Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jesse/openvswitch
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27
28 static LIST_HEAD(buffers);
29 static LIST_HEAD(states);
30
31 #define LEAK_DEBUG 0
32 #if LEAK_DEBUG
33 static DEFINE_SPINLOCK(leak_lock);
34 #endif
35
36 #define BUFFER_LRU_MAX 64
37
38 struct tree_entry {
39 u64 start;
40 u64 end;
41 struct rb_node rb_node;
42 };
43
44 struct extent_page_data {
45 struct bio *bio;
46 struct extent_io_tree *tree;
47 get_extent_t *get_extent;
48
49 /* tells writepage not to lock the state bits for this range
50 * it still does the unlocking
51 */
52 unsigned int extent_locked:1;
53
54 /* tells the submit_bio code to use a WRITE_SYNC */
55 unsigned int sync_io:1;
56 };
57
58 static noinline void flush_write_bio(void *data);
59 static inline struct btrfs_fs_info *
60 tree_fs_info(struct extent_io_tree *tree)
61 {
62 return btrfs_sb(tree->mapping->host->i_sb);
63 }
64
65 int __init extent_io_init(void)
66 {
67 extent_state_cache = kmem_cache_create("extent_state",
68 sizeof(struct extent_state), 0,
69 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
70 if (!extent_state_cache)
71 return -ENOMEM;
72
73 extent_buffer_cache = kmem_cache_create("extent_buffers",
74 sizeof(struct extent_buffer), 0,
75 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
76 if (!extent_buffer_cache)
77 goto free_state_cache;
78 return 0;
79
80 free_state_cache:
81 kmem_cache_destroy(extent_state_cache);
82 return -ENOMEM;
83 }
84
85 void extent_io_exit(void)
86 {
87 struct extent_state *state;
88 struct extent_buffer *eb;
89
90 while (!list_empty(&states)) {
91 state = list_entry(states.next, struct extent_state, leak_list);
92 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
93 "state %lu in tree %p refs %d\n",
94 (unsigned long long)state->start,
95 (unsigned long long)state->end,
96 state->state, state->tree, atomic_read(&state->refs));
97 list_del(&state->leak_list);
98 kmem_cache_free(extent_state_cache, state);
99
100 }
101
102 while (!list_empty(&buffers)) {
103 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
104 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
105 "refs %d\n", (unsigned long long)eb->start,
106 eb->len, atomic_read(&eb->refs));
107 list_del(&eb->leak_list);
108 kmem_cache_free(extent_buffer_cache, eb);
109 }
110 if (extent_state_cache)
111 kmem_cache_destroy(extent_state_cache);
112 if (extent_buffer_cache)
113 kmem_cache_destroy(extent_buffer_cache);
114 }
115
116 void extent_io_tree_init(struct extent_io_tree *tree,
117 struct address_space *mapping)
118 {
119 tree->state = RB_ROOT;
120 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
121 tree->ops = NULL;
122 tree->dirty_bytes = 0;
123 spin_lock_init(&tree->lock);
124 spin_lock_init(&tree->buffer_lock);
125 tree->mapping = mapping;
126 }
127
128 static struct extent_state *alloc_extent_state(gfp_t mask)
129 {
130 struct extent_state *state;
131 #if LEAK_DEBUG
132 unsigned long flags;
133 #endif
134
135 state = kmem_cache_alloc(extent_state_cache, mask);
136 if (!state)
137 return state;
138 state->state = 0;
139 state->private = 0;
140 state->tree = NULL;
141 #if LEAK_DEBUG
142 spin_lock_irqsave(&leak_lock, flags);
143 list_add(&state->leak_list, &states);
144 spin_unlock_irqrestore(&leak_lock, flags);
145 #endif
146 atomic_set(&state->refs, 1);
147 init_waitqueue_head(&state->wq);
148 trace_alloc_extent_state(state, mask, _RET_IP_);
149 return state;
150 }
151
152 void free_extent_state(struct extent_state *state)
153 {
154 if (!state)
155 return;
156 if (atomic_dec_and_test(&state->refs)) {
157 #if LEAK_DEBUG
158 unsigned long flags;
159 #endif
160 WARN_ON(state->tree);
161 #if LEAK_DEBUG
162 spin_lock_irqsave(&leak_lock, flags);
163 list_del(&state->leak_list);
164 spin_unlock_irqrestore(&leak_lock, flags);
165 #endif
166 trace_free_extent_state(state, _RET_IP_);
167 kmem_cache_free(extent_state_cache, state);
168 }
169 }
170
171 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
172 struct rb_node *node)
173 {
174 struct rb_node **p = &root->rb_node;
175 struct rb_node *parent = NULL;
176 struct tree_entry *entry;
177
178 while (*p) {
179 parent = *p;
180 entry = rb_entry(parent, struct tree_entry, rb_node);
181
182 if (offset < entry->start)
183 p = &(*p)->rb_left;
184 else if (offset > entry->end)
185 p = &(*p)->rb_right;
186 else
187 return parent;
188 }
189
190 rb_link_node(node, parent, p);
191 rb_insert_color(node, root);
192 return NULL;
193 }
194
195 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
196 struct rb_node **prev_ret,
197 struct rb_node **next_ret)
198 {
199 struct rb_root *root = &tree->state;
200 struct rb_node *n = root->rb_node;
201 struct rb_node *prev = NULL;
202 struct rb_node *orig_prev = NULL;
203 struct tree_entry *entry;
204 struct tree_entry *prev_entry = NULL;
205
206 while (n) {
207 entry = rb_entry(n, struct tree_entry, rb_node);
208 prev = n;
209 prev_entry = entry;
210
211 if (offset < entry->start)
212 n = n->rb_left;
213 else if (offset > entry->end)
214 n = n->rb_right;
215 else
216 return n;
217 }
218
219 if (prev_ret) {
220 orig_prev = prev;
221 while (prev && offset > prev_entry->end) {
222 prev = rb_next(prev);
223 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
224 }
225 *prev_ret = prev;
226 prev = orig_prev;
227 }
228
229 if (next_ret) {
230 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
231 while (prev && offset < prev_entry->start) {
232 prev = rb_prev(prev);
233 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
234 }
235 *next_ret = prev;
236 }
237 return NULL;
238 }
239
240 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
241 u64 offset)
242 {
243 struct rb_node *prev = NULL;
244 struct rb_node *ret;
245
246 ret = __etree_search(tree, offset, &prev, NULL);
247 if (!ret)
248 return prev;
249 return ret;
250 }
251
252 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
253 struct extent_state *other)
254 {
255 if (tree->ops && tree->ops->merge_extent_hook)
256 tree->ops->merge_extent_hook(tree->mapping->host, new,
257 other);
258 }
259
260 /*
261 * utility function to look for merge candidates inside a given range.
262 * Any extents with matching state are merged together into a single
263 * extent in the tree. Extents with EXTENT_IO in their state field
264 * are not merged because the end_io handlers need to be able to do
265 * operations on them without sleeping (or doing allocations/splits).
266 *
267 * This should be called with the tree lock held.
268 */
269 static void merge_state(struct extent_io_tree *tree,
270 struct extent_state *state)
271 {
272 struct extent_state *other;
273 struct rb_node *other_node;
274
275 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
276 return;
277
278 other_node = rb_prev(&state->rb_node);
279 if (other_node) {
280 other = rb_entry(other_node, struct extent_state, rb_node);
281 if (other->end == state->start - 1 &&
282 other->state == state->state) {
283 merge_cb(tree, state, other);
284 state->start = other->start;
285 other->tree = NULL;
286 rb_erase(&other->rb_node, &tree->state);
287 free_extent_state(other);
288 }
289 }
290 other_node = rb_next(&state->rb_node);
291 if (other_node) {
292 other = rb_entry(other_node, struct extent_state, rb_node);
293 if (other->start == state->end + 1 &&
294 other->state == state->state) {
295 merge_cb(tree, state, other);
296 state->end = other->end;
297 other->tree = NULL;
298 rb_erase(&other->rb_node, &tree->state);
299 free_extent_state(other);
300 }
301 }
302 }
303
304 static void set_state_cb(struct extent_io_tree *tree,
305 struct extent_state *state, int *bits)
306 {
307 if (tree->ops && tree->ops->set_bit_hook)
308 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
309 }
310
311 static void clear_state_cb(struct extent_io_tree *tree,
312 struct extent_state *state, int *bits)
313 {
314 if (tree->ops && tree->ops->clear_bit_hook)
315 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
316 }
317
318 static void set_state_bits(struct extent_io_tree *tree,
319 struct extent_state *state, int *bits);
320
321 /*
322 * insert an extent_state struct into the tree. 'bits' are set on the
323 * struct before it is inserted.
324 *
325 * This may return -EEXIST if the extent is already there, in which case the
326 * state struct is freed.
327 *
328 * The tree lock is not taken internally. This is a utility function and
329 * probably isn't what you want to call (see set/clear_extent_bit).
330 */
331 static int insert_state(struct extent_io_tree *tree,
332 struct extent_state *state, u64 start, u64 end,
333 int *bits)
334 {
335 struct rb_node *node;
336
337 if (end < start) {
338 printk(KERN_ERR "btrfs end < start %llu %llu\n",
339 (unsigned long long)end,
340 (unsigned long long)start);
341 WARN_ON(1);
342 }
343 state->start = start;
344 state->end = end;
345
346 set_state_bits(tree, state, bits);
347
348 node = tree_insert(&tree->state, end, &state->rb_node);
349 if (node) {
350 struct extent_state *found;
351 found = rb_entry(node, struct extent_state, rb_node);
352 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
353 "%llu %llu\n", (unsigned long long)found->start,
354 (unsigned long long)found->end,
355 (unsigned long long)start, (unsigned long long)end);
356 return -EEXIST;
357 }
358 state->tree = tree;
359 merge_state(tree, state);
360 return 0;
361 }
362
363 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
364 u64 split)
365 {
366 if (tree->ops && tree->ops->split_extent_hook)
367 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
368 }
369
370 /*
371 * split a given extent state struct in two, inserting the preallocated
372 * struct 'prealloc' as the newly created second half. 'split' indicates an
373 * offset inside 'orig' where it should be split.
374 *
375 * Before calling,
376 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
377 * are two extent state structs in the tree:
378 * prealloc: [orig->start, split - 1]
379 * orig: [ split, orig->end ]
380 *
381 * The tree locks are not taken by this function. They need to be held
382 * by the caller.
383 */
384 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
385 struct extent_state *prealloc, u64 split)
386 {
387 struct rb_node *node;
388
389 split_cb(tree, orig, split);
390
391 prealloc->start = orig->start;
392 prealloc->end = split - 1;
393 prealloc->state = orig->state;
394 orig->start = split;
395
396 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
397 if (node) {
398 free_extent_state(prealloc);
399 return -EEXIST;
400 }
401 prealloc->tree = tree;
402 return 0;
403 }
404
405 static struct extent_state *next_state(struct extent_state *state)
406 {
407 struct rb_node *next = rb_next(&state->rb_node);
408 if (next)
409 return rb_entry(next, struct extent_state, rb_node);
410 else
411 return NULL;
412 }
413
414 /*
415 * utility function to clear some bits in an extent state struct.
416 * it will optionally wake up any one waiting on this state (wake == 1).
417 *
418 * If no bits are set on the state struct after clearing things, the
419 * struct is freed and removed from the tree
420 */
421 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
422 struct extent_state *state,
423 int *bits, int wake)
424 {
425 struct extent_state *next;
426 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
427
428 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
429 u64 range = state->end - state->start + 1;
430 WARN_ON(range > tree->dirty_bytes);
431 tree->dirty_bytes -= range;
432 }
433 clear_state_cb(tree, state, bits);
434 state->state &= ~bits_to_clear;
435 if (wake)
436 wake_up(&state->wq);
437 if (state->state == 0) {
438 next = next_state(state);
439 if (state->tree) {
440 rb_erase(&state->rb_node, &tree->state);
441 state->tree = NULL;
442 free_extent_state(state);
443 } else {
444 WARN_ON(1);
445 }
446 } else {
447 merge_state(tree, state);
448 next = next_state(state);
449 }
450 return next;
451 }
452
453 static struct extent_state *
454 alloc_extent_state_atomic(struct extent_state *prealloc)
455 {
456 if (!prealloc)
457 prealloc = alloc_extent_state(GFP_ATOMIC);
458
459 return prealloc;
460 }
461
462 void extent_io_tree_panic(struct extent_io_tree *tree, int err)
463 {
464 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
465 "Extent tree was modified by another "
466 "thread while locked.");
467 }
468
469 /*
470 * clear some bits on a range in the tree. This may require splitting
471 * or inserting elements in the tree, so the gfp mask is used to
472 * indicate which allocations or sleeping are allowed.
473 *
474 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
475 * the given range from the tree regardless of state (ie for truncate).
476 *
477 * the range [start, end] is inclusive.
478 *
479 * This takes the tree lock, and returns 0 on success and < 0 on error.
480 */
481 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
482 int bits, int wake, int delete,
483 struct extent_state **cached_state,
484 gfp_t mask)
485 {
486 struct extent_state *state;
487 struct extent_state *cached;
488 struct extent_state *prealloc = NULL;
489 struct rb_node *node;
490 u64 last_end;
491 int err;
492 int clear = 0;
493
494 if (delete)
495 bits |= ~EXTENT_CTLBITS;
496 bits |= EXTENT_FIRST_DELALLOC;
497
498 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
499 clear = 1;
500 again:
501 if (!prealloc && (mask & __GFP_WAIT)) {
502 prealloc = alloc_extent_state(mask);
503 if (!prealloc)
504 return -ENOMEM;
505 }
506
507 spin_lock(&tree->lock);
508 if (cached_state) {
509 cached = *cached_state;
510
511 if (clear) {
512 *cached_state = NULL;
513 cached_state = NULL;
514 }
515
516 if (cached && cached->tree && cached->start <= start &&
517 cached->end > start) {
518 if (clear)
519 atomic_dec(&cached->refs);
520 state = cached;
521 goto hit_next;
522 }
523 if (clear)
524 free_extent_state(cached);
525 }
526 /*
527 * this search will find the extents that end after
528 * our range starts
529 */
530 node = tree_search(tree, start);
531 if (!node)
532 goto out;
533 state = rb_entry(node, struct extent_state, rb_node);
534 hit_next:
535 if (state->start > end)
536 goto out;
537 WARN_ON(state->end < start);
538 last_end = state->end;
539
540 /* the state doesn't have the wanted bits, go ahead */
541 if (!(state->state & bits)) {
542 state = next_state(state);
543 goto next;
544 }
545
546 /*
547 * | ---- desired range ---- |
548 * | state | or
549 * | ------------- state -------------- |
550 *
551 * We need to split the extent we found, and may flip
552 * bits on second half.
553 *
554 * If the extent we found extends past our range, we
555 * just split and search again. It'll get split again
556 * the next time though.
557 *
558 * If the extent we found is inside our range, we clear
559 * the desired bit on it.
560 */
561
562 if (state->start < start) {
563 prealloc = alloc_extent_state_atomic(prealloc);
564 BUG_ON(!prealloc);
565 err = split_state(tree, state, prealloc, start);
566 if (err)
567 extent_io_tree_panic(tree, err);
568
569 prealloc = NULL;
570 if (err)
571 goto out;
572 if (state->end <= end) {
573 state = clear_state_bit(tree, state, &bits, wake);
574 goto next;
575 }
576 goto search_again;
577 }
578 /*
579 * | ---- desired range ---- |
580 * | state |
581 * We need to split the extent, and clear the bit
582 * on the first half
583 */
584 if (state->start <= end && state->end > end) {
585 prealloc = alloc_extent_state_atomic(prealloc);
586 BUG_ON(!prealloc);
587 err = split_state(tree, state, prealloc, end + 1);
588 if (err)
589 extent_io_tree_panic(tree, err);
590
591 if (wake)
592 wake_up(&state->wq);
593
594 clear_state_bit(tree, prealloc, &bits, wake);
595
596 prealloc = NULL;
597 goto out;
598 }
599
600 state = clear_state_bit(tree, state, &bits, wake);
601 next:
602 if (last_end == (u64)-1)
603 goto out;
604 start = last_end + 1;
605 if (start <= end && state && !need_resched())
606 goto hit_next;
607 goto search_again;
608
609 out:
610 spin_unlock(&tree->lock);
611 if (prealloc)
612 free_extent_state(prealloc);
613
614 return 0;
615
616 search_again:
617 if (start > end)
618 goto out;
619 spin_unlock(&tree->lock);
620 if (mask & __GFP_WAIT)
621 cond_resched();
622 goto again;
623 }
624
625 static void wait_on_state(struct extent_io_tree *tree,
626 struct extent_state *state)
627 __releases(tree->lock)
628 __acquires(tree->lock)
629 {
630 DEFINE_WAIT(wait);
631 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
632 spin_unlock(&tree->lock);
633 schedule();
634 spin_lock(&tree->lock);
635 finish_wait(&state->wq, &wait);
636 }
637
638 /*
639 * waits for one or more bits to clear on a range in the state tree.
640 * The range [start, end] is inclusive.
