Btrfs: move data checksumming into a dedicated tree
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/version.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20
21 /* temporary define until extent_map moves out of btrfs */
22 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
23 unsigned long extra_flags,
24 void (*ctor)(void *, struct kmem_cache *,
25 unsigned long));
26
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29
30 static LIST_HEAD(buffers);
31 static LIST_HEAD(states);
32
33 #define LEAK_DEBUG 0
34 #ifdef LEAK_DEBUG
35 static spinlock_t leak_lock = SPIN_LOCK_UNLOCKED;
36 #endif
37
38 #define BUFFER_LRU_MAX 64
39
40 struct tree_entry {
41 u64 start;
42 u64 end;
43 struct rb_node rb_node;
44 };
45
46 struct extent_page_data {
47 struct bio *bio;
48 struct extent_io_tree *tree;
49 get_extent_t *get_extent;
50
51 /* tells writepage not to lock the state bits for this range
52 * it still does the unlocking
53 */
54 int extent_locked;
55 };
56
57 int __init extent_io_init(void)
58 {
59 extent_state_cache = btrfs_cache_create("extent_state",
60 sizeof(struct extent_state), 0,
61 NULL);
62 if (!extent_state_cache)
63 return -ENOMEM;
64
65 extent_buffer_cache = btrfs_cache_create("extent_buffers",
66 sizeof(struct extent_buffer), 0,
67 NULL);
68 if (!extent_buffer_cache)
69 goto free_state_cache;
70 return 0;
71
72 free_state_cache:
73 kmem_cache_destroy(extent_state_cache);
74 return -ENOMEM;
75 }
76
77 void extent_io_exit(void)
78 {
79 struct extent_state *state;
80 struct extent_buffer *eb;
81
82 while (!list_empty(&states)) {
83 state = list_entry(states.next, struct extent_state, leak_list);
84 printk("state leak: start %Lu end %Lu state %lu in tree %p refs %d\n", state->start, state->end, state->state, state->tree, atomic_read(&state->refs));
85 list_del(&state->leak_list);
86 kmem_cache_free(extent_state_cache, state);
87
88 }
89
90 while (!list_empty(&buffers)) {
91 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
92 printk("buffer leak start %Lu len %lu refs %d\n", eb->start, eb->len, atomic_read(&eb->refs));
93 list_del(&eb->leak_list);
94 kmem_cache_free(extent_buffer_cache, eb);
95 }
96 if (extent_state_cache)
97 kmem_cache_destroy(extent_state_cache);
98 if (extent_buffer_cache)
99 kmem_cache_destroy(extent_buffer_cache);
100 }
101
102 void extent_io_tree_init(struct extent_io_tree *tree,
103 struct address_space *mapping, gfp_t mask)
104 {
105 tree->state.rb_node = NULL;
106 tree->buffer.rb_node = NULL;
107 tree->ops = NULL;
108 tree->dirty_bytes = 0;
109 spin_lock_init(&tree->lock);
110 spin_lock_init(&tree->buffer_lock);
111 tree->mapping = mapping;
112 }
113 EXPORT_SYMBOL(extent_io_tree_init);
114
115 static struct extent_state *alloc_extent_state(gfp_t mask)
116 {
117 struct extent_state *state;
118 #ifdef LEAK_DEBUG
119 unsigned long flags;
120 #endif
121
122 state = kmem_cache_alloc(extent_state_cache, mask);
123 if (!state)
124 return state;
125 state->state = 0;
126 state->private = 0;
127 state->tree = NULL;
128 #ifdef LEAK_DEBUG
129 spin_lock_irqsave(&leak_lock, flags);
130 list_add(&state->leak_list, &states);
131 spin_unlock_irqrestore(&leak_lock, flags);
132 #endif
133 atomic_set(&state->refs, 1);
134 init_waitqueue_head(&state->wq);
135 return state;
136 }
137 EXPORT_SYMBOL(alloc_extent_state);
138
139 static void free_extent_state(struct extent_state *state)
140 {
141 if (!state)
142 return;
143 if (atomic_dec_and_test(&state->refs)) {
144 #ifdef LEAK_DEBUG
145 unsigned long flags;
146 #endif
147 WARN_ON(state->tree);
148 #ifdef LEAK_DEBUG
149 spin_lock_irqsave(&leak_lock, flags);
150 list_del(&state->leak_list);
151 spin_unlock_irqrestore(&leak_lock, flags);
152 #endif
153 kmem_cache_free(extent_state_cache, state);
154 }
155 }
156 EXPORT_SYMBOL(free_extent_state);
157
158 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
159 struct rb_node *node)
160 {
161 struct rb_node ** p = &root->rb_node;
162 struct rb_node * parent = NULL;
163 struct tree_entry *entry;
164
165 while(*p) {
166 parent = *p;
167 entry = rb_entry(parent, struct tree_entry, rb_node);
168
169 if (offset < entry->start)
170 p = &(*p)->rb_left;
171 else if (offset > entry->end)
172 p = &(*p)->rb_right;
173 else
174 return parent;
175 }
176
177 entry = rb_entry(node, struct tree_entry, rb_node);
178 rb_link_node(node, parent, p);
179 rb_insert_color(node, root);
180 return NULL;
181 }
182
183 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
184 struct rb_node **prev_ret,
185 struct rb_node **next_ret)
186 {
187 struct rb_root *root = &tree->state;
188 struct rb_node * n = root->rb_node;
189 struct rb_node *prev = NULL;
190 struct rb_node *orig_prev = NULL;
191 struct tree_entry *entry;
192 struct tree_entry *prev_entry = NULL;
193
194 while(n) {
195 entry = rb_entry(n, struct tree_entry, rb_node);
196 prev = n;
197 prev_entry = entry;
198
199 if (offset < entry->start)
200 n = n->rb_left;
201 else if (offset > entry->end)
202 n = n->rb_right;
203 else {
204 return n;
205 }
206 }
207
208 if (prev_ret) {
209 orig_prev = prev;
210 while(prev && offset > prev_entry->end) {
211 prev = rb_next(prev);
212 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
213 }
214 *prev_ret = prev;
215 prev = orig_prev;
216 }
217
218 if (next_ret) {
219 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
220 while(prev && offset < prev_entry->start) {
221 prev = rb_prev(prev);
222 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
223 }
224 *next_ret = prev;
225 }
226 return NULL;
227 }
228
229 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
230 u64 offset)
231 {
232 struct rb_node *prev = NULL;
233 struct rb_node *ret;
234
235 ret = __etree_search(tree, offset, &prev, NULL);
236 if (!ret) {
237 return prev;
238 }
239 return ret;
240 }
241
242 static struct extent_buffer *buffer_tree_insert(struct extent_io_tree *tree,
243 u64 offset, struct rb_node *node)
244 {
245 struct rb_root *root = &tree->buffer;
246 struct rb_node ** p = &root->rb_node;
247 struct rb_node * parent = NULL;
248 struct extent_buffer *eb;
249
250 while(*p) {
251 parent = *p;
252 eb = rb_entry(parent, struct extent_buffer, rb_node);
253
254 if (offset < eb->start)
255 p = &(*p)->rb_left;
256 else if (offset > eb->start)
257 p = &(*p)->rb_right;
258 else
259 return eb;
260 }
261
262 rb_link_node(node, parent, p);
263 rb_insert_color(node, root);
264 return NULL;
265 }
266
267 static struct extent_buffer *buffer_search(struct extent_io_tree *tree,
268 u64 offset)
269 {
270 struct rb_root *root = &tree->buffer;
271 struct rb_node * n = root->rb_node;
272 struct extent_buffer *eb;
273
274 while(n) {
275 eb = rb_entry(n, struct extent_buffer, rb_node);
276 if (offset < eb->start)
277 n = n->rb_left;
278 else if (offset > eb->start)
279 n = n->rb_right;
280 else
281 return eb;
282 }
283 return NULL;
284 }
285
286 /*
287 * utility function to look for merge candidates inside a given range.
288 * Any extents with matching state are merged together into a single
289 * extent in the tree. Extents with EXTENT_IO in their state field
290 * are not merged because the end_io handlers need to be able to do
291 * operations on them without sleeping (or doing allocations/splits).
292 *
293 * This should be called with the tree lock held.
294 */
295 static int merge_state(struct extent_io_tree *tree,
296 struct extent_state *state)
297 {
298 struct extent_state *other;
299 struct rb_node *other_node;
300
301 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
302 return 0;
303
304 other_node = rb_prev(&state->rb_node);
305 if (other_node) {
306 other = rb_entry(other_node, struct extent_state, rb_node);
307 if (other->end == state->start - 1 &&
308 other->state == state->state) {
309 state->start = other->start;
310 other->tree = NULL;
311 rb_erase(&other->rb_node, &tree->state);
312 free_extent_state(other);
313 }
314 }
315 other_node = rb_next(&state->rb_node);
316 if (other_node) {
317 other = rb_entry(other_node, struct extent_state, rb_node);
318 if (other->start == state->end + 1 &&
319 other->state == state->state) {
320 other->start = state->start;
321 state->tree = NULL;
322 rb_erase(&state->rb_node, &tree->state);
323 free_extent_state(state);
324 }
325 }
326 return 0;
327 }
328
329 static void set_state_cb(struct extent_io_tree *tree,
330 struct extent_state *state,
331 unsigned long bits)
332 {
333 if (tree->ops && tree->ops->set_bit_hook) {
334 tree->ops->set_bit_hook(tree->mapping->host, state->start,
335 state->end, state->state, bits);
336 }
337 }
338
339 static void clear_state_cb(struct extent_io_tree *tree,
340 struct extent_state *state,
341 unsigned long bits)
342 {
343 if (tree->ops && tree->ops->set_bit_hook) {
344 tree->ops->clear_bit_hook(tree->mapping->host, state->start,
345 state->end, state->state, bits);
346 }
347 }
348
349 /*
350 * insert an extent_state struct into the tree. 'bits' are set on the
351 * struct before it is inserted.
352 *
353 * This may return -EEXIST if the extent is already there, in which case the
354 * state struct is freed.
355 *
356 * The tree lock is not taken internally. This is a utility function and
357 * probably isn't what you want to call (see set/clear_extent_bit).
358 */
359 static int insert_state(struct extent_io_tree *tree,
360 struct extent_state *state, u64 start, u64 end,
361 int bits)
362 {
363 struct rb_node *node;
364
365 if (end < start) {
366 printk("end < start %Lu %Lu\n", end, start);
367 WARN_ON(1);
368 }
369 if (bits & EXTENT_DIRTY)
370 tree->dirty_bytes += end - start + 1;
371 set_state_cb(tree, state, bits);
372 state->state |= bits;
373 state->start = start;
374 state->end = end;
375 node = tree_insert(&tree->state, end, &state->rb_node);
376 if (node) {
377 struct extent_state *found;
378 found = rb_entry(node, struct extent_state, rb_node);
379 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
380 free_extent_state(state);
381 return -EEXIST;
382 }
383 state->tree = tree;
384 merge_state(tree, state);
385 return 0;
386 }
387
388 /*
389 * split a given extent state struct in two, inserting the preallocated
390 * struct 'prealloc' as the newly created second half. 'split' indicates an
391 * offset inside 'orig' where it should be split.
392 *
393 * Before calling,
394 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
395 * are two extent state structs in the tree:
396 * prealloc: [orig->start, split - 1]
397 * orig: [ split, orig->end ]
398 *
399 * The tree locks are not taken by this function. They need to be held
400 * by the caller.
401 */
402 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
403 struct extent_state *prealloc, u64 split)
404 {
405 struct rb_node *node;
406 prealloc->start = orig->start;
407 prealloc->end = split - 1;
408 prealloc->state = orig->state;
409 orig->start = split;
410
411 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
412 if (node) {
413 struct extent_state *found;
414 found = rb_entry(node, struct extent_state, rb_node);
415 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
416 free_extent_state(prealloc);
417 return -EEXIST;
418 }
419 prealloc->tree = tree;
420 return 0;
421 }
422
423 /*
424 * utility function to clear some bits in an extent state struct.
425 * it will optionally wake up any one waiting on this state (wake == 1), or
426 * forcibly remove the state from the tree (delete == 1).
427 *
428 * If no bits are set on the state struct after clearing things, the
429 * struct is freed and removed from the tree
430 */
431 static int clear_state_bit(struct extent_io_tree *tree,
432 struct extent_state *state, int bits, int wake,
433 int delete)
434 {
435 int ret = state->state & bits;
436
437 if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
438 u64 range = state->end - state->start + 1;
439 WARN_ON(range > tree->dirty_bytes);
440 tree->dirty_bytes -= range;
441 }
442 clear_state_cb(tree, state, bits);
443 state->state &= ~bits;
444 if (wake)
445 wake_up(&state->wq);
446 if (delete || state->state == 0) {
447 if (state->tree) {
448 clear_state_cb(tree, state, state->state);
449 rb_erase(&state->rb_node, &tree->state);
450 state->tree = NULL;
451 free_extent_state(state);
452 } else {
453 WARN_ON(1);
454 }
455 } else {
456 merge_state(tree, state);
457 }
458 return ret;
459 }
460
461 /*
462 * clear some bits on a range in the tree. This may require splitting
463 * or inserting elements in the tree, so the gfp mask is used to
464 * indicate which allocations or sleeping are allowed.
465 *
466 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
467 * the given range from the tree regardless of state (ie for truncate).
468 *
469 * the range [start, end] is inclusive.
470 *
471 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
472 * bits were already set, or zero if none of the bits were already set.
473 */
474 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
475 int bits, int wake, int delete, gfp_t mask)
476 {
477 struct extent_state *state;
478 struct extent_state *prealloc = NULL;
479 struct rb_node *node;
480 unsigned long flags;
481 int err;
482 int set = 0;
483
484 again:
485 if (!prealloc && (mask & __GFP_WAIT)) {
486 prealloc = alloc_extent_state(mask);
487 if (!prealloc)
488 return -ENOMEM;
489 }
490
491 spin_lock_irqsave(&tree->lock, flags);
492 /*
493 * this search will find the extents that end after
494 * our range starts
495 */
496 node = tree_search(tree, start);
497 if (!node)
498 goto out;
499 state = rb_entry(node, struct extent_state, rb_node);
500 if (state->start > end)
501 goto out;
502 WARN_ON(state->end < start);
503
504 /*
505 * | ---- desired range ---- |
506 * | state | or
507 * | ------------- state -------------- |
508 *
509 * We need to split the extent we found, and may flip
510 * bits on second half.
