Merge remote-tracking branches 'asoc/topic/ux500' and 'asoc/topic/wm8962' into asoc...
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30 return !RB_EMPTY_NODE(&state->rb_node);
31 }
32
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36
37 static DEFINE_SPINLOCK(leak_lock);
38
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47 }
48
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57 }
58
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
70 atomic_read(&state->refs));
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 struct inode *inode;
91 u64 isize;
92
93 if (!tree->mapping)
94 return;
95
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller, btrfs_ino(inode), isize, start, end);
102 }
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
109 #endif
110
111 #define BUFFER_LRU_MAX 64
112
113 struct tree_entry {
114 u64 start;
115 u64 end;
116 struct rb_node rb_node;
117 };
118
119 struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
132 };
133
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137 {
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
144 if (!set && (state->state & bits) == 0)
145 return;
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151 }
152
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157 if (!tree->mapping)
158 return NULL;
159 return btrfs_sb(tree->mapping->host->i_sb);
160 }
161
162 int __init extent_io_init(void)
163 {
164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state), 0,
166 SLAB_MEM_SPREAD, NULL);
167 if (!extent_state_cache)
168 return -ENOMEM;
169
170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer), 0,
172 SLAB_MEM_SPREAD, NULL);
173 if (!extent_buffer_cache)
174 goto free_state_cache;
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
184 return 0;
185
186 free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
190 free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
194 free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
196 extent_state_cache = NULL;
197 return -ENOMEM;
198 }
199
200 void extent_io_exit(void)
201 {
202 btrfs_leak_debug_check();
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
213 }
214
215 void extent_io_tree_init(struct extent_io_tree *tree,
216 struct address_space *mapping)
217 {
218 tree->state = RB_ROOT;
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
221 spin_lock_init(&tree->lock);
222 tree->mapping = mapping;
223 }
224
225 static struct extent_state *alloc_extent_state(gfp_t mask)
226 {
227 struct extent_state *state;
228
229 state = kmem_cache_alloc(extent_state_cache, mask);
230 if (!state)
231 return state;
232 state->state = 0;
233 state->failrec = NULL;
234 RB_CLEAR_NODE(&state->rb_node);
235 btrfs_leak_debug_add(&state->leak_list, &states);
236 atomic_set(&state->refs, 1);
237 init_waitqueue_head(&state->wq);
238 trace_alloc_extent_state(state, mask, _RET_IP_);
239 return state;
240 }
241
242 void free_extent_state(struct extent_state *state)
243 {
244 if (!state)
245 return;
246 if (atomic_dec_and_test(&state->refs)) {
247 WARN_ON(extent_state_in_tree(state));
248 btrfs_leak_debug_del(&state->leak_list);
249 trace_free_extent_state(state, _RET_IP_);
250 kmem_cache_free(extent_state_cache, state);
251 }
252 }
253
254 static struct rb_node *tree_insert(struct rb_root *root,
255 struct rb_node *search_start,
256 u64 offset,
257 struct rb_node *node,
258 struct rb_node ***p_in,
259 struct rb_node **parent_in)
260 {
261 struct rb_node **p;
262 struct rb_node *parent = NULL;
263 struct tree_entry *entry;
264
265 if (p_in && parent_in) {
266 p = *p_in;
267 parent = *parent_in;
268 goto do_insert;
269 }
270
271 p = search_start ? &search_start : &root->rb_node;
272 while (*p) {
273 parent = *p;
274 entry = rb_entry(parent, struct tree_entry, rb_node);
275
276 if (offset < entry->start)
277 p = &(*p)->rb_left;
278 else if (offset > entry->end)
279 p = &(*p)->rb_right;
280 else
281 return parent;
282 }
283
284 do_insert:
285 rb_link_node(node, parent, p);
286 rb_insert_color(node, root);
287 return NULL;
288 }
289
290 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
291 struct rb_node **prev_ret,
292 struct rb_node **next_ret,
293 struct rb_node ***p_ret,
294 struct rb_node **parent_ret)
295 {
296 struct rb_root *root = &tree->state;
297 struct rb_node **n = &root->rb_node;
298 struct rb_node *prev = NULL;
299 struct rb_node *orig_prev = NULL;
300 struct tree_entry *entry;
301 struct tree_entry *prev_entry = NULL;
302
303 while (*n) {
304 prev = *n;
305 entry = rb_entry(prev, struct tree_entry, rb_node);
306 prev_entry = entry;
307
308 if (offset < entry->start)
309 n = &(*n)->rb_left;
310 else if (offset > entry->end)
311 n = &(*n)->rb_right;
312 else
313 return *n;
314 }
315
316 if (p_ret)
317 *p_ret = n;
318 if (parent_ret)
319 *parent_ret = prev;
320
321 if (prev_ret) {
322 orig_prev = prev;
323 while (prev && offset > prev_entry->end) {
324 prev = rb_next(prev);
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 }
327 *prev_ret = prev;
328 prev = orig_prev;
329 }
330
331 if (next_ret) {
332 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
333 while (prev && offset < prev_entry->start) {
334 prev = rb_prev(prev);
335 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336 }
337 *next_ret = prev;
338 }
339 return NULL;
340 }
341
342 static inline struct rb_node *
343 tree_search_for_insert(struct extent_io_tree *tree,
344 u64 offset,
345 struct rb_node ***p_ret,
346 struct rb_node **parent_ret)
347 {
348 struct rb_node *prev = NULL;
349 struct rb_node *ret;
350
351 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
352 if (!ret)
353 return prev;
354 return ret;
355 }
356
357 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358 u64 offset)
359 {
360 return tree_search_for_insert(tree, offset, NULL, NULL);
361 }
362
363 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364 struct extent_state *other)
365 {
366 if (tree->ops && tree->ops->merge_extent_hook)
367 tree->ops->merge_extent_hook(tree->mapping->host, new,
368 other);
369 }
370
371 /*
372 * utility function to look for merge candidates inside a given range.
373 * Any extents with matching state are merged together into a single
374 * extent in the tree. Extents with EXTENT_IO in their state field
375 * are not merged because the end_io handlers need to be able to do
376 * operations on them without sleeping (or doing allocations/splits).
377 *
378 * This should be called with the tree lock held.
379 */
380 static void merge_state(struct extent_io_tree *tree,
381 struct extent_state *state)
382 {
383 struct extent_state *other;
384 struct rb_node *other_node;
385
386 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
387 return;
388
389 other_node = rb_prev(&state->rb_node);
390 if (other_node) {
391 other = rb_entry(other_node, struct extent_state, rb_node);
392 if (other->end == state->start - 1 &&
393 other->state == state->state) {
394 merge_cb(tree, state, other);
395 state->start = other->start;
396 rb_erase(&other->rb_node, &tree->state);
397 RB_CLEAR_NODE(&other->rb_node);
398 free_extent_state(other);
399 }
400 }
401 other_node = rb_next(&state->rb_node);
402 if (other_node) {
403 other = rb_entry(other_node, struct extent_state, rb_node);
404 if (other->start == state->end + 1 &&
405 other->state == state->state) {
406 merge_cb(tree, state, other);
407 state->end = other->end;
408 rb_erase(&other->rb_node, &tree->state);
409 RB_CLEAR_NODE(&other->rb_node);
410 free_extent_state(other);
411 }
412 }
413 }
414
415 static void set_state_cb(struct extent_io_tree *tree,
416 struct extent_state *state, unsigned *bits)
417 {
418 if (tree->ops && tree->ops->set_bit_hook)
419 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
420 }
421
422 static void clear_state_cb(struct extent_io_tree *tree,
423 struct extent_state *state, unsigned *bits)
424 {
425 if (tree->ops && tree->ops->clear_bit_hook)
426 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
427 }
428
429 static void set_state_bits(struct extent_io_tree *tree,
430 struct extent_state *state, unsigned *bits,
431 struct extent_changeset *changeset);
432
433 /*
434 * insert an extent_state struct into the tree. 'bits' are set on the
435 * struct before it is inserted.
436 *
437 * This may return -EEXIST if the extent is already there, in which case the
438 * state struct is freed.
439 *
440 * The tree lock is not taken internally. This is a utility function and
441 * probably isn't what you want to call (see set/clear_extent_bit).
442 */
443 static int insert_state(struct extent_io_tree *tree,
444 struct extent_state *state, u64 start, u64 end,
445 struct rb_node ***p,
446 struct rb_node **parent,
447 unsigned *bits, struct extent_changeset *changeset)
448 {
449 struct rb_node *node;
450
451 if (end < start)
452 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
453 end, start);
454 state->start = start;
455 state->end = end;
456
457 set_state_bits(tree, state, bits, changeset);
458
459 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
460 if (node) {
461 struct extent_state *found;
462 found = rb_entry(node, struct extent_state, rb_node);
463 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
464 "%llu %llu\n",
465 found->start, found->end, start, end);
466 return -EEXIST;
467 }
468 merge_state(tree, state);
469 return 0;
470 }
471
472 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
473 u64 split)
474 {
475 if (tree->ops && tree->ops->split_extent_hook)
476 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
477 }
478
479 /*
480 * split a given extent state struct in two, inserting the preallocated
481 * struct 'prealloc' as the newly created second half. 'split' indicates an
482 * offset inside 'orig' where it should be split.
483 *
484 * Before calling,
485 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
486 * are two extent state structs in the tree:
487 * prealloc: [orig->start, split - 1]
488 * orig: [ split, orig->end ]
489 *
490 * The tree locks are not taken by this function. They need to be held
491 * by the caller.
492 */
493 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
494 struct extent_state *prealloc, u64 split)
495 {
496 struct rb_node *node;
497
498 split_cb(tree, orig, split);
499
500 prealloc->start = orig->start;
501 prealloc->end = split - 1;
502 prealloc->state = orig->state;
503 orig->start = split;
504
505 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
506 &prealloc->rb_node, NULL, NULL);
507 if (node) {
508 free_extent_state(prealloc);
509 return -EEXIST;
510 }
511 return 0;
512 }
513
514 static struct extent_state *next_state(struct extent_state *state)
515 {
516 struct rb_node *next = rb_next(&state->rb_node);
517 if (next)
518 return rb_entry(next, struct extent_state, rb_node);
519 else
520 return NULL;
521 }
522
523 /*
524 * utility function to clear some bits in an extent state struct.
525 * it will optionally wake up any one waiting on this state (wake == 1).
526 *
527 * If no bits are set on the state struct after clearing things, the
528 * struct is freed and removed from the tree
529 */
530 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
531 struct extent_state *state,
532 unsigned *bits, int wake,
533 struct extent_changeset *changeset)
534 {
535 struct extent_state *next;
536 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
537
538 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
539 u64 range = state->end - state->start + 1;
540 WARN_ON(range > tree->dirty_bytes);
541 tree->dirty_bytes -= range;
542 }
543 clear_state_cb(tree, state, bits);
544 add_extent_changeset(state, bits_to_clear, changeset, 0);
545 state->state &= ~bits_to_clear;
546 if (wake)
547 wake_up(&state->wq);
548 if (state->state == 0) {
549 next = next_state(state);
550 if (extent_state_in_tree(state)) {
551 rb_erase(&state->rb_node, &tree->state);
552 RB_CLEAR_NODE(&state->rb_node);
553 free_extent_state(state);
554 } else {
555 WARN_ON(1);
556 }
557 } else {
558 merge_state(tree, state);
559 next = next_state(state);
560 }
561 return next;
562 }
563
564 static struct extent_state *
565 alloc_extent_state_atomic(struct extent_state *prealloc)
566 {
567 if (!prealloc)
568 prealloc = alloc_extent_state(GFP_ATOMIC);
569
570 return prealloc;
571 }
572
573 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
574 {
575 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
576 "Extent tree was modified by another "
577 "thread while locked.");
578 }
579
580 /*
581 * clear some bits on a range in the tree. This may require splitting
582 * or inserting elements in the tree, so the gfp mask is used to
583 * indicate which allocations or sleeping are allowed.
584 *
585 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
586 * the given range from the tree regardless of state (ie for truncate).
587 *
588 * the range [start, end] is inclusive.
589 *
590 * This takes the tree lock, and returns 0 on success and < 0 on error.
591 */
592 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
593 unsigned bits, int wake, int delete,
594 struct extent_state **cached_state,
595 gfp_t mask, struct extent_changeset *changeset)
596 {
597 struct extent_state *state;
598 struct extent_state *cached;
599 struct extent_state *prealloc = NULL;
600 struct rb_node *node;
601 u64 last_end;
602 int err;
603 int clear = 0;
604
605 btrfs_debug_check_extent_io_range(tree, start, end);
606
607 if (bits & EXTENT_DELALLOC)
608 bits |= EXTENT_NORESERVE;
609
610 if (delete)
611 bits |= ~EXTENT_CTLBITS;
612 bits |= EXTENT_FIRST_DELALLOC;
613
614 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
615 clear = 1;
616 again:
617 if (!prealloc && gfpflags_allow_blocking(mask)) {
618 /*
619 * Don't care for allocation failure here because we might end
620 * up not needing the pre-allocated extent state at all, which
621 * is the case if we only have in the tree extent states that
622 * cover our input range and don't cover too any other range.
623 * If we end up needing a new extent state we allocate it later.
624 */
625 prealloc = alloc_extent_state(mask);
626 }
627
628 spin_lock(&tree->lock);
629 if (cached_state) {
630 cached = *cached_state;
631
632 if (clear) {
633 *cached_state = NULL;
634 cached_state = NULL;
635 }
636
637 if (cached && extent_state_in_tree(cached) &&
638 cached->start <= start && cached->end > start) {
639 if (clear)
640 atomic_dec(&cached->refs);
641 state = cached;
642 goto hit_next;
643 }
644 if (clear)
645 free_extent_state(cached);
646 }
647 /*
648 * this search will find the extents that end after
649 * our range starts
650 */
651 node = tree_search(tree, start);
652 if (!node)
653 goto out;
654 state = rb_entry(node, struct extent_state, rb_node);
655 hit_next:
656 if (state->start > end)
657 goto out;
658 WARN_ON(state->end < start);
659 last_end = state->end;
660
661 /* the state doesn't have the wanted bits, go ahead */
662 if (!(state->state & bits)) {
663 state = next_state(state);
664 goto next;
665 }
666
667 /*
668 * | ---- desired range ---- |
669 * | state | or
670 * | ------------- state -------------- |
671 *
672 * We need to split the extent we found, and may flip
673 * bits on second half.
674 *
675 * If the extent we found extends past our range, we
676 * just split and search again. It'll get split again
677 * the next time though.
678 *
679 * If the extent we found is inside our range, we clear
680 * the desired bit on it.
681 */
682
683 if (state->start < start) {
684 prealloc = alloc_extent_state_atomic(prealloc);
685 BUG_ON(!prealloc);
686 err = split_state(tree, state, prealloc, start);
687 if (err)
688 extent_io_tree_panic(tree, err);
689
690 prealloc = NULL;
691 if (err)
692 goto out;
693 if (state->end <= end) {
694 state = clear_state_bit(tree, state, &bits, wake,
695 changeset);
696 goto next;
697 }
698 goto search_again;
699 }
700 /*
701 * | ---- desired range ---- |
702 * | state |
703 * We need to split the extent, and clear the bit
704 * on the first half
705 */
706 if (state->start <= end && state->end > end) {
707 prealloc = alloc_extent_state_atomic(prealloc);
708 BUG_ON(!prealloc);
709 err = split_state(tree, state, prealloc, end + 1);
710 if (err)
711 extent_io_tree_panic(tree, err);
712
713 if (wake)
714 wake_up(&state->wq);
715
716 clear_state_bit(tree, prealloc, &bits, wake, changeset);
717
718 prealloc = NULL;
719 goto out;
720 }
721
722 state = clear_state_bit(tree, state, &bits, wake, changeset);
723 next:
724 if (last_end == (u64)-1)
725 goto out;
726 start = last_end + 1;
727 if (start <= end && state && !need_resched())
728 goto hit_next;
729
730 search_again:
731 if (start > end)
732 goto out;
733 spin_unlock(&tree->lock);
734 if (gfpflags_allow_blocking(mask))
735 cond_resched();
736 goto again;
737
738 out:
739 spin_unlock(&tree->lock);
740 if (prealloc)
741 free_extent_state(prealloc);
742
743 return 0;
744
745 }
746
747 static void wait_on_state(struct extent_io_tree *tree,
748 struct extent_state *state)
749 __releases(tree->lock)
750 __acquires(tree->lock)
751 {
752 DEFINE_WAIT(wait);
753 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
754 spin_unlock(&tree->lock);
755 schedule();
756 spin_lock(&tree->lock);
757 finish_wait(&state->wq, &wait);
758 }
759
760 /*
761 * waits for one or more bits to clear on a range in the state tree.
762 * The range [start, end] is inclusive.
763 * The tree lock is taken by this function
764 */
765 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
766 unsigned long bits)
767 {
768 struct extent_state *state;
769 struct rb_node *node;
770
771 btrfs_debug_check_extent_io_range(tree, start, end);
772
773 spin_lock(&tree->lock);
774 again:
775 while (1) {
776 /*
777 * this search will find all the extents that end after
778 * our range starts
779 */
780 node = tree_search(tree, start);
781 process_node:
782 if (!node)
783 break;
784
785 state = rb_entry(node, struct extent_state, rb_node);
786
787 if (state->start > end)
788 goto out;
789
790 if (state->state & bits) {
791 start = state->start;
792 atomic_inc(&state->refs);
793 wait_on_state(tree, state);
794 free_extent_state(state);
795 goto again;
796 }
797 start = state->end + 1;
798
799 if (start > end)
800 break;
801
802 if (!cond_resched_lock(&tree->lock)) {
803 node = rb_next(node);
804 goto process_node;
805 }
806 }
807 out:
808 spin_unlock(&tree->lock);
809 }
810
811 static void set_state_bits(struct extent_io_tree *tree,
812 struct extent_state *state,
813 unsigned *bits, struct extent_changeset *changeset)
814 {
815 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
816
817 set_state_cb(tree, state, bits);
818 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
819 u64 range = state->end - state->start + 1;
820 tree->dirty_bytes += range;
821 }
822 add_extent_changeset(state, bits_to_set, changeset, 1);
823 state->state |= bits_to_set;
824 }
825
826 static void cache_state_if_flags(struct extent_state *state,
827 struct extent_state **cached_ptr,
828 unsigned flags)
829 {
830 if (cached_ptr && !(*cached_ptr)) {
831 if (!flags || (state->state & flags)) {
832 *cached_ptr = state;
833 atomic_inc(&state->refs);
834 }
835 }
836 }
837
838 static void cache_state(struct extent_state *state,
839 struct extent_state **cached_ptr)
840 {
841 return cache_state_if_flags(state, cached_ptr,
842 EXTENT_IOBITS | EXTENT_BOUNDARY);
843 }
844
845 /*
846 * set some bits on a range in the tree. This may require allocations or
847 * sleeping, so the gfp mask is used to indicate what is allowed.
848 *
849 * If any of the exclusive bits are set, this will fail with -EEXIST if some
850 * part of the range already has the desired bits set. The start of the
851 * existing range is returned in failed_start in this case.
852 *
853 * [start, end] is inclusive This takes the tree lock.
854 */
855
856 static int __must_check
857 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
858 unsigned bits, unsigned exclusive_bits,
859 u64 *failed_start, struct extent_state **cached_state,
860 gfp_t mask, struct extent_changeset *changeset)
861 {
862 struct extent_state *state;
863 struct extent_state *prealloc = NULL;
864 struct rb_node *node;
865 struct rb_node **p;
866 struct rb_node *parent;
867 int err = 0;
868 u64 last_start;
869 u64 last_end;
870
871 btrfs_debug_check_extent_io_range(tree, start, end);
872
873 bits |= EXTENT_FIRST_DELALLOC;
874 again:
875 if (!prealloc && gfpflags_allow_blocking(mask)) {
876 /*
877 * Don't care for allocation failure here because we might end
878 * up not needing the pre-allocated extent state at all, which
879 * is the case if we only have in the tree extent states that
880 * cover our input range and don't cover too any other range.
881 * If we end up needing a new extent state we allocate it later.
882 */
883 prealloc = alloc_extent_state(mask);
884 }
885
886 spin_lock(&tree->lock);
887 if (cached_state && *cached_state) {
888 state = *cached_state;
889 if (state->start <= start && state->end > start &&
890 extent_state_in_tree(state)) {
891 node = &state->rb_node;
892 goto hit_next;
893 }
894 }
895 /*
896 * this search will find all the extents that end after
897 * our range starts.
