Btrfs: remove unused extent io tree ops V2
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27
28 static LIST_HEAD(buffers);
29 static LIST_HEAD(states);
30
31 #define LEAK_DEBUG 0
32 #if LEAK_DEBUG
33 static DEFINE_SPINLOCK(leak_lock);
34 #endif
35
36 #define BUFFER_LRU_MAX 64
37
38 struct tree_entry {
39 u64 start;
40 u64 end;
41 struct rb_node rb_node;
42 };
43
44 struct extent_page_data {
45 struct bio *bio;
46 struct extent_io_tree *tree;
47 get_extent_t *get_extent;
48 unsigned long bio_flags;
49
50 /* tells writepage not to lock the state bits for this range
51 * it still does the unlocking
52 */
53 unsigned int extent_locked:1;
54
55 /* tells the submit_bio code to use a WRITE_SYNC */
56 unsigned int sync_io:1;
57 };
58
59 static noinline void flush_write_bio(void *data);
60 static inline struct btrfs_fs_info *
61 tree_fs_info(struct extent_io_tree *tree)
62 {
63 return btrfs_sb(tree->mapping->host->i_sb);
64 }
65
66 int __init extent_io_init(void)
67 {
68 extent_state_cache = kmem_cache_create("btrfs_extent_state",
69 sizeof(struct extent_state), 0,
70 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
71 if (!extent_state_cache)
72 return -ENOMEM;
73
74 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
75 sizeof(struct extent_buffer), 0,
76 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
77 if (!extent_buffer_cache)
78 goto free_state_cache;
79 return 0;
80
81 free_state_cache:
82 kmem_cache_destroy(extent_state_cache);
83 return -ENOMEM;
84 }
85
86 void extent_io_exit(void)
87 {
88 struct extent_state *state;
89 struct extent_buffer *eb;
90
91 while (!list_empty(&states)) {
92 state = list_entry(states.next, struct extent_state, leak_list);
93 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
94 "state %lu in tree %p refs %d\n",
95 (unsigned long long)state->start,
96 (unsigned long long)state->end,
97 state->state, state->tree, atomic_read(&state->refs));
98 list_del(&state->leak_list);
99 kmem_cache_free(extent_state_cache, state);
100
101 }
102
103 while (!list_empty(&buffers)) {
104 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
105 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
106 "refs %d\n", (unsigned long long)eb->start,
107 eb->len, atomic_read(&eb->refs));
108 list_del(&eb->leak_list);
109 kmem_cache_free(extent_buffer_cache, eb);
110 }
111
112 /*
113 * Make sure all delayed rcu free are flushed before we
114 * destroy caches.
115 */
116 rcu_barrier();
117 if (extent_state_cache)
118 kmem_cache_destroy(extent_state_cache);
119 if (extent_buffer_cache)
120 kmem_cache_destroy(extent_buffer_cache);
121 }
122
123 void extent_io_tree_init(struct extent_io_tree *tree,
124 struct address_space *mapping)
125 {
126 tree->state = RB_ROOT;
127 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
128 tree->ops = NULL;
129 tree->dirty_bytes = 0;
130 spin_lock_init(&tree->lock);
131 spin_lock_init(&tree->buffer_lock);
132 tree->mapping = mapping;
133 }
134
135 static struct extent_state *alloc_extent_state(gfp_t mask)
136 {
137 struct extent_state *state;
138 #if LEAK_DEBUG
139 unsigned long flags;
140 #endif
141
142 state = kmem_cache_alloc(extent_state_cache, mask);
143 if (!state)
144 return state;
145 state->state = 0;
146 state->private = 0;
147 state->tree = NULL;
148 #if LEAK_DEBUG
149 spin_lock_irqsave(&leak_lock, flags);
150 list_add(&state->leak_list, &states);
151 spin_unlock_irqrestore(&leak_lock, flags);
152 #endif
153 atomic_set(&state->refs, 1);
154 init_waitqueue_head(&state->wq);
155 trace_alloc_extent_state(state, mask, _RET_IP_);
156 return state;
157 }
158
159 void free_extent_state(struct extent_state *state)
160 {
161 if (!state)
162 return;
163 if (atomic_dec_and_test(&state->refs)) {
164 #if LEAK_DEBUG
165 unsigned long flags;
166 #endif
167 WARN_ON(state->tree);
168 #if LEAK_DEBUG
169 spin_lock_irqsave(&leak_lock, flags);
170 list_del(&state->leak_list);
171 spin_unlock_irqrestore(&leak_lock, flags);
172 #endif
173 trace_free_extent_state(state, _RET_IP_);
174 kmem_cache_free(extent_state_cache, state);
175 }
176 }
177
178 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
179 struct rb_node *node)
180 {
181 struct rb_node **p = &root->rb_node;
182 struct rb_node *parent = NULL;
183 struct tree_entry *entry;
184
185 while (*p) {
186 parent = *p;
187 entry = rb_entry(parent, struct tree_entry, rb_node);
188
189 if (offset < entry->start)
190 p = &(*p)->rb_left;
191 else if (offset > entry->end)
192 p = &(*p)->rb_right;
193 else
194 return parent;
195 }
196
197 rb_link_node(node, parent, p);
198 rb_insert_color(node, root);
199 return NULL;
200 }
201
202 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
203 struct rb_node **prev_ret,
204 struct rb_node **next_ret)
205 {
206 struct rb_root *root = &tree->state;
207 struct rb_node *n = root->rb_node;
208 struct rb_node *prev = NULL;
209 struct rb_node *orig_prev = NULL;
210 struct tree_entry *entry;
211 struct tree_entry *prev_entry = NULL;
212
213 while (n) {
214 entry = rb_entry(n, struct tree_entry, rb_node);
215 prev = n;
216 prev_entry = entry;
217
218 if (offset < entry->start)
219 n = n->rb_left;
220 else if (offset > entry->end)
221 n = n->rb_right;
222 else
223 return n;
224 }
225
226 if (prev_ret) {
227 orig_prev = prev;
228 while (prev && offset > prev_entry->end) {
229 prev = rb_next(prev);
230 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
231 }
232 *prev_ret = prev;
233 prev = orig_prev;
234 }
235
236 if (next_ret) {
237 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
238 while (prev && offset < prev_entry->start) {
239 prev = rb_prev(prev);
240 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
241 }
242 *next_ret = prev;
243 }
244 return NULL;
245 }
246
247 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
248 u64 offset)
249 {
250 struct rb_node *prev = NULL;
251 struct rb_node *ret;
252
253 ret = __etree_search(tree, offset, &prev, NULL);
254 if (!ret)
255 return prev;
256 return ret;
257 }
258
259 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
260 struct extent_state *other)
261 {
262 if (tree->ops && tree->ops->merge_extent_hook)
263 tree->ops->merge_extent_hook(tree->mapping->host, new,
264 other);
265 }
266
267 /*
268 * utility function to look for merge candidates inside a given range.
269 * Any extents with matching state are merged together into a single
270 * extent in the tree. Extents with EXTENT_IO in their state field
271 * are not merged because the end_io handlers need to be able to do
272 * operations on them without sleeping (or doing allocations/splits).
273 *
274 * This should be called with the tree lock held.
275 */
276 static void merge_state(struct extent_io_tree *tree,
277 struct extent_state *state)
278 {
279 struct extent_state *other;
280 struct rb_node *other_node;
281
282 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
283 return;
284
285 other_node = rb_prev(&state->rb_node);
286 if (other_node) {
287 other = rb_entry(other_node, struct extent_state, rb_node);
288 if (other->end == state->start - 1 &&
289 other->state == state->state) {
290 merge_cb(tree, state, other);
291 state->start = other->start;
292 other->tree = NULL;
293 rb_erase(&other->rb_node, &tree->state);
294 free_extent_state(other);
295 }
296 }
297 other_node = rb_next(&state->rb_node);
298 if (other_node) {
299 other = rb_entry(other_node, struct extent_state, rb_node);
300 if (other->start == state->end + 1 &&
301 other->state == state->state) {
302 merge_cb(tree, state, other);
303 state->end = other->end;
304 other->tree = NULL;
305 rb_erase(&other->rb_node, &tree->state);
306 free_extent_state(other);
307 }
308 }
309 }
310
311 static void set_state_cb(struct extent_io_tree *tree,
312 struct extent_state *state, int *bits)
313 {
314 if (tree->ops && tree->ops->set_bit_hook)
315 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
316 }
317
318 static void clear_state_cb(struct extent_io_tree *tree,
319 struct extent_state *state, int *bits)
320 {
321 if (tree->ops && tree->ops->clear_bit_hook)
322 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
323 }
324
325 static void set_state_bits(struct extent_io_tree *tree,
326 struct extent_state *state, int *bits);
327
328 /*
329 * insert an extent_state struct into the tree. 'bits' are set on the
330 * struct before it is inserted.
331 *
332 * This may return -EEXIST if the extent is already there, in which case the
333 * state struct is freed.
334 *
335 * The tree lock is not taken internally. This is a utility function and
336 * probably isn't what you want to call (see set/clear_extent_bit).
337 */
338 static int insert_state(struct extent_io_tree *tree,
339 struct extent_state *state, u64 start, u64 end,
340 int *bits)
341 {
342 struct rb_node *node;
343
344 if (end < start)
345 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
346 (unsigned long long)end,
347 (unsigned long long)start);
348 state->start = start;
349 state->end = end;
350
351 set_state_bits(tree, state, bits);
352
353 node = tree_insert(&tree->state, end, &state->rb_node);
354 if (node) {
355 struct extent_state *found;
356 found = rb_entry(node, struct extent_state, rb_node);
357 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
358 "%llu %llu\n", (unsigned long long)found->start,
359 (unsigned long long)found->end,
360 (unsigned long long)start, (unsigned long long)end);
361 return -EEXIST;
362 }
363 state->tree = tree;
364 merge_state(tree, state);
365 return 0;
366 }
367
368 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
369 u64 split)
370 {
371 if (tree->ops && tree->ops->split_extent_hook)
372 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
373 }
374
375 /*
376 * split a given extent state struct in two, inserting the preallocated
377 * struct 'prealloc' as the newly created second half. 'split' indicates an
378 * offset inside 'orig' where it should be split.
379 *
380 * Before calling,
381 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
382 * are two extent state structs in the tree:
383 * prealloc: [orig->start, split - 1]
384 * orig: [ split, orig->end ]
385 *
386 * The tree locks are not taken by this function. They need to be held
387 * by the caller.
388 */
389 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
390 struct extent_state *prealloc, u64 split)
391 {
392 struct rb_node *node;
393
394 split_cb(tree, orig, split);
395
396 prealloc->start = orig->start;
397 prealloc->end = split - 1;
398 prealloc->state = orig->state;
399 orig->start = split;
400
401 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
402 if (node) {
403 free_extent_state(prealloc);
404 return -EEXIST;
405 }
406 prealloc->tree = tree;
407 return 0;
408 }
409
410 static struct extent_state *next_state(struct extent_state *state)
411 {
412 struct rb_node *next = rb_next(&state->rb_node);
413 if (next)
414 return rb_entry(next, struct extent_state, rb_node);
415 else
416 return NULL;
417 }
418
419 /*
420 * utility function to clear some bits in an extent state struct.
421 * it will optionally wake up any one waiting on this state (wake == 1).
422 *
423 * If no bits are set on the state struct after clearing things, the
424 * struct is freed and removed from the tree
425 */
426 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
427 struct extent_state *state,
428 int *bits, int wake)
429 {
430 struct extent_state *next;
431 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
432
433 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
434 u64 range = state->end - state->start + 1;
435 WARN_ON(range > tree->dirty_bytes);
436 tree->dirty_bytes -= range;
437 }
438 clear_state_cb(tree, state, bits);
439 state->state &= ~bits_to_clear;
440 if (wake)
441 wake_up(&state->wq);
442 if (state->state == 0) {
443 next = next_state(state);
444 if (state->tree) {
445 rb_erase(&state->rb_node, &tree->state);
446 state->tree = NULL;
447 free_extent_state(state);
448 } else {
449 WARN_ON(1);
450 }
451 } else {
452 merge_state(tree, state);
453 next = next_state(state);
454 }
455 return next;
456 }
457
458 static struct extent_state *
459 alloc_extent_state_atomic(struct extent_state *prealloc)
460 {
461 if (!prealloc)
462 prealloc = alloc_extent_state(GFP_ATOMIC);
463
464 return prealloc;
465 }
466
467 void extent_io_tree_panic(struct extent_io_tree *tree, int err)
468 {
469 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
470 "Extent tree was modified by another "
471 "thread while locked.");
472 }
473
474 /*
475 * clear some bits on a range in the tree. This may require splitting
476 * or inserting elements in the tree, so the gfp mask is used to
477 * indicate which allocations or sleeping are allowed.
478 *
479 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
480 * the given range from the tree regardless of state (ie for truncate).
481 *
482 * the range [start, end] is inclusive.
483 *
484 * This takes the tree lock, and returns 0 on success and < 0 on error.
485 */
486 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
487 int bits, int wake, int delete,
488 struct extent_state **cached_state,
489 gfp_t mask)
490 {
491 struct extent_state *state;
492 struct extent_state *cached;
493 struct extent_state *prealloc = NULL;
494 struct rb_node *node;
495 u64 last_end;
496 int err;
497 int clear = 0;
498
499 if (delete)
500 bits |= ~EXTENT_CTLBITS;
501 bits |= EXTENT_FIRST_DELALLOC;
502
503 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
504 clear = 1;
505 again:
506 if (!prealloc && (mask & __GFP_WAIT)) {
507 prealloc = alloc_extent_state(mask);
508 if (!prealloc)
509 return -ENOMEM;
510 }
511
512 spin_lock(&tree->lock);
513 if (cached_state) {
514 cached = *cached_state;
515
516 if (clear) {
517 *cached_state = NULL;
518 cached_state = NULL;
519 }
520
521 if (cached && cached->tree && cached->start <= start &&
522 cached->end > start) {
523 if (clear)
524 atomic_dec(&cached->refs);
525 state = cached;
526 goto hit_next;
527 }
528 if (clear)
529 free_extent_state(cached);
530 }
531 /*
532 * this search will find the extents that end after
533 * our range starts
534 */
535 node = tree_search(tree, start);
536 if (!node)
537 goto out;
538 state = rb_entry(node, struct extent_state, rb_node);
539 hit_next:
540 if (state->start > end)
541 goto out;
542 WARN_ON(state->end < start);
543 last_end = state->end;
544
545 /* the state doesn't have the wanted bits, go ahead */
546 if (!(state->state & bits)) {
547 state = next_state(state);
548 goto next;
549 }
550
551 /*
552 * | ---- desired range ---- |
553 * | state | or
554 * | ------------- state -------------- |
555 *
556 * We need to split the extent we found, and may flip
557 * bits on second half.
558 *
559 * If the extent we found extends past our range, we
560 * just split and search again. It'll get split again
561 * the next time though.
562 *
563 * If the extent we found is inside our range, we clear
564 * the desired bit on it.
565 */
566
567 if (state->start < start) {
568 prealloc = alloc_extent_state_atomic(prealloc);
569 BUG_ON(!prealloc);
570 err = split_state(tree, state, prealloc, start);
571 if (err)
572 extent_io_tree_panic(tree, err);
573
574 prealloc = NULL;
575 if (err)
576 goto out;
577 if (state->end <= end) {
578 state = clear_state_bit(tree, state, &bits, wake);
579 goto next;
580 }
581 goto search_again;
582 }
583 /*
584 * | ---- desired range ---- |
585 * | state |
586 * We need to split the extent, and clear the bit
587 * on the first half
588 */
589 if (state->start <= end && state->end > end) {
590 prealloc = alloc_extent_state_atomic(prealloc);
591 BUG_ON(!prealloc);
592 err = split_state(tree, state, prealloc, end + 1);
593 if (err)
594 extent_io_tree_panic(tree, err);
595
596 if (wake)
597 wake_up(&state->wq);
598
599 clear_state_bit(tree, prealloc, &bits, wake);
600
601 prealloc = NULL;
602 goto out;
603 }
604
605 state = clear_state_bit(tree, state, &bits, wake);
606 next:
607 if (last_end == (u64)-1)
608 goto out;
609 start = last_end + 1;
610 if (start <= end && state && !need_resched())
611 goto hit_next;
612 goto search_again;
613
614 out:
615 spin_unlock(&tree->lock);
616 if (prealloc)
617 free_extent_state(prealloc);
618
619 return 0;
620
621 search_again:
622 if (start > end)
623 goto out;
624 spin_unlock(&tree->lock);
625 if (mask & __GFP_WAIT)
626 cond_resched();
627 goto again;
628 }
629
630 static void wait_on_state(struct extent_io_tree *tree,
631 struct extent_state *state)
632 __releases(tree->lock)
633 __acquires(tree->lock)
634 {
635 DEFINE_WAIT(wait);
636 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
637 spin_unlock(&tree->lock);
638 schedule();
639 spin_lock(&tree->lock);
640 finish_wait(&state->wq, &wait);
641 }
642
643 /*
644 * waits for one or more bits to clear on a range in the state tree.
645 * The range [start, end] is inclusive.
646 * The tree lock is taken by this function
647 */
648 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
649 {
650 struct extent_state *state;
651 struct rb_node *node;
652
653 spin_lock(&tree->lock);
654 again:
655 while (1) {
656 /*
657 * this search will find all the extents that end after
658 * our range starts
659 */
660 node = tree_search(tree, start);
661 if (!node)
662 break;
663
664 state = rb_entry(node, struct extent_state, rb_node);
665
666 if (state->start > end)
667 goto out;
668
669 if (state->state & bits) {
670 start = state->start;
671 atomic_inc(&state->refs);
672 wait_on_state(tree, state);
673 free_extent_state(state);
674 goto again;
675 }
676 start = state->end + 1;
677
678 if (start > end)
679 break;
680
681 cond_resched_lock(&tree->lock);
682 }
683 out:
684 spin_unlock(&tree->lock);
685 }
686
687 static void set_state_bits(struct extent_io_tree *tree,
688 struct extent_state *state,
689 int *bits)
690 {
691 int bits_to_set = *bits & ~EXTENT_CTLBITS;
692
693 set_state_cb(tree, state, bits);
694 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
695 u64 range = state->end - state->start + 1;
696 tree->dirty_bytes += range;
697 }
698 state->state |= bits_to_set;
699 }
700
701 static void cache_state(struct extent_state *state,
702 struct extent_state **cached_ptr)
703 {
704 if (cached_ptr && !(*cached_ptr)) {
705 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
706 *cached_ptr = state;
707 atomic_inc(&state->refs);
708 }
709 }
710 }
711
712 static void uncache_state(struct extent_state **cached_ptr)
713 {
714 if (cached_ptr && (*cached_ptr)) {
715 struct extent_state *state = *cached_ptr;
716 *cached_ptr = NULL;
717 free_extent_state(state);
718 }
719 }
720
721 /*
722 * set some bits on a range in the tree. This may require allocations or
723 * sleeping, so the gfp mask is used to indicate what is allowed.
