Merge branch 'for-linus-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30 return !RB_EMPTY_NODE(&state->rb_node);
31 }
32
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36
37 static DEFINE_SPINLOCK(leak_lock);
38
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47 }
48
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57 }
58
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
70 atomic_read(&state->refs));
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 struct inode *inode;
91 u64 isize;
92
93 if (!tree->mapping)
94 return;
95
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller, btrfs_ino(inode), isize, start, end);
102 }
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
109 #endif
110
111 #define BUFFER_LRU_MAX 64
112
113 struct tree_entry {
114 u64 start;
115 u64 end;
116 struct rb_node rb_node;
117 };
118
119 struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
132 };
133
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137 {
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
144 if (!set && (state->state & bits) == 0)
145 return;
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151 }
152
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157 if (!tree->mapping)
158 return NULL;
159 return btrfs_sb(tree->mapping->host->i_sb);
160 }
161
162 int __init extent_io_init(void)
163 {
164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state), 0,
166 SLAB_MEM_SPREAD, NULL);
167 if (!extent_state_cache)
168 return -ENOMEM;
169
170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer), 0,
172 SLAB_MEM_SPREAD, NULL);
173 if (!extent_buffer_cache)
174 goto free_state_cache;
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
184 return 0;
185
186 free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
190 free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
194 free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
196 extent_state_cache = NULL;
197 return -ENOMEM;
198 }
199
200 void extent_io_exit(void)
201 {
202 btrfs_leak_debug_check();
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
213 }
214
215 void extent_io_tree_init(struct extent_io_tree *tree,
216 struct address_space *mapping)
217 {
218 tree->state = RB_ROOT;
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
221 spin_lock_init(&tree->lock);
222 tree->mapping = mapping;
223 }
224
225 static struct extent_state *alloc_extent_state(gfp_t mask)
226 {
227 struct extent_state *state;
228
229 state = kmem_cache_alloc(extent_state_cache, mask);
230 if (!state)
231 return state;
232 state->state = 0;
233 state->failrec = NULL;
234 RB_CLEAR_NODE(&state->rb_node);
235 btrfs_leak_debug_add(&state->leak_list, &states);
236 atomic_set(&state->refs, 1);
237 init_waitqueue_head(&state->wq);
238 trace_alloc_extent_state(state, mask, _RET_IP_);
239 return state;
240 }
241
242 void free_extent_state(struct extent_state *state)
243 {
244 if (!state)
245 return;
246 if (atomic_dec_and_test(&state->refs)) {
247 WARN_ON(extent_state_in_tree(state));
248 btrfs_leak_debug_del(&state->leak_list);
249 trace_free_extent_state(state, _RET_IP_);
250 kmem_cache_free(extent_state_cache, state);
251 }
252 }
253
254 static struct rb_node *tree_insert(struct rb_root *root,
255 struct rb_node *search_start,
256 u64 offset,
257 struct rb_node *node,
258 struct rb_node ***p_in,
259 struct rb_node **parent_in)
260 {
261 struct rb_node **p;
262 struct rb_node *parent = NULL;
263 struct tree_entry *entry;
264
265 if (p_in && parent_in) {
266 p = *p_in;
267 parent = *parent_in;
268 goto do_insert;
269 }
270
271 p = search_start ? &search_start : &root->rb_node;
272 while (*p) {
273 parent = *p;
274 entry = rb_entry(parent, struct tree_entry, rb_node);
275
276 if (offset < entry->start)
277 p = &(*p)->rb_left;
278 else if (offset > entry->end)
279 p = &(*p)->rb_right;
280 else
281 return parent;
282 }
283
284 do_insert:
285 rb_link_node(node, parent, p);
286 rb_insert_color(node, root);
287 return NULL;
288 }
289
290 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
291 struct rb_node **prev_ret,
292 struct rb_node **next_ret,
293 struct rb_node ***p_ret,
294 struct rb_node **parent_ret)
295 {
296 struct rb_root *root = &tree->state;
297 struct rb_node **n = &root->rb_node;
298 struct rb_node *prev = NULL;
299 struct rb_node *orig_prev = NULL;
300 struct tree_entry *entry;
301 struct tree_entry *prev_entry = NULL;
302
303 while (*n) {
304 prev = *n;
305 entry = rb_entry(prev, struct tree_entry, rb_node);
306 prev_entry = entry;
307
308 if (offset < entry->start)
309 n = &(*n)->rb_left;
310 else if (offset > entry->end)
311 n = &(*n)->rb_right;
312 else
313 return *n;
314 }
315
316 if (p_ret)
317 *p_ret = n;
318 if (parent_ret)
319 *parent_ret = prev;
320
321 if (prev_ret) {
322 orig_prev = prev;
323 while (prev && offset > prev_entry->end) {
