371 * swizzled back from swapper_space to tmpfs file
3372 * mapping
3373 */
3374 if (tree->ops &&
3375 tree->ops->write_cache_pages_lock_hook) {
3376 tree->ops->write_cache_pages_lock_hook(page,
3377 data, flush_fn);
3378 } else {
3379 if (!trylock_page(page)) {
3380 flush_fn(data);
3381 lock_page(page);
3382 }
3383 }
3384
3385 if (unlikely(page->mapping != mapping)) {
3386 unlock_page(page);
3387 continue;
3388 }
3389
3390 if (!wbc->range_cyclic && page->index > end) {
3391 done = 1;
3392 unlock_page(page);
3393 continue;
3394 }
3395
3396 if (wbc->sync_mode != WB_SYNC_NONE) {
3397 if (PageWriteback(page))
3398 flush_fn(data);
3399 wait_on_page_writeback(page);
3400 }
3401
3402 if (PageWriteback(page) ||
3403 !clear_page_dirty_for_io(page)) {
3404 unlock_page(page);
3405 continue;
3406 }
3407
3408 ret = (*writepage)(page, wbc, data);
3409
3410 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3411 unlock_page(page);
3412 ret = 0;
3413 }
3414 if (ret)
3415 done = 1;
3416
3417 /*
3418 * the filesystem may choose to bump up nr_to_write.
3419 * We have to make sure to honor the new nr_to_write
3420 * at any time
3421 */
3422 nr_to_write_done = wbc->nr_to_write <= 0;
3423 }
3424 pagevec_release(&pvec);
3425 cond_resched();
3426 }
3427 if (!scanned && !done) {
3428 /*
3429 * We hit the last page and there is more work to be done: wrap
3430 * back to the start of the file
3431 */
3432 scanned = 1;
3433 index = 0;
3434 goto retry;
3435 }
3436 return ret;
3437 }
3438
3439 static void flush_epd_write_bio(struct extent_page_data *epd)
3440 {
3441 if (epd->bio) {
3442 int rw = WRITE;
3443 int ret;
3444
3445 if (epd->sync_io)
3446 rw = WRITE_SYNC;
3447
3448 ret = submit_one_bio(rw, epd->bio, 0, 0);
3449 BUG_ON(ret < 0); /* -ENOMEM */
3450 epd->bio = NULL;
3451 }
3452 }
3453
3454 static noinline void flush_write_bio(void *data)
3455 {
3456 struct extent_page_data *epd = data;
3457 flush_epd_write_bio(epd);
3458 }
3459
3460 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3461 get_extent_t *get_extent,
3462 struct writeback_control *wbc)
3463 {
3464 int ret;
3465 struct extent_page_data epd = {
3466 .bio = NULL,
3467 .tree = tree,
3468 .get_extent = get_extent,
3469 .extent_locked = 0,
3470 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3471 };
3472
3473 ret = __extent_writepage(page, wbc, &epd);
3474
3475 flush_epd_write_bio(&epd);
3476 return ret;
3477 }
3478
3479 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3480 u64 start, u64 end, get_extent_t *get_extent,
3481 int mode)
3482 {
3483 int ret = 0;
3484 struct address_space *mapping = inode->i_mapping;
3485 struct page *page;
3486 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3487 PAGE_CACHE_SHIFT;
3488
3489 struct extent_page_data epd = {
3490 .bio = NULL,
3491 .tree = tree,
3492 .get_extent = get_extent,
3493 .extent_locked = 1,
3494 .sync_io = mode == WB_SYNC_ALL,
3495 };
3496 struct writeback_control wbc_writepages = {
3497 .sync_mode = mode,
3498 .nr_to_write = nr_pages * 2,
3499 .range_start = start,
3500 .range_end = end + 1,
3501 };
3502
3503 while (start <= end) {
3504 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3505 if (clear_page_dirty_for_io(page))
3506 ret = __extent_writepage(page, &wbc_writepages, &epd);
3507 else {
3508 if (tree->ops && tree->ops->writepage_end_io_hook)
3509 tree->ops->writepage_end_io_hook(page, start,
3510 start + PAGE_CACHE_SIZE - 1,
3511 NULL, 1);
3512 unlock_page(page);
3513 }
3514 page_cache_release(page);
3515 start += PAGE_CACHE_SIZE;
3516 }
3517
3518 flush_epd_write_bio(&epd);
3519 return ret;
3520 }
3521
3522 int extent_writepages(struct extent_io_tree *tree,
3523 struct address_space *mapping,
3524 get_extent_t *get_extent,
3525 struct writeback_control *wbc)
3526 {
3527 int ret = 0;
3528 struct extent_page_data epd = {
3529 .bio = NULL,
3530 .tree = tree,
3531 .get_extent = get_extent,
3532 .extent_locked = 0,
3533 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3534 };
3535
3536 ret = extent_write_cache_pages(tree, mapping, wbc,
3537 __extent_writepage, &epd,
3538 flush_write_bio);
3539 flush_epd_write_bio(&epd);
3540 return ret;
3541 }
3542
3543 int extent_readpages(struct extent_io_tree *tree,
3544 struct address_space *mapping,
3545 struct list_head *pages, unsigned nr_pages,
3546 get_extent_t get_extent)
3547 {
3548 struct bio *bio = NULL;
3549 unsigned page_idx;
3550 unsigned long bio_flags = 0;
3551
3552 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3553 struct page *page = list_entry(pages->prev, struct page, lru);
3554
3555 prefetchw(&page->flags);
3556 list_del(&page->lru);
3557 if (!add_to_page_cache_lru(page, mapping,
3558 page->index, GFP_NOFS)) {
3559 __extent_read_full_page(tree, page, get_extent,
3560 &bio, 0, &bio_flags);
3561 }
3562 page_cache_release(page);
3563 }
3564 BUG_ON(!list_empty(pages));
3565 if (bio)
3566 return submit_one_bio(READ, bio, 0, bio_flags);
3567 return 0;
3568 }
3569
3570 /*
3571 * basic invalidatepage code, this waits on any locked or writeback
3572 * ranges corresponding to the page, and then deletes any extent state
3573 * records from the tree
3574 */
3575 int extent_invalidatepage(struct extent_io_tree *tree,
3576 struct page *page, unsigned long offset)
3577 {
3578 struct extent_state *cached_state = NULL;
3579 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3580 u64 end = start + PAGE_CACHE_SIZE - 1;
3581 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3582
3583 start += (offset + blocksize - 1) & ~(blocksize - 1);
3584 if (start > end)
3585 return 0;
3586
3587 lock_extent_bits(tree, start, end, 0, &cached_state);
3588 wait_on_page_writeback(page);
3589 clear_extent_bit(tree, start, end,
3590 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3591 EXTENT_DO_ACCOUNTING,
3592 1, 1, &cached_state, GFP_NOFS);
3593 return 0;
3594 }
3595
3596 /*
3597 * a helper for releasepage, this tests for areas of the page that
3598 * are locked or under IO and drops the related state bits if it is safe
3599 * to drop the page.