724 *
725 * If any of the exclusive bits are set, this will fail with -EEXIST if some
726 * part of the range already has the desired bits set. The start of the
727 * existing range is returned in failed_start in this case.
728 *
729 * [start, end] is inclusive This takes the tree lock.
730 */
731
732 static int __must_check
733 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
734 int bits, int exclusive_bits, u64 *failed_start,
735 struct extent_state **cached_state, gfp_t mask)
736 {
737 struct extent_state *state;
738 struct extent_state *prealloc = NULL;
739 struct rb_node *node;
740 int err = 0;
741 u64 last_start;
742 u64 last_end;
743
744 bits |= EXTENT_FIRST_DELALLOC;
745 again:
746 if (!prealloc && (mask & __GFP_WAIT)) {
747 prealloc = alloc_extent_state(mask);
748 BUG_ON(!prealloc);
749 }
750
751 spin_lock(&tree->lock);
752 if (cached_state && *cached_state) {
753 state = *cached_state;
754 if (state->start <= start && state->end > start &&
755 state->tree) {
756 node = &state->rb_node;
757 goto hit_next;
758 }
759 }
760 /*
761 * this search will find all the extents that end after
762 * our range starts.
763 */
764 node = tree_search(tree, start);
765 if (!node) {
766 prealloc = alloc_extent_state_atomic(prealloc);
767 BUG_ON(!prealloc);
768 err = insert_state(tree, prealloc, start, end, &bits);
769 if (err)
770 extent_io_tree_panic(tree, err);
771
772 prealloc = NULL;
773 goto out;
774 }
775 state = rb_entry(node, struct extent_state, rb_node);
776 hit_next:
777 last_start = state->start;
778 last_end = state->end;
779
780 /*
781 * | ---- desired range ---- |
782 * | state |
783 *
784 * Just lock what we found and keep going
785 */
786 if (state->start == start && state->end <= end) {
787 if (state->state & exclusive_bits) {
788 *failed_start = state->start;
789 err = -EEXIST;
790 goto out;
791 }
792
793 set_state_bits(tree, state, &bits);
794 cache_state(state, cached_state);
795 merge_state(tree, state);
796 if (last_end == (u64)-1)
797 goto out;
798 start = last_end + 1;
799 state = next_state(state);
800 if (start < end && state && state->start == start &&
801 !need_resched())
802 goto hit_next;
803 goto search_again;
804 }
805
806 /*
807 * | ---- desired range ---- |
808 * | state |
809 * or
810 * | ------------- state -------------- |
811 *
812 * We need to split the extent we found, and may flip bits on
813 * second half.
814 *
815 * If the extent we found extends past our
816 * range, we just split and search again. It'll get split
817 * again the next time though.
818 *
819 * If the extent we found is inside our range, we set the
820 * desired bit on it.
821 */
822 if (state->start < start) {
823 if (state->state & exclusive_bits) {
824 *failed_start = start;
825 err = -EEXIST;
826 goto out;
827 }
828
829 prealloc = alloc_extent_state_atomic(prealloc);
830 BUG_ON(!prealloc);
831 err = split_state(tree, state, prealloc, start);
832 if (err)
833 extent_io_tree_panic(tree, err);
834
835 prealloc = NULL;
836 if (err)
837 goto out;
838 if (state->end <= end) {
839 set_state_bits(tree, state, &bits);
840 cache_state(state, cached_state);
841 merge_state(tree, state);
842 if (last_end == (u64)-1)
843 goto out;
844 start = last_end + 1;
845 state = next_state(state);
846 if (start < end && state && state->start == start &&
847 !need_resched())
848 goto hit_next;
849 }
850 goto search_again;
851 }
852 /*
853 * | ---- desired range ---- |
854 * | state | or | state |
855 *
856 * There's a hole, we need to insert something in it and
857 * ignore the extent we found.
858 */
859 if (state->start > start) {
860 u64 this_end;
861 if (end < last_start)
862 this_end = end;
863 else
864 this_end = last_start - 1;
865
866 prealloc = alloc_extent_state_atomic(prealloc);
867 BUG_ON(!prealloc);
868
869 /*
870 * Avoid to free 'prealloc' if it can be merged with
871 * the later extent.
872 */
873 err = insert_state(tree, prealloc, start, this_end,
874 &bits);
875 if (err)
876 extent_io_tree_panic(tree, err);
877
878 cache_state(prealloc, cached_state);
879 prealloc = NULL;
880 start = this_end + 1;
881 goto search_again;
882 }
883 /*
884 * | ---- desired range ---- |
885 * | state |
886 * We need to split the extent, and set the bit
887 * on the first half
888 */
889 if (state->start <= end && state->end > end) {
890 if (state->state & exclusive_bits) {
891 *failed_start = start;
892 err = -EEXIST;
893 goto out;
894 }
895
896 prealloc = alloc_extent_state_atomic(prealloc);
897 BUG_ON(!prealloc);
898 err = split_state(tree, state, prealloc, end + 1);
899 if (err)
900 extent_io_tree_panic(tree, err);
901
902 set_state_bits(tree, prealloc, &bits);
903 cache_state(prealloc, cached_state);
904 merge_state(tree, prealloc);
905 prealloc = NULL;
906 goto out;
907 }
908
909 goto search_again;
910
911 out:
912 spin_unlock(&tree->lock);
913 if (prealloc)
914 free_extent_state(prealloc);
915
916 return err;
917
918 search_again:
919 if (start > end)
920 goto out;
921 spin_unlock(&tree->lock);
922 if (mask & __GFP_WAIT)
923 cond_resched();
924 goto again;
925 }
926
927 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
928 u64 *failed_start, struct extent_state **cached_state,
929 gfp_t mask)
930 {
931 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
932 cached_state, mask);
933 }
934
935
936 /**
937 * convert_extent_bit - convert all bits in a given range from one bit to
938 * another
939 * @tree: the io tree to search
940 * @start: the start offset in bytes
941 * @end: the end offset in bytes (inclusive)
942 * @bits: the bits to set in this range
943 * @clear_bits: the bits to clear in this range
944 * @cached_state: state that we're going to cache
945 * @mask: the allocation mask
946 *
947 * This will go through and set bits for the given range. If any states exist
948 * already in this range they are set with the given bit and cleared of the
949 * clear_bits. This is only meant to be used by things that are mergeable, ie
950 * converting from say DELALLOC to DIRTY. This is not meant to be used with
951 * boundary bits like LOCK.
952 */
953 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
954 int bits, int clear_bits,
955 struct extent_state **cached_state, gfp_t mask)
956 {
957 struct extent_state *state;
958 struct extent_state *prealloc = NULL;
959 struct rb_node *node;
960 int err = 0;
961 u64 last_start;
962 u64 last_end;
963
964 again:
965 if (!prealloc && (mask & __GFP_WAIT)) {
966 prealloc = alloc_extent_state(mask);
967 if (!prealloc)
968 return -ENOMEM;
969 }
970
971 spin_lock(&tree->lock);
972 if (cached_state && *cached_state) {
973 state = *cached_state;
974 if (state->start <= start && state->end > start &&
975 state->tree) {
976 node = &state->rb_node;
977 goto hit_next;
978 }
979 }
980
981 /*
982 * this search will find all the extents that end after
983 * our range starts.
984 */
985 node = tree_search(tree, start);
986 if (!node) {
987 prealloc = alloc_extent_state_atomic(prealloc);
988 if (!prealloc) {
989 err = -ENOMEM;
990 goto out;
991 }
992 err = insert_state(tree, prealloc, start, end, &bits);
993 prealloc = NULL;
994 if (err)
995 extent_io_tree_panic(tree, err);
996 goto out;
997 }
998 state = rb_entry(node, struct extent_state, rb_node);
999 hit_next:
1000 last_start = state->start;
1001 last_end = state->end;
1002
1003 /*
1004 * | ---- desired range ---- |
1005 * | state |
1006 *
1007 * Just lock what we found and keep going
1008 */
1009 if (state->start == start && state->end <= end) {
1010 set_state_bits(tree, state, &bits);
1011 cache_state(state, cached_state);
1012 state = clear_state_bit(tree, state, &clear_bits, 0);
1013 if (last_end == (u64)-1)
1014 goto out;
1015 start = last_end + 1;
1016 if (start < end && state && state->start == start &&
1017 !need_resched())
1018 goto hit_next;
1019 goto search_again;
1020 }
1021
1022 /*
1023 * | ---- desired range ---- |
1024 * | state |
1025 * or
1026 * | ------------- state -------------- |
1027 *
1028 * We need to split the extent we found, and may flip bits on
1029 * second half.
1030 *
1031 * If the extent we found extends past our
1032 * range, we just split and search again. It'll get split
1033 * again the next time though.
1034 *
1035 * If the extent we found is inside our range, we set the
1036 * desired bit on it.
1037 */
1038 if (state->start < start) {
1039 prealloc = alloc_extent_state_atomic(prealloc);
1040 if (!prealloc) {
1041 err = -ENOMEM;
1042 goto out;
1043 }
1044 err = split_state(tree, state, prealloc, start);
1045 if (err)
1046 extent_io_tree_panic(tree, err);
1047 prealloc = NULL;
1048 if (err)
1049 goto out;
1050 if (state->end <= end) {
1051 set_state_bits(tree, state, &bits);
1052 cache_state(state, cached_state);
1053 state = clear_state_bit(tree, state, &clear_bits, 0);
1054 if (last_end == (u64)-1)
1055 goto out;
1056 start = last_end + 1;
1057 if (start < end && state && state->start == start &&
1058 !need_resched())
1059 goto hit_next;
1060 }
1061 goto search_again;
1062 }
1063 /*
1064 * | ---- desired range ---- |
1065 * | state | or | state |
1066 *
1067 * There's a hole, we need to insert something in it and
1068 * ignore the extent we found.
1069 */
1070 if (state->start > start) {
1071 u64 this_end;
1072 if (end < last_start)
1073 this_end = end;
1074 else
1075 this_end = last_start - 1;
1076
1077 prealloc = alloc_extent_state_atomic(prealloc);
1078 if (!prealloc) {
1079 err = -ENOMEM;
1080 goto out;
1081 }
1082
1083 /*
1084 * Avoid to free 'prealloc' if it can be merged with
1085 * the later extent.
1086 */
1087 err = insert_state(tree, prealloc, start, this_end,
1088 &bits);
1089 if (err)
1090 extent_io_tree_panic(tree, err);
1091 cache_state(prealloc, cached_state);
1092 prealloc = NULL;
1093 start = this_end + 1;
1094 goto search_again;
1095 }
1096 /*
1097 * | ---- desired range ---- |
1098 * | state |
1099 * We need to split the extent, and set the bit
1100 * on the first half
1101 */
1102 if (state->start <= end && state->end > end) {
1103 prealloc = alloc_extent_state_atomic(prealloc);
1104 if (!prealloc) {
1105 err = -ENOMEM;
1106 goto out;
1107 }
1108
1109 err = split_state(tree, state, prealloc, end + 1);
1110 if (err)
1111 extent_io_tree_panic(tree, err);
1112
1113 set_state_bits(tree, prealloc, &bits);
1114 cache_state(prealloc, cached_state);
1115 clear_state_bit(tree, prealloc, &clear_bits, 0);
1116 prealloc = NULL;
1117 goto out;
1118 }
1119
1120 goto search_again;
1121
1122 out:
1123 spin_unlock(&tree->lock);
1124 if (prealloc)
1125 free_extent_state(prealloc);
1126
1127 return err;
1128
1129 search_again:
1130 if (start > end)
1131 goto out;
1132 spin_unlock(&tree->lock);
1133 if (mask & __GFP_WAIT)
1134 cond_resched();
1135 goto again;
1136 }
1137
1138 /* wrappers around set/clear extent bit */
1139 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1140 gfp_t mask)
1141 {
1142 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1143 NULL, mask);
1144 }
1145
1146 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1147 int bits, gfp_t mask)
1148 {
1149 return set_extent_bit(tree, start, end, bits, NULL,
1150 NULL, mask);
1151 }
1152
1153 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1154 int bits, gfp_t mask)
1155 {
1156 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1157 }
1158
1159 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1160 struct extent_state **cached_state, gfp_t mask)
1161 {
1162 return set_extent_bit(tree, start, end,
1163 EXTENT_DELALLOC | EXTENT_UPTODATE,
1164 NULL, cached_state, mask);
1165 }
1166
1167 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1168 struct extent_state **cached_state, gfp_t mask)
1169 {
1170 return set_extent_bit(tree, start, end,
1171 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1172 NULL, cached_state, mask);
1173 }
1174
1175 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1176 gfp_t mask)
1177 {
1178 return clear_extent_bit(tree, start, end,
1179 EXTENT_DIRTY | EXTENT_DELALLOC |
1180 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1181 }
1182
1183 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1184 gfp_t mask)
1185 {
1186 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1187 NULL, mask);
1188 }
1189
1190 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1191 struct extent_state **cached_state, gfp_t mask)
1192 {
1193 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1194 cached_state, mask);
1195 }
1196
1197 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1198 struct extent_state **cached_state, gfp_t mask)
1199 {
1200 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1201 cached_state, mask);
1202 }
1203
1204 /*
1205 * either insert or lock state struct between start and end use mask to tell
1206 * us if waiting is desired.
1207 */
1208 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1209 int bits, struct extent_state **cached_state)
1210 {
1211 int err;
1212 u64 failed_start;
1213 while (1) {
1214 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1215 EXTENT_LOCKED, &failed_start,
1216 cached_state, GFP_NOFS);
1217 if (err == -EEXIST) {
1218 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1219 start = failed_start;
1220 } else
1221 break;
1222 WARN_ON(start > end);
1223 }
1224 return err;
1225 }
1226
1227 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1228 {
1229 return lock_extent_bits(tree, start, end, 0, NULL);
1230 }
1231
1232 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1233 {
1234 int err;
1235 u64 failed_start;
1236
1237 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1238 &failed_start, NULL, GFP_NOFS);
1239 if (err == -EEXIST) {
1240 if (failed_start > start)
1241 clear_extent_bit(tree, start, failed_start - 1,
1242 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1243 return 0;
1244 }
1245 return 1;
1246 }
1247
1248 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1249 struct extent_state **cached, gfp_t mask)
1250 {
1251 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1252 mask);
1253 }
1254
1255 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1256 {
1257 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1258 GFP_NOFS);
1259 }
1260
1261 /*
1262 * helper function to set both pages and extents in the tree writeback
1263 */
1264 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1265 {
1266 unsigned long index = start >> PAGE_CACHE_SHIFT;
1267 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1268 struct page *page;
1269
1270 while (index <= end_index) {
1271 page = find_get_page(tree->mapping, index);
1272 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1273 set_page_writeback(page);
1274 page_cache_release(page);
1275 index++;
1276 }
1277 return 0;
1278 }
1279
1280 /* find the first state struct with 'bits' set after 'start', and
1281 * return it. tree->lock must be held. NULL will returned if
1282 * nothing was found after 'start'
1283 */
1284 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1285 u64 start, int bits)
1286 {
1287 struct rb_node *node;
1288 struct extent_state *state;
1289
1290 /*
1291 * this search will find all the extents that end after
1292 * our range starts.
1293 */
1294 node = tree_search(tree, start);
1295 if (!node)
1296 goto out;
1297
1298 while (1) {
1299 state = rb_entry(node, struct extent_state, rb_node);
1300 if (state->end >= start && (state->state & bits))
1301 return state;
1302
1303 node = rb_next(node);
1304 if (!node)
1305 break;
1306 }
1307 out:
1308 return NULL;
1309 }
1310
1311 /*
1312 * find the first offset in the io tree with 'bits' set. zero is
1313 * returned if we find something, and *start_ret and *end_ret are
1314 * set to reflect the state struct that was found.
1315 *
1316 * If nothing was found, 1 is returned. If found something, return 0.
1317 */
1318 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1319 u64 *start_ret, u64 *end_ret, int bits,
1320 struct extent_state **cached_state)
1321 {
1322 struct extent_state *state;
1323 struct rb_node *n;
1324 int ret = 1;
1325
1326 spin_lock(&tree->lock);
1327 if (cached_state && *cached_state) {
1328 state = *cached_state;
1329 if (state->end == start - 1 && state->tree) {
1330 n = rb_next(&state->rb_node);
1331 while (n) {
1332 state = rb_entry(n, struct extent_state,
1333 rb_node);
1334 if (state->state & bits)
1335 goto got_it;
1336 n = rb_next(n);
1337 }
1338 free_extent_state(*cached_state);
1339 *cached_state = NULL;
1340 goto out;
1341 }
1342 free_extent_state(*cached_state);
1343 *cached_state = NULL;
1344 }
1345
1346 state = find_first_extent_bit_state(tree, start, bits);
1347 got_it:
1348 if (state) {
1349 cache_state(state, cached_state);
1350 *start_ret = state->start;
1351 *end_ret = state->end;
1352 ret = 0;
1353 }
1354 out:
1355 spin_unlock(&tree->lock);
1356 return ret;
1357 }
1358
1359 /*
1360 * find a contiguous range of bytes in the file marked as delalloc, not
1361 * more than 'max_bytes'. start and end are used to return the range,
1362 *
1363 * 1 is returned if we find something, 0 if nothing was in the tree
1364 */
1365 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1366 u64 *start, u64 *end, u64 max_bytes,
1367 struct extent_state **cached_state)
1368 {
1369 struct rb_node *node;
1370 struct extent_state *state;
1371 u64 cur_start = *start;
1372 u64 found = 0;
1373 u64 total_bytes = 0;
1374
1375 spin_lock(&tree->lock);
1376
1377 /*
1378 * this search will find all the extents that end after
1379 * our range starts.
