Btrfs: stop using highmem for extent_buffers
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include "extent_io.h"
14 #include "extent_map.h"
15 #include "compat.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18
19 static struct kmem_cache *extent_state_cache;
20 static struct kmem_cache *extent_buffer_cache;
21
22 static LIST_HEAD(buffers);
23 static LIST_HEAD(states);
24
25 #define LEAK_DEBUG 0
26 #if LEAK_DEBUG
27 static DEFINE_SPINLOCK(leak_lock);
28 #endif
29
30 #define BUFFER_LRU_MAX 64
31
32 struct tree_entry {
33 u64 start;
34 u64 end;
35 struct rb_node rb_node;
36 };
37
38 struct extent_page_data {
39 struct bio *bio;
40 struct extent_io_tree *tree;
41 get_extent_t *get_extent;
42
43 /* tells writepage not to lock the state bits for this range
44 * it still does the unlocking
45 */
46 unsigned int extent_locked:1;
47
48 /* tells the submit_bio code to use a WRITE_SYNC */
49 unsigned int sync_io:1;
50 };
51
52 int __init extent_io_init(void)
53 {
54 extent_state_cache = kmem_cache_create("extent_state",
55 sizeof(struct extent_state), 0,
56 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
57 if (!extent_state_cache)
58 return -ENOMEM;
59
60 extent_buffer_cache = kmem_cache_create("extent_buffers",
61 sizeof(struct extent_buffer), 0,
62 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
63 if (!extent_buffer_cache)
64 goto free_state_cache;
65 return 0;
66
67 free_state_cache:
68 kmem_cache_destroy(extent_state_cache);
69 return -ENOMEM;
70 }
71
72 void extent_io_exit(void)
73 {
74 struct extent_state *state;
75 struct extent_buffer *eb;
76
77 while (!list_empty(&states)) {
78 state = list_entry(states.next, struct extent_state, leak_list);
79 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
80 "state %lu in tree %p refs %d\n",
81 (unsigned long long)state->start,
82 (unsigned long long)state->end,
83 state->state, state->tree, atomic_read(&state->refs));
84 list_del(&state->leak_list);
85 kmem_cache_free(extent_state_cache, state);
86
87 }
88
89 while (!list_empty(&buffers)) {
90 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
91 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
92 "refs %d\n", (unsigned long long)eb->start,
93 eb->len, atomic_read(&eb->refs));
94 list_del(&eb->leak_list);
95 kmem_cache_free(extent_buffer_cache, eb);
96 }
97 if (extent_state_cache)
98 kmem_cache_destroy(extent_state_cache);
99 if (extent_buffer_cache)
100 kmem_cache_destroy(extent_buffer_cache);
101 }
102
103 void extent_io_tree_init(struct extent_io_tree *tree,
104 struct address_space *mapping)
105 {
106 tree->state = RB_ROOT;
107 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
108 tree->ops = NULL;
109 tree->dirty_bytes = 0;
110 spin_lock_init(&tree->lock);
111 spin_lock_init(&tree->buffer_lock);
112 tree->mapping = mapping;
113 }
114
115 static struct extent_state *alloc_extent_state(gfp_t mask)
116 {
117 struct extent_state *state;
118 #if LEAK_DEBUG
119 unsigned long flags;
120 #endif
121
122 state = kmem_cache_alloc(extent_state_cache, mask);
123 if (!state)
124 return state;
125 state->state = 0;
126 state->private = 0;
127 state->tree = NULL;
128 #if LEAK_DEBUG
129 spin_lock_irqsave(&leak_lock, flags);
130 list_add(&state->leak_list, &states);
131 spin_unlock_irqrestore(&leak_lock, flags);
132 #endif
133 atomic_set(&state->refs, 1);
134 init_waitqueue_head(&state->wq);
135 return state;
136 }
137
138 void free_extent_state(struct extent_state *state)
139 {
140 if (!state)
141 return;
142 if (atomic_dec_and_test(&state->refs)) {
143 #if LEAK_DEBUG
144 unsigned long flags;
145 #endif
146 WARN_ON(state->tree);
147 #if LEAK_DEBUG
148 spin_lock_irqsave(&leak_lock, flags);
149 list_del(&state->leak_list);
150 spin_unlock_irqrestore(&leak_lock, flags);
151 #endif
152 kmem_cache_free(extent_state_cache, state);
153 }
154 }
155
156 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
157 struct rb_node *node)
158 {
159 struct rb_node **p = &root->rb_node;
160 struct rb_node *parent = NULL;
161 struct tree_entry *entry;
162
163 while (*p) {
164 parent = *p;
165 entry = rb_entry(parent, struct tree_entry, rb_node);
166
167 if (offset < entry->start)
168 p = &(*p)->rb_left;
169 else if (offset > entry->end)
170 p = &(*p)->rb_right;
171 else
172 return parent;
173 }
174
175 entry = rb_entry(node, struct tree_entry, rb_node);
176 rb_link_node(node, parent, p);
177 rb_insert_color(node, root);
178 return NULL;
179 }
180
181 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
182 struct rb_node **prev_ret,
183 struct rb_node **next_ret)
184 {
185 struct rb_root *root = &tree->state;
186 struct rb_node *n = root->rb_node;
187 struct rb_node *prev = NULL;
188 struct rb_node *orig_prev = NULL;
189 struct tree_entry *entry;
190 struct tree_entry *prev_entry = NULL;
191
192 while (n) {
193 entry = rb_entry(n, struct tree_entry, rb_node);
194 prev = n;
195 prev_entry = entry;
196
197 if (offset < entry->start)
198 n = n->rb_left;
199 else if (offset > entry->end)
200 n = n->rb_right;
201 else
202 return n;
203 }
204
205 if (prev_ret) {
206 orig_prev = prev;
207 while (prev && offset > prev_entry->end) {
208 prev = rb_next(prev);
209 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
210 }
211 *prev_ret = prev;
212 prev = orig_prev;
213 }
214
215 if (next_ret) {
216 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
217 while (prev && offset < prev_entry->start) {
218 prev = rb_prev(prev);
219 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
220 }
221 *next_ret = prev;
222 }
223 return NULL;
224 }
225
226 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
227 u64 offset)
228 {
229 struct rb_node *prev = NULL;
230 struct rb_node *ret;
231
232 ret = __etree_search(tree, offset, &prev, NULL);
233 if (!ret)
234 return prev;
235 return ret;
236 }
237
238 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
239 struct extent_state *other)
240 {
241 if (tree->ops && tree->ops->merge_extent_hook)
242 tree->ops->merge_extent_hook(tree->mapping->host, new,
243 other);
244 }
245
246 /*
247 * utility function to look for merge candidates inside a given range.
248 * Any extents with matching state are merged together into a single
249 * extent in the tree. Extents with EXTENT_IO in their state field
250 * are not merged because the end_io handlers need to be able to do
251 * operations on them without sleeping (or doing allocations/splits).
252 *
253 * This should be called with the tree lock held.
254 */
255 static int merge_state(struct extent_io_tree *tree,
256 struct extent_state *state)
257 {
258 struct extent_state *other;
259 struct rb_node *other_node;
260
261 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
262 return 0;
263
264 other_node = rb_prev(&state->rb_node);
265 if (other_node) {
266 other = rb_entry(other_node, struct extent_state, rb_node);
267 if (other->end == state->start - 1 &&
268 other->state == state->state) {
269 merge_cb(tree, state, other);
270 state->start = other->start;
271 other->tree = NULL;
272 rb_erase(&other->rb_node, &tree->state);
273 free_extent_state(other);
274 }
275 }
276 other_node = rb_next(&state->rb_node);
277 if (other_node) {
278 other = rb_entry(other_node, struct extent_state, rb_node);
279 if (other->start == state->end + 1 &&
280 other->state == state->state) {
281 merge_cb(tree, state, other);
282 state->end = other->end;
283 other->tree = NULL;
284 rb_erase(&other->rb_node, &tree->state);
285 free_extent_state(other);
286 }
287 }
288
289 return 0;
290 }
291
292 static int set_state_cb(struct extent_io_tree *tree,
293 struct extent_state *state, int *bits)
294 {
295 if (tree->ops && tree->ops->set_bit_hook) {
296 return tree->ops->set_bit_hook(tree->mapping->host,
297 state, bits);
298 }
299
300 return 0;
301 }
302
303 static void clear_state_cb(struct extent_io_tree *tree,
304 struct extent_state *state, int *bits)
305 {
306 if (tree->ops && tree->ops->clear_bit_hook)
307 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
308 }
309
310 /*
311 * insert an extent_state struct into the tree. 'bits' are set on the
312 * struct before it is inserted.
313 *
314 * This may return -EEXIST if the extent is already there, in which case the
315 * state struct is freed.
316 *
317 * The tree lock is not taken internally. This is a utility function and
318 * probably isn't what you want to call (see set/clear_extent_bit).
319 */
320 static int insert_state(struct extent_io_tree *tree,
321 struct extent_state *state, u64 start, u64 end,
322 int *bits)
323 {
324 struct rb_node *node;
325 int bits_to_set = *bits & ~EXTENT_CTLBITS;
326 int ret;
327
328 if (end < start) {
329 printk(KERN_ERR "btrfs end < start %llu %llu\n",
330 (unsigned long long)end,
331 (unsigned long long)start);
332 WARN_ON(1);
333 }
334 state->start = start;
335 state->end = end;
336 ret = set_state_cb(tree, state, bits);
337 if (ret)
338 return ret;
339
340 if (bits_to_set & EXTENT_DIRTY)
341 tree->dirty_bytes += end - start + 1;
342 state->state |= bits_to_set;
343 node = tree_insert(&tree->state, end, &state->rb_node);
344 if (node) {
345 struct extent_state *found;
346 found = rb_entry(node, struct extent_state, rb_node);
347 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
348 "%llu %llu\n", (unsigned long long)found->start,
349 (unsigned long long)found->end,
350 (unsigned long long)start, (unsigned long long)end);
351 return -EEXIST;
352 }
353 state->tree = tree;
354 merge_state(tree, state);
355 return 0;
356 }
357
358 static int split_cb(struct extent_io_tree *tree, struct extent_state *orig,
359 u64 split)
360 {
361 if (tree->ops && tree->ops->split_extent_hook)
362 return tree->ops->split_extent_hook(tree->mapping->host,
363 orig, split);
364 return 0;
365 }
366
367 /*
368 * split a given extent state struct in two, inserting the preallocated
369 * struct 'prealloc' as the newly created second half. 'split' indicates an
370 * offset inside 'orig' where it should be split.
371 *
372 * Before calling,
373 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
374 * are two extent state structs in the tree:
375 * prealloc: [orig->start, split - 1]
376 * orig: [ split, orig->end ]
377 *
378 * The tree locks are not taken by this function. They need to be held
379 * by the caller.
380 */
381 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
382 struct extent_state *prealloc, u64 split)
383 {
384 struct rb_node *node;
385
386 split_cb(tree, orig, split);
387
388 prealloc->start = orig->start;
389 prealloc->end = split - 1;
390 prealloc->state = orig->state;
391 orig->start = split;
392
393 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
394 if (node) {
395 free_extent_state(prealloc);
396 return -EEXIST;
397 }
398 prealloc->tree = tree;
399 return 0;
400 }
401
402 /*
403 * utility function to clear some bits in an extent state struct.
404 * it will optionally wake up any one waiting on this state (wake == 1), or
405 * forcibly remove the state from the tree (delete == 1).
406 *
407 * If no bits are set on the state struct after clearing things, the
408 * struct is freed and removed from the tree
409 */
410 static int clear_state_bit(struct extent_io_tree *tree,
411 struct extent_state *state,
412 int *bits, int wake)
413 {
414 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
415 int ret = state->state & bits_to_clear;
416
417 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
418 u64 range = state->end - state->start + 1;
419 WARN_ON(range > tree->dirty_bytes);
420 tree->dirty_bytes -= range;
421 }
422 clear_state_cb(tree, state, bits);
423 state->state &= ~bits_to_clear;
424 if (wake)
425 wake_up(&state->wq);
426 if (state->state == 0) {
427 if (state->tree) {
428 rb_erase(&state->rb_node, &tree->state);
429 state->tree = NULL;
430 free_extent_state(state);
431 } else {
432 WARN_ON(1);
433 }
434 } else {
435 merge_state(tree, state);
436 }
437 return ret;
438 }
439
440 static struct extent_state *
441 alloc_extent_state_atomic(struct extent_state *prealloc)
442 {
443 if (!prealloc)
444 prealloc = alloc_extent_state(GFP_ATOMIC);
445
446 return prealloc;
447 }
448
449 /*
450 * clear some bits on a range in the tree. This may require splitting
451 * or inserting elements in the tree, so the gfp mask is used to
452 * indicate which allocations or sleeping are allowed.
453 *
454 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
455 * the given range from the tree regardless of state (ie for truncate).
456 *
457 * the range [start, end] is inclusive.
458 *
459 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
460 * bits were already set, or zero if none of the bits were already set.
461 */
462 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
463 int bits, int wake, int delete,
464 struct extent_state **cached_state,
465 gfp_t mask)
466 {
467 struct extent_state *state;
468 struct extent_state *cached;
469 struct extent_state *prealloc = NULL;
470 struct rb_node *next_node;
471 struct rb_node *node;
472 u64 last_end;
473 int err;
474 int set = 0;
475 int clear = 0;
476
477 if (delete)
478 bits |= ~EXTENT_CTLBITS;
479 bits |= EXTENT_FIRST_DELALLOC;
480
481 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
482 clear = 1;
483 again:
484 if (!prealloc && (mask & __GFP_WAIT)) {
485 prealloc = alloc_extent_state(mask);
486 if (!prealloc)
487 return -ENOMEM;
488 }
489
490 spin_lock(&tree->lock);
491 if (cached_state) {
492 cached = *cached_state;
493
494 if (clear) {
495 *cached_state = NULL;
496 cached_state = NULL;
497 }
498
499 if (cached && cached->tree && cached->start <= start &&
500 cached->end > start) {
501 if (clear)
502 atomic_dec(&cached->refs);
503 state = cached;
504 goto hit_next;
505 }
506 if (clear)
507 free_extent_state(cached);
508 }
509 /*
510 * this search will find the extents that end after
511 * our range starts
512 */
513 node = tree_search(tree, start);
514 if (!node)
515 goto out;
516 state = rb_entry(node, struct extent_state, rb_node);
517 hit_next:
518 if (state->start > end)
519 goto out;
520 WARN_ON(state->end < start);
521 last_end = state->end;
522
523 /*
524 * | ---- desired range ---- |
525 * | state | or
526 * | ------------- state -------------- |
527 *
528 * We need to split the extent we found, and may flip
529 * bits on second half.