641 * The tree lock is taken by this function
642 */
643 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
644 {
645 struct extent_state *state;
646 struct rb_node *node;
647
648 spin_lock(&tree->lock);
649 again:
650 while (1) {
651 /*
652 * this search will find all the extents that end after
653 * our range starts
654 */
655 node = tree_search(tree, start);
656 if (!node)
657 break;
658
659 state = rb_entry(node, struct extent_state, rb_node);
660
661 if (state->start > end)
662 goto out;
663
664 if (state->state & bits) {
665 start = state->start;
666 atomic_inc(&state->refs);
667 wait_on_state(tree, state);
668 free_extent_state(state);
669 goto again;
670 }
671 start = state->end + 1;
672
673 if (start > end)
674 break;
675
676 cond_resched_lock(&tree->lock);
677 }
678 out:
679 spin_unlock(&tree->lock);
680 }
681
682 static void set_state_bits(struct extent_io_tree *tree,
683 struct extent_state *state,
684 int *bits)
685 {
686 int bits_to_set = *bits & ~EXTENT_CTLBITS;
687
688 set_state_cb(tree, state, bits);
689 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
690 u64 range = state->end - state->start + 1;
691 tree->dirty_bytes += range;
692 }
693 state->state |= bits_to_set;
694 }
695
696 static void cache_state(struct extent_state *state,
697 struct extent_state **cached_ptr)
698 {
699 if (cached_ptr && !(*cached_ptr)) {
700 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
701 *cached_ptr = state;
702 atomic_inc(&state->refs);
703 }
704 }
705 }
706
707 static void uncache_state(struct extent_state **cached_ptr)
708 {
709 if (cached_ptr && (*cached_ptr)) {
710 struct extent_state *state = *cached_ptr;
711 *cached_ptr = NULL;
712 free_extent_state(state);
713 }
714 }
715
716 /*
717 * set some bits on a range in the tree. This may require allocations or
718 * sleeping, so the gfp mask is used to indicate what is allowed.
719 *
720 * If any of the exclusive bits are set, this will fail with -EEXIST if some
721 * part of the range already has the desired bits set. The start of the
722 * existing range is returned in failed_start in this case.
723 *
724 * [start, end] is inclusive This takes the tree lock.
725 */
726
727 static int __must_check
728 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
729 int bits, int exclusive_bits, u64 *failed_start,
730 struct extent_state **cached_state, gfp_t mask)
731 {
732 struct extent_state *state;
733 struct extent_state *prealloc = NULL;
734 struct rb_node *node;
735 int err = 0;
736 u64 last_start;
737 u64 last_end;
738
739 bits |= EXTENT_FIRST_DELALLOC;
740 again:
741 if (!prealloc && (mask & __GFP_WAIT)) {
742 prealloc = alloc_extent_state(mask);
743 BUG_ON(!prealloc);
744 }
745
746 spin_lock(&tree->lock);
747 if (cached_state && *cached_state) {
748 state = *cached_state;
749 if (state->start <= start && state->end > start &&
750 state->tree) {
751 node = &state->rb_node;
752 goto hit_next;
753 }
754 }
755 /*
756 * this search will find all the extents that end after
757 * our range starts.
758 */
759 node = tree_search(tree, start);
760 if (!node) {
761 prealloc = alloc_extent_state_atomic(prealloc);
762 BUG_ON(!prealloc);
763 err = insert_state(tree, prealloc, start, end, &bits);
764 if (err)
765 extent_io_tree_panic(tree, err);
766
767 prealloc = NULL;
768 goto out;
769 }
770 state = rb_entry(node, struct extent_state, rb_node);
771 hit_next:
772 last_start = state->start;
773 last_end = state->end;
774
775 /*
776 * | ---- desired range ---- |
777 * | state |
778 *
779 * Just lock what we found and keep going
780 */
781 if (state->start == start && state->end <= end) {
782 if (state->state & exclusive_bits) {
783 *failed_start = state->start;
784 err = -EEXIST;
785 goto out;
786 }
787
788 set_state_bits(tree, state, &bits);
789 cache_state(state, cached_state);
790 merge_state(tree, state);
791 if (last_end == (u64)-1)
792 goto out;
793 start = last_end + 1;
794 state = next_state(state);
795 if (start < end && state && state->start == start &&
796 !need_resched())
797 goto hit_next;
798 goto search_again;
799 }
800
801 /*
802 * | ---- desired range ---- |
803 * | state |
804 * or
805 * | ------------- state -------------- |
806 *
807 * We need to split the extent we found, and may flip bits on
808 * second half.
809 *
810 * If the extent we found extends past our
811 * range, we just split and search again. It'll get split
812 * again the next time though.
813 *
814 * If the extent we found is inside our range, we set the
815 * desired bit on it.
816 */
817 if (state->start < start) {
818 if (state->state & exclusive_bits) {
819 *failed_start = start;
820 err = -EEXIST;
821 goto out;
822 }
823
824 prealloc = alloc_extent_state_atomic(prealloc);
825 BUG_ON(!prealloc);
826 err = split_state(tree, state, prealloc, start);
827 if (err)
828 extent_io_tree_panic(tree, err);
829
830 prealloc = NULL;
831 if (err)
832 goto out;
833 if (state->end <= end) {
834 set_state_bits(tree, state, &bits);
835 cache_state(state, cached_state);
836 merge_state(tree, state);
837 if (last_end == (u64)-1)
838 goto out;
839 start = last_end + 1;
840 state = next_state(state);
841 if (start < end && state && state->start == start &&
842 !need_resched())
843 goto hit_next;
844 }
845 goto search_again;
846 }
847 /*
848 * | ---- desired range ---- |
849 * | state | or | state |
850 *
851 * There's a hole, we need to insert something in it and
852 * ignore the extent we found.
853 */
854 if (state->start > start) {
855 u64 this_end;
856 if (end < last_start)
857 this_end = end;
858 else
859 this_end = last_start - 1;
860
861 prealloc = alloc_extent_state_atomic(prealloc);
862 BUG_ON(!prealloc);
863
864 /*
865 * Avoid to free 'prealloc' if it can be merged with
866 * the later extent.
867 */
868 err = insert_state(tree, prealloc, start, this_end,
869 &bits);
870 if (err)
871 extent_io_tree_panic(tree, err);
872
873 cache_state(prealloc, cached_state);
874 prealloc = NULL;
875 start = this_end + 1;
876 goto search_again;
877 }
878 /*
879 * | ---- desired range ---- |
880 * | state |
881 * We need to split the extent, and set the bit
882 * on the first half
883 */
884 if (state->start <= end && state->end > end) {
885 if (state->state & exclusive_bits) {
886 *failed_start = start;
887 err = -EEXIST;
888 goto out;
889 }
890
891 prealloc = alloc_extent_state_atomic(prealloc);
892 BUG_ON(!prealloc);
893 err = split_state(tree, state, prealloc, end + 1);
894 if (err)
895 extent_io_tree_panic(tree, err);
896
897 set_state_bits(tree, prealloc, &bits);
898 cache_state(prealloc, cached_state);
899 merge_state(tree, prealloc);
900 prealloc = NULL;
901 goto out;
902 }
903
904 goto search_again;
905
906 out:
907 spin_unlock(&tree->lock);
908 if (prealloc)
909 free_extent_state(prealloc);
910
911 return err;
912
913 search_again:
914 if (start > end)
915 goto out;
916 spin_unlock(&tree->lock);
917 if (mask & __GFP_WAIT)
918 cond_resched();
919 goto again;
920 }
921
922 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
923 u64 *failed_start, struct extent_state **cached_state,
924 gfp_t mask)
925 {
926 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
927 cached_state, mask);
928 }
929
930
931 /**
932 * convert_extent_bit - convert all bits in a given range from one bit to
933 * another
934 * @tree: the io tree to search
935 * @start: the start offset in bytes
936 * @end: the end offset in bytes (inclusive)
937 * @bits: the bits to set in this range
938 * @clear_bits: the bits to clear in this range
939 * @mask: the allocation mask
940 *
941 * This will go through and set bits for the given range. If any states exist
942 * already in this range they are set with the given bit and cleared of the
943 * clear_bits. This is only meant to be used by things that are mergeable, ie
944 * converting from say DELALLOC to DIRTY. This is not meant to be used with
945 * boundary bits like LOCK.
946 */
947 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
948 int bits, int clear_bits, gfp_t mask)
949 {
950 struct extent_state *state;
951 struct extent_state *prealloc = NULL;
952 struct rb_node *node;
953 int err = 0;
954 u64 last_start;
955 u64 last_end;
956
957 again:
958 if (!prealloc && (mask & __GFP_WAIT)) {
959 prealloc = alloc_extent_state(mask);
960 if (!prealloc)
961 return -ENOMEM;
962 }
963
964 spin_lock(&tree->lock);
965 /*
966 * this search will find all the extents that end after
967 * our range starts.
968 */
969 node = tree_search(tree, start);
970 if (!node) {
971 prealloc = alloc_extent_state_atomic(prealloc);
972 if (!prealloc) {
973 err = -ENOMEM;
974 goto out;
975 }
976 err = insert_state(tree, prealloc, start, end, &bits);
977 prealloc = NULL;
978 if (err)
979 extent_io_tree_panic(tree, err);
980 goto out;
981 }
982 state = rb_entry(node, struct extent_state, rb_node);
983 hit_next:
984 last_start = state->start;
985 last_end = state->end;
986
987 /*
988 * | ---- desired range ---- |
989 * | state |
990 *
991 * Just lock what we found and keep going
992 */
993 if (state->start == start && state->end <= end) {
994 set_state_bits(tree, state, &bits);
995 state = clear_state_bit(tree, state, &clear_bits, 0);
996 if (last_end == (u64)-1)
997 goto out;
998 start = last_end + 1;
999 if (start < end && state && state->start == start &&
1000 !need_resched())
1001 goto hit_next;
1002 goto search_again;
1003 }
1004
1005 /*
1006 * | ---- desired range ---- |
1007 * | state |
1008 * or
1009 * | ------------- state -------------- |
1010 *
1011 * We need to split the extent we found, and may flip bits on
1012 * second half.
1013 *
1014 * If the extent we found extends past our
1015 * range, we just split and search again. It'll get split
1016 * again the next time though.
1017 *
1018 * If the extent we found is inside our range, we set the
1019 * desired bit on it.
1020 */
1021 if (state->start < start) {
1022 prealloc = alloc_extent_state_atomic(prealloc);
1023 if (!prealloc) {
1024 err = -ENOMEM;
1025 goto out;
1026 }
1027 err = split_state(tree, state, prealloc, start);
1028 if (err)
1029 extent_io_tree_panic(tree, err);
1030 prealloc = NULL;
1031 if (err)
1032 goto out;
1033 if (state->end <= end) {
1034 set_state_bits(tree, state, &bits);
1035 state = clear_state_bit(tree, state, &clear_bits, 0);
1036 if (last_end == (u64)-1)
1037 goto out;
1038 start = last_end + 1;
1039 if (start < end && state && state->start == start &&
1040 !need_resched())
1041 goto hit_next;
1042 }
1043 goto search_again;
1044 }
1045 /*
1046 * | ---- desired range ---- |
1047 * | state | or | state |
1048 *
1049 * There's a hole, we need to insert something in it and
1050 * ignore the extent we found.
1051 */
1052 if (state->start > start) {
1053 u64 this_end;
1054 if (end < last_start)
1055 this_end = end;
1056 else
1057 this_end = last_start - 1;
1058
1059 prealloc = alloc_extent_state_atomic(prealloc);
1060 if (!prealloc) {
1061 err = -ENOMEM;
1062 goto out;
1063 }
1064
1065 /*
1066 * Avoid to free 'prealloc' if it can be merged with
1067 * the later extent.
1068 */
1069 err = insert_state(tree, prealloc, start, this_end,
1070 &bits);
1071 if (err)
1072 extent_io_tree_panic(tree, err);
1073 prealloc = NULL;
1074 start = this_end + 1;
1075 goto search_again;
1076 }
1077 /*
1078 * | ---- desired range ---- |
1079 * | state |
1080 * We need to split the extent, and set the bit
1081 * on the first half
1082 */
1083 if (state->start <= end && state->end > end) {
1084 prealloc = alloc_extent_state_atomic(prealloc);
1085 if (!prealloc) {
1086 err = -ENOMEM;
1087 goto out;
1088 }
1089
1090 err = split_state(tree, state, prealloc, end + 1);
1091 if (err)
1092 extent_io_tree_panic(tree, err);
1093
1094 set_state_bits(tree, prealloc, &bits);
1095 clear_state_bit(tree, prealloc, &clear_bits, 0);
1096 prealloc = NULL;
1097 goto out;
1098 }
1099
1100 goto search_again;
1101
1102 out:
1103 spin_unlock(&tree->lock);
1104 if (prealloc)
1105 free_extent_state(prealloc);
1106
1107 return err;
1108
1109 search_again:
1110 if (start > end)
1111 goto out;
1112 spin_unlock(&tree->lock);
1113 if (mask & __GFP_WAIT)
1114 cond_resched();
1115 goto again;
1116 }
1117
1118 /* wrappers around set/clear extent bit */
1119 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1120 gfp_t mask)
1121 {
1122 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1123 NULL, mask);
1124 }
1125
1126 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1127 int bits, gfp_t mask)
1128 {
1129 return set_extent_bit(tree, start, end, bits, NULL,
1130 NULL, mask);
1131 }
1132
1133 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1134 int bits, gfp_t mask)
1135 {
1136 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1137 }
1138
1139 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1140 struct extent_state **cached_state, gfp_t mask)
1141 {
1142 return set_extent_bit(tree, start, end,
1143 EXTENT_DELALLOC | EXTENT_UPTODATE,
1144 NULL, cached_state, mask);
1145 }
1146
1147 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1148 gfp_t mask)
1149 {
1150 return clear_extent_bit(tree, start, end,
1151 EXTENT_DIRTY | EXTENT_DELALLOC |
1152 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1153 }
1154
1155 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1156 gfp_t mask)
1157 {
1158 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1159 NULL, mask);
1160 }
1161
1162 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1163 struct extent_state **cached_state, gfp_t mask)
1164 {
1165 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1166 cached_state, mask);
1167 }
1168
1169 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1170 struct extent_state **cached_state, gfp_t mask)
1171 {
1172 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1173 cached_state, mask);
1174 }
1175
1176 /*
1177 * either insert or lock state struct between start and end use mask to tell
1178 * us if waiting is desired.
1179 */
1180 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1181 int bits, struct extent_state **cached_state)
1182 {
1183 int err;
1184 u64 failed_start;
1185 while (1) {
1186 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1187 EXTENT_LOCKED, &failed_start,
1188 cached_state, GFP_NOFS);
1189 if (err == -EEXIST) {
1190 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1191 start = failed_start;
1192 } else
1193 break;
1194 WARN_ON(start > end);
1195 }
1196 return err;
1197 }
1198
1199 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1200 {
1201 return lock_extent_bits(tree, start, end, 0, NULL);
1202 }
1203
1204 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1205 {
1206 int err;
1207 u64 failed_start;
1208
1209 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1210 &failed_start, NULL, GFP_NOFS);
1211 if (err == -EEXIST) {
1212 if (failed_start > start)
1213 clear_extent_bit(tree, start, failed_start - 1,
1214 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1215 return 0;
1216 }
1217 return 1;
1218 }
1219
1220 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1221 struct extent_state **cached, gfp_t mask)
1222 {
1223 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1224 mask);
1225 }
1226
1227 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1228 {
1229 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1230 GFP_NOFS);
1231 }
1232
1233 /*
1234 * helper function to set both pages and extents in the tree writeback
1235 */
1236 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1237 {
1238 unsigned long index = start >> PAGE_CACHE_SHIFT;
1239 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1240 struct page *page;
1241
1242 while (index <= end_index) {
1243 page = find_get_page(tree->mapping, index);
1244 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1245 set_page_writeback(page);
1246 page_cache_release(page);
1247 index++;
1248 }
1249 return 0;
1250 }
1251
1252 /* find the first state struct with 'bits' set after 'start', and
1253 * return it. tree->lock must be held. NULL will returned if
1254 * nothing was found after 'start'
1255 */
1256 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1257 u64 start, int bits)
1258 {
1259 struct rb_node *node;
1260 struct extent_state *state;
1261
1262 /*
1263 * this search will find all the extents that end after
1264 * our range starts.
1265 */
1266 node = tree_search(tree, start);
1267 if (!node)
1268 goto out;
1269
1270 while (1) {
1271 state = rb_entry(node, struct extent_state, rb_node);
1272 if (state->end >= start && (state->state & bits))
1273 return state;
1274
1275 node = rb_next(node);
1276 if (!node)
1277 break;
1278 }
1279 out:
1280 return NULL;
1281 }
1282
1283 /*
1284 * find the first offset in the io tree with 'bits' set. zero is
1285 * returned if we find something, and *start_ret and *end_ret are
1286 * set to reflect the state struct that was found.
1287 *
1288 * If nothing was found, 1 is returned. If found something, return 0.
1289 */
1290 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1291 u64 *start_ret, u64 *end_ret, int bits)
1292 {
1293 struct extent_state *state;
1294 int ret = 1;
1295
1296 spin_lock(&tree->lock);
1297 state = find_first_extent_bit_state(tree, start, bits);
1298 if (state) {
1299 *start_ret = state->start;
1300 *end_ret = state->end;
1301 ret = 0;
1302 }
1303 spin_unlock(&tree->lock);
1304 return ret;
1305 }
1306
1307 /*
1308 * find a contiguous range of bytes in the file marked as delalloc, not
1309 * more than 'max_bytes'. start and end are used to return the range,
1310 *
1311 * 1 is returned if we find something, 0 if nothing was in the tree
1312 */
1313 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1314 u64 *start, u64 *end, u64 max_bytes,
1315 struct extent_state **cached_state)
1316 {
1317 struct rb_node *node;
1318 struct extent_state *state;
1319 u64 cur_start = *start;
1320 u64 found = 0;
1321 u64 total_bytes = 0;
1322
1323 spin_lock(&tree->lock);
1324
1325 /*
1326 * this search will find all the extents that end after
1327 * our range starts.