511 *
512 * If the extent we found extends past our range, we
513 * just split and search again. It'll get split again
514 * the next time though.
515 *
516 * If the extent we found is inside our range, we clear
517 * the desired bit on it.
518 */
519
520 if (state->start < start) {
521 if (!prealloc)
522 prealloc = alloc_extent_state(GFP_ATOMIC);
523 err = split_state(tree, state, prealloc, start);
524 BUG_ON(err == -EEXIST);
525 prealloc = NULL;
526 if (err)
527 goto out;
528 if (state->end <= end) {
529 start = state->end + 1;
530 set |= clear_state_bit(tree, state, bits,
531 wake, delete);
532 } else {
533 start = state->start;
534 }
535 goto search_again;
536 }
537 /*
538 * | ---- desired range ---- |
539 * | state |
540 * We need to split the extent, and clear the bit
541 * on the first half
542 */
543 if (state->start <= end && state->end > end) {
544 if (!prealloc)
545 prealloc = alloc_extent_state(GFP_ATOMIC);
546 err = split_state(tree, state, prealloc, end + 1);
547 BUG_ON(err == -EEXIST);
548
549 if (wake)
550 wake_up(&state->wq);
551 set |= clear_state_bit(tree, prealloc, bits,
552 wake, delete);
553 prealloc = NULL;
554 goto out;
555 }
556
557 start = state->end + 1;
558 set |= clear_state_bit(tree, state, bits, wake, delete);
559 goto search_again;
560
561 out:
562 spin_unlock_irqrestore(&tree->lock, flags);
563 if (prealloc)
564 free_extent_state(prealloc);
565
566 return set;
567
568 search_again:
569 if (start > end)
570 goto out;
571 spin_unlock_irqrestore(&tree->lock, flags);
572 if (mask & __GFP_WAIT)
573 cond_resched();
574 goto again;
575 }
576 EXPORT_SYMBOL(clear_extent_bit);
577
578 static int wait_on_state(struct extent_io_tree *tree,
579 struct extent_state *state)
580 __releases(tree->lock)
581 __acquires(tree->lock)
582 {
583 DEFINE_WAIT(wait);
584 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
585 spin_unlock_irq(&tree->lock);
586 schedule();
587 spin_lock_irq(&tree->lock);
588 finish_wait(&state->wq, &wait);
589 return 0;
590 }
591
592 /*
593 * waits for one or more bits to clear on a range in the state tree.
594 * The range [start, end] is inclusive.
595 * The tree lock is taken by this function
596 */
597 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
598 {
599 struct extent_state *state;
600 struct rb_node *node;
601
602 spin_lock_irq(&tree->lock);
603 again:
604 while (1) {
605 /*
606 * this search will find all the extents that end after
607 * our range starts
608 */
609 node = tree_search(tree, start);
610 if (!node)
611 break;
612
613 state = rb_entry(node, struct extent_state, rb_node);
614
615 if (state->start > end)
616 goto out;
617
618 if (state->state & bits) {
619 start = state->start;
620 atomic_inc(&state->refs);
621 wait_on_state(tree, state);
622 free_extent_state(state);
623 goto again;
624 }
625 start = state->end + 1;
626
627 if (start > end)
628 break;
629
630 if (need_resched()) {
631 spin_unlock_irq(&tree->lock);
632 cond_resched();
633 spin_lock_irq(&tree->lock);
634 }
635 }
636 out:
637 spin_unlock_irq(&tree->lock);
638 return 0;
639 }
640 EXPORT_SYMBOL(wait_extent_bit);
641
642 static void set_state_bits(struct extent_io_tree *tree,
643 struct extent_state *state,
644 int bits)
645 {
646 if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
647 u64 range = state->end - state->start + 1;
648 tree->dirty_bytes += range;
649 }
650 set_state_cb(tree, state, bits);
651 state->state |= bits;
652 }
653
654 /*
655 * set some bits on a range in the tree. This may require allocations
656 * or sleeping, so the gfp mask is used to indicate what is allowed.
657 *
658 * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
659 * range already has the desired bits set. The start of the existing
660 * range is returned in failed_start in this case.
661 *
662 * [start, end] is inclusive
663 * This takes the tree lock.
664 */
665 static int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
666 int exclusive, u64 *failed_start, gfp_t mask)
667 {
668 struct extent_state *state;
669 struct extent_state *prealloc = NULL;
670 struct rb_node *node;
671 unsigned long flags;
672 int err = 0;
673 int set;
674 u64 last_start;
675 u64 last_end;
676 again:
677 if (!prealloc && (mask & __GFP_WAIT)) {
678 prealloc = alloc_extent_state(mask);
679 if (!prealloc)
680 return -ENOMEM;
681 }
682
683 spin_lock_irqsave(&tree->lock, flags);
684 /*
685 * this search will find all the extents that end after
686 * our range starts.
687 */
688 node = tree_search(tree, start);
689 if (!node) {
690 err = insert_state(tree, prealloc, start, end, bits);
691 prealloc = NULL;
692 BUG_ON(err == -EEXIST);
693 goto out;
694 }
695
696 state = rb_entry(node, struct extent_state, rb_node);
697 last_start = state->start;
698 last_end = state->end;
699
700 /*
701 * | ---- desired range ---- |
702 * | state |
703 *
704 * Just lock what we found and keep going
705 */
706 if (state->start == start && state->end <= end) {
707 set = state->state & bits;
708 if (set && exclusive) {
709 *failed_start = state->start;
710 err = -EEXIST;
711 goto out;
712 }
713 set_state_bits(tree, state, bits);
714 start = state->end + 1;
715 merge_state(tree, state);
716 goto search_again;
717 }
718
719 /*
720 * | ---- desired range ---- |
721 * | state |
722 * or
723 * | ------------- state -------------- |
724 *
725 * We need to split the extent we found, and may flip bits on
726 * second half.
727 *
728 * If the extent we found extends past our
729 * range, we just split and search again. It'll get split
730 * again the next time though.
731 *
732 * If the extent we found is inside our range, we set the
733 * desired bit on it.
734 */
735 if (state->start < start) {
736 set = state->state & bits;
737 if (exclusive && set) {
738 *failed_start = start;
739 err = -EEXIST;
740 goto out;
741 }
742 err = split_state(tree, state, prealloc, start);
743 BUG_ON(err == -EEXIST);
744 prealloc = NULL;
745 if (err)
746 goto out;
747 if (state->end <= end) {
748 set_state_bits(tree, state, bits);
749 start = state->end + 1;
750 merge_state(tree, state);
751 } else {
752 start = state->start;
753 }
754 goto search_again;
755 }
756 /*
757 * | ---- desired range ---- |
758 * | state | or | state |
759 *
760 * There's a hole, we need to insert something in it and
761 * ignore the extent we found.
762 */
763 if (state->start > start) {
764 u64 this_end;
765 if (end < last_start)
766 this_end = end;
767 else
768 this_end = last_start -1;
769 err = insert_state(tree, prealloc, start, this_end,
770 bits);
771 prealloc = NULL;
772 BUG_ON(err == -EEXIST);
773 if (err)
774 goto out;
775 start = this_end + 1;
776 goto search_again;
777 }
778 /*
779 * | ---- desired range ---- |
780 * | state |
781 * We need to split the extent, and set the bit
782 * on the first half
783 */
784 if (state->start <= end && state->end > end) {
785 set = state->state & bits;
786 if (exclusive && set) {
787 *failed_start = start;
788 err = -EEXIST;
789 goto out;
790 }
791 err = split_state(tree, state, prealloc, end + 1);
792 BUG_ON(err == -EEXIST);
793
794 set_state_bits(tree, prealloc, bits);
795 merge_state(tree, prealloc);
796 prealloc = NULL;
797 goto out;
798 }
799
800 goto search_again;
801
802 out:
803 spin_unlock_irqrestore(&tree->lock, flags);
804 if (prealloc)
805 free_extent_state(prealloc);
806
807 return err;
808
809 search_again:
810 if (start > end)
811 goto out;
812 spin_unlock_irqrestore(&tree->lock, flags);
813 if (mask & __GFP_WAIT)
814 cond_resched();
815 goto again;
816 }
817 EXPORT_SYMBOL(set_extent_bit);
818
819 /* wrappers around set/clear extent bit */
820 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
821 gfp_t mask)
822 {
823 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
824 mask);
825 }
826 EXPORT_SYMBOL(set_extent_dirty);
827
828 int set_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end,
829 gfp_t mask)
830 {
831 return set_extent_bit(tree, start, end, EXTENT_ORDERED, 0, NULL, mask);
832 }
833 EXPORT_SYMBOL(set_extent_ordered);
834
835 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
836 int bits, gfp_t mask)
837 {
838 return set_extent_bit(tree, start, end, bits, 0, NULL,
839 mask);
840 }
841 EXPORT_SYMBOL(set_extent_bits);
842
843 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
844 int bits, gfp_t mask)
845 {
846 return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
847 }
848 EXPORT_SYMBOL(clear_extent_bits);
849
850 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
851 gfp_t mask)
852 {
853 return set_extent_bit(tree, start, end,
854 EXTENT_DELALLOC | EXTENT_DIRTY,
855 0, NULL, mask);
856 }
857 EXPORT_SYMBOL(set_extent_delalloc);
858
859 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
860 gfp_t mask)
861 {
862 return clear_extent_bit(tree, start, end,
863 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
864 }
865 EXPORT_SYMBOL(clear_extent_dirty);
866
867 int clear_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end,
868 gfp_t mask)
869 {
870 return clear_extent_bit(tree, start, end, EXTENT_ORDERED, 1, 0, mask);
871 }
872 EXPORT_SYMBOL(clear_extent_ordered);
873
874 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
875 gfp_t mask)
876 {
877 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
878 mask);
879 }
880 EXPORT_SYMBOL(set_extent_new);
881
882 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
883 gfp_t mask)
884 {
885 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
886 }
887
888 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
889 gfp_t mask)
890 {
891 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
892 mask);
893 }
894 EXPORT_SYMBOL(set_extent_uptodate);
895
896 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
897 gfp_t mask)
898 {
899 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
900 }
901
902 static int set_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
903 gfp_t mask)
904 {
905 return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
906 0, NULL, mask);
907 }
908
909 static int clear_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
910 gfp_t mask)
911 {
912 return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
913 }
914
915 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
916 {
917 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
918 }
919 EXPORT_SYMBOL(wait_on_extent_writeback);
920
921 /*
922 * either insert or lock state struct between start and end use mask to tell
923 * us if waiting is desired.
924 */
925 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
926 {
927 int err;
928 u64 failed_start;
929 while (1) {
930 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
931 &failed_start, mask);
932 if (err == -EEXIST && (mask & __GFP_WAIT)) {
933 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
934 start = failed_start;
935 } else {
936 break;
937 }
938 WARN_ON(start > end);
939 }
940 return err;
941 }
942 EXPORT_SYMBOL(lock_extent);
943
944 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
945 gfp_t mask)
946 {
947 int err;
948 u64 failed_start;
949
950 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
951 &failed_start, mask);
952 if (err == -EEXIST) {
953 if (failed_start > start)
954 clear_extent_bit(tree, start, failed_start - 1,
955 EXTENT_LOCKED, 1, 0, mask);
956 return 0;
957 }
958 return 1;
959 }
960 EXPORT_SYMBOL(try_lock_extent);
961
962 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
963 gfp_t mask)
964 {
965 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
966 }
967 EXPORT_SYMBOL(unlock_extent);
968
969 /*
970 * helper function to set pages and extents in the tree dirty
971 */
972 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
973 {
974 unsigned long index = start >> PAGE_CACHE_SHIFT;
975 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
976 struct page *page;
977
978 while (index <= end_index) {
979 page = find_get_page(tree->mapping, index);
980 BUG_ON(!page);
981 __set_page_dirty_nobuffers(page);
982 page_cache_release(page);
983 index++;
984 }
985 set_extent_dirty(tree, start, end, GFP_NOFS);
986 return 0;
987 }
988 EXPORT_SYMBOL(set_range_dirty);
989
990 /*
991 * helper function to set both pages and extents in the tree writeback
992 */
993 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
994 {
995 unsigned long index = start >> PAGE_CACHE_SHIFT;
996 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
997 struct page *page;
998
999 while (index <= end_index) {
1000 page = find_get_page(tree->mapping, index);
1001 BUG_ON(!page);
1002 set_page_writeback(page);
1003 page_cache_release(page);
1004 index++;
1005 }
1006 set_extent_writeback(tree, start, end, GFP_NOFS);
1007 return 0;
1008 }
1009
1010 /*
1011 * find the first offset in the io tree with 'bits' set. zero is
1012 * returned if we find something, and *start_ret and *end_ret are
1013 * set to reflect the state struct that was found.
1014 *
1015 * If nothing was found, 1 is returned, < 0 on error
1016 */
1017 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1018 u64 *start_ret, u64 *end_ret, int bits)
1019 {
1020 struct rb_node *node;
1021 struct extent_state *state;
1022 int ret = 1;
1023
1024 spin_lock_irq(&tree->lock);
1025 /*
1026 * this search will find all the extents that end after
1027 * our range starts.
1028 */
1029 node = tree_search(tree, start);
1030 if (!node) {
1031 goto out;
1032 }
1033
1034 while(1) {
1035 state = rb_entry(node, struct extent_state, rb_node);
1036 if (state->end >= start && (state->state & bits)) {
1037 *start_ret = state->start;
1038 *end_ret = state->end;
1039 ret = 0;
1040 break;
1041 }
1042 node = rb_next(node);
1043 if (!node)
1044 break;
1045 }
1046 out:
1047 spin_unlock_irq(&tree->lock);
1048 return ret;
1049 }
1050 EXPORT_SYMBOL(find_first_extent_bit);
1051
1052 /* find the first state struct with 'bits' set after 'start', and
1053 * return it. tree->lock must be held. NULL will returned if
1054 * nothing was found after 'start'
1055 */
1056 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1057 u64 start, int bits)
1058 {
1059 struct rb_node *node;
1060 struct extent_state *state;
1061
1062 /*
1063 * this search will find all the extents that end after
1064 * our range starts.
