Btrfs: reduce CPU usage in the extent_state tree
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19
20 static struct kmem_cache *extent_state_cache;
21 static struct kmem_cache *extent_buffer_cache;
22
23 static LIST_HEAD(buffers);
24 static LIST_HEAD(states);
25
26 #define LEAK_DEBUG 0
27 #if LEAK_DEBUG
28 static DEFINE_SPINLOCK(leak_lock);
29 #endif
30
31 #define BUFFER_LRU_MAX 64
32
33 struct tree_entry {
34 u64 start;
35 u64 end;
36 struct rb_node rb_node;
37 };
38
39 struct extent_page_data {
40 struct bio *bio;
41 struct extent_io_tree *tree;
42 get_extent_t *get_extent;
43
44 /* tells writepage not to lock the state bits for this range
45 * it still does the unlocking
46 */
47 unsigned int extent_locked:1;
48
49 /* tells the submit_bio code to use a WRITE_SYNC */
50 unsigned int sync_io:1;
51 };
52
53 int __init extent_io_init(void)
54 {
55 extent_state_cache = kmem_cache_create("extent_state",
56 sizeof(struct extent_state), 0,
57 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
58 if (!extent_state_cache)
59 return -ENOMEM;
60
61 extent_buffer_cache = kmem_cache_create("extent_buffers",
62 sizeof(struct extent_buffer), 0,
63 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
64 if (!extent_buffer_cache)
65 goto free_state_cache;
66 return 0;
67
68 free_state_cache:
69 kmem_cache_destroy(extent_state_cache);
70 return -ENOMEM;
71 }
72
73 void extent_io_exit(void)
74 {
75 struct extent_state *state;
76 struct extent_buffer *eb;
77
78 while (!list_empty(&states)) {
79 state = list_entry(states.next, struct extent_state, leak_list);
80 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
81 "state %lu in tree %p refs %d\n",
82 (unsigned long long)state->start,
83 (unsigned long long)state->end,
84 state->state, state->tree, atomic_read(&state->refs));
85 list_del(&state->leak_list);
86 kmem_cache_free(extent_state_cache, state);
87
88 }
89
90 while (!list_empty(&buffers)) {
91 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
92 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
93 "refs %d\n", (unsigned long long)eb->start,
94 eb->len, atomic_read(&eb->refs));
95 list_del(&eb->leak_list);
96 kmem_cache_free(extent_buffer_cache, eb);
97 }
98 if (extent_state_cache)
99 kmem_cache_destroy(extent_state_cache);
100 if (extent_buffer_cache)
101 kmem_cache_destroy(extent_buffer_cache);
102 }
103
104 void extent_io_tree_init(struct extent_io_tree *tree,
105 struct address_space *mapping, gfp_t mask)
106 {
107 tree->state.rb_node = NULL;
108 tree->buffer.rb_node = NULL;
109 tree->ops = NULL;
110 tree->dirty_bytes = 0;
111 spin_lock_init(&tree->lock);
112 spin_lock_init(&tree->buffer_lock);
113 tree->mapping = mapping;
114 }
115
116 static struct extent_state *alloc_extent_state(gfp_t mask)
117 {
118 struct extent_state *state;
119 #if LEAK_DEBUG
120 unsigned long flags;
121 #endif
122
123 state = kmem_cache_alloc(extent_state_cache, mask);
124 if (!state)
125 return state;
126 state->state = 0;
127 state->private = 0;
128 state->tree = NULL;
129 #if LEAK_DEBUG
130 spin_lock_irqsave(&leak_lock, flags);
131 list_add(&state->leak_list, &states);
132 spin_unlock_irqrestore(&leak_lock, flags);
133 #endif
134 atomic_set(&state->refs, 1);
135 init_waitqueue_head(&state->wq);
136 return state;
137 }
138
139 static void free_extent_state(struct extent_state *state)
140 {
141 if (!state)
142 return;
143 if (atomic_dec_and_test(&state->refs)) {
144 #if LEAK_DEBUG
145 unsigned long flags;
146 #endif
147 WARN_ON(state->tree);
148 #if LEAK_DEBUG
149 spin_lock_irqsave(&leak_lock, flags);
150 list_del(&state->leak_list);
151 spin_unlock_irqrestore(&leak_lock, flags);
152 #endif
153 kmem_cache_free(extent_state_cache, state);
154 }
155 }
156
157 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
158 struct rb_node *node)
159 {
160 struct rb_node **p = &root->rb_node;
161 struct rb_node *parent = NULL;
162 struct tree_entry *entry;
163
164 while (*p) {
165 parent = *p;
166 entry = rb_entry(parent, struct tree_entry, rb_node);
167
168 if (offset < entry->start)
169 p = &(*p)->rb_left;
170 else if (offset > entry->end)
171 p = &(*p)->rb_right;
172 else
173 return parent;
174 }
175
176 entry = rb_entry(node, struct tree_entry, rb_node);
177 rb_link_node(node, parent, p);
178 rb_insert_color(node, root);
179 return NULL;
180 }
181
182 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
183 struct rb_node **prev_ret,
184 struct rb_node **next_ret)
185 {
186 struct rb_root *root = &tree->state;
187 struct rb_node *n = root->rb_node;
188 struct rb_node *prev = NULL;
189 struct rb_node *orig_prev = NULL;
190 struct tree_entry *entry;
191 struct tree_entry *prev_entry = NULL;
192
193 while (n) {
194 entry = rb_entry(n, struct tree_entry, rb_node);
195 prev = n;
196 prev_entry = entry;
197
198 if (offset < entry->start)
199 n = n->rb_left;
200 else if (offset > entry->end)
201 n = n->rb_right;
202 else
203 return n;
204 }
205
206 if (prev_ret) {
207 orig_prev = prev;
208 while (prev && offset > prev_entry->end) {
209 prev = rb_next(prev);
210 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
211 }
212 *prev_ret = prev;
213 prev = orig_prev;
214 }
215
216 if (next_ret) {
217 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
218 while (prev && offset < prev_entry->start) {
219 prev = rb_prev(prev);
220 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
221 }
222 *next_ret = prev;
223 }
224 return NULL;
225 }
226
227 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
228 u64 offset)
229 {
230 struct rb_node *prev = NULL;
231 struct rb_node *ret;
232
233 ret = __etree_search(tree, offset, &prev, NULL);
234 if (!ret)
235 return prev;
236 return ret;
237 }
238
239 static struct extent_buffer *buffer_tree_insert(struct extent_io_tree *tree,
240 u64 offset, struct rb_node *node)
241 {
242 struct rb_root *root = &tree->buffer;
243 struct rb_node **p = &root->rb_node;
244 struct rb_node *parent = NULL;
245 struct extent_buffer *eb;
246
247 while (*p) {
248 parent = *p;
249 eb = rb_entry(parent, struct extent_buffer, rb_node);
250
251 if (offset < eb->start)
252 p = &(*p)->rb_left;
253 else if (offset > eb->start)
254 p = &(*p)->rb_right;
255 else
256 return eb;
257 }
258
259 rb_link_node(node, parent, p);
260 rb_insert_color(node, root);
261 return NULL;
262 }
263
264 static struct extent_buffer *buffer_search(struct extent_io_tree *tree,
265 u64 offset)
266 {
267 struct rb_root *root = &tree->buffer;
268 struct rb_node *n = root->rb_node;
269 struct extent_buffer *eb;
270
271 while (n) {
272 eb = rb_entry(n, struct extent_buffer, rb_node);
273 if (offset < eb->start)
274 n = n->rb_left;
275 else if (offset > eb->start)
276 n = n->rb_right;
277 else
278 return eb;
279 }
280 return NULL;
281 }
282
283 /*
284 * utility function to look for merge candidates inside a given range.
285 * Any extents with matching state are merged together into a single
286 * extent in the tree. Extents with EXTENT_IO in their state field
287 * are not merged because the end_io handlers need to be able to do
288 * operations on them without sleeping (or doing allocations/splits).
289 *
290 * This should be called with the tree lock held.
291 */
292 static int merge_state(struct extent_io_tree *tree,
293 struct extent_state *state)
294 {
295 struct extent_state *other;
296 struct rb_node *other_node;
297
298 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
299 return 0;
300
301 other_node = rb_prev(&state->rb_node);
302 if (other_node) {
303 other = rb_entry(other_node, struct extent_state, rb_node);
304 if (other->end == state->start - 1 &&
305 other->state == state->state) {
306 state->start = other->start;
307 other->tree = NULL;
308 rb_erase(&other->rb_node, &tree->state);
309 free_extent_state(other);
310 }
311 }
312 other_node = rb_next(&state->rb_node);
313 if (other_node) {
314 other = rb_entry(other_node, struct extent_state, rb_node);
315 if (other->start == state->end + 1 &&
316 other->state == state->state) {
317 other->start = state->start;
318 state->tree = NULL;
319 rb_erase(&state->rb_node, &tree->state);
320 free_extent_state(state);
321 }
322 }
323 return 0;
324 }
325
326 static void set_state_cb(struct extent_io_tree *tree,
327 struct extent_state *state,
328 unsigned long bits)
329 {
330 if (tree->ops && tree->ops->set_bit_hook) {
331 tree->ops->set_bit_hook(tree->mapping->host, state->start,
332 state->end, state->state, bits);
333 }
334 }
335
336 static void clear_state_cb(struct extent_io_tree *tree,
337 struct extent_state *state,
338 unsigned long bits)
339 {
340 if (tree->ops && tree->ops->clear_bit_hook) {
341 tree->ops->clear_bit_hook(tree->mapping->host, state->start,
342 state->end, state->state, bits);
343 }
344 }
345
346 /*
347 * insert an extent_state struct into the tree. 'bits' are set on the
348 * struct before it is inserted.
349 *
350 * This may return -EEXIST if the extent is already there, in which case the
351 * state struct is freed.
352 *
353 * The tree lock is not taken internally. This is a utility function and
354 * probably isn't what you want to call (see set/clear_extent_bit).
355 */
356 static int insert_state(struct extent_io_tree *tree,
357 struct extent_state *state, u64 start, u64 end,
358 int bits)
359 {
360 struct rb_node *node;
361
362 if (end < start) {
363 printk(KERN_ERR "btrfs end < start %llu %llu\n",
364 (unsigned long long)end,
365 (unsigned long long)start);
366 WARN_ON(1);
367 }
368 if (bits & EXTENT_DIRTY)
369 tree->dirty_bytes += end - start + 1;
370 state->start = start;
371 state->end = end;
372 set_state_cb(tree, state, bits);
373 state->state |= bits;
374 node = tree_insert(&tree->state, end, &state->rb_node);
375 if (node) {
376 struct extent_state *found;
377 found = rb_entry(node, struct extent_state, rb_node);
378 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
379 "%llu %llu\n", (unsigned long long)found->start,
380 (unsigned long long)found->end,
381 (unsigned long long)start, (unsigned long long)end);
382 free_extent_state(state);
383 return -EEXIST;
384 }
385 state->tree = tree;
386 merge_state(tree, state);
387 return 0;
388 }
389
390 /*
391 * split a given extent state struct in two, inserting the preallocated
392 * struct 'prealloc' as the newly created second half. 'split' indicates an
393 * offset inside 'orig' where it should be split.
394 *
395 * Before calling,
396 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
397 * are two extent state structs in the tree:
398 * prealloc: [orig->start, split - 1]
399 * orig: [ split, orig->end ]
400 *
401 * The tree locks are not taken by this function. They need to be held
402 * by the caller.
403 */
404 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
405 struct extent_state *prealloc, u64 split)
406 {
407 struct rb_node *node;
408 prealloc->start = orig->start;
409 prealloc->end = split - 1;
410 prealloc->state = orig->state;
411 orig->start = split;
412
413 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
414 if (node) {
415 free_extent_state(prealloc);
416 return -EEXIST;
417 }
418 prealloc->tree = tree;
419 return 0;
420 }
421
422 /*
423 * utility function to clear some bits in an extent state struct.
424 * it will optionally wake up any one waiting on this state (wake == 1), or
425 * forcibly remove the state from the tree (delete == 1).
426 *
427 * If no bits are set on the state struct after clearing things, the
428 * struct is freed and removed from the tree
429 */
430 static int clear_state_bit(struct extent_io_tree *tree,
431 struct extent_state *state, int bits, int wake,
432 int delete)
433 {
434 int ret = state->state & bits;
435
436 if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
437 u64 range = state->end - state->start + 1;
438 WARN_ON(range > tree->dirty_bytes);
439 tree->dirty_bytes -= range;
440 }
441 clear_state_cb(tree, state, bits);
442 state->state &= ~bits;
443 if (wake)
444 wake_up(&state->wq);
445 if (delete || state->state == 0) {
446 if (state->tree) {
447 clear_state_cb(tree, state, state->state);
448 rb_erase(&state->rb_node, &tree->state);
449 state->tree = NULL;
450 free_extent_state(state);
451 } else {
452 WARN_ON(1);
453 }
454 } else {
455 merge_state(tree, state);
456 }
457 return ret;
458 }
459
460 /*
461 * clear some bits on a range in the tree. This may require splitting
462 * or inserting elements in the tree, so the gfp mask is used to
463 * indicate which allocations or sleeping are allowed.
464 *
465 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
466 * the given range from the tree regardless of state (ie for truncate).
467 *
468 * the range [start, end] is inclusive.
469 *
470 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
471 * bits were already set, or zero if none of the bits were already set.