530 *
531 * If the extent we found extends past our range, we
532 * just split and search again. It'll get split again
533 * the next time though.
534 *
535 * If the extent we found is inside our range, we clear
536 * the desired bit on it.
537 */
538
539 if (state->start < start) {
540 prealloc = alloc_extent_state_atomic(prealloc);
541 BUG_ON(!prealloc);
542 err = split_state(tree, state, prealloc, start);
543 BUG_ON(err == -EEXIST);
544 prealloc = NULL;
545 if (err)
546 goto out;
547 if (state->end <= end) {
548 set |= clear_state_bit(tree, state, &bits, wake);
549 if (last_end == (u64)-1)
550 goto out;
551 start = last_end + 1;
552 }
553 goto search_again;
554 }
555 /*
556 * | ---- desired range ---- |
557 * | state |
558 * We need to split the extent, and clear the bit
559 * on the first half
560 */
561 if (state->start <= end && state->end > end) {
562 prealloc = alloc_extent_state_atomic(prealloc);
563 BUG_ON(!prealloc);
564 err = split_state(tree, state, prealloc, end + 1);
565 BUG_ON(err == -EEXIST);
566 if (wake)
567 wake_up(&state->wq);
568
569 set |= clear_state_bit(tree, prealloc, &bits, wake);
570
571 prealloc = NULL;
572 goto out;
573 }
574
575 if (state->end < end && prealloc && !need_resched())
576 next_node = rb_next(&state->rb_node);
577 else
578 next_node = NULL;
579
580 set |= clear_state_bit(tree, state, &bits, wake);
581 if (last_end == (u64)-1)
582 goto out;
583 start = last_end + 1;
584 if (start <= end && next_node) {
585 state = rb_entry(next_node, struct extent_state,
586 rb_node);
587 if (state->start == start)
588 goto hit_next;
589 }
590 goto search_again;
591
592 out:
593 spin_unlock(&tree->lock);
594 if (prealloc)
595 free_extent_state(prealloc);
596
597 return set;
598
599 search_again:
600 if (start > end)
601 goto out;
602 spin_unlock(&tree->lock);
603 if (mask & __GFP_WAIT)
604 cond_resched();
605 goto again;
606 }
607
608 static int wait_on_state(struct extent_io_tree *tree,
609 struct extent_state *state)
610 __releases(tree->lock)
611 __acquires(tree->lock)
612 {
613 DEFINE_WAIT(wait);
614 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
615 spin_unlock(&tree->lock);
616 schedule();
617 spin_lock(&tree->lock);
618 finish_wait(&state->wq, &wait);
619 return 0;
620 }
621
622 /*
623 * waits for one or more bits to clear on a range in the state tree.
624 * The range [start, end] is inclusive.
625 * The tree lock is taken by this function
626 */
627 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
628 {
629 struct extent_state *state;
630 struct rb_node *node;
631
632 spin_lock(&tree->lock);
633 again:
634 while (1) {
635 /*
636 * this search will find all the extents that end after
637 * our range starts
638 */
639 node = tree_search(tree, start);
640 if (!node)
641 break;
642
643 state = rb_entry(node, struct extent_state, rb_node);
644
645 if (state->start > end)
646 goto out;
647
648 if (state->state & bits) {
649 start = state->start;
650 atomic_inc(&state->refs);
651 wait_on_state(tree, state);
652 free_extent_state(state);
653 goto again;
654 }
655 start = state->end + 1;
656
657 if (start > end)
658 break;
659
660 if (need_resched()) {
661 spin_unlock(&tree->lock);
662 cond_resched();
663 spin_lock(&tree->lock);
664 }
665 }
666 out:
667 spin_unlock(&tree->lock);
668 return 0;
669 }
670
671 static int set_state_bits(struct extent_io_tree *tree,
672 struct extent_state *state,
673 int *bits)
674 {
675 int ret;
676 int bits_to_set = *bits & ~EXTENT_CTLBITS;
677
678 ret = set_state_cb(tree, state, bits);
679 if (ret)
680 return ret;
681 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
682 u64 range = state->end - state->start + 1;
683 tree->dirty_bytes += range;
684 }
685 state->state |= bits_to_set;
686
687 return 0;
688 }
689
690 static void cache_state(struct extent_state *state,
691 struct extent_state **cached_ptr)
692 {
693 if (cached_ptr && !(*cached_ptr)) {
694 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
695 *cached_ptr = state;
696 atomic_inc(&state->refs);
697 }
698 }
699 }
700
701 static void uncache_state(struct extent_state **cached_ptr)
702 {
703 if (cached_ptr && (*cached_ptr)) {
704 struct extent_state *state = *cached_ptr;
705 *cached_ptr = NULL;
706 free_extent_state(state);
707 }
708 }
709
710 /*
711 * set some bits on a range in the tree. This may require allocations or
712 * sleeping, so the gfp mask is used to indicate what is allowed.
713 *
714 * If any of the exclusive bits are set, this will fail with -EEXIST if some
715 * part of the range already has the desired bits set. The start of the
716 * existing range is returned in failed_start in this case.
717 *
718 * [start, end] is inclusive This takes the tree lock.
719 */
720
721 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
722 int bits, int exclusive_bits, u64 *failed_start,
723 struct extent_state **cached_state, gfp_t mask)
724 {
725 struct extent_state *state;
726 struct extent_state *prealloc = NULL;
727 struct rb_node *node;
728 int err = 0;
729 u64 last_start;
730 u64 last_end;
731
732 bits |= EXTENT_FIRST_DELALLOC;
733 again:
734 if (!prealloc && (mask & __GFP_WAIT)) {
735 prealloc = alloc_extent_state(mask);
736 BUG_ON(!prealloc);
737 }
738
739 spin_lock(&tree->lock);
740 if (cached_state && *cached_state) {
741 state = *cached_state;
742 if (state->start <= start && state->end > start &&
743 state->tree) {
744 node = &state->rb_node;
745 goto hit_next;
746 }
747 }
748 /*
749 * this search will find all the extents that end after
750 * our range starts.
751 */
752 node = tree_search(tree, start);
753 if (!node) {
754 prealloc = alloc_extent_state_atomic(prealloc);
755 BUG_ON(!prealloc);
756 err = insert_state(tree, prealloc, start, end, &bits);
757 prealloc = NULL;
758 BUG_ON(err == -EEXIST);
759 goto out;
760 }
761 state = rb_entry(node, struct extent_state, rb_node);
762 hit_next:
763 last_start = state->start;
764 last_end = state->end;
765
766 /*
767 * | ---- desired range ---- |
768 * | state |
769 *
770 * Just lock what we found and keep going
771 */
772 if (state->start == start && state->end <= end) {
773 struct rb_node *next_node;
774 if (state->state & exclusive_bits) {
775 *failed_start = state->start;
776 err = -EEXIST;
777 goto out;
778 }
779
780 err = set_state_bits(tree, state, &bits);
781 if (err)
782 goto out;
783
784 cache_state(state, cached_state);
785 merge_state(tree, state);
786 if (last_end == (u64)-1)
787 goto out;
788
789 start = last_end + 1;
790 next_node = rb_next(&state->rb_node);
791 if (next_node && start < end && prealloc && !need_resched()) {
792 state = rb_entry(next_node, struct extent_state,
793 rb_node);
794 if (state->start == start)
795 goto hit_next;
796 }
797 goto search_again;
798 }
799
800 /*
801 * | ---- desired range ---- |
802 * | state |
803 * or
804 * | ------------- state -------------- |
805 *
806 * We need to split the extent we found, and may flip bits on
807 * second half.
808 *
809 * If the extent we found extends past our
810 * range, we just split and search again. It'll get split
811 * again the next time though.
812 *
813 * If the extent we found is inside our range, we set the
814 * desired bit on it.
815 */
816 if (state->start < start) {
817 if (state->state & exclusive_bits) {
818 *failed_start = start;
819 err = -EEXIST;
820 goto out;
821 }
822
823 prealloc = alloc_extent_state_atomic(prealloc);
824 BUG_ON(!prealloc);
825 err = split_state(tree, state, prealloc, start);
826 BUG_ON(err == -EEXIST);
827 prealloc = NULL;
828 if (err)
829 goto out;
830 if (state->end <= end) {
831 err = set_state_bits(tree, state, &bits);
832 if (err)
833 goto out;
834 cache_state(state, cached_state);
835 merge_state(tree, state);
836 if (last_end == (u64)-1)
837 goto out;
838 start = last_end + 1;
839 }
840 goto search_again;
841 }
842 /*
843 * | ---- desired range ---- |
844 * | state | or | state |
845 *
846 * There's a hole, we need to insert something in it and
847 * ignore the extent we found.
848 */
849 if (state->start > start) {
850 u64 this_end;
851 if (end < last_start)
852 this_end = end;
853 else
854 this_end = last_start - 1;
855
856 prealloc = alloc_extent_state_atomic(prealloc);
857 BUG_ON(!prealloc);
858
859 /*
860 * Avoid to free 'prealloc' if it can be merged with
861 * the later extent.
862 */
863 err = insert_state(tree, prealloc, start, this_end,
864 &bits);
865 BUG_ON(err == -EEXIST);
866 if (err) {
867 free_extent_state(prealloc);
868 prealloc = NULL;
869 goto out;
870 }
871 cache_state(prealloc, cached_state);
872 prealloc = NULL;
873 start = this_end + 1;
874 goto search_again;
875 }
876 /*
877 * | ---- desired range ---- |
878 * | state |
879 * We need to split the extent, and set the bit
880 * on the first half
881 */
882 if (state->start <= end && state->end > end) {
883 if (state->state & exclusive_bits) {
884 *failed_start = start;
885 err = -EEXIST;
886 goto out;
887 }
888
889 prealloc = alloc_extent_state_atomic(prealloc);
890 BUG_ON(!prealloc);
891 err = split_state(tree, state, prealloc, end + 1);
892 BUG_ON(err == -EEXIST);
893
894 err = set_state_bits(tree, prealloc, &bits);
895 if (err) {
896 prealloc = NULL;
897 goto out;
898 }
899 cache_state(prealloc, cached_state);
900 merge_state(tree, prealloc);
901 prealloc = NULL;
902 goto out;
903 }
904
905 goto search_again;
906
907 out:
908 spin_unlock(&tree->lock);
909 if (prealloc)
910 free_extent_state(prealloc);
911
912 return err;
913
914 search_again:
915 if (start > end)
916 goto out;
917 spin_unlock(&tree->lock);
918 if (mask & __GFP_WAIT)
919 cond_resched();
920 goto again;
921 }
922
923 /* wrappers around set/clear extent bit */
924 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
925 gfp_t mask)
926 {
927 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
928 NULL, mask);
929 }
930
931 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
932 int bits, gfp_t mask)
933 {
934 return set_extent_bit(tree, start, end, bits, 0, NULL,
935 NULL, mask);
936 }
937
938 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
939 int bits, gfp_t mask)
940 {
941 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
942 }
943
944 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
945 struct extent_state **cached_state, gfp_t mask)
946 {
947 return set_extent_bit(tree, start, end,
948 EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE,
949 0, NULL, cached_state, mask);
950 }
951
952 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
953 gfp_t mask)
954 {
955 return clear_extent_bit(tree, start, end,
956 EXTENT_DIRTY | EXTENT_DELALLOC |
957 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
958 }
959
960 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
961 gfp_t mask)
962 {
963 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
964 NULL, mask);
965 }
966
967 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
968 struct extent_state **cached_state, gfp_t mask)
969 {
970 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
971 NULL, cached_state, mask);
972 }
973
974 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
975 u64 end, struct extent_state **cached_state,
976 gfp_t mask)
977 {
978 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
979 cached_state, mask);
980 }
981
982 /*
983 * either insert or lock state struct between start and end use mask to tell
984 * us if waiting is desired.
985 */
986 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
987 int bits, struct extent_state **cached_state, gfp_t mask)
988 {
989 int err;
990 u64 failed_start;
991 while (1) {
992 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
993 EXTENT_LOCKED, &failed_start,
994 cached_state, mask);
995 if (err == -EEXIST && (mask & __GFP_WAIT)) {
996 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
997 start = failed_start;
998 } else {
999 break;
1000 }
1001 WARN_ON(start > end);
1002 }
1003 return err;
1004 }
1005
1006 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1007 {
1008 return lock_extent_bits(tree, start, end, 0, NULL, mask);
1009 }
1010
1011 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1012 gfp_t mask)
1013 {
1014 int err;
1015 u64 failed_start;
1016
1017 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1018 &failed_start, NULL, mask);
1019 if (err == -EEXIST) {
1020 if (failed_start > start)
1021 clear_extent_bit(tree, start, failed_start - 1,
1022 EXTENT_LOCKED, 1, 0, NULL, mask);
1023 return 0;
1024 }
1025 return 1;
1026 }
1027
1028 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1029 struct extent_state **cached, gfp_t mask)
1030 {
1031 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1032 mask);
1033 }
1034
1035 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1036 {
1037 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1038 mask);
1039 }
1040
1041 /*
1042 * helper function to set both pages and extents in the tree writeback
1043 */
1044 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1045 {
1046 unsigned long index = start >> PAGE_CACHE_SHIFT;
1047 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1048 struct page *page;
1049
1050 while (index <= end_index) {
1051 page = find_get_page(tree->mapping, index);
1052 BUG_ON(!page);
1053 set_page_writeback(page);
1054 page_cache_release(page);
1055 index++;
1056 }
1057 return 0;
1058 }
1059
1060 /*
1061 * find the first offset in the io tree with 'bits' set. zero is
1062 * returned if we find something, and *start_ret and *end_ret are
1063 * set to reflect the state struct that was found.
