Btrfs: pass fs_info to btrfs_map_block() instead of mapping_tree
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27
28 static LIST_HEAD(buffers);
29 static LIST_HEAD(states);
30
31 #define LEAK_DEBUG 0
32 #if LEAK_DEBUG
33 static DEFINE_SPINLOCK(leak_lock);
34 #endif
35
36 #define BUFFER_LRU_MAX 64
37
38 struct tree_entry {
39 u64 start;
40 u64 end;
41 struct rb_node rb_node;
42 };
43
44 struct extent_page_data {
45 struct bio *bio;
46 struct extent_io_tree *tree;
47 get_extent_t *get_extent;
48 unsigned long bio_flags;
49
50 /* tells writepage not to lock the state bits for this range
51 * it still does the unlocking
52 */
53 unsigned int extent_locked:1;
54
55 /* tells the submit_bio code to use a WRITE_SYNC */
56 unsigned int sync_io:1;
57 };
58
59 static noinline void flush_write_bio(void *data);
60 static inline struct btrfs_fs_info *
61 tree_fs_info(struct extent_io_tree *tree)
62 {
63 return btrfs_sb(tree->mapping->host->i_sb);
64 }
65
66 int __init extent_io_init(void)
67 {
68 extent_state_cache = kmem_cache_create("btrfs_extent_state",
69 sizeof(struct extent_state), 0,
70 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
71 if (!extent_state_cache)
72 return -ENOMEM;
73
74 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
75 sizeof(struct extent_buffer), 0,
76 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
77 if (!extent_buffer_cache)
78 goto free_state_cache;
79 return 0;
80
81 free_state_cache:
82 kmem_cache_destroy(extent_state_cache);
83 return -ENOMEM;
84 }
85
86 void extent_io_exit(void)
87 {
88 struct extent_state *state;
89 struct extent_buffer *eb;
90
91 while (!list_empty(&states)) {
92 state = list_entry(states.next, struct extent_state, leak_list);
93 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
94 "state %lu in tree %p refs %d\n",
95 (unsigned long long)state->start,
96 (unsigned long long)state->end,
97 state->state, state->tree, atomic_read(&state->refs));
98 list_del(&state->leak_list);
99 kmem_cache_free(extent_state_cache, state);
100
101 }
102
103 while (!list_empty(&buffers)) {
104 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
105 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
106 "refs %d\n", (unsigned long long)eb->start,
107 eb->len, atomic_read(&eb->refs));
108 list_del(&eb->leak_list);
109 kmem_cache_free(extent_buffer_cache, eb);
110 }
111
112 /*
113 * Make sure all delayed rcu free are flushed before we
114 * destroy caches.
115 */
116 rcu_barrier();
117 if (extent_state_cache)
118 kmem_cache_destroy(extent_state_cache);
119 if (extent_buffer_cache)
120 kmem_cache_destroy(extent_buffer_cache);
121 }
122
123 void extent_io_tree_init(struct extent_io_tree *tree,
124 struct address_space *mapping)
125 {
126 tree->state = RB_ROOT;
127 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
128 tree->ops = NULL;
129 tree->dirty_bytes = 0;
130 spin_lock_init(&tree->lock);
131 spin_lock_init(&tree->buffer_lock);
132 tree->mapping = mapping;
133 }
134
135 static struct extent_state *alloc_extent_state(gfp_t mask)
136 {
137 struct extent_state *state;
138 #if LEAK_DEBUG
139 unsigned long flags;
140 #endif
141
142 state = kmem_cache_alloc(extent_state_cache, mask);
143 if (!state)
144 return state;
145 state->state = 0;
146 state->private = 0;
147 state->tree = NULL;
148 #if LEAK_DEBUG
149 spin_lock_irqsave(&leak_lock, flags);
150 list_add(&state->leak_list, &states);
151 spin_unlock_irqrestore(&leak_lock, flags);
152 #endif
153 atomic_set(&state->refs, 1);
154 init_waitqueue_head(&state->wq);
155 trace_alloc_extent_state(state, mask, _RET_IP_);
156 return state;
157 }
158
159 void free_extent_state(struct extent_state *state)
160 {
161 if (!state)
162 return;
163 if (atomic_dec_and_test(&state->refs)) {
164 #if LEAK_DEBUG
165 unsigned long flags;
166 #endif
167 WARN_ON(state->tree);
168 #if LEAK_DEBUG
169 spin_lock_irqsave(&leak_lock, flags);
170 list_del(&state->leak_list);
171 spin_unlock_irqrestore(&leak_lock, flags);
172 #endif
173 trace_free_extent_state(state, _RET_IP_);
174 kmem_cache_free(extent_state_cache, state);
175 }
176 }
177
178 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
179 struct rb_node *node)
180 {
181 struct rb_node **p = &root->rb_node;
182 struct rb_node *parent = NULL;
183 struct tree_entry *entry;
184
185 while (*p) {
186 parent = *p;
187 entry = rb_entry(parent, struct tree_entry, rb_node);
188
189 if (offset < entry->start)
190 p = &(*p)->rb_left;
191 else if (offset > entry->end)
192 p = &(*p)->rb_right;
193 else
194 return parent;
195 }
196
197 rb_link_node(node, parent, p);
198 rb_insert_color(node, root);
199 return NULL;
200 }
201
202 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
203 struct rb_node **prev_ret,
204 struct rb_node **next_ret)
205 {
206 struct rb_root *root = &tree->state;
207 struct rb_node *n = root->rb_node;
208 struct rb_node *prev = NULL;
209 struct rb_node *orig_prev = NULL;
210 struct tree_entry *entry;
211 struct tree_entry *prev_entry = NULL;
212
213 while (n) {
214 entry = rb_entry(n, struct tree_entry, rb_node);
215 prev = n;
216 prev_entry = entry;
217
218 if (offset < entry->start)
219 n = n->rb_left;
220 else if (offset > entry->end)
221 n = n->rb_right;
222 else
223 return n;
224 }
225
226 if (prev_ret) {
227 orig_prev = prev;
228 while (prev && offset > prev_entry->end) {
229 prev = rb_next(prev);
230 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
231 }
232 *prev_ret = prev;
233 prev = orig_prev;
234 }
235
236 if (next_ret) {
237 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
238 while (prev && offset < prev_entry->start) {
239 prev = rb_prev(prev);
240 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
241 }
242 *next_ret = prev;
243 }
244 return NULL;
245 }
246
247 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
248 u64 offset)
249 {
250 struct rb_node *prev = NULL;
251 struct rb_node *ret;
252
253 ret = __etree_search(tree, offset, &prev, NULL);
254 if (!ret)
255 return prev;
256 return ret;
257 }
258
259 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
260 struct extent_state *other)
261 {
262 if (tree->ops && tree->ops->merge_extent_hook)
263 tree->ops->merge_extent_hook(tree->mapping->host, new,
264 other);
265 }
266
267 /*
268 * utility function to look for merge candidates inside a given range.
269 * Any extents with matching state are merged together into a single
270 * extent in the tree. Extents with EXTENT_IO in their state field
271 * are not merged because the end_io handlers need to be able to do
272 * operations on them without sleeping (or doing allocations/splits).
273 *
274 * This should be called with the tree lock held.
275 */
276 static void merge_state(struct extent_io_tree *tree,
277 struct extent_state *state)
278 {
279 struct extent_state *other;
280 struct rb_node *other_node;
281
282 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
283 return;
284
285 other_node = rb_prev(&state->rb_node);
286 if (other_node) {
287 other = rb_entry(other_node, struct extent_state, rb_node);
288 if (other->end == state->start - 1 &&
289 other->state == state->state) {
290 merge_cb(tree, state, other);
291 state->start = other->start;
292 other->tree = NULL;
293 rb_erase(&other->rb_node, &tree->state);
294 free_extent_state(other);
295 }
296 }
297 other_node = rb_next(&state->rb_node);
298 if (other_node) {
299 other = rb_entry(other_node, struct extent_state, rb_node);
300 if (other->start == state->end + 1 &&
301 other->state == state->state) {
302 merge_cb(tree, state, other);
303 state->end = other->end;
304 other->tree = NULL;
305 rb_erase(&other->rb_node, &tree->state);
306 free_extent_state(other);
307 }
308 }
309 }
310
311 static void set_state_cb(struct extent_io_tree *tree,
312 struct extent_state *state, int *bits)
313 {
314 if (tree->ops && tree->ops->set_bit_hook)
315 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
316 }
317
318 static void clear_state_cb(struct extent_io_tree *tree,
319 struct extent_state *state, int *bits)
320 {
321 if (tree->ops && tree->ops->clear_bit_hook)
322 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
323 }
324
325 static void set_state_bits(struct extent_io_tree *tree,
326 struct extent_state *state, int *bits);
327
328 /*
329 * insert an extent_state struct into the tree. 'bits' are set on the
330 * struct before it is inserted.
331 *
332 * This may return -EEXIST if the extent is already there, in which case the
333 * state struct is freed.
334 *
335 * The tree lock is not taken internally. This is a utility function and
336 * probably isn't what you want to call (see set/clear_extent_bit).
337 */
338 static int insert_state(struct extent_io_tree *tree,
339 struct extent_state *state, u64 start, u64 end,
340 int *bits)
341 {
342 struct rb_node *node;
343
344 if (end < start)
345 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
346 (unsigned long long)end,
347 (unsigned long long)start);
348 state->start = start;
349 state->end = end;
350
351 set_state_bits(tree, state, bits);
352
353 node = tree_insert(&tree->state, end, &state->rb_node);
354 if (node) {
355 struct extent_state *found;
356 found = rb_entry(node, struct extent_state, rb_node);
357 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
358 "%llu %llu\n", (unsigned long long)found->start,
359 (unsigned long long)found->end,
360 (unsigned long long)start, (unsigned long long)end);
361 return -EEXIST;
362 }
363 state->tree = tree;
364 merge_state(tree, state);
365 return 0;
366 }
367
368 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
369 u64 split)
370 {
371 if (tree->ops && tree->ops->split_extent_hook)
372 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
373 }
374
375 /*
376 * split a given extent state struct in two, inserting the preallocated
377 * struct 'prealloc' as the newly created second half. 'split' indicates an
378 * offset inside 'orig' where it should be split.
379 *
380 * Before calling,
381 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
382 * are two extent state structs in the tree:
383 * prealloc: [orig->start, split - 1]
384 * orig: [ split, orig->end ]
385 *
386 * The tree locks are not taken by this function. They need to be held
387 * by the caller.
388 */
389 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
390 struct extent_state *prealloc, u64 split)
391 {
392 struct rb_node *node;
393
394 split_cb(tree, orig, split);
395
396 prealloc->start = orig->start;
397 prealloc->end = split - 1;
398 prealloc->state = orig->state;
399 orig->start = split;
400
401 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
402 if (node) {
403 free_extent_state(prealloc);
404 return -EEXIST;
405 }
406 prealloc->tree = tree;
407 return 0;
408 }
409
410 static struct extent_state *next_state(struct extent_state *state)
411 {
412 struct rb_node *next = rb_next(&state->rb_node);
413 if (next)
414 return rb_entry(next, struct extent_state, rb_node);
415 else
416 return NULL;
417 }
418
419 /*
420 * utility function to clear some bits in an extent state struct.
421 * it will optionally wake up any one waiting on this state (wake == 1).
422 *
423 * If no bits are set on the state struct after clearing things, the
424 * struct is freed and removed from the tree
425 */
426 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
427 struct extent_state *state,
428 int *bits, int wake)
429 {
430 struct extent_state *next;
431 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
432
433 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
434 u64 range = state->end - state->start + 1;
435 WARN_ON(range > tree->dirty_bytes);
436 tree->dirty_bytes -= range;
437 }
438 clear_state_cb(tree, state, bits);
439 state->state &= ~bits_to_clear;
440 if (wake)
441 wake_up(&state->wq);
442 if (state->state == 0) {
443 next = next_state(state);
444 if (state->tree) {
445 rb_erase(&state->rb_node, &tree->state);
446 state->tree = NULL;
447 free_extent_state(state);
448 } else {
449 WARN_ON(1);
450 }
451 } else {
452 merge_state(tree, state);
453 next = next_state(state);
454 }
455 return next;
456 }
457
458 static struct extent_state *
459 alloc_extent_state_atomic(struct extent_state *prealloc)
460 {
461 if (!prealloc)
462 prealloc = alloc_extent_state(GFP_ATOMIC);
463
464 return prealloc;
465 }
466
467 void extent_io_tree_panic(struct extent_io_tree *tree, int err)
468 {
469 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
470 "Extent tree was modified by another "
471 "thread while locked.");
472 }
473
474 /*
475 * clear some bits on a range in the tree. This may require splitting
476 * or inserting elements in the tree, so the gfp mask is used to
477 * indicate which allocations or sleeping are allowed.
478 *
479 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
480 * the given range from the tree regardless of state (ie for truncate).
481 *
482 * the range [start, end] is inclusive.
483 *
484 * This takes the tree lock, and returns 0 on success and < 0 on error.
485 */
486 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
487 int bits, int wake, int delete,
488 struct extent_state **cached_state,
489 gfp_t mask)
490 {
491 struct extent_state *state;
492 struct extent_state *cached;
493 struct extent_state *prealloc = NULL;
494 struct rb_node *node;
495 u64 last_end;
496 int err;
497 int clear = 0;
498
499 if (delete)
500 bits |= ~EXTENT_CTLBITS;
501 bits |= EXTENT_FIRST_DELALLOC;
502
503 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
504 clear = 1;
505 again:
506 if (!prealloc && (mask & __GFP_WAIT)) {
507 prealloc = alloc_extent_state(mask);
508 if (!prealloc)
509 return -ENOMEM;
510 }
511
512 spin_lock(&tree->lock);
513 if (cached_state) {
514 cached = *cached_state;
515
516 if (clear) {
517 *cached_state = NULL;
518 cached_state = NULL;
519 }
520
521 if (cached && cached->tree && cached->start <= start &&
522 cached->end > start) {
523 if (clear)
524 atomic_dec(&cached->refs);
525 state = cached;
526 goto hit_next;
527 }
528 if (clear)
529 free_extent_state(cached);
530 }
531 /*
532 * this search will find the extents that end after
533 * our range starts
534 */
535 node = tree_search(tree, start);
536 if (!node)
537 goto out;
538 state = rb_entry(node, struct extent_state, rb_node);
539 hit_next:
540 if (state->start > end)
541 goto out;
542 WARN_ON(state->end < start);
543 last_end = state->end;
544
545 /* the state doesn't have the wanted bits, go ahead */
546 if (!(state->state & bits)) {
547 state = next_state(state);
548 goto next;
549 }
550
551 /*
552 * | ---- desired range ---- |
553 * | state | or
554 * | ------------- state -------------- |
555 *
556 * We need to split the extent we found, and may flip
557 * bits on second half.
558 *
559 * If the extent we found extends past our range, we
560 * just split and search again. It'll get split again
561 * the next time though.
562 *
563 * If the extent we found is inside our range, we clear
564 * the desired bit on it.
565 */
566
567 if (state->start < start) {
568 prealloc = alloc_extent_state_atomic(prealloc);
569 BUG_ON(!prealloc);
570 err = split_state(tree, state, prealloc, start);
571 if (err)
572 extent_io_tree_panic(tree, err);
573
574 prealloc = NULL;
575 if (err)
576 goto out;
577 if (state->end <= end) {
578 state = clear_state_bit(tree, state, &bits, wake);
579 goto next;
580 }
581 goto search_again;
582 }
583 /*
584 * | ---- desired range ---- |
585 * | state |
586 * We need to split the extent, and clear the bit
587 * on the first half
588 */
589 if (state->start <= end && state->end > end) {
590 prealloc = alloc_extent_state_atomic(prealloc);
591 BUG_ON(!prealloc);
592 err = split_state(tree, state, prealloc, end + 1);
593 if (err)
594 extent_io_tree_panic(tree, err);
595
596 if (wake)
597 wake_up(&state->wq);
598
599 clear_state_bit(tree, prealloc, &bits, wake);
600
601 prealloc = NULL;
602 goto out;
603 }
604
605 state = clear_state_bit(tree, state, &bits, wake);
606 next:
607 if (last_end == (u64)-1)
608 goto out;
609 start = last_end + 1;
610 if (start <= end && state && !need_resched())
611 goto hit_next;
612 goto search_again;
613
614 out:
615 spin_unlock(&tree->lock);
616 if (prealloc)
617 free_extent_state(prealloc);
618
619 return 0;
620
621 search_again:
622 if (start > end)
623 goto out;
624 spin_unlock(&tree->lock);
625 if (mask & __GFP_WAIT)
626 cond_resched();
627 goto again;
628 }
629
630 static void wait_on_state(struct extent_io_tree *tree,
631 struct extent_state *state)
632 __releases(tree->lock)
633 __acquires(tree->lock)
634 {
635 DEFINE_WAIT(wait);
636 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
637 spin_unlock(&tree->lock);
638 schedule();
639 spin_lock(&tree->lock);
640 finish_wait(&state->wq, &wait);
641 }
642
643 /*
644 * waits for one or more bits to clear on a range in the state tree.
645 * The range [start, end] is inclusive.
646 * The tree lock is taken by this function
647 */
648 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
649 {
650 struct extent_state *state;
651 struct rb_node *node;
652
653 spin_lock(&tree->lock);
654 again:
655 while (1) {
656 /*
657 * this search will find all the extents that end after
658 * our range starts
659 */
660 node = tree_search(tree, start);
661 if (!node)
662 break;
663
664 state = rb_entry(node, struct extent_state, rb_node);
665
666 if (state->start > end)
667 goto out;
668
669 if (state->state & bits) {
670 start = state->start;
671 atomic_inc(&state->refs);
672 wait_on_state(tree, state);
673 free_extent_state(state);
674 goto again;
675 }
676 start = state->end + 1;
677
678 if (start > end)
679 break;
680
681 cond_resched_lock(&tree->lock);
682 }
683 out:
684 spin_unlock(&tree->lock);
685 }
686
687 static void set_state_bits(struct extent_io_tree *tree,
688 struct extent_state *state,
689 int *bits)
690 {
691 int bits_to_set = *bits & ~EXTENT_CTLBITS;
692
693 set_state_cb(tree, state, bits);
694 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
695 u64 range = state->end - state->start + 1;
696 tree->dirty_bytes += range;
697 }
698 state->state |= bits_to_set;
699 }
700
701 static void cache_state(struct extent_state *state,
702 struct extent_state **cached_ptr)
703 {
704 if (cached_ptr && !(*cached_ptr)) {
705 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
706 *cached_ptr = state;
707 atomic_inc(&state->refs);
708 }
709 }
710 }
711
712 static void uncache_state(struct extent_state **cached_ptr)
713 {
714 if (cached_ptr && (*cached_ptr)) {
715 struct extent_state *state = *cached_ptr;
716 *cached_ptr = NULL;
717 free_extent_state(state);
718 }
719 }
720
721 /*
722 * set some bits on a range in the tree. This may require allocations or
723 * sleeping, so the gfp mask is used to indicate what is allowed.