1380 */
1381 node = tree_search(tree, cur_start);
1382 if (!node) {
1383 if (!found)
1384 *end = (u64)-1;
1385 goto out;
1386 }
1387
1388 while (1) {
1389 state = rb_entry(node, struct extent_state, rb_node);
1390 if (found && (state->start != cur_start ||
1391 (state->state & EXTENT_BOUNDARY))) {
1392 goto out;
1393 }
1394 if (!(state->state & EXTENT_DELALLOC)) {
1395 if (!found)
1396 *end = state->end;
1397 goto out;
1398 }
1399 if (!found) {
1400 *start = state->start;
1401 *cached_state = state;
1402 atomic_inc(&state->refs);
1403 }
1404 found++;
1405 *end = state->end;
1406 cur_start = state->end + 1;
1407 node = rb_next(node);
1408 if (!node)
1409 break;
1410 total_bytes += state->end - state->start + 1;
1411 if (total_bytes >= max_bytes)
1412 break;
1413 }
1414 out:
1415 spin_unlock(&tree->lock);
1416 return found;
1417 }
1418
1419 static noinline void __unlock_for_delalloc(struct inode *inode,
1420 struct page *locked_page,
1421 u64 start, u64 end)
1422 {
1423 int ret;
1424 struct page *pages[16];
1425 unsigned long index = start >> PAGE_CACHE_SHIFT;
1426 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1427 unsigned long nr_pages = end_index - index + 1;
1428 int i;
1429
1430 if (index == locked_page->index && end_index == index)
1431 return;
1432
1433 while (nr_pages > 0) {
1434 ret = find_get_pages_contig(inode->i_mapping, index,
1435 min_t(unsigned long, nr_pages,
1436 ARRAY_SIZE(pages)), pages);
1437 for (i = 0; i < ret; i++) {
1438 if (pages[i] != locked_page)
1439 unlock_page(pages[i]);
1440 page_cache_release(pages[i]);
1441 }
1442 nr_pages -= ret;
1443 index += ret;
1444 cond_resched();
1445 }
1446 }
1447
1448 static noinline int lock_delalloc_pages(struct inode *inode,
1449 struct page *locked_page,
1450 u64 delalloc_start,
1451 u64 delalloc_end)
1452 {
1453 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1454 unsigned long start_index = index;
1455 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1456 unsigned long pages_locked = 0;
1457 struct page *pages[16];
1458 unsigned long nrpages;
1459 int ret;
1460 int i;
1461
1462 /* the caller is responsible for locking the start index */
1463 if (index == locked_page->index && index == end_index)
1464 return 0;
1465
1466 /* skip the page at the start index */
1467 nrpages = end_index - index + 1;
1468 while (nrpages > 0) {
1469 ret = find_get_pages_contig(inode->i_mapping, index,
1470 min_t(unsigned long,
1471 nrpages, ARRAY_SIZE(pages)), pages);
1472 if (ret == 0) {
1473 ret = -EAGAIN;
1474 goto done;
1475 }
1476 /* now we have an array of pages, lock them all */
1477 for (i = 0; i < ret; i++) {
1478 /*
1479 * the caller is taking responsibility for
1480 * locked_page
1481 */
1482 if (pages[i] != locked_page) {
1483 lock_page(pages[i]);
1484 if (!PageDirty(pages[i]) ||
1485 pages[i]->mapping != inode->i_mapping) {
1486 ret = -EAGAIN;
1487 unlock_page(pages[i]);
1488 page_cache_release(pages[i]);
1489 goto done;
1490 }
1491 }
1492 page_cache_release(pages[i]);
1493 pages_locked++;
1494 }
1495 nrpages -= ret;
1496 index += ret;
1497 cond_resched();
1498 }
1499 ret = 0;
1500 done:
1501 if (ret && pages_locked) {
1502 __unlock_for_delalloc(inode, locked_page,
1503 delalloc_start,
1504 ((u64)(start_index + pages_locked - 1)) <<
1505 PAGE_CACHE_SHIFT);
1506 }
1507 return ret;
1508 }
1509
1510 /*
1511 * find a contiguous range of bytes in the file marked as delalloc, not
1512 * more than 'max_bytes'. start and end are used to return the range,
1513 *
1514 * 1 is returned if we find something, 0 if nothing was in the tree
1515 */
1516 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1517 struct extent_io_tree *tree,
1518 struct page *locked_page,
1519 u64 *start, u64 *end,
1520 u64 max_bytes)
1521 {
1522 u64 delalloc_start;
1523 u64 delalloc_end;
1524 u64 found;
1525 struct extent_state *cached_state = NULL;
1526 int ret;
1527 int loops = 0;
1528
1529 again:
1530 /* step one, find a bunch of delalloc bytes starting at start */
1531 delalloc_start = *start;
1532 delalloc_end = 0;
1533 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1534 max_bytes, &cached_state);
1535 if (!found || delalloc_end <= *start) {
1536 *start = delalloc_start;
1537 *end = delalloc_end;
1538 free_extent_state(cached_state);
1539 return found;
1540 }
1541
1542 /*
1543 * start comes from the offset of locked_page. We have to lock
1544 * pages in order, so we can't process delalloc bytes before
1545 * locked_page
1546 */
1547 if (delalloc_start < *start)
1548 delalloc_start = *start;
1549
1550 /*
1551 * make sure to limit the number of pages we try to lock down
1552 * if we're looping.
1553 */
1554 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1555 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1556
1557 /* step two, lock all the pages after the page that has start */
1558 ret = lock_delalloc_pages(inode, locked_page,
1559 delalloc_start, delalloc_end);
1560 if (ret == -EAGAIN) {
1561 /* some of the pages are gone, lets avoid looping by
1562 * shortening the size of the delalloc range we're searching
1563 */
1564 free_extent_state(cached_state);
1565 if (!loops) {
1566 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1567 max_bytes = PAGE_CACHE_SIZE - offset;
1568 loops = 1;
1569 goto again;
1570 } else {
1571 found = 0;
1572 goto out_failed;
1573 }
1574 }
1575 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1576
1577 /* step three, lock the state bits for the whole range */
1578 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1579
1580 /* then test to make sure it is all still delalloc */
1581 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1582 EXTENT_DELALLOC, 1, cached_state);
1583 if (!ret) {
1584 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1585 &cached_state, GFP_NOFS);
1586 __unlock_for_delalloc(inode, locked_page,
1587 delalloc_start, delalloc_end);
1588 cond_resched();
1589 goto again;
1590 }
1591 free_extent_state(cached_state);
1592 *start = delalloc_start;
1593 *end = delalloc_end;
1594 out_failed:
1595 return found;
1596 }
1597
1598 int extent_clear_unlock_delalloc(struct inode *inode,
1599 struct extent_io_tree *tree,
1600 u64 start, u64 end, struct page *locked_page,
1601 unsigned long op)
1602 {
1603 int ret;
1604 struct page *pages[16];
1605 unsigned long index = start >> PAGE_CACHE_SHIFT;
1606 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1607 unsigned long nr_pages = end_index - index + 1;
1608 int i;
1609 int clear_bits = 0;
1610
1611 if (op & EXTENT_CLEAR_UNLOCK)
1612 clear_bits |= EXTENT_LOCKED;
1613 if (op & EXTENT_CLEAR_DIRTY)
1614 clear_bits |= EXTENT_DIRTY;
1615
1616 if (op & EXTENT_CLEAR_DELALLOC)
1617 clear_bits |= EXTENT_DELALLOC;
1618
1619 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1620 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1621 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1622 EXTENT_SET_PRIVATE2)))
1623 return 0;
1624
1625 while (nr_pages > 0) {
1626 ret = find_get_pages_contig(inode->i_mapping, index,
1627 min_t(unsigned long,
1628 nr_pages, ARRAY_SIZE(pages)), pages);
1629 for (i = 0; i < ret; i++) {
1630
1631 if (op & EXTENT_SET_PRIVATE2)
1632 SetPagePrivate2(pages[i]);
1633
1634 if (pages[i] == locked_page) {
1635 page_cache_release(pages[i]);
1636 continue;
1637 }
1638 if (op & EXTENT_CLEAR_DIRTY)
1639 clear_page_dirty_for_io(pages[i]);
1640 if (op & EXTENT_SET_WRITEBACK)
1641 set_page_writeback(pages[i]);
1642 if (op & EXTENT_END_WRITEBACK)
1643 end_page_writeback(pages[i]);
1644 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1645 unlock_page(pages[i]);
1646 page_cache_release(pages[i]);
1647 }
1648 nr_pages -= ret;
1649 index += ret;
1650 cond_resched();
1651 }
1652 return 0;
1653 }
1654
1655 /*
1656 * count the number of bytes in the tree that have a given bit(s)
1657 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1658 * cached. The total number found is returned.
1659 */
1660 u64 count_range_bits(struct extent_io_tree *tree,
1661 u64 *start, u64 search_end, u64 max_bytes,
1662 unsigned long bits, int contig)
1663 {
1664 struct rb_node *node;
1665 struct extent_state *state;
1666 u64 cur_start = *start;
1667 u64 total_bytes = 0;
1668 u64 last = 0;
1669 int found = 0;
1670
1671 if (search_end <= cur_start) {
1672 WARN_ON(1);
1673 return 0;
1674 }
1675
1676 spin_lock(&tree->lock);
1677 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1678 total_bytes = tree->dirty_bytes;
1679 goto out;
1680 }
1681 /*
1682 * this search will find all the extents that end after
1683 * our range starts.
1684 */
1685 node = tree_search(tree, cur_start);
1686 if (!node)
1687 goto out;
1688
1689 while (1) {
1690 state = rb_entry(node, struct extent_state, rb_node);
1691 if (state->start > search_end)
1692 break;
1693 if (contig && found && state->start > last + 1)
1694 break;
1695 if (state->end >= cur_start && (state->state & bits) == bits) {
1696 total_bytes += min(search_end, state->end) + 1 -
1697 max(cur_start, state->start);
1698 if (total_bytes >= max_bytes)
1699 break;
1700 if (!found) {
1701 *start = max(cur_start, state->start);
1702 found = 1;
1703 }
1704 last = state->end;
1705 } else if (contig && found) {
1706 break;
1707 }
1708 node = rb_next(node);
1709 if (!node)
1710 break;
1711 }
1712 out:
1713 spin_unlock(&tree->lock);
1714 return total_bytes;
1715 }
1716
1717 /*
1718 * set the private field for a given byte offset in the tree. If there isn't
1719 * an extent_state there already, this does nothing.
1720 */
1721 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1722 {
1723 struct rb_node *node;
1724 struct extent_state *state;
1725 int ret = 0;
1726
1727 spin_lock(&tree->lock);
1728 /*
1729 * this search will find all the extents that end after
1730 * our range starts.
1731 */
1732 node = tree_search(tree, start);
1733 if (!node) {
1734 ret = -ENOENT;
1735 goto out;
1736 }
1737 state = rb_entry(node, struct extent_state, rb_node);
1738 if (state->start != start) {
1739 ret = -ENOENT;
1740 goto out;
1741 }
1742 state->private = private;
1743 out:
1744 spin_unlock(&tree->lock);
1745 return ret;
1746 }
1747
1748 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1749 {
1750 struct rb_node *node;
1751 struct extent_state *state;
1752 int ret = 0;
1753
1754 spin_lock(&tree->lock);
1755 /*
1756 * this search will find all the extents that end after
1757 * our range starts.
1758 */
1759 node = tree_search(tree, start);
1760 if (!node) {
1761 ret = -ENOENT;
1762 goto out;
1763 }
1764 state = rb_entry(node, struct extent_state, rb_node);
1765 if (state->start != start) {
1766 ret = -ENOENT;
1767 goto out;
1768 }
1769 *private = state->private;
1770 out:
1771 spin_unlock(&tree->lock);
1772 return ret;
1773 }
1774
1775 /*
1776 * searches a range in the state tree for a given mask.
1777 * If 'filled' == 1, this returns 1 only if every extent in the tree
1778 * has the bits set. Otherwise, 1 is returned if any bit in the
1779 * range is found set.
1780 */
1781 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1782 int bits, int filled, struct extent_state *cached)
1783 {
1784 struct extent_state *state = NULL;
1785 struct rb_node *node;
1786 int bitset = 0;
1787
1788 spin_lock(&tree->lock);
1789 if (cached && cached->tree && cached->start <= start &&
1790 cached->end > start)
1791 node = &cached->rb_node;
1792 else
1793 node = tree_search(tree, start);
1794 while (node && start <= end) {
1795 state = rb_entry(node, struct extent_state, rb_node);
1796
1797 if (filled && state->start > start) {
1798 bitset = 0;
1799 break;
1800 }
1801
1802 if (state->start > end)
1803 break;
1804
1805 if (state->state & bits) {
1806 bitset = 1;
1807 if (!filled)
1808 break;
1809 } else if (filled) {
1810 bitset = 0;
1811 break;
1812 }
1813
1814 if (state->end == (u64)-1)
1815 break;
1816
1817 start = state->end + 1;
1818 if (start > end)
1819 break;
1820 node = rb_next(node);
1821 if (!node) {
1822 if (filled)
1823 bitset = 0;
1824 break;
1825 }
1826 }
1827 spin_unlock(&tree->lock);
1828 return bitset;
1829 }
1830
1831 /*
1832 * helper function to set a given page up to date if all the
1833 * extents in the tree for that page are up to date
1834 */
1835 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1836 {
1837 u64 start = page_offset(page);
1838 u64 end = start + PAGE_CACHE_SIZE - 1;
1839 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1840 SetPageUptodate(page);
1841 }
1842
1843 /*
1844 * helper function to unlock a page if all the extents in the tree
1845 * for that page are unlocked
1846 */
1847 static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1848 {
1849 u64 start = page_offset(page);
1850 u64 end = start + PAGE_CACHE_SIZE - 1;
1851 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1852 unlock_page(page);
1853 }
1854
1855 /*
1856 * helper function to end page writeback if all the extents
1857 * in the tree for that page are done with writeback
1858 */
1859 static void check_page_writeback(struct extent_io_tree *tree,
1860 struct page *page)
1861 {
1862 end_page_writeback(page);
1863 }
1864
1865 /*
1866 * When IO fails, either with EIO or csum verification fails, we
1867 * try other mirrors that might have a good copy of the data. This
1868 * io_failure_record is used to record state as we go through all the
1869 * mirrors. If another mirror has good data, the page is set up to date
1870 * and things continue. If a good mirror can't be found, the original
1871 * bio end_io callback is called to indicate things have failed.
1872 */
1873 struct io_failure_record {
1874 struct page *page;
1875 u64 start;
1876 u64 len;
1877 u64 logical;
1878 unsigned long bio_flags;
1879 int this_mirror;
1880 int failed_mirror;
1881 int in_validation;
1882 };
1883
1884 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1885 int did_repair)
1886 {
1887 int ret;
1888 int err = 0;
1889 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1890
1891 set_state_private(failure_tree, rec->start, 0);
1892 ret = clear_extent_bits(failure_tree, rec->start,
1893 rec->start + rec->len - 1,
1894 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1895 if (ret)
1896 err = ret;
1897
1898 if (did_repair) {
1899 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1900 rec->start + rec->len - 1,
1901 EXTENT_DAMAGED, GFP_NOFS);
1902 if (ret && !err)
1903 err = ret;
1904 }
1905
1906 kfree(rec);
1907 return err;
1908 }
1909
1910 static void repair_io_failure_callback(struct bio *bio, int err)
1911 {
1912 complete(bio->bi_private);
1913 }
1914
1915 /*
1916 * this bypasses the standard btrfs submit functions deliberately, as
1917 * the standard behavior is to write all copies in a raid setup. here we only
1918 * want to write the one bad copy. so we do the mapping for ourselves and issue
1919 * submit_bio directly.
1920 * to avoid any synchronization issues, wait for the data after writing, which
1921 * actually prevents the read that triggered the error from finishing.
1922 * currently, there can be no more than two copies of every data bit. thus,
1923 * exactly one rewrite is required.
