btrfs: make static code static & remove dead code
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 #include "volumes.h"
20 #include "check-integrity.h"
21 #include "locking.h"
22 #include "rcu-string.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26
27 #ifdef CONFIG_BTRFS_DEBUG
28 static LIST_HEAD(buffers);
29 static LIST_HEAD(states);
30
31 static DEFINE_SPINLOCK(leak_lock);
32
33 static inline
34 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
35 {
36 unsigned long flags;
37
38 spin_lock_irqsave(&leak_lock, flags);
39 list_add(new, head);
40 spin_unlock_irqrestore(&leak_lock, flags);
41 }
42
43 static inline
44 void btrfs_leak_debug_del(struct list_head *entry)
45 {
46 unsigned long flags;
47
48 spin_lock_irqsave(&leak_lock, flags);
49 list_del(entry);
50 spin_unlock_irqrestore(&leak_lock, flags);
51 }
52
53 static inline
54 void btrfs_leak_debug_check(void)
55 {
56 struct extent_state *state;
57 struct extent_buffer *eb;
58
59 while (!list_empty(&states)) {
60 state = list_entry(states.next, struct extent_state, leak_list);
61 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
62 "state %lu in tree %p refs %d\n",
63 (unsigned long long)state->start,
64 (unsigned long long)state->end,
65 state->state, state->tree, atomic_read(&state->refs));
66 list_del(&state->leak_list);
67 kmem_cache_free(extent_state_cache, state);
68 }
69
70 while (!list_empty(&buffers)) {
71 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
73 "refs %d\n", (unsigned long long)eb->start,
74 eb->len, atomic_read(&eb->refs));
75 list_del(&eb->leak_list);
76 kmem_cache_free(extent_buffer_cache, eb);
77 }
78 }
79 #else
80 #define btrfs_leak_debug_add(new, head) do {} while (0)
81 #define btrfs_leak_debug_del(entry) do {} while (0)
82 #define btrfs_leak_debug_check() do {} while (0)
83 #endif
84
85 #define BUFFER_LRU_MAX 64
86
87 struct tree_entry {
88 u64 start;
89 u64 end;
90 struct rb_node rb_node;
91 };
92
93 struct extent_page_data {
94 struct bio *bio;
95 struct extent_io_tree *tree;
96 get_extent_t *get_extent;
97 unsigned long bio_flags;
98
99 /* tells writepage not to lock the state bits for this range
100 * it still does the unlocking
101 */
102 unsigned int extent_locked:1;
103
104 /* tells the submit_bio code to use a WRITE_SYNC */
105 unsigned int sync_io:1;
106 };
107
108 static noinline void flush_write_bio(void *data);
109 static inline struct btrfs_fs_info *
110 tree_fs_info(struct extent_io_tree *tree)
111 {
112 return btrfs_sb(tree->mapping->host->i_sb);
113 }
114
115 int __init extent_io_init(void)
116 {
117 extent_state_cache = kmem_cache_create("btrfs_extent_state",
118 sizeof(struct extent_state), 0,
119 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
120 if (!extent_state_cache)
121 return -ENOMEM;
122
123 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
124 sizeof(struct extent_buffer), 0,
125 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
126 if (!extent_buffer_cache)
127 goto free_state_cache;
128 return 0;
129
130 free_state_cache:
131 kmem_cache_destroy(extent_state_cache);
132 return -ENOMEM;
133 }
134
135 void extent_io_exit(void)
136 {
137 btrfs_leak_debug_check();
138
139 /*
140 * Make sure all delayed rcu free are flushed before we
141 * destroy caches.
142 */
143 rcu_barrier();
144 if (extent_state_cache)
145 kmem_cache_destroy(extent_state_cache);
146 if (extent_buffer_cache)
147 kmem_cache_destroy(extent_buffer_cache);
148 }
149
150 void extent_io_tree_init(struct extent_io_tree *tree,
151 struct address_space *mapping)
152 {
153 tree->state = RB_ROOT;
154 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
155 tree->ops = NULL;
156 tree->dirty_bytes = 0;
157 spin_lock_init(&tree->lock);
158 spin_lock_init(&tree->buffer_lock);
159 tree->mapping = mapping;
160 }
161
162 static struct extent_state *alloc_extent_state(gfp_t mask)
163 {
164 struct extent_state *state;
165
166 state = kmem_cache_alloc(extent_state_cache, mask);
167 if (!state)
168 return state;
169 state->state = 0;
170 state->private = 0;
171 state->tree = NULL;
172 btrfs_leak_debug_add(&state->leak_list, &states);
173 atomic_set(&state->refs, 1);
174 init_waitqueue_head(&state->wq);
175 trace_alloc_extent_state(state, mask, _RET_IP_);
176 return state;
177 }
178
179 void free_extent_state(struct extent_state *state)
180 {
181 if (!state)
182 return;
183 if (atomic_dec_and_test(&state->refs)) {
184 WARN_ON(state->tree);
185 btrfs_leak_debug_del(&state->leak_list);
186 trace_free_extent_state(state, _RET_IP_);
187 kmem_cache_free(extent_state_cache, state);
188 }
189 }
190
191 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
192 struct rb_node *node)
193 {
194 struct rb_node **p = &root->rb_node;
195 struct rb_node *parent = NULL;
196 struct tree_entry *entry;
197
198 while (*p) {
199 parent = *p;
200 entry = rb_entry(parent, struct tree_entry, rb_node);
201
202 if (offset < entry->start)
203 p = &(*p)->rb_left;
204 else if (offset > entry->end)
205 p = &(*p)->rb_right;
206 else
207 return parent;
208 }
209
210 rb_link_node(node, parent, p);
211 rb_insert_color(node, root);
212 return NULL;
213 }
214
215 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
216 struct rb_node **prev_ret,
217 struct rb_node **next_ret)
218 {
219 struct rb_root *root = &tree->state;
220 struct rb_node *n = root->rb_node;
221 struct rb_node *prev = NULL;
222 struct rb_node *orig_prev = NULL;
223 struct tree_entry *entry;
224 struct tree_entry *prev_entry = NULL;
225
226 while (n) {
227 entry = rb_entry(n, struct tree_entry, rb_node);
228 prev = n;
229 prev_entry = entry;
230
231 if (offset < entry->start)
232 n = n->rb_left;
233 else if (offset > entry->end)
234 n = n->rb_right;
235 else
236 return n;
237 }
238
239 if (prev_ret) {
240 orig_prev = prev;
241 while (prev && offset > prev_entry->end) {
242 prev = rb_next(prev);
243 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
244 }
245 *prev_ret = prev;
246 prev = orig_prev;
247 }
248
249 if (next_ret) {
250 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
251 while (prev && offset < prev_entry->start) {
252 prev = rb_prev(prev);
253 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
254 }
255 *next_ret = prev;
256 }
257 return NULL;
258 }
259
260 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
261 u64 offset)
262 {
263 struct rb_node *prev = NULL;
264 struct rb_node *ret;
265
266 ret = __etree_search(tree, offset, &prev, NULL);
267 if (!ret)
268 return prev;
269 return ret;
270 }
271
272 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
273 struct extent_state *other)
274 {
275 if (tree->ops && tree->ops->merge_extent_hook)
276 tree->ops->merge_extent_hook(tree->mapping->host, new,
277 other);
278 }
279
280 /*
281 * utility function to look for merge candidates inside a given range.
282 * Any extents with matching state are merged together into a single
283 * extent in the tree. Extents with EXTENT_IO in their state field
284 * are not merged because the end_io handlers need to be able to do
285 * operations on them without sleeping (or doing allocations/splits).
286 *
287 * This should be called with the tree lock held.
288 */
289 static void merge_state(struct extent_io_tree *tree,
290 struct extent_state *state)
291 {
292 struct extent_state *other;
293 struct rb_node *other_node;
294
295 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
296 return;
297
298 other_node = rb_prev(&state->rb_node);
299 if (other_node) {
300 other = rb_entry(other_node, struct extent_state, rb_node);
301 if (other->end == state->start - 1 &&
302 other->state == state->state) {
303 merge_cb(tree, state, other);
304 state->start = other->start;
305 other->tree = NULL;
306 rb_erase(&other->rb_node, &tree->state);
307 free_extent_state(other);
308 }
309 }
310 other_node = rb_next(&state->rb_node);
311 if (other_node) {
312 other = rb_entry(other_node, struct extent_state, rb_node);
313 if (other->start == state->end + 1 &&
314 other->state == state->state) {
315 merge_cb(tree, state, other);
316 state->end = other->end;
317 other->tree = NULL;
318 rb_erase(&other->rb_node, &tree->state);
319 free_extent_state(other);
320 }
321 }
322 }
323
324 static void set_state_cb(struct extent_io_tree *tree,
325 struct extent_state *state, int *bits)
326 {
327 if (tree->ops && tree->ops->set_bit_hook)
328 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
329 }
330
331 static void clear_state_cb(struct extent_io_tree *tree,
332 struct extent_state *state, int *bits)
333 {
334 if (tree->ops && tree->ops->clear_bit_hook)
335 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
336 }
337
338 static void set_state_bits(struct extent_io_tree *tree,
339 struct extent_state *state, int *bits);
340
341 /*
342 * insert an extent_state struct into the tree. 'bits' are set on the
343 * struct before it is inserted.
344 *
345 * This may return -EEXIST if the extent is already there, in which case the
346 * state struct is freed.
347 *
348 * The tree lock is not taken internally. This is a utility function and
349 * probably isn't what you want to call (see set/clear_extent_bit).
350 */
351 static int insert_state(struct extent_io_tree *tree,
352 struct extent_state *state, u64 start, u64 end,
353 int *bits)
354 {
355 struct rb_node *node;
356
357 if (end < start)
358 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
359 (unsigned long long)end,
360 (unsigned long long)start);
361 state->start = start;
362 state->end = end;
363
364 set_state_bits(tree, state, bits);
365
366 node = tree_insert(&tree->state, end, &state->rb_node);
367 if (node) {
368 struct extent_state *found;
369 found = rb_entry(node, struct extent_state, rb_node);
370 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
371 "%llu %llu\n", (unsigned long long)found->start,
372 (unsigned long long)found->end,
373 (unsigned long long)start, (unsigned long long)end);
374 return -EEXIST;
375 }
376 state->tree = tree;
377 merge_state(tree, state);
378 return 0;
379 }
380
381 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
382 u64 split)
383 {
384 if (tree->ops && tree->ops->split_extent_hook)
385 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
386 }
387
388 /*
389 * split a given extent state struct in two, inserting the preallocated
390 * struct 'prealloc' as the newly created second half. 'split' indicates an
391 * offset inside 'orig' where it should be split.
392 *
393 * Before calling,
394 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
395 * are two extent state structs in the tree:
396 * prealloc: [orig->start, split - 1]
397 * orig: [ split, orig->end ]
398 *
399 * The tree locks are not taken by this function. They need to be held
400 * by the caller.
401 */
402 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
403 struct extent_state *prealloc, u64 split)
404 {
405 struct rb_node *node;
406
407 split_cb(tree, orig, split);
408
409 prealloc->start = orig->start;
410 prealloc->end = split - 1;
411 prealloc->state = orig->state;
412 orig->start = split;
413
414 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
415 if (node) {
416 free_extent_state(prealloc);
417 return -EEXIST;
418 }
419 prealloc->tree = tree;
420 return 0;
421 }
422
423 static struct extent_state *next_state(struct extent_state *state)
424 {
425 struct rb_node *next = rb_next(&state->rb_node);
426 if (next)
427 return rb_entry(next, struct extent_state, rb_node);
428 else
429 return NULL;
430 }
431
432 /*
433 * utility function to clear some bits in an extent state struct.
434 * it will optionally wake up any one waiting on this state (wake == 1).
435 *
436 * If no bits are set on the state struct after clearing things, the
437 * struct is freed and removed from the tree
438 */
439 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
440 struct extent_state *state,
441 int *bits, int wake)
442 {
443 struct extent_state *next;
444 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
445
446 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
447 u64 range = state->end - state->start + 1;
448 WARN_ON(range > tree->dirty_bytes);
449 tree->dirty_bytes -= range;
450 }
451 clear_state_cb(tree, state, bits);
452 state->state &= ~bits_to_clear;
453 if (wake)
454 wake_up(&state->wq);
455 if (state->state == 0) {
456 next = next_state(state);
457 if (state->tree) {
458 rb_erase(&state->rb_node, &tree->state);
459 state->tree = NULL;
460 free_extent_state(state);
461 } else {
462 WARN_ON(1);
463 }
464 } else {
465 merge_state(tree, state);
466 next = next_state(state);
467 }
468 return next;
469 }
470
471 static struct extent_state *
472 alloc_extent_state_atomic(struct extent_state *prealloc)
473 {
474 if (!prealloc)
475 prealloc = alloc_extent_state(GFP_ATOMIC);
476
477 return prealloc;
478 }
479
480 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
481 {
482 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
483 "Extent tree was modified by another "
484 "thread while locked.");
485 }
486
487 /*
488 * clear some bits on a range in the tree. This may require splitting
489 * or inserting elements in the tree, so the gfp mask is used to
490 * indicate which allocations or sleeping are allowed.
491 *
492 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
493 * the given range from the tree regardless of state (ie for truncate).
494 *
495 * the range [start, end] is inclusive.
496 *
497 * This takes the tree lock, and returns 0 on success and < 0 on error.
498 */
499 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
500 int bits, int wake, int delete,
501 struct extent_state **cached_state,
502 gfp_t mask)
503 {
504 struct extent_state *state;
505 struct extent_state *cached;
506 struct extent_state *prealloc = NULL;
507 struct rb_node *node;
508 u64 last_end;
509 int err;
510 int clear = 0;
511
512 if (delete)
513 bits |= ~EXTENT_CTLBITS;
514 bits |= EXTENT_FIRST_DELALLOC;
515
516 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
517 clear = 1;
518 again:
519 if (!prealloc && (mask & __GFP_WAIT)) {
520 prealloc = alloc_extent_state(mask);
521 if (!prealloc)
522 return -ENOMEM;
523 }
524
525 spin_lock(&tree->lock);
526 if (cached_state) {
527 cached = *cached_state;
528
529 if (clear) {
530 *cached_state = NULL;
531 cached_state = NULL;
532 }
533
534 if (cached && cached->tree && cached->start <= start &&
535 cached->end > start) {
536 if (clear)
537 atomic_dec(&cached->refs);
538 state = cached;
539 goto hit_next;
540 }
541 if (clear)
542 free_extent_state(cached);
543 }
544 /*
545 * this search will find the extents that end after
546 * our range starts
547 */
548 node = tree_search(tree, start);
549 if (!node)
550 goto out;
551 state = rb_entry(node, struct extent_state, rb_node);
552 hit_next:
553 if (state->start > end)
554 goto out;
555 WARN_ON(state->end < start);
556 last_end = state->end;
557
558 /* the state doesn't have the wanted bits, go ahead */
559 if (!(state->state & bits)) {
560 state = next_state(state);
561 goto next;
562 }
563
564 /*
565 * | ---- desired range ---- |
566 * | state | or
567 * | ------------- state -------------- |
568 *
569 * We need to split the extent we found, and may flip
570 * bits on second half.
571 *
572 * If the extent we found extends past our range, we
573 * just split and search again. It'll get split again
574 * the next time though.
575 *
576 * If the extent we found is inside our range, we clear
577 * the desired bit on it.
578 */
579
580 if (state->start < start) {
581 prealloc = alloc_extent_state_atomic(prealloc);
582 BUG_ON(!prealloc);
583 err = split_state(tree, state, prealloc, start);
584 if (err)
585 extent_io_tree_panic(tree, err);
586
587 prealloc = NULL;
588 if (err)
589 goto out;
590 if (state->end <= end) {
591 state = clear_state_bit(tree, state, &bits, wake);
592 goto next;
593 }
594 goto search_again;
595 }
596 /*
597 * | ---- desired range ---- |
598 * | state |
599 * We need to split the extent, and clear the bit
600 * on the first half
601 */
602 if (state->start <= end && state->end > end) {
603 prealloc = alloc_extent_state_atomic(prealloc);
604 BUG_ON(!prealloc);
605 err = split_state(tree, state, prealloc, end + 1);
606 if (err)
607 extent_io_tree_panic(tree, err);
608
609 if (wake)
610 wake_up(&state->wq);
611
612 clear_state_bit(tree, prealloc, &bits, wake);
613
614 prealloc = NULL;
615 goto out;
616 }
617
618 state = clear_state_bit(tree, state, &bits, wake);
619 next:
620 if (last_end == (u64)-1)
621 goto out;
622 start = last_end + 1;
623 if (start <= end && state && !need_resched())
624 goto hit_next;
625 goto search_again;
626
627 out:
628 spin_unlock(&tree->lock);
629 if (prealloc)
630 free_extent_state(prealloc);
631
632 return 0;
633
634 search_again:
635 if (start > end)
636 goto out;
637 spin_unlock(&tree->lock);
638 if (mask & __GFP_WAIT)
639 cond_resched();
640 goto again;
641 }
642
643 static void wait_on_state(struct extent_io_tree *tree,
644 struct extent_state *state)
645 __releases(tree->lock)
646 __acquires(tree->lock)
647 {
648 DEFINE_WAIT(wait);
649 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
650 spin_unlock(&tree->lock);
651 schedule();
652 spin_lock(&tree->lock);
653 finish_wait(&state->wq, &wait);
654 }
655
656 /*
657 * waits for one or more bits to clear on a range in the state tree.
658 * The range [start, end] is inclusive.