724 *
725 * If any of the exclusive bits are set, this will fail with -EEXIST if some
726 * part of the range already has the desired bits set. The start of the
727 * existing range is returned in failed_start in this case.
728 *
729 * [start, end] is inclusive This takes the tree lock.
730 */
731
732 static int __must_check
733 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
734 int bits, int exclusive_bits, u64 *failed_start,
735 struct extent_state **cached_state, gfp_t mask)
736 {
737 struct extent_state *state;
738 struct extent_state *prealloc = NULL;
739 struct rb_node *node;
740 int err = 0;
741 u64 last_start;
742 u64 last_end;
743
744 bits |= EXTENT_FIRST_DELALLOC;
745 again:
746 if (!prealloc && (mask & __GFP_WAIT)) {
747 prealloc = alloc_extent_state(mask);
748 BUG_ON(!prealloc);
749 }
750
751 spin_lock(&tree->lock);
752 if (cached_state && *cached_state) {
753 state = *cached_state;
754 if (state->start <= start && state->end > start &&
755 state->tree) {
756 node = &state->rb_node;
757 goto hit_next;
758 }
759 }
760 /*
761 * this search will find all the extents that end after
762 * our range starts.
763 */
764 node = tree_search(tree, start);
765 if (!node) {
766 prealloc = alloc_extent_state_atomic(prealloc);
767 BUG_ON(!prealloc);
768 err = insert_state(tree, prealloc, start, end, &bits);
769 if (err)
770 extent_io_tree_panic(tree, err);
771
772 prealloc = NULL;
773 goto out;
774 }
775 state = rb_entry(node, struct extent_state, rb_node);
776 hit_next:
777 last_start = state->start;
778 last_end = state->end;
779
780 /*
781 * | ---- desired range ---- |
782 * | state |
783 *
784 * Just lock what we found and keep going
785 */
786 if (state->start == start && state->end <= end) {
787 if (state->state & exclusive_bits) {
788 *failed_start = state->start;
789 err = -EEXIST;
790 goto out;
791 }
792
793 set_state_bits(tree, state, &bits);
794 cache_state(state, cached_state);
795 merge_state(tree, state);
796 if (last_end == (u64)-1)
797 goto out;
798 start = last_end + 1;
799 state = next_state(state);
800 if (start < end && state && state->start == start &&
801 !need_resched())
802 goto hit_next;
803 goto search_again;
804 }
805
806 /*
807 * | ---- desired range ---- |
808 * | state |
809 * or
810 * | ------------- state -------------- |
811 *
812 * We need to split the extent we found, and may flip bits on
813 * second half.
814 *
815 * If the extent we found extends past our
816 * range, we just split and search again. It'll get split
817 * again the next time though.
818 *
819 * If the extent we found is inside our range, we set the
820 * desired bit on it.
821 */
822 if (state->start < start) {
823 if (state->state & exclusive_bits) {
824 *failed_start = start;
825 err = -EEXIST;
826 goto out;
827 }
828
829 prealloc = alloc_extent_state_atomic(prealloc);
830 BUG_ON(!prealloc);
831 err = split_state(tree, state, prealloc, start);
832 if (err)
833 extent_io_tree_panic(tree, err);
834
835 prealloc = NULL;
836 if (err)
837 goto out;
838 if (state->end <= end) {
839 set_state_bits(tree, state, &bits);
840 cache_state(state, cached_state);
841 merge_state(tree, state);
842 if (last_end == (u64)-1)
843 goto out;
844 start = last_end + 1;
845 state = next_state(state);
846 if (start < end && state && state->start == start &&
847 !need_resched())
848 goto hit_next;
849 }
850 goto search_again;
851 }
852 /*
853 * | ---- desired range ---- |
854 * | state | or | state |
855 *
856 * There's a hole, we need to insert something in it and
857 * ignore the extent we found.
858 */
859 if (state->start > start) {
860 u64 this_end;
861 if (end < last_start)
862 this_end = end;
863 else
864 this_end = last_start - 1;
865
866 prealloc = alloc_extent_state_atomic(prealloc);
867 BUG_ON(!prealloc);
868
869 /*
870 * Avoid to free 'prealloc' if it can be merged with
871 * the later extent.
872 */
873 err = insert_state(tree, prealloc, start, this_end,
874 &bits);
875 if (err)
876 extent_io_tree_panic(tree, err);
877
878 cache_state(prealloc, cached_state);
879 prealloc = NULL;
880 start = this_end + 1;
881 goto search_again;
882 }
883 /*
884 * | ---- desired range ---- |
885 * | state |
886 * We need to split the extent, and set the bit
887 * on the first half
888 */
889 if (state->start <= end && state->end > end) {
890 if (state->state & exclusive_bits) {
891 *failed_start = start;
892 err = -EEXIST;
893 goto out;
894 }
895
896 prealloc = alloc_extent_state_atomic(prealloc);
897 BUG_ON(!prealloc);
898 err = split_state(tree, state, prealloc, end + 1);
899 if (err)
900 extent_io_tree_panic(tree, err);
901
902 set_state_bits(tree, prealloc, &bits);
903 cache_state(prealloc, cached_state);
904 merge_state(tree, prealloc);
905 prealloc = NULL;
906 goto out;
907 }
908
909 goto search_again;
910
911 out:
912 spin_unlock(&tree->lock);
913 if (prealloc)
914 free_extent_state(prealloc);
915
916 return err;
917
918 search_again:
919 if (start > end)
920 goto out;
921 spin_unlock(&tree->lock);
922 if (mask & __GFP_WAIT)
923 cond_resched();
924 goto again;
925 }
926
927 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
928 u64 *failed_start, struct extent_state **cached_state,
929 gfp_t mask)
930 {
931 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
932 cached_state, mask);
933 }
934
935
936 /**
937 * convert_extent_bit - convert all bits in a given range from one bit to
938 * another
939 * @tree: the io tree to search
940 * @start: the start offset in bytes
941 * @end: the end offset in bytes (inclusive)
942 * @bits: the bits to set in this range
943 * @clear_bits: the bits to clear in this range
944 * @cached_state: state that we're going to cache
945 * @mask: the allocation mask
946 *
947 * This will go through and set bits for the given range. If any states exist
948 * already in this range they are set with the given bit and cleared of the
949 * clear_bits. This is only meant to be used by things that are mergeable, ie
950 * converting from say DELALLOC to DIRTY. This is not meant to be used with
951 * boundary bits like LOCK.
952 */
953 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
954 int bits, int clear_bits,
955 struct extent_state **cached_state, gfp_t mask)
956 {
957 struct extent_state *state;
958 struct extent_state *prealloc = NULL;
959 struct rb_node *node;
960 int err = 0;
961 u64 last_start;
962 u64 last_end;
963
964 again:
965 if (!prealloc && (mask & __GFP_WAIT)) {
966 prealloc = alloc_extent_state(mask);
967 if (!prealloc)
968 return -ENOMEM;
969 }
970
971 spin_lock(&tree->lock);
972 if (cached_state && *cached_state) {
973 state = *cached_state;
974 if (state->start <= start && state->end > start &&
975 state->tree) {
976 node = &state->rb_node;
977 goto hit_next;
978 }
979 }
980
981 /*
982 * this search will find all the extents that end after
983 * our range starts.
984 */
985 node = tree_search(tree, start);
986 if (!node) {
987 prealloc = alloc_extent_state_atomic(prealloc);
988 if (!prealloc) {
989 err = -ENOMEM;
990 goto out;
991 }
992 err = insert_state(tree, prealloc, start, end, &bits);
993 prealloc = NULL;
994 if (err)
995 extent_io_tree_panic(tree, err);
996 goto out;
997 }
998 state = rb_entry(node, struct extent_state, rb_node);
999 hit_next:
1000 last_start = state->start;
1001 last_end = state->end;
1002
1003 /*
1004 * | ---- desired range ---- |
1005 * | state |
1006 *
1007 * Just lock what we found and keep going
1008 */
1009 if (state->start == start && state->end <= end) {
1010 set_state_bits(tree, state, &bits);
1011 cache_state(state, cached_state);
1012 state = clear_state_bit(tree, state, &clear_bits, 0);
1013 if (last_end == (u64)-1)
1014 goto out;
1015 start = last_end + 1;
1016 if (start < end && state && state->start == start &&
1017 !need_resched())
1018 goto hit_next;
1019 goto search_again;
1020 }
1021
1022 /*
1023 * | ---- desired range ---- |
1024 * | state |
1025 * or
1026 * | ------------- state -------------- |
1027 *
1028 * We need to split the extent we found, and may flip bits on
1029 * second half.
1030 *
1031 * If the extent we found extends past our
1032 * range, we just split and search again. It'll get split
1033 * again the next time though.
1034 *
1035 * If the extent we found is inside our range, we set the
1036 * desired bit on it.
1037 */
1038 if (state->start < start) {
1039 prealloc = alloc_extent_state_atomic(prealloc);
1040 if (!prealloc) {
1041 err = -ENOMEM;
1042 goto out;
1043 }
1044 err = split_state(tree, state, prealloc, start);
1045 if (err)
1046 extent_io_tree_panic(tree, err);
1047 prealloc = NULL;
1048 if (err)
1049 goto out;
1050 if (state->end <= end) {
1051 set_state_bits(tree, state, &bits);
1052 cache_state(state, cached_state);
1053 state = clear_state_bit(tree, state, &clear_bits, 0);
1054 if (last_end == (u64)-1)
1055 goto out;
1056 start = last_end + 1;
1057 if (start < end && state && state->start == start &&
1058 !need_resched())
1059 goto hit_next;
1060 }
1061 goto search_again;
1062 }
1063 /*
1064 * | ---- desired range ---- |
1065 * | state | or | state |
1066 *
1067 * There's a hole, we need to insert something in it and
1068 * ignore the extent we found.
1069 */
1070 if (state->start > start) {
1071 u64 this_end;
1072 if (end < last_start)
1073 this_end = end;
1074 else
1075 this_end = last_start - 1;
1076
1077 prealloc = alloc_extent_state_atomic(prealloc);
1078 if (!prealloc) {
1079 err = -ENOMEM;
1080 goto out;
1081 }
1082
1083 /*
1084 * Avoid to free 'prealloc' if it can be merged with
1085 * the later extent.
1086 */
1087 err = insert_state(tree, prealloc, start, this_end,
1088 &bits);
1089 if (err)
1090 extent_io_tree_panic(tree, err);
1091 cache_state(prealloc, cached_state);
1092 prealloc = NULL;
1093 start = this_end + 1;
1094 goto search_again;
1095 }
1096 /*
1097 * | ---- desired range ---- |
1098 * | state |
1099 * We need to split the extent, and set the bit
1100 * on the first half
1101 */
1102 if (state->start <= end && state->end > end) {
1103 prealloc = alloc_extent_state_atomic(prealloc);
1104 if (!prealloc) {
1105 err = -ENOMEM;
1106 goto out;
1107 }
1108
1109 err = split_state(tree, state, prealloc, end + 1);
1110 if (err)
1111 extent_io_tree_panic(tree, err);
1112
1113 set_state_bits(tree, prealloc, &bits);
1114 cache_state(prealloc, cached_state);
1115 clear_state_bit(tree, prealloc, &clear_bits, 0);
1116 prealloc = NULL;
1117 goto out;
1118 }
1119
1120 goto search_again;
1121
1122 out:
1123 spin_unlock(&tree->lock);
1124 if (prealloc)
1125 free_extent_state(prealloc);
1126
1127 return err;
1128
1129 search_again:
1130 if (start > end)
1131 goto out;
1132 spin_unlock(&tree->lock);
1133 if (mask & __GFP_WAIT)
1134 cond_resched();
1135 goto again;
1136 }
1137
1138 /* wrappers around set/clear extent bit */
1139 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1140 gfp_t mask)
1141 {
1142 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1143 NULL, mask);
1144 }
1145
1146 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1147 int bits, gfp_t mask)
1148 {
1149 return set_extent_bit(tree, start, end, bits, NULL,
1150 NULL, mask);
1151 }
1152
1153 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1154 int bits, gfp_t mask)
1155 {
1156 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1157 }
1158
1159 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1160 struct extent_state **cached_state, gfp_t mask)
1161 {
1162 return set_extent_bit(tree, start, end,
1163 EXTENT_DELALLOC | EXTENT_UPTODATE,
1164 NULL, cached_state, mask);
1165 }
1166
1167 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1168 struct extent_state **cached_state, gfp_t mask)
1169 {
1170 return set_extent_bit(tree, start, end,
1171 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1172 NULL, cached_state, mask);
1173 }
1174
1175 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1176 gfp_t mask)
1177 {
1178 return clear_extent_bit(tree, start, end,
1179 EXTENT_DIRTY | EXTENT_DELALLOC |
1180 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1181 }
1182
1183 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1184 gfp_t mask)
1185 {
1186 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1187 NULL, mask);
1188 }
1189
1190 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1191 struct extent_state **cached_state, gfp_t mask)
1192 {
1193 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1194 cached_state, mask);
1195 }
1196
1197 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1198 struct extent_state **cached_state, gfp_t mask)
1199 {
1200 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1201 cached_state, mask);
1202 }
1203
1204 /*
1205 * either insert or lock state struct between start and end use mask to tell
1206 * us if waiting is desired.
1207 */
1208 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1209 int bits, struct extent_state **cached_state)
1210 {
1211 int err;
1212 u64 failed_start;
1213 while (1) {
1214 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1215 EXTENT_LOCKED, &failed_start,
1216 cached_state, GFP_NOFS);
1217 if (err == -EEXIST) {
1218 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1219 start = failed_start;
1220 } else
1221 break;
1222 WARN_ON(start > end);
1223 }
1224 return err;
1225 }
1226
1227 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1228 {
1229 return lock_extent_bits(tree, start, end, 0, NULL);
1230 }
1231
1232 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1233 {
1234 int err;
1235 u64 failed_start;
1236
1237 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1238 &failed_start, NULL, GFP_NOFS);
1239 if (err == -EEXIST) {
1240 if (failed_start > start)
1241 clear_extent_bit(tree, start, failed_start - 1,
1242 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1243 return 0;
1244 }
1245 return 1;
1246 }
1247
1248 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1249 struct extent_state **cached, gfp_t mask)
1250 {
1251 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1252 mask);
1253 }
1254
1255 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1256 {
1257 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1258 GFP_NOFS);
1259 }
1260
1261 /*
1262 * helper function to set both pages and extents in the tree writeback
1263 */
1264 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1265 {
1266 unsigned long index = start >> PAGE_CACHE_SHIFT;
1267 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1268 struct page *page;
1269
1270 while (index <= end_index) {
1271 page = find_get_page(tree->mapping, index);
1272 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1273 set_page_writeback(page);
1274 page_cache_release(page);
1275 index++;
1276 }
1277 return 0;
1278 }
1279
1280 /* find the first state struct with 'bits' set after 'start', and
1281 * return it. tree->lock must be held. NULL will returned if
1282 * nothing was found after 'start'
1283 */
1284 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1285 u64 start, int bits)
1286 {
1287 struct rb_node *node;
1288 struct extent_state *state;
1289
1290 /*
1291 * this search will find all the extents that end after
1292 * our range starts.
1293 */
1294 node = tree_search(tree, start);
1295 if (!node)
1296 goto out;
1297
1298 while (1) {
1299 state = rb_entry(node, struct extent_state, rb_node);
1300 if (state->end >= start && (state->state & bits))
1301 return state;
1302
1303 node = rb_next(node);
1304 if (!node)
1305 break;
1306 }
1307 out:
1308 return NULL;
1309 }
1310
1311 /*
1312 * find the first offset in the io tree with 'bits' set. zero is
1313 * returned if we find something, and *start_ret and *end_ret are
1314 * set to reflect the state struct that was found.
1315 *
1316 * If nothing was found, 1 is returned. If found something, return 0.
1317 */
1318 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1319 u64 *start_ret, u64 *end_ret, int bits,
1320 struct extent_state **cached_state)
1321 {
1322 struct extent_state *state;
1323 struct rb_node *n;
1324 int ret = 1;
1325
1326 spin_lock(&tree->lock);
1327 if (cached_state && *cached_state) {
1328 state = *cached_state;
1329 if (state->end == start - 1 && state->tree) {
1330 n = rb_next(&state->rb_node);
1331 while (n) {
1332 state = rb_entry(n, struct extent_state,
1333 rb_node);
1334 if (state->state & bits)
1335 goto got_it;
1336 n = rb_next(n);
1337 }
1338 free_extent_state(*cached_state);
1339 *cached_state = NULL;
1340 goto out;
1341 }
1342 free_extent_state(*cached_state);
1343 *cached_state = NULL;
1344 }
1345
1346 state = find_first_extent_bit_state(tree, start, bits);
1347 got_it:
1348 if (state) {
1349 cache_state(state, cached_state);
1350 *start_ret = state->start;
1351 *end_ret = state->end;
1352 ret = 0;
1353 }
1354 out:
1355 spin_unlock(&tree->lock);
1356 return ret;
1357 }
1358
1359 /*
1360 * find a contiguous range of bytes in the file marked as delalloc, not
1361 * more than 'max_bytes'. start and end are used to return the range,
1362 *
1363 * 1 is returned if we find something, 0 if nothing was in the tree
1364 */
1365 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1366 u64 *start, u64 *end, u64 max_bytes,
1367 struct extent_state **cached_state)
1368 {
1369 struct rb_node *node;
1370 struct extent_state *state;
1371 u64 cur_start = *start;
1372 u64 found = 0;
1373 u64 total_bytes = 0;
1374
1375 spin_lock(&tree->lock);
1376
1377 /*
1378 * this search will find all the extents that end after
1379 * our range starts.