1924 */
1925 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
1926 u64 length, u64 logical, struct page *page,
1927 int mirror_num)
1928 {
1929 struct bio *bio;
1930 struct btrfs_device *dev;
1931 DECLARE_COMPLETION_ONSTACK(compl);
1932 u64 map_length = 0;
1933 u64 sector;
1934 struct btrfs_bio *bbio = NULL;
1935 int ret;
1936
1937 BUG_ON(!mirror_num);
1938
1939 bio = bio_alloc(GFP_NOFS, 1);
1940 if (!bio)
1941 return -EIO;
1942 bio->bi_private = &compl;
1943 bio->bi_end_io = repair_io_failure_callback;
1944 bio->bi_size = 0;
1945 map_length = length;
1946
1947 ret = btrfs_map_block(fs_info, WRITE, logical,
1948 &map_length, &bbio, mirror_num);
1949 if (ret) {
1950 bio_put(bio);
1951 return -EIO;
1952 }
1953 BUG_ON(mirror_num != bbio->mirror_num);
1954 sector = bbio->stripes[mirror_num-1].physical >> 9;
1955 bio->bi_sector = sector;
1956 dev = bbio->stripes[mirror_num-1].dev;
1957 kfree(bbio);
1958 if (!dev || !dev->bdev || !dev->writeable) {
1959 bio_put(bio);
1960 return -EIO;
1961 }
1962 bio->bi_bdev = dev->bdev;
1963 bio_add_page(bio, page, length, start - page_offset(page));
1964 btrfsic_submit_bio(WRITE_SYNC, bio);
1965 wait_for_completion(&compl);
1966
1967 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1968 /* try to remap that extent elsewhere? */
1969 bio_put(bio);
1970 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
1971 return -EIO;
1972 }
1973
1974 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
1975 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
1976 start, rcu_str_deref(dev->name), sector);
1977
1978 bio_put(bio);
1979 return 0;
1980 }
1981
1982 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1983 int mirror_num)
1984 {
1985 u64 start = eb->start;
1986 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
1987 int ret = 0;
1988
1989 for (i = 0; i < num_pages; i++) {
1990 struct page *p = extent_buffer_page(eb, i);
1991 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
1992 start, p, mirror_num);
1993 if (ret)
1994 break;
1995 start += PAGE_CACHE_SIZE;
1996 }
1997
1998 return ret;
1999 }
2000
2001 /*
2002 * each time an IO finishes, we do a fast check in the IO failure tree
2003 * to see if we need to process or clean up an io_failure_record
2004 */
2005 static int clean_io_failure(u64 start, struct page *page)
2006 {
2007 u64 private;
2008 u64 private_failure;
2009 struct io_failure_record *failrec;
2010 struct btrfs_fs_info *fs_info;
2011 struct extent_state *state;
2012 int num_copies;
2013 int did_repair = 0;
2014 int ret;
2015 struct inode *inode = page->mapping->host;
2016
2017 private = 0;
2018 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2019 (u64)-1, 1, EXTENT_DIRTY, 0);
2020 if (!ret)
2021 return 0;
2022
2023 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2024 &private_failure);
2025 if (ret)
2026 return 0;
2027
2028 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2029 BUG_ON(!failrec->this_mirror);
2030
2031 if (failrec->in_validation) {
2032 /* there was no real error, just free the record */
2033 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2034 failrec->start);
2035 did_repair = 1;
2036 goto out;
2037 }
2038
2039 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2040 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2041 failrec->start,
2042 EXTENT_LOCKED);
2043 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2044
2045 if (state && state->start == failrec->start) {
2046 fs_info = BTRFS_I(inode)->root->fs_info;
2047 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2048 failrec->len);
2049 if (num_copies > 1) {
2050 ret = repair_io_failure(fs_info, start, failrec->len,
2051 failrec->logical, page,
2052 failrec->failed_mirror);
2053 did_repair = !ret;
2054 }
2055 }
2056
2057 out:
2058 if (!ret)
2059 ret = free_io_failure(inode, failrec, did_repair);
2060
2061 return ret;
2062 }
2063
2064 /*
2065 * this is a generic handler for readpage errors (default
2066 * readpage_io_failed_hook). if other copies exist, read those and write back
2067 * good data to the failed position. does not investigate in remapping the
2068 * failed extent elsewhere, hoping the device will be smart enough to do this as
2069 * needed
2070 */
2071
2072 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2073 u64 start, u64 end, int failed_mirror,
2074 struct extent_state *state)
2075 {
2076 struct io_failure_record *failrec = NULL;
2077 u64 private;
2078 struct extent_map *em;
2079 struct inode *inode = page->mapping->host;
2080 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2081 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2082 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2083 struct bio *bio;
2084 int num_copies;
2085 int ret;
2086 int read_mode;
2087 u64 logical;
2088
2089 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2090
2091 ret = get_state_private(failure_tree, start, &private);
2092 if (ret) {
2093 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2094 if (!failrec)
2095 return -ENOMEM;
2096 failrec->start = start;
2097 failrec->len = end - start + 1;
2098 failrec->this_mirror = 0;
2099 failrec->bio_flags = 0;
2100 failrec->in_validation = 0;
2101
2102 read_lock(&em_tree->lock);
2103 em = lookup_extent_mapping(em_tree, start, failrec->len);
2104 if (!em) {
2105 read_unlock(&em_tree->lock);
2106 kfree(failrec);
2107 return -EIO;
2108 }
2109
2110 if (em->start > start || em->start + em->len < start) {
2111 free_extent_map(em);
2112 em = NULL;
2113 }
2114 read_unlock(&em_tree->lock);
2115
2116 if (!em) {
2117 kfree(failrec);
2118 return -EIO;
2119 }
2120 logical = start - em->start;
2121 logical = em->block_start + logical;
2122 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2123 logical = em->block_start;
2124 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2125 extent_set_compress_type(&failrec->bio_flags,
2126 em->compress_type);
2127 }
2128 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2129 "len=%llu\n", logical, start, failrec->len);
2130 failrec->logical = logical;
2131 free_extent_map(em);
2132
2133 /* set the bits in the private failure tree */
2134 ret = set_extent_bits(failure_tree, start, end,
2135 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2136 if (ret >= 0)
2137 ret = set_state_private(failure_tree, start,
2138 (u64)(unsigned long)failrec);
2139 /* set the bits in the inode's tree */
2140 if (ret >= 0)
2141 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2142 GFP_NOFS);
2143 if (ret < 0) {
2144 kfree(failrec);
2145 return ret;
2146 }
2147 } else {
2148 failrec = (struct io_failure_record *)(unsigned long)private;
2149 pr_debug("bio_readpage_error: (found) logical=%llu, "
2150 "start=%llu, len=%llu, validation=%d\n",
2151 failrec->logical, failrec->start, failrec->len,
2152 failrec->in_validation);
2153 /*
2154 * when data can be on disk more than twice, add to failrec here
2155 * (e.g. with a list for failed_mirror) to make
2156 * clean_io_failure() clean all those errors at once.
2157 */
2158 }
2159 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2160 failrec->logical, failrec->len);
2161 if (num_copies == 1) {
2162 /*
2163 * we only have a single copy of the data, so don't bother with
2164 * all the retry and error correction code that follows. no
2165 * matter what the error is, it is very likely to persist.
2166 */
2167 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2168 "state=%p, num_copies=%d, next_mirror %d, "
2169 "failed_mirror %d\n", state, num_copies,
2170 failrec->this_mirror, failed_mirror);
2171 free_io_failure(inode, failrec, 0);
2172 return -EIO;
2173 }
2174
2175 if (!state) {
2176 spin_lock(&tree->lock);
2177 state = find_first_extent_bit_state(tree, failrec->start,
2178 EXTENT_LOCKED);
2179 if (state && state->start != failrec->start)
2180 state = NULL;
2181 spin_unlock(&tree->lock);
2182 }
2183
2184 /*
2185 * there are two premises:
2186 * a) deliver good data to the caller
2187 * b) correct the bad sectors on disk
2188 */
2189 if (failed_bio->bi_vcnt > 1) {
2190 /*
2191 * to fulfill b), we need to know the exact failing sectors, as
2192 * we don't want to rewrite any more than the failed ones. thus,
2193 * we need separate read requests for the failed bio
2194 *
2195 * if the following BUG_ON triggers, our validation request got
2196 * merged. we need separate requests for our algorithm to work.
2197 */
2198 BUG_ON(failrec->in_validation);
2199 failrec->in_validation = 1;
2200 failrec->this_mirror = failed_mirror;
2201 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2202 } else {
2203 /*
2204 * we're ready to fulfill a) and b) alongside. get a good copy
2205 * of the failed sector and if we succeed, we have setup
2206 * everything for repair_io_failure to do the rest for us.
2207 */
2208 if (failrec->in_validation) {
2209 BUG_ON(failrec->this_mirror != failed_mirror);
2210 failrec->in_validation = 0;
2211 failrec->this_mirror = 0;
2212 }
2213 failrec->failed_mirror = failed_mirror;
2214 failrec->this_mirror++;
2215 if (failrec->this_mirror == failed_mirror)
2216 failrec->this_mirror++;
2217 read_mode = READ_SYNC;
2218 }
2219
2220 if (!state || failrec->this_mirror > num_copies) {
2221 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2222 "next_mirror %d, failed_mirror %d\n", state,
2223 num_copies, failrec->this_mirror, failed_mirror);
2224 free_io_failure(inode, failrec, 0);
2225 return -EIO;
2226 }
2227
2228 bio = bio_alloc(GFP_NOFS, 1);
2229 if (!bio) {
2230 free_io_failure(inode, failrec, 0);
2231 return -EIO;
2232 }
2233 bio->bi_private = state;
2234 bio->bi_end_io = failed_bio->bi_end_io;
2235 bio->bi_sector = failrec->logical >> 9;
2236 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2237 bio->bi_size = 0;
2238
2239 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2240
2241 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2242 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2243 failrec->this_mirror, num_copies, failrec->in_validation);
2244
2245 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2246 failrec->this_mirror,
2247 failrec->bio_flags, 0);
2248 return ret;
2249 }
2250
2251 /* lots and lots of room for performance fixes in the end_bio funcs */
2252
2253 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2254 {
2255 int uptodate = (err == 0);
2256 struct extent_io_tree *tree;
2257 int ret;
2258
2259 tree = &BTRFS_I(page->mapping->host)->io_tree;
2260
2261 if (tree->ops && tree->ops->writepage_end_io_hook) {
2262 ret = tree->ops->writepage_end_io_hook(page, start,
2263 end, NULL, uptodate);
2264 if (ret)
2265 uptodate = 0;
2266 }
2267
2268 if (!uptodate) {
2269 ClearPageUptodate(page);
2270 SetPageError(page);
2271 }
2272 return 0;
2273 }
2274
2275 /*
2276 * after a writepage IO is done, we need to:
2277 * clear the uptodate bits on error
2278 * clear the writeback bits in the extent tree for this IO
2279 * end_page_writeback if the page has no more pending IO
2280 *
2281 * Scheduling is not allowed, so the extent state tree is expected
2282 * to have one and only one object corresponding to this IO.
2283 */
2284 static void end_bio_extent_writepage(struct bio *bio, int err)
2285 {
2286 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2287 struct extent_io_tree *tree;
2288 u64 start;
2289 u64 end;
2290 int whole_page;
2291
2292 do {
2293 struct page *page = bvec->bv_page;
2294 tree = &BTRFS_I(page->mapping->host)->io_tree;
2295
2296 start = page_offset(page) + bvec->bv_offset;
2297 end = start + bvec->bv_len - 1;
2298
2299 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2300 whole_page = 1;
2301 else
2302 whole_page = 0;
2303
2304 if (--bvec >= bio->bi_io_vec)
2305 prefetchw(&bvec->bv_page->flags);
2306
2307 if (end_extent_writepage(page, err, start, end))
2308 continue;
2309
2310 if (whole_page)
2311 end_page_writeback(page);
2312 else
2313 check_page_writeback(tree, page);
2314 } while (bvec >= bio->bi_io_vec);
2315
2316 bio_put(bio);
2317 }
2318
2319 /*
2320 * after a readpage IO is done, we need to:
2321 * clear the uptodate bits on error
2322 * set the uptodate bits if things worked
2323 * set the page up to date if all extents in the tree are uptodate
2324 * clear the lock bit in the extent tree
2325 * unlock the page if there are no other extents locked for it
2326 *
2327 * Scheduling is not allowed, so the extent state tree is expected
2328 * to have one and only one object corresponding to this IO.
2329 */
2330 static void end_bio_extent_readpage(struct bio *bio, int err)
2331 {
2332 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2333 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2334 struct bio_vec *bvec = bio->bi_io_vec;
2335 struct extent_io_tree *tree;
2336 u64 start;
2337 u64 end;
2338 int whole_page;
2339 int mirror;
2340 int ret;
2341
2342 if (err)
2343 uptodate = 0;
2344
2345 do {
2346 struct page *page = bvec->bv_page;
2347 struct extent_state *cached = NULL;
2348 struct extent_state *state;
2349
2350 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2351 "mirror=%ld\n", (u64)bio->bi_sector, err,
2352 (long int)bio->bi_bdev);
2353 tree = &BTRFS_I(page->mapping->host)->io_tree;
2354
2355 start = page_offset(page) + bvec->bv_offset;
2356 end = start + bvec->bv_len - 1;
2357
2358 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2359 whole_page = 1;
2360 else
2361 whole_page = 0;
2362
2363 if (++bvec <= bvec_end)
2364 prefetchw(&bvec->bv_page->flags);
2365
2366 spin_lock(&tree->lock);
2367 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2368 if (state && state->start == start) {
2369 /*
2370 * take a reference on the state, unlock will drop
2371 * the ref
2372 */
2373 cache_state(state, &cached);
2374 }
2375 spin_unlock(&tree->lock);
2376
2377 mirror = (int)(unsigned long)bio->bi_bdev;
2378 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2379 ret = tree->ops->readpage_end_io_hook(page, start, end,
2380 state, mirror);
2381 if (ret)
2382 uptodate = 0;
2383 else
2384 clean_io_failure(start, page);
2385 }
2386
2387 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2388 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2389 if (!ret && !err &&
2390 test_bit(BIO_UPTODATE, &bio->bi_flags))
2391 uptodate = 1;
2392 } else if (!uptodate) {
2393 /*
2394 * The generic bio_readpage_error handles errors the
2395 * following way: If possible, new read requests are
2396 * created and submitted and will end up in
2397 * end_bio_extent_readpage as well (if we're lucky, not
2398 * in the !uptodate case). In that case it returns 0 and
2399 * we just go on with the next page in our bio. If it
2400 * can't handle the error it will return -EIO and we
2401 * remain responsible for that page.