1065 */
1066 node = tree_search(tree, start);
1067 if (!node) {
1068 goto out;
1069 }
1070
1071 while(1) {
1072 state = rb_entry(node, struct extent_state, rb_node);
1073 if (state->end >= start && (state->state & bits)) {
1074 return state;
1075 }
1076 node = rb_next(node);
1077 if (!node)
1078 break;
1079 }
1080 out:
1081 return NULL;
1082 }
1083 EXPORT_SYMBOL(find_first_extent_bit_state);
1084
1085 /*
1086 * find a contiguous range of bytes in the file marked as delalloc, not
1087 * more than 'max_bytes'. start and end are used to return the range,
1088 *
1089 * 1 is returned if we find something, 0 if nothing was in the tree
1090 */
1091 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1092 u64 *start, u64 *end, u64 max_bytes)
1093 {
1094 struct rb_node *node;
1095 struct extent_state *state;
1096 u64 cur_start = *start;
1097 u64 found = 0;
1098 u64 total_bytes = 0;
1099
1100 spin_lock_irq(&tree->lock);
1101
1102 /*
1103 * this search will find all the extents that end after
1104 * our range starts.
1105 */
1106 node = tree_search(tree, cur_start);
1107 if (!node) {
1108 if (!found)
1109 *end = (u64)-1;
1110 goto out;
1111 }
1112
1113 while(1) {
1114 state = rb_entry(node, struct extent_state, rb_node);
1115 if (found && (state->start != cur_start ||
1116 (state->state & EXTENT_BOUNDARY))) {
1117 goto out;
1118 }
1119 if (!(state->state & EXTENT_DELALLOC)) {
1120 if (!found)
1121 *end = state->end;
1122 goto out;
1123 }
1124 if (!found)
1125 *start = state->start;
1126 found++;
1127 *end = state->end;
1128 cur_start = state->end + 1;
1129 node = rb_next(node);
1130 if (!node)
1131 break;
1132 total_bytes += state->end - state->start + 1;
1133 if (total_bytes >= max_bytes)
1134 break;
1135 }
1136 out:
1137 spin_unlock_irq(&tree->lock);
1138 return found;
1139 }
1140
1141 static noinline int __unlock_for_delalloc(struct inode *inode,
1142 struct page *locked_page,
1143 u64 start, u64 end)
1144 {
1145 int ret;
1146 struct page *pages[16];
1147 unsigned long index = start >> PAGE_CACHE_SHIFT;
1148 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1149 unsigned long nr_pages = end_index - index + 1;
1150 int i;
1151
1152 if (index == locked_page->index && end_index == index)
1153 return 0;
1154
1155 while(nr_pages > 0) {
1156 ret = find_get_pages_contig(inode->i_mapping, index,
1157 min_t(unsigned long, nr_pages,
1158 ARRAY_SIZE(pages)), pages);
1159 for (i = 0; i < ret; i++) {
1160 if (pages[i] != locked_page)
1161 unlock_page(pages[i]);
1162 page_cache_release(pages[i]);
1163 }
1164 nr_pages -= ret;
1165 index += ret;
1166 cond_resched();
1167 }
1168 return 0;
1169 }
1170
1171 static noinline int lock_delalloc_pages(struct inode *inode,
1172 struct page *locked_page,
1173 u64 delalloc_start,
1174 u64 delalloc_end)
1175 {
1176 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1177 unsigned long start_index = index;
1178 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1179 unsigned long pages_locked = 0;
1180 struct page *pages[16];
1181 unsigned long nrpages;
1182 int ret;
1183 int i;
1184
1185 /* the caller is responsible for locking the start index */
1186 if (index == locked_page->index && index == end_index)
1187 return 0;
1188
1189 /* skip the page at the start index */
1190 nrpages = end_index - index + 1;
1191 while(nrpages > 0) {
1192 ret = find_get_pages_contig(inode->i_mapping, index,
1193 min_t(unsigned long,
1194 nrpages, ARRAY_SIZE(pages)), pages);
1195 if (ret == 0) {
1196 ret = -EAGAIN;
1197 goto done;
1198 }
1199 /* now we have an array of pages, lock them all */
1200 for (i = 0; i < ret; i++) {
1201 /*
1202 * the caller is taking responsibility for
1203 * locked_page
1204 */
1205 if (pages[i] != locked_page) {
1206 lock_page(pages[i]);
1207 if (!PageDirty(pages[i]) ||
1208 pages[i]->mapping != inode->i_mapping) {
1209 ret = -EAGAIN;
1210 unlock_page(pages[i]);
1211 page_cache_release(pages[i]);
1212 goto done;
1213 }
1214 }
1215 page_cache_release(pages[i]);
1216 pages_locked++;
1217 }
1218 nrpages -= ret;
1219 index += ret;
1220 cond_resched();
1221 }
1222 ret = 0;
1223 done:
1224 if (ret && pages_locked) {
1225 __unlock_for_delalloc(inode, locked_page,
1226 delalloc_start,
1227 ((u64)(start_index + pages_locked - 1)) <<
1228 PAGE_CACHE_SHIFT);
1229 }
1230 return ret;
1231 }
1232
1233 /*
1234 * find a contiguous range of bytes in the file marked as delalloc, not
1235 * more than 'max_bytes'. start and end are used to return the range,
1236 *
1237 * 1 is returned if we find something, 0 if nothing was in the tree
1238 */
1239 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1240 struct extent_io_tree *tree,
1241 struct page *locked_page,
1242 u64 *start, u64 *end,
1243 u64 max_bytes)
1244 {
1245 u64 delalloc_start;
1246 u64 delalloc_end;
1247 u64 found;
1248 int ret;
1249 int loops = 0;
1250
1251 again:
1252 /* step one, find a bunch of delalloc bytes starting at start */
1253 delalloc_start = *start;
1254 delalloc_end = 0;
1255 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1256 max_bytes);
1257 if (!found || delalloc_end <= *start) {
1258 *start = delalloc_start;
1259 *end = delalloc_end;
1260 return found;
1261 }
1262
1263 /*
1264 * start comes from the offset of locked_page. We have to lock
1265 * pages in order, so we can't process delalloc bytes before
1266 * locked_page
1267 */
1268 if (delalloc_start < *start) {
1269 delalloc_start = *start;
1270 }
1271
1272 /*
1273 * make sure to limit the number of pages we try to lock down
1274 * if we're looping.
1275 */
1276 if (delalloc_end + 1 - delalloc_start > max_bytes && loops) {
1277 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1278 }
1279 /* step two, lock all the pages after the page that has start */
1280 ret = lock_delalloc_pages(inode, locked_page,
1281 delalloc_start, delalloc_end);
1282 if (ret == -EAGAIN) {
1283 /* some of the pages are gone, lets avoid looping by
1284 * shortening the size of the delalloc range we're searching
1285 */
1286 if (!loops) {
1287 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1288 max_bytes = PAGE_CACHE_SIZE - offset;
1289 loops = 1;
1290 goto again;
1291 } else {
1292 found = 0;
1293 goto out_failed;
1294 }
1295 }
1296 BUG_ON(ret);
1297
1298 /* step three, lock the state bits for the whole range */
1299 lock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS);
1300
1301 /* then test to make sure it is all still delalloc */
1302 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1303 EXTENT_DELALLOC, 1);
1304 if (!ret) {
1305 unlock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS);
1306 __unlock_for_delalloc(inode, locked_page,
1307 delalloc_start, delalloc_end);
1308 cond_resched();
1309 goto again;
1310 }
1311 *start = delalloc_start;
1312 *end = delalloc_end;
1313 out_failed:
1314 return found;
1315 }
1316
1317 int extent_clear_unlock_delalloc(struct inode *inode,
1318 struct extent_io_tree *tree,
1319 u64 start, u64 end, struct page *locked_page,
1320 int unlock_pages,
1321 int clear_unlock,
1322 int clear_delalloc, int clear_dirty,
1323 int set_writeback,
1324 int end_writeback)
1325 {
1326 int ret;
1327 struct page *pages[16];
1328 unsigned long index = start >> PAGE_CACHE_SHIFT;
1329 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1330 unsigned long nr_pages = end_index - index + 1;
1331 int i;
1332 int clear_bits = 0;
1333
1334 if (clear_unlock)
1335 clear_bits |= EXTENT_LOCKED;
1336 if (clear_dirty)
1337 clear_bits |= EXTENT_DIRTY;
1338
1339 if (clear_delalloc)
1340 clear_bits |= EXTENT_DELALLOC;
1341
1342 clear_extent_bit(tree, start, end, clear_bits, 1, 0, GFP_NOFS);
1343 if (!(unlock_pages || clear_dirty || set_writeback || end_writeback))
1344 return 0;
1345
1346 while(nr_pages > 0) {
1347 ret = find_get_pages_contig(inode->i_mapping, index,
1348 min_t(unsigned long,
1349 nr_pages, ARRAY_SIZE(pages)), pages);
1350 for (i = 0; i < ret; i++) {
1351 if (pages[i] == locked_page) {
1352 page_cache_release(pages[i]);
1353 continue;
1354 }
1355 if (clear_dirty)
1356 clear_page_dirty_for_io(pages[i]);
1357 if (set_writeback)
1358 set_page_writeback(pages[i]);
1359 if (end_writeback)
1360 end_page_writeback(pages[i]);
1361 if (unlock_pages)
1362 unlock_page(pages[i]);
1363 page_cache_release(pages[i]);
1364 }
1365 nr_pages -= ret;
1366 index += ret;
1367 cond_resched();
1368 }
1369 return 0;
1370 }
1371 EXPORT_SYMBOL(extent_clear_unlock_delalloc);
1372
1373 /*
1374 * count the number of bytes in the tree that have a given bit(s)
1375 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1376 * cached. The total number found is returned.
1377 */
1378 u64 count_range_bits(struct extent_io_tree *tree,
1379 u64 *start, u64 search_end, u64 max_bytes,
1380 unsigned long bits)
1381 {
1382 struct rb_node *node;
1383 struct extent_state *state;
1384 u64 cur_start = *start;
1385 u64 total_bytes = 0;
1386 int found = 0;
1387
1388 if (search_end <= cur_start) {
1389 printk("search_end %Lu start %Lu\n", search_end, cur_start);
1390 WARN_ON(1);
1391 return 0;
1392 }
1393
1394 spin_lock_irq(&tree->lock);
1395 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1396 total_bytes = tree->dirty_bytes;
1397 goto out;
1398 }
1399 /*
1400 * this search will find all the extents that end after
1401 * our range starts.
1402 */
1403 node = tree_search(tree, cur_start);
1404 if (!node) {
1405 goto out;
1406 }
1407
1408 while(1) {
1409 state = rb_entry(node, struct extent_state, rb_node);
1410 if (state->start > search_end)
1411 break;
1412 if (state->end >= cur_start && (state->state & bits)) {
1413 total_bytes += min(search_end, state->end) + 1 -
1414 max(cur_start, state->start);
1415 if (total_bytes >= max_bytes)
1416 break;
1417 if (!found) {
1418 *start = state->start;
1419 found = 1;
1420 }
1421 }
1422 node = rb_next(node);
1423 if (!node)
1424 break;
1425 }
1426 out:
1427 spin_unlock_irq(&tree->lock);
1428 return total_bytes;
1429 }
1430
1431 #if 0
1432 /*
1433 * helper function to lock both pages and extents in the tree.
1434 * pages must be locked first.
1435 */
1436 static int lock_range(struct extent_io_tree *tree, u64 start, u64 end)
1437 {
1438 unsigned long index = start >> PAGE_CACHE_SHIFT;
1439 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1440 struct page *page;
1441 int err;
1442
1443 while (index <= end_index) {
1444 page = grab_cache_page(tree->mapping, index);
1445 if (!page) {
1446 err = -ENOMEM;
1447 goto failed;
1448 }
1449 if (IS_ERR(page)) {
1450 err = PTR_ERR(page);
1451 goto failed;
1452 }
1453 index++;
1454 }
1455 lock_extent(tree, start, end, GFP_NOFS);
1456 return 0;
1457
1458 failed:
1459 /*
1460 * we failed above in getting the page at 'index', so we undo here
1461 * up to but not including the page at 'index'
1462 */
1463 end_index = index;
1464 index = start >> PAGE_CACHE_SHIFT;
1465 while (index < end_index) {
1466 page = find_get_page(tree->mapping, index);
1467 unlock_page(page);
1468 page_cache_release(page);
1469 index++;
1470 }
1471 return err;
1472 }
1473
1474 /*
1475 * helper function to unlock both pages and extents in the tree.
1476 */
1477 static int unlock_range(struct extent_io_tree *tree, u64 start, u64 end)
1478 {
1479 unsigned long index = start >> PAGE_CACHE_SHIFT;
1480 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1481 struct page *page;
1482
1483 while (index <= end_index) {
1484 page = find_get_page(tree->mapping, index);
1485 unlock_page(page);
1486 page_cache_release(page);
1487 index++;
1488 }
1489 unlock_extent(tree, start, end, GFP_NOFS);
1490 return 0;
1491 }
1492 #endif
1493
1494 /*
1495 * set the private field for a given byte offset in the tree. If there isn't
1496 * an extent_state there already, this does nothing.
1497 */
1498 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1499 {
1500 struct rb_node *node;
1501 struct extent_state *state;
1502 int ret = 0;
1503
1504 spin_lock_irq(&tree->lock);
1505 /*
1506 * this search will find all the extents that end after
1507 * our range starts.