1328 */
1329 node = tree_search(tree, cur_start);
1330 if (!node) {
1331 if (!found)
1332 *end = (u64)-1;
1333 goto out;
1334 }
1335
1336 while (1) {
1337 state = rb_entry(node, struct extent_state, rb_node);
1338 if (found && (state->start != cur_start ||
1339 (state->state & EXTENT_BOUNDARY))) {
1340 goto out;
1341 }
1342 if (!(state->state & EXTENT_DELALLOC)) {
1343 if (!found)
1344 *end = state->end;
1345 goto out;
1346 }
1347 if (!found) {
1348 *start = state->start;
1349 *cached_state = state;
1350 atomic_inc(&state->refs);
1351 }
1352 found++;
1353 *end = state->end;
1354 cur_start = state->end + 1;
1355 node = rb_next(node);
1356 if (!node)
1357 break;
1358 total_bytes += state->end - state->start + 1;
1359 if (total_bytes >= max_bytes)
1360 break;
1361 }
1362 out:
1363 spin_unlock(&tree->lock);
1364 return found;
1365 }
1366
1367 static noinline void __unlock_for_delalloc(struct inode *inode,
1368 struct page *locked_page,
1369 u64 start, u64 end)
1370 {
1371 int ret;
1372 struct page *pages[16];
1373 unsigned long index = start >> PAGE_CACHE_SHIFT;
1374 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1375 unsigned long nr_pages = end_index - index + 1;
1376 int i;
1377
1378 if (index == locked_page->index && end_index == index)
1379 return;
1380
1381 while (nr_pages > 0) {
1382 ret = find_get_pages_contig(inode->i_mapping, index,
1383 min_t(unsigned long, nr_pages,
1384 ARRAY_SIZE(pages)), pages);
1385 for (i = 0; i < ret; i++) {
1386 if (pages[i] != locked_page)
1387 unlock_page(pages[i]);
1388 page_cache_release(pages[i]);
1389 }
1390 nr_pages -= ret;
1391 index += ret;
1392 cond_resched();
1393 }
1394 }
1395
1396 static noinline int lock_delalloc_pages(struct inode *inode,
1397 struct page *locked_page,
1398 u64 delalloc_start,
1399 u64 delalloc_end)
1400 {
1401 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1402 unsigned long start_index = index;
1403 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1404 unsigned long pages_locked = 0;
1405 struct page *pages[16];
1406 unsigned long nrpages;
1407 int ret;
1408 int i;
1409
1410 /* the caller is responsible for locking the start index */
1411 if (index == locked_page->index && index == end_index)
1412 return 0;
1413
1414 /* skip the page at the start index */
1415 nrpages = end_index - index + 1;
1416 while (nrpages > 0) {
1417 ret = find_get_pages_contig(inode->i_mapping, index,
1418 min_t(unsigned long,
1419 nrpages, ARRAY_SIZE(pages)), pages);
1420 if (ret == 0) {
1421 ret = -EAGAIN;
1422 goto done;
1423 }
1424 /* now we have an array of pages, lock them all */
1425 for (i = 0; i < ret; i++) {
1426 /*
1427 * the caller is taking responsibility for
1428 * locked_page
1429 */
1430 if (pages[i] != locked_page) {
1431 lock_page(pages[i]);
1432 if (!PageDirty(pages[i]) ||
1433 pages[i]->mapping != inode->i_mapping) {
1434 ret = -EAGAIN;
1435 unlock_page(pages[i]);
1436 page_cache_release(pages[i]);
1437 goto done;
1438 }
1439 }
1440 page_cache_release(pages[i]);
1441 pages_locked++;
1442 }
1443 nrpages -= ret;
1444 index += ret;
1445 cond_resched();
1446 }
1447 ret = 0;
1448 done:
1449 if (ret && pages_locked) {
1450 __unlock_for_delalloc(inode, locked_page,
1451 delalloc_start,
1452 ((u64)(start_index + pages_locked - 1)) <<
1453 PAGE_CACHE_SHIFT);
1454 }
1455 return ret;
1456 }
1457
1458 /*
1459 * find a contiguous range of bytes in the file marked as delalloc, not
1460 * more than 'max_bytes'. start and end are used to return the range,
1461 *
1462 * 1 is returned if we find something, 0 if nothing was in the tree
1463 */
1464 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1465 struct extent_io_tree *tree,
1466 struct page *locked_page,
1467 u64 *start, u64 *end,
1468 u64 max_bytes)
1469 {
1470 u64 delalloc_start;
1471 u64 delalloc_end;
1472 u64 found;
1473 struct extent_state *cached_state = NULL;
1474 int ret;
1475 int loops = 0;
1476
1477 again:
1478 /* step one, find a bunch of delalloc bytes starting at start */
1479 delalloc_start = *start;
1480 delalloc_end = 0;
1481 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1482 max_bytes, &cached_state);
1483 if (!found || delalloc_end <= *start) {
1484 *start = delalloc_start;
1485 *end = delalloc_end;
1486 free_extent_state(cached_state);
1487 return found;
1488 }
1489
1490 /*
1491 * start comes from the offset of locked_page. We have to lock
1492 * pages in order, so we can't process delalloc bytes before
1493 * locked_page
1494 */
1495 if (delalloc_start < *start)
1496 delalloc_start = *start;
1497
1498 /*
1499 * make sure to limit the number of pages we try to lock down
1500 * if we're looping.
1501 */
1502 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1503 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1504
1505 /* step two, lock all the pages after the page that has start */
1506 ret = lock_delalloc_pages(inode, locked_page,
1507 delalloc_start, delalloc_end);
1508 if (ret == -EAGAIN) {
1509 /* some of the pages are gone, lets avoid looping by
1510 * shortening the size of the delalloc range we're searching
1511 */
1512 free_extent_state(cached_state);
1513 if (!loops) {
1514 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1515 max_bytes = PAGE_CACHE_SIZE - offset;
1516 loops = 1;
1517 goto again;
1518 } else {
1519 found = 0;
1520 goto out_failed;
1521 }
1522 }
1523 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1524
1525 /* step three, lock the state bits for the whole range */
1526 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1527
1528 /* then test to make sure it is all still delalloc */
1529 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1530 EXTENT_DELALLOC, 1, cached_state);
1531 if (!ret) {
1532 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1533 &cached_state, GFP_NOFS);
1534 __unlock_for_delalloc(inode, locked_page,
1535 delalloc_start, delalloc_end);
1536 cond_resched();
1537 goto again;
1538 }
1539 free_extent_state(cached_state);
1540 *start = delalloc_start;
1541 *end = delalloc_end;
1542 out_failed:
1543 return found;
1544 }
1545
1546 int extent_clear_unlock_delalloc(struct inode *inode,
1547 struct extent_io_tree *tree,
1548 u64 start, u64 end, struct page *locked_page,
1549 unsigned long op)
1550 {
1551 int ret;
1552 struct page *pages[16];
1553 unsigned long index = start >> PAGE_CACHE_SHIFT;
1554 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1555 unsigned long nr_pages = end_index - index + 1;
1556 int i;
1557 int clear_bits = 0;
1558
1559 if (op & EXTENT_CLEAR_UNLOCK)
1560 clear_bits |= EXTENT_LOCKED;
1561 if (op & EXTENT_CLEAR_DIRTY)
1562 clear_bits |= EXTENT_DIRTY;
1563
1564 if (op & EXTENT_CLEAR_DELALLOC)
1565 clear_bits |= EXTENT_DELALLOC;
1566
1567 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1568 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1569 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1570 EXTENT_SET_PRIVATE2)))
1571 return 0;
1572
1573 while (nr_pages > 0) {
1574 ret = find_get_pages_contig(inode->i_mapping, index,
1575 min_t(unsigned long,
1576 nr_pages, ARRAY_SIZE(pages)), pages);
1577 for (i = 0; i < ret; i++) {
1578
1579 if (op & EXTENT_SET_PRIVATE2)
1580 SetPagePrivate2(pages[i]);
1581
1582 if (pages[i] == locked_page) {
1583 page_cache_release(pages[i]);
1584 continue;
1585 }
1586 if (op & EXTENT_CLEAR_DIRTY)
1587 clear_page_dirty_for_io(pages[i]);
1588 if (op & EXTENT_SET_WRITEBACK)
1589 set_page_writeback(pages[i]);
1590 if (op & EXTENT_END_WRITEBACK)
1591 end_page_writeback(pages[i]);
1592 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1593 unlock_page(pages[i]);
1594 page_cache_release(pages[i]);
1595 }
1596 nr_pages -= ret;
1597 index += ret;
1598 cond_resched();
1599 }
1600 return 0;
1601 }
1602
1603 /*
1604 * count the number of bytes in the tree that have a given bit(s)
1605 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1606 * cached. The total number found is returned.
1607 */
1608 u64 count_range_bits(struct extent_io_tree *tree,
1609 u64 *start, u64 search_end, u64 max_bytes,
1610 unsigned long bits, int contig)
1611 {
1612 struct rb_node *node;
1613 struct extent_state *state;
1614 u64 cur_start = *start;
1615 u64 total_bytes = 0;
1616 u64 last = 0;
1617 int found = 0;
1618
1619 if (search_end <= cur_start) {
1620 WARN_ON(1);
1621 return 0;
1622 }
1623
1624 spin_lock(&tree->lock);
1625 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1626 total_bytes = tree->dirty_bytes;
1627 goto out;
1628 }
1629 /*
1630 * this search will find all the extents that end after
1631 * our range starts.
1632 */
1633 node = tree_search(tree, cur_start);
1634 if (!node)
1635 goto out;
1636
1637 while (1) {
1638 state = rb_entry(node, struct extent_state, rb_node);
1639 if (state->start > search_end)
1640 break;
1641 if (contig && found && state->start > last + 1)
1642 break;
1643 if (state->end >= cur_start && (state->state & bits) == bits) {
1644 total_bytes += min(search_end, state->end) + 1 -
1645 max(cur_start, state->start);
1646 if (total_bytes >= max_bytes)
1647 break;
1648 if (!found) {
1649 *start = max(cur_start, state->start);
1650 found = 1;
1651 }
1652 last = state->end;
1653 } else if (contig && found) {
1654 break;
1655 }
1656 node = rb_next(node);
1657 if (!node)
1658 break;
1659 }
1660 out:
1661 spin_unlock(&tree->lock);
1662 return total_bytes;
1663 }
1664
1665 /*
1666 * set the private field for a given byte offset in the tree. If there isn't
1667 * an extent_state there already, this does nothing.
1668 */
1669 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1670 {
1671 struct rb_node *node;
1672 struct extent_state *state;
1673 int ret = 0;
1674
1675 spin_lock(&tree->lock);
1676 /*
1677 * this search will find all the extents that end after
1678 * our range starts.
1679 */
1680 node = tree_search(tree, start);
1681 if (!node) {
1682 ret = -ENOENT;
1683 goto out;
1684 }
1685 state = rb_entry(node, struct extent_state, rb_node);
1686 if (state->start != start) {
1687 ret = -ENOENT;
1688 goto out;
1689 }
1690 state->private = private;
1691 out:
1692 spin_unlock(&tree->lock);
1693 return ret;
1694 }
1695
1696 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1697 {
1698 struct rb_node *node;
1699 struct extent_state *state;
1700 int ret = 0;
1701
1702 spin_lock(&tree->lock);
1703 /*
1704 * this search will find all the extents that end after
1705 * our range starts.
1706 */
1707 node = tree_search(tree, start);
1708 if (!node) {
1709 ret = -ENOENT;
1710 goto out;
1711 }
1712 state = rb_entry(node, struct extent_state, rb_node);
1713 if (state->start != start) {
1714 ret = -ENOENT;
1715 goto out;
1716 }
1717 *private = state->private;
1718 out:
1719 spin_unlock(&tree->lock);
1720 return ret;
1721 }
1722
1723 /*
1724 * searches a range in the state tree for a given mask.
1725 * If 'filled' == 1, this returns 1 only if every extent in the tree
1726 * has the bits set. Otherwise, 1 is returned if any bit in the
1727 * range is found set.
1728 */
1729 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1730 int bits, int filled, struct extent_state *cached)
1731 {
1732 struct extent_state *state = NULL;
1733 struct rb_node *node;
1734 int bitset = 0;
1735
1736 spin_lock(&tree->lock);
1737 if (cached && cached->tree && cached->start <= start &&
1738 cached->end > start)
1739 node = &cached->rb_node;
1740 else
1741 node = tree_search(tree, start);
1742 while (node && start <= end) {
1743 state = rb_entry(node, struct extent_state, rb_node);
1744
1745 if (filled && state->start > start) {
1746 bitset = 0;
1747 break;
1748 }
1749
1750 if (state->start > end)
1751 break;
1752
1753 if (state->state & bits) {
1754 bitset = 1;
1755 if (!filled)
1756 break;
1757 } else if (filled) {
1758 bitset = 0;
1759 break;
1760 }
1761
1762 if (state->end == (u64)-1)
1763 break;
1764
1765 start = state->end + 1;
1766 if (start > end)
1767 break;
1768 node = rb_next(node);
1769 if (!node) {
1770 if (filled)
1771 bitset = 0;
1772 break;
1773 }
1774 }
1775 spin_unlock(&tree->lock);
1776 return bitset;
1777 }
1778
1779 /*
1780 * helper function to set a given page up to date if all the
1781 * extents in the tree for that page are up to date
1782 */
1783 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1784 {
1785 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1786 u64 end = start + PAGE_CACHE_SIZE - 1;
1787 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1788 SetPageUptodate(page);
1789 }
1790
1791 /*
1792 * helper function to unlock a page if all the extents in the tree
1793 * for that page are unlocked
1794 */
1795 static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1796 {
1797 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1798 u64 end = start + PAGE_CACHE_SIZE - 1;
1799 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1800 unlock_page(page);
1801 }
1802
1803 /*
1804 * helper function to end page writeback if all the extents
1805 * in the tree for that page are done with writeback
1806 */
1807 static void check_page_writeback(struct extent_io_tree *tree,
1808 struct page *page)
1809 {
1810 end_page_writeback(page);
1811 }
1812
1813 /*
1814 * When IO fails, either with EIO or csum verification fails, we
1815 * try other mirrors that might have a good copy of the data. This
1816 * io_failure_record is used to record state as we go through all the
1817 * mirrors. If another mirror has good data, the page is set up to date
1818 * and things continue. If a good mirror can't be found, the original
1819 * bio end_io callback is called to indicate things have failed.
1820 */
1821 struct io_failure_record {
1822 struct page *page;
1823 u64 start;
1824 u64 len;
1825 u64 logical;
1826 unsigned long bio_flags;
1827 int this_mirror;
1828 int failed_mirror;
1829 int in_validation;
1830 };
1831
1832 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1833 int did_repair)
1834 {
1835 int ret;
1836 int err = 0;
1837 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1838
1839 set_state_private(failure_tree, rec->start, 0);
1840 ret = clear_extent_bits(failure_tree, rec->start,
1841 rec->start + rec->len - 1,
1842 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1843 if (ret)
1844 err = ret;
1845
1846 if (did_repair) {
1847 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1848 rec->start + rec->len - 1,
1849 EXTENT_DAMAGED, GFP_NOFS);
1850 if (ret && !err)
1851 err = ret;
1852 }
1853
1854 kfree(rec);
1855 return err;
1856 }
1857
1858 static void repair_io_failure_callback(struct bio *bio, int err)
1859 {
1860 complete(bio->bi_private);
1861 }
1862
1863 /*
1864 * this bypasses the standard btrfs submit functions deliberately, as
1865 * the standard behavior is to write all copies in a raid setup. here we only
1866 * want to write the one bad copy. so we do the mapping for ourselves and issue
1867 * submit_bio directly.
1868 * to avoid any synchonization issues, wait for the data after writing, which
1869 * actually prevents the read that triggered the error from finishing.
1870 * currently, there can be no more than two copies of every data bit. thus,
1871 * exactly one rewrite is required.