659 * The tree lock is taken by this function
660 */
661 static void wait_extent_bit(struct extent_io_tree *tree, u64 start,
662 u64 end, int bits)
663 {
664 struct extent_state *state;
665 struct rb_node *node;
666
667 spin_lock(&tree->lock);
668 again:
669 while (1) {
670 /*
671 * this search will find all the extents that end after
672 * our range starts
673 */
674 node = tree_search(tree, start);
675 if (!node)
676 break;
677
678 state = rb_entry(node, struct extent_state, rb_node);
679
680 if (state->start > end)
681 goto out;
682
683 if (state->state & bits) {
684 start = state->start;
685 atomic_inc(&state->refs);
686 wait_on_state(tree, state);
687 free_extent_state(state);
688 goto again;
689 }
690 start = state->end + 1;
691
692 if (start > end)
693 break;
694
695 cond_resched_lock(&tree->lock);
696 }
697 out:
698 spin_unlock(&tree->lock);
699 }
700
701 static void set_state_bits(struct extent_io_tree *tree,
702 struct extent_state *state,
703 int *bits)
704 {
705 int bits_to_set = *bits & ~EXTENT_CTLBITS;
706
707 set_state_cb(tree, state, bits);
708 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
709 u64 range = state->end - state->start + 1;
710 tree->dirty_bytes += range;
711 }
712 state->state |= bits_to_set;
713 }
714
715 static void cache_state(struct extent_state *state,
716 struct extent_state **cached_ptr)
717 {
718 if (cached_ptr && !(*cached_ptr)) {
719 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
720 *cached_ptr = state;
721 atomic_inc(&state->refs);
722 }
723 }
724 }
725
726 static void uncache_state(struct extent_state **cached_ptr)
727 {
728 if (cached_ptr && (*cached_ptr)) {
729 struct extent_state *state = *cached_ptr;
730 *cached_ptr = NULL;
731 free_extent_state(state);
732 }
733 }
734
735 /*
736 * set some bits on a range in the tree. This may require allocations or
737 * sleeping, so the gfp mask is used to indicate what is allowed.
738 *
739 * If any of the exclusive bits are set, this will fail with -EEXIST if some
740 * part of the range already has the desired bits set. The start of the
741 * existing range is returned in failed_start in this case.
742 *
743 * [start, end] is inclusive This takes the tree lock.
744 */
745
746 static int __must_check
747 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
748 int bits, int exclusive_bits, u64 *failed_start,
749 struct extent_state **cached_state, gfp_t mask)
750 {
751 struct extent_state *state;
752 struct extent_state *prealloc = NULL;
753 struct rb_node *node;
754 int err = 0;
755 u64 last_start;
756 u64 last_end;
757
758 bits |= EXTENT_FIRST_DELALLOC;
759 again:
760 if (!prealloc && (mask & __GFP_WAIT)) {
761 prealloc = alloc_extent_state(mask);
762 BUG_ON(!prealloc);
763 }
764
765 spin_lock(&tree->lock);
766 if (cached_state && *cached_state) {
767 state = *cached_state;
768 if (state->start <= start && state->end > start &&
769 state->tree) {
770 node = &state->rb_node;
771 goto hit_next;
772 }
773 }
774 /*
775 * this search will find all the extents that end after
776 * our range starts.
777 */
778 node = tree_search(tree, start);
779 if (!node) {
780 prealloc = alloc_extent_state_atomic(prealloc);
781 BUG_ON(!prealloc);
782 err = insert_state(tree, prealloc, start, end, &bits);
783 if (err)
784 extent_io_tree_panic(tree, err);
785
786 prealloc = NULL;
787 goto out;
788 }
789 state = rb_entry(node, struct extent_state, rb_node);
790 hit_next:
791 last_start = state->start;
792 last_end = state->end;
793
794 /*
795 * | ---- desired range ---- |
796 * | state |
797 *
798 * Just lock what we found and keep going
799 */
800 if (state->start == start && state->end <= end) {
801 if (state->state & exclusive_bits) {
802 *failed_start = state->start;
803 err = -EEXIST;
804 goto out;
805 }
806
807 set_state_bits(tree, state, &bits);
808 cache_state(state, cached_state);
809 merge_state(tree, state);
810 if (last_end == (u64)-1)
811 goto out;
812 start = last_end + 1;
813 state = next_state(state);
814 if (start < end && state && state->start == start &&
815 !need_resched())
816 goto hit_next;
817 goto search_again;
818 }
819
820 /*
821 * | ---- desired range ---- |
822 * | state |
823 * or
824 * | ------------- state -------------- |
825 *
826 * We need to split the extent we found, and may flip bits on
827 * second half.
828 *
829 * If the extent we found extends past our
830 * range, we just split and search again. It'll get split
831 * again the next time though.
832 *
833 * If the extent we found is inside our range, we set the
834 * desired bit on it.
835 */
836 if (state->start < start) {
837 if (state->state & exclusive_bits) {
838 *failed_start = start;
839 err = -EEXIST;
840 goto out;
841 }
842
843 prealloc = alloc_extent_state_atomic(prealloc);
844 BUG_ON(!prealloc);
845 err = split_state(tree, state, prealloc, start);
846 if (err)
847 extent_io_tree_panic(tree, err);
848
849 prealloc = NULL;
850 if (err)
851 goto out;
852 if (state->end <= end) {
853 set_state_bits(tree, state, &bits);
854 cache_state(state, cached_state);
855 merge_state(tree, state);
856 if (last_end == (u64)-1)
857 goto out;
858 start = last_end + 1;
859 state = next_state(state);
860 if (start < end && state && state->start == start &&
861 !need_resched())
862 goto hit_next;
863 }
864 goto search_again;
865 }
866 /*
867 * | ---- desired range ---- |
868 * | state | or | state |
869 *
870 * There's a hole, we need to insert something in it and
871 * ignore the extent we found.
872 */
873 if (state->start > start) {
874 u64 this_end;
875 if (end < last_start)
876 this_end = end;
877 else
878 this_end = last_start - 1;
879
880 prealloc = alloc_extent_state_atomic(prealloc);
881 BUG_ON(!prealloc);
882
883 /*
884 * Avoid to free 'prealloc' if it can be merged with
885 * the later extent.
886 */
887 err = insert_state(tree, prealloc, start, this_end,
888 &bits);
889 if (err)
890 extent_io_tree_panic(tree, err);
891
892 cache_state(prealloc, cached_state);
893 prealloc = NULL;
894 start = this_end + 1;
895 goto search_again;
896 }
897 /*
898 * | ---- desired range ---- |
899 * | state |
900 * We need to split the extent, and set the bit
901 * on the first half
902 */
903 if (state->start <= end && state->end > end) {
904 if (state->state & exclusive_bits) {
905 *failed_start = start;
906 err = -EEXIST;
907 goto out;
908 }
909
910 prealloc = alloc_extent_state_atomic(prealloc);
911 BUG_ON(!prealloc);
912 err = split_state(tree, state, prealloc, end + 1);
913 if (err)
914 extent_io_tree_panic(tree, err);
915
916 set_state_bits(tree, prealloc, &bits);
917 cache_state(prealloc, cached_state);
918 merge_state(tree, prealloc);
919 prealloc = NULL;
920 goto out;
921 }
922
923 goto search_again;
924
925 out:
926 spin_unlock(&tree->lock);
927 if (prealloc)
928 free_extent_state(prealloc);
929
930 return err;
931
932 search_again:
933 if (start > end)
934 goto out;
935 spin_unlock(&tree->lock);
936 if (mask & __GFP_WAIT)
937 cond_resched();
938 goto again;
939 }
940
941 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
942 u64 *failed_start, struct extent_state **cached_state,
943 gfp_t mask)
944 {
945 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
946 cached_state, mask);
947 }
948
949
950 /**
951 * convert_extent_bit - convert all bits in a given range from one bit to
952 * another
953 * @tree: the io tree to search
954 * @start: the start offset in bytes
955 * @end: the end offset in bytes (inclusive)
956 * @bits: the bits to set in this range
957 * @clear_bits: the bits to clear in this range
958 * @cached_state: state that we're going to cache
959 * @mask: the allocation mask
960 *
961 * This will go through and set bits for the given range. If any states exist
962 * already in this range they are set with the given bit and cleared of the
963 * clear_bits. This is only meant to be used by things that are mergeable, ie
964 * converting from say DELALLOC to DIRTY. This is not meant to be used with
965 * boundary bits like LOCK.
966 */
967 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
968 int bits, int clear_bits,
969 struct extent_state **cached_state, gfp_t mask)
970 {
971 struct extent_state *state;
972 struct extent_state *prealloc = NULL;
973 struct rb_node *node;
974 int err = 0;
975 u64 last_start;
976 u64 last_end;
977
978 again:
979 if (!prealloc && (mask & __GFP_WAIT)) {
980 prealloc = alloc_extent_state(mask);
981 if (!prealloc)
982 return -ENOMEM;
983 }
984
985 spin_lock(&tree->lock);
986 if (cached_state && *cached_state) {
987 state = *cached_state;
988 if (state->start <= start && state->end > start &&
989 state->tree) {
990 node = &state->rb_node;
991 goto hit_next;
992 }
993 }
994
995 /*
996 * this search will find all the extents that end after
997 * our range starts.
998 */
999 node = tree_search(tree, start);
1000 if (!node) {
1001 prealloc = alloc_extent_state_atomic(prealloc);
1002 if (!prealloc) {
1003 err = -ENOMEM;
1004 goto out;
1005 }
1006 err = insert_state(tree, prealloc, start, end, &bits);
1007 prealloc = NULL;
1008 if (err)
1009 extent_io_tree_panic(tree, err);
1010 goto out;
1011 }
1012 state = rb_entry(node, struct extent_state, rb_node);
1013 hit_next:
1014 last_start = state->start;
1015 last_end = state->end;
1016
1017 /*
1018 * | ---- desired range ---- |
1019 * | state |
1020 *
1021 * Just lock what we found and keep going
1022 */
1023 if (state->start == start && state->end <= end) {
1024 set_state_bits(tree, state, &bits);
1025 cache_state(state, cached_state);
1026 state = clear_state_bit(tree, state, &clear_bits, 0);
1027 if (last_end == (u64)-1)
1028 goto out;
1029 start = last_end + 1;
1030 if (start < end && state && state->start == start &&
1031 !need_resched())
1032 goto hit_next;
1033 goto search_again;
1034 }
1035
1036 /*
1037 * | ---- desired range ---- |
1038 * | state |
1039 * or
1040 * | ------------- state -------------- |
1041 *
1042 * We need to split the extent we found, and may flip bits on
1043 * second half.
1044 *
1045 * If the extent we found extends past our
1046 * range, we just split and search again. It'll get split
1047 * again the next time though.
1048 *
1049 * If the extent we found is inside our range, we set the
1050 * desired bit on it.
1051 */
1052 if (state->start < start) {
1053 prealloc = alloc_extent_state_atomic(prealloc);
1054 if (!prealloc) {
1055 err = -ENOMEM;
1056 goto out;
1057 }
1058 err = split_state(tree, state, prealloc, start);
1059 if (err)
1060 extent_io_tree_panic(tree, err);
1061 prealloc = NULL;
1062 if (err)
1063 goto out;
1064 if (state->end <= end) {
1065 set_state_bits(tree, state, &bits);
1066 cache_state(state, cached_state);
1067 state = clear_state_bit(tree, state, &clear_bits, 0);
1068 if (last_end == (u64)-1)
1069 goto out;
1070 start = last_end + 1;
1071 if (start < end && state && state->start == start &&
1072 !need_resched())
1073 goto hit_next;
1074 }
1075 goto search_again;
1076 }
1077 /*
1078 * | ---- desired range ---- |
1079 * | state | or | state |
1080 *
1081 * There's a hole, we need to insert something in it and
1082 * ignore the extent we found.
1083 */
1084 if (state->start > start) {
1085 u64 this_end;
1086 if (end < last_start)
1087 this_end = end;
1088 else
1089 this_end = last_start - 1;
1090
1091 prealloc = alloc_extent_state_atomic(prealloc);
1092 if (!prealloc) {
1093 err = -ENOMEM;
1094 goto out;
1095 }
1096
1097 /*
1098 * Avoid to free 'prealloc' if it can be merged with
1099 * the later extent.
1100 */
1101 err = insert_state(tree, prealloc, start, this_end,
1102 &bits);
1103 if (err)
1104 extent_io_tree_panic(tree, err);
1105 cache_state(prealloc, cached_state);
1106 prealloc = NULL;
1107 start = this_end + 1;
1108 goto search_again;
1109 }
1110 /*
1111 * | ---- desired range ---- |
1112 * | state |
1113 * We need to split the extent, and set the bit
1114 * on the first half
1115 */
1116 if (state->start <= end && state->end > end) {
1117 prealloc = alloc_extent_state_atomic(prealloc);
1118 if (!prealloc) {
1119 err = -ENOMEM;
1120 goto out;
1121 }
1122
1123 err = split_state(tree, state, prealloc, end + 1);
1124 if (err)
1125 extent_io_tree_panic(tree, err);
1126
1127 set_state_bits(tree, prealloc, &bits);
1128 cache_state(prealloc, cached_state);
1129 clear_state_bit(tree, prealloc, &clear_bits, 0);
1130 prealloc = NULL;
1131 goto out;
1132 }
1133
1134 goto search_again;
1135
1136 out:
1137 spin_unlock(&tree->lock);
1138 if (prealloc)
1139 free_extent_state(prealloc);
1140
1141 return err;
1142
1143 search_again:
1144 if (start > end)
1145 goto out;
1146 spin_unlock(&tree->lock);
1147 if (mask & __GFP_WAIT)
1148 cond_resched();
1149 goto again;
1150 }
1151
1152 /* wrappers around set/clear extent bit */
1153 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1154 gfp_t mask)
1155 {
1156 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1157 NULL, mask);
1158 }
1159
1160 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1161 int bits, gfp_t mask)
1162 {
1163 return set_extent_bit(tree, start, end, bits, NULL,
1164 NULL, mask);
1165 }
1166
1167 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1168 int bits, gfp_t mask)
1169 {
1170 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1171 }
1172
1173 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1174 struct extent_state **cached_state, gfp_t mask)
1175 {
1176 return set_extent_bit(tree, start, end,
1177 EXTENT_DELALLOC | EXTENT_UPTODATE,
1178 NULL, cached_state, mask);
1179 }
1180
1181 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1182 struct extent_state **cached_state, gfp_t mask)
1183 {
1184 return set_extent_bit(tree, start, end,
1185 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1186 NULL, cached_state, mask);
1187 }
1188
1189 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1190 gfp_t mask)
1191 {
1192 return clear_extent_bit(tree, start, end,
1193 EXTENT_DIRTY | EXTENT_DELALLOC |
1194 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1195 }
1196
1197 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1198 gfp_t mask)
1199 {
1200 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1201 NULL, mask);
1202 }
1203
1204 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1205 struct extent_state **cached_state, gfp_t mask)
1206 {
1207 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1208 cached_state, mask);
1209 }
1210
1211 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1212 struct extent_state **cached_state, gfp_t mask)
1213 {
1214 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1215 cached_state, mask);
1216 }
1217
1218 /*
1219 * either insert or lock state struct between start and end use mask to tell
1220 * us if waiting is desired.
1221 */
1222 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1223 int bits, struct extent_state **cached_state)
1224 {
1225 int err;
1226 u64 failed_start;
1227 while (1) {
1228 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1229 EXTENT_LOCKED, &failed_start,
1230 cached_state, GFP_NOFS);
1231 if (err == -EEXIST) {
1232 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1233 start = failed_start;
1234 } else
1235 break;
1236 WARN_ON(start > end);
1237 }
1238 return err;
1239 }
1240
1241 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1242 {
1243 return lock_extent_bits(tree, start, end, 0, NULL);
1244 }
1245
1246 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1247 {
1248 int err;
1249 u64 failed_start;
1250
1251 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1252 &failed_start, NULL, GFP_NOFS);
1253 if (err == -EEXIST) {
1254 if (failed_start > start)
1255 clear_extent_bit(tree, start, failed_start - 1,
1256 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1257 return 0;
1258 }
1259 return 1;
1260 }
1261
1262 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1263 struct extent_state **cached, gfp_t mask)
1264 {
1265 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1266 mask);
1267 }
1268
1269 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1270 {
1271 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1272 GFP_NOFS);
1273 }
1274
1275 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1276 {
1277 unsigned long index = start >> PAGE_CACHE_SHIFT;
1278 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1279 struct page *page;
1280
1281 while (index <= end_index) {
1282 page = find_get_page(inode->i_mapping, index);
1283 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1284 clear_page_dirty_for_io(page);
1285 page_cache_release(page);
1286 index++;
1287 }
1288 return 0;
1289 }
1290
1291 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1292 {
1293 unsigned long index = start >> PAGE_CACHE_SHIFT;
1294 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1295 struct page *page;
1296
1297 while (index <= end_index) {
1298 page = find_get_page(inode->i_mapping, index);
1299 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1300 account_page_redirty(page);
1301 __set_page_dirty_nobuffers(page);
1302 page_cache_release(page);
1303 index++;
1304 }
1305 return 0;
1306 }
1307
1308 /*
1309 * helper function to set both pages and extents in the tree writeback
1310 */
1311 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1312 {
1313 unsigned long index = start >> PAGE_CACHE_SHIFT;
1314 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1315 struct page *page;
1316
1317 while (index <= end_index) {
1318 page = find_get_page(tree->mapping, index);
1319 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1320 set_page_writeback(page);
1321 page_cache_release(page);
1322 index++;
1323 }
1324 return 0;
1325 }
1326
1327 /* find the first state struct with 'bits' set after 'start', and
1328 * return it. tree->lock must be held. NULL will returned if
1329 * nothing was found after 'start'
1330 */
1331 static struct extent_state *
1332 find_first_extent_bit_state(struct extent_io_tree *tree,
1333 u64 start, int bits)
1334 {
1335 struct rb_node *node;
1336 struct extent_state *state;
1337
1338 /*
1339 * this search will find all the extents that end after
1340 * our range starts.
1341 */
1342 node = tree_search(tree, start);
1343 if (!node)
1344 goto out;
1345
1346 while (1) {
1347 state = rb_entry(node, struct extent_state, rb_node);
1348 if (state->end >= start && (state->state & bits))
1349 return state;
1350
1351 node = rb_next(node);
1352 if (!node)
1353 break;
1354 }
1355 out:
1356 return NULL;
1357 }
1358
1359 /*
1360 * find the first offset in the io tree with 'bits' set. zero is
1361 * returned if we find something, and *start_ret and *end_ret are
1362 * set to reflect the state struct that was found.
1363 *
1364 * If nothing was found, 1 is returned. If found something, return 0.