1508 */
1509 node = tree_search(tree, start);
1510 if (!node) {
1511 ret = -ENOENT;
1512 goto out;
1513 }
1514 state = rb_entry(node, struct extent_state, rb_node);
1515 if (state->start != start) {
1516 ret = -ENOENT;
1517 goto out;
1518 }
1519 state->private = private;
1520 out:
1521 spin_unlock_irq(&tree->lock);
1522 return ret;
1523 }
1524
1525 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1526 {
1527 struct rb_node *node;
1528 struct extent_state *state;
1529 int ret = 0;
1530
1531 spin_lock_irq(&tree->lock);
1532 /*
1533 * this search will find all the extents that end after
1534 * our range starts.
1535 */
1536 node = tree_search(tree, start);
1537 if (!node) {
1538 ret = -ENOENT;
1539 goto out;
1540 }
1541 state = rb_entry(node, struct extent_state, rb_node);
1542 if (state->start != start) {
1543 ret = -ENOENT;
1544 goto out;
1545 }
1546 *private = state->private;
1547 out:
1548 spin_unlock_irq(&tree->lock);
1549 return ret;
1550 }
1551
1552 /*
1553 * searches a range in the state tree for a given mask.
1554 * If 'filled' == 1, this returns 1 only if every extent in the tree
1555 * has the bits set. Otherwise, 1 is returned if any bit in the
1556 * range is found set.
1557 */
1558 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1559 int bits, int filled)
1560 {
1561 struct extent_state *state = NULL;
1562 struct rb_node *node;
1563 int bitset = 0;
1564 unsigned long flags;
1565
1566 spin_lock_irqsave(&tree->lock, flags);
1567 node = tree_search(tree, start);
1568 while (node && start <= end) {
1569 state = rb_entry(node, struct extent_state, rb_node);
1570
1571 if (filled && state->start > start) {
1572 bitset = 0;
1573 break;
1574 }
1575
1576 if (state->start > end)
1577 break;
1578
1579 if (state->state & bits) {
1580 bitset = 1;
1581 if (!filled)
1582 break;
1583 } else if (filled) {
1584 bitset = 0;
1585 break;
1586 }
1587 start = state->end + 1;
1588 if (start > end)
1589 break;
1590 node = rb_next(node);
1591 if (!node) {
1592 if (filled)
1593 bitset = 0;
1594 break;
1595 }
1596 }
1597 spin_unlock_irqrestore(&tree->lock, flags);
1598 return bitset;
1599 }
1600 EXPORT_SYMBOL(test_range_bit);
1601
1602 /*
1603 * helper function to set a given page up to date if all the
1604 * extents in the tree for that page are up to date
1605 */
1606 static int check_page_uptodate(struct extent_io_tree *tree,
1607 struct page *page)
1608 {
1609 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1610 u64 end = start + PAGE_CACHE_SIZE - 1;
1611 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1612 SetPageUptodate(page);
1613 return 0;
1614 }
1615
1616 /*
1617 * helper function to unlock a page if all the extents in the tree
1618 * for that page are unlocked
1619 */
1620 static int check_page_locked(struct extent_io_tree *tree,
1621 struct page *page)
1622 {
1623 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1624 u64 end = start + PAGE_CACHE_SIZE - 1;
1625 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1626 unlock_page(page);
1627 return 0;
1628 }
1629
1630 /*
1631 * helper function to end page writeback if all the extents
1632 * in the tree for that page are done with writeback
1633 */
1634 static int check_page_writeback(struct extent_io_tree *tree,
1635 struct page *page)
1636 {
1637 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1638 u64 end = start + PAGE_CACHE_SIZE - 1;
1639 if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1640 end_page_writeback(page);
1641 return 0;
1642 }
1643
1644 /* lots and lots of room for performance fixes in the end_bio funcs */
1645
1646 /*
1647 * after a writepage IO is done, we need to:
1648 * clear the uptodate bits on error
1649 * clear the writeback bits in the extent tree for this IO
1650 * end_page_writeback if the page has no more pending IO
1651 *
1652 * Scheduling is not allowed, so the extent state tree is expected
1653 * to have one and only one object corresponding to this IO.
1654 */
1655 static void end_bio_extent_writepage(struct bio *bio, int err)
1656 {
1657 int uptodate = err == 0;
1658 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1659 struct extent_io_tree *tree;
1660 u64 start;
1661 u64 end;
1662 int whole_page;
1663 int ret;
1664
1665 do {
1666 struct page *page = bvec->bv_page;
1667 tree = &BTRFS_I(page->mapping->host)->io_tree;
1668
1669 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1670 bvec->bv_offset;
1671 end = start + bvec->bv_len - 1;
1672
1673 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1674 whole_page = 1;
1675 else
1676 whole_page = 0;
1677
1678 if (--bvec >= bio->bi_io_vec)
1679 prefetchw(&bvec->bv_page->flags);
1680 if (tree->ops && tree->ops->writepage_end_io_hook) {
1681 ret = tree->ops->writepage_end_io_hook(page, start,
1682 end, NULL, uptodate);
1683 if (ret)
1684 uptodate = 0;
1685 }
1686
1687 if (!uptodate && tree->ops &&
1688 tree->ops->writepage_io_failed_hook) {
1689 ret = tree->ops->writepage_io_failed_hook(bio, page,
1690 start, end, NULL);
1691 if (ret == 0) {
1692 uptodate = (err == 0);
1693 continue;
1694 }
1695 }
1696
1697 if (!uptodate) {
1698 clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1699 ClearPageUptodate(page);
1700 SetPageError(page);
1701 }
1702
1703 clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1704
1705 if (whole_page)
1706 end_page_writeback(page);
1707 else
1708 check_page_writeback(tree, page);
1709 } while (bvec >= bio->bi_io_vec);
1710
1711 bio_put(bio);
1712 }
1713
1714 /*
1715 * after a readpage IO is done, we need to:
1716 * clear the uptodate bits on error
1717 * set the uptodate bits if things worked
1718 * set the page up to date if all extents in the tree are uptodate
1719 * clear the lock bit in the extent tree
1720 * unlock the page if there are no other extents locked for it
1721 *
1722 * Scheduling is not allowed, so the extent state tree is expected
1723 * to have one and only one object corresponding to this IO.
1724 */
1725 static void end_bio_extent_readpage(struct bio *bio, int err)
1726 {
1727 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1728 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1729 struct extent_io_tree *tree;
1730 u64 start;
1731 u64 end;
1732 int whole_page;
1733 int ret;
1734
1735 if (err)
1736 uptodate = 0;
1737
1738 do {
1739 struct page *page = bvec->bv_page;
1740 tree = &BTRFS_I(page->mapping->host)->io_tree;
1741
1742 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1743 bvec->bv_offset;
1744 end = start + bvec->bv_len - 1;
1745
1746 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1747 whole_page = 1;
1748 else
1749 whole_page = 0;
1750
1751 if (--bvec >= bio->bi_io_vec)
1752 prefetchw(&bvec->bv_page->flags);
1753
1754 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1755 ret = tree->ops->readpage_end_io_hook(page, start, end,
1756 NULL);
1757 if (ret)
1758 uptodate = 0;
1759 }
1760 if (!uptodate && tree->ops &&
1761 tree->ops->readpage_io_failed_hook) {
1762 ret = tree->ops->readpage_io_failed_hook(bio, page,
1763 start, end, NULL);
1764 if (ret == 0) {
1765 uptodate =
1766 test_bit(BIO_UPTODATE, &bio->bi_flags);
1767 if (err)
1768 uptodate = 0;
1769 continue;
1770 }
1771 }
1772
1773 if (uptodate) {
1774 set_extent_uptodate(tree, start, end,
1775 GFP_ATOMIC);
1776 }
1777 unlock_extent(tree, start, end, GFP_ATOMIC);
1778
1779 if (whole_page) {
1780 if (uptodate) {
1781 SetPageUptodate(page);
1782 } else {
1783 ClearPageUptodate(page);
1784 SetPageError(page);
1785 }
1786 unlock_page(page);
1787 } else {
1788 if (uptodate) {
1789 check_page_uptodate(tree, page);
1790 } else {
1791 ClearPageUptodate(page);
1792 SetPageError(page);
1793 }
1794 check_page_locked(tree, page);
1795 }
1796 } while (bvec >= bio->bi_io_vec);
1797
1798 bio_put(bio);
1799 }
1800
1801 /*
1802 * IO done from prepare_write is pretty simple, we just unlock
1803 * the structs in the extent tree when done, and set the uptodate bits
1804 * as appropriate.
1805 */
1806 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1807 {
1808 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1809 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1810 struct extent_io_tree *tree;
1811 u64 start;
1812 u64 end;
1813
1814 do {
1815 struct page *page = bvec->bv_page;
1816 tree = &BTRFS_I(page->mapping->host)->io_tree;
1817
1818 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1819 bvec->bv_offset;
1820 end = start + bvec->bv_len - 1;
1821
1822 if (--bvec >= bio->bi_io_vec)
1823 prefetchw(&bvec->bv_page->flags);
1824
1825 if (uptodate) {
1826 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1827 } else {
1828 ClearPageUptodate(page);
1829 SetPageError(page);
1830 }
1831
1832 unlock_extent(tree, start, end, GFP_ATOMIC);
1833
1834 } while (bvec >= bio->bi_io_vec);
1835
1836 bio_put(bio);
1837 }
1838
1839 static struct bio *
1840 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1841 gfp_t gfp_flags)
1842 {
1843 struct bio *bio;
1844
1845 bio = bio_alloc(gfp_flags, nr_vecs);
1846
1847 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1848 while (!bio && (nr_vecs /= 2))
1849 bio = bio_alloc(gfp_flags, nr_vecs);
1850 }
1851
1852 if (bio) {
1853 bio->bi_size = 0;
1854 bio->bi_bdev = bdev;
1855 bio->bi_sector = first_sector;
1856 }
1857 return bio;
1858 }
1859
1860 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1861 unsigned long bio_flags)
1862 {
1863 int ret = 0;
1864 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1865 struct page *page = bvec->bv_page;
1866 struct extent_io_tree *tree = bio->bi_private;
1867 u64 start;
1868 u64 end;
1869
1870 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1871 end = start + bvec->bv_len - 1;
1872
1873 bio->bi_private = NULL;
1874
1875 bio_get(bio);
1876
1877 if (tree->ops && tree->ops->submit_bio_hook)
1878 tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1879 mirror_num, bio_flags);
1880 else
1881 submit_bio(rw, bio);
1882 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1883 ret = -EOPNOTSUPP;
1884 bio_put(bio);
1885 return ret;
1886 }
1887
1888 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1889 struct page *page, sector_t sector,
1890 size_t size, unsigned long offset,
1891 struct block_device *bdev,
1892 struct bio **bio_ret,
1893 unsigned long max_pages,
1894 bio_end_io_t end_io_func,
1895 int mirror_num,
1896 unsigned long prev_bio_flags,
1897 unsigned long bio_flags)
1898 {
1899 int ret = 0;
1900 struct bio *bio;
1901 int nr;
1902 int contig = 0;
1903 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1904 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1905 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1906
1907 if (bio_ret && *bio_ret) {
1908 bio = *bio_ret;
1909 if (old_compressed)
1910 contig = bio->bi_sector == sector;
1911 else
1912 contig = bio->bi_sector + (bio->bi_size >> 9) ==
1913 sector;
1914
1915 if (prev_bio_flags != bio_flags || !contig ||
1916 (tree->ops && tree->ops->merge_bio_hook &&
1917 tree->ops->merge_bio_hook(page, offset, page_size, bio,
1918 bio_flags)) ||
1919 bio_add_page(bio, page, page_size, offset) < page_size) {
1920 ret = submit_one_bio(rw, bio, mirror_num,
1921 prev_bio_flags);
1922 bio = NULL;
1923 } else {
1924 return 0;
1925 }
1926 }
1927 if (this_compressed)
1928 nr = BIO_MAX_PAGES;
1929 else
1930 nr = bio_get_nr_vecs(bdev);
1931
1932 bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1933 if (!bio) {
1934 printk("failed to allocate bio nr %d\n", nr);
1935 }
1936
1937 bio_add_page(bio, page, page_size, offset);
1938 bio->bi_end_io = end_io_func;
1939 bio->bi_private = tree;
1940
1941 if (bio_ret) {
1942 *bio_ret = bio;
1943 } else {
1944 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1945 }
1946
1947 return ret;
1948 }
1949
1950 void set_page_extent_mapped(struct page *page)
1951 {
1952 if (!PagePrivate(page)) {
1953 SetPagePrivate(page);
1954 page_cache_get(page);
1955 set_page_private(page, EXTENT_PAGE_PRIVATE);
1956 }
1957 }
1958 EXPORT_SYMBOL(set_page_extent_mapped);
1959
1960 static void set_page_extent_head(struct page *page, unsigned long len)
1961 {
1962 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1963 }
1964
1965 /*
1966 * basic readpage implementation. Locked extent state structs are inserted
1967 * into the tree that are removed when the IO is done (by the end_io
1968 * handlers)
1969 */
1970 static int __extent_read_full_page(struct extent_io_tree *tree,
1971 struct page *page,
1972 get_extent_t *get_extent,
1973 struct bio **bio, int mirror_num,
1974 unsigned long *bio_flags)
1975 {
1976 struct inode *inode = page->mapping->host;