1872 */
1873 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1874 u64 length, u64 logical, struct page *page,
1875 int mirror_num)
1876 {
1877 struct bio *bio;
1878 struct btrfs_device *dev;
1879 DECLARE_COMPLETION_ONSTACK(compl);
1880 u64 map_length = 0;
1881 u64 sector;
1882 struct btrfs_bio *bbio = NULL;
1883 int ret;
1884
1885 BUG_ON(!mirror_num);
1886
1887 bio = bio_alloc(GFP_NOFS, 1);
1888 if (!bio)
1889 return -EIO;
1890 bio->bi_private = &compl;
1891 bio->bi_end_io = repair_io_failure_callback;
1892 bio->bi_size = 0;
1893 map_length = length;
1894
1895 ret = btrfs_map_block(map_tree, WRITE, logical,
1896 &map_length, &bbio, mirror_num);
1897 if (ret) {
1898 bio_put(bio);
1899 return -EIO;
1900 }
1901 BUG_ON(mirror_num != bbio->mirror_num);
1902 sector = bbio->stripes[mirror_num-1].physical >> 9;
1903 bio->bi_sector = sector;
1904 dev = bbio->stripes[mirror_num-1].dev;
1905 kfree(bbio);
1906 if (!dev || !dev->bdev || !dev->writeable) {
1907 bio_put(bio);
1908 return -EIO;
1909 }
1910 bio->bi_bdev = dev->bdev;
1911 bio_add_page(bio, page, length, start-page_offset(page));
1912 btrfsic_submit_bio(WRITE_SYNC, bio);
1913 wait_for_completion(&compl);
1914
1915 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1916 /* try to remap that extent elsewhere? */
1917 bio_put(bio);
1918 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
1919 return -EIO;
1920 }
1921
1922 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
1923 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
1924 start, rcu_str_deref(dev->name), sector);
1925
1926 bio_put(bio);
1927 return 0;
1928 }
1929
1930 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1931 int mirror_num)
1932 {
1933 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1934 u64 start = eb->start;
1935 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
1936 int ret = 0;
1937
1938 for (i = 0; i < num_pages; i++) {
1939 struct page *p = extent_buffer_page(eb, i);
1940 ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1941 start, p, mirror_num);
1942 if (ret)
1943 break;
1944 start += PAGE_CACHE_SIZE;
1945 }
1946
1947 return ret;
1948 }
1949
1950 /*
1951 * each time an IO finishes, we do a fast check in the IO failure tree
1952 * to see if we need to process or clean up an io_failure_record
1953 */
1954 static int clean_io_failure(u64 start, struct page *page)
1955 {
1956 u64 private;
1957 u64 private_failure;
1958 struct io_failure_record *failrec;
1959 struct btrfs_mapping_tree *map_tree;
1960 struct extent_state *state;
1961 int num_copies;
1962 int did_repair = 0;
1963 int ret;
1964 struct inode *inode = page->mapping->host;
1965
1966 private = 0;
1967 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1968 (u64)-1, 1, EXTENT_DIRTY, 0);
1969 if (!ret)
1970 return 0;
1971
1972 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1973 &private_failure);
1974 if (ret)
1975 return 0;
1976
1977 failrec = (struct io_failure_record *)(unsigned long) private_failure;
1978 BUG_ON(!failrec->this_mirror);
1979
1980 if (failrec->in_validation) {
1981 /* there was no real error, just free the record */
1982 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1983 failrec->start);
1984 did_repair = 1;
1985 goto out;
1986 }
1987
1988 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1989 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1990 failrec->start,
1991 EXTENT_LOCKED);
1992 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1993
1994 if (state && state->start == failrec->start) {
1995 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
1996 num_copies = btrfs_num_copies(map_tree, failrec->logical,
1997 failrec->len);
1998 if (num_copies > 1) {
1999 ret = repair_io_failure(map_tree, start, failrec->len,
2000 failrec->logical, page,
2001 failrec->failed_mirror);
2002 did_repair = !ret;
2003 }
2004 }
2005
2006 out:
2007 if (!ret)
2008 ret = free_io_failure(inode, failrec, did_repair);
2009
2010 return ret;
2011 }
2012
2013 /*
2014 * this is a generic handler for readpage errors (default
2015 * readpage_io_failed_hook). if other copies exist, read those and write back
2016 * good data to the failed position. does not investigate in remapping the
2017 * failed extent elsewhere, hoping the device will be smart enough to do this as
2018 * needed
2019 */
2020
2021 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2022 u64 start, u64 end, int failed_mirror,
2023 struct extent_state *state)
2024 {
2025 struct io_failure_record *failrec = NULL;
2026 u64 private;
2027 struct extent_map *em;
2028 struct inode *inode = page->mapping->host;
2029 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2030 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2031 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2032 struct bio *bio;
2033 int num_copies;
2034 int ret;
2035 int read_mode;
2036 u64 logical;
2037
2038 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2039
2040 ret = get_state_private(failure_tree, start, &private);
2041 if (ret) {
2042 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2043 if (!failrec)
2044 return -ENOMEM;
2045 failrec->start = start;
2046 failrec->len = end - start + 1;
2047 failrec->this_mirror = 0;
2048 failrec->bio_flags = 0;
2049 failrec->in_validation = 0;
2050
2051 read_lock(&em_tree->lock);
2052 em = lookup_extent_mapping(em_tree, start, failrec->len);
2053 if (!em) {
2054 read_unlock(&em_tree->lock);
2055 kfree(failrec);
2056 return -EIO;
2057 }
2058
2059 if (em->start > start || em->start + em->len < start) {
2060 free_extent_map(em);
2061 em = NULL;
2062 }
2063 read_unlock(&em_tree->lock);
2064
2065 if (!em || IS_ERR(em)) {
2066 kfree(failrec);
2067 return -EIO;
2068 }
2069 logical = start - em->start;
2070 logical = em->block_start + logical;
2071 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2072 logical = em->block_start;
2073 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2074 extent_set_compress_type(&failrec->bio_flags,
2075 em->compress_type);
2076 }
2077 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2078 "len=%llu\n", logical, start, failrec->len);
2079 failrec->logical = logical;
2080 free_extent_map(em);
2081
2082 /* set the bits in the private failure tree */
2083 ret = set_extent_bits(failure_tree, start, end,
2084 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2085 if (ret >= 0)
2086 ret = set_state_private(failure_tree, start,
2087 (u64)(unsigned long)failrec);
2088 /* set the bits in the inode's tree */
2089 if (ret >= 0)
2090 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2091 GFP_NOFS);
2092 if (ret < 0) {
2093 kfree(failrec);
2094 return ret;
2095 }
2096 } else {
2097 failrec = (struct io_failure_record *)(unsigned long)private;
2098 pr_debug("bio_readpage_error: (found) logical=%llu, "
2099 "start=%llu, len=%llu, validation=%d\n",
2100 failrec->logical, failrec->start, failrec->len,
2101 failrec->in_validation);
2102 /*
2103 * when data can be on disk more than twice, add to failrec here
2104 * (e.g. with a list for failed_mirror) to make
2105 * clean_io_failure() clean all those errors at once.
2106 */
2107 }
2108 num_copies = btrfs_num_copies(
2109 &BTRFS_I(inode)->root->fs_info->mapping_tree,
2110 failrec->logical, failrec->len);
2111 if (num_copies == 1) {
2112 /*
2113 * we only have a single copy of the data, so don't bother with
2114 * all the retry and error correction code that follows. no
2115 * matter what the error is, it is very likely to persist.
2116 */
2117 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2118 "state=%p, num_copies=%d, next_mirror %d, "
2119 "failed_mirror %d\n", state, num_copies,
2120 failrec->this_mirror, failed_mirror);
2121 free_io_failure(inode, failrec, 0);
2122 return -EIO;
2123 }
2124
2125 if (!state) {
2126 spin_lock(&tree->lock);
2127 state = find_first_extent_bit_state(tree, failrec->start,
2128 EXTENT_LOCKED);
2129 if (state && state->start != failrec->start)
2130 state = NULL;
2131 spin_unlock(&tree->lock);
2132 }
2133
2134 /*
2135 * there are two premises:
2136 * a) deliver good data to the caller
2137 * b) correct the bad sectors on disk
2138 */
2139 if (failed_bio->bi_vcnt > 1) {
2140 /*
2141 * to fulfill b), we need to know the exact failing sectors, as
2142 * we don't want to rewrite any more than the failed ones. thus,
2143 * we need separate read requests for the failed bio
2144 *
2145 * if the following BUG_ON triggers, our validation request got
2146 * merged. we need separate requests for our algorithm to work.
2147 */
2148 BUG_ON(failrec->in_validation);
2149 failrec->in_validation = 1;
2150 failrec->this_mirror = failed_mirror;
2151 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2152 } else {
2153 /*
2154 * we're ready to fulfill a) and b) alongside. get a good copy
2155 * of the failed sector and if we succeed, we have setup
2156 * everything for repair_io_failure to do the rest for us.
2157 */
2158 if (failrec->in_validation) {
2159 BUG_ON(failrec->this_mirror != failed_mirror);
2160 failrec->in_validation = 0;
2161 failrec->this_mirror = 0;
2162 }
2163 failrec->failed_mirror = failed_mirror;
2164 failrec->this_mirror++;
2165 if (failrec->this_mirror == failed_mirror)
2166 failrec->this_mirror++;
2167 read_mode = READ_SYNC;
2168 }
2169
2170 if (!state || failrec->this_mirror > num_copies) {
2171 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2172 "next_mirror %d, failed_mirror %d\n", state,
2173 num_copies, failrec->this_mirror, failed_mirror);
2174 free_io_failure(inode, failrec, 0);
2175 return -EIO;
2176 }
2177
2178 bio = bio_alloc(GFP_NOFS, 1);
2179 if (!bio) {
2180 free_io_failure(inode, failrec, 0);
2181 return -EIO;
2182 }
2183 bio->bi_private = state;
2184 bio->bi_end_io = failed_bio->bi_end_io;
2185 bio->bi_sector = failrec->logical >> 9;
2186 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2187 bio->bi_size = 0;
2188
2189 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2190
2191 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2192 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2193 failrec->this_mirror, num_copies, failrec->in_validation);
2194
2195 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2196 failrec->this_mirror,
2197 failrec->bio_flags, 0);
2198 return ret;
2199 }
2200
2201 /* lots and lots of room for performance fixes in the end_bio funcs */
2202
2203 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2204 {
2205 int uptodate = (err == 0);
2206 struct extent_io_tree *tree;
2207 int ret;
2208
2209 tree = &BTRFS_I(page->mapping->host)->io_tree;
2210
2211 if (tree->ops && tree->ops->writepage_end_io_hook) {
2212 ret = tree->ops->writepage_end_io_hook(page, start,
2213 end, NULL, uptodate);
2214 if (ret)
2215 uptodate = 0;
2216 }
2217
2218 if (!uptodate) {
2219 ClearPageUptodate(page);
2220 SetPageError(page);
2221 }
2222 return 0;
2223 }
2224
2225 /*
2226 * after a writepage IO is done, we need to:
2227 * clear the uptodate bits on error
2228 * clear the writeback bits in the extent tree for this IO
2229 * end_page_writeback if the page has no more pending IO
2230 *
2231 * Scheduling is not allowed, so the extent state tree is expected
2232 * to have one and only one object corresponding to this IO.
2233 */
2234 static void end_bio_extent_writepage(struct bio *bio, int err)
2235 {
2236 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2237 struct extent_io_tree *tree;
2238 u64 start;
2239 u64 end;
2240 int whole_page;
2241
2242 do {
2243 struct page *page = bvec->bv_page;
2244 tree = &BTRFS_I(page->mapping->host)->io_tree;
2245
2246 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2247 bvec->bv_offset;
2248 end = start + bvec->bv_len - 1;
2249
2250 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2251 whole_page = 1;
2252 else
2253 whole_page = 0;
2254
2255 if (--bvec >= bio->bi_io_vec)
2256 prefetchw(&bvec->bv_page->flags);
2257
2258 if (end_extent_writepage(page, err, start, end))
2259 continue;
2260
2261 if (whole_page)
2262 end_page_writeback(page);
2263 else
2264 check_page_writeback(tree, page);
2265 } while (bvec >= bio->bi_io_vec);
2266
2267 bio_put(bio);
2268 }
2269
2270 /*
2271 * after a readpage IO is done, we need to:
2272 * clear the uptodate bits on error
2273 * set the uptodate bits if things worked
2274 * set the page up to date if all extents in the tree are uptodate
2275 * clear the lock bit in the extent tree
2276 * unlock the page if there are no other extents locked for it
2277 *
2278 * Scheduling is not allowed, so the extent state tree is expected
2279 * to have one and only one object corresponding to this IO.
2280 */
2281 static void end_bio_extent_readpage(struct bio *bio, int err)
2282 {
2283 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2284 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2285 struct bio_vec *bvec = bio->bi_io_vec;
2286 struct extent_io_tree *tree;
2287 u64 start;
2288 u64 end;
2289 int whole_page;
2290 int mirror;
2291 int ret;
2292
2293 if (err)
2294 uptodate = 0;
2295
2296 do {
2297 struct page *page = bvec->bv_page;
2298 struct extent_state *cached = NULL;
2299 struct extent_state *state;
2300
2301 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2302 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2303 (long int)bio->bi_bdev);
2304 tree = &BTRFS_I(page->mapping->host)->io_tree;
2305
2306 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2307 bvec->bv_offset;
2308 end = start + bvec->bv_len - 1;
2309
2310 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2311 whole_page = 1;
2312 else
2313 whole_page = 0;
2314
2315 if (++bvec <= bvec_end)
2316 prefetchw(&bvec->bv_page->flags);
2317
2318 spin_lock(&tree->lock);
2319 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2320 if (state && state->start == start) {
2321 /*
2322 * take a reference on the state, unlock will drop
2323 * the ref
2324 */
2325 cache_state(state, &cached);
2326 }
2327 spin_unlock(&tree->lock);
2328
2329 mirror = (int)(unsigned long)bio->bi_bdev;
2330 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2331 ret = tree->ops->readpage_end_io_hook(page, start, end,
2332 state, mirror);
2333 if (ret)
2334 uptodate = 0;
2335 else
2336 clean_io_failure(start, page);
2337 }
2338
2339 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2340 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2341 if (!ret && !err &&
2342 test_bit(BIO_UPTODATE, &bio->bi_flags))
2343 uptodate = 1;
2344 } else if (!uptodate) {
2345 /*
2346 * The generic bio_readpage_error handles errors the
2347 * following way: If possible, new read requests are
2348 * created and submitted and will end up in
2349 * end_bio_extent_readpage as well (if we're lucky, not
2350 * in the !uptodate case). In that case it returns 0 and
2351 * we just go on with the next page in our bio. If it
2352 * can't handle the error it will return -EIO and we
2353 * remain responsible for that page.
2354 */
2355 ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2356 if (ret == 0) {
2357 uptodate =
2358 test_bit(BIO_UPTODATE, &bio->bi_flags);
2359 if (err)
2360 uptodate = 0;
2361 uncache_state(&cached);
2362 continue;
2363 }
2364 }
2365
2366 if (uptodate && tree->track_uptodate) {
2367 set_extent_uptodate(tree, start, end, &cached,
2368 GFP_ATOMIC);
2369 }
2370 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2371
2372 if (whole_page) {
2373 if (uptodate) {
2374 SetPageUptodate(page);
2375 } else {
2376 ClearPageUptodate(page);
2377 SetPageError(page);
2378 }
2379 unlock_page(page);
2380 } else {
2381 if (uptodate) {
2382 check_page_uptodate(tree, page);
2383 } else {
2384 ClearPageUptodate(page);
2385 SetPageError(page);
2386 }
2387 check_page_locked(tree, page);
2388 }
2389 } while (bvec <= bvec_end);
2390
2391 bio_put(bio);
2392 }
2393
2394 struct bio *
2395 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2396 gfp_t gfp_flags)
2397 {
2398 struct bio *bio;
2399
2400 bio = bio_alloc(gfp_flags, nr_vecs);
2401
2402 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2403 while (!bio && (nr_vecs /= 2))
2404 bio = bio_alloc(gfp_flags, nr_vecs);
2405 }
2406
2407 if (bio) {
2408 bio->bi_size = 0;
2409 bio->bi_bdev = bdev;
2410 bio->bi_sector = first_sector;
2411 }
2412 return bio;
2413 }
2414
2415 /*
2416 * Since writes are async, they will only return -ENOMEM.
2417 * Reads can return the full range of I/O error conditions.