3600 */
3601 int try_release_extent_state(struct extent_map_tree *map,
3602 struct extent_io_tree *tree, struct page *page,
3603 gfp_t mask)
3604 {
3605 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3606 u64 end = start + PAGE_CACHE_SIZE - 1;
3607 int ret = 1;
3608
3609 if (test_range_bit(tree, start, end,
3610 EXTENT_IOBITS, 0, NULL))
3611 ret = 0;
3612 else {
3613 if ((mask & GFP_NOFS) == GFP_NOFS)
3614 mask = GFP_NOFS;
3615 /*
3616 * at this point we can safely clear everything except the
3617 * locked bit and the nodatasum bit
3618 */
3619 ret = clear_extent_bit(tree, start, end,
3620 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3621 0, 0, NULL, mask);
3622
3623 /* if clear_extent_bit failed for enomem reasons,
3624 * we can't allow the release to continue.
3625 */
3626 if (ret < 0)
3627 ret = 0;
3628 else
3629 ret = 1;
3630 }
3631 return ret;
3632 }
3633
3634 /*
3635 * a helper for releasepage. As long as there are no locked extents
3636 * in the range corresponding to the page, both state records and extent
3637 * map records are removed
3638 */
3639 int try_release_extent_mapping(struct extent_map_tree *map,
3640 struct extent_io_tree *tree, struct page *page,
3641 gfp_t mask)
3642 {
3643 struct extent_map *em;
3644 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3645 u64 end = start + PAGE_CACHE_SIZE - 1;
3646
3647 if ((mask & __GFP_WAIT) &&
3648 page->mapping->host->i_size > 16 * 1024 * 1024) {
3649 u64 len;
3650 while (start <= end) {
3651 len = end - start + 1;
3652 write_lock(&map->lock);
3653 em = lookup_extent_mapping(map, start, len);
3654 if (!em) {
3655 write_unlock(&map->lock);
3656 break;
3657 }
3658 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3659 em->start != start) {
3660 write_unlock(&map->lock);
3661 free_extent_map(em);
3662 break;
3663 }
3664 if (!test_range_bit(tree, em->start,
3665 extent_map_end(em) - 1,
3666 EXTENT_LOCKED | EXTENT_WRITEBACK,
3667 0, NULL)) {
3668 remove_extent_mapping(map, em);
3669 /* once for the rb tree */
3670 free_extent_map(em);
3671 }
3672 start = extent_map_end(em);
3673 write_unlock(&map->lock);
3674
3675 /* once for us */
3676 free_extent_map(em);
3677 }
3678 }
3679 return try_release_extent_state(map, tree, page, mask);
3680 }
3681
3682 /*
3683 * helper function for fiemap, which doesn't want to see any holes.
3684 * This maps until we find something past 'last'
3685 */
3686 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3687 u64 offset,
3688 u64 last,
3689 get_extent_t *get_extent)
3690 {
3691 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3692 struct extent_map *em;
3693 u64 len;
3694
3695 if (offset >= last)
3696 return NULL;
3697
3698 while(1) {
3699 len = last - offset;
3700 if (len == 0)
3701 break;
3702 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3703 em = get_extent(inode, NULL, 0, offset, len, 0);
3704 if (IS_ERR_OR_NULL(em))
3705 return em;
3706
3707 /* if this isn't a hole return it */
3708 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3709 em->block_start != EXTENT_MAP_HOLE) {
3710 return em;
3711 }
3712
3713 /* this is a hole, advance to the next extent */
3714 offset = extent_map_end(em);
3715 free_extent_map(em);
3716 if (offset >= last)
3717 break;
3718 }
3719 return NULL;
3720 }
3721
3722 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3723 __u64 start, __u64 len, get_extent_t *get_extent)
3724 {
3725 int ret = 0;
3726 u64 off = start;
3727 u64 max = start + len;
3728 u32 flags = 0;
3729 u32 found_type;
3730 u64 last;
3731 u64 last_for_get_extent = 0;
3732 u64 disko = 0;
3733 u64 isize = i_size_read(inode);
3734 struct btrfs_key found_key;
3735 struct extent_map *em = NULL;
3736 struct extent_state *cached_state = NULL;
3737 struct btrfs_path *path;
3738 struct btrfs_file_extent_item *item;
3739 int end = 0;
3740 u64 em_start = 0;
3741 u64 em_len = 0;
3742 u64 em_end = 0;
3743 unsigned long emflags;
3744
3745 if (len == 0)
3746 return -EINVAL;
3747
3748 path = btrfs_alloc_path();
3749 if (!path)
3750 return -ENOMEM;
3751 path->leave_spinning = 1;
3752
3753 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3754 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3755
3756 /*
3757 * lookup the last file extent. We're not using i_size here
3758 * because there might be preallocation past i_size
3759 */
3760 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3761 path, btrfs_ino(inode), -1, 0);
3762 if (ret < 0) {
3763 btrfs_free_path(path);
3764 return ret;
3765 }
3766 WARN_ON(!ret);
3767 path->slots[0]--;
3768 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3769 struct btrfs_file_extent_item);
3770 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3771 found_type = btrfs_key_type(&found_key);
3772
3773 /* No extents, but there might be delalloc bits */
3774 if (found_key.objectid != btrfs_ino(inode) ||
3775 found_type != BTRFS_EXTENT_DATA_KEY) {
3776 /* have to trust i_size as the end */
3777 last = (u64)-1;
3778 last_for_get_extent = isize;
3779 } else {
3780 /*
3781 * remember the start of the last extent. There are a
3782 * bunch of different factors that go into the length of the
3783 * extent, so its much less complex to remember where it started
3784 */
3785 last = found_key.offset;
3786 last_for_get_extent = last + 1;
