btrfs: replace many BUG_ONs with proper error handling
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22
23 static struct kmem_cache *extent_state_cache;
24 static struct kmem_cache *extent_buffer_cache;
25
26 static LIST_HEAD(buffers);
27 static LIST_HEAD(states);
28
29 #define LEAK_DEBUG 0
30 #if LEAK_DEBUG
31 static DEFINE_SPINLOCK(leak_lock);
32 #endif
33
34 #define BUFFER_LRU_MAX 64
35
36 struct tree_entry {
37 u64 start;
38 u64 end;
39 struct rb_node rb_node;
40 };
41
42 struct extent_page_data {
43 struct bio *bio;
44 struct extent_io_tree *tree;
45 get_extent_t *get_extent;
46
47 /* tells writepage not to lock the state bits for this range
48 * it still does the unlocking
49 */
50 unsigned int extent_locked:1;
51
52 /* tells the submit_bio code to use a WRITE_SYNC */
53 unsigned int sync_io:1;
54 };
55
56 static inline struct btrfs_fs_info *
57 tree_fs_info(struct extent_io_tree *tree)
58 {
59 return btrfs_sb(tree->mapping->host->i_sb);
60 }
61
62 int __init extent_io_init(void)
63 {
64 extent_state_cache = kmem_cache_create("extent_state",
65 sizeof(struct extent_state), 0,
66 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
67 if (!extent_state_cache)
68 return -ENOMEM;
69
70 extent_buffer_cache = kmem_cache_create("extent_buffers",
71 sizeof(struct extent_buffer), 0,
72 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
73 if (!extent_buffer_cache)
74 goto free_state_cache;
75 return 0;
76
77 free_state_cache:
78 kmem_cache_destroy(extent_state_cache);
79 return -ENOMEM;
80 }
81
82 void extent_io_exit(void)
83 {
84 struct extent_state *state;
85 struct extent_buffer *eb;
86
87 while (!list_empty(&states)) {
88 state = list_entry(states.next, struct extent_state, leak_list);
89 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
90 "state %lu in tree %p refs %d\n",
91 (unsigned long long)state->start,
92 (unsigned long long)state->end,
93 state->state, state->tree, atomic_read(&state->refs));
94 list_del(&state->leak_list);
95 kmem_cache_free(extent_state_cache, state);
96
97 }
98
99 while (!list_empty(&buffers)) {
100 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
101 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
102 "refs %d\n", (unsigned long long)eb->start,
103 eb->len, atomic_read(&eb->refs));
104 list_del(&eb->leak_list);
105 kmem_cache_free(extent_buffer_cache, eb);
106 }
107 if (extent_state_cache)
108 kmem_cache_destroy(extent_state_cache);
109 if (extent_buffer_cache)
110 kmem_cache_destroy(extent_buffer_cache);
111 }
112
113 void extent_io_tree_init(struct extent_io_tree *tree,
114 struct address_space *mapping)
115 {
116 tree->state = RB_ROOT;
117 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
118 tree->ops = NULL;
119 tree->dirty_bytes = 0;
120 spin_lock_init(&tree->lock);
121 spin_lock_init(&tree->buffer_lock);
122 tree->mapping = mapping;
123 }
124
125 static struct extent_state *alloc_extent_state(gfp_t mask)
126 {
127 struct extent_state *state;
128 #if LEAK_DEBUG
129 unsigned long flags;
130 #endif
131
132 state = kmem_cache_alloc(extent_state_cache, mask);
133 if (!state)
134 return state;
135 state->state = 0;
136 state->private = 0;
137 state->tree = NULL;
138 #if LEAK_DEBUG
139 spin_lock_irqsave(&leak_lock, flags);
140 list_add(&state->leak_list, &states);
141 spin_unlock_irqrestore(&leak_lock, flags);
142 #endif
143 atomic_set(&state->refs, 1);
144 init_waitqueue_head(&state->wq);
145 trace_alloc_extent_state(state, mask, _RET_IP_);
146 return state;
147 }
148
149 void free_extent_state(struct extent_state *state)
150 {
151 if (!state)
152 return;
153 if (atomic_dec_and_test(&state->refs)) {
154 #if LEAK_DEBUG
155 unsigned long flags;
156 #endif
157 WARN_ON(state->tree);
158 #if LEAK_DEBUG
159 spin_lock_irqsave(&leak_lock, flags);
160 list_del(&state->leak_list);
161 spin_unlock_irqrestore(&leak_lock, flags);
162 #endif
163 trace_free_extent_state(state, _RET_IP_);
164 kmem_cache_free(extent_state_cache, state);
165 }
166 }
167
168 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
169 struct rb_node *node)
170 {
171 struct rb_node **p = &root->rb_node;
172 struct rb_node *parent = NULL;
173 struct tree_entry *entry;
174
175 while (*p) {
176 parent = *p;
177 entry = rb_entry(parent, struct tree_entry, rb_node);
178
179 if (offset < entry->start)
180 p = &(*p)->rb_left;
181 else if (offset > entry->end)
182 p = &(*p)->rb_right;
183 else
184 return parent;
185 }
186
187 entry = rb_entry(node, struct tree_entry, rb_node);
188 rb_link_node(node, parent, p);
189 rb_insert_color(node, root);
190 return NULL;
191 }
192
193 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
194 struct rb_node **prev_ret,
195 struct rb_node **next_ret)
196 {
197 struct rb_root *root = &tree->state;
198 struct rb_node *n = root->rb_node;
199 struct rb_node *prev = NULL;
200 struct rb_node *orig_prev = NULL;
201 struct tree_entry *entry;
202 struct tree_entry *prev_entry = NULL;
203
204 while (n) {
205 entry = rb_entry(n, struct tree_entry, rb_node);
206 prev = n;
207 prev_entry = entry;
208
209 if (offset < entry->start)
210 n = n->rb_left;
211 else if (offset > entry->end)
212 n = n->rb_right;
213 else
214 return n;
215 }
216
217 if (prev_ret) {
218 orig_prev = prev;
219 while (prev && offset > prev_entry->end) {
220 prev = rb_next(prev);
221 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
222 }
223 *prev_ret = prev;
224 prev = orig_prev;
225 }
226
227 if (next_ret) {
228 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
229 while (prev && offset < prev_entry->start) {
230 prev = rb_prev(prev);
231 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
232 }
233 *next_ret = prev;
234 }
235 return NULL;
236 }
237
238 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
239 u64 offset)
240 {
241 struct rb_node *prev = NULL;
242 struct rb_node *ret;
243
244 ret = __etree_search(tree, offset, &prev, NULL);
245 if (!ret)
246 return prev;
247 return ret;
248 }
249
250 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
251 struct extent_state *other)
252 {
253 if (tree->ops && tree->ops->merge_extent_hook)
254 tree->ops->merge_extent_hook(tree->mapping->host, new,
255 other);
256 }
257
258 /*
259 * utility function to look for merge candidates inside a given range.
260 * Any extents with matching state are merged together into a single
261 * extent in the tree. Extents with EXTENT_IO in their state field
262 * are not merged because the end_io handlers need to be able to do
263 * operations on them without sleeping (or doing allocations/splits).
264 *
265 * This should be called with the tree lock held.
266 */
267 static void merge_state(struct extent_io_tree *tree,
268 struct extent_state *state)
269 {
270 struct extent_state *other;
271 struct rb_node *other_node;
272
273 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
274 return;
275
276 other_node = rb_prev(&state->rb_node);
277 if (other_node) {
278 other = rb_entry(other_node, struct extent_state, rb_node);
279 if (other->end == state->start - 1 &&
280 other->state == state->state) {
281 merge_cb(tree, state, other);
282 state->start = other->start;
283 other->tree = NULL;
284 rb_erase(&other->rb_node, &tree->state);
285 free_extent_state(other);
286 }
287 }
288 other_node = rb_next(&state->rb_node);
289 if (other_node) {
290 other = rb_entry(other_node, struct extent_state, rb_node);
291 if (other->start == state->end + 1 &&
292 other->state == state->state) {
293 merge_cb(tree, state, other);
294 state->end = other->end;
295 other->tree = NULL;
296 rb_erase(&other->rb_node, &tree->state);
297 free_extent_state(other);
298 }
299 }
300 }
301
302 static void set_state_cb(struct extent_io_tree *tree,
303 struct extent_state *state, int *bits)
304 {
305 if (tree->ops && tree->ops->set_bit_hook)
306 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
307 }
308
309 static void clear_state_cb(struct extent_io_tree *tree,
310 struct extent_state *state, int *bits)
311 {
312 if (tree->ops && tree->ops->clear_bit_hook)
313 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
314 }
315
316 static void set_state_bits(struct extent_io_tree *tree,
317 struct extent_state *state, int *bits);
318
319 /*
320 * insert an extent_state struct into the tree. 'bits' are set on the
321 * struct before it is inserted.
322 *
323 * This may return -EEXIST if the extent is already there, in which case the
324 * state struct is freed.
325 *
326 * The tree lock is not taken internally. This is a utility function and
327 * probably isn't what you want to call (see set/clear_extent_bit).
328 */
329 static int insert_state(struct extent_io_tree *tree,
330 struct extent_state *state, u64 start, u64 end,
331 int *bits)
332 {
333 struct rb_node *node;
334
335 if (end < start) {
336 printk(KERN_ERR "btrfs end < start %llu %llu\n",
337 (unsigned long long)end,
338 (unsigned long long)start);
339 WARN_ON(1);
340 }
341 state->start = start;
342 state->end = end;
343
344 set_state_bits(tree, state, bits);
345
346 node = tree_insert(&tree->state, end, &state->rb_node);
347 if (node) {
348 struct extent_state *found;
349 found = rb_entry(node, struct extent_state, rb_node);
350 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
351 "%llu %llu\n", (unsigned long long)found->start,
352 (unsigned long long)found->end,
353 (unsigned long long)start, (unsigned long long)end);
354 return -EEXIST;
355 }
356 state->tree = tree;
357 merge_state(tree, state);
358 return 0;
359 }
360
361 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
362 u64 split)
363 {
364 if (tree->ops && tree->ops->split_extent_hook)
365 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
366 }
367
368 /*
369 * split a given extent state struct in two, inserting the preallocated
370 * struct 'prealloc' as the newly created second half. 'split' indicates an
371 * offset inside 'orig' where it should be split.
372 *
373 * Before calling,
374 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
375 * are two extent state structs in the tree:
376 * prealloc: [orig->start, split - 1]
377 * orig: [ split, orig->end ]
378 *
379 * The tree locks are not taken by this function. They need to be held
380 * by the caller.
381 */
382 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
383 struct extent_state *prealloc, u64 split)
384 {
385 struct rb_node *node;
386
387 split_cb(tree, orig, split);
388
389 prealloc->start = orig->start;
390 prealloc->end = split - 1;
391 prealloc->state = orig->state;
392 orig->start = split;
393
394 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
395 if (node) {
396 free_extent_state(prealloc);
397 return -EEXIST;
398 }
399 prealloc->tree = tree;
400 return 0;
401 }
402
403 /*
404 * utility function to clear some bits in an extent state struct.
405 * it will optionally wake up any one waiting on this state (wake == 1), or
406 * forcibly remove the state from the tree (delete == 1).
407 *
408 * If no bits are set on the state struct after clearing things, the
409 * struct is freed and removed from the tree
410 */
411 static int clear_state_bit(struct extent_io_tree *tree,
412 struct extent_state *state,
413 int *bits, int wake)
414 {
415 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
416 int ret = state->state & bits_to_clear;
417
418 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
419 u64 range = state->end - state->start + 1;
420 WARN_ON(range > tree->dirty_bytes);
421 tree->dirty_bytes -= range;
422 }
423 clear_state_cb(tree, state, bits);
424 state->state &= ~bits_to_clear;
425 if (wake)
426 wake_up(&state->wq);
427 if (state->state == 0) {
428 if (state->tree) {
429 rb_erase(&state->rb_node, &tree->state);
430 state->tree = NULL;
431 free_extent_state(state);
432 } else {
433 WARN_ON(1);
434 }
435 } else {
436 merge_state(tree, state);
437 }
438 return ret;
439 }
440
441 static struct extent_state *
442 alloc_extent_state_atomic(struct extent_state *prealloc)
443 {
444 if (!prealloc)
445 prealloc = alloc_extent_state(GFP_ATOMIC);
446
447 return prealloc;
448 }
449
450 void extent_io_tree_panic(struct extent_io_tree *tree, int err)
451 {
452 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
453 "Extent tree was modified by another "
454 "thread while locked.");
455 }
456
457 /*
458 * clear some bits on a range in the tree. This may require splitting
459 * or inserting elements in the tree, so the gfp mask is used to
460 * indicate which allocations or sleeping are allowed.
461 *
462 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
463 * the given range from the tree regardless of state (ie for truncate).
464 *
465 * the range [start, end] is inclusive.
466 *
467 * This takes the tree lock, and returns 0 on success and < 0 on error.
468 */
469 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
470 int bits, int wake, int delete,
471 struct extent_state **cached_state,
472 gfp_t mask)
473 {
474 struct extent_state *state;
475 struct extent_state *cached;
476 struct extent_state *prealloc = NULL;
477 struct rb_node *next_node;
478 struct rb_node *node;
479 u64 last_end;
480 int err;
481 int clear = 0;
482
483 if (delete)
484 bits |= ~EXTENT_CTLBITS;
485 bits |= EXTENT_FIRST_DELALLOC;
486
487 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
488 clear = 1;
489 again:
490 if (!prealloc && (mask & __GFP_WAIT)) {
491 prealloc = alloc_extent_state(mask);
492 if (!prealloc)
493 return -ENOMEM;
494 }
495
496 spin_lock(&tree->lock);
497 if (cached_state) {
498 cached = *cached_state;
499
500 if (clear) {
501 *cached_state = NULL;
502 cached_state = NULL;
503 }
504
505 if (cached && cached->tree && cached->start <= start &&
506 cached->end > start) {
507 if (clear)
508 atomic_dec(&cached->refs);
509 state = cached;
510 goto hit_next;
511 }
512 if (clear)
513 free_extent_state(cached);
514 }
515 /*
516 * this search will find the extents that end after
517 * our range starts
518 */
519 node = tree_search(tree, start);
520 if (!node)
521 goto out;
522 state = rb_entry(node, struct extent_state, rb_node);
523 hit_next:
524 if (state->start > end)
525 goto out;
526 WARN_ON(state->end < start);
527 last_end = state->end;
528
529 if (state->end < end && !need_resched())
530 next_node = rb_next(&state->rb_node);
531 else
532 next_node = NULL;
533
534 /* the state doesn't have the wanted bits, go ahead */
535 if (!(state->state & bits))
536 goto next;
537
538 /*
539 * | ---- desired range ---- |
540 * | state | or
541 * | ------------- state -------------- |
542 *
543 * We need to split the extent we found, and may flip
544 * bits on second half.
545 *
546 * If the extent we found extends past our range, we
547 * just split and search again. It'll get split again
548 * the next time though.
549 *
550 * If the extent we found is inside our range, we clear
551 * the desired bit on it.
552 */
553
554 if (state->start < start) {
555 prealloc = alloc_extent_state_atomic(prealloc);
556 BUG_ON(!prealloc);
557 err = split_state(tree, state, prealloc, start);
558 if (err)
559 extent_io_tree_panic(tree, err);
560
561 prealloc = NULL;
562 if (err)
563 goto out;
564 if (state->end <= end) {
565 clear_state_bit(tree, state, &bits, wake);
566 if (last_end == (u64)-1)
567 goto out;
568 start = last_end + 1;
569 }
570 goto search_again;
571 }
572 /*
573 * | ---- desired range ---- |
574 * | state |
575 * We need to split the extent, and clear the bit
576 * on the first half
577 */
578 if (state->start <= end && state->end > end) {
579 prealloc = alloc_extent_state_atomic(prealloc);
580 BUG_ON(!prealloc);
581 err = split_state(tree, state, prealloc, end + 1);
582 if (err)
583 extent_io_tree_panic(tree, err);
584
585 if (wake)
586 wake_up(&state->wq);
587
588 clear_state_bit(tree, prealloc, &bits, wake);
589
590 prealloc = NULL;
591 goto out;
592 }
593
594 clear_state_bit(tree, state, &bits, wake);
595 next:
596 if (last_end == (u64)-1)
597 goto out;
598 start = last_end + 1;
599 if (start <= end && next_node) {
600 state = rb_entry(next_node, struct extent_state,
601 rb_node);
602 goto hit_next;
603 }
604 goto search_again;
605
606 out:
607 spin_unlock(&tree->lock);
608 if (prealloc)
609 free_extent_state(prealloc);
610
611 return 0;
612
613 search_again:
614 if (start > end)
615 goto out;
616 spin_unlock(&tree->lock);
617 if (mask & __GFP_WAIT)
618 cond_resched();
619 goto again;
620 }
621
622 static void wait_on_state(struct extent_io_tree *tree,
623 struct extent_state *state)
624 __releases(tree->lock)
625 __acquires(tree->lock)
626 {
627 DEFINE_WAIT(wait);
628 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
629 spin_unlock(&tree->lock);
630 schedule();
631 spin_lock(&tree->lock);
632 finish_wait(&state->wq, &wait);
633 }
634
635 /*
636 * waits for one or more bits to clear on a range in the state tree.