1064 *
1065 * If nothing was found, 1 is returned, < 0 on error
1066 */
1067 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1068 u64 *start_ret, u64 *end_ret, int bits)
1069 {
1070 struct rb_node *node;
1071 struct extent_state *state;
1072 int ret = 1;
1073
1074 spin_lock(&tree->lock);
1075 /*
1076 * this search will find all the extents that end after
1077 * our range starts.
1078 */
1079 node = tree_search(tree, start);
1080 if (!node)
1081 goto out;
1082
1083 while (1) {
1084 state = rb_entry(node, struct extent_state, rb_node);
1085 if (state->end >= start && (state->state & bits)) {
1086 *start_ret = state->start;
1087 *end_ret = state->end;
1088 ret = 0;
1089 break;
1090 }
1091 node = rb_next(node);
1092 if (!node)
1093 break;
1094 }
1095 out:
1096 spin_unlock(&tree->lock);
1097 return ret;
1098 }
1099
1100 /* find the first state struct with 'bits' set after 'start', and
1101 * return it. tree->lock must be held. NULL will returned if
1102 * nothing was found after 'start'
1103 */
1104 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1105 u64 start, int bits)
1106 {
1107 struct rb_node *node;
1108 struct extent_state *state;
1109
1110 /*
1111 * this search will find all the extents that end after
1112 * our range starts.
1113 */
1114 node = tree_search(tree, start);
1115 if (!node)
1116 goto out;
1117
1118 while (1) {
1119 state = rb_entry(node, struct extent_state, rb_node);
1120 if (state->end >= start && (state->state & bits))
1121 return state;
1122
1123 node = rb_next(node);
1124 if (!node)
1125 break;
1126 }
1127 out:
1128 return NULL;
1129 }
1130
1131 /*
1132 * find a contiguous range of bytes in the file marked as delalloc, not
1133 * more than 'max_bytes'. start and end are used to return the range,
1134 *
1135 * 1 is returned if we find something, 0 if nothing was in the tree
1136 */
1137 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1138 u64 *start, u64 *end, u64 max_bytes,
1139 struct extent_state **cached_state)
1140 {
1141 struct rb_node *node;
1142 struct extent_state *state;
1143 u64 cur_start = *start;
1144 u64 found = 0;
1145 u64 total_bytes = 0;
1146
1147 spin_lock(&tree->lock);
1148
1149 /*
1150 * this search will find all the extents that end after
1151 * our range starts.
1152 */
1153 node = tree_search(tree, cur_start);
1154 if (!node) {
1155 if (!found)
1156 *end = (u64)-1;
1157 goto out;
1158 }
1159
1160 while (1) {
1161 state = rb_entry(node, struct extent_state, rb_node);
1162 if (found && (state->start != cur_start ||
1163 (state->state & EXTENT_BOUNDARY))) {
1164 goto out;
1165 }
1166 if (!(state->state & EXTENT_DELALLOC)) {
1167 if (!found)
1168 *end = state->end;
1169 goto out;
1170 }
1171 if (!found) {
1172 *start = state->start;
1173 *cached_state = state;
1174 atomic_inc(&state->refs);
1175 }
1176 found++;
1177 *end = state->end;
1178 cur_start = state->end + 1;
1179 node = rb_next(node);
1180 if (!node)
1181 break;
1182 total_bytes += state->end - state->start + 1;
1183 if (total_bytes >= max_bytes)
1184 break;
1185 }
1186 out:
1187 spin_unlock(&tree->lock);
1188 return found;
1189 }
1190
1191 static noinline int __unlock_for_delalloc(struct inode *inode,
1192 struct page *locked_page,
1193 u64 start, u64 end)
1194 {
1195 int ret;
1196 struct page *pages[16];
1197 unsigned long index = start >> PAGE_CACHE_SHIFT;
1198 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1199 unsigned long nr_pages = end_index - index + 1;
1200 int i;
1201
1202 if (index == locked_page->index && end_index == index)
1203 return 0;
1204
1205 while (nr_pages > 0) {
1206 ret = find_get_pages_contig(inode->i_mapping, index,
1207 min_t(unsigned long, nr_pages,
1208 ARRAY_SIZE(pages)), pages);
1209 for (i = 0; i < ret; i++) {
1210 if (pages[i] != locked_page)
1211 unlock_page(pages[i]);
1212 page_cache_release(pages[i]);
1213 }
1214 nr_pages -= ret;
1215 index += ret;
1216 cond_resched();
1217 }
1218 return 0;
1219 }
1220
1221 static noinline int lock_delalloc_pages(struct inode *inode,
1222 struct page *locked_page,
1223 u64 delalloc_start,
1224 u64 delalloc_end)
1225 {
1226 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1227 unsigned long start_index = index;
1228 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1229 unsigned long pages_locked = 0;
1230 struct page *pages[16];
1231 unsigned long nrpages;
1232 int ret;
1233 int i;
1234
1235 /* the caller is responsible for locking the start index */
1236 if (index == locked_page->index && index == end_index)
1237 return 0;
1238
1239 /* skip the page at the start index */
1240 nrpages = end_index - index + 1;
1241 while (nrpages > 0) {
1242 ret = find_get_pages_contig(inode->i_mapping, index,
1243 min_t(unsigned long,
1244 nrpages, ARRAY_SIZE(pages)), pages);
1245 if (ret == 0) {
1246 ret = -EAGAIN;
1247 goto done;
1248 }
1249 /* now we have an array of pages, lock them all */
1250 for (i = 0; i < ret; i++) {
1251 /*
1252 * the caller is taking responsibility for
1253 * locked_page
1254 */
1255 if (pages[i] != locked_page) {
1256 lock_page(pages[i]);
1257 if (!PageDirty(pages[i]) ||
1258 pages[i]->mapping != inode->i_mapping) {
1259 ret = -EAGAIN;
1260 unlock_page(pages[i]);
1261 page_cache_release(pages[i]);
1262 goto done;
1263 }
1264 }
1265 page_cache_release(pages[i]);
1266 pages_locked++;
1267 }
1268 nrpages -= ret;
1269 index += ret;
1270 cond_resched();
1271 }
1272 ret = 0;
1273 done:
1274 if (ret && pages_locked) {
1275 __unlock_for_delalloc(inode, locked_page,
1276 delalloc_start,
1277 ((u64)(start_index + pages_locked - 1)) <<
1278 PAGE_CACHE_SHIFT);
1279 }
1280 return ret;
1281 }
1282
1283 /*
1284 * find a contiguous range of bytes in the file marked as delalloc, not
1285 * more than 'max_bytes'. start and end are used to return the range,
1286 *
1287 * 1 is returned if we find something, 0 if nothing was in the tree
1288 */
1289 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1290 struct extent_io_tree *tree,
1291 struct page *locked_page,
1292 u64 *start, u64 *end,
1293 u64 max_bytes)
1294 {
1295 u64 delalloc_start;
1296 u64 delalloc_end;
1297 u64 found;
1298 struct extent_state *cached_state = NULL;
1299 int ret;
1300 int loops = 0;
1301
1302 again:
1303 /* step one, find a bunch of delalloc bytes starting at start */
1304 delalloc_start = *start;
1305 delalloc_end = 0;
1306 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1307 max_bytes, &cached_state);
1308 if (!found || delalloc_end <= *start) {
1309 *start = delalloc_start;
1310 *end = delalloc_end;
1311 free_extent_state(cached_state);
1312 return found;
1313 }
1314
1315 /*
1316 * start comes from the offset of locked_page. We have to lock
1317 * pages in order, so we can't process delalloc bytes before
1318 * locked_page
1319 */
1320 if (delalloc_start < *start)
1321 delalloc_start = *start;
1322
1323 /*
1324 * make sure to limit the number of pages we try to lock down
1325 * if we're looping.
1326 */
1327 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1328 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1329
1330 /* step two, lock all the pages after the page that has start */
1331 ret = lock_delalloc_pages(inode, locked_page,
1332 delalloc_start, delalloc_end);
1333 if (ret == -EAGAIN) {
1334 /* some of the pages are gone, lets avoid looping by
1335 * shortening the size of the delalloc range we're searching
1336 */
1337 free_extent_state(cached_state);
1338 if (!loops) {
1339 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1340 max_bytes = PAGE_CACHE_SIZE - offset;
1341 loops = 1;
1342 goto again;
1343 } else {
1344 found = 0;
1345 goto out_failed;
1346 }
1347 }
1348 BUG_ON(ret);
1349
1350 /* step three, lock the state bits for the whole range */
1351 lock_extent_bits(tree, delalloc_start, delalloc_end,
1352 0, &cached_state, GFP_NOFS);
1353
1354 /* then test to make sure it is all still delalloc */
1355 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1356 EXTENT_DELALLOC, 1, cached_state);
1357 if (!ret) {
1358 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1359 &cached_state, GFP_NOFS);
1360 __unlock_for_delalloc(inode, locked_page,
1361 delalloc_start, delalloc_end);
1362 cond_resched();
1363 goto again;
1364 }
1365 free_extent_state(cached_state);
1366 *start = delalloc_start;
1367 *end = delalloc_end;
1368 out_failed:
1369 return found;
1370 }
1371
1372 int extent_clear_unlock_delalloc(struct inode *inode,
1373 struct extent_io_tree *tree,
1374 u64 start, u64 end, struct page *locked_page,
1375 unsigned long op)
1376 {
1377 int ret;
1378 struct page *pages[16];
1379 unsigned long index = start >> PAGE_CACHE_SHIFT;
1380 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1381 unsigned long nr_pages = end_index - index + 1;
1382 int i;
1383 int clear_bits = 0;
1384
1385 if (op & EXTENT_CLEAR_UNLOCK)
1386 clear_bits |= EXTENT_LOCKED;
1387 if (op & EXTENT_CLEAR_DIRTY)
1388 clear_bits |= EXTENT_DIRTY;
1389
1390 if (op & EXTENT_CLEAR_DELALLOC)
1391 clear_bits |= EXTENT_DELALLOC;
1392
1393 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1394 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1395 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1396 EXTENT_SET_PRIVATE2)))
1397 return 0;
1398
1399 while (nr_pages > 0) {
1400 ret = find_get_pages_contig(inode->i_mapping, index,
1401 min_t(unsigned long,
1402 nr_pages, ARRAY_SIZE(pages)), pages);
1403 for (i = 0; i < ret; i++) {
1404
1405 if (op & EXTENT_SET_PRIVATE2)
1406 SetPagePrivate2(pages[i]);
1407
1408 if (pages[i] == locked_page) {
1409 page_cache_release(pages[i]);
1410 continue;
1411 }
1412 if (op & EXTENT_CLEAR_DIRTY)
1413 clear_page_dirty_for_io(pages[i]);
1414 if (op & EXTENT_SET_WRITEBACK)
1415 set_page_writeback(pages[i]);
1416 if (op & EXTENT_END_WRITEBACK)
1417 end_page_writeback(pages[i]);
1418 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1419 unlock_page(pages[i]);
1420 page_cache_release(pages[i]);
1421 }
1422 nr_pages -= ret;
1423 index += ret;
1424 cond_resched();
1425 }
1426 return 0;
1427 }
1428
1429 /*
1430 * count the number of bytes in the tree that have a given bit(s)
1431 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1432 * cached. The total number found is returned.
1433 */
1434 u64 count_range_bits(struct extent_io_tree *tree,
1435 u64 *start, u64 search_end, u64 max_bytes,
1436 unsigned long bits, int contig)
1437 {
1438 struct rb_node *node;
1439 struct extent_state *state;
1440 u64 cur_start = *start;
1441 u64 total_bytes = 0;
1442 u64 last = 0;
1443 int found = 0;
1444
1445 if (search_end <= cur_start) {
1446 WARN_ON(1);
1447 return 0;
1448 }
1449
1450 spin_lock(&tree->lock);
1451 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1452 total_bytes = tree->dirty_bytes;
1453 goto out;
1454 }
1455 /*
1456 * this search will find all the extents that end after
1457 * our range starts.
1458 */
1459 node = tree_search(tree, cur_start);
1460 if (!node)
1461 goto out;
1462
1463 while (1) {
1464 state = rb_entry(node, struct extent_state, rb_node);
1465 if (state->start > search_end)
1466 break;
1467 if (contig && found && state->start > last + 1)
1468 break;
1469 if (state->end >= cur_start && (state->state & bits) == bits) {
1470 total_bytes += min(search_end, state->end) + 1 -
1471 max(cur_start, state->start);
1472 if (total_bytes >= max_bytes)
1473 break;
1474 if (!found) {
1475 *start = max(cur_start, state->start);
1476 found = 1;
1477 }
1478 last = state->end;
1479 } else if (contig && found) {
1480 break;
1481 }
1482 node = rb_next(node);
1483 if (!node)
1484 break;
1485 }
1486 out:
1487 spin_unlock(&tree->lock);
1488 return total_bytes;
1489 }
1490
1491 /*
1492 * set the private field for a given byte offset in the tree. If there isn't
1493 * an extent_state there already, this does nothing.
1494 */
1495 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1496 {
1497 struct rb_node *node;
1498 struct extent_state *state;
1499 int ret = 0;
1500
1501 spin_lock(&tree->lock);
1502 /*
1503 * this search will find all the extents that end after
1504 * our range starts.