1365 */
1366 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1367 u64 *start_ret, u64 *end_ret, int bits,
1368 struct extent_state **cached_state)
1369 {
1370 struct extent_state *state;
1371 struct rb_node *n;
1372 int ret = 1;
1373
1374 spin_lock(&tree->lock);
1375 if (cached_state && *cached_state) {
1376 state = *cached_state;
1377 if (state->end == start - 1 && state->tree) {
1378 n = rb_next(&state->rb_node);
1379 while (n) {
1380 state = rb_entry(n, struct extent_state,
1381 rb_node);
1382 if (state->state & bits)
1383 goto got_it;
1384 n = rb_next(n);
1385 }
1386 free_extent_state(*cached_state);
1387 *cached_state = NULL;
1388 goto out;
1389 }
1390 free_extent_state(*cached_state);
1391 *cached_state = NULL;
1392 }
1393
1394 state = find_first_extent_bit_state(tree, start, bits);
1395 got_it:
1396 if (state) {
1397 cache_state(state, cached_state);
1398 *start_ret = state->start;
1399 *end_ret = state->end;
1400 ret = 0;
1401 }
1402 out:
1403 spin_unlock(&tree->lock);
1404 return ret;
1405 }
1406
1407 /*
1408 * find a contiguous range of bytes in the file marked as delalloc, not
1409 * more than 'max_bytes'. start and end are used to return the range,
1410 *
1411 * 1 is returned if we find something, 0 if nothing was in the tree
1412 */
1413 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1414 u64 *start, u64 *end, u64 max_bytes,
1415 struct extent_state **cached_state)
1416 {
1417 struct rb_node *node;
1418 struct extent_state *state;
1419 u64 cur_start = *start;
1420 u64 found = 0;
1421 u64 total_bytes = 0;
1422
1423 spin_lock(&tree->lock);
1424
1425 /*
1426 * this search will find all the extents that end after
1427 * our range starts.
1428 */
1429 node = tree_search(tree, cur_start);
1430 if (!node) {
1431 if (!found)
1432 *end = (u64)-1;
1433 goto out;
1434 }
1435
1436 while (1) {
1437 state = rb_entry(node, struct extent_state, rb_node);
1438 if (found && (state->start != cur_start ||
1439 (state->state & EXTENT_BOUNDARY))) {
1440 goto out;
1441 }
1442 if (!(state->state & EXTENT_DELALLOC)) {
1443 if (!found)
1444 *end = state->end;
1445 goto out;
1446 }
1447 if (!found) {
1448 *start = state->start;
1449 *cached_state = state;
1450 atomic_inc(&state->refs);
1451 }
1452 found++;
1453 *end = state->end;
1454 cur_start = state->end + 1;
1455 node = rb_next(node);
1456 if (!node)
1457 break;
1458 total_bytes += state->end - state->start + 1;
1459 if (total_bytes >= max_bytes)
1460 break;
1461 }
1462 out:
1463 spin_unlock(&tree->lock);
1464 return found;
1465 }
1466
1467 static noinline void __unlock_for_delalloc(struct inode *inode,
1468 struct page *locked_page,
1469 u64 start, u64 end)
1470 {
1471 int ret;
1472 struct page *pages[16];
1473 unsigned long index = start >> PAGE_CACHE_SHIFT;
1474 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1475 unsigned long nr_pages = end_index - index + 1;
1476 int i;
1477
1478 if (index == locked_page->index && end_index == index)
1479 return;
1480
1481 while (nr_pages > 0) {
1482 ret = find_get_pages_contig(inode->i_mapping, index,
1483 min_t(unsigned long, nr_pages,
1484 ARRAY_SIZE(pages)), pages);
1485 for (i = 0; i < ret; i++) {
1486 if (pages[i] != locked_page)
1487 unlock_page(pages[i]);
1488 page_cache_release(pages[i]);
1489 }
1490 nr_pages -= ret;
1491 index += ret;
1492 cond_resched();
1493 }
1494 }
1495
1496 static noinline int lock_delalloc_pages(struct inode *inode,
1497 struct page *locked_page,
1498 u64 delalloc_start,
1499 u64 delalloc_end)
1500 {
1501 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1502 unsigned long start_index = index;
1503 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1504 unsigned long pages_locked = 0;
1505 struct page *pages[16];
1506 unsigned long nrpages;
1507 int ret;
1508 int i;
1509
1510 /* the caller is responsible for locking the start index */
1511 if (index == locked_page->index && index == end_index)
1512 return 0;
1513
1514 /* skip the page at the start index */
1515 nrpages = end_index - index + 1;
1516 while (nrpages > 0) {
1517 ret = find_get_pages_contig(inode->i_mapping, index,
1518 min_t(unsigned long,
1519 nrpages, ARRAY_SIZE(pages)), pages);
1520 if (ret == 0) {
1521 ret = -EAGAIN;
1522 goto done;
1523 }
1524 /* now we have an array of pages, lock them all */
1525 for (i = 0; i < ret; i++) {
1526 /*
1527 * the caller is taking responsibility for
1528 * locked_page
1529 */
1530 if (pages[i] != locked_page) {
1531 lock_page(pages[i]);
1532 if (!PageDirty(pages[i]) ||
1533 pages[i]->mapping != inode->i_mapping) {
1534 ret = -EAGAIN;
1535 unlock_page(pages[i]);
1536 page_cache_release(pages[i]);
1537 goto done;
1538 }
1539 }
1540 page_cache_release(pages[i]);
1541 pages_locked++;
1542 }
1543 nrpages -= ret;
1544 index += ret;
1545 cond_resched();
1546 }
1547 ret = 0;
1548 done:
1549 if (ret && pages_locked) {
1550 __unlock_for_delalloc(inode, locked_page,
1551 delalloc_start,
1552 ((u64)(start_index + pages_locked - 1)) <<
1553 PAGE_CACHE_SHIFT);
1554 }
1555 return ret;
1556 }
1557
1558 /*
1559 * find a contiguous range of bytes in the file marked as delalloc, not
1560 * more than 'max_bytes'. start and end are used to return the range,
1561 *
1562 * 1 is returned if we find something, 0 if nothing was in the tree
1563 */
1564 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1565 struct extent_io_tree *tree,
1566 struct page *locked_page,
1567 u64 *start, u64 *end,
1568 u64 max_bytes)
1569 {
1570 u64 delalloc_start;
1571 u64 delalloc_end;
1572 u64 found;
1573 struct extent_state *cached_state = NULL;
1574 int ret;
1575 int loops = 0;
1576
1577 again:
1578 /* step one, find a bunch of delalloc bytes starting at start */
1579 delalloc_start = *start;
1580 delalloc_end = 0;
1581 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1582 max_bytes, &cached_state);
1583 if (!found || delalloc_end <= *start) {
1584 *start = delalloc_start;
1585 *end = delalloc_end;
1586 free_extent_state(cached_state);
1587 return found;
1588 }
1589
1590 /*
1591 * start comes from the offset of locked_page. We have to lock
1592 * pages in order, so we can't process delalloc bytes before
1593 * locked_page
1594 */
1595 if (delalloc_start < *start)
1596 delalloc_start = *start;
1597
1598 /*
1599 * make sure to limit the number of pages we try to lock down
1600 * if we're looping.
1601 */
1602 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1603 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1604
1605 /* step two, lock all the pages after the page that has start */
1606 ret = lock_delalloc_pages(inode, locked_page,
1607 delalloc_start, delalloc_end);
1608 if (ret == -EAGAIN) {
1609 /* some of the pages are gone, lets avoid looping by
1610 * shortening the size of the delalloc range we're searching
1611 */
1612 free_extent_state(cached_state);
1613 if (!loops) {
1614 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1615 max_bytes = PAGE_CACHE_SIZE - offset;
1616 loops = 1;
1617 goto again;
1618 } else {
1619 found = 0;
1620 goto out_failed;
1621 }
1622 }
1623 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1624
1625 /* step three, lock the state bits for the whole range */
1626 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1627
1628 /* then test to make sure it is all still delalloc */
1629 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1630 EXTENT_DELALLOC, 1, cached_state);
1631 if (!ret) {
1632 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1633 &cached_state, GFP_NOFS);
1634 __unlock_for_delalloc(inode, locked_page,
1635 delalloc_start, delalloc_end);
1636 cond_resched();
1637 goto again;
1638 }
1639 free_extent_state(cached_state);
1640 *start = delalloc_start;
1641 *end = delalloc_end;
1642 out_failed:
1643 return found;
1644 }
1645
1646 int extent_clear_unlock_delalloc(struct inode *inode,
1647 struct extent_io_tree *tree,
1648 u64 start, u64 end, struct page *locked_page,
1649 unsigned long op)
1650 {
1651 int ret;
1652 struct page *pages[16];
1653 unsigned long index = start >> PAGE_CACHE_SHIFT;
1654 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1655 unsigned long nr_pages = end_index - index + 1;
1656 int i;
1657 int clear_bits = 0;
1658
1659 if (op & EXTENT_CLEAR_UNLOCK)
1660 clear_bits |= EXTENT_LOCKED;
1661 if (op & EXTENT_CLEAR_DIRTY)
1662 clear_bits |= EXTENT_DIRTY;
1663
1664 if (op & EXTENT_CLEAR_DELALLOC)
1665 clear_bits |= EXTENT_DELALLOC;
1666
1667 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1668 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1669 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1670 EXTENT_SET_PRIVATE2)))
1671 return 0;
1672
1673 while (nr_pages > 0) {
1674 ret = find_get_pages_contig(inode->i_mapping, index,
1675 min_t(unsigned long,
1676 nr_pages, ARRAY_SIZE(pages)), pages);
1677 for (i = 0; i < ret; i++) {
1678
1679 if (op & EXTENT_SET_PRIVATE2)
1680 SetPagePrivate2(pages[i]);
1681
1682 if (pages[i] == locked_page) {
1683 page_cache_release(pages[i]);
1684 continue;
1685 }
1686 if (op & EXTENT_CLEAR_DIRTY)
1687 clear_page_dirty_for_io(pages[i]);
1688 if (op & EXTENT_SET_WRITEBACK)
1689 set_page_writeback(pages[i]);
1690 if (op & EXTENT_END_WRITEBACK)
1691 end_page_writeback(pages[i]);
1692 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1693 unlock_page(pages[i]);
1694 page_cache_release(pages[i]);
1695 }
1696 nr_pages -= ret;
1697 index += ret;
1698 cond_resched();
1699 }
1700 return 0;
1701 }
1702
1703 /*
1704 * count the number of bytes in the tree that have a given bit(s)
1705 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1706 * cached. The total number found is returned.
1707 */
1708 u64 count_range_bits(struct extent_io_tree *tree,
1709 u64 *start, u64 search_end, u64 max_bytes,
1710 unsigned long bits, int contig)
1711 {
1712 struct rb_node *node;
1713 struct extent_state *state;
1714 u64 cur_start = *start;
1715 u64 total_bytes = 0;
1716 u64 last = 0;
1717 int found = 0;
1718
1719 if (search_end <= cur_start) {
1720 WARN_ON(1);
1721 return 0;
1722 }
1723
1724 spin_lock(&tree->lock);
1725 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1726 total_bytes = tree->dirty_bytes;
1727 goto out;
1728 }
1729 /*
1730 * this search will find all the extents that end after
1731 * our range starts.
1732 */
1733 node = tree_search(tree, cur_start);
1734 if (!node)
1735 goto out;
1736
1737 while (1) {
1738 state = rb_entry(node, struct extent_state, rb_node);
1739 if (state->start > search_end)
1740 break;
1741 if (contig && found && state->start > last + 1)
1742 break;
1743 if (state->end >= cur_start && (state->state & bits) == bits) {
1744 total_bytes += min(search_end, state->end) + 1 -
1745 max(cur_start, state->start);
1746 if (total_bytes >= max_bytes)
1747 break;
1748 if (!found) {
1749 *start = max(cur_start, state->start);
1750 found = 1;
1751 }
1752 last = state->end;
1753 } else if (contig && found) {
1754 break;
1755 }
1756 node = rb_next(node);
1757 if (!node)
1758 break;
1759 }
1760 out:
1761 spin_unlock(&tree->lock);
1762 return total_bytes;
1763 }
1764
1765 /*
1766 * set the private field for a given byte offset in the tree. If there isn't
1767 * an extent_state there already, this does nothing.
1768 */
1769 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1770 {
1771 struct rb_node *node;
1772 struct extent_state *state;
1773 int ret = 0;
1774
1775 spin_lock(&tree->lock);
1776 /*
1777 * this search will find all the extents that end after
1778 * our range starts.
1779 */
1780 node = tree_search(tree, start);
1781 if (!node) {
1782 ret = -ENOENT;
1783 goto out;
1784 }
1785 state = rb_entry(node, struct extent_state, rb_node);
1786 if (state->start != start) {
1787 ret = -ENOENT;
1788 goto out;
1789 }
1790 state->private = private;
1791 out:
1792 spin_unlock(&tree->lock);
1793 return ret;
1794 }
1795
1796 void extent_cache_csums_dio(struct extent_io_tree *tree, u64 start, u32 csums[],
1797 int count)
1798 {
1799 struct rb_node *node;
1800 struct extent_state *state;
1801
1802 spin_lock(&tree->lock);
1803 /*
1804 * this search will find all the extents that end after
1805 * our range starts.
1806 */
1807 node = tree_search(tree, start);
1808 BUG_ON(!node);
1809
1810 state = rb_entry(node, struct extent_state, rb_node);
1811 BUG_ON(state->start != start);
1812
1813 while (count) {
1814 state->private = *csums++;
1815 count--;
1816 state = next_state(state);
1817 }
1818 spin_unlock(&tree->lock);
1819 }
1820
1821 static inline u64 __btrfs_get_bio_offset(struct bio *bio, int bio_index)
1822 {
1823 struct bio_vec *bvec = bio->bi_io_vec + bio_index;
1824
1825 return page_offset(bvec->bv_page) + bvec->bv_offset;
1826 }
1827
1828 void extent_cache_csums(struct extent_io_tree *tree, struct bio *bio, int bio_index,
1829 u32 csums[], int count)
1830 {
1831 struct rb_node *node;
1832 struct extent_state *state = NULL;
1833 u64 start;
1834
1835 spin_lock(&tree->lock);
1836 do {
1837 start = __btrfs_get_bio_offset(bio, bio_index);
1838 if (state == NULL || state->start != start) {
1839 node = tree_search(tree, start);
1840 BUG_ON(!node);
1841
1842 state = rb_entry(node, struct extent_state, rb_node);
1843 BUG_ON(state->start != start);
1844 }
1845 state->private = *csums++;
1846 count--;
1847 bio_index++;
1848
1849 state = next_state(state);
1850 } while (count);
1851 spin_unlock(&tree->lock);
1852 }
1853
1854 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1855 {
1856 struct rb_node *node;
1857 struct extent_state *state;
1858 int ret = 0;
1859
1860 spin_lock(&tree->lock);
1861 /*
1862 * this search will find all the extents that end after
1863 * our range starts.
1864 */
1865 node = tree_search(tree, start);
1866 if (!node) {
1867 ret = -ENOENT;
1868 goto out;
1869 }
1870 state = rb_entry(node, struct extent_state, rb_node);
1871 if (state->start != start) {
1872 ret = -ENOENT;
1873 goto out;
1874 }
1875 *private = state->private;
1876 out:
1877 spin_unlock(&tree->lock);
1878 return ret;
1879 }
1880
1881 /*
1882 * searches a range in the state tree for a given mask.
1883 * If 'filled' == 1, this returns 1 only if every extent in the tree
1884 * has the bits set. Otherwise, 1 is returned if any bit in the
1885 * range is found set.
1886 */
1887 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1888 int bits, int filled, struct extent_state *cached)
1889 {
1890 struct extent_state *state = NULL;
1891 struct rb_node *node;
1892 int bitset = 0;
1893
1894 spin_lock(&tree->lock);
1895 if (cached && cached->tree && cached->start <= start &&
1896 cached->end > start)
1897 node = &cached->rb_node;
1898 else
1899 node = tree_search(tree, start);
1900 while (node && start <= end) {
1901 state = rb_entry(node, struct extent_state, rb_node);
1902
1903 if (filled && state->start > start) {
1904 bitset = 0;
1905 break;
1906 }
1907
1908 if (state->start > end)
1909 break;
1910
1911 if (state->state & bits) {
1912 bitset = 1;
1913 if (!filled)
1914 break;
1915 } else if (filled) {
1916 bitset = 0;
1917 break;
1918 }
1919
1920 if (state->end == (u64)-1)
1921 break;
1922
1923 start = state->end + 1;
1924 if (start > end)
1925 break;
1926 node = rb_next(node);
1927 if (!node) {
1928 if (filled)
1929 bitset = 0;
1930 break;
1931 }
1932 }
1933 spin_unlock(&tree->lock);
1934 return bitset;
1935 }
1936
1937 /*
1938 * helper function to set a given page up to date if all the
1939 * extents in the tree for that page are up to date
1940 */
1941 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1942 {
1943 u64 start = page_offset(page);
1944 u64 end = start + PAGE_CACHE_SIZE - 1;
1945 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1946 SetPageUptodate(page);
1947 }
1948
1949 /*
1950 * helper function to unlock a page if all the extents in the tree
1951 * for that page are unlocked
1952 */
1953 static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1954 {
1955 u64 start = page_offset(page);
1956 u64 end = start + PAGE_CACHE_SIZE - 1;
1957 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1958 unlock_page(page);
1959 }
1960
1961 /*
1962 * helper function to end page writeback if all the extents
1963 * in the tree for that page are done with writeback
1964 */
1965 static void check_page_writeback(struct extent_io_tree *tree,
1966 struct page *page)
1967 {
1968 end_page_writeback(page);
1969 }
1970
1971 /*
1972 * When IO fails, either with EIO or csum verification fails, we
1973 * try other mirrors that might have a good copy of the data. This
1974 * io_failure_record is used to record state as we go through all the
1975 * mirrors. If another mirror has good data, the page is set up to date
1976 * and things continue. If a good mirror can't be found, the original
1977 * bio end_io callback is called to indicate things have failed.
1978 */
1979 struct io_failure_record {
1980 struct page *page;
1981 u64 start;
1982 u64 len;
1983 u64 logical;
1984 unsigned long bio_flags;
1985 int this_mirror;
1986 int failed_mirror;
1987 int in_validation;
1988 };
1989
1990 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1991 int did_repair)
1992 {
1993 int ret;
1994 int err = 0;
1995 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1996
1997 set_state_private(failure_tree, rec->start, 0);
1998 ret = clear_extent_bits(failure_tree, rec->start,
1999 rec->start + rec->len - 1,
2000 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2001 if (ret)
2002 err = ret;
2003
2004 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2005 rec->start + rec->len - 1,
2006 EXTENT_DAMAGED, GFP_NOFS);
2007 if (ret && !err)
2008 err = ret;
2009
2010 kfree(rec);
2011 return err;
2012 }
2013
2014 static void repair_io_failure_callback(struct bio *bio, int err)
2015 {
2016 complete(bio->bi_private);
2017 }
2018
2019 /*
2020 * this bypasses the standard btrfs submit functions deliberately, as
2021 * the standard behavior is to write all copies in a raid setup. here we only
2022 * want to write the one bad copy. so we do the mapping for ourselves and issue
2023 * submit_bio directly.