2402 */
2403 ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2404 if (ret == 0) {
2405 uptodate =
2406 test_bit(BIO_UPTODATE, &bio->bi_flags);
2407 if (err)
2408 uptodate = 0;
2409 uncache_state(&cached);
2410 continue;
2411 }
2412 }
2413
2414 if (uptodate && tree->track_uptodate) {
2415 set_extent_uptodate(tree, start, end, &cached,
2416 GFP_ATOMIC);
2417 }
2418 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2419
2420 if (whole_page) {
2421 if (uptodate) {
2422 SetPageUptodate(page);
2423 } else {
2424 ClearPageUptodate(page);
2425 SetPageError(page);
2426 }
2427 unlock_page(page);
2428 } else {
2429 if (uptodate) {
2430 check_page_uptodate(tree, page);
2431 } else {
2432 ClearPageUptodate(page);
2433 SetPageError(page);
2434 }
2435 check_page_locked(tree, page);
2436 }
2437 } while (bvec <= bvec_end);
2438
2439 bio_put(bio);
2440 }
2441
2442 struct bio *
2443 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2444 gfp_t gfp_flags)
2445 {
2446 struct bio *bio;
2447
2448 bio = bio_alloc(gfp_flags, nr_vecs);
2449
2450 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2451 while (!bio && (nr_vecs /= 2))
2452 bio = bio_alloc(gfp_flags, nr_vecs);
2453 }
2454
2455 if (bio) {
2456 bio->bi_size = 0;
2457 bio->bi_bdev = bdev;
2458 bio->bi_sector = first_sector;
2459 }
2460 return bio;
2461 }
2462
2463 static int __must_check submit_one_bio(int rw, struct bio *bio,
2464 int mirror_num, unsigned long bio_flags)
2465 {
2466 int ret = 0;
2467 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2468 struct page *page = bvec->bv_page;
2469 struct extent_io_tree *tree = bio->bi_private;
2470 u64 start;
2471
2472 start = page_offset(page) + bvec->bv_offset;
2473
2474 bio->bi_private = NULL;
2475
2476 bio_get(bio);
2477
2478 if (tree->ops && tree->ops->submit_bio_hook)
2479 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2480 mirror_num, bio_flags, start);
2481 else
2482 btrfsic_submit_bio(rw, bio);
2483
2484 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2485 ret = -EOPNOTSUPP;
2486 bio_put(bio);
2487 return ret;
2488 }
2489
2490 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2491 unsigned long offset, size_t size, struct bio *bio,
2492 unsigned long bio_flags)
2493 {
2494 int ret = 0;
2495 if (tree->ops && tree->ops->merge_bio_hook)
2496 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2497 bio_flags);
2498 BUG_ON(ret < 0);
2499 return ret;
2500
2501 }
2502
2503 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2504 struct page *page, sector_t sector,
2505 size_t size, unsigned long offset,
2506 struct block_device *bdev,
2507 struct bio **bio_ret,
2508 unsigned long max_pages,
2509 bio_end_io_t end_io_func,
2510 int mirror_num,
2511 unsigned long prev_bio_flags,
2512 unsigned long bio_flags)
2513 {
2514 int ret = 0;
2515 struct bio *bio;
2516 int nr;
2517 int contig = 0;
2518 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2519 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2520 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2521
2522 if (bio_ret && *bio_ret) {
2523 bio = *bio_ret;
2524 if (old_compressed)
2525 contig = bio->bi_sector == sector;
2526 else
2527 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2528 sector;
2529
2530 if (prev_bio_flags != bio_flags || !contig ||
2531 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2532 bio_add_page(bio, page, page_size, offset) < page_size) {
2533 ret = submit_one_bio(rw, bio, mirror_num,
2534 prev_bio_flags);
2535 if (ret < 0)
2536 return ret;
2537 bio = NULL;
2538 } else {
2539 return 0;
2540 }
2541 }
2542 if (this_compressed)
2543 nr = BIO_MAX_PAGES;
2544 else
2545 nr = bio_get_nr_vecs(bdev);
2546
2547 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2548 if (!bio)
2549 return -ENOMEM;
2550
2551 bio_add_page(bio, page, page_size, offset);
2552 bio->bi_end_io = end_io_func;
2553 bio->bi_private = tree;
2554
2555 if (bio_ret)
2556 *bio_ret = bio;
2557 else
2558 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2559
2560 return ret;
2561 }
2562
2563 void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
2564 {
2565 if (!PagePrivate(page)) {
2566 SetPagePrivate(page);
2567 page_cache_get(page);
2568 set_page_private(page, (unsigned long)eb);
2569 } else {
2570 WARN_ON(page->private != (unsigned long)eb);
2571 }
2572 }
2573
2574 void set_page_extent_mapped(struct page *page)
2575 {
2576 if (!PagePrivate(page)) {
2577 SetPagePrivate(page);
2578 page_cache_get(page);
2579 set_page_private(page, EXTENT_PAGE_PRIVATE);
2580 }
2581 }
2582
2583 /*
2584 * basic readpage implementation. Locked extent state structs are inserted
2585 * into the tree that are removed when the IO is done (by the end_io
2586 * handlers)
2587 * XXX JDM: This needs looking at to ensure proper page locking
2588 */
2589 static int __extent_read_full_page(struct extent_io_tree *tree,
2590 struct page *page,
2591 get_extent_t *get_extent,
2592 struct bio **bio, int mirror_num,
2593 unsigned long *bio_flags)
2594 {
2595 struct inode *inode = page->mapping->host;
2596 u64 start = page_offset(page);
2597 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2598 u64 end;
2599 u64 cur = start;
2600 u64 extent_offset;
2601 u64 last_byte = i_size_read(inode);
2602 u64 block_start;
2603 u64 cur_end;
2604 sector_t sector;
2605 struct extent_map *em;
2606 struct block_device *bdev;
2607 struct btrfs_ordered_extent *ordered;
2608 int ret;
2609 int nr = 0;
2610 size_t pg_offset = 0;
2611 size_t iosize;
2612 size_t disk_io_size;
2613 size_t blocksize = inode->i_sb->s_blocksize;
2614 unsigned long this_bio_flag = 0;
2615
2616 set_page_extent_mapped(page);
2617
2618 if (!PageUptodate(page)) {
2619 if (cleancache_get_page(page) == 0) {
2620 BUG_ON(blocksize != PAGE_SIZE);
2621 goto out;
2622 }
2623 }
2624
2625 end = page_end;
2626 while (1) {
2627 lock_extent(tree, start, end);
2628 ordered = btrfs_lookup_ordered_extent(inode, start);
2629 if (!ordered)
2630 break;
2631 unlock_extent(tree, start, end);
2632 btrfs_start_ordered_extent(inode, ordered, 1);
2633 btrfs_put_ordered_extent(ordered);
2634 }
2635
2636 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2637 char *userpage;
2638 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2639
2640 if (zero_offset) {
2641 iosize = PAGE_CACHE_SIZE - zero_offset;
2642 userpage = kmap_atomic(page);
2643 memset(userpage + zero_offset, 0, iosize);
2644 flush_dcache_page(page);
2645 kunmap_atomic(userpage);
2646 }
2647 }
2648 while (cur <= end) {
2649 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2650
2651 if (cur >= last_byte) {
2652 char *userpage;
2653 struct extent_state *cached = NULL;
2654
2655 iosize = PAGE_CACHE_SIZE - pg_offset;
2656 userpage = kmap_atomic(page);
2657 memset(userpage + pg_offset, 0, iosize);
2658 flush_dcache_page(page);
2659 kunmap_atomic(userpage);
2660 set_extent_uptodate(tree, cur, cur + iosize - 1,
2661 &cached, GFP_NOFS);
2662 unlock_extent_cached(tree, cur, cur + iosize - 1,
2663 &cached, GFP_NOFS);
2664 break;
2665 }
2666 em = get_extent(inode, page, pg_offset, cur,
2667 end - cur + 1, 0);
2668 if (IS_ERR_OR_NULL(em)) {
2669 SetPageError(page);
2670 unlock_extent(tree, cur, end);
2671 break;
2672 }
2673 extent_offset = cur - em->start;
2674 BUG_ON(extent_map_end(em) <= cur);
2675 BUG_ON(end < cur);
2676
2677 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2678 this_bio_flag = EXTENT_BIO_COMPRESSED;
2679 extent_set_compress_type(&this_bio_flag,
2680 em->compress_type);
2681 }
2682
2683 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2684 cur_end = min(extent_map_end(em) - 1, end);
2685 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2686 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2687 disk_io_size = em->block_len;
2688 sector = em->block_start >> 9;
2689 } else {
2690 sector = (em->block_start + extent_offset) >> 9;
2691 disk_io_size = iosize;
2692 }
2693 bdev = em->bdev;
2694 block_start = em->block_start;
2695 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2696 block_start = EXTENT_MAP_HOLE;
2697 free_extent_map(em);
2698 em = NULL;
2699
2700 /* we've found a hole, just zero and go on */
2701 if (block_start == EXTENT_MAP_HOLE) {
2702 char *userpage;
2703 struct extent_state *cached = NULL;
2704
2705 userpage = kmap_atomic(page);
2706 memset(userpage + pg_offset, 0, iosize);
2707 flush_dcache_page(page);
2708 kunmap_atomic(userpage);
2709
2710 set_extent_uptodate(tree, cur, cur + iosize - 1,
2711 &cached, GFP_NOFS);
2712 unlock_extent_cached(tree, cur, cur + iosize - 1,
2713 &cached, GFP_NOFS);
2714 cur = cur + iosize;
2715 pg_offset += iosize;
2716 continue;
2717 }
2718 /* the get_extent function already copied into the page */
2719 if (test_range_bit(tree, cur, cur_end,
2720 EXTENT_UPTODATE, 1, NULL)) {
2721 check_page_uptodate(tree, page);
2722 unlock_extent(tree, cur, cur + iosize - 1);
2723 cur = cur + iosize;
2724 pg_offset += iosize;
2725 continue;
2726 }
2727 /* we have an inline extent but it didn't get marked up
2728 * to date. Error out
2729 */
2730 if (block_start == EXTENT_MAP_INLINE) {
2731 SetPageError(page);
2732 unlock_extent(tree, cur, cur + iosize - 1);
2733 cur = cur + iosize;
2734 pg_offset += iosize;
2735 continue;
2736 }
2737
2738 pnr -= page->index;
2739 ret = submit_extent_page(READ, tree, page,
2740 sector, disk_io_size, pg_offset,
2741 bdev, bio, pnr,
2742 end_bio_extent_readpage, mirror_num,
2743 *bio_flags,
2744 this_bio_flag);
2745 if (!ret) {
2746 nr++;
2747 *bio_flags = this_bio_flag;
2748 } else {
2749 SetPageError(page);
2750 unlock_extent(tree, cur, cur + iosize - 1);
2751 }
2752 cur = cur + iosize;
2753 pg_offset += iosize;
2754 }
2755 out:
2756 if (!nr) {
2757 if (!PageError(page))
2758 SetPageUptodate(page);
2759 unlock_page(page);
2760 }
2761 return 0;
2762 }
2763
2764 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2765 get_extent_t *get_extent, int mirror_num)
2766 {
2767 struct bio *bio = NULL;
2768 unsigned long bio_flags = 0;
2769 int ret;
2770
2771 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2772 &bio_flags);
2773 if (bio)
2774 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2775 return ret;
2776 }
2777
2778 static noinline void update_nr_written(struct page *page,
2779 struct writeback_control *wbc,
2780 unsigned long nr_written)
2781 {
2782 wbc->nr_to_write -= nr_written;
2783 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2784 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2785 page->mapping->writeback_index = page->index + nr_written;
2786 }
2787
2788 /*
2789 * the writepage semantics are similar to regular writepage. extent
2790 * records are inserted to lock ranges in the tree, and as dirty areas
2791 * are found, they are marked writeback. Then the lock bits are removed
2792 * and the end_io handler clears the writeback ranges
2793 */
2794 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2795 void *data)
2796 {
2797 struct inode *inode = page->mapping->host;
2798 struct extent_page_data *epd = data;
2799 struct extent_io_tree *tree = epd->tree;
2800 u64 start = page_offset(page);
2801 u64 delalloc_start;
2802 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2803 u64 end;
2804 u64 cur = start;
2805 u64 extent_offset;
2806 u64 last_byte = i_size_read(inode);
2807 u64 block_start;
2808 u64 iosize;
2809 sector_t sector;
2810 struct extent_state *cached_state = NULL;
2811 struct extent_map *em;
2812 struct block_device *bdev;
2813 int ret;
2814 int nr = 0;
2815 size_t pg_offset = 0;
2816 size_t blocksize;
2817 loff_t i_size = i_size_read(inode);
2818 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2819 u64 nr_delalloc;
2820 u64 delalloc_end;
2821 int page_started;
2822 int compressed;
2823 int write_flags;
2824 unsigned long nr_written = 0;
2825 bool fill_delalloc = true;
2826
2827 if (wbc->sync_mode == WB_SYNC_ALL)
2828 write_flags = WRITE_SYNC;
2829 else
2830 write_flags = WRITE;
2831
2832 trace___extent_writepage(page, inode, wbc);
2833
2834 WARN_ON(!PageLocked(page));
2835
2836 ClearPageError(page);
2837
2838 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2839 if (page->index > end_index ||
2840 (page->index == end_index && !pg_offset)) {
2841 page->mapping->a_ops->invalidatepage(page, 0);
2842 unlock_page(page);
2843 return 0;
2844 }
2845
2846 if (page->index == end_index) {
2847 char *userpage;
2848
2849 userpage = kmap_atomic(page);
2850 memset(userpage + pg_offset, 0,
2851 PAGE_CACHE_SIZE - pg_offset);
2852 kunmap_atomic(userpage);
2853 flush_dcache_page(page);
2854 }
2855 pg_offset = 0;
2856
2857 set_page_extent_mapped(page);
2858
2859 if (!tree->ops || !tree->ops->fill_delalloc)
2860 fill_delalloc = false;
2861
2862 delalloc_start = start;
2863 delalloc_end = 0;
2864 page_started = 0;
2865 if (!epd->extent_locked && fill_delalloc) {
2866 u64 delalloc_to_write = 0;
2867 /*
2868 * make sure the wbc mapping index is at least updated
2869 * to this page.
2870 */
2871 update_nr_written(page, wbc, 0);
2872
2873 while (delalloc_end < page_end) {
2874 nr_delalloc = find_lock_delalloc_range(inode, tree,
2875 page,
2876 &delalloc_start,
2877 &delalloc_end,
2878 128 * 1024 * 1024);
2879 if (nr_delalloc == 0) {
2880 delalloc_start = delalloc_end + 1;
2881 continue;
2882 }
2883 ret = tree->ops->fill_delalloc(inode, page,
2884 delalloc_start,
2885 delalloc_end,
2886 &page_started,
2887 &nr_written);
2888 /* File system has been set read-only */
2889 if (ret) {
2890 SetPageError(page);
2891 goto done;
2892 }
2893 /*
2894 * delalloc_end is already one less than the total
2895 * length, so we don't subtract one from
2896 * PAGE_CACHE_SIZE
2897 */
2898 delalloc_to_write += (delalloc_end - delalloc_start +
2899 PAGE_CACHE_SIZE) >>
2900 PAGE_CACHE_SHIFT;
2901 delalloc_start = delalloc_end + 1;
2902 }
2903 if (wbc->nr_to_write < delalloc_to_write) {
2904 int thresh = 8192;
2905
2906 if (delalloc_to_write < thresh * 2)
2907 thresh = delalloc_to_write;
2908 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2909 thresh);
2910 }
2911
2912 /* did the fill delalloc function already unlock and start
2913 * the IO?
2914 */
2915 if (page_started) {
2916 ret = 0;
2917 /*
2918 * we've unlocked the page, so we can't update
2919 * the mapping's writeback index, just update
2920 * nr_to_write.
2921 */
2922 wbc->nr_to_write -= nr_written;
2923 goto done_unlocked;
2924 }
2925 }
2926 if (tree->ops && tree->ops->writepage_start_hook) {
2927 ret = tree->ops->writepage_start_hook(page, start,
2928 page_end);
2929 if (ret) {
2930 /* Fixup worker will requeue */
2931 if (ret == -EBUSY)
2932 wbc->pages_skipped++;
2933 else
2934 redirty_page_for_writepage(wbc, page);
2935 update_nr_written(page, wbc, nr_written);
2936 unlock_page(page);
2937 ret = 0;
2938 goto done_unlocked;
2939 }
2940 }
2941
2942 /*
2943 * we don't want to touch the inode after unlocking the page,
2944 * so we update the mapping writeback index now
2945 */
2946 update_nr_written(page, wbc, nr_written + 1);
2947
2948 end = page_end;
2949 if (last_byte <= start) {
2950 if (tree->ops && tree->ops->writepage_end_io_hook)
2951 tree->ops->writepage_end_io_hook(page, start,
2952 page_end, NULL, 1);
2953 goto done;
2954 }
2955
2956 blocksize = inode->i_sb->s_blocksize;
2957
2958 while (cur <= end) {
2959 if (cur >= last_byte) {
2960 if (tree->ops && tree->ops->writepage_end_io_hook)
2961 tree->ops->writepage_end_io_hook(page, cur,
2962 page_end, NULL, 1);
2963 break;
2964 }
2965 em = epd->get_extent(inode, page, pg_offset, cur,
2966 end - cur + 1, 1);
2967 if (IS_ERR_OR_NULL(em)) {
2968 SetPageError(page);
2969 break;
2970 }
2971
2972 extent_offset = cur - em->start;
2973 BUG_ON(extent_map_end(em) <= cur);
2974 BUG_ON(end < cur);
2975 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2976 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2977 sector = (em->block_start + extent_offset) >> 9;
2978 bdev = em->bdev;
2979 block_start = em->block_start;
2980 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2981 free_extent_map(em);
2982 em = NULL;
2983
2984 /*
2985 * compressed and inline extents are written through other
2986 * paths in the FS
2987 */
2988 if (compressed || block_start == EXTENT_MAP_HOLE ||
2989 block_start == EXTENT_MAP_INLINE) {
2990 /*
2991 * end_io notification does not happen here for
2992 * compressed extents
2993 */
2994 if (!compressed && tree->ops &&
2995 tree->ops->writepage_end_io_hook)
2996 tree->ops->writepage_end_io_hook(page, cur,
2997 cur + iosize - 1,
2998 NULL, 1);
2999 else if (compressed) {
3000 /* we don't want to end_page_writeback on
3001 * a compressed extent. this happens
3002 * elsewhere
3003 */
3004 nr++;
3005 }
3006
3007 cur += iosize;
3008 pg_offset += iosize;
3009 continue;
3010 }
3011 /* leave this out until we have a page_mkwrite call */
3012 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3013 EXTENT_DIRTY, 0, NULL)) {
3014 cur = cur + iosize;
3015 pg_offset += iosize;
3016 continue;
3017 }
3018
3019 if (tree->ops && tree->ops->writepage_io_hook) {
3020 ret = tree->ops->writepage_io_hook(page, cur,
3021 cur + iosize - 1);
3022 } else {
3023 ret = 0;
3024 }
3025 if (ret) {
3026 SetPageError(page);
3027 } else {
3028 unsigned long max_nr = end_index + 1;
3029
3030 set_range_writeback(tree, cur, cur + iosize - 1);
3031 if (!PageWriteback(page)) {
3032 printk(KERN_ERR "btrfs warning page %lu not "
3033 "writeback, cur %llu end %llu\n",
3034 page->index, (unsigned long long)cur,
3035 (unsigned long long)end);
3036 }
3037
3038 ret = submit_extent_page(write_flags, tree, page,
3039 sector, iosize, pg_offset,
3040 bdev, &epd->bio, max_nr,
3041 end_bio_extent_writepage,
3042 0, 0, 0);
3043 if (ret)
3044 SetPageError(page);
3045 }
3046 cur = cur + iosize;
3047 pg_offset += iosize;
3048 nr++;
3049 }
3050 done:
3051 if (nr == 0) {
3052 /* make sure the mapping tag for page dirty gets cleared */
3053 set_page_writeback(page);
3054 end_page_writeback(page);
3055 }
3056 unlock_page(page);
3057
3058 done_unlocked:
3059
3060 /* drop our reference on any cached states */
3061 free_extent_state(cached_state);
3062 return 0;
3063 }
3064
3065 static int eb_wait(void *word)
3066 {
3067 io_schedule();
3068 return 0;
3069 }
3070
3071 static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3072 {
3073 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3074 TASK_UNINTERRUPTIBLE);
3075 }
3076
3077 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3078 struct btrfs_fs_info *fs_info,
3079 struct extent_page_data *epd)
3080 {
3081 unsigned long i, num_pages;
3082 int flush = 0;
3083 int ret = 0;
3084
3085 if (!btrfs_try_tree_write_lock(eb)) {
3086 flush = 1;
3087 flush_write_bio(epd);
3088 btrfs_tree_lock(eb);
3089 }
3090
3091 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3092 btrfs_tree_unlock(eb);
3093 if (!epd->sync_io)
3094 return 0;
3095 if (!flush) {
3096 flush_write_bio(epd);
3097 flush = 1;
3098 }
3099 while (1) {
3100 wait_on_extent_buffer_writeback(eb);
3101 btrfs_tree_lock(eb);
3102 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3103 break;
3104 btrfs_tree_unlock(eb);
3105 }
3106 }
3107
3108 /*
3109 * We need to do this to prevent races in people who check if the eb is
3110 * under IO since we can end up having no IO bits set for a short period
3111 * of time.