898 */
899 node = tree_search_for_insert(tree, start, &p, &parent);
900 if (!node) {
901 prealloc = alloc_extent_state_atomic(prealloc);
902 BUG_ON(!prealloc);
903 err = insert_state(tree, prealloc, start, end,
904 &p, &parent, &bits, changeset);
905 if (err)
906 extent_io_tree_panic(tree, err);
907
908 cache_state(prealloc, cached_state);
909 prealloc = NULL;
910 goto out;
911 }
912 state = rb_entry(node, struct extent_state, rb_node);
913 hit_next:
914 last_start = state->start;
915 last_end = state->end;
916
917 /*
918 * | ---- desired range ---- |
919 * | state |
920 *
921 * Just lock what we found and keep going
922 */
923 if (state->start == start && state->end <= end) {
924 if (state->state & exclusive_bits) {
925 *failed_start = state->start;
926 err = -EEXIST;
927 goto out;
928 }
929
930 set_state_bits(tree, state, &bits, changeset);
931 cache_state(state, cached_state);
932 merge_state(tree, state);
933 if (last_end == (u64)-1)
934 goto out;
935 start = last_end + 1;
936 state = next_state(state);
937 if (start < end && state && state->start == start &&
938 !need_resched())
939 goto hit_next;
940 goto search_again;
941 }
942
943 /*
944 * | ---- desired range ---- |
945 * | state |
946 * or
947 * | ------------- state -------------- |
948 *
949 * We need to split the extent we found, and may flip bits on
950 * second half.
951 *
952 * If the extent we found extends past our
953 * range, we just split and search again. It'll get split
954 * again the next time though.
955 *
956 * If the extent we found is inside our range, we set the
957 * desired bit on it.
958 */
959 if (state->start < start) {
960 if (state->state & exclusive_bits) {
961 *failed_start = start;
962 err = -EEXIST;
963 goto out;
964 }
965
966 prealloc = alloc_extent_state_atomic(prealloc);
967 BUG_ON(!prealloc);
968 err = split_state(tree, state, prealloc, start);
969 if (err)
970 extent_io_tree_panic(tree, err);
971
972 prealloc = NULL;
973 if (err)
974 goto out;
975 if (state->end <= end) {
976 set_state_bits(tree, state, &bits, changeset);
977 cache_state(state, cached_state);
978 merge_state(tree, state);
979 if (last_end == (u64)-1)
980 goto out;
981 start = last_end + 1;
982 state = next_state(state);
983 if (start < end && state && state->start == start &&
984 !need_resched())
985 goto hit_next;
986 }
987 goto search_again;
988 }
989 /*
990 * | ---- desired range ---- |
991 * | state | or | state |
992 *
993 * There's a hole, we need to insert something in it and
994 * ignore the extent we found.
995 */
996 if (state->start > start) {
997 u64 this_end;
998 if (end < last_start)
999 this_end = end;
1000 else
1001 this_end = last_start - 1;
1002
1003 prealloc = alloc_extent_state_atomic(prealloc);
1004 BUG_ON(!prealloc);
1005
1006 /*
1007 * Avoid to free 'prealloc' if it can be merged with
1008 * the later extent.
1009 */
1010 err = insert_state(tree, prealloc, start, this_end,
1011 NULL, NULL, &bits, changeset);
1012 if (err)
1013 extent_io_tree_panic(tree, err);
1014
1015 cache_state(prealloc, cached_state);
1016 prealloc = NULL;
1017 start = this_end + 1;
1018 goto search_again;
1019 }
1020 /*
1021 * | ---- desired range ---- |
1022 * | state |
1023 * We need to split the extent, and set the bit
1024 * on the first half
1025 */
1026 if (state->start <= end && state->end > end) {
1027 if (state->state & exclusive_bits) {
1028 *failed_start = start;
1029 err = -EEXIST;
1030 goto out;
1031 }
1032
1033 prealloc = alloc_extent_state_atomic(prealloc);
1034 BUG_ON(!prealloc);
1035 err = split_state(tree, state, prealloc, end + 1);
1036 if (err)
1037 extent_io_tree_panic(tree, err);
1038
1039 set_state_bits(tree, prealloc, &bits, changeset);
1040 cache_state(prealloc, cached_state);
1041 merge_state(tree, prealloc);
1042 prealloc = NULL;
1043 goto out;
1044 }
1045
1046 search_again:
1047 if (start > end)
1048 goto out;
1049 spin_unlock(&tree->lock);
1050 if (gfpflags_allow_blocking(mask))
1051 cond_resched();
1052 goto again;
1053
1054 out:
1055 spin_unlock(&tree->lock);
1056 if (prealloc)
1057 free_extent_state(prealloc);
1058
1059 return err;
1060
1061 }
1062
1063 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1064 unsigned bits, u64 * failed_start,
1065 struct extent_state **cached_state, gfp_t mask)
1066 {
1067 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1068 cached_state, mask, NULL);
1069 }
1070
1071
1072 /**
1073 * convert_extent_bit - convert all bits in a given range from one bit to
1074 * another
1075 * @tree: the io tree to search
1076 * @start: the start offset in bytes
1077 * @end: the end offset in bytes (inclusive)
1078 * @bits: the bits to set in this range
1079 * @clear_bits: the bits to clear in this range
1080 * @cached_state: state that we're going to cache
1081 *
1082 * This will go through and set bits for the given range. If any states exist
1083 * already in this range they are set with the given bit and cleared of the
1084 * clear_bits. This is only meant to be used by things that are mergeable, ie
1085 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1086 * boundary bits like LOCK.
1087 *
1088 * All allocations are done with GFP_NOFS.
1089 */
1090 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1091 unsigned bits, unsigned clear_bits,
1092 struct extent_state **cached_state)
1093 {
1094 struct extent_state *state;
1095 struct extent_state *prealloc = NULL;
1096 struct rb_node *node;
1097 struct rb_node **p;
1098 struct rb_node *parent;
1099 int err = 0;
1100 u64 last_start;
1101 u64 last_end;
1102 bool first_iteration = true;
1103
1104 btrfs_debug_check_extent_io_range(tree, start, end);
1105
1106 again:
1107 if (!prealloc) {
1108 /*
1109 * Best effort, don't worry if extent state allocation fails
1110 * here for the first iteration. We might have a cached state
1111 * that matches exactly the target range, in which case no
1112 * extent state allocations are needed. We'll only know this
1113 * after locking the tree.
1114 */
1115 prealloc = alloc_extent_state(GFP_NOFS);
1116 if (!prealloc && !first_iteration)
1117 return -ENOMEM;
1118 }
1119
1120 spin_lock(&tree->lock);
1121 if (cached_state && *cached_state) {
1122 state = *cached_state;
1123 if (state->start <= start && state->end > start &&
1124 extent_state_in_tree(state)) {
1125 node = &state->rb_node;
1126 goto hit_next;
1127 }
1128 }
1129
1130 /*
1131 * this search will find all the extents that end after
1132 * our range starts.
1133 */
1134 node = tree_search_for_insert(tree, start, &p, &parent);
1135 if (!node) {
1136 prealloc = alloc_extent_state_atomic(prealloc);
1137 if (!prealloc) {
1138 err = -ENOMEM;
1139 goto out;
1140 }
1141 err = insert_state(tree, prealloc, start, end,
1142 &p, &parent, &bits, NULL);
1143 if (err)
1144 extent_io_tree_panic(tree, err);
1145 cache_state(prealloc, cached_state);
1146 prealloc = NULL;
1147 goto out;
1148 }
1149 state = rb_entry(node, struct extent_state, rb_node);
1150 hit_next:
1151 last_start = state->start;
1152 last_end = state->end;
1153
1154 /*
1155 * | ---- desired range ---- |
1156 * | state |
1157 *
1158 * Just lock what we found and keep going
1159 */
1160 if (state->start == start && state->end <= end) {
1161 set_state_bits(tree, state, &bits, NULL);
1162 cache_state(state, cached_state);
1163 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1164 if (last_end == (u64)-1)
1165 goto out;
1166 start = last_end + 1;
1167 if (start < end && state && state->start == start &&
1168 !need_resched())
1169 goto hit_next;
1170 goto search_again;
1171 }
1172
1173 /*
1174 * | ---- desired range ---- |
1175 * | state |
1176 * or
1177 * | ------------- state -------------- |
1178 *
1179 * We need to split the extent we found, and may flip bits on
1180 * second half.
1181 *
1182 * If the extent we found extends past our
1183 * range, we just split and search again. It'll get split
1184 * again the next time though.
1185 *
1186 * If the extent we found is inside our range, we set the
1187 * desired bit on it.
1188 */
1189 if (state->start < start) {
1190 prealloc = alloc_extent_state_atomic(prealloc);
1191 if (!prealloc) {
1192 err = -ENOMEM;
1193 goto out;
1194 }
1195 err = split_state(tree, state, prealloc, start);
1196 if (err)
1197 extent_io_tree_panic(tree, err);
1198 prealloc = NULL;
1199 if (err)
1200 goto out;
1201 if (state->end <= end) {
1202 set_state_bits(tree, state, &bits, NULL);
1203 cache_state(state, cached_state);
1204 state = clear_state_bit(tree, state, &clear_bits, 0,
1205 NULL);
1206 if (last_end == (u64)-1)
1207 goto out;
1208 start = last_end + 1;
1209 if (start < end && state && state->start == start &&
1210 !need_resched())
1211 goto hit_next;
1212 }
1213 goto search_again;
1214 }
1215 /*
1216 * | ---- desired range ---- |
1217 * | state | or | state |
1218 *
1219 * There's a hole, we need to insert something in it and
1220 * ignore the extent we found.
1221 */
1222 if (state->start > start) {
1223 u64 this_end;
1224 if (end < last_start)
1225 this_end = end;
1226 else
1227 this_end = last_start - 1;
1228
1229 prealloc = alloc_extent_state_atomic(prealloc);
1230 if (!prealloc) {
1231 err = -ENOMEM;
1232 goto out;
1233 }
1234
1235 /*
1236 * Avoid to free 'prealloc' if it can be merged with
1237 * the later extent.
1238 */
1239 err = insert_state(tree, prealloc, start, this_end,
1240 NULL, NULL, &bits, NULL);
1241 if (err)
1242 extent_io_tree_panic(tree, err);
1243 cache_state(prealloc, cached_state);
1244 prealloc = NULL;
1245 start = this_end + 1;
1246 goto search_again;
1247 }
1248 /*
1249 * | ---- desired range ---- |
1250 * | state |
1251 * We need to split the extent, and set the bit
1252 * on the first half
1253 */
1254 if (state->start <= end && state->end > end) {
1255 prealloc = alloc_extent_state_atomic(prealloc);
1256 if (!prealloc) {
1257 err = -ENOMEM;
1258 goto out;
1259 }
1260
1261 err = split_state(tree, state, prealloc, end + 1);
1262 if (err)
1263 extent_io_tree_panic(tree, err);
1264
1265 set_state_bits(tree, prealloc, &bits, NULL);
1266 cache_state(prealloc, cached_state);
1267 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1268 prealloc = NULL;
1269 goto out;
1270 }
1271
1272 search_again:
1273 if (start > end)
1274 goto out;
1275 spin_unlock(&tree->lock);
1276 cond_resched();
1277 first_iteration = false;
1278 goto again;
1279
1280 out:
1281 spin_unlock(&tree->lock);
1282 if (prealloc)
1283 free_extent_state(prealloc);
1284
1285 return err;
1286 }
1287
1288 /* wrappers around set/clear extent bit */
1289 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1290 unsigned bits, struct extent_changeset *changeset)
1291 {
1292 /*
1293 * We don't support EXTENT_LOCKED yet, as current changeset will
1294 * record any bits changed, so for EXTENT_LOCKED case, it will
1295 * either fail with -EEXIST or changeset will record the whole
1296 * range.
1297 */
1298 BUG_ON(bits & EXTENT_LOCKED);
1299
1300 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1301 changeset);
1302 }
1303
1304 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1305 unsigned bits, int wake, int delete,
1306 struct extent_state **cached, gfp_t mask)
1307 {
1308 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1309 cached, mask, NULL);
1310 }
1311
1312 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1313 unsigned bits, struct extent_changeset *changeset)
1314 {
1315 /*
1316 * Don't support EXTENT_LOCKED case, same reason as
1317 * set_record_extent_bits().
1318 */
1319 BUG_ON(bits & EXTENT_LOCKED);
1320
1321 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1322 changeset);
1323 }
1324
1325 /*
1326 * either insert or lock state struct between start and end use mask to tell
1327 * us if waiting is desired.
1328 */
1329 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1330 struct extent_state **cached_state)
1331 {
1332 int err;
1333 u64 failed_start;
1334
1335 while (1) {
1336 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1337 EXTENT_LOCKED, &failed_start,
1338 cached_state, GFP_NOFS, NULL);
1339 if (err == -EEXIST) {
1340 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1341 start = failed_start;
1342 } else
1343 break;
1344 WARN_ON(start > end);
1345 }
1346 return err;
1347 }
1348
1349 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1350 {
1351 int err;
1352 u64 failed_start;
1353
1354 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1355 &failed_start, NULL, GFP_NOFS, NULL);
1356 if (err == -EEXIST) {
1357 if (failed_start > start)
1358 clear_extent_bit(tree, start, failed_start - 1,
1359 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1360 return 0;
1361 }
1362 return 1;
1363 }
1364
1365 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1366 {
1367 unsigned long index = start >> PAGE_SHIFT;
1368 unsigned long end_index = end >> PAGE_SHIFT;
1369 struct page *page;
1370
1371 while (index <= end_index) {
1372 page = find_get_page(inode->i_mapping, index);
1373 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1374 clear_page_dirty_for_io(page);
1375 put_page(page);
1376 index++;
1377 }
1378 }
1379
1380 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1381 {
1382 unsigned long index = start >> PAGE_SHIFT;
1383 unsigned long end_index = end >> PAGE_SHIFT;
1384 struct page *page;
1385
1386 while (index <= end_index) {
1387 page = find_get_page(inode->i_mapping, index);
1388 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1389 __set_page_dirty_nobuffers(page);
1390 account_page_redirty(page);
1391 put_page(page);
1392 index++;
1393 }
1394 }
1395
1396 /*
1397 * helper function to set both pages and extents in the tree writeback
1398 */
1399 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1400 {
1401 unsigned long index = start >> PAGE_SHIFT;
1402 unsigned long end_index = end >> PAGE_SHIFT;
1403 struct page *page;
1404
1405 while (index <= end_index) {
1406 page = find_get_page(tree->mapping, index);
1407 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1408 set_page_writeback(page);
1409 put_page(page);
1410 index++;
1411 }
1412 }
1413
1414 /* find the first state struct with 'bits' set after 'start', and
1415 * return it. tree->lock must be held. NULL will returned if
1416 * nothing was found after 'start'
1417 */
1418 static struct extent_state *
1419 find_first_extent_bit_state(struct extent_io_tree *tree,
1420 u64 start, unsigned bits)
1421 {
1422 struct rb_node *node;
1423 struct extent_state *state;
1424
1425 /*
1426 * this search will find all the extents that end after
1427 * our range starts.
1428 */
1429 node = tree_search(tree, start);
1430 if (!node)
1431 goto out;
1432
1433 while (1) {
1434 state = rb_entry(node, struct extent_state, rb_node);
1435 if (state->end >= start && (state->state & bits))
1436 return state;
1437
1438 node = rb_next(node);
1439 if (!node)
1440 break;
1441 }
1442 out:
1443 return NULL;
1444 }
1445
1446 /*
1447 * find the first offset in the io tree with 'bits' set. zero is
1448 * returned if we find something, and *start_ret and *end_ret are
1449 * set to reflect the state struct that was found.
1450 *
1451 * If nothing was found, 1 is returned. If found something, return 0.
1452 */
1453 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1454 u64 *start_ret, u64 *end_ret, unsigned bits,
1455 struct extent_state **cached_state)
1456 {
1457 struct extent_state *state;
1458 struct rb_node *n;
1459 int ret = 1;
1460
1461 spin_lock(&tree->lock);
1462 if (cached_state && *cached_state) {
1463 state = *cached_state;
1464 if (state->end == start - 1 && extent_state_in_tree(state)) {
1465 n = rb_next(&state->rb_node);
1466 while (n) {
1467 state = rb_entry(n, struct extent_state,
1468 rb_node);
1469 if (state->state & bits)
1470 goto got_it;
1471 n = rb_next(n);
1472 }
1473 free_extent_state(*cached_state);
1474 *cached_state = NULL;
1475 goto out;
1476 }
1477 free_extent_state(*cached_state);
1478 *cached_state = NULL;
1479 }
1480
1481 state = find_first_extent_bit_state(tree, start, bits);
1482 got_it:
1483 if (state) {
1484 cache_state_if_flags(state, cached_state, 0);
1485 *start_ret = state->start;
1486 *end_ret = state->end;
1487 ret = 0;
1488 }
1489 out:
1490 spin_unlock(&tree->lock);
1491 return ret;
1492 }
1493
1494 /*
1495 * find a contiguous range of bytes in the file marked as delalloc, not
1496 * more than 'max_bytes'. start and end are used to return the range,
1497 *
1498 * 1 is returned if we find something, 0 if nothing was in the tree
1499 */
1500 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1501 u64 *start, u64 *end, u64 max_bytes,
1502 struct extent_state **cached_state)
1503 {
1504 struct rb_node *node;
1505 struct extent_state *state;
1506 u64 cur_start = *start;
1507 u64 found = 0;
1508 u64 total_bytes = 0;
1509
1510 spin_lock(&tree->lock);
1511
1512 /*
1513 * this search will find all the extents that end after
1514 * our range starts.