2418 */
2419 static int __must_check submit_one_bio(int rw, struct bio *bio,
2420 int mirror_num, unsigned long bio_flags)
2421 {
2422 int ret = 0;
2423 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2424 struct page *page = bvec->bv_page;
2425 struct extent_io_tree *tree = bio->bi_private;
2426 u64 start;
2427
2428 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2429
2430 bio->bi_private = NULL;
2431
2432 bio_get(bio);
2433
2434 if (tree->ops && tree->ops->submit_bio_hook)
2435 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2436 mirror_num, bio_flags, start);
2437 else
2438 btrfsic_submit_bio(rw, bio);
2439
2440 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2441 ret = -EOPNOTSUPP;
2442 bio_put(bio);
2443 return ret;
2444 }
2445
2446 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2447 unsigned long offset, size_t size, struct bio *bio,
2448 unsigned long bio_flags)
2449 {
2450 int ret = 0;
2451 if (tree->ops && tree->ops->merge_bio_hook)
2452 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2453 bio_flags);
2454 BUG_ON(ret < 0);
2455 return ret;
2456
2457 }
2458
2459 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2460 struct page *page, sector_t sector,
2461 size_t size, unsigned long offset,
2462 struct block_device *bdev,
2463 struct bio **bio_ret,
2464 unsigned long max_pages,
2465 bio_end_io_t end_io_func,
2466 int mirror_num,
2467 unsigned long prev_bio_flags,
2468 unsigned long bio_flags)
2469 {
2470 int ret = 0;
2471 struct bio *bio;
2472 int nr;
2473 int contig = 0;
2474 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2475 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2476 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2477
2478 if (bio_ret && *bio_ret) {
2479 bio = *bio_ret;
2480 if (old_compressed)
2481 contig = bio->bi_sector == sector;
2482 else
2483 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2484 sector;
2485
2486 if (prev_bio_flags != bio_flags || !contig ||
2487 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2488 bio_add_page(bio, page, page_size, offset) < page_size) {
2489 ret = submit_one_bio(rw, bio, mirror_num,
2490 prev_bio_flags);
2491 if (ret < 0)
2492 return ret;
2493 bio = NULL;
2494 } else {
2495 return 0;
2496 }
2497 }
2498 if (this_compressed)
2499 nr = BIO_MAX_PAGES;
2500 else
2501 nr = bio_get_nr_vecs(bdev);
2502
2503 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2504 if (!bio)
2505 return -ENOMEM;
2506
2507 bio_add_page(bio, page, page_size, offset);
2508 bio->bi_end_io = end_io_func;
2509 bio->bi_private = tree;
2510
2511 if (bio_ret)
2512 *bio_ret = bio;
2513 else
2514 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2515
2516 return ret;
2517 }
2518
2519 void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
2520 {
2521 if (!PagePrivate(page)) {
2522 SetPagePrivate(page);
2523 page_cache_get(page);
2524 set_page_private(page, (unsigned long)eb);
2525 } else {
2526 WARN_ON(page->private != (unsigned long)eb);
2527 }
2528 }
2529
2530 void set_page_extent_mapped(struct page *page)
2531 {
2532 if (!PagePrivate(page)) {
2533 SetPagePrivate(page);
2534 page_cache_get(page);
2535 set_page_private(page, EXTENT_PAGE_PRIVATE);
2536 }
2537 }
2538
2539 /*
2540 * basic readpage implementation. Locked extent state structs are inserted
2541 * into the tree that are removed when the IO is done (by the end_io
2542 * handlers)
2543 * XXX JDM: This needs looking at to ensure proper page locking
2544 */
2545 static int __extent_read_full_page(struct extent_io_tree *tree,
2546 struct page *page,
2547 get_extent_t *get_extent,
2548 struct bio **bio, int mirror_num,
2549 unsigned long *bio_flags)
2550 {
2551 struct inode *inode = page->mapping->host;
2552 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2553 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2554 u64 end;
2555 u64 cur = start;
2556 u64 extent_offset;
2557 u64 last_byte = i_size_read(inode);
2558 u64 block_start;
2559 u64 cur_end;
2560 sector_t sector;
2561 struct extent_map *em;
2562 struct block_device *bdev;
2563 struct btrfs_ordered_extent *ordered;
2564 int ret;
2565 int nr = 0;
2566 size_t pg_offset = 0;
2567 size_t iosize;
2568 size_t disk_io_size;
2569 size_t blocksize = inode->i_sb->s_blocksize;
2570 unsigned long this_bio_flag = 0;
2571
2572 set_page_extent_mapped(page);
2573
2574 if (!PageUptodate(page)) {
2575 if (cleancache_get_page(page) == 0) {
2576 BUG_ON(blocksize != PAGE_SIZE);
2577 goto out;
2578 }
2579 }
2580
2581 end = page_end;
2582 while (1) {
2583 lock_extent(tree, start, end);
2584 ordered = btrfs_lookup_ordered_extent(inode, start);
2585 if (!ordered)
2586 break;
2587 unlock_extent(tree, start, end);
2588 btrfs_start_ordered_extent(inode, ordered, 1);
2589 btrfs_put_ordered_extent(ordered);
2590 }
2591
2592 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2593 char *userpage;
2594 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2595
2596 if (zero_offset) {
2597 iosize = PAGE_CACHE_SIZE - zero_offset;
2598 userpage = kmap_atomic(page);
2599 memset(userpage + zero_offset, 0, iosize);
2600 flush_dcache_page(page);
2601 kunmap_atomic(userpage);
2602 }
2603 }
2604 while (cur <= end) {
2605 if (cur >= last_byte) {
2606 char *userpage;
2607 struct extent_state *cached = NULL;
2608
2609 iosize = PAGE_CACHE_SIZE - pg_offset;
2610 userpage = kmap_atomic(page);
2611 memset(userpage + pg_offset, 0, iosize);
2612 flush_dcache_page(page);
2613 kunmap_atomic(userpage);
2614 set_extent_uptodate(tree, cur, cur + iosize - 1,
2615 &cached, GFP_NOFS);
2616 unlock_extent_cached(tree, cur, cur + iosize - 1,
2617 &cached, GFP_NOFS);
2618 break;
2619 }
2620 em = get_extent(inode, page, pg_offset, cur,
2621 end - cur + 1, 0);
2622 if (IS_ERR_OR_NULL(em)) {
2623 SetPageError(page);
2624 unlock_extent(tree, cur, end);
2625 break;
2626 }
2627 extent_offset = cur - em->start;
2628 BUG_ON(extent_map_end(em) <= cur);
2629 BUG_ON(end < cur);
2630
2631 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2632 this_bio_flag = EXTENT_BIO_COMPRESSED;
2633 extent_set_compress_type(&this_bio_flag,
2634 em->compress_type);
2635 }
2636
2637 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2638 cur_end = min(extent_map_end(em) - 1, end);
2639 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2640 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2641 disk_io_size = em->block_len;
2642 sector = em->block_start >> 9;
2643 } else {
2644 sector = (em->block_start + extent_offset) >> 9;
2645 disk_io_size = iosize;
2646 }
2647 bdev = em->bdev;
2648 block_start = em->block_start;
2649 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2650 block_start = EXTENT_MAP_HOLE;
2651 free_extent_map(em);
2652 em = NULL;
2653
2654 /* we've found a hole, just zero and go on */
2655 if (block_start == EXTENT_MAP_HOLE) {
2656 char *userpage;
2657 struct extent_state *cached = NULL;
2658
2659 userpage = kmap_atomic(page);
2660 memset(userpage + pg_offset, 0, iosize);
2661 flush_dcache_page(page);
2662 kunmap_atomic(userpage);
2663
2664 set_extent_uptodate(tree, cur, cur + iosize - 1,
2665 &cached, GFP_NOFS);
2666 unlock_extent_cached(tree, cur, cur + iosize - 1,
2667 &cached, GFP_NOFS);
2668 cur = cur + iosize;
2669 pg_offset += iosize;
2670 continue;
2671 }
2672 /* the get_extent function already copied into the page */
2673 if (test_range_bit(tree, cur, cur_end,
2674 EXTENT_UPTODATE, 1, NULL)) {
2675 check_page_uptodate(tree, page);
2676 unlock_extent(tree, cur, cur + iosize - 1);
2677 cur = cur + iosize;
2678 pg_offset += iosize;
2679 continue;
2680 }
2681 /* we have an inline extent but it didn't get marked up
2682 * to date. Error out
2683 */
2684 if (block_start == EXTENT_MAP_INLINE) {
2685 SetPageError(page);
2686 unlock_extent(tree, cur, cur + iosize - 1);
2687 cur = cur + iosize;
2688 pg_offset += iosize;
2689 continue;
2690 }
2691
2692 ret = 0;
2693 if (tree->ops && tree->ops->readpage_io_hook) {
2694 ret = tree->ops->readpage_io_hook(page, cur,
2695 cur + iosize - 1);
2696 }
2697 if (!ret) {
2698 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2699 pnr -= page->index;
2700 ret = submit_extent_page(READ, tree, page,
2701 sector, disk_io_size, pg_offset,
2702 bdev, bio, pnr,
2703 end_bio_extent_readpage, mirror_num,
2704 *bio_flags,
2705 this_bio_flag);
2706 BUG_ON(ret == -ENOMEM);
2707 nr++;
2708 *bio_flags = this_bio_flag;
2709 }
2710 if (ret)
2711 SetPageError(page);
2712 cur = cur + iosize;
2713 pg_offset += iosize;
2714 }
2715 out:
2716 if (!nr) {
2717 if (!PageError(page))
2718 SetPageUptodate(page);
2719 unlock_page(page);
2720 }
2721 return 0;
2722 }
2723
2724 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2725 get_extent_t *get_extent, int mirror_num)
2726 {
2727 struct bio *bio = NULL;
2728 unsigned long bio_flags = 0;
2729 int ret;
2730
2731 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2732 &bio_flags);
2733 if (bio)
2734 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2735 return ret;
2736 }
2737
2738 static noinline void update_nr_written(struct page *page,
2739 struct writeback_control *wbc,
2740 unsigned long nr_written)
2741 {
2742 wbc->nr_to_write -= nr_written;
2743 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2744 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2745 page->mapping->writeback_index = page->index + nr_written;
2746 }
2747
2748 /*
2749 * the writepage semantics are similar to regular writepage. extent
2750 * records are inserted to lock ranges in the tree, and as dirty areas
2751 * are found, they are marked writeback. Then the lock bits are removed
2752 * and the end_io handler clears the writeback ranges
2753 */
2754 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2755 void *data)
2756 {
2757 struct inode *inode = page->mapping->host;
2758 struct extent_page_data *epd = data;
2759 struct extent_io_tree *tree = epd->tree;
2760 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2761 u64 delalloc_start;
2762 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2763 u64 end;
2764 u64 cur = start;
2765 u64 extent_offset;
2766 u64 last_byte = i_size_read(inode);
2767 u64 block_start;
2768 u64 iosize;
2769 sector_t sector;
2770 struct extent_state *cached_state = NULL;
2771 struct extent_map *em;
2772 struct block_device *bdev;
2773 int ret;
2774 int nr = 0;
2775 size_t pg_offset = 0;
2776 size_t blocksize;
2777 loff_t i_size = i_size_read(inode);
2778 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2779 u64 nr_delalloc;
2780 u64 delalloc_end;
2781 int page_started;
2782 int compressed;
2783 int write_flags;
2784 unsigned long nr_written = 0;
2785 bool fill_delalloc = true;
2786
2787 if (wbc->sync_mode == WB_SYNC_ALL)
2788 write_flags = WRITE_SYNC;
2789 else
2790 write_flags = WRITE;
2791
2792 trace___extent_writepage(page, inode, wbc);
2793
2794 WARN_ON(!PageLocked(page));
2795
2796 ClearPageError(page);
2797
2798 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2799 if (page->index > end_index ||
2800 (page->index == end_index && !pg_offset)) {
2801 page->mapping->a_ops->invalidatepage(page, 0);
2802 unlock_page(page);
2803 return 0;
2804 }
2805
2806 if (page->index == end_index) {
2807 char *userpage;
2808
2809 userpage = kmap_atomic(page);
2810 memset(userpage + pg_offset, 0,
2811 PAGE_CACHE_SIZE - pg_offset);
2812 kunmap_atomic(userpage);
2813 flush_dcache_page(page);
2814 }
2815 pg_offset = 0;
2816
2817 set_page_extent_mapped(page);
2818
2819 if (!tree->ops || !tree->ops->fill_delalloc)
2820 fill_delalloc = false;
2821
2822 delalloc_start = start;
2823 delalloc_end = 0;
2824 page_started = 0;
2825 if (!epd->extent_locked && fill_delalloc) {
2826 u64 delalloc_to_write = 0;
2827 /*
2828 * make sure the wbc mapping index is at least updated
2829 * to this page.
2830 */
2831 update_nr_written(page, wbc, 0);
2832
2833 while (delalloc_end < page_end) {
2834 nr_delalloc = find_lock_delalloc_range(inode, tree,
2835 page,
2836 &delalloc_start,
2837 &delalloc_end,
2838 128 * 1024 * 1024);
2839 if (nr_delalloc == 0) {
2840 delalloc_start = delalloc_end + 1;
2841 continue;
2842 }
2843 ret = tree->ops->fill_delalloc(inode, page,
2844 delalloc_start,
2845 delalloc_end,
2846 &page_started,
2847 &nr_written);
2848 /* File system has been set read-only */
2849 if (ret) {
2850 SetPageError(page);
2851 goto done;
2852 }
2853 /*
2854 * delalloc_end is already one less than the total
2855 * length, so we don't subtract one from
2856 * PAGE_CACHE_SIZE
2857 */
2858 delalloc_to_write += (delalloc_end - delalloc_start +
2859 PAGE_CACHE_SIZE) >>
2860 PAGE_CACHE_SHIFT;
2861 delalloc_start = delalloc_end + 1;
2862 }
2863 if (wbc->nr_to_write < delalloc_to_write) {
2864 int thresh = 8192;
2865
2866 if (delalloc_to_write < thresh * 2)
2867 thresh = delalloc_to_write;
2868 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2869 thresh);
2870 }
2871
2872 /* did the fill delalloc function already unlock and start
2873 * the IO?
2874 */
2875 if (page_started) {
2876 ret = 0;
2877 /*
2878 * we've unlocked the page, so we can't update
2879 * the mapping's writeback index, just update
2880 * nr_to_write.
2881 */
2882 wbc->nr_to_write -= nr_written;
2883 goto done_unlocked;
2884 }
2885 }
2886 if (tree->ops && tree->ops->writepage_start_hook) {
2887 ret = tree->ops->writepage_start_hook(page, start,
2888 page_end);
2889 if (ret) {
2890 /* Fixup worker will requeue */
2891 if (ret == -EBUSY)
2892 wbc->pages_skipped++;
2893 else
2894 redirty_page_for_writepage(wbc, page);
2895 update_nr_written(page, wbc, nr_written);
2896 unlock_page(page);
2897 ret = 0;
2898 goto done_unlocked;
2899 }
2900 }
2901
2902 /*
2903 * we don't want to touch the inode after unlocking the page,
2904 * so we update the mapping writeback index now
2905 */
2906 update_nr_written(page, wbc, nr_written + 1);
2907
2908 end = page_end;
2909 if (last_byte <= start) {
2910 if (tree->ops && tree->ops->writepage_end_io_hook)
2911 tree->ops->writepage_end_io_hook(page, start,
2912 page_end, NULL, 1);
2913 goto done;
2914 }
2915
2916 blocksize = inode->i_sb->s_blocksize;
2917
2918 while (cur <= end) {
2919 if (cur >= last_byte) {
2920 if (tree->ops && tree->ops->writepage_end_io_hook)
2921 tree->ops->writepage_end_io_hook(page, cur,
2922 page_end, NULL, 1);
2923 break;
2924 }
2925 em = epd->get_extent(inode, page, pg_offset, cur,
2926 end - cur + 1, 1);
2927 if (IS_ERR_OR_NULL(em)) {
2928 SetPageError(page);
2929 break;
2930 }
2931
2932 extent_offset = cur - em->start;
2933 BUG_ON(extent_map_end(em) <= cur);
2934 BUG_ON(end < cur);
2935 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2936 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2937 sector = (em->block_start + extent_offset) >> 9;
2938 bdev = em->bdev;
2939 block_start = em->block_start;
2940 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2941 free_extent_map(em);
2942 em = NULL;
2943
2944 /*
2945 * compressed and inline extents are written through other
2946 * paths in the FS
2947 */
2948 if (compressed || block_start == EXTENT_MAP_HOLE ||
2949 block_start == EXTENT_MAP_INLINE) {
2950 /*
2951 * end_io notification does not happen here for
2952 * compressed extents
2953 */
2954 if (!compressed && tree->ops &&
2955 tree->ops->writepage_end_io_hook)
2956 tree->ops->writepage_end_io_hook(page, cur,
2957 cur + iosize - 1,
2958 NULL, 1);
2959 else if (compressed) {
2960 /* we don't want to end_page_writeback on
2961 * a compressed extent. this happens
2962 * elsewhere
2963 */
2964 nr++;
2965 }
2966
2967 cur += iosize;
2968 pg_offset += iosize;
2969 continue;
2970 }
2971 /* leave this out until we have a page_mkwrite call */
2972 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2973 EXTENT_DIRTY, 0, NULL)) {
2974 cur = cur + iosize;
2975 pg_offset += iosize;
2976 continue;
2977 }
2978
2979 if (tree->ops && tree->ops->writepage_io_hook) {
2980 ret = tree->ops->writepage_io_hook(page, cur,
2981 cur + iosize - 1);
2982 } else {
2983 ret = 0;
2984 }
2985 if (ret) {
2986 SetPageError(page);
2987 } else {
2988 unsigned long max_nr = end_index + 1;
2989
2990 set_range_writeback(tree, cur, cur + iosize - 1);
2991 if (!PageWriteback(page)) {
2992 printk(KERN_ERR "btrfs warning page %lu not "
2993 "writeback, cur %llu end %llu\n",
2994 page->index, (unsigned long long)cur,
2995 (unsigned long long)end);
2996 }
2997
2998 ret = submit_extent_page(write_flags, tree, page,
2999 sector, iosize, pg_offset,
3000 bdev, &epd->bio, max_nr,
3001 end_bio_extent_writepage,
3002 0, 0, 0);
3003 if (ret)
3004 SetPageError(page);
3005 }
3006 cur = cur + iosize;
3007 pg_offset += iosize;
3008 nr++;
3009 }
3010 done:
3011 if (nr == 0) {
3012 /* make sure the mapping tag for page dirty gets cleared */
3013 set_page_writeback(page);
3014 end_page_writeback(page);
3015 }
3016 unlock_page(page);
3017
3018 done_unlocked:
3019
3020 /* drop our reference on any cached states */
3021 free_extent_state(cached_state);
3022 return 0;
3023 }
3024
3025 static int eb_wait(void *word)
3026 {
3027 io_schedule();
3028 return 0;
3029 }
3030
3031 static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3032 {
3033 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3034 TASK_UNINTERRUPTIBLE);
3035 }
3036
3037 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3038 struct btrfs_fs_info *fs_info,
3039 struct extent_page_data *epd)
3040 {
3041 unsigned long i, num_pages;
3042 int flush = 0;
3043 int ret = 0;
3044
3045 if (!btrfs_try_tree_write_lock(eb)) {
3046 flush = 1;
3047 flush_write_bio(epd);
3048 btrfs_tree_lock(eb);
3049 }
3050
3051 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3052 btrfs_tree_unlock(eb);
3053 if (!epd->sync_io)
3054 return 0;
3055 if (!flush) {
3056 flush_write_bio(epd);
3057 flush = 1;
3058 }
3059 while (1) {
3060 wait_on_extent_buffer_writeback(eb);
3061 btrfs_tree_lock(eb);
3062 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3063 break;
3064 btrfs_tree_unlock(eb);
3065 }
3066 }
3067
3068 /*
3069 * We need to do this to prevent races in people who check if the eb is
3070 * under IO since we can end up having no IO bits set for a short period
3071 * of time.