3787 }
3788 btrfs_free_path(path);
3789
3790 /*
3791 * we might have some extents allocated but more delalloc past those
3792 * extents. so, we trust isize unless the start of the last extent is
3793 * beyond isize
3794 */
3795 if (last < isize) {
3796 last = (u64)-1;
3797 last_for_get_extent = isize;
3798 }
3799
3800 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3801 &cached_state);
3802
3803 em = get_extent_skip_holes(inode, start, last_for_get_extent,
3804 get_extent);
3805 if (!em)
3806 goto out;
3807 if (IS_ERR(em)) {
3808 ret = PTR_ERR(em);
3809 goto out;
3810 }
3811
3812 while (!end) {
3813 u64 offset_in_extent;
3814
3815 /* break if the extent we found is outside the range */
3816 if (em->start >= max || extent_map_end(em) < off)
3817 break;
3818
3819 /*
3820 * get_extent may return an extent that starts before our
3821 * requested range. We have to make sure the ranges
3822 * we return to fiemap always move forward and don't
3823 * overlap, so adjust the offsets here
3824 */
3825 em_start = max(em->start, off);
3826
3827 /*
3828 * record the offset from the start of the extent
3829 * for adjusting the disk offset below
3830 */
3831 offset_in_extent = em_start - em->start;
3832 em_end = extent_map_end(em);
3833 em_len = em_end - em_start;
3834 emflags = em->flags;
3835 disko = 0;
3836 flags = 0;
3837
3838 /*
3839 * bump off for our next call to get_extent
3840 */
3841 off = extent_map_end(em);
3842 if (off >= max)
3843 end = 1;
3844
3845 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3846 end = 1;
3847 flags |= FIEMAP_EXTENT_LAST;
3848 } else if (em->block_start == EXTENT_MAP_INLINE) {
3849 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3850 FIEMAP_EXTENT_NOT_ALIGNED);
3851 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3852 flags |= (FIEMAP_EXTENT_DELALLOC |
3853 FIEMAP_EXTENT_UNKNOWN);
3854 } else {
3855 disko = em->block_start + offset_in_extent;
3856 }
3857 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3858 flags |= FIEMAP_EXTENT_ENCODED;
3859
3860 free_extent_map(em);
3861 em = NULL;
3862 if ((em_start >= last) || em_len == (u64)-1 ||
3863 (last == (u64)-1 && isize <= em_end)) {
3864 flags |= FIEMAP_EXTENT_LAST;
3865 end = 1;
3866 }
3867
3868 /* now scan forward to see if this is really the last extent. */
3869 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3870 get_extent);
3871 if (IS_ERR(em)) {
3872 ret = PTR_ERR(em);
3873 goto out;
3874 }
3875 if (!em) {
3876 flags |= FIEMAP_EXTENT_LAST;
3877 end = 1;
3878 }
3879 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3880 em_len, flags);
3881 if (ret)
3882 goto out_free;
3883 }
3884 out_free:
3885 free_extent_map(em);
3886 out:
3887 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3888 &cached_state, GFP_NOFS);
3889 return ret;
3890 }
3891
3892 inline struct page *extent_buffer_page(struct extent_buffer *eb,
3893 unsigned long i)
3894 {
3895 return eb->pages[i];
3896 }
3897
3898 inline unsigned long num_extent_pages(u64 start, u64 len)
3899 {
3900 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3901 (start >> PAGE_CACHE_SHIFT);
3902 }
3903
3904 static void __free_extent_buffer(struct extent_buffer *eb)
3905 {
3906 #if LEAK_DEBUG
3907 unsigned long flags;
3908 spin_lock_irqsave(&leak_lock, flags);
3909 list_del(&eb->leak_list);
3910 spin_unlock_irqrestore(&leak_lock, flags);
3911 #endif
3912 if (eb->pages && eb->pages != eb->inline_pages)
3913 kfree(eb->pages);
3914 kmem_cache_free(extent_buffer_cache, eb);
3915 }
3916
3917 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3918 u64 start,
3919 unsigned long len,
3920 gfp_t mask)
3921 {
3922 struct extent_buffer *eb = NULL;
3923 #if LEAK_DEBUG
3924 unsigned long flags;
3925 #endif
3926
3927 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3928 if (eb == NULL)
3929 return NULL;
3930 eb->start = start;
3931 eb->len = len;
3932 eb->tree = tree;
3933 rwlock_init(&eb->lock);
3934 atomic_set(&eb->write_locks, 0);
3935 atomic_set(&eb->read_locks, 0);
3936 atomic_set(&eb->blocking_readers, 0);
3937 atomic_set(&eb->blocking_writers, 0);
3938 atomic_set(&eb->spinning_readers, 0);
3939 atomic_set(&eb->spinning_writers, 0);
3940 eb->lock_nested = 0;
3941 init_waitqueue_head(&eb->write_lock_wq);
3942 init_waitqueue_head(&eb->read_lock_wq);
3943
3944 #if LEAK_DEBUG
3945 spin_lock_irqsave(&leak_lock, flags);
3946 list_add(&eb->leak_list, &buffers);
3947 spin_unlock_irqrestore(&leak_lock, flags);
3948 #endif
3949 spin_lock_init(&eb->refs_lock);
3950 atomic_set(&eb->refs, 1);
3951 atomic_set(&eb->io_pages, 0);
3952
3953 if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
3954 struct page **pages;
3955 int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
3956 PAGE_CACHE_SHIFT;
3957 pages = kzalloc(num_pages, mask);
3958 if (!pages) {
3959 __free_extent_buffer(eb);
3960 return NULL;
3961 }
3962 eb->pages = pages;
3963 } else {
3964 eb->pages = eb->inline_pages;
3965 }
3966
3967 return eb;
3968 }
3969
3970 static int extent_buffer_under_io(struct extent_buffer *eb)
3971 {
3972 return (atomic_read(&eb->io_pages) ||
3973 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3974 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3975 }
3976
3977 /*
3978 * Helper for releasing extent buffer page.