3112 */
3113 spin_lock(&eb->refs_lock);
3114 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3115 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3116 spin_unlock(&eb->refs_lock);
3117 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3118 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3119 -eb->len,
3120 fs_info->dirty_metadata_batch);
3121 ret = 1;
3122 } else {
3123 spin_unlock(&eb->refs_lock);
3124 }
3125
3126 btrfs_tree_unlock(eb);
3127
3128 if (!ret)
3129 return ret;
3130
3131 num_pages = num_extent_pages(eb->start, eb->len);
3132 for (i = 0; i < num_pages; i++) {
3133 struct page *p = extent_buffer_page(eb, i);
3134
3135 if (!trylock_page(p)) {
3136 if (!flush) {
3137 flush_write_bio(epd);
3138 flush = 1;
3139 }
3140 lock_page(p);
3141 }
3142 }
3143
3144 return ret;
3145 }
3146
3147 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3148 {
3149 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3150 smp_mb__after_clear_bit();
3151 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3152 }
3153
3154 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3155 {
3156 int uptodate = err == 0;
3157 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3158 struct extent_buffer *eb;
3159 int done;
3160
3161 do {
3162 struct page *page = bvec->bv_page;
3163
3164 bvec--;
3165 eb = (struct extent_buffer *)page->private;
3166 BUG_ON(!eb);
3167 done = atomic_dec_and_test(&eb->io_pages);
3168
3169 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3170 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3171 ClearPageUptodate(page);
3172 SetPageError(page);
3173 }
3174
3175 end_page_writeback(page);
3176
3177 if (!done)
3178 continue;
3179
3180 end_extent_buffer_writeback(eb);
3181 } while (bvec >= bio->bi_io_vec);
3182
3183 bio_put(bio);
3184
3185 }
3186
3187 static int write_one_eb(struct extent_buffer *eb,
3188 struct btrfs_fs_info *fs_info,
3189 struct writeback_control *wbc,
3190 struct extent_page_data *epd)
3191 {
3192 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3193 u64 offset = eb->start;
3194 unsigned long i, num_pages;
3195 unsigned long bio_flags = 0;
3196 int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3197 int ret = 0;
3198
3199 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3200 num_pages = num_extent_pages(eb->start, eb->len);
3201 atomic_set(&eb->io_pages, num_pages);
3202 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3203 bio_flags = EXTENT_BIO_TREE_LOG;
3204
3205 for (i = 0; i < num_pages; i++) {
3206 struct page *p = extent_buffer_page(eb, i);
3207
3208 clear_page_dirty_for_io(p);
3209 set_page_writeback(p);
3210 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3211 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3212 -1, end_bio_extent_buffer_writepage,
3213 0, epd->bio_flags, bio_flags);
3214 epd->bio_flags = bio_flags;
3215 if (ret) {
3216 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3217 SetPageError(p);
3218 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3219 end_extent_buffer_writeback(eb);
3220 ret = -EIO;
3221 break;
3222 }
3223 offset += PAGE_CACHE_SIZE;
3224 update_nr_written(p, wbc, 1);
3225 unlock_page(p);
3226 }
3227
3228 if (unlikely(ret)) {
3229 for (; i < num_pages; i++) {
3230 struct page *p = extent_buffer_page(eb, i);
3231 unlock_page(p);
3232 }
3233 }
3234
3235 return ret;
3236 }
3237
3238 int btree_write_cache_pages(struct address_space *mapping,
3239 struct writeback_control *wbc)
3240 {
3241 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3242 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3243 struct extent_buffer *eb, *prev_eb = NULL;
3244 struct extent_page_data epd = {
3245 .bio = NULL,
3246 .tree = tree,
3247 .extent_locked = 0,
3248 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3249 .bio_flags = 0,
3250 };
3251 int ret = 0;
3252 int done = 0;
3253 int nr_to_write_done = 0;
3254 struct pagevec pvec;
3255 int nr_pages;
3256 pgoff_t index;
3257 pgoff_t end; /* Inclusive */
3258 int scanned = 0;
3259 int tag;
3260
3261 pagevec_init(&pvec, 0);
3262 if (wbc->range_cyclic) {
3263 index = mapping->writeback_index; /* Start from prev offset */
3264 end = -1;
3265 } else {
3266 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3267 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3268 scanned = 1;
3269 }
3270 if (wbc->sync_mode == WB_SYNC_ALL)
3271 tag = PAGECACHE_TAG_TOWRITE;
3272 else
3273 tag = PAGECACHE_TAG_DIRTY;
3274 retry:
3275 if (wbc->sync_mode == WB_SYNC_ALL)
3276 tag_pages_for_writeback(mapping, index, end);
3277 while (!done && !nr_to_write_done && (index <= end) &&
3278 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3279 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3280 unsigned i;
3281
3282 scanned = 1;
3283 for (i = 0; i < nr_pages; i++) {
3284 struct page *page = pvec.pages[i];
3285
3286 if (!PagePrivate(page))
3287 continue;
3288
3289 if (!wbc->range_cyclic && page->index > end) {
3290 done = 1;
3291 break;
3292 }
3293
3294 spin_lock(&mapping->private_lock);
3295 if (!PagePrivate(page)) {
3296 spin_unlock(&mapping->private_lock);
3297 continue;
3298 }
3299
3300 eb = (struct extent_buffer *)page->private;
3301
3302 /*
3303 * Shouldn't happen and normally this would be a BUG_ON
3304 * but no sense in crashing the users box for something
3305 * we can survive anyway.
3306 */
3307 if (!eb) {
3308 spin_unlock(&mapping->private_lock);
3309 WARN_ON(1);
3310 continue;
3311 }
3312
3313 if (eb == prev_eb) {
3314 spin_unlock(&mapping->private_lock);
3315 continue;
3316 }
3317
3318 ret = atomic_inc_not_zero(&eb->refs);
3319 spin_unlock(&mapping->private_lock);
3320 if (!ret)
3321 continue;
3322
3323 prev_eb = eb;
3324 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3325 if (!ret) {
3326 free_extent_buffer(eb);
3327 continue;
3328 }
3329
3330 ret = write_one_eb(eb, fs_info, wbc, &epd);
3331 if (ret) {
3332 done = 1;
3333 free_extent_buffer(eb);
3334 break;
3335 }
3336 free_extent_buffer(eb);
3337
3338 /*
3339 * the filesystem may choose to bump up nr_to_write.
3340 * We have to make sure to honor the new nr_to_write
3341 * at any time
3342 */
3343 nr_to_write_done = wbc->nr_to_write <= 0;
3344 }
3345 pagevec_release(&pvec);
3346 cond_resched();
3347 }
3348 if (!scanned && !done) {
3349 /*
3350 * We hit the last page and there is more work to be done: wrap
3351 * back to the start of the file
3352 */
3353 scanned = 1;
3354 index = 0;
3355 goto retry;
3356 }
3357 flush_write_bio(&epd);
3358 return ret;
3359 }
3360
3361 /**
3362 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3363 * @mapping: address space structure to write
3364 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3365 * @writepage: function called for each page
3366 * @data: data passed to writepage function
3367 *
3368 * If a page is already under I/O, write_cache_pages() skips it, even
3369 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3370 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3371 * and msync() need to guarantee that all the data which was dirty at the time
3372 * the call was made get new I/O started against them. If wbc->sync_mode is
3373 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3374 * existing IO to complete.
3375 */
3376 static int extent_write_cache_pages(struct extent_io_tree *tree,
3377 struct address_space *mapping,
3378 struct writeback_control *wbc,
3379 writepage_t writepage, void *data,
3380 void (*flush_fn)(void *))
3381 {
3382 struct inode *inode = mapping->host;
3383 int ret = 0;
3384 int done = 0;
3385 int nr_to_write_done = 0;
3386 struct pagevec pvec;
3387 int nr_pages;
3388 pgoff_t index;
3389 pgoff_t end; /* Inclusive */
3390 int scanned = 0;
3391 int tag;
3392
3393 /*
3394 * We have to hold onto the inode so that ordered extents can do their
3395 * work when the IO finishes. The alternative to this is failing to add
3396 * an ordered extent if the igrab() fails there and that is a huge pain
3397 * to deal with, so instead just hold onto the inode throughout the
3398 * writepages operation. If it fails here we are freeing up the inode
3399 * anyway and we'd rather not waste our time writing out stuff that is
3400 * going to be truncated anyway.
3401 */
3402 if (!igrab(inode))
3403 return 0;
3404
3405 pagevec_init(&pvec, 0);
3406 if (wbc->range_cyclic) {
3407 index = mapping->writeback_index; /* Start from prev offset */
3408 end = -1;
3409 } else {
3410 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3411 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3412 scanned = 1;
3413 }
3414 if (wbc->sync_mode == WB_SYNC_ALL)
3415 tag = PAGECACHE_TAG_TOWRITE;
3416 else
3417 tag = PAGECACHE_TAG_DIRTY;
3418 retry:
3419 if (wbc->sync_mode == WB_SYNC_ALL)
3420 tag_pages_for_writeback(mapping, index, end);
3421 while (!done && !nr_to_write_done && (index <= end) &&
3422 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3423 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3424 unsigned i;
3425
3426 scanned = 1;
3427 for (i = 0; i < nr_pages; i++) {
3428 struct page *page = pvec.pages[i];
3429
3430 /*
3431 * At this point we hold neither mapping->tree_lock nor
3432 * lock on the page itself: the page may be truncated or
3433 * invalidated (changing page->mapping to NULL), or even
3434 * swizzled back from swapper_space to tmpfs file
3435 * mapping
3436 */
3437 if (!trylock_page(page)) {
3438 flush_fn(data);
3439 lock_page(page);
3440 }
3441
3442 if (unlikely(page->mapping != mapping)) {
3443 unlock_page(page);
3444 continue;
3445 }
3446
3447 if (!wbc->range_cyclic && page->index > end) {
3448 done = 1;
3449 unlock_page(page);
3450 continue;
3451 }
3452
3453 if (wbc->sync_mode != WB_SYNC_NONE) {
3454 if (PageWriteback(page))
3455 flush_fn(data);
3456 wait_on_page_writeback(page);
3457 }
3458
3459 if (PageWriteback(page) ||
3460 !clear_page_dirty_for_io(page)) {
3461 unlock_page(page);
3462 continue;
3463 }
3464
3465 ret = (*writepage)(page, wbc, data);
3466
3467 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3468 unlock_page(page);
3469 ret = 0;
3470 }
3471 if (ret)
3472 done = 1;
3473
3474 /*
3475 * the filesystem may choose to bump up nr_to_write.
3476 * We have to make sure to honor the new nr_to_write
3477 * at any time
3478 */
3479 nr_to_write_done = wbc->nr_to_write <= 0;
3480 }
3481 pagevec_release(&pvec);
3482 cond_resched();
3483 }
3484 if (!scanned && !done) {
3485 /*
3486 * We hit the last page and there is more work to be done: wrap
3487 * back to the start of the file
3488 */
3489 scanned = 1;
3490 index = 0;
3491 goto retry;
3492 }
3493 btrfs_add_delayed_iput(inode);
3494 return ret;
3495 }
3496
3497 static void flush_epd_write_bio(struct extent_page_data *epd)
3498 {
3499 if (epd->bio) {
3500 int rw = WRITE;
3501 int ret;
3502
3503 if (epd->sync_io)
3504 rw = WRITE_SYNC;
3505
3506 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3507 BUG_ON(ret < 0); /* -ENOMEM */
3508 epd->bio = NULL;
3509 }
3510 }
3511
3512 static noinline void flush_write_bio(void *data)
3513 {
3514 struct extent_page_data *epd = data;
3515 flush_epd_write_bio(epd);
3516 }
3517
3518 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3519 get_extent_t *get_extent,
3520 struct writeback_control *wbc)
3521 {
3522 int ret;
3523 struct extent_page_data epd = {
3524 .bio = NULL,
3525 .tree = tree,
3526 .get_extent = get_extent,
3527 .extent_locked = 0,
3528 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3529 .bio_flags = 0,
3530 };
3531
3532 ret = __extent_writepage(page, wbc, &epd);
3533
3534 flush_epd_write_bio(&epd);
3535 return ret;
3536 }
3537
3538 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3539 u64 start, u64 end, get_extent_t *get_extent,
3540 int mode)
3541 {
3542 int ret = 0;
3543 struct address_space *mapping = inode->i_mapping;
3544 struct page *page;
3545 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3546 PAGE_CACHE_SHIFT;
3547
3548 struct extent_page_data epd = {
3549 .bio = NULL,
3550 .tree = tree,
3551 .get_extent = get_extent,
3552 .extent_locked = 1,
3553 .sync_io = mode == WB_SYNC_ALL,
3554 .bio_flags = 0,
3555 };
3556 struct writeback_control wbc_writepages = {
3557 .sync_mode = mode,
3558 .nr_to_write = nr_pages * 2,
3559 .range_start = start,
3560 .range_end = end + 1,
3561 };
3562
3563 while (start <= end) {
3564 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3565 if (clear_page_dirty_for_io(page))
3566 ret = __extent_writepage(page, &wbc_writepages, &epd);
3567 else {
3568 if (tree->ops && tree->ops->writepage_end_io_hook)
3569 tree->ops->writepage_end_io_hook(page, start,
3570 start + PAGE_CACHE_SIZE - 1,
3571 NULL, 1);
3572 unlock_page(page);
3573 }
3574 page_cache_release(page);
3575 start += PAGE_CACHE_SIZE;
3576 }
3577
3578 flush_epd_write_bio(&epd);
3579 return ret;
3580 }
3581
3582 int extent_writepages(struct extent_io_tree *tree,
3583 struct address_space *mapping,
3584 get_extent_t *get_extent,
3585 struct writeback_control *wbc)
3586 {
3587 int ret = 0;
3588 struct extent_page_data epd = {
3589 .bio = NULL,
3590 .tree = tree,
3591 .get_extent = get_extent,
3592 .extent_locked = 0,
3593 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3594 .bio_flags = 0,
3595 };
3596
3597 ret = extent_write_cache_pages(tree, mapping, wbc,
3598 __extent_writepage, &epd,
3599 flush_write_bio);
3600 flush_epd_write_bio(&epd);
3601 return ret;
3602 }
3603
3604 int extent_readpages(struct extent_io_tree *tree,
3605 struct address_space *mapping,
3606 struct list_head *pages, unsigned nr_pages,
3607 get_extent_t get_extent)
3608 {
3609 struct bio *bio = NULL;
3610 unsigned page_idx;
3611 unsigned long bio_flags = 0;
3612 struct page *pagepool[16];
3613 struct page *page;
3614 int i = 0;
3615 int nr = 0;
3616
3617 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3618 page = list_entry(pages->prev, struct page, lru);
3619
3620 prefetchw(&page->flags);
3621 list_del(&page->lru);
3622 if (add_to_page_cache_lru(page, mapping,
3623 page->index, GFP_NOFS)) {
3624 page_cache_release(page);
3625 continue;
3626 }
3627
3628 pagepool[nr++] = page;
3629 if (nr < ARRAY_SIZE(pagepool))
3630 continue;
3631 for (i = 0; i < nr; i++) {
3632 __extent_read_full_page(tree, pagepool[i], get_extent,
3633 &bio, 0, &bio_flags);
3634 page_cache_release(pagepool[i]);
3635 }
3636 nr = 0;
3637 }
3638 for (i = 0; i < nr; i++) {
3639 __extent_read_full_page(tree, pagepool[i], get_extent,
3640 &bio, 0, &bio_flags);
3641 page_cache_release(pagepool[i]);
3642 }
3643
3644 BUG_ON(!list_empty(pages));
3645 if (bio)
3646 return submit_one_bio(READ, bio, 0, bio_flags);
3647 return 0;
3648 }
3649
3650 /*
3651 * basic invalidatepage code, this waits on any locked or writeback
3652 * ranges corresponding to the page, and then deletes any extent state
3653 * records from the tree
3654 */
3655 int extent_invalidatepage(struct extent_io_tree *tree,
3656 struct page *page, unsigned long offset)
3657 {
3658 struct extent_state *cached_state = NULL;
3659 u64 start = page_offset(page);
3660 u64 end = start + PAGE_CACHE_SIZE - 1;
3661 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3662
3663 start += (offset + blocksize - 1) & ~(blocksize - 1);
3664 if (start > end)
3665 return 0;
3666
3667 lock_extent_bits(tree, start, end, 0, &cached_state);
3668 wait_on_page_writeback(page);
3669 clear_extent_bit(tree, start, end,
3670 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3671 EXTENT_DO_ACCOUNTING,
3672 1, 1, &cached_state, GFP_NOFS);
3673 return 0;
3674 }
3675
3676 /*
3677 * a helper for releasepage, this tests for areas of the page that
3678 * are locked or under IO and drops the related state bits if it is safe
3679 * to drop the page.
3680 */
3681 int try_release_extent_state(struct extent_map_tree *map,
3682 struct extent_io_tree *tree, struct page *page,
3683 gfp_t mask)
3684 {
3685 u64 start = page_offset(page);
3686 u64 end = start + PAGE_CACHE_SIZE - 1;
3687 int ret = 1;
3688
3689 if (test_range_bit(tree, start, end,
3690 EXTENT_IOBITS, 0, NULL))
3691 ret = 0;
3692 else {
3693 if ((mask & GFP_NOFS) == GFP_NOFS)
3694 mask = GFP_NOFS;
3695 /*
3696 * at this point we can safely clear everything except the
3697 * locked bit and the nodatasum bit
3698 */
3699 ret = clear_extent_bit(tree, start, end,
3700 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3701 0, 0, NULL, mask);
3702
3703 /* if clear_extent_bit failed for enomem reasons,
3704 * we can't allow the release to continue.
3705 */
3706 if (ret < 0)
3707 ret = 0;
3708 else
3709 ret = 1;
3710 }
3711 return ret;
3712 }
3713
3714 /*
3715 * a helper for releasepage. As long as there are no locked extents
3716 * in the range corresponding to the page, both state records and extent
3717 * map records are removed
3718 */
3719 int try_release_extent_mapping(struct extent_map_tree *map,
3720 struct extent_io_tree *tree, struct page *page,
3721 gfp_t mask)
3722 {
3723 struct extent_map *em;
3724 u64 start = page_offset(page);
3725 u64 end = start + PAGE_CACHE_SIZE - 1;
3726
3727 if ((mask & __GFP_WAIT) &&
3728 page->mapping->host->i_size > 16 * 1024 * 1024) {
3729 u64 len;
3730 while (start <= end) {
3731 len = end - start + 1;
3732 write_lock(&map->lock);
3733 em = lookup_extent_mapping(map, start, len);
3734 if (!em) {
3735 write_unlock(&map->lock);
3736 break;
3737 }
3738 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3739 em->start != start) {
3740 write_unlock(&map->lock);
3741 free_extent_map(em);
3742 break;
3743 }
3744 if (!test_range_bit(tree, em->start,
3745 extent_map_end(em) - 1,
3746 EXTENT_LOCKED | EXTENT_WRITEBACK,
3747 0, NULL)) {
3748 remove_extent_mapping(map, em);
3749 /* once for the rb tree */
3750 free_extent_map(em);
3751 }
3752 start = extent_map_end(em);
3753 write_unlock(&map->lock);
3754
3755 /* once for us */
3756 free_extent_map(em);
3757 }
3758 }
3759 return try_release_extent_state(map, tree, page, mask);
3760 }
3761
3762 /*
3763 * helper function for fiemap, which doesn't want to see any holes.