324 prev = rb_next(prev);
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 }
327 *prev_ret = prev;
328 prev = orig_prev;
329 }
330
331 if (next_ret) {
332 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
333 while (prev && offset < prev_entry->start) {
334 prev = rb_prev(prev);
335 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336 }
337 *next_ret = prev;
338 }
339 return NULL;
340 }
341
342 static inline struct rb_node *
343 tree_search_for_insert(struct extent_io_tree *tree,
344 u64 offset,
345 struct rb_node ***p_ret,
346 struct rb_node **parent_ret)
347 {
348 struct rb_node *prev = NULL;
349 struct rb_node *ret;
350
351 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
352 if (!ret)
353 return prev;
354 return ret;
355 }
356
357 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358 u64 offset)
359 {
360 return tree_search_for_insert(tree, offset, NULL, NULL);
361 }
362
363 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364 struct extent_state *other)
365 {
366 if (tree->ops && tree->ops->merge_extent_hook)
367 tree->ops->merge_extent_hook(tree->mapping->host, new,
368 other);
369 }
370
371 /*
372 * utility function to look for merge candidates inside a given range.
373 * Any extents with matching state are merged together into a single
374 * extent in the tree. Extents with EXTENT_IO in their state field
375 * are not merged because the end_io handlers need to be able to do
376 * operations on them without sleeping (or doing allocations/splits).
377 *
378 * This should be called with the tree lock held.
379 */
380 static void merge_state(struct extent_io_tree *tree,
381 struct extent_state *state)
382 {
383 struct extent_state *other;
384 struct rb_node *other_node;
385
386 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
387 return;
388
389 other_node = rb_prev(&state->rb_node);
390 if (other_node) {
391 other = rb_entry(other_node, struct extent_state, rb_node);
392 if (other->end == state->start - 1 &&
393 other->state == state->state) {
394 merge_cb(tree, state, other);
395 state->start = other->start;
396 rb_erase(&other->rb_node, &tree->state);
397 RB_CLEAR_NODE(&other->rb_node);
398 free_extent_state(other);
399 }
400 }
401 other_node = rb_next(&state->rb_node);
402 if (other_node) {
403 other = rb_entry(other_node, struct extent_state, rb_node);
404 if (other->start == state->end + 1 &&
405 other->state == state->state) {
406 merge_cb(tree, state, other);
407 state->end = other->end;
408 rb_erase(&other->rb_node, &tree->state);
409 RB_CLEAR_NODE(&other->rb_node);
410 free_extent_state(other);
411 }
412 }
413 }
414
415 static void set_state_cb(struct extent_io_tree *tree,
416 struct extent_state *state, unsigned *bits)
417 {
418 if (tree->ops && tree->ops->set_bit_hook)
419 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
420 }
421
422 static void clear_state_cb(struct extent_io_tree *tree,
423 struct extent_state *state, unsigned *bits)
424 {
425 if (tree->ops && tree->ops->clear_bit_hook)
426 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
427 }
428
429 static void set_state_bits(struct extent_io_tree *tree,
430 struct extent_state *state, unsigned *bits,
431 struct extent_changeset *changeset);
432
433 /*
434 * insert an extent_state struct into the tree. 'bits' are set on the
435 * struct before it is inserted.
436 *
437 * This may return -EEXIST if the extent is already there, in which case the
438 * state struct is freed.
439 *
440 * The tree lock is not taken internally. This is a utility function and
441 * probably isn't what you want to call (see set/clear_extent_bit).
442 */
443 static int insert_state(struct extent_io_tree *tree,
444 struct extent_state *state, u64 start, u64 end,
445 struct rb_node ***p,
446 struct rb_node **parent,
447 unsigned *bits, struct extent_changeset *changeset)
448 {
449 struct rb_node *node;
450
451 if (end < start)
452 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
453 end, start);
454 state->start = start;
455 state->end = end;
456
457 set_state_bits(tree, state, bits, changeset);
458
459 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
460 if (node) {
461 struct extent_state *found;
462 found = rb_entry(node, struct extent_state, rb_node);
463 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
464 "%llu %llu\n",
465 found->start, found->end, start, end);
466 return -EEXIST;
467 }
468 merge_state(tree, state);
469 return 0;
470 }
471
472 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
473 u64 split)
474 {
475 if (tree->ops && tree->ops->split_extent_hook)
476 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
477 }
478
479 /*
480 * split a given extent state struct in two, inserting the preallocated
481 * struct 'prealloc' as the newly created second half. 'split' indicates an
482 * offset inside 'orig' where it should be split.