1515 */
1516 node = tree_search(tree, cur_start);
1517 if (!node) {
1518 if (!found)
1519 *end = (u64)-1;
1520 goto out;
1521 }
1522
1523 while (1) {
1524 state = rb_entry(node, struct extent_state, rb_node);
1525 if (found && (state->start != cur_start ||
1526 (state->state & EXTENT_BOUNDARY))) {
1527 goto out;
1528 }
1529 if (!(state->state & EXTENT_DELALLOC)) {
1530 if (!found)
1531 *end = state->end;
1532 goto out;
1533 }
1534 if (!found) {
1535 *start = state->start;
1536 *cached_state = state;
1537 atomic_inc(&state->refs);
1538 }
1539 found++;
1540 *end = state->end;
1541 cur_start = state->end + 1;
1542 node = rb_next(node);
1543 total_bytes += state->end - state->start + 1;
1544 if (total_bytes >= max_bytes)
1545 break;
1546 if (!node)
1547 break;
1548 }
1549 out:
1550 spin_unlock(&tree->lock);
1551 return found;
1552 }
1553
1554 static noinline void __unlock_for_delalloc(struct inode *inode,
1555 struct page *locked_page,
1556 u64 start, u64 end)
1557 {
1558 int ret;
1559 struct page *pages[16];
1560 unsigned long index = start >> PAGE_SHIFT;
1561 unsigned long end_index = end >> PAGE_SHIFT;
1562 unsigned long nr_pages = end_index - index + 1;
1563 int i;
1564
1565 if (index == locked_page->index && end_index == index)
1566 return;
1567
1568 while (nr_pages > 0) {
1569 ret = find_get_pages_contig(inode->i_mapping, index,
1570 min_t(unsigned long, nr_pages,
1571 ARRAY_SIZE(pages)), pages);
1572 for (i = 0; i < ret; i++) {
1573 if (pages[i] != locked_page)
1574 unlock_page(pages[i]);
1575 put_page(pages[i]);
1576 }
1577 nr_pages -= ret;
1578 index += ret;
1579 cond_resched();
1580 }
1581 }
1582
1583 static noinline int lock_delalloc_pages(struct inode *inode,
1584 struct page *locked_page,
1585 u64 delalloc_start,
1586 u64 delalloc_end)
1587 {
1588 unsigned long index = delalloc_start >> PAGE_SHIFT;
1589 unsigned long start_index = index;
1590 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1591 unsigned long pages_locked = 0;
1592 struct page *pages[16];
1593 unsigned long nrpages;
1594 int ret;
1595 int i;
1596
1597 /* the caller is responsible for locking the start index */
1598 if (index == locked_page->index && index == end_index)
1599 return 0;
1600
1601 /* skip the page at the start index */
1602 nrpages = end_index - index + 1;
1603 while (nrpages > 0) {
1604 ret = find_get_pages_contig(inode->i_mapping, index,
1605 min_t(unsigned long,
1606 nrpages, ARRAY_SIZE(pages)), pages);
1607 if (ret == 0) {
1608 ret = -EAGAIN;
1609 goto done;
1610 }
1611 /* now we have an array of pages, lock them all */
1612 for (i = 0; i < ret; i++) {
1613 /*
1614 * the caller is taking responsibility for
1615 * locked_page
1616 */
1617 if (pages[i] != locked_page) {
1618 lock_page(pages[i]);
1619 if (!PageDirty(pages[i]) ||
1620 pages[i]->mapping != inode->i_mapping) {
1621 ret = -EAGAIN;
1622 unlock_page(pages[i]);
1623 put_page(pages[i]);
1624 goto done;
1625 }
1626 }
1627 put_page(pages[i]);
1628 pages_locked++;
1629 }
1630 nrpages -= ret;
1631 index += ret;
1632 cond_resched();
1633 }
1634 ret = 0;
1635 done:
1636 if (ret && pages_locked) {
1637 __unlock_for_delalloc(inode, locked_page,
1638 delalloc_start,
1639 ((u64)(start_index + pages_locked - 1)) <<
1640 PAGE_SHIFT);
1641 }
1642 return ret;
1643 }
1644
1645 /*
1646 * find a contiguous range of bytes in the file marked as delalloc, not
1647 * more than 'max_bytes'. start and end are used to return the range,
1648 *
1649 * 1 is returned if we find something, 0 if nothing was in the tree
1650 */
1651 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1652 struct extent_io_tree *tree,
1653 struct page *locked_page, u64 *start,
1654 u64 *end, u64 max_bytes)
1655 {
1656 u64 delalloc_start;
1657 u64 delalloc_end;
1658 u64 found;
1659 struct extent_state *cached_state = NULL;
1660 int ret;
1661 int loops = 0;
1662
1663 again:
1664 /* step one, find a bunch of delalloc bytes starting at start */
1665 delalloc_start = *start;
1666 delalloc_end = 0;
1667 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1668 max_bytes, &cached_state);
1669 if (!found || delalloc_end <= *start) {
1670 *start = delalloc_start;
1671 *end = delalloc_end;
1672 free_extent_state(cached_state);
1673 return 0;
1674 }
1675
1676 /*
1677 * start comes from the offset of locked_page. We have to lock
1678 * pages in order, so we can't process delalloc bytes before
1679 * locked_page
1680 */
1681 if (delalloc_start < *start)
1682 delalloc_start = *start;
1683
1684 /*
1685 * make sure to limit the number of pages we try to lock down
1686 */
1687 if (delalloc_end + 1 - delalloc_start > max_bytes)
1688 delalloc_end = delalloc_start + max_bytes - 1;
1689
1690 /* step two, lock all the pages after the page that has start */
1691 ret = lock_delalloc_pages(inode, locked_page,
1692 delalloc_start, delalloc_end);
1693 if (ret == -EAGAIN) {
1694 /* some of the pages are gone, lets avoid looping by
1695 * shortening the size of the delalloc range we're searching
1696 */
1697 free_extent_state(cached_state);
1698 cached_state = NULL;
1699 if (!loops) {
1700 max_bytes = PAGE_SIZE;
1701 loops = 1;
1702 goto again;
1703 } else {
1704 found = 0;
1705 goto out_failed;
1706 }
1707 }
1708 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1709
1710 /* step three, lock the state bits for the whole range */
1711 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1712
1713 /* then test to make sure it is all still delalloc */
1714 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1715 EXTENT_DELALLOC, 1, cached_state);
1716 if (!ret) {
1717 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1718 &cached_state, GFP_NOFS);
1719 __unlock_for_delalloc(inode, locked_page,
1720 delalloc_start, delalloc_end);
1721 cond_resched();
1722 goto again;
1723 }
1724 free_extent_state(cached_state);
1725 *start = delalloc_start;
1726 *end = delalloc_end;
1727 out_failed:
1728 return found;
1729 }
1730
1731 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1732 struct page *locked_page,
1733 unsigned clear_bits,
1734 unsigned long page_ops)
1735 {
1736 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1737 int ret;
1738 struct page *pages[16];
1739 unsigned long index = start >> PAGE_SHIFT;
1740 unsigned long end_index = end >> PAGE_SHIFT;
1741 unsigned long nr_pages = end_index - index + 1;
1742 int i;
1743
1744 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1745 if (page_ops == 0)
1746 return;
1747
1748 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1749 mapping_set_error(inode->i_mapping, -EIO);
1750
1751 while (nr_pages > 0) {
1752 ret = find_get_pages_contig(inode->i_mapping, index,
1753 min_t(unsigned long,
1754 nr_pages, ARRAY_SIZE(pages)), pages);
1755 for (i = 0; i < ret; i++) {
1756
1757 if (page_ops & PAGE_SET_PRIVATE2)
1758 SetPagePrivate2(pages[i]);
1759
1760 if (pages[i] == locked_page) {
1761 put_page(pages[i]);
1762 continue;
1763 }
1764 if (page_ops & PAGE_CLEAR_DIRTY)
1765 clear_page_dirty_for_io(pages[i]);
1766 if (page_ops & PAGE_SET_WRITEBACK)
1767 set_page_writeback(pages[i]);
1768 if (page_ops & PAGE_SET_ERROR)
1769 SetPageError(pages[i]);
1770 if (page_ops & PAGE_END_WRITEBACK)
1771 end_page_writeback(pages[i]);
1772 if (page_ops & PAGE_UNLOCK)
1773 unlock_page(pages[i]);
1774 put_page(pages[i]);
1775 }
1776 nr_pages -= ret;
1777 index += ret;
1778 cond_resched();
1779 }
1780 }
1781
1782 /*
1783 * count the number of bytes in the tree that have a given bit(s)
1784 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1785 * cached. The total number found is returned.
1786 */
1787 u64 count_range_bits(struct extent_io_tree *tree,
1788 u64 *start, u64 search_end, u64 max_bytes,
1789 unsigned bits, int contig)
1790 {
1791 struct rb_node *node;
1792 struct extent_state *state;
1793 u64 cur_start = *start;
1794 u64 total_bytes = 0;
1795 u64 last = 0;
1796 int found = 0;
1797
1798 if (WARN_ON(search_end <= cur_start))
1799 return 0;
1800
1801 spin_lock(&tree->lock);
1802 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1803 total_bytes = tree->dirty_bytes;
1804 goto out;
1805 }
1806 /*
1807 * this search will find all the extents that end after
1808 * our range starts.
1809 */
1810 node = tree_search(tree, cur_start);
1811 if (!node)
1812 goto out;
1813
1814 while (1) {
1815 state = rb_entry(node, struct extent_state, rb_node);
1816 if (state->start > search_end)
1817 break;
1818 if (contig && found && state->start > last + 1)
1819 break;
1820 if (state->end >= cur_start && (state->state & bits) == bits) {
1821 total_bytes += min(search_end, state->end) + 1 -
1822 max(cur_start, state->start);
1823 if (total_bytes >= max_bytes)
1824 break;
1825 if (!found) {
1826 *start = max(cur_start, state->start);
1827 found = 1;
1828 }
1829 last = state->end;
1830 } else if (contig && found) {
1831 break;
1832 }
1833 node = rb_next(node);
1834 if (!node)
1835 break;
1836 }
1837 out:
1838 spin_unlock(&tree->lock);
1839 return total_bytes;
1840 }
1841
1842 /*
1843 * set the private field for a given byte offset in the tree. If there isn't
1844 * an extent_state there already, this does nothing.
1845 */
1846 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1847 struct io_failure_record *failrec)
1848 {
1849 struct rb_node *node;
1850 struct extent_state *state;
1851 int ret = 0;
1852
1853 spin_lock(&tree->lock);
1854 /*
1855 * this search will find all the extents that end after
1856 * our range starts.
1857 */
1858 node = tree_search(tree, start);
1859 if (!node) {
1860 ret = -ENOENT;
1861 goto out;
1862 }
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1865 ret = -ENOENT;
1866 goto out;
1867 }
1868 state->failrec = failrec;
1869 out:
1870 spin_unlock(&tree->lock);
1871 return ret;
1872 }
1873
1874 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1875 struct io_failure_record **failrec)
1876 {
1877 struct rb_node *node;
1878 struct extent_state *state;
1879 int ret = 0;
1880
1881 spin_lock(&tree->lock);
1882 /*
1883 * this search will find all the extents that end after
1884 * our range starts.
1885 */
1886 node = tree_search(tree, start);
1887 if (!node) {
1888 ret = -ENOENT;
1889 goto out;
1890 }
1891 state = rb_entry(node, struct extent_state, rb_node);
1892 if (state->start != start) {
1893 ret = -ENOENT;
1894 goto out;
1895 }
1896 *failrec = state->failrec;
1897 out:
1898 spin_unlock(&tree->lock);
1899 return ret;
1900 }
1901
1902 /*
1903 * searches a range in the state tree for a given mask.
1904 * If 'filled' == 1, this returns 1 only if every extent in the tree
1905 * has the bits set. Otherwise, 1 is returned if any bit in the
1906 * range is found set.
1907 */
1908 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1909 unsigned bits, int filled, struct extent_state *cached)
1910 {
1911 struct extent_state *state = NULL;
1912 struct rb_node *node;
1913 int bitset = 0;
1914
1915 spin_lock(&tree->lock);
1916 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1917 cached->end > start)
1918 node = &cached->rb_node;
1919 else
1920 node = tree_search(tree, start);
1921 while (node && start <= end) {
1922 state = rb_entry(node, struct extent_state, rb_node);
1923
1924 if (filled && state->start > start) {
1925 bitset = 0;
1926 break;
1927 }
1928
1929 if (state->start > end)
1930 break;
1931
1932 if (state->state & bits) {
1933 bitset = 1;
1934 if (!filled)
1935 break;
1936 } else if (filled) {
1937 bitset = 0;
1938 break;
1939 }
1940
1941 if (state->end == (u64)-1)
1942 break;
1943
1944 start = state->end + 1;
1945 if (start > end)
1946 break;
1947 node = rb_next(node);
1948 if (!node) {
1949 if (filled)
1950 bitset = 0;
1951 break;
1952 }
1953 }
1954 spin_unlock(&tree->lock);
1955 return bitset;
1956 }
1957
1958 /*
1959 * helper function to set a given page up to date if all the
1960 * extents in the tree for that page are up to date
1961 */
1962 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1963 {
1964 u64 start = page_offset(page);
1965 u64 end = start + PAGE_SIZE - 1;
1966 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1967 SetPageUptodate(page);
1968 }
1969
1970 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1971 {
1972 int ret;
1973 int err = 0;
1974 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1975
1976 set_state_failrec(failure_tree, rec->start, NULL);
1977 ret = clear_extent_bits(failure_tree, rec->start,
1978 rec->start + rec->len - 1,
1979 EXTENT_LOCKED | EXTENT_DIRTY);
1980 if (ret)
1981 err = ret;
1982
1983 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1984 rec->start + rec->len - 1,
1985 EXTENT_DAMAGED);
1986 if (ret && !err)
1987 err = ret;
1988
1989 kfree(rec);
1990 return err;
1991 }
1992
1993 /*
1994 * this bypasses the standard btrfs submit functions deliberately, as
1995 * the standard behavior is to write all copies in a raid setup. here we only
1996 * want to write the one bad copy. so we do the mapping for ourselves and issue
1997 * submit_bio directly.
1998 * to avoid any synchronization issues, wait for the data after writing, which
1999 * actually prevents the read that triggered the error from finishing.
2000 * currently, there can be no more than two copies of every data bit. thus,
2001 * exactly one rewrite is required.
2002 */
2003 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2004 struct page *page, unsigned int pg_offset, int mirror_num)
2005 {
2006 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2007 struct bio *bio;
2008 struct btrfs_device *dev;
2009 u64 map_length = 0;
2010 u64 sector;
2011 struct btrfs_bio *bbio = NULL;
2012 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2013 int ret;
2014
2015 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2016 BUG_ON(!mirror_num);
2017
2018 /* we can't repair anything in raid56 yet */
2019 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2020 return 0;
2021
2022 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2023 if (!bio)
2024 return -EIO;
2025 bio->bi_iter.bi_size = 0;
2026 map_length = length;
2027
2028 /*
2029 * Avoid races with device replace and make sure our bbio has devices
2030 * associated to its stripes that don't go away while we are doing the
2031 * read repair operation.
2032 */
2033 btrfs_bio_counter_inc_blocked(fs_info);
2034 ret = btrfs_map_block(fs_info, WRITE, logical,
2035 &map_length, &bbio, mirror_num);
2036 if (ret) {
2037 btrfs_bio_counter_dec(fs_info);
2038 bio_put(bio);
2039 return -EIO;
2040 }
2041 BUG_ON(mirror_num != bbio->mirror_num);
2042 sector = bbio->stripes[mirror_num-1].physical >> 9;
2043 bio->bi_iter.bi_sector = sector;
2044 dev = bbio->stripes[mirror_num-1].dev;
2045 btrfs_put_bbio(bbio);
2046 if (!dev || !dev->bdev || !dev->writeable) {
2047 btrfs_bio_counter_dec(fs_info);
2048 bio_put(bio);
2049 return -EIO;
2050 }
2051 bio->bi_bdev = dev->bdev;
2052 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_SYNC);
2053 bio_add_page(bio, page, length, pg_offset);
2054
2055 if (btrfsic_submit_bio_wait(bio)) {
2056 /* try to remap that extent elsewhere? */
2057 btrfs_bio_counter_dec(fs_info);
2058 bio_put(bio);
2059 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2060 return -EIO;
2061 }
2062
2063 btrfs_info_rl_in_rcu(fs_info,
2064 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2065 btrfs_ino(inode), start,
2066 rcu_str_deref(dev->name), sector);
2067 btrfs_bio_counter_dec(fs_info);
2068 bio_put(bio);
2069 return 0;
2070 }
2071
2072 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2073 int mirror_num)
2074 {
2075 u64 start = eb->start;
2076 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2077 int ret = 0;
2078
2079 if (root->fs_info->sb->s_flags & MS_RDONLY)
2080 return -EROFS;
2081
2082 for (i = 0; i < num_pages; i++) {
2083 struct page *p = eb->pages[i];
2084
2085 ret = repair_io_failure(root->fs_info->btree_inode, start,
2086 PAGE_SIZE, start, p,
2087 start - page_offset(p), mirror_num);
2088 if (ret)
2089 break;
2090 start += PAGE_SIZE;
2091 }
2092
2093 return ret;
2094 }
2095
2096 /*
2097 * each time an IO finishes, we do a fast check in the IO failure tree
2098 * to see if we need to process or clean up an io_failure_record
2099 */
2100 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2101 unsigned int pg_offset)
2102 {
2103 u64 private;
2104 struct io_failure_record *failrec;
2105 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2106 struct extent_state *state;
2107 int num_copies;
2108 int ret;
2109
2110 private = 0;
2111 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2112 (u64)-1, 1, EXTENT_DIRTY, 0);
2113 if (!ret)
2114 return 0;
2115
2116 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2117 &failrec);
2118 if (ret)
2119 return 0;
2120
2121 BUG_ON(!failrec->this_mirror);
2122
2123 if (failrec->in_validation) {
2124 /* there was no real error, just free the record */
2125 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2126 failrec->start);
2127 goto out;
2128 }
2129 if (fs_info->sb->s_flags & MS_RDONLY)
2130 goto out;
2131
2132 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2133 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2134 failrec->start,
2135 EXTENT_LOCKED);
2136 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2137
2138 if (state && state->start <= failrec->start &&
2139 state->end >= failrec->start + failrec->len - 1) {
2140 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2141 failrec->len);
2142 if (num_copies > 1) {
2143 repair_io_failure(inode, start, failrec->len,
2144 failrec->logical, page,
2145 pg_offset, failrec->failed_mirror);
2146 }
2147 }
2148
2149 out:
2150 free_io_failure(inode, failrec);
2151
2152 return 0;
2153 }
2154
2155 /*
2156 * Can be called when
2157 * - hold extent lock
2158 * - under ordered extent
2159 * - the inode is freeing
2160 */
2161 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2162 {
2163 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2164 struct io_failure_record *failrec;
2165 struct extent_state *state, *next;
2166
2167 if (RB_EMPTY_ROOT(&failure_tree->state))
2168 return;
2169
2170 spin_lock(&failure_tree->lock);
2171 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2172 while (state) {
2173 if (state->start > end)
2174 break;
2175
2176 ASSERT(state->end <= end);
2177
2178 next = next_state(state);
2179
2180 failrec = state->failrec;
2181 free_extent_state(state);
2182 kfree(failrec);
2183
2184 state = next;
2185 }
2186 spin_unlock(&failure_tree->lock);
2187 }
2188
2189 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2190 struct io_failure_record **failrec_ret)
2191 {
2192 struct io_failure_record *failrec;
2193 struct extent_map *em;
2194 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2195 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2196 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2197 int ret;
2198 u64 logical;
2199
2200 ret = get_state_failrec(failure_tree, start, &failrec);
2201 if (ret) {
2202 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2203 if (!failrec)
2204 return -ENOMEM;
2205
2206 failrec->start = start;
2207 failrec->len = end - start + 1;
2208 failrec->this_mirror = 0;
2209 failrec->bio_flags = 0;
2210 failrec->in_validation = 0;
2211
2212 read_lock(&em_tree->lock);
2213 em = lookup_extent_mapping(em_tree, start, failrec->len);
2214 if (!em) {
2215 read_unlock(&em_tree->lock);
2216 kfree(failrec);
2217 return -EIO;
2218 }
2219
2220 if (em->start > start || em->start + em->len <= start) {
2221 free_extent_map(em);
2222 em = NULL;
2223 }
2224 read_unlock(&em_tree->lock);
2225 if (!em) {
2226 kfree(failrec);
2227 return -EIO;
2228 }
2229
2230 logical = start - em->start;
2231 logical = em->block_start + logical;
2232 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2233 logical = em->block_start;
2234 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2235 extent_set_compress_type(&failrec->bio_flags,
2236 em->compress_type);
2237 }
2238
2239 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2240 logical, start, failrec->len);
2241
2242 failrec->logical = logical;
2243 free_extent_map(em);
2244
2245 /* set the bits in the private failure tree */
2246 ret = set_extent_bits(failure_tree, start, end,
2247 EXTENT_LOCKED | EXTENT_DIRTY);
2248 if (ret >= 0)
2249 ret = set_state_failrec(failure_tree, start, failrec);
2250 /* set the bits in the inode's tree */
2251 if (ret >= 0)
2252 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2253 if (ret < 0) {
2254 kfree(failrec);
2255 return ret;
2256 }
2257 } else {
2258 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2259 failrec->logical, failrec->start, failrec->len,
2260 failrec->in_validation);
2261 /*
2262 * when data can be on disk more than twice, add to failrec here
2263 * (e.g. with a list for failed_mirror) to make
2264 * clean_io_failure() clean all those errors at once.
2265 */
2266 }
2267
2268 *failrec_ret = failrec;
2269
2270 return 0;
2271 }
2272
2273 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2274 struct io_failure_record *failrec, int failed_mirror)
2275 {
2276 int num_copies;
2277
2278 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2279 failrec->logical, failrec->len);
2280 if (num_copies == 1) {
2281 /*
2282 * we only have a single copy of the data, so don't bother with
2283 * all the retry and error correction code that follows. no
2284 * matter what the error is, it is very likely to persist.
2285 */
2286 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2287 num_copies, failrec->this_mirror, failed_mirror);
2288 return 0;
2289 }
2290
2291 /*
2292 * there are two premises:
2293 * a) deliver good data to the caller
2294 * b) correct the bad sectors on disk
2295 */
2296 if (failed_bio->bi_vcnt > 1) {
2297 /*
2298 * to fulfill b), we need to know the exact failing sectors, as
2299 * we don't want to rewrite any more than the failed ones. thus,
2300 * we need separate read requests for the failed bio
2301 *
2302 * if the following BUG_ON triggers, our validation request got
2303 * merged. we need separate requests for our algorithm to work.
2304 */
2305 BUG_ON(failrec->in_validation);
2306 failrec->in_validation = 1;
2307 failrec->this_mirror = failed_mirror;
2308 } else {
2309 /*
2310 * we're ready to fulfill a) and b) alongside. get a good copy
2311 * of the failed sector and if we succeed, we have setup
2312 * everything for repair_io_failure to do the rest for us.