3979 */
3980 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3981 unsigned long start_idx)
3982 {
3983 unsigned long index;
3984 struct page *page;
3985
3986 BUG_ON(extent_buffer_under_io(eb));
3987
3988 index = num_extent_pages(eb->start, eb->len);
3989 if (start_idx >= index)
3990 return;
3991
3992 do {
3993 index--;
3994 page = extent_buffer_page(eb, index);
3995 if (page) {
3996 spin_lock(&page->mapping->private_lock);
3997 /*
3998 * We do this since we'll remove the pages after we've
3999 * removed the eb from the radix tree, so we could race
4000 * and have this page now attached to the new eb. So
4001 * only clear page_private if it's still connected to
4002 * this eb.
4003 */
4004 if (PagePrivate(page) &&
4005 page->private == (unsigned long)eb) {
4006 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4007 BUG_ON(PageDirty(page));
4008 BUG_ON(PageWriteback(page));
4009 /*
4010 * We need to make sure we haven't be attached
4011 * to a new eb.
4012 */
4013 ClearPagePrivate(page);
4014 set_page_private(page, 0);
4015 /* One for the page private */
4016 page_cache_release(page);
4017 }
4018 spin_unlock(&page->mapping->private_lock);
4019
4020 /* One for when we alloced the page */
4021 page_cache_release(page);
4022 }
4023 } while (index != start_idx);
4024 }
4025
4026 /*
4027 * Helper for releasing the extent buffer.
4028 */
4029 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4030 {
4031 btrfs_release_extent_buffer_page(eb, 0);
4032 __free_extent_buffer(eb);
4033 }
4034
4035 static void check_buffer_tree_ref(struct extent_buffer *eb)
4036 {
4037 /* the ref bit is tricky. We have to make sure it is set
4038 * if we have the buffer dirty. Otherwise the
4039 * code to free a buffer can end up dropping a dirty
4040 * page
4041 *
4042 * Once the ref bit is set, it won't go away while the
4043 * buffer is dirty or in writeback, and it also won't
4044 * go away while we have the reference count on the
4045 * eb bumped.
4046 *
4047 * We can't just set the ref bit without bumping the
4048 * ref on the eb because free_extent_buffer might
4049 * see the ref bit and try to clear it. If this happens
4050 * free_extent_buffer might end up dropping our original
4051 * ref by mistake and freeing the page before we are able
4052 * to add one more ref.
4053 *
4054 * So bump the ref count first, then set the bit. If someone
4055 * beat us to it, drop the ref we added.
4056 */
4057 if (!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4058 atomic_inc(&eb->refs);
4059 if (test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4060 atomic_dec(&eb->refs);
4061 }
4062 }
4063
4064 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4065 {
4066 unsigned long num_pages, i;
4067
4068 check_buffer_tree_ref(eb);
4069
4070 num_pages = num_extent_pages(eb->start, eb->len);
4071 for (i = 0; i < num_pages; i++) {
4072 struct page *p = extent_buffer_page(eb, i);
4073 mark_page_accessed(p);
4074 }
4075 }
4076
4077 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4078 u64 start, unsigned long len)
4079 {
4080 unsigned long num_pages = num_extent_pages(start, len);
4081 unsigned long i;
4082 unsigned long index = start >> PAGE_CACHE_SHIFT;
4083 struct extent_buffer *eb;
4084 struct extent_buffer *exists = NULL;
4085 struct page *p;
4086 struct address_space *mapping = tree->mapping;
4087 int uptodate = 1;
4088 int ret;
4089
4090 rcu_read_lock();
4091 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4092 if (eb && atomic_inc_not_zero(&eb->refs)) {
4093 rcu_read_unlock();
4094 mark_extent_buffer_accessed(eb);
4095 return eb;
4096 }
4097 rcu_read_unlock();
4098
4099 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4100 if (!eb)
4101 return NULL;
4102
4103 for (i = 0; i < num_pages; i++, index++) {
4104 p = find_or_create_page(mapping, index, GFP_NOFS);
4105 if (!p) {
4106 WARN_ON(1);
4107 goto free_eb;
4108 }
4109
4110 spin_lock(&mapping->private_lock);
4111 if (PagePrivate(p)) {
4112 /*
4113 * We could have already allocated an eb for this page
4114 * and attached one so lets see if we can get a ref on
4115 * the existing eb, and if we can we know it's good and
4116 * we can just return that one, else we know we can just
4117 * overwrite page->private.