1505 */
1506 node = tree_search(tree, start);
1507 if (!node) {
1508 ret = -ENOENT;
1509 goto out;
1510 }
1511 state = rb_entry(node, struct extent_state, rb_node);
1512 if (state->start != start) {
1513 ret = -ENOENT;
1514 goto out;
1515 }
1516 state->private = private;
1517 out:
1518 spin_unlock(&tree->lock);
1519 return ret;
1520 }
1521
1522 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1523 {
1524 struct rb_node *node;
1525 struct extent_state *state;
1526 int ret = 0;
1527
1528 spin_lock(&tree->lock);
1529 /*
1530 * this search will find all the extents that end after
1531 * our range starts.
1532 */
1533 node = tree_search(tree, start);
1534 if (!node) {
1535 ret = -ENOENT;
1536 goto out;
1537 }
1538 state = rb_entry(node, struct extent_state, rb_node);
1539 if (state->start != start) {
1540 ret = -ENOENT;
1541 goto out;
1542 }
1543 *private = state->private;
1544 out:
1545 spin_unlock(&tree->lock);
1546 return ret;
1547 }
1548
1549 /*
1550 * searches a range in the state tree for a given mask.
1551 * If 'filled' == 1, this returns 1 only if every extent in the tree
1552 * has the bits set. Otherwise, 1 is returned if any bit in the
1553 * range is found set.
1554 */
1555 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1556 int bits, int filled, struct extent_state *cached)
1557 {
1558 struct extent_state *state = NULL;
1559 struct rb_node *node;
1560 int bitset = 0;
1561
1562 spin_lock(&tree->lock);
1563 if (cached && cached->tree && cached->start <= start &&
1564 cached->end > start)
1565 node = &cached->rb_node;
1566 else
1567 node = tree_search(tree, start);
1568 while (node && start <= end) {
1569 state = rb_entry(node, struct extent_state, rb_node);
1570
1571 if (filled && state->start > start) {
1572 bitset = 0;
1573 break;
1574 }
1575
1576 if (state->start > end)
1577 break;
1578
1579 if (state->state & bits) {
1580 bitset = 1;
1581 if (!filled)
1582 break;
1583 } else if (filled) {
1584 bitset = 0;
1585 break;
1586 }
1587
1588 if (state->end == (u64)-1)
1589 break;
1590
1591 start = state->end + 1;
1592 if (start > end)
1593 break;
1594 node = rb_next(node);
1595 if (!node) {
1596 if (filled)
1597 bitset = 0;
1598 break;
1599 }
1600 }
1601 spin_unlock(&tree->lock);
1602 return bitset;
1603 }
1604
1605 /*
1606 * helper function to set a given page up to date if all the
1607 * extents in the tree for that page are up to date
1608 */
1609 static int check_page_uptodate(struct extent_io_tree *tree,
1610 struct page *page)
1611 {
1612 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1613 u64 end = start + PAGE_CACHE_SIZE - 1;
1614 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1615 SetPageUptodate(page);
1616 return 0;
1617 }
1618
1619 /*
1620 * helper function to unlock a page if all the extents in the tree
1621 * for that page are unlocked
1622 */
1623 static int check_page_locked(struct extent_io_tree *tree,
1624 struct page *page)
1625 {
1626 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1627 u64 end = start + PAGE_CACHE_SIZE - 1;
1628 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1629 unlock_page(page);
1630 return 0;
1631 }
1632
1633 /*
1634 * helper function to end page writeback if all the extents
1635 * in the tree for that page are done with writeback
1636 */
1637 static int check_page_writeback(struct extent_io_tree *tree,
1638 struct page *page)
1639 {
1640 end_page_writeback(page);
1641 return 0;
1642 }
1643
1644 /* lots and lots of room for performance fixes in the end_bio funcs */
1645
1646 /*
1647 * after a writepage IO is done, we need to:
1648 * clear the uptodate bits on error
1649 * clear the writeback bits in the extent tree for this IO
1650 * end_page_writeback if the page has no more pending IO
1651 *
1652 * Scheduling is not allowed, so the extent state tree is expected
1653 * to have one and only one object corresponding to this IO.
1654 */
1655 static void end_bio_extent_writepage(struct bio *bio, int err)
1656 {
1657 int uptodate = err == 0;
1658 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1659 struct extent_io_tree *tree;
1660 u64 start;
1661 u64 end;
1662 int whole_page;
1663 int ret;
1664
1665 do {
1666 struct page *page = bvec->bv_page;
1667 tree = &BTRFS_I(page->mapping->host)->io_tree;
1668
1669 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1670 bvec->bv_offset;
1671 end = start + bvec->bv_len - 1;
1672
1673 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1674 whole_page = 1;
1675 else
1676 whole_page = 0;
1677
1678 if (--bvec >= bio->bi_io_vec)
1679 prefetchw(&bvec->bv_page->flags);
1680 if (tree->ops && tree->ops->writepage_end_io_hook) {
1681 ret = tree->ops->writepage_end_io_hook(page, start,
1682 end, NULL, uptodate);
1683 if (ret)
1684 uptodate = 0;
1685 }
1686
1687 if (!uptodate && tree->ops &&
1688 tree->ops->writepage_io_failed_hook) {
1689 ret = tree->ops->writepage_io_failed_hook(bio, page,
1690 start, end, NULL);
1691 if (ret == 0) {
1692 uptodate = (err == 0);
1693 continue;
1694 }
1695 }
1696
1697 if (!uptodate) {
1698 clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
1699 ClearPageUptodate(page);
1700 SetPageError(page);
1701 }
1702
1703 if (whole_page)
1704 end_page_writeback(page);
1705 else
1706 check_page_writeback(tree, page);
1707 } while (bvec >= bio->bi_io_vec);
1708
1709 bio_put(bio);
1710 }
1711
1712 /*
1713 * after a readpage IO is done, we need to:
1714 * clear the uptodate bits on error
1715 * set the uptodate bits if things worked
1716 * set the page up to date if all extents in the tree are uptodate
1717 * clear the lock bit in the extent tree
1718 * unlock the page if there are no other extents locked for it
1719 *
1720 * Scheduling is not allowed, so the extent state tree is expected
1721 * to have one and only one object corresponding to this IO.
1722 */
1723 static void end_bio_extent_readpage(struct bio *bio, int err)
1724 {
1725 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1726 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
1727 struct bio_vec *bvec = bio->bi_io_vec;
1728 struct extent_io_tree *tree;
1729 u64 start;
1730 u64 end;
1731 int whole_page;
1732 int ret;
1733
1734 if (err)
1735 uptodate = 0;
1736
1737 do {
1738 struct page *page = bvec->bv_page;
1739 struct extent_state *cached = NULL;
1740 struct extent_state *state;
1741
1742 tree = &BTRFS_I(page->mapping->host)->io_tree;
1743
1744 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1745 bvec->bv_offset;
1746 end = start + bvec->bv_len - 1;
1747
1748 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1749 whole_page = 1;
1750 else
1751 whole_page = 0;
1752
1753 if (++bvec <= bvec_end)
1754 prefetchw(&bvec->bv_page->flags);
1755
1756 spin_lock(&tree->lock);
1757 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
1758 if (state && state->start == start) {
1759 /*
1760 * take a reference on the state, unlock will drop
1761 * the ref
1762 */
1763 cache_state(state, &cached);
1764 }
1765 spin_unlock(&tree->lock);
1766
1767 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1768 ret = tree->ops->readpage_end_io_hook(page, start, end,
1769 state);
1770 if (ret)
1771 uptodate = 0;
1772 }
1773 if (!uptodate && tree->ops &&
1774 tree->ops->readpage_io_failed_hook) {
1775 ret = tree->ops->readpage_io_failed_hook(bio, page,
1776 start, end, NULL);
1777 if (ret == 0) {
1778 uptodate =
1779 test_bit(BIO_UPTODATE, &bio->bi_flags);
1780 if (err)
1781 uptodate = 0;
1782 uncache_state(&cached);
1783 continue;
1784 }
1785 }
1786
1787 if (uptodate) {
1788 set_extent_uptodate(tree, start, end, &cached,
1789 GFP_ATOMIC);
1790 }
1791 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
1792
1793 if (whole_page) {
1794 if (uptodate) {
1795 SetPageUptodate(page);
1796 } else {
1797 ClearPageUptodate(page);
1798 SetPageError(page);
1799 }
1800 unlock_page(page);
1801 } else {
1802 if (uptodate) {
1803 check_page_uptodate(tree, page);
1804 } else {
1805 ClearPageUptodate(page);
1806 SetPageError(page);
1807 }
1808 check_page_locked(tree, page);
1809 }
1810 } while (bvec <= bvec_end);
1811
1812 bio_put(bio);
1813 }
1814
1815 struct bio *
1816 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1817 gfp_t gfp_flags)
1818 {
1819 struct bio *bio;
1820
1821 bio = bio_alloc(gfp_flags, nr_vecs);
1822
1823 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1824 while (!bio && (nr_vecs /= 2))
1825 bio = bio_alloc(gfp_flags, nr_vecs);
1826 }
1827
1828 if (bio) {
1829 bio->bi_size = 0;
1830 bio->bi_bdev = bdev;
1831 bio->bi_sector = first_sector;
1832 }
1833 return bio;
1834 }
1835
1836 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1837 unsigned long bio_flags)
1838 {
1839 int ret = 0;
1840 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1841 struct page *page = bvec->bv_page;
1842 struct extent_io_tree *tree = bio->bi_private;
1843 u64 start;
1844
1845 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1846
1847 bio->bi_private = NULL;
1848
1849 bio_get(bio);
1850
1851 if (tree->ops && tree->ops->submit_bio_hook)
1852 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1853 mirror_num, bio_flags, start);
1854 else
1855 submit_bio(rw, bio);
1856 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1857 ret = -EOPNOTSUPP;
1858 bio_put(bio);
1859 return ret;
1860 }
1861
1862 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1863 struct page *page, sector_t sector,
1864 size_t size, unsigned long offset,
1865 struct block_device *bdev,
1866 struct bio **bio_ret,
1867 unsigned long max_pages,
1868 bio_end_io_t end_io_func,
1869 int mirror_num,
1870 unsigned long prev_bio_flags,
1871 unsigned long bio_flags)
1872 {
1873 int ret = 0;
1874 struct bio *bio;
1875 int nr;
1876 int contig = 0;
1877 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1878 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1879 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1880
1881 if (bio_ret && *bio_ret) {
1882 bio = *bio_ret;
1883 if (old_compressed)
1884 contig = bio->bi_sector == sector;
1885 else
1886 contig = bio->bi_sector + (bio->bi_size >> 9) ==
1887 sector;
1888
1889 if (prev_bio_flags != bio_flags || !contig ||
1890 (tree->ops && tree->ops->merge_bio_hook &&
1891 tree->ops->merge_bio_hook(page, offset, page_size, bio,
1892 bio_flags)) ||
1893 bio_add_page(bio, page, page_size, offset) < page_size) {
1894 ret = submit_one_bio(rw, bio, mirror_num,
1895 prev_bio_flags);
1896 bio = NULL;
1897 } else {
1898 return 0;
1899 }
1900 }
1901 if (this_compressed)
1902 nr = BIO_MAX_PAGES;
1903 else
1904 nr = bio_get_nr_vecs(bdev);
1905
1906 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1907 if (!bio)
1908 return -ENOMEM;
1909
1910 bio_add_page(bio, page, page_size, offset);
1911 bio->bi_end_io = end_io_func;
1912 bio->bi_private = tree;
1913
1914 if (bio_ret)
1915 *bio_ret = bio;
1916 else
1917 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1918
1919 return ret;
1920 }
1921
1922 void set_page_extent_mapped(struct page *page)
1923 {
1924 if (!PagePrivate(page)) {
1925 SetPagePrivate(page);
1926 page_cache_get(page);
1927 set_page_private(page, EXTENT_PAGE_PRIVATE);
1928 }
1929 }
1930
1931 static void set_page_extent_head(struct page *page, unsigned long len)
1932 {
1933 WARN_ON(!PagePrivate(page));
1934 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1935 }
1936
1937 /*
1938 * basic readpage implementation. Locked extent state structs are inserted
1939 * into the tree that are removed when the IO is done (by the end_io
1940 * handlers)
1941 */
1942 static int __extent_read_full_page(struct extent_io_tree *tree,
1943 struct page *page,
1944 get_extent_t *get_extent,
1945 struct bio **bio, int mirror_num,
1946 unsigned long *bio_flags)
1947 {
1948 struct inode *inode = page->mapping->host;
1949 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1950 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1951 u64 end;
1952 u64 cur = start;
1953 u64 extent_offset;
1954 u64 last_byte = i_size_read(inode);
1955 u64 block_start;
1956 u64 cur_end;
1957 sector_t sector;
1958 struct extent_map *em;
1959 struct block_device *bdev;
1960 struct btrfs_ordered_extent *ordered;
1961 int ret;
1962 int nr = 0;
1963 size_t pg_offset = 0;
1964 size_t iosize;
1965 size_t disk_io_size;
1966 size_t blocksize = inode->i_sb->s_blocksize;
1967 unsigned long this_bio_flag = 0;
1968
1969 set_page_extent_mapped(page);
1970
1971 end = page_end;
1972 while (1) {
1973 lock_extent(tree, start, end, GFP_NOFS);
1974 ordered = btrfs_lookup_ordered_extent(inode, start);
1975 if (!ordered)
1976 break;
1977 unlock_extent(tree, start, end, GFP_NOFS);