2024 * to avoid any synchronization issues, wait for the data after writing, which
2025 * actually prevents the read that triggered the error from finishing.
2026 * currently, there can be no more than two copies of every data bit. thus,
2027 * exactly one rewrite is required.
2028 */
2029 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2030 u64 length, u64 logical, struct page *page,
2031 int mirror_num)
2032 {
2033 struct bio *bio;
2034 struct btrfs_device *dev;
2035 DECLARE_COMPLETION_ONSTACK(compl);
2036 u64 map_length = 0;
2037 u64 sector;
2038 struct btrfs_bio *bbio = NULL;
2039 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2040 int ret;
2041
2042 BUG_ON(!mirror_num);
2043
2044 /* we can't repair anything in raid56 yet */
2045 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2046 return 0;
2047
2048 bio = bio_alloc(GFP_NOFS, 1);
2049 if (!bio)
2050 return -EIO;
2051 bio->bi_private = &compl;
2052 bio->bi_end_io = repair_io_failure_callback;
2053 bio->bi_size = 0;
2054 map_length = length;
2055
2056 ret = btrfs_map_block(fs_info, WRITE, logical,
2057 &map_length, &bbio, mirror_num);
2058 if (ret) {
2059 bio_put(bio);
2060 return -EIO;
2061 }
2062 BUG_ON(mirror_num != bbio->mirror_num);
2063 sector = bbio->stripes[mirror_num-1].physical >> 9;
2064 bio->bi_sector = sector;
2065 dev = bbio->stripes[mirror_num-1].dev;
2066 kfree(bbio);
2067 if (!dev || !dev->bdev || !dev->writeable) {
2068 bio_put(bio);
2069 return -EIO;
2070 }
2071 bio->bi_bdev = dev->bdev;
2072 bio_add_page(bio, page, length, start - page_offset(page));
2073 btrfsic_submit_bio(WRITE_SYNC, bio);
2074 wait_for_completion(&compl);
2075
2076 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2077 /* try to remap that extent elsewhere? */
2078 bio_put(bio);
2079 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2080 return -EIO;
2081 }
2082
2083 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2084 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2085 start, rcu_str_deref(dev->name), sector);
2086
2087 bio_put(bio);
2088 return 0;
2089 }
2090
2091 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2092 int mirror_num)
2093 {
2094 u64 start = eb->start;
2095 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2096 int ret = 0;
2097
2098 for (i = 0; i < num_pages; i++) {
2099 struct page *p = extent_buffer_page(eb, i);
2100 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2101 start, p, mirror_num);
2102 if (ret)
2103 break;
2104 start += PAGE_CACHE_SIZE;
2105 }
2106
2107 return ret;
2108 }
2109
2110 /*
2111 * each time an IO finishes, we do a fast check in the IO failure tree
2112 * to see if we need to process or clean up an io_failure_record
2113 */
2114 static int clean_io_failure(u64 start, struct page *page)
2115 {
2116 u64 private;
2117 u64 private_failure;
2118 struct io_failure_record *failrec;
2119 struct btrfs_fs_info *fs_info;
2120 struct extent_state *state;
2121 int num_copies;
2122 int did_repair = 0;
2123 int ret;
2124 struct inode *inode = page->mapping->host;
2125
2126 private = 0;
2127 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2128 (u64)-1, 1, EXTENT_DIRTY, 0);
2129 if (!ret)
2130 return 0;
2131
2132 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2133 &private_failure);
2134 if (ret)
2135 return 0;
2136
2137 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2138 BUG_ON(!failrec->this_mirror);
2139
2140 if (failrec->in_validation) {
2141 /* there was no real error, just free the record */
2142 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2143 failrec->start);
2144 did_repair = 1;
2145 goto out;
2146 }
2147
2148 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2149 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2150 failrec->start,
2151 EXTENT_LOCKED);
2152 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2153
2154 if (state && state->start == failrec->start) {
2155 fs_info = BTRFS_I(inode)->root->fs_info;
2156 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2157 failrec->len);
2158 if (num_copies > 1) {
2159 ret = repair_io_failure(fs_info, start, failrec->len,
2160 failrec->logical, page,
2161 failrec->failed_mirror);
2162 did_repair = !ret;
2163 }
2164 ret = 0;
2165 }
2166
2167 out:
2168 if (!ret)
2169 ret = free_io_failure(inode, failrec, did_repair);
2170
2171 return ret;
2172 }
2173
2174 /*
2175 * this is a generic handler for readpage errors (default
2176 * readpage_io_failed_hook). if other copies exist, read those and write back
2177 * good data to the failed position. does not investigate in remapping the
2178 * failed extent elsewhere, hoping the device will be smart enough to do this as
2179 * needed
2180 */
2181
2182 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2183 u64 start, u64 end, int failed_mirror,
2184 struct extent_state *state)
2185 {
2186 struct io_failure_record *failrec = NULL;
2187 u64 private;
2188 struct extent_map *em;
2189 struct inode *inode = page->mapping->host;
2190 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2191 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2193 struct bio *bio;
2194 int num_copies;
2195 int ret;
2196 int read_mode;
2197 u64 logical;
2198
2199 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2200
2201 ret = get_state_private(failure_tree, start, &private);
2202 if (ret) {
2203 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2204 if (!failrec)
2205 return -ENOMEM;
2206 failrec->start = start;
2207 failrec->len = end - start + 1;
2208 failrec->this_mirror = 0;
2209 failrec->bio_flags = 0;
2210 failrec->in_validation = 0;
2211
2212 read_lock(&em_tree->lock);
2213 em = lookup_extent_mapping(em_tree, start, failrec->len);
2214 if (!em) {
2215 read_unlock(&em_tree->lock);
2216 kfree(failrec);
2217 return -EIO;
2218 }
2219
2220 if (em->start > start || em->start + em->len < start) {
2221 free_extent_map(em);
2222 em = NULL;
2223 }
2224 read_unlock(&em_tree->lock);
2225
2226 if (!em) {
2227 kfree(failrec);
2228 return -EIO;
2229 }
2230 logical = start - em->start;
2231 logical = em->block_start + logical;
2232 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2233 logical = em->block_start;
2234 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2235 extent_set_compress_type(&failrec->bio_flags,
2236 em->compress_type);
2237 }
2238 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2239 "len=%llu\n", logical, start, failrec->len);
2240 failrec->logical = logical;
2241 free_extent_map(em);
2242
2243 /* set the bits in the private failure tree */
2244 ret = set_extent_bits(failure_tree, start, end,
2245 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2246 if (ret >= 0)
2247 ret = set_state_private(failure_tree, start,
2248 (u64)(unsigned long)failrec);
2249 /* set the bits in the inode's tree */
2250 if (ret >= 0)
2251 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2252 GFP_NOFS);
2253 if (ret < 0) {
2254 kfree(failrec);
2255 return ret;
2256 }
2257 } else {
2258 failrec = (struct io_failure_record *)(unsigned long)private;
2259 pr_debug("bio_readpage_error: (found) logical=%llu, "
2260 "start=%llu, len=%llu, validation=%d\n",
2261 failrec->logical, failrec->start, failrec->len,
2262 failrec->in_validation);
2263 /*
2264 * when data can be on disk more than twice, add to failrec here
2265 * (e.g. with a list for failed_mirror) to make
2266 * clean_io_failure() clean all those errors at once.
2267 */
2268 }
2269 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2270 failrec->logical, failrec->len);
2271 if (num_copies == 1) {
2272 /*
2273 * we only have a single copy of the data, so don't bother with
2274 * all the retry and error correction code that follows. no
2275 * matter what the error is, it is very likely to persist.
2276 */
2277 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2278 "state=%p, num_copies=%d, next_mirror %d, "
2279 "failed_mirror %d\n", state, num_copies,
2280 failrec->this_mirror, failed_mirror);
2281 free_io_failure(inode, failrec, 0);
2282 return -EIO;
2283 }
2284
2285 if (!state) {
2286 spin_lock(&tree->lock);
2287 state = find_first_extent_bit_state(tree, failrec->start,
2288 EXTENT_LOCKED);
2289 if (state && state->start != failrec->start)
2290 state = NULL;
2291 spin_unlock(&tree->lock);
2292 }
2293
2294 /*
2295 * there are two premises:
2296 * a) deliver good data to the caller
2297 * b) correct the bad sectors on disk
2298 */
2299 if (failed_bio->bi_vcnt > 1) {
2300 /*
2301 * to fulfill b), we need to know the exact failing sectors, as
2302 * we don't want to rewrite any more than the failed ones. thus,
2303 * we need separate read requests for the failed bio
2304 *
2305 * if the following BUG_ON triggers, our validation request got
2306 * merged. we need separate requests for our algorithm to work.
2307 */
2308 BUG_ON(failrec->in_validation);
2309 failrec->in_validation = 1;
2310 failrec->this_mirror = failed_mirror;
2311 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2312 } else {
2313 /*
2314 * we're ready to fulfill a) and b) alongside. get a good copy
2315 * of the failed sector and if we succeed, we have setup
2316 * everything for repair_io_failure to do the rest for us.
2317 */
2318 if (failrec->in_validation) {
2319 BUG_ON(failrec->this_mirror != failed_mirror);
2320 failrec->in_validation = 0;
2321 failrec->this_mirror = 0;
2322 }
2323 failrec->failed_mirror = failed_mirror;
2324 failrec->this_mirror++;
2325 if (failrec->this_mirror == failed_mirror)
2326 failrec->this_mirror++;
2327 read_mode = READ_SYNC;
2328 }
2329
2330 if (!state || failrec->this_mirror > num_copies) {
2331 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2332 "next_mirror %d, failed_mirror %d\n", state,
2333 num_copies, failrec->this_mirror, failed_mirror);
2334 free_io_failure(inode, failrec, 0);
2335 return -EIO;
2336 }
2337
2338 bio = bio_alloc(GFP_NOFS, 1);
2339 if (!bio) {
2340 free_io_failure(inode, failrec, 0);
2341 return -EIO;
2342 }
2343 bio->bi_private = state;
2344 bio->bi_end_io = failed_bio->bi_end_io;
2345 bio->bi_sector = failrec->logical >> 9;
2346 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2347 bio->bi_size = 0;
2348
2349 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2350
2351 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2352 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2353 failrec->this_mirror, num_copies, failrec->in_validation);
2354
2355 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2356 failrec->this_mirror,
2357 failrec->bio_flags, 0);
2358 return ret;
2359 }
2360
2361 /* lots and lots of room for performance fixes in the end_bio funcs */
2362
2363 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2364 {
2365 int uptodate = (err == 0);
2366 struct extent_io_tree *tree;
2367 int ret;
2368
2369 tree = &BTRFS_I(page->mapping->host)->io_tree;
2370
2371 if (tree->ops && tree->ops->writepage_end_io_hook) {
2372 ret = tree->ops->writepage_end_io_hook(page, start,
2373 end, NULL, uptodate);
2374 if (ret)
2375 uptodate = 0;
2376 }
2377
2378 if (!uptodate) {
2379 ClearPageUptodate(page);
2380 SetPageError(page);
2381 }
2382 return 0;
2383 }
2384
2385 /*
2386 * after a writepage IO is done, we need to:
2387 * clear the uptodate bits on error
2388 * clear the writeback bits in the extent tree for this IO
2389 * end_page_writeback if the page has no more pending IO
2390 *
2391 * Scheduling is not allowed, so the extent state tree is expected
2392 * to have one and only one object corresponding to this IO.
2393 */
2394 static void end_bio_extent_writepage(struct bio *bio, int err)
2395 {
2396 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2397 struct extent_io_tree *tree;
2398 u64 start;
2399 u64 end;
2400 int whole_page;
2401
2402 do {
2403 struct page *page = bvec->bv_page;
2404 tree = &BTRFS_I(page->mapping->host)->io_tree;
2405
2406 start = page_offset(page) + bvec->bv_offset;
2407 end = start + bvec->bv_len - 1;
2408
2409 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2410 whole_page = 1;
2411 else
2412 whole_page = 0;
2413
2414 if (--bvec >= bio->bi_io_vec)
2415 prefetchw(&bvec->bv_page->flags);
2416
2417 if (end_extent_writepage(page, err, start, end))
2418 continue;
2419
2420 if (whole_page)
2421 end_page_writeback(page);
2422 else
2423 check_page_writeback(tree, page);
2424 } while (bvec >= bio->bi_io_vec);
2425
2426 bio_put(bio);
2427 }
2428
2429 /*
2430 * after a readpage IO is done, we need to:
2431 * clear the uptodate bits on error
2432 * set the uptodate bits if things worked
2433 * set the page up to date if all extents in the tree are uptodate
2434 * clear the lock bit in the extent tree
2435 * unlock the page if there are no other extents locked for it
2436 *
2437 * Scheduling is not allowed, so the extent state tree is expected
2438 * to have one and only one object corresponding to this IO.
2439 */
2440 static void end_bio_extent_readpage(struct bio *bio, int err)
2441 {
2442 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2443 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2444 struct bio_vec *bvec = bio->bi_io_vec;
2445 struct extent_io_tree *tree;
2446 u64 start;
2447 u64 end;
2448 int whole_page;
2449 int mirror;
2450 int ret;
2451
2452 if (err)
2453 uptodate = 0;
2454
2455 do {
2456 struct page *page = bvec->bv_page;
2457 struct extent_state *cached = NULL;
2458 struct extent_state *state;
2459
2460 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2461 "mirror=%ld\n", (u64)bio->bi_sector, err,
2462 (long int)bio->bi_bdev);
2463 tree = &BTRFS_I(page->mapping->host)->io_tree;
2464
2465 start = page_offset(page) + bvec->bv_offset;
2466 end = start + bvec->bv_len - 1;
2467
2468 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2469 whole_page = 1;
2470 else
2471 whole_page = 0;
2472
2473 if (++bvec <= bvec_end)
2474 prefetchw(&bvec->bv_page->flags);
2475
2476 spin_lock(&tree->lock);
2477 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2478 if (state && state->start == start) {
2479 /*
2480 * take a reference on the state, unlock will drop
2481 * the ref
2482 */
2483 cache_state(state, &cached);
2484 }
2485 spin_unlock(&tree->lock);
2486
2487 mirror = (int)(unsigned long)bio->bi_bdev;
2488 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2489 ret = tree->ops->readpage_end_io_hook(page, start, end,
2490 state, mirror);
2491 if (ret)
2492 uptodate = 0;
2493 else
2494 clean_io_failure(start, page);
2495 }
2496
2497 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2498 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2499 if (!ret && !err &&
2500 test_bit(BIO_UPTODATE, &bio->bi_flags))
2501 uptodate = 1;
2502 } else if (!uptodate) {
2503 /*
2504 * The generic bio_readpage_error handles errors the
2505 * following way: If possible, new read requests are
2506 * created and submitted and will end up in
2507 * end_bio_extent_readpage as well (if we're lucky, not
2508 * in the !uptodate case). In that case it returns 0 and
2509 * we just go on with the next page in our bio. If it
2510 * can't handle the error it will return -EIO and we
2511 * remain responsible for that page.