1977 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1978 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1979 u64 end;
1980 u64 cur = start;
1981 u64 extent_offset;
1982 u64 last_byte = i_size_read(inode);
1983 u64 block_start;
1984 u64 cur_end;
1985 sector_t sector;
1986 struct extent_map *em;
1987 struct block_device *bdev;
1988 int ret;
1989 int nr = 0;
1990 size_t page_offset = 0;
1991 size_t iosize;
1992 size_t disk_io_size;
1993 size_t blocksize = inode->i_sb->s_blocksize;
1994 unsigned long this_bio_flag = 0;
1995
1996 set_page_extent_mapped(page);
1997
1998 end = page_end;
1999 lock_extent(tree, start, end, GFP_NOFS);
2000
2001 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2002 char *userpage;
2003 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2004
2005 if (zero_offset) {
2006 iosize = PAGE_CACHE_SIZE - zero_offset;
2007 userpage = kmap_atomic(page, KM_USER0);
2008 memset(userpage + zero_offset, 0, iosize);
2009 flush_dcache_page(page);
2010 kunmap_atomic(userpage, KM_USER0);
2011 }
2012 }
2013 while (cur <= end) {
2014 if (cur >= last_byte) {
2015 char *userpage;
2016 iosize = PAGE_CACHE_SIZE - page_offset;
2017 userpage = kmap_atomic(page, KM_USER0);
2018 memset(userpage + page_offset, 0, iosize);
2019 flush_dcache_page(page);
2020 kunmap_atomic(userpage, KM_USER0);
2021 set_extent_uptodate(tree, cur, cur + iosize - 1,
2022 GFP_NOFS);
2023 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2024 break;
2025 }
2026 em = get_extent(inode, page, page_offset, cur,
2027 end - cur + 1, 0);
2028 if (IS_ERR(em) || !em) {
2029 SetPageError(page);
2030 unlock_extent(tree, cur, end, GFP_NOFS);
2031 break;
2032 }
2033 extent_offset = cur - em->start;
2034 if (extent_map_end(em) <= cur) {
2035 printk("bad mapping em [%Lu %Lu] cur %Lu\n", em->start, extent_map_end(em), cur);
2036 }
2037 BUG_ON(extent_map_end(em) <= cur);
2038 if (end < cur) {
2039 printk("2bad mapping end %Lu cur %Lu\n", end, cur);
2040 }
2041 BUG_ON(end < cur);
2042
2043 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2044 this_bio_flag = EXTENT_BIO_COMPRESSED;
2045
2046 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2047 cur_end = min(extent_map_end(em) - 1, end);
2048 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2049 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2050 disk_io_size = em->block_len;
2051 sector = em->block_start >> 9;
2052 } else {
2053 sector = (em->block_start + extent_offset) >> 9;
2054 disk_io_size = iosize;
2055 }
2056 bdev = em->bdev;
2057 block_start = em->block_start;
2058 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2059 block_start = EXTENT_MAP_HOLE;
2060 free_extent_map(em);
2061 em = NULL;
2062
2063 /* we've found a hole, just zero and go on */
2064 if (block_start == EXTENT_MAP_HOLE) {
2065 char *userpage;
2066 userpage = kmap_atomic(page, KM_USER0);
2067 memset(userpage + page_offset, 0, iosize);
2068 flush_dcache_page(page);
2069 kunmap_atomic(userpage, KM_USER0);
2070
2071 set_extent_uptodate(tree, cur, cur + iosize - 1,
2072 GFP_NOFS);
2073 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2074 cur = cur + iosize;
2075 page_offset += iosize;
2076 continue;
2077 }
2078 /* the get_extent function already copied into the page */
2079 if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
2080 check_page_uptodate(tree, page);
2081 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2082 cur = cur + iosize;
2083 page_offset += iosize;
2084 continue;
2085 }
2086 /* we have an inline extent but it didn't get marked up
2087 * to date. Error out
2088 */
2089 if (block_start == EXTENT_MAP_INLINE) {
2090 SetPageError(page);
2091 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2092 cur = cur + iosize;
2093 page_offset += iosize;
2094 continue;
2095 }
2096
2097 ret = 0;
2098 if (tree->ops && tree->ops->readpage_io_hook) {
2099 ret = tree->ops->readpage_io_hook(page, cur,
2100 cur + iosize - 1);
2101 }
2102 if (!ret) {
2103 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2104 pnr -= page->index;
2105 ret = submit_extent_page(READ, tree, page,
2106 sector, disk_io_size, page_offset,
2107 bdev, bio, pnr,
2108 end_bio_extent_readpage, mirror_num,
2109 *bio_flags,
2110 this_bio_flag);
2111 nr++;
2112 *bio_flags = this_bio_flag;
2113 }
2114 if (ret)
2115 SetPageError(page);
2116 cur = cur + iosize;
2117 page_offset += iosize;
2118 }
2119 if (!nr) {
2120 if (!PageError(page))
2121 SetPageUptodate(page);
2122 unlock_page(page);
2123 }
2124 return 0;
2125 }
2126
2127 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2128 get_extent_t *get_extent)
2129 {
2130 struct bio *bio = NULL;
2131 unsigned long bio_flags = 0;
2132 int ret;
2133
2134 ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2135 &bio_flags);
2136 if (bio)
2137 submit_one_bio(READ, bio, 0, bio_flags);
2138 return ret;
2139 }
2140 EXPORT_SYMBOL(extent_read_full_page);
2141
2142 /*
2143 * the writepage semantics are similar to regular writepage. extent
2144 * records are inserted to lock ranges in the tree, and as dirty areas
2145 * are found, they are marked writeback. Then the lock bits are removed
2146 * and the end_io handler clears the writeback ranges
2147 */
2148 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2149 void *data)
2150 {
2151 struct inode *inode = page->mapping->host;
2152 struct extent_page_data *epd = data;
2153 struct extent_io_tree *tree = epd->tree;
2154 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2155 u64 delalloc_start;
2156 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2157 u64 end;
2158 u64 cur = start;
2159 u64 extent_offset;
2160 u64 last_byte = i_size_read(inode);
2161 u64 block_start;
2162 u64 iosize;
2163 u64 unlock_start;
2164 sector_t sector;
2165 struct extent_map *em;
2166 struct block_device *bdev;
2167 int ret;
2168 int nr = 0;
2169 size_t pg_offset = 0;
2170 size_t blocksize;
2171 loff_t i_size = i_size_read(inode);
2172 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2173 u64 nr_delalloc;
2174 u64 delalloc_end;
2175 int page_started;
2176 int compressed;
2177 unsigned long nr_written = 0;
2178
2179 WARN_ON(!PageLocked(page));
2180 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2181 if (page->index > end_index ||
2182 (page->index == end_index && !pg_offset)) {
2183 page->mapping->a_ops->invalidatepage(page, 0);
2184 unlock_page(page);
2185 return 0;
2186 }
2187
2188 if (page->index == end_index) {
2189 char *userpage;
2190
2191 userpage = kmap_atomic(page, KM_USER0);
2192 memset(userpage + pg_offset, 0,
2193 PAGE_CACHE_SIZE - pg_offset);
2194 kunmap_atomic(userpage, KM_USER0);
2195 flush_dcache_page(page);
2196 }
2197 pg_offset = 0;
2198
2199 set_page_extent_mapped(page);
2200
2201 delalloc_start = start;
2202 delalloc_end = 0;
2203 page_started = 0;
2204 if (!epd->extent_locked) {
2205 while(delalloc_end < page_end) {
2206 nr_delalloc = find_lock_delalloc_range(inode, tree,
2207 page,
2208 &delalloc_start,
2209 &delalloc_end,
2210 128 * 1024 * 1024);
2211 if (nr_delalloc == 0) {
2212 delalloc_start = delalloc_end + 1;
2213 continue;
2214 }
2215 tree->ops->fill_delalloc(inode, page, delalloc_start,
2216 delalloc_end, &page_started,
2217 &nr_written);
2218 delalloc_start = delalloc_end + 1;
2219 }
2220
2221 /* did the fill delalloc function already unlock and start
2222 * the IO?
2223 */
2224 if (page_started) {
2225 ret = 0;
2226 goto update_nr_written;
2227 }
2228 }
2229 lock_extent(tree, start, page_end, GFP_NOFS);
2230
2231 unlock_start = start;
2232
2233 if (tree->ops && tree->ops->writepage_start_hook) {
2234 ret = tree->ops->writepage_start_hook(page, start,
2235 page_end);
2236 if (ret == -EAGAIN) {
2237 unlock_extent(tree, start, page_end, GFP_NOFS);
2238 redirty_page_for_writepage(wbc, page);
2239 unlock_page(page);
2240 ret = 0;
2241 goto update_nr_written;
2242 }
2243 }
2244
2245 nr_written++;
2246
2247 end = page_end;
2248 if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
2249 printk("found delalloc bits after lock_extent\n");
2250 }
2251
2252 if (last_byte <= start) {
2253 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
2254 unlock_extent(tree, start, page_end, GFP_NOFS);
2255 if (tree->ops && tree->ops->writepage_end_io_hook)
2256 tree->ops->writepage_end_io_hook(page, start,
2257 page_end, NULL, 1);
2258 unlock_start = page_end + 1;
2259 goto done;
2260 }
2261
2262 set_extent_uptodate(tree, start, page_end, GFP_NOFS);
2263 blocksize = inode->i_sb->s_blocksize;
2264
2265 while (cur <= end) {
2266 if (cur >= last_byte) {
2267 clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
2268 unlock_extent(tree, unlock_start, page_end, GFP_NOFS);
2269 if (tree->ops && tree->ops->writepage_end_io_hook)
2270 tree->ops->writepage_end_io_hook(page, cur,
2271 page_end, NULL, 1);
2272 unlock_start = page_end + 1;
2273 break;
2274 }
2275 em = epd->get_extent(inode, page, pg_offset, cur,
2276 end - cur + 1, 1);
2277 if (IS_ERR(em) || !em) {
2278 SetPageError(page);
2279 break;
2280 }
2281
2282 extent_offset = cur - em->start;
2283 BUG_ON(extent_map_end(em) <= cur);
2284 BUG_ON(end < cur);
2285 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2286 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2287 sector = (em->block_start + extent_offset) >> 9;
2288 bdev = em->bdev;
2289 block_start = em->block_start;
2290 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2291 free_extent_map(em);
2292 em = NULL;
2293
2294 /*
2295 * compressed and inline extents are written through other
2296 * paths in the FS
2297 */
2298 if (compressed || block_start == EXTENT_MAP_HOLE ||
2299 block_start == EXTENT_MAP_INLINE) {
2300 clear_extent_dirty(tree, cur,
2301 cur + iosize - 1, GFP_NOFS);
2302
2303 unlock_extent(tree, unlock_start, cur + iosize -1,
2304 GFP_NOFS);
2305
2306 /*
2307 * end_io notification does not happen here for
2308 * compressed extents
2309 */
2310 if (!compressed && tree->ops &&
2311 tree->ops->writepage_end_io_hook)
2312 tree->ops->writepage_end_io_hook(page, cur,
2313 cur + iosize - 1,
2314 NULL, 1);
2315 else if (compressed) {
2316 /* we don't want to end_page_writeback on
2317 * a compressed extent. this happens
2318 * elsewhere
2319 */
2320 nr++;
2321 }
2322
2323 cur += iosize;
2324 pg_offset += iosize;
2325 unlock_start = cur;
2326 continue;
2327 }
2328 /* leave this out until we have a page_mkwrite call */
2329 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2330 EXTENT_DIRTY, 0)) {
2331 cur = cur + iosize;
2332 pg_offset += iosize;
2333 continue;
2334 }
2335
2336 clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
2337 if (tree->ops && tree->ops->writepage_io_hook) {
2338 ret = tree->ops->writepage_io_hook(page, cur,
2339 cur + iosize - 1);
2340 } else {
2341 ret = 0;
2342 }
2343 if (ret) {
2344 SetPageError(page);
2345 } else {
2346 unsigned long max_nr = end_index + 1;
2347
2348 set_range_writeback(tree, cur, cur + iosize - 1);
2349 if (!PageWriteback(page)) {
2350 printk("warning page %lu not writeback, "
2351 "cur %llu end %llu\n", page->index,
2352 (unsigned long long)cur,
2353 (unsigned long long)end);
2354 }
2355
2356 ret = submit_extent_page(WRITE, tree, page, sector,
2357 iosize, pg_offset, bdev,
2358 &epd->bio, max_nr,
2359 end_bio_extent_writepage,
2360 0, 0, 0);
2361 if (ret)
2362 SetPageError(page);
2363 }
2364 cur = cur + iosize;
2365 pg_offset += iosize;
2366 nr++;
2367 }
2368 done:
2369 if (nr == 0) {
2370 /* make sure the mapping tag for page dirty gets cleared */
2371 set_page_writeback(page);
2372 end_page_writeback(page);
2373 }
2374 if (unlock_start <= page_end)
2375 unlock_extent(tree, unlock_start, page_end, GFP_NOFS);
2376 unlock_page(page);
2377
2378 update_nr_written:
2379 wbc->nr_to_write -= nr_written;
2380 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2381 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2382 page->mapping->writeback_index = page->index + nr_written;
2383 return 0;
2384 }
2385
2386 /**
2387 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2388 * @mapping: address space structure to write
2389 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2390 * @writepage: function called for each page
2391 * @data: data passed to writepage function
2392 *
2393 * If a page is already under I/O, write_cache_pages() skips it, even
2394 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2395 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2396 * and msync() need to guarantee that all the data which was dirty at the time
2397 * the call was made get new I/O started against them. If wbc->sync_mode is
2398 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2399 * existing IO to complete.