472 */
473 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
474 int bits, int wake, int delete, gfp_t mask)
475 {
476 struct extent_state *state;
477 struct extent_state *prealloc = NULL;
478 struct rb_node *node;
479 u64 last_end;
480 int err;
481 int set = 0;
482
483 again:
484 if (!prealloc && (mask & __GFP_WAIT)) {
485 prealloc = alloc_extent_state(mask);
486 if (!prealloc)
487 return -ENOMEM;
488 }
489
490 spin_lock(&tree->lock);
491 /*
492 * this search will find the extents that end after
493 * our range starts
494 */
495 node = tree_search(tree, start);
496 if (!node)
497 goto out;
498 state = rb_entry(node, struct extent_state, rb_node);
499 if (state->start > end)
500 goto out;
501 WARN_ON(state->end < start);
502 last_end = state->end;
503
504 /*
505 * | ---- desired range ---- |
506 * | state | or
507 * | ------------- state -------------- |
508 *
509 * We need to split the extent we found, and may flip
510 * bits on second half.
511 *
512 * If the extent we found extends past our range, we
513 * just split and search again. It'll get split again
514 * the next time though.
515 *
516 * If the extent we found is inside our range, we clear
517 * the desired bit on it.
518 */
519
520 if (state->start < start) {
521 if (!prealloc)
522 prealloc = alloc_extent_state(GFP_ATOMIC);
523 err = split_state(tree, state, prealloc, start);
524 BUG_ON(err == -EEXIST);
525 prealloc = NULL;
526 if (err)
527 goto out;
528 if (state->end <= end) {
529 set |= clear_state_bit(tree, state, bits,
530 wake, delete);
531 if (last_end == (u64)-1)
532 goto out;
533 start = last_end + 1;
534 } else {
535 start = state->start;
536 }
537 goto search_again;
538 }
539 /*
540 * | ---- desired range ---- |
541 * | state |
542 * We need to split the extent, and clear the bit
543 * on the first half
544 */
545 if (state->start <= end && state->end > end) {
546 if (!prealloc)
547 prealloc = alloc_extent_state(GFP_ATOMIC);
548 err = split_state(tree, state, prealloc, end + 1);
549 BUG_ON(err == -EEXIST);
550
551 if (wake)
552 wake_up(&state->wq);
553 set |= clear_state_bit(tree, prealloc, bits,
554 wake, delete);
555 prealloc = NULL;
556 goto out;
557 }
558
559 set |= clear_state_bit(tree, state, bits, wake, delete);
560 if (last_end == (u64)-1)
561 goto out;
562 start = last_end + 1;
563 goto search_again;
564
565 out:
566 spin_unlock(&tree->lock);
567 if (prealloc)
568 free_extent_state(prealloc);
569
570 return set;
571
572 search_again:
573 if (start > end)
574 goto out;
575 spin_unlock(&tree->lock);
576 if (mask & __GFP_WAIT)
577 cond_resched();
578 goto again;
579 }
580
581 static int wait_on_state(struct extent_io_tree *tree,
582 struct extent_state *state)
583 __releases(tree->lock)
584 __acquires(tree->lock)
585 {
586 DEFINE_WAIT(wait);
587 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
588 spin_unlock(&tree->lock);
589 schedule();
590 spin_lock(&tree->lock);
591 finish_wait(&state->wq, &wait);
592 return 0;
593 }
594
595 /*
596 * waits for one or more bits to clear on a range in the state tree.
597 * The range [start, end] is inclusive.
598 * The tree lock is taken by this function
599 */
600 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
601 {
602 struct extent_state *state;
603 struct rb_node *node;
604
605 spin_lock(&tree->lock);
606 again:
607 while (1) {
608 /*
609 * this search will find all the extents that end after
610 * our range starts
611 */
612 node = tree_search(tree, start);
613 if (!node)
614 break;
615
616 state = rb_entry(node, struct extent_state, rb_node);
617
618 if (state->start > end)
619 goto out;
620
621 if (state->state & bits) {
622 start = state->start;
623 atomic_inc(&state->refs);
624 wait_on_state(tree, state);
625 free_extent_state(state);
626 goto again;
627 }
628 start = state->end + 1;
629
630 if (start > end)
631 break;
632
633 if (need_resched()) {
634 spin_unlock(&tree->lock);
635 cond_resched();
636 spin_lock(&tree->lock);
637 }
638 }
639 out:
640 spin_unlock(&tree->lock);
641 return 0;
642 }
643
644 static void set_state_bits(struct extent_io_tree *tree,
645 struct extent_state *state,
646 int bits)
647 {
648 if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
649 u64 range = state->end - state->start + 1;
650 tree->dirty_bytes += range;
651 }
652 set_state_cb(tree, state, bits);
653 state->state |= bits;
654 }
655
656 /*
657 * set some bits on a range in the tree. This may require allocations or
658 * sleeping, so the gfp mask is used to indicate what is allowed.
659 *
660 * If any of the exclusive bits are set, this will fail with -EEXIST if some
661 * part of the range already has the desired bits set. The start of the
662 * existing range is returned in failed_start in this case.
663 *
664 * [start, end] is inclusive This takes the tree lock.
665 */
666
667 static int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
668 int bits, int exclusive_bits, u64 *failed_start,
669 gfp_t mask)
670 {
671 struct extent_state *state;
672 struct extent_state *prealloc = NULL;
673 struct rb_node *node;
674 int err = 0;
675 u64 last_start;
676 u64 last_end;
677 again:
678 if (!prealloc && (mask & __GFP_WAIT)) {
679 prealloc = alloc_extent_state(mask);
680 if (!prealloc)
681 return -ENOMEM;
682 }
683
684 spin_lock(&tree->lock);
685 /*
686 * this search will find all the extents that end after
687 * our range starts.
688 */
689 node = tree_search(tree, start);
690 if (!node) {
691 err = insert_state(tree, prealloc, start, end, bits);
692 prealloc = NULL;
693 BUG_ON(err == -EEXIST);
694 goto out;
695 }
696 state = rb_entry(node, struct extent_state, rb_node);
697 hit_next:
698 last_start = state->start;
699 last_end = state->end;
700
701 /*
702 * | ---- desired range ---- |
703 * | state |
704 *
705 * Just lock what we found and keep going
706 */
707 if (state->start == start && state->end <= end) {
708 struct rb_node *next_node;
709 if (state->state & exclusive_bits) {
710 *failed_start = state->start;
711 err = -EEXIST;
712 goto out;
713 }
714 set_state_bits(tree, state, bits);
715 merge_state(tree, state);
716 if (last_end == (u64)-1)
717 goto out;
718
719 start = last_end + 1;
720 if (start < end && prealloc && !need_resched()) {
721 next_node = rb_next(node);
722 if (next_node) {
723 state = rb_entry(next_node, struct extent_state,
724 rb_node);
725 if (state->start == start)
726 goto hit_next;
727 }
728 }
729 goto search_again;
730 }
731
732 /*
733 * | ---- desired range ---- |
734 * | state |
735 * or
736 * | ------------- state -------------- |
737 *
738 * We need to split the extent we found, and may flip bits on
739 * second half.
740 *
741 * If the extent we found extends past our
742 * range, we just split and search again. It'll get split
743 * again the next time though.
744 *
745 * If the extent we found is inside our range, we set the
746 * desired bit on it.
747 */
748 if (state->start < start) {
749 if (state->state & exclusive_bits) {
750 *failed_start = start;
751 err = -EEXIST;
752 goto out;
753 }
754 err = split_state(tree, state, prealloc, start);
755 BUG_ON(err == -EEXIST);
756 prealloc = NULL;
757 if (err)
758 goto out;
759 if (state->end <= end) {
760 set_state_bits(tree, state, bits);
761 merge_state(tree, state);
762 if (last_end == (u64)-1)
763 goto out;
764 start = last_end + 1;
765 } else {
766 start = state->start;
767 }
768 goto search_again;
769 }
770 /*
771 * | ---- desired range ---- |
772 * | state | or | state |
773 *
774 * There's a hole, we need to insert something in it and
775 * ignore the extent we found.
776 */
777 if (state->start > start) {
778 u64 this_end;
779 if (end < last_start)
780 this_end = end;
781 else
782 this_end = last_start - 1;
783 err = insert_state(tree, prealloc, start, this_end,
784 bits);
785 prealloc = NULL;
786 BUG_ON(err == -EEXIST);
787 if (err)
788 goto out;
789 start = this_end + 1;
790 goto search_again;
791 }
792 /*
793 * | ---- desired range ---- |
794 * | state |
795 * We need to split the extent, and set the bit
796 * on the first half
797 */
798 if (state->start <= end && state->end > end) {
799 if (state->state & exclusive_bits) {
800 *failed_start = start;
801 err = -EEXIST;
802 goto out;
803 }
804 err = split_state(tree, state, prealloc, end + 1);
805 BUG_ON(err == -EEXIST);
806
807 set_state_bits(tree, prealloc, bits);
808 merge_state(tree, prealloc);
809 prealloc = NULL;
810 goto out;
811 }
812
813 goto search_again;
814
815 out:
816 spin_unlock(&tree->lock);
817 if (prealloc)
818 free_extent_state(prealloc);
819
820 return err;
821
822 search_again:
823 if (start > end)
824 goto out;
825 spin_unlock(&tree->lock);
826 if (mask & __GFP_WAIT)
827 cond_resched();
828 goto again;
829 }
830
831 /* wrappers around set/clear extent bit */
832 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
833 gfp_t mask)
834 {
835 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
836 mask);
837 }
838
839 int set_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end,
840 gfp_t mask)
841 {
842 return set_extent_bit(tree, start, end, EXTENT_ORDERED, 0, NULL, mask);
843 }
844
845 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
846 int bits, gfp_t mask)
847 {
848 return set_extent_bit(tree, start, end, bits, 0, NULL,
849 mask);
850 }
851
852 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
853 int bits, gfp_t mask)
854 {
855 return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
856 }
857
858 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
859 gfp_t mask)
860 {
861 return set_extent_bit(tree, start, end,
862 EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE,
863 0, NULL, mask);
864 }
865
866 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
867 gfp_t mask)
868 {
869 return clear_extent_bit(tree, start, end,
870 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
871 }
872
873 int clear_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end,
874 gfp_t mask)
875 {
876 return clear_extent_bit(tree, start, end, EXTENT_ORDERED, 1, 0, mask);
877 }
878
879 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
880 gfp_t mask)
881 {
882 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
883 mask);
884 }
885
886 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
887 gfp_t mask)
888 {
889 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
890 }
891
892 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
893 gfp_t mask)
894 {
895 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
896 mask);
897 }
898
899 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
900 u64 end, gfp_t mask)
901 {
902 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
903 }
904
905 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
906 {
907 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
908 }
909
910 /*
911 * either insert or lock state struct between start and end use mask to tell
912 * us if waiting is desired.
913 */
914 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
915 int bits, gfp_t mask)
916 {
917 int err;
918 u64 failed_start;
919 while (1) {
920 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
921 EXTENT_LOCKED, &failed_start, mask);
922 if (err == -EEXIST && (mask & __GFP_WAIT)) {
923 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
924 start = failed_start;
925 } else {
926 break;
927 }
928 WARN_ON(start > end);
929 }
930 return err;
931 }
932
933 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
934 {
935 return lock_extent_bits(tree, start, end, 0, mask);
936 }
937
938 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
939 gfp_t mask)
940 {
941 int err;
942 u64 failed_start;
943
944 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
945 &failed_start, mask);
946 if (err == -EEXIST) {
947 if (failed_start > start)
948 clear_extent_bit(tree, start, failed_start - 1,
949 EXTENT_LOCKED, 1, 0, mask);
950 return 0;
951 }
952 return 1;
953 }
954
955 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
956 gfp_t mask)
957 {
958 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
959 }
960
961 /*
962 * helper function to set pages and extents in the tree dirty
963 */
964 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
965 {
966 unsigned long index = start >> PAGE_CACHE_SHIFT;
967 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
968 struct page *page;
969
970 while (index <= end_index) {
971 page = find_get_page(tree->mapping, index);
972 BUG_ON(!page);
973 __set_page_dirty_nobuffers(page);
974 page_cache_release(page);
975 index++;
976 }
977 return 0;
978 }
979
980 /*
981 * helper function to set both pages and extents in the tree writeback
982 */
983 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
984 {
985 unsigned long index = start >> PAGE_CACHE_SHIFT;
986 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
987 struct page *page;
988
989 while (index <= end_index) {
990 page = find_get_page(tree->mapping, index);
991 BUG_ON(!page);
992 set_page_writeback(page);
993 page_cache_release(page);
994 index++;
995 }
996 return 0;
997 }
998
999 /*
1000 * find the first offset in the io tree with 'bits' set. zero is
1001 * returned if we find something, and *start_ret and *end_ret are
1002 * set to reflect the state struct that was found.
1003 *
1004 * If nothing was found, 1 is returned, < 0 on error
1005 */
1006 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1007 u64 *start_ret, u64 *end_ret, int bits)
1008 {
1009 struct rb_node *node;
1010 struct extent_state *state;
1011 int ret = 1;
1012
1013 spin_lock(&tree->lock);
1014 /*
1015 * this search will find all the extents that end after
1016 * our range starts.
1017 */
1018 node = tree_search(tree, start);
1019 if (!node)
1020 goto out;
1021
1022 while (1) {
1023 state = rb_entry(node, struct extent_state, rb_node);
1024 if (state->end >= start && (state->state & bits)) {
1025 *start_ret = state->start;
1026 *end_ret = state->end;
1027 ret = 0;
1028 break;
1029 }
1030 node = rb_next(node);
1031 if (!node)
1032 break;
1033 }
1034 out:
1035 spin_unlock(&tree->lock);
1036 return ret;
1037 }
1038
1039 /* find the first state struct with 'bits' set after 'start', and
1040 * return it. tree->lock must be held. NULL will returned if
1041 * nothing was found after 'start'
1042 */
1043 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1044 u64 start, int bits)
1045 {
1046 struct rb_node *node;
1047 struct extent_state *state;
1048
1049 /*
1050 * this search will find all the extents that end after
1051 * our range starts.