1380 */
1381 node = tree_search(tree, cur_start);
1382 if (!node) {
1383 if (!found)
1384 *end = (u64)-1;
1385 goto out;
1386 }
1387
1388 while (1) {
1389 state = rb_entry(node, struct extent_state, rb_node);
1390 if (found && (state->start != cur_start ||
1391 (state->state & EXTENT_BOUNDARY))) {
1392 goto out;
1393 }
1394 if (!(state->state & EXTENT_DELALLOC)) {
1395 if (!found)
1396 *end = state->end;
1397 goto out;
1398 }
1399 if (!found) {
1400 *start = state->start;
1401 *cached_state = state;
1402 atomic_inc(&state->refs);
1403 }
1404 found++;
1405 *end = state->end;
1406 cur_start = state->end + 1;
1407 node = rb_next(node);
1408 if (!node)
1409 break;
1410 total_bytes += state->end - state->start + 1;
1411 if (total_bytes >= max_bytes)
1412 break;
1413 }
1414 out:
1415 spin_unlock(&tree->lock);
1416 return found;
1417 }
1418
1419 static noinline void __unlock_for_delalloc(struct inode *inode,
1420 struct page *locked_page,
1421 u64 start, u64 end)
1422 {
1423 int ret;
1424 struct page *pages[16];
1425 unsigned long index = start >> PAGE_CACHE_SHIFT;
1426 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1427 unsigned long nr_pages = end_index - index + 1;
1428 int i;
1429
1430 if (index == locked_page->index && end_index == index)
1431 return;
1432
1433 while (nr_pages > 0) {
1434 ret = find_get_pages_contig(inode->i_mapping, index,
1435 min_t(unsigned long, nr_pages,
1436 ARRAY_SIZE(pages)), pages);
1437 for (i = 0; i < ret; i++) {
1438 if (pages[i] != locked_page)
1439 unlock_page(pages[i]);
1440 page_cache_release(pages[i]);
1441 }
1442 nr_pages -= ret;
1443 index += ret;
1444 cond_resched();
1445 }
1446 }
1447
1448 static noinline int lock_delalloc_pages(struct inode *inode,
1449 struct page *locked_page,
1450 u64 delalloc_start,
1451 u64 delalloc_end)
1452 {
1453 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1454 unsigned long start_index = index;
1455 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1456 unsigned long pages_locked = 0;
1457 struct page *pages[16];
1458 unsigned long nrpages;
1459 int ret;
1460 int i;
1461
1462 /* the caller is responsible for locking the start index */
1463 if (index == locked_page->index && index == end_index)
1464 return 0;
1465
1466 /* skip the page at the start index */
1467 nrpages = end_index - index + 1;
1468 while (nrpages > 0) {
1469 ret = find_get_pages_contig(inode->i_mapping, index,
1470 min_t(unsigned long,
1471 nrpages, ARRAY_SIZE(pages)), pages);
1472 if (ret == 0) {
1473 ret = -EAGAIN;
1474 goto done;
1475 }
1476 /* now we have an array of pages, lock them all */
1477 for (i = 0; i < ret; i++) {
1478 /*
1479 * the caller is taking responsibility for
1480 * locked_page
1481 */
1482 if (pages[i] != locked_page) {
1483 lock_page(pages[i]);
1484 if (!PageDirty(pages[i]) ||
1485 pages[i]->mapping != inode->i_mapping) {
1486 ret = -EAGAIN;
1487 unlock_page(pages[i]);
1488 page_cache_release(pages[i]);
1489 goto done;
1490 }
1491 }
1492 page_cache_release(pages[i]);
1493 pages_locked++;
1494 }
1495 nrpages -= ret;
1496 index += ret;
1497 cond_resched();
1498 }
1499 ret = 0;
1500 done:
1501 if (ret && pages_locked) {
1502 __unlock_for_delalloc(inode, locked_page,
1503 delalloc_start,
1504 ((u64)(start_index + pages_locked - 1)) <<
1505 PAGE_CACHE_SHIFT);
1506 }
1507 return ret;
1508 }
1509
1510 /*
1511 * find a contiguous range of bytes in the file marked as delalloc, not
1512 * more than 'max_bytes'. start and end are used to return the range,
1513 *
1514 * 1 is returned if we find something, 0 if nothing was in the tree
1515 */
1516 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1517 struct extent_io_tree *tree,
1518 struct page *locked_page,
1519 u64 *start, u64 *end,
1520 u64 max_bytes)
1521 {
1522 u64 delalloc_start;
1523 u64 delalloc_end;
1524 u64 found;
1525 struct extent_state *cached_state = NULL;
1526 int ret;
1527 int loops = 0;
1528
1529 again:
1530 /* step one, find a bunch of delalloc bytes starting at start */
1531 delalloc_start = *start;
1532 delalloc_end = 0;
1533 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1534 max_bytes, &cached_state);
1535 if (!found || delalloc_end <= *start) {
1536 *start = delalloc_start;
1537 *end = delalloc_end;
1538 free_extent_state(cached_state);
1539 return found;
1540 }
1541
1542 /*
1543 * start comes from the offset of locked_page. We have to lock
1544 * pages in order, so we can't process delalloc bytes before
1545 * locked_page
1546 */
1547 if (delalloc_start < *start)
1548 delalloc_start = *start;
1549
1550 /*
1551 * make sure to limit the number of pages we try to lock down
1552 * if we're looping.
1553 */
1554 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1555 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1556
1557 /* step two, lock all the pages after the page that has start */
1558 ret = lock_delalloc_pages(inode, locked_page,
1559 delalloc_start, delalloc_end);
1560 if (ret == -EAGAIN) {
1561 /* some of the pages are gone, lets avoid looping by
1562 * shortening the size of the delalloc range we're searching
1563 */
1564 free_extent_state(cached_state);
1565 if (!loops) {
1566 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1567 max_bytes = PAGE_CACHE_SIZE - offset;
1568 loops = 1;
1569 goto again;
1570 } else {
1571 found = 0;
1572 goto out_failed;
1573 }
1574 }
1575 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1576
1577 /* step three, lock the state bits for the whole range */
1578 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1579
1580 /* then test to make sure it is all still delalloc */
1581 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1582 EXTENT_DELALLOC, 1, cached_state);
1583 if (!ret) {
1584 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1585 &cached_state, GFP_NOFS);
1586 __unlock_for_delalloc(inode, locked_page,
1587 delalloc_start, delalloc_end);
1588 cond_resched();
1589 goto again;
1590 }
1591 free_extent_state(cached_state);
1592 *start = delalloc_start;
1593 *end = delalloc_end;
1594 out_failed:
1595 return found;
1596 }
1597
1598 int extent_clear_unlock_delalloc(struct inode *inode,
1599 struct extent_io_tree *tree,
1600 u64 start, u64 end, struct page *locked_page,
1601 unsigned long op)
1602 {
1603 int ret;
1604 struct page *pages[16];
1605 unsigned long index = start >> PAGE_CACHE_SHIFT;
1606 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1607 unsigned long nr_pages = end_index - index + 1;
1608 int i;
1609 int clear_bits = 0;
1610
1611 if (op & EXTENT_CLEAR_UNLOCK)
1612 clear_bits |= EXTENT_LOCKED;
1613 if (op & EXTENT_CLEAR_DIRTY)
1614 clear_bits |= EXTENT_DIRTY;
1615
1616 if (op & EXTENT_CLEAR_DELALLOC)
1617 clear_bits |= EXTENT_DELALLOC;
1618
1619 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1620 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1621 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1622 EXTENT_SET_PRIVATE2)))
1623 return 0;
1624
1625 while (nr_pages > 0) {
1626 ret = find_get_pages_contig(inode->i_mapping, index,
1627 min_t(unsigned long,
1628 nr_pages, ARRAY_SIZE(pages)), pages);
1629 for (i = 0; i < ret; i++) {
1630
1631 if (op & EXTENT_SET_PRIVATE2)
1632 SetPagePrivate2(pages[i]);
1633
1634 if (pages[i] == locked_page) {
1635 page_cache_release(pages[i]);
1636 continue;
1637 }
1638 if (op & EXTENT_CLEAR_DIRTY)
1639 clear_page_dirty_for_io(pages[i]);
1640 if (op & EXTENT_SET_WRITEBACK)
1641 set_page_writeback(pages[i]);
1642 if (op & EXTENT_END_WRITEBACK)
1643 end_page_writeback(pages[i]);
1644 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1645 unlock_page(pages[i]);
1646 page_cache_release(pages[i]);
1647 }
1648 nr_pages -= ret;
1649 index += ret;
1650 cond_resched();
1651 }
1652 return 0;
1653 }
1654
1655 /*
1656 * count the number of bytes in the tree that have a given bit(s)
1657 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1658 * cached. The total number found is returned.
1659 */
1660 u64 count_range_bits(struct extent_io_tree *tree,
1661 u64 *start, u64 search_end, u64 max_bytes,
1662 unsigned long bits, int contig)
1663 {
1664 struct rb_node *node;
1665 struct extent_state *state;
1666 u64 cur_start = *start;
1667 u64 total_bytes = 0;
1668 u64 last = 0;
1669 int found = 0;
1670
1671 if (search_end <= cur_start) {
1672 WARN_ON(1);
1673 return 0;
1674 }
1675
1676 spin_lock(&tree->lock);
1677 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1678 total_bytes = tree->dirty_bytes;
1679 goto out;
1680 }
1681 /*
1682 * this search will find all the extents that end after
1683 * our range starts.
1684 */
1685 node = tree_search(tree, cur_start);
1686 if (!node)
1687 goto out;
1688
1689 while (1) {
1690 state = rb_entry(node, struct extent_state, rb_node);
1691 if (state->start > search_end)
1692 break;
1693 if (contig && found && state->start > last + 1)
1694 break;
1695 if (state->end >= cur_start && (state->state & bits) == bits) {
1696 total_bytes += min(search_end, state->end) + 1 -
1697 max(cur_start, state->start);
1698 if (total_bytes >= max_bytes)
1699 break;
1700 if (!found) {
1701 *start = max(cur_start, state->start);
1702 found = 1;
1703 }
1704 last = state->end;
1705 } else if (contig && found) {
1706 break;
1707 }
1708 node = rb_next(node);
1709 if (!node)
1710 break;
1711 }
1712 out:
1713 spin_unlock(&tree->lock);
1714 return total_bytes;
1715 }
1716
1717 /*
1718 * set the private field for a given byte offset in the tree. If there isn't
1719 * an extent_state there already, this does nothing.
1720 */
1721 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1722 {
1723 struct rb_node *node;
1724 struct extent_state *state;
1725 int ret = 0;
1726
1727 spin_lock(&tree->lock);
1728 /*
1729 * this search will find all the extents that end after
1730 * our range starts.
1731 */
1732 node = tree_search(tree, start);
1733 if (!node) {
1734 ret = -ENOENT;
1735 goto out;
1736 }
1737 state = rb_entry(node, struct extent_state, rb_node);
1738 if (state->start != start) {
1739 ret = -ENOENT;
1740 goto out;
1741 }
1742 state->private = private;
1743 out:
1744 spin_unlock(&tree->lock);
1745 return ret;
1746 }
1747
1748 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1749 {
1750 struct rb_node *node;
1751 struct extent_state *state;
1752 int ret = 0;
1753
1754 spin_lock(&tree->lock);
1755 /*
1756 * this search will find all the extents that end after
1757 * our range starts.
1758 */
1759 node = tree_search(tree, start);
1760 if (!node) {
1761 ret = -ENOENT;
1762 goto out;
1763 }
1764 state = rb_entry(node, struct extent_state, rb_node);
1765 if (state->start != start) {
1766 ret = -ENOENT;
1767 goto out;
1768 }
1769 *private = state->private;
1770 out:
1771 spin_unlock(&tree->lock);
1772 return ret;
1773 }
1774
1775 /*
1776 * searches a range in the state tree for a given mask.
1777 * If 'filled' == 1, this returns 1 only if every extent in the tree
1778 * has the bits set. Otherwise, 1 is returned if any bit in the
1779 * range is found set.
1780 */
1781 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1782 int bits, int filled, struct extent_state *cached)
1783 {
1784 struct extent_state *state = NULL;
1785 struct rb_node *node;
1786 int bitset = 0;
1787
1788 spin_lock(&tree->lock);
1789 if (cached && cached->tree && cached->start <= start &&
1790 cached->end > start)
1791 node = &cached->rb_node;
1792 else
1793 node = tree_search(tree, start);
1794 while (node && start <= end) {
1795 state = rb_entry(node, struct extent_state, rb_node);
1796
1797 if (filled && state->start > start) {
1798 bitset = 0;
1799 break;
1800 }
1801
1802 if (state->start > end)
1803 break;
1804
1805 if (state->state & bits) {
1806 bitset = 1;
1807 if (!filled)
1808 break;
1809 } else if (filled) {
1810 bitset = 0;
1811 break;
1812 }
1813
1814 if (state->end == (u64)-1)
1815 break;
1816
1817 start = state->end + 1;
1818 if (start > end)
1819 break;
1820 node = rb_next(node);
1821 if (!node) {
1822 if (filled)
1823 bitset = 0;
1824 break;
1825 }
1826 }
1827 spin_unlock(&tree->lock);
1828 return bitset;
1829 }
1830
1831 /*
1832 * helper function to set a given page up to date if all the
1833 * extents in the tree for that page are up to date
1834 */
1835 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1836 {
1837 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1838 u64 end = start + PAGE_CACHE_SIZE - 1;
1839 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1840 SetPageUptodate(page);
1841 }
1842
1843 /*
1844 * helper function to unlock a page if all the extents in the tree
1845 * for that page are unlocked
1846 */
1847 static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1848 {
1849 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1850 u64 end = start + PAGE_CACHE_SIZE - 1;
1851 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1852 unlock_page(page);
1853 }
1854
1855 /*
1856 * helper function to end page writeback if all the extents
1857 * in the tree for that page are done with writeback
1858 */
1859 static void check_page_writeback(struct extent_io_tree *tree,
1860 struct page *page)
1861 {
1862 end_page_writeback(page);
1863 }
1864
1865 /*
1866 * When IO fails, either with EIO or csum verification fails, we
1867 * try other mirrors that might have a good copy of the data. This
1868 * io_failure_record is used to record state as we go through all the
1869 * mirrors. If another mirror has good data, the page is set up to date
1870 * and things continue. If a good mirror can't be found, the original
1871 * bio end_io callback is called to indicate things have failed.
1872 */
1873 struct io_failure_record {
1874 struct page *page;
1875 u64 start;
1876 u64 len;
1877 u64 logical;
1878 unsigned long bio_flags;
1879 int this_mirror;
1880 int failed_mirror;
1881 int in_validation;
1882 };
1883
1884 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1885 int did_repair)
1886 {
1887 int ret;
1888 int err = 0;
1889 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1890
1891 set_state_private(failure_tree, rec->start, 0);
1892 ret = clear_extent_bits(failure_tree, rec->start,
1893 rec->start + rec->len - 1,
1894 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1895 if (ret)
1896 err = ret;
1897
1898 if (did_repair) {
1899 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1900 rec->start + rec->len - 1,
1901 EXTENT_DAMAGED, GFP_NOFS);
1902 if (ret && !err)
1903 err = ret;
1904 }
1905
1906 kfree(rec);
1907 return err;
1908 }
1909
1910 static void repair_io_failure_callback(struct bio *bio, int err)
1911 {
1912 complete(bio->bi_private);
1913 }
1914
1915 /*
1916 * this bypasses the standard btrfs submit functions deliberately, as
1917 * the standard behavior is to write all copies in a raid setup. here we only
1918 * want to write the one bad copy. so we do the mapping for ourselves and issue
1919 * submit_bio directly.
1920 * to avoid any synchronization issues, wait for the data after writing, which
1921 * actually prevents the read that triggered the error from finishing.
1922 * currently, there can be no more than two copies of every data bit. thus,
1923 * exactly one rewrite is required.