637 * The range [start, end] is inclusive.
638 * The tree lock is taken by this function
639 */
640 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
641 {
642 struct extent_state *state;
643 struct rb_node *node;
644
645 spin_lock(&tree->lock);
646 again:
647 while (1) {
648 /*
649 * this search will find all the extents that end after
650 * our range starts
651 */
652 node = tree_search(tree, start);
653 if (!node)
654 break;
655
656 state = rb_entry(node, struct extent_state, rb_node);
657
658 if (state->start > end)
659 goto out;
660
661 if (state->state & bits) {
662 start = state->start;
663 atomic_inc(&state->refs);
664 wait_on_state(tree, state);
665 free_extent_state(state);
666 goto again;
667 }
668 start = state->end + 1;
669
670 if (start > end)
671 break;
672
673 cond_resched_lock(&tree->lock);
674 }
675 out:
676 spin_unlock(&tree->lock);
677 }
678
679 static void set_state_bits(struct extent_io_tree *tree,
680 struct extent_state *state,
681 int *bits)
682 {
683 int bits_to_set = *bits & ~EXTENT_CTLBITS;
684
685 set_state_cb(tree, state, bits);
686 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
687 u64 range = state->end - state->start + 1;
688 tree->dirty_bytes += range;
689 }
690 state->state |= bits_to_set;
691 }
692
693 static void cache_state(struct extent_state *state,
694 struct extent_state **cached_ptr)
695 {
696 if (cached_ptr && !(*cached_ptr)) {
697 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
698 *cached_ptr = state;
699 atomic_inc(&state->refs);
700 }
701 }
702 }
703
704 static void uncache_state(struct extent_state **cached_ptr)
705 {
706 if (cached_ptr && (*cached_ptr)) {
707 struct extent_state *state = *cached_ptr;
708 *cached_ptr = NULL;
709 free_extent_state(state);
710 }
711 }
712
713 /*
714 * set some bits on a range in the tree. This may require allocations or
715 * sleeping, so the gfp mask is used to indicate what is allowed.
716 *
717 * If any of the exclusive bits are set, this will fail with -EEXIST if some
718 * part of the range already has the desired bits set. The start of the
719 * existing range is returned in failed_start in this case.
720 *
721 * [start, end] is inclusive This takes the tree lock.
722 */
723
724 static int __must_check
725 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
726 int bits, int exclusive_bits, u64 *failed_start,
727 struct extent_state **cached_state, gfp_t mask)
728 {
729 struct extent_state *state;
730 struct extent_state *prealloc = NULL;
731 struct rb_node *node;
732 int err = 0;
733 u64 last_start;
734 u64 last_end;
735
736 bits |= EXTENT_FIRST_DELALLOC;
737 again:
738 if (!prealloc && (mask & __GFP_WAIT)) {
739 prealloc = alloc_extent_state(mask);
740 BUG_ON(!prealloc);
741 }
742
743 spin_lock(&tree->lock);
744 if (cached_state && *cached_state) {
745 state = *cached_state;
746 if (state->start <= start && state->end > start &&
747 state->tree) {
748 node = &state->rb_node;
749 goto hit_next;
750 }
751 }
752 /*
753 * this search will find all the extents that end after
754 * our range starts.
755 */
756 node = tree_search(tree, start);
757 if (!node) {
758 prealloc = alloc_extent_state_atomic(prealloc);
759 BUG_ON(!prealloc);
760 err = insert_state(tree, prealloc, start, end, &bits);
761 if (err)
762 extent_io_tree_panic(tree, err);
763
764 prealloc = NULL;
765 goto out;
766 }
767 state = rb_entry(node, struct extent_state, rb_node);
768 hit_next:
769 last_start = state->start;
770 last_end = state->end;
771
772 /*
773 * | ---- desired range ---- |
774 * | state |
775 *
776 * Just lock what we found and keep going
777 */
778 if (state->start == start && state->end <= end) {
779 struct rb_node *next_node;
780 if (state->state & exclusive_bits) {
781 *failed_start = state->start;
782 err = -EEXIST;
783 goto out;
784 }
785
786 set_state_bits(tree, state, &bits);
787
788 cache_state(state, cached_state);
789 merge_state(tree, state);
790 if (last_end == (u64)-1)
791 goto out;
792
793 start = last_end + 1;
794 next_node = rb_next(&state->rb_node);
795 if (next_node && start < end && prealloc && !need_resched()) {
796 state = rb_entry(next_node, struct extent_state,
797 rb_node);
798 if (state->start == start)
799 goto hit_next;
800 }
801 goto search_again;
802 }
803
804 /*
805 * | ---- desired range ---- |
806 * | state |
807 * or
808 * | ------------- state -------------- |
809 *
810 * We need to split the extent we found, and may flip bits on
811 * second half.
812 *
813 * If the extent we found extends past our
814 * range, we just split and search again. It'll get split
815 * again the next time though.
816 *
817 * If the extent we found is inside our range, we set the
818 * desired bit on it.
819 */
820 if (state->start < start) {
821 if (state->state & exclusive_bits) {
822 *failed_start = start;
823 err = -EEXIST;
824 goto out;
825 }
826
827 prealloc = alloc_extent_state_atomic(prealloc);
828 BUG_ON(!prealloc);
829 err = split_state(tree, state, prealloc, start);
830 if (err)
831 extent_io_tree_panic(tree, err);
832
833 prealloc = NULL;
834 if (err)
835 goto out;
836 if (state->end <= end) {
837 set_state_bits(tree, state, &bits);
838 cache_state(state, cached_state);
839 merge_state(tree, state);
840 if (last_end == (u64)-1)
841 goto out;
842 start = last_end + 1;
843 }
844 goto search_again;
845 }
846 /*
847 * | ---- desired range ---- |
848 * | state | or | state |
849 *
850 * There's a hole, we need to insert something in it and
851 * ignore the extent we found.
852 */
853 if (state->start > start) {
854 u64 this_end;
855 if (end < last_start)
856 this_end = end;
857 else
858 this_end = last_start - 1;
859
860 prealloc = alloc_extent_state_atomic(prealloc);
861 BUG_ON(!prealloc);
862
863 /*
864 * Avoid to free 'prealloc' if it can be merged with
865 * the later extent.
866 */
867 err = insert_state(tree, prealloc, start, this_end,
868 &bits);
869 if (err)
870 extent_io_tree_panic(tree, err);
871
872 cache_state(prealloc, cached_state);
873 prealloc = NULL;
874 start = this_end + 1;
875 goto search_again;
876 }
877 /*
878 * | ---- desired range ---- |
879 * | state |
880 * We need to split the extent, and set the bit
881 * on the first half
882 */
883 if (state->start <= end && state->end > end) {
884 if (state->state & exclusive_bits) {
885 *failed_start = start;
886 err = -EEXIST;
887 goto out;
888 }
889
890 prealloc = alloc_extent_state_atomic(prealloc);
891 BUG_ON(!prealloc);
892 err = split_state(tree, state, prealloc, end + 1);
893 if (err)
894 extent_io_tree_panic(tree, err);
895
896 set_state_bits(tree, prealloc, &bits);
897 cache_state(prealloc, cached_state);
898 merge_state(tree, prealloc);
899 prealloc = NULL;
900 goto out;
901 }
902
903 goto search_again;
904
905 out:
906 spin_unlock(&tree->lock);
907 if (prealloc)
908 free_extent_state(prealloc);
909
910 return err;
911
912 search_again:
913 if (start > end)
914 goto out;
915 spin_unlock(&tree->lock);
916 if (mask & __GFP_WAIT)
917 cond_resched();
918 goto again;
919 }
920
921 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
922 u64 *failed_start, struct extent_state **cached_state,
923 gfp_t mask)
924 {
925 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
926 cached_state, mask);
927 }
928
929
930 /**
931 * convert_extent - convert all bits in a given range from one bit to another
932 * @tree: the io tree to search
933 * @start: the start offset in bytes
934 * @end: the end offset in bytes (inclusive)
935 * @bits: the bits to set in this range
936 * @clear_bits: the bits to clear in this range
937 * @mask: the allocation mask
938 *
939 * This will go through and set bits for the given range. If any states exist
940 * already in this range they are set with the given bit and cleared of the
941 * clear_bits. This is only meant to be used by things that are mergeable, ie
942 * converting from say DELALLOC to DIRTY. This is not meant to be used with
943 * boundary bits like LOCK.
944 */
945 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
946 int bits, int clear_bits, gfp_t mask)
947 {
948 struct extent_state *state;
949 struct extent_state *prealloc = NULL;
950 struct rb_node *node;
951 int err = 0;
952 u64 last_start;
953 u64 last_end;
954
955 again:
956 if (!prealloc && (mask & __GFP_WAIT)) {
957 prealloc = alloc_extent_state(mask);
958 if (!prealloc)
959 return -ENOMEM;
960 }
961
962 spin_lock(&tree->lock);
963 /*
964 * this search will find all the extents that end after
965 * our range starts.
966 */
967 node = tree_search(tree, start);
968 if (!node) {
969 prealloc = alloc_extent_state_atomic(prealloc);
970 if (!prealloc) {
971 err = -ENOMEM;
972 goto out;
973 }
974 err = insert_state(tree, prealloc, start, end, &bits);
975 prealloc = NULL;
976 if (err)
977 extent_io_tree_panic(tree, err);
978 goto out;
979 }
980 state = rb_entry(node, struct extent_state, rb_node);
981 hit_next:
982 last_start = state->start;
983 last_end = state->end;
984
985 /*
986 * | ---- desired range ---- |
987 * | state |
988 *
989 * Just lock what we found and keep going
990 */
991 if (state->start == start && state->end <= end) {
992 struct rb_node *next_node;
993
994 set_state_bits(tree, state, &bits);
995 clear_state_bit(tree, state, &clear_bits, 0);
996 if (last_end == (u64)-1)
997 goto out;
998
999 start = last_end + 1;
1000 next_node = rb_next(&state->rb_node);
1001 if (next_node && start < end && prealloc && !need_resched()) {
1002 state = rb_entry(next_node, struct extent_state,
1003 rb_node);
1004 if (state->start == start)
1005 goto hit_next;
1006 }
1007 goto search_again;
1008 }
1009
1010 /*
1011 * | ---- desired range ---- |
1012 * | state |
1013 * or
1014 * | ------------- state -------------- |
1015 *
1016 * We need to split the extent we found, and may flip bits on
1017 * second half.
1018 *
1019 * If the extent we found extends past our
1020 * range, we just split and search again. It'll get split
1021 * again the next time though.
1022 *
1023 * If the extent we found is inside our range, we set the
1024 * desired bit on it.
1025 */
1026 if (state->start < start) {
1027 prealloc = alloc_extent_state_atomic(prealloc);
1028 if (!prealloc) {
1029 err = -ENOMEM;
1030 goto out;
1031 }
1032 err = split_state(tree, state, prealloc, start);
1033 if (err)
1034 extent_io_tree_panic(tree, err);
1035 prealloc = NULL;
1036 if (err)
1037 goto out;
1038 if (state->end <= end) {
1039 set_state_bits(tree, state, &bits);
1040 clear_state_bit(tree, state, &clear_bits, 0);
1041 if (last_end == (u64)-1)
1042 goto out;
1043 start = last_end + 1;
1044 }
1045 goto search_again;
1046 }
1047 /*
1048 * | ---- desired range ---- |
1049 * | state | or | state |
1050 *
1051 * There's a hole, we need to insert something in it and
1052 * ignore the extent we found.
1053 */
1054 if (state->start > start) {
1055 u64 this_end;
1056 if (end < last_start)
1057 this_end = end;
1058 else
1059 this_end = last_start - 1;
1060
1061 prealloc = alloc_extent_state_atomic(prealloc);
1062 if (!prealloc) {
1063 err = -ENOMEM;
1064 goto out;
1065 }
1066
1067 /*
1068 * Avoid to free 'prealloc' if it can be merged with
1069 * the later extent.
1070 */
1071 err = insert_state(tree, prealloc, start, this_end,
1072 &bits);
1073 if (err)
1074 extent_io_tree_panic(tree, err);
1075 prealloc = NULL;
1076 start = this_end + 1;
1077 goto search_again;
1078 }
1079 /*
1080 * | ---- desired range ---- |
1081 * | state |
1082 * We need to split the extent, and set the bit
1083 * on the first half
1084 */
1085 if (state->start <= end && state->end > end) {
1086 prealloc = alloc_extent_state_atomic(prealloc);
1087 if (!prealloc) {
1088 err = -ENOMEM;
1089 goto out;
1090 }
1091
1092 err = split_state(tree, state, prealloc, end + 1);
1093 if (err)
1094 extent_io_tree_panic(tree, err);
1095
1096 set_state_bits(tree, prealloc, &bits);
1097 clear_state_bit(tree, prealloc, &clear_bits, 0);
1098 prealloc = NULL;
1099 goto out;
1100 }
1101
1102 goto search_again;
1103
1104 out:
1105 spin_unlock(&tree->lock);
1106 if (prealloc)
1107 free_extent_state(prealloc);
1108
1109 return err;
1110
1111 search_again:
1112 if (start > end)
1113 goto out;
1114 spin_unlock(&tree->lock);
1115 if (mask & __GFP_WAIT)
1116 cond_resched();
1117 goto again;
1118 }
1119
1120 /* wrappers around set/clear extent bit */
1121 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1122 gfp_t mask)
1123 {
1124 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1125 NULL, mask);
1126 }
1127
1128 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1129 int bits, gfp_t mask)
1130 {
1131 return set_extent_bit(tree, start, end, bits, NULL,
1132 NULL, mask);
1133 }
1134
1135 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1136 int bits, gfp_t mask)
1137 {
1138 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1139 }
1140
1141 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1142 struct extent_state **cached_state, gfp_t mask)
1143 {
1144 return set_extent_bit(tree, start, end,
1145 EXTENT_DELALLOC | EXTENT_UPTODATE,
1146 NULL, cached_state, mask);
1147 }
1148
1149 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1150 gfp_t mask)
1151 {
1152 return clear_extent_bit(tree, start, end,
1153 EXTENT_DIRTY | EXTENT_DELALLOC |
1154 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1155 }
1156
1157 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1158 gfp_t mask)
1159 {
1160 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1161 NULL, mask);
1162 }
1163
1164 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1165 struct extent_state **cached_state, gfp_t mask)
1166 {
1167 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1168 cached_state, mask);
1169 }
1170
1171 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
1172 u64 end, struct extent_state **cached_state,
1173 gfp_t mask)
1174 {
1175 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1176 cached_state, mask);
1177 }
1178
1179 /*
1180 * either insert or lock state struct between start and end use mask to tell
1181 * us if waiting is desired.