1052 */
1053 node = tree_search(tree, start);
1054 if (!node)
1055 goto out;
1056
1057 while (1) {
1058 state = rb_entry(node, struct extent_state, rb_node);
1059 if (state->end >= start && (state->state & bits))
1060 return state;
1061
1062 node = rb_next(node);
1063 if (!node)
1064 break;
1065 }
1066 out:
1067 return NULL;
1068 }
1069
1070 /*
1071 * find a contiguous range of bytes in the file marked as delalloc, not
1072 * more than 'max_bytes'. start and end are used to return the range,
1073 *
1074 * 1 is returned if we find something, 0 if nothing was in the tree
1075 */
1076 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1077 u64 *start, u64 *end, u64 max_bytes)
1078 {
1079 struct rb_node *node;
1080 struct extent_state *state;
1081 u64 cur_start = *start;
1082 u64 found = 0;
1083 u64 total_bytes = 0;
1084
1085 spin_lock(&tree->lock);
1086
1087 /*
1088 * this search will find all the extents that end after
1089 * our range starts.
1090 */
1091 node = tree_search(tree, cur_start);
1092 if (!node) {
1093 if (!found)
1094 *end = (u64)-1;
1095 goto out;
1096 }
1097
1098 while (1) {
1099 state = rb_entry(node, struct extent_state, rb_node);
1100 if (found && (state->start != cur_start ||
1101 (state->state & EXTENT_BOUNDARY))) {
1102 goto out;
1103 }
1104 if (!(state->state & EXTENT_DELALLOC)) {
1105 if (!found)
1106 *end = state->end;
1107 goto out;
1108 }
1109 if (!found)
1110 *start = state->start;
1111 found++;
1112 *end = state->end;
1113 cur_start = state->end + 1;
1114 node = rb_next(node);
1115 if (!node)
1116 break;
1117 total_bytes += state->end - state->start + 1;
1118 if (total_bytes >= max_bytes)
1119 break;
1120 }
1121 out:
1122 spin_unlock(&tree->lock);
1123 return found;
1124 }
1125
1126 static noinline int __unlock_for_delalloc(struct inode *inode,
1127 struct page *locked_page,
1128 u64 start, u64 end)
1129 {
1130 int ret;
1131 struct page *pages[16];
1132 unsigned long index = start >> PAGE_CACHE_SHIFT;
1133 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1134 unsigned long nr_pages = end_index - index + 1;
1135 int i;
1136
1137 if (index == locked_page->index && end_index == index)
1138 return 0;
1139
1140 while (nr_pages > 0) {
1141 ret = find_get_pages_contig(inode->i_mapping, index,
1142 min_t(unsigned long, nr_pages,
1143 ARRAY_SIZE(pages)), pages);
1144 for (i = 0; i < ret; i++) {
1145 if (pages[i] != locked_page)
1146 unlock_page(pages[i]);
1147 page_cache_release(pages[i]);
1148 }
1149 nr_pages -= ret;
1150 index += ret;
1151 cond_resched();
1152 }
1153 return 0;
1154 }
1155
1156 static noinline int lock_delalloc_pages(struct inode *inode,
1157 struct page *locked_page,
1158 u64 delalloc_start,
1159 u64 delalloc_end)
1160 {
1161 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1162 unsigned long start_index = index;
1163 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1164 unsigned long pages_locked = 0;
1165 struct page *pages[16];
1166 unsigned long nrpages;
1167 int ret;
1168 int i;
1169
1170 /* the caller is responsible for locking the start index */
1171 if (index == locked_page->index && index == end_index)
1172 return 0;
1173
1174 /* skip the page at the start index */
1175 nrpages = end_index - index + 1;
1176 while (nrpages > 0) {
1177 ret = find_get_pages_contig(inode->i_mapping, index,
1178 min_t(unsigned long,
1179 nrpages, ARRAY_SIZE(pages)), pages);
1180 if (ret == 0) {
1181 ret = -EAGAIN;
1182 goto done;
1183 }
1184 /* now we have an array of pages, lock them all */
1185 for (i = 0; i < ret; i++) {
1186 /*
1187 * the caller is taking responsibility for
1188 * locked_page
1189 */
1190 if (pages[i] != locked_page) {
1191 lock_page(pages[i]);
1192 if (!PageDirty(pages[i]) ||
1193 pages[i]->mapping != inode->i_mapping) {
1194 ret = -EAGAIN;
1195 unlock_page(pages[i]);
1196 page_cache_release(pages[i]);
1197 goto done;
1198 }
1199 }
1200 page_cache_release(pages[i]);
1201 pages_locked++;
1202 }
1203 nrpages -= ret;
1204 index += ret;
1205 cond_resched();
1206 }
1207 ret = 0;
1208 done:
1209 if (ret && pages_locked) {
1210 __unlock_for_delalloc(inode, locked_page,
1211 delalloc_start,
1212 ((u64)(start_index + pages_locked - 1)) <<
1213 PAGE_CACHE_SHIFT);
1214 }
1215 return ret;
1216 }
1217
1218 /*
1219 * find a contiguous range of bytes in the file marked as delalloc, not
1220 * more than 'max_bytes'. start and end are used to return the range,
1221 *
1222 * 1 is returned if we find something, 0 if nothing was in the tree
1223 */
1224 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1225 struct extent_io_tree *tree,
1226 struct page *locked_page,
1227 u64 *start, u64 *end,
1228 u64 max_bytes)
1229 {
1230 u64 delalloc_start;
1231 u64 delalloc_end;
1232 u64 found;
1233 int ret;
1234 int loops = 0;
1235
1236 again:
1237 /* step one, find a bunch of delalloc bytes starting at start */
1238 delalloc_start = *start;
1239 delalloc_end = 0;
1240 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1241 max_bytes);
1242 if (!found || delalloc_end <= *start) {
1243 *start = delalloc_start;
1244 *end = delalloc_end;
1245 return found;
1246 }
1247
1248 /*
1249 * start comes from the offset of locked_page. We have to lock
1250 * pages in order, so we can't process delalloc bytes before
1251 * locked_page
1252 */
1253 if (delalloc_start < *start)
1254 delalloc_start = *start;
1255
1256 /*
1257 * make sure to limit the number of pages we try to lock down
1258 * if we're looping.
1259 */
1260 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1261 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1262
1263 /* step two, lock all the pages after the page that has start */
1264 ret = lock_delalloc_pages(inode, locked_page,
1265 delalloc_start, delalloc_end);
1266 if (ret == -EAGAIN) {
1267 /* some of the pages are gone, lets avoid looping by
1268 * shortening the size of the delalloc range we're searching
1269 */
1270 if (!loops) {
1271 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1272 max_bytes = PAGE_CACHE_SIZE - offset;
1273 loops = 1;
1274 goto again;
1275 } else {
1276 found = 0;
1277 goto out_failed;
1278 }
1279 }
1280 BUG_ON(ret);
1281
1282 /* step three, lock the state bits for the whole range */
1283 lock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS);
1284
1285 /* then test to make sure it is all still delalloc */
1286 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1287 EXTENT_DELALLOC, 1);
1288 if (!ret) {
1289 unlock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS);
1290 __unlock_for_delalloc(inode, locked_page,
1291 delalloc_start, delalloc_end);
1292 cond_resched();
1293 goto again;
1294 }
1295 *start = delalloc_start;
1296 *end = delalloc_end;
1297 out_failed:
1298 return found;
1299 }
1300
1301 int extent_clear_unlock_delalloc(struct inode *inode,
1302 struct extent_io_tree *tree,
1303 u64 start, u64 end, struct page *locked_page,
1304 int unlock_pages,
1305 int clear_unlock,
1306 int clear_delalloc, int clear_dirty,
1307 int set_writeback,
1308 int end_writeback)
1309 {
1310 int ret;
1311 struct page *pages[16];
1312 unsigned long index = start >> PAGE_CACHE_SHIFT;
1313 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1314 unsigned long nr_pages = end_index - index + 1;
1315 int i;
1316 int clear_bits = 0;
1317
1318 if (clear_unlock)
1319 clear_bits |= EXTENT_LOCKED;
1320 if (clear_dirty)
1321 clear_bits |= EXTENT_DIRTY;
1322
1323 if (clear_delalloc)
1324 clear_bits |= EXTENT_DELALLOC;
1325
1326 clear_extent_bit(tree, start, end, clear_bits, 1, 0, GFP_NOFS);
1327 if (!(unlock_pages || clear_dirty || set_writeback || end_writeback))
1328 return 0;
1329
1330 while (nr_pages > 0) {
1331 ret = find_get_pages_contig(inode->i_mapping, index,
1332 min_t(unsigned long,
1333 nr_pages, ARRAY_SIZE(pages)), pages);
1334 for (i = 0; i < ret; i++) {
1335 if (pages[i] == locked_page) {
1336 page_cache_release(pages[i]);
1337 continue;
1338 }
1339 if (clear_dirty)
1340 clear_page_dirty_for_io(pages[i]);
1341 if (set_writeback)
1342 set_page_writeback(pages[i]);
1343 if (end_writeback)
1344 end_page_writeback(pages[i]);
1345 if (unlock_pages)
1346 unlock_page(pages[i]);
1347 page_cache_release(pages[i]);
1348 }
1349 nr_pages -= ret;
1350 index += ret;
1351 cond_resched();
1352 }
1353 return 0;
1354 }
1355
1356 /*
1357 * count the number of bytes in the tree that have a given bit(s)
1358 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1359 * cached. The total number found is returned.
1360 */
1361 u64 count_range_bits(struct extent_io_tree *tree,
1362 u64 *start, u64 search_end, u64 max_bytes,
1363 unsigned long bits)
1364 {
1365 struct rb_node *node;
1366 struct extent_state *state;
1367 u64 cur_start = *start;
1368 u64 total_bytes = 0;
1369 int found = 0;
1370
1371 if (search_end <= cur_start) {
1372 WARN_ON(1);
1373 return 0;
1374 }
1375
1376 spin_lock(&tree->lock);
1377 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1378 total_bytes = tree->dirty_bytes;
1379 goto out;
1380 }
1381 /*
1382 * this search will find all the extents that end after
1383 * our range starts.
1384 */
1385 node = tree_search(tree, cur_start);
1386 if (!node)
1387 goto out;
1388
1389 while (1) {
1390 state = rb_entry(node, struct extent_state, rb_node);
1391 if (state->start > search_end)
1392 break;
1393 if (state->end >= cur_start && (state->state & bits)) {
1394 total_bytes += min(search_end, state->end) + 1 -
1395 max(cur_start, state->start);
1396 if (total_bytes >= max_bytes)
1397 break;
1398 if (!found) {
1399 *start = state->start;
1400 found = 1;
1401 }
1402 }
1403 node = rb_next(node);
1404 if (!node)
1405 break;
1406 }
1407 out:
1408 spin_unlock(&tree->lock);
1409 return total_bytes;
1410 }
1411
1412 /*
1413 * set the private field for a given byte offset in the tree. If there isn't
1414 * an extent_state there already, this does nothing.
1415 */
1416 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1417 {
1418 struct rb_node *node;
1419 struct extent_state *state;
1420 int ret = 0;
1421
1422 spin_lock(&tree->lock);
1423 /*
1424 * this search will find all the extents that end after
1425 * our range starts.
1426 */
1427 node = tree_search(tree, start);
1428 if (!node) {
1429 ret = -ENOENT;
1430 goto out;
1431 }
1432 state = rb_entry(node, struct extent_state, rb_node);
1433 if (state->start != start) {
1434 ret = -ENOENT;
1435 goto out;
1436 }
1437 state->private = private;
1438 out:
1439 spin_unlock(&tree->lock);
1440 return ret;
1441 }
1442
1443 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1444 {
1445 struct rb_node *node;
1446 struct extent_state *state;
1447 int ret = 0;
1448
1449 spin_lock(&tree->lock);
1450 /*
1451 * this search will find all the extents that end after
1452 * our range starts.
1453 */
1454 node = tree_search(tree, start);
1455 if (!node) {
1456 ret = -ENOENT;
1457 goto out;
1458 }
1459 state = rb_entry(node, struct extent_state, rb_node);
1460 if (state->start != start) {
1461 ret = -ENOENT;
1462 goto out;
1463 }
1464 *private = state->private;
1465 out:
1466 spin_unlock(&tree->lock);
1467 return ret;
1468 }
1469
1470 /*
1471 * searches a range in the state tree for a given mask.
1472 * If 'filled' == 1, this returns 1 only if every extent in the tree
1473 * has the bits set. Otherwise, 1 is returned if any bit in the
1474 * range is found set.