3072 */
3073 spin_lock(&eb->refs_lock);
3074 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3075 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3076 spin_unlock(&eb->refs_lock);
3077 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3078 spin_lock(&fs_info->delalloc_lock);
3079 if (fs_info->dirty_metadata_bytes >= eb->len)
3080 fs_info->dirty_metadata_bytes -= eb->len;
3081 else
3082 WARN_ON(1);
3083 spin_unlock(&fs_info->delalloc_lock);
3084 ret = 1;
3085 } else {
3086 spin_unlock(&eb->refs_lock);
3087 }
3088
3089 btrfs_tree_unlock(eb);
3090
3091 if (!ret)
3092 return ret;
3093
3094 num_pages = num_extent_pages(eb->start, eb->len);
3095 for (i = 0; i < num_pages; i++) {
3096 struct page *p = extent_buffer_page(eb, i);
3097
3098 if (!trylock_page(p)) {
3099 if (!flush) {
3100 flush_write_bio(epd);
3101 flush = 1;
3102 }
3103 lock_page(p);
3104 }
3105 }
3106
3107 return ret;
3108 }
3109
3110 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3111 {
3112 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3113 smp_mb__after_clear_bit();
3114 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3115 }
3116
3117 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3118 {
3119 int uptodate = err == 0;
3120 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3121 struct extent_buffer *eb;
3122 int done;
3123
3124 do {
3125 struct page *page = bvec->bv_page;
3126
3127 bvec--;
3128 eb = (struct extent_buffer *)page->private;
3129 BUG_ON(!eb);
3130 done = atomic_dec_and_test(&eb->io_pages);
3131
3132 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3133 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3134 ClearPageUptodate(page);
3135 SetPageError(page);
3136 }
3137
3138 end_page_writeback(page);
3139
3140 if (!done)
3141 continue;
3142
3143 end_extent_buffer_writeback(eb);
3144 } while (bvec >= bio->bi_io_vec);
3145
3146 bio_put(bio);
3147
3148 }
3149
3150 static int write_one_eb(struct extent_buffer *eb,
3151 struct btrfs_fs_info *fs_info,
3152 struct writeback_control *wbc,
3153 struct extent_page_data *epd)
3154 {
3155 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3156 u64 offset = eb->start;
3157 unsigned long i, num_pages;
3158 int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3159 int ret = 0;
3160
3161 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3162 num_pages = num_extent_pages(eb->start, eb->len);
3163 atomic_set(&eb->io_pages, num_pages);
3164 for (i = 0; i < num_pages; i++) {
3165 struct page *p = extent_buffer_page(eb, i);
3166
3167 clear_page_dirty_for_io(p);
3168 set_page_writeback(p);
3169 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3170 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3171 -1, end_bio_extent_buffer_writepage,
3172 0, 0, 0);
3173 if (ret) {
3174 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3175 SetPageError(p);
3176 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3177 end_extent_buffer_writeback(eb);
3178 ret = -EIO;
3179 break;
3180 }
3181 offset += PAGE_CACHE_SIZE;
3182 update_nr_written(p, wbc, 1);
3183 unlock_page(p);
3184 }
3185
3186 if (unlikely(ret)) {
3187 for (; i < num_pages; i++) {
3188 struct page *p = extent_buffer_page(eb, i);
3189 unlock_page(p);
3190 }
3191 }
3192
3193 return ret;
3194 }
3195
3196 int btree_write_cache_pages(struct address_space *mapping,
3197 struct writeback_control *wbc)
3198 {
3199 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3200 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3201 struct extent_buffer *eb, *prev_eb = NULL;
3202 struct extent_page_data epd = {
3203 .bio = NULL,
3204 .tree = tree,
3205 .extent_locked = 0,
3206 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3207 };
3208 int ret = 0;
3209 int done = 0;
3210 int nr_to_write_done = 0;
3211 struct pagevec pvec;
3212 int nr_pages;
3213 pgoff_t index;
3214 pgoff_t end; /* Inclusive */
3215 int scanned = 0;
3216 int tag;
3217
3218 pagevec_init(&pvec, 0);
3219 if (wbc->range_cyclic) {
3220 index = mapping->writeback_index; /* Start from prev offset */
3221 end = -1;
3222 } else {
3223 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3224 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3225 scanned = 1;
3226 }
3227 if (wbc->sync_mode == WB_SYNC_ALL)
3228 tag = PAGECACHE_TAG_TOWRITE;
3229 else
3230 tag = PAGECACHE_TAG_DIRTY;
3231 retry:
3232 if (wbc->sync_mode == WB_SYNC_ALL)
3233 tag_pages_for_writeback(mapping, index, end);
3234 while (!done && !nr_to_write_done && (index <= end) &&
3235 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3236 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3237 unsigned i;
3238
3239 scanned = 1;
3240 for (i = 0; i < nr_pages; i++) {
3241 struct page *page = pvec.pages[i];
3242
3243 if (!PagePrivate(page))
3244 continue;
3245
3246 if (!wbc->range_cyclic && page->index > end) {
3247 done = 1;
3248 break;
3249 }
3250
3251 eb = (struct extent_buffer *)page->private;
3252 if (!eb) {
3253 WARN_ON(1);
3254 continue;
3255 }
3256
3257 if (eb == prev_eb)
3258 continue;
3259
3260 if (!atomic_inc_not_zero(&eb->refs)) {
3261 WARN_ON(1);
3262 continue;
3263 }
3264
3265 prev_eb = eb;
3266 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3267 if (!ret) {
3268 free_extent_buffer(eb);
3269 continue;
3270 }
3271
3272 ret = write_one_eb(eb, fs_info, wbc, &epd);
3273 if (ret) {
3274 done = 1;
3275 free_extent_buffer(eb);
3276 break;
3277 }
3278 free_extent_buffer(eb);
3279
3280 /*
3281 * the filesystem may choose to bump up nr_to_write.
3282 * We have to make sure to honor the new nr_to_write
3283 * at any time
3284 */
3285 nr_to_write_done = wbc->nr_to_write <= 0;
3286 }
3287 pagevec_release(&pvec);
3288 cond_resched();
3289 }
3290 if (!scanned && !done) {
3291 /*
3292 * We hit the last page and there is more work to be done: wrap
3293 * back to the start of the file
3294 */
3295 scanned = 1;
3296 index = 0;
3297 goto retry;
3298 }
3299 flush_write_bio(&epd);
3300 return ret;
3301 }
3302
3303 /**
3304 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3305 * @mapping: address space structure to write
3306 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3307 * @writepage: function called for each page
3308 * @data: data passed to writepage function
3309 *
3310 * If a page is already under I/O, write_cache_pages() skips it, even
3311 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3312 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3313 * and msync() need to guarantee that all the data which was dirty at the time
3314 * the call was made get new I/O started against them. If wbc->sync_mode is
3315 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3316 * existing IO to complete.
3317 */
3318 static int extent_write_cache_pages(struct extent_io_tree *tree,
3319 struct address_space *mapping,
3320 struct writeback_control *wbc,
3321 writepage_t writepage, void *data,
3322 void (*flush_fn)(void *))
3323 {
3324 struct inode *inode = mapping->host;
3325 int ret = 0;
3326 int done = 0;
3327 int nr_to_write_done = 0;
3328 struct pagevec pvec;
3329 int nr_pages;
3330 pgoff_t index;
3331 pgoff_t end; /* Inclusive */
3332 int scanned = 0;
3333 int tag;
3334
3335 /*
3336 * We have to hold onto the inode so that ordered extents can do their
3337 * work when the IO finishes. The alternative to this is failing to add
3338 * an ordered extent if the igrab() fails there and that is a huge pain
3339 * to deal with, so instead just hold onto the inode throughout the
3340 * writepages operation. If it fails here we are freeing up the inode
3341 * anyway and we'd rather not waste our time writing out stuff that is
3342 * going to be truncated anyway.
3343 */
3344 if (!igrab(inode))
3345 return 0;
3346
3347 pagevec_init(&pvec, 0);
3348 if (wbc->range_cyclic) {
3349 index = mapping->writeback_index; /* Start from prev offset */
3350 end = -1;
3351 } else {
3352 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3353 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3354 scanned = 1;
3355 }
3356 if (wbc->sync_mode == WB_SYNC_ALL)
3357 tag = PAGECACHE_TAG_TOWRITE;
3358 else
3359 tag = PAGECACHE_TAG_DIRTY;
3360 retry:
3361 if (wbc->sync_mode == WB_SYNC_ALL)
3362 tag_pages_for_writeback(mapping, index, end);
3363 while (!done && !nr_to_write_done && (index <= end) &&
3364 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3365 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3366 unsigned i;
3367
3368 scanned = 1;
3369 for (i = 0; i < nr_pages; i++) {
3370 struct page *page = pvec.pages[i];
3371
3372 /*
3373 * At this point we hold neither mapping->tree_lock nor
3374 * lock on the page itself: the page may be truncated or
3375 * invalidated (changing page->mapping to NULL), or even
3376 * swizzled back from swapper_space to tmpfs file
3377 * mapping
3378 */
3379 if (tree->ops &&
3380 tree->ops->write_cache_pages_lock_hook) {
3381 tree->ops->write_cache_pages_lock_hook(page,
3382 data, flush_fn);
3383 } else {
3384 if (!trylock_page(page)) {
3385 flush_fn(data);
3386 lock_page(page);
3387 }
3388 }
3389
3390 if (unlikely(page->mapping != mapping)) {
3391 unlock_page(page);
3392 continue;
3393 }
3394
3395 if (!wbc->range_cyclic && page->index > end) {
3396 done = 1;
3397 unlock_page(page);
3398 continue;
3399 }
3400
3401 if (wbc->sync_mode != WB_SYNC_NONE) {
3402 if (PageWriteback(page))
3403 flush_fn(data);
3404 wait_on_page_writeback(page);
3405 }
3406
3407 if (PageWriteback(page) ||
3408 !clear_page_dirty_for_io(page)) {
3409 unlock_page(page);
3410 continue;
3411 }
3412
3413 ret = (*writepage)(page, wbc, data);
3414
3415 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3416 unlock_page(page);
3417 ret = 0;
3418 }
3419 if (ret)
3420 done = 1;
3421
3422 /*
3423 * the filesystem may choose to bump up nr_to_write.
3424 * We have to make sure to honor the new nr_to_write
3425 * at any time
3426 */
3427 nr_to_write_done = wbc->nr_to_write <= 0;
3428 }
3429 pagevec_release(&pvec);
3430 cond_resched();
3431 }
3432 if (!scanned && !done) {
3433 /*
3434 * We hit the last page and there is more work to be done: wrap
3435 * back to the start of the file
3436 */
3437 scanned = 1;
3438 index = 0;
3439 goto retry;
3440 }
3441 btrfs_add_delayed_iput(inode);
3442 return ret;
3443 }
3444
3445 static void flush_epd_write_bio(struct extent_page_data *epd)
3446 {
3447 if (epd->bio) {
3448 int rw = WRITE;
3449 int ret;
3450
3451 if (epd->sync_io)
3452 rw = WRITE_SYNC;
3453
3454 ret = submit_one_bio(rw, epd->bio, 0, 0);
3455 BUG_ON(ret < 0); /* -ENOMEM */
3456 epd->bio = NULL;
3457 }
3458 }
3459
3460 static noinline void flush_write_bio(void *data)
3461 {
3462 struct extent_page_data *epd = data;
3463 flush_epd_write_bio(epd);
3464 }
3465
3466 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3467 get_extent_t *get_extent,
3468 struct writeback_control *wbc)
3469 {
3470 int ret;
3471 struct extent_page_data epd = {
3472 .bio = NULL,
3473 .tree = tree,
3474 .get_extent = get_extent,
3475 .extent_locked = 0,
3476 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3477 };
3478
3479 ret = __extent_writepage(page, wbc, &epd);
3480
3481 flush_epd_write_bio(&epd);
3482 return ret;
3483 }
3484
3485 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3486 u64 start, u64 end, get_extent_t *get_extent,
3487 int mode)
3488 {
3489 int ret = 0;
3490 struct address_space *mapping = inode->i_mapping;
3491 struct page *page;
3492 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3493 PAGE_CACHE_SHIFT;
3494
3495 struct extent_page_data epd = {
3496 .bio = NULL,
3497 .tree = tree,
3498 .get_extent = get_extent,
3499 .extent_locked = 1,
3500 .sync_io = mode == WB_SYNC_ALL,
3501 };
3502 struct writeback_control wbc_writepages = {
3503 .sync_mode = mode,
3504 .nr_to_write = nr_pages * 2,
3505 .range_start = start,
3506 .range_end = end + 1,
3507 };
3508
3509 while (start <= end) {
3510 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3511 if (clear_page_dirty_for_io(page))
3512 ret = __extent_writepage(page, &wbc_writepages, &epd);
3513 else {
3514 if (tree->ops && tree->ops->writepage_end_io_hook)
3515 tree->ops->writepage_end_io_hook(page, start,
3516 start + PAGE_CACHE_SIZE - 1,
3517 NULL, 1);
3518 unlock_page(page);
3519 }
3520 page_cache_release(page);
3521 start += PAGE_CACHE_SIZE;
3522 }
3523
3524 flush_epd_write_bio(&epd);
3525 return ret;
3526 }
3527
3528 int extent_writepages(struct extent_io_tree *tree,
3529 struct address_space *mapping,
3530 get_extent_t *get_extent,
3531 struct writeback_control *wbc)
3532 {
3533 int ret = 0;
3534 struct extent_page_data epd = {
3535 .bio = NULL,
3536 .tree = tree,
3537 .get_extent = get_extent,
3538 .extent_locked = 0,
3539 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3540 };
3541
3542 ret = extent_write_cache_pages(tree, mapping, wbc,
3543 __extent_writepage, &epd,
3544 flush_write_bio);
3545 flush_epd_write_bio(&epd);
3546 return ret;
3547 }
3548
3549 int extent_readpages(struct extent_io_tree *tree,
3550 struct address_space *mapping,
3551 struct list_head *pages, unsigned nr_pages,
3552 get_extent_t get_extent)
3553 {
3554 struct bio *bio = NULL;
3555 unsigned page_idx;
3556 unsigned long bio_flags = 0;
3557 struct page *pagepool[16];
3558 struct page *page;
3559 int i = 0;
3560 int nr = 0;
3561
3562 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3563 page = list_entry(pages->prev, struct page, lru);
3564
3565 prefetchw(&page->flags);
3566 list_del(&page->lru);
3567 if (add_to_page_cache_lru(page, mapping,
3568 page->index, GFP_NOFS)) {
3569 page_cache_release(page);
3570 continue;
3571 }
3572
3573 pagepool[nr++] = page;
3574 if (nr < ARRAY_SIZE(pagepool))
3575 continue;
3576 for (i = 0; i < nr; i++) {
3577 __extent_read_full_page(tree, pagepool[i], get_extent,
3578 &bio, 0, &bio_flags);
3579 page_cache_release(pagepool[i]);
3580 }
3581 nr = 0;
3582 }
3583 for (i = 0; i < nr; i++) {
3584 __extent_read_full_page(tree, pagepool[i], get_extent,
3585 &bio, 0, &bio_flags);
3586 page_cache_release(pagepool[i]);
3587 }
3588
3589 BUG_ON(!list_empty(pages));
3590 if (bio)
3591 return submit_one_bio(READ, bio, 0, bio_flags);
3592 return 0;
3593 }
3594
3595 /*
3596 * basic invalidatepage code, this waits on any locked or writeback
3597 * ranges corresponding to the page, and then deletes any extent state
3598 * records from the tree
3599 */
3600 int extent_invalidatepage(struct extent_io_tree *tree,
3601 struct page *page, unsigned long offset)
3602 {
3603 struct extent_state *cached_state = NULL;
3604 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3605 u64 end = start + PAGE_CACHE_SIZE - 1;
3606 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3607
3608 start += (offset + blocksize - 1) & ~(blocksize - 1);
3609 if (start > end)
3610 return 0;
3611
3612 lock_extent_bits(tree, start, end, 0, &cached_state);
3613 wait_on_page_writeback(page);
3614 clear_extent_bit(tree, start, end,
3615 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3616 EXTENT_DO_ACCOUNTING,
3617 1, 1, &cached_state, GFP_NOFS);
3618 return 0;
3619 }
3620
3621 /*
3622 * a helper for releasepage, this tests for areas of the page that
3623 * are locked or under IO and drops the related state bits if it is safe
3624 * to drop the page.
3625 */
3626 int try_release_extent_state(struct extent_map_tree *map,
3627 struct extent_io_tree *tree, struct page *page,
3628 gfp_t mask)
3629 {
3630 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3631 u64 end = start + PAGE_CACHE_SIZE - 1;
3632 int ret = 1;
3633
3634 if (test_range_bit(tree, start, end,
3635 EXTENT_IOBITS, 0, NULL))
3636 ret = 0;
3637 else {
3638 if ((mask & GFP_NOFS) == GFP_NOFS)
3639 mask = GFP_NOFS;
3640 /*
3641 * at this point we can safely clear everything except the
3642 * locked bit and the nodatasum bit
3643 */
3644 ret = clear_extent_bit(tree, start, end,
3645 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3646 0, 0, NULL, mask);
3647
3648 /* if clear_extent_bit failed for enomem reasons,
3649 * we can't allow the release to continue.
3650 */
3651 if (ret < 0)
3652 ret = 0;
3653 else
3654 ret = 1;
3655 }
3656 return ret;
3657 }
3658
3659 /*
3660 * a helper for releasepage. As long as there are no locked extents
3661 * in the range corresponding to the page, both state records and extent
3662 * map records are removed
3663 */
3664 int try_release_extent_mapping(struct extent_map_tree *map,
3665 struct extent_io_tree *tree, struct page *page,
3666 gfp_t mask)
3667 {
3668 struct extent_map *em;
3669 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3670 u64 end = start + PAGE_CACHE_SIZE - 1;
3671
3672 if ((mask & __GFP_WAIT) &&
3673 page->mapping->host->i_size > 16 * 1024 * 1024) {
3674 u64 len;
3675 while (start <= end) {
3676 len = end - start + 1;
3677 write_lock(&map->lock);
3678 em = lookup_extent_mapping(map, start, len);
3679 if (!em) {
3680 write_unlock(&map->lock);
3681 break;
3682 }
3683 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3684 em->start != start) {
3685 write_unlock(&map->lock);
3686 free_extent_map(em);
3687 break;
3688 }
3689 if (!test_range_bit(tree, em->start,
3690 extent_map_end(em) - 1,
3691 EXTENT_LOCKED | EXTENT_WRITEBACK,
3692 0, NULL)) {
3693 remove_extent_mapping(map, em);
3694 /* once for the rb tree */
3695 free_extent_map(em);
3696 }
3697 start = extent_map_end(em);
3698 write_unlock(&map->lock);
3699
3700 /* once for us */
3701 free_extent_map(em);
3702 }
3703 }
3704 return try_release_extent_state(map, tree, page, mask);
3705 }
3706
3707 /*
3708 * helper function for fiemap, which doesn't want to see any holes.