1182 */
1183 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1184 int bits, struct extent_state **cached_state)
1185 {
1186 int err;
1187 u64 failed_start;
1188 while (1) {
1189 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1190 EXTENT_LOCKED, &failed_start,
1191 cached_state, GFP_NOFS);
1192 if (err == -EEXIST) {
1193 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1194 start = failed_start;
1195 } else
1196 break;
1197 WARN_ON(start > end);
1198 }
1199 return err;
1200 }
1201
1202 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1203 {
1204 return lock_extent_bits(tree, start, end, 0, NULL);
1205 }
1206
1207 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1208 {
1209 int err;
1210 u64 failed_start;
1211
1212 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1213 &failed_start, NULL, GFP_NOFS);
1214 if (err == -EEXIST) {
1215 if (failed_start > start)
1216 clear_extent_bit(tree, start, failed_start - 1,
1217 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1218 return 0;
1219 }
1220 return 1;
1221 }
1222
1223 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1224 struct extent_state **cached, gfp_t mask)
1225 {
1226 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1227 mask);
1228 }
1229
1230 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1231 {
1232 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1233 GFP_NOFS);
1234 }
1235
1236 /*
1237 * helper function to set both pages and extents in the tree writeback
1238 */
1239 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1240 {
1241 unsigned long index = start >> PAGE_CACHE_SHIFT;
1242 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1243 struct page *page;
1244
1245 while (index <= end_index) {
1246 page = find_get_page(tree->mapping, index);
1247 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1248 set_page_writeback(page);
1249 page_cache_release(page);
1250 index++;
1251 }
1252 return 0;
1253 }
1254
1255 /* find the first state struct with 'bits' set after 'start', and
1256 * return it. tree->lock must be held. NULL will returned if
1257 * nothing was found after 'start'
1258 */
1259 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1260 u64 start, int bits)
1261 {
1262 struct rb_node *node;
1263 struct extent_state *state;
1264
1265 /*
1266 * this search will find all the extents that end after
1267 * our range starts.
1268 */
1269 node = tree_search(tree, start);
1270 if (!node)
1271 goto out;
1272
1273 while (1) {
1274 state = rb_entry(node, struct extent_state, rb_node);
1275 if (state->end >= start && (state->state & bits))
1276 return state;
1277
1278 node = rb_next(node);
1279 if (!node)
1280 break;
1281 }
1282 out:
1283 return NULL;
1284 }
1285
1286 /*
1287 * find the first offset in the io tree with 'bits' set. zero is
1288 * returned if we find something, and *start_ret and *end_ret are
1289 * set to reflect the state struct that was found.
1290 *
1291 * If nothing was found, 1 is returned, < 0 on error
1292 */
1293 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1294 u64 *start_ret, u64 *end_ret, int bits)
1295 {
1296 struct extent_state *state;
1297 int ret = 1;
1298
1299 spin_lock(&tree->lock);
1300 state = find_first_extent_bit_state(tree, start, bits);
1301 if (state) {
1302 *start_ret = state->start;
1303 *end_ret = state->end;
1304 ret = 0;
1305 }
1306 spin_unlock(&tree->lock);
1307 return ret;
1308 }
1309
1310 /*
1311 * find a contiguous range of bytes in the file marked as delalloc, not
1312 * more than 'max_bytes'. start and end are used to return the range,
1313 *
1314 * 1 is returned if we find something, 0 if nothing was in the tree
1315 */
1316 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1317 u64 *start, u64 *end, u64 max_bytes,
1318 struct extent_state **cached_state)
1319 {
1320 struct rb_node *node;
1321 struct extent_state *state;
1322 u64 cur_start = *start;
1323 u64 found = 0;
1324 u64 total_bytes = 0;
1325
1326 spin_lock(&tree->lock);
1327
1328 /*
1329 * this search will find all the extents that end after
1330 * our range starts.
1331 */
1332 node = tree_search(tree, cur_start);
1333 if (!node) {
1334 if (!found)
1335 *end = (u64)-1;
1336 goto out;
1337 }
1338
1339 while (1) {
1340 state = rb_entry(node, struct extent_state, rb_node);
1341 if (found && (state->start != cur_start ||
1342 (state->state & EXTENT_BOUNDARY))) {
1343 goto out;
1344 }
1345 if (!(state->state & EXTENT_DELALLOC)) {
1346 if (!found)
1347 *end = state->end;
1348 goto out;
1349 }
1350 if (!found) {
1351 *start = state->start;
1352 *cached_state = state;
1353 atomic_inc(&state->refs);
1354 }
1355 found++;
1356 *end = state->end;
1357 cur_start = state->end + 1;
1358 node = rb_next(node);
1359 if (!node)
1360 break;
1361 total_bytes += state->end - state->start + 1;
1362 if (total_bytes >= max_bytes)
1363 break;
1364 }
1365 out:
1366 spin_unlock(&tree->lock);
1367 return found;
1368 }
1369
1370 static noinline void __unlock_for_delalloc(struct inode *inode,
1371 struct page *locked_page,
1372 u64 start, u64 end)
1373 {
1374 int ret;
1375 struct page *pages[16];
1376 unsigned long index = start >> PAGE_CACHE_SHIFT;
1377 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1378 unsigned long nr_pages = end_index - index + 1;
1379 int i;
1380
1381 if (index == locked_page->index && end_index == index)
1382 return;
1383
1384 while (nr_pages > 0) {
1385 ret = find_get_pages_contig(inode->i_mapping, index,
1386 min_t(unsigned long, nr_pages,
1387 ARRAY_SIZE(pages)), pages);
1388 for (i = 0; i < ret; i++) {
1389 if (pages[i] != locked_page)
1390 unlock_page(pages[i]);
1391 page_cache_release(pages[i]);
1392 }
1393 nr_pages -= ret;
1394 index += ret;
1395 cond_resched();
1396 }
1397 }
1398
1399 static noinline int lock_delalloc_pages(struct inode *inode,
1400 struct page *locked_page,
1401 u64 delalloc_start,
1402 u64 delalloc_end)
1403 {
1404 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1405 unsigned long start_index = index;
1406 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1407 unsigned long pages_locked = 0;
1408 struct page *pages[16];
1409 unsigned long nrpages;
1410 int ret;
1411 int i;
1412
1413 /* the caller is responsible for locking the start index */
1414 if (index == locked_page->index && index == end_index)
1415 return 0;
1416
1417 /* skip the page at the start index */
1418 nrpages = end_index - index + 1;
1419 while (nrpages > 0) {
1420 ret = find_get_pages_contig(inode->i_mapping, index,
1421 min_t(unsigned long,
1422 nrpages, ARRAY_SIZE(pages)), pages);
1423 if (ret == 0) {
1424 ret = -EAGAIN;
1425 goto done;
1426 }
1427 /* now we have an array of pages, lock them all */
1428 for (i = 0; i < ret; i++) {
1429 /*
1430 * the caller is taking responsibility for
1431 * locked_page
1432 */
1433 if (pages[i] != locked_page) {
1434 lock_page(pages[i]);
1435 if (!PageDirty(pages[i]) ||
1436 pages[i]->mapping != inode->i_mapping) {
1437 ret = -EAGAIN;
1438 unlock_page(pages[i]);
1439 page_cache_release(pages[i]);
1440 goto done;
1441 }
1442 }
1443 page_cache_release(pages[i]);
1444 pages_locked++;
1445 }
1446 nrpages -= ret;
1447 index += ret;
1448 cond_resched();
1449 }
1450 ret = 0;
1451 done:
1452 if (ret && pages_locked) {
1453 __unlock_for_delalloc(inode, locked_page,
1454 delalloc_start,
1455 ((u64)(start_index + pages_locked - 1)) <<
1456 PAGE_CACHE_SHIFT);
1457 }
1458 return ret;
1459 }
1460
1461 /*
1462 * find a contiguous range of bytes in the file marked as delalloc, not
1463 * more than 'max_bytes'. start and end are used to return the range,
1464 *
1465 * 1 is returned if we find something, 0 if nothing was in the tree
1466 */
1467 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1468 struct extent_io_tree *tree,
1469 struct page *locked_page,
1470 u64 *start, u64 *end,
1471 u64 max_bytes)
1472 {
1473 u64 delalloc_start;
1474 u64 delalloc_end;
1475 u64 found;
1476 struct extent_state *cached_state = NULL;
1477 int ret;
1478 int loops = 0;
1479
1480 again:
1481 /* step one, find a bunch of delalloc bytes starting at start */
1482 delalloc_start = *start;
1483 delalloc_end = 0;
1484 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1485 max_bytes, &cached_state);
1486 if (!found || delalloc_end <= *start) {
1487 *start = delalloc_start;
1488 *end = delalloc_end;
1489 free_extent_state(cached_state);
1490 return found;
1491 }
1492
1493 /*
1494 * start comes from the offset of locked_page. We have to lock
1495 * pages in order, so we can't process delalloc bytes before
1496 * locked_page
1497 */
1498 if (delalloc_start < *start)
1499 delalloc_start = *start;
1500
1501 /*
1502 * make sure to limit the number of pages we try to lock down
1503 * if we're looping.
1504 */
1505 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1506 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1507
1508 /* step two, lock all the pages after the page that has start */
1509 ret = lock_delalloc_pages(inode, locked_page,
1510 delalloc_start, delalloc_end);
1511 if (ret == -EAGAIN) {
1512 /* some of the pages are gone, lets avoid looping by
1513 * shortening the size of the delalloc range we're searching
1514 */
1515 free_extent_state(cached_state);
1516 if (!loops) {
1517 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1518 max_bytes = PAGE_CACHE_SIZE - offset;
1519 loops = 1;
1520 goto again;
1521 } else {
1522 found = 0;
1523 goto out_failed;
1524 }
1525 }
1526 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1527
1528 /* step three, lock the state bits for the whole range */
1529 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1530
1531 /* then test to make sure it is all still delalloc */
1532 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1533 EXTENT_DELALLOC, 1, cached_state);
1534 if (!ret) {
1535 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1536 &cached_state, GFP_NOFS);
1537 __unlock_for_delalloc(inode, locked_page,
1538 delalloc_start, delalloc_end);
1539 cond_resched();
1540 goto again;
1541 }
1542 free_extent_state(cached_state);
1543 *start = delalloc_start;
1544 *end = delalloc_end;
1545 out_failed:
1546 return found;
1547 }
1548
1549 int extent_clear_unlock_delalloc(struct inode *inode,
1550 struct extent_io_tree *tree,
1551 u64 start, u64 end, struct page *locked_page,
1552 unsigned long op)
1553 {
1554 int ret;
1555 struct page *pages[16];
1556 unsigned long index = start >> PAGE_CACHE_SHIFT;
1557 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1558 unsigned long nr_pages = end_index - index + 1;
1559 int i;
1560 int clear_bits = 0;
1561
1562 if (op & EXTENT_CLEAR_UNLOCK)
1563 clear_bits |= EXTENT_LOCKED;
1564 if (op & EXTENT_CLEAR_DIRTY)
1565 clear_bits |= EXTENT_DIRTY;
1566
1567 if (op & EXTENT_CLEAR_DELALLOC)
1568 clear_bits |= EXTENT_DELALLOC;
1569
1570 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1571 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1572 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1573 EXTENT_SET_PRIVATE2)))
1574 return 0;
1575
1576 while (nr_pages > 0) {
1577 ret = find_get_pages_contig(inode->i_mapping, index,
1578 min_t(unsigned long,
1579 nr_pages, ARRAY_SIZE(pages)), pages);
1580 for (i = 0; i < ret; i++) {
1581
1582 if (op & EXTENT_SET_PRIVATE2)
1583 SetPagePrivate2(pages[i]);
1584
1585 if (pages[i] == locked_page) {
1586 page_cache_release(pages[i]);
1587 continue;
1588 }
1589 if (op & EXTENT_CLEAR_DIRTY)
1590 clear_page_dirty_for_io(pages[i]);
1591 if (op & EXTENT_SET_WRITEBACK)
1592 set_page_writeback(pages[i]);
1593 if (op & EXTENT_END_WRITEBACK)
1594 end_page_writeback(pages[i]);
1595 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1596 unlock_page(pages[i]);
1597 page_cache_release(pages[i]);
1598 }
1599 nr_pages -= ret;
1600 index += ret;
1601 cond_resched();
1602 }
1603 return 0;
1604 }
1605
1606 /*
1607 * count the number of bytes in the tree that have a given bit(s)
1608 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1609 * cached. The total number found is returned.
1610 */
1611 u64 count_range_bits(struct extent_io_tree *tree,
1612 u64 *start, u64 search_end, u64 max_bytes,
1613 unsigned long bits, int contig)
1614 {
1615 struct rb_node *node;
1616 struct extent_state *state;
1617 u64 cur_start = *start;
1618 u64 total_bytes = 0;
1619 u64 last = 0;
1620 int found = 0;
1621
1622 if (search_end <= cur_start) {
1623 WARN_ON(1);
1624 return 0;
1625 }
1626
1627 spin_lock(&tree->lock);
1628 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1629 total_bytes = tree->dirty_bytes;
1630 goto out;
1631 }
1632 /*
1633 * this search will find all the extents that end after
1634 * our range starts.
1635 */
1636 node = tree_search(tree, cur_start);
1637 if (!node)
1638 goto out;
1639
1640 while (1) {
1641 state = rb_entry(node, struct extent_state, rb_node);
1642 if (state->start > search_end)
1643 break;
1644 if (contig && found && state->start > last + 1)
1645 break;
1646 if (state->end >= cur_start && (state->state & bits) == bits) {
1647 total_bytes += min(search_end, state->end) + 1 -
1648 max(cur_start, state->start);
1649 if (total_bytes >= max_bytes)
1650 break;
1651 if (!found) {
1652 *start = max(cur_start, state->start);
1653 found = 1;
1654 }
1655 last = state->end;
1656 } else if (contig && found) {
1657 break;
1658 }
1659 node = rb_next(node);
1660 if (!node)
1661 break;
1662 }
1663 out:
1664 spin_unlock(&tree->lock);
1665 return total_bytes;
1666 }
1667
1668 /*
1669 * set the private field for a given byte offset in the tree. If there isn't
1670 * an extent_state there already, this does nothing.
1671 */
1672 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1673 {
1674 struct rb_node *node;
1675 struct extent_state *state;
1676 int ret = 0;
1677
1678 spin_lock(&tree->lock);
1679 /*
1680 * this search will find all the extents that end after
1681 * our range starts.
1682 */
1683 node = tree_search(tree, start);
1684 if (!node) {
1685 ret = -ENOENT;
1686 goto out;
1687 }
1688 state = rb_entry(node, struct extent_state, rb_node);
1689 if (state->start != start) {
1690 ret = -ENOENT;
1691 goto out;
1692 }
1693 state->private = private;
1694 out:
1695 spin_unlock(&tree->lock);
1696 return ret;
1697 }
1698
1699 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1700 {
1701 struct rb_node *node;
1702 struct extent_state *state;
1703 int ret = 0;
1704
1705 spin_lock(&tree->lock);
1706 /*
1707 * this search will find all the extents that end after
1708 * our range starts.
1709 */
1710 node = tree_search(tree, start);
1711 if (!node) {
1712 ret = -ENOENT;
1713 goto out;
1714 }
1715 state = rb_entry(node, struct extent_state, rb_node);
1716 if (state->start != start) {
1717 ret = -ENOENT;
1718 goto out;
1719 }
1720 *private = state->private;
1721 out:
1722 spin_unlock(&tree->lock);
1723 return ret;
1724 }
1725
1726 /*
1727 * searches a range in the state tree for a given mask.
1728 * If 'filled' == 1, this returns 1 only if every extent in the tree
1729 * has the bits set. Otherwise, 1 is returned if any bit in the
1730 * range is found set.
1731 */
1732 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1733 int bits, int filled, struct extent_state *cached)
1734 {
1735 struct extent_state *state = NULL;
1736 struct rb_node *node;
1737 int bitset = 0;
1738
1739 spin_lock(&tree->lock);
1740 if (cached && cached->tree && cached->start <= start &&
1741 cached->end > start)
1742 node = &cached->rb_node;
1743 else
1744 node = tree_search(tree, start);
1745 while (node && start <= end) {
1746 state = rb_entry(node, struct extent_state, rb_node);
1747
1748 if (filled && state->start > start) {
1749 bitset = 0;
1750 break;
1751 }
1752
1753 if (state->start > end)
1754 break;
1755
1756 if (state->state & bits) {
1757 bitset = 1;
1758 if (!filled)
1759 break;
1760 } else if (filled) {
1761 bitset = 0;
1762 break;
1763 }
1764
1765 if (state->end == (u64)-1)
1766 break;
1767
1768 start = state->end + 1;
1769 if (start > end)
1770 break;
1771 node = rb_next(node);
1772 if (!node) {
1773 if (filled)
1774 bitset = 0;
1775 break;
1776 }
1777 }
1778 spin_unlock(&tree->lock);
1779 return bitset;
1780 }
1781
1782 /*
1783 * helper function to set a given page up to date if all the
1784 * extents in the tree for that page are up to date
1785 */
1786 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1787 {
1788 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1789 u64 end = start + PAGE_CACHE_SIZE - 1;
1790 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1791 SetPageUptodate(page);
1792 }
1793
1794 /*
1795 * helper function to unlock a page if all the extents in the tree
1796 * for that page are unlocked
1797 */
1798 static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1799 {
1800 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1801 u64 end = start + PAGE_CACHE_SIZE - 1;
1802 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1803 unlock_page(page);
1804 }
1805
1806 /*
1807 * helper function to end page writeback if all the extents
1808 * in the tree for that page are done with writeback
1809 */
1810 static void check_page_writeback(struct extent_io_tree *tree,
1811 struct page *page)
1812 {
1813 end_page_writeback(page);
1814 }
1815
1816 /*
1817 * When IO fails, either with EIO or csum verification fails, we
1818 * try other mirrors that might have a good copy of the data. This
1819 * io_failure_record is used to record state as we go through all the
1820 * mirrors. If another mirror has good data, the page is set up to date
1821 * and things continue. If a good mirror can't be found, the original
1822 * bio end_io callback is called to indicate things have failed.