1924 */
1925 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
1926 u64 length, u64 logical, struct page *page,
1927 int mirror_num)
1928 {
1929 struct bio *bio;
1930 struct btrfs_device *dev;
1931 DECLARE_COMPLETION_ONSTACK(compl);
1932 u64 map_length = 0;
1933 u64 sector;
1934 struct btrfs_bio *bbio = NULL;
1935 int ret;
1936
1937 BUG_ON(!mirror_num);
1938
1939 bio = bio_alloc(GFP_NOFS, 1);
1940 if (!bio)
1941 return -EIO;
1942 bio->bi_private = &compl;
1943 bio->bi_end_io = repair_io_failure_callback;
1944 bio->bi_size = 0;
1945 map_length = length;
1946
1947 ret = btrfs_map_block(fs_info, WRITE, logical,
1948 &map_length, &bbio, mirror_num);
1949 if (ret) {
1950 bio_put(bio);
1951 return -EIO;
1952 }
1953 BUG_ON(mirror_num != bbio->mirror_num);
1954 sector = bbio->stripes[mirror_num-1].physical >> 9;
1955 bio->bi_sector = sector;
1956 dev = bbio->stripes[mirror_num-1].dev;
1957 kfree(bbio);
1958 if (!dev || !dev->bdev || !dev->writeable) {
1959 bio_put(bio);
1960 return -EIO;
1961 }
1962 bio->bi_bdev = dev->bdev;
1963 bio_add_page(bio, page, length, start-page_offset(page));
1964 btrfsic_submit_bio(WRITE_SYNC, bio);
1965 wait_for_completion(&compl);
1966
1967 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1968 /* try to remap that extent elsewhere? */
1969 bio_put(bio);
1970 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
1971 return -EIO;
1972 }
1973
1974 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
1975 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
1976 start, rcu_str_deref(dev->name), sector);
1977
1978 bio_put(bio);
1979 return 0;
1980 }
1981
1982 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1983 int mirror_num)
1984 {
1985 u64 start = eb->start;
1986 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
1987 int ret = 0;
1988
1989 for (i = 0; i < num_pages; i++) {
1990 struct page *p = extent_buffer_page(eb, i);
1991 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
1992 start, p, mirror_num);
1993 if (ret)
1994 break;
1995 start += PAGE_CACHE_SIZE;
1996 }
1997
1998 return ret;
1999 }
2000
2001 /*
2002 * each time an IO finishes, we do a fast check in the IO failure tree
2003 * to see if we need to process or clean up an io_failure_record
2004 */
2005 static int clean_io_failure(u64 start, struct page *page)
2006 {
2007 u64 private;
2008 u64 private_failure;
2009 struct io_failure_record *failrec;
2010 struct btrfs_fs_info *fs_info;
2011 struct extent_state *state;
2012 int num_copies;
2013 int did_repair = 0;
2014 int ret;
2015 struct inode *inode = page->mapping->host;
2016
2017 private = 0;
2018 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2019 (u64)-1, 1, EXTENT_DIRTY, 0);
2020 if (!ret)
2021 return 0;
2022
2023 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2024 &private_failure);
2025 if (ret)
2026 return 0;
2027
2028 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2029 BUG_ON(!failrec->this_mirror);
2030
2031 if (failrec->in_validation) {
2032 /* there was no real error, just free the record */
2033 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2034 failrec->start);
2035 did_repair = 1;
2036 goto out;
2037 }
2038
2039 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2040 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2041 failrec->start,
2042 EXTENT_LOCKED);
2043 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2044
2045 if (state && state->start == failrec->start) {
2046 fs_info = BTRFS_I(inode)->root->fs_info;
2047 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2048 failrec->len);
2049 if (num_copies > 1) {
2050 ret = repair_io_failure(fs_info, start, failrec->len,
2051 failrec->logical, page,
2052 failrec->failed_mirror);
2053 did_repair = !ret;
2054 }
2055 }
2056
2057 out:
2058 if (!ret)
2059 ret = free_io_failure(inode, failrec, did_repair);
2060
2061 return ret;
2062 }
2063
2064 /*
2065 * this is a generic handler for readpage errors (default
2066 * readpage_io_failed_hook). if other copies exist, read those and write back
2067 * good data to the failed position. does not investigate in remapping the
2068 * failed extent elsewhere, hoping the device will be smart enough to do this as
2069 * needed
2070 */
2071
2072 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2073 u64 start, u64 end, int failed_mirror,
2074 struct extent_state *state)
2075 {
2076 struct io_failure_record *failrec = NULL;
2077 u64 private;
2078 struct extent_map *em;
2079 struct inode *inode = page->mapping->host;
2080 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2081 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2082 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2083 struct bio *bio;
2084 int num_copies;
2085 int ret;
2086 int read_mode;
2087 u64 logical;
2088
2089 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2090
2091 ret = get_state_private(failure_tree, start, &private);
2092 if (ret) {
2093 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2094 if (!failrec)
2095 return -ENOMEM;
2096 failrec->start = start;
2097 failrec->len = end - start + 1;
2098 failrec->this_mirror = 0;
2099 failrec->bio_flags = 0;
2100 failrec->in_validation = 0;
2101
2102 read_lock(&em_tree->lock);
2103 em = lookup_extent_mapping(em_tree, start, failrec->len);
2104 if (!em) {
2105 read_unlock(&em_tree->lock);
2106 kfree(failrec);
2107 return -EIO;
2108 }
2109
2110 if (em->start > start || em->start + em->len < start) {
2111 free_extent_map(em);
2112 em = NULL;
2113 }
2114 read_unlock(&em_tree->lock);
2115
2116 if (!em) {
2117 kfree(failrec);
2118 return -EIO;
2119 }
2120 logical = start - em->start;
2121 logical = em->block_start + logical;
2122 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2123 logical = em->block_start;
2124 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2125 extent_set_compress_type(&failrec->bio_flags,
2126 em->compress_type);
2127 }
2128 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2129 "len=%llu\n", logical, start, failrec->len);
2130 failrec->logical = logical;
2131 free_extent_map(em);
2132
2133 /* set the bits in the private failure tree */
2134 ret = set_extent_bits(failure_tree, start, end,
2135 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2136 if (ret >= 0)
2137 ret = set_state_private(failure_tree, start,
2138 (u64)(unsigned long)failrec);
2139 /* set the bits in the inode's tree */
2140 if (ret >= 0)
2141 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2142 GFP_NOFS);
2143 if (ret < 0) {
2144 kfree(failrec);
2145 return ret;
2146 }
2147 } else {
2148 failrec = (struct io_failure_record *)(unsigned long)private;
2149 pr_debug("bio_readpage_error: (found) logical=%llu, "
2150 "start=%llu, len=%llu, validation=%d\n",
2151 failrec->logical, failrec->start, failrec->len,
2152 failrec->in_validation);
2153 /*
2154 * when data can be on disk more than twice, add to failrec here
2155 * (e.g. with a list for failed_mirror) to make
2156 * clean_io_failure() clean all those errors at once.
2157 */
2158 }
2159 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2160 failrec->logical, failrec->len);
2161 if (num_copies == 1) {
2162 /*
2163 * we only have a single copy of the data, so don't bother with
2164 * all the retry and error correction code that follows. no
2165 * matter what the error is, it is very likely to persist.
2166 */
2167 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2168 "state=%p, num_copies=%d, next_mirror %d, "
2169 "failed_mirror %d\n", state, num_copies,
2170 failrec->this_mirror, failed_mirror);
2171 free_io_failure(inode, failrec, 0);
2172 return -EIO;
2173 }
2174
2175 if (!state) {
2176 spin_lock(&tree->lock);
2177 state = find_first_extent_bit_state(tree, failrec->start,
2178 EXTENT_LOCKED);
2179 if (state && state->start != failrec->start)
2180 state = NULL;
2181 spin_unlock(&tree->lock);
2182 }
2183
2184 /*
2185 * there are two premises:
2186 * a) deliver good data to the caller
2187 * b) correct the bad sectors on disk
2188 */
2189 if (failed_bio->bi_vcnt > 1) {
2190 /*
2191 * to fulfill b), we need to know the exact failing sectors, as
2192 * we don't want to rewrite any more than the failed ones. thus,
2193 * we need separate read requests for the failed bio
2194 *
2195 * if the following BUG_ON triggers, our validation request got
2196 * merged. we need separate requests for our algorithm to work.
2197 */
2198 BUG_ON(failrec->in_validation);
2199 failrec->in_validation = 1;
2200 failrec->this_mirror = failed_mirror;
2201 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2202 } else {
2203 /*
2204 * we're ready to fulfill a) and b) alongside. get a good copy
2205 * of the failed sector and if we succeed, we have setup
2206 * everything for repair_io_failure to do the rest for us.
2207 */
2208 if (failrec->in_validation) {
2209 BUG_ON(failrec->this_mirror != failed_mirror);
2210 failrec->in_validation = 0;
2211 failrec->this_mirror = 0;
2212 }
2213 failrec->failed_mirror = failed_mirror;
2214 failrec->this_mirror++;
2215 if (failrec->this_mirror == failed_mirror)
2216 failrec->this_mirror++;
2217 read_mode = READ_SYNC;
2218 }
2219
2220 if (!state || failrec->this_mirror > num_copies) {
2221 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2222 "next_mirror %d, failed_mirror %d\n", state,
2223 num_copies, failrec->this_mirror, failed_mirror);
2224 free_io_failure(inode, failrec, 0);
2225 return -EIO;
2226 }
2227
2228 bio = bio_alloc(GFP_NOFS, 1);
2229 if (!bio) {
2230 free_io_failure(inode, failrec, 0);
2231 return -EIO;
2232 }
2233 bio->bi_private = state;
2234 bio->bi_end_io = failed_bio->bi_end_io;
2235 bio->bi_sector = failrec->logical >> 9;
2236 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2237 bio->bi_size = 0;
2238
2239 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2240
2241 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2242 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2243 failrec->this_mirror, num_copies, failrec->in_validation);
2244
2245 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2246 failrec->this_mirror,
2247 failrec->bio_flags, 0);
2248 return ret;
2249 }
2250
2251 /* lots and lots of room for performance fixes in the end_bio funcs */
2252
2253 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2254 {
2255 int uptodate = (err == 0);
2256 struct extent_io_tree *tree;
2257 int ret;
2258
2259 tree = &BTRFS_I(page->mapping->host)->io_tree;
2260
2261 if (tree->ops && tree->ops->writepage_end_io_hook) {
2262 ret = tree->ops->writepage_end_io_hook(page, start,
2263 end, NULL, uptodate);
2264 if (ret)
2265 uptodate = 0;
2266 }
2267
2268 if (!uptodate) {
2269 ClearPageUptodate(page);
2270 SetPageError(page);
2271 }
2272 return 0;
2273 }
2274
2275 /*
2276 * after a writepage IO is done, we need to:
2277 * clear the uptodate bits on error
2278 * clear the writeback bits in the extent tree for this IO
2279 * end_page_writeback if the page has no more pending IO
2280 *
2281 * Scheduling is not allowed, so the extent state tree is expected
2282 * to have one and only one object corresponding to this IO.
2283 */
2284 static void end_bio_extent_writepage(struct bio *bio, int err)
2285 {
2286 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2287 struct extent_io_tree *tree;
2288 u64 start;
2289 u64 end;
2290 int whole_page;
2291
2292 do {
2293 struct page *page = bvec->bv_page;
2294 tree = &BTRFS_I(page->mapping->host)->io_tree;
2295
2296 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2297 bvec->bv_offset;
2298 end = start + bvec->bv_len - 1;
2299
2300 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2301 whole_page = 1;
2302 else
2303 whole_page = 0;
2304
2305 if (--bvec >= bio->bi_io_vec)
2306 prefetchw(&bvec->bv_page->flags);
2307
2308 if (end_extent_writepage(page, err, start, end))
2309 continue;
2310
2311 if (whole_page)
2312 end_page_writeback(page);
2313 else
2314 check_page_writeback(tree, page);
2315 } while (bvec >= bio->bi_io_vec);
2316
2317 bio_put(bio);
2318 }
2319
2320 /*
2321 * after a readpage IO is done, we need to:
2322 * clear the uptodate bits on error
2323 * set the uptodate bits if things worked
2324 * set the page up to date if all extents in the tree are uptodate
2325 * clear the lock bit in the extent tree
2326 * unlock the page if there are no other extents locked for it
2327 *
2328 * Scheduling is not allowed, so the extent state tree is expected
2329 * to have one and only one object corresponding to this IO.
2330 */
2331 static void end_bio_extent_readpage(struct bio *bio, int err)
2332 {
2333 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2334 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2335 struct bio_vec *bvec = bio->bi_io_vec;
2336 struct extent_io_tree *tree;
2337 u64 start;
2338 u64 end;
2339 int whole_page;
2340 int mirror;
2341 int ret;
2342
2343 if (err)
2344 uptodate = 0;
2345
2346 do {
2347 struct page *page = bvec->bv_page;
2348 struct extent_state *cached = NULL;
2349 struct extent_state *state;
2350
2351 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2352 "mirror=%ld\n", (u64)bio->bi_sector, err,
2353 (long int)bio->bi_bdev);
2354 tree = &BTRFS_I(page->mapping->host)->io_tree;
2355
2356 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2357 bvec->bv_offset;
2358 end = start + bvec->bv_len - 1;
2359
2360 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2361 whole_page = 1;
2362 else
2363 whole_page = 0;
2364
2365 if (++bvec <= bvec_end)
2366 prefetchw(&bvec->bv_page->flags);
2367
2368 spin_lock(&tree->lock);
2369 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2370 if (state && state->start == start) {
2371 /*
2372 * take a reference on the state, unlock will drop
2373 * the ref
2374 */
2375 cache_state(state, &cached);
2376 }
2377 spin_unlock(&tree->lock);
2378
2379 mirror = (int)(unsigned long)bio->bi_bdev;
2380 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2381 ret = tree->ops->readpage_end_io_hook(page, start, end,
2382 state, mirror);
2383 if (ret)
2384 uptodate = 0;
2385 else
2386 clean_io_failure(start, page);
2387 }
2388
2389 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2390 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2391 if (!ret && !err &&
2392 test_bit(BIO_UPTODATE, &bio->bi_flags))
2393 uptodate = 1;
2394 } else if (!uptodate) {
2395 /*
2396 * The generic bio_readpage_error handles errors the
2397 * following way: If possible, new read requests are
2398 * created and submitted and will end up in
2399 * end_bio_extent_readpage as well (if we're lucky, not
2400 * in the !uptodate case). In that case it returns 0 and
2401 * we just go on with the next page in our bio. If it
2402 * can't handle the error it will return -EIO and we
2403 * remain responsible for that page.
2404 */
2405 ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2406 if (ret == 0) {
2407 uptodate =
2408 test_bit(BIO_UPTODATE, &bio->bi_flags);
2409 if (err)
2410 uptodate = 0;
2411 uncache_state(&cached);
2412 continue;
2413 }
2414 }
2415
2416 if (uptodate && tree->track_uptodate) {
2417 set_extent_uptodate(tree, start, end, &cached,
2418 GFP_ATOMIC);
2419 }
2420 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2421
2422 if (whole_page) {
2423 if (uptodate) {
2424 SetPageUptodate(page);
2425 } else {
2426 ClearPageUptodate(page);
2427 SetPageError(page);
2428 }
2429 unlock_page(page);
2430 } else {
2431 if (uptodate) {
2432 check_page_uptodate(tree, page);
2433 } else {
2434 ClearPageUptodate(page);
2435 SetPageError(page);
2436 }
2437 check_page_locked(tree, page);
2438 }
2439 } while (bvec <= bvec_end);
2440
2441 bio_put(bio);
2442 }
2443
2444 struct bio *
2445 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2446 gfp_t gfp_flags)
2447 {
2448 struct bio *bio;
2449
2450 bio = bio_alloc(gfp_flags, nr_vecs);
2451
2452 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2453 while (!bio && (nr_vecs /= 2))
2454 bio = bio_alloc(gfp_flags, nr_vecs);
2455 }
2456
2457 if (bio) {
2458 bio->bi_size = 0;
2459 bio->bi_bdev = bdev;
2460 bio->bi_sector = first_sector;
2461 }
2462 return bio;
2463 }
2464
2465 /*
2466 * Since writes are async, they will only return -ENOMEM.
2467 * Reads can return the full range of I/O error conditions.