483 *
484 * Before calling,
485 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
486 * are two extent state structs in the tree:
487 * prealloc: [orig->start, split - 1]
488 * orig: [ split, orig->end ]
489 *
490 * The tree locks are not taken by this function. They need to be held
491 * by the caller.
492 */
493 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
494 struct extent_state *prealloc, u64 split)
495 {
496 struct rb_node *node;
497
498 split_cb(tree, orig, split);
499
500 prealloc->start = orig->start;
501 prealloc->end = split - 1;
502 prealloc->state = orig->state;
503 orig->start = split;
504
505 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
506 &prealloc->rb_node, NULL, NULL);
507 if (node) {
508 free_extent_state(prealloc);
509 return -EEXIST;
510 }
511 return 0;
512 }
513
514 static struct extent_state *next_state(struct extent_state *state)
515 {
516 struct rb_node *next = rb_next(&state->rb_node);
517 if (next)
518 return rb_entry(next, struct extent_state, rb_node);
519 else
520 return NULL;
521 }
522
523 /*
524 * utility function to clear some bits in an extent state struct.
525 * it will optionally wake up any one waiting on this state (wake == 1).
526 *
527 * If no bits are set on the state struct after clearing things, the
528 * struct is freed and removed from the tree
529 */
530 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
531 struct extent_state *state,
532 unsigned *bits, int wake,
533 struct extent_changeset *changeset)
534 {
535 struct extent_state *next;
536 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
537
538 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
539 u64 range = state->end - state->start + 1;
540 WARN_ON(range > tree->dirty_bytes);
541 tree->dirty_bytes -= range;
542 }
543 clear_state_cb(tree, state, bits);
544 add_extent_changeset(state, bits_to_clear, changeset, 0);
545 state->state &= ~bits_to_clear;
546 if (wake)
547 wake_up(&state->wq);
548 if (state->state == 0) {
549 next = next_state(state);
550 if (extent_state_in_tree(state)) {
551 rb_erase(&state->rb_node, &tree->state);
552 RB_CLEAR_NODE(&state->rb_node);
553 free_extent_state(state);
554 } else {
555 WARN_ON(1);
556 }
557 } else {
558 merge_state(tree, state);
559 next = next_state(state);
560 }
561 return next;
562 }
563
564 static struct extent_state *
565 alloc_extent_state_atomic(struct extent_state *prealloc)
566 {
567 if (!prealloc)
568 prealloc = alloc_extent_state(GFP_ATOMIC);
569
570 return prealloc;
571 }
572
573 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
574 {
575 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
576 "Extent tree was modified by another "
577 "thread while locked.");
578 }
579
580 /*
581 * clear some bits on a range in the tree. This may require splitting
582 * or inserting elements in the tree, so the gfp mask is used to
583 * indicate which allocations or sleeping are allowed.
584 *
585 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
586 * the given range from the tree regardless of state (ie for truncate).
587 *
588 * the range [start, end] is inclusive.
589 *
590 * This takes the tree lock, and returns 0 on success and < 0 on error.
591 */
592 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
593 unsigned bits, int wake, int delete,
594 struct extent_state **cached_state,
595 gfp_t mask, struct extent_changeset *changeset)
596 {
597 struct extent_state *state;
598 struct extent_state *cached;
599 struct extent_state *prealloc = NULL;
600 struct rb_node *node;
601 u64 last_end;
602 int err;
603 int clear = 0;
604
605 btrfs_debug_check_extent_io_range(tree, start, end);
606
607 if (bits & EXTENT_DELALLOC)
608 bits |= EXTENT_NORESERVE;
609
610 if (delete)
611 bits |= ~EXTENT_CTLBITS;
612 bits |= EXTENT_FIRST_DELALLOC;
613
614 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
615 clear = 1;
616 again:
617 if (!prealloc && gfpflags_allow_blocking(mask)) {
618 /*
619 * Don't care for allocation failure here because we might end
620 * up not needing the pre-allocated extent state at all, which
621 * is the case if we only have in the tree extent states that
622 * cover our input range and don't cover too any other range.
623 * If we end up needing a new extent state we allocate it later.