1978 btrfs_start_ordered_extent(inode, ordered, 1);
1979 btrfs_put_ordered_extent(ordered);
1980 }
1981
1982 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
1983 char *userpage;
1984 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
1985
1986 if (zero_offset) {
1987 iosize = PAGE_CACHE_SIZE - zero_offset;
1988 userpage = kmap_atomic(page, KM_USER0);
1989 memset(userpage + zero_offset, 0, iosize);
1990 flush_dcache_page(page);
1991 kunmap_atomic(userpage, KM_USER0);
1992 }
1993 }
1994 while (cur <= end) {
1995 if (cur >= last_byte) {
1996 char *userpage;
1997 struct extent_state *cached = NULL;
1998
1999 iosize = PAGE_CACHE_SIZE - pg_offset;
2000 userpage = kmap_atomic(page, KM_USER0);
2001 memset(userpage + pg_offset, 0, iosize);
2002 flush_dcache_page(page);
2003 kunmap_atomic(userpage, KM_USER0);
2004 set_extent_uptodate(tree, cur, cur + iosize - 1,
2005 &cached, GFP_NOFS);
2006 unlock_extent_cached(tree, cur, cur + iosize - 1,
2007 &cached, GFP_NOFS);
2008 break;
2009 }
2010 em = get_extent(inode, page, pg_offset, cur,
2011 end - cur + 1, 0);
2012 if (IS_ERR_OR_NULL(em)) {
2013 SetPageError(page);
2014 unlock_extent(tree, cur, end, GFP_NOFS);
2015 break;
2016 }
2017 extent_offset = cur - em->start;
2018 BUG_ON(extent_map_end(em) <= cur);
2019 BUG_ON(end < cur);
2020
2021 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2022 this_bio_flag = EXTENT_BIO_COMPRESSED;
2023 extent_set_compress_type(&this_bio_flag,
2024 em->compress_type);
2025 }
2026
2027 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2028 cur_end = min(extent_map_end(em) - 1, end);
2029 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2030 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2031 disk_io_size = em->block_len;
2032 sector = em->block_start >> 9;
2033 } else {
2034 sector = (em->block_start + extent_offset) >> 9;
2035 disk_io_size = iosize;
2036 }
2037 bdev = em->bdev;
2038 block_start = em->block_start;
2039 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2040 block_start = EXTENT_MAP_HOLE;
2041 free_extent_map(em);
2042 em = NULL;
2043
2044 /* we've found a hole, just zero and go on */
2045 if (block_start == EXTENT_MAP_HOLE) {
2046 char *userpage;
2047 struct extent_state *cached = NULL;
2048
2049 userpage = kmap_atomic(page, KM_USER0);
2050 memset(userpage + pg_offset, 0, iosize);
2051 flush_dcache_page(page);
2052 kunmap_atomic(userpage, KM_USER0);
2053
2054 set_extent_uptodate(tree, cur, cur + iosize - 1,
2055 &cached, GFP_NOFS);
2056 unlock_extent_cached(tree, cur, cur + iosize - 1,
2057 &cached, GFP_NOFS);
2058 cur = cur + iosize;
2059 pg_offset += iosize;
2060 continue;
2061 }
2062 /* the get_extent function already copied into the page */
2063 if (test_range_bit(tree, cur, cur_end,
2064 EXTENT_UPTODATE, 1, NULL)) {
2065 check_page_uptodate(tree, page);
2066 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2067 cur = cur + iosize;
2068 pg_offset += iosize;
2069 continue;
2070 }
2071 /* we have an inline extent but it didn't get marked up
2072 * to date. Error out
2073 */
2074 if (block_start == EXTENT_MAP_INLINE) {
2075 SetPageError(page);
2076 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2077 cur = cur + iosize;
2078 pg_offset += iosize;
2079 continue;
2080 }
2081
2082 ret = 0;
2083 if (tree->ops && tree->ops->readpage_io_hook) {
2084 ret = tree->ops->readpage_io_hook(page, cur,
2085 cur + iosize - 1);
2086 }
2087 if (!ret) {
2088 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2089 pnr -= page->index;
2090 ret = submit_extent_page(READ, tree, page,
2091 sector, disk_io_size, pg_offset,
2092 bdev, bio, pnr,
2093 end_bio_extent_readpage, mirror_num,
2094 *bio_flags,
2095 this_bio_flag);
2096 nr++;
2097 *bio_flags = this_bio_flag;
2098 }
2099 if (ret)
2100 SetPageError(page);
2101 cur = cur + iosize;
2102 pg_offset += iosize;
2103 }
2104 if (!nr) {
2105 if (!PageError(page))
2106 SetPageUptodate(page);
2107 unlock_page(page);
2108 }
2109 return 0;
2110 }
2111
2112 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2113 get_extent_t *get_extent)
2114 {
2115 struct bio *bio = NULL;
2116 unsigned long bio_flags = 0;
2117 int ret;
2118
2119 ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2120 &bio_flags);
2121 if (bio)
2122 ret = submit_one_bio(READ, bio, 0, bio_flags);
2123 return ret;
2124 }
2125
2126 static noinline void update_nr_written(struct page *page,
2127 struct writeback_control *wbc,
2128 unsigned long nr_written)
2129 {
2130 wbc->nr_to_write -= nr_written;
2131 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2132 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2133 page->mapping->writeback_index = page->index + nr_written;
2134 }
2135
2136 /*
2137 * the writepage semantics are similar to regular writepage. extent
2138 * records are inserted to lock ranges in the tree, and as dirty areas
2139 * are found, they are marked writeback. Then the lock bits are removed
2140 * and the end_io handler clears the writeback ranges
2141 */
2142 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2143 void *data)
2144 {
2145 struct inode *inode = page->mapping->host;
2146 struct extent_page_data *epd = data;
2147 struct extent_io_tree *tree = epd->tree;
2148 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2149 u64 delalloc_start;
2150 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2151 u64 end;
2152 u64 cur = start;
2153 u64 extent_offset;
2154 u64 last_byte = i_size_read(inode);
2155 u64 block_start;
2156 u64 iosize;
2157 sector_t sector;
2158 struct extent_state *cached_state = NULL;
2159 struct extent_map *em;
2160 struct block_device *bdev;
2161 int ret;
2162 int nr = 0;
2163 size_t pg_offset = 0;
2164 size_t blocksize;
2165 loff_t i_size = i_size_read(inode);
2166 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2167 u64 nr_delalloc;
2168 u64 delalloc_end;
2169 int page_started;
2170 int compressed;
2171 int write_flags;
2172 unsigned long nr_written = 0;
2173
2174 if (wbc->sync_mode == WB_SYNC_ALL)
2175 write_flags = WRITE_SYNC;
2176 else
2177 write_flags = WRITE;
2178
2179 trace___extent_writepage(page, inode, wbc);
2180
2181 WARN_ON(!PageLocked(page));
2182 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2183 if (page->index > end_index ||
2184 (page->index == end_index && !pg_offset)) {
2185 page->mapping->a_ops->invalidatepage(page, 0);
2186 unlock_page(page);
2187 return 0;
2188 }
2189
2190 if (page->index == end_index) {
2191 char *userpage;
2192
2193 userpage = kmap_atomic(page, KM_USER0);
2194 memset(userpage + pg_offset, 0,
2195 PAGE_CACHE_SIZE - pg_offset);
2196 kunmap_atomic(userpage, KM_USER0);
2197 flush_dcache_page(page);
2198 }
2199 pg_offset = 0;
2200
2201 set_page_extent_mapped(page);
2202
2203 delalloc_start = start;
2204 delalloc_end = 0;
2205 page_started = 0;
2206 if (!epd->extent_locked) {
2207 u64 delalloc_to_write = 0;
2208 /*
2209 * make sure the wbc mapping index is at least updated
2210 * to this page.
2211 */
2212 update_nr_written(page, wbc, 0);
2213
2214 while (delalloc_end < page_end) {
2215 nr_delalloc = find_lock_delalloc_range(inode, tree,
2216 page,
2217 &delalloc_start,
2218 &delalloc_end,
2219 128 * 1024 * 1024);
2220 if (nr_delalloc == 0) {
2221 delalloc_start = delalloc_end + 1;
2222 continue;
2223 }
2224 tree->ops->fill_delalloc(inode, page, delalloc_start,
2225 delalloc_end, &page_started,
2226 &nr_written);
2227 /*
2228 * delalloc_end is already one less than the total
2229 * length, so we don't subtract one from
2230 * PAGE_CACHE_SIZE
2231 */
2232 delalloc_to_write += (delalloc_end - delalloc_start +
2233 PAGE_CACHE_SIZE) >>
2234 PAGE_CACHE_SHIFT;
2235 delalloc_start = delalloc_end + 1;
2236 }
2237 if (wbc->nr_to_write < delalloc_to_write) {
2238 int thresh = 8192;
2239
2240 if (delalloc_to_write < thresh * 2)
2241 thresh = delalloc_to_write;
2242 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2243 thresh);
2244 }
2245
2246 /* did the fill delalloc function already unlock and start
2247 * the IO?
2248 */
2249 if (page_started) {
2250 ret = 0;
2251 /*
2252 * we've unlocked the page, so we can't update
2253 * the mapping's writeback index, just update
2254 * nr_to_write.
2255 */
2256 wbc->nr_to_write -= nr_written;
2257 goto done_unlocked;
2258 }
2259 }
2260 if (tree->ops && tree->ops->writepage_start_hook) {
2261 ret = tree->ops->writepage_start_hook(page, start,
2262 page_end);
2263 if (ret == -EAGAIN) {
2264 redirty_page_for_writepage(wbc, page);
2265 update_nr_written(page, wbc, nr_written);
2266 unlock_page(page);
2267 ret = 0;
2268 goto done_unlocked;
2269 }
2270 }
2271
2272 /*
2273 * we don't want to touch the inode after unlocking the page,
2274 * so we update the mapping writeback index now
2275 */
2276 update_nr_written(page, wbc, nr_written + 1);
2277
2278 end = page_end;
2279 if (last_byte <= start) {
2280 if (tree->ops && tree->ops->writepage_end_io_hook)
2281 tree->ops->writepage_end_io_hook(page, start,
2282 page_end, NULL, 1);
2283 goto done;
2284 }
2285
2286 blocksize = inode->i_sb->s_blocksize;
2287
2288 while (cur <= end) {
2289 if (cur >= last_byte) {
2290 if (tree->ops && tree->ops->writepage_end_io_hook)
2291 tree->ops->writepage_end_io_hook(page, cur,
2292 page_end, NULL, 1);
2293 break;
2294 }
2295 em = epd->get_extent(inode, page, pg_offset, cur,
2296 end - cur + 1, 1);
2297 if (IS_ERR_OR_NULL(em)) {
2298 SetPageError(page);
2299 break;
2300 }
2301
2302 extent_offset = cur - em->start;
2303 BUG_ON(extent_map_end(em) <= cur);
2304 BUG_ON(end < cur);
2305 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2306 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2307 sector = (em->block_start + extent_offset) >> 9;
2308 bdev = em->bdev;
2309 block_start = em->block_start;
2310 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2311 free_extent_map(em);
2312 em = NULL;
2313
2314 /*
2315 * compressed and inline extents are written through other
2316 * paths in the FS
2317 */
2318 if (compressed || block_start == EXTENT_MAP_HOLE ||
2319 block_start == EXTENT_MAP_INLINE) {
2320 /*
2321 * end_io notification does not happen here for
2322 * compressed extents
2323 */
2324 if (!compressed && tree->ops &&
2325 tree->ops->writepage_end_io_hook)
2326 tree->ops->writepage_end_io_hook(page, cur,
2327 cur + iosize - 1,
2328 NULL, 1);
2329 else if (compressed) {
2330 /* we don't want to end_page_writeback on
2331 * a compressed extent. this happens
2332 * elsewhere
2333 */
2334 nr++;
2335 }
2336
2337 cur += iosize;
2338 pg_offset += iosize;
2339 continue;
2340 }
2341 /* leave this out until we have a page_mkwrite call */
2342 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2343 EXTENT_DIRTY, 0, NULL)) {
2344 cur = cur + iosize;
2345 pg_offset += iosize;
2346 continue;
2347 }
2348
2349 if (tree->ops && tree->ops->writepage_io_hook) {
2350 ret = tree->ops->writepage_io_hook(page, cur,
2351 cur + iosize - 1);
2352 } else {
2353 ret = 0;
2354 }
2355 if (ret) {
2356 SetPageError(page);
2357 } else {
2358 unsigned long max_nr = end_index + 1;
2359
2360 set_range_writeback(tree, cur, cur + iosize - 1);
2361 if (!PageWriteback(page)) {
2362 printk(KERN_ERR "btrfs warning page %lu not "
2363 "writeback, cur %llu end %llu\n",
2364 page->index, (unsigned long long)cur,
2365 (unsigned long long)end);
2366 }
2367
2368 ret = submit_extent_page(write_flags, tree, page,
2369 sector, iosize, pg_offset,
2370 bdev, &epd->bio, max_nr,
2371 end_bio_extent_writepage,
2372 0, 0, 0);
2373 if (ret)
2374 SetPageError(page);
2375 }
2376 cur = cur + iosize;
2377 pg_offset += iosize;
2378 nr++;
2379 }
2380 done:
2381 if (nr == 0) {
2382 /* make sure the mapping tag for page dirty gets cleared */
2383 set_page_writeback(page);
2384 end_page_writeback(page);
2385 }
2386 unlock_page(page);
2387
2388 done_unlocked:
2389
2390 /* drop our reference on any cached states */
2391 free_extent_state(cached_state);
2392 return 0;
2393 }
2394
2395 /**
2396 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2397 * @mapping: address space structure to write
2398 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2399 * @writepage: function called for each page
2400 * @data: data passed to writepage function
2401 *
2402 * If a page is already under I/O, write_cache_pages() skips it, even
2403 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2404 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2405 * and msync() need to guarantee that all the data which was dirty at the time
2406 * the call was made get new I/O started against them. If wbc->sync_mode is
2407 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2408 * existing IO to complete.