2468 */
2469 static int __must_check submit_one_bio(int rw, struct bio *bio,
2470 int mirror_num, unsigned long bio_flags)
2471 {
2472 int ret = 0;
2473 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2474 struct page *page = bvec->bv_page;
2475 struct extent_io_tree *tree = bio->bi_private;
2476 u64 start;
2477
2478 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2479
2480 bio->bi_private = NULL;
2481
2482 bio_get(bio);
2483
2484 if (tree->ops && tree->ops->submit_bio_hook)
2485 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2486 mirror_num, bio_flags, start);
2487 else
2488 btrfsic_submit_bio(rw, bio);
2489
2490 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2491 ret = -EOPNOTSUPP;
2492 bio_put(bio);
2493 return ret;
2494 }
2495
2496 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2497 unsigned long offset, size_t size, struct bio *bio,
2498 unsigned long bio_flags)
2499 {
2500 int ret = 0;
2501 if (tree->ops && tree->ops->merge_bio_hook)
2502 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2503 bio_flags);
2504 BUG_ON(ret < 0);
2505 return ret;
2506
2507 }
2508
2509 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2510 struct page *page, sector_t sector,
2511 size_t size, unsigned long offset,
2512 struct block_device *bdev,
2513 struct bio **bio_ret,
2514 unsigned long max_pages,
2515 bio_end_io_t end_io_func,
2516 int mirror_num,
2517 unsigned long prev_bio_flags,
2518 unsigned long bio_flags)
2519 {
2520 int ret = 0;
2521 struct bio *bio;
2522 int nr;
2523 int contig = 0;
2524 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2525 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2526 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2527
2528 if (bio_ret && *bio_ret) {
2529 bio = *bio_ret;
2530 if (old_compressed)
2531 contig = bio->bi_sector == sector;
2532 else
2533 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2534 sector;
2535
2536 if (prev_bio_flags != bio_flags || !contig ||
2537 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2538 bio_add_page(bio, page, page_size, offset) < page_size) {
2539 ret = submit_one_bio(rw, bio, mirror_num,
2540 prev_bio_flags);
2541 if (ret < 0)
2542 return ret;
2543 bio = NULL;
2544 } else {
2545 return 0;
2546 }
2547 }
2548 if (this_compressed)
2549 nr = BIO_MAX_PAGES;
2550 else
2551 nr = bio_get_nr_vecs(bdev);
2552
2553 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2554 if (!bio)
2555 return -ENOMEM;
2556
2557 bio_add_page(bio, page, page_size, offset);
2558 bio->bi_end_io = end_io_func;
2559 bio->bi_private = tree;
2560
2561 if (bio_ret)
2562 *bio_ret = bio;
2563 else
2564 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2565
2566 return ret;
2567 }
2568
2569 void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
2570 {
2571 if (!PagePrivate(page)) {
2572 SetPagePrivate(page);
2573 page_cache_get(page);
2574 set_page_private(page, (unsigned long)eb);
2575 } else {
2576 WARN_ON(page->private != (unsigned long)eb);
2577 }
2578 }
2579
2580 void set_page_extent_mapped(struct page *page)
2581 {
2582 if (!PagePrivate(page)) {
2583 SetPagePrivate(page);
2584 page_cache_get(page);
2585 set_page_private(page, EXTENT_PAGE_PRIVATE);
2586 }
2587 }
2588
2589 /*
2590 * basic readpage implementation. Locked extent state structs are inserted
2591 * into the tree that are removed when the IO is done (by the end_io
2592 * handlers)
2593 * XXX JDM: This needs looking at to ensure proper page locking
2594 */
2595 static int __extent_read_full_page(struct extent_io_tree *tree,
2596 struct page *page,
2597 get_extent_t *get_extent,
2598 struct bio **bio, int mirror_num,
2599 unsigned long *bio_flags)
2600 {
2601 struct inode *inode = page->mapping->host;
2602 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2603 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2604 u64 end;
2605 u64 cur = start;
2606 u64 extent_offset;
2607 u64 last_byte = i_size_read(inode);
2608 u64 block_start;
2609 u64 cur_end;
2610 sector_t sector;
2611 struct extent_map *em;
2612 struct block_device *bdev;
2613 struct btrfs_ordered_extent *ordered;
2614 int ret;
2615 int nr = 0;
2616 size_t pg_offset = 0;
2617 size_t iosize;
2618 size_t disk_io_size;
2619 size_t blocksize = inode->i_sb->s_blocksize;
2620 unsigned long this_bio_flag = 0;
2621
2622 set_page_extent_mapped(page);
2623
2624 if (!PageUptodate(page)) {
2625 if (cleancache_get_page(page) == 0) {
2626 BUG_ON(blocksize != PAGE_SIZE);
2627 goto out;
2628 }
2629 }
2630
2631 end = page_end;
2632 while (1) {
2633 lock_extent(tree, start, end);
2634 ordered = btrfs_lookup_ordered_extent(inode, start);
2635 if (!ordered)
2636 break;
2637 unlock_extent(tree, start, end);
2638 btrfs_start_ordered_extent(inode, ordered, 1);
2639 btrfs_put_ordered_extent(ordered);
2640 }
2641
2642 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2643 char *userpage;
2644 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2645
2646 if (zero_offset) {
2647 iosize = PAGE_CACHE_SIZE - zero_offset;
2648 userpage = kmap_atomic(page);
2649 memset(userpage + zero_offset, 0, iosize);
2650 flush_dcache_page(page);
2651 kunmap_atomic(userpage);
2652 }
2653 }
2654 while (cur <= end) {
2655 if (cur >= last_byte) {
2656 char *userpage;
2657 struct extent_state *cached = NULL;
2658
2659 iosize = PAGE_CACHE_SIZE - pg_offset;
2660 userpage = kmap_atomic(page);
2661 memset(userpage + pg_offset, 0, iosize);
2662 flush_dcache_page(page);
2663 kunmap_atomic(userpage);
2664 set_extent_uptodate(tree, cur, cur + iosize - 1,
2665 &cached, GFP_NOFS);
2666 unlock_extent_cached(tree, cur, cur + iosize - 1,
2667 &cached, GFP_NOFS);
2668 break;
2669 }
2670 em = get_extent(inode, page, pg_offset, cur,
2671 end - cur + 1, 0);
2672 if (IS_ERR_OR_NULL(em)) {
2673 SetPageError(page);
2674 unlock_extent(tree, cur, end);
2675 break;
2676 }
2677 extent_offset = cur - em->start;
2678 BUG_ON(extent_map_end(em) <= cur);
2679 BUG_ON(end < cur);
2680
2681 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2682 this_bio_flag = EXTENT_BIO_COMPRESSED;
2683 extent_set_compress_type(&this_bio_flag,
2684 em->compress_type);
2685 }
2686
2687 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2688 cur_end = min(extent_map_end(em) - 1, end);
2689 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2690 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2691 disk_io_size = em->block_len;
2692 sector = em->block_start >> 9;
2693 } else {
2694 sector = (em->block_start + extent_offset) >> 9;
2695 disk_io_size = iosize;
2696 }
2697 bdev = em->bdev;
2698 block_start = em->block_start;
2699 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2700 block_start = EXTENT_MAP_HOLE;
2701 free_extent_map(em);
2702 em = NULL;
2703
2704 /* we've found a hole, just zero and go on */
2705 if (block_start == EXTENT_MAP_HOLE) {
2706 char *userpage;
2707 struct extent_state *cached = NULL;
2708
2709 userpage = kmap_atomic(page);
2710 memset(userpage + pg_offset, 0, iosize);
2711 flush_dcache_page(page);
2712 kunmap_atomic(userpage);
2713
2714 set_extent_uptodate(tree, cur, cur + iosize - 1,
2715 &cached, GFP_NOFS);
2716 unlock_extent_cached(tree, cur, cur + iosize - 1,
2717 &cached, GFP_NOFS);
2718 cur = cur + iosize;
2719 pg_offset += iosize;
2720 continue;
2721 }
2722 /* the get_extent function already copied into the page */
2723 if (test_range_bit(tree, cur, cur_end,
2724 EXTENT_UPTODATE, 1, NULL)) {
2725 check_page_uptodate(tree, page);
2726 unlock_extent(tree, cur, cur + iosize - 1);
2727 cur = cur + iosize;
2728 pg_offset += iosize;
2729 continue;
2730 }
2731 /* we have an inline extent but it didn't get marked up
2732 * to date. Error out
2733 */
2734 if (block_start == EXTENT_MAP_INLINE) {
2735 SetPageError(page);
2736 unlock_extent(tree, cur, cur + iosize - 1);
2737 cur = cur + iosize;
2738 pg_offset += iosize;
2739 continue;
2740 }
2741
2742 ret = 0;
2743 if (tree->ops && tree->ops->readpage_io_hook) {
2744 ret = tree->ops->readpage_io_hook(page, cur,
2745 cur + iosize - 1);
2746 }
2747 if (!ret) {
2748 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2749 pnr -= page->index;
2750 ret = submit_extent_page(READ, tree, page,
2751 sector, disk_io_size, pg_offset,
2752 bdev, bio, pnr,
2753 end_bio_extent_readpage, mirror_num,
2754 *bio_flags,
2755 this_bio_flag);
2756 if (!ret) {
2757 nr++;
2758 *bio_flags = this_bio_flag;
2759 }
2760 }
2761 if (ret) {
2762 SetPageError(page);
2763 unlock_extent(tree, cur, cur + iosize - 1);
2764 }
2765 cur = cur + iosize;
2766 pg_offset += iosize;
2767 }
2768 out:
2769 if (!nr) {
2770 if (!PageError(page))
2771 SetPageUptodate(page);
2772 unlock_page(page);
2773 }
2774 return 0;
2775 }
2776
2777 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2778 get_extent_t *get_extent, int mirror_num)
2779 {
2780 struct bio *bio = NULL;
2781 unsigned long bio_flags = 0;
2782 int ret;
2783
2784 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2785 &bio_flags);
2786 if (bio)
2787 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2788 return ret;
2789 }
2790
2791 static noinline void update_nr_written(struct page *page,
2792 struct writeback_control *wbc,
2793 unsigned long nr_written)
2794 {
2795 wbc->nr_to_write -= nr_written;
2796 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2797 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2798 page->mapping->writeback_index = page->index + nr_written;
2799 }
2800
2801 /*
2802 * the writepage semantics are similar to regular writepage. extent
2803 * records are inserted to lock ranges in the tree, and as dirty areas
2804 * are found, they are marked writeback. Then the lock bits are removed
2805 * and the end_io handler clears the writeback ranges
2806 */
2807 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2808 void *data)
2809 {
2810 struct inode *inode = page->mapping->host;
2811 struct extent_page_data *epd = data;
2812 struct extent_io_tree *tree = epd->tree;
2813 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2814 u64 delalloc_start;
2815 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2816 u64 end;
2817 u64 cur = start;
2818 u64 extent_offset;
2819 u64 last_byte = i_size_read(inode);
2820 u64 block_start;
2821 u64 iosize;
2822 sector_t sector;
2823 struct extent_state *cached_state = NULL;
2824 struct extent_map *em;
2825 struct block_device *bdev;
2826 int ret;
2827 int nr = 0;
2828 size_t pg_offset = 0;
2829 size_t blocksize;
2830 loff_t i_size = i_size_read(inode);
2831 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2832 u64 nr_delalloc;
2833 u64 delalloc_end;
2834 int page_started;
2835 int compressed;
2836 int write_flags;
2837 unsigned long nr_written = 0;
2838 bool fill_delalloc = true;
2839
2840 if (wbc->sync_mode == WB_SYNC_ALL)
2841 write_flags = WRITE_SYNC;
2842 else
2843 write_flags = WRITE;
2844
2845 trace___extent_writepage(page, inode, wbc);
2846
2847 WARN_ON(!PageLocked(page));
2848
2849 ClearPageError(page);
2850
2851 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2852 if (page->index > end_index ||
2853 (page->index == end_index && !pg_offset)) {
2854 page->mapping->a_ops->invalidatepage(page, 0);
2855 unlock_page(page);
2856 return 0;
2857 }
2858
2859 if (page->index == end_index) {
2860 char *userpage;
2861
2862 userpage = kmap_atomic(page);
2863 memset(userpage + pg_offset, 0,
2864 PAGE_CACHE_SIZE - pg_offset);
2865 kunmap_atomic(userpage);
2866 flush_dcache_page(page);
2867 }
2868 pg_offset = 0;
2869
2870 set_page_extent_mapped(page);
2871
2872 if (!tree->ops || !tree->ops->fill_delalloc)
2873 fill_delalloc = false;
2874
2875 delalloc_start = start;
2876 delalloc_end = 0;
2877 page_started = 0;
2878 if (!epd->extent_locked && fill_delalloc) {
2879 u64 delalloc_to_write = 0;
2880 /*
2881 * make sure the wbc mapping index is at least updated
2882 * to this page.
2883 */
2884 update_nr_written(page, wbc, 0);
2885
2886 while (delalloc_end < page_end) {
2887 nr_delalloc = find_lock_delalloc_range(inode, tree,
2888 page,
2889 &delalloc_start,
2890 &delalloc_end,
2891 128 * 1024 * 1024);
2892 if (nr_delalloc == 0) {
2893 delalloc_start = delalloc_end + 1;
2894 continue;
2895 }
2896 ret = tree->ops->fill_delalloc(inode, page,
2897 delalloc_start,
2898 delalloc_end,
2899 &page_started,
2900 &nr_written);
2901 /* File system has been set read-only */
2902 if (ret) {
2903 SetPageError(page);
2904 goto done;
2905 }
2906 /*
2907 * delalloc_end is already one less than the total
2908 * length, so we don't subtract one from
2909 * PAGE_CACHE_SIZE
2910 */
2911 delalloc_to_write += (delalloc_end - delalloc_start +
2912 PAGE_CACHE_SIZE) >>
2913 PAGE_CACHE_SHIFT;
2914 delalloc_start = delalloc_end + 1;
2915 }
2916 if (wbc->nr_to_write < delalloc_to_write) {
2917 int thresh = 8192;
2918
2919 if (delalloc_to_write < thresh * 2)
2920 thresh = delalloc_to_write;
2921 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2922 thresh);
2923 }
2924
2925 /* did the fill delalloc function already unlock and start
2926 * the IO?
2927 */
2928 if (page_started) {
2929 ret = 0;
2930 /*
2931 * we've unlocked the page, so we can't update
2932 * the mapping's writeback index, just update
2933 * nr_to_write.
2934 */
2935 wbc->nr_to_write -= nr_written;
2936 goto done_unlocked;
2937 }
2938 }
2939 if (tree->ops && tree->ops->writepage_start_hook) {
2940 ret = tree->ops->writepage_start_hook(page, start,
2941 page_end);
2942 if (ret) {
2943 /* Fixup worker will requeue */
2944 if (ret == -EBUSY)
2945 wbc->pages_skipped++;
2946 else
2947 redirty_page_for_writepage(wbc, page);
2948 update_nr_written(page, wbc, nr_written);
2949 unlock_page(page);
2950 ret = 0;
2951 goto done_unlocked;
2952 }
2953 }
2954
2955 /*
2956 * we don't want to touch the inode after unlocking the page,
2957 * so we update the mapping writeback index now
2958 */
2959 update_nr_written(page, wbc, nr_written + 1);
2960
2961 end = page_end;
2962 if (last_byte <= start) {
2963 if (tree->ops && tree->ops->writepage_end_io_hook)
2964 tree->ops->writepage_end_io_hook(page, start,
2965 page_end, NULL, 1);
2966 goto done;
2967 }
2968
2969 blocksize = inode->i_sb->s_blocksize;
2970
2971 while (cur <= end) {
2972 if (cur >= last_byte) {
2973 if (tree->ops && tree->ops->writepage_end_io_hook)
2974 tree->ops->writepage_end_io_hook(page, cur,
2975 page_end, NULL, 1);
2976 break;
2977 }
2978 em = epd->get_extent(inode, page, pg_offset, cur,
2979 end - cur + 1, 1);
2980 if (IS_ERR_OR_NULL(em)) {
2981 SetPageError(page);
2982 break;
2983 }
2984
2985 extent_offset = cur - em->start;
2986 BUG_ON(extent_map_end(em) <= cur);
2987 BUG_ON(end < cur);
2988 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2989 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2990 sector = (em->block_start + extent_offset) >> 9;
2991 bdev = em->bdev;
2992 block_start = em->block_start;
2993 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2994 free_extent_map(em);
2995 em = NULL;
2996
2997 /*
2998 * compressed and inline extents are written through other
2999 * paths in the FS
3000 */
3001 if (compressed || block_start == EXTENT_MAP_HOLE ||
3002 block_start == EXTENT_MAP_INLINE) {
3003 /*
3004 * end_io notification does not happen here for
3005 * compressed extents
3006 */
3007 if (!compressed && tree->ops &&
3008 tree->ops->writepage_end_io_hook)
3009 tree->ops->writepage_end_io_hook(page, cur,
3010 cur + iosize - 1,
3011 NULL, 1);
3012 else if (compressed) {
3013 /* we don't want to end_page_writeback on
3014 * a compressed extent. this happens
3015 * elsewhere
3016 */
3017 nr++;
3018 }
3019
3020 cur += iosize;
3021 pg_offset += iosize;
3022 continue;
3023 }
3024 /* leave this out until we have a page_mkwrite call */
3025 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3026 EXTENT_DIRTY, 0, NULL)) {
3027 cur = cur + iosize;
3028 pg_offset += iosize;
3029 continue;
3030 }
3031
3032 if (tree->ops && tree->ops->writepage_io_hook) {
3033 ret = tree->ops->writepage_io_hook(page, cur,
3034 cur + iosize - 1);
3035 } else {
3036 ret = 0;
3037 }
3038 if (ret) {
3039 SetPageError(page);
3040 } else {
3041 unsigned long max_nr = end_index + 1;
3042
3043 set_range_writeback(tree, cur, cur + iosize - 1);
3044 if (!PageWriteback(page)) {
3045 printk(KERN_ERR "btrfs warning page %lu not "
3046 "writeback, cur %llu end %llu\n",
3047 page->index, (unsigned long long)cur,
3048 (unsigned long long)end);
3049 }
3050
3051 ret = submit_extent_page(write_flags, tree, page,
3052 sector, iosize, pg_offset,
3053 bdev, &epd->bio, max_nr,
3054 end_bio_extent_writepage,
3055 0, 0, 0);
3056 if (ret)
3057 SetPageError(page);
3058 }
3059 cur = cur + iosize;
3060 pg_offset += iosize;
3061 nr++;
3062 }
3063 done:
3064 if (nr == 0) {
3065 /* make sure the mapping tag for page dirty gets cleared */
3066 set_page_writeback(page);
3067 end_page_writeback(page);
3068 }
3069 unlock_page(page);
3070
3071 done_unlocked:
3072
3073 /* drop our reference on any cached states */
3074 free_extent_state(cached_state);
3075 return 0;
3076 }
3077
3078 static int eb_wait(void *word)
3079 {
3080 io_schedule();
3081 return 0;
3082 }
3083
3084 static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3085 {
3086 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3087 TASK_UNINTERRUPTIBLE);
3088 }
3089
3090 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3091 struct btrfs_fs_info *fs_info,
3092 struct extent_page_data *epd)
3093 {
3094 unsigned long i, num_pages;
3095 int flush = 0;
3096 int ret = 0;
3097
3098 if (!btrfs_try_tree_write_lock(eb)) {
3099 flush = 1;
3100 flush_write_bio(epd);
3101 btrfs_tree_lock(eb);
3102 }
3103
3104 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3105 btrfs_tree_unlock(eb);
3106 if (!epd->sync_io)
3107 return 0;
3108 if (!flush) {
3109 flush_write_bio(epd);
3110 flush = 1;
3111 }
3112 while (1) {
3113 wait_on_extent_buffer_writeback(eb);
3114 btrfs_tree_lock(eb);
3115 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3116 break;
3117 btrfs_tree_unlock(eb);
3118 }
3119 }
3120
3121 /*
3122 * We need to do this to prevent races in people who check if the eb is
3123 * under IO since we can end up having no IO bits set for a short period
3124 * of time.