1475 */
1476 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1477 int bits, int filled)
1478 {
1479 struct extent_state *state = NULL;
1480 struct rb_node *node;
1481 int bitset = 0;
1482
1483 spin_lock(&tree->lock);
1484 node = tree_search(tree, start);
1485 while (node && start <= end) {
1486 state = rb_entry(node, struct extent_state, rb_node);
1487
1488 if (filled && state->start > start) {
1489 bitset = 0;
1490 break;
1491 }
1492
1493 if (state->start > end)
1494 break;
1495
1496 if (state->state & bits) {
1497 bitset = 1;
1498 if (!filled)
1499 break;
1500 } else if (filled) {
1501 bitset = 0;
1502 break;
1503 }
1504 start = state->end + 1;
1505 if (start > end)
1506 break;
1507 node = rb_next(node);
1508 if (!node) {
1509 if (filled)
1510 bitset = 0;
1511 break;
1512 }
1513 }
1514 spin_unlock(&tree->lock);
1515 return bitset;
1516 }
1517
1518 /*
1519 * helper function to set a given page up to date if all the
1520 * extents in the tree for that page are up to date
1521 */
1522 static int check_page_uptodate(struct extent_io_tree *tree,
1523 struct page *page)
1524 {
1525 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1526 u64 end = start + PAGE_CACHE_SIZE - 1;
1527 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1528 SetPageUptodate(page);
1529 return 0;
1530 }
1531
1532 /*
1533 * helper function to unlock a page if all the extents in the tree
1534 * for that page are unlocked
1535 */
1536 static int check_page_locked(struct extent_io_tree *tree,
1537 struct page *page)
1538 {
1539 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1540 u64 end = start + PAGE_CACHE_SIZE - 1;
1541 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1542 unlock_page(page);
1543 return 0;
1544 }
1545
1546 /*
1547 * helper function to end page writeback if all the extents
1548 * in the tree for that page are done with writeback
1549 */
1550 static int check_page_writeback(struct extent_io_tree *tree,
1551 struct page *page)
1552 {
1553 end_page_writeback(page);
1554 return 0;
1555 }
1556
1557 /* lots and lots of room for performance fixes in the end_bio funcs */
1558
1559 /*
1560 * after a writepage IO is done, we need to:
1561 * clear the uptodate bits on error
1562 * clear the writeback bits in the extent tree for this IO
1563 * end_page_writeback if the page has no more pending IO
1564 *
1565 * Scheduling is not allowed, so the extent state tree is expected
1566 * to have one and only one object corresponding to this IO.
1567 */
1568 static void end_bio_extent_writepage(struct bio *bio, int err)
1569 {
1570 int uptodate = err == 0;
1571 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1572 struct extent_io_tree *tree;
1573 u64 start;
1574 u64 end;
1575 int whole_page;
1576 int ret;
1577
1578 do {
1579 struct page *page = bvec->bv_page;
1580 tree = &BTRFS_I(page->mapping->host)->io_tree;
1581
1582 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1583 bvec->bv_offset;
1584 end = start + bvec->bv_len - 1;
1585
1586 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1587 whole_page = 1;
1588 else
1589 whole_page = 0;
1590
1591 if (--bvec >= bio->bi_io_vec)
1592 prefetchw(&bvec->bv_page->flags);
1593 if (tree->ops && tree->ops->writepage_end_io_hook) {
1594 ret = tree->ops->writepage_end_io_hook(page, start,
1595 end, NULL, uptodate);
1596 if (ret)
1597 uptodate = 0;
1598 }
1599
1600 if (!uptodate && tree->ops &&
1601 tree->ops->writepage_io_failed_hook) {
1602 ret = tree->ops->writepage_io_failed_hook(bio, page,
1603 start, end, NULL);
1604 if (ret == 0) {
1605 uptodate = (err == 0);
1606 continue;
1607 }
1608 }
1609
1610 if (!uptodate) {
1611 clear_extent_uptodate(tree, start, end, GFP_NOFS);
1612 ClearPageUptodate(page);
1613 SetPageError(page);
1614 }
1615
1616 if (whole_page)
1617 end_page_writeback(page);
1618 else
1619 check_page_writeback(tree, page);
1620 } while (bvec >= bio->bi_io_vec);
1621
1622 bio_put(bio);
1623 }
1624
1625 /*
1626 * after a readpage IO is done, we need to:
1627 * clear the uptodate bits on error
1628 * set the uptodate bits if things worked
1629 * set the page up to date if all extents in the tree are uptodate
1630 * clear the lock bit in the extent tree
1631 * unlock the page if there are no other extents locked for it
1632 *
1633 * Scheduling is not allowed, so the extent state tree is expected
1634 * to have one and only one object corresponding to this IO.
1635 */
1636 static void end_bio_extent_readpage(struct bio *bio, int err)
1637 {
1638 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1639 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1640 struct extent_io_tree *tree;
1641 u64 start;
1642 u64 end;
1643 int whole_page;
1644 int ret;
1645
1646 if (err)
1647 uptodate = 0;
1648
1649 do {
1650 struct page *page = bvec->bv_page;
1651 tree = &BTRFS_I(page->mapping->host)->io_tree;
1652
1653 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1654 bvec->bv_offset;
1655 end = start + bvec->bv_len - 1;
1656
1657 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1658 whole_page = 1;
1659 else
1660 whole_page = 0;
1661
1662 if (--bvec >= bio->bi_io_vec)
1663 prefetchw(&bvec->bv_page->flags);
1664
1665 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1666 ret = tree->ops->readpage_end_io_hook(page, start, end,
1667 NULL);
1668 if (ret)
1669 uptodate = 0;
1670 }
1671 if (!uptodate && tree->ops &&
1672 tree->ops->readpage_io_failed_hook) {
1673 ret = tree->ops->readpage_io_failed_hook(bio, page,
1674 start, end, NULL);
1675 if (ret == 0) {
1676 uptodate =
1677 test_bit(BIO_UPTODATE, &bio->bi_flags);
1678 if (err)
1679 uptodate = 0;
1680 continue;
1681 }
1682 }
1683
1684 if (uptodate) {
1685 set_extent_uptodate(tree, start, end,
1686 GFP_ATOMIC);
1687 }
1688 unlock_extent(tree, start, end, GFP_ATOMIC);
1689
1690 if (whole_page) {
1691 if (uptodate) {
1692 SetPageUptodate(page);
1693 } else {
1694 ClearPageUptodate(page);
1695 SetPageError(page);
1696 }
1697 unlock_page(page);
1698 } else {
1699 if (uptodate) {
1700 check_page_uptodate(tree, page);
1701 } else {
1702 ClearPageUptodate(page);
1703 SetPageError(page);
1704 }
1705 check_page_locked(tree, page);
1706 }
1707 } while (bvec >= bio->bi_io_vec);
1708
1709 bio_put(bio);
1710 }
1711
1712 /*
1713 * IO done from prepare_write is pretty simple, we just unlock
1714 * the structs in the extent tree when done, and set the uptodate bits
1715 * as appropriate.
1716 */
1717 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1718 {
1719 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1720 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1721 struct extent_io_tree *tree;
1722 u64 start;
1723 u64 end;
1724
1725 do {
1726 struct page *page = bvec->bv_page;
1727 tree = &BTRFS_I(page->mapping->host)->io_tree;
1728
1729 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1730 bvec->bv_offset;
1731 end = start + bvec->bv_len - 1;
1732
1733 if (--bvec >= bio->bi_io_vec)
1734 prefetchw(&bvec->bv_page->flags);
1735
1736 if (uptodate) {
1737 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1738 } else {
1739 ClearPageUptodate(page);
1740 SetPageError(page);
1741 }
1742
1743 unlock_extent(tree, start, end, GFP_ATOMIC);
1744
1745 } while (bvec >= bio->bi_io_vec);
1746
1747 bio_put(bio);
1748 }
1749
1750 static struct bio *
1751 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1752 gfp_t gfp_flags)
1753 {
1754 struct bio *bio;
1755
1756 bio = bio_alloc(gfp_flags, nr_vecs);
1757
1758 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1759 while (!bio && (nr_vecs /= 2))
1760 bio = bio_alloc(gfp_flags, nr_vecs);
1761 }
1762
1763 if (bio) {
1764 bio->bi_size = 0;
1765 bio->bi_bdev = bdev;
1766 bio->bi_sector = first_sector;
1767 }
1768 return bio;
1769 }
1770
1771 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1772 unsigned long bio_flags)
1773 {
1774 int ret = 0;
1775 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1776 struct page *page = bvec->bv_page;
1777 struct extent_io_tree *tree = bio->bi_private;
1778 u64 start;
1779 u64 end;
1780
1781 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1782 end = start + bvec->bv_len - 1;
1783
1784 bio->bi_private = NULL;
1785
1786 bio_get(bio);
1787
1788 if (tree->ops && tree->ops->submit_bio_hook)
1789 tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1790 mirror_num, bio_flags);
1791 else
1792 submit_bio(rw, bio);
1793 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1794 ret = -EOPNOTSUPP;
1795 bio_put(bio);
1796 return ret;
1797 }
1798
1799 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1800 struct page *page, sector_t sector,
1801 size_t size, unsigned long offset,
1802 struct block_device *bdev,
1803 struct bio **bio_ret,
1804 unsigned long max_pages,
1805 bio_end_io_t end_io_func,
1806 int mirror_num,
1807 unsigned long prev_bio_flags,
1808 unsigned long bio_flags)
1809 {
1810 int ret = 0;
1811 struct bio *bio;
1812 int nr;
1813 int contig = 0;
1814 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1815 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1816 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1817
1818 if (bio_ret && *bio_ret) {
1819 bio = *bio_ret;
1820 if (old_compressed)
1821 contig = bio->bi_sector == sector;
1822 else
1823 contig = bio->bi_sector + (bio->bi_size >> 9) ==
1824 sector;
1825
1826 if (prev_bio_flags != bio_flags || !contig ||
1827 (tree->ops && tree->ops->merge_bio_hook &&
1828 tree->ops->merge_bio_hook(page, offset, page_size, bio,
1829 bio_flags)) ||
1830 bio_add_page(bio, page, page_size, offset) < page_size) {
1831 ret = submit_one_bio(rw, bio, mirror_num,
1832 prev_bio_flags);
1833 bio = NULL;
1834 } else {
1835 return 0;
1836 }
1837 }
1838 if (this_compressed)
1839 nr = BIO_MAX_PAGES;
1840 else
1841 nr = bio_get_nr_vecs(bdev);
1842
1843 bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1844
1845 bio_add_page(bio, page, page_size, offset);
1846 bio->bi_end_io = end_io_func;
1847 bio->bi_private = tree;
1848
1849 if (bio_ret)
1850 *bio_ret = bio;
1851 else
1852 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1853
1854 return ret;
1855 }
1856
1857 void set_page_extent_mapped(struct page *page)
1858 {
1859 if (!PagePrivate(page)) {
1860 SetPagePrivate(page);
1861 page_cache_get(page);
1862 set_page_private(page, EXTENT_PAGE_PRIVATE);
1863 }
1864 }
1865
1866 static void set_page_extent_head(struct page *page, unsigned long len)
1867 {
1868 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1869 }
1870
1871 /*
1872 * basic readpage implementation. Locked extent state structs are inserted
1873 * into the tree that are removed when the IO is done (by the end_io
1874 * handlers)
1875 */
1876 static int __extent_read_full_page(struct extent_io_tree *tree,
1877 struct page *page,
1878 get_extent_t *get_extent,
1879 struct bio **bio, int mirror_num,
1880 unsigned long *bio_flags)
1881 {
1882 struct inode *inode = page->mapping->host;
1883 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1884 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1885 u64 end;
1886 u64 cur = start;
1887 u64 extent_offset;
1888 u64 last_byte = i_size_read(inode);
1889 u64 block_start;
1890 u64 cur_end;
1891 sector_t sector;
1892 struct extent_map *em;
1893 struct block_device *bdev;
1894 int ret;
1895 int nr = 0;
1896 size_t page_offset = 0;
1897 size_t iosize;
1898 size_t disk_io_size;
1899 size_t blocksize = inode->i_sb->s_blocksize;
1900 unsigned long this_bio_flag = 0;
1901
1902 set_page_extent_mapped(page);
1903
1904 end = page_end;
1905 lock_extent(tree, start, end, GFP_NOFS);
1906
1907 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
1908 char *userpage;
1909 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
1910
1911 if (zero_offset) {
1912 iosize = PAGE_CACHE_SIZE - zero_offset;
1913 userpage = kmap_atomic(page, KM_USER0);
1914 memset(userpage + zero_offset, 0, iosize);
1915 flush_dcache_page(page);
1916 kunmap_atomic(userpage, KM_USER0);
1917 }
1918 }
1919 while (cur <= end) {
1920 if (cur >= last_byte) {
1921 char *userpage;
1922 iosize = PAGE_CACHE_SIZE - page_offset;