2409 */
2410 static int extent_write_cache_pages(struct extent_io_tree *tree,
2411 struct address_space *mapping,
2412 struct writeback_control *wbc,
2413 writepage_t writepage, void *data,
2414 void (*flush_fn)(void *))
2415 {
2416 int ret = 0;
2417 int done = 0;
2418 int nr_to_write_done = 0;
2419 struct pagevec pvec;
2420 int nr_pages;
2421 pgoff_t index;
2422 pgoff_t end; /* Inclusive */
2423 int scanned = 0;
2424 int tag;
2425
2426 pagevec_init(&pvec, 0);
2427 if (wbc->range_cyclic) {
2428 index = mapping->writeback_index; /* Start from prev offset */
2429 end = -1;
2430 } else {
2431 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2432 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2433 scanned = 1;
2434 }
2435 if (wbc->sync_mode == WB_SYNC_ALL)
2436 tag = PAGECACHE_TAG_TOWRITE;
2437 else
2438 tag = PAGECACHE_TAG_DIRTY;
2439 retry:
2440 if (wbc->sync_mode == WB_SYNC_ALL)
2441 tag_pages_for_writeback(mapping, index, end);
2442 while (!done && !nr_to_write_done && (index <= end) &&
2443 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2444 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2445 unsigned i;
2446
2447 scanned = 1;
2448 for (i = 0; i < nr_pages; i++) {
2449 struct page *page = pvec.pages[i];
2450
2451 /*
2452 * At this point we hold neither mapping->tree_lock nor
2453 * lock on the page itself: the page may be truncated or
2454 * invalidated (changing page->mapping to NULL), or even
2455 * swizzled back from swapper_space to tmpfs file
2456 * mapping
2457 */
2458 if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2459 tree->ops->write_cache_pages_lock_hook(page);
2460 else
2461 lock_page(page);
2462
2463 if (unlikely(page->mapping != mapping)) {
2464 unlock_page(page);
2465 continue;
2466 }
2467
2468 if (!wbc->range_cyclic && page->index > end) {
2469 done = 1;
2470 unlock_page(page);
2471 continue;
2472 }
2473
2474 if (wbc->sync_mode != WB_SYNC_NONE) {
2475 if (PageWriteback(page))
2476 flush_fn(data);
2477 wait_on_page_writeback(page);
2478 }
2479
2480 if (PageWriteback(page) ||
2481 !clear_page_dirty_for_io(page)) {
2482 unlock_page(page);
2483 continue;
2484 }
2485
2486 ret = (*writepage)(page, wbc, data);
2487
2488 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2489 unlock_page(page);
2490 ret = 0;
2491 }
2492 if (ret)
2493 done = 1;
2494
2495 /*
2496 * the filesystem may choose to bump up nr_to_write.
2497 * We have to make sure to honor the new nr_to_write
2498 * at any time
2499 */
2500 nr_to_write_done = wbc->nr_to_write <= 0;
2501 }
2502 pagevec_release(&pvec);
2503 cond_resched();
2504 }
2505 if (!scanned && !done) {
2506 /*
2507 * We hit the last page and there is more work to be done: wrap
2508 * back to the start of the file
2509 */
2510 scanned = 1;
2511 index = 0;
2512 goto retry;
2513 }
2514 return ret;
2515 }
2516
2517 static void flush_epd_write_bio(struct extent_page_data *epd)
2518 {
2519 if (epd->bio) {
2520 if (epd->sync_io)
2521 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2522 else
2523 submit_one_bio(WRITE, epd->bio, 0, 0);
2524 epd->bio = NULL;
2525 }
2526 }
2527
2528 static noinline void flush_write_bio(void *data)
2529 {
2530 struct extent_page_data *epd = data;
2531 flush_epd_write_bio(epd);
2532 }
2533
2534 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2535 get_extent_t *get_extent,
2536 struct writeback_control *wbc)
2537 {
2538 int ret;
2539 struct address_space *mapping = page->mapping;
2540 struct extent_page_data epd = {
2541 .bio = NULL,
2542 .tree = tree,
2543 .get_extent = get_extent,
2544 .extent_locked = 0,
2545 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2546 };
2547 struct writeback_control wbc_writepages = {
2548 .sync_mode = wbc->sync_mode,
2549 .older_than_this = NULL,
2550 .nr_to_write = 64,
2551 .range_start = page_offset(page) + PAGE_CACHE_SIZE,
2552 .range_end = (loff_t)-1,
2553 };
2554
2555 ret = __extent_writepage(page, wbc, &epd);
2556
2557 extent_write_cache_pages(tree, mapping, &wbc_writepages,
2558 __extent_writepage, &epd, flush_write_bio);
2559 flush_epd_write_bio(&epd);
2560 return ret;
2561 }
2562
2563 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2564 u64 start, u64 end, get_extent_t *get_extent,
2565 int mode)
2566 {
2567 int ret = 0;
2568 struct address_space *mapping = inode->i_mapping;
2569 struct page *page;
2570 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2571 PAGE_CACHE_SHIFT;
2572
2573 struct extent_page_data epd = {
2574 .bio = NULL,
2575 .tree = tree,
2576 .get_extent = get_extent,
2577 .extent_locked = 1,
2578 .sync_io = mode == WB_SYNC_ALL,
2579 };
2580 struct writeback_control wbc_writepages = {
2581 .sync_mode = mode,
2582 .older_than_this = NULL,
2583 .nr_to_write = nr_pages * 2,
2584 .range_start = start,
2585 .range_end = end + 1,
2586 };
2587
2588 while (start <= end) {
2589 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2590 if (clear_page_dirty_for_io(page))
2591 ret = __extent_writepage(page, &wbc_writepages, &epd);
2592 else {
2593 if (tree->ops && tree->ops->writepage_end_io_hook)
2594 tree->ops->writepage_end_io_hook(page, start,
2595 start + PAGE_CACHE_SIZE - 1,
2596 NULL, 1);
2597 unlock_page(page);
2598 }
2599 page_cache_release(page);
2600 start += PAGE_CACHE_SIZE;
2601 }
2602
2603 flush_epd_write_bio(&epd);
2604 return ret;
2605 }
2606
2607 int extent_writepages(struct extent_io_tree *tree,
2608 struct address_space *mapping,
2609 get_extent_t *get_extent,
2610 struct writeback_control *wbc)
2611 {
2612 int ret = 0;
2613 struct extent_page_data epd = {
2614 .bio = NULL,
2615 .tree = tree,
2616 .get_extent = get_extent,
2617 .extent_locked = 0,
2618 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2619 };
2620
2621 ret = extent_write_cache_pages(tree, mapping, wbc,
2622 __extent_writepage, &epd,
2623 flush_write_bio);
2624 flush_epd_write_bio(&epd);
2625 return ret;
2626 }
2627
2628 int extent_readpages(struct extent_io_tree *tree,
2629 struct address_space *mapping,
2630 struct list_head *pages, unsigned nr_pages,
2631 get_extent_t get_extent)
2632 {
2633 struct bio *bio = NULL;
2634 unsigned page_idx;
2635 unsigned long bio_flags = 0;
2636
2637 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2638 struct page *page = list_entry(pages->prev, struct page, lru);
2639
2640 prefetchw(&page->flags);
2641 list_del(&page->lru);
2642 if (!add_to_page_cache_lru(page, mapping,
2643 page->index, GFP_NOFS)) {
2644 __extent_read_full_page(tree, page, get_extent,
2645 &bio, 0, &bio_flags);
2646 }
2647 page_cache_release(page);
2648 }
2649 BUG_ON(!list_empty(pages));
2650 if (bio)
2651 submit_one_bio(READ, bio, 0, bio_flags);
2652 return 0;
2653 }
2654
2655 /*
2656 * basic invalidatepage code, this waits on any locked or writeback
2657 * ranges corresponding to the page, and then deletes any extent state
2658 * records from the tree
2659 */
2660 int extent_invalidatepage(struct extent_io_tree *tree,
2661 struct page *page, unsigned long offset)
2662 {
2663 struct extent_state *cached_state = NULL;
2664 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2665 u64 end = start + PAGE_CACHE_SIZE - 1;
2666 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2667
2668 start += (offset + blocksize - 1) & ~(blocksize - 1);
2669 if (start > end)
2670 return 0;
2671
2672 lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
2673 wait_on_page_writeback(page);
2674 clear_extent_bit(tree, start, end,
2675 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2676 EXTENT_DO_ACCOUNTING,
2677 1, 1, &cached_state, GFP_NOFS);
2678 return 0;
2679 }
2680
2681 /*
2682 * a helper for releasepage, this tests for areas of the page that
2683 * are locked or under IO and drops the related state bits if it is safe
2684 * to drop the page.
2685 */
2686 int try_release_extent_state(struct extent_map_tree *map,
2687 struct extent_io_tree *tree, struct page *page,
2688 gfp_t mask)
2689 {
2690 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2691 u64 end = start + PAGE_CACHE_SIZE - 1;
2692 int ret = 1;
2693
2694 if (test_range_bit(tree, start, end,
2695 EXTENT_IOBITS, 0, NULL))
2696 ret = 0;
2697 else {
2698 if ((mask & GFP_NOFS) == GFP_NOFS)
2699 mask = GFP_NOFS;
2700 /*
2701 * at this point we can safely clear everything except the
2702 * locked bit and the nodatasum bit
2703 */
2704 ret = clear_extent_bit(tree, start, end,
2705 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
2706 0, 0, NULL, mask);
2707
2708 /* if clear_extent_bit failed for enomem reasons,
2709 * we can't allow the release to continue.
2710 */
2711 if (ret < 0)
2712 ret = 0;
2713 else
2714 ret = 1;
2715 }
2716 return ret;
2717 }
2718
2719 /*
2720 * a helper for releasepage. As long as there are no locked extents
2721 * in the range corresponding to the page, both state records and extent
2722 * map records are removed
2723 */
2724 int try_release_extent_mapping(struct extent_map_tree *map,
2725 struct extent_io_tree *tree, struct page *page,
2726 gfp_t mask)
2727 {
2728 struct extent_map *em;
2729 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2730 u64 end = start + PAGE_CACHE_SIZE - 1;
2731
2732 if ((mask & __GFP_WAIT) &&
2733 page->mapping->host->i_size > 16 * 1024 * 1024) {
2734 u64 len;
2735 while (start <= end) {
2736 len = end - start + 1;
2737 write_lock(&map->lock);
2738 em = lookup_extent_mapping(map, start, len);
2739 if (IS_ERR_OR_NULL(em)) {
2740 write_unlock(&map->lock);
2741 break;
2742 }
2743 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2744 em->start != start) {
2745 write_unlock(&map->lock);
2746 free_extent_map(em);
2747 break;
2748 }
2749 if (!test_range_bit(tree, em->start,
2750 extent_map_end(em) - 1,
2751 EXTENT_LOCKED | EXTENT_WRITEBACK,
2752 0, NULL)) {
2753 remove_extent_mapping(map, em);
2754 /* once for the rb tree */
2755 free_extent_map(em);
2756 }
2757 start = extent_map_end(em);
2758 write_unlock(&map->lock);
2759
2760 /* once for us */
2761 free_extent_map(em);
2762 }
2763 }
2764 return try_release_extent_state(map, tree, page, mask);
2765 }
2766
2767 /*
2768 * helper function for fiemap, which doesn't want to see any holes.