4118 */
4119 exists = (struct extent_buffer *)p->private;
4120 if (atomic_inc_not_zero(&exists->refs)) {
4121 spin_unlock(&mapping->private_lock);
4122 unlock_page(p);
4123 mark_extent_buffer_accessed(exists);
4124 goto free_eb;
4125 }
4126
4127 /*
4128 * Do this so attach doesn't complain and we need to
4129 * drop the ref the old guy had.
4130 */
4131 ClearPagePrivate(p);
4132 WARN_ON(PageDirty(p));
4133 page_cache_release(p);
4134 }
4135 attach_extent_buffer_page(eb, p);
4136 spin_unlock(&mapping->private_lock);
4137 WARN_ON(PageDirty(p));
4138 mark_page_accessed(p);
4139 eb->pages[i] = p;
4140 if (!PageUptodate(p))
4141 uptodate = 0;
4142
4143 /*
4144 * see below about how we avoid a nasty race with release page
4145 * and why we unlock later
4146 */
4147 }
4148 if (uptodate)
4149 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4150 again:
4151 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4152 if (ret)
4153 goto free_eb;
4154
4155 spin_lock(&tree->buffer_lock);
4156 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4157 if (ret == -EEXIST) {
4158 exists = radix_tree_lookup(&tree->buffer,
4159 start >> PAGE_CACHE_SHIFT);
4160 if (!atomic_inc_not_zero(&exists->refs)) {
4161 spin_unlock(&tree->buffer_lock);
4162 radix_tree_preload_end();
4163 exists = NULL;
4164 goto again;
4165 }
4166 spin_unlock(&tree->buffer_lock);
4167 radix_tree_preload_end();
4168 mark_extent_buffer_accessed(exists);
4169 goto free_eb;
4170 }
4171 /* add one reference for the tree */
4172 spin_lock(&eb->refs_lock);
4173 check_buffer_tree_ref(eb);
4174 spin_unlock(&eb->refs_lock);
4175 spin_unlock(&tree->buffer_lock);
4176 radix_tree_preload_end();
4177
4178 /*
4179 * there is a race where release page may have
4180 * tried to find this extent buffer in the radix
4181 * but failed. It will tell the VM it is safe to
4182 * reclaim the, and it will clear the page private bit.
4183 * We must make sure to set the page private bit properly
4184 * after the extent buffer is in the radix tree so
4185 * it doesn't get lost
4186 */
4187 SetPageChecked(eb->pages[0]);
4188 for (i = 1; i < num_pages; i++) {
4189 p = extent_buffer_page(eb, i);
4190 ClearPageChecked(p);
4191 unlock_page(p);
4192 }
4193 unlock_page(eb->pages[0]);
4194 return eb;
4195
4196 free_eb:
4197 for (i = 0; i < num_pages; i++) {
4198 if (eb->pages[i])
4199 unlock_page(eb->pages[i]);
4200 }
4201
4202 if (!atomic_dec_and_test(&eb->refs))
4203 return exists;
4204 btrfs_release_extent_buffer(eb);
4205 return exists;
4206 }
4207
4208 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4209 u64 start, unsigned long len)
4210 {
4211 struct extent_buffer *eb;
4212
4213 rcu_read_lock();
4214 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4215 if (eb && atomic_inc_not_zero(&eb->refs)) {
4216 rcu_read_unlock();
4217 mark_extent_buffer_accessed(eb);
4218 return eb;
4219 }
4220 rcu_read_unlock();
4221
4222 return NULL;
4223 }
4224
4225 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4226 {
4227 struct extent_buffer *eb =
4228 container_of(head, struct extent_buffer, rcu_head);
4229
4230 __free_extent_buffer(eb);
4231 }
4232
4233 /* Expects to have eb->eb_lock already held */
4234 static void release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4235 {
4236 WARN_ON(atomic_read(&eb->refs) == 0);
4237 if (atomic_dec_and_test(&eb->refs)) {
4238 struct extent_io_tree *tree = eb->tree;
4239
4240 spin_unlock(&eb->refs_lock);
4241
4242 spin_lock(&tree->buffer_lock);
4243 radix_tree_delete(&tree->buffer,
4244 eb->start >> PAGE_CACHE_SHIFT);
4245 spin_unlock(&tree->buffer_lock);
4246
4247 /* Should be safe to release our pages at this point */
4248 btrfs_release_extent_buffer_page(eb, 0);
4249
4250 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4251 return;
4252 }
4253 spin_unlock(&eb->refs_lock);
4254 }
4255
4256 void free_extent_buffer(struct extent_buffer *eb)
4257 {
4258 if (!eb)
4259 return;
4260
4261 spin_lock(&eb->refs_lock);
4262 if (atomic_read(&eb->refs) == 2 &&
4263 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4264 !extent_buffer_under_io(eb) &&
4265 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4266 atomic_dec(&eb->refs);
4267
4268 /*
4269 * I know this is terrible, but it's temporary until we stop tracking
4270 * the uptodate bits and such for the extent buffers.