2313 */
2314 if (failrec->in_validation) {
2315 BUG_ON(failrec->this_mirror != failed_mirror);
2316 failrec->in_validation = 0;
2317 failrec->this_mirror = 0;
2318 }
2319 failrec->failed_mirror = failed_mirror;
2320 failrec->this_mirror++;
2321 if (failrec->this_mirror == failed_mirror)
2322 failrec->this_mirror++;
2323 }
2324
2325 if (failrec->this_mirror > num_copies) {
2326 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2327 num_copies, failrec->this_mirror, failed_mirror);
2328 return 0;
2329 }
2330
2331 return 1;
2332 }
2333
2334
2335 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2336 struct io_failure_record *failrec,
2337 struct page *page, int pg_offset, int icsum,
2338 bio_end_io_t *endio_func, void *data)
2339 {
2340 struct bio *bio;
2341 struct btrfs_io_bio *btrfs_failed_bio;
2342 struct btrfs_io_bio *btrfs_bio;
2343
2344 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2345 if (!bio)
2346 return NULL;
2347
2348 bio->bi_end_io = endio_func;
2349 bio->bi_iter.bi_sector = failrec->logical >> 9;
2350 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2351 bio->bi_iter.bi_size = 0;
2352 bio->bi_private = data;
2353
2354 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2355 if (btrfs_failed_bio->csum) {
2356 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2357 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2358
2359 btrfs_bio = btrfs_io_bio(bio);
2360 btrfs_bio->csum = btrfs_bio->csum_inline;
2361 icsum *= csum_size;
2362 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2363 csum_size);
2364 }
2365
2366 bio_add_page(bio, page, failrec->len, pg_offset);
2367
2368 return bio;
2369 }
2370
2371 /*
2372 * this is a generic handler for readpage errors (default
2373 * readpage_io_failed_hook). if other copies exist, read those and write back
2374 * good data to the failed position. does not investigate in remapping the
2375 * failed extent elsewhere, hoping the device will be smart enough to do this as
2376 * needed
2377 */
2378
2379 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2380 struct page *page, u64 start, u64 end,
2381 int failed_mirror)
2382 {
2383 struct io_failure_record *failrec;
2384 struct inode *inode = page->mapping->host;
2385 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2386 struct bio *bio;
2387 int read_mode;
2388 int ret;
2389
2390 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2391
2392 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2393 if (ret)
2394 return ret;
2395
2396 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2397 if (!ret) {
2398 free_io_failure(inode, failrec);
2399 return -EIO;
2400 }
2401
2402 if (failed_bio->bi_vcnt > 1)
2403 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2404 else
2405 read_mode = READ_SYNC;
2406
2407 phy_offset >>= inode->i_sb->s_blocksize_bits;
2408 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2409 start - page_offset(page),
2410 (int)phy_offset, failed_bio->bi_end_io,
2411 NULL);
2412 if (!bio) {
2413 free_io_failure(inode, failrec);
2414 return -EIO;
2415 }
2416 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2417
2418 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2419 read_mode, failrec->this_mirror, failrec->in_validation);
2420
2421 ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
2422 failrec->bio_flags, 0);
2423 if (ret) {
2424 free_io_failure(inode, failrec);
2425 bio_put(bio);
2426 }
2427
2428 return ret;
2429 }
2430
2431 /* lots and lots of room for performance fixes in the end_bio funcs */
2432
2433 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2434 {
2435 int uptodate = (err == 0);
2436 struct extent_io_tree *tree;
2437 int ret = 0;
2438
2439 tree = &BTRFS_I(page->mapping->host)->io_tree;
2440
2441 if (tree->ops && tree->ops->writepage_end_io_hook) {
2442 ret = tree->ops->writepage_end_io_hook(page, start,
2443 end, NULL, uptodate);
2444 if (ret)
2445 uptodate = 0;
2446 }
2447
2448 if (!uptodate) {
2449 ClearPageUptodate(page);
2450 SetPageError(page);
2451 ret = ret < 0 ? ret : -EIO;
2452 mapping_set_error(page->mapping, ret);
2453 }
2454 }
2455
2456 /*
2457 * after a writepage IO is done, we need to:
2458 * clear the uptodate bits on error
2459 * clear the writeback bits in the extent tree for this IO
2460 * end_page_writeback if the page has no more pending IO
2461 *
2462 * Scheduling is not allowed, so the extent state tree is expected
2463 * to have one and only one object corresponding to this IO.
2464 */
2465 static void end_bio_extent_writepage(struct bio *bio)
2466 {
2467 struct bio_vec *bvec;
2468 u64 start;
2469 u64 end;
2470 int i;
2471
2472 bio_for_each_segment_all(bvec, bio, i) {
2473 struct page *page = bvec->bv_page;
2474
2475 /* We always issue full-page reads, but if some block
2476 * in a page fails to read, blk_update_request() will
2477 * advance bv_offset and adjust bv_len to compensate.
2478 * Print a warning for nonzero offsets, and an error
2479 * if they don't add up to a full page. */
2480 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2481 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2482 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2483 "partial page write in btrfs with offset %u and length %u",
2484 bvec->bv_offset, bvec->bv_len);
2485 else
2486 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2487 "incomplete page write in btrfs with offset %u and "
2488 "length %u",
2489 bvec->bv_offset, bvec->bv_len);
2490 }
2491
2492 start = page_offset(page);
2493 end = start + bvec->bv_offset + bvec->bv_len - 1;
2494
2495 end_extent_writepage(page, bio->bi_error, start, end);
2496 end_page_writeback(page);
2497 }
2498
2499 bio_put(bio);
2500 }
2501
2502 static void
2503 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2504 int uptodate)
2505 {
2506 struct extent_state *cached = NULL;
2507 u64 end = start + len - 1;
2508
2509 if (uptodate && tree->track_uptodate)
2510 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2511 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2512 }
2513
2514 /*
2515 * after a readpage IO is done, we need to:
2516 * clear the uptodate bits on error
2517 * set the uptodate bits if things worked
2518 * set the page up to date if all extents in the tree are uptodate
2519 * clear the lock bit in the extent tree
2520 * unlock the page if there are no other extents locked for it
2521 *
2522 * Scheduling is not allowed, so the extent state tree is expected
2523 * to have one and only one object corresponding to this IO.
2524 */
2525 static void end_bio_extent_readpage(struct bio *bio)
2526 {
2527 struct bio_vec *bvec;
2528 int uptodate = !bio->bi_error;
2529 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2530 struct extent_io_tree *tree;
2531 u64 offset = 0;
2532 u64 start;
2533 u64 end;
2534 u64 len;
2535 u64 extent_start = 0;
2536 u64 extent_len = 0;
2537 int mirror;
2538 int ret;
2539 int i;
2540
2541 bio_for_each_segment_all(bvec, bio, i) {
2542 struct page *page = bvec->bv_page;
2543 struct inode *inode = page->mapping->host;
2544
2545 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2546 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2547 bio->bi_error, io_bio->mirror_num);
2548 tree = &BTRFS_I(inode)->io_tree;
2549
2550 /* We always issue full-page reads, but if some block
2551 * in a page fails to read, blk_update_request() will
2552 * advance bv_offset and adjust bv_len to compensate.
2553 * Print a warning for nonzero offsets, and an error
2554 * if they don't add up to a full page. */
2555 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2556 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2557 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2558 "partial page read in btrfs with offset %u and length %u",
2559 bvec->bv_offset, bvec->bv_len);
2560 else
2561 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2562 "incomplete page read in btrfs with offset %u and "
2563 "length %u",
2564 bvec->bv_offset, bvec->bv_len);
2565 }
2566
2567 start = page_offset(page);
2568 end = start + bvec->bv_offset + bvec->bv_len - 1;
2569 len = bvec->bv_len;
2570
2571 mirror = io_bio->mirror_num;
2572 if (likely(uptodate && tree->ops &&
2573 tree->ops->readpage_end_io_hook)) {
2574 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2575 page, start, end,
2576 mirror);
2577 if (ret)
2578 uptodate = 0;
2579 else
2580 clean_io_failure(inode, start, page, 0);
2581 }
2582
2583 if (likely(uptodate))
2584 goto readpage_ok;
2585
2586 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2587 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2588 if (!ret && !bio->bi_error)
2589 uptodate = 1;
2590 } else {
2591 /*
2592 * The generic bio_readpage_error handles errors the
2593 * following way: If possible, new read requests are
2594 * created and submitted and will end up in
2595 * end_bio_extent_readpage as well (if we're lucky, not
2596 * in the !uptodate case). In that case it returns 0 and
2597 * we just go on with the next page in our bio. If it
2598 * can't handle the error it will return -EIO and we
2599 * remain responsible for that page.
2600 */
2601 ret = bio_readpage_error(bio, offset, page, start, end,
2602 mirror);
2603 if (ret == 0) {
2604 uptodate = !bio->bi_error;
2605 offset += len;
2606 continue;
2607 }
2608 }
2609 readpage_ok:
2610 if (likely(uptodate)) {
2611 loff_t i_size = i_size_read(inode);
2612 pgoff_t end_index = i_size >> PAGE_SHIFT;
2613 unsigned off;
2614
2615 /* Zero out the end if this page straddles i_size */
2616 off = i_size & (PAGE_SIZE-1);
2617 if (page->index == end_index && off)
2618 zero_user_segment(page, off, PAGE_SIZE);
2619 SetPageUptodate(page);
2620 } else {
2621 ClearPageUptodate(page);
2622 SetPageError(page);
2623 }
2624 unlock_page(page);
2625 offset += len;
2626
2627 if (unlikely(!uptodate)) {
2628 if (extent_len) {
2629 endio_readpage_release_extent(tree,
2630 extent_start,
2631 extent_len, 1);
2632 extent_start = 0;
2633 extent_len = 0;
2634 }
2635 endio_readpage_release_extent(tree, start,
2636 end - start + 1, 0);
2637 } else if (!extent_len) {
2638 extent_start = start;
2639 extent_len = end + 1 - start;
2640 } else if (extent_start + extent_len == start) {
2641 extent_len += end + 1 - start;
2642 } else {
2643 endio_readpage_release_extent(tree, extent_start,
2644 extent_len, uptodate);
2645 extent_start = start;
2646 extent_len = end + 1 - start;
2647 }
2648 }
2649
2650 if (extent_len)
2651 endio_readpage_release_extent(tree, extent_start, extent_len,
2652 uptodate);
2653 if (io_bio->end_io)
2654 io_bio->end_io(io_bio, bio->bi_error);
2655 bio_put(bio);
2656 }
2657
2658 /*
2659 * this allocates from the btrfs_bioset. We're returning a bio right now
2660 * but you can call btrfs_io_bio for the appropriate container_of magic
2661 */
2662 struct bio *
2663 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2664 gfp_t gfp_flags)
2665 {
2666 struct btrfs_io_bio *btrfs_bio;
2667 struct bio *bio;
2668
2669 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2670
2671 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2672 while (!bio && (nr_vecs /= 2)) {
2673 bio = bio_alloc_bioset(gfp_flags,
2674 nr_vecs, btrfs_bioset);
2675 }
2676 }
2677
2678 if (bio) {
2679 bio->bi_bdev = bdev;
2680 bio->bi_iter.bi_sector = first_sector;
2681 btrfs_bio = btrfs_io_bio(bio);
2682 btrfs_bio->csum = NULL;
2683 btrfs_bio->csum_allocated = NULL;
2684 btrfs_bio->end_io = NULL;
2685 }
2686 return bio;
2687 }
2688
2689 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2690 {
2691 struct btrfs_io_bio *btrfs_bio;
2692 struct bio *new;
2693
2694 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2695 if (new) {
2696 btrfs_bio = btrfs_io_bio(new);
2697 btrfs_bio->csum = NULL;
2698 btrfs_bio->csum_allocated = NULL;
2699 btrfs_bio->end_io = NULL;
2700 }
2701 return new;
2702 }
2703
2704 /* this also allocates from the btrfs_bioset */
2705 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2706 {
2707 struct btrfs_io_bio *btrfs_bio;
2708 struct bio *bio;
2709
2710 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2711 if (bio) {
2712 btrfs_bio = btrfs_io_bio(bio);
2713 btrfs_bio->csum = NULL;
2714 btrfs_bio->csum_allocated = NULL;
2715 btrfs_bio->end_io = NULL;
2716 }
2717 return bio;
2718 }
2719
2720
2721 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2722 unsigned long bio_flags)
2723 {
2724 int ret = 0;
2725 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2726 struct page *page = bvec->bv_page;
2727 struct extent_io_tree *tree = bio->bi_private;
2728 u64 start;
2729
2730 start = page_offset(page) + bvec->bv_offset;
2731
2732 bio->bi_private = NULL;
2733 bio_get(bio);
2734
2735 if (tree->ops && tree->ops->submit_bio_hook)
2736 ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
2737 mirror_num, bio_flags, start);
2738 else
2739 btrfsic_submit_bio(bio);
2740
2741 bio_put(bio);
2742 return ret;
2743 }
2744
2745 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2746 unsigned long offset, size_t size, struct bio *bio,
2747 unsigned long bio_flags)
2748 {
2749 int ret = 0;
2750 if (tree->ops && tree->ops->merge_bio_hook)
2751 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2752 bio_flags);
2753 return ret;
2754
2755 }
2756
2757 static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2758 struct writeback_control *wbc,
2759 struct page *page, sector_t sector,
2760 size_t size, unsigned long offset,
2761 struct block_device *bdev,
2762 struct bio **bio_ret,
2763 unsigned long max_pages,
2764 bio_end_io_t end_io_func,
2765 int mirror_num,
2766 unsigned long prev_bio_flags,
2767 unsigned long bio_flags,
2768 bool force_bio_submit)
2769 {
2770 int ret = 0;
2771 struct bio *bio;
2772 int contig = 0;
2773 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2774 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2775
2776 if (bio_ret && *bio_ret) {
2777 bio = *bio_ret;
2778 if (old_compressed)
2779 contig = bio->bi_iter.bi_sector == sector;
2780 else
2781 contig = bio_end_sector(bio) == sector;
2782
2783 if (prev_bio_flags != bio_flags || !contig ||
2784 force_bio_submit ||
2785 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2786 bio_add_page(bio, page, page_size, offset) < page_size) {
2787 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2788 if (ret < 0) {
2789 *bio_ret = NULL;
2790 return ret;
2791 }
2792 bio = NULL;
2793 } else {
2794 if (wbc)
2795 wbc_account_io(wbc, page, page_size);
2796 return 0;
2797 }
2798 }
2799
2800 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2801 GFP_NOFS | __GFP_HIGH);
2802 if (!bio)
2803 return -ENOMEM;
2804
2805 bio_add_page(bio, page, page_size, offset);
2806 bio->bi_end_io = end_io_func;
2807 bio->bi_private = tree;
2808 bio_set_op_attrs(bio, op, op_flags);
2809 if (wbc) {
2810 wbc_init_bio(wbc, bio);
2811 wbc_account_io(wbc, page, page_size);
2812 }
2813
2814 if (bio_ret)
2815 *bio_ret = bio;
2816 else
2817 ret = submit_one_bio(bio, mirror_num, bio_flags);
2818
2819 return ret;
2820 }
2821
2822 static void attach_extent_buffer_page(struct extent_buffer *eb,
2823 struct page *page)
2824 {
2825 if (!PagePrivate(page)) {
2826 SetPagePrivate(page);
2827 get_page(page);
2828 set_page_private(page, (unsigned long)eb);
2829 } else {
2830 WARN_ON(page->private != (unsigned long)eb);
2831 }
2832 }
2833
2834 void set_page_extent_mapped(struct page *page)
2835 {
2836 if (!PagePrivate(page)) {
2837 SetPagePrivate(page);
2838 get_page(page);
2839 set_page_private(page, EXTENT_PAGE_PRIVATE);
2840 }
2841 }
2842
2843 static struct extent_map *
2844 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2845 u64 start, u64 len, get_extent_t *get_extent,
2846 struct extent_map **em_cached)
2847 {
2848 struct extent_map *em;
2849
2850 if (em_cached && *em_cached) {
2851 em = *em_cached;
2852 if (extent_map_in_tree(em) && start >= em->start &&
2853 start < extent_map_end(em)) {
2854 atomic_inc(&em->refs);
2855 return em;
2856 }
2857
2858 free_extent_map(em);
2859 *em_cached = NULL;
2860 }
2861
2862 em = get_extent(inode, page, pg_offset, start, len, 0);
2863 if (em_cached && !IS_ERR_OR_NULL(em)) {
2864 BUG_ON(*em_cached);
2865 atomic_inc(&em->refs);
2866 *em_cached = em;
2867 }
2868 return em;
2869 }
2870 /*
2871 * basic readpage implementation. Locked extent state structs are inserted
2872 * into the tree that are removed when the IO is done (by the end_io
2873 * handlers)
2874 * XXX JDM: This needs looking at to ensure proper page locking
2875 * return 0 on success, otherwise return error
2876 */
2877 static int __do_readpage(struct extent_io_tree *tree,
2878 struct page *page,
2879 get_extent_t *get_extent,
2880 struct extent_map **em_cached,
2881 struct bio **bio, int mirror_num,
2882 unsigned long *bio_flags, int read_flags,
2883 u64 *prev_em_start)
2884 {
2885 struct inode *inode = page->mapping->host;
2886 u64 start = page_offset(page);
2887 u64 page_end = start + PAGE_SIZE - 1;
2888 u64 end;
2889 u64 cur = start;
2890 u64 extent_offset;
2891 u64 last_byte = i_size_read(inode);
2892 u64 block_start;
2893 u64 cur_end;
2894 sector_t sector;
2895 struct extent_map *em;
2896 struct block_device *bdev;
2897 int ret = 0;
2898 int nr = 0;
2899 size_t pg_offset = 0;
2900 size_t iosize;
2901 size_t disk_io_size;
2902 size_t blocksize = inode->i_sb->s_blocksize;
2903 unsigned long this_bio_flag = 0;
2904
2905 set_page_extent_mapped(page);
2906
2907 end = page_end;
2908 if (!PageUptodate(page)) {
2909 if (cleancache_get_page(page) == 0) {
2910 BUG_ON(blocksize != PAGE_SIZE);
2911 unlock_extent(tree, start, end);
2912 goto out;
2913 }
2914 }
2915
2916 if (page->index == last_byte >> PAGE_SHIFT) {
2917 char *userpage;
2918 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2919
2920 if (zero_offset) {
2921 iosize = PAGE_SIZE - zero_offset;
2922 userpage = kmap_atomic(page);
2923 memset(userpage + zero_offset, 0, iosize);
2924 flush_dcache_page(page);
2925 kunmap_atomic(userpage);
2926 }
2927 }
2928 while (cur <= end) {
2929 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
2930 bool force_bio_submit = false;
2931
2932 if (cur >= last_byte) {
2933 char *userpage;
2934 struct extent_state *cached = NULL;
2935
2936 iosize = PAGE_SIZE - pg_offset;
2937 userpage = kmap_atomic(page);
2938 memset(userpage + pg_offset, 0, iosize);
2939 flush_dcache_page(page);
2940 kunmap_atomic(userpage);
2941 set_extent_uptodate(tree, cur, cur + iosize - 1,
2942 &cached, GFP_NOFS);
2943 unlock_extent_cached(tree, cur,
2944 cur + iosize - 1,
2945 &cached, GFP_NOFS);
2946 break;
2947 }
2948 em = __get_extent_map(inode, page, pg_offset, cur,
2949 end - cur + 1, get_extent, em_cached);
2950 if (IS_ERR_OR_NULL(em)) {
2951 SetPageError(page);
2952 unlock_extent(tree, cur, end);
2953 break;
2954 }
2955 extent_offset = cur - em->start;
2956 BUG_ON(extent_map_end(em) <= cur);
2957 BUG_ON(end < cur);
2958
2959 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2960 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2961 extent_set_compress_type(&this_bio_flag,
2962 em->compress_type);
2963 }
2964
2965 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2966 cur_end = min(extent_map_end(em) - 1, end);
2967 iosize = ALIGN(iosize, blocksize);
2968 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2969 disk_io_size = em->block_len;
2970 sector = em->block_start >> 9;
2971 } else {
2972 sector = (em->block_start + extent_offset) >> 9;
2973 disk_io_size = iosize;
2974 }
2975 bdev = em->bdev;
2976 block_start = em->block_start;
2977 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2978 block_start = EXTENT_MAP_HOLE;
2979
2980 /*
2981 * If we have a file range that points to a compressed extent
2982 * and it's followed by a consecutive file range that points to
2983 * to the same compressed extent (possibly with a different
2984 * offset and/or length, so it either points to the whole extent
2985 * or only part of it), we must make sure we do not submit a
2986 * single bio to populate the pages for the 2 ranges because
2987 * this makes the compressed extent read zero out the pages
2988 * belonging to the 2nd range. Imagine the following scenario:
2989 *
2990 * File layout
2991 * [0 - 8K] [8K - 24K]
2992 * | |
2993 * | |
2994 * points to extent X, points to extent X,
2995 * offset 4K, length of 8K offset 0, length 16K
2996 *
2997 * [extent X, compressed length = 4K uncompressed length = 16K]
2998 *
2999 * If the bio to read the compressed extent covers both ranges,
3000 * it will decompress extent X into the pages belonging to the
3001 * first range and then it will stop, zeroing out the remaining
3002 * pages that belong to the other range that points to extent X.
3003 * So here we make sure we submit 2 bios, one for the first
3004 * range and another one for the third range. Both will target
3005 * the same physical extent from disk, but we can't currently
3006 * make the compressed bio endio callback populate the pages
3007 * for both ranges because each compressed bio is tightly
3008 * coupled with a single extent map, and each range can have
3009 * an extent map with a different offset value relative to the
3010 * uncompressed data of our extent and different lengths. This
3011 * is a corner case so we prioritize correctness over
3012 * non-optimal behavior (submitting 2 bios for the same extent).