3764 * This maps until we find something past 'last'
3765 */
3766 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3767 u64 offset,
3768 u64 last,
3769 get_extent_t *get_extent)
3770 {
3771 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3772 struct extent_map *em;
3773 u64 len;
3774
3775 if (offset >= last)
3776 return NULL;
3777
3778 while(1) {
3779 len = last - offset;
3780 if (len == 0)
3781 break;
3782 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3783 em = get_extent(inode, NULL, 0, offset, len, 0);
3784 if (IS_ERR_OR_NULL(em))
3785 return em;
3786
3787 /* if this isn't a hole return it */
3788 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3789 em->block_start != EXTENT_MAP_HOLE) {
3790 return em;
3791 }
3792
3793 /* this is a hole, advance to the next extent */
3794 offset = extent_map_end(em);
3795 free_extent_map(em);
3796 if (offset >= last)
3797 break;
3798 }
3799 return NULL;
3800 }
3801
3802 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3803 __u64 start, __u64 len, get_extent_t *get_extent)
3804 {
3805 int ret = 0;
3806 u64 off = start;
3807 u64 max = start + len;
3808 u32 flags = 0;
3809 u32 found_type;
3810 u64 last;
3811 u64 last_for_get_extent = 0;
3812 u64 disko = 0;
3813 u64 isize = i_size_read(inode);
3814 struct btrfs_key found_key;
3815 struct extent_map *em = NULL;
3816 struct extent_state *cached_state = NULL;
3817 struct btrfs_path *path;
3818 struct btrfs_file_extent_item *item;
3819 int end = 0;
3820 u64 em_start = 0;
3821 u64 em_len = 0;
3822 u64 em_end = 0;
3823 unsigned long emflags;
3824
3825 if (len == 0)
3826 return -EINVAL;
3827
3828 path = btrfs_alloc_path();
3829 if (!path)
3830 return -ENOMEM;
3831 path->leave_spinning = 1;
3832
3833 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3834 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3835
3836 /*
3837 * lookup the last file extent. We're not using i_size here
3838 * because there might be preallocation past i_size
3839 */
3840 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3841 path, btrfs_ino(inode), -1, 0);
3842 if (ret < 0) {
3843 btrfs_free_path(path);
3844 return ret;
3845 }
3846 WARN_ON(!ret);
3847 path->slots[0]--;
3848 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3849 struct btrfs_file_extent_item);
3850 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3851 found_type = btrfs_key_type(&found_key);
3852
3853 /* No extents, but there might be delalloc bits */
3854 if (found_key.objectid != btrfs_ino(inode) ||
3855 found_type != BTRFS_EXTENT_DATA_KEY) {
3856 /* have to trust i_size as the end */
3857 last = (u64)-1;
3858 last_for_get_extent = isize;
3859 } else {
3860 /*
3861 * remember the start of the last extent. There are a
3862 * bunch of different factors that go into the length of the
3863 * extent, so its much less complex to remember where it started
3864 */
3865 last = found_key.offset;
3866 last_for_get_extent = last + 1;
3867 }
3868 btrfs_free_path(path);
3869
3870 /*
3871 * we might have some extents allocated but more delalloc past those
3872 * extents. so, we trust isize unless the start of the last extent is
3873 * beyond isize
3874 */
3875 if (last < isize) {
3876 last = (u64)-1;
3877 last_for_get_extent = isize;
3878 }
3879
3880 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3881 &cached_state);
3882
3883 em = get_extent_skip_holes(inode, start, last_for_get_extent,
3884 get_extent);
3885 if (!em)
3886 goto out;
3887 if (IS_ERR(em)) {
3888 ret = PTR_ERR(em);
3889 goto out;
3890 }
3891
3892 while (!end) {
3893 u64 offset_in_extent;
3894
3895 /* break if the extent we found is outside the range */
3896 if (em->start >= max || extent_map_end(em) < off)
3897 break;
3898
3899 /*
3900 * get_extent may return an extent that starts before our
3901 * requested range. We have to make sure the ranges
3902 * we return to fiemap always move forward and don't
3903 * overlap, so adjust the offsets here
3904 */
3905 em_start = max(em->start, off);
3906
3907 /*
3908 * record the offset from the start of the extent
3909 * for adjusting the disk offset below
3910 */
3911 offset_in_extent = em_start - em->start;
3912 em_end = extent_map_end(em);
3913 em_len = em_end - em_start;
3914 emflags = em->flags;
3915 disko = 0;
3916 flags = 0;
3917
3918 /*
3919 * bump off for our next call to get_extent
3920 */
3921 off = extent_map_end(em);
3922 if (off >= max)
3923 end = 1;
3924
3925 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3926 end = 1;
3927 flags |= FIEMAP_EXTENT_LAST;
3928 } else if (em->block_start == EXTENT_MAP_INLINE) {
3929 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3930 FIEMAP_EXTENT_NOT_ALIGNED);
3931 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3932 flags |= (FIEMAP_EXTENT_DELALLOC |
3933 FIEMAP_EXTENT_UNKNOWN);
3934 } else {
3935 disko = em->block_start + offset_in_extent;
3936 }
3937 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3938 flags |= FIEMAP_EXTENT_ENCODED;
3939
3940 free_extent_map(em);
3941 em = NULL;
3942 if ((em_start >= last) || em_len == (u64)-1 ||
3943 (last == (u64)-1 && isize <= em_end)) {
3944 flags |= FIEMAP_EXTENT_LAST;
3945 end = 1;
3946 }
3947
3948 /* now scan forward to see if this is really the last extent. */
3949 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3950 get_extent);
3951 if (IS_ERR(em)) {
3952 ret = PTR_ERR(em);
3953 goto out;
3954 }
3955 if (!em) {
3956 flags |= FIEMAP_EXTENT_LAST;
3957 end = 1;
3958 }
3959 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3960 em_len, flags);
3961 if (ret)
3962 goto out_free;
3963 }
3964 out_free:
3965 free_extent_map(em);
3966 out:
3967 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3968 &cached_state, GFP_NOFS);
3969 return ret;
3970 }
3971
3972 static void __free_extent_buffer(struct extent_buffer *eb)
3973 {
3974 #if LEAK_DEBUG
3975 unsigned long flags;
3976 spin_lock_irqsave(&leak_lock, flags);
3977 list_del(&eb->leak_list);
3978 spin_unlock_irqrestore(&leak_lock, flags);
3979 #endif
3980 if (eb->pages && eb->pages != eb->inline_pages)
3981 kfree(eb->pages);
3982 kmem_cache_free(extent_buffer_cache, eb);
3983 }
3984
3985 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3986 u64 start,
3987 unsigned long len,
3988 gfp_t mask)
3989 {
3990 struct extent_buffer *eb = NULL;
3991 #if LEAK_DEBUG
3992 unsigned long flags;
3993 #endif
3994
3995 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3996 if (eb == NULL)
3997 return NULL;
3998 eb->start = start;
3999 eb->len = len;
4000 eb->tree = tree;
4001 eb->bflags = 0;
4002 rwlock_init(&eb->lock);
4003 atomic_set(&eb->write_locks, 0);
4004 atomic_set(&eb->read_locks, 0);
4005 atomic_set(&eb->blocking_readers, 0);
4006 atomic_set(&eb->blocking_writers, 0);
4007 atomic_set(&eb->spinning_readers, 0);
4008 atomic_set(&eb->spinning_writers, 0);
4009 eb->lock_nested = 0;
4010 init_waitqueue_head(&eb->write_lock_wq);
4011 init_waitqueue_head(&eb->read_lock_wq);
4012
4013 #if LEAK_DEBUG
4014 spin_lock_irqsave(&leak_lock, flags);
4015 list_add(&eb->leak_list, &buffers);
4016 spin_unlock_irqrestore(&leak_lock, flags);
4017 #endif
4018 spin_lock_init(&eb->refs_lock);
4019 atomic_set(&eb->refs, 1);
4020 atomic_set(&eb->io_pages, 0);
4021
4022 if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
4023 struct page **pages;
4024 int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
4025 PAGE_CACHE_SHIFT;
4026 pages = kzalloc(num_pages, mask);
4027 if (!pages) {
4028 __free_extent_buffer(eb);
4029 return NULL;
4030 }
4031 eb->pages = pages;
4032 } else {
4033 eb->pages = eb->inline_pages;
4034 }
4035
4036 return eb;
4037 }
4038
4039 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4040 {
4041 unsigned long i;
4042 struct page *p;
4043 struct extent_buffer *new;
4044 unsigned long num_pages = num_extent_pages(src->start, src->len);
4045
4046 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4047 if (new == NULL)
4048 return NULL;
4049
4050 for (i = 0; i < num_pages; i++) {
4051 p = alloc_page(GFP_ATOMIC);
4052 BUG_ON(!p);
4053 attach_extent_buffer_page(new, p);
4054 WARN_ON(PageDirty(p));
4055 SetPageUptodate(p);
4056 new->pages[i] = p;
4057 }
4058
4059 copy_extent_buffer(new, src, 0, 0, src->len);
4060 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4061 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4062
4063 return new;
4064 }
4065
4066 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4067 {
4068 struct extent_buffer *eb;
4069 unsigned long num_pages = num_extent_pages(0, len);
4070 unsigned long i;
4071
4072 eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4073 if (!eb)
4074 return NULL;
4075
4076 for (i = 0; i < num_pages; i++) {
4077 eb->pages[i] = alloc_page(GFP_ATOMIC);
4078 if (!eb->pages[i])
4079 goto err;
4080 }
4081 set_extent_buffer_uptodate(eb);
4082 btrfs_set_header_nritems(eb, 0);
4083 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4084
4085 return eb;
4086 err:
4087 for (; i > 0; i--)
4088 __free_page(eb->pages[i - 1]);
4089 __free_extent_buffer(eb);
4090 return NULL;
4091 }
4092
4093 static int extent_buffer_under_io(struct extent_buffer *eb)
4094 {
4095 return (atomic_read(&eb->io_pages) ||
4096 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4097 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4098 }
4099
4100 /*
4101 * Helper for releasing extent buffer page.
4102 */
4103 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4104 unsigned long start_idx)
4105 {
4106 unsigned long index;
4107 unsigned long num_pages;
4108 struct page *page;
4109 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4110
4111 BUG_ON(extent_buffer_under_io(eb));
4112
4113 num_pages = num_extent_pages(eb->start, eb->len);
4114 index = start_idx + num_pages;
4115 if (start_idx >= index)
4116 return;
4117
4118 do {
4119 index--;
4120 page = extent_buffer_page(eb, index);
4121 if (page && mapped) {
4122 spin_lock(&page->mapping->private_lock);
4123 /*
4124 * We do this since we'll remove the pages after we've
4125 * removed the eb from the radix tree, so we could race
4126 * and have this page now attached to the new eb. So
4127 * only clear page_private if it's still connected to
4128 * this eb.
4129 */
4130 if (PagePrivate(page) &&
4131 page->private == (unsigned long)eb) {
4132 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4133 BUG_ON(PageDirty(page));
4134 BUG_ON(PageWriteback(page));
4135 /*
4136 * We need to make sure we haven't be attached
4137 * to a new eb.
4138 */
4139 ClearPagePrivate(page);
4140 set_page_private(page, 0);
4141 /* One for the page private */
4142 page_cache_release(page);
4143 }
4144 spin_unlock(&page->mapping->private_lock);
4145
4146 }
4147 if (page) {
4148 /* One for when we alloced the page */
4149 page_cache_release(page);
4150 }
4151 } while (index != start_idx);
4152 }
4153
4154 /*
4155 * Helper for releasing the extent buffer.
4156 */
4157 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4158 {
4159 btrfs_release_extent_buffer_page(eb, 0);
4160 __free_extent_buffer(eb);
4161 }
4162
4163 static void check_buffer_tree_ref(struct extent_buffer *eb)
4164 {
4165 /* the ref bit is tricky. We have to make sure it is set
4166 * if we have the buffer dirty. Otherwise the
4167 * code to free a buffer can end up dropping a dirty
4168 * page
4169 *
4170 * Once the ref bit is set, it won't go away while the
4171 * buffer is dirty or in writeback, and it also won't
4172 * go away while we have the reference count on the
4173 * eb bumped.
4174 *
4175 * We can't just set the ref bit without bumping the
4176 * ref on the eb because free_extent_buffer might
4177 * see the ref bit and try to clear it. If this happens
4178 * free_extent_buffer might end up dropping our original
4179 * ref by mistake and freeing the page before we are able
4180 * to add one more ref.
4181 *
4182 * So bump the ref count first, then set the bit. If someone
4183 * beat us to it, drop the ref we added.
4184 */
4185 spin_lock(&eb->refs_lock);
4186 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4187 atomic_inc(&eb->refs);
4188 spin_unlock(&eb->refs_lock);
4189 }
4190
4191 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4192 {
4193 unsigned long num_pages, i;
4194
4195 check_buffer_tree_ref(eb);
4196
4197 num_pages = num_extent_pages(eb->start, eb->len);
4198 for (i = 0; i < num_pages; i++) {
4199 struct page *p = extent_buffer_page(eb, i);
4200 mark_page_accessed(p);
4201 }
4202 }
4203
4204 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4205 u64 start, unsigned long len)
4206 {
4207 unsigned long num_pages = num_extent_pages(start, len);
4208 unsigned long i;
4209 unsigned long index = start >> PAGE_CACHE_SHIFT;
4210 struct extent_buffer *eb;
4211 struct extent_buffer *exists = NULL;
4212 struct page *p;
4213 struct address_space *mapping = tree->mapping;
4214 int uptodate = 1;
4215 int ret;
4216
4217 rcu_read_lock();
4218 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4219 if (eb && atomic_inc_not_zero(&eb->refs)) {
4220 rcu_read_unlock();
4221 mark_extent_buffer_accessed(eb);
4222 return eb;
4223 }
4224 rcu_read_unlock();
4225
4226 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4227 if (!eb)
4228 return NULL;
4229
4230 for (i = 0; i < num_pages; i++, index++) {
4231 p = find_or_create_page(mapping, index, GFP_NOFS);
4232 if (!p)
4233 goto free_eb;
4234
4235 spin_lock(&mapping->private_lock);
4236 if (PagePrivate(p)) {
4237 /*
4238 * We could have already allocated an eb for this page
4239 * and attached one so lets see if we can get a ref on
4240 * the existing eb, and if we can we know it's good and
4241 * we can just return that one, else we know we can just
4242 * overwrite page->private.
4243 */
4244 exists = (struct extent_buffer *)p->private;
4245 if (atomic_inc_not_zero(&exists->refs)) {
4246 spin_unlock(&mapping->private_lock);
4247 unlock_page(p);
4248 page_cache_release(p);
4249 mark_extent_buffer_accessed(exists);
4250 goto free_eb;
4251 }
4252
4253 /*
4254 * Do this so attach doesn't complain and we need to
4255 * drop the ref the old guy had.
4256 */
4257 ClearPagePrivate(p);
4258 WARN_ON(PageDirty(p));
4259 page_cache_release(p);
4260 }
4261 attach_extent_buffer_page(eb, p);
4262 spin_unlock(&mapping->private_lock);
4263 WARN_ON(PageDirty(p));
4264 mark_page_accessed(p);
4265 eb->pages[i] = p;
4266 if (!PageUptodate(p))
4267 uptodate = 0;
4268
4269 /*
4270 * see below about how we avoid a nasty race with release page
4271 * and why we unlock later
4272 */
4273 }
4274 if (uptodate)
4275 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4276 again:
4277 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4278 if (ret)
4279 goto free_eb;
4280
4281 spin_lock(&tree->buffer_lock);
4282 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4283 if (ret == -EEXIST) {
4284 exists = radix_tree_lookup(&tree->buffer,
4285 start >> PAGE_CACHE_SHIFT);
4286 if (!atomic_inc_not_zero(&exists->refs)) {
4287 spin_unlock(&tree->buffer_lock);
4288 radix_tree_preload_end();
4289 exists = NULL;
4290 goto again;
4291 }
4292 spin_unlock(&tree->buffer_lock);
4293 radix_tree_preload_end();
4294 mark_extent_buffer_accessed(exists);
4295 goto free_eb;
4296 }
4297 /* add one reference for the tree */
4298 check_buffer_tree_ref(eb);
4299 spin_unlock(&tree->buffer_lock);
4300 radix_tree_preload_end();
4301
4302 /*
4303 * there is a race where release page may have
4304 * tried to find this extent buffer in the radix
4305 * but failed. It will tell the VM it is safe to
4306 * reclaim the, and it will clear the page private bit.
4307 * We must make sure to set the page private bit properly
4308 * after the extent buffer is in the radix tree so
4309 * it doesn't get lost
4310 */
4311 SetPageChecked(eb->pages[0]);
4312 for (i = 1; i < num_pages; i++) {
4313 p = extent_buffer_page(eb, i);
4314 ClearPageChecked(p);
4315 unlock_page(p);
4316 }
4317 unlock_page(eb->pages[0]);
4318 return eb;
4319
4320 free_eb:
4321 for (i = 0; i < num_pages; i++) {
4322 if (eb->pages[i])
4323 unlock_page(eb->pages[i]);
4324 }
4325
4326 WARN_ON(!atomic_dec_and_test(&eb->refs));
4327 btrfs_release_extent_buffer(eb);
4328 return exists;
4329 }
4330
4331 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4332 u64 start, unsigned long len)
4333 {
4334 struct extent_buffer *eb;
4335
4336 rcu_read_lock();
4337 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4338 if (eb && atomic_inc_not_zero(&eb->refs)) {
4339 rcu_read_unlock();
4340 mark_extent_buffer_accessed(eb);
4341 return eb;
4342 }
4343 rcu_read_unlock();
4344
4345 return NULL;
4346 }
4347
4348 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4349 {
4350 struct extent_buffer *eb =
4351 container_of(head, struct extent_buffer, rcu_head);
4352
4353 __free_extent_buffer(eb);
4354 }
4355
4356 /* Expects to have eb->eb_lock already held */
4357 static int release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4358 {
4359 WARN_ON(atomic_read(&eb->refs) == 0);
4360 if (atomic_dec_and_test(&eb->refs)) {
4361 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4362 spin_unlock(&eb->refs_lock);
4363 } else {
4364 struct extent_io_tree *tree = eb->tree;
4365
4366 spin_unlock(&eb->refs_lock);
4367
4368 spin_lock(&tree->buffer_lock);
4369 radix_tree_delete(&tree->buffer,
4370 eb->start >> PAGE_CACHE_SHIFT);
4371 spin_unlock(&tree->buffer_lock);
4372 }
4373
4374 /* Should be safe to release our pages at this point */
4375 btrfs_release_extent_buffer_page(eb, 0);
4376 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4377 return 1;
4378 }
4379 spin_unlock(&eb->refs_lock);
4380
4381 return 0;
4382 }
4383
4384 void free_extent_buffer(struct extent_buffer *eb)
4385 {
4386 if (!eb)
4387 return;
4388
4389 spin_lock(&eb->refs_lock);
4390 if (atomic_read(&eb->refs) == 2 &&
4391 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4392 atomic_dec(&eb->refs);
4393
4394 if (atomic_read(&eb->refs) == 2 &&
4395 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4396 !extent_buffer_under_io(eb) &&
4397 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4398 atomic_dec(&eb->refs);
4399
4400 /*
4401 * I know this is terrible, but it's temporary until we stop tracking
4402 * the uptodate bits and such for the extent buffers.