624 */
625 prealloc = alloc_extent_state(mask);
626 }
627
628 spin_lock(&tree->lock);
629 if (cached_state) {
630 cached = *cached_state;
631
632 if (clear) {
633 *cached_state = NULL;
634 cached_state = NULL;
635 }
636
637 if (cached && extent_state_in_tree(cached) &&
638 cached->start <= start && cached->end > start) {
639 if (clear)
640 atomic_dec(&cached->refs);
641 state = cached;
642 goto hit_next;
643 }
644 if (clear)
645 free_extent_state(cached);
646 }
647 /*
648 * this search will find the extents that end after
649 * our range starts
650 */
651 node = tree_search(tree, start);
652 if (!node)
653 goto out;
654 state = rb_entry(node, struct extent_state, rb_node);
655 hit_next:
656 if (state->start > end)
657 goto out;
658 WARN_ON(state->end < start);
659 last_end = state->end;
660
661 /* the state doesn't have the wanted bits, go ahead */
662 if (!(state->state & bits)) {
663 state = next_state(state);
664 goto next;
665 }
666
667 /*
668 * | ---- desired range ---- |
669 * | state | or
670 * | ------------- state -------------- |
671 *
672 * We need to split the extent we found, and may flip
673 * bits on second half.
674 *
675 * If the extent we found extends past our range, we
676 * just split and search again. It'll get split again
677 * the next time though.
678 *
679 * If the extent we found is inside our range, we clear
680 * the desired bit on it.
681 */
682
683 if (state->start < start) {
684 prealloc = alloc_extent_state_atomic(prealloc);
685 BUG_ON(!prealloc);
686 err = split_state(tree, state, prealloc, start);
687 if (err)
688 extent_io_tree_panic(tree, err);
689
690 prealloc = NULL;
691 if (err)
692 goto out;
693 if (state->end <= end) {
694 state = clear_state_bit(tree, state, &bits, wake,
695 changeset);
696 goto next;
697 }
698 goto search_again;
699 }
700 /*
701 * | ---- desired range ---- |
702 * | state |
703 * We need to split the extent, and clear the bit
704 * on the first half
705 */
706 if (state->start <= end && state->end > end) {
707 prealloc = alloc_extent_state_atomic(prealloc);
708 BUG_ON(!prealloc);
709 err = split_state(tree, state, prealloc, end + 1);
710 if (err)
711 extent_io_tree_panic(tree, err);
712
713 if (wake)
714 wake_up(&state->wq);
715
716 clear_state_bit(tree, prealloc, &bits, wake, changeset);
717
718 prealloc = NULL;
719 goto out;
720 }
721
722 state = clear_state_bit(tree, state, &bits, wake, changeset);
723 next:
724 if (last_end == (u64)-1)
725 goto out;
726 start = last_end + 1;
727 if (start <= end && state && !need_resched())
728 goto hit_next;
729
730 search_again:
731 if (start > end)
732 goto out;
733 spin_unlock(&tree->lock);
734 if (gfpflags_allow_blocking(mask))
735 cond_resched();
736 goto again;
737
738 out:
739 spin_unlock(&tree->lock);
740 if (prealloc)
741 free_extent_state(prealloc);
742
743 return 0;
744
745 }
746
747 static void wait_on_state(struct extent_io_tree *tree,
748 struct extent_state *state)
749 __releases(tree->lock)
750 __acquires(tree->lock)
751 {
752 DEFINE_WAIT(wait);
753 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
754 spin_unlock(&tree->lock);
755 schedule();
756 spin_lock(&tree->lock);
757 finish_wait(&state->wq, &wait);
758 }
759
760 /*
761 * waits for one or more bits to clear on a range in the state tree.
762 * The range [start, end] is inclusive.