2512 */
2513 ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2514 if (ret == 0) {
2515 uptodate =
2516 test_bit(BIO_UPTODATE, &bio->bi_flags);
2517 if (err)
2518 uptodate = 0;
2519 uncache_state(&cached);
2520 continue;
2521 }
2522 }
2523
2524 if (uptodate && tree->track_uptodate) {
2525 set_extent_uptodate(tree, start, end, &cached,
2526 GFP_ATOMIC);
2527 }
2528 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2529
2530 if (whole_page) {
2531 if (uptodate) {
2532 SetPageUptodate(page);
2533 } else {
2534 ClearPageUptodate(page);
2535 SetPageError(page);
2536 }
2537 unlock_page(page);
2538 } else {
2539 if (uptodate) {
2540 check_page_uptodate(tree, page);
2541 } else {
2542 ClearPageUptodate(page);
2543 SetPageError(page);
2544 }
2545 check_page_locked(tree, page);
2546 }
2547 } while (bvec <= bvec_end);
2548
2549 bio_put(bio);
2550 }
2551
2552 struct bio *
2553 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2554 gfp_t gfp_flags)
2555 {
2556 struct bio *bio;
2557
2558 bio = bio_alloc(gfp_flags, nr_vecs);
2559
2560 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2561 while (!bio && (nr_vecs /= 2))
2562 bio = bio_alloc(gfp_flags, nr_vecs);
2563 }
2564
2565 if (bio) {
2566 bio->bi_size = 0;
2567 bio->bi_bdev = bdev;
2568 bio->bi_sector = first_sector;
2569 }
2570 return bio;
2571 }
2572
2573 static int __must_check submit_one_bio(int rw, struct bio *bio,
2574 int mirror_num, unsigned long bio_flags)
2575 {
2576 int ret = 0;
2577 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2578 struct page *page = bvec->bv_page;
2579 struct extent_io_tree *tree = bio->bi_private;
2580 u64 start;
2581
2582 start = page_offset(page) + bvec->bv_offset;
2583
2584 bio->bi_private = NULL;
2585
2586 bio_get(bio);
2587
2588 if (tree->ops && tree->ops->submit_bio_hook)
2589 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2590 mirror_num, bio_flags, start);
2591 else
2592 btrfsic_submit_bio(rw, bio);
2593
2594 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2595 ret = -EOPNOTSUPP;
2596 bio_put(bio);
2597 return ret;
2598 }
2599
2600 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2601 unsigned long offset, size_t size, struct bio *bio,
2602 unsigned long bio_flags)
2603 {
2604 int ret = 0;
2605 if (tree->ops && tree->ops->merge_bio_hook)
2606 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2607 bio_flags);
2608 BUG_ON(ret < 0);
2609 return ret;
2610
2611 }
2612
2613 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2614 struct page *page, sector_t sector,
2615 size_t size, unsigned long offset,
2616 struct block_device *bdev,
2617 struct bio **bio_ret,
2618 unsigned long max_pages,
2619 bio_end_io_t end_io_func,
2620 int mirror_num,
2621 unsigned long prev_bio_flags,
2622 unsigned long bio_flags)
2623 {
2624 int ret = 0;
2625 struct bio *bio;
2626 int nr;
2627 int contig = 0;
2628 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2629 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2630 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2631
2632 if (bio_ret && *bio_ret) {
2633 bio = *bio_ret;
2634 if (old_compressed)
2635 contig = bio->bi_sector == sector;
2636 else
2637 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2638 sector;
2639
2640 if (prev_bio_flags != bio_flags || !contig ||
2641 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2642 bio_add_page(bio, page, page_size, offset) < page_size) {
2643 ret = submit_one_bio(rw, bio, mirror_num,
2644 prev_bio_flags);
2645 if (ret < 0)
2646 return ret;
2647 bio = NULL;
2648 } else {
2649 return 0;
2650 }
2651 }
2652 if (this_compressed)
2653 nr = BIO_MAX_PAGES;
2654 else
2655 nr = bio_get_nr_vecs(bdev);
2656
2657 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2658 if (!bio)
2659 return -ENOMEM;
2660
2661 bio_add_page(bio, page, page_size, offset);
2662 bio->bi_end_io = end_io_func;
2663 bio->bi_private = tree;
2664
2665 if (bio_ret)
2666 *bio_ret = bio;
2667 else
2668 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2669
2670 return ret;
2671 }
2672
2673 static void attach_extent_buffer_page(struct extent_buffer *eb,
2674 struct page *page)
2675 {
2676 if (!PagePrivate(page)) {
2677 SetPagePrivate(page);
2678 page_cache_get(page);
2679 set_page_private(page, (unsigned long)eb);
2680 } else {
2681 WARN_ON(page->private != (unsigned long)eb);
2682 }
2683 }
2684
2685 void set_page_extent_mapped(struct page *page)
2686 {
2687 if (!PagePrivate(page)) {
2688 SetPagePrivate(page);
2689 page_cache_get(page);
2690 set_page_private(page, EXTENT_PAGE_PRIVATE);
2691 }
2692 }
2693
2694 /*
2695 * basic readpage implementation. Locked extent state structs are inserted
2696 * into the tree that are removed when the IO is done (by the end_io
2697 * handlers)
2698 * XXX JDM: This needs looking at to ensure proper page locking
2699 */
2700 static int __extent_read_full_page(struct extent_io_tree *tree,
2701 struct page *page,
2702 get_extent_t *get_extent,
2703 struct bio **bio, int mirror_num,
2704 unsigned long *bio_flags, int rw)
2705 {
2706 struct inode *inode = page->mapping->host;
2707 u64 start = page_offset(page);
2708 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2709 u64 end;
2710 u64 cur = start;
2711 u64 extent_offset;
2712 u64 last_byte = i_size_read(inode);
2713 u64 block_start;
2714 u64 cur_end;
2715 sector_t sector;
2716 struct extent_map *em;
2717 struct block_device *bdev;
2718 struct btrfs_ordered_extent *ordered;
2719 int ret;
2720 int nr = 0;
2721 size_t pg_offset = 0;
2722 size_t iosize;
2723 size_t disk_io_size;
2724 size_t blocksize = inode->i_sb->s_blocksize;
2725 unsigned long this_bio_flag = 0;
2726
2727 set_page_extent_mapped(page);
2728
2729 if (!PageUptodate(page)) {
2730 if (cleancache_get_page(page) == 0) {
2731 BUG_ON(blocksize != PAGE_SIZE);
2732 goto out;
2733 }
2734 }
2735
2736 end = page_end;
2737 while (1) {
2738 lock_extent(tree, start, end);
2739 ordered = btrfs_lookup_ordered_extent(inode, start);
2740 if (!ordered)
2741 break;
2742 unlock_extent(tree, start, end);
2743 btrfs_start_ordered_extent(inode, ordered, 1);
2744 btrfs_put_ordered_extent(ordered);
2745 }
2746
2747 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2748 char *userpage;
2749 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2750
2751 if (zero_offset) {
2752 iosize = PAGE_CACHE_SIZE - zero_offset;
2753 userpage = kmap_atomic(page);
2754 memset(userpage + zero_offset, 0, iosize);
2755 flush_dcache_page(page);
2756 kunmap_atomic(userpage);
2757 }
2758 }
2759 while (cur <= end) {
2760 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2761
2762 if (cur >= last_byte) {
2763 char *userpage;
2764 struct extent_state *cached = NULL;
2765
2766 iosize = PAGE_CACHE_SIZE - pg_offset;
2767 userpage = kmap_atomic(page);
2768 memset(userpage + pg_offset, 0, iosize);
2769 flush_dcache_page(page);
2770 kunmap_atomic(userpage);
2771 set_extent_uptodate(tree, cur, cur + iosize - 1,
2772 &cached, GFP_NOFS);
2773 unlock_extent_cached(tree, cur, cur + iosize - 1,
2774 &cached, GFP_NOFS);
2775 break;
2776 }
2777 em = get_extent(inode, page, pg_offset, cur,
2778 end - cur + 1, 0);
2779 if (IS_ERR_OR_NULL(em)) {
2780 SetPageError(page);
2781 unlock_extent(tree, cur, end);
2782 break;
2783 }
2784 extent_offset = cur - em->start;
2785 BUG_ON(extent_map_end(em) <= cur);
2786 BUG_ON(end < cur);
2787
2788 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2789 this_bio_flag = EXTENT_BIO_COMPRESSED;
2790 extent_set_compress_type(&this_bio_flag,
2791 em->compress_type);
2792 }
2793
2794 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2795 cur_end = min(extent_map_end(em) - 1, end);
2796 iosize = ALIGN(iosize, blocksize);
2797 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2798 disk_io_size = em->block_len;
2799 sector = em->block_start >> 9;
2800 } else {
2801 sector = (em->block_start + extent_offset) >> 9;
2802 disk_io_size = iosize;
2803 }
2804 bdev = em->bdev;
2805 block_start = em->block_start;
2806 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2807 block_start = EXTENT_MAP_HOLE;
2808 free_extent_map(em);
2809 em = NULL;
2810
2811 /* we've found a hole, just zero and go on */
2812 if (block_start == EXTENT_MAP_HOLE) {
2813 char *userpage;
2814 struct extent_state *cached = NULL;
2815
2816 userpage = kmap_atomic(page);
2817 memset(userpage + pg_offset, 0, iosize);
2818 flush_dcache_page(page);
2819 kunmap_atomic(userpage);
2820
2821 set_extent_uptodate(tree, cur, cur + iosize - 1,
2822 &cached, GFP_NOFS);
2823 unlock_extent_cached(tree, cur, cur + iosize - 1,
2824 &cached, GFP_NOFS);
2825 cur = cur + iosize;
2826 pg_offset += iosize;
2827 continue;
2828 }
2829 /* the get_extent function already copied into the page */
2830 if (test_range_bit(tree, cur, cur_end,
2831 EXTENT_UPTODATE, 1, NULL)) {
2832 check_page_uptodate(tree, page);
2833 unlock_extent(tree, cur, cur + iosize - 1);
2834 cur = cur + iosize;
2835 pg_offset += iosize;
2836 continue;
2837 }
2838 /* we have an inline extent but it didn't get marked up
2839 * to date. Error out
2840 */
2841 if (block_start == EXTENT_MAP_INLINE) {
2842 SetPageError(page);
2843 unlock_extent(tree, cur, cur + iosize - 1);
2844 cur = cur + iosize;
2845 pg_offset += iosize;
2846 continue;
2847 }
2848
2849 pnr -= page->index;
2850 ret = submit_extent_page(rw, tree, page,
2851 sector, disk_io_size, pg_offset,
2852 bdev, bio, pnr,
2853 end_bio_extent_readpage, mirror_num,
2854 *bio_flags,
2855 this_bio_flag);
2856 if (!ret) {
2857 nr++;
2858 *bio_flags = this_bio_flag;
2859 } else {
2860 SetPageError(page);
2861 unlock_extent(tree, cur, cur + iosize - 1);
2862 }
2863 cur = cur + iosize;
2864 pg_offset += iosize;
2865 }
2866 out:
2867 if (!nr) {
2868 if (!PageError(page))
2869 SetPageUptodate(page);
2870 unlock_page(page);
2871 }
2872 return 0;
2873 }
2874
2875 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2876 get_extent_t *get_extent, int mirror_num)
2877 {
2878 struct bio *bio = NULL;
2879 unsigned long bio_flags = 0;
2880 int ret;
2881
2882 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2883 &bio_flags, READ);
2884 if (bio)
2885 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2886 return ret;
2887 }
2888
2889 static noinline void update_nr_written(struct page *page,
2890 struct writeback_control *wbc,
2891 unsigned long nr_written)
2892 {
2893 wbc->nr_to_write -= nr_written;
2894 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2895 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2896 page->mapping->writeback_index = page->index + nr_written;
2897 }
2898
2899 /*
2900 * the writepage semantics are similar to regular writepage. extent
2901 * records are inserted to lock ranges in the tree, and as dirty areas
2902 * are found, they are marked writeback. Then the lock bits are removed
2903 * and the end_io handler clears the writeback ranges
2904 */
2905 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2906 void *data)
2907 {
2908 struct inode *inode = page->mapping->host;
2909 struct extent_page_data *epd = data;
2910 struct extent_io_tree *tree = epd->tree;
2911 u64 start = page_offset(page);
2912 u64 delalloc_start;
2913 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2914 u64 end;
2915 u64 cur = start;
2916 u64 extent_offset;
2917 u64 last_byte = i_size_read(inode);
2918 u64 block_start;
2919 u64 iosize;
2920 sector_t sector;
2921 struct extent_state *cached_state = NULL;
2922 struct extent_map *em;
2923 struct block_device *bdev;
2924 int ret;
2925 int nr = 0;
2926 size_t pg_offset = 0;
2927 size_t blocksize;
2928 loff_t i_size = i_size_read(inode);
2929 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2930 u64 nr_delalloc;
2931 u64 delalloc_end;
2932 int page_started;
2933 int compressed;
2934 int write_flags;
2935 unsigned long nr_written = 0;
2936 bool fill_delalloc = true;
2937
2938 if (wbc->sync_mode == WB_SYNC_ALL)
2939 write_flags = WRITE_SYNC;
2940 else
2941 write_flags = WRITE;
2942
2943 trace___extent_writepage(page, inode, wbc);
2944
2945 WARN_ON(!PageLocked(page));
2946
2947 ClearPageError(page);
2948
2949 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2950 if (page->index > end_index ||
2951 (page->index == end_index && !pg_offset)) {
2952 page->mapping->a_ops->invalidatepage(page, 0);
2953 unlock_page(page);
2954 return 0;
2955 }
2956
2957 if (page->index == end_index) {
2958 char *userpage;
2959
2960 userpage = kmap_atomic(page);
2961 memset(userpage + pg_offset, 0,
2962 PAGE_CACHE_SIZE - pg_offset);
2963 kunmap_atomic(userpage);
2964 flush_dcache_page(page);
2965 }
2966 pg_offset = 0;
2967
2968 set_page_extent_mapped(page);
2969
2970 if (!tree->ops || !tree->ops->fill_delalloc)
2971 fill_delalloc = false;
2972
2973 delalloc_start = start;
2974 delalloc_end = 0;
2975 page_started = 0;
2976 if (!epd->extent_locked && fill_delalloc) {
2977 u64 delalloc_to_write = 0;
2978 /*
2979 * make sure the wbc mapping index is at least updated
2980 * to this page.
2981 */
2982 update_nr_written(page, wbc, 0);
2983
2984 while (delalloc_end < page_end) {
2985 nr_delalloc = find_lock_delalloc_range(inode, tree,
2986 page,
2987 &delalloc_start,
2988 &delalloc_end,
2989 128 * 1024 * 1024);
2990 if (nr_delalloc == 0) {
2991 delalloc_start = delalloc_end + 1;
2992 continue;
2993 }
2994 ret = tree->ops->fill_delalloc(inode, page,
2995 delalloc_start,
2996 delalloc_end,
2997 &page_started,
2998 &nr_written);
2999 /* File system has been set read-only */
3000 if (ret) {
3001 SetPageError(page);
3002 goto done;
3003 }
3004 /*
3005 * delalloc_end is already one less than the total
3006 * length, so we don't subtract one from
3007 * PAGE_CACHE_SIZE
3008 */
3009 delalloc_to_write += (delalloc_end - delalloc_start +
3010 PAGE_CACHE_SIZE) >>
3011 PAGE_CACHE_SHIFT;
3012 delalloc_start = delalloc_end + 1;
3013 }
3014 if (wbc->nr_to_write < delalloc_to_write) {
3015 int thresh = 8192;
3016
3017 if (delalloc_to_write < thresh * 2)
3018 thresh = delalloc_to_write;
3019 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3020 thresh);
3021 }
3022
3023 /* did the fill delalloc function already unlock and start
3024 * the IO?
3025 */
3026 if (page_started) {
3027 ret = 0;
3028 /*
3029 * we've unlocked the page, so we can't update
3030 * the mapping's writeback index, just update
3031 * nr_to_write.
3032 */
3033 wbc->nr_to_write -= nr_written;
3034 goto done_unlocked;
3035 }
3036 }
3037 if (tree->ops && tree->ops->writepage_start_hook) {
3038 ret = tree->ops->writepage_start_hook(page, start,
3039 page_end);
3040 if (ret) {
3041 /* Fixup worker will requeue */
3042 if (ret == -EBUSY)
3043 wbc->pages_skipped++;
3044 else
3045 redirty_page_for_writepage(wbc, page);
3046 update_nr_written(page, wbc, nr_written);
3047 unlock_page(page);
3048 ret = 0;
3049 goto done_unlocked;
3050 }
3051 }
3052
3053 /*
3054 * we don't want to touch the inode after unlocking the page,
3055 * so we update the mapping writeback index now
3056 */
3057 update_nr_written(page, wbc, nr_written + 1);
3058
3059 end = page_end;
3060 if (last_byte <= start) {
3061 if (tree->ops && tree->ops->writepage_end_io_hook)
3062 tree->ops->writepage_end_io_hook(page, start,
3063 page_end, NULL, 1);
3064 goto done;
3065 }
3066
3067 blocksize = inode->i_sb->s_blocksize;
3068
3069 while (cur <= end) {
3070 if (cur >= last_byte) {
3071 if (tree->ops && tree->ops->writepage_end_io_hook)
3072 tree->ops->writepage_end_io_hook(page, cur,
3073 page_end, NULL, 1);
3074 break;
3075 }
3076 em = epd->get_extent(inode, page, pg_offset, cur,
3077 end - cur + 1, 1);
3078 if (IS_ERR_OR_NULL(em)) {
3079 SetPageError(page);
3080 break;
3081 }
3082
3083 extent_offset = cur - em->start;
3084 BUG_ON(extent_map_end(em) <= cur);
3085 BUG_ON(end < cur);
3086 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3087 iosize = ALIGN(iosize, blocksize);
3088 sector = (em->block_start + extent_offset) >> 9;
3089 bdev = em->bdev;
3090 block_start = em->block_start;
3091 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3092 free_extent_map(em);
3093 em = NULL;
3094
3095 /*
3096 * compressed and inline extents are written through other
3097 * paths in the FS
3098 */
3099 if (compressed || block_start == EXTENT_MAP_HOLE ||
3100 block_start == EXTENT_MAP_INLINE) {
3101 /*
3102 * end_io notification does not happen here for
3103 * compressed extents
3104 */
3105 if (!compressed && tree->ops &&
3106 tree->ops->writepage_end_io_hook)
3107 tree->ops->writepage_end_io_hook(page, cur,
3108 cur + iosize - 1,
3109 NULL, 1);
3110 else if (compressed) {
3111 /* we don't want to end_page_writeback on
3112 * a compressed extent. this happens
3113 * elsewhere
3114 */
3115 nr++;
3116 }
3117
3118 cur += iosize;
3119 pg_offset += iosize;
3120 continue;
3121 }
3122 /* leave this out until we have a page_mkwrite call */
3123 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3124 EXTENT_DIRTY, 0, NULL)) {
3125 cur = cur + iosize;
3126 pg_offset += iosize;
3127 continue;
3128 }
3129
3130 if (tree->ops && tree->ops->writepage_io_hook) {
3131 ret = tree->ops->writepage_io_hook(page, cur,
3132 cur + iosize - 1);
3133 } else {
3134 ret = 0;
3135 }
3136 if (ret) {
3137 SetPageError(page);
3138 } else {
3139 unsigned long max_nr = end_index + 1;
3140
3141 set_range_writeback(tree, cur, cur + iosize - 1);
3142 if (!PageWriteback(page)) {
3143 printk(KERN_ERR "btrfs warning page %lu not "
3144 "writeback, cur %llu end %llu\n",
3145 page->index, (unsigned long long)cur,
3146 (unsigned long long)end);
3147 }
3148
3149 ret = submit_extent_page(write_flags, tree, page,
3150 sector, iosize, pg_offset,
3151 bdev, &epd->bio, max_nr,
3152 end_bio_extent_writepage,
3153 0, 0, 0);
3154 if (ret)
3155 SetPageError(page);
3156 }
3157 cur = cur + iosize;
3158 pg_offset += iosize;
3159 nr++;
3160 }
3161 done:
3162 if (nr == 0) {
3163 /* make sure the mapping tag for page dirty gets cleared */
3164 set_page_writeback(page);
3165 end_page_writeback(page);
3166 }
3167 unlock_page(page);
3168
3169 done_unlocked:
3170
3171 /* drop our reference on any cached states */
3172 free_extent_state(cached_state);
3173 return 0;
3174 }
3175
3176 static int eb_wait(void *word)
3177 {
3178 io_schedule();
3179 return 0;
3180 }
3181
3182 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3183 {
3184 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3185 TASK_UNINTERRUPTIBLE);
3186 }
3187
3188 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3189 struct btrfs_fs_info *fs_info,
3190 struct extent_page_data *epd)
3191 {
3192 unsigned long i, num_pages;
3193 int flush = 0;
3194 int ret = 0;
3195
3196 if (!btrfs_try_tree_write_lock(eb)) {
3197 flush = 1;
3198 flush_write_bio(epd);
3199 btrfs_tree_lock(eb);
3200 }
3201
3202 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3203 btrfs_tree_unlock(eb);
3204 if (!epd->sync_io)
3205 return 0;
3206 if (!flush) {
3207 flush_write_bio(epd);
3208 flush = 1;
3209 }
3210 while (1) {
3211 wait_on_extent_buffer_writeback(eb);
3212 btrfs_tree_lock(eb);
3213 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3214 break;
3215 btrfs_tree_unlock(eb);
3216 }
3217 }
3218
3219 /*
3220 * We need to do this to prevent races in people who check if the eb is
3221 * under IO since we can end up having no IO bits set for a short period
3222 * of time.