1923 userpage = kmap_atomic(page, KM_USER0);
1924 memset(userpage + page_offset, 0, iosize);
1925 flush_dcache_page(page);
1926 kunmap_atomic(userpage, KM_USER0);
1927 set_extent_uptodate(tree, cur, cur + iosize - 1,
1928 GFP_NOFS);
1929 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1930 break;
1931 }
1932 em = get_extent(inode, page, page_offset, cur,
1933 end - cur + 1, 0);
1934 if (IS_ERR(em) || !em) {
1935 SetPageError(page);
1936 unlock_extent(tree, cur, end, GFP_NOFS);
1937 break;
1938 }
1939 extent_offset = cur - em->start;
1940 BUG_ON(extent_map_end(em) <= cur);
1941 BUG_ON(end < cur);
1942
1943 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1944 this_bio_flag = EXTENT_BIO_COMPRESSED;
1945
1946 iosize = min(extent_map_end(em) - cur, end - cur + 1);
1947 cur_end = min(extent_map_end(em) - 1, end);
1948 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1949 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
1950 disk_io_size = em->block_len;
1951 sector = em->block_start >> 9;
1952 } else {
1953 sector = (em->block_start + extent_offset) >> 9;
1954 disk_io_size = iosize;
1955 }
1956 bdev = em->bdev;
1957 block_start = em->block_start;
1958 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1959 block_start = EXTENT_MAP_HOLE;
1960 free_extent_map(em);
1961 em = NULL;
1962
1963 /* we've found a hole, just zero and go on */
1964 if (block_start == EXTENT_MAP_HOLE) {
1965 char *userpage;
1966 userpage = kmap_atomic(page, KM_USER0);
1967 memset(userpage + page_offset, 0, iosize);
1968 flush_dcache_page(page);
1969 kunmap_atomic(userpage, KM_USER0);
1970
1971 set_extent_uptodate(tree, cur, cur + iosize - 1,
1972 GFP_NOFS);
1973 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1974 cur = cur + iosize;
1975 page_offset += iosize;
1976 continue;
1977 }
1978 /* the get_extent function already copied into the page */
1979 if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1980 check_page_uptodate(tree, page);
1981 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1982 cur = cur + iosize;
1983 page_offset += iosize;
1984 continue;
1985 }
1986 /* we have an inline extent but it didn't get marked up
1987 * to date. Error out
1988 */
1989 if (block_start == EXTENT_MAP_INLINE) {
1990 SetPageError(page);
1991 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1992 cur = cur + iosize;
1993 page_offset += iosize;
1994 continue;
1995 }
1996
1997 ret = 0;
1998 if (tree->ops && tree->ops->readpage_io_hook) {
1999 ret = tree->ops->readpage_io_hook(page, cur,
2000 cur + iosize - 1);
2001 }
2002 if (!ret) {
2003 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2004 pnr -= page->index;
2005 ret = submit_extent_page(READ, tree, page,
2006 sector, disk_io_size, page_offset,
2007 bdev, bio, pnr,
2008 end_bio_extent_readpage, mirror_num,
2009 *bio_flags,
2010 this_bio_flag);
2011 nr++;
2012 *bio_flags = this_bio_flag;
2013 }
2014 if (ret)
2015 SetPageError(page);
2016 cur = cur + iosize;
2017 page_offset += iosize;
2018 }
2019 if (!nr) {
2020 if (!PageError(page))
2021 SetPageUptodate(page);
2022 unlock_page(page);
2023 }
2024 return 0;
2025 }
2026
2027 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2028 get_extent_t *get_extent)
2029 {
2030 struct bio *bio = NULL;
2031 unsigned long bio_flags = 0;
2032 int ret;
2033
2034 ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2035 &bio_flags);
2036 if (bio)
2037 submit_one_bio(READ, bio, 0, bio_flags);
2038 return ret;
2039 }
2040
2041 static noinline void update_nr_written(struct page *page,
2042 struct writeback_control *wbc,
2043 unsigned long nr_written)
2044 {
2045 wbc->nr_to_write -= nr_written;
2046 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2047 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2048 page->mapping->writeback_index = page->index + nr_written;
2049 }
2050
2051 /*
2052 * the writepage semantics are similar to regular writepage. extent
2053 * records are inserted to lock ranges in the tree, and as dirty areas
2054 * are found, they are marked writeback. Then the lock bits are removed
2055 * and the end_io handler clears the writeback ranges
2056 */
2057 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2058 void *data)
2059 {
2060 struct inode *inode = page->mapping->host;
2061 struct extent_page_data *epd = data;
2062 struct extent_io_tree *tree = epd->tree;
2063 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2064 u64 delalloc_start;
2065 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2066 u64 end;
2067 u64 cur = start;
2068 u64 extent_offset;
2069 u64 last_byte = i_size_read(inode);
2070 u64 block_start;
2071 u64 iosize;
2072 u64 unlock_start;
2073 sector_t sector;
2074 struct extent_map *em;
2075 struct block_device *bdev;
2076 int ret;
2077 int nr = 0;
2078 size_t pg_offset = 0;
2079 size_t blocksize;
2080 loff_t i_size = i_size_read(inode);
2081 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2082 u64 nr_delalloc;
2083 u64 delalloc_end;
2084 int page_started;
2085 int compressed;
2086 int write_flags;
2087 unsigned long nr_written = 0;
2088
2089 if (wbc->sync_mode == WB_SYNC_ALL)
2090 write_flags = WRITE_SYNC_PLUG;
2091 else
2092 write_flags = WRITE;
2093
2094 WARN_ON(!PageLocked(page));
2095 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2096 if (page->index > end_index ||
2097 (page->index == end_index && !pg_offset)) {
2098 page->mapping->a_ops->invalidatepage(page, 0);
2099 unlock_page(page);
2100 return 0;
2101 }
2102
2103 if (page->index == end_index) {
2104 char *userpage;
2105
2106 userpage = kmap_atomic(page, KM_USER0);
2107 memset(userpage + pg_offset, 0,
2108 PAGE_CACHE_SIZE - pg_offset);
2109 kunmap_atomic(userpage, KM_USER0);
2110 flush_dcache_page(page);
2111 }
2112 pg_offset = 0;
2113
2114 set_page_extent_mapped(page);
2115
2116 delalloc_start = start;
2117 delalloc_end = 0;
2118 page_started = 0;
2119 if (!epd->extent_locked) {
2120 u64 delalloc_to_write;
2121 /*
2122 * make sure the wbc mapping index is at least updated
2123 * to this page.
2124 */
2125 update_nr_written(page, wbc, 0);
2126
2127 while (delalloc_end < page_end) {
2128 nr_delalloc = find_lock_delalloc_range(inode, tree,
2129 page,
2130 &delalloc_start,
2131 &delalloc_end,
2132 128 * 1024 * 1024);
2133 if (nr_delalloc == 0) {
2134 delalloc_start = delalloc_end + 1;
2135 continue;
2136 }
2137 tree->ops->fill_delalloc(inode, page, delalloc_start,
2138 delalloc_end, &page_started,
2139 &nr_written);
2140 delalloc_to_write = (delalloc_end -
2141 max_t(u64, page_offset(page),
2142 delalloc_start) + 1) >>
2143 PAGE_CACHE_SHIFT;
2144 if (wbc->nr_to_write < delalloc_to_write) {
2145 wbc->nr_to_write = min_t(long, 8192,
2146 delalloc_to_write);
2147 }
2148 delalloc_start = delalloc_end + 1;
2149 }
2150
2151 /* did the fill delalloc function already unlock and start
2152 * the IO?
2153 */
2154 if (page_started) {
2155 ret = 0;
2156 /*
2157 * we've unlocked the page, so we can't update
2158 * the mapping's writeback index, just update
2159 * nr_to_write.
2160 */
2161 wbc->nr_to_write -= nr_written;
2162 goto done_unlocked;
2163 }
2164 }
2165 lock_extent(tree, start, page_end, GFP_NOFS);
2166
2167 unlock_start = start;
2168
2169 if (tree->ops && tree->ops->writepage_start_hook) {
2170 ret = tree->ops->writepage_start_hook(page, start,
2171 page_end);
2172 if (ret == -EAGAIN) {
2173 unlock_extent(tree, start, page_end, GFP_NOFS);
2174 redirty_page_for_writepage(wbc, page);
2175 update_nr_written(page, wbc, nr_written);
2176 unlock_page(page);
2177 ret = 0;
2178 goto done_unlocked;
2179 }
2180 }
2181
2182 /*
2183 * we don't want to touch the inode after unlocking the page,
2184 * so we update the mapping writeback index now
2185 */
2186 update_nr_written(page, wbc, nr_written + 1);
2187
2188 end = page_end;
2189 if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0))
2190 printk(KERN_ERR "btrfs delalloc bits after lock_extent\n");
2191
2192 if (last_byte <= start) {
2193 clear_extent_bit(tree, start, page_end,
2194 EXTENT_LOCKED | EXTENT_DIRTY,
2195 1, 0, GFP_NOFS);
2196 if (tree->ops && tree->ops->writepage_end_io_hook)
2197 tree->ops->writepage_end_io_hook(page, start,
2198 page_end, NULL, 1);
2199 unlock_start = page_end + 1;
2200 goto done;
2201 }
2202
2203 blocksize = inode->i_sb->s_blocksize;
2204
2205 while (cur <= end) {
2206 if (cur >= last_byte) {
2207 unlock_extent(tree, unlock_start, page_end, GFP_NOFS);
2208 if (tree->ops && tree->ops->writepage_end_io_hook)
2209 tree->ops->writepage_end_io_hook(page, cur,
2210 page_end, NULL, 1);
2211 unlock_start = page_end + 1;
2212 break;
2213 }
2214 em = epd->get_extent(inode, page, pg_offset, cur,
2215 end - cur + 1, 1);
2216 if (IS_ERR(em) || !em) {
2217 SetPageError(page);
2218 break;
2219 }
2220
2221 extent_offset = cur - em->start;
2222 BUG_ON(extent_map_end(em) <= cur);
2223 BUG_ON(end < cur);
2224 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2225 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2226 sector = (em->block_start + extent_offset) >> 9;
2227 bdev = em->bdev;
2228 block_start = em->block_start;
2229 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2230 free_extent_map(em);
2231 em = NULL;
2232
2233 /*
2234 * compressed and inline extents are written through other
2235 * paths in the FS
2236 */
2237 if (compressed || block_start == EXTENT_MAP_HOLE ||
2238 block_start == EXTENT_MAP_INLINE) {
2239 unlock_extent(tree, unlock_start, cur + iosize - 1,
2240 GFP_NOFS);
2241
2242 /*
2243 * end_io notification does not happen here for
2244 * compressed extents
2245 */
2246 if (!compressed && tree->ops &&
2247 tree->ops->writepage_end_io_hook)
2248 tree->ops->writepage_end_io_hook(page, cur,
2249 cur + iosize - 1,
2250 NULL, 1);
2251 else if (compressed) {
2252 /* we don't want to end_page_writeback on
2253 * a compressed extent. this happens
2254 * elsewhere
2255 */
2256 nr++;
2257 }
2258
2259 cur += iosize;
2260 pg_offset += iosize;
2261 unlock_start = cur;
2262 continue;
2263 }
2264 /* leave this out until we have a page_mkwrite call */
2265 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2266 EXTENT_DIRTY, 0)) {
2267 cur = cur + iosize;
2268 pg_offset += iosize;
2269 continue;
2270 }
2271
2272 if (tree->ops && tree->ops->writepage_io_hook) {
2273 ret = tree->ops->writepage_io_hook(page, cur,
2274 cur + iosize - 1);
2275 } else {
2276 ret = 0;
2277 }
2278 if (ret) {
2279 SetPageError(page);
2280 } else {
2281 unsigned long max_nr = end_index + 1;
2282
2283 set_range_writeback(tree, cur, cur + iosize - 1);
2284 if (!PageWriteback(page)) {
2285 printk(KERN_ERR "btrfs warning page %lu not "
2286 "writeback, cur %llu end %llu\n",
2287 page->index, (unsigned long long)cur,
2288 (unsigned long long)end);
2289 }
2290
2291 ret = submit_extent_page(write_flags, tree, page,
2292 sector, iosize, pg_offset,
2293 bdev, &epd->bio, max_nr,
2294 end_bio_extent_writepage,
2295 0, 0, 0);
2296 if (ret)
2297 SetPageError(page);
2298 }
2299 cur = cur + iosize;
2300 pg_offset += iosize;
2301 nr++;
2302 }
2303 done:
2304 if (nr == 0) {
2305 /* make sure the mapping tag for page dirty gets cleared */
2306 set_page_writeback(page);
2307 end_page_writeback(page);
2308 }
2309 if (unlock_start <= page_end)
2310 unlock_extent(tree, unlock_start, page_end, GFP_NOFS);
2311 unlock_page(page);
2312
2313 done_unlocked:
2314
2315 return 0;
2316 }
2317
2318 /**
2319 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2320 * @mapping: address space structure to write
2321 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2322 * @writepage: function called for each page
2323 * @data: data passed to writepage function
2324 *
2325 * If a page is already under I/O, write_cache_pages() skips it, even
2326 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2327 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2328 * and msync() need to guarantee that all the data which was dirty at the time
2329 * the call was made get new I/O started against them. If wbc->sync_mode is
2330 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2331 * existing IO to complete.