1823 */
1824 struct io_failure_record {
1825 struct page *page;
1826 u64 start;
1827 u64 len;
1828 u64 logical;
1829 unsigned long bio_flags;
1830 int this_mirror;
1831 int failed_mirror;
1832 int in_validation;
1833 };
1834
1835 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1836 int did_repair)
1837 {
1838 int ret;
1839 int err = 0;
1840 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1841
1842 set_state_private(failure_tree, rec->start, 0);
1843 ret = clear_extent_bits(failure_tree, rec->start,
1844 rec->start + rec->len - 1,
1845 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1846 if (ret)
1847 err = ret;
1848
1849 if (did_repair) {
1850 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1851 rec->start + rec->len - 1,
1852 EXTENT_DAMAGED, GFP_NOFS);
1853 if (ret && !err)
1854 err = ret;
1855 }
1856
1857 kfree(rec);
1858 return err;
1859 }
1860
1861 static void repair_io_failure_callback(struct bio *bio, int err)
1862 {
1863 complete(bio->bi_private);
1864 }
1865
1866 /*
1867 * this bypasses the standard btrfs submit functions deliberately, as
1868 * the standard behavior is to write all copies in a raid setup. here we only
1869 * want to write the one bad copy. so we do the mapping for ourselves and issue
1870 * submit_bio directly.
1871 * to avoid any synchonization issues, wait for the data after writing, which
1872 * actually prevents the read that triggered the error from finishing.
1873 * currently, there can be no more than two copies of every data bit. thus,
1874 * exactly one rewrite is required.
1875 */
1876 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1877 u64 length, u64 logical, struct page *page,
1878 int mirror_num)
1879 {
1880 struct bio *bio;
1881 struct btrfs_device *dev;
1882 DECLARE_COMPLETION_ONSTACK(compl);
1883 u64 map_length = 0;
1884 u64 sector;
1885 struct btrfs_bio *bbio = NULL;
1886 int ret;
1887
1888 BUG_ON(!mirror_num);
1889
1890 bio = bio_alloc(GFP_NOFS, 1);
1891 if (!bio)
1892 return -EIO;
1893 bio->bi_private = &compl;
1894 bio->bi_end_io = repair_io_failure_callback;
1895 bio->bi_size = 0;
1896 map_length = length;
1897
1898 ret = btrfs_map_block(map_tree, WRITE, logical,
1899 &map_length, &bbio, mirror_num);
1900 if (ret) {
1901 bio_put(bio);
1902 return -EIO;
1903 }
1904 BUG_ON(mirror_num != bbio->mirror_num);
1905 sector = bbio->stripes[mirror_num-1].physical >> 9;
1906 bio->bi_sector = sector;
1907 dev = bbio->stripes[mirror_num-1].dev;
1908 kfree(bbio);
1909 if (!dev || !dev->bdev || !dev->writeable) {
1910 bio_put(bio);
1911 return -EIO;
1912 }
1913 bio->bi_bdev = dev->bdev;
1914 bio_add_page(bio, page, length, start-page_offset(page));
1915 btrfsic_submit_bio(WRITE_SYNC, bio);
1916 wait_for_completion(&compl);
1917
1918 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1919 /* try to remap that extent elsewhere? */
1920 bio_put(bio);
1921 return -EIO;
1922 }
1923
1924 printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s "
1925 "sector %llu)\n", page->mapping->host->i_ino, start,
1926 dev->name, sector);
1927
1928 bio_put(bio);
1929 return 0;
1930 }
1931
1932 /*
1933 * each time an IO finishes, we do a fast check in the IO failure tree
1934 * to see if we need to process or clean up an io_failure_record
1935 */
1936 static int clean_io_failure(u64 start, struct page *page)
1937 {
1938 u64 private;
1939 u64 private_failure;
1940 struct io_failure_record *failrec;
1941 struct btrfs_mapping_tree *map_tree;
1942 struct extent_state *state;
1943 int num_copies;
1944 int did_repair = 0;
1945 int ret;
1946 struct inode *inode = page->mapping->host;
1947
1948 private = 0;
1949 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1950 (u64)-1, 1, EXTENT_DIRTY, 0);
1951 if (!ret)
1952 return 0;
1953
1954 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1955 &private_failure);
1956 if (ret)
1957 return 0;
1958
1959 failrec = (struct io_failure_record *)(unsigned long) private_failure;
1960 BUG_ON(!failrec->this_mirror);
1961
1962 if (failrec->in_validation) {
1963 /* there was no real error, just free the record */
1964 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1965 failrec->start);
1966 did_repair = 1;
1967 goto out;
1968 }
1969
1970 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1971 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1972 failrec->start,
1973 EXTENT_LOCKED);
1974 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1975
1976 if (state && state->start == failrec->start) {
1977 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
1978 num_copies = btrfs_num_copies(map_tree, failrec->logical,
1979 failrec->len);
1980 if (num_copies > 1) {
1981 ret = repair_io_failure(map_tree, start, failrec->len,
1982 failrec->logical, page,
1983 failrec->failed_mirror);
1984 did_repair = !ret;
1985 }
1986 }
1987
1988 out:
1989 if (!ret)
1990 ret = free_io_failure(inode, failrec, did_repair);
1991
1992 return ret;
1993 }
1994
1995 /*
1996 * this is a generic handler for readpage errors (default
1997 * readpage_io_failed_hook). if other copies exist, read those and write back
1998 * good data to the failed position. does not investigate in remapping the
1999 * failed extent elsewhere, hoping the device will be smart enough to do this as
2000 * needed
2001 */
2002
2003 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2004 u64 start, u64 end, int failed_mirror,
2005 struct extent_state *state)
2006 {
2007 struct io_failure_record *failrec = NULL;
2008 u64 private;
2009 struct extent_map *em;
2010 struct inode *inode = page->mapping->host;
2011 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2012 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2013 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2014 struct bio *bio;
2015 int num_copies;
2016 int ret;
2017 int read_mode;
2018 u64 logical;
2019
2020 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2021
2022 ret = get_state_private(failure_tree, start, &private);
2023 if (ret) {
2024 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2025 if (!failrec)
2026 return -ENOMEM;
2027 failrec->start = start;
2028 failrec->len = end - start + 1;
2029 failrec->this_mirror = 0;
2030 failrec->bio_flags = 0;
2031 failrec->in_validation = 0;
2032
2033 read_lock(&em_tree->lock);
2034 em = lookup_extent_mapping(em_tree, start, failrec->len);
2035 if (!em) {
2036 read_unlock(&em_tree->lock);
2037 kfree(failrec);
2038 return -EIO;
2039 }
2040
2041 if (em->start > start || em->start + em->len < start) {
2042 free_extent_map(em);
2043 em = NULL;
2044 }
2045 read_unlock(&em_tree->lock);
2046
2047 if (!em || IS_ERR(em)) {
2048 kfree(failrec);
2049 return -EIO;
2050 }
2051 logical = start - em->start;
2052 logical = em->block_start + logical;
2053 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2054 logical = em->block_start;
2055 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2056 extent_set_compress_type(&failrec->bio_flags,
2057 em->compress_type);
2058 }
2059 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2060 "len=%llu\n", logical, start, failrec->len);
2061 failrec->logical = logical;
2062 free_extent_map(em);
2063
2064 /* set the bits in the private failure tree */
2065 ret = set_extent_bits(failure_tree, start, end,
2066 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2067 if (ret >= 0)
2068 ret = set_state_private(failure_tree, start,
2069 (u64)(unsigned long)failrec);
2070 /* set the bits in the inode's tree */
2071 if (ret >= 0)
2072 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2073 GFP_NOFS);
2074 if (ret < 0) {
2075 kfree(failrec);
2076 return ret;
2077 }
2078 } else {
2079 failrec = (struct io_failure_record *)(unsigned long)private;
2080 pr_debug("bio_readpage_error: (found) logical=%llu, "
2081 "start=%llu, len=%llu, validation=%d\n",
2082 failrec->logical, failrec->start, failrec->len,
2083 failrec->in_validation);
2084 /*
2085 * when data can be on disk more than twice, add to failrec here
2086 * (e.g. with a list for failed_mirror) to make
2087 * clean_io_failure() clean all those errors at once.
2088 */
2089 }
2090 num_copies = btrfs_num_copies(
2091 &BTRFS_I(inode)->root->fs_info->mapping_tree,
2092 failrec->logical, failrec->len);
2093 if (num_copies == 1) {
2094 /*
2095 * we only have a single copy of the data, so don't bother with
2096 * all the retry and error correction code that follows. no
2097 * matter what the error is, it is very likely to persist.
2098 */
2099 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2100 "state=%p, num_copies=%d, next_mirror %d, "
2101 "failed_mirror %d\n", state, num_copies,
2102 failrec->this_mirror, failed_mirror);
2103 free_io_failure(inode, failrec, 0);
2104 return -EIO;
2105 }
2106
2107 if (!state) {
2108 spin_lock(&tree->lock);
2109 state = find_first_extent_bit_state(tree, failrec->start,
2110 EXTENT_LOCKED);
2111 if (state && state->start != failrec->start)
2112 state = NULL;
2113 spin_unlock(&tree->lock);
2114 }
2115
2116 /*
2117 * there are two premises:
2118 * a) deliver good data to the caller
2119 * b) correct the bad sectors on disk
2120 */
2121 if (failed_bio->bi_vcnt > 1) {
2122 /*
2123 * to fulfill b), we need to know the exact failing sectors, as
2124 * we don't want to rewrite any more than the failed ones. thus,
2125 * we need separate read requests for the failed bio
2126 *
2127 * if the following BUG_ON triggers, our validation request got
2128 * merged. we need separate requests for our algorithm to work.
2129 */
2130 BUG_ON(failrec->in_validation);
2131 failrec->in_validation = 1;
2132 failrec->this_mirror = failed_mirror;
2133 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2134 } else {
2135 /*
2136 * we're ready to fulfill a) and b) alongside. get a good copy
2137 * of the failed sector and if we succeed, we have setup
2138 * everything for repair_io_failure to do the rest for us.
2139 */
2140 if (failrec->in_validation) {
2141 BUG_ON(failrec->this_mirror != failed_mirror);
2142 failrec->in_validation = 0;
2143 failrec->this_mirror = 0;
2144 }
2145 failrec->failed_mirror = failed_mirror;
2146 failrec->this_mirror++;
2147 if (failrec->this_mirror == failed_mirror)
2148 failrec->this_mirror++;
2149 read_mode = READ_SYNC;
2150 }
2151
2152 if (!state || failrec->this_mirror > num_copies) {
2153 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2154 "next_mirror %d, failed_mirror %d\n", state,
2155 num_copies, failrec->this_mirror, failed_mirror);
2156 free_io_failure(inode, failrec, 0);
2157 return -EIO;
2158 }
2159
2160 bio = bio_alloc(GFP_NOFS, 1);
2161 bio->bi_private = state;
2162 bio->bi_end_io = failed_bio->bi_end_io;
2163 bio->bi_sector = failrec->logical >> 9;
2164 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2165 bio->bi_size = 0;
2166
2167 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2168
2169 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2170 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2171 failrec->this_mirror, num_copies, failrec->in_validation);
2172
2173 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2174 failrec->this_mirror,
2175 failrec->bio_flags, 0);
2176 return ret;
2177 }
2178
2179 /* lots and lots of room for performance fixes in the end_bio funcs */
2180
2181 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2182 {
2183 int uptodate = (err == 0);
2184 struct extent_io_tree *tree;
2185 int ret;
2186
2187 tree = &BTRFS_I(page->mapping->host)->io_tree;
2188
2189 if (tree->ops && tree->ops->writepage_end_io_hook) {
2190 ret = tree->ops->writepage_end_io_hook(page, start,
2191 end, NULL, uptodate);
2192 if (ret)
2193 uptodate = 0;
2194 }
2195
2196 if (!uptodate && tree->ops &&
2197 tree->ops->writepage_io_failed_hook) {
2198 ret = tree->ops->writepage_io_failed_hook(NULL, page,
2199 start, end, NULL);
2200 /* Writeback already completed */
2201 if (ret == 0)
2202 return 1;
2203 }
2204
2205 if (!uptodate) {
2206 clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
2207 ClearPageUptodate(page);
2208 SetPageError(page);
2209 }
2210 return 0;
2211 }
2212
2213 /*
2214 * after a writepage IO is done, we need to:
2215 * clear the uptodate bits on error
2216 * clear the writeback bits in the extent tree for this IO
2217 * end_page_writeback if the page has no more pending IO
2218 *
2219 * Scheduling is not allowed, so the extent state tree is expected
2220 * to have one and only one object corresponding to this IO.
2221 */
2222 static void end_bio_extent_writepage(struct bio *bio, int err)
2223 {
2224 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2225 struct extent_io_tree *tree;
2226 u64 start;
2227 u64 end;
2228 int whole_page;
2229
2230 do {
2231 struct page *page = bvec->bv_page;
2232 tree = &BTRFS_I(page->mapping->host)->io_tree;
2233
2234 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2235 bvec->bv_offset;
2236 end = start + bvec->bv_len - 1;
2237
2238 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2239 whole_page = 1;
2240 else
2241 whole_page = 0;
2242
2243 if (--bvec >= bio->bi_io_vec)
2244 prefetchw(&bvec->bv_page->flags);
2245
2246 if (end_extent_writepage(page, err, start, end))
2247 continue;
2248
2249 if (whole_page)
2250 end_page_writeback(page);
2251 else
2252 check_page_writeback(tree, page);
2253 } while (bvec >= bio->bi_io_vec);
2254
2255 bio_put(bio);
2256 }
2257
2258 /*
2259 * after a readpage IO is done, we need to:
2260 * clear the uptodate bits on error
2261 * set the uptodate bits if things worked
2262 * set the page up to date if all extents in the tree are uptodate
2263 * clear the lock bit in the extent tree
2264 * unlock the page if there are no other extents locked for it
2265 *
2266 * Scheduling is not allowed, so the extent state tree is expected
2267 * to have one and only one object corresponding to this IO.
2268 */
2269 static void end_bio_extent_readpage(struct bio *bio, int err)
2270 {
2271 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2272 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2273 struct bio_vec *bvec = bio->bi_io_vec;
2274 struct extent_io_tree *tree;
2275 u64 start;
2276 u64 end;
2277 int whole_page;
2278 int ret;
2279
2280 if (err)
2281 uptodate = 0;
2282
2283 do {
2284 struct page *page = bvec->bv_page;
2285 struct extent_state *cached = NULL;
2286 struct extent_state *state;
2287
2288 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2289 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2290 (long int)bio->bi_bdev);
2291 tree = &BTRFS_I(page->mapping->host)->io_tree;
2292
2293 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2294 bvec->bv_offset;
2295 end = start + bvec->bv_len - 1;
2296
2297 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2298 whole_page = 1;
2299 else
2300 whole_page = 0;
2301
2302 if (++bvec <= bvec_end)
2303 prefetchw(&bvec->bv_page->flags);
2304
2305 spin_lock(&tree->lock);
2306 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2307 if (state && state->start == start) {
2308 /*
2309 * take a reference on the state, unlock will drop
2310 * the ref
2311 */
2312 cache_state(state, &cached);
2313 }
2314 spin_unlock(&tree->lock);
2315
2316 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2317 ret = tree->ops->readpage_end_io_hook(page, start, end,
2318 state);
2319 if (ret)
2320 uptodate = 0;
2321 else
2322 clean_io_failure(start, page);
2323 }
2324 if (!uptodate) {
2325 int failed_mirror;
2326 failed_mirror = (int)(unsigned long)bio->bi_bdev;
2327 /*
2328 * The generic bio_readpage_error handles errors the
2329 * following way: If possible, new read requests are
2330 * created and submitted and will end up in
2331 * end_bio_extent_readpage as well (if we're lucky, not
2332 * in the !uptodate case). In that case it returns 0 and
2333 * we just go on with the next page in our bio. If it
2334 * can't handle the error it will return -EIO and we
2335 * remain responsible for that page.