3013 */
3014 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3015 prev_em_start && *prev_em_start != (u64)-1 &&
3016 *prev_em_start != em->orig_start)
3017 force_bio_submit = true;
3018
3019 if (prev_em_start)
3020 *prev_em_start = em->orig_start;
3021
3022 free_extent_map(em);
3023 em = NULL;
3024
3025 /* we've found a hole, just zero and go on */
3026 if (block_start == EXTENT_MAP_HOLE) {
3027 char *userpage;
3028 struct extent_state *cached = NULL;
3029
3030 userpage = kmap_atomic(page);
3031 memset(userpage + pg_offset, 0, iosize);
3032 flush_dcache_page(page);
3033 kunmap_atomic(userpage);
3034
3035 set_extent_uptodate(tree, cur, cur + iosize - 1,
3036 &cached, GFP_NOFS);
3037 unlock_extent_cached(tree, cur,
3038 cur + iosize - 1,
3039 &cached, GFP_NOFS);
3040 cur = cur + iosize;
3041 pg_offset += iosize;
3042 continue;
3043 }
3044 /* the get_extent function already copied into the page */
3045 if (test_range_bit(tree, cur, cur_end,
3046 EXTENT_UPTODATE, 1, NULL)) {
3047 check_page_uptodate(tree, page);
3048 unlock_extent(tree, cur, cur + iosize - 1);
3049 cur = cur + iosize;
3050 pg_offset += iosize;
3051 continue;
3052 }
3053 /* we have an inline extent but it didn't get marked up
3054 * to date. Error out
3055 */
3056 if (block_start == EXTENT_MAP_INLINE) {
3057 SetPageError(page);
3058 unlock_extent(tree, cur, cur + iosize - 1);
3059 cur = cur + iosize;
3060 pg_offset += iosize;
3061 continue;
3062 }
3063
3064 pnr -= page->index;
3065 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3066 page, sector, disk_io_size, pg_offset,
3067 bdev, bio, pnr,
3068 end_bio_extent_readpage, mirror_num,
3069 *bio_flags,
3070 this_bio_flag,
3071 force_bio_submit);
3072 if (!ret) {
3073 nr++;
3074 *bio_flags = this_bio_flag;
3075 } else {
3076 SetPageError(page);
3077 unlock_extent(tree, cur, cur + iosize - 1);
3078 goto out;
3079 }
3080 cur = cur + iosize;
3081 pg_offset += iosize;
3082 }
3083 out:
3084 if (!nr) {
3085 if (!PageError(page))
3086 SetPageUptodate(page);
3087 unlock_page(page);
3088 }
3089 return ret;
3090 }
3091
3092 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3093 struct page *pages[], int nr_pages,
3094 u64 start, u64 end,
3095 get_extent_t *get_extent,
3096 struct extent_map **em_cached,
3097 struct bio **bio, int mirror_num,
3098 unsigned long *bio_flags,
3099 u64 *prev_em_start)
3100 {
3101 struct inode *inode;
3102 struct btrfs_ordered_extent *ordered;
3103 int index;
3104
3105 inode = pages[0]->mapping->host;
3106 while (1) {
3107 lock_extent(tree, start, end);
3108 ordered = btrfs_lookup_ordered_range(inode, start,
3109 end - start + 1);
3110 if (!ordered)
3111 break;
3112 unlock_extent(tree, start, end);
3113 btrfs_start_ordered_extent(inode, ordered, 1);
3114 btrfs_put_ordered_extent(ordered);
3115 }
3116
3117 for (index = 0; index < nr_pages; index++) {
3118 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3119 mirror_num, bio_flags, 0, prev_em_start);
3120 put_page(pages[index]);
3121 }
3122 }
3123
3124 static void __extent_readpages(struct extent_io_tree *tree,
3125 struct page *pages[],
3126 int nr_pages, get_extent_t *get_extent,
3127 struct extent_map **em_cached,
3128 struct bio **bio, int mirror_num,
3129 unsigned long *bio_flags,
3130 u64 *prev_em_start)
3131 {
3132 u64 start = 0;
3133 u64 end = 0;
3134 u64 page_start;
3135 int index;
3136 int first_index = 0;
3137
3138 for (index = 0; index < nr_pages; index++) {
3139 page_start = page_offset(pages[index]);
3140 if (!end) {
3141 start = page_start;
3142 end = start + PAGE_SIZE - 1;
3143 first_index = index;
3144 } else if (end + 1 == page_start) {
3145 end += PAGE_SIZE;
3146 } else {
3147 __do_contiguous_readpages(tree, &pages[first_index],
3148 index - first_index, start,
3149 end, get_extent, em_cached,
3150 bio, mirror_num, bio_flags,
3151 prev_em_start);
3152 start = page_start;
3153 end = start + PAGE_SIZE - 1;
3154 first_index = index;
3155 }
3156 }
3157
3158 if (end)
3159 __do_contiguous_readpages(tree, &pages[first_index],
3160 index - first_index, start,
3161 end, get_extent, em_cached, bio,
3162 mirror_num, bio_flags,
3163 prev_em_start);
3164 }
3165
3166 static int __extent_read_full_page(struct extent_io_tree *tree,
3167 struct page *page,
3168 get_extent_t *get_extent,
3169 struct bio **bio, int mirror_num,
3170 unsigned long *bio_flags, int read_flags)
3171 {
3172 struct inode *inode = page->mapping->host;
3173 struct btrfs_ordered_extent *ordered;
3174 u64 start = page_offset(page);
3175 u64 end = start + PAGE_SIZE - 1;
3176 int ret;
3177
3178 while (1) {
3179 lock_extent(tree, start, end);
3180 ordered = btrfs_lookup_ordered_range(inode, start,
3181 PAGE_SIZE);
3182 if (!ordered)
3183 break;
3184 unlock_extent(tree, start, end);
3185 btrfs_start_ordered_extent(inode, ordered, 1);
3186 btrfs_put_ordered_extent(ordered);
3187 }
3188
3189 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3190 bio_flags, read_flags, NULL);
3191 return ret;
3192 }
3193
3194 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3195 get_extent_t *get_extent, int mirror_num)
3196 {
3197 struct bio *bio = NULL;
3198 unsigned long bio_flags = 0;
3199 int ret;
3200
3201 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3202 &bio_flags, 0);
3203 if (bio)
3204 ret = submit_one_bio(bio, mirror_num, bio_flags);
3205 return ret;
3206 }
3207
3208 static void update_nr_written(struct page *page, struct writeback_control *wbc,
3209 unsigned long nr_written)
3210 {
3211 wbc->nr_to_write -= nr_written;
3212 }
3213
3214 /*
3215 * helper for __extent_writepage, doing all of the delayed allocation setup.
3216 *
3217 * This returns 1 if our fill_delalloc function did all the work required
3218 * to write the page (copy into inline extent). In this case the IO has
3219 * been started and the page is already unlocked.
3220 *
3221 * This returns 0 if all went well (page still locked)
3222 * This returns < 0 if there were errors (page still locked)
3223 */
3224 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3225 struct page *page, struct writeback_control *wbc,
3226 struct extent_page_data *epd,
3227 u64 delalloc_start,
3228 unsigned long *nr_written)
3229 {
3230 struct extent_io_tree *tree = epd->tree;
3231 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3232 u64 nr_delalloc;
3233 u64 delalloc_to_write = 0;
3234 u64 delalloc_end = 0;
3235 int ret;
3236 int page_started = 0;
3237
3238 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3239 return 0;
3240
3241 while (delalloc_end < page_end) {
3242 nr_delalloc = find_lock_delalloc_range(inode, tree,
3243 page,
3244 &delalloc_start,
3245 &delalloc_end,
3246 BTRFS_MAX_EXTENT_SIZE);
3247 if (nr_delalloc == 0) {
3248 delalloc_start = delalloc_end + 1;
3249 continue;
3250 }
3251 ret = tree->ops->fill_delalloc(inode, page,
3252 delalloc_start,
3253 delalloc_end,
3254 &page_started,
3255 nr_written);
3256 /* File system has been set read-only */
3257 if (ret) {
3258 SetPageError(page);
3259 /* fill_delalloc should be return < 0 for error
3260 * but just in case, we use > 0 here meaning the
3261 * IO is started, so we don't want to return > 0
3262 * unless things are going well.
3263 */
3264 ret = ret < 0 ? ret : -EIO;
3265 goto done;
3266 }
3267 /*
3268 * delalloc_end is already one less than the total length, so
3269 * we don't subtract one from PAGE_SIZE
3270 */
3271 delalloc_to_write += (delalloc_end - delalloc_start +
3272 PAGE_SIZE) >> PAGE_SHIFT;
3273 delalloc_start = delalloc_end + 1;
3274 }
3275 if (wbc->nr_to_write < delalloc_to_write) {
3276 int thresh = 8192;
3277
3278 if (delalloc_to_write < thresh * 2)
3279 thresh = delalloc_to_write;
3280 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3281 thresh);
3282 }
3283
3284 /* did the fill delalloc function already unlock and start
3285 * the IO?
3286 */
3287 if (page_started) {
3288 /*
3289 * we've unlocked the page, so we can't update
3290 * the mapping's writeback index, just update
3291 * nr_to_write.
3292 */
3293 wbc->nr_to_write -= *nr_written;
3294 return 1;
3295 }
3296
3297 ret = 0;
3298
3299 done:
3300 return ret;
3301 }
3302
3303 /*
3304 * helper for __extent_writepage. This calls the writepage start hooks,
3305 * and does the loop to map the page into extents and bios.
3306 *
3307 * We return 1 if the IO is started and the page is unlocked,
3308 * 0 if all went well (page still locked)
3309 * < 0 if there were errors (page still locked)
3310 */
3311 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3312 struct page *page,
3313 struct writeback_control *wbc,
3314 struct extent_page_data *epd,
3315 loff_t i_size,
3316 unsigned long nr_written,
3317 int write_flags, int *nr_ret)
3318 {
3319 struct extent_io_tree *tree = epd->tree;
3320 u64 start = page_offset(page);
3321 u64 page_end = start + PAGE_SIZE - 1;
3322 u64 end;
3323 u64 cur = start;
3324 u64 extent_offset;
3325 u64 block_start;
3326 u64 iosize;
3327 sector_t sector;
3328 struct extent_state *cached_state = NULL;
3329 struct extent_map *em;
3330 struct block_device *bdev;
3331 size_t pg_offset = 0;
3332 size_t blocksize;
3333 int ret = 0;
3334 int nr = 0;
3335 bool compressed;
3336
3337 if (tree->ops && tree->ops->writepage_start_hook) {
3338 ret = tree->ops->writepage_start_hook(page, start,
3339 page_end);
3340 if (ret) {
3341 /* Fixup worker will requeue */
3342 if (ret == -EBUSY)
3343 wbc->pages_skipped++;
3344 else
3345 redirty_page_for_writepage(wbc, page);
3346
3347 update_nr_written(page, wbc, nr_written);
3348 unlock_page(page);
3349 ret = 1;
3350 goto done_unlocked;
3351 }
3352 }
3353
3354 /*
3355 * we don't want to touch the inode after unlocking the page,
3356 * so we update the mapping writeback index now
3357 */
3358 update_nr_written(page, wbc, nr_written + 1);
3359
3360 end = page_end;
3361 if (i_size <= start) {
3362 if (tree->ops && tree->ops->writepage_end_io_hook)
3363 tree->ops->writepage_end_io_hook(page, start,
3364 page_end, NULL, 1);
3365 goto done;
3366 }
3367
3368 blocksize = inode->i_sb->s_blocksize;
3369
3370 while (cur <= end) {
3371 u64 em_end;
3372 unsigned long max_nr;
3373
3374 if (cur >= i_size) {
3375 if (tree->ops && tree->ops->writepage_end_io_hook)
3376 tree->ops->writepage_end_io_hook(page, cur,
3377 page_end, NULL, 1);
3378 break;
3379 }
3380 em = epd->get_extent(inode, page, pg_offset, cur,
3381 end - cur + 1, 1);
3382 if (IS_ERR_OR_NULL(em)) {
3383 SetPageError(page);
3384 ret = PTR_ERR_OR_ZERO(em);
3385 break;
3386 }
3387
3388 extent_offset = cur - em->start;
3389 em_end = extent_map_end(em);
3390 BUG_ON(em_end <= cur);
3391 BUG_ON(end < cur);
3392 iosize = min(em_end - cur, end - cur + 1);
3393 iosize = ALIGN(iosize, blocksize);
3394 sector = (em->block_start + extent_offset) >> 9;
3395 bdev = em->bdev;
3396 block_start = em->block_start;
3397 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3398 free_extent_map(em);
3399 em = NULL;
3400
3401 /*
3402 * compressed and inline extents are written through other
3403 * paths in the FS
3404 */
3405 if (compressed || block_start == EXTENT_MAP_HOLE ||
3406 block_start == EXTENT_MAP_INLINE) {
3407 /*
3408 * end_io notification does not happen here for
3409 * compressed extents
3410 */
3411 if (!compressed && tree->ops &&
3412 tree->ops->writepage_end_io_hook)
3413 tree->ops->writepage_end_io_hook(page, cur,
3414 cur + iosize - 1,
3415 NULL, 1);
3416 else if (compressed) {
3417 /* we don't want to end_page_writeback on
3418 * a compressed extent. this happens
3419 * elsewhere
3420 */
3421 nr++;
3422 }
3423
3424 cur += iosize;
3425 pg_offset += iosize;
3426 continue;
3427 }
3428
3429 max_nr = (i_size >> PAGE_SHIFT) + 1;
3430
3431 set_range_writeback(tree, cur, cur + iosize - 1);
3432 if (!PageWriteback(page)) {
3433 btrfs_err(BTRFS_I(inode)->root->fs_info,
3434 "page %lu not writeback, cur %llu end %llu",
3435 page->index, cur, end);
3436 }
3437
3438 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3439 page, sector, iosize, pg_offset,
3440 bdev, &epd->bio, max_nr,
3441 end_bio_extent_writepage,
3442 0, 0, 0, false);
3443 if (ret)
3444 SetPageError(page);
3445
3446 cur = cur + iosize;
3447 pg_offset += iosize;
3448 nr++;
3449 }
3450 done:
3451 *nr_ret = nr;
3452
3453 done_unlocked:
3454
3455 /* drop our reference on any cached states */
3456 free_extent_state(cached_state);
3457 return ret;
3458 }
3459
3460 /*
3461 * the writepage semantics are similar to regular writepage. extent
3462 * records are inserted to lock ranges in the tree, and as dirty areas
3463 * are found, they are marked writeback. Then the lock bits are removed
3464 * and the end_io handler clears the writeback ranges
3465 */
3466 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3467 void *data)
3468 {
3469 struct inode *inode = page->mapping->host;
3470 struct extent_page_data *epd = data;
3471 u64 start = page_offset(page);
3472 u64 page_end = start + PAGE_SIZE - 1;
3473 int ret;
3474 int nr = 0;
3475 size_t pg_offset = 0;
3476 loff_t i_size = i_size_read(inode);
3477 unsigned long end_index = i_size >> PAGE_SHIFT;
3478 int write_flags = 0;
3479 unsigned long nr_written = 0;
3480
3481 if (wbc->sync_mode == WB_SYNC_ALL)
3482 write_flags = WRITE_SYNC;
3483
3484 trace___extent_writepage(page, inode, wbc);
3485
3486 WARN_ON(!PageLocked(page));
3487
3488 ClearPageError(page);
3489
3490 pg_offset = i_size & (PAGE_SIZE - 1);
3491 if (page->index > end_index ||
3492 (page->index == end_index && !pg_offset)) {
3493 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3494 unlock_page(page);
3495 return 0;
3496 }
3497
3498 if (page->index == end_index) {
3499 char *userpage;
3500
3501 userpage = kmap_atomic(page);
3502 memset(userpage + pg_offset, 0,
3503 PAGE_SIZE - pg_offset);
3504 kunmap_atomic(userpage);
3505 flush_dcache_page(page);
3506 }
3507
3508 pg_offset = 0;
3509
3510 set_page_extent_mapped(page);
3511
3512 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3513 if (ret == 1)
3514 goto done_unlocked;
3515 if (ret)
3516 goto done;
3517
3518 ret = __extent_writepage_io(inode, page, wbc, epd,
3519 i_size, nr_written, write_flags, &nr);
3520 if (ret == 1)
3521 goto done_unlocked;
3522
3523 done:
3524 if (nr == 0) {
3525 /* make sure the mapping tag for page dirty gets cleared */
3526 set_page_writeback(page);
3527 end_page_writeback(page);
3528 }
3529 if (PageError(page)) {
3530 ret = ret < 0 ? ret : -EIO;
3531 end_extent_writepage(page, ret, start, page_end);
3532 }
3533 unlock_page(page);
3534 return ret;
3535
3536 done_unlocked:
3537 return 0;
3538 }
3539
3540 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3541 {
3542 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3543 TASK_UNINTERRUPTIBLE);
3544 }
3545
3546 static noinline_for_stack int
3547 lock_extent_buffer_for_io(struct extent_buffer *eb,
3548 struct btrfs_fs_info *fs_info,
3549 struct extent_page_data *epd)
3550 {
3551 unsigned long i, num_pages;
3552 int flush = 0;
3553 int ret = 0;
3554
3555 if (!btrfs_try_tree_write_lock(eb)) {
3556 flush = 1;
3557 flush_write_bio(epd);
3558 btrfs_tree_lock(eb);
3559 }
3560
3561 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3562 btrfs_tree_unlock(eb);
3563 if (!epd->sync_io)
3564 return 0;
3565 if (!flush) {
3566 flush_write_bio(epd);
3567 flush = 1;
3568 }
3569 while (1) {
3570 wait_on_extent_buffer_writeback(eb);
3571 btrfs_tree_lock(eb);
3572 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3573 break;
3574 btrfs_tree_unlock(eb);
3575 }
3576 }
3577
3578 /*
3579 * We need to do this to prevent races in people who check if the eb is
3580 * under IO since we can end up having no IO bits set for a short period
3581 * of time.
3582 */
3583 spin_lock(&eb->refs_lock);
3584 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3585 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3586 spin_unlock(&eb->refs_lock);
3587 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3588 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3589 -eb->len,
3590 fs_info->dirty_metadata_batch);
3591 ret = 1;
3592 } else {
3593 spin_unlock(&eb->refs_lock);
3594 }
3595
3596 btrfs_tree_unlock(eb);
3597
3598 if (!ret)
3599 return ret;
3600
3601 num_pages = num_extent_pages(eb->start, eb->len);
3602 for (i = 0; i < num_pages; i++) {
3603 struct page *p = eb->pages[i];
3604
3605 if (!trylock_page(p)) {
3606 if (!flush) {
3607 flush_write_bio(epd);
3608 flush = 1;
3609 }
3610 lock_page(p);
3611 }
3612 }
3613
3614 return ret;
3615 }
3616
3617 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3618 {
3619 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3620 smp_mb__after_atomic();
3621 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3622 }
3623
3624 static void set_btree_ioerr(struct page *page)
3625 {
3626 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3627 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3628
3629 SetPageError(page);
3630 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3631 return;
3632
3633 /*
3634 * If writeback for a btree extent that doesn't belong to a log tree
3635 * failed, increment the counter transaction->eb_write_errors.
3636 * We do this because while the transaction is running and before it's
3637 * committing (when we call filemap_fdata[write|wait]_range against
3638 * the btree inode), we might have
3639 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3640 * returns an error or an error happens during writeback, when we're
3641 * committing the transaction we wouldn't know about it, since the pages
3642 * can be no longer dirty nor marked anymore for writeback (if a
3643 * subsequent modification to the extent buffer didn't happen before the
3644 * transaction commit), which makes filemap_fdata[write|wait]_range not
3645 * able to find the pages tagged with SetPageError at transaction
3646 * commit time. So if this happens we must abort the transaction,
3647 * otherwise we commit a super block with btree roots that point to
3648 * btree nodes/leafs whose content on disk is invalid - either garbage
3649 * or the content of some node/leaf from a past generation that got
3650 * cowed or deleted and is no longer valid.
3651 *
3652 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3653 * not be enough - we need to distinguish between log tree extents vs
3654 * non-log tree extents, and the next filemap_fdatawait_range() call
3655 * will catch and clear such errors in the mapping - and that call might
3656 * be from a log sync and not from a transaction commit. Also, checking
3657 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3658 * not done and would not be reliable - the eb might have been released
3659 * from memory and reading it back again means that flag would not be
3660 * set (since it's a runtime flag, not persisted on disk).
3661 *
3662 * Using the flags below in the btree inode also makes us achieve the
3663 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3664 * writeback for all dirty pages and before filemap_fdatawait_range()
3665 * is called, the writeback for all dirty pages had already finished
3666 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3667 * filemap_fdatawait_range() would return success, as it could not know
3668 * that writeback errors happened (the pages were no longer tagged for
3669 * writeback).