3125 */
3126 spin_lock(&eb->refs_lock);
3127 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3128 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3129 spin_unlock(&eb->refs_lock);
3130 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3131 spin_lock(&fs_info->delalloc_lock);
3132 if (fs_info->dirty_metadata_bytes >= eb->len)
3133 fs_info->dirty_metadata_bytes -= eb->len;
3134 else
3135 WARN_ON(1);
3136 spin_unlock(&fs_info->delalloc_lock);
3137 ret = 1;
3138 } else {
3139 spin_unlock(&eb->refs_lock);
3140 }
3141
3142 btrfs_tree_unlock(eb);
3143
3144 if (!ret)
3145 return ret;
3146
3147 num_pages = num_extent_pages(eb->start, eb->len);
3148 for (i = 0; i < num_pages; i++) {
3149 struct page *p = extent_buffer_page(eb, i);
3150
3151 if (!trylock_page(p)) {
3152 if (!flush) {
3153 flush_write_bio(epd);
3154 flush = 1;
3155 }
3156 lock_page(p);
3157 }
3158 }
3159
3160 return ret;
3161 }
3162
3163 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3164 {
3165 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3166 smp_mb__after_clear_bit();
3167 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3168 }
3169
3170 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3171 {
3172 int uptodate = err == 0;
3173 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3174 struct extent_buffer *eb;
3175 int done;
3176
3177 do {
3178 struct page *page = bvec->bv_page;
3179
3180 bvec--;
3181 eb = (struct extent_buffer *)page->private;
3182 BUG_ON(!eb);
3183 done = atomic_dec_and_test(&eb->io_pages);
3184
3185 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3186 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3187 ClearPageUptodate(page);
3188 SetPageError(page);
3189 }
3190
3191 end_page_writeback(page);
3192
3193 if (!done)
3194 continue;
3195
3196 end_extent_buffer_writeback(eb);
3197 } while (bvec >= bio->bi_io_vec);
3198
3199 bio_put(bio);
3200
3201 }
3202
3203 static int write_one_eb(struct extent_buffer *eb,
3204 struct btrfs_fs_info *fs_info,
3205 struct writeback_control *wbc,
3206 struct extent_page_data *epd)
3207 {
3208 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3209 u64 offset = eb->start;
3210 unsigned long i, num_pages;
3211 unsigned long bio_flags = 0;
3212 int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3213 int ret = 0;
3214
3215 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3216 num_pages = num_extent_pages(eb->start, eb->len);
3217 atomic_set(&eb->io_pages, num_pages);
3218 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3219 bio_flags = EXTENT_BIO_TREE_LOG;
3220
3221 for (i = 0; i < num_pages; i++) {
3222 struct page *p = extent_buffer_page(eb, i);
3223
3224 clear_page_dirty_for_io(p);
3225 set_page_writeback(p);
3226 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3227 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3228 -1, end_bio_extent_buffer_writepage,
3229 0, epd->bio_flags, bio_flags);
3230 epd->bio_flags = bio_flags;
3231 if (ret) {
3232 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3233 SetPageError(p);
3234 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3235 end_extent_buffer_writeback(eb);
3236 ret = -EIO;
3237 break;
3238 }
3239 offset += PAGE_CACHE_SIZE;
3240 update_nr_written(p, wbc, 1);
3241 unlock_page(p);
3242 }
3243
3244 if (unlikely(ret)) {
3245 for (; i < num_pages; i++) {
3246 struct page *p = extent_buffer_page(eb, i);
3247 unlock_page(p);
3248 }
3249 }
3250
3251 return ret;
3252 }
3253
3254 int btree_write_cache_pages(struct address_space *mapping,
3255 struct writeback_control *wbc)
3256 {
3257 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3258 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3259 struct extent_buffer *eb, *prev_eb = NULL;
3260 struct extent_page_data epd = {
3261 .bio = NULL,
3262 .tree = tree,
3263 .extent_locked = 0,
3264 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3265 .bio_flags = 0,
3266 };
3267 int ret = 0;
3268 int done = 0;
3269 int nr_to_write_done = 0;
3270 struct pagevec pvec;
3271 int nr_pages;
3272 pgoff_t index;
3273 pgoff_t end; /* Inclusive */
3274 int scanned = 0;
3275 int tag;
3276
3277 pagevec_init(&pvec, 0);
3278 if (wbc->range_cyclic) {
3279 index = mapping->writeback_index; /* Start from prev offset */
3280 end = -1;
3281 } else {
3282 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3283 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3284 scanned = 1;
3285 }
3286 if (wbc->sync_mode == WB_SYNC_ALL)
3287 tag = PAGECACHE_TAG_TOWRITE;
3288 else
3289 tag = PAGECACHE_TAG_DIRTY;
3290 retry:
3291 if (wbc->sync_mode == WB_SYNC_ALL)
3292 tag_pages_for_writeback(mapping, index, end);
3293 while (!done && !nr_to_write_done && (index <= end) &&
3294 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3295 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3296 unsigned i;
3297
3298 scanned = 1;
3299 for (i = 0; i < nr_pages; i++) {
3300 struct page *page = pvec.pages[i];
3301
3302 if (!PagePrivate(page))
3303 continue;
3304
3305 if (!wbc->range_cyclic && page->index > end) {
3306 done = 1;
3307 break;
3308 }
3309
3310 spin_lock(&mapping->private_lock);
3311 if (!PagePrivate(page)) {
3312 spin_unlock(&mapping->private_lock);
3313 continue;
3314 }
3315
3316 eb = (struct extent_buffer *)page->private;
3317
3318 /*
3319 * Shouldn't happen and normally this would be a BUG_ON
3320 * but no sense in crashing the users box for something
3321 * we can survive anyway.
3322 */
3323 if (!eb) {
3324 spin_unlock(&mapping->private_lock);
3325 WARN_ON(1);
3326 continue;
3327 }
3328
3329 if (eb == prev_eb) {
3330 spin_unlock(&mapping->private_lock);
3331 continue;
3332 }
3333
3334 ret = atomic_inc_not_zero(&eb->refs);
3335 spin_unlock(&mapping->private_lock);
3336 if (!ret)
3337 continue;
3338
3339 prev_eb = eb;
3340 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3341 if (!ret) {
3342 free_extent_buffer(eb);
3343 continue;
3344 }
3345
3346 ret = write_one_eb(eb, fs_info, wbc, &epd);
3347 if (ret) {
3348 done = 1;
3349 free_extent_buffer(eb);
3350 break;
3351 }
3352 free_extent_buffer(eb);
3353
3354 /*
3355 * the filesystem may choose to bump up nr_to_write.
3356 * We have to make sure to honor the new nr_to_write
3357 * at any time
3358 */
3359 nr_to_write_done = wbc->nr_to_write <= 0;
3360 }
3361 pagevec_release(&pvec);
3362 cond_resched();
3363 }
3364 if (!scanned && !done) {
3365 /*
3366 * We hit the last page and there is more work to be done: wrap
3367 * back to the start of the file
3368 */
3369 scanned = 1;
3370 index = 0;
3371 goto retry;
3372 }
3373 flush_write_bio(&epd);
3374 return ret;
3375 }
3376
3377 /**
3378 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3379 * @mapping: address space structure to write
3380 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3381 * @writepage: function called for each page
3382 * @data: data passed to writepage function
3383 *
3384 * If a page is already under I/O, write_cache_pages() skips it, even
3385 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3386 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3387 * and msync() need to guarantee that all the data which was dirty at the time
3388 * the call was made get new I/O started against them. If wbc->sync_mode is
3389 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3390 * existing IO to complete.
3391 */
3392 static int extent_write_cache_pages(struct extent_io_tree *tree,
3393 struct address_space *mapping,
3394 struct writeback_control *wbc,
3395 writepage_t writepage, void *data,
3396 void (*flush_fn)(void *))
3397 {
3398 struct inode *inode = mapping->host;
3399 int ret = 0;
3400 int done = 0;
3401 int nr_to_write_done = 0;
3402 struct pagevec pvec;
3403 int nr_pages;
3404 pgoff_t index;
3405 pgoff_t end; /* Inclusive */
3406 int scanned = 0;
3407 int tag;
3408
3409 /*
3410 * We have to hold onto the inode so that ordered extents can do their
3411 * work when the IO finishes. The alternative to this is failing to add
3412 * an ordered extent if the igrab() fails there and that is a huge pain
3413 * to deal with, so instead just hold onto the inode throughout the
3414 * writepages operation. If it fails here we are freeing up the inode
3415 * anyway and we'd rather not waste our time writing out stuff that is
3416 * going to be truncated anyway.
3417 */
3418 if (!igrab(inode))
3419 return 0;
3420
3421 pagevec_init(&pvec, 0);
3422 if (wbc->range_cyclic) {
3423 index = mapping->writeback_index; /* Start from prev offset */
3424 end = -1;
3425 } else {
3426 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3427 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3428 scanned = 1;
3429 }
3430 if (wbc->sync_mode == WB_SYNC_ALL)
3431 tag = PAGECACHE_TAG_TOWRITE;
3432 else
3433 tag = PAGECACHE_TAG_DIRTY;
3434 retry:
3435 if (wbc->sync_mode == WB_SYNC_ALL)
3436 tag_pages_for_writeback(mapping, index, end);
3437 while (!done && !nr_to_write_done && (index <= end) &&
3438 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3439 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3440 unsigned i;
3441
3442 scanned = 1;
3443 for (i = 0; i < nr_pages; i++) {
3444 struct page *page = pvec.pages[i];
3445
3446 /*
3447 * At this point we hold neither mapping->tree_lock nor
3448 * lock on the page itself: the page may be truncated or
3449 * invalidated (changing page->mapping to NULL), or even
3450 * swizzled back from swapper_space to tmpfs file
3451 * mapping
3452 */
3453 if (tree->ops &&
3454 tree->ops->write_cache_pages_lock_hook) {
3455 tree->ops->write_cache_pages_lock_hook(page,
3456 data, flush_fn);
3457 } else {
3458 if (!trylock_page(page)) {
3459 flush_fn(data);
3460 lock_page(page);
3461 }
3462 }
3463
3464 if (unlikely(page->mapping != mapping)) {
3465 unlock_page(page);
3466 continue;
3467 }
3468
3469 if (!wbc->range_cyclic && page->index > end) {
3470 done = 1;
3471 unlock_page(page);
3472 continue;
3473 }
3474
3475 if (wbc->sync_mode != WB_SYNC_NONE) {
3476 if (PageWriteback(page))
3477 flush_fn(data);
3478 wait_on_page_writeback(page);
3479 }
3480
3481 if (PageWriteback(page) ||
3482 !clear_page_dirty_for_io(page)) {
3483 unlock_page(page);
3484 continue;
3485 }
3486
3487 ret = (*writepage)(page, wbc, data);
3488
3489 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3490 unlock_page(page);
3491 ret = 0;
3492 }
3493 if (ret)
3494 done = 1;
3495
3496 /*
3497 * the filesystem may choose to bump up nr_to_write.
3498 * We have to make sure to honor the new nr_to_write
3499 * at any time
3500 */
3501 nr_to_write_done = wbc->nr_to_write <= 0;
3502 }
3503 pagevec_release(&pvec);
3504 cond_resched();
3505 }
3506 if (!scanned && !done) {
3507 /*
3508 * We hit the last page and there is more work to be done: wrap
3509 * back to the start of the file
3510 */
3511 scanned = 1;
3512 index = 0;
3513 goto retry;
3514 }
3515 btrfs_add_delayed_iput(inode);
3516 return ret;
3517 }
3518
3519 static void flush_epd_write_bio(struct extent_page_data *epd)
3520 {
3521 if (epd->bio) {
3522 int rw = WRITE;
3523 int ret;
3524
3525 if (epd->sync_io)
3526 rw = WRITE_SYNC;
3527
3528 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3529 BUG_ON(ret < 0); /* -ENOMEM */
3530 epd->bio = NULL;
3531 }
3532 }
3533
3534 static noinline void flush_write_bio(void *data)
3535 {
3536 struct extent_page_data *epd = data;
3537 flush_epd_write_bio(epd);
3538 }
3539
3540 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3541 get_extent_t *get_extent,
3542 struct writeback_control *wbc)
3543 {
3544 int ret;
3545 struct extent_page_data epd = {
3546 .bio = NULL,
3547 .tree = tree,
3548 .get_extent = get_extent,
3549 .extent_locked = 0,
3550 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3551 .bio_flags = 0,
3552 };
3553
3554 ret = __extent_writepage(page, wbc, &epd);
3555
3556 flush_epd_write_bio(&epd);
3557 return ret;
3558 }
3559
3560 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3561 u64 start, u64 end, get_extent_t *get_extent,
3562 int mode)
3563 {
3564 int ret = 0;
3565 struct address_space *mapping = inode->i_mapping;
3566 struct page *page;
3567 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3568 PAGE_CACHE_SHIFT;
3569
3570 struct extent_page_data epd = {
3571 .bio = NULL,
3572 .tree = tree,
3573 .get_extent = get_extent,
3574 .extent_locked = 1,
3575 .sync_io = mode == WB_SYNC_ALL,
3576 .bio_flags = 0,
3577 };
3578 struct writeback_control wbc_writepages = {
3579 .sync_mode = mode,
3580 .nr_to_write = nr_pages * 2,
3581 .range_start = start,
3582 .range_end = end + 1,
3583 };
3584
3585 while (start <= end) {
3586 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3587 if (clear_page_dirty_for_io(page))
3588 ret = __extent_writepage(page, &wbc_writepages, &epd);
3589 else {
3590 if (tree->ops && tree->ops->writepage_end_io_hook)
3591 tree->ops->writepage_end_io_hook(page, start,
3592 start + PAGE_CACHE_SIZE - 1,
3593 NULL, 1);
3594 unlock_page(page);
3595 }
3596 page_cache_release(page);
3597 start += PAGE_CACHE_SIZE;
3598 }
3599
3600 flush_epd_write_bio(&epd);
3601 return ret;
3602 }
3603
3604 int extent_writepages(struct extent_io_tree *tree,
3605 struct address_space *mapping,
3606 get_extent_t *get_extent,
3607 struct writeback_control *wbc)
3608 {
3609 int ret = 0;
3610 struct extent_page_data epd = {
3611 .bio = NULL,
3612 .tree = tree,
3613 .get_extent = get_extent,
3614 .extent_locked = 0,
3615 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3616 .bio_flags = 0,
3617 };
3618
3619 ret = extent_write_cache_pages(tree, mapping, wbc,
3620 __extent_writepage, &epd,
3621 flush_write_bio);
3622 flush_epd_write_bio(&epd);
3623 return ret;
3624 }
3625
3626 int extent_readpages(struct extent_io_tree *tree,
3627 struct address_space *mapping,
3628 struct list_head *pages, unsigned nr_pages,
3629 get_extent_t get_extent)
3630 {
3631 struct bio *bio = NULL;
3632 unsigned page_idx;
3633 unsigned long bio_flags = 0;
3634 struct page *pagepool[16];
3635 struct page *page;
3636 int i = 0;
3637 int nr = 0;
3638
3639 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3640 page = list_entry(pages->prev, struct page, lru);
3641
3642 prefetchw(&page->flags);
3643 list_del(&page->lru);
3644 if (add_to_page_cache_lru(page, mapping,
3645 page->index, GFP_NOFS)) {
3646 page_cache_release(page);
3647 continue;
3648 }
3649
3650 pagepool[nr++] = page;
3651 if (nr < ARRAY_SIZE(pagepool))
3652 continue;
3653 for (i = 0; i < nr; i++) {
3654 __extent_read_full_page(tree, pagepool[i], get_extent,
3655 &bio, 0, &bio_flags);
3656 page_cache_release(pagepool[i]);
3657 }
3658 nr = 0;
3659 }
3660 for (i = 0; i < nr; i++) {
3661 __extent_read_full_page(tree, pagepool[i], get_extent,
3662 &bio, 0, &bio_flags);
3663 page_cache_release(pagepool[i]);
3664 }
3665
3666 BUG_ON(!list_empty(pages));
3667 if (bio)
3668 return submit_one_bio(READ, bio, 0, bio_flags);
3669 return 0;
3670 }
3671
3672 /*
3673 * basic invalidatepage code, this waits on any locked or writeback
3674 * ranges corresponding to the page, and then deletes any extent state
3675 * records from the tree
3676 */
3677 int extent_invalidatepage(struct extent_io_tree *tree,
3678 struct page *page, unsigned long offset)
3679 {
3680 struct extent_state *cached_state = NULL;
3681 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3682 u64 end = start + PAGE_CACHE_SIZE - 1;
3683 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3684
3685 start += (offset + blocksize - 1) & ~(blocksize - 1);
3686 if (start > end)
3687 return 0;
3688
3689 lock_extent_bits(tree, start, end, 0, &cached_state);
3690 wait_on_page_writeback(page);
3691 clear_extent_bit(tree, start, end,
3692 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3693 EXTENT_DO_ACCOUNTING,
3694 1, 1, &cached_state, GFP_NOFS);
3695 return 0;
3696 }
3697
3698 /*
3699 * a helper for releasepage, this tests for areas of the page that
3700 * are locked or under IO and drops the related state bits if it is safe
3701 * to drop the page.
3702 */
3703 int try_release_extent_state(struct extent_map_tree *map,
3704 struct extent_io_tree *tree, struct page *page,
3705 gfp_t mask)
3706 {
3707 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3708 u64 end = start + PAGE_CACHE_SIZE - 1;
3709 int ret = 1;
3710
3711 if (test_range_bit(tree, start, end,
3712 EXTENT_IOBITS, 0, NULL))
3713 ret = 0;
3714 else {
3715 if ((mask & GFP_NOFS) == GFP_NOFS)
3716 mask = GFP_NOFS;
3717 /*
3718 * at this point we can safely clear everything except the
3719 * locked bit and the nodatasum bit
3720 */
3721 ret = clear_extent_bit(tree, start, end,
3722 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3723 0, 0, NULL, mask);
3724
3725 /* if clear_extent_bit failed for enomem reasons,
3726 * we can't allow the release to continue.
3727 */
3728 if (ret < 0)
3729 ret = 0;
3730 else
3731 ret = 1;
3732 }
3733 return ret;
3734 }
3735
3736 /*
3737 * a helper for releasepage. As long as there are no locked extents
3738 * in the range corresponding to the page, both state records and extent
3739 * map records are removed
3740 */
3741 int try_release_extent_mapping(struct extent_map_tree *map,
3742 struct extent_io_tree *tree, struct page *page,
3743 gfp_t mask)
3744 {
3745 struct extent_map *em;
3746 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3747 u64 end = start + PAGE_CACHE_SIZE - 1;
3748
3749 if ((mask & __GFP_WAIT) &&
3750 page->mapping->host->i_size > 16 * 1024 * 1024) {
3751 u64 len;
3752 while (start <= end) {
3753 len = end - start + 1;
3754 write_lock(&map->lock);
3755 em = lookup_extent_mapping(map, start, len);
3756 if (!em) {
3757 write_unlock(&map->lock);
3758 break;
3759 }
3760 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3761 em->start != start) {
3762 write_unlock(&map->lock);
3763 free_extent_map(em);
3764 break;
3765 }
3766 if (!test_range_bit(tree, em->start,
3767 extent_map_end(em) - 1,
3768 EXTENT_LOCKED | EXTENT_WRITEBACK,
3769 0, NULL)) {
3770 remove_extent_mapping(map, em);
3771 /* once for the rb tree */
3772 free_extent_map(em);
3773 }
3774 start = extent_map_end(em);
3775 write_unlock(&map->lock);
3776
3777 /* once for us */
3778 free_extent_map(em);
3779 }
3780 }
3781 return try_release_extent_state(map, tree, page, mask);
3782 }
3783
3784 /*
3785 * helper function for fiemap, which doesn't want to see any holes.