2336 */
2337 ret = bio_readpage_error(bio, page, start, end,
2338 failed_mirror, NULL);
2339 if (ret == 0) {
2340 error_handled:
2341 uptodate =
2342 test_bit(BIO_UPTODATE, &bio->bi_flags);
2343 if (err)
2344 uptodate = 0;
2345 uncache_state(&cached);
2346 continue;
2347 }
2348 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2349 ret = tree->ops->readpage_io_failed_hook(
2350 bio, page, start, end,
2351 failed_mirror, state);
2352 if (ret == 0)
2353 goto error_handled;
2354 }
2355 }
2356
2357 if (uptodate) {
2358 set_extent_uptodate(tree, start, end, &cached,
2359 GFP_ATOMIC);
2360 }
2361 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2362
2363 if (whole_page) {
2364 if (uptodate) {
2365 SetPageUptodate(page);
2366 } else {
2367 ClearPageUptodate(page);
2368 SetPageError(page);
2369 }
2370 unlock_page(page);
2371 } else {
2372 if (uptodate) {
2373 check_page_uptodate(tree, page);
2374 } else {
2375 ClearPageUptodate(page);
2376 SetPageError(page);
2377 }
2378 check_page_locked(tree, page);
2379 }
2380 } while (bvec <= bvec_end);
2381
2382 bio_put(bio);
2383 }
2384
2385 struct bio *
2386 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2387 gfp_t gfp_flags)
2388 {
2389 struct bio *bio;
2390
2391 bio = bio_alloc(gfp_flags, nr_vecs);
2392
2393 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2394 while (!bio && (nr_vecs /= 2))
2395 bio = bio_alloc(gfp_flags, nr_vecs);
2396 }
2397
2398 if (bio) {
2399 bio->bi_size = 0;
2400 bio->bi_bdev = bdev;
2401 bio->bi_sector = first_sector;
2402 }
2403 return bio;
2404 }
2405
2406 /*
2407 * Since writes are async, they will only return -ENOMEM.
2408 * Reads can return the full range of I/O error conditions.
2409 */
2410 static int __must_check submit_one_bio(int rw, struct bio *bio,
2411 int mirror_num, unsigned long bio_flags)
2412 {
2413 int ret = 0;
2414 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2415 struct page *page = bvec->bv_page;
2416 struct extent_io_tree *tree = bio->bi_private;
2417 u64 start;
2418
2419 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2420
2421 bio->bi_private = NULL;
2422
2423 bio_get(bio);
2424
2425 if (tree->ops && tree->ops->submit_bio_hook)
2426 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2427 mirror_num, bio_flags, start);
2428 else
2429 btrfsic_submit_bio(rw, bio);
2430
2431 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2432 ret = -EOPNOTSUPP;
2433 bio_put(bio);
2434 return ret;
2435 }
2436
2437 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2438 unsigned long offset, size_t size, struct bio *bio,
2439 unsigned long bio_flags)
2440 {
2441 int ret = 0;
2442 if (tree->ops && tree->ops->merge_bio_hook)
2443 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2444 bio_flags);
2445 BUG_ON(ret < 0);
2446 return ret;
2447
2448 }
2449
2450 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2451 struct page *page, sector_t sector,
2452 size_t size, unsigned long offset,
2453 struct block_device *bdev,
2454 struct bio **bio_ret,
2455 unsigned long max_pages,
2456 bio_end_io_t end_io_func,
2457 int mirror_num,
2458 unsigned long prev_bio_flags,
2459 unsigned long bio_flags)
2460 {
2461 int ret = 0;
2462 struct bio *bio;
2463 int nr;
2464 int contig = 0;
2465 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2466 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2467 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2468
2469 if (bio_ret && *bio_ret) {
2470 bio = *bio_ret;
2471 if (old_compressed)
2472 contig = bio->bi_sector == sector;
2473 else
2474 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2475 sector;
2476
2477 if (prev_bio_flags != bio_flags || !contig ||
2478 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2479 bio_add_page(bio, page, page_size, offset) < page_size) {
2480 ret = submit_one_bio(rw, bio, mirror_num,
2481 prev_bio_flags);
2482 if (ret < 0)
2483 return ret;
2484 bio = NULL;
2485 } else {
2486 return 0;
2487 }
2488 }
2489 if (this_compressed)
2490 nr = BIO_MAX_PAGES;
2491 else
2492 nr = bio_get_nr_vecs(bdev);
2493
2494 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2495 if (!bio)
2496 return -ENOMEM;
2497
2498 bio_add_page(bio, page, page_size, offset);
2499 bio->bi_end_io = end_io_func;
2500 bio->bi_private = tree;
2501
2502 if (bio_ret)
2503 *bio_ret = bio;
2504 else
2505 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2506
2507 return ret;
2508 }
2509
2510 void set_page_extent_mapped(struct page *page)
2511 {
2512 if (!PagePrivate(page)) {
2513 SetPagePrivate(page);
2514 page_cache_get(page);
2515 set_page_private(page, EXTENT_PAGE_PRIVATE);
2516 }
2517 }
2518
2519 static void set_page_extent_head(struct page *page, unsigned long len)
2520 {
2521 WARN_ON(!PagePrivate(page));
2522 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
2523 }
2524
2525 /*
2526 * basic readpage implementation. Locked extent state structs are inserted
2527 * into the tree that are removed when the IO is done (by the end_io
2528 * handlers)
2529 * XXX JDM: This needs looking at to ensure proper page locking
2530 */
2531 static int __extent_read_full_page(struct extent_io_tree *tree,
2532 struct page *page,
2533 get_extent_t *get_extent,
2534 struct bio **bio, int mirror_num,
2535 unsigned long *bio_flags)
2536 {
2537 struct inode *inode = page->mapping->host;
2538 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2539 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2540 u64 end;
2541 u64 cur = start;
2542 u64 extent_offset;
2543 u64 last_byte = i_size_read(inode);
2544 u64 block_start;
2545 u64 cur_end;
2546 sector_t sector;
2547 struct extent_map *em;
2548 struct block_device *bdev;
2549 struct btrfs_ordered_extent *ordered;
2550 int ret;
2551 int nr = 0;
2552 size_t pg_offset = 0;
2553 size_t iosize;
2554 size_t disk_io_size;
2555 size_t blocksize = inode->i_sb->s_blocksize;
2556 unsigned long this_bio_flag = 0;
2557
2558 set_page_extent_mapped(page);
2559
2560 if (!PageUptodate(page)) {
2561 if (cleancache_get_page(page) == 0) {
2562 BUG_ON(blocksize != PAGE_SIZE);
2563 goto out;
2564 }
2565 }
2566
2567 end = page_end;
2568 while (1) {
2569 lock_extent(tree, start, end);
2570 ordered = btrfs_lookup_ordered_extent(inode, start);
2571 if (!ordered)
2572 break;
2573 unlock_extent(tree, start, end);
2574 btrfs_start_ordered_extent(inode, ordered, 1);
2575 btrfs_put_ordered_extent(ordered);
2576 }
2577
2578 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2579 char *userpage;
2580 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2581
2582 if (zero_offset) {
2583 iosize = PAGE_CACHE_SIZE - zero_offset;
2584 userpage = kmap_atomic(page, KM_USER0);
2585 memset(userpage + zero_offset, 0, iosize);
2586 flush_dcache_page(page);
2587 kunmap_atomic(userpage, KM_USER0);
2588 }
2589 }
2590 while (cur <= end) {
2591 if (cur >= last_byte) {
2592 char *userpage;
2593 struct extent_state *cached = NULL;
2594
2595 iosize = PAGE_CACHE_SIZE - pg_offset;
2596 userpage = kmap_atomic(page, KM_USER0);
2597 memset(userpage + pg_offset, 0, iosize);
2598 flush_dcache_page(page);
2599 kunmap_atomic(userpage, KM_USER0);
2600 set_extent_uptodate(tree, cur, cur + iosize - 1,
2601 &cached, GFP_NOFS);
2602 unlock_extent_cached(tree, cur, cur + iosize - 1,
2603 &cached, GFP_NOFS);
2604 break;
2605 }
2606 em = get_extent(inode, page, pg_offset, cur,
2607 end - cur + 1, 0);
2608 if (IS_ERR_OR_NULL(em)) {
2609 SetPageError(page);
2610 unlock_extent(tree, cur, end);
2611 break;
2612 }
2613 extent_offset = cur - em->start;
2614 BUG_ON(extent_map_end(em) <= cur);
2615 BUG_ON(end < cur);
2616
2617 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2618 this_bio_flag = EXTENT_BIO_COMPRESSED;
2619 extent_set_compress_type(&this_bio_flag,
2620 em->compress_type);
2621 }
2622
2623 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2624 cur_end = min(extent_map_end(em) - 1, end);
2625 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2626 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2627 disk_io_size = em->block_len;
2628 sector = em->block_start >> 9;
2629 } else {
2630 sector = (em->block_start + extent_offset) >> 9;
2631 disk_io_size = iosize;
2632 }
2633 bdev = em->bdev;
2634 block_start = em->block_start;
2635 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2636 block_start = EXTENT_MAP_HOLE;
2637 free_extent_map(em);
2638 em = NULL;
2639
2640 /* we've found a hole, just zero and go on */
2641 if (block_start == EXTENT_MAP_HOLE) {
2642 char *userpage;
2643 struct extent_state *cached = NULL;
2644
2645 userpage = kmap_atomic(page, KM_USER0);
2646 memset(userpage + pg_offset, 0, iosize);
2647 flush_dcache_page(page);
2648 kunmap_atomic(userpage, KM_USER0);
2649
2650 set_extent_uptodate(tree, cur, cur + iosize - 1,
2651 &cached, GFP_NOFS);
2652 unlock_extent_cached(tree, cur, cur + iosize - 1,
2653 &cached, GFP_NOFS);
2654 cur = cur + iosize;
2655 pg_offset += iosize;
2656 continue;
2657 }
2658 /* the get_extent function already copied into the page */
2659 if (test_range_bit(tree, cur, cur_end,
2660 EXTENT_UPTODATE, 1, NULL)) {
2661 check_page_uptodate(tree, page);
2662 unlock_extent(tree, cur, cur + iosize - 1);
2663 cur = cur + iosize;
2664 pg_offset += iosize;
2665 continue;
2666 }
2667 /* we have an inline extent but it didn't get marked up
2668 * to date. Error out
2669 */
2670 if (block_start == EXTENT_MAP_INLINE) {
2671 SetPageError(page);
2672 unlock_extent(tree, cur, cur + iosize - 1);
2673 cur = cur + iosize;
2674 pg_offset += iosize;
2675 continue;
2676 }
2677
2678 ret = 0;
2679 if (tree->ops && tree->ops->readpage_io_hook) {
2680 ret = tree->ops->readpage_io_hook(page, cur,
2681 cur + iosize - 1);
2682 }
2683 if (!ret) {
2684 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2685 pnr -= page->index;
2686 ret = submit_extent_page(READ, tree, page,
2687 sector, disk_io_size, pg_offset,
2688 bdev, bio, pnr,
2689 end_bio_extent_readpage, mirror_num,
2690 *bio_flags,
2691 this_bio_flag);
2692 BUG_ON(ret == -ENOMEM);
2693 nr++;
2694 *bio_flags = this_bio_flag;
2695 }
2696 if (ret)
2697 SetPageError(page);
2698 cur = cur + iosize;
2699 pg_offset += iosize;
2700 }
2701 out:
2702 if (!nr) {
2703 if (!PageError(page))
2704 SetPageUptodate(page);
2705 unlock_page(page);
2706 }
2707 return 0;
2708 }
2709
2710 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2711 get_extent_t *get_extent, int mirror_num)
2712 {
2713 struct bio *bio = NULL;
2714 unsigned long bio_flags = 0;
2715 int ret;
2716
2717 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2718 &bio_flags);
2719 if (bio)
2720 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2721 return ret;
2722 }
2723
2724 static noinline void update_nr_written(struct page *page,
2725 struct writeback_control *wbc,
2726 unsigned long nr_written)
2727 {
2728 wbc->nr_to_write -= nr_written;
2729 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2730 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2731 page->mapping->writeback_index = page->index + nr_written;
2732 }
2733
2734 /*
2735 * the writepage semantics are similar to regular writepage. extent
2736 * records are inserted to lock ranges in the tree, and as dirty areas
2737 * are found, they are marked writeback. Then the lock bits are removed
2738 * and the end_io handler clears the writeback ranges
2739 */
2740 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2741 void *data)
2742 {
2743 struct inode *inode = page->mapping->host;
2744 struct extent_page_data *epd = data;
2745 struct extent_io_tree *tree = epd->tree;
2746 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2747 u64 delalloc_start;
2748 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2749 u64 end;
2750 u64 cur = start;
2751 u64 extent_offset;
2752 u64 last_byte = i_size_read(inode);
2753 u64 block_start;
2754 u64 iosize;
2755 sector_t sector;
2756 struct extent_state *cached_state = NULL;
2757 struct extent_map *em;
2758 struct block_device *bdev;
2759 int ret;
2760 int nr = 0;
2761 size_t pg_offset = 0;
2762 size_t blocksize;
2763 loff_t i_size = i_size_read(inode);
2764 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2765 u64 nr_delalloc;
2766 u64 delalloc_end;
2767 int page_started;
2768 int compressed;
2769 int write_flags;
2770 unsigned long nr_written = 0;
2771 bool fill_delalloc = true;
2772
2773 if (wbc->sync_mode == WB_SYNC_ALL)
2774 write_flags = WRITE_SYNC;
2775 else
2776 write_flags = WRITE;
2777
2778 trace___extent_writepage(page, inode, wbc);
2779
2780 WARN_ON(!PageLocked(page));
2781
2782 ClearPageError(page);
2783
2784 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2785 if (page->index > end_index ||
2786 (page->index == end_index && !pg_offset)) {
2787 page->mapping->a_ops->invalidatepage(page, 0);
2788 unlock_page(page);
2789 return 0;
2790 }
2791
2792 if (page->index == end_index) {
2793 char *userpage;
2794
2795 userpage = kmap_atomic(page, KM_USER0);
2796 memset(userpage + pg_offset, 0,
2797 PAGE_CACHE_SIZE - pg_offset);
2798 kunmap_atomic(userpage, KM_USER0);
2799 flush_dcache_page(page);
2800 }
2801 pg_offset = 0;
2802
2803 set_page_extent_mapped(page);
2804
2805 if (!tree->ops || !tree->ops->fill_delalloc)
2806 fill_delalloc = false;
2807
2808 delalloc_start = start;
2809 delalloc_end = 0;
2810 page_started = 0;
2811 if (!epd->extent_locked && fill_delalloc) {
2812 u64 delalloc_to_write = 0;
2813 /*
2814 * make sure the wbc mapping index is at least updated
2815 * to this page.
2816 */
2817 update_nr_written(page, wbc, 0);
2818
2819 while (delalloc_end < page_end) {
2820 nr_delalloc = find_lock_delalloc_range(inode, tree,
2821 page,
2822 &delalloc_start,
2823 &delalloc_end,
2824 128 * 1024 * 1024);
2825 if (nr_delalloc == 0) {
2826 delalloc_start = delalloc_end + 1;
2827 continue;
2828 }
2829 ret = tree->ops->fill_delalloc(inode, page,
2830 delalloc_start,
2831 delalloc_end,
2832 &page_started,
2833 &nr_written);
2834 /* File system has been set read-only */
2835 if (ret) {
2836 SetPageError(page);
2837 goto done;
2838 }
2839 /*
2840 * delalloc_end is already one less than the total
2841 * length, so we don't subtract one from
2842 * PAGE_CACHE_SIZE
2843 */
2844 delalloc_to_write += (delalloc_end - delalloc_start +
2845 PAGE_CACHE_SIZE) >>
2846 PAGE_CACHE_SHIFT;
2847 delalloc_start = delalloc_end + 1;
2848 }
2849 if (wbc->nr_to_write < delalloc_to_write) {
2850 int thresh = 8192;
2851
2852 if (delalloc_to_write < thresh * 2)
2853 thresh = delalloc_to_write;
2854 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2855 thresh);
2856 }
2857
2858 /* did the fill delalloc function already unlock and start
2859 * the IO?