3223 */
3224 spin_lock(&eb->refs_lock);
3225 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3226 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3227 spin_unlock(&eb->refs_lock);
3228 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3229 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3230 -eb->len,
3231 fs_info->dirty_metadata_batch);
3232 ret = 1;
3233 } else {
3234 spin_unlock(&eb->refs_lock);
3235 }
3236
3237 btrfs_tree_unlock(eb);
3238
3239 if (!ret)
3240 return ret;
3241
3242 num_pages = num_extent_pages(eb->start, eb->len);
3243 for (i = 0; i < num_pages; i++) {
3244 struct page *p = extent_buffer_page(eb, i);
3245
3246 if (!trylock_page(p)) {
3247 if (!flush) {
3248 flush_write_bio(epd);
3249 flush = 1;
3250 }
3251 lock_page(p);
3252 }
3253 }
3254
3255 return ret;
3256 }
3257
3258 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3259 {
3260 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3261 smp_mb__after_clear_bit();
3262 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3263 }
3264
3265 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3266 {
3267 int uptodate = err == 0;
3268 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3269 struct extent_buffer *eb;
3270 int done;
3271
3272 do {
3273 struct page *page = bvec->bv_page;
3274
3275 bvec--;
3276 eb = (struct extent_buffer *)page->private;
3277 BUG_ON(!eb);
3278 done = atomic_dec_and_test(&eb->io_pages);
3279
3280 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3281 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3282 ClearPageUptodate(page);
3283 SetPageError(page);
3284 }
3285
3286 end_page_writeback(page);
3287
3288 if (!done)
3289 continue;
3290
3291 end_extent_buffer_writeback(eb);
3292 } while (bvec >= bio->bi_io_vec);
3293
3294 bio_put(bio);
3295
3296 }
3297
3298 static int write_one_eb(struct extent_buffer *eb,
3299 struct btrfs_fs_info *fs_info,
3300 struct writeback_control *wbc,
3301 struct extent_page_data *epd)
3302 {
3303 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3304 u64 offset = eb->start;
3305 unsigned long i, num_pages;
3306 unsigned long bio_flags = 0;
3307 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3308 int ret = 0;
3309
3310 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3311 num_pages = num_extent_pages(eb->start, eb->len);
3312 atomic_set(&eb->io_pages, num_pages);
3313 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3314 bio_flags = EXTENT_BIO_TREE_LOG;
3315
3316 for (i = 0; i < num_pages; i++) {
3317 struct page *p = extent_buffer_page(eb, i);
3318
3319 clear_page_dirty_for_io(p);
3320 set_page_writeback(p);
3321 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3322 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3323 -1, end_bio_extent_buffer_writepage,
3324 0, epd->bio_flags, bio_flags);
3325 epd->bio_flags = bio_flags;
3326 if (ret) {
3327 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3328 SetPageError(p);
3329 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3330 end_extent_buffer_writeback(eb);
3331 ret = -EIO;
3332 break;
3333 }
3334 offset += PAGE_CACHE_SIZE;
3335 update_nr_written(p, wbc, 1);
3336 unlock_page(p);
3337 }
3338
3339 if (unlikely(ret)) {
3340 for (; i < num_pages; i++) {
3341 struct page *p = extent_buffer_page(eb, i);
3342 unlock_page(p);
3343 }
3344 }
3345
3346 return ret;
3347 }
3348
3349 int btree_write_cache_pages(struct address_space *mapping,
3350 struct writeback_control *wbc)
3351 {
3352 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3353 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3354 struct extent_buffer *eb, *prev_eb = NULL;
3355 struct extent_page_data epd = {
3356 .bio = NULL,
3357 .tree = tree,
3358 .extent_locked = 0,
3359 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3360 .bio_flags = 0,
3361 };
3362 int ret = 0;
3363 int done = 0;
3364 int nr_to_write_done = 0;
3365 struct pagevec pvec;
3366 int nr_pages;
3367 pgoff_t index;
3368 pgoff_t end; /* Inclusive */
3369 int scanned = 0;
3370 int tag;
3371
3372 pagevec_init(&pvec, 0);
3373 if (wbc->range_cyclic) {
3374 index = mapping->writeback_index; /* Start from prev offset */
3375 end = -1;
3376 } else {
3377 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3378 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3379 scanned = 1;
3380 }
3381 if (wbc->sync_mode == WB_SYNC_ALL)
3382 tag = PAGECACHE_TAG_TOWRITE;
3383 else
3384 tag = PAGECACHE_TAG_DIRTY;
3385 retry:
3386 if (wbc->sync_mode == WB_SYNC_ALL)
3387 tag_pages_for_writeback(mapping, index, end);
3388 while (!done && !nr_to_write_done && (index <= end) &&
3389 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3390 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3391 unsigned i;
3392
3393 scanned = 1;
3394 for (i = 0; i < nr_pages; i++) {
3395 struct page *page = pvec.pages[i];
3396
3397 if (!PagePrivate(page))
3398 continue;
3399
3400 if (!wbc->range_cyclic && page->index > end) {
3401 done = 1;
3402 break;
3403 }
3404
3405 spin_lock(&mapping->private_lock);
3406 if (!PagePrivate(page)) {
3407 spin_unlock(&mapping->private_lock);
3408 continue;
3409 }
3410
3411 eb = (struct extent_buffer *)page->private;
3412
3413 /*
3414 * Shouldn't happen and normally this would be a BUG_ON
3415 * but no sense in crashing the users box for something
3416 * we can survive anyway.
3417 */
3418 if (!eb) {
3419 spin_unlock(&mapping->private_lock);
3420 WARN_ON(1);
3421 continue;
3422 }
3423
3424 if (eb == prev_eb) {
3425 spin_unlock(&mapping->private_lock);
3426 continue;
3427 }
3428
3429 ret = atomic_inc_not_zero(&eb->refs);
3430 spin_unlock(&mapping->private_lock);
3431 if (!ret)
3432 continue;
3433
3434 prev_eb = eb;
3435 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3436 if (!ret) {
3437 free_extent_buffer(eb);
3438 continue;
3439 }
3440
3441 ret = write_one_eb(eb, fs_info, wbc, &epd);
3442 if (ret) {
3443 done = 1;
3444 free_extent_buffer(eb);
3445 break;
3446 }
3447 free_extent_buffer(eb);
3448
3449 /*
3450 * the filesystem may choose to bump up nr_to_write.
3451 * We have to make sure to honor the new nr_to_write
3452 * at any time
3453 */
3454 nr_to_write_done = wbc->nr_to_write <= 0;
3455 }
3456 pagevec_release(&pvec);
3457 cond_resched();
3458 }
3459 if (!scanned && !done) {
3460 /*
3461 * We hit the last page and there is more work to be done: wrap
3462 * back to the start of the file
3463 */
3464 scanned = 1;
3465 index = 0;
3466 goto retry;
3467 }
3468 flush_write_bio(&epd);
3469 return ret;
3470 }
3471
3472 /**
3473 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3474 * @mapping: address space structure to write
3475 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3476 * @writepage: function called for each page
3477 * @data: data passed to writepage function
3478 *
3479 * If a page is already under I/O, write_cache_pages() skips it, even
3480 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3481 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3482 * and msync() need to guarantee that all the data which was dirty at the time
3483 * the call was made get new I/O started against them. If wbc->sync_mode is
3484 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3485 * existing IO to complete.
3486 */
3487 static int extent_write_cache_pages(struct extent_io_tree *tree,
3488 struct address_space *mapping,
3489 struct writeback_control *wbc,
3490 writepage_t writepage, void *data,
3491 void (*flush_fn)(void *))
3492 {
3493 struct inode *inode = mapping->host;
3494 int ret = 0;
3495 int done = 0;
3496 int nr_to_write_done = 0;
3497 struct pagevec pvec;
3498 int nr_pages;
3499 pgoff_t index;
3500 pgoff_t end; /* Inclusive */
3501 int scanned = 0;
3502 int tag;
3503
3504 /*
3505 * We have to hold onto the inode so that ordered extents can do their
3506 * work when the IO finishes. The alternative to this is failing to add
3507 * an ordered extent if the igrab() fails there and that is a huge pain
3508 * to deal with, so instead just hold onto the inode throughout the
3509 * writepages operation. If it fails here we are freeing up the inode
3510 * anyway and we'd rather not waste our time writing out stuff that is
3511 * going to be truncated anyway.
3512 */
3513 if (!igrab(inode))
3514 return 0;
3515
3516 pagevec_init(&pvec, 0);
3517 if (wbc->range_cyclic) {
3518 index = mapping->writeback_index; /* Start from prev offset */
3519 end = -1;
3520 } else {
3521 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3522 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3523 scanned = 1;
3524 }
3525 if (wbc->sync_mode == WB_SYNC_ALL)
3526 tag = PAGECACHE_TAG_TOWRITE;
3527 else
3528 tag = PAGECACHE_TAG_DIRTY;
3529 retry:
3530 if (wbc->sync_mode == WB_SYNC_ALL)
3531 tag_pages_for_writeback(mapping, index, end);
3532 while (!done && !nr_to_write_done && (index <= end) &&
3533 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3534 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3535 unsigned i;
3536
3537 scanned = 1;
3538 for (i = 0; i < nr_pages; i++) {
3539 struct page *page = pvec.pages[i];
3540
3541 /*
3542 * At this point we hold neither mapping->tree_lock nor
3543 * lock on the page itself: the page may be truncated or
3544 * invalidated (changing page->mapping to NULL), or even
3545 * swizzled back from swapper_space to tmpfs file
3546 * mapping
3547 */
3548 if (!trylock_page(page)) {
3549 flush_fn(data);
3550 lock_page(page);
3551 }
3552
3553 if (unlikely(page->mapping != mapping)) {
3554 unlock_page(page);
3555 continue;
3556 }
3557
3558 if (!wbc->range_cyclic && page->index > end) {
3559 done = 1;
3560 unlock_page(page);
3561 continue;
3562 }
3563
3564 if (wbc->sync_mode != WB_SYNC_NONE) {
3565 if (PageWriteback(page))
3566 flush_fn(data);
3567 wait_on_page_writeback(page);
3568 }
3569
3570 if (PageWriteback(page) ||
3571 !clear_page_dirty_for_io(page)) {
3572 unlock_page(page);
3573 continue;
3574 }
3575
3576 ret = (*writepage)(page, wbc, data);
3577
3578 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3579 unlock_page(page);
3580 ret = 0;
3581 }
3582 if (ret)
3583 done = 1;
3584
3585 /*
3586 * the filesystem may choose to bump up nr_to_write.
3587 * We have to make sure to honor the new nr_to_write
3588 * at any time
3589 */
3590 nr_to_write_done = wbc->nr_to_write <= 0;
3591 }
3592 pagevec_release(&pvec);
3593 cond_resched();
3594 }
3595 if (!scanned && !done) {
3596 /*
3597 * We hit the last page and there is more work to be done: wrap
3598 * back to the start of the file
3599 */
3600 scanned = 1;
3601 index = 0;
3602 goto retry;
3603 }
3604 btrfs_add_delayed_iput(inode);
3605 return ret;
3606 }
3607
3608 static void flush_epd_write_bio(struct extent_page_data *epd)
3609 {
3610 if (epd->bio) {
3611 int rw = WRITE;
3612 int ret;
3613
3614 if (epd->sync_io)
3615 rw = WRITE_SYNC;
3616
3617 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3618 BUG_ON(ret < 0); /* -ENOMEM */
3619 epd->bio = NULL;
3620 }
3621 }
3622
3623 static noinline void flush_write_bio(void *data)
3624 {
3625 struct extent_page_data *epd = data;
3626 flush_epd_write_bio(epd);
3627 }
3628
3629 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3630 get_extent_t *get_extent,
3631 struct writeback_control *wbc)
3632 {
3633 int ret;
3634 struct extent_page_data epd = {
3635 .bio = NULL,
3636 .tree = tree,
3637 .get_extent = get_extent,
3638 .extent_locked = 0,
3639 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3640 .bio_flags = 0,
3641 };
3642
3643 ret = __extent_writepage(page, wbc, &epd);
3644
3645 flush_epd_write_bio(&epd);
3646 return ret;
3647 }
3648
3649 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3650 u64 start, u64 end, get_extent_t *get_extent,
3651 int mode)
3652 {
3653 int ret = 0;
3654 struct address_space *mapping = inode->i_mapping;
3655 struct page *page;
3656 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3657 PAGE_CACHE_SHIFT;
3658
3659 struct extent_page_data epd = {
3660 .bio = NULL,
3661 .tree = tree,
3662 .get_extent = get_extent,
3663 .extent_locked = 1,
3664 .sync_io = mode == WB_SYNC_ALL,
3665 .bio_flags = 0,
3666 };
3667 struct writeback_control wbc_writepages = {
3668 .sync_mode = mode,
3669 .nr_to_write = nr_pages * 2,
3670 .range_start = start,
3671 .range_end = end + 1,
3672 };
3673
3674 while (start <= end) {
3675 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3676 if (clear_page_dirty_for_io(page))
3677 ret = __extent_writepage(page, &wbc_writepages, &epd);
3678 else {
3679 if (tree->ops && tree->ops->writepage_end_io_hook)
3680 tree->ops->writepage_end_io_hook(page, start,
3681 start + PAGE_CACHE_SIZE - 1,
3682 NULL, 1);
3683 unlock_page(page);
3684 }
3685 page_cache_release(page);
3686 start += PAGE_CACHE_SIZE;
3687 }
3688
3689 flush_epd_write_bio(&epd);
3690 return ret;
3691 }
3692
3693 int extent_writepages(struct extent_io_tree *tree,
3694 struct address_space *mapping,
3695 get_extent_t *get_extent,
3696 struct writeback_control *wbc)
3697 {
3698 int ret = 0;
3699 struct extent_page_data epd = {
3700 .bio = NULL,
3701 .tree = tree,
3702 .get_extent = get_extent,
3703 .extent_locked = 0,
3704 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3705 .bio_flags = 0,
3706 };
3707
3708 ret = extent_write_cache_pages(tree, mapping, wbc,
3709 __extent_writepage, &epd,
3710 flush_write_bio);
3711 flush_epd_write_bio(&epd);
3712 return ret;
3713 }
3714
3715 int extent_readpages(struct extent_io_tree *tree,
3716 struct address_space *mapping,
3717 struct list_head *pages, unsigned nr_pages,
3718 get_extent_t get_extent)
3719 {
3720 struct bio *bio = NULL;
3721 unsigned page_idx;
3722 unsigned long bio_flags = 0;
3723 struct page *pagepool[16];
3724 struct page *page;
3725 int i = 0;
3726 int nr = 0;
3727
3728 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3729 page = list_entry(pages->prev, struct page, lru);
3730
3731 prefetchw(&page->flags);
3732 list_del(&page->lru);
3733 if (add_to_page_cache_lru(page, mapping,
3734 page->index, GFP_NOFS)) {
3735 page_cache_release(page);
3736 continue;
3737 }
3738
3739 pagepool[nr++] = page;
3740 if (nr < ARRAY_SIZE(pagepool))
3741 continue;
3742 for (i = 0; i < nr; i++) {
3743 __extent_read_full_page(tree, pagepool[i], get_extent,
3744 &bio, 0, &bio_flags, READ);
3745 page_cache_release(pagepool[i]);
3746 }
3747 nr = 0;
3748 }
3749 for (i = 0; i < nr; i++) {
3750 __extent_read_full_page(tree, pagepool[i], get_extent,
3751 &bio, 0, &bio_flags, READ);
3752 page_cache_release(pagepool[i]);
3753 }
3754
3755 BUG_ON(!list_empty(pages));
3756 if (bio)
3757 return submit_one_bio(READ, bio, 0, bio_flags);
3758 return 0;
3759 }
3760
3761 /*
3762 * basic invalidatepage code, this waits on any locked or writeback
3763 * ranges corresponding to the page, and then deletes any extent state
3764 * records from the tree
3765 */
3766 int extent_invalidatepage(struct extent_io_tree *tree,
3767 struct page *page, unsigned long offset)
3768 {
3769 struct extent_state *cached_state = NULL;
3770 u64 start = page_offset(page);
3771 u64 end = start + PAGE_CACHE_SIZE - 1;
3772 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3773
3774 start += ALIGN(offset, blocksize);
3775 if (start > end)
3776 return 0;
3777
3778 lock_extent_bits(tree, start, end, 0, &cached_state);
3779 wait_on_page_writeback(page);
3780 clear_extent_bit(tree, start, end,
3781 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3782 EXTENT_DO_ACCOUNTING,
3783 1, 1, &cached_state, GFP_NOFS);
3784 return 0;
3785 }
3786
3787 /*
3788 * a helper for releasepage, this tests for areas of the page that
3789 * are locked or under IO and drops the related state bits if it is safe
3790 * to drop the page.
3791 */
3792 static int try_release_extent_state(struct extent_map_tree *map,
3793 struct extent_io_tree *tree,
3794 struct page *page, gfp_t mask)
3795 {
3796 u64 start = page_offset(page);
3797 u64 end = start + PAGE_CACHE_SIZE - 1;
3798 int ret = 1;
3799
3800 if (test_range_bit(tree, start, end,
3801 EXTENT_IOBITS, 0, NULL))
3802 ret = 0;
3803 else {
3804 if ((mask & GFP_NOFS) == GFP_NOFS)
3805 mask = GFP_NOFS;
3806 /*
3807 * at this point we can safely clear everything except the
3808 * locked bit and the nodatasum bit
3809 */
3810 ret = clear_extent_bit(tree, start, end,
3811 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3812 0, 0, NULL, mask);
3813
3814 /* if clear_extent_bit failed for enomem reasons,
3815 * we can't allow the release to continue.