3709 * This maps until we find something past 'last'
3710 */
3711 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3712 u64 offset,
3713 u64 last,
3714 get_extent_t *get_extent)
3715 {
3716 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3717 struct extent_map *em;
3718 u64 len;
3719
3720 if (offset >= last)
3721 return NULL;
3722
3723 while(1) {
3724 len = last - offset;
3725 if (len == 0)
3726 break;
3727 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3728 em = get_extent(inode, NULL, 0, offset, len, 0);
3729 if (IS_ERR_OR_NULL(em))
3730 return em;
3731
3732 /* if this isn't a hole return it */
3733 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3734 em->block_start != EXTENT_MAP_HOLE) {
3735 return em;
3736 }
3737
3738 /* this is a hole, advance to the next extent */
3739 offset = extent_map_end(em);
3740 free_extent_map(em);
3741 if (offset >= last)
3742 break;
3743 }
3744 return NULL;
3745 }
3746
3747 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3748 __u64 start, __u64 len, get_extent_t *get_extent)
3749 {
3750 int ret = 0;
3751 u64 off = start;
3752 u64 max = start + len;
3753 u32 flags = 0;
3754 u32 found_type;
3755 u64 last;
3756 u64 last_for_get_extent = 0;
3757 u64 disko = 0;
3758 u64 isize = i_size_read(inode);
3759 struct btrfs_key found_key;
3760 struct extent_map *em = NULL;
3761 struct extent_state *cached_state = NULL;
3762 struct btrfs_path *path;
3763 struct btrfs_file_extent_item *item;
3764 int end = 0;
3765 u64 em_start = 0;
3766 u64 em_len = 0;
3767 u64 em_end = 0;
3768 unsigned long emflags;
3769
3770 if (len == 0)
3771 return -EINVAL;
3772
3773 path = btrfs_alloc_path();
3774 if (!path)
3775 return -ENOMEM;
3776 path->leave_spinning = 1;
3777
3778 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3779 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3780
3781 /*
3782 * lookup the last file extent. We're not using i_size here
3783 * because there might be preallocation past i_size
3784 */
3785 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3786 path, btrfs_ino(inode), -1, 0);
3787 if (ret < 0) {
3788 btrfs_free_path(path);
3789 return ret;
3790 }
3791 WARN_ON(!ret);
3792 path->slots[0]--;
3793 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3794 struct btrfs_file_extent_item);
3795 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3796 found_type = btrfs_key_type(&found_key);
3797
3798 /* No extents, but there might be delalloc bits */
3799 if (found_key.objectid != btrfs_ino(inode) ||
3800 found_type != BTRFS_EXTENT_DATA_KEY) {
3801 /* have to trust i_size as the end */
3802 last = (u64)-1;
3803 last_for_get_extent = isize;
3804 } else {
3805 /*
3806 * remember the start of the last extent. There are a
3807 * bunch of different factors that go into the length of the
3808 * extent, so its much less complex to remember where it started
3809 */
3810 last = found_key.offset;
3811 last_for_get_extent = last + 1;
3812 }
3813 btrfs_free_path(path);
3814
3815 /*
3816 * we might have some extents allocated but more delalloc past those
3817 * extents. so, we trust isize unless the start of the last extent is
3818 * beyond isize
3819 */
3820 if (last < isize) {
3821 last = (u64)-1;
3822 last_for_get_extent = isize;
3823 }
3824
3825 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3826 &cached_state);
3827
3828 em = get_extent_skip_holes(inode, start, last_for_get_extent,
3829 get_extent);
3830 if (!em)
3831 goto out;
3832 if (IS_ERR(em)) {
3833 ret = PTR_ERR(em);
3834 goto out;
3835 }
3836
3837 while (!end) {
3838 u64 offset_in_extent;
3839
3840 /* break if the extent we found is outside the range */
3841 if (em->start >= max || extent_map_end(em) < off)
3842 break;
3843
3844 /*
3845 * get_extent may return an extent that starts before our
3846 * requested range. We have to make sure the ranges
3847 * we return to fiemap always move forward and don't
3848 * overlap, so adjust the offsets here
3849 */
3850 em_start = max(em->start, off);
3851
3852 /*
3853 * record the offset from the start of the extent
3854 * for adjusting the disk offset below
3855 */
3856 offset_in_extent = em_start - em->start;
3857 em_end = extent_map_end(em);
3858 em_len = em_end - em_start;
3859 emflags = em->flags;
3860 disko = 0;
3861 flags = 0;
3862
3863 /*
3864 * bump off for our next call to get_extent
3865 */
3866 off = extent_map_end(em);
3867 if (off >= max)
3868 end = 1;
3869
3870 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3871 end = 1;
3872 flags |= FIEMAP_EXTENT_LAST;
3873 } else if (em->block_start == EXTENT_MAP_INLINE) {
3874 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3875 FIEMAP_EXTENT_NOT_ALIGNED);
3876 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3877 flags |= (FIEMAP_EXTENT_DELALLOC |
3878 FIEMAP_EXTENT_UNKNOWN);
3879 } else {
3880 disko = em->block_start + offset_in_extent;
3881 }
3882 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3883 flags |= FIEMAP_EXTENT_ENCODED;
3884
3885 free_extent_map(em);
3886 em = NULL;
3887 if ((em_start >= last) || em_len == (u64)-1 ||
3888 (last == (u64)-1 && isize <= em_end)) {
3889 flags |= FIEMAP_EXTENT_LAST;
3890 end = 1;
3891 }
3892
3893 /* now scan forward to see if this is really the last extent. */
3894 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3895 get_extent);
3896 if (IS_ERR(em)) {
3897 ret = PTR_ERR(em);
3898 goto out;
3899 }
3900 if (!em) {
3901 flags |= FIEMAP_EXTENT_LAST;
3902 end = 1;
3903 }
3904 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3905 em_len, flags);
3906 if (ret)
3907 goto out_free;
3908 }
3909 out_free:
3910 free_extent_map(em);
3911 out:
3912 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3913 &cached_state, GFP_NOFS);
3914 return ret;
3915 }
3916
3917 inline struct page *extent_buffer_page(struct extent_buffer *eb,
3918 unsigned long i)
3919 {
3920 return eb->pages[i];
3921 }
3922
3923 inline unsigned long num_extent_pages(u64 start, u64 len)
3924 {
3925 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3926 (start >> PAGE_CACHE_SHIFT);
3927 }
3928
3929 static void __free_extent_buffer(struct extent_buffer *eb)
3930 {
3931 #if LEAK_DEBUG
3932 unsigned long flags;
3933 spin_lock_irqsave(&leak_lock, flags);
3934 list_del(&eb->leak_list);
3935 spin_unlock_irqrestore(&leak_lock, flags);
3936 #endif
3937 if (eb->pages && eb->pages != eb->inline_pages)
3938 kfree(eb->pages);
3939 kmem_cache_free(extent_buffer_cache, eb);
3940 }
3941
3942 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3943 u64 start,
3944 unsigned long len,
3945 gfp_t mask)
3946 {
3947 struct extent_buffer *eb = NULL;
3948 #if LEAK_DEBUG
3949 unsigned long flags;
3950 #endif
3951
3952 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3953 if (eb == NULL)
3954 return NULL;
3955 eb->start = start;
3956 eb->len = len;
3957 eb->tree = tree;
3958 eb->bflags = 0;
3959 rwlock_init(&eb->lock);
3960 atomic_set(&eb->write_locks, 0);
3961 atomic_set(&eb->read_locks, 0);
3962 atomic_set(&eb->blocking_readers, 0);
3963 atomic_set(&eb->blocking_writers, 0);
3964 atomic_set(&eb->spinning_readers, 0);
3965 atomic_set(&eb->spinning_writers, 0);
3966 eb->lock_nested = 0;
3967 init_waitqueue_head(&eb->write_lock_wq);
3968 init_waitqueue_head(&eb->read_lock_wq);
3969
3970 #if LEAK_DEBUG
3971 spin_lock_irqsave(&leak_lock, flags);
3972 list_add(&eb->leak_list, &buffers);
3973 spin_unlock_irqrestore(&leak_lock, flags);
3974 #endif
3975 spin_lock_init(&eb->refs_lock);
3976 atomic_set(&eb->refs, 1);
3977 atomic_set(&eb->io_pages, 0);
3978
3979 if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
3980 struct page **pages;
3981 int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
3982 PAGE_CACHE_SHIFT;
3983 pages = kzalloc(num_pages, mask);
3984 if (!pages) {
3985 __free_extent_buffer(eb);
3986 return NULL;
3987 }
3988 eb->pages = pages;
3989 } else {
3990 eb->pages = eb->inline_pages;
3991 }
3992
3993 return eb;
3994 }
3995
3996 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
3997 {
3998 unsigned long i;
3999 struct page *p;
4000 struct extent_buffer *new;
4001 unsigned long num_pages = num_extent_pages(src->start, src->len);
4002
4003 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4004 if (new == NULL)
4005 return NULL;
4006
4007 for (i = 0; i < num_pages; i++) {
4008 p = alloc_page(GFP_ATOMIC);
4009 BUG_ON(!p);
4010 attach_extent_buffer_page(new, p);
4011 WARN_ON(PageDirty(p));
4012 SetPageUptodate(p);
4013 new->pages[i] = p;
4014 }
4015
4016 copy_extent_buffer(new, src, 0, 0, src->len);
4017 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4018 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4019
4020 return new;
4021 }
4022
4023 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4024 {
4025 struct extent_buffer *eb;
4026 unsigned long num_pages = num_extent_pages(0, len);
4027 unsigned long i;
4028
4029 eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4030 if (!eb)
4031 return NULL;
4032
4033 for (i = 0; i < num_pages; i++) {
4034 eb->pages[i] = alloc_page(GFP_ATOMIC);
4035 if (!eb->pages[i])
4036 goto err;
4037 }
4038 set_extent_buffer_uptodate(eb);
4039 btrfs_set_header_nritems(eb, 0);
4040 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4041
4042 return eb;
4043 err:
4044 for (i--; i > 0; i--)
4045 __free_page(eb->pages[i]);
4046 __free_extent_buffer(eb);
4047 return NULL;
4048 }
4049
4050 static int extent_buffer_under_io(struct extent_buffer *eb)
4051 {
4052 return (atomic_read(&eb->io_pages) ||
4053 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4054 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4055 }
4056
4057 /*
4058 * Helper for releasing extent buffer page.
4059 */
4060 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4061 unsigned long start_idx)
4062 {
4063 unsigned long index;
4064 unsigned long num_pages;
4065 struct page *page;
4066 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4067
4068 BUG_ON(extent_buffer_under_io(eb));
4069
4070 num_pages = num_extent_pages(eb->start, eb->len);
4071 index = start_idx + num_pages;
4072 if (start_idx >= index)
4073 return;
4074
4075 do {
4076 index--;
4077 page = extent_buffer_page(eb, index);
4078 if (page && mapped) {
4079 spin_lock(&page->mapping->private_lock);
4080 /*
4081 * We do this since we'll remove the pages after we've
4082 * removed the eb from the radix tree, so we could race
4083 * and have this page now attached to the new eb. So
4084 * only clear page_private if it's still connected to
4085 * this eb.
4086 */
4087 if (PagePrivate(page) &&
4088 page->private == (unsigned long)eb) {
4089 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4090 BUG_ON(PageDirty(page));
4091 BUG_ON(PageWriteback(page));
4092 /*
4093 * We need to make sure we haven't be attached
4094 * to a new eb.
4095 */
4096 ClearPagePrivate(page);
4097 set_page_private(page, 0);
4098 /* One for the page private */
4099 page_cache_release(page);
4100 }
4101 spin_unlock(&page->mapping->private_lock);
4102
4103 }
4104 if (page) {
4105 /* One for when we alloced the page */
4106 page_cache_release(page);
4107 }
4108 } while (index != start_idx);
4109 }
4110
4111 /*
4112 * Helper for releasing the extent buffer.
4113 */
4114 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4115 {
4116 btrfs_release_extent_buffer_page(eb, 0);
4117 __free_extent_buffer(eb);
4118 }
4119
4120 static void check_buffer_tree_ref(struct extent_buffer *eb)
4121 {
4122 /* the ref bit is tricky. We have to make sure it is set
4123 * if we have the buffer dirty. Otherwise the
4124 * code to free a buffer can end up dropping a dirty
4125 * page
4126 *
4127 * Once the ref bit is set, it won't go away while the
4128 * buffer is dirty or in writeback, and it also won't
4129 * go away while we have the reference count on the
4130 * eb bumped.
4131 *
4132 * We can't just set the ref bit without bumping the
4133 * ref on the eb because free_extent_buffer might
4134 * see the ref bit and try to clear it. If this happens
4135 * free_extent_buffer might end up dropping our original
4136 * ref by mistake and freeing the page before we are able
4137 * to add one more ref.
4138 *
4139 * So bump the ref count first, then set the bit. If someone
4140 * beat us to it, drop the ref we added.
4141 */
4142 spin_lock(&eb->refs_lock);
4143 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4144 atomic_inc(&eb->refs);
4145 spin_unlock(&eb->refs_lock);
4146 }
4147
4148 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4149 {
4150 unsigned long num_pages, i;
4151
4152 check_buffer_tree_ref(eb);
4153
4154 num_pages = num_extent_pages(eb->start, eb->len);
4155 for (i = 0; i < num_pages; i++) {
4156 struct page *p = extent_buffer_page(eb, i);
4157 mark_page_accessed(p);
4158 }
4159 }
4160
4161 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4162 u64 start, unsigned long len)
4163 {
4164 unsigned long num_pages = num_extent_pages(start, len);
4165 unsigned long i;
4166 unsigned long index = start >> PAGE_CACHE_SHIFT;
4167 struct extent_buffer *eb;
4168 struct extent_buffer *exists = NULL;
4169 struct page *p;
4170 struct address_space *mapping = tree->mapping;
4171 int uptodate = 1;
4172 int ret;
4173
4174 rcu_read_lock();
4175 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4176 if (eb && atomic_inc_not_zero(&eb->refs)) {
4177 rcu_read_unlock();
4178 mark_extent_buffer_accessed(eb);
4179 return eb;
4180 }
4181 rcu_read_unlock();
4182
4183 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4184 if (!eb)
4185 return NULL;
4186
4187 for (i = 0; i < num_pages; i++, index++) {
4188 p = find_or_create_page(mapping, index, GFP_NOFS);
4189 if (!p) {
4190 WARN_ON(1);
4191 goto free_eb;
4192 }
4193
4194 spin_lock(&mapping->private_lock);
4195 if (PagePrivate(p)) {
4196 /*
4197 * We could have already allocated an eb for this page
4198 * and attached one so lets see if we can get a ref on
4199 * the existing eb, and if we can we know it's good and
4200 * we can just return that one, else we know we can just
4201 * overwrite page->private.
4202 */
4203 exists = (struct extent_buffer *)p->private;
4204 if (atomic_inc_not_zero(&exists->refs)) {
4205 spin_unlock(&mapping->private_lock);
4206 unlock_page(p);
4207 page_cache_release(p);
4208 mark_extent_buffer_accessed(exists);
4209 goto free_eb;
4210 }
4211
4212 /*
4213 * Do this so attach doesn't complain and we need to
4214 * drop the ref the old guy had.
4215 */
4216 ClearPagePrivate(p);
4217 WARN_ON(PageDirty(p));
4218 page_cache_release(p);
4219 }
4220 attach_extent_buffer_page(eb, p);
4221 spin_unlock(&mapping->private_lock);
4222 WARN_ON(PageDirty(p));
4223 mark_page_accessed(p);
4224 eb->pages[i] = p;
4225 if (!PageUptodate(p))
4226 uptodate = 0;
4227
4228 /*
4229 * see below about how we avoid a nasty race with release page
4230 * and why we unlock later
4231 */
4232 }
4233 if (uptodate)
4234 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4235 again:
4236 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4237 if (ret)
4238 goto free_eb;
4239
4240 spin_lock(&tree->buffer_lock);
4241 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4242 if (ret == -EEXIST) {
4243 exists = radix_tree_lookup(&tree->buffer,
4244 start >> PAGE_CACHE_SHIFT);
4245 if (!atomic_inc_not_zero(&exists->refs)) {
4246 spin_unlock(&tree->buffer_lock);
4247 radix_tree_preload_end();
4248 exists = NULL;
4249 goto again;
4250 }
4251 spin_unlock(&tree->buffer_lock);
4252 radix_tree_preload_end();
4253 mark_extent_buffer_accessed(exists);
4254 goto free_eb;
4255 }
4256 /* add one reference for the tree */
4257 check_buffer_tree_ref(eb);
4258 spin_unlock(&tree->buffer_lock);
4259 radix_tree_preload_end();
4260
4261 /*
4262 * there is a race where release page may have
4263 * tried to find this extent buffer in the radix
4264 * but failed. It will tell the VM it is safe to
4265 * reclaim the, and it will clear the page private bit.
4266 * We must make sure to set the page private bit properly
4267 * after the extent buffer is in the radix tree so
4268 * it doesn't get lost
4269 */
4270 SetPageChecked(eb->pages[0]);
4271 for (i = 1; i < num_pages; i++) {
4272 p = extent_buffer_page(eb, i);
4273 ClearPageChecked(p);
4274 unlock_page(p);
4275 }
4276 unlock_page(eb->pages[0]);
4277 return eb;
4278
4279 free_eb:
4280 for (i = 0; i < num_pages; i++) {
4281 if (eb->pages[i])
4282 unlock_page(eb->pages[i]);
4283 }
4284
4285 WARN_ON(!atomic_dec_and_test(&eb->refs));
4286 btrfs_release_extent_buffer(eb);
4287 return exists;
4288 }
4289
4290 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4291 u64 start, unsigned long len)
4292 {
4293 struct extent_buffer *eb;
4294
4295 rcu_read_lock();
4296 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4297 if (eb && atomic_inc_not_zero(&eb->refs)) {
4298 rcu_read_unlock();
4299 mark_extent_buffer_accessed(eb);
4300 return eb;
4301 }
4302 rcu_read_unlock();
4303
4304 return NULL;
4305 }
4306
4307 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4308 {
4309 struct extent_buffer *eb =
4310 container_of(head, struct extent_buffer, rcu_head);
4311
4312 __free_extent_buffer(eb);
4313 }
4314
4315 /* Expects to have eb->eb_lock already held */
4316 static int release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4317 {
4318 WARN_ON(atomic_read(&eb->refs) == 0);
4319 if (atomic_dec_and_test(&eb->refs)) {
4320 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4321 spin_unlock(&eb->refs_lock);
4322 } else {
4323 struct extent_io_tree *tree = eb->tree;
4324
4325 spin_unlock(&eb->refs_lock);
4326
4327 spin_lock(&tree->buffer_lock);
4328 radix_tree_delete(&tree->buffer,
4329 eb->start >> PAGE_CACHE_SHIFT);
4330 spin_unlock(&tree->buffer_lock);
4331 }
4332
4333 /* Should be safe to release our pages at this point */
4334 btrfs_release_extent_buffer_page(eb, 0);
4335
4336 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4337 return 1;
4338 }
4339 spin_unlock(&eb->refs_lock);
4340
4341 return 0;
4342 }
4343
4344 void free_extent_buffer(struct extent_buffer *eb)
4345 {
4346 if (!eb)
4347 return;
4348
4349 spin_lock(&eb->refs_lock);
4350 if (atomic_read(&eb->refs) == 2 &&
4351 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4352 atomic_dec(&eb->refs);
4353
4354 if (atomic_read(&eb->refs) == 2 &&
4355 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4356 !extent_buffer_under_io(eb) &&
4357 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4358 atomic_dec(&eb->refs);
4359
4360 /*
4361 * I know this is terrible, but it's temporary until we stop tracking
4362 * the uptodate bits and such for the extent buffers.