2332 */
2333 static int extent_write_cache_pages(struct extent_io_tree *tree,
2334 struct address_space *mapping,
2335 struct writeback_control *wbc,
2336 writepage_t writepage, void *data,
2337 void (*flush_fn)(void *))
2338 {
2339 int ret = 0;
2340 int done = 0;
2341 struct pagevec pvec;
2342 int nr_pages;
2343 pgoff_t index;
2344 pgoff_t end; /* Inclusive */
2345 int scanned = 0;
2346 int range_whole = 0;
2347
2348 pagevec_init(&pvec, 0);
2349 if (wbc->range_cyclic) {
2350 index = mapping->writeback_index; /* Start from prev offset */
2351 end = -1;
2352 } else {
2353 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2354 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2355 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2356 range_whole = 1;
2357 scanned = 1;
2358 }
2359 retry:
2360 while (!done && (index <= end) &&
2361 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2362 PAGECACHE_TAG_DIRTY, min(end - index,
2363 (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2364 unsigned i;
2365
2366 scanned = 1;
2367 for (i = 0; i < nr_pages; i++) {
2368 struct page *page = pvec.pages[i];
2369
2370 /*
2371 * At this point we hold neither mapping->tree_lock nor
2372 * lock on the page itself: the page may be truncated or
2373 * invalidated (changing page->mapping to NULL), or even
2374 * swizzled back from swapper_space to tmpfs file
2375 * mapping
2376 */
2377 if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2378 tree->ops->write_cache_pages_lock_hook(page);
2379 else
2380 lock_page(page);
2381
2382 if (unlikely(page->mapping != mapping)) {
2383 unlock_page(page);
2384 continue;
2385 }
2386
2387 if (!wbc->range_cyclic && page->index > end) {
2388 done = 1;
2389 unlock_page(page);
2390 continue;
2391 }
2392
2393 if (wbc->sync_mode != WB_SYNC_NONE) {
2394 if (PageWriteback(page))
2395 flush_fn(data);
2396 wait_on_page_writeback(page);
2397 }
2398
2399 if (PageWriteback(page) ||
2400 !clear_page_dirty_for_io(page)) {
2401 unlock_page(page);
2402 continue;
2403 }
2404
2405 ret = (*writepage)(page, wbc, data);
2406
2407 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2408 unlock_page(page);
2409 ret = 0;
2410 }
2411 if (ret || wbc->nr_to_write <= 0)
2412 done = 1;
2413 }
2414 pagevec_release(&pvec);
2415 cond_resched();
2416 }
2417 if (!scanned && !done) {
2418 /*
2419 * We hit the last page and there is more work to be done: wrap
2420 * back to the start of the file
2421 */
2422 scanned = 1;
2423 index = 0;
2424 goto retry;
2425 }
2426 return ret;
2427 }
2428
2429 static void flush_epd_write_bio(struct extent_page_data *epd)
2430 {
2431 if (epd->bio) {
2432 if (epd->sync_io)
2433 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2434 else
2435 submit_one_bio(WRITE, epd->bio, 0, 0);
2436 epd->bio = NULL;
2437 }
2438 }
2439
2440 static noinline void flush_write_bio(void *data)
2441 {
2442 struct extent_page_data *epd = data;
2443 flush_epd_write_bio(epd);
2444 }
2445
2446 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2447 get_extent_t *get_extent,
2448 struct writeback_control *wbc)
2449 {
2450 int ret;
2451 struct address_space *mapping = page->mapping;
2452 struct extent_page_data epd = {
2453 .bio = NULL,
2454 .tree = tree,
2455 .get_extent = get_extent,
2456 .extent_locked = 0,
2457 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2458 };
2459 struct writeback_control wbc_writepages = {
2460 .bdi = wbc->bdi,
2461 .sync_mode = wbc->sync_mode,
2462 .older_than_this = NULL,
2463 .nr_to_write = 64,
2464 .range_start = page_offset(page) + PAGE_CACHE_SIZE,
2465 .range_end = (loff_t)-1,
2466 };
2467
2468 ret = __extent_writepage(page, wbc, &epd);
2469
2470 extent_write_cache_pages(tree, mapping, &wbc_writepages,
2471 __extent_writepage, &epd, flush_write_bio);
2472 flush_epd_write_bio(&epd);
2473 return ret;
2474 }
2475
2476 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2477 u64 start, u64 end, get_extent_t *get_extent,
2478 int mode)
2479 {
2480 int ret = 0;
2481 struct address_space *mapping = inode->i_mapping;
2482 struct page *page;
2483 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2484 PAGE_CACHE_SHIFT;
2485
2486 struct extent_page_data epd = {
2487 .bio = NULL,
2488 .tree = tree,
2489 .get_extent = get_extent,
2490 .extent_locked = 1,
2491 .sync_io = mode == WB_SYNC_ALL,
2492 };
2493 struct writeback_control wbc_writepages = {
2494 .bdi = inode->i_mapping->backing_dev_info,
2495 .sync_mode = mode,
2496 .older_than_this = NULL,
2497 .nr_to_write = nr_pages * 2,
2498 .range_start = start,
2499 .range_end = end + 1,
2500 };
2501
2502 while (start <= end) {
2503 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2504 if (clear_page_dirty_for_io(page))
2505 ret = __extent_writepage(page, &wbc_writepages, &epd);
2506 else {
2507 if (tree->ops && tree->ops->writepage_end_io_hook)
2508 tree->ops->writepage_end_io_hook(page, start,
2509 start + PAGE_CACHE_SIZE - 1,
2510 NULL, 1);
2511 unlock_page(page);
2512 }
2513 page_cache_release(page);
2514 start += PAGE_CACHE_SIZE;
2515 }
2516
2517 flush_epd_write_bio(&epd);
2518 return ret;
2519 }
2520
2521 int extent_writepages(struct extent_io_tree *tree,
2522 struct address_space *mapping,
2523 get_extent_t *get_extent,
2524 struct writeback_control *wbc)
2525 {
2526 int ret = 0;
2527 struct extent_page_data epd = {
2528 .bio = NULL,
2529 .tree = tree,
2530 .get_extent = get_extent,
2531 .extent_locked = 0,
2532 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2533 };
2534
2535 ret = extent_write_cache_pages(tree, mapping, wbc,
2536 __extent_writepage, &epd,
2537 flush_write_bio);
2538 flush_epd_write_bio(&epd);
2539 return ret;
2540 }
2541
2542 int extent_readpages(struct extent_io_tree *tree,
2543 struct address_space *mapping,
2544 struct list_head *pages, unsigned nr_pages,
2545 get_extent_t get_extent)
2546 {
2547 struct bio *bio = NULL;
2548 unsigned page_idx;
2549 struct pagevec pvec;
2550 unsigned long bio_flags = 0;
2551
2552 pagevec_init(&pvec, 0);
2553 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2554 struct page *page = list_entry(pages->prev, struct page, lru);
2555
2556 prefetchw(&page->flags);
2557 list_del(&page->lru);
2558 /*
2559 * what we want to do here is call add_to_page_cache_lru,
2560 * but that isn't exported, so we reproduce it here
2561 */
2562 if (!add_to_page_cache(page, mapping,
2563 page->index, GFP_KERNEL)) {
2564
2565 /* open coding of lru_cache_add, also not exported */
2566 page_cache_get(page);
2567 if (!pagevec_add(&pvec, page))
2568 __pagevec_lru_add_file(&pvec);
2569 __extent_read_full_page(tree, page, get_extent,
2570 &bio, 0, &bio_flags);
2571 }
2572 page_cache_release(page);
2573 }
2574 if (pagevec_count(&pvec))
2575 __pagevec_lru_add_file(&pvec);
2576 BUG_ON(!list_empty(pages));
2577 if (bio)
2578 submit_one_bio(READ, bio, 0, bio_flags);
2579 return 0;
2580 }
2581
2582 /*
2583 * basic invalidatepage code, this waits on any locked or writeback
2584 * ranges corresponding to the page, and then deletes any extent state
2585 * records from the tree
2586 */
2587 int extent_invalidatepage(struct extent_io_tree *tree,
2588 struct page *page, unsigned long offset)
2589 {
2590 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2591 u64 end = start + PAGE_CACHE_SIZE - 1;
2592 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2593
2594 start += (offset + blocksize - 1) & ~(blocksize - 1);
2595 if (start > end)
2596 return 0;
2597
2598 lock_extent(tree, start, end, GFP_NOFS);
2599 wait_on_page_writeback(page);
2600 clear_extent_bit(tree, start, end,
2601 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2602 1, 1, GFP_NOFS);
2603 return 0;
2604 }
2605
2606 /*
2607 * simple commit_write call, set_range_dirty is used to mark both
2608 * the pages and the extent records as dirty
2609 */
2610 int extent_commit_write(struct extent_io_tree *tree,
2611 struct inode *inode, struct page *page,
2612 unsigned from, unsigned to)
2613 {
2614 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2615
2616 set_page_extent_mapped(page);
2617 set_page_dirty(page);
2618
2619 if (pos > inode->i_size) {
2620 i_size_write(inode, pos);
2621 mark_inode_dirty(inode);
2622 }
2623 return 0;
2624 }
2625
2626 int extent_prepare_write(struct extent_io_tree *tree,
2627 struct inode *inode, struct page *page,
2628 unsigned from, unsigned to, get_extent_t *get_extent)
2629 {
2630 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2631 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2632 u64 block_start;
2633 u64 orig_block_start;
2634 u64 block_end;
2635 u64 cur_end;
2636 struct extent_map *em;
2637 unsigned blocksize = 1 << inode->i_blkbits;
2638 size_t page_offset = 0;
2639 size_t block_off_start;
2640 size_t block_off_end;
2641 int err = 0;
2642 int iocount = 0;
2643 int ret = 0;
2644 int isnew;
2645
2646 set_page_extent_mapped(page);
2647
2648 block_start = (page_start + from) & ~((u64)blocksize - 1);
2649 block_end = (page_start + to - 1) | (blocksize - 1);
2650 orig_block_start = block_start;
2651
2652 lock_extent(tree, page_start, page_end, GFP_NOFS);
2653 while (block_start <= block_end) {
2654 em = get_extent(inode, page, page_offset, block_start,
2655 block_end - block_start + 1, 1);
2656 if (IS_ERR(em) || !em)
2657 goto err;
2658
2659 cur_end = min(block_end, extent_map_end(em) - 1);
2660 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2661 block_off_end = block_off_start + blocksize;
2662 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2663
2664 if (!PageUptodate(page) && isnew &&
2665 (block_off_end > to || block_off_start < from)) {
2666 void *kaddr;
2667
2668 kaddr = kmap_atomic(page, KM_USER0);
2669 if (block_off_end > to)
2670 memset(kaddr + to, 0, block_off_end - to);
2671 if (block_off_start < from)
2672 memset(kaddr + block_off_start, 0,
2673 from - block_off_start);
2674 flush_dcache_page(page);
2675 kunmap_atomic(kaddr, KM_USER0);
2676 }
2677 if ((em->block_start != EXTENT_MAP_HOLE &&
2678 em->block_start != EXTENT_MAP_INLINE) &&
2679 !isnew && !PageUptodate(page) &&
2680 (block_off_end > to || block_off_start < from) &&
2681 !test_range_bit(tree, block_start, cur_end,
2682 EXTENT_UPTODATE, 1)) {
2683 u64 sector;
2684 u64 extent_offset = block_start - em->start;
2685 size_t iosize;
2686 sector = (em->block_start + extent_offset) >> 9;
2687 iosize = (cur_end - block_start + blocksize) &
2688 ~((u64)blocksize - 1);
2689 /*
2690 * we've already got the extent locked, but we
2691 * need to split the state such that our end_bio
2692 * handler can clear the lock.
2693 */
2694 set_extent_bit(tree, block_start,
2695 block_start + iosize - 1,
2696 EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2697 ret = submit_extent_page(READ, tree, page,
2698 sector, iosize, page_offset, em->bdev,
2699 NULL, 1,
2700 end_bio_extent_preparewrite, 0,
2701 0, 0);
2702 iocount++;
2703 block_start = block_start + iosize;
2704 } else {
2705 set_extent_uptodate(tree, block_start, cur_end,
2706 GFP_NOFS);
2707 unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2708 block_start = cur_end + 1;
2709 }
2710 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2711 free_extent_map(em);
2712 }
2713 if (iocount) {
2714 wait_extent_bit(tree, orig_block_start,
2715 block_end, EXTENT_LOCKED);
2716 }
2717 check_page_uptodate(tree, page);
2718 err:
2719 /* FIXME, zero out newly allocated blocks on error */
2720 return err;
2721 }
2722
2723 /*
2724 * a helper for releasepage, this tests for areas of the page that
2725 * are locked or under IO and drops the related state bits if it is safe
2726 * to drop the page.