4271 */
4272 release_extent_buffer(eb, GFP_ATOMIC);
4273 }
4274
4275 void free_extent_buffer_stale(struct extent_buffer *eb)
4276 {
4277 if (!eb)
4278 return;
4279
4280 spin_lock(&eb->refs_lock);
4281 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4282
4283 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4284 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4285 atomic_dec(&eb->refs);
4286 release_extent_buffer(eb, GFP_NOFS);
4287 }
4288
4289 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4290 {
4291 unsigned long i;
4292 unsigned long num_pages;
4293 struct page *page;
4294
4295 num_pages = num_extent_pages(eb->start, eb->len);
4296
4297 for (i = 0; i < num_pages; i++) {
4298 page = extent_buffer_page(eb, i);
4299 if (!PageDirty(page))
4300 continue;
4301
4302 lock_page(page);
4303 WARN_ON(!PagePrivate(page));
4304
4305 clear_page_dirty_for_io(page);
4306 spin_lock_irq(&page->mapping->tree_lock);
4307 if (!PageDirty(page)) {
4308 radix_tree_tag_clear(&page->mapping->page_tree,
4309 page_index(page),
4310 PAGECACHE_TAG_DIRTY);
4311 }
4312 spin_unlock_irq(&page->mapping->tree_lock);
4313 ClearPageError(page);
4314 unlock_page(page);
4315 }
4316 WARN_ON(atomic_read(&eb->refs) == 0);
4317 }
4318
4319 int set_extent_buffer_dirty(struct extent_buffer *eb)
4320 {
4321 unsigned long i;
4322 unsigned long num_pages;
4323 int was_dirty = 0;
4324
4325 check_buffer_tree_ref(eb);
4326
4327 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4328
4329 num_pages = num_extent_pages(eb->start, eb->len);
4330 WARN_ON(atomic_read(&eb->refs) == 0);
4331 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4332
4333 for (i = 0; i < num_pages; i++)
4334 set_page_dirty(extent_buffer_page(eb, i));
4335 return was_dirty;
4336 }
4337
4338 static int range_straddles_pages(u64 start, u64 len)
4339 {
4340 if (len < PAGE_CACHE_SIZE)
4341 return 1;
4342 if (start & (PAGE_CACHE_SIZE - 1))
4343 return 1;
4344 if ((start + len) & (PAGE_CACHE_SIZE - 1))
4345 return 1;
4346 return 0;
4347 }
4348
4349 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4350 {
4351 unsigned long i;
4352 struct page *page;
4353 unsigned long num_pages;
4354
4355 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4356 num_pages = num_extent_pages(eb->start, eb->len);
4357 for (i = 0; i < num_pages; i++) {
4358 page = extent_buffer_page(eb, i);
4359 if (page)
4360 ClearPageUptodate(page);
4361 }
4362 return 0;
4363 }
4364
4365 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4366 {
4367 unsigned long i;
4368 struct page *page;
4369 unsigned long num_pages;
4370
4371 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4372 num_pages = num_extent_pages(eb->start, eb->len);
4373 for (i = 0; i < num_pages; i++) {
4374 page = extent_buffer_page(eb, i);
4375 SetPageUptodate(page);
4376 }
4377 return 0;
4378 }
4379
4380 int extent_range_uptodate(struct extent_io_tree *tree,
4381 u64 start, u64 end)
4382 {
4383 struct page *page;
4384 int ret;
4385 int pg_uptodate = 1;
4386 int uptodate;
4387 unsigned long index;
4388
4389 if (range_straddles_pages(start, end - start + 1)) {
4390 ret = test_range_bit(tree, start, end,
4391 EXTENT_UPTODATE, 1, NULL);
4392 if (ret)
4393 return 1;
4394 }
4395 while (start <= end) {
4396 index = start >> PAGE_CACHE_SHIFT;
4397 page = find_get_page(tree->mapping, index);
4398 if (!page)
4399 return 1;
4400 uptodate = PageUptodate(page);
4401 page_cache_release(page);
4402 if (!uptodate) {
4403 pg_uptodate = 0;
4404 break;
4405 }
4406 start += PAGE_CACHE_SIZE;
4407 }
4408 return pg_uptodate;
4409 }
4410
4411 int extent_buffer_uptodate(struct extent_buffer *eb)
4412 {
4413 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4414 }
4415
4416 int read_extent_buffer_pages(struct extent_io_tree *tree,
4417 struct extent_buffer *eb, u64 start, int wait,
4418 get_extent_t *get_extent, int mirror_num)
4419 {
4420 unsigned long i;
4421 unsigned long start_i;
4422 struct page *page;
4423 int err;
4424 int ret = 0;
4425 int locked_pages = 0;
4426 int all_uptodate = 1;
4427 unsigned long num_pages;
4428 unsigned long num_reads = 0;
4429 struct bio *bio = NULL;
4430 unsigned long bio_flags = 0;
4431
4432 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4433 return 0;
4434
4435 if (start) {
4436 WARN_ON(start < eb->start);
4437 start_i = (start >> PAGE_CACHE_SHIFT) -
4438 (eb->start >> PAGE_CACHE_SHIFT);
4439 } else {
4440 start_i = 0;
4441 }
4442
4443 num_pages = num_extent_pages(eb->start, eb->len);
4444 for (i = start_i; i < num_pages; i++) {
4445 page = extent_buffer_page(eb, i);
4446 if (wait == WAIT_NONE) {
4447 if (!trylock_page(page))
4448 goto unlock_exit;
4449 } else {
4450 lock_page(page);
4451 }
4452 locked_pages++;
4453 if (!PageUptodate(page)) {
4454 num_reads++;
4455 all_uptodate = 0;
4456 }
4457 }
4458 if (all_uptodate) {
4459 if (start_i == 0)
4460 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4461 goto unlock_exit;
4462 }
4463
4464 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4465 eb->read_mirror = 0;
4466 atomic_set(&eb->io_pages, num_reads);
4467 for (i = start_i; i < num_pages; i++) {
4468 page = extent_buffer_page(eb, i);
4469 if (!PageUptodate(page)) {
4470 ClearPageError(page);
4471 err = __extent_read_full_page(tree, page,
4472 get_extent, &bio,
4473 mirror_num, &bio_flags);
4474 if (err)
4475 ret = err;
4476 } else {
4477 unlock_page(page);
4478 }
4479 }
4480
4481 if (bio) {
4482 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4483 if (err)
4484 return err;
4485 }
4486
4487 if (ret || wait != WAIT_COMPLETE)