2769 * This maps until we find something past 'last'
2770 */
2771 static struct extent_map *get_extent_skip_holes(struct inode *inode,
2772 u64 offset,
2773 u64 last,
2774 get_extent_t *get_extent)
2775 {
2776 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
2777 struct extent_map *em;
2778 u64 len;
2779
2780 if (offset >= last)
2781 return NULL;
2782
2783 while(1) {
2784 len = last - offset;
2785 if (len == 0)
2786 break;
2787 len = (len + sectorsize - 1) & ~(sectorsize - 1);
2788 em = get_extent(inode, NULL, 0, offset, len, 0);
2789 if (IS_ERR_OR_NULL(em))
2790 return em;
2791
2792 /* if this isn't a hole return it */
2793 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
2794 em->block_start != EXTENT_MAP_HOLE) {
2795 return em;
2796 }
2797
2798 /* this is a hole, advance to the next extent */
2799 offset = extent_map_end(em);
2800 free_extent_map(em);
2801 if (offset >= last)
2802 break;
2803 }
2804 return NULL;
2805 }
2806
2807 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2808 __u64 start, __u64 len, get_extent_t *get_extent)
2809 {
2810 int ret = 0;
2811 u64 off = start;
2812 u64 max = start + len;
2813 u32 flags = 0;
2814 u32 found_type;
2815 u64 last;
2816 u64 last_for_get_extent = 0;
2817 u64 disko = 0;
2818 u64 isize = i_size_read(inode);
2819 struct btrfs_key found_key;
2820 struct extent_map *em = NULL;
2821 struct extent_state *cached_state = NULL;
2822 struct btrfs_path *path;
2823 struct btrfs_file_extent_item *item;
2824 int end = 0;
2825 u64 em_start = 0;
2826 u64 em_len = 0;
2827 u64 em_end = 0;
2828 unsigned long emflags;
2829
2830 if (len == 0)
2831 return -EINVAL;
2832
2833 path = btrfs_alloc_path();
2834 if (!path)
2835 return -ENOMEM;
2836 path->leave_spinning = 1;
2837
2838 /*
2839 * lookup the last file extent. We're not using i_size here
2840 * because there might be preallocation past i_size
2841 */
2842 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
2843 path, btrfs_ino(inode), -1, 0);
2844 if (ret < 0) {
2845 btrfs_free_path(path);
2846 return ret;
2847 }
2848 WARN_ON(!ret);
2849 path->slots[0]--;
2850 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2851 struct btrfs_file_extent_item);
2852 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
2853 found_type = btrfs_key_type(&found_key);
2854
2855 /* No extents, but there might be delalloc bits */
2856 if (found_key.objectid != btrfs_ino(inode) ||
2857 found_type != BTRFS_EXTENT_DATA_KEY) {
2858 /* have to trust i_size as the end */
2859 last = (u64)-1;
2860 last_for_get_extent = isize;
2861 } else {
2862 /*
2863 * remember the start of the last extent. There are a
2864 * bunch of different factors that go into the length of the
2865 * extent, so its much less complex to remember where it started
2866 */
2867 last = found_key.offset;
2868 last_for_get_extent = last + 1;
2869 }
2870 btrfs_free_path(path);
2871
2872 /*
2873 * we might have some extents allocated but more delalloc past those
2874 * extents. so, we trust isize unless the start of the last extent is
2875 * beyond isize
2876 */
2877 if (last < isize) {
2878 last = (u64)-1;
2879 last_for_get_extent = isize;
2880 }
2881
2882 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
2883 &cached_state, GFP_NOFS);
2884
2885 em = get_extent_skip_holes(inode, off, last_for_get_extent,
2886 get_extent);
2887 if (!em)
2888 goto out;
2889 if (IS_ERR(em)) {
2890 ret = PTR_ERR(em);
2891 goto out;
2892 }
2893
2894 while (!end) {
2895 u64 offset_in_extent;
2896
2897 /* break if the extent we found is outside the range */
2898 if (em->start >= max || extent_map_end(em) < off)
2899 break;
2900
2901 /*
2902 * get_extent may return an extent that starts before our
2903 * requested range. We have to make sure the ranges
2904 * we return to fiemap always move forward and don't
2905 * overlap, so adjust the offsets here
2906 */
2907 em_start = max(em->start, off);
2908
2909 /*
2910 * record the offset from the start of the extent
2911 * for adjusting the disk offset below
2912 */
2913 offset_in_extent = em_start - em->start;
2914 em_end = extent_map_end(em);
2915 em_len = em_end - em_start;
2916 emflags = em->flags;
2917 disko = 0;
2918 flags = 0;
2919
2920 /*
2921 * bump off for our next call to get_extent
2922 */
2923 off = extent_map_end(em);
2924 if (off >= max)
2925 end = 1;
2926
2927 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
2928 end = 1;
2929 flags |= FIEMAP_EXTENT_LAST;
2930 } else if (em->block_start == EXTENT_MAP_INLINE) {
2931 flags |= (FIEMAP_EXTENT_DATA_INLINE |
2932 FIEMAP_EXTENT_NOT_ALIGNED);
2933 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
2934 flags |= (FIEMAP_EXTENT_DELALLOC |
2935 FIEMAP_EXTENT_UNKNOWN);
2936 } else {
2937 disko = em->block_start + offset_in_extent;
2938 }
2939 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2940 flags |= FIEMAP_EXTENT_ENCODED;
2941
2942 free_extent_map(em);
2943 em = NULL;
2944 if ((em_start >= last) || em_len == (u64)-1 ||
2945 (last == (u64)-1 && isize <= em_end)) {
2946 flags |= FIEMAP_EXTENT_LAST;
2947 end = 1;
2948 }
2949
2950 /* now scan forward to see if this is really the last extent. */
2951 em = get_extent_skip_holes(inode, off, last_for_get_extent,
2952 get_extent);
2953 if (IS_ERR(em)) {
2954 ret = PTR_ERR(em);
2955 goto out;
2956 }
2957 if (!em) {
2958 flags |= FIEMAP_EXTENT_LAST;
2959 end = 1;
2960 }
2961 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
2962 em_len, flags);
2963 if (ret)
2964 goto out_free;
2965 }
2966 out_free:
2967 free_extent_map(em);
2968 out:
2969 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
2970 &cached_state, GFP_NOFS);
2971 return ret;
2972 }
2973
2974 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2975 unsigned long i)
2976 {
2977 struct page *p;
2978 struct address_space *mapping;
2979
2980 if (i == 0)
2981 return eb->first_page;
2982 i += eb->start >> PAGE_CACHE_SHIFT;
2983 mapping = eb->first_page->mapping;
2984 if (!mapping)
2985 return NULL;
2986
2987 /*
2988 * extent_buffer_page is only called after pinning the page
2989 * by increasing the reference count. So we know the page must
2990 * be in the radix tree.
2991 */
2992 rcu_read_lock();
2993 p = radix_tree_lookup(&mapping->page_tree, i);
2994 rcu_read_unlock();
2995
2996 return p;
2997 }
2998
2999 static inline unsigned long num_extent_pages(u64 start, u64 len)
3000 {
3001 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3002 (start >> PAGE_CACHE_SHIFT);
3003 }
3004
3005 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3006 u64 start,
3007 unsigned long len,
3008 gfp_t mask)
3009 {
3010 struct extent_buffer *eb = NULL;
3011 #if LEAK_DEBUG
3012 unsigned long flags;
3013 #endif
3014
3015 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3016 if (eb == NULL)
3017 return NULL;
3018 eb->start = start;
3019 eb->len = len;
3020 spin_lock_init(&eb->lock);
3021 init_waitqueue_head(&eb->lock_wq);
3022
3023 #if LEAK_DEBUG
3024 spin_lock_irqsave(&leak_lock, flags);
3025 list_add(&eb->leak_list, &buffers);
3026 spin_unlock_irqrestore(&leak_lock, flags);
3027 #endif
3028 atomic_set(&eb->refs, 1);
3029
3030 return eb;
3031 }
3032
3033 static void __free_extent_buffer(struct extent_buffer *eb)
3034 {
3035 #if LEAK_DEBUG
3036 unsigned long flags;
3037 spin_lock_irqsave(&leak_lock, flags);
3038 list_del(&eb->leak_list);
3039 spin_unlock_irqrestore(&leak_lock, flags);
3040 #endif
3041 kmem_cache_free(extent_buffer_cache, eb);
3042 }
3043
3044 /*
3045 * Helper for releasing extent buffer page.
3046 */
3047 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3048 unsigned long start_idx)
3049 {
3050 unsigned long index;
3051 struct page *page;
3052
3053 if (!eb->first_page)
3054 return;
3055
3056 index = num_extent_pages(eb->start, eb->len);
3057 if (start_idx >= index)
3058 return;
3059
3060 do {
3061 index--;
3062 page = extent_buffer_page(eb, index);
3063 if (page)
3064 page_cache_release(page);
3065 } while (index != start_idx);
3066 }
3067
3068 /*
3069 * Helper for releasing the extent buffer.
3070 */
3071 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3072 {
3073 btrfs_release_extent_buffer_page(eb, 0);
3074 __free_extent_buffer(eb);
3075 }
3076
3077 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3078 u64 start, unsigned long len,
3079 struct page *page0)
3080 {
3081 unsigned long num_pages = num_extent_pages(start, len);
3082 unsigned long i;
3083 unsigned long index = start >> PAGE_CACHE_SHIFT;
3084 struct extent_buffer *eb;
3085 struct extent_buffer *exists = NULL;
3086 struct page *p;
3087 struct address_space *mapping = tree->mapping;
3088 int uptodate = 1;
3089 int ret;
3090
3091 rcu_read_lock();
3092 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3093 if (eb && atomic_inc_not_zero(&eb->refs)) {
3094 rcu_read_unlock();
3095 mark_page_accessed(eb->first_page);
3096 return eb;
3097 }
3098 rcu_read_unlock();
3099
3100 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
3101 if (!eb)
3102 return NULL;
3103
3104 if (page0) {
3105 eb->first_page = page0;
3106 i = 1;
3107 index++;
3108 page_cache_get(page0);
3109 mark_page_accessed(page0);
3110 set_page_extent_mapped(page0);
3111 set_page_extent_head(page0, len);
3112 uptodate = PageUptodate(page0);
3113 } else {
3114 i = 0;
3115 }
3116 for (; i < num_pages; i++, index++) {
3117 p = find_or_create_page(mapping, index, GFP_NOFS);
3118 if (!p) {
3119 WARN_ON(1);
3120 goto free_eb;
3121 }
3122 set_page_extent_mapped(p);
3123 mark_page_accessed(p);
3124 if (i == 0) {
3125 eb->first_page = p;
3126 set_page_extent_head(p, len);
3127 } else {
3128 set_page_private(p, EXTENT_PAGE_PRIVATE);
3129 }
3130 if (!PageUptodate(p))
3131 uptodate = 0;
3132
3133 /*
3134 * see below about how we avoid a nasty race with release page
3135 * and why we unlock later
3136 */
3137 if (i != 0)
3138 unlock_page(p);
3139 }
3140 if (uptodate)
3141 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3142
3143 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
3144 if (ret)
3145 goto free_eb;
3146
3147 spin_lock(&tree->buffer_lock);
3148 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
3149 if (ret == -EEXIST) {
3150 exists = radix_tree_lookup(&tree->buffer,
3151 start >> PAGE_CACHE_SHIFT);
3152 /* add one reference for the caller */
3153 atomic_inc(&exists->refs);
3154 spin_unlock(&tree->buffer_lock);
3155 radix_tree_preload_end();
3156 goto free_eb;
3157 }
3158 /* add one reference for the tree */
3159 atomic_inc(&eb->refs);
3160 spin_unlock(&tree->buffer_lock);
3161 radix_tree_preload_end();
3162
3163 /*
3164 * there is a race where release page may have
3165 * tried to find this extent buffer in the radix
3166 * but failed. It will tell the VM it is safe to
3167 * reclaim the, and it will clear the page private bit.
3168 * We must make sure to set the page private bit properly
3169 * after the extent buffer is in the radix tree so
3170 * it doesn't get lost
3171 */
3172 set_page_extent_mapped(eb->first_page);
3173 set_page_extent_head(eb->first_page, eb->len);
3174 if (!page0)
3175 unlock_page(eb->first_page);
3176 return eb;
3177
3178 free_eb:
3179 if (eb->first_page && !page0)
3180 unlock_page(eb->first_page);
3181
3182 if (!atomic_dec_and_test(&eb->refs))
3183 return exists;
3184 btrfs_release_extent_buffer(eb);
3185 return exists;
3186 }
3187
3188 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3189 u64 start, unsigned long len)
3190 {
3191 struct extent_buffer *eb;
3192
3193 rcu_read_lock();
3194 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3195 if (eb && atomic_inc_not_zero(&eb->refs)) {
3196 rcu_read_unlock();
3197 mark_page_accessed(eb->first_page);
3198 return eb;
3199 }
3200 rcu_read_unlock();
3201
3202 return NULL;
3203 }
3204
3205 void free_extent_buffer(struct extent_buffer *eb)
3206 {
3207 if (!eb)
3208 return;
3209
3210 if (!atomic_dec_and_test(&eb->refs))
3211 return;
3212
3213 WARN_ON(1);
3214 }
3215
3216 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3217 struct extent_buffer *eb)
3218 {
3219 unsigned long i;
3220 unsigned long num_pages;
3221 struct page *page;
3222
3223 num_pages = num_extent_pages(eb->start, eb->len);
3224
3225 for (i = 0; i < num_pages; i++) {
3226 page = extent_buffer_page(eb, i);
3227 if (!PageDirty(page))
3228 continue;
3229
3230 lock_page(page);
3231 WARN_ON(!PagePrivate(page));
3232
3233 set_page_extent_mapped(page);
3234 if (i == 0)
3235 set_page_extent_head(page, eb->len);
3236
3237 clear_page_dirty_for_io(page);
3238 spin_lock_irq(&page->mapping->tree_lock);
3239 if (!PageDirty(page)) {
3240 radix_tree_tag_clear(&page->mapping->page_tree,
3241 page_index(page),
3242 PAGECACHE_TAG_DIRTY);
3243 }
3244 spin_unlock_irq(&page->mapping->tree_lock);
3245 unlock_page(page);
3246 }
3247 return 0;
3248 }
3249
3250 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3251 struct extent_buffer *eb)
3252 {
3253 unsigned long i;
3254 unsigned long num_pages;
3255 int was_dirty = 0;
3256
3257 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3258 num_pages = num_extent_pages(eb->start, eb->len);
3259 for (i = 0; i < num_pages; i++)
3260 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3261 return was_dirty;
3262 }
3263
3264 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3265 struct extent_buffer *eb,
3266 struct extent_state **cached_state)
3267 {
3268 unsigned long i;
3269 struct page *page;
3270 unsigned long num_pages;
3271
3272 num_pages = num_extent_pages(eb->start, eb->len);
3273 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3274
3275 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3276 cached_state, GFP_NOFS);
3277 for (i = 0; i < num_pages; i++) {
3278 page = extent_buffer_page(eb, i);
3279 if (page)
3280 ClearPageUptodate(page);
3281 }
3282 return 0;
3283 }
3284
3285 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3286 struct extent_buffer *eb)
3287 {
3288 unsigned long i;
3289 struct page *page;
3290 unsigned long num_pages;
3291
3292 num_pages = num_extent_pages(eb->start, eb->len);
3293
3294 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3295 NULL, GFP_NOFS);
3296 for (i = 0; i < num_pages; i++) {
3297 page = extent_buffer_page(eb, i);
3298 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3299 ((i == num_pages - 1) &&
3300 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3301 check_page_uptodate(tree, page);
3302 continue;
3303 }