2400 */
2401 static int extent_write_cache_pages(struct extent_io_tree *tree,
2402 struct address_space *mapping,
2403 struct writeback_control *wbc,
2404 writepage_t writepage, void *data,
2405 void (*flush_fn)(void *))
2406 {
2407 struct backing_dev_info *bdi = mapping->backing_dev_info;
2408 int ret = 0;
2409 int done = 0;
2410 struct pagevec pvec;
2411 int nr_pages;
2412 pgoff_t index;
2413 pgoff_t end; /* Inclusive */
2414 int scanned = 0;
2415 int range_whole = 0;
2416
2417 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2418 wbc->encountered_congestion = 1;
2419 return 0;
2420 }
2421
2422 pagevec_init(&pvec, 0);
2423 if (wbc->range_cyclic) {
2424 index = mapping->writeback_index; /* Start from prev offset */
2425 end = -1;
2426 } else {
2427 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2428 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2429 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2430 range_whole = 1;
2431 scanned = 1;
2432 }
2433 retry:
2434 while (!done && (index <= end) &&
2435 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2436 PAGECACHE_TAG_DIRTY,
2437 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2438 unsigned i;
2439
2440 scanned = 1;
2441 for (i = 0; i < nr_pages; i++) {
2442 struct page *page = pvec.pages[i];
2443
2444 /*
2445 * At this point we hold neither mapping->tree_lock nor
2446 * lock on the page itself: the page may be truncated or
2447 * invalidated (changing page->mapping to NULL), or even
2448 * swizzled back from swapper_space to tmpfs file
2449 * mapping
2450 */
2451 if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2452 tree->ops->write_cache_pages_lock_hook(page);
2453 else
2454 lock_page(page);
2455
2456 if (unlikely(page->mapping != mapping)) {
2457 unlock_page(page);
2458 continue;
2459 }
2460
2461 if (!wbc->range_cyclic && page->index > end) {
2462 done = 1;
2463 unlock_page(page);
2464 continue;
2465 }
2466
2467 if (wbc->sync_mode != WB_SYNC_NONE) {
2468 if (PageWriteback(page))
2469 flush_fn(data);
2470 wait_on_page_writeback(page);
2471 }
2472
2473 if (PageWriteback(page) ||
2474 !clear_page_dirty_for_io(page)) {
2475 unlock_page(page);
2476 continue;
2477 }
2478
2479 ret = (*writepage)(page, wbc, data);
2480
2481 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2482 unlock_page(page);
2483 ret = 0;
2484 }
2485 if (ret || wbc->nr_to_write <= 0)
2486 done = 1;
2487 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2488 wbc->encountered_congestion = 1;
2489 done = 1;
2490 }
2491 }
2492 pagevec_release(&pvec);
2493 cond_resched();
2494 }
2495 if (!scanned && !done) {
2496 /*
2497 * We hit the last page and there is more work to be done: wrap
2498 * back to the start of the file
2499 */
2500 scanned = 1;
2501 index = 0;
2502 goto retry;
2503 }
2504 return ret;
2505 }
2506
2507 static noinline void flush_write_bio(void *data)
2508 {
2509 struct extent_page_data *epd = data;
2510 if (epd->bio) {
2511 submit_one_bio(WRITE, epd->bio, 0, 0);
2512 epd->bio = NULL;
2513 }
2514 }
2515
2516 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2517 get_extent_t *get_extent,
2518 struct writeback_control *wbc)
2519 {
2520 int ret;
2521 struct address_space *mapping = page->mapping;
2522 struct extent_page_data epd = {
2523 .bio = NULL,
2524 .tree = tree,
2525 .get_extent = get_extent,
2526 .extent_locked = 0,
2527 };
2528 struct writeback_control wbc_writepages = {
2529 .bdi = wbc->bdi,
2530 .sync_mode = WB_SYNC_NONE,
2531 .older_than_this = NULL,
2532 .nr_to_write = 64,
2533 .range_start = page_offset(page) + PAGE_CACHE_SIZE,
2534 .range_end = (loff_t)-1,
2535 };
2536
2537
2538 ret = __extent_writepage(page, wbc, &epd);
2539
2540 extent_write_cache_pages(tree, mapping, &wbc_writepages,
2541 __extent_writepage, &epd, flush_write_bio);
2542 if (epd.bio) {
2543 submit_one_bio(WRITE, epd.bio, 0, 0);
2544 }
2545 return ret;
2546 }
2547 EXPORT_SYMBOL(extent_write_full_page);
2548
2549 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2550 u64 start, u64 end, get_extent_t *get_extent,
2551 int mode)
2552 {
2553 int ret = 0;
2554 struct address_space *mapping = inode->i_mapping;
2555 struct page *page;
2556 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2557 PAGE_CACHE_SHIFT;
2558
2559 struct extent_page_data epd = {
2560 .bio = NULL,
2561 .tree = tree,
2562 .get_extent = get_extent,
2563 .extent_locked = 1,
2564 };
2565 struct writeback_control wbc_writepages = {
2566 .bdi = inode->i_mapping->backing_dev_info,
2567 .sync_mode = mode,
2568 .older_than_this = NULL,
2569 .nr_to_write = nr_pages * 2,
2570 .range_start = start,
2571 .range_end = end + 1,
2572 };
2573
2574 while(start <= end) {
2575 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2576 if (clear_page_dirty_for_io(page))
2577 ret = __extent_writepage(page, &wbc_writepages, &epd);
2578 else {
2579 if (tree->ops && tree->ops->writepage_end_io_hook)
2580 tree->ops->writepage_end_io_hook(page, start,
2581 start + PAGE_CACHE_SIZE - 1,
2582 NULL, 1);
2583 unlock_page(page);
2584 }
2585 page_cache_release(page);
2586 start += PAGE_CACHE_SIZE;
2587 }
2588
2589 if (epd.bio)
2590 submit_one_bio(WRITE, epd.bio, 0, 0);
2591 return ret;
2592 }
2593 EXPORT_SYMBOL(extent_write_locked_range);
2594
2595
2596 int extent_writepages(struct extent_io_tree *tree,
2597 struct address_space *mapping,
2598 get_extent_t *get_extent,
2599 struct writeback_control *wbc)
2600 {
2601 int ret = 0;
2602 struct extent_page_data epd = {
2603 .bio = NULL,
2604 .tree = tree,
2605 .get_extent = get_extent,
2606 .extent_locked = 0,
2607 };
2608
2609 ret = extent_write_cache_pages(tree, mapping, wbc,
2610 __extent_writepage, &epd,
2611 flush_write_bio);
2612 if (epd.bio) {
2613 submit_one_bio(WRITE, epd.bio, 0, 0);
2614 }
2615 return ret;
2616 }
2617 EXPORT_SYMBOL(extent_writepages);
2618
2619 int extent_readpages(struct extent_io_tree *tree,
2620 struct address_space *mapping,
2621 struct list_head *pages, unsigned nr_pages,
2622 get_extent_t get_extent)
2623 {
2624 struct bio *bio = NULL;
2625 unsigned page_idx;
2626 struct pagevec pvec;
2627 unsigned long bio_flags = 0;
2628
2629 pagevec_init(&pvec, 0);
2630 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2631 struct page *page = list_entry(pages->prev, struct page, lru);
2632
2633 prefetchw(&page->flags);
2634 list_del(&page->lru);
2635 /*
2636 * what we want to do here is call add_to_page_cache_lru,
2637 * but that isn't exported, so we reproduce it here
2638 */
2639 if (!add_to_page_cache(page, mapping,
2640 page->index, GFP_KERNEL)) {
2641
2642 /* open coding of lru_cache_add, also not exported */
2643 page_cache_get(page);
2644 if (!pagevec_add(&pvec, page))
2645 __pagevec_lru_add_file(&pvec);
2646 __extent_read_full_page(tree, page, get_extent,
2647 &bio, 0, &bio_flags);
2648 }
2649 page_cache_release(page);
2650 }
2651 if (pagevec_count(&pvec))
2652 __pagevec_lru_add_file(&pvec);
2653 BUG_ON(!list_empty(pages));
2654 if (bio)
2655 submit_one_bio(READ, bio, 0, bio_flags);
2656 return 0;
2657 }
2658 EXPORT_SYMBOL(extent_readpages);
2659
2660 /*
2661 * basic invalidatepage code, this waits on any locked or writeback
2662 * ranges corresponding to the page, and then deletes any extent state
2663 * records from the tree
2664 */
2665 int extent_invalidatepage(struct extent_io_tree *tree,
2666 struct page *page, unsigned long offset)
2667 {
2668 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2669 u64 end = start + PAGE_CACHE_SIZE - 1;
2670 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2671
2672 start += (offset + blocksize -1) & ~(blocksize - 1);
2673 if (start > end)
2674 return 0;
2675
2676 lock_extent(tree, start, end, GFP_NOFS);
2677 wait_on_extent_writeback(tree, start, end);
2678 clear_extent_bit(tree, start, end,
2679 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2680 1, 1, GFP_NOFS);
2681 return 0;
2682 }
2683 EXPORT_SYMBOL(extent_invalidatepage);
2684
2685 /*
2686 * simple commit_write call, set_range_dirty is used to mark both
2687 * the pages and the extent records as dirty
2688 */
2689 int extent_commit_write(struct extent_io_tree *tree,
2690 struct inode *inode, struct page *page,
2691 unsigned from, unsigned to)
2692 {
2693 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2694
2695 set_page_extent_mapped(page);
2696 set_page_dirty(page);
2697
2698 if (pos > inode->i_size) {
2699 i_size_write(inode, pos);
2700 mark_inode_dirty(inode);
2701 }
2702 return 0;
2703 }
2704 EXPORT_SYMBOL(extent_commit_write);
2705
2706 int extent_prepare_write(struct extent_io_tree *tree,
2707 struct inode *inode, struct page *page,
2708 unsigned from, unsigned to, get_extent_t *get_extent)
2709 {
2710 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2711 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2712 u64 block_start;
2713 u64 orig_block_start;
2714 u64 block_end;
2715 u64 cur_end;
2716 struct extent_map *em;
2717 unsigned blocksize = 1 << inode->i_blkbits;
2718 size_t page_offset = 0;
2719 size_t block_off_start;
2720 size_t block_off_end;
2721 int err = 0;
2722 int iocount = 0;
2723 int ret = 0;
2724 int isnew;
2725
2726 set_page_extent_mapped(page);
2727
2728 block_start = (page_start + from) & ~((u64)blocksize - 1);
2729 block_end = (page_start + to - 1) | (blocksize - 1);
2730 orig_block_start = block_start;
2731
2732 lock_extent(tree, page_start, page_end, GFP_NOFS);
2733 while(block_start <= block_end) {
2734 em = get_extent(inode, page, page_offset, block_start,
2735 block_end - block_start + 1, 1);
2736 if (IS_ERR(em) || !em) {
2737 goto err;
2738 }
2739 cur_end = min(block_end, extent_map_end(em) - 1);
2740 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2741 block_off_end = block_off_start + blocksize;
2742 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2743
2744 if (!PageUptodate(page) && isnew &&
2745 (block_off_end > to || block_off_start < from)) {
2746 void *kaddr;
2747
2748 kaddr = kmap_atomic(page, KM_USER0);
2749 if (block_off_end > to)
2750 memset(kaddr + to, 0, block_off_end - to);
2751 if (block_off_start < from)
2752 memset(kaddr + block_off_start, 0,
2753 from - block_off_start);
2754 flush_dcache_page(page);
2755 kunmap_atomic(kaddr, KM_USER0);
2756 }
2757 if ((em->block_start != EXTENT_MAP_HOLE &&
2758 em->block_start != EXTENT_MAP_INLINE) &&
2759 !isnew && !PageUptodate(page) &&
2760 (block_off_end > to || block_off_start < from) &&
2761 !test_range_bit(tree, block_start, cur_end,
2762 EXTENT_UPTODATE, 1)) {
2763 u64 sector;
2764 u64 extent_offset = block_start - em->start;
2765 size_t iosize;
2766 sector = (em->block_start + extent_offset) >> 9;
2767 iosize = (cur_end - block_start + blocksize) &
2768 ~((u64)blocksize - 1);
2769 /*
2770 * we've already got the extent locked, but we
2771 * need to split the state such that our end_bio
2772 * handler can clear the lock.
2773 */
2774 set_extent_bit(tree, block_start,
2775 block_start + iosize - 1,
2776 EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2777 ret = submit_extent_page(READ, tree, page,
2778 sector, iosize, page_offset, em->bdev,
2779 NULL, 1,
2780 end_bio_extent_preparewrite, 0,
2781 0, 0);
2782 iocount++;
2783 block_start = block_start + iosize;
2784 } else {
2785 set_extent_uptodate(tree, block_start, cur_end,
2786 GFP_NOFS);
2787 unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2788 block_start = cur_end + 1;
2789 }
2790 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2791 free_extent_map(em);
2792 }
2793 if (iocount) {
2794 wait_extent_bit(tree, orig_block_start,
2795 block_end, EXTENT_LOCKED);
2796 }
2797 check_page_uptodate(tree, page);
2798 err:
2799 /* FIXME, zero out newly allocated blocks on error */
2800 return err;
2801 }
2802 EXPORT_SYMBOL(extent_prepare_write);
2803
2804 /*
2805 * a helper for releasepage, this tests for areas of the page that
2806 * are locked or under IO and drops the related state bits if it is safe
2807 * to drop the page.
2808 */
2809 int try_release_extent_state(struct extent_map_tree *map,
2810 struct extent_io_tree *tree, struct page *page,
2811 gfp_t mask)
2812 {
2813 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2814 u64 end = start + PAGE_CACHE_SIZE - 1;
2815 int ret = 1;
2816
2817 if (test_range_bit(tree, start, end,
2818 EXTENT_IOBITS | EXTENT_ORDERED, 0))
2819 ret = 0;
2820 else {
2821 if ((mask & GFP_NOFS) == GFP_NOFS)
2822 mask = GFP_NOFS;
2823 clear_extent_bit(tree, start, end, EXTENT_UPTODATE,
2824 1, 1, mask);
2825 }
2826 return ret;
2827 }
2828 EXPORT_SYMBOL(try_release_extent_state);
2829
2830 /*
2831 * a helper for releasepage. As long as there are no locked extents
2832 * in the range corresponding to the page, both state records and extent
2833 * map records are removed
2834 */
2835 int try_release_extent_mapping(struct extent_map_tree *map,
2836 struct extent_io_tree *tree, struct page *page,
2837 gfp_t mask)
2838 {
2839 struct extent_map *em;
2840 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2841 u64 end = start + PAGE_CACHE_SIZE - 1;
2842
2843 if ((mask & __GFP_WAIT) &&
2844 page->mapping->host->i_size > 16 * 1024 * 1024) {
2845 u64 len;
2846 while (start <= end) {
2847 len = end - start + 1;
2848 spin_lock(&map->lock);
2849 em = lookup_extent_mapping(map, start, len);
2850 if (!em || IS_ERR(em)) {
2851 spin_unlock(&map->lock);
2852 break;
2853 }
2854 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2855 em->start != start) {
2856 spin_unlock(&map->lock);
2857 free_extent_map(em);
2858 break;
2859 }
2860 if (!test_range_bit(tree, em->start,
2861 extent_map_end(em) - 1,
2862 EXTENT_LOCKED | EXTENT_WRITEBACK |
2863 EXTENT_ORDERED,
2864 0)) {
2865 remove_extent_mapping(map, em);
2866 /* once for the rb tree */
2867 free_extent_map(em);
2868 }
2869 start = extent_map_end(em);
2870 spin_unlock(&map->lock);
2871
2872 /* once for us */
2873 free_extent_map(em);
2874 }
2875 }
2876 return try_release_extent_state(map, tree, page, mask);
2877 }
2878 EXPORT_SYMBOL(try_release_extent_mapping);
2879
2880 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2881 get_extent_t *get_extent)
2882 {
2883 struct inode *inode = mapping->host;
2884 u64 start = iblock << inode->i_blkbits;
2885 sector_t sector = 0;
2886 size_t blksize = (1 << inode->i_blkbits);
2887 struct extent_map *em;
2888
2889 lock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2890 GFP_NOFS);
2891 em = get_extent(inode, NULL, 0, start, blksize, 0);
2892 unlock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2893 GFP_NOFS);
2894 if (!em || IS_ERR(em))
2895 return 0;
2896
2897 if (em->block_start > EXTENT_MAP_LAST_BYTE)
2898 goto out;
2899
2900 sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2901 out:
2902 free_extent_map(em);
2903 return sector;
2904 }
2905
2906 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2907 unsigned long i)
2908 {
2909 struct page *p;
2910 struct address_space *mapping;
2911
2912 if (i == 0)
2913 return eb->first_page;
2914 i += eb->start >> PAGE_CACHE_SHIFT;
2915 mapping = eb->first_page->mapping;
2916 if (!mapping)
2917 return NULL;
2918
2919 /*
2920 * extent_buffer_page is only called after pinning the page
2921 * by increasing the reference count. So we know the page must
2922 * be in the radix tree.