2860 */
2861 if (page_started) {
2862 ret = 0;
2863 /*
2864 * we've unlocked the page, so we can't update
2865 * the mapping's writeback index, just update
2866 * nr_to_write.
2867 */
2868 wbc->nr_to_write -= nr_written;
2869 goto done_unlocked;
2870 }
2871 }
2872 if (tree->ops && tree->ops->writepage_start_hook) {
2873 ret = tree->ops->writepage_start_hook(page, start,
2874 page_end);
2875 if (ret) {
2876 /* Fixup worker will requeue */
2877 if (ret == -EBUSY)
2878 wbc->pages_skipped++;
2879 else
2880 redirty_page_for_writepage(wbc, page);
2881 update_nr_written(page, wbc, nr_written);
2882 unlock_page(page);
2883 ret = 0;
2884 goto done_unlocked;
2885 }
2886 }
2887
2888 /*
2889 * we don't want to touch the inode after unlocking the page,
2890 * so we update the mapping writeback index now
2891 */
2892 update_nr_written(page, wbc, nr_written + 1);
2893
2894 end = page_end;
2895 if (last_byte <= start) {
2896 if (tree->ops && tree->ops->writepage_end_io_hook)
2897 tree->ops->writepage_end_io_hook(page, start,
2898 page_end, NULL, 1);
2899 goto done;
2900 }
2901
2902 blocksize = inode->i_sb->s_blocksize;
2903
2904 while (cur <= end) {
2905 if (cur >= last_byte) {
2906 if (tree->ops && tree->ops->writepage_end_io_hook)
2907 tree->ops->writepage_end_io_hook(page, cur,
2908 page_end, NULL, 1);
2909 break;
2910 }
2911 em = epd->get_extent(inode, page, pg_offset, cur,
2912 end - cur + 1, 1);
2913 if (IS_ERR_OR_NULL(em)) {
2914 SetPageError(page);
2915 break;
2916 }
2917
2918 extent_offset = cur - em->start;
2919 BUG_ON(extent_map_end(em) <= cur);
2920 BUG_ON(end < cur);
2921 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2922 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2923 sector = (em->block_start + extent_offset) >> 9;
2924 bdev = em->bdev;
2925 block_start = em->block_start;
2926 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2927 free_extent_map(em);
2928 em = NULL;
2929
2930 /*
2931 * compressed and inline extents are written through other
2932 * paths in the FS
2933 */
2934 if (compressed || block_start == EXTENT_MAP_HOLE ||
2935 block_start == EXTENT_MAP_INLINE) {
2936 /*
2937 * end_io notification does not happen here for
2938 * compressed extents
2939 */
2940 if (!compressed && tree->ops &&
2941 tree->ops->writepage_end_io_hook)
2942 tree->ops->writepage_end_io_hook(page, cur,
2943 cur + iosize - 1,
2944 NULL, 1);
2945 else if (compressed) {
2946 /* we don't want to end_page_writeback on
2947 * a compressed extent. this happens
2948 * elsewhere
2949 */
2950 nr++;
2951 }
2952
2953 cur += iosize;
2954 pg_offset += iosize;
2955 continue;
2956 }
2957 /* leave this out until we have a page_mkwrite call */
2958 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2959 EXTENT_DIRTY, 0, NULL)) {
2960 cur = cur + iosize;
2961 pg_offset += iosize;
2962 continue;
2963 }
2964
2965 if (tree->ops && tree->ops->writepage_io_hook) {
2966 ret = tree->ops->writepage_io_hook(page, cur,
2967 cur + iosize - 1);
2968 } else {
2969 ret = 0;
2970 }
2971 if (ret) {
2972 SetPageError(page);
2973 } else {
2974 unsigned long max_nr = end_index + 1;
2975
2976 set_range_writeback(tree, cur, cur + iosize - 1);
2977 if (!PageWriteback(page)) {
2978 printk(KERN_ERR "btrfs warning page %lu not "
2979 "writeback, cur %llu end %llu\n",
2980 page->index, (unsigned long long)cur,
2981 (unsigned long long)end);
2982 }
2983
2984 ret = submit_extent_page(write_flags, tree, page,
2985 sector, iosize, pg_offset,
2986 bdev, &epd->bio, max_nr,
2987 end_bio_extent_writepage,
2988 0, 0, 0);
2989 if (ret)
2990 SetPageError(page);
2991 }
2992 cur = cur + iosize;
2993 pg_offset += iosize;
2994 nr++;
2995 }
2996 done:
2997 if (nr == 0) {
2998 /* make sure the mapping tag for page dirty gets cleared */
2999 set_page_writeback(page);
3000 end_page_writeback(page);
3001 }
3002 unlock_page(page);
3003
3004 done_unlocked:
3005
3006 /* drop our reference on any cached states */
3007 free_extent_state(cached_state);
3008 return 0;
3009 }
3010
3011 /**
3012 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3013 * @mapping: address space structure to write
3014 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3015 * @writepage: function called for each page
3016 * @data: data passed to writepage function
3017 *
3018 * If a page is already under I/O, write_cache_pages() skips it, even
3019 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3020 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3021 * and msync() need to guarantee that all the data which was dirty at the time
3022 * the call was made get new I/O started against them. If wbc->sync_mode is
3023 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3024 * existing IO to complete.
3025 */
3026 static int extent_write_cache_pages(struct extent_io_tree *tree,
3027 struct address_space *mapping,
3028 struct writeback_control *wbc,
3029 writepage_t writepage, void *data,
3030 void (*flush_fn)(void *))
3031 {
3032 int ret = 0;
3033 int done = 0;
3034 int nr_to_write_done = 0;
3035 struct pagevec pvec;
3036 int nr_pages;
3037 pgoff_t index;
3038 pgoff_t end; /* Inclusive */
3039 int scanned = 0;
3040 int tag;
3041
3042 pagevec_init(&pvec, 0);
3043 if (wbc->range_cyclic) {
3044 index = mapping->writeback_index; /* Start from prev offset */
3045 end = -1;
3046 } else {
3047 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3048 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3049 scanned = 1;
3050 }
3051 if (wbc->sync_mode == WB_SYNC_ALL)
3052 tag = PAGECACHE_TAG_TOWRITE;
3053 else
3054 tag = PAGECACHE_TAG_DIRTY;
3055 retry:
3056 if (wbc->sync_mode == WB_SYNC_ALL)
3057 tag_pages_for_writeback(mapping, index, end);
3058 while (!done && !nr_to_write_done && (index <= end) &&
3059 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3060 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3061 unsigned i;
3062
3063 scanned = 1;
3064 for (i = 0; i < nr_pages; i++) {
3065 struct page *page = pvec.pages[i];
3066
3067 /*
3068 * At this point we hold neither mapping->tree_lock nor
3069 * lock on the page itself: the page may be truncated or
3070 * invalidated (changing page->mapping to NULL), or even
3071 * swizzled back from swapper_space to tmpfs file
3072 * mapping
3073 */
3074 if (tree->ops &&
3075 tree->ops->write_cache_pages_lock_hook) {
3076 tree->ops->write_cache_pages_lock_hook(page,
3077 data, flush_fn);
3078 } else {
3079 if (!trylock_page(page)) {
3080 flush_fn(data);
3081 lock_page(page);
3082 }
3083 }
3084
3085 if (unlikely(page->mapping != mapping)) {
3086 unlock_page(page);
3087 continue;
3088 }
3089
3090 if (!wbc->range_cyclic && page->index > end) {
3091 done = 1;
3092 unlock_page(page);
3093 continue;
3094 }
3095
3096 if (wbc->sync_mode != WB_SYNC_NONE) {
3097 if (PageWriteback(page))
3098 flush_fn(data);
3099 wait_on_page_writeback(page);
3100 }
3101
3102 if (PageWriteback(page) ||
3103 !clear_page_dirty_for_io(page)) {
3104 unlock_page(page);
3105 continue;
3106 }
3107
3108 ret = (*writepage)(page, wbc, data);
3109
3110 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3111 unlock_page(page);
3112 ret = 0;
3113 }
3114 if (ret)
3115 done = 1;
3116
3117 /*
3118 * the filesystem may choose to bump up nr_to_write.
3119 * We have to make sure to honor the new nr_to_write
3120 * at any time
3121 */
3122 nr_to_write_done = wbc->nr_to_write <= 0;
3123 }
3124 pagevec_release(&pvec);
3125 cond_resched();
3126 }
3127 if (!scanned && !done) {
3128 /*
3129 * We hit the last page and there is more work to be done: wrap
3130 * back to the start of the file
3131 */
3132 scanned = 1;
3133 index = 0;
3134 goto retry;
3135 }
3136 return ret;
3137 }
3138
3139 static void flush_epd_write_bio(struct extent_page_data *epd)
3140 {
3141 if (epd->bio) {
3142 int rw = WRITE;
3143 int ret;
3144
3145 if (epd->sync_io)
3146 rw = WRITE_SYNC;
3147
3148 ret = submit_one_bio(rw, epd->bio, 0, 0);
3149 BUG_ON(ret < 0); /* -ENOMEM */
3150 epd->bio = NULL;
3151 }
3152 }
3153
3154 static noinline void flush_write_bio(void *data)
3155 {
3156 struct extent_page_data *epd = data;
3157 flush_epd_write_bio(epd);
3158 }
3159
3160 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3161 get_extent_t *get_extent,
3162 struct writeback_control *wbc)
3163 {
3164 int ret;
3165 struct extent_page_data epd = {
3166 .bio = NULL,
3167 .tree = tree,
3168 .get_extent = get_extent,
3169 .extent_locked = 0,
3170 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3171 };
3172
3173 ret = __extent_writepage(page, wbc, &epd);
3174
3175 flush_epd_write_bio(&epd);
3176 return ret;
3177 }
3178
3179 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3180 u64 start, u64 end, get_extent_t *get_extent,
3181 int mode)
3182 {
3183 int ret = 0;
3184 struct address_space *mapping = inode->i_mapping;
3185 struct page *page;
3186 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3187 PAGE_CACHE_SHIFT;
3188
3189 struct extent_page_data epd = {
3190 .bio = NULL,
3191 .tree = tree,
3192 .get_extent = get_extent,
3193 .extent_locked = 1,
3194 .sync_io = mode == WB_SYNC_ALL,
3195 };
3196 struct writeback_control wbc_writepages = {
3197 .sync_mode = mode,
3198 .nr_to_write = nr_pages * 2,
3199 .range_start = start,
3200 .range_end = end + 1,
3201 };
3202
3203 while (start <= end) {
3204 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3205 if (clear_page_dirty_for_io(page))
3206 ret = __extent_writepage(page, &wbc_writepages, &epd);
3207 else {
3208 if (tree->ops && tree->ops->writepage_end_io_hook)
3209 tree->ops->writepage_end_io_hook(page, start,
3210 start + PAGE_CACHE_SIZE - 1,
3211 NULL, 1);
3212 unlock_page(page);
3213 }
3214 page_cache_release(page);
3215 start += PAGE_CACHE_SIZE;
3216 }
3217
3218 flush_epd_write_bio(&epd);
3219 return ret;
3220 }
3221
3222 int extent_writepages(struct extent_io_tree *tree,
3223 struct address_space *mapping,
3224 get_extent_t *get_extent,
3225 struct writeback_control *wbc)
3226 {
3227 int ret = 0;
3228 struct extent_page_data epd = {
3229 .bio = NULL,
3230 .tree = tree,
3231 .get_extent = get_extent,
3232 .extent_locked = 0,
3233 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3234 };
3235
3236 ret = extent_write_cache_pages(tree, mapping, wbc,
3237 __extent_writepage, &epd,
3238 flush_write_bio);
3239 flush_epd_write_bio(&epd);
3240 return ret;
3241 }
3242
3243 int extent_readpages(struct extent_io_tree *tree,
3244 struct address_space *mapping,
3245 struct list_head *pages, unsigned nr_pages,
3246 get_extent_t get_extent)
3247 {
3248 struct bio *bio = NULL;
3249 unsigned page_idx;
3250 unsigned long bio_flags = 0;
3251
3252 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3253 struct page *page = list_entry(pages->prev, struct page, lru);
3254
3255 prefetchw(&page->flags);
3256 list_del(&page->lru);
3257 if (!add_to_page_cache_lru(page, mapping,
3258 page->index, GFP_NOFS)) {
3259 __extent_read_full_page(tree, page, get_extent,
3260 &bio, 0, &bio_flags);
3261 }
3262 page_cache_release(page);
3263 }
3264 BUG_ON(!list_empty(pages));
3265 if (bio)
3266 return submit_one_bio(READ, bio, 0, bio_flags);
3267 return 0;
3268 }
3269
3270 /*
3271 * basic invalidatepage code, this waits on any locked or writeback
3272 * ranges corresponding to the page, and then deletes any extent state
3273 * records from the tree
3274 */
3275 int extent_invalidatepage(struct extent_io_tree *tree,
3276 struct page *page, unsigned long offset)
3277 {
3278 struct extent_state *cached_state = NULL;
3279 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3280 u64 end = start + PAGE_CACHE_SIZE - 1;
3281 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3282
3283 start += (offset + blocksize - 1) & ~(blocksize - 1);
3284 if (start > end)
3285 return 0;
3286
3287 lock_extent_bits(tree, start, end, 0, &cached_state);
3288 wait_on_page_writeback(page);
3289 clear_extent_bit(tree, start, end,
3290 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3291 EXTENT_DO_ACCOUNTING,
3292 1, 1, &cached_state, GFP_NOFS);
3293 return 0;
3294 }
3295
3296 /*
3297 * a helper for releasepage, this tests for areas of the page that
3298 * are locked or under IO and drops the related state bits if it is safe
3299 * to drop the page.
3300 */
3301 int try_release_extent_state(struct extent_map_tree *map,
3302 struct extent_io_tree *tree, struct page *page,
3303 gfp_t mask)
3304 {
3305 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3306 u64 end = start + PAGE_CACHE_SIZE - 1;
3307 int ret = 1;
3308
3309 if (test_range_bit(tree, start, end,
3310 EXTENT_IOBITS, 0, NULL))
3311 ret = 0;
3312 else {
3313 if ((mask & GFP_NOFS) == GFP_NOFS)
3314 mask = GFP_NOFS;
3315 /*
3316 * at this point we can safely clear everything except the
3317 * locked bit and the nodatasum bit
3318 */
3319 ret = clear_extent_bit(tree, start, end,
3320 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3321 0, 0, NULL, mask);
3322
3323 /* if clear_extent_bit failed for enomem reasons,
3324 * we can't allow the release to continue.
3325 */
3326 if (ret < 0)
3327 ret = 0;
3328 else
3329 ret = 1;
3330 }
3331 return ret;
3332 }
3333
3334 /*
3335 * a helper for releasepage. As long as there are no locked extents
3336 * in the range corresponding to the page, both state records and extent
3337 * map records are removed
3338 */
3339 int try_release_extent_mapping(struct extent_map_tree *map,
3340 struct extent_io_tree *tree, struct page *page,
3341 gfp_t mask)
3342 {
3343 struct extent_map *em;
3344 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3345 u64 end = start + PAGE_CACHE_SIZE - 1;
3346
3347 if ((mask & __GFP_WAIT) &&
3348 page->mapping->host->i_size > 16 * 1024 * 1024) {
3349 u64 len;
3350 while (start <= end) {
3351 len = end - start + 1;
3352 write_lock(&map->lock);
3353 em = lookup_extent_mapping(map, start, len);
3354 if (!em) {
3355 write_unlock(&map->lock);
3356 break;
3357 }
3358 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3359 em->start != start) {
3360 write_unlock(&map->lock);
3361 free_extent_map(em);
3362 break;
3363 }
3364 if (!test_range_bit(tree, em->start,
3365 extent_map_end(em) - 1,
3366 EXTENT_LOCKED | EXTENT_WRITEBACK,
3367 0, NULL)) {
3368 remove_extent_mapping(map, em);
3369 /* once for the rb tree */
3370 free_extent_map(em);
3371 }
3372 start = extent_map_end(em);
3373 write_unlock(&map->lock);
3374
3375 /* once for us */
3376 free_extent_map(em);
3377 }
3378 }
3379 return try_release_extent_state(map, tree, page, mask);
3380 }
3381
3382 /*
3383 * helper function for fiemap, which doesn't want to see any holes.