3786 * This maps until we find something past 'last'
3787 */
3788 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3789 u64 offset,
3790 u64 last,
3791 get_extent_t *get_extent)
3792 {
3793 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3794 struct extent_map *em;
3795 u64 len;
3796
3797 if (offset >= last)
3798 return NULL;
3799
3800 while(1) {
3801 len = last - offset;
3802 if (len == 0)
3803 break;
3804 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3805 em = get_extent(inode, NULL, 0, offset, len, 0);
3806 if (IS_ERR_OR_NULL(em))
3807 return em;
3808
3809 /* if this isn't a hole return it */
3810 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3811 em->block_start != EXTENT_MAP_HOLE) {
3812 return em;
3813 }
3814
3815 /* this is a hole, advance to the next extent */
3816 offset = extent_map_end(em);
3817 free_extent_map(em);
3818 if (offset >= last)
3819 break;
3820 }
3821 return NULL;
3822 }
3823
3824 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3825 __u64 start, __u64 len, get_extent_t *get_extent)
3826 {
3827 int ret = 0;
3828 u64 off = start;
3829 u64 max = start + len;
3830 u32 flags = 0;
3831 u32 found_type;
3832 u64 last;
3833 u64 last_for_get_extent = 0;
3834 u64 disko = 0;
3835 u64 isize = i_size_read(inode);
3836 struct btrfs_key found_key;
3837 struct extent_map *em = NULL;
3838 struct extent_state *cached_state = NULL;
3839 struct btrfs_path *path;
3840 struct btrfs_file_extent_item *item;
3841 int end = 0;
3842 u64 em_start = 0;
3843 u64 em_len = 0;
3844 u64 em_end = 0;
3845 unsigned long emflags;
3846
3847 if (len == 0)
3848 return -EINVAL;
3849
3850 path = btrfs_alloc_path();
3851 if (!path)
3852 return -ENOMEM;
3853 path->leave_spinning = 1;
3854
3855 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3856 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3857
3858 /*
3859 * lookup the last file extent. We're not using i_size here
3860 * because there might be preallocation past i_size
3861 */
3862 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3863 path, btrfs_ino(inode), -1, 0);
3864 if (ret < 0) {
3865 btrfs_free_path(path);
3866 return ret;
3867 }
3868 WARN_ON(!ret);
3869 path->slots[0]--;
3870 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3871 struct btrfs_file_extent_item);
3872 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3873 found_type = btrfs_key_type(&found_key);
3874
3875 /* No extents, but there might be delalloc bits */
3876 if (found_key.objectid != btrfs_ino(inode) ||
3877 found_type != BTRFS_EXTENT_DATA_KEY) {
3878 /* have to trust i_size as the end */
3879 last = (u64)-1;
3880 last_for_get_extent = isize;
3881 } else {
3882 /*
3883 * remember the start of the last extent. There are a
3884 * bunch of different factors that go into the length of the
3885 * extent, so its much less complex to remember where it started
3886 */
3887 last = found_key.offset;
3888 last_for_get_extent = last + 1;
3889 }
3890 btrfs_free_path(path);
3891
3892 /*
3893 * we might have some extents allocated but more delalloc past those
3894 * extents. so, we trust isize unless the start of the last extent is
3895 * beyond isize
3896 */
3897 if (last < isize) {
3898 last = (u64)-1;
3899 last_for_get_extent = isize;
3900 }
3901
3902 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3903 &cached_state);
3904
3905 em = get_extent_skip_holes(inode, start, last_for_get_extent,
3906 get_extent);
3907 if (!em)
3908 goto out;
3909 if (IS_ERR(em)) {
3910 ret = PTR_ERR(em);
3911 goto out;
3912 }
3913
3914 while (!end) {
3915 u64 offset_in_extent;
3916
3917 /* break if the extent we found is outside the range */
3918 if (em->start >= max || extent_map_end(em) < off)
3919 break;
3920
3921 /*
3922 * get_extent may return an extent that starts before our
3923 * requested range. We have to make sure the ranges
3924 * we return to fiemap always move forward and don't
3925 * overlap, so adjust the offsets here
3926 */
3927 em_start = max(em->start, off);
3928
3929 /*
3930 * record the offset from the start of the extent
3931 * for adjusting the disk offset below
3932 */
3933 offset_in_extent = em_start - em->start;
3934 em_end = extent_map_end(em);
3935 em_len = em_end - em_start;
3936 emflags = em->flags;
3937 disko = 0;
3938 flags = 0;
3939
3940 /*
3941 * bump off for our next call to get_extent
3942 */
3943 off = extent_map_end(em);
3944 if (off >= max)
3945 end = 1;
3946
3947 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3948 end = 1;
3949 flags |= FIEMAP_EXTENT_LAST;
3950 } else if (em->block_start == EXTENT_MAP_INLINE) {
3951 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3952 FIEMAP_EXTENT_NOT_ALIGNED);
3953 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3954 flags |= (FIEMAP_EXTENT_DELALLOC |
3955 FIEMAP_EXTENT_UNKNOWN);
3956 } else {
3957 disko = em->block_start + offset_in_extent;
3958 }
3959 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3960 flags |= FIEMAP_EXTENT_ENCODED;
3961
3962 free_extent_map(em);
3963 em = NULL;
3964 if ((em_start >= last) || em_len == (u64)-1 ||
3965 (last == (u64)-1 && isize <= em_end)) {
3966 flags |= FIEMAP_EXTENT_LAST;
3967 end = 1;
3968 }
3969
3970 /* now scan forward to see if this is really the last extent. */
3971 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3972 get_extent);
3973 if (IS_ERR(em)) {
3974 ret = PTR_ERR(em);
3975 goto out;
3976 }
3977 if (!em) {
3978 flags |= FIEMAP_EXTENT_LAST;
3979 end = 1;
3980 }
3981 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3982 em_len, flags);
3983 if (ret)
3984 goto out_free;
3985 }
3986 out_free:
3987 free_extent_map(em);
3988 out:
3989 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3990 &cached_state, GFP_NOFS);
3991 return ret;
3992 }
3993
3994 static void __free_extent_buffer(struct extent_buffer *eb)
3995 {
3996 #if LEAK_DEBUG
3997 unsigned long flags;
3998 spin_lock_irqsave(&leak_lock, flags);
3999 list_del(&eb->leak_list);
4000 spin_unlock_irqrestore(&leak_lock, flags);
4001 #endif
4002 if (eb->pages && eb->pages != eb->inline_pages)
4003 kfree(eb->pages);
4004 kmem_cache_free(extent_buffer_cache, eb);
4005 }
4006
4007 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4008 u64 start,
4009 unsigned long len,
4010 gfp_t mask)
4011 {
4012 struct extent_buffer *eb = NULL;
4013 #if LEAK_DEBUG
4014 unsigned long flags;
4015 #endif
4016
4017 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4018 if (eb == NULL)
4019 return NULL;
4020 eb->start = start;
4021 eb->len = len;
4022 eb->tree = tree;
4023 eb->bflags = 0;
4024 rwlock_init(&eb->lock);
4025 atomic_set(&eb->write_locks, 0);
4026 atomic_set(&eb->read_locks, 0);
4027 atomic_set(&eb->blocking_readers, 0);
4028 atomic_set(&eb->blocking_writers, 0);
4029 atomic_set(&eb->spinning_readers, 0);
4030 atomic_set(&eb->spinning_writers, 0);
4031 eb->lock_nested = 0;
4032 init_waitqueue_head(&eb->write_lock_wq);
4033 init_waitqueue_head(&eb->read_lock_wq);
4034
4035 #if LEAK_DEBUG
4036 spin_lock_irqsave(&leak_lock, flags);
4037 list_add(&eb->leak_list, &buffers);
4038 spin_unlock_irqrestore(&leak_lock, flags);
4039 #endif
4040 spin_lock_init(&eb->refs_lock);
4041 atomic_set(&eb->refs, 1);
4042 atomic_set(&eb->io_pages, 0);
4043
4044 if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
4045 struct page **pages;
4046 int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
4047 PAGE_CACHE_SHIFT;
4048 pages = kzalloc(num_pages, mask);
4049 if (!pages) {
4050 __free_extent_buffer(eb);
4051 return NULL;
4052 }
4053 eb->pages = pages;
4054 } else {
4055 eb->pages = eb->inline_pages;
4056 }
4057
4058 return eb;
4059 }
4060
4061 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4062 {
4063 unsigned long i;
4064 struct page *p;
4065 struct extent_buffer *new;
4066 unsigned long num_pages = num_extent_pages(src->start, src->len);
4067
4068 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4069 if (new == NULL)
4070 return NULL;
4071
4072 for (i = 0; i < num_pages; i++) {
4073 p = alloc_page(GFP_ATOMIC);
4074 BUG_ON(!p);
4075 attach_extent_buffer_page(new, p);
4076 WARN_ON(PageDirty(p));
4077 SetPageUptodate(p);
4078 new->pages[i] = p;
4079 }
4080
4081 copy_extent_buffer(new, src, 0, 0, src->len);
4082 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4083 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4084
4085 return new;
4086 }
4087
4088 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4089 {
4090 struct extent_buffer *eb;
4091 unsigned long num_pages = num_extent_pages(0, len);
4092 unsigned long i;
4093
4094 eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4095 if (!eb)
4096 return NULL;
4097
4098 for (i = 0; i < num_pages; i++) {
4099 eb->pages[i] = alloc_page(GFP_ATOMIC);
4100 if (!eb->pages[i])
4101 goto err;
4102 }
4103 set_extent_buffer_uptodate(eb);
4104 btrfs_set_header_nritems(eb, 0);
4105 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4106
4107 return eb;
4108 err:
4109 for (; i > 0; i--)
4110 __free_page(eb->pages[i - 1]);
4111 __free_extent_buffer(eb);
4112 return NULL;
4113 }
4114
4115 static int extent_buffer_under_io(struct extent_buffer *eb)
4116 {
4117 return (atomic_read(&eb->io_pages) ||
4118 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4119 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4120 }
4121
4122 /*
4123 * Helper for releasing extent buffer page.
4124 */
4125 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4126 unsigned long start_idx)
4127 {
4128 unsigned long index;
4129 unsigned long num_pages;
4130 struct page *page;
4131 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4132
4133 BUG_ON(extent_buffer_under_io(eb));
4134
4135 num_pages = num_extent_pages(eb->start, eb->len);
4136 index = start_idx + num_pages;
4137 if (start_idx >= index)
4138 return;
4139
4140 do {
4141 index--;
4142 page = extent_buffer_page(eb, index);
4143 if (page && mapped) {
4144 spin_lock(&page->mapping->private_lock);
4145 /*
4146 * We do this since we'll remove the pages after we've
4147 * removed the eb from the radix tree, so we could race
4148 * and have this page now attached to the new eb. So
4149 * only clear page_private if it's still connected to
4150 * this eb.
4151 */
4152 if (PagePrivate(page) &&
4153 page->private == (unsigned long)eb) {
4154 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4155 BUG_ON(PageDirty(page));
4156 BUG_ON(PageWriteback(page));
4157 /*
4158 * We need to make sure we haven't be attached
4159 * to a new eb.
4160 */
4161 ClearPagePrivate(page);
4162 set_page_private(page, 0);
4163 /* One for the page private */
4164 page_cache_release(page);
4165 }
4166 spin_unlock(&page->mapping->private_lock);
4167
4168 }
4169 if (page) {
4170 /* One for when we alloced the page */
4171 page_cache_release(page);
4172 }
4173 } while (index != start_idx);
4174 }
4175
4176 /*
4177 * Helper for releasing the extent buffer.
4178 */
4179 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4180 {
4181 btrfs_release_extent_buffer_page(eb, 0);
4182 __free_extent_buffer(eb);
4183 }
4184
4185 static void check_buffer_tree_ref(struct extent_buffer *eb)
4186 {
4187 /* the ref bit is tricky. We have to make sure it is set
4188 * if we have the buffer dirty. Otherwise the
4189 * code to free a buffer can end up dropping a dirty
4190 * page
4191 *
4192 * Once the ref bit is set, it won't go away while the
4193 * buffer is dirty or in writeback, and it also won't
4194 * go away while we have the reference count on the
4195 * eb bumped.
4196 *
4197 * We can't just set the ref bit without bumping the
4198 * ref on the eb because free_extent_buffer might
4199 * see the ref bit and try to clear it. If this happens
4200 * free_extent_buffer might end up dropping our original
4201 * ref by mistake and freeing the page before we are able
4202 * to add one more ref.
4203 *
4204 * So bump the ref count first, then set the bit. If someone
4205 * beat us to it, drop the ref we added.
4206 */
4207 spin_lock(&eb->refs_lock);
4208 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4209 atomic_inc(&eb->refs);
4210 spin_unlock(&eb->refs_lock);
4211 }
4212
4213 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4214 {
4215 unsigned long num_pages, i;
4216
4217 check_buffer_tree_ref(eb);
4218
4219 num_pages = num_extent_pages(eb->start, eb->len);
4220 for (i = 0; i < num_pages; i++) {
4221 struct page *p = extent_buffer_page(eb, i);
4222 mark_page_accessed(p);
4223 }
4224 }
4225
4226 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4227 u64 start, unsigned long len)
4228 {
4229 unsigned long num_pages = num_extent_pages(start, len);
4230 unsigned long i;
4231 unsigned long index = start >> PAGE_CACHE_SHIFT;
4232 struct extent_buffer *eb;
4233 struct extent_buffer *exists = NULL;
4234 struct page *p;
4235 struct address_space *mapping = tree->mapping;
4236 int uptodate = 1;
4237 int ret;
4238
4239 rcu_read_lock();
4240 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4241 if (eb && atomic_inc_not_zero(&eb->refs)) {
4242 rcu_read_unlock();
4243 mark_extent_buffer_accessed(eb);
4244 return eb;
4245 }
4246 rcu_read_unlock();
4247
4248 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4249 if (!eb)
4250 return NULL;
4251
4252 for (i = 0; i < num_pages; i++, index++) {
4253 p = find_or_create_page(mapping, index, GFP_NOFS);
4254 if (!p)
4255 goto free_eb;
4256
4257 spin_lock(&mapping->private_lock);
4258 if (PagePrivate(p)) {
4259 /*
4260 * We could have already allocated an eb for this page
4261 * and attached one so lets see if we can get a ref on
4262 * the existing eb, and if we can we know it's good and
4263 * we can just return that one, else we know we can just
4264 * overwrite page->private.
4265 */
4266 exists = (struct extent_buffer *)p->private;
4267 if (atomic_inc_not_zero(&exists->refs)) {
4268 spin_unlock(&mapping->private_lock);
4269 unlock_page(p);
4270 page_cache_release(p);
4271 mark_extent_buffer_accessed(exists);
4272 goto free_eb;
4273 }
4274
4275 /*
4276 * Do this so attach doesn't complain and we need to
4277 * drop the ref the old guy had.
4278 */
4279 ClearPagePrivate(p);
4280 WARN_ON(PageDirty(p));
4281 page_cache_release(p);
4282 }
4283 attach_extent_buffer_page(eb, p);
4284 spin_unlock(&mapping->private_lock);
4285 WARN_ON(PageDirty(p));
4286 mark_page_accessed(p);
4287 eb->pages[i] = p;
4288 if (!PageUptodate(p))
4289 uptodate = 0;
4290
4291 /*
4292 * see below about how we avoid a nasty race with release page
4293 * and why we unlock later
4294 */
4295 }
4296 if (uptodate)
4297 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4298 again:
4299 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4300 if (ret)
4301 goto free_eb;
4302
4303 spin_lock(&tree->buffer_lock);
4304 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4305 if (ret == -EEXIST) {
4306 exists = radix_tree_lookup(&tree->buffer,
4307 start >> PAGE_CACHE_SHIFT);
4308 if (!atomic_inc_not_zero(&exists->refs)) {
4309 spin_unlock(&tree->buffer_lock);
4310 radix_tree_preload_end();
4311 exists = NULL;
4312 goto again;
4313 }
4314 spin_unlock(&tree->buffer_lock);
4315 radix_tree_preload_end();
4316 mark_extent_buffer_accessed(exists);
4317 goto free_eb;
4318 }
4319 /* add one reference for the tree */
4320 check_buffer_tree_ref(eb);
4321 spin_unlock(&tree->buffer_lock);
4322 radix_tree_preload_end();
4323
4324 /*
4325 * there is a race where release page may have
4326 * tried to find this extent buffer in the radix
4327 * but failed. It will tell the VM it is safe to
4328 * reclaim the, and it will clear the page private bit.
4329 * We must make sure to set the page private bit properly
4330 * after the extent buffer is in the radix tree so
4331 * it doesn't get lost
4332 */
4333 SetPageChecked(eb->pages[0]);
4334 for (i = 1; i < num_pages; i++) {
4335 p = extent_buffer_page(eb, i);
4336 ClearPageChecked(p);
4337 unlock_page(p);
4338 }
4339 unlock_page(eb->pages[0]);
4340 return eb;
4341
4342 free_eb:
4343 for (i = 0; i < num_pages; i++) {
4344 if (eb->pages[i])
4345 unlock_page(eb->pages[i]);
4346 }
4347
4348 WARN_ON(!atomic_dec_and_test(&eb->refs));
4349 btrfs_release_extent_buffer(eb);
4350 return exists;
4351 }
4352
4353 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4354 u64 start, unsigned long len)
4355 {
4356 struct extent_buffer *eb;
4357
4358 rcu_read_lock();
4359 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4360 if (eb && atomic_inc_not_zero(&eb->refs)) {
4361 rcu_read_unlock();
4362 mark_extent_buffer_accessed(eb);
4363 return eb;
4364 }
4365 rcu_read_unlock();
4366
4367 return NULL;
4368 }
4369
4370 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4371 {
4372 struct extent_buffer *eb =
4373 container_of(head, struct extent_buffer, rcu_head);
4374
4375 __free_extent_buffer(eb);
4376 }
4377
4378 /* Expects to have eb->eb_lock already held */
4379 static int release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4380 {
4381 WARN_ON(atomic_read(&eb->refs) == 0);
4382 if (atomic_dec_and_test(&eb->refs)) {
4383 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4384 spin_unlock(&eb->refs_lock);
4385 } else {
4386 struct extent_io_tree *tree = eb->tree;
4387
4388 spin_unlock(&eb->refs_lock);
4389
4390 spin_lock(&tree->buffer_lock);
4391 radix_tree_delete(&tree->buffer,
4392 eb->start >> PAGE_CACHE_SHIFT);
4393 spin_unlock(&tree->buffer_lock);
4394 }
4395
4396 /* Should be safe to release our pages at this point */
4397 btrfs_release_extent_buffer_page(eb, 0);
4398 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4399 return 1;
4400 }
4401 spin_unlock(&eb->refs_lock);
4402
4403 return 0;
4404 }
4405
4406 void free_extent_buffer(struct extent_buffer *eb)
4407 {
4408 if (!eb)
4409 return;
4410
4411 spin_lock(&eb->refs_lock);
4412 if (atomic_read(&eb->refs) == 2 &&
4413 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4414 atomic_dec(&eb->refs);
4415
4416 if (atomic_read(&eb->refs) == 2 &&
4417 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4418 !extent_buffer_under_io(eb) &&
4419 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4420 atomic_dec(&eb->refs);
4421
4422 /*
4423 * I know this is terrible, but it's temporary until we stop tracking
4424 * the uptodate bits and such for the extent buffers.