4488 return ret;
4489
4490 for (i = start_i; i < num_pages; i++) {
4491 page = extent_buffer_page(eb, i);
4492 wait_on_page_locked(page);
4493 if (!PageUptodate(page))
4494 ret = -EIO;
4495 }
4496
4497 return ret;
4498
4499 unlock_exit:
4500 i = start_i;
4501 while (locked_pages > 0) {
4502 page = extent_buffer_page(eb, i);
4503 i++;
4504 unlock_page(page);
4505 locked_pages--;
4506 }
4507 return ret;
4508 }
4509
4510 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4511 unsigned long start,
4512 unsigned long len)
4513 {
4514 size_t cur;
4515 size_t offset;
4516 struct page *page;
4517 char *kaddr;
4518 char *dst = (char *)dstv;
4519 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4520 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4521
4522 WARN_ON(start > eb->len);
4523 WARN_ON(start + len > eb->start + eb->len);
4524
4525 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4526
4527 while (len > 0) {
4528 page = extent_buffer_page(eb, i);
4529
4530 cur = min(len, (PAGE_CACHE_SIZE - offset));
4531 kaddr = page_address(page);
4532 memcpy(dst, kaddr + offset, cur);
4533
4534 dst += cur;
4535 len -= cur;
4536 offset = 0;
4537 i++;
4538 }
4539 }
4540
4541 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4542 unsigned long min_len, char **map,
4543 unsigned long *map_start,
4544 unsigned long *map_len)
4545 {
4546 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4547 char *kaddr;
4548 struct page *p;
4549 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4550 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4551 unsigned long end_i = (start_offset + start + min_len - 1) >>
4552 PAGE_CACHE_SHIFT;
4553
4554 if (i != end_i)
4555 return -EINVAL;
4556
4557 if (i == 0) {
4558 offset = start_offset;
4559 *map_start = 0;
4560 } else {
4561 offset = 0;
4562 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4563 }
4564
4565 if (start + min_len > eb->len) {
4566 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4567 "wanted %lu %lu\n", (unsigned long long)eb->start,
4568 eb->len, start, min_len);
4569 WARN_ON(1);
4570 return -EINVAL;
4571 }
4572
4573 p = extent_buffer_page(eb, i);
4574 kaddr = page_address(p);
4575 *map = kaddr + offset;
4576 *map_len = PAGE_CACHE_SIZE - offset;
4577 return 0;
4578 }
4579
4580 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4581 unsigned long start,
4582 unsigned long len)
4583 {
4584 size_t cur;
4585 size_t offset;
4586 struct page *page;
4587 char *kaddr;
4588 char *ptr = (char *)ptrv;
4589 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4590 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4591 int ret = 0;
4592
4593 WARN_ON(start > eb->len);
4594 WARN_ON(start + len > eb->start + eb->len);
4595
4596 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4597
4598 while (len > 0) {
4599 page = extent_buffer_page(eb, i);
4600
4601 cur = min(len, (PAGE_CACHE_SIZE - offset));
4602
4603 kaddr = page_address(page);
4604 ret = memcmp(ptr, kaddr + offset, cur);
4605 if (ret)
4606 break;
4607
4608 ptr += cur;
4609 len -= cur;
4610 offset = 0;
4611 i++;
4612 }
4613 return ret;
4614 }
4615
4616 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4617 unsigned long start, unsigned long len)
4618 {
4619 size_t cur;
4620 size_t offset;
4621 struct page *page;
4622 char *kaddr;
4623 char *src = (char *)srcv;
4624 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4625 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4626
4627 WARN_ON(start > eb->len);
4628 WARN_ON(start + len > eb->start + eb->len);
4629
4630 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4631
4632 while (len > 0) {
4633 page = extent_buffer_page(eb, i);
4634 WARN_ON(!PageUptodate(page));
4635
4636 cur = min(len, PAGE_CACHE_SIZE - offset);
4637 kaddr = page_address(page);
4638 memcpy(kaddr + offset, src, cur);
4639
4640 src += cur;
4641 len -= cur;
4642 offset = 0;
4643 i++;
4644 }
4645 }
4646
4647 void memset_extent_buffer(struct extent_buffer *eb, char c,
4648 unsigned long start, unsigned long len)
4649 {
4650 size_t cur;
4651 size_t offset;
4652 struct page *page;
4653 char *kaddr;
4654 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4655 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4656
4657 WARN_ON(start > eb->len);
4658 WARN_ON(start + len > eb->start + eb->len);
4659
4660 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4661
4662 while (len > 0) {
4663 page = extent_buffer_page(eb, i);
4664 WARN_ON(!PageUptodate(page));
4665
4666 cur = min(len, PAGE_CACHE_SIZE - offset);
4667 kaddr = page_address(page);
4668 memset(kaddr + offset, c, cur);
4669
4670 len -= cur;
4671 offset = 0;
4672 i++;
4673 }
4674 }
4675
4676 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4677 unsigned long dst_offset, unsigned long src_offset,
4678 unsigned long len)
4679 {
4680 u64 dst_len = dst->len;
4681 size_t cur;
4682 size_t offset;
4683 struct page *page;
4684 char *kaddr;
4685 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4686 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4687
4688 WARN_ON(src->len != dst_len);
4689
4690 offset = (start_offset + dst_offset) &
4691 ((unsigned long)PAGE_CACHE_SIZE - 1);
4692
4693 while (len > 0) {
4694 page = extent_buffer_page(dst, i);
4695 WARN_ON(!PageUptodate(page));
4696
4697 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4698
4699 kaddr = page_address(page);
4700 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4701
4702 src_offset += cur;
4703 len -= cur;
4704 offset = 0;
4705 i++;
4706 }
4707 }
4708