3384 * This maps until we find something past 'last'
3385 */
3386 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3387 u64 offset,
3388 u64 last,
3389 get_extent_t *get_extent)
3390 {
3391 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3392 struct extent_map *em;
3393 u64 len;
3394
3395 if (offset >= last)
3396 return NULL;
3397
3398 while(1) {
3399 len = last - offset;
3400 if (len == 0)
3401 break;
3402 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3403 em = get_extent(inode, NULL, 0, offset, len, 0);
3404 if (IS_ERR_OR_NULL(em))
3405 return em;
3406
3407 /* if this isn't a hole return it */
3408 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3409 em->block_start != EXTENT_MAP_HOLE) {
3410 return em;
3411 }
3412
3413 /* this is a hole, advance to the next extent */
3414 offset = extent_map_end(em);
3415 free_extent_map(em);
3416 if (offset >= last)
3417 break;
3418 }
3419 return NULL;
3420 }
3421
3422 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3423 __u64 start, __u64 len, get_extent_t *get_extent)
3424 {
3425 int ret = 0;
3426 u64 off = start;
3427 u64 max = start + len;
3428 u32 flags = 0;
3429 u32 found_type;
3430 u64 last;
3431 u64 last_for_get_extent = 0;
3432 u64 disko = 0;
3433 u64 isize = i_size_read(inode);
3434 struct btrfs_key found_key;
3435 struct extent_map *em = NULL;
3436 struct extent_state *cached_state = NULL;
3437 struct btrfs_path *path;
3438 struct btrfs_file_extent_item *item;
3439 int end = 0;
3440 u64 em_start = 0;
3441 u64 em_len = 0;
3442 u64 em_end = 0;
3443 unsigned long emflags;
3444
3445 if (len == 0)
3446 return -EINVAL;
3447
3448 path = btrfs_alloc_path();
3449 if (!path)
3450 return -ENOMEM;
3451 path->leave_spinning = 1;
3452
3453 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3454 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3455
3456 /*
3457 * lookup the last file extent. We're not using i_size here
3458 * because there might be preallocation past i_size
3459 */
3460 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3461 path, btrfs_ino(inode), -1, 0);
3462 if (ret < 0) {
3463 btrfs_free_path(path);
3464 return ret;
3465 }
3466 WARN_ON(!ret);
3467 path->slots[0]--;
3468 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3469 struct btrfs_file_extent_item);
3470 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3471 found_type = btrfs_key_type(&found_key);
3472
3473 /* No extents, but there might be delalloc bits */
3474 if (found_key.objectid != btrfs_ino(inode) ||
3475 found_type != BTRFS_EXTENT_DATA_KEY) {
3476 /* have to trust i_size as the end */
3477 last = (u64)-1;
3478 last_for_get_extent = isize;
3479 } else {
3480 /*
3481 * remember the start of the last extent. There are a
3482 * bunch of different factors that go into the length of the
3483 * extent, so its much less complex to remember where it started
3484 */
3485 last = found_key.offset;
3486 last_for_get_extent = last + 1;
3487 }
3488 btrfs_free_path(path);
3489
3490 /*
3491 * we might have some extents allocated but more delalloc past those
3492 * extents. so, we trust isize unless the start of the last extent is
3493 * beyond isize
3494 */
3495 if (last < isize) {
3496 last = (u64)-1;
3497 last_for_get_extent = isize;
3498 }
3499
3500 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3501 &cached_state);
3502
3503 em = get_extent_skip_holes(inode, start, last_for_get_extent,
3504 get_extent);
3505 if (!em)
3506 goto out;
3507 if (IS_ERR(em)) {
3508 ret = PTR_ERR(em);
3509 goto out;
3510 }
3511
3512 while (!end) {
3513 u64 offset_in_extent;
3514
3515 /* break if the extent we found is outside the range */
3516 if (em->start >= max || extent_map_end(em) < off)
3517 break;
3518
3519 /*
3520 * get_extent may return an extent that starts before our
3521 * requested range. We have to make sure the ranges
3522 * we return to fiemap always move forward and don't
3523 * overlap, so adjust the offsets here
3524 */
3525 em_start = max(em->start, off);
3526
3527 /*
3528 * record the offset from the start of the extent
3529 * for adjusting the disk offset below
3530 */
3531 offset_in_extent = em_start - em->start;
3532 em_end = extent_map_end(em);
3533 em_len = em_end - em_start;
3534 emflags = em->flags;
3535 disko = 0;
3536 flags = 0;
3537
3538 /*
3539 * bump off for our next call to get_extent
3540 */
3541 off = extent_map_end(em);
3542 if (off >= max)
3543 end = 1;
3544
3545 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3546 end = 1;
3547 flags |= FIEMAP_EXTENT_LAST;
3548 } else if (em->block_start == EXTENT_MAP_INLINE) {
3549 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3550 FIEMAP_EXTENT_NOT_ALIGNED);
3551 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3552 flags |= (FIEMAP_EXTENT_DELALLOC |
3553 FIEMAP_EXTENT_UNKNOWN);
3554 } else {
3555 disko = em->block_start + offset_in_extent;
3556 }
3557 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3558 flags |= FIEMAP_EXTENT_ENCODED;
3559
3560 free_extent_map(em);
3561 em = NULL;
3562 if ((em_start >= last) || em_len == (u64)-1 ||
3563 (last == (u64)-1 && isize <= em_end)) {
3564 flags |= FIEMAP_EXTENT_LAST;
3565 end = 1;
3566 }
3567
3568 /* now scan forward to see if this is really the last extent. */
3569 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3570 get_extent);
3571 if (IS_ERR(em)) {
3572 ret = PTR_ERR(em);
3573 goto out;
3574 }
3575 if (!em) {
3576 flags |= FIEMAP_EXTENT_LAST;
3577 end = 1;
3578 }
3579 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3580 em_len, flags);
3581 if (ret)
3582 goto out_free;
3583 }
3584 out_free:
3585 free_extent_map(em);
3586 out:
3587 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3588 &cached_state, GFP_NOFS);
3589 return ret;
3590 }
3591
3592 inline struct page *extent_buffer_page(struct extent_buffer *eb,
3593 unsigned long i)
3594 {
3595 struct page *p;
3596 struct address_space *mapping;
3597
3598 if (i == 0)
3599 return eb->first_page;
3600 i += eb->start >> PAGE_CACHE_SHIFT;
3601 mapping = eb->first_page->mapping;
3602 if (!mapping)
3603 return NULL;
3604
3605 /*
3606 * extent_buffer_page is only called after pinning the page
3607 * by increasing the reference count. So we know the page must
3608 * be in the radix tree.
3609 */
3610 rcu_read_lock();
3611 p = radix_tree_lookup(&mapping->page_tree, i);
3612 rcu_read_unlock();
3613
3614 return p;
3615 }
3616
3617 inline unsigned long num_extent_pages(u64 start, u64 len)
3618 {
3619 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3620 (start >> PAGE_CACHE_SHIFT);
3621 }
3622
3623 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3624 u64 start,
3625 unsigned long len,
3626 gfp_t mask)
3627 {
3628 struct extent_buffer *eb = NULL;
3629 #if LEAK_DEBUG
3630 unsigned long flags;
3631 #endif
3632
3633 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3634 if (eb == NULL)
3635 return NULL;
3636 eb->start = start;
3637 eb->len = len;
3638 rwlock_init(&eb->lock);
3639 atomic_set(&eb->write_locks, 0);
3640 atomic_set(&eb->read_locks, 0);
3641 atomic_set(&eb->blocking_readers, 0);
3642 atomic_set(&eb->blocking_writers, 0);
3643 atomic_set(&eb->spinning_readers, 0);
3644 atomic_set(&eb->spinning_writers, 0);
3645 eb->lock_nested = 0;
3646 init_waitqueue_head(&eb->write_lock_wq);
3647 init_waitqueue_head(&eb->read_lock_wq);
3648
3649 #if LEAK_DEBUG
3650 spin_lock_irqsave(&leak_lock, flags);
3651 list_add(&eb->leak_list, &buffers);
3652 spin_unlock_irqrestore(&leak_lock, flags);
3653 #endif
3654 atomic_set(&eb->refs, 1);
3655
3656 return eb;
3657 }
3658
3659 static void __free_extent_buffer(struct extent_buffer *eb)
3660 {
3661 #if LEAK_DEBUG
3662 unsigned long flags;
3663 spin_lock_irqsave(&leak_lock, flags);
3664 list_del(&eb->leak_list);
3665 spin_unlock_irqrestore(&leak_lock, flags);
3666 #endif
3667 kmem_cache_free(extent_buffer_cache, eb);
3668 }
3669
3670 /*
3671 * Helper for releasing extent buffer page.
3672 */
3673 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3674 unsigned long start_idx)
3675 {
3676 unsigned long index;
3677 struct page *page;
3678
3679 if (!eb->first_page)
3680 return;
3681
3682 index = num_extent_pages(eb->start, eb->len);
3683 if (start_idx >= index)
3684 return;
3685
3686 do {
3687 index--;
3688 page = extent_buffer_page(eb, index);
3689 if (page)
3690 page_cache_release(page);
3691 } while (index != start_idx);
3692 }
3693
3694 /*
3695 * Helper for releasing the extent buffer.
3696 */
3697 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3698 {
3699 btrfs_release_extent_buffer_page(eb, 0);
3700 __free_extent_buffer(eb);
3701 }
3702
3703 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3704 u64 start, unsigned long len,
3705 struct page *page0)
3706 {
3707 unsigned long num_pages = num_extent_pages(start, len);
3708 unsigned long i;
3709 unsigned long index = start >> PAGE_CACHE_SHIFT;
3710 struct extent_buffer *eb;
3711 struct extent_buffer *exists = NULL;
3712 struct page *p;
3713 struct address_space *mapping = tree->mapping;
3714 int uptodate = 1;
3715 int ret;
3716
3717 rcu_read_lock();
3718 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3719 if (eb && atomic_inc_not_zero(&eb->refs)) {
3720 rcu_read_unlock();
3721 mark_page_accessed(eb->first_page);
3722 return eb;
3723 }
3724 rcu_read_unlock();
3725
3726 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
3727 if (!eb)
3728 return NULL;
3729
3730 if (page0) {
3731 eb->first_page = page0;
3732 i = 1;
3733 index++;
3734 page_cache_get(page0);
3735 mark_page_accessed(page0);
3736 set_page_extent_mapped(page0);
3737 set_page_extent_head(page0, len);
3738 uptodate = PageUptodate(page0);
3739 } else {
3740 i = 0;
3741 }
3742 for (; i < num_pages; i++, index++) {
3743 p = find_or_create_page(mapping, index, GFP_NOFS);
3744 if (!p) {
3745 WARN_ON(1);
3746 goto free_eb;
3747 }
3748 set_page_extent_mapped(p);
3749 mark_page_accessed(p);
3750 if (i == 0) {
3751 eb->first_page = p;
3752 set_page_extent_head(p, len);
3753 } else {
3754 set_page_private(p, EXTENT_PAGE_PRIVATE);
3755 }
3756 if (!PageUptodate(p))
3757 uptodate = 0;
3758
3759 /*
3760 * see below about how we avoid a nasty race with release page
3761 * and why we unlock later
3762 */
3763 if (i != 0)
3764 unlock_page(p);
3765 }
3766 if (uptodate)
3767 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3768
3769 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
3770 if (ret)
3771 goto free_eb;
3772
3773 spin_lock(&tree->buffer_lock);
3774 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
3775 if (ret == -EEXIST) {
3776 exists = radix_tree_lookup(&tree->buffer,
3777 start >> PAGE_CACHE_SHIFT);
3778 /* add one reference for the caller */
3779 atomic_inc(&exists->refs);
3780 spin_unlock(&tree->buffer_lock);
3781 radix_tree_preload_end();
3782 goto free_eb;
3783 }
3784 /* add one reference for the tree */
3785 atomic_inc(&eb->refs);
3786 spin_unlock(&tree->buffer_lock);
3787 radix_tree_preload_end();
3788
3789 /*
3790 * there is a race where release page may have
3791 * tried to find this extent buffer in the radix
3792 * but failed. It will tell the VM it is safe to
3793 * reclaim the, and it will clear the page private bit.