2727 */
2728 int try_release_extent_state(struct extent_map_tree *map,
2729 struct extent_io_tree *tree, struct page *page,
2730 gfp_t mask)
2731 {
2732 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2733 u64 end = start + PAGE_CACHE_SIZE - 1;
2734 int ret = 1;
2735
2736 if (test_range_bit(tree, start, end,
2737 EXTENT_IOBITS | EXTENT_ORDERED, 0))
2738 ret = 0;
2739 else {
2740 if ((mask & GFP_NOFS) == GFP_NOFS)
2741 mask = GFP_NOFS;
2742 clear_extent_bit(tree, start, end, EXTENT_UPTODATE,
2743 1, 1, mask);
2744 }
2745 return ret;
2746 }
2747
2748 /*
2749 * a helper for releasepage. As long as there are no locked extents
2750 * in the range corresponding to the page, both state records and extent
2751 * map records are removed
2752 */
2753 int try_release_extent_mapping(struct extent_map_tree *map,
2754 struct extent_io_tree *tree, struct page *page,
2755 gfp_t mask)
2756 {
2757 struct extent_map *em;
2758 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2759 u64 end = start + PAGE_CACHE_SIZE - 1;
2760
2761 if ((mask & __GFP_WAIT) &&
2762 page->mapping->host->i_size > 16 * 1024 * 1024) {
2763 u64 len;
2764 while (start <= end) {
2765 len = end - start + 1;
2766 write_lock(&map->lock);
2767 em = lookup_extent_mapping(map, start, len);
2768 if (!em || IS_ERR(em)) {
2769 write_unlock(&map->lock);
2770 break;
2771 }
2772 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2773 em->start != start) {
2774 write_unlock(&map->lock);
2775 free_extent_map(em);
2776 break;
2777 }
2778 if (!test_range_bit(tree, em->start,
2779 extent_map_end(em) - 1,
2780 EXTENT_LOCKED | EXTENT_WRITEBACK |
2781 EXTENT_ORDERED,
2782 0)) {
2783 remove_extent_mapping(map, em);
2784 /* once for the rb tree */
2785 free_extent_map(em);
2786 }
2787 start = extent_map_end(em);
2788 write_unlock(&map->lock);
2789
2790 /* once for us */
2791 free_extent_map(em);
2792 }
2793 }
2794 return try_release_extent_state(map, tree, page, mask);
2795 }
2796
2797 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2798 get_extent_t *get_extent)
2799 {
2800 struct inode *inode = mapping->host;
2801 u64 start = iblock << inode->i_blkbits;
2802 sector_t sector = 0;
2803 size_t blksize = (1 << inode->i_blkbits);
2804 struct extent_map *em;
2805
2806 lock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2807 GFP_NOFS);
2808 em = get_extent(inode, NULL, 0, start, blksize, 0);
2809 unlock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2810 GFP_NOFS);
2811 if (!em || IS_ERR(em))
2812 return 0;
2813
2814 if (em->block_start > EXTENT_MAP_LAST_BYTE)
2815 goto out;
2816
2817 sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2818 out:
2819 free_extent_map(em);
2820 return sector;
2821 }
2822
2823 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2824 __u64 start, __u64 len, get_extent_t *get_extent)
2825 {
2826 int ret;
2827 u64 off = start;
2828 u64 max = start + len;
2829 u32 flags = 0;
2830 u64 disko = 0;
2831 struct extent_map *em = NULL;
2832 int end = 0;
2833 u64 em_start = 0, em_len = 0;
2834 unsigned long emflags;
2835 ret = 0;
2836
2837 if (len == 0)
2838 return -EINVAL;
2839
2840 lock_extent(&BTRFS_I(inode)->io_tree, start, start + len,
2841 GFP_NOFS);
2842 em = get_extent(inode, NULL, 0, off, max - off, 0);
2843 if (!em)
2844 goto out;
2845 if (IS_ERR(em)) {
2846 ret = PTR_ERR(em);
2847 goto out;
2848 }
2849 while (!end) {
2850 off = em->start + em->len;
2851 if (off >= max)
2852 end = 1;
2853
2854 em_start = em->start;
2855 em_len = em->len;
2856
2857 disko = 0;
2858 flags = 0;
2859
2860 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
2861 end = 1;
2862 flags |= FIEMAP_EXTENT_LAST;
2863 } else if (em->block_start == EXTENT_MAP_HOLE) {
2864 flags |= FIEMAP_EXTENT_UNWRITTEN;
2865 } else if (em->block_start == EXTENT_MAP_INLINE) {
2866 flags |= (FIEMAP_EXTENT_DATA_INLINE |
2867 FIEMAP_EXTENT_NOT_ALIGNED);
2868 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
2869 flags |= (FIEMAP_EXTENT_DELALLOC |
2870 FIEMAP_EXTENT_UNKNOWN);
2871 } else {
2872 disko = em->block_start;
2873 }
2874 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2875 flags |= FIEMAP_EXTENT_ENCODED;
2876
2877 emflags = em->flags;
2878 free_extent_map(em);
2879 em = NULL;
2880
2881 if (!end) {
2882 em = get_extent(inode, NULL, 0, off, max - off, 0);
2883 if (!em)
2884 goto out;
2885 if (IS_ERR(em)) {
2886 ret = PTR_ERR(em);
2887 goto out;
2888 }
2889 emflags = em->flags;
2890 }
2891 if (test_bit(EXTENT_FLAG_VACANCY, &emflags)) {
2892 flags |= FIEMAP_EXTENT_LAST;
2893 end = 1;
2894 }
2895
2896 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
2897 em_len, flags);
2898 if (ret)
2899 goto out_free;
2900 }
2901 out_free:
2902 free_extent_map(em);
2903 out:
2904 unlock_extent(&BTRFS_I(inode)->io_tree, start, start + len,
2905 GFP_NOFS);
2906 return ret;
2907 }
2908
2909 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2910 unsigned long i)
2911 {
2912 struct page *p;
2913 struct address_space *mapping;
2914
2915 if (i == 0)
2916 return eb->first_page;
2917 i += eb->start >> PAGE_CACHE_SHIFT;
2918 mapping = eb->first_page->mapping;
2919 if (!mapping)
2920 return NULL;
2921
2922 /*
2923 * extent_buffer_page is only called after pinning the page
2924 * by increasing the reference count. So we know the page must
2925 * be in the radix tree.
2926 */
2927 rcu_read_lock();
2928 p = radix_tree_lookup(&mapping->page_tree, i);
2929 rcu_read_unlock();
2930
2931 return p;
2932 }
2933
2934 static inline unsigned long num_extent_pages(u64 start, u64 len)
2935 {
2936 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2937 (start >> PAGE_CACHE_SHIFT);
2938 }
2939
2940 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
2941 u64 start,
2942 unsigned long len,
2943 gfp_t mask)
2944 {
2945 struct extent_buffer *eb = NULL;
2946 #if LEAK_DEBUG
2947 unsigned long flags;
2948 #endif
2949
2950 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2951 eb->start = start;
2952 eb->len = len;
2953 spin_lock_init(&eb->lock);
2954 init_waitqueue_head(&eb->lock_wq);
2955
2956 #if LEAK_DEBUG
2957 spin_lock_irqsave(&leak_lock, flags);
2958 list_add(&eb->leak_list, &buffers);
2959 spin_unlock_irqrestore(&leak_lock, flags);
2960 #endif
2961 atomic_set(&eb->refs, 1);
2962
2963 return eb;
2964 }
2965
2966 static void __free_extent_buffer(struct extent_buffer *eb)
2967 {
2968 #if LEAK_DEBUG
2969 unsigned long flags;
2970 spin_lock_irqsave(&leak_lock, flags);
2971 list_del(&eb->leak_list);
2972 spin_unlock_irqrestore(&leak_lock, flags);
2973 #endif
2974 kmem_cache_free(extent_buffer_cache, eb);
2975 }
2976
2977 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
2978 u64 start, unsigned long len,
2979 struct page *page0,
2980 gfp_t mask)
2981 {
2982 unsigned long num_pages = num_extent_pages(start, len);
2983 unsigned long i;
2984 unsigned long index = start >> PAGE_CACHE_SHIFT;
2985 struct extent_buffer *eb;
2986 struct extent_buffer *exists = NULL;
2987 struct page *p;
2988 struct address_space *mapping = tree->mapping;
2989 int uptodate = 1;
2990
2991 spin_lock(&tree->buffer_lock);
2992 eb = buffer_search(tree, start);
2993 if (eb) {
2994 atomic_inc(&eb->refs);
2995 spin_unlock(&tree->buffer_lock);
2996 mark_page_accessed(eb->first_page);
2997 return eb;
2998 }
2999 spin_unlock(&tree->buffer_lock);
3000
3001 eb = __alloc_extent_buffer(tree, start, len, mask);
3002 if (!eb)
3003 return NULL;
3004
3005 if (page0) {
3006 eb->first_page = page0;
3007 i = 1;
3008 index++;
3009 page_cache_get(page0);
3010 mark_page_accessed(page0);
3011 set_page_extent_mapped(page0);
3012 set_page_extent_head(page0, len);
3013 uptodate = PageUptodate(page0);
3014 } else {
3015 i = 0;
3016 }
3017 for (; i < num_pages; i++, index++) {
3018 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3019 if (!p) {
3020 WARN_ON(1);
3021 goto free_eb;
3022 }
3023 set_page_extent_mapped(p);
3024 mark_page_accessed(p);
3025 if (i == 0) {
3026 eb->first_page = p;
3027 set_page_extent_head(p, len);
3028 } else {
3029 set_page_private(p, EXTENT_PAGE_PRIVATE);
3030 }
3031 if (!PageUptodate(p))
3032 uptodate = 0;
3033 unlock_page(p);
3034 }
3035 if (uptodate)
3036 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3037
3038 spin_lock(&tree->buffer_lock);
3039 exists = buffer_tree_insert(tree, start, &eb->rb_node);
3040 if (exists) {
3041 /* add one reference for the caller */
3042 atomic_inc(&exists->refs);
3043 spin_unlock(&tree->buffer_lock);
3044 goto free_eb;
3045 }
3046 spin_unlock(&tree->buffer_lock);
3047
3048 /* add one reference for the tree */
3049 atomic_inc(&eb->refs);
3050 return eb;
3051
3052 free_eb:
3053 if (!atomic_dec_and_test(&eb->refs))
3054 return exists;
3055 for (index = 1; index < i; index++)
3056 page_cache_release(extent_buffer_page(eb, index));
3057 page_cache_release(extent_buffer_page(eb, 0));
3058 __free_extent_buffer(eb);
3059 return exists;
3060 }
3061
3062 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3063 u64 start, unsigned long len,
3064 gfp_t mask)
3065 {
3066 struct extent_buffer *eb;
3067
3068 spin_lock(&tree->buffer_lock);
3069 eb = buffer_search(tree, start);
3070 if (eb)
3071 atomic_inc(&eb->refs);
3072 spin_unlock(&tree->buffer_lock);
3073
3074 if (eb)
3075 mark_page_accessed(eb->first_page);
3076
3077 return eb;
3078 }
3079
3080 void free_extent_buffer(struct extent_buffer *eb)
3081 {
3082 if (!eb)
3083 return;
3084
3085 if (!atomic_dec_and_test(&eb->refs))
3086 return;
3087
3088 WARN_ON(1);
3089 }
3090
3091 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3092 struct extent_buffer *eb)
3093 {
3094 unsigned long i;
3095 unsigned long num_pages;
3096 struct page *page;
3097
3098 num_pages = num_extent_pages(eb->start, eb->len);
3099
3100 for (i = 0; i < num_pages; i++) {
3101 page = extent_buffer_page(eb, i);
3102 if (!PageDirty(page))
3103 continue;
3104
3105 lock_page(page);
3106 if (i == 0)
3107 set_page_extent_head(page, eb->len);
3108 else
3109 set_page_private(page, EXTENT_PAGE_PRIVATE);
3110
3111 clear_page_dirty_for_io(page);
3112 spin_lock_irq(&page->mapping->tree_lock);
3113 if (!PageDirty(page)) {
3114 radix_tree_tag_clear(&page->mapping->page_tree,
3115 page_index(page),
3116 PAGECACHE_TAG_DIRTY);
3117 }
3118 spin_unlock_irq(&page->mapping->tree_lock);
3119 unlock_page(page);
3120 }
3121 return 0;
3122 }
3123
3124 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3125 struct extent_buffer *eb)
3126 {
3127 return wait_on_extent_writeback(tree, eb->start,
3128 eb->start + eb->len - 1);
3129 }
3130
3131 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3132 struct extent_buffer *eb)
3133 {
3134 unsigned long i;
3135 unsigned long num_pages;
3136 int was_dirty = 0;
3137
3138 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3139 num_pages = num_extent_pages(eb->start, eb->len);
3140 for (i = 0; i < num_pages; i++)
3141 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3142 return was_dirty;
3143 }
3144
3145 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3146 struct extent_buffer *eb)
3147 {
3148 unsigned long i;
3149 struct page *page;
3150 unsigned long num_pages;
3151
3152 num_pages = num_extent_pages(eb->start, eb->len);
3153 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3154
3155 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3156 GFP_NOFS);
3157 for (i = 0; i < num_pages; i++) {
3158 page = extent_buffer_page(eb, i);
3159 if (page)
3160 ClearPageUptodate(page);
3161 }
3162 return 0;
3163 }
3164
3165 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3166 struct extent_buffer *eb)
3167 {
3168 unsigned long i;
3169 struct page *page;
3170 unsigned long num_pages;
3171
3172 num_pages = num_extent_pages(eb->start, eb->len);
3173
3174 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3175 GFP_NOFS);
3176 for (i = 0; i < num_pages; i++) {
3177 page = extent_buffer_page(eb, i);
3178 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3179 ((i == num_pages - 1) &&
3180 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3181 check_page_uptodate(tree, page);
3182 continue;
3183 }
3184 SetPageUptodate(page);
3185 }
3186 return 0;
3187 }
3188
3189 int extent_range_uptodate(struct extent_io_tree *tree,
3190 u64 start, u64 end)
3191 {
3192 struct page *page;
3193 int ret;
3194 int pg_uptodate = 1;
3195 int uptodate;
3196 unsigned long index;
3197
3198 ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1);
3199 if (ret)
3200 return 1;
3201 while (start <= end) {
3202 index = start >> PAGE_CACHE_SHIFT;
3203 page = find_get_page(tree->mapping, index);
3204 uptodate = PageUptodate(page);
3205 page_cache_release(page);
3206 if (!uptodate) {
3207 pg_uptodate = 0;
3208 break;
3209 }
3210 start += PAGE_CACHE_SIZE;
3211 }
3212 return pg_uptodate;
3213 }
3214
3215 int extent_buffer_uptodate(struct extent_io_tree *tree,
3216 struct extent_buffer *eb)
3217 {
3218 int ret = 0;
3219 unsigned long num_pages;
3220 unsigned long i;
3221 struct page *page;
3222 int pg_uptodate = 1;
3223
3224 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3225 return 1;
3226
3227 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3228 EXTENT_UPTODATE, 1);
3229 if (ret)
3230 return ret;
3231
3232 num_pages = num_extent_pages(eb->start, eb->len);
3233 for (i = 0; i < num_pages; i++) {
3234 page = extent_buffer_page(eb, i);
3235 if (!PageUptodate(page)) {
3236 pg_uptodate = 0;
3237 break;
3238 }
3239 }
3240 return pg_uptodate;
3241 }
3242
3243 int read_extent_buffer_pages(struct extent_io_tree *tree,