3670 */
3671 switch (eb->log_index) {
3672 case -1:
3673 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3674 break;
3675 case 0:
3676 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3677 break;
3678 case 1:
3679 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3680 break;
3681 default:
3682 BUG(); /* unexpected, logic error */
3683 }
3684 }
3685
3686 static void end_bio_extent_buffer_writepage(struct bio *bio)
3687 {
3688 struct bio_vec *bvec;
3689 struct extent_buffer *eb;
3690 int i, done;
3691
3692 bio_for_each_segment_all(bvec, bio, i) {
3693 struct page *page = bvec->bv_page;
3694
3695 eb = (struct extent_buffer *)page->private;
3696 BUG_ON(!eb);
3697 done = atomic_dec_and_test(&eb->io_pages);
3698
3699 if (bio->bi_error ||
3700 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3701 ClearPageUptodate(page);
3702 set_btree_ioerr(page);
3703 }
3704
3705 end_page_writeback(page);
3706
3707 if (!done)
3708 continue;
3709
3710 end_extent_buffer_writeback(eb);
3711 }
3712
3713 bio_put(bio);
3714 }
3715
3716 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3717 struct btrfs_fs_info *fs_info,
3718 struct writeback_control *wbc,
3719 struct extent_page_data *epd)
3720 {
3721 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3722 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3723 u64 offset = eb->start;
3724 unsigned long i, num_pages;
3725 unsigned long bio_flags = 0;
3726 int write_flags = (epd->sync_io ? WRITE_SYNC : 0) | REQ_META;
3727 int ret = 0;
3728
3729 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3730 num_pages = num_extent_pages(eb->start, eb->len);
3731 atomic_set(&eb->io_pages, num_pages);
3732 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3733 bio_flags = EXTENT_BIO_TREE_LOG;
3734
3735 for (i = 0; i < num_pages; i++) {
3736 struct page *p = eb->pages[i];
3737
3738 clear_page_dirty_for_io(p);
3739 set_page_writeback(p);
3740 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3741 p, offset >> 9, PAGE_SIZE, 0, bdev,
3742 &epd->bio, -1,
3743 end_bio_extent_buffer_writepage,
3744 0, epd->bio_flags, bio_flags, false);
3745 epd->bio_flags = bio_flags;
3746 if (ret) {
3747 set_btree_ioerr(p);
3748 end_page_writeback(p);
3749 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3750 end_extent_buffer_writeback(eb);
3751 ret = -EIO;
3752 break;
3753 }
3754 offset += PAGE_SIZE;
3755 update_nr_written(p, wbc, 1);
3756 unlock_page(p);
3757 }
3758
3759 if (unlikely(ret)) {
3760 for (; i < num_pages; i++) {
3761 struct page *p = eb->pages[i];
3762 clear_page_dirty_for_io(p);
3763 unlock_page(p);
3764 }
3765 }
3766
3767 return ret;
3768 }
3769
3770 int btree_write_cache_pages(struct address_space *mapping,
3771 struct writeback_control *wbc)
3772 {
3773 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3774 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3775 struct extent_buffer *eb, *prev_eb = NULL;
3776 struct extent_page_data epd = {
3777 .bio = NULL,
3778 .tree = tree,
3779 .extent_locked = 0,
3780 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3781 .bio_flags = 0,
3782 };
3783 int ret = 0;
3784 int done = 0;
3785 int nr_to_write_done = 0;
3786 struct pagevec pvec;
3787 int nr_pages;
3788 pgoff_t index;
3789 pgoff_t end; /* Inclusive */
3790 int scanned = 0;
3791 int tag;
3792
3793 pagevec_init(&pvec, 0);
3794 if (wbc->range_cyclic) {
3795 index = mapping->writeback_index; /* Start from prev offset */
3796 end = -1;
3797 } else {
3798 index = wbc->range_start >> PAGE_SHIFT;
3799 end = wbc->range_end >> PAGE_SHIFT;
3800 scanned = 1;
3801 }
3802 if (wbc->sync_mode == WB_SYNC_ALL)
3803 tag = PAGECACHE_TAG_TOWRITE;
3804 else
3805 tag = PAGECACHE_TAG_DIRTY;
3806 retry:
3807 if (wbc->sync_mode == WB_SYNC_ALL)
3808 tag_pages_for_writeback(mapping, index, end);
3809 while (!done && !nr_to_write_done && (index <= end) &&
3810 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3811 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3812 unsigned i;
3813
3814 scanned = 1;
3815 for (i = 0; i < nr_pages; i++) {
3816 struct page *page = pvec.pages[i];
3817
3818 if (!PagePrivate(page))
3819 continue;
3820
3821 if (!wbc->range_cyclic && page->index > end) {
3822 done = 1;
3823 break;
3824 }
3825
3826 spin_lock(&mapping->private_lock);
3827 if (!PagePrivate(page)) {
3828 spin_unlock(&mapping->private_lock);
3829 continue;
3830 }
3831
3832 eb = (struct extent_buffer *)page->private;
3833
3834 /*
3835 * Shouldn't happen and normally this would be a BUG_ON
3836 * but no sense in crashing the users box for something
3837 * we can survive anyway.
3838 */
3839 if (WARN_ON(!eb)) {
3840 spin_unlock(&mapping->private_lock);
3841 continue;
3842 }
3843
3844 if (eb == prev_eb) {
3845 spin_unlock(&mapping->private_lock);
3846 continue;
3847 }
3848
3849 ret = atomic_inc_not_zero(&eb->refs);
3850 spin_unlock(&mapping->private_lock);
3851 if (!ret)
3852 continue;
3853
3854 prev_eb = eb;
3855 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3856 if (!ret) {
3857 free_extent_buffer(eb);
3858 continue;
3859 }
3860
3861 ret = write_one_eb(eb, fs_info, wbc, &epd);
3862 if (ret) {
3863 done = 1;
3864 free_extent_buffer(eb);
3865 break;
3866 }
3867 free_extent_buffer(eb);
3868
3869 /*
3870 * the filesystem may choose to bump up nr_to_write.
3871 * We have to make sure to honor the new nr_to_write
3872 * at any time
3873 */
3874 nr_to_write_done = wbc->nr_to_write <= 0;
3875 }
3876 pagevec_release(&pvec);
3877 cond_resched();
3878 }
3879 if (!scanned && !done) {
3880 /*
3881 * We hit the last page and there is more work to be done: wrap
3882 * back to the start of the file
3883 */
3884 scanned = 1;
3885 index = 0;
3886 goto retry;
3887 }
3888 flush_write_bio(&epd);
3889 return ret;
3890 }
3891
3892 /**
3893 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3894 * @mapping: address space structure to write
3895 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3896 * @writepage: function called for each page
3897 * @data: data passed to writepage function
3898 *
3899 * If a page is already under I/O, write_cache_pages() skips it, even
3900 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3901 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3902 * and msync() need to guarantee that all the data which was dirty at the time
3903 * the call was made get new I/O started against them. If wbc->sync_mode is
3904 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3905 * existing IO to complete.
3906 */
3907 static int extent_write_cache_pages(struct extent_io_tree *tree,
3908 struct address_space *mapping,
3909 struct writeback_control *wbc,
3910 writepage_t writepage, void *data,
3911 void (*flush_fn)(void *))
3912 {
3913 struct inode *inode = mapping->host;
3914 int ret = 0;
3915 int done = 0;
3916 int nr_to_write_done = 0;
3917 struct pagevec pvec;
3918 int nr_pages;
3919 pgoff_t index;
3920 pgoff_t end; /* Inclusive */
3921 pgoff_t done_index;
3922 int range_whole = 0;
3923 int scanned = 0;
3924 int tag;
3925
3926 /*
3927 * We have to hold onto the inode so that ordered extents can do their
3928 * work when the IO finishes. The alternative to this is failing to add
3929 * an ordered extent if the igrab() fails there and that is a huge pain
3930 * to deal with, so instead just hold onto the inode throughout the
3931 * writepages operation. If it fails here we are freeing up the inode
3932 * anyway and we'd rather not waste our time writing out stuff that is
3933 * going to be truncated anyway.
3934 */
3935 if (!igrab(inode))
3936 return 0;
3937
3938 pagevec_init(&pvec, 0);
3939 if (wbc->range_cyclic) {
3940 index = mapping->writeback_index; /* Start from prev offset */
3941 end = -1;
3942 } else {
3943 index = wbc->range_start >> PAGE_SHIFT;
3944 end = wbc->range_end >> PAGE_SHIFT;
3945 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3946 range_whole = 1;
3947 scanned = 1;
3948 }
3949 if (wbc->sync_mode == WB_SYNC_ALL)
3950 tag = PAGECACHE_TAG_TOWRITE;
3951 else
3952 tag = PAGECACHE_TAG_DIRTY;
3953 retry:
3954 if (wbc->sync_mode == WB_SYNC_ALL)
3955 tag_pages_for_writeback(mapping, index, end);
3956 done_index = index;
3957 while (!done && !nr_to_write_done && (index <= end) &&
3958 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3959 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3960 unsigned i;
3961
3962 scanned = 1;
3963 for (i = 0; i < nr_pages; i++) {
3964 struct page *page = pvec.pages[i];
3965
3966 done_index = page->index;
3967 /*
3968 * At this point we hold neither mapping->tree_lock nor
3969 * lock on the page itself: the page may be truncated or
3970 * invalidated (changing page->mapping to NULL), or even
3971 * swizzled back from swapper_space to tmpfs file
3972 * mapping
3973 */
3974 if (!trylock_page(page)) {
3975 flush_fn(data);
3976 lock_page(page);
3977 }
3978
3979 if (unlikely(page->mapping != mapping)) {
3980 unlock_page(page);
3981 continue;
3982 }
3983
3984 if (!wbc->range_cyclic && page->index > end) {
3985 done = 1;
3986 unlock_page(page);
3987 continue;
3988 }
3989
3990 if (wbc->sync_mode != WB_SYNC_NONE) {
3991 if (PageWriteback(page))
3992 flush_fn(data);
3993 wait_on_page_writeback(page);
3994 }
3995
3996 if (PageWriteback(page) ||
3997 !clear_page_dirty_for_io(page)) {
3998 unlock_page(page);
3999 continue;
4000 }
4001
4002 ret = (*writepage)(page, wbc, data);
4003
4004 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4005 unlock_page(page);
4006 ret = 0;
4007 }
4008 if (ret < 0) {
4009 /*
4010 * done_index is set past this page,
4011 * so media errors will not choke
4012 * background writeout for the entire
4013 * file. This has consequences for
4014 * range_cyclic semantics (ie. it may
4015 * not be suitable for data integrity
4016 * writeout).
4017 */
4018 done_index = page->index + 1;
4019 done = 1;
4020 break;
4021 }
4022
4023 /*
4024 * the filesystem may choose to bump up nr_to_write.
4025 * We have to make sure to honor the new nr_to_write
4026 * at any time
4027 */
4028 nr_to_write_done = wbc->nr_to_write <= 0;
4029 }
4030 pagevec_release(&pvec);
4031 cond_resched();
4032 }
4033 if (!scanned && !done) {
4034 /*
4035 * We hit the last page and there is more work to be done: wrap
4036 * back to the start of the file
4037 */
4038 scanned = 1;
4039 index = 0;
4040 goto retry;
4041 }
4042
4043 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4044 mapping->writeback_index = done_index;
4045
4046 btrfs_add_delayed_iput(inode);
4047 return ret;
4048 }
4049
4050 static void flush_epd_write_bio(struct extent_page_data *epd)
4051 {
4052 if (epd->bio) {
4053 int ret;
4054
4055 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4056 epd->sync_io ? WRITE_SYNC : 0);
4057
4058 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4059 BUG_ON(ret < 0); /* -ENOMEM */
4060 epd->bio = NULL;
4061 }
4062 }
4063
4064 static noinline void flush_write_bio(void *data)
4065 {
4066 struct extent_page_data *epd = data;
4067 flush_epd_write_bio(epd);
4068 }
4069
4070 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4071 get_extent_t *get_extent,
4072 struct writeback_control *wbc)
4073 {
4074 int ret;
4075 struct extent_page_data epd = {
4076 .bio = NULL,
4077 .tree = tree,
4078 .get_extent = get_extent,
4079 .extent_locked = 0,
4080 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4081 .bio_flags = 0,
4082 };
4083
4084 ret = __extent_writepage(page, wbc, &epd);
4085
4086 flush_epd_write_bio(&epd);
4087 return ret;
4088 }
4089
4090 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4091 u64 start, u64 end, get_extent_t *get_extent,
4092 int mode)
4093 {
4094 int ret = 0;
4095 struct address_space *mapping = inode->i_mapping;
4096 struct page *page;
4097 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4098 PAGE_SHIFT;
4099
4100 struct extent_page_data epd = {
4101 .bio = NULL,
4102 .tree = tree,
4103 .get_extent = get_extent,
4104 .extent_locked = 1,
4105 .sync_io = mode == WB_SYNC_ALL,
4106 .bio_flags = 0,
4107 };
4108 struct writeback_control wbc_writepages = {
4109 .sync_mode = mode,
4110 .nr_to_write = nr_pages * 2,
4111 .range_start = start,
4112 .range_end = end + 1,
4113 };
4114
4115 while (start <= end) {
4116 page = find_get_page(mapping, start >> PAGE_SHIFT);
4117 if (clear_page_dirty_for_io(page))
4118 ret = __extent_writepage(page, &wbc_writepages, &epd);
4119 else {
4120 if (tree->ops && tree->ops->writepage_end_io_hook)
4121 tree->ops->writepage_end_io_hook(page, start,
4122 start + PAGE_SIZE - 1,
4123 NULL, 1);
4124 unlock_page(page);
4125 }
4126 put_page(page);
4127 start += PAGE_SIZE;
4128 }
4129
4130 flush_epd_write_bio(&epd);
4131 return ret;
4132 }
4133
4134 int extent_writepages(struct extent_io_tree *tree,
4135 struct address_space *mapping,
4136 get_extent_t *get_extent,
4137 struct writeback_control *wbc)
4138 {
4139 int ret = 0;
4140 struct extent_page_data epd = {
4141 .bio = NULL,
4142 .tree = tree,
4143 .get_extent = get_extent,
4144 .extent_locked = 0,
4145 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4146 .bio_flags = 0,
4147 };
4148
4149 ret = extent_write_cache_pages(tree, mapping, wbc,
4150 __extent_writepage, &epd,
4151 flush_write_bio);
4152 flush_epd_write_bio(&epd);
4153 return ret;
4154 }
4155
4156 int extent_readpages(struct extent_io_tree *tree,
4157 struct address_space *mapping,
4158 struct list_head *pages, unsigned nr_pages,
4159 get_extent_t get_extent)
4160 {
4161 struct bio *bio = NULL;
4162 unsigned page_idx;
4163 unsigned long bio_flags = 0;
4164 struct page *pagepool[16];
4165 struct page *page;
4166 struct extent_map *em_cached = NULL;
4167 int nr = 0;
4168 u64 prev_em_start = (u64)-1;
4169
4170 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4171 page = list_entry(pages->prev, struct page, lru);
4172
4173 prefetchw(&page->flags);
4174 list_del(&page->lru);
4175 if (add_to_page_cache_lru(page, mapping,
4176 page->index,
4177 readahead_gfp_mask(mapping))) {
4178 put_page(page);
4179 continue;
4180 }
4181
4182 pagepool[nr++] = page;
4183 if (nr < ARRAY_SIZE(pagepool))
4184 continue;
4185 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4186 &bio, 0, &bio_flags, &prev_em_start);
4187 nr = 0;
4188 }
4189 if (nr)
4190 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4191 &bio, 0, &bio_flags, &prev_em_start);
4192
4193 if (em_cached)
4194 free_extent_map(em_cached);
4195
4196 BUG_ON(!list_empty(pages));
4197 if (bio)
4198 return submit_one_bio(bio, 0, bio_flags);
4199 return 0;
4200 }
4201
4202 /*
4203 * basic invalidatepage code, this waits on any locked or writeback
4204 * ranges corresponding to the page, and then deletes any extent state
4205 * records from the tree
4206 */
4207 int extent_invalidatepage(struct extent_io_tree *tree,
4208 struct page *page, unsigned long offset)
4209 {
4210 struct extent_state *cached_state = NULL;
4211 u64 start = page_offset(page);
4212 u64 end = start + PAGE_SIZE - 1;
4213 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4214
4215 start += ALIGN(offset, blocksize);
4216 if (start > end)
4217 return 0;
4218
4219 lock_extent_bits(tree, start, end, &cached_state);
4220 wait_on_page_writeback(page);
4221 clear_extent_bit(tree, start, end,
4222 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4223 EXTENT_DO_ACCOUNTING,
4224 1, 1, &cached_state, GFP_NOFS);
4225 return 0;
4226 }
4227
4228 /*
4229 * a helper for releasepage, this tests for areas of the page that
4230 * are locked or under IO and drops the related state bits if it is safe
4231 * to drop the page.
4232 */
4233 static int try_release_extent_state(struct extent_map_tree *map,
4234 struct extent_io_tree *tree,
4235 struct page *page, gfp_t mask)
4236 {
4237 u64 start = page_offset(page);
4238 u64 end = start + PAGE_SIZE - 1;
4239 int ret = 1;
4240
4241 if (test_range_bit(tree, start, end,
4242 EXTENT_IOBITS, 0, NULL))
4243 ret = 0;
4244 else {
4245 if ((mask & GFP_NOFS) == GFP_NOFS)
4246 mask = GFP_NOFS;
4247 /*
4248 * at this point we can safely clear everything except the
4249 * locked bit and the nodatasum bit
4250 */
4251 ret = clear_extent_bit(tree, start, end,
4252 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4253 0, 0, NULL, mask);
4254
4255 /* if clear_extent_bit failed for enomem reasons,
4256 * we can't allow the release to continue.
4257 */
4258 if (ret < 0)
4259 ret = 0;
4260 else
4261 ret = 1;
4262 }
4263 return ret;
4264 }
4265
4266 /*
4267 * a helper for releasepage. As long as there are no locked extents
4268 * in the range corresponding to the page, both state records and extent
4269 * map records are removed
4270 */
4271 int try_release_extent_mapping(struct extent_map_tree *map,
4272 struct extent_io_tree *tree, struct page *page,
4273 gfp_t mask)
4274 {
4275 struct extent_map *em;
4276 u64 start = page_offset(page);
4277 u64 end = start + PAGE_SIZE - 1;
4278
4279 if (gfpflags_allow_blocking(mask) &&
4280 page->mapping->host->i_size > SZ_16M) {
4281 u64 len;
4282 while (start <= end) {
4283 len = end - start + 1;
4284 write_lock(&map->lock);
4285 em = lookup_extent_mapping(map, start, len);
4286 if (!em) {
4287 write_unlock(&map->lock);
4288 break;
4289 }
4290 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4291 em->start != start) {
4292 write_unlock(&map->lock);
4293 free_extent_map(em);
4294 break;
4295 }
4296 if (!test_range_bit(tree, em->start,
4297 extent_map_end(em) - 1,
4298 EXTENT_LOCKED | EXTENT_WRITEBACK,
4299 0, NULL)) {
4300 remove_extent_mapping(map, em);
4301 /* once for the rb tree */
4302 free_extent_map(em);
4303 }
4304 start = extent_map_end(em);
4305 write_unlock(&map->lock);
4306
4307 /* once for us */
4308 free_extent_map(em);
4309 }
4310 }
4311 return try_release_extent_state(map, tree, page, mask);
4312 }
4313
4314 /*
4315 * helper function for fiemap, which doesn't want to see any holes.
4316 * This maps until we find something past 'last'
4317 */
4318 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4319 u64 offset,
4320 u64 last,
4321 get_extent_t *get_extent)
4322 {
4323 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4324 struct extent_map *em;
4325 u64 len;
4326
4327 if (offset >= last)
4328 return NULL;
4329
4330 while (1) {
4331 len = last - offset;
4332 if (len == 0)
4333 break;
4334 len = ALIGN(len, sectorsize);
4335 em = get_extent(inode, NULL, 0, offset, len, 0);
4336 if (IS_ERR_OR_NULL(em))
4337 return em;
4338
4339 /* if this isn't a hole return it */
4340 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4341 em->block_start != EXTENT_MAP_HOLE) {
4342 return em;
4343 }
4344
4345 /* this is a hole, advance to the next extent */
4346 offset = extent_map_end(em);
4347 free_extent_map(em);
4348 if (offset >= last)
4349 break;
4350 }
4351 return NULL;
4352 }
4353
4354 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4355 __u64 start, __u64 len, get_extent_t *get_extent)
4356 {
4357 int ret = 0;
4358 u64 off = start;
4359 u64 max = start + len;
4360 u32 flags = 0;
4361 u32 found_type;
4362 u64 last;
4363 u64 last_for_get_extent = 0;
4364 u64 disko = 0;
4365 u64 isize = i_size_read(inode);
4366 struct btrfs_key found_key;
4367 struct extent_map *em = NULL;
4368 struct extent_state *cached_state = NULL;
4369 struct btrfs_path *path;
4370 struct btrfs_root *root = BTRFS_I(inode)->root;
4371 int end = 0;
4372 u64 em_start = 0;
4373 u64 em_len = 0;
4374 u64 em_end = 0;
4375
4376 if (len == 0)
4377 return -EINVAL;
4378
4379 path = btrfs_alloc_path();
4380 if (!path)
4381 return -ENOMEM;
4382 path->leave_spinning = 1;
4383
4384 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4385 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4386
4387 /*
4388 * lookup the last file extent. We're not using i_size here
4389 * because there might be preallocation past i_size
4390 */
4391 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4392 0);
4393 if (ret < 0) {
4394 btrfs_free_path(path);
4395 return ret;
4396 } else {
4397 WARN_ON(!ret);
4398 if (ret == 1)
4399 ret = 0;
4400 }
4401
4402 path->slots[0]--;
4403 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4404 found_type = found_key.type;
4405
4406 /* No extents, but there might be delalloc bits */
4407 if (found_key.objectid != btrfs_ino(inode) ||
4408 found_type != BTRFS_EXTENT_DATA_KEY) {
4409 /* have to trust i_size as the end */
4410 last = (u64)-1;
4411 last_for_get_extent = isize;
4412 } else {
4413 /*
4414 * remember the start of the last extent. There are a
4415 * bunch of different factors that go into the length of the
4416 * extent, so its much less complex to remember where it started
4417 */
4418 last = found_key.offset;
4419 last_for_get_extent = last + 1;
4420 }
4421 btrfs_release_path(path);
4422
4423 /*
4424 * we might have some extents allocated but more delalloc past those
4425 * extents. so, we trust isize unless the start of the last extent is
4426 * beyond isize
4427 */
4428 if (last < isize) {
4429 last = (u64)-1;
4430 last_for_get_extent = isize;
4431 }
4432
4433 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4434 &cached_state);
4435
4436 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4437 get_extent);
4438 if (!em)
4439 goto out;
4440 if (IS_ERR(em)) {
4441 ret = PTR_ERR(em);
4442 goto out;
4443 }
4444
4445 while (!end) {
4446 u64 offset_in_extent = 0;
4447
4448 /* break if the extent we found is outside the range */
4449 if (em->start >= max || extent_map_end(em) < off)
4450 break;
4451
4452 /*
4453 * get_extent may return an extent that starts before our
4454 * requested range. We have to make sure the ranges
4455 * we return to fiemap always move forward and don't
4456 * overlap, so adjust the offsets here
4457 */
4458 em_start = max(em->start, off);
4459
4460 /*
4461 * record the offset from the start of the extent
4462 * for adjusting the disk offset below. Only do this if the
4463 * extent isn't compressed since our in ram offset may be past
4464 * what we have actually allocated on disk.