2923 */
2924 rcu_read_lock();
2925 p = radix_tree_lookup(&mapping->page_tree, i);
2926 rcu_read_unlock();
2927
2928 return p;
2929 }
2930
2931 static inline unsigned long num_extent_pages(u64 start, u64 len)
2932 {
2933 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2934 (start >> PAGE_CACHE_SHIFT);
2935 }
2936
2937 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
2938 u64 start,
2939 unsigned long len,
2940 gfp_t mask)
2941 {
2942 struct extent_buffer *eb = NULL;
2943 #ifdef LEAK_DEBUG
2944 unsigned long flags;
2945 #endif
2946
2947 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2948 eb->start = start;
2949 eb->len = len;
2950 mutex_init(&eb->mutex);
2951 #ifdef LEAK_DEBUG
2952 spin_lock_irqsave(&leak_lock, flags);
2953 list_add(&eb->leak_list, &buffers);
2954 spin_unlock_irqrestore(&leak_lock, flags);
2955 #endif
2956 atomic_set(&eb->refs, 1);
2957
2958 return eb;
2959 }
2960
2961 static void __free_extent_buffer(struct extent_buffer *eb)
2962 {
2963 #ifdef LEAK_DEBUG
2964 unsigned long flags;
2965 spin_lock_irqsave(&leak_lock, flags);
2966 list_del(&eb->leak_list);
2967 spin_unlock_irqrestore(&leak_lock, flags);
2968 #endif
2969 kmem_cache_free(extent_buffer_cache, eb);
2970 }
2971
2972 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
2973 u64 start, unsigned long len,
2974 struct page *page0,
2975 gfp_t mask)
2976 {
2977 unsigned long num_pages = num_extent_pages(start, len);
2978 unsigned long i;
2979 unsigned long index = start >> PAGE_CACHE_SHIFT;
2980 struct extent_buffer *eb;
2981 struct extent_buffer *exists = NULL;
2982 struct page *p;
2983 struct address_space *mapping = tree->mapping;
2984 int uptodate = 1;
2985
2986 spin_lock(&tree->buffer_lock);
2987 eb = buffer_search(tree, start);
2988 if (eb) {
2989 atomic_inc(&eb->refs);
2990 spin_unlock(&tree->buffer_lock);
2991 mark_page_accessed(eb->first_page);
2992 return eb;
2993 }
2994 spin_unlock(&tree->buffer_lock);
2995
2996 eb = __alloc_extent_buffer(tree, start, len, mask);
2997 if (!eb)
2998 return NULL;
2999
3000 if (page0) {
3001 eb->first_page = page0;
3002 i = 1;
3003 index++;
3004 page_cache_get(page0);
3005 mark_page_accessed(page0);
3006 set_page_extent_mapped(page0);
3007 set_page_extent_head(page0, len);
3008 uptodate = PageUptodate(page0);
3009 } else {
3010 i = 0;
3011 }
3012 for (; i < num_pages; i++, index++) {
3013 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3014 if (!p) {
3015 WARN_ON(1);
3016 goto free_eb;
3017 }
3018 set_page_extent_mapped(p);
3019 mark_page_accessed(p);
3020 if (i == 0) {
3021 eb->first_page = p;
3022 set_page_extent_head(p, len);
3023 } else {
3024 set_page_private(p, EXTENT_PAGE_PRIVATE);
3025 }
3026 if (!PageUptodate(p))
3027 uptodate = 0;
3028 unlock_page(p);
3029 }
3030 if (uptodate)
3031 eb->flags |= EXTENT_UPTODATE;
3032 eb->flags |= EXTENT_BUFFER_FILLED;
3033
3034 spin_lock(&tree->buffer_lock);
3035 exists = buffer_tree_insert(tree, start, &eb->rb_node);
3036 if (exists) {
3037 /* add one reference for the caller */
3038 atomic_inc(&exists->refs);
3039 spin_unlock(&tree->buffer_lock);
3040 goto free_eb;
3041 }
3042 spin_unlock(&tree->buffer_lock);
3043
3044 /* add one reference for the tree */
3045 atomic_inc(&eb->refs);
3046 return eb;
3047
3048 free_eb:
3049 if (!atomic_dec_and_test(&eb->refs))
3050 return exists;
3051 for (index = 1; index < i; index++)
3052 page_cache_release(extent_buffer_page(eb, index));
3053 page_cache_release(extent_buffer_page(eb, 0));
3054 __free_extent_buffer(eb);
3055 return exists;
3056 }
3057 EXPORT_SYMBOL(alloc_extent_buffer);
3058
3059 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3060 u64 start, unsigned long len,
3061 gfp_t mask)
3062 {
3063 struct extent_buffer *eb;
3064
3065 spin_lock(&tree->buffer_lock);
3066 eb = buffer_search(tree, start);
3067 if (eb)
3068 atomic_inc(&eb->refs);
3069 spin_unlock(&tree->buffer_lock);
3070
3071 if (eb)
3072 mark_page_accessed(eb->first_page);
3073
3074 return eb;
3075 }
3076 EXPORT_SYMBOL(find_extent_buffer);
3077
3078 void free_extent_buffer(struct extent_buffer *eb)
3079 {
3080 if (!eb)
3081 return;
3082
3083 if (!atomic_dec_and_test(&eb->refs))
3084 return;
3085
3086 WARN_ON(1);
3087 }
3088 EXPORT_SYMBOL(free_extent_buffer);
3089
3090 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3091 struct extent_buffer *eb)
3092 {
3093 int set;
3094 unsigned long i;
3095 unsigned long num_pages;
3096 struct page *page;
3097
3098 u64 start = eb->start;
3099 u64 end = start + eb->len - 1;
3100
3101 set = clear_extent_dirty(tree, start, end, GFP_NOFS);
3102 num_pages = num_extent_pages(eb->start, eb->len);
3103
3104 for (i = 0; i < num_pages; i++) {
3105 page = extent_buffer_page(eb, i);
3106 if (!set && !PageDirty(page))
3107 continue;
3108
3109 lock_page(page);
3110 if (i == 0)
3111 set_page_extent_head(page, eb->len);
3112 else
3113 set_page_private(page, EXTENT_PAGE_PRIVATE);
3114
3115 /*
3116 * if we're on the last page or the first page and the
3117 * block isn't aligned on a page boundary, do extra checks
3118 * to make sure we don't clean page that is partially dirty
3119 */
3120 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3121 ((i == num_pages - 1) &&
3122 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3123 start = (u64)page->index << PAGE_CACHE_SHIFT;
3124 end = start + PAGE_CACHE_SIZE - 1;
3125 if (test_range_bit(tree, start, end,
3126 EXTENT_DIRTY, 0)) {
3127 unlock_page(page);
3128 continue;
3129 }
3130 }
3131 clear_page_dirty_for_io(page);
3132 spin_lock_irq(&page->mapping->tree_lock);
3133 if (!PageDirty(page)) {
3134 radix_tree_tag_clear(&page->mapping->page_tree,
3135 page_index(page),
3136 PAGECACHE_TAG_DIRTY);
3137 }
3138 spin_unlock_irq(&page->mapping->tree_lock);
3139 unlock_page(page);
3140 }
3141 return 0;
3142 }
3143 EXPORT_SYMBOL(clear_extent_buffer_dirty);
3144
3145 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3146 struct extent_buffer *eb)
3147 {
3148 return wait_on_extent_writeback(tree, eb->start,
3149 eb->start + eb->len - 1);
3150 }
3151 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
3152
3153 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3154 struct extent_buffer *eb)
3155 {
3156 unsigned long i;
3157 unsigned long num_pages;
3158
3159 num_pages = num_extent_pages(eb->start, eb->len);
3160 for (i = 0; i < num_pages; i++) {
3161 struct page *page = extent_buffer_page(eb, i);
3162 /* writepage may need to do something special for the
3163 * first page, we have to make sure page->private is
3164 * properly set. releasepage may drop page->private
3165 * on us if the page isn't already dirty.
3166 */
3167 lock_page(page);
3168 if (i == 0) {
3169 set_page_extent_head(page, eb->len);
3170 } else if (PagePrivate(page) &&
3171 page->private != EXTENT_PAGE_PRIVATE) {
3172 set_page_extent_mapped(page);
3173 }
3174 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3175 set_extent_dirty(tree, page_offset(page),
3176 page_offset(page) + PAGE_CACHE_SIZE -1,
3177 GFP_NOFS);
3178 unlock_page(page);
3179 }
3180 return 0;
3181 }
3182 EXPORT_SYMBOL(set_extent_buffer_dirty);
3183
3184 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3185 struct extent_buffer *eb)
3186 {
3187 unsigned long i;
3188 struct page *page;
3189 unsigned long num_pages;
3190
3191 num_pages = num_extent_pages(eb->start, eb->len);
3192 eb->flags &= ~EXTENT_UPTODATE;
3193
3194 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3195 GFP_NOFS);
3196 for (i = 0; i < num_pages; i++) {
3197 page = extent_buffer_page(eb, i);
3198 if (page)
3199 ClearPageUptodate(page);
3200 }
3201 return 0;
3202 }
3203
3204 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3205 struct extent_buffer *eb)
3206 {
3207 unsigned long i;
3208 struct page *page;
3209 unsigned long num_pages;
3210
3211 num_pages = num_extent_pages(eb->start, eb->len);
3212
3213 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3214 GFP_NOFS);
3215 for (i = 0; i < num_pages; i++) {
3216 page = extent_buffer_page(eb, i);
3217 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3218 ((i == num_pages - 1) &&
3219 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3220 check_page_uptodate(tree, page);
3221 continue;
3222 }
3223 SetPageUptodate(page);
3224 }
3225 return 0;
3226 }
3227 EXPORT_SYMBOL(set_extent_buffer_uptodate);
3228
3229 int extent_range_uptodate(struct extent_io_tree *tree,
3230 u64 start, u64 end)
3231 {
3232 struct page *page;
3233 int ret;
3234 int pg_uptodate = 1;
3235 int uptodate;
3236 unsigned long index;
3237
3238 ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1);
3239 if (ret)
3240 return 1;
3241 while(start <= end) {
3242 index = start >> PAGE_CACHE_SHIFT;
3243 page = find_get_page(tree->mapping, index);
3244 uptodate = PageUptodate(page);
3245 page_cache_release(page);
3246 if (!uptodate) {
3247 pg_uptodate = 0;
3248 break;
3249 }
3250 start += PAGE_CACHE_SIZE;
3251 }
3252 return pg_uptodate;
3253 }
3254
3255 int extent_buffer_uptodate(struct extent_io_tree *tree,
3256 struct extent_buffer *eb)
3257 {
3258 int ret = 0;
3259 unsigned long num_pages;
3260 unsigned long i;
3261 struct page *page;
3262 int pg_uptodate = 1;
3263
3264 if (eb->flags & EXTENT_UPTODATE)
3265 return 1;
3266
3267 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3268 EXTENT_UPTODATE, 1);
3269 if (ret)
3270 return ret;
3271
3272 num_pages = num_extent_pages(eb->start, eb->len);
3273 for (i = 0; i < num_pages; i++) {
3274 page = extent_buffer_page(eb, i);
3275 if (!PageUptodate(page)) {
3276 pg_uptodate = 0;
3277 break;
3278 }
3279 }
3280 return pg_uptodate;
3281 }
3282 EXPORT_SYMBOL(extent_buffer_uptodate);
3283
3284 int read_extent_buffer_pages(struct extent_io_tree *tree,
3285 struct extent_buffer *eb,
3286 u64 start, int wait,
3287 get_extent_t *get_extent, int mirror_num)
3288 {
3289 unsigned long i;
3290 unsigned long start_i;
3291 struct page *page;
3292 int err;
3293 int ret = 0;
3294 int locked_pages = 0;
3295 int all_uptodate = 1;
3296 int inc_all_pages = 0;
3297 unsigned long num_pages;
3298 struct bio *bio = NULL;
3299 unsigned long bio_flags = 0;
3300
3301 if (eb->flags & EXTENT_UPTODATE)
3302 return 0;
3303
3304 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3305 EXTENT_UPTODATE, 1)) {
3306 return 0;
3307 }
3308
3309 if (start) {
3310 WARN_ON(start < eb->start);
3311 start_i = (start >> PAGE_CACHE_SHIFT) -
3312 (eb->start >> PAGE_CACHE_SHIFT);
3313 } else {
3314 start_i = 0;
3315 }
3316
3317 num_pages = num_extent_pages(eb->start, eb->len);
3318 for (i = start_i; i < num_pages; i++) {
3319 page = extent_buffer_page(eb, i);
3320 if (!wait) {
3321 if (!trylock_page(page))
3322 goto unlock_exit;
3323 } else {
3324 lock_page(page);
3325 }
3326 locked_pages++;
3327 if (!PageUptodate(page)) {
3328 all_uptodate = 0;
3329 }
3330 }
3331 if (all_uptodate) {
3332 if (start_i == 0)
3333 eb->flags |= EXTENT_UPTODATE;
3334 if (ret) {
3335 printk("all up to date but ret is %d\n", ret);
3336 }
3337 goto unlock_exit;
3338 }
3339
3340 for (i = start_i; i < num_pages; i++) {
3341 page = extent_buffer_page(eb, i);
3342 if (inc_all_pages)
3343 page_cache_get(page);
3344 if (!PageUptodate(page)) {
3345 if (start_i == 0)
3346 inc_all_pages = 1;
3347 ClearPageError(page);
3348 err = __extent_read_full_page(tree, page,
3349 get_extent, &bio,
3350 mirror_num, &bio_flags);
3351 if (err) {
3352 ret = err;
3353 printk("err %d from __extent_read_full_page\n", ret);
3354 }
3355 } else {
3356 unlock_page(page);
3357 }
3358 }
3359
3360 if (bio)
3361 submit_one_bio(READ, bio, mirror_num, bio_flags);
3362
3363 if (ret || !wait) {
3364 if (ret)
3365 printk("ret %d wait %d returning\n", ret, wait);
3366 return ret;
3367 }
3368 for (i = start_i; i < num_pages; i++) {
3369 page = extent_buffer_page(eb, i);
3370 wait_on_page_locked(page);