4425 */
4426 release_extent_buffer(eb, GFP_ATOMIC);
4427 }
4428
4429 void free_extent_buffer_stale(struct extent_buffer *eb)
4430 {
4431 if (!eb)
4432 return;
4433
4434 spin_lock(&eb->refs_lock);
4435 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4436
4437 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4438 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4439 atomic_dec(&eb->refs);
4440 release_extent_buffer(eb, GFP_NOFS);
4441 }
4442
4443 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4444 {
4445 unsigned long i;
4446 unsigned long num_pages;
4447 struct page *page;
4448
4449 num_pages = num_extent_pages(eb->start, eb->len);
4450
4451 for (i = 0; i < num_pages; i++) {
4452 page = extent_buffer_page(eb, i);
4453 if (!PageDirty(page))
4454 continue;
4455
4456 lock_page(page);
4457 WARN_ON(!PagePrivate(page));
4458
4459 clear_page_dirty_for_io(page);
4460 spin_lock_irq(&page->mapping->tree_lock);
4461 if (!PageDirty(page)) {
4462 radix_tree_tag_clear(&page->mapping->page_tree,
4463 page_index(page),
4464 PAGECACHE_TAG_DIRTY);
4465 }
4466 spin_unlock_irq(&page->mapping->tree_lock);
4467 ClearPageError(page);
4468 unlock_page(page);
4469 }
4470 WARN_ON(atomic_read(&eb->refs) == 0);
4471 }
4472
4473 int set_extent_buffer_dirty(struct extent_buffer *eb)
4474 {
4475 unsigned long i;
4476 unsigned long num_pages;
4477 int was_dirty = 0;
4478
4479 check_buffer_tree_ref(eb);
4480
4481 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4482
4483 num_pages = num_extent_pages(eb->start, eb->len);
4484 WARN_ON(atomic_read(&eb->refs) == 0);
4485 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4486
4487 for (i = 0; i < num_pages; i++)
4488 set_page_dirty(extent_buffer_page(eb, i));
4489 return was_dirty;
4490 }
4491
4492 static int range_straddles_pages(u64 start, u64 len)
4493 {
4494 if (len < PAGE_CACHE_SIZE)
4495 return 1;
4496 if (start & (PAGE_CACHE_SIZE - 1))
4497 return 1;
4498 if ((start + len) & (PAGE_CACHE_SIZE - 1))
4499 return 1;
4500 return 0;
4501 }
4502
4503 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4504 {
4505 unsigned long i;
4506 struct page *page;
4507 unsigned long num_pages;
4508
4509 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4510 num_pages = num_extent_pages(eb->start, eb->len);
4511 for (i = 0; i < num_pages; i++) {
4512 page = extent_buffer_page(eb, i);
4513 if (page)
4514 ClearPageUptodate(page);
4515 }
4516 return 0;
4517 }
4518
4519 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4520 {
4521 unsigned long i;
4522 struct page *page;
4523 unsigned long num_pages;
4524
4525 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4526 num_pages = num_extent_pages(eb->start, eb->len);
4527 for (i = 0; i < num_pages; i++) {
4528 page = extent_buffer_page(eb, i);
4529 SetPageUptodate(page);
4530 }
4531 return 0;
4532 }
4533
4534 int extent_range_uptodate(struct extent_io_tree *tree,
4535 u64 start, u64 end)
4536 {
4537 struct page *page;
4538 int ret;
4539 int pg_uptodate = 1;
4540 int uptodate;
4541 unsigned long index;
4542
4543 if (range_straddles_pages(start, end - start + 1)) {
4544 ret = test_range_bit(tree, start, end,
4545 EXTENT_UPTODATE, 1, NULL);
4546 if (ret)
4547 return 1;
4548 }
4549 while (start <= end) {
4550 index = start >> PAGE_CACHE_SHIFT;
4551 page = find_get_page(tree->mapping, index);
4552 if (!page)
4553 return 1;
4554 uptodate = PageUptodate(page);
4555 page_cache_release(page);
4556 if (!uptodate) {
4557 pg_uptodate = 0;
4558 break;
4559 }
4560 start += PAGE_CACHE_SIZE;
4561 }
4562 return pg_uptodate;
4563 }
4564
4565 int extent_buffer_uptodate(struct extent_buffer *eb)
4566 {
4567 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4568 }
4569
4570 int read_extent_buffer_pages(struct extent_io_tree *tree,
4571 struct extent_buffer *eb, u64 start, int wait,
4572 get_extent_t *get_extent, int mirror_num)
4573 {
4574 unsigned long i;
4575 unsigned long start_i;
4576 struct page *page;
4577 int err;
4578 int ret = 0;
4579 int locked_pages = 0;
4580 int all_uptodate = 1;
4581 unsigned long num_pages;
4582 unsigned long num_reads = 0;
4583 struct bio *bio = NULL;
4584 unsigned long bio_flags = 0;
4585
4586 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4587 return 0;
4588
4589 if (start) {
4590 WARN_ON(start < eb->start);
4591 start_i = (start >> PAGE_CACHE_SHIFT) -
4592 (eb->start >> PAGE_CACHE_SHIFT);
4593 } else {
4594 start_i = 0;
4595 }
4596
4597 num_pages = num_extent_pages(eb->start, eb->len);
4598 for (i = start_i; i < num_pages; i++) {
4599 page = extent_buffer_page(eb, i);
4600 if (wait == WAIT_NONE) {
4601 if (!trylock_page(page))
4602 goto unlock_exit;
4603 } else {
4604 lock_page(page);
4605 }
4606 locked_pages++;
4607 if (!PageUptodate(page)) {
4608 num_reads++;
4609 all_uptodate = 0;
4610 }
4611 }
4612 if (all_uptodate) {
4613 if (start_i == 0)
4614 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4615 goto unlock_exit;
4616 }
4617
4618 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4619 eb->read_mirror = 0;
4620 atomic_set(&eb->io_pages, num_reads);
4621 for (i = start_i; i < num_pages; i++) {
4622 page = extent_buffer_page(eb, i);
4623 if (!PageUptodate(page)) {
4624 ClearPageError(page);
4625 err = __extent_read_full_page(tree, page,
4626 get_extent, &bio,
4627 mirror_num, &bio_flags);
4628 if (err)
4629 ret = err;
4630 } else {
4631 unlock_page(page);
4632 }
4633 }
4634
4635 if (bio) {
4636 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4637 if (err)
4638 return err;
4639 }
4640
4641 if (ret || wait != WAIT_COMPLETE)
4642 return ret;
4643
4644 for (i = start_i; i < num_pages; i++) {
4645 page = extent_buffer_page(eb, i);
4646 wait_on_page_locked(page);
4647 if (!PageUptodate(page))
4648 ret = -EIO;
4649 }
4650
4651 return ret;
4652
4653 unlock_exit:
4654 i = start_i;
4655 while (locked_pages > 0) {
4656 page = extent_buffer_page(eb, i);
4657 i++;
4658 unlock_page(page);
4659 locked_pages--;
4660 }
4661 return ret;
4662 }
4663
4664 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4665 unsigned long start,
4666 unsigned long len)
4667 {
4668 size_t cur;
4669 size_t offset;
4670 struct page *page;
4671 char *kaddr;
4672 char *dst = (char *)dstv;
4673 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4674 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4675
4676 WARN_ON(start > eb->len);
4677 WARN_ON(start + len > eb->start + eb->len);
4678
4679 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4680
4681 while (len > 0) {
4682 page = extent_buffer_page(eb, i);
4683
4684 cur = min(len, (PAGE_CACHE_SIZE - offset));
4685 kaddr = page_address(page);
4686 memcpy(dst, kaddr + offset, cur);
4687
4688 dst += cur;
4689 len -= cur;
4690 offset = 0;
4691 i++;
4692 }
4693 }
4694
4695 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4696 unsigned long min_len, char **map,
4697 unsigned long *map_start,
4698 unsigned long *map_len)
4699 {
4700 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4701 char *kaddr;
4702 struct page *p;
4703 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4704 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4705 unsigned long end_i = (start_offset + start + min_len - 1) >>
4706 PAGE_CACHE_SHIFT;
4707
4708 if (i != end_i)
4709 return -EINVAL;
4710
4711 if (i == 0) {
4712 offset = start_offset;
4713 *map_start = 0;
4714 } else {
4715 offset = 0;
4716 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4717 }
4718
4719 if (start + min_len > eb->len) {
4720 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4721 "wanted %lu %lu\n", (unsigned long long)eb->start,
4722 eb->len, start, min_len);
4723 return -EINVAL;
4724 }
4725
4726 p = extent_buffer_page(eb, i);
4727 kaddr = page_address(p);
4728 *map = kaddr + offset;
4729 *map_len = PAGE_CACHE_SIZE - offset;
4730 return 0;
4731 }
4732
4733 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4734 unsigned long start,
4735 unsigned long len)
4736 {
4737 size_t cur;
4738 size_t offset;
4739 struct page *page;
4740 char *kaddr;
4741 char *ptr = (char *)ptrv;
4742 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4743 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4744 int ret = 0;
4745
4746 WARN_ON(start > eb->len);
4747 WARN_ON(start + len > eb->start + eb->len);
4748
4749 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4750
4751 while (len > 0) {
4752 page = extent_buffer_page(eb, i);
4753
4754 cur = min(len, (PAGE_CACHE_SIZE - offset));
4755
4756 kaddr = page_address(page);
4757 ret = memcmp(ptr, kaddr + offset, cur);
4758 if (ret)
4759 break;
4760
4761 ptr += cur;
4762 len -= cur;
4763 offset = 0;
4764 i++;
4765 }
4766 return ret;
4767 }
4768
4769 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4770 unsigned long start, unsigned long len)
4771 {
4772 size_t cur;
4773 size_t offset;
4774 struct page *page;
4775 char *kaddr;
4776 char *src = (char *)srcv;
4777 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4778 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4779
4780 WARN_ON(start > eb->len);
4781 WARN_ON(start + len > eb->start + eb->len);
4782
4783 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4784
4785 while (len > 0) {
4786 page = extent_buffer_page(eb, i);
4787 WARN_ON(!PageUptodate(page));
4788
4789 cur = min(len, PAGE_CACHE_SIZE - offset);
4790 kaddr = page_address(page);
4791 memcpy(kaddr + offset, src, cur);
4792
4793 src += cur;
4794 len -= cur;
4795 offset = 0;
4796 i++;
4797 }
4798 }
4799
4800 void memset_extent_buffer(struct extent_buffer *eb, char c,
4801 unsigned long start, unsigned long len)
4802 {
4803 size_t cur;
4804 size_t offset;
4805 struct page *page;
4806 char *kaddr;
4807 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4808 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4809
4810 WARN_ON(start > eb->len);
4811 WARN_ON(start + len > eb->start + eb->len);
4812
4813 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4814
4815 while (len > 0) {
4816 page = extent_buffer_page(eb, i);
4817 WARN_ON(!PageUptodate(page));
4818
4819 cur = min(len, PAGE_CACHE_SIZE - offset);
4820 kaddr = page_address(page);
4821 memset(kaddr + offset, c, cur);
4822
4823 len -= cur;
4824 offset = 0;
4825 i++;
4826 }
4827 }
4828
4829 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4830 unsigned long dst_offset, unsigned long src_offset,
4831 unsigned long len)
4832 {
4833 u64 dst_len = dst->len;
4834 size_t cur;
4835 size_t offset;
4836 struct page *page;
4837 char *kaddr;
4838 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4839 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4840
4841 WARN_ON(src->len != dst_len);
4842
4843 offset = (start_offset + dst_offset) &
4844 ((unsigned long)PAGE_CACHE_SIZE - 1);
4845
4846 while (len > 0) {
4847 page = extent_buffer_page(dst, i);
4848 WARN_ON(!PageUptodate(page));
4849
4850 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4851
4852 kaddr = page_address(page);
4853 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4854
4855 src_offset += cur;
4856 len -= cur;
4857 offset = 0;
4858 i++;
4859 }
4860 }
4861
4862 static void move_pages(struct page *dst_page, struct page *src_page,
4863 unsigned long dst_off, unsigned long src_off,
4864 unsigned long len)
4865 {
4866 char *dst_kaddr = page_address(dst_page);
4867 if (dst_page == src_page) {
4868 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4869 } else {
4870 char *src_kaddr = page_address(src_page);
4871 char *p = dst_kaddr + dst_off + len;
4872 char *s = src_kaddr + src_off + len;
4873
4874 while (len--)
4875 *--p = *--s;
4876 }
4877 }
4878
4879 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4880 {
4881 unsigned long distance = (src > dst) ? src - dst : dst - src;
4882 return distance < len;
4883 }
4884
4885 static void copy_pages(struct page *dst_page, struct page *src_page,
4886 unsigned long dst_off, unsigned long src_off,
4887 unsigned long len)
4888 {
4889 char *dst_kaddr = page_address(dst_page);
4890 char *src_kaddr;
4891 int must_memmove = 0;
4892
4893 if (dst_page != src_page) {
4894 src_kaddr = page_address(src_page);
4895 } else {
4896 src_kaddr = dst_kaddr;
4897 if (areas_overlap(src_off, dst_off, len))
4898 must_memmove = 1;
4899 }
4900
4901 if (must_memmove)
4902 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4903 else
4904 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4905 }
4906
4907 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4908 unsigned long src_offset, unsigned long len)
4909 {
4910 size_t cur;
4911 size_t dst_off_in_page;
4912 size_t src_off_in_page;
4913 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4914 unsigned long dst_i;
4915 unsigned long src_i;
4916
4917 if (src_offset + len > dst->len) {
4918 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4919 "len %lu dst len %lu\n", src_offset, len, dst->len);
4920 BUG_ON(1);
4921 }
4922 if (dst_offset + len > dst->len) {
4923 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4924 "len %lu dst len %lu\n", dst_offset, len, dst->len);
4925 BUG_ON(1);
4926 }
4927
4928 while (len > 0) {
4929 dst_off_in_page = (start_offset + dst_offset) &
4930 ((unsigned long)PAGE_CACHE_SIZE - 1);
4931 src_off_in_page = (start_offset + src_offset) &
4932 ((unsigned long)PAGE_CACHE_SIZE - 1);
4933
4934 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4935 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4936
4937 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4938 src_off_in_page));
4939 cur = min_t(unsigned long, cur,
4940 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4941
4942 copy_pages(extent_buffer_page(dst, dst_i),
4943 extent_buffer_page(dst, src_i),
4944 dst_off_in_page, src_off_in_page, cur);
4945
4946 src_offset += cur;
4947 dst_offset += cur;
4948 len -= cur;
4949 }
4950 }
4951
4952 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4953 unsigned long src_offset, unsigned long len)
4954 {
4955 size_t cur;
4956 size_t dst_off_in_page;
4957 size_t src_off_in_page;
4958 unsigned long dst_end = dst_offset + len - 1;
4959 unsigned long src_end = src_offset + len - 1;
4960 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4961 unsigned long dst_i;
4962 unsigned long src_i;
4963
4964 if (src_offset + len > dst->len) {
4965 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4966 "len %lu len %lu\n", src_offset, len, dst->len);
4967 BUG_ON(1);
4968 }
4969 if (dst_offset + len > dst->len) {
4970 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4971 "len %lu len %lu\n", dst_offset, len, dst->len);
4972 BUG_ON(1);
4973 }
4974 if (dst_offset < src_offset) {
4975 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4976 return;
4977 }
4978 while (len > 0) {
4979 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4980 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4981
4982 dst_off_in_page = (start_offset + dst_end) &
4983 ((unsigned long)PAGE_CACHE_SIZE - 1);
4984 src_off_in_page = (start_offset + src_end) &
4985 ((unsigned long)PAGE_CACHE_SIZE - 1);
4986
4987 cur = min_t(unsigned long, len, src_off_in_page + 1);
4988 cur = min(cur, dst_off_in_page + 1);
4989 move_pages(extent_buffer_page(dst, dst_i),
4990 extent_buffer_page(dst, src_i),
4991 dst_off_in_page - cur + 1,
4992 src_off_in_page - cur + 1, cur);
4993
4994 dst_end -= cur;
4995 src_end -= cur;
4996 len -= cur;
4997 }
4998 }
4999
5000 int try_release_extent_buffer(struct page *page, gfp_t mask)
5001 {
5002 struct extent_buffer *eb;
5003
5004 /*
5005 * We need to make sure noboody is attaching this page to an eb right
5006 * now.
5007 */
5008 spin_lock(&page->mapping->private_lock);
5009 if (!PagePrivate(page)) {
5010 spin_unlock(&page->mapping->private_lock);
5011 return 1;
5012 }
5013
5014 eb = (struct extent_buffer *)page->private;
5015 BUG_ON(!eb);
5016
5017 /*
5018 * This is a little awful but should be ok, we need to make sure that
5019 * the eb doesn't disappear out from under us while we're looking at
5020 * this page.
5021 */
5022 spin_lock(&eb->refs_lock);
5023 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5024 spin_unlock(&eb->refs_lock);
5025 spin_unlock(&page->mapping->private_lock);
5026 return 0;
5027 }
5028 spin_unlock(&page->mapping->private_lock);
5029
5030 if ((mask & GFP_NOFS) == GFP_NOFS)
5031 mask = GFP_NOFS;
5032
5033 /*
5034 * If tree ref isn't set then we know the ref on this eb is a real ref,
5035 * so just return, this page will likely be freed soon anyway.
5036 */
5037 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5038 spin_unlock(&eb->refs_lock);
5039 return 0;
5040 }
5041
5042 return release_extent_buffer(eb, mask);
5043 }
This page took 0.264554 seconds and 5 git commands to generate.