4465 */
4466 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4467 offset_in_extent = em_start - em->start;
4468 em_end = extent_map_end(em);
4469 em_len = em_end - em_start;
4470 disko = 0;
4471 flags = 0;
4472
4473 /*
4474 * bump off for our next call to get_extent
4475 */
4476 off = extent_map_end(em);
4477 if (off >= max)
4478 end = 1;
4479
4480 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4481 end = 1;
4482 flags |= FIEMAP_EXTENT_LAST;
4483 } else if (em->block_start == EXTENT_MAP_INLINE) {
4484 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4485 FIEMAP_EXTENT_NOT_ALIGNED);
4486 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4487 flags |= (FIEMAP_EXTENT_DELALLOC |
4488 FIEMAP_EXTENT_UNKNOWN);
4489 } else if (fieinfo->fi_extents_max) {
4490 u64 bytenr = em->block_start -
4491 (em->start - em->orig_start);
4492
4493 disko = em->block_start + offset_in_extent;
4494
4495 /*
4496 * As btrfs supports shared space, this information
4497 * can be exported to userspace tools via
4498 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4499 * then we're just getting a count and we can skip the
4500 * lookup stuff.
4501 */
4502 ret = btrfs_check_shared(NULL, root->fs_info,
4503 root->objectid,
4504 btrfs_ino(inode), bytenr);
4505 if (ret < 0)
4506 goto out_free;
4507 if (ret)
4508 flags |= FIEMAP_EXTENT_SHARED;
4509 ret = 0;
4510 }
4511 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4512 flags |= FIEMAP_EXTENT_ENCODED;
4513 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4514 flags |= FIEMAP_EXTENT_UNWRITTEN;
4515
4516 free_extent_map(em);
4517 em = NULL;
4518 if ((em_start >= last) || em_len == (u64)-1 ||
4519 (last == (u64)-1 && isize <= em_end)) {
4520 flags |= FIEMAP_EXTENT_LAST;
4521 end = 1;
4522 }
4523
4524 /* now scan forward to see if this is really the last extent. */
4525 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4526 get_extent);
4527 if (IS_ERR(em)) {
4528 ret = PTR_ERR(em);
4529 goto out;
4530 }
4531 if (!em) {
4532 flags |= FIEMAP_EXTENT_LAST;
4533 end = 1;
4534 }
4535 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4536 em_len, flags);
4537 if (ret) {
4538 if (ret == 1)
4539 ret = 0;
4540 goto out_free;
4541 }
4542 }
4543 out_free:
4544 free_extent_map(em);
4545 out:
4546 btrfs_free_path(path);
4547 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4548 &cached_state, GFP_NOFS);
4549 return ret;
4550 }
4551
4552 static void __free_extent_buffer(struct extent_buffer *eb)
4553 {
4554 btrfs_leak_debug_del(&eb->leak_list);
4555 kmem_cache_free(extent_buffer_cache, eb);
4556 }
4557
4558 int extent_buffer_under_io(struct extent_buffer *eb)
4559 {
4560 return (atomic_read(&eb->io_pages) ||
4561 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4562 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4563 }
4564
4565 /*
4566 * Helper for releasing extent buffer page.
4567 */
4568 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4569 {
4570 unsigned long index;
4571 struct page *page;
4572 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4573
4574 BUG_ON(extent_buffer_under_io(eb));
4575
4576 index = num_extent_pages(eb->start, eb->len);
4577 if (index == 0)
4578 return;
4579
4580 do {
4581 index--;
4582 page = eb->pages[index];
4583 if (!page)
4584 continue;
4585 if (mapped)
4586 spin_lock(&page->mapping->private_lock);
4587 /*
4588 * We do this since we'll remove the pages after we've
4589 * removed the eb from the radix tree, so we could race
4590 * and have this page now attached to the new eb. So
4591 * only clear page_private if it's still connected to
4592 * this eb.
4593 */
4594 if (PagePrivate(page) &&
4595 page->private == (unsigned long)eb) {
4596 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4597 BUG_ON(PageDirty(page));
4598 BUG_ON(PageWriteback(page));
4599 /*
4600 * We need to make sure we haven't be attached
4601 * to a new eb.
4602 */
4603 ClearPagePrivate(page);
4604 set_page_private(page, 0);
4605 /* One for the page private */
4606 put_page(page);
4607 }
4608
4609 if (mapped)
4610 spin_unlock(&page->mapping->private_lock);
4611
4612 /* One for when we allocated the page */
4613 put_page(page);
4614 } while (index != 0);
4615 }
4616
4617 /*
4618 * Helper for releasing the extent buffer.
4619 */
4620 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4621 {
4622 btrfs_release_extent_buffer_page(eb);
4623 __free_extent_buffer(eb);
4624 }
4625
4626 static struct extent_buffer *
4627 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4628 unsigned long len)
4629 {
4630 struct extent_buffer *eb = NULL;
4631
4632 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4633 eb->start = start;
4634 eb->len = len;
4635 eb->fs_info = fs_info;
4636 eb->bflags = 0;
4637 rwlock_init(&eb->lock);
4638 atomic_set(&eb->write_locks, 0);
4639 atomic_set(&eb->read_locks, 0);
4640 atomic_set(&eb->blocking_readers, 0);
4641 atomic_set(&eb->blocking_writers, 0);
4642 atomic_set(&eb->spinning_readers, 0);
4643 atomic_set(&eb->spinning_writers, 0);
4644 eb->lock_nested = 0;
4645 init_waitqueue_head(&eb->write_lock_wq);
4646 init_waitqueue_head(&eb->read_lock_wq);
4647
4648 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4649
4650 spin_lock_init(&eb->refs_lock);
4651 atomic_set(&eb->refs, 1);
4652 atomic_set(&eb->io_pages, 0);
4653
4654 /*
4655 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4656 */
4657 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4658 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4659 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4660
4661 return eb;
4662 }
4663
4664 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4665 {
4666 unsigned long i;
4667 struct page *p;
4668 struct extent_buffer *new;
4669 unsigned long num_pages = num_extent_pages(src->start, src->len);
4670
4671 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4672 if (new == NULL)
4673 return NULL;
4674
4675 for (i = 0; i < num_pages; i++) {
4676 p = alloc_page(GFP_NOFS);
4677 if (!p) {
4678 btrfs_release_extent_buffer(new);
4679 return NULL;
4680 }
4681 attach_extent_buffer_page(new, p);
4682 WARN_ON(PageDirty(p));
4683 SetPageUptodate(p);
4684 new->pages[i] = p;
4685 }
4686
4687 copy_extent_buffer(new, src, 0, 0, src->len);
4688 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4689 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4690
4691 return new;
4692 }
4693
4694 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4695 u64 start, unsigned long len)
4696 {
4697 struct extent_buffer *eb;
4698 unsigned long num_pages;
4699 unsigned long i;
4700
4701 num_pages = num_extent_pages(start, len);
4702
4703 eb = __alloc_extent_buffer(fs_info, start, len);
4704 if (!eb)
4705 return NULL;
4706
4707 for (i = 0; i < num_pages; i++) {
4708 eb->pages[i] = alloc_page(GFP_NOFS);
4709 if (!eb->pages[i])
4710 goto err;
4711 }
4712 set_extent_buffer_uptodate(eb);
4713 btrfs_set_header_nritems(eb, 0);
4714 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4715
4716 return eb;
4717 err:
4718 for (; i > 0; i--)
4719 __free_page(eb->pages[i - 1]);
4720 __free_extent_buffer(eb);
4721 return NULL;
4722 }
4723
4724 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4725 u64 start, u32 nodesize)
4726 {
4727 unsigned long len;
4728
4729 if (!fs_info) {
4730 /*
4731 * Called only from tests that don't always have a fs_info
4732 * available
4733 */
4734 len = nodesize;
4735 } else {
4736 len = fs_info->tree_root->nodesize;
4737 }
4738
4739 return __alloc_dummy_extent_buffer(fs_info, start, len);
4740 }
4741
4742 static void check_buffer_tree_ref(struct extent_buffer *eb)
4743 {
4744 int refs;
4745 /* the ref bit is tricky. We have to make sure it is set
4746 * if we have the buffer dirty. Otherwise the
4747 * code to free a buffer can end up dropping a dirty
4748 * page
4749 *
4750 * Once the ref bit is set, it won't go away while the
4751 * buffer is dirty or in writeback, and it also won't
4752 * go away while we have the reference count on the
4753 * eb bumped.
4754 *
4755 * We can't just set the ref bit without bumping the
4756 * ref on the eb because free_extent_buffer might
4757 * see the ref bit and try to clear it. If this happens
4758 * free_extent_buffer might end up dropping our original
4759 * ref by mistake and freeing the page before we are able
4760 * to add one more ref.
4761 *
4762 * So bump the ref count first, then set the bit. If someone
4763 * beat us to it, drop the ref we added.
4764 */
4765 refs = atomic_read(&eb->refs);
4766 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4767 return;
4768
4769 spin_lock(&eb->refs_lock);
4770 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4771 atomic_inc(&eb->refs);
4772 spin_unlock(&eb->refs_lock);
4773 }
4774
4775 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4776 struct page *accessed)
4777 {
4778 unsigned long num_pages, i;
4779
4780 check_buffer_tree_ref(eb);
4781
4782 num_pages = num_extent_pages(eb->start, eb->len);
4783 for (i = 0; i < num_pages; i++) {
4784 struct page *p = eb->pages[i];
4785
4786 if (p != accessed)
4787 mark_page_accessed(p);
4788 }
4789 }
4790
4791 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4792 u64 start)
4793 {
4794 struct extent_buffer *eb;
4795
4796 rcu_read_lock();
4797 eb = radix_tree_lookup(&fs_info->buffer_radix,
4798 start >> PAGE_SHIFT);
4799 if (eb && atomic_inc_not_zero(&eb->refs)) {
4800 rcu_read_unlock();
4801 /*
4802 * Lock our eb's refs_lock to avoid races with
4803 * free_extent_buffer. When we get our eb it might be flagged
4804 * with EXTENT_BUFFER_STALE and another task running
4805 * free_extent_buffer might have seen that flag set,
4806 * eb->refs == 2, that the buffer isn't under IO (dirty and
4807 * writeback flags not set) and it's still in the tree (flag
4808 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4809 * of decrementing the extent buffer's reference count twice.
4810 * So here we could race and increment the eb's reference count,
4811 * clear its stale flag, mark it as dirty and drop our reference
4812 * before the other task finishes executing free_extent_buffer,
4813 * which would later result in an attempt to free an extent
4814 * buffer that is dirty.
4815 */
4816 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4817 spin_lock(&eb->refs_lock);
4818 spin_unlock(&eb->refs_lock);
4819 }
4820 mark_extent_buffer_accessed(eb, NULL);
4821 return eb;
4822 }
4823 rcu_read_unlock();
4824
4825 return NULL;
4826 }
4827
4828 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4829 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4830 u64 start, u32 nodesize)
4831 {
4832 struct extent_buffer *eb, *exists = NULL;
4833 int ret;
4834
4835 eb = find_extent_buffer(fs_info, start);
4836 if (eb)
4837 return eb;
4838 eb = alloc_dummy_extent_buffer(fs_info, start, nodesize);
4839 if (!eb)
4840 return NULL;
4841 eb->fs_info = fs_info;
4842 again:
4843 ret = radix_tree_preload(GFP_NOFS);
4844 if (ret)
4845 goto free_eb;
4846 spin_lock(&fs_info->buffer_lock);
4847 ret = radix_tree_insert(&fs_info->buffer_radix,
4848 start >> PAGE_SHIFT, eb);
4849 spin_unlock(&fs_info->buffer_lock);
4850 radix_tree_preload_end();
4851 if (ret == -EEXIST) {
4852 exists = find_extent_buffer(fs_info, start);
4853 if (exists)
4854 goto free_eb;
4855 else
4856 goto again;
4857 }
4858 check_buffer_tree_ref(eb);
4859 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4860
4861 /*
4862 * We will free dummy extent buffer's if they come into
4863 * free_extent_buffer with a ref count of 2, but if we are using this we
4864 * want the buffers to stay in memory until we're done with them, so
4865 * bump the ref count again.
4866 */
4867 atomic_inc(&eb->refs);
4868 return eb;
4869 free_eb:
4870 btrfs_release_extent_buffer(eb);
4871 return exists;
4872 }
4873 #endif
4874
4875 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4876 u64 start)
4877 {
4878 unsigned long len = fs_info->tree_root->nodesize;
4879 unsigned long num_pages = num_extent_pages(start, len);
4880 unsigned long i;
4881 unsigned long index = start >> PAGE_SHIFT;
4882 struct extent_buffer *eb;
4883 struct extent_buffer *exists = NULL;
4884 struct page *p;
4885 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4886 int uptodate = 1;
4887 int ret;
4888
4889 if (!IS_ALIGNED(start, fs_info->tree_root->sectorsize)) {
4890 btrfs_err(fs_info, "bad tree block start %llu", start);
4891 return ERR_PTR(-EINVAL);
4892 }
4893
4894 eb = find_extent_buffer(fs_info, start);
4895 if (eb)
4896 return eb;
4897
4898 eb = __alloc_extent_buffer(fs_info, start, len);
4899 if (!eb)
4900 return ERR_PTR(-ENOMEM);
4901
4902 for (i = 0; i < num_pages; i++, index++) {
4903 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4904 if (!p) {
4905 exists = ERR_PTR(-ENOMEM);
4906 goto free_eb;
4907 }
4908
4909 spin_lock(&mapping->private_lock);
4910 if (PagePrivate(p)) {
4911 /*
4912 * We could have already allocated an eb for this page
4913 * and attached one so lets see if we can get a ref on
4914 * the existing eb, and if we can we know it's good and
4915 * we can just return that one, else we know we can just
4916 * overwrite page->private.
4917 */
4918 exists = (struct extent_buffer *)p->private;
4919 if (atomic_inc_not_zero(&exists->refs)) {
4920 spin_unlock(&mapping->private_lock);
4921 unlock_page(p);
4922 put_page(p);
4923 mark_extent_buffer_accessed(exists, p);
4924 goto free_eb;
4925 }
4926 exists = NULL;
4927
4928 /*
4929 * Do this so attach doesn't complain and we need to
4930 * drop the ref the old guy had.
4931 */
4932 ClearPagePrivate(p);
4933 WARN_ON(PageDirty(p));
4934 put_page(p);
4935 }
4936 attach_extent_buffer_page(eb, p);
4937 spin_unlock(&mapping->private_lock);
4938 WARN_ON(PageDirty(p));
4939 eb->pages[i] = p;
4940 if (!PageUptodate(p))
4941 uptodate = 0;
4942
4943 /*
4944 * see below about how we avoid a nasty race with release page
4945 * and why we unlock later
4946 */
4947 }
4948 if (uptodate)
4949 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4950 again:
4951 ret = radix_tree_preload(GFP_NOFS);
4952 if (ret) {
4953 exists = ERR_PTR(ret);
4954 goto free_eb;
4955 }
4956
4957 spin_lock(&fs_info->buffer_lock);
4958 ret = radix_tree_insert(&fs_info->buffer_radix,
4959 start >> PAGE_SHIFT, eb);
4960 spin_unlock(&fs_info->buffer_lock);
4961 radix_tree_preload_end();
4962 if (ret == -EEXIST) {
4963 exists = find_extent_buffer(fs_info, start);
4964 if (exists)
4965 goto free_eb;
4966 else
4967 goto again;
4968 }
4969 /* add one reference for the tree */
4970 check_buffer_tree_ref(eb);
4971 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4972
4973 /*
4974 * there is a race where release page may have
4975 * tried to find this extent buffer in the radix
4976 * but failed. It will tell the VM it is safe to
4977 * reclaim the, and it will clear the page private bit.
4978 * We must make sure to set the page private bit properly
4979 * after the extent buffer is in the radix tree so
4980 * it doesn't get lost
4981 */
4982 SetPageChecked(eb->pages[0]);
4983 for (i = 1; i < num_pages; i++) {
4984 p = eb->pages[i];
4985 ClearPageChecked(p);
4986 unlock_page(p);
4987 }
4988 unlock_page(eb->pages[0]);
4989 return eb;
4990
4991 free_eb:
4992 WARN_ON(!atomic_dec_and_test(&eb->refs));
4993 for (i = 0; i < num_pages; i++) {
4994 if (eb->pages[i])
4995 unlock_page(eb->pages[i]);
4996 }
4997
4998 btrfs_release_extent_buffer(eb);
4999 return exists;
5000 }
5001
5002 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5003 {
5004 struct extent_buffer *eb =
5005 container_of(head, struct extent_buffer, rcu_head);
5006
5007 __free_extent_buffer(eb);
5008 }
5009
5010 /* Expects to have eb->eb_lock already held */
5011 static int release_extent_buffer(struct extent_buffer *eb)
5012 {
5013 WARN_ON(atomic_read(&eb->refs) == 0);
5014 if (atomic_dec_and_test(&eb->refs)) {
5015 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5016 struct btrfs_fs_info *fs_info = eb->fs_info;
5017
5018 spin_unlock(&eb->refs_lock);
5019
5020 spin_lock(&fs_info->buffer_lock);
5021 radix_tree_delete(&fs_info->buffer_radix,
5022 eb->start >> PAGE_SHIFT);
5023 spin_unlock(&fs_info->buffer_lock);
5024 } else {
5025 spin_unlock(&eb->refs_lock);
5026 }
5027
5028 /* Should be safe to release our pages at this point */
5029 btrfs_release_extent_buffer_page(eb);
5030 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5031 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5032 __free_extent_buffer(eb);
5033 return 1;
5034 }
5035 #endif
5036 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5037 return 1;
5038 }
5039 spin_unlock(&eb->refs_lock);
5040
5041 return 0;
5042 }
5043
5044 void free_extent_buffer(struct extent_buffer *eb)
5045 {
5046 int refs;
5047 int old;
5048 if (!eb)
5049 return;
5050
5051 while (1) {
5052 refs = atomic_read(&eb->refs);
5053 if (refs <= 3)
5054 break;
5055 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5056 if (old == refs)
5057 return;
5058 }
5059
5060 spin_lock(&eb->refs_lock);
5061 if (atomic_read(&eb->refs) == 2 &&
5062 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5063 atomic_dec(&eb->refs);
5064
5065 if (atomic_read(&eb->refs) == 2 &&
5066 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5067 !extent_buffer_under_io(eb) &&
5068 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5069 atomic_dec(&eb->refs);
5070
5071 /*
5072 * I know this is terrible, but it's temporary until we stop tracking
5073 * the uptodate bits and such for the extent buffers.