3371 if (!PageUptodate(page)) {
3372 printk("page not uptodate after wait_on_page_locked\n");
3373 ret = -EIO;
3374 }
3375 }
3376 if (!ret)
3377 eb->flags |= EXTENT_UPTODATE;
3378 return ret;
3379
3380 unlock_exit:
3381 i = start_i;
3382 while(locked_pages > 0) {
3383 page = extent_buffer_page(eb, i);
3384 i++;
3385 unlock_page(page);
3386 locked_pages--;
3387 }
3388 return ret;
3389 }
3390 EXPORT_SYMBOL(read_extent_buffer_pages);
3391
3392 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3393 unsigned long start,
3394 unsigned long len)
3395 {
3396 size_t cur;
3397 size_t offset;
3398 struct page *page;
3399 char *kaddr;
3400 char *dst = (char *)dstv;
3401 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3402 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3403
3404 WARN_ON(start > eb->len);
3405 WARN_ON(start + len > eb->start + eb->len);
3406
3407 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3408
3409 while(len > 0) {
3410 page = extent_buffer_page(eb, i);
3411
3412 cur = min(len, (PAGE_CACHE_SIZE - offset));
3413 kaddr = kmap_atomic(page, KM_USER1);
3414 memcpy(dst, kaddr + offset, cur);
3415 kunmap_atomic(kaddr, KM_USER1);
3416
3417 dst += cur;
3418 len -= cur;
3419 offset = 0;
3420 i++;
3421 }
3422 }
3423 EXPORT_SYMBOL(read_extent_buffer);
3424
3425 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3426 unsigned long min_len, char **token, char **map,
3427 unsigned long *map_start,
3428 unsigned long *map_len, int km)
3429 {
3430 size_t offset = start & (PAGE_CACHE_SIZE - 1);
3431 char *kaddr;
3432 struct page *p;
3433 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3434 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3435 unsigned long end_i = (start_offset + start + min_len - 1) >>
3436 PAGE_CACHE_SHIFT;
3437
3438 if (i != end_i)
3439 return -EINVAL;
3440
3441 if (i == 0) {
3442 offset = start_offset;
3443 *map_start = 0;
3444 } else {
3445 offset = 0;
3446 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3447 }
3448 if (start + min_len > eb->len) {
3449 printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
3450 WARN_ON(1);
3451 }
3452
3453 p = extent_buffer_page(eb, i);
3454 kaddr = kmap_atomic(p, km);
3455 *token = kaddr;
3456 *map = kaddr + offset;
3457 *map_len = PAGE_CACHE_SIZE - offset;
3458 return 0;
3459 }
3460 EXPORT_SYMBOL(map_private_extent_buffer);
3461
3462 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3463 unsigned long min_len,
3464 char **token, char **map,
3465 unsigned long *map_start,
3466 unsigned long *map_len, int km)
3467 {
3468 int err;
3469 int save = 0;
3470 if (eb->map_token) {
3471 unmap_extent_buffer(eb, eb->map_token, km);
3472 eb->map_token = NULL;
3473 save = 1;
3474 }
3475 err = map_private_extent_buffer(eb, start, min_len, token, map,
3476 map_start, map_len, km);
3477 if (!err && save) {
3478 eb->map_token = *token;
3479 eb->kaddr = *map;
3480 eb->map_start = *map_start;
3481 eb->map_len = *map_len;
3482 }
3483 return err;
3484 }
3485 EXPORT_SYMBOL(map_extent_buffer);
3486
3487 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3488 {
3489 kunmap_atomic(token, km);
3490 }
3491 EXPORT_SYMBOL(unmap_extent_buffer);
3492
3493 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3494 unsigned long start,
3495 unsigned long len)
3496 {
3497 size_t cur;
3498 size_t offset;
3499 struct page *page;
3500 char *kaddr;
3501 char *ptr = (char *)ptrv;
3502 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3503 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3504 int ret = 0;
3505
3506 WARN_ON(start > eb->len);
3507 WARN_ON(start + len > eb->start + eb->len);
3508
3509 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3510
3511 while(len > 0) {
3512 page = extent_buffer_page(eb, i);
3513
3514 cur = min(len, (PAGE_CACHE_SIZE - offset));
3515
3516 kaddr = kmap_atomic(page, KM_USER0);
3517 ret = memcmp(ptr, kaddr + offset, cur);
3518 kunmap_atomic(kaddr, KM_USER0);
3519 if (ret)
3520 break;
3521
3522 ptr += cur;
3523 len -= cur;
3524 offset = 0;
3525 i++;
3526 }
3527 return ret;
3528 }
3529 EXPORT_SYMBOL(memcmp_extent_buffer);
3530
3531 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3532 unsigned long start, unsigned long len)
3533 {
3534 size_t cur;
3535 size_t offset;
3536 struct page *page;
3537 char *kaddr;
3538 char *src = (char *)srcv;
3539 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3540 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3541
3542 WARN_ON(start > eb->len);
3543 WARN_ON(start + len > eb->start + eb->len);
3544
3545 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3546
3547 while(len > 0) {
3548 page = extent_buffer_page(eb, i);
3549 WARN_ON(!PageUptodate(page));
3550
3551 cur = min(len, PAGE_CACHE_SIZE - offset);
3552 kaddr = kmap_atomic(page, KM_USER1);
3553 memcpy(kaddr + offset, src, cur);
3554 kunmap_atomic(kaddr, KM_USER1);
3555
3556 src += cur;
3557 len -= cur;
3558 offset = 0;
3559 i++;
3560 }
3561 }
3562 EXPORT_SYMBOL(write_extent_buffer);
3563
3564 void memset_extent_buffer(struct extent_buffer *eb, char c,
3565 unsigned long start, unsigned long len)
3566 {
3567 size_t cur;
3568 size_t offset;
3569 struct page *page;
3570 char *kaddr;
3571 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3572 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3573
3574 WARN_ON(start > eb->len);
3575 WARN_ON(start + len > eb->start + eb->len);
3576
3577 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3578
3579 while(len > 0) {
3580 page = extent_buffer_page(eb, i);
3581 WARN_ON(!PageUptodate(page));
3582
3583 cur = min(len, PAGE_CACHE_SIZE - offset);
3584 kaddr = kmap_atomic(page, KM_USER0);
3585 memset(kaddr + offset, c, cur);
3586 kunmap_atomic(kaddr, KM_USER0);
3587
3588 len -= cur;
3589 offset = 0;
3590 i++;
3591 }
3592 }
3593 EXPORT_SYMBOL(memset_extent_buffer);
3594
3595 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3596 unsigned long dst_offset, unsigned long src_offset,
3597 unsigned long len)
3598 {
3599 u64 dst_len = dst->len;
3600 size_t cur;
3601 size_t offset;
3602 struct page *page;
3603 char *kaddr;
3604 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3605 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3606
3607 WARN_ON(src->len != dst_len);
3608
3609 offset = (start_offset + dst_offset) &
3610 ((unsigned long)PAGE_CACHE_SIZE - 1);
3611
3612 while(len > 0) {
3613 page = extent_buffer_page(dst, i);
3614 WARN_ON(!PageUptodate(page));
3615
3616 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3617
3618 kaddr = kmap_atomic(page, KM_USER0);
3619 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3620 kunmap_atomic(kaddr, KM_USER0);
3621
3622 src_offset += cur;
3623 len -= cur;
3624 offset = 0;
3625 i++;
3626 }
3627 }
3628 EXPORT_SYMBOL(copy_extent_buffer);
3629
3630 static void move_pages(struct page *dst_page, struct page *src_page,
3631 unsigned long dst_off, unsigned long src_off,
3632 unsigned long len)
3633 {
3634 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3635 if (dst_page == src_page) {
3636 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3637 } else {
3638 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3639 char *p = dst_kaddr + dst_off + len;
3640 char *s = src_kaddr + src_off + len;
3641
3642 while (len--)
3643 *--p = *--s;
3644
3645 kunmap_atomic(src_kaddr, KM_USER1);
3646 }
3647 kunmap_atomic(dst_kaddr, KM_USER0);
3648 }
3649
3650 static void copy_pages(struct page *dst_page, struct page *src_page,
3651 unsigned long dst_off, unsigned long src_off,
3652 unsigned long len)
3653 {
3654 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3655 char *src_kaddr;
3656
3657 if (dst_page != src_page)
3658 src_kaddr = kmap_atomic(src_page, KM_USER1);
3659 else
3660 src_kaddr = dst_kaddr;
3661
3662 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3663 kunmap_atomic(dst_kaddr, KM_USER0);
3664 if (dst_page != src_page)
3665 kunmap_atomic(src_kaddr, KM_USER1);
3666 }
3667
3668 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3669 unsigned long src_offset, unsigned long len)
3670 {
3671 size_t cur;
3672 size_t dst_off_in_page;
3673 size_t src_off_in_page;
3674 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3675 unsigned long dst_i;
3676 unsigned long src_i;
3677
3678 if (src_offset + len > dst->len) {
3679 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3680 src_offset, len, dst->len);
3681 BUG_ON(1);
3682 }
3683 if (dst_offset + len > dst->len) {
3684 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3685 dst_offset, len, dst->len);
3686 BUG_ON(1);
3687 }
3688
3689 while(len > 0) {
3690 dst_off_in_page = (start_offset + dst_offset) &
3691 ((unsigned long)PAGE_CACHE_SIZE - 1);
3692 src_off_in_page = (start_offset + src_offset) &
3693 ((unsigned long)PAGE_CACHE_SIZE - 1);
3694
3695 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3696 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3697
3698 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3699 src_off_in_page));
3700 cur = min_t(unsigned long, cur,
3701 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3702
3703 copy_pages(extent_buffer_page(dst, dst_i),
3704 extent_buffer_page(dst, src_i),
3705 dst_off_in_page, src_off_in_page, cur);
3706
3707 src_offset += cur;
3708 dst_offset += cur;
3709 len -= cur;
3710 }
3711 }
3712 EXPORT_SYMBOL(memcpy_extent_buffer);
3713
3714 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3715 unsigned long src_offset, unsigned long len)
3716 {
3717 size_t cur;
3718 size_t dst_off_in_page;
3719 size_t src_off_in_page;
3720 unsigned long dst_end = dst_offset + len - 1;
3721 unsigned long src_end = src_offset + len - 1;
3722 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3723 unsigned long dst_i;
3724 unsigned long src_i;
3725
3726 if (src_offset + len > dst->len) {
3727 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3728 src_offset, len, dst->len);
3729 BUG_ON(1);
3730 }
3731 if (dst_offset + len > dst->len) {
3732 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3733 dst_offset, len, dst->len);
3734 BUG_ON(1);
3735 }
3736 if (dst_offset < src_offset) {
3737 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3738 return;
3739 }
3740 while(len > 0) {
3741 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3742 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3743
3744 dst_off_in_page = (start_offset + dst_end) &
3745 ((unsigned long)PAGE_CACHE_SIZE - 1);
3746 src_off_in_page = (start_offset + src_end) &
3747 ((unsigned long)PAGE_CACHE_SIZE - 1);
3748
3749 cur = min_t(unsigned long, len, src_off_in_page + 1);
3750 cur = min(cur, dst_off_in_page + 1);
3751 move_pages(extent_buffer_page(dst, dst_i),
3752 extent_buffer_page(dst, src_i),
3753 dst_off_in_page - cur + 1,
3754 src_off_in_page - cur + 1, cur);
3755
3756 dst_end -= cur;
3757 src_end -= cur;
3758 len -= cur;
3759 }
3760 }
3761 EXPORT_SYMBOL(memmove_extent_buffer);
3762
3763 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3764 {
3765 u64 start = page_offset(page);
3766 struct extent_buffer *eb;
3767 int ret = 1;
3768 unsigned long i;
3769 unsigned long num_pages;
3770
3771 spin_lock(&tree->buffer_lock);
3772 eb = buffer_search(tree, start);
3773 if (!eb)
3774 goto out;
3775
3776 if (atomic_read(&eb->refs) > 1) {
3777 ret = 0;
3778 goto out;
3779 }
3780 /* at this point we can safely release the extent buffer */
3781 num_pages = num_extent_pages(eb->start, eb->len);
3782 for (i = 0; i < num_pages; i++)
3783 page_cache_release(extent_buffer_page(eb, i));
3784 rb_erase(&eb->rb_node, &tree->buffer);
3785 __free_extent_buffer(eb);
3786 out:
3787 spin_unlock(&tree->buffer_lock);
3788 return ret;
3789 }
3790 EXPORT_SYMBOL(try_release_extent_buffer);
This page took 0.148772 seconds and 5 git commands to generate.