4403 */
4404 release_extent_buffer(eb, GFP_ATOMIC);
4405 }
4406
4407 void free_extent_buffer_stale(struct extent_buffer *eb)
4408 {
4409 if (!eb)
4410 return;
4411
4412 spin_lock(&eb->refs_lock);
4413 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4414
4415 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4416 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4417 atomic_dec(&eb->refs);
4418 release_extent_buffer(eb, GFP_NOFS);
4419 }
4420
4421 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4422 {
4423 unsigned long i;
4424 unsigned long num_pages;
4425 struct page *page;
4426
4427 num_pages = num_extent_pages(eb->start, eb->len);
4428
4429 for (i = 0; i < num_pages; i++) {
4430 page = extent_buffer_page(eb, i);
4431 if (!PageDirty(page))
4432 continue;
4433
4434 lock_page(page);
4435 WARN_ON(!PagePrivate(page));
4436
4437 clear_page_dirty_for_io(page);
4438 spin_lock_irq(&page->mapping->tree_lock);
4439 if (!PageDirty(page)) {
4440 radix_tree_tag_clear(&page->mapping->page_tree,
4441 page_index(page),
4442 PAGECACHE_TAG_DIRTY);
4443 }
4444 spin_unlock_irq(&page->mapping->tree_lock);
4445 ClearPageError(page);
4446 unlock_page(page);
4447 }
4448 WARN_ON(atomic_read(&eb->refs) == 0);
4449 }
4450
4451 int set_extent_buffer_dirty(struct extent_buffer *eb)
4452 {
4453 unsigned long i;
4454 unsigned long num_pages;
4455 int was_dirty = 0;
4456
4457 check_buffer_tree_ref(eb);
4458
4459 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4460
4461 num_pages = num_extent_pages(eb->start, eb->len);
4462 WARN_ON(atomic_read(&eb->refs) == 0);
4463 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4464
4465 for (i = 0; i < num_pages; i++)
4466 set_page_dirty(extent_buffer_page(eb, i));
4467 return was_dirty;
4468 }
4469
4470 static int range_straddles_pages(u64 start, u64 len)
4471 {
4472 if (len < PAGE_CACHE_SIZE)
4473 return 1;
4474 if (start & (PAGE_CACHE_SIZE - 1))
4475 return 1;
4476 if ((start + len) & (PAGE_CACHE_SIZE - 1))
4477 return 1;
4478 return 0;
4479 }
4480
4481 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4482 {
4483 unsigned long i;
4484 struct page *page;
4485 unsigned long num_pages;
4486
4487 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4488 num_pages = num_extent_pages(eb->start, eb->len);
4489 for (i = 0; i < num_pages; i++) {
4490 page = extent_buffer_page(eb, i);
4491 if (page)
4492 ClearPageUptodate(page);
4493 }
4494 return 0;
4495 }
4496
4497 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4498 {
4499 unsigned long i;
4500 struct page *page;
4501 unsigned long num_pages;
4502
4503 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4504 num_pages = num_extent_pages(eb->start, eb->len);
4505 for (i = 0; i < num_pages; i++) {
4506 page = extent_buffer_page(eb, i);
4507 SetPageUptodate(page);
4508 }
4509 return 0;
4510 }
4511
4512 int extent_range_uptodate(struct extent_io_tree *tree,
4513 u64 start, u64 end)
4514 {
4515 struct page *page;
4516 int ret;
4517 int pg_uptodate = 1;
4518 int uptodate;
4519 unsigned long index;
4520
4521 if (range_straddles_pages(start, end - start + 1)) {
4522 ret = test_range_bit(tree, start, end,
4523 EXTENT_UPTODATE, 1, NULL);
4524 if (ret)
4525 return 1;
4526 }
4527 while (start <= end) {
4528 index = start >> PAGE_CACHE_SHIFT;
4529 page = find_get_page(tree->mapping, index);
4530 if (!page)
4531 return 1;
4532 uptodate = PageUptodate(page);
4533 page_cache_release(page);
4534 if (!uptodate) {
4535 pg_uptodate = 0;
4536 break;
4537 }
4538 start += PAGE_CACHE_SIZE;
4539 }
4540 return pg_uptodate;
4541 }
4542
4543 int extent_buffer_uptodate(struct extent_buffer *eb)
4544 {
4545 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4546 }
4547
4548 int read_extent_buffer_pages(struct extent_io_tree *tree,
4549 struct extent_buffer *eb, u64 start, int wait,
4550 get_extent_t *get_extent, int mirror_num)
4551 {
4552 unsigned long i;
4553 unsigned long start_i;
4554 struct page *page;
4555 int err;
4556 int ret = 0;
4557 int locked_pages = 0;
4558 int all_uptodate = 1;
4559 unsigned long num_pages;
4560 unsigned long num_reads = 0;
4561 struct bio *bio = NULL;
4562 unsigned long bio_flags = 0;
4563
4564 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4565 return 0;
4566
4567 if (start) {
4568 WARN_ON(start < eb->start);
4569 start_i = (start >> PAGE_CACHE_SHIFT) -
4570 (eb->start >> PAGE_CACHE_SHIFT);
4571 } else {
4572 start_i = 0;
4573 }
4574
4575 num_pages = num_extent_pages(eb->start, eb->len);
4576 for (i = start_i; i < num_pages; i++) {
4577 page = extent_buffer_page(eb, i);
4578 if (wait == WAIT_NONE) {
4579 if (!trylock_page(page))
4580 goto unlock_exit;
4581 } else {
4582 lock_page(page);
4583 }
4584 locked_pages++;
4585 if (!PageUptodate(page)) {
4586 num_reads++;
4587 all_uptodate = 0;
4588 }
4589 }
4590 if (all_uptodate) {
4591 if (start_i == 0)
4592 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4593 goto unlock_exit;
4594 }
4595
4596 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4597 eb->read_mirror = 0;
4598 atomic_set(&eb->io_pages, num_reads);
4599 for (i = start_i; i < num_pages; i++) {
4600 page = extent_buffer_page(eb, i);
4601 if (!PageUptodate(page)) {
4602 ClearPageError(page);
4603 err = __extent_read_full_page(tree, page,
4604 get_extent, &bio,
4605 mirror_num, &bio_flags);
4606 if (err)
4607 ret = err;
4608 } else {
4609 unlock_page(page);
4610 }
4611 }
4612
4613 if (bio) {
4614 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4615 if (err)
4616 return err;
4617 }
4618
4619 if (ret || wait != WAIT_COMPLETE)
4620 return ret;
4621
4622 for (i = start_i; i < num_pages; i++) {
4623 page = extent_buffer_page(eb, i);
4624 wait_on_page_locked(page);
4625 if (!PageUptodate(page))
4626 ret = -EIO;
4627 }
4628
4629 return ret;
4630
4631 unlock_exit:
4632 i = start_i;
4633 while (locked_pages > 0) {
4634 page = extent_buffer_page(eb, i);
4635 i++;
4636 unlock_page(page);
4637 locked_pages--;
4638 }
4639 return ret;
4640 }
4641
4642 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4643 unsigned long start,
4644 unsigned long len)
4645 {
4646 size_t cur;
4647 size_t offset;
4648 struct page *page;
4649 char *kaddr;
4650 char *dst = (char *)dstv;
4651 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4652 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4653
4654 WARN_ON(start > eb->len);
4655 WARN_ON(start + len > eb->start + eb->len);
4656
4657 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4658
4659 while (len > 0) {
4660 page = extent_buffer_page(eb, i);
4661
4662 cur = min(len, (PAGE_CACHE_SIZE - offset));
4663 kaddr = page_address(page);
4664 memcpy(dst, kaddr + offset, cur);
4665
4666 dst += cur;
4667 len -= cur;
4668 offset = 0;
4669 i++;
4670 }
4671 }
4672
4673 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4674 unsigned long min_len, char **map,
4675 unsigned long *map_start,
4676 unsigned long *map_len)
4677 {
4678 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4679 char *kaddr;
4680 struct page *p;
4681 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4682 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4683 unsigned long end_i = (start_offset + start + min_len - 1) >>
4684 PAGE_CACHE_SHIFT;
4685
4686 if (i != end_i)
4687 return -EINVAL;
4688
4689 if (i == 0) {
4690 offset = start_offset;
4691 *map_start = 0;
4692 } else {
4693 offset = 0;
4694 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4695 }
4696
4697 if (start + min_len > eb->len) {
4698 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4699 "wanted %lu %lu\n", (unsigned long long)eb->start,
4700 eb->len, start, min_len);
4701 return -EINVAL;
4702 }
4703
4704 p = extent_buffer_page(eb, i);
4705 kaddr = page_address(p);
4706 *map = kaddr + offset;
4707 *map_len = PAGE_CACHE_SIZE - offset;
4708 return 0;
4709 }
4710
4711 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4712 unsigned long start,
4713 unsigned long len)
4714 {
4715 size_t cur;
4716 size_t offset;
4717 struct page *page;
4718 char *kaddr;
4719 char *ptr = (char *)ptrv;
4720 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4721 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4722 int ret = 0;
4723
4724 WARN_ON(start > eb->len);
4725 WARN_ON(start + len > eb->start + eb->len);
4726
4727 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4728
4729 while (len > 0) {
4730 page = extent_buffer_page(eb, i);
4731
4732 cur = min(len, (PAGE_CACHE_SIZE - offset));
4733
4734 kaddr = page_address(page);
4735 ret = memcmp(ptr, kaddr + offset, cur);
4736 if (ret)
4737 break;
4738
4739 ptr += cur;
4740 len -= cur;
4741 offset = 0;
4742 i++;
4743 }
4744 return ret;
4745 }
4746
4747 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4748 unsigned long start, unsigned long len)
4749 {
4750 size_t cur;
4751 size_t offset;
4752 struct page *page;
4753 char *kaddr;
4754 char *src = (char *)srcv;
4755 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4756 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4757
4758 WARN_ON(start > eb->len);
4759 WARN_ON(start + len > eb->start + eb->len);
4760
4761 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4762
4763 while (len > 0) {
4764 page = extent_buffer_page(eb, i);
4765 WARN_ON(!PageUptodate(page));
4766
4767 cur = min(len, PAGE_CACHE_SIZE - offset);
4768 kaddr = page_address(page);
4769 memcpy(kaddr + offset, src, cur);
4770
4771 src += cur;
4772 len -= cur;
4773 offset = 0;
4774 i++;
4775 }
4776 }
4777
4778 void memset_extent_buffer(struct extent_buffer *eb, char c,
4779 unsigned long start, unsigned long len)
4780 {
4781 size_t cur;
4782 size_t offset;
4783 struct page *page;
4784 char *kaddr;
4785 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4786 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4787
4788 WARN_ON(start > eb->len);
4789 WARN_ON(start + len > eb->start + eb->len);
4790
4791 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4792
4793 while (len > 0) {
4794 page = extent_buffer_page(eb, i);
4795 WARN_ON(!PageUptodate(page));
4796
4797 cur = min(len, PAGE_CACHE_SIZE - offset);
4798 kaddr = page_address(page);
4799 memset(kaddr + offset, c, cur);
4800
4801 len -= cur;
4802 offset = 0;
4803 i++;
4804 }
4805 }
4806
4807 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4808 unsigned long dst_offset, unsigned long src_offset,
4809 unsigned long len)
4810 {
4811 u64 dst_len = dst->len;
4812 size_t cur;
4813 size_t offset;
4814 struct page *page;
4815 char *kaddr;
4816 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4817 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4818
4819 WARN_ON(src->len != dst_len);
4820
4821 offset = (start_offset + dst_offset) &
4822 ((unsigned long)PAGE_CACHE_SIZE - 1);
4823
4824 while (len > 0) {
4825 page = extent_buffer_page(dst, i);
4826 WARN_ON(!PageUptodate(page));
4827
4828 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4829
4830 kaddr = page_address(page);
4831 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4832
4833 src_offset += cur;
4834 len -= cur;
4835 offset = 0;
4836 i++;
4837 }
4838 }
4839
4840 static void move_pages(struct page *dst_page, struct page *src_page,
4841 unsigned long dst_off, unsigned long src_off,
4842 unsigned long len)
4843 {
4844 char *dst_kaddr = page_address(dst_page);
4845 if (dst_page == src_page) {
4846 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4847 } else {
4848 char *src_kaddr = page_address(src_page);
4849 char *p = dst_kaddr + dst_off + len;
4850 char *s = src_kaddr + src_off + len;
4851
4852 while (len--)
4853 *--p = *--s;
4854 }
4855 }
4856
4857 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4858 {
4859 unsigned long distance = (src > dst) ? src - dst : dst - src;
4860 return distance < len;
4861 }
4862
4863 static void copy_pages(struct page *dst_page, struct page *src_page,
4864 unsigned long dst_off, unsigned long src_off,
4865 unsigned long len)
4866 {
4867 char *dst_kaddr = page_address(dst_page);
4868 char *src_kaddr;
4869 int must_memmove = 0;
4870
4871 if (dst_page != src_page) {
4872 src_kaddr = page_address(src_page);
4873 } else {
4874 src_kaddr = dst_kaddr;
4875 if (areas_overlap(src_off, dst_off, len))
4876 must_memmove = 1;
4877 }
4878
4879 if (must_memmove)
4880 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4881 else
4882 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4883 }
4884
4885 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4886 unsigned long src_offset, unsigned long len)
4887 {
4888 size_t cur;
4889 size_t dst_off_in_page;
4890 size_t src_off_in_page;
4891 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4892 unsigned long dst_i;
4893 unsigned long src_i;
4894
4895 if (src_offset + len > dst->len) {
4896 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4897 "len %lu dst len %lu\n", src_offset, len, dst->len);
4898 BUG_ON(1);
4899 }
4900 if (dst_offset + len > dst->len) {
4901 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4902 "len %lu dst len %lu\n", dst_offset, len, dst->len);
4903 BUG_ON(1);
4904 }
4905
4906 while (len > 0) {
4907 dst_off_in_page = (start_offset + dst_offset) &
4908 ((unsigned long)PAGE_CACHE_SIZE - 1);
4909 src_off_in_page = (start_offset + src_offset) &
4910 ((unsigned long)PAGE_CACHE_SIZE - 1);
4911
4912 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4913 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4914
4915 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4916 src_off_in_page));
4917 cur = min_t(unsigned long, cur,
4918 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4919
4920 copy_pages(extent_buffer_page(dst, dst_i),
4921 extent_buffer_page(dst, src_i),
4922 dst_off_in_page, src_off_in_page, cur);
4923
4924 src_offset += cur;
4925 dst_offset += cur;
4926 len -= cur;
4927 }
4928 }
4929
4930 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4931 unsigned long src_offset, unsigned long len)
4932 {
4933 size_t cur;
4934 size_t dst_off_in_page;
4935 size_t src_off_in_page;
4936 unsigned long dst_end = dst_offset + len - 1;
4937 unsigned long src_end = src_offset + len - 1;
4938 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4939 unsigned long dst_i;
4940 unsigned long src_i;
4941
4942 if (src_offset + len > dst->len) {
4943 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4944 "len %lu len %lu\n", src_offset, len, dst->len);
4945 BUG_ON(1);
4946 }
4947 if (dst_offset + len > dst->len) {
4948 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4949 "len %lu len %lu\n", dst_offset, len, dst->len);
4950 BUG_ON(1);
4951 }
4952 if (dst_offset < src_offset) {
4953 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4954 return;
4955 }
4956 while (len > 0) {
4957 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4958 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4959
4960 dst_off_in_page = (start_offset + dst_end) &
4961 ((unsigned long)PAGE_CACHE_SIZE - 1);
4962 src_off_in_page = (start_offset + src_end) &
4963 ((unsigned long)PAGE_CACHE_SIZE - 1);
4964
4965 cur = min_t(unsigned long, len, src_off_in_page + 1);
4966 cur = min(cur, dst_off_in_page + 1);
4967 move_pages(extent_buffer_page(dst, dst_i),
4968 extent_buffer_page(dst, src_i),
4969 dst_off_in_page - cur + 1,
4970 src_off_in_page - cur + 1, cur);
4971
4972 dst_end -= cur;
4973 src_end -= cur;
4974 len -= cur;
4975 }
4976 }
4977
4978 int try_release_extent_buffer(struct page *page, gfp_t mask)
4979 {
4980 struct extent_buffer *eb;
4981
4982 /*
4983 * We need to make sure noboody is attaching this page to an eb right
4984 * now.
4985 */
4986 spin_lock(&page->mapping->private_lock);
4987 if (!PagePrivate(page)) {
4988 spin_unlock(&page->mapping->private_lock);
4989 return 1;
4990 }
4991
4992 eb = (struct extent_buffer *)page->private;
4993 BUG_ON(!eb);
4994
4995 /*
4996 * This is a little awful but should be ok, we need to make sure that
4997 * the eb doesn't disappear out from under us while we're looking at
4998 * this page.
4999 */
5000 spin_lock(&eb->refs_lock);
5001 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5002 spin_unlock(&eb->refs_lock);
5003 spin_unlock(&page->mapping->private_lock);
5004 return 0;
5005 }
5006 spin_unlock(&page->mapping->private_lock);
5007
5008 if ((mask & GFP_NOFS) == GFP_NOFS)
5009 mask = GFP_NOFS;
5010
5011 /*
5012 * If tree ref isn't set then we know the ref on this eb is a real ref,
5013 * so just return, this page will likely be freed soon anyway.
5014 */
5015 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5016 spin_unlock(&eb->refs_lock);
5017 return 0;
5018 }
5019
5020 return release_extent_buffer(eb, mask);
5021 }
This page took 0.141664 seconds and 5 git commands to generate.