3244 struct extent_buffer *eb,
3245 u64 start, int wait,
3246 get_extent_t *get_extent, int mirror_num)
3247 {
3248 unsigned long i;
3249 unsigned long start_i;
3250 struct page *page;
3251 int err;
3252 int ret = 0;
3253 int locked_pages = 0;
3254 int all_uptodate = 1;
3255 int inc_all_pages = 0;
3256 unsigned long num_pages;
3257 struct bio *bio = NULL;
3258 unsigned long bio_flags = 0;
3259
3260 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3261 return 0;
3262
3263 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3264 EXTENT_UPTODATE, 1)) {
3265 return 0;
3266 }
3267
3268 if (start) {
3269 WARN_ON(start < eb->start);
3270 start_i = (start >> PAGE_CACHE_SHIFT) -
3271 (eb->start >> PAGE_CACHE_SHIFT);
3272 } else {
3273 start_i = 0;
3274 }
3275
3276 num_pages = num_extent_pages(eb->start, eb->len);
3277 for (i = start_i; i < num_pages; i++) {
3278 page = extent_buffer_page(eb, i);
3279 if (!wait) {
3280 if (!trylock_page(page))
3281 goto unlock_exit;
3282 } else {
3283 lock_page(page);
3284 }
3285 locked_pages++;
3286 if (!PageUptodate(page))
3287 all_uptodate = 0;
3288 }
3289 if (all_uptodate) {
3290 if (start_i == 0)
3291 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3292 goto unlock_exit;
3293 }
3294
3295 for (i = start_i; i < num_pages; i++) {
3296 page = extent_buffer_page(eb, i);
3297 if (inc_all_pages)
3298 page_cache_get(page);
3299 if (!PageUptodate(page)) {
3300 if (start_i == 0)
3301 inc_all_pages = 1;
3302 ClearPageError(page);
3303 err = __extent_read_full_page(tree, page,
3304 get_extent, &bio,
3305 mirror_num, &bio_flags);
3306 if (err)
3307 ret = err;
3308 } else {
3309 unlock_page(page);
3310 }
3311 }
3312
3313 if (bio)
3314 submit_one_bio(READ, bio, mirror_num, bio_flags);
3315
3316 if (ret || !wait)
3317 return ret;
3318
3319 for (i = start_i; i < num_pages; i++) {
3320 page = extent_buffer_page(eb, i);
3321 wait_on_page_locked(page);
3322 if (!PageUptodate(page))
3323 ret = -EIO;
3324 }
3325
3326 if (!ret)
3327 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3328 return ret;
3329
3330 unlock_exit:
3331 i = start_i;
3332 while (locked_pages > 0) {
3333 page = extent_buffer_page(eb, i);
3334 i++;
3335 unlock_page(page);
3336 locked_pages--;
3337 }
3338 return ret;
3339 }
3340
3341 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3342 unsigned long start,
3343 unsigned long len)
3344 {
3345 size_t cur;
3346 size_t offset;
3347 struct page *page;
3348 char *kaddr;
3349 char *dst = (char *)dstv;
3350 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3351 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3352
3353 WARN_ON(start > eb->len);
3354 WARN_ON(start + len > eb->start + eb->len);
3355
3356 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3357
3358 while (len > 0) {
3359 page = extent_buffer_page(eb, i);
3360
3361 cur = min(len, (PAGE_CACHE_SIZE - offset));
3362 kaddr = kmap_atomic(page, KM_USER1);
3363 memcpy(dst, kaddr + offset, cur);
3364 kunmap_atomic(kaddr, KM_USER1);
3365
3366 dst += cur;
3367 len -= cur;
3368 offset = 0;
3369 i++;
3370 }
3371 }
3372
3373 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3374 unsigned long min_len, char **token, char **map,
3375 unsigned long *map_start,
3376 unsigned long *map_len, int km)
3377 {
3378 size_t offset = start & (PAGE_CACHE_SIZE - 1);
3379 char *kaddr;
3380 struct page *p;
3381 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3382 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3383 unsigned long end_i = (start_offset + start + min_len - 1) >>
3384 PAGE_CACHE_SHIFT;
3385
3386 if (i != end_i)
3387 return -EINVAL;
3388
3389 if (i == 0) {
3390 offset = start_offset;
3391 *map_start = 0;
3392 } else {
3393 offset = 0;
3394 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3395 }
3396
3397 if (start + min_len > eb->len) {
3398 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3399 "wanted %lu %lu\n", (unsigned long long)eb->start,
3400 eb->len, start, min_len);
3401 WARN_ON(1);
3402 }
3403
3404 p = extent_buffer_page(eb, i);
3405 kaddr = kmap_atomic(p, km);
3406 *token = kaddr;
3407 *map = kaddr + offset;
3408 *map_len = PAGE_CACHE_SIZE - offset;
3409 return 0;
3410 }
3411
3412 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3413 unsigned long min_len,
3414 char **token, char **map,
3415 unsigned long *map_start,
3416 unsigned long *map_len, int km)
3417 {
3418 int err;
3419 int save = 0;
3420 if (eb->map_token) {
3421 unmap_extent_buffer(eb, eb->map_token, km);
3422 eb->map_token = NULL;
3423 save = 1;
3424 }
3425 err = map_private_extent_buffer(eb, start, min_len, token, map,
3426 map_start, map_len, km);
3427 if (!err && save) {
3428 eb->map_token = *token;
3429 eb->kaddr = *map;
3430 eb->map_start = *map_start;
3431 eb->map_len = *map_len;
3432 }
3433 return err;
3434 }
3435
3436 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3437 {
3438 kunmap_atomic(token, km);
3439 }
3440
3441 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3442 unsigned long start,
3443 unsigned long len)
3444 {
3445 size_t cur;
3446 size_t offset;
3447 struct page *page;
3448 char *kaddr;
3449 char *ptr = (char *)ptrv;
3450 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3451 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3452 int ret = 0;
3453
3454 WARN_ON(start > eb->len);
3455 WARN_ON(start + len > eb->start + eb->len);
3456
3457 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3458
3459 while (len > 0) {
3460 page = extent_buffer_page(eb, i);
3461
3462 cur = min(len, (PAGE_CACHE_SIZE - offset));
3463
3464 kaddr = kmap_atomic(page, KM_USER0);
3465 ret = memcmp(ptr, kaddr + offset, cur);
3466 kunmap_atomic(kaddr, KM_USER0);
3467 if (ret)
3468 break;
3469
3470 ptr += cur;
3471 len -= cur;
3472 offset = 0;
3473 i++;
3474 }
3475 return ret;
3476 }
3477
3478 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3479 unsigned long start, unsigned long len)
3480 {
3481 size_t cur;
3482 size_t offset;
3483 struct page *page;
3484 char *kaddr;
3485 char *src = (char *)srcv;
3486 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3487 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3488
3489 WARN_ON(start > eb->len);
3490 WARN_ON(start + len > eb->start + eb->len);
3491
3492 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3493
3494 while (len > 0) {
3495 page = extent_buffer_page(eb, i);
3496 WARN_ON(!PageUptodate(page));
3497
3498 cur = min(len, PAGE_CACHE_SIZE - offset);
3499 kaddr = kmap_atomic(page, KM_USER1);
3500 memcpy(kaddr + offset, src, cur);
3501 kunmap_atomic(kaddr, KM_USER1);
3502
3503 src += cur;
3504 len -= cur;
3505 offset = 0;
3506 i++;
3507 }
3508 }
3509
3510 void memset_extent_buffer(struct extent_buffer *eb, char c,
3511 unsigned long start, unsigned long len)
3512 {
3513 size_t cur;
3514 size_t offset;
3515 struct page *page;
3516 char *kaddr;
3517 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3518 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3519
3520 WARN_ON(start > eb->len);
3521 WARN_ON(start + len > eb->start + eb->len);
3522
3523 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3524
3525 while (len > 0) {
3526 page = extent_buffer_page(eb, i);
3527 WARN_ON(!PageUptodate(page));
3528
3529 cur = min(len, PAGE_CACHE_SIZE - offset);
3530 kaddr = kmap_atomic(page, KM_USER0);
3531 memset(kaddr + offset, c, cur);
3532 kunmap_atomic(kaddr, KM_USER0);
3533
3534 len -= cur;
3535 offset = 0;
3536 i++;
3537 }
3538 }
3539
3540 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3541 unsigned long dst_offset, unsigned long src_offset,
3542 unsigned long len)
3543 {
3544 u64 dst_len = dst->len;
3545 size_t cur;
3546 size_t offset;
3547 struct page *page;
3548 char *kaddr;
3549 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3550 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3551
3552 WARN_ON(src->len != dst_len);
3553
3554 offset = (start_offset + dst_offset) &
3555 ((unsigned long)PAGE_CACHE_SIZE - 1);
3556
3557 while (len > 0) {
3558 page = extent_buffer_page(dst, i);
3559 WARN_ON(!PageUptodate(page));
3560
3561 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3562
3563 kaddr = kmap_atomic(page, KM_USER0);
3564 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3565 kunmap_atomic(kaddr, KM_USER0);
3566
3567 src_offset += cur;
3568 len -= cur;
3569 offset = 0;
3570 i++;
3571 }
3572 }
3573
3574 static void move_pages(struct page *dst_page, struct page *src_page,
3575 unsigned long dst_off, unsigned long src_off,
3576 unsigned long len)
3577 {
3578 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3579 if (dst_page == src_page) {
3580 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3581 } else {
3582 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3583 char *p = dst_kaddr + dst_off + len;
3584 char *s = src_kaddr + src_off + len;
3585
3586 while (len--)
3587 *--p = *--s;
3588
3589 kunmap_atomic(src_kaddr, KM_USER1);
3590 }
3591 kunmap_atomic(dst_kaddr, KM_USER0);
3592 }
3593
3594 static void copy_pages(struct page *dst_page, struct page *src_page,
3595 unsigned long dst_off, unsigned long src_off,
3596 unsigned long len)
3597 {
3598 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3599 char *src_kaddr;
3600
3601 if (dst_page != src_page)
3602 src_kaddr = kmap_atomic(src_page, KM_USER1);
3603 else
3604 src_kaddr = dst_kaddr;
3605
3606 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3607 kunmap_atomic(dst_kaddr, KM_USER0);
3608 if (dst_page != src_page)
3609 kunmap_atomic(src_kaddr, KM_USER1);
3610 }
3611
3612 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3613 unsigned long src_offset, unsigned long len)
3614 {
3615 size_t cur;
3616 size_t dst_off_in_page;
3617 size_t src_off_in_page;
3618 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3619 unsigned long dst_i;
3620 unsigned long src_i;
3621
3622 if (src_offset + len > dst->len) {
3623 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3624 "len %lu dst len %lu\n", src_offset, len, dst->len);
3625 BUG_ON(1);
3626 }
3627 if (dst_offset + len > dst->len) {
3628 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3629 "len %lu dst len %lu\n", dst_offset, len, dst->len);
3630 BUG_ON(1);
3631 }
3632
3633 while (len > 0) {
3634 dst_off_in_page = (start_offset + dst_offset) &
3635 ((unsigned long)PAGE_CACHE_SIZE - 1);
3636 src_off_in_page = (start_offset + src_offset) &
3637 ((unsigned long)PAGE_CACHE_SIZE - 1);
3638
3639 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3640 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3641
3642 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3643 src_off_in_page));
3644 cur = min_t(unsigned long, cur,
3645 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3646
3647 copy_pages(extent_buffer_page(dst, dst_i),
3648 extent_buffer_page(dst, src_i),
3649 dst_off_in_page, src_off_in_page, cur);
3650
3651 src_offset += cur;
3652 dst_offset += cur;
3653 len -= cur;
3654 }
3655 }
3656
3657 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3658 unsigned long src_offset, unsigned long len)
3659 {
3660 size_t cur;
3661 size_t dst_off_in_page;
3662 size_t src_off_in_page;
3663 unsigned long dst_end = dst_offset + len - 1;
3664 unsigned long src_end = src_offset + len - 1;
3665 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3666 unsigned long dst_i;
3667 unsigned long src_i;
3668
3669 if (src_offset + len > dst->len) {
3670 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3671 "len %lu len %lu\n", src_offset, len, dst->len);
3672 BUG_ON(1);
3673 }
3674 if (dst_offset + len > dst->len) {
3675 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3676 "len %lu len %lu\n", dst_offset, len, dst->len);
3677 BUG_ON(1);
3678 }
3679 if (dst_offset < src_offset) {
3680 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3681 return;
3682 }
3683 while (len > 0) {
3684 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3685 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3686
3687 dst_off_in_page = (start_offset + dst_end) &
3688 ((unsigned long)PAGE_CACHE_SIZE - 1);
3689 src_off_in_page = (start_offset + src_end) &
3690 ((unsigned long)PAGE_CACHE_SIZE - 1);
3691
3692 cur = min_t(unsigned long, len, src_off_in_page + 1);
3693 cur = min(cur, dst_off_in_page + 1);
3694 move_pages(extent_buffer_page(dst, dst_i),
3695 extent_buffer_page(dst, src_i),
3696 dst_off_in_page - cur + 1,
3697 src_off_in_page - cur + 1, cur);
3698
3699 dst_end -= cur;
3700 src_end -= cur;
3701 len -= cur;
3702 }
3703 }
3704
3705 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3706 {
3707 u64 start = page_offset(page);
3708 struct extent_buffer *eb;
3709 int ret = 1;
3710 unsigned long i;
3711 unsigned long num_pages;
3712
3713 spin_lock(&tree->buffer_lock);
3714 eb = buffer_search(tree, start);
3715 if (!eb)
3716 goto out;
3717
3718 if (atomic_read(&eb->refs) > 1) {
3719 ret = 0;
3720 goto out;
3721 }
3722 if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3723 ret = 0;
3724 goto out;
3725 }
3726 /* at this point we can safely release the extent buffer */
3727 num_pages = num_extent_pages(eb->start, eb->len);
3728 for (i = 0; i < num_pages; i++)
3729 page_cache_release(extent_buffer_page(eb, i));
3730 rb_erase(&eb->rb_node, &tree->buffer);
3731 __free_extent_buffer(eb);
3732 out:
3733 spin_unlock(&tree->buffer_lock);
3734 return ret;
3735 }
This page took 0.141383 seconds and 5 git commands to generate.