3816 */
3817 if (ret < 0)
3818 ret = 0;
3819 else
3820 ret = 1;
3821 }
3822 return ret;
3823 }
3824
3825 /*
3826 * a helper for releasepage. As long as there are no locked extents
3827 * in the range corresponding to the page, both state records and extent
3828 * map records are removed
3829 */
3830 int try_release_extent_mapping(struct extent_map_tree *map,
3831 struct extent_io_tree *tree, struct page *page,
3832 gfp_t mask)
3833 {
3834 struct extent_map *em;
3835 u64 start = page_offset(page);
3836 u64 end = start + PAGE_CACHE_SIZE - 1;
3837
3838 if ((mask & __GFP_WAIT) &&
3839 page->mapping->host->i_size > 16 * 1024 * 1024) {
3840 u64 len;
3841 while (start <= end) {
3842 len = end - start + 1;
3843 write_lock(&map->lock);
3844 em = lookup_extent_mapping(map, start, len);
3845 if (!em) {
3846 write_unlock(&map->lock);
3847 break;
3848 }
3849 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3850 em->start != start) {
3851 write_unlock(&map->lock);
3852 free_extent_map(em);
3853 break;
3854 }
3855 if (!test_range_bit(tree, em->start,
3856 extent_map_end(em) - 1,
3857 EXTENT_LOCKED | EXTENT_WRITEBACK,
3858 0, NULL)) {
3859 remove_extent_mapping(map, em);
3860 /* once for the rb tree */
3861 free_extent_map(em);
3862 }
3863 start = extent_map_end(em);
3864 write_unlock(&map->lock);
3865
3866 /* once for us */
3867 free_extent_map(em);
3868 }
3869 }
3870 return try_release_extent_state(map, tree, page, mask);
3871 }
3872
3873 /*
3874 * helper function for fiemap, which doesn't want to see any holes.
3875 * This maps until we find something past 'last'
3876 */
3877 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3878 u64 offset,
3879 u64 last,
3880 get_extent_t *get_extent)
3881 {
3882 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3883 struct extent_map *em;
3884 u64 len;
3885
3886 if (offset >= last)
3887 return NULL;
3888
3889 while(1) {
3890 len = last - offset;
3891 if (len == 0)
3892 break;
3893 len = ALIGN(len, sectorsize);
3894 em = get_extent(inode, NULL, 0, offset, len, 0);
3895 if (IS_ERR_OR_NULL(em))
3896 return em;
3897
3898 /* if this isn't a hole return it */
3899 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3900 em->block_start != EXTENT_MAP_HOLE) {
3901 return em;
3902 }
3903
3904 /* this is a hole, advance to the next extent */
3905 offset = extent_map_end(em);
3906 free_extent_map(em);
3907 if (offset >= last)
3908 break;
3909 }
3910 return NULL;
3911 }
3912
3913 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3914 __u64 start, __u64 len, get_extent_t *get_extent)
3915 {
3916 int ret = 0;
3917 u64 off = start;
3918 u64 max = start + len;
3919 u32 flags = 0;
3920 u32 found_type;
3921 u64 last;
3922 u64 last_for_get_extent = 0;
3923 u64 disko = 0;
3924 u64 isize = i_size_read(inode);
3925 struct btrfs_key found_key;
3926 struct extent_map *em = NULL;
3927 struct extent_state *cached_state = NULL;
3928 struct btrfs_path *path;
3929 struct btrfs_file_extent_item *item;
3930 int end = 0;
3931 u64 em_start = 0;
3932 u64 em_len = 0;
3933 u64 em_end = 0;
3934 unsigned long emflags;
3935
3936 if (len == 0)
3937 return -EINVAL;
3938
3939 path = btrfs_alloc_path();
3940 if (!path)
3941 return -ENOMEM;
3942 path->leave_spinning = 1;
3943
3944 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3945 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3946
3947 /*
3948 * lookup the last file extent. We're not using i_size here
3949 * because there might be preallocation past i_size
3950 */
3951 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3952 path, btrfs_ino(inode), -1, 0);
3953 if (ret < 0) {
3954 btrfs_free_path(path);
3955 return ret;
3956 }
3957 WARN_ON(!ret);
3958 path->slots[0]--;
3959 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3960 struct btrfs_file_extent_item);
3961 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3962 found_type = btrfs_key_type(&found_key);
3963
3964 /* No extents, but there might be delalloc bits */
3965 if (found_key.objectid != btrfs_ino(inode) ||
3966 found_type != BTRFS_EXTENT_DATA_KEY) {
3967 /* have to trust i_size as the end */
3968 last = (u64)-1;
3969 last_for_get_extent = isize;
3970 } else {
3971 /*
3972 * remember the start of the last extent. There are a
3973 * bunch of different factors that go into the length of the
3974 * extent, so its much less complex to remember where it started
3975 */
3976 last = found_key.offset;
3977 last_for_get_extent = last + 1;
3978 }
3979 btrfs_free_path(path);
3980
3981 /*
3982 * we might have some extents allocated but more delalloc past those
3983 * extents. so, we trust isize unless the start of the last extent is
3984 * beyond isize
3985 */
3986 if (last < isize) {
3987 last = (u64)-1;
3988 last_for_get_extent = isize;
3989 }
3990
3991 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3992 &cached_state);
3993
3994 em = get_extent_skip_holes(inode, start, last_for_get_extent,
3995 get_extent);
3996 if (!em)
3997 goto out;
3998 if (IS_ERR(em)) {
3999 ret = PTR_ERR(em);
4000 goto out;
4001 }
4002
4003 while (!end) {
4004 u64 offset_in_extent;
4005
4006 /* break if the extent we found is outside the range */
4007 if (em->start >= max || extent_map_end(em) < off)
4008 break;
4009
4010 /*
4011 * get_extent may return an extent that starts before our
4012 * requested range. We have to make sure the ranges
4013 * we return to fiemap always move forward and don't
4014 * overlap, so adjust the offsets here
4015 */
4016 em_start = max(em->start, off);
4017
4018 /*
4019 * record the offset from the start of the extent
4020 * for adjusting the disk offset below
4021 */
4022 offset_in_extent = em_start - em->start;
4023 em_end = extent_map_end(em);
4024 em_len = em_end - em_start;
4025 emflags = em->flags;
4026 disko = 0;
4027 flags = 0;
4028
4029 /*
4030 * bump off for our next call to get_extent
4031 */
4032 off = extent_map_end(em);
4033 if (off >= max)
4034 end = 1;
4035
4036 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4037 end = 1;
4038 flags |= FIEMAP_EXTENT_LAST;
4039 } else if (em->block_start == EXTENT_MAP_INLINE) {
4040 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4041 FIEMAP_EXTENT_NOT_ALIGNED);
4042 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4043 flags |= (FIEMAP_EXTENT_DELALLOC |
4044 FIEMAP_EXTENT_UNKNOWN);
4045 } else {
4046 disko = em->block_start + offset_in_extent;
4047 }
4048 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4049 flags |= FIEMAP_EXTENT_ENCODED;
4050
4051 free_extent_map(em);
4052 em = NULL;
4053 if ((em_start >= last) || em_len == (u64)-1 ||
4054 (last == (u64)-1 && isize <= em_end)) {
4055 flags |= FIEMAP_EXTENT_LAST;
4056 end = 1;
4057 }
4058
4059 /* now scan forward to see if this is really the last extent. */
4060 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4061 get_extent);
4062 if (IS_ERR(em)) {
4063 ret = PTR_ERR(em);
4064 goto out;
4065 }
4066 if (!em) {
4067 flags |= FIEMAP_EXTENT_LAST;
4068 end = 1;
4069 }
4070 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4071 em_len, flags);
4072 if (ret)
4073 goto out_free;
4074 }
4075 out_free:
4076 free_extent_map(em);
4077 out:
4078 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
4079 &cached_state, GFP_NOFS);
4080 return ret;
4081 }
4082
4083 static void __free_extent_buffer(struct extent_buffer *eb)
4084 {
4085 btrfs_leak_debug_del(&eb->leak_list);
4086 kmem_cache_free(extent_buffer_cache, eb);
4087 }
4088
4089 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4090 u64 start,
4091 unsigned long len,
4092 gfp_t mask)
4093 {
4094 struct extent_buffer *eb = NULL;
4095
4096 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4097 if (eb == NULL)
4098 return NULL;
4099 eb->start = start;
4100 eb->len = len;
4101 eb->tree = tree;
4102 eb->bflags = 0;
4103 rwlock_init(&eb->lock);
4104 atomic_set(&eb->write_locks, 0);
4105 atomic_set(&eb->read_locks, 0);
4106 atomic_set(&eb->blocking_readers, 0);
4107 atomic_set(&eb->blocking_writers, 0);
4108 atomic_set(&eb->spinning_readers, 0);
4109 atomic_set(&eb->spinning_writers, 0);
4110 eb->lock_nested = 0;
4111 init_waitqueue_head(&eb->write_lock_wq);
4112 init_waitqueue_head(&eb->read_lock_wq);
4113
4114 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4115
4116 spin_lock_init(&eb->refs_lock);
4117 atomic_set(&eb->refs, 1);
4118 atomic_set(&eb->io_pages, 0);
4119
4120 /*
4121 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4122 */
4123 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4124 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4125 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4126
4127 return eb;
4128 }
4129
4130 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4131 {
4132 unsigned long i;
4133 struct page *p;
4134 struct extent_buffer *new;
4135 unsigned long num_pages = num_extent_pages(src->start, src->len);
4136
4137 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4138 if (new == NULL)
4139 return NULL;
4140
4141 for (i = 0; i < num_pages; i++) {
4142 p = alloc_page(GFP_ATOMIC);
4143 BUG_ON(!p);
4144 attach_extent_buffer_page(new, p);
4145 WARN_ON(PageDirty(p));
4146 SetPageUptodate(p);
4147 new->pages[i] = p;
4148 }
4149
4150 copy_extent_buffer(new, src, 0, 0, src->len);
4151 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4152 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4153
4154 return new;
4155 }
4156
4157 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4158 {
4159 struct extent_buffer *eb;
4160 unsigned long num_pages = num_extent_pages(0, len);
4161 unsigned long i;
4162
4163 eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4164 if (!eb)
4165 return NULL;
4166
4167 for (i = 0; i < num_pages; i++) {
4168 eb->pages[i] = alloc_page(GFP_ATOMIC);
4169 if (!eb->pages[i])
4170 goto err;
4171 }
4172 set_extent_buffer_uptodate(eb);
4173 btrfs_set_header_nritems(eb, 0);
4174 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4175
4176 return eb;
4177 err:
4178 for (; i > 0; i--)
4179 __free_page(eb->pages[i - 1]);
4180 __free_extent_buffer(eb);
4181 return NULL;
4182 }
4183
4184 static int extent_buffer_under_io(struct extent_buffer *eb)
4185 {
4186 return (atomic_read(&eb->io_pages) ||
4187 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4188 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4189 }
4190
4191 /*
4192 * Helper for releasing extent buffer page.
4193 */
4194 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4195 unsigned long start_idx)
4196 {
4197 unsigned long index;
4198 unsigned long num_pages;
4199 struct page *page;
4200 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4201
4202 BUG_ON(extent_buffer_under_io(eb));
4203
4204 num_pages = num_extent_pages(eb->start, eb->len);
4205 index = start_idx + num_pages;
4206 if (start_idx >= index)
4207 return;
4208
4209 do {
4210 index--;
4211 page = extent_buffer_page(eb, index);
4212 if (page && mapped) {
4213 spin_lock(&page->mapping->private_lock);
4214 /*
4215 * We do this since we'll remove the pages after we've
4216 * removed the eb from the radix tree, so we could race
4217 * and have this page now attached to the new eb. So
4218 * only clear page_private if it's still connected to
4219 * this eb.
4220 */
4221 if (PagePrivate(page) &&
4222 page->private == (unsigned long)eb) {
4223 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4224 BUG_ON(PageDirty(page));
4225 BUG_ON(PageWriteback(page));
4226 /*
4227 * We need to make sure we haven't be attached
4228 * to a new eb.
4229 */
4230 ClearPagePrivate(page);
4231 set_page_private(page, 0);
4232 /* One for the page private */
4233 page_cache_release(page);
4234 }
4235 spin_unlock(&page->mapping->private_lock);
4236
4237 }
4238 if (page) {
4239 /* One for when we alloced the page */
4240 page_cache_release(page);
4241 }
4242 } while (index != start_idx);
4243 }
4244
4245 /*
4246 * Helper for releasing the extent buffer.
4247 */
4248 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4249 {
4250 btrfs_release_extent_buffer_page(eb, 0);
4251 __free_extent_buffer(eb);
4252 }
4253
4254 static void check_buffer_tree_ref(struct extent_buffer *eb)
4255 {
4256 int refs;
4257 /* the ref bit is tricky. We have to make sure it is set
4258 * if we have the buffer dirty. Otherwise the
4259 * code to free a buffer can end up dropping a dirty
4260 * page
4261 *
4262 * Once the ref bit is set, it won't go away while the
4263 * buffer is dirty or in writeback, and it also won't
4264 * go away while we have the reference count on the
4265 * eb bumped.
4266 *
4267 * We can't just set the ref bit without bumping the
4268 * ref on the eb because free_extent_buffer might
4269 * see the ref bit and try to clear it. If this happens
4270 * free_extent_buffer might end up dropping our original
4271 * ref by mistake and freeing the page before we are able
4272 * to add one more ref.
4273 *
4274 * So bump the ref count first, then set the bit. If someone
4275 * beat us to it, drop the ref we added.
4276 */
4277 refs = atomic_read(&eb->refs);
4278 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4279 return;
4280
4281 spin_lock(&eb->refs_lock);
4282 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4283 atomic_inc(&eb->refs);
4284 spin_unlock(&eb->refs_lock);
4285 }
4286
4287 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4288 {
4289 unsigned long num_pages, i;
4290
4291 check_buffer_tree_ref(eb);
4292
4293 num_pages = num_extent_pages(eb->start, eb->len);
4294 for (i = 0; i < num_pages; i++) {
4295 struct page *p = extent_buffer_page(eb, i);
4296 mark_page_accessed(p);
4297 }
4298 }
4299
4300 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4301 u64 start, unsigned long len)
4302 {
4303 unsigned long num_pages = num_extent_pages(start, len);
4304 unsigned long i;
4305 unsigned long index = start >> PAGE_CACHE_SHIFT;
4306 struct extent_buffer *eb;
4307 struct extent_buffer *exists = NULL;
4308 struct page *p;
4309 struct address_space *mapping = tree->mapping;
4310 int uptodate = 1;
4311 int ret;
4312
4313 rcu_read_lock();
4314 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4315 if (eb && atomic_inc_not_zero(&eb->refs)) {
4316 rcu_read_unlock();
4317 mark_extent_buffer_accessed(eb);
4318 return eb;
4319 }
4320 rcu_read_unlock();
4321
4322 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4323 if (!eb)
4324 return NULL;
4325
4326 for (i = 0; i < num_pages; i++, index++) {
4327 p = find_or_create_page(mapping, index, GFP_NOFS);
4328 if (!p)
4329 goto free_eb;
4330
4331 spin_lock(&mapping->private_lock);
4332 if (PagePrivate(p)) {
4333 /*
4334 * We could have already allocated an eb for this page
4335 * and attached one so lets see if we can get a ref on
4336 * the existing eb, and if we can we know it's good and
4337 * we can just return that one, else we know we can just
4338 * overwrite page->private.
4339 */
4340 exists = (struct extent_buffer *)p->private;
4341 if (atomic_inc_not_zero(&exists->refs)) {
4342 spin_unlock(&mapping->private_lock);
4343 unlock_page(p);
4344 page_cache_release(p);
4345 mark_extent_buffer_accessed(exists);
4346 goto free_eb;
4347 }
4348
4349 /*
4350 * Do this so attach doesn't complain and we need to
4351 * drop the ref the old guy had.
4352 */
4353 ClearPagePrivate(p);
4354 WARN_ON(PageDirty(p));
4355 page_cache_release(p);
4356 }
4357 attach_extent_buffer_page(eb, p);
4358 spin_unlock(&mapping->private_lock);
4359 WARN_ON(PageDirty(p));
4360 mark_page_accessed(p);
4361 eb->pages[i] = p;
4362 if (!PageUptodate(p))
4363 uptodate = 0;
4364
4365 /*
4366 * see below about how we avoid a nasty race with release page
4367 * and why we unlock later
4368 */
4369 }
4370 if (uptodate)
4371 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4372 again:
4373 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4374 if (ret)
4375 goto free_eb;
4376
4377 spin_lock(&tree->buffer_lock);
4378 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4379 if (ret == -EEXIST) {
4380 exists = radix_tree_lookup(&tree->buffer,
4381 start >> PAGE_CACHE_SHIFT);
4382 if (!atomic_inc_not_zero(&exists->refs)) {
4383 spin_unlock(&tree->buffer_lock);
4384 radix_tree_preload_end();
4385 exists = NULL;
4386 goto again;
4387 }
4388 spin_unlock(&tree->buffer_lock);
4389 radix_tree_preload_end();
4390 mark_extent_buffer_accessed(exists);
4391 goto free_eb;
4392 }
4393 /* add one reference for the tree */
4394 check_buffer_tree_ref(eb);
4395 spin_unlock(&tree->buffer_lock);
4396 radix_tree_preload_end();
4397
4398 /*
4399 * there is a race where release page may have
4400 * tried to find this extent buffer in the radix
4401 * but failed. It will tell the VM it is safe to
4402 * reclaim the, and it will clear the page private bit.