3304 SetPageUptodate(page);
3305 }
3306 return 0;
3307 }
3308
3309 int extent_range_uptodate(struct extent_io_tree *tree,
3310 u64 start, u64 end)
3311 {
3312 struct page *page;
3313 int ret;
3314 int pg_uptodate = 1;
3315 int uptodate;
3316 unsigned long index;
3317
3318 ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL);
3319 if (ret)
3320 return 1;
3321 while (start <= end) {
3322 index = start >> PAGE_CACHE_SHIFT;
3323 page = find_get_page(tree->mapping, index);
3324 uptodate = PageUptodate(page);
3325 page_cache_release(page);
3326 if (!uptodate) {
3327 pg_uptodate = 0;
3328 break;
3329 }
3330 start += PAGE_CACHE_SIZE;
3331 }
3332 return pg_uptodate;
3333 }
3334
3335 int extent_buffer_uptodate(struct extent_io_tree *tree,
3336 struct extent_buffer *eb,
3337 struct extent_state *cached_state)
3338 {
3339 int ret = 0;
3340 unsigned long num_pages;
3341 unsigned long i;
3342 struct page *page;
3343 int pg_uptodate = 1;
3344
3345 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3346 return 1;
3347
3348 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3349 EXTENT_UPTODATE, 1, cached_state);
3350 if (ret)
3351 return ret;
3352
3353 num_pages = num_extent_pages(eb->start, eb->len);
3354 for (i = 0; i < num_pages; i++) {
3355 page = extent_buffer_page(eb, i);
3356 if (!PageUptodate(page)) {
3357 pg_uptodate = 0;
3358 break;
3359 }
3360 }
3361 return pg_uptodate;
3362 }
3363
3364 int read_extent_buffer_pages(struct extent_io_tree *tree,
3365 struct extent_buffer *eb,
3366 u64 start, int wait,
3367 get_extent_t *get_extent, int mirror_num)
3368 {
3369 unsigned long i;
3370 unsigned long start_i;
3371 struct page *page;
3372 int err;
3373 int ret = 0;
3374 int locked_pages = 0;
3375 int all_uptodate = 1;
3376 int inc_all_pages = 0;
3377 unsigned long num_pages;
3378 struct bio *bio = NULL;
3379 unsigned long bio_flags = 0;
3380
3381 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3382 return 0;
3383
3384 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3385 EXTENT_UPTODATE, 1, NULL)) {
3386 return 0;
3387 }
3388
3389 if (start) {
3390 WARN_ON(start < eb->start);
3391 start_i = (start >> PAGE_CACHE_SHIFT) -
3392 (eb->start >> PAGE_CACHE_SHIFT);
3393 } else {
3394 start_i = 0;
3395 }
3396
3397 num_pages = num_extent_pages(eb->start, eb->len);
3398 for (i = start_i; i < num_pages; i++) {
3399 page = extent_buffer_page(eb, i);
3400 if (!wait) {
3401 if (!trylock_page(page))
3402 goto unlock_exit;
3403 } else {
3404 lock_page(page);
3405 }
3406 locked_pages++;
3407 if (!PageUptodate(page))
3408 all_uptodate = 0;
3409 }
3410 if (all_uptodate) {
3411 if (start_i == 0)
3412 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3413 goto unlock_exit;
3414 }
3415
3416 for (i = start_i; i < num_pages; i++) {
3417 page = extent_buffer_page(eb, i);
3418
3419 WARN_ON(!PagePrivate(page));
3420
3421 set_page_extent_mapped(page);
3422 if (i == 0)
3423 set_page_extent_head(page, eb->len);
3424
3425 if (inc_all_pages)
3426 page_cache_get(page);
3427 if (!PageUptodate(page)) {
3428 if (start_i == 0)
3429 inc_all_pages = 1;
3430 ClearPageError(page);
3431 err = __extent_read_full_page(tree, page,
3432 get_extent, &bio,
3433 mirror_num, &bio_flags);
3434 if (err)
3435 ret = err;
3436 } else {
3437 unlock_page(page);
3438 }
3439 }
3440
3441 if (bio)
3442 submit_one_bio(READ, bio, mirror_num, bio_flags);
3443
3444 if (ret || !wait)
3445 return ret;
3446
3447 for (i = start_i; i < num_pages; i++) {
3448 page = extent_buffer_page(eb, i);
3449 wait_on_page_locked(page);
3450 if (!PageUptodate(page))
3451 ret = -EIO;
3452 }
3453
3454 if (!ret)
3455 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3456 return ret;
3457
3458 unlock_exit:
3459 i = start_i;
3460 while (locked_pages > 0) {
3461 page = extent_buffer_page(eb, i);
3462 i++;
3463 unlock_page(page);
3464 locked_pages--;
3465 }
3466 return ret;
3467 }
3468
3469 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3470 unsigned long start,
3471 unsigned long len)
3472 {
3473 size_t cur;
3474 size_t offset;
3475 struct page *page;
3476 char *kaddr;
3477 char *dst = (char *)dstv;
3478 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3479 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3480
3481 WARN_ON(start > eb->len);
3482 WARN_ON(start + len > eb->start + eb->len);
3483
3484 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3485
3486 while (len > 0) {
3487 page = extent_buffer_page(eb, i);
3488
3489 cur = min(len, (PAGE_CACHE_SIZE - offset));
3490 kaddr = page_address(page);
3491 memcpy(dst, kaddr + offset, cur);
3492
3493 dst += cur;
3494 len -= cur;
3495 offset = 0;
3496 i++;
3497 }
3498 }
3499
3500 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3501 unsigned long min_len, char **map,
3502 unsigned long *map_start,
3503 unsigned long *map_len)
3504 {
3505 size_t offset = start & (PAGE_CACHE_SIZE - 1);
3506 char *kaddr;
3507 struct page *p;
3508 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3509 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3510 unsigned long end_i = (start_offset + start + min_len - 1) >>
3511 PAGE_CACHE_SHIFT;
3512
3513 if (i != end_i)
3514 return -EINVAL;
3515
3516 if (i == 0) {
3517 offset = start_offset;
3518 *map_start = 0;
3519 } else {
3520 offset = 0;
3521 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3522 }
3523
3524 if (start + min_len > eb->len) {
3525 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3526 "wanted %lu %lu\n", (unsigned long long)eb->start,
3527 eb->len, start, min_len);
3528 WARN_ON(1);
3529 return -EINVAL;
3530 }
3531
3532 p = extent_buffer_page(eb, i);
3533 kaddr = page_address(p);
3534 *map = kaddr + offset;
3535 *map_len = PAGE_CACHE_SIZE - offset;
3536 return 0;
3537 }
3538
3539 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3540 unsigned long start,
3541 unsigned long len)
3542 {
3543 size_t cur;
3544 size_t offset;
3545 struct page *page;
3546 char *kaddr;
3547 char *ptr = (char *)ptrv;
3548 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3549 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3550 int ret = 0;
3551
3552 WARN_ON(start > eb->len);
3553 WARN_ON(start + len > eb->start + eb->len);
3554
3555 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3556
3557 while (len > 0) {
3558 page = extent_buffer_page(eb, i);
3559
3560 cur = min(len, (PAGE_CACHE_SIZE - offset));
3561
3562 kaddr = page_address(page);
3563 ret = memcmp(ptr, kaddr + offset, cur);
3564 if (ret)
3565 break;
3566
3567 ptr += cur;
3568 len -= cur;
3569 offset = 0;
3570 i++;
3571 }
3572 return ret;
3573 }
3574
3575 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3576 unsigned long start, unsigned long len)
3577 {
3578 size_t cur;
3579 size_t offset;
3580 struct page *page;
3581 char *kaddr;
3582 char *src = (char *)srcv;
3583 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3584 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3585
3586 WARN_ON(start > eb->len);
3587 WARN_ON(start + len > eb->start + eb->len);
3588
3589 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3590
3591 while (len > 0) {
3592 page = extent_buffer_page(eb, i);
3593 WARN_ON(!PageUptodate(page));
3594
3595 cur = min(len, PAGE_CACHE_SIZE - offset);
3596 kaddr = page_address(page);
3597 memcpy(kaddr + offset, src, cur);
3598
3599 src += cur;
3600 len -= cur;
3601 offset = 0;
3602 i++;
3603 }
3604 }
3605
3606 void memset_extent_buffer(struct extent_buffer *eb, char c,
3607 unsigned long start, unsigned long len)
3608 {
3609 size_t cur;
3610 size_t offset;
3611 struct page *page;
3612 char *kaddr;
3613 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3614 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3615
3616 WARN_ON(start > eb->len);
3617 WARN_ON(start + len > eb->start + eb->len);
3618
3619 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3620
3621 while (len > 0) {
3622 page = extent_buffer_page(eb, i);
3623 WARN_ON(!PageUptodate(page));
3624
3625 cur = min(len, PAGE_CACHE_SIZE - offset);
3626 kaddr = page_address(page);
3627 memset(kaddr + offset, c, cur);
3628
3629 len -= cur;
3630 offset = 0;
3631 i++;
3632 }
3633 }
3634
3635 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3636 unsigned long dst_offset, unsigned long src_offset,
3637 unsigned long len)
3638 {
3639 u64 dst_len = dst->len;
3640 size_t cur;
3641 size_t offset;
3642 struct page *page;
3643 char *kaddr;
3644 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3645 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3646
3647 WARN_ON(src->len != dst_len);
3648
3649 offset = (start_offset + dst_offset) &
3650 ((unsigned long)PAGE_CACHE_SIZE - 1);
3651
3652 while (len > 0) {
3653 page = extent_buffer_page(dst, i);
3654 WARN_ON(!PageUptodate(page));
3655
3656 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3657
3658 kaddr = page_address(page);
3659 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3660
3661 src_offset += cur;
3662 len -= cur;
3663 offset = 0;
3664 i++;
3665 }
3666 }
3667
3668 static void move_pages(struct page *dst_page, struct page *src_page,
3669 unsigned long dst_off, unsigned long src_off,
3670 unsigned long len)
3671 {
3672 char *dst_kaddr = page_address(dst_page);
3673 if (dst_page == src_page) {
3674 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3675 } else {
3676 char *src_kaddr = page_address(src_page);
3677 char *p = dst_kaddr + dst_off + len;
3678 char *s = src_kaddr + src_off + len;
3679
3680 while (len--)
3681 *--p = *--s;
3682 }
3683 }
3684
3685 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
3686 {
3687 unsigned long distance = (src > dst) ? src - dst : dst - src;
3688 return distance < len;
3689 }
3690
3691 static void copy_pages(struct page *dst_page, struct page *src_page,
3692 unsigned long dst_off, unsigned long src_off,
3693 unsigned long len)
3694 {
3695 char *dst_kaddr = page_address(dst_page);
3696 char *src_kaddr;
3697
3698 if (dst_page != src_page) {
3699 src_kaddr = page_address(src_page);
3700 } else {
3701 src_kaddr = dst_kaddr;
3702 BUG_ON(areas_overlap(src_off, dst_off, len));
3703 }
3704
3705 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3706 }
3707
3708 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3709 unsigned long src_offset, unsigned long len)
3710 {
3711 size_t cur;
3712 size_t dst_off_in_page;
3713 size_t src_off_in_page;
3714 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3715 unsigned long dst_i;
3716 unsigned long src_i;
3717
3718 if (src_offset + len > dst->len) {
3719 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3720 "len %lu dst len %lu\n", src_offset, len, dst->len);
3721 BUG_ON(1);
3722 }
3723 if (dst_offset + len > dst->len) {
3724 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3725 "len %lu dst len %lu\n", dst_offset, len, dst->len);
3726 BUG_ON(1);
3727 }
3728
3729 while (len > 0) {
3730 dst_off_in_page = (start_offset + dst_offset) &
3731 ((unsigned long)PAGE_CACHE_SIZE - 1);
3732 src_off_in_page = (start_offset + src_offset) &
3733 ((unsigned long)PAGE_CACHE_SIZE - 1);
3734
3735 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3736 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3737
3738 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3739 src_off_in_page));
3740 cur = min_t(unsigned long, cur,
3741 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3742
3743 copy_pages(extent_buffer_page(dst, dst_i),
3744 extent_buffer_page(dst, src_i),
3745 dst_off_in_page, src_off_in_page, cur);
3746
3747 src_offset += cur;
3748 dst_offset += cur;
3749 len -= cur;
3750 }
3751 }
3752
3753 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3754 unsigned long src_offset, unsigned long len)
3755 {
3756 size_t cur;
3757 size_t dst_off_in_page;
3758 size_t src_off_in_page;
3759 unsigned long dst_end = dst_offset + len - 1;
3760 unsigned long src_end = src_offset + len - 1;
3761 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3762 unsigned long dst_i;
3763 unsigned long src_i;
3764
3765 if (src_offset + len > dst->len) {
3766 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3767 "len %lu len %lu\n", src_offset, len, dst->len);
3768 BUG_ON(1);
3769 }
3770 if (dst_offset + len > dst->len) {
3771 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3772 "len %lu len %lu\n", dst_offset, len, dst->len);
3773 BUG_ON(1);
3774 }
3775 if (!areas_overlap(src_offset, dst_offset, len)) {
3776 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3777 return;
3778 }
3779 while (len > 0) {
3780 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3781 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3782
3783 dst_off_in_page = (start_offset + dst_end) &
3784 ((unsigned long)PAGE_CACHE_SIZE - 1);
3785 src_off_in_page = (start_offset + src_end) &
3786 ((unsigned long)PAGE_CACHE_SIZE - 1);
3787
3788 cur = min_t(unsigned long, len, src_off_in_page + 1);
3789 cur = min(cur, dst_off_in_page + 1);
3790 move_pages(extent_buffer_page(dst, dst_i),
3791 extent_buffer_page(dst, src_i),
3792 dst_off_in_page - cur + 1,
3793 src_off_in_page - cur + 1, cur);
3794
3795 dst_end -= cur;
3796 src_end -= cur;
3797 len -= cur;
3798 }
3799 }
3800
3801 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3802 {
3803 struct extent_buffer *eb =
3804 container_of(head, struct extent_buffer, rcu_head);
3805
3806 btrfs_release_extent_buffer(eb);
3807 }
3808
3809 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3810 {
3811 u64 start = page_offset(page);
3812 struct extent_buffer *eb;
3813 int ret = 1;
3814
3815 spin_lock(&tree->buffer_lock);
3816 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3817 if (!eb) {
3818 spin_unlock(&tree->buffer_lock);
3819 return ret;
3820 }
3821
3822 if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3823 ret = 0;
3824 goto out;
3825 }
3826
3827 /*
3828 * set @eb->refs to 0 if it is already 1, and then release the @eb.
3829 * Or go back.
3830 */
3831 if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
3832 ret = 0;
3833 goto out;
3834 }
3835
3836 radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3837 out:
3838 spin_unlock(&tree->buffer_lock);
3839
3840 /* at this point we can safely release the extent buffer */
3841 if (atomic_read(&eb->refs) == 0)
3842 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3843 return ret;
3844 }
This page took 0.142997 seconds and 5 git commands to generate.