5074 */
5075 release_extent_buffer(eb);
5076 }
5077
5078 void free_extent_buffer_stale(struct extent_buffer *eb)
5079 {
5080 if (!eb)
5081 return;
5082
5083 spin_lock(&eb->refs_lock);
5084 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5085
5086 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5087 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5088 atomic_dec(&eb->refs);
5089 release_extent_buffer(eb);
5090 }
5091
5092 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5093 {
5094 unsigned long i;
5095 unsigned long num_pages;
5096 struct page *page;
5097
5098 num_pages = num_extent_pages(eb->start, eb->len);
5099
5100 for (i = 0; i < num_pages; i++) {
5101 page = eb->pages[i];
5102 if (!PageDirty(page))
5103 continue;
5104
5105 lock_page(page);
5106 WARN_ON(!PagePrivate(page));
5107
5108 clear_page_dirty_for_io(page);
5109 spin_lock_irq(&page->mapping->tree_lock);
5110 if (!PageDirty(page)) {
5111 radix_tree_tag_clear(&page->mapping->page_tree,
5112 page_index(page),
5113 PAGECACHE_TAG_DIRTY);
5114 }
5115 spin_unlock_irq(&page->mapping->tree_lock);
5116 ClearPageError(page);
5117 unlock_page(page);
5118 }
5119 WARN_ON(atomic_read(&eb->refs) == 0);
5120 }
5121
5122 int set_extent_buffer_dirty(struct extent_buffer *eb)
5123 {
5124 unsigned long i;
5125 unsigned long num_pages;
5126 int was_dirty = 0;
5127
5128 check_buffer_tree_ref(eb);
5129
5130 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5131
5132 num_pages = num_extent_pages(eb->start, eb->len);
5133 WARN_ON(atomic_read(&eb->refs) == 0);
5134 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5135
5136 for (i = 0; i < num_pages; i++)
5137 set_page_dirty(eb->pages[i]);
5138 return was_dirty;
5139 }
5140
5141 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5142 {
5143 unsigned long i;
5144 struct page *page;
5145 unsigned long num_pages;
5146
5147 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5148 num_pages = num_extent_pages(eb->start, eb->len);
5149 for (i = 0; i < num_pages; i++) {
5150 page = eb->pages[i];
5151 if (page)
5152 ClearPageUptodate(page);
5153 }
5154 }
5155
5156 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5157 {
5158 unsigned long i;
5159 struct page *page;
5160 unsigned long num_pages;
5161
5162 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5163 num_pages = num_extent_pages(eb->start, eb->len);
5164 for (i = 0; i < num_pages; i++) {
5165 page = eb->pages[i];
5166 SetPageUptodate(page);
5167 }
5168 }
5169
5170 int extent_buffer_uptodate(struct extent_buffer *eb)
5171 {
5172 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5173 }
5174
5175 int read_extent_buffer_pages(struct extent_io_tree *tree,
5176 struct extent_buffer *eb, u64 start, int wait,
5177 get_extent_t *get_extent, int mirror_num)
5178 {
5179 unsigned long i;
5180 unsigned long start_i;
5181 struct page *page;
5182 int err;
5183 int ret = 0;
5184 int locked_pages = 0;
5185 int all_uptodate = 1;
5186 unsigned long num_pages;
5187 unsigned long num_reads = 0;
5188 struct bio *bio = NULL;
5189 unsigned long bio_flags = 0;
5190
5191 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5192 return 0;
5193
5194 if (start) {
5195 WARN_ON(start < eb->start);
5196 start_i = (start >> PAGE_SHIFT) -
5197 (eb->start >> PAGE_SHIFT);
5198 } else {
5199 start_i = 0;
5200 }
5201
5202 num_pages = num_extent_pages(eb->start, eb->len);
5203 for (i = start_i; i < num_pages; i++) {
5204 page = eb->pages[i];
5205 if (wait == WAIT_NONE) {
5206 if (!trylock_page(page))
5207 goto unlock_exit;
5208 } else {
5209 lock_page(page);
5210 }
5211 locked_pages++;
5212 if (!PageUptodate(page)) {
5213 num_reads++;
5214 all_uptodate = 0;
5215 }
5216 }
5217 if (all_uptodate) {
5218 if (start_i == 0)
5219 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5220 goto unlock_exit;
5221 }
5222
5223 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5224 eb->read_mirror = 0;
5225 atomic_set(&eb->io_pages, num_reads);
5226 for (i = start_i; i < num_pages; i++) {
5227 page = eb->pages[i];
5228
5229 if (!PageUptodate(page)) {
5230 if (ret) {
5231 atomic_dec(&eb->io_pages);
5232 unlock_page(page);
5233 continue;
5234 }
5235
5236 ClearPageError(page);
5237 err = __extent_read_full_page(tree, page,
5238 get_extent, &bio,
5239 mirror_num, &bio_flags,
5240 REQ_META);
5241 if (err) {
5242 ret = err;
5243 /*
5244 * We use &bio in above __extent_read_full_page,
5245 * so we ensure that if it returns error, the
5246 * current page fails to add itself to bio and
5247 * it's been unlocked.
5248 *
5249 * We must dec io_pages by ourselves.
5250 */
5251 atomic_dec(&eb->io_pages);
5252 }
5253 } else {
5254 unlock_page(page);
5255 }
5256 }
5257
5258 if (bio) {
5259 err = submit_one_bio(bio, mirror_num, bio_flags);
5260 if (err)
5261 return err;
5262 }
5263
5264 if (ret || wait != WAIT_COMPLETE)
5265 return ret;
5266
5267 for (i = start_i; i < num_pages; i++) {
5268 page = eb->pages[i];
5269 wait_on_page_locked(page);
5270 if (!PageUptodate(page))
5271 ret = -EIO;
5272 }
5273
5274 return ret;
5275
5276 unlock_exit:
5277 i = start_i;
5278 while (locked_pages > 0) {
5279 page = eb->pages[i];
5280 i++;
5281 unlock_page(page);
5282 locked_pages--;
5283 }
5284 return ret;
5285 }
5286
5287 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5288 unsigned long start,
5289 unsigned long len)
5290 {
5291 size_t cur;
5292 size_t offset;
5293 struct page *page;
5294 char *kaddr;
5295 char *dst = (char *)dstv;
5296 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5297 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5298
5299 WARN_ON(start > eb->len);
5300 WARN_ON(start + len > eb->start + eb->len);
5301
5302 offset = (start_offset + start) & (PAGE_SIZE - 1);
5303
5304 while (len > 0) {
5305 page = eb->pages[i];
5306
5307 cur = min(len, (PAGE_SIZE - offset));
5308 kaddr = page_address(page);
5309 memcpy(dst, kaddr + offset, cur);
5310
5311 dst += cur;
5312 len -= cur;
5313 offset = 0;
5314 i++;
5315 }
5316 }
5317
5318 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5319 unsigned long start,
5320 unsigned long len)
5321 {
5322 size_t cur;
5323 size_t offset;
5324 struct page *page;
5325 char *kaddr;
5326 char __user *dst = (char __user *)dstv;
5327 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5328 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5329 int ret = 0;
5330
5331 WARN_ON(start > eb->len);
5332 WARN_ON(start + len > eb->start + eb->len);
5333
5334 offset = (start_offset + start) & (PAGE_SIZE - 1);
5335
5336 while (len > 0) {
5337 page = eb->pages[i];
5338
5339 cur = min(len, (PAGE_SIZE - offset));
5340 kaddr = page_address(page);
5341 if (copy_to_user(dst, kaddr + offset, cur)) {
5342 ret = -EFAULT;
5343 break;
5344 }
5345
5346 dst += cur;
5347 len -= cur;
5348 offset = 0;
5349 i++;
5350 }
5351
5352 return ret;
5353 }
5354
5355 /*
5356 * return 0 if the item is found within a page.
5357 * return 1 if the item spans two pages.
5358 * return -EINVAL otherwise.
5359 */
5360 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5361 unsigned long min_len, char **map,
5362 unsigned long *map_start,
5363 unsigned long *map_len)
5364 {
5365 size_t offset = start & (PAGE_SIZE - 1);
5366 char *kaddr;
5367 struct page *p;
5368 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5369 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5370 unsigned long end_i = (start_offset + start + min_len - 1) >>
5371 PAGE_SHIFT;
5372
5373 if (i != end_i)
5374 return 1;
5375
5376 if (i == 0) {
5377 offset = start_offset;
5378 *map_start = 0;
5379 } else {
5380 offset = 0;
5381 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5382 }
5383
5384 if (start + min_len > eb->len) {
5385 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5386 "wanted %lu %lu\n",
5387 eb->start, eb->len, start, min_len);
5388 return -EINVAL;
5389 }
5390
5391 p = eb->pages[i];
5392 kaddr = page_address(p);
5393 *map = kaddr + offset;
5394 *map_len = PAGE_SIZE - offset;
5395 return 0;
5396 }
5397
5398 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5399 unsigned long start,
5400 unsigned long len)
5401 {
5402 size_t cur;
5403 size_t offset;
5404 struct page *page;
5405 char *kaddr;
5406 char *ptr = (char *)ptrv;
5407 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5408 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5409 int ret = 0;
5410
5411 WARN_ON(start > eb->len);
5412 WARN_ON(start + len > eb->start + eb->len);
5413
5414 offset = (start_offset + start) & (PAGE_SIZE - 1);
5415
5416 while (len > 0) {
5417 page = eb->pages[i];
5418
5419 cur = min(len, (PAGE_SIZE - offset));
5420
5421 kaddr = page_address(page);
5422 ret = memcmp(ptr, kaddr + offset, cur);
5423 if (ret)
5424 break;
5425
5426 ptr += cur;
5427 len -= cur;
5428 offset = 0;
5429 i++;
5430 }
5431 return ret;
5432 }
5433
5434 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5435 unsigned long start, unsigned long len)
5436 {
5437 size_t cur;
5438 size_t offset;
5439 struct page *page;
5440 char *kaddr;
5441 char *src = (char *)srcv;
5442 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5443 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5444
5445 WARN_ON(start > eb->len);
5446 WARN_ON(start + len > eb->start + eb->len);
5447
5448 offset = (start_offset + start) & (PAGE_SIZE - 1);
5449
5450 while (len > 0) {
5451 page = eb->pages[i];
5452 WARN_ON(!PageUptodate(page));
5453
5454 cur = min(len, PAGE_SIZE - offset);
5455 kaddr = page_address(page);
5456 memcpy(kaddr + offset, src, cur);
5457
5458 src += cur;
5459 len -= cur;
5460 offset = 0;
5461 i++;
5462 }
5463 }
5464
5465 void memset_extent_buffer(struct extent_buffer *eb, char c,
5466 unsigned long start, unsigned long len)
5467 {
5468 size_t cur;
5469 size_t offset;
5470 struct page *page;
5471 char *kaddr;
5472 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5473 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5474
5475 WARN_ON(start > eb->len);
5476 WARN_ON(start + len > eb->start + eb->len);
5477
5478 offset = (start_offset + start) & (PAGE_SIZE - 1);
5479
5480 while (len > 0) {
5481 page = eb->pages[i];
5482 WARN_ON(!PageUptodate(page));
5483
5484 cur = min(len, PAGE_SIZE - offset);
5485 kaddr = page_address(page);
5486 memset(kaddr + offset, c, cur);
5487
5488 len -= cur;
5489 offset = 0;
5490 i++;
5491 }
5492 }
5493
5494 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5495 unsigned long dst_offset, unsigned long src_offset,
5496 unsigned long len)
5497 {
5498 u64 dst_len = dst->len;
5499 size_t cur;
5500 size_t offset;
5501 struct page *page;
5502 char *kaddr;
5503 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5504 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5505
5506 WARN_ON(src->len != dst_len);
5507
5508 offset = (start_offset + dst_offset) &
5509 (PAGE_SIZE - 1);
5510
5511 while (len > 0) {
5512 page = dst->pages[i];
5513 WARN_ON(!PageUptodate(page));
5514
5515 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5516
5517 kaddr = page_address(page);
5518 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5519
5520 src_offset += cur;
5521 len -= cur;
5522 offset = 0;
5523 i++;
5524 }
5525 }
5526
5527 /*
5528 * The extent buffer bitmap operations are done with byte granularity because
5529 * bitmap items are not guaranteed to be aligned to a word and therefore a
5530 * single word in a bitmap may straddle two pages in the extent buffer.
5531 */
5532 #define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5533 #define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5534 #define BITMAP_FIRST_BYTE_MASK(start) \
5535 ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5536 #define BITMAP_LAST_BYTE_MASK(nbits) \
5537 (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5538
5539 /*
5540 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5541 * given bit number
5542 * @eb: the extent buffer
5543 * @start: offset of the bitmap item in the extent buffer
5544 * @nr: bit number
5545 * @page_index: return index of the page in the extent buffer that contains the
5546 * given bit number
5547 * @page_offset: return offset into the page given by page_index
5548 *
5549 * This helper hides the ugliness of finding the byte in an extent buffer which
5550 * contains a given bit.
5551 */
5552 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5553 unsigned long start, unsigned long nr,
5554 unsigned long *page_index,
5555 size_t *page_offset)
5556 {
5557 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5558 size_t byte_offset = BIT_BYTE(nr);
5559 size_t offset;
5560
5561 /*
5562 * The byte we want is the offset of the extent buffer + the offset of
5563 * the bitmap item in the extent buffer + the offset of the byte in the
5564 * bitmap item.
5565 */
5566 offset = start_offset + start + byte_offset;
5567
5568 *page_index = offset >> PAGE_SHIFT;
5569 *page_offset = offset & (PAGE_SIZE - 1);
5570 }
5571
5572 /**
5573 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5574 * @eb: the extent buffer
5575 * @start: offset of the bitmap item in the extent buffer
5576 * @nr: bit number to test
5577 */
5578 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5579 unsigned long nr)
5580 {
5581 char *kaddr;
5582 struct page *page;
5583 unsigned long i;
5584 size_t offset;
5585
5586 eb_bitmap_offset(eb, start, nr, &i, &offset);
5587 page = eb->pages[i];
5588 WARN_ON(!PageUptodate(page));
5589 kaddr = page_address(page);
5590 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5591 }
5592
5593 /**
5594 * extent_buffer_bitmap_set - set an area of a bitmap
5595 * @eb: the extent buffer
5596 * @start: offset of the bitmap item in the extent buffer
5597 * @pos: bit number of the first bit
5598 * @len: number of bits to set
5599 */
5600 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5601 unsigned long pos, unsigned long len)
5602 {
5603 char *kaddr;
5604 struct page *page;
5605 unsigned long i;
5606 size_t offset;
5607 const unsigned int size = pos + len;
5608 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5609 unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5610
5611 eb_bitmap_offset(eb, start, pos, &i, &offset);
5612 page = eb->pages[i];
5613 WARN_ON(!PageUptodate(page));
5614 kaddr = page_address(page);
5615
5616 while (len >= bits_to_set) {
5617 kaddr[offset] |= mask_to_set;
5618 len -= bits_to_set;
5619 bits_to_set = BITS_PER_BYTE;
5620 mask_to_set = ~0U;
5621 if (++offset >= PAGE_SIZE && len > 0) {
5622 offset = 0;
5623 page = eb->pages[++i];
5624 WARN_ON(!PageUptodate(page));
5625 kaddr = page_address(page);
5626 }
5627 }
5628 if (len) {
5629 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5630 kaddr[offset] |= mask_to_set;
5631 }
5632 }
5633
5634
5635 /**
5636 * extent_buffer_bitmap_clear - clear an area of a bitmap
5637 * @eb: the extent buffer
5638 * @start: offset of the bitmap item in the extent buffer
5639 * @pos: bit number of the first bit
5640 * @len: number of bits to clear
5641 */
5642 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5643 unsigned long pos, unsigned long len)
5644 {
5645 char *kaddr;
5646 struct page *page;
5647 unsigned long i;
5648 size_t offset;
5649 const unsigned int size = pos + len;
5650 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5651 unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5652
5653 eb_bitmap_offset(eb, start, pos, &i, &offset);
5654 page = eb->pages[i];
5655 WARN_ON(!PageUptodate(page));
5656 kaddr = page_address(page);
5657
5658 while (len >= bits_to_clear) {
5659 kaddr[offset] &= ~mask_to_clear;
5660 len -= bits_to_clear;
5661 bits_to_clear = BITS_PER_BYTE;
5662 mask_to_clear = ~0U;
5663 if (++offset >= PAGE_SIZE && len > 0) {
5664 offset = 0;
5665 page = eb->pages[++i];
5666 WARN_ON(!PageUptodate(page));
5667 kaddr = page_address(page);
5668 }
5669 }
5670 if (len) {
5671 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5672 kaddr[offset] &= ~mask_to_clear;
5673 }
5674 }
5675
5676 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5677 {
5678 unsigned long distance = (src > dst) ? src - dst : dst - src;
5679 return distance < len;
5680 }
5681
5682 static void copy_pages(struct page *dst_page, struct page *src_page,
5683 unsigned long dst_off, unsigned long src_off,
5684 unsigned long len)
5685 {
5686 char *dst_kaddr = page_address(dst_page);
5687 char *src_kaddr;
5688 int must_memmove = 0;
5689
5690 if (dst_page != src_page) {
5691 src_kaddr = page_address(src_page);
5692 } else {
5693 src_kaddr = dst_kaddr;
5694 if (areas_overlap(src_off, dst_off, len))
5695 must_memmove = 1;
5696 }
5697
5698 if (must_memmove)
5699 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5700 else
5701 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5702 }
5703
5704 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5705 unsigned long src_offset, unsigned long len)
5706 {
5707 size_t cur;
5708 size_t dst_off_in_page;
5709 size_t src_off_in_page;
5710 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5711 unsigned long dst_i;
5712 unsigned long src_i;
5713
5714 if (src_offset + len > dst->len) {
5715 btrfs_err(dst->fs_info,
5716 "memmove bogus src_offset %lu move "
5717 "len %lu dst len %lu", src_offset, len, dst->len);
5718 BUG_ON(1);
5719 }
5720 if (dst_offset + len > dst->len) {
5721 btrfs_err(dst->fs_info,
5722 "memmove bogus dst_offset %lu move "
5723 "len %lu dst len %lu", dst_offset, len, dst->len);
5724 BUG_ON(1);
5725 }
5726
5727 while (len > 0) {
5728 dst_off_in_page = (start_offset + dst_offset) &
5729 (PAGE_SIZE - 1);
5730 src_off_in_page = (start_offset + src_offset) &
5731 (PAGE_SIZE - 1);
5732
5733 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5734 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5735
5736 cur = min(len, (unsigned long)(PAGE_SIZE -
5737 src_off_in_page));
5738 cur = min_t(unsigned long, cur,
5739 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5740
5741 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5742 dst_off_in_page, src_off_in_page, cur);
5743
5744 src_offset += cur;
5745 dst_offset += cur;
5746 len -= cur;
5747 }
5748 }
5749
5750 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5751 unsigned long src_offset, unsigned long len)
5752 {
5753 size_t cur;
5754 size_t dst_off_in_page;
5755 size_t src_off_in_page;
5756 unsigned long dst_end = dst_offset + len - 1;
5757 unsigned long src_end = src_offset + len - 1;
5758 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5759 unsigned long dst_i;
5760 unsigned long src_i;
5761
5762 if (src_offset + len > dst->len) {
5763 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5764 "len %lu len %lu", src_offset, len, dst->len);
5765 BUG_ON(1);
5766 }
5767 if (dst_offset + len > dst->len) {
5768 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5769 "len %lu len %lu", dst_offset, len, dst->len);
5770 BUG_ON(1);
5771 }
5772 if (dst_offset < src_offset) {
5773 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5774 return;
5775 }
5776 while (len > 0) {
5777 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5778 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5779
5780 dst_off_in_page = (start_offset + dst_end) &
5781 (PAGE_SIZE - 1);
5782 src_off_in_page = (start_offset + src_end) &
5783 (PAGE_SIZE - 1);
5784
5785 cur = min_t(unsigned long, len, src_off_in_page + 1);
5786 cur = min(cur, dst_off_in_page + 1);
5787 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5788 dst_off_in_page - cur + 1,
5789 src_off_in_page - cur + 1, cur);
5790
5791 dst_end -= cur;
5792 src_end -= cur;
5793 len -= cur;
5794 }
5795 }
5796
5797 int try_release_extent_buffer(struct page *page)
5798 {
5799 struct extent_buffer *eb;
5800
5801 /*
5802 * We need to make sure nobody is attaching this page to an eb right
5803 * now.
5804 */
5805 spin_lock(&page->mapping->private_lock);
5806 if (!PagePrivate(page)) {
5807 spin_unlock(&page->mapping->private_lock);
5808 return 1;
5809 }
5810
5811 eb = (struct extent_buffer *)page->private;
5812 BUG_ON(!eb);
5813
5814 /*
5815 * This is a little awful but should be ok, we need to make sure that
5816 * the eb doesn't disappear out from under us while we're looking at
5817 * this page.
5818 */
5819 spin_lock(&eb->refs_lock);
5820 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5821 spin_unlock(&eb->refs_lock);
5822 spin_unlock(&page->mapping->private_lock);
5823 return 0;
5824 }
5825 spin_unlock(&page->mapping->private_lock);
5826
5827 /*
5828 * If tree ref isn't set then we know the ref on this eb is a real ref,
5829 * so just return, this page will likely be freed soon anyway.
5830 */
5831 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5832 spin_unlock(&eb->refs_lock);
5833 return 0;
5834 }
5835
5836 return release_extent_buffer(eb);
5837 }
This page took 0.161362 seconds and 5 git commands to generate.