4403 * We must make sure to set the page private bit properly
4404 * after the extent buffer is in the radix tree so
4405 * it doesn't get lost
4406 */
4407 SetPageChecked(eb->pages[0]);
4408 for (i = 1; i < num_pages; i++) {
4409 p = extent_buffer_page(eb, i);
4410 ClearPageChecked(p);
4411 unlock_page(p);
4412 }
4413 unlock_page(eb->pages[0]);
4414 return eb;
4415
4416 free_eb:
4417 for (i = 0; i < num_pages; i++) {
4418 if (eb->pages[i])
4419 unlock_page(eb->pages[i]);
4420 }
4421
4422 WARN_ON(!atomic_dec_and_test(&eb->refs));
4423 btrfs_release_extent_buffer(eb);
4424 return exists;
4425 }
4426
4427 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4428 u64 start, unsigned long len)
4429 {
4430 struct extent_buffer *eb;
4431
4432 rcu_read_lock();
4433 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4434 if (eb && atomic_inc_not_zero(&eb->refs)) {
4435 rcu_read_unlock();
4436 mark_extent_buffer_accessed(eb);
4437 return eb;
4438 }
4439 rcu_read_unlock();
4440
4441 return NULL;
4442 }
4443
4444 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4445 {
4446 struct extent_buffer *eb =
4447 container_of(head, struct extent_buffer, rcu_head);
4448
4449 __free_extent_buffer(eb);
4450 }
4451
4452 /* Expects to have eb->eb_lock already held */
4453 static int release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4454 {
4455 WARN_ON(atomic_read(&eb->refs) == 0);
4456 if (atomic_dec_and_test(&eb->refs)) {
4457 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4458 spin_unlock(&eb->refs_lock);
4459 } else {
4460 struct extent_io_tree *tree = eb->tree;
4461
4462 spin_unlock(&eb->refs_lock);
4463
4464 spin_lock(&tree->buffer_lock);
4465 radix_tree_delete(&tree->buffer,
4466 eb->start >> PAGE_CACHE_SHIFT);
4467 spin_unlock(&tree->buffer_lock);
4468 }
4469
4470 /* Should be safe to release our pages at this point */
4471 btrfs_release_extent_buffer_page(eb, 0);
4472 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4473 return 1;
4474 }
4475 spin_unlock(&eb->refs_lock);
4476
4477 return 0;
4478 }
4479
4480 void free_extent_buffer(struct extent_buffer *eb)
4481 {
4482 int refs;
4483 int old;
4484 if (!eb)
4485 return;
4486
4487 while (1) {
4488 refs = atomic_read(&eb->refs);
4489 if (refs <= 3)
4490 break;
4491 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4492 if (old == refs)
4493 return;
4494 }
4495
4496 spin_lock(&eb->refs_lock);
4497 if (atomic_read(&eb->refs) == 2 &&
4498 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4499 atomic_dec(&eb->refs);
4500
4501 if (atomic_read(&eb->refs) == 2 &&
4502 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4503 !extent_buffer_under_io(eb) &&
4504 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4505 atomic_dec(&eb->refs);
4506
4507 /*
4508 * I know this is terrible, but it's temporary until we stop tracking
4509 * the uptodate bits and such for the extent buffers.
4510 */
4511 release_extent_buffer(eb, GFP_ATOMIC);
4512 }
4513
4514 void free_extent_buffer_stale(struct extent_buffer *eb)
4515 {
4516 if (!eb)
4517 return;
4518
4519 spin_lock(&eb->refs_lock);
4520 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4521
4522 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4523 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4524 atomic_dec(&eb->refs);
4525 release_extent_buffer(eb, GFP_NOFS);
4526 }
4527
4528 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4529 {
4530 unsigned long i;
4531 unsigned long num_pages;
4532 struct page *page;
4533
4534 num_pages = num_extent_pages(eb->start, eb->len);
4535
4536 for (i = 0; i < num_pages; i++) {
4537 page = extent_buffer_page(eb, i);
4538 if (!PageDirty(page))
4539 continue;
4540
4541 lock_page(page);
4542 WARN_ON(!PagePrivate(page));
4543
4544 clear_page_dirty_for_io(page);
4545 spin_lock_irq(&page->mapping->tree_lock);
4546 if (!PageDirty(page)) {
4547 radix_tree_tag_clear(&page->mapping->page_tree,
4548 page_index(page),
4549 PAGECACHE_TAG_DIRTY);
4550 }
4551 spin_unlock_irq(&page->mapping->tree_lock);
4552 ClearPageError(page);
4553 unlock_page(page);
4554 }
4555 WARN_ON(atomic_read(&eb->refs) == 0);
4556 }
4557
4558 int set_extent_buffer_dirty(struct extent_buffer *eb)
4559 {
4560 unsigned long i;
4561 unsigned long num_pages;
4562 int was_dirty = 0;
4563
4564 check_buffer_tree_ref(eb);
4565
4566 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4567
4568 num_pages = num_extent_pages(eb->start, eb->len);
4569 WARN_ON(atomic_read(&eb->refs) == 0);
4570 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4571
4572 for (i = 0; i < num_pages; i++)
4573 set_page_dirty(extent_buffer_page(eb, i));
4574 return was_dirty;
4575 }
4576
4577 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4578 {
4579 unsigned long i;
4580 struct page *page;
4581 unsigned long num_pages;
4582
4583 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4584 num_pages = num_extent_pages(eb->start, eb->len);
4585 for (i = 0; i < num_pages; i++) {
4586 page = extent_buffer_page(eb, i);
4587 if (page)
4588 ClearPageUptodate(page);
4589 }
4590 return 0;
4591 }
4592
4593 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4594 {
4595 unsigned long i;
4596 struct page *page;
4597 unsigned long num_pages;
4598
4599 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4600 num_pages = num_extent_pages(eb->start, eb->len);
4601 for (i = 0; i < num_pages; i++) {
4602 page = extent_buffer_page(eb, i);
4603 SetPageUptodate(page);
4604 }
4605 return 0;
4606 }
4607
4608 int extent_buffer_uptodate(struct extent_buffer *eb)
4609 {
4610 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4611 }
4612
4613 int read_extent_buffer_pages(struct extent_io_tree *tree,
4614 struct extent_buffer *eb, u64 start, int wait,
4615 get_extent_t *get_extent, int mirror_num)
4616 {
4617 unsigned long i;
4618 unsigned long start_i;
4619 struct page *page;
4620 int err;
4621 int ret = 0;
4622 int locked_pages = 0;
4623 int all_uptodate = 1;
4624 unsigned long num_pages;
4625 unsigned long num_reads = 0;
4626 struct bio *bio = NULL;
4627 unsigned long bio_flags = 0;
4628
4629 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4630 return 0;
4631
4632 if (start) {
4633 WARN_ON(start < eb->start);
4634 start_i = (start >> PAGE_CACHE_SHIFT) -
4635 (eb->start >> PAGE_CACHE_SHIFT);
4636 } else {
4637 start_i = 0;
4638 }
4639
4640 num_pages = num_extent_pages(eb->start, eb->len);
4641 for (i = start_i; i < num_pages; i++) {
4642 page = extent_buffer_page(eb, i);
4643 if (wait == WAIT_NONE) {
4644 if (!trylock_page(page))
4645 goto unlock_exit;
4646 } else {
4647 lock_page(page);
4648 }
4649 locked_pages++;
4650 if (!PageUptodate(page)) {
4651 num_reads++;
4652 all_uptodate = 0;
4653 }
4654 }
4655 if (all_uptodate) {
4656 if (start_i == 0)
4657 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4658 goto unlock_exit;
4659 }
4660
4661 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4662 eb->read_mirror = 0;
4663 atomic_set(&eb->io_pages, num_reads);
4664 for (i = start_i; i < num_pages; i++) {
4665 page = extent_buffer_page(eb, i);
4666 if (!PageUptodate(page)) {
4667 ClearPageError(page);
4668 err = __extent_read_full_page(tree, page,
4669 get_extent, &bio,
4670 mirror_num, &bio_flags,
4671 READ | REQ_META);
4672 if (err)
4673 ret = err;
4674 } else {
4675 unlock_page(page);
4676 }
4677 }
4678
4679 if (bio) {
4680 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4681 bio_flags);
4682 if (err)
4683 return err;
4684 }
4685
4686 if (ret || wait != WAIT_COMPLETE)
4687 return ret;
4688
4689 for (i = start_i; i < num_pages; i++) {
4690 page = extent_buffer_page(eb, i);
4691 wait_on_page_locked(page);
4692 if (!PageUptodate(page))
4693 ret = -EIO;
4694 }
4695
4696 return ret;
4697
4698 unlock_exit:
4699 i = start_i;
4700 while (locked_pages > 0) {
4701 page = extent_buffer_page(eb, i);
4702 i++;
4703 unlock_page(page);
4704 locked_pages--;
4705 }
4706 return ret;
4707 }
4708
4709 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4710 unsigned long start,
4711 unsigned long len)
4712 {
4713 size_t cur;
4714 size_t offset;
4715 struct page *page;
4716 char *kaddr;
4717 char *dst = (char *)dstv;
4718 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4719 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4720
4721 WARN_ON(start > eb->len);
4722 WARN_ON(start + len > eb->start + eb->len);
4723
4724 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4725
4726 while (len > 0) {
4727 page = extent_buffer_page(eb, i);
4728
4729 cur = min(len, (PAGE_CACHE_SIZE - offset));
4730 kaddr = page_address(page);
4731 memcpy(dst, kaddr + offset, cur);
4732
4733 dst += cur;
4734 len -= cur;
4735 offset = 0;
4736 i++;
4737 }
4738 }
4739
4740 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4741 unsigned long min_len, char **map,
4742 unsigned long *map_start,
4743 unsigned long *map_len)
4744 {
4745 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4746 char *kaddr;
4747 struct page *p;
4748 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4749 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4750 unsigned long end_i = (start_offset + start + min_len - 1) >>
4751 PAGE_CACHE_SHIFT;
4752
4753 if (i != end_i)
4754 return -EINVAL;
4755
4756 if (i == 0) {
4757 offset = start_offset;
4758 *map_start = 0;
4759 } else {
4760 offset = 0;
4761 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4762 }
4763
4764 if (start + min_len > eb->len) {
4765 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4766 "wanted %lu %lu\n", (unsigned long long)eb->start,
4767 eb->len, start, min_len);
4768 return -EINVAL;
4769 }
4770
4771 p = extent_buffer_page(eb, i);
4772 kaddr = page_address(p);
4773 *map = kaddr + offset;
4774 *map_len = PAGE_CACHE_SIZE - offset;
4775 return 0;
4776 }
4777
4778 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4779 unsigned long start,
4780 unsigned long len)
4781 {
4782 size_t cur;
4783 size_t offset;
4784 struct page *page;
4785 char *kaddr;
4786 char *ptr = (char *)ptrv;
4787 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4788 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4789 int ret = 0;
4790
4791 WARN_ON(start > eb->len);
4792 WARN_ON(start + len > eb->start + eb->len);
4793
4794 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4795
4796 while (len > 0) {
4797 page = extent_buffer_page(eb, i);
4798
4799 cur = min(len, (PAGE_CACHE_SIZE - offset));
4800
4801 kaddr = page_address(page);
4802 ret = memcmp(ptr, kaddr + offset, cur);
4803 if (ret)
4804 break;
4805
4806 ptr += cur;
4807 len -= cur;
4808 offset = 0;
4809 i++;
4810 }
4811 return ret;
4812 }
4813
4814 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4815 unsigned long start, unsigned long len)
4816 {
4817 size_t cur;
4818 size_t offset;
4819 struct page *page;
4820 char *kaddr;
4821 char *src = (char *)srcv;
4822 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4823 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4824
4825 WARN_ON(start > eb->len);
4826 WARN_ON(start + len > eb->start + eb->len);
4827
4828 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4829
4830 while (len > 0) {
4831 page = extent_buffer_page(eb, i);
4832 WARN_ON(!PageUptodate(page));
4833
4834 cur = min(len, PAGE_CACHE_SIZE - offset);
4835 kaddr = page_address(page);
4836 memcpy(kaddr + offset, src, cur);
4837
4838 src += cur;
4839 len -= cur;
4840 offset = 0;
4841 i++;
4842 }
4843 }
4844
4845 void memset_extent_buffer(struct extent_buffer *eb, char c,
4846 unsigned long start, unsigned long len)
4847 {
4848 size_t cur;
4849 size_t offset;
4850 struct page *page;
4851 char *kaddr;
4852 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4853 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4854
4855 WARN_ON(start > eb->len);
4856 WARN_ON(start + len > eb->start + eb->len);
4857
4858 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4859
4860 while (len > 0) {
4861 page = extent_buffer_page(eb, i);
4862 WARN_ON(!PageUptodate(page));
4863
4864 cur = min(len, PAGE_CACHE_SIZE - offset);
4865 kaddr = page_address(page);
4866 memset(kaddr + offset, c, cur);
4867
4868 len -= cur;
4869 offset = 0;
4870 i++;
4871 }
4872 }
4873
4874 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4875 unsigned long dst_offset, unsigned long src_offset,
4876 unsigned long len)
4877 {
4878 u64 dst_len = dst->len;
4879 size_t cur;
4880 size_t offset;
4881 struct page *page;
4882 char *kaddr;
4883 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4884 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4885
4886 WARN_ON(src->len != dst_len);
4887
4888 offset = (start_offset + dst_offset) &
4889 ((unsigned long)PAGE_CACHE_SIZE - 1);
4890
4891 while (len > 0) {
4892 page = extent_buffer_page(dst, i);
4893 WARN_ON(!PageUptodate(page));
4894
4895 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4896
4897 kaddr = page_address(page);
4898 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4899
4900 src_offset += cur;
4901 len -= cur;
4902 offset = 0;
4903 i++;
4904 }
4905 }
4906
4907 static void move_pages(struct page *dst_page, struct page *src_page,
4908 unsigned long dst_off, unsigned long src_off,
4909 unsigned long len)
4910 {
4911 char *dst_kaddr = page_address(dst_page);
4912 if (dst_page == src_page) {
4913 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4914 } else {
4915 char *src_kaddr = page_address(src_page);
4916 char *p = dst_kaddr + dst_off + len;
4917 char *s = src_kaddr + src_off + len;
4918
4919 while (len--)
4920 *--p = *--s;
4921 }
4922 }
4923
4924 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4925 {
4926 unsigned long distance = (src > dst) ? src - dst : dst - src;
4927 return distance < len;
4928 }
4929
4930 static void copy_pages(struct page *dst_page, struct page *src_page,
4931 unsigned long dst_off, unsigned long src_off,
4932 unsigned long len)
4933 {
4934 char *dst_kaddr = page_address(dst_page);
4935 char *src_kaddr;
4936 int must_memmove = 0;
4937
4938 if (dst_page != src_page) {
4939 src_kaddr = page_address(src_page);
4940 } else {
4941 src_kaddr = dst_kaddr;
4942 if (areas_overlap(src_off, dst_off, len))
4943 must_memmove = 1;
4944 }
4945
4946 if (must_memmove)
4947 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4948 else
4949 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4950 }
4951
4952 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4953 unsigned long src_offset, unsigned long len)
4954 {
4955 size_t cur;
4956 size_t dst_off_in_page;
4957 size_t src_off_in_page;
4958 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4959 unsigned long dst_i;
4960 unsigned long src_i;
4961
4962 if (src_offset + len > dst->len) {
4963 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4964 "len %lu dst len %lu\n", src_offset, len, dst->len);
4965 BUG_ON(1);
4966 }
4967 if (dst_offset + len > dst->len) {
4968 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4969 "len %lu dst len %lu\n", dst_offset, len, dst->len);
4970 BUG_ON(1);
4971 }
4972
4973 while (len > 0) {
4974 dst_off_in_page = (start_offset + dst_offset) &
4975 ((unsigned long)PAGE_CACHE_SIZE - 1);
4976 src_off_in_page = (start_offset + src_offset) &
4977 ((unsigned long)PAGE_CACHE_SIZE - 1);
4978
4979 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4980 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4981
4982 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4983 src_off_in_page));
4984 cur = min_t(unsigned long, cur,
4985 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4986
4987 copy_pages(extent_buffer_page(dst, dst_i),
4988 extent_buffer_page(dst, src_i),
4989 dst_off_in_page, src_off_in_page, cur);
4990
4991 src_offset += cur;
4992 dst_offset += cur;
4993 len -= cur;
4994 }
4995 }
4996
4997 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4998 unsigned long src_offset, unsigned long len)
4999 {
5000 size_t cur;
5001 size_t dst_off_in_page;
5002 size_t src_off_in_page;
5003 unsigned long dst_end = dst_offset + len - 1;
5004 unsigned long src_end = src_offset + len - 1;
5005 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5006 unsigned long dst_i;
5007 unsigned long src_i;
5008
5009 if (src_offset + len > dst->len) {
5010 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5011 "len %lu len %lu\n", src_offset, len, dst->len);
5012 BUG_ON(1);
5013 }
5014 if (dst_offset + len > dst->len) {
5015 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5016 "len %lu len %lu\n", dst_offset, len, dst->len);
5017 BUG_ON(1);
5018 }
5019 if (dst_offset < src_offset) {
5020 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5021 return;
5022 }
5023 while (len > 0) {
5024 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5025 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5026
5027 dst_off_in_page = (start_offset + dst_end) &
5028 ((unsigned long)PAGE_CACHE_SIZE - 1);
5029 src_off_in_page = (start_offset + src_end) &
5030 ((unsigned long)PAGE_CACHE_SIZE - 1);
5031
5032 cur = min_t(unsigned long, len, src_off_in_page + 1);
5033 cur = min(cur, dst_off_in_page + 1);
5034 move_pages(extent_buffer_page(dst, dst_i),
5035 extent_buffer_page(dst, src_i),
5036 dst_off_in_page - cur + 1,
5037 src_off_in_page - cur + 1, cur);
5038
5039 dst_end -= cur;
5040 src_end -= cur;
5041 len -= cur;
5042 }
5043 }
5044
5045 int try_release_extent_buffer(struct page *page, gfp_t mask)
5046 {
5047 struct extent_buffer *eb;
5048
5049 /*
5050 * We need to make sure noboody is attaching this page to an eb right
5051 * now.
5052 */
5053 spin_lock(&page->mapping->private_lock);
5054 if (!PagePrivate(page)) {
5055 spin_unlock(&page->mapping->private_lock);
5056 return 1;
5057 }
5058
5059 eb = (struct extent_buffer *)page->private;
5060 BUG_ON(!eb);
5061
5062 /*
5063 * This is a little awful but should be ok, we need to make sure that
5064 * the eb doesn't disappear out from under us while we're looking at
5065 * this page.
5066 */
5067 spin_lock(&eb->refs_lock);
5068 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5069 spin_unlock(&eb->refs_lock);
5070 spin_unlock(&page->mapping->private_lock);
5071 return 0;
5072 }
5073 spin_unlock(&page->mapping->private_lock);
5074
5075 if ((mask & GFP_NOFS) == GFP_NOFS)
5076 mask = GFP_NOFS;
5077
5078 /*
5079 * If tree ref isn't set then we know the ref on this eb is a real ref,
5080 * so just return, this page will likely be freed soon anyway.
5081 */
5082 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5083 spin_unlock(&eb->refs_lock);
5084 return 0;
5085 }
5086
5087 return release_extent_buffer(eb, mask);
5088 }
This page took 0.405999 seconds and 5 git commands to generate.