4363 */
4364 release_extent_buffer(eb, GFP_ATOMIC);
4365 }
4366
4367 void free_extent_buffer_stale(struct extent_buffer *eb)
4368 {
4369 if (!eb)
4370 return;
4371
4372 spin_lock(&eb->refs_lock);
4373 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4374
4375 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4376 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4377 atomic_dec(&eb->refs);
4378 release_extent_buffer(eb, GFP_NOFS);
4379 }
4380
4381 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4382 {
4383 unsigned long i;
4384 unsigned long num_pages;
4385 struct page *page;
4386
4387 num_pages = num_extent_pages(eb->start, eb->len);
4388
4389 for (i = 0; i < num_pages; i++) {
4390 page = extent_buffer_page(eb, i);
4391 if (!PageDirty(page))
4392 continue;
4393
4394 lock_page(page);
4395 WARN_ON(!PagePrivate(page));
4396
4397 clear_page_dirty_for_io(page);
4398 spin_lock_irq(&page->mapping->tree_lock);
4399 if (!PageDirty(page)) {
4400 radix_tree_tag_clear(&page->mapping->page_tree,
4401 page_index(page),
4402 PAGECACHE_TAG_DIRTY);
4403 }
4404 spin_unlock_irq(&page->mapping->tree_lock);
4405 ClearPageError(page);
4406 unlock_page(page);
4407 }
4408 WARN_ON(atomic_read(&eb->refs) == 0);
4409 }
4410
4411 int set_extent_buffer_dirty(struct extent_buffer *eb)
4412 {
4413 unsigned long i;
4414 unsigned long num_pages;
4415 int was_dirty = 0;
4416
4417 check_buffer_tree_ref(eb);
4418
4419 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4420
4421 num_pages = num_extent_pages(eb->start, eb->len);
4422 WARN_ON(atomic_read(&eb->refs) == 0);
4423 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4424
4425 for (i = 0; i < num_pages; i++)
4426 set_page_dirty(extent_buffer_page(eb, i));
4427 return was_dirty;
4428 }
4429
4430 static int range_straddles_pages(u64 start, u64 len)
4431 {
4432 if (len < PAGE_CACHE_SIZE)
4433 return 1;
4434 if (start & (PAGE_CACHE_SIZE - 1))
4435 return 1;
4436 if ((start + len) & (PAGE_CACHE_SIZE - 1))
4437 return 1;
4438 return 0;
4439 }
4440
4441 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4442 {
4443 unsigned long i;
4444 struct page *page;
4445 unsigned long num_pages;
4446
4447 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4448 num_pages = num_extent_pages(eb->start, eb->len);
4449 for (i = 0; i < num_pages; i++) {
4450 page = extent_buffer_page(eb, i);
4451 if (page)
4452 ClearPageUptodate(page);
4453 }
4454 return 0;
4455 }
4456
4457 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4458 {
4459 unsigned long i;
4460 struct page *page;
4461 unsigned long num_pages;
4462
4463 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4464 num_pages = num_extent_pages(eb->start, eb->len);
4465 for (i = 0; i < num_pages; i++) {
4466 page = extent_buffer_page(eb, i);
4467 SetPageUptodate(page);
4468 }
4469 return 0;
4470 }
4471
4472 int extent_range_uptodate(struct extent_io_tree *tree,
4473 u64 start, u64 end)
4474 {
4475 struct page *page;
4476 int ret;
4477 int pg_uptodate = 1;
4478 int uptodate;
4479 unsigned long index;
4480
4481 if (range_straddles_pages(start, end - start + 1)) {
4482 ret = test_range_bit(tree, start, end,
4483 EXTENT_UPTODATE, 1, NULL);
4484 if (ret)
4485 return 1;
4486 }
4487 while (start <= end) {
4488 index = start >> PAGE_CACHE_SHIFT;
4489 page = find_get_page(tree->mapping, index);
4490 if (!page)
4491 return 1;
4492 uptodate = PageUptodate(page);
4493 page_cache_release(page);
4494 if (!uptodate) {
4495 pg_uptodate = 0;
4496 break;
4497 }
4498 start += PAGE_CACHE_SIZE;
4499 }
4500 return pg_uptodate;
4501 }
4502
4503 int extent_buffer_uptodate(struct extent_buffer *eb)
4504 {
4505 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4506 }
4507
4508 int read_extent_buffer_pages(struct extent_io_tree *tree,
4509 struct extent_buffer *eb, u64 start, int wait,
4510 get_extent_t *get_extent, int mirror_num)
4511 {
4512 unsigned long i;
4513 unsigned long start_i;
4514 struct page *page;
4515 int err;
4516 int ret = 0;
4517 int locked_pages = 0;
4518 int all_uptodate = 1;
4519 unsigned long num_pages;
4520 unsigned long num_reads = 0;
4521 struct bio *bio = NULL;
4522 unsigned long bio_flags = 0;
4523
4524 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4525 return 0;
4526
4527 if (start) {
4528 WARN_ON(start < eb->start);
4529 start_i = (start >> PAGE_CACHE_SHIFT) -
4530 (eb->start >> PAGE_CACHE_SHIFT);
4531 } else {
4532 start_i = 0;
4533 }
4534
4535 num_pages = num_extent_pages(eb->start, eb->len);
4536 for (i = start_i; i < num_pages; i++) {
4537 page = extent_buffer_page(eb, i);
4538 if (wait == WAIT_NONE) {
4539 if (!trylock_page(page))
4540 goto unlock_exit;
4541 } else {
4542 lock_page(page);
4543 }
4544 locked_pages++;
4545 if (!PageUptodate(page)) {
4546 num_reads++;
4547 all_uptodate = 0;
4548 }
4549 }
4550 if (all_uptodate) {
4551 if (start_i == 0)
4552 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4553 goto unlock_exit;
4554 }
4555
4556 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4557 eb->read_mirror = 0;
4558 atomic_set(&eb->io_pages, num_reads);
4559 for (i = start_i; i < num_pages; i++) {
4560 page = extent_buffer_page(eb, i);
4561 if (!PageUptodate(page)) {
4562 ClearPageError(page);
4563 err = __extent_read_full_page(tree, page,
4564 get_extent, &bio,
4565 mirror_num, &bio_flags);
4566 if (err)
4567 ret = err;
4568 } else {
4569 unlock_page(page);
4570 }
4571 }
4572
4573 if (bio) {
4574 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4575 if (err)
4576 return err;
4577 }
4578
4579 if (ret || wait != WAIT_COMPLETE)
4580 return ret;
4581
4582 for (i = start_i; i < num_pages; i++) {
4583 page = extent_buffer_page(eb, i);
4584 wait_on_page_locked(page);
4585 if (!PageUptodate(page))
4586 ret = -EIO;
4587 }
4588
4589 return ret;
4590
4591 unlock_exit:
4592 i = start_i;
4593 while (locked_pages > 0) {
4594 page = extent_buffer_page(eb, i);
4595 i++;
4596 unlock_page(page);
4597 locked_pages--;
4598 }
4599 return ret;
4600 }
4601
4602 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4603 unsigned long start,
4604 unsigned long len)
4605 {
4606 size_t cur;
4607 size_t offset;
4608 struct page *page;
4609 char *kaddr;
4610 char *dst = (char *)dstv;
4611 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4612 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4613
4614 WARN_ON(start > eb->len);
4615 WARN_ON(start + len > eb->start + eb->len);
4616
4617 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4618
4619 while (len > 0) {
4620 page = extent_buffer_page(eb, i);
4621
4622 cur = min(len, (PAGE_CACHE_SIZE - offset));
4623 kaddr = page_address(page);
4624 memcpy(dst, kaddr + offset, cur);
4625
4626 dst += cur;
4627 len -= cur;
4628 offset = 0;
4629 i++;
4630 }
4631 }
4632
4633 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4634 unsigned long min_len, char **map,
4635 unsigned long *map_start,
4636 unsigned long *map_len)
4637 {
4638 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4639 char *kaddr;
4640 struct page *p;
4641 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4642 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4643 unsigned long end_i = (start_offset + start + min_len - 1) >>
4644 PAGE_CACHE_SHIFT;
4645
4646 if (i != end_i)
4647 return -EINVAL;
4648
4649 if (i == 0) {
4650 offset = start_offset;
4651 *map_start = 0;
4652 } else {
4653 offset = 0;
4654 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4655 }
4656
4657 if (start + min_len > eb->len) {
4658 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4659 "wanted %lu %lu\n", (unsigned long long)eb->start,
4660 eb->len, start, min_len);
4661 WARN_ON(1);
4662 return -EINVAL;
4663 }
4664
4665 p = extent_buffer_page(eb, i);
4666 kaddr = page_address(p);
4667 *map = kaddr + offset;
4668 *map_len = PAGE_CACHE_SIZE - offset;
4669 return 0;
4670 }
4671
4672 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4673 unsigned long start,
4674 unsigned long len)
4675 {
4676 size_t cur;
4677 size_t offset;
4678 struct page *page;
4679 char *kaddr;
4680 char *ptr = (char *)ptrv;
4681 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4682 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4683 int ret = 0;
4684
4685 WARN_ON(start > eb->len);
4686 WARN_ON(start + len > eb->start + eb->len);
4687
4688 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4689
4690 while (len > 0) {
4691 page = extent_buffer_page(eb, i);
4692
4693 cur = min(len, (PAGE_CACHE_SIZE - offset));
4694
4695 kaddr = page_address(page);
4696 ret = memcmp(ptr, kaddr + offset, cur);
4697 if (ret)
4698 break;
4699
4700 ptr += cur;
4701 len -= cur;
4702 offset = 0;
4703 i++;
4704 }
4705 return ret;
4706 }
4707
4708 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4709 unsigned long start, unsigned long len)
4710 {
4711 size_t cur;
4712 size_t offset;
4713 struct page *page;
4714 char *kaddr;
4715 char *src = (char *)srcv;
4716 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4717 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4718
4719 WARN_ON(start > eb->len);
4720 WARN_ON(start + len > eb->start + eb->len);
4721
4722 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4723
4724 while (len > 0) {
4725 page = extent_buffer_page(eb, i);
4726 WARN_ON(!PageUptodate(page));
4727
4728 cur = min(len, PAGE_CACHE_SIZE - offset);
4729 kaddr = page_address(page);
4730 memcpy(kaddr + offset, src, cur);
4731
4732 src += cur;
4733 len -= cur;
4734 offset = 0;
4735 i++;
4736 }
4737 }
4738
4739 void memset_extent_buffer(struct extent_buffer *eb, char c,
4740 unsigned long start, unsigned long len)
4741 {
4742 size_t cur;
4743 size_t offset;
4744 struct page *page;
4745 char *kaddr;
4746 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4747 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4748
4749 WARN_ON(start > eb->len);
4750 WARN_ON(start + len > eb->start + eb->len);
4751
4752 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4753
4754 while (len > 0) {
4755 page = extent_buffer_page(eb, i);
4756 WARN_ON(!PageUptodate(page));
4757
4758 cur = min(len, PAGE_CACHE_SIZE - offset);
4759 kaddr = page_address(page);
4760 memset(kaddr + offset, c, cur);
4761
4762 len -= cur;
4763 offset = 0;
4764 i++;
4765 }
4766 }
4767
4768 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4769 unsigned long dst_offset, unsigned long src_offset,
4770 unsigned long len)
4771 {
4772 u64 dst_len = dst->len;
4773 size_t cur;
4774 size_t offset;
4775 struct page *page;
4776 char *kaddr;
4777 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4778 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4779
4780 WARN_ON(src->len != dst_len);
4781
4782 offset = (start_offset + dst_offset) &
4783 ((unsigned long)PAGE_CACHE_SIZE - 1);
4784
4785 while (len > 0) {
4786 page = extent_buffer_page(dst, i);
4787 WARN_ON(!PageUptodate(page));
4788
4789 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4790
4791 kaddr = page_address(page);
4792 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4793
4794 src_offset += cur;
4795 len -= cur;
4796 offset = 0;
4797 i++;
4798 }
4799 }
4800
4801 static void move_pages(struct page *dst_page, struct page *src_page,
4802 unsigned long dst_off, unsigned long src_off,
4803 unsigned long len)
4804 {
4805 char *dst_kaddr = page_address(dst_page);
4806 if (dst_page == src_page) {
4807 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4808 } else {
4809 char *src_kaddr = page_address(src_page);
4810 char *p = dst_kaddr + dst_off + len;
4811 char *s = src_kaddr + src_off + len;
4812
4813 while (len--)
4814 *--p = *--s;
4815 }
4816 }
4817
4818 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4819 {
4820 unsigned long distance = (src > dst) ? src - dst : dst - src;
4821 return distance < len;
4822 }
4823
4824 static void copy_pages(struct page *dst_page, struct page *src_page,
4825 unsigned long dst_off, unsigned long src_off,
4826 unsigned long len)
4827 {
4828 char *dst_kaddr = page_address(dst_page);
4829 char *src_kaddr;
4830 int must_memmove = 0;
4831
4832 if (dst_page != src_page) {
4833 src_kaddr = page_address(src_page);
4834 } else {
4835 src_kaddr = dst_kaddr;
4836 if (areas_overlap(src_off, dst_off, len))
4837 must_memmove = 1;
4838 }
4839
4840 if (must_memmove)
4841 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4842 else
4843 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4844 }
4845
4846 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4847 unsigned long src_offset, unsigned long len)
4848 {
4849 size_t cur;
4850 size_t dst_off_in_page;
4851 size_t src_off_in_page;
4852 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4853 unsigned long dst_i;
4854 unsigned long src_i;
4855
4856 if (src_offset + len > dst->len) {
4857 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4858 "len %lu dst len %lu\n", src_offset, len, dst->len);
4859 BUG_ON(1);
4860 }
4861 if (dst_offset + len > dst->len) {
4862 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4863 "len %lu dst len %lu\n", dst_offset, len, dst->len);
4864 BUG_ON(1);
4865 }
4866
4867 while (len > 0) {
4868 dst_off_in_page = (start_offset + dst_offset) &
4869 ((unsigned long)PAGE_CACHE_SIZE - 1);
4870 src_off_in_page = (start_offset + src_offset) &
4871 ((unsigned long)PAGE_CACHE_SIZE - 1);
4872
4873 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4874 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4875
4876 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4877 src_off_in_page));
4878 cur = min_t(unsigned long, cur,
4879 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4880
4881 copy_pages(extent_buffer_page(dst, dst_i),
4882 extent_buffer_page(dst, src_i),
4883 dst_off_in_page, src_off_in_page, cur);
4884
4885 src_offset += cur;
4886 dst_offset += cur;
4887 len -= cur;
4888 }
4889 }
4890
4891 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4892 unsigned long src_offset, unsigned long len)
4893 {
4894 size_t cur;
4895 size_t dst_off_in_page;
4896 size_t src_off_in_page;
4897 unsigned long dst_end = dst_offset + len - 1;
4898 unsigned long src_end = src_offset + len - 1;
4899 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4900 unsigned long dst_i;
4901 unsigned long src_i;
4902
4903 if (src_offset + len > dst->len) {
4904 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4905 "len %lu len %lu\n", src_offset, len, dst->len);
4906 BUG_ON(1);
4907 }
4908 if (dst_offset + len > dst->len) {
4909 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4910 "len %lu len %lu\n", dst_offset, len, dst->len);
4911 BUG_ON(1);
4912 }
4913 if (dst_offset < src_offset) {
4914 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4915 return;
4916 }
4917 while (len > 0) {
4918 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4919 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4920
4921 dst_off_in_page = (start_offset + dst_end) &
4922 ((unsigned long)PAGE_CACHE_SIZE - 1);
4923 src_off_in_page = (start_offset + src_end) &
4924 ((unsigned long)PAGE_CACHE_SIZE - 1);
4925
4926 cur = min_t(unsigned long, len, src_off_in_page + 1);
4927 cur = min(cur, dst_off_in_page + 1);
4928 move_pages(extent_buffer_page(dst, dst_i),
4929 extent_buffer_page(dst, src_i),
4930 dst_off_in_page - cur + 1,
4931 src_off_in_page - cur + 1, cur);
4932
4933 dst_end -= cur;
4934 src_end -= cur;
4935 len -= cur;
4936 }
4937 }
4938
4939 int try_release_extent_buffer(struct page *page, gfp_t mask)
4940 {
4941 struct extent_buffer *eb;
4942
4943 /*
4944 * We need to make sure noboody is attaching this page to an eb right
4945 * now.
4946 */
4947 spin_lock(&page->mapping->private_lock);
4948 if (!PagePrivate(page)) {
4949 spin_unlock(&page->mapping->private_lock);
4950 return 1;
4951 }
4952
4953 eb = (struct extent_buffer *)page->private;
4954 BUG_ON(!eb);
4955
4956 /*
4957 * This is a little awful but should be ok, we need to make sure that
4958 * the eb doesn't disappear out from under us while we're looking at
4959 * this page.
4960 */
4961 spin_lock(&eb->refs_lock);
4962 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4963 spin_unlock(&eb->refs_lock);
4964 spin_unlock(&page->mapping->private_lock);
4965 return 0;
4966 }
4967 spin_unlock(&page->mapping->private_lock);
4968
4969 if ((mask & GFP_NOFS) == GFP_NOFS)
4970 mask = GFP_NOFS;
4971
4972 /*
4973 * If tree ref isn't set then we know the ref on this eb is a real ref,
4974 * so just return, this page will likely be freed soon anyway.
4975 */
4976 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4977 spin_unlock(&eb->refs_lock);
4978 return 0;
4979 }
4980
4981 return release_extent_buffer(eb, mask);
4982 }
This page took 0.19797 seconds and 5 git commands to generate.