3794 * We must make sure to set the page private bit properly
3795 * after the extent buffer is in the radix tree so
3796 * it doesn't get lost
3797 */
3798 set_page_extent_mapped(eb->first_page);
3799 set_page_extent_head(eb->first_page, eb->len);
3800 if (!page0)
3801 unlock_page(eb->first_page);
3802 return eb;
3803
3804 free_eb:
3805 if (eb->first_page && !page0)
3806 unlock_page(eb->first_page);
3807
3808 if (!atomic_dec_and_test(&eb->refs))
3809 return exists;
3810 btrfs_release_extent_buffer(eb);
3811 return exists;
3812 }
3813
3814 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3815 u64 start, unsigned long len)
3816 {
3817 struct extent_buffer *eb;
3818
3819 rcu_read_lock();
3820 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3821 if (eb && atomic_inc_not_zero(&eb->refs)) {
3822 rcu_read_unlock();
3823 mark_page_accessed(eb->first_page);
3824 return eb;
3825 }
3826 rcu_read_unlock();
3827
3828 return NULL;
3829 }
3830
3831 void free_extent_buffer(struct extent_buffer *eb)
3832 {
3833 if (!eb)
3834 return;
3835
3836 if (!atomic_dec_and_test(&eb->refs))
3837 return;
3838
3839 WARN_ON(1);
3840 }
3841
3842 void clear_extent_buffer_dirty(struct extent_io_tree *tree,
3843 struct extent_buffer *eb)
3844 {
3845 unsigned long i;
3846 unsigned long num_pages;
3847 struct page *page;
3848
3849 num_pages = num_extent_pages(eb->start, eb->len);
3850
3851 for (i = 0; i < num_pages; i++) {
3852 page = extent_buffer_page(eb, i);
3853 if (!PageDirty(page))
3854 continue;
3855
3856 lock_page(page);
3857 WARN_ON(!PagePrivate(page));
3858
3859 set_page_extent_mapped(page);
3860 if (i == 0)
3861 set_page_extent_head(page, eb->len);
3862
3863 clear_page_dirty_for_io(page);
3864 spin_lock_irq(&page->mapping->tree_lock);
3865 if (!PageDirty(page)) {
3866 radix_tree_tag_clear(&page->mapping->page_tree,
3867 page_index(page),
3868 PAGECACHE_TAG_DIRTY);
3869 }
3870 spin_unlock_irq(&page->mapping->tree_lock);
3871 ClearPageError(page);
3872 unlock_page(page);
3873 }
3874 }
3875
3876 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3877 struct extent_buffer *eb)
3878 {
3879 unsigned long i;
3880 unsigned long num_pages;
3881 int was_dirty = 0;
3882
3883 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3884 num_pages = num_extent_pages(eb->start, eb->len);
3885 for (i = 0; i < num_pages; i++)
3886 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3887 return was_dirty;
3888 }
3889
3890 static int __eb_straddles_pages(u64 start, u64 len)
3891 {
3892 if (len < PAGE_CACHE_SIZE)
3893 return 1;
3894 if (start & (PAGE_CACHE_SIZE - 1))
3895 return 1;
3896 if ((start + len) & (PAGE_CACHE_SIZE - 1))
3897 return 1;
3898 return 0;
3899 }
3900
3901 static int eb_straddles_pages(struct extent_buffer *eb)
3902 {
3903 return __eb_straddles_pages(eb->start, eb->len);
3904 }
3905
3906 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3907 struct extent_buffer *eb,
3908 struct extent_state **cached_state)
3909 {
3910 unsigned long i;
3911 struct page *page;
3912 unsigned long num_pages;
3913
3914 num_pages = num_extent_pages(eb->start, eb->len);
3915 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3916
3917 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3918 cached_state, GFP_NOFS);
3919
3920 for (i = 0; i < num_pages; i++) {
3921 page = extent_buffer_page(eb, i);
3922 if (page)
3923 ClearPageUptodate(page);
3924 }
3925 return 0;
3926 }
3927
3928 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3929 struct extent_buffer *eb)
3930 {
3931 unsigned long i;
3932 struct page *page;
3933 unsigned long num_pages;
3934
3935 num_pages = num_extent_pages(eb->start, eb->len);
3936
3937 if (eb_straddles_pages(eb)) {
3938 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3939 NULL, GFP_NOFS);
3940 }
3941 for (i = 0; i < num_pages; i++) {
3942 page = extent_buffer_page(eb, i);
3943 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3944 ((i == num_pages - 1) &&
3945 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3946 check_page_uptodate(tree, page);
3947 continue;
3948 }
3949 SetPageUptodate(page);
3950 }
3951 return 0;
3952 }
3953
3954 int extent_range_uptodate(struct extent_io_tree *tree,
3955 u64 start, u64 end)
3956 {
3957 struct page *page;
3958 int ret;
3959 int pg_uptodate = 1;
3960 int uptodate;
3961 unsigned long index;
3962
3963 if (__eb_straddles_pages(start, end - start + 1)) {
3964 ret = test_range_bit(tree, start, end,
3965 EXTENT_UPTODATE, 1, NULL);
3966 if (ret)
3967 return 1;
3968 }
3969 while (start <= end) {
3970 index = start >> PAGE_CACHE_SHIFT;
3971 page = find_get_page(tree->mapping, index);
3972 if (!page)
3973 return 1;
3974 uptodate = PageUptodate(page);
3975 page_cache_release(page);
3976 if (!uptodate) {
3977 pg_uptodate = 0;
3978 break;
3979 }
3980 start += PAGE_CACHE_SIZE;
3981 }
3982 return pg_uptodate;
3983 }
3984
3985 int extent_buffer_uptodate(struct extent_io_tree *tree,
3986 struct extent_buffer *eb,
3987 struct extent_state *cached_state)
3988 {
3989 int ret = 0;
3990 unsigned long num_pages;
3991 unsigned long i;
3992 struct page *page;
3993 int pg_uptodate = 1;
3994
3995 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3996 return 1;
3997
3998 if (eb_straddles_pages(eb)) {
3999 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
4000 EXTENT_UPTODATE, 1, cached_state);
4001 if (ret)
4002 return ret;
4003 }
4004
4005 num_pages = num_extent_pages(eb->start, eb->len);
4006 for (i = 0; i < num_pages; i++) {
4007 page = extent_buffer_page(eb, i);
4008 if (!PageUptodate(page)) {
4009 pg_uptodate = 0;
4010 break;
4011 }
4012 }
4013 return pg_uptodate;
4014 }
4015
4016 int read_extent_buffer_pages(struct extent_io_tree *tree,
4017 struct extent_buffer *eb, u64 start, int wait,
4018 get_extent_t *get_extent, int mirror_num)
4019 {
4020 unsigned long i;
4021 unsigned long start_i;
4022 struct page *page;
4023 int err;
4024 int ret = 0;
4025 int locked_pages = 0;
4026 int all_uptodate = 1;
4027 int inc_all_pages = 0;
4028 unsigned long num_pages;
4029 struct bio *bio = NULL;
4030 unsigned long bio_flags = 0;
4031
4032 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4033 return 0;
4034
4035 if (eb_straddles_pages(eb)) {
4036 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
4037 EXTENT_UPTODATE, 1, NULL)) {
4038 return 0;
4039 }
4040 }
4041
4042 if (start) {
4043 WARN_ON(start < eb->start);
4044 start_i = (start >> PAGE_CACHE_SHIFT) -
4045 (eb->start >> PAGE_CACHE_SHIFT);
4046 } else {
4047 start_i = 0;
4048 }
4049
4050 num_pages = num_extent_pages(eb->start, eb->len);
4051 for (i = start_i; i < num_pages; i++) {
4052 page = extent_buffer_page(eb, i);
4053 if (wait == WAIT_NONE) {
4054 if (!trylock_page(page))
4055 goto unlock_exit;
4056 } else {
4057 lock_page(page);
4058 }
4059 locked_pages++;
4060 if (!PageUptodate(page))
4061 all_uptodate = 0;
4062 }
4063 if (all_uptodate) {
4064 if (start_i == 0)
4065 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4066 goto unlock_exit;
4067 }
4068
4069 for (i = start_i; i < num_pages; i++) {
4070 page = extent_buffer_page(eb, i);
4071
4072 WARN_ON(!PagePrivate(page));
4073
4074 set_page_extent_mapped(page);
4075 if (i == 0)
4076 set_page_extent_head(page, eb->len);
4077
4078 if (inc_all_pages)
4079 page_cache_get(page);
4080 if (!PageUptodate(page)) {
4081 if (start_i == 0)
4082 inc_all_pages = 1;
4083 ClearPageError(page);
4084 err = __extent_read_full_page(tree, page,
4085 get_extent, &bio,
4086 mirror_num, &bio_flags);
4087 if (err)
4088 ret = err;
4089 } else {
4090 unlock_page(page);
4091 }
4092 }
4093
4094 if (bio) {
4095 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4096 if (err)
4097 return err;
4098 }
4099
4100 if (ret || wait != WAIT_COMPLETE)
4101 return ret;
4102
4103 for (i = start_i; i < num_pages; i++) {
4104 page = extent_buffer_page(eb, i);
4105 wait_on_page_locked(page);
4106 if (!PageUptodate(page))
4107 ret = -EIO;
4108 }
4109
4110 if (!ret)
4111 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4112 return ret;
4113
4114 unlock_exit:
4115 i = start_i;
4116 while (locked_pages > 0) {
4117 page = extent_buffer_page(eb, i);
4118 i++;
4119 unlock_page(page);
4120 locked_pages--;
4121 }
4122 return ret;
4123 }
4124
4125 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4126 unsigned long start,
4127 unsigned long len)
4128 {
4129 size_t cur;
4130 size_t offset;
4131 struct page *page;
4132 char *kaddr;
4133 char *dst = (char *)dstv;
4134 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4135 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4136
4137 WARN_ON(start > eb->len);
4138 WARN_ON(start + len > eb->start + eb->len);
4139
4140 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4141
4142 while (len > 0) {
4143 page = extent_buffer_page(eb, i);
4144
4145 cur = min(len, (PAGE_CACHE_SIZE - offset));
4146 kaddr = page_address(page);
4147 memcpy(dst, kaddr + offset, cur);
4148
4149 dst += cur;
4150 len -= cur;
4151 offset = 0;
4152 i++;
4153 }
4154 }
4155
4156 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4157 unsigned long min_len, char **map,
4158 unsigned long *map_start,
4159 unsigned long *map_len)
4160 {
4161 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4162 char *kaddr;
4163 struct page *p;
4164 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4165 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4166 unsigned long end_i = (start_offset + start + min_len - 1) >>
4167 PAGE_CACHE_SHIFT;
4168
4169 if (i != end_i)
4170 return -EINVAL;
4171
4172 if (i == 0) {
4173 offset = start_offset;
4174 *map_start = 0;
4175 } else {
4176 offset = 0;
4177 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4178 }
4179
4180 if (start + min_len > eb->len) {
4181 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4182 "wanted %lu %lu\n", (unsigned long long)eb->start,
4183 eb->len, start, min_len);
4184 WARN_ON(1);
4185 return -EINVAL;
4186 }
4187
4188 p = extent_buffer_page(eb, i);
4189 kaddr = page_address(p);
4190 *map = kaddr + offset;
4191 *map_len = PAGE_CACHE_SIZE - offset;
4192 return 0;
4193 }
4194
4195 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4196 unsigned long start,
4197 unsigned long len)
4198 {
4199 size_t cur;
4200 size_t offset;
4201 struct page *page;
4202 char *kaddr;
4203 char *ptr = (char *)ptrv;
4204 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4205 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4206 int ret = 0;
4207
4208 WARN_ON(start > eb->len);
4209 WARN_ON(start + len > eb->start + eb->len);
4210
4211 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4212
4213 while (len > 0) {
4214 page = extent_buffer_page(eb, i);
4215
4216 cur = min(len, (PAGE_CACHE_SIZE - offset));
4217
4218 kaddr = page_address(page);
4219 ret = memcmp(ptr, kaddr + offset, cur);
4220 if (ret)
4221 break;
4222
4223 ptr += cur;
4224 len -= cur;
4225 offset = 0;
4226 i++;
4227 }
4228 return ret;
4229 }
4230
4231 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4232 unsigned long start, unsigned long len)
4233 {
4234 size_t cur;
4235 size_t offset;
4236 struct page *page;
4237 char *kaddr;
4238 char *src = (char *)srcv;
4239 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4240 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4241
4242 WARN_ON(start > eb->len);
4243 WARN_ON(start + len > eb->start + eb->len);
4244
4245 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4246
4247 while (len > 0) {
4248 page = extent_buffer_page(eb, i);
4249 WARN_ON(!PageUptodate(page));
4250
4251 cur = min(len, PAGE_CACHE_SIZE - offset);
4252 kaddr = page_address(page);
4253 memcpy(kaddr + offset, src, cur);
4254
4255 src += cur;
4256 len -= cur;
4257 offset = 0;
4258 i++;
4259 }
4260 }
4261
4262 void memset_extent_buffer(struct extent_buffer *eb, char c,
4263 unsigned long start, unsigned long len)
4264 {
4265 size_t cur;
4266 size_t offset;
4267 struct page *page;
4268 char *kaddr;
4269 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4270 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4271
4272 WARN_ON(start > eb->len);
4273 WARN_ON(start + len > eb->start + eb->len);
4274
4275 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4276
4277 while (len > 0) {
4278 page = extent_buffer_page(eb, i);
4279 WARN_ON(!PageUptodate(page));
4280
4281 cur = min(len, PAGE_CACHE_SIZE - offset);
4282 kaddr = page_address(page);
4283 memset(kaddr + offset, c, cur);
4284
4285 len -= cur;
4286 offset = 0;
4287 i++;
4288 }
4289 }
4290
4291 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4292 unsigned long dst_offset, unsigned long src_offset,
4293 unsigned long len)
4294 {
4295 u64 dst_len = dst->len;
4296 size_t cur;
4297 size_t offset;
4298 struct page *page;
4299 char *kaddr;
4300 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4301 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4302
4303 WARN_ON(src->len != dst_len);
4304
4305 offset = (start_offset + dst_offset) &
4306 ((unsigned long)PAGE_CACHE_SIZE - 1);
4307
4308 while (len > 0) {
4309 page = extent_buffer_page(dst, i);
4310 WARN_ON(!PageUptodate(page));
4311
4312 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4313
4314 kaddr = page_address(page);
4315 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4316
4317 src_offset += cur;
4318 len -= cur;
4319 offset = 0;
4320 i++;
4321 }
4322 }
4323
4324 static void move_pages(struct page *dst_page, struct page *src_page,
4325 unsigned long dst_off, unsigned long src_off,
4326 unsigned long len)
4327 {
4328 char *dst_kaddr = page_address(dst_page);
4329 if (dst_page == src_page) {
4330 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4331 } else {
4332 char *src_kaddr = page_address(src_page);
4333 char *p = dst_kaddr + dst_off + len;
4334 char *s = src_kaddr + src_off + len;
4335
4336 while (len--)
4337 *--p = *--s;
4338 }
4339 }
4340
4341 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4342 {
4343 unsigned long distance = (src > dst) ? src - dst : dst - src;
4344 return distance < len;
4345 }
4346
4347 static void copy_pages(struct page *dst_page, struct page *src_page,
4348 unsigned long dst_off, unsigned long src_off,
4349 unsigned long len)
4350 {
4351 char *dst_kaddr = page_address(dst_page);
4352 char *src_kaddr;
4353
4354 if (dst_page != src_page) {
4355 src_kaddr = page_address(src_page);
4356 } else {
4357 src_kaddr = dst_kaddr;
4358 BUG_ON(areas_overlap(src_off, dst_off, len));
4359 }
4360
4361 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4362 }
4363
4364 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4365 unsigned long src_offset, unsigned long len)
4366 {
4367 size_t cur;
4368 size_t dst_off_in_page;
4369 size_t src_off_in_page;
4370 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4371 unsigned long dst_i;
4372 unsigned long src_i;
4373
4374 if (src_offset + len > dst->len) {
4375 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4376 "len %lu dst len %lu\n", src_offset, len, dst->len);
4377 BUG_ON(1);
4378 }
4379 if (dst_offset + len > dst->len) {
4380 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4381 "len %lu dst len %lu\n", dst_offset, len, dst->len);
4382 BUG_ON(1);
4383 }
4384
4385 while (len > 0) {
4386 dst_off_in_page = (start_offset + dst_offset) &
4387 ((unsigned long)PAGE_CACHE_SIZE - 1);
4388 src_off_in_page = (start_offset + src_offset) &
4389 ((unsigned long)PAGE_CACHE_SIZE - 1);
4390
4391 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4392 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4393
4394 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4395 src_off_in_page));
4396 cur = min_t(unsigned long, cur,
4397 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4398
4399 copy_pages(extent_buffer_page(dst, dst_i),
4400 extent_buffer_page(dst, src_i),
4401 dst_off_in_page, src_off_in_page, cur);
4402
4403 src_offset += cur;
4404 dst_offset += cur;
4405 len -= cur;
4406 }
4407 }
4408
4409 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4410 unsigned long src_offset, unsigned long len)
4411 {
4412 size_t cur;
4413 size_t dst_off_in_page;
4414 size_t src_off_in_page;
4415 unsigned long dst_end = dst_offset + len - 1;
4416 unsigned long src_end = src_offset + len - 1;
4417 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4418 unsigned long dst_i;
4419 unsigned long src_i;
4420
4421 if (src_offset + len > dst->len) {
4422 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4423 "len %lu len %lu\n", src_offset, len, dst->len);
4424 BUG_ON(1);
4425 }
4426 if (dst_offset + len > dst->len) {
4427 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4428 "len %lu len %lu\n", dst_offset, len, dst->len);
4429 BUG_ON(1);
4430 }
4431 if (!areas_overlap(src_offset, dst_offset, len)) {
4432 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4433 return;
4434 }
4435 while (len > 0) {
4436 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4437 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4438
4439 dst_off_in_page = (start_offset + dst_end) &
4440 ((unsigned long)PAGE_CACHE_SIZE - 1);
4441 src_off_in_page = (start_offset + src_end) &
4442 ((unsigned long)PAGE_CACHE_SIZE - 1);
4443
4444 cur = min_t(unsigned long, len, src_off_in_page + 1);
4445 cur = min(cur, dst_off_in_page + 1);
4446 move_pages(extent_buffer_page(dst, dst_i),
4447 extent_buffer_page(dst, src_i),
4448 dst_off_in_page - cur + 1,
4449 src_off_in_page - cur + 1, cur);
4450
4451 dst_end -= cur;
4452 src_end -= cur;
4453 len -= cur;
4454 }
4455 }
4456
4457 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4458 {
4459 struct extent_buffer *eb =
4460 container_of(head, struct extent_buffer, rcu_head);
4461
4462 btrfs_release_extent_buffer(eb);
4463 }
4464
4465 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
4466 {
4467 u64 start = page_offset(page);
4468 struct extent_buffer *eb;
4469 int ret = 1;
4470
4471 spin_lock(&tree->buffer_lock);
4472 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4473 if (!eb) {
4474 spin_unlock(&tree->buffer_lock);
4475 return ret;
4476 }
4477
4478 if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4479 ret = 0;
4480 goto out;
4481 }
4482
4483 /*
4484 * set @eb->refs to 0 if it is already 1, and then release the @eb.
4485 * Or go back.
4486 */
4487 if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
4488 ret = 0;
4489 goto out;
4490 }
4491
4492 radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4493 out:
4494 spin_unlock(&tree->buffer_lock);
4495
4496 /* at this point we can safely release the extent buffer */
4497 if (atomic_read(&eb->refs) == 0)
4498 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4499 return ret;
4500 }
This page took 0.22333 seconds and 5 git commands to generate.