4709 static void move_pages(struct page *dst_page, struct page *src_page,
4710 unsigned long dst_off, unsigned long src_off,
4711 unsigned long len)
4712 {
4713 char *dst_kaddr = page_address(dst_page);
4714 if (dst_page == src_page) {
4715 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4716 } else {
4717 char *src_kaddr = page_address(src_page);
4718 char *p = dst_kaddr + dst_off + len;
4719 char *s = src_kaddr + src_off + len;
4720
4721 while (len--)
4722 *--p = *--s;
4723 }
4724 }
4725
4726 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4727 {
4728 unsigned long distance = (src > dst) ? src - dst : dst - src;
4729 return distance < len;
4730 }
4731
4732 static void copy_pages(struct page *dst_page, struct page *src_page,
4733 unsigned long dst_off, unsigned long src_off,
4734 unsigned long len)
4735 {
4736 char *dst_kaddr = page_address(dst_page);
4737 char *src_kaddr;
4738 int must_memmove = 0;
4739
4740 if (dst_page != src_page) {
4741 src_kaddr = page_address(src_page);
4742 } else {
4743 src_kaddr = dst_kaddr;
4744 if (areas_overlap(src_off, dst_off, len))
4745 must_memmove = 1;
4746 }
4747
4748 if (must_memmove)
4749 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4750 else
4751 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4752 }
4753
4754 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4755 unsigned long src_offset, unsigned long len)
4756 {
4757 size_t cur;
4758 size_t dst_off_in_page;
4759 size_t src_off_in_page;
4760 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4761 unsigned long dst_i;
4762 unsigned long src_i;
4763
4764 if (src_offset + len > dst->len) {
4765 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4766 "len %lu dst len %lu\n", src_offset, len, dst->len);
4767 BUG_ON(1);
4768 }
4769 if (dst_offset + len > dst->len) {
4770 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4771 "len %lu dst len %lu\n", dst_offset, len, dst->len);
4772 BUG_ON(1);
4773 }
4774
4775 while (len > 0) {
4776 dst_off_in_page = (start_offset + dst_offset) &
4777 ((unsigned long)PAGE_CACHE_SIZE - 1);
4778 src_off_in_page = (start_offset + src_offset) &
4779 ((unsigned long)PAGE_CACHE_SIZE - 1);
4780
4781 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4782 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4783
4784 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4785 src_off_in_page));
4786 cur = min_t(unsigned long, cur,
4787 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4788
4789 copy_pages(extent_buffer_page(dst, dst_i),
4790 extent_buffer_page(dst, src_i),
4791 dst_off_in_page, src_off_in_page, cur);
4792
4793 src_offset += cur;
4794 dst_offset += cur;
4795 len -= cur;
4796 }
4797 }
4798
4799 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4800 unsigned long src_offset, unsigned long len)
4801 {
4802 size_t cur;
4803 size_t dst_off_in_page;
4804 size_t src_off_in_page;
4805 unsigned long dst_end = dst_offset + len - 1;
4806 unsigned long src_end = src_offset + len - 1;
4807 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4808 unsigned long dst_i;
4809 unsigned long src_i;
4810
4811 if (src_offset + len > dst->len) {
4812 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4813 "len %lu len %lu\n", src_offset, len, dst->len);
4814 BUG_ON(1);
4815 }
4816 if (dst_offset + len > dst->len) {
4817 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4818 "len %lu len %lu\n", dst_offset, len, dst->len);
4819 BUG_ON(1);
4820 }
4821 if (dst_offset < src_offset) {
4822 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4823 return;
4824 }
4825 while (len > 0) {
4826 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4827 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4828
4829 dst_off_in_page = (start_offset + dst_end) &
4830 ((unsigned long)PAGE_CACHE_SIZE - 1);
4831 src_off_in_page = (start_offset + src_end) &
4832 ((unsigned long)PAGE_CACHE_SIZE - 1);
4833
4834 cur = min_t(unsigned long, len, src_off_in_page + 1);
4835 cur = min(cur, dst_off_in_page + 1);
4836 move_pages(extent_buffer_page(dst, dst_i),
4837 extent_buffer_page(dst, src_i),
4838 dst_off_in_page - cur + 1,
4839 src_off_in_page - cur + 1, cur);
4840
4841 dst_end -= cur;
4842 src_end -= cur;
4843 len -= cur;
4844 }
4845 }
4846
4847 int try_release_extent_buffer(struct page *page, gfp_t mask)
4848 {
4849 struct extent_buffer *eb;
4850
4851 /*
4852 * We need to make sure noboody is attaching this page to an eb right
4853 * now.
4854 */
4855 spin_lock(&page->mapping->private_lock);
4856 if (!PagePrivate(page)) {
4857 spin_unlock(&page->mapping->private_lock);
4858 return 1;
4859 }
4860
4861 eb = (struct extent_buffer *)page->private;
4862 BUG_ON(!eb);
4863
4864 /*
4865 * This is a little awful but should be ok, we need to make sure that
4866 * the eb doesn't disappear out from under us while we're looking at
4867 * this page.
4868 */
4869 spin_lock(&eb->refs_lock);
4870 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4871 spin_unlock(&eb->refs_lock);
4872 spin_unlock(&page->mapping->private_lock);
4873 return 0;
4874 }
4875 spin_unlock(&page->mapping->private_lock);
4876
4877 if ((mask & GFP_NOFS) == GFP_NOFS)
4878 mask = GFP_NOFS;
4879
4880 /*
4881 * If tree ref isn't set then we know the ref on this eb is a real ref,
4882 * so just return, this page will likely be freed soon anyway.
4883 */
4884 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4885 spin_unlock(&eb->refs_lock);
4886 return 0;
4887 }
4888 release_extent_buffer(eb, mask);
4889
4890 return 1;
4891 }
This page took 0.128491 seconds and 4 git commands to generate.