763 * The tree lock is taken by this function
764 */
765 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
766 unsigned long bits)
767 {
768 struct extent_state *state;
769 struct rb_node *node;
770
771 btrfs_debug_check_extent_io_range(tree, start, end);
772
773 spin_lock(&tree->lock);
774 again:
775 while (1) {
776 /*
777 * this search will find all the extents that end after
778 * our range starts
779 */
780 node = tree_search(tree, start);
781 process_node:
782 if (!node)
783 break;
784
785 state = rb_entry(node, struct extent_state, rb_node);
786
787 if (state->start > end)
788 goto out;
789
790 if (state->state & bits) {
791 start = state->start;
792 atomic_inc(&state->refs);
793 wait_on_state(tree, state);
794 free_extent_state(state);
795 goto again;
796 }
797 start = state->end + 1;
798
799 if (start > end)
800 break;
801
802 if (!cond_resched_lock(&tree->lock)) {
803 node = rb_next(node);
804 goto process_node;
805 }
806 }
807 out:
808 spin_unlock(&tree->lock);
809 }
810
811 static void set_state_bits(struct extent_io_tree *tree,
812 struct extent_state *state,
813 unsigned *bits, struct extent_changeset *changeset)
814 {
815 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
816
817 set_state_cb(tree, state, bits);
818 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
819 u64 range = state->end - state->start + 1;
820 tree->dirty_bytes += range;
821 }
822 add_extent_changeset(state, bits_to_set, changeset, 1);
823 state->state |= bits_to_set;
824 }
825
826 static void cache_state_if_flags(struct extent_state *state,
827 struct extent_state **cached_ptr,
828 unsigned flags)
829 {
830 if (cached_ptr && !(*cached_ptr)) {
831 if (!flags || (state->state & flags)) {
832 *cached_ptr = state;
833 atomic_inc(&state->refs);
834 }
835 }
836 }
837
838 static void cache_state(struct extent_state *state,
839 struct extent_state **cached_ptr)
840 {
841 return cache_state_if_flags(state, cached_ptr,
842 EXTENT_IOBITS | EXTENT_BOUNDARY);
843 }
844
845 /*
846 * set some bits on a range in the tree. This may require allocations or
847 * sleeping, so the gfp mask is used to indicate what is allowed.
848 *
849 * If any of the exclusive bits are set, this will fail with -EEXIST if some
850 * part of the range already has the desired bits set. The start of the
851 * existing range is returned in failed_start in this case.
852 *
853 * [start, end] is inclusive This takes the tree lock.
854 */
855
856 static int __must_check
857 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
858 unsigned bits, unsigned exclusive_bits,
859 u64 *failed_start, struct extent_state **cached_state,
860 gfp_t mask, struct extent_changeset *changeset)
861 {
862 struct extent_state *state;
863 struct extent_state *prealloc = NULL;
864 struct rb_node *node;
865 struct rb_node **p;
866 struct rb_node *parent;
867 int err = 0;
868 u64 last_start;
869 u64 last_end;
870
871 btrfs_debug_check_extent_io_range(tree, start, end);
872
873 bits |= EXTENT_FIRST_DELALLOC;
874 again:
875 if (!prealloc && gfpflags_allow_blocking(mask)) {
876 /*
877 * Don't care for allocation failure here because we might end
878 * up not needing the pre-allocated extent state at all, which
879 * is the case if we only have in the tree extent states that
880 * cover our input range and don't cover too any other range.
881 * If we end up needing a new extent state we allocate it later.
882 */
883 prealloc = alloc_extent_state(mask);
884 }
885
886 spin_lock(&tree->lock);
887 if (cached_state && *cached_state) {
888 state = *cached_state;
889 if (state->start <= start && state->end > start &&
890 extent_state_in_tree(state)) {
891 node = &state->rb_node;
892 goto hit_next;
893 }
894 }
895 /*
896 * this search will find all the extents that end after
897 * our range starts.
898 */
899 node = tree_search_for_insert(tree, start, &p, &parent);
900 if (!node) {
901 prealloc = alloc_extent_state_atomic(prealloc);
902 BUG_ON(!prealloc);
903 err = insert_state(tree, prealloc, start, end,
904 &p, &parent, &bits, changeset);
905 if (err)
906 extent_io_tree_panic(tree, err);
907
908 cache_state(prealloc, cached_state);
909 prealloc = NULL;
910 goto out;
911 }
912 state = rb_entry(node, struct extent_state, rb_node);
913 hit_next:
914 last_start = state->start;
915 last_end = state->end;
916
917 /*
918 * | ---- desired range ---- |
919 * | state |
920 *
921 * Just lock what we found and keep going
922 */
923 if (state->start == start && state->end <= end) {
924 if (state->state & exclusive_bits) {
925 *failed_start = state->start;
926 err = -EEXIST;
927 goto out;
928 }
929
930 set_state_bits(tree, state, &bits, changeset);
931 cache_state(state, cached_state);
932 merge_state(tree, state);
933 if (last_end == (u64)-1)
934 goto out;
935 start = last_end + 1;
936 state = next_state(state);
937 if (start < end && state && state->start == start &&
938 !need_resched())
939 goto hit_next;
940 goto search_again;
941 }
942
943 /*
944 * | ---- desired range ---- |
945 * | state |
946 * or
947 * | ------------- state -------------- |
948 *
949 * We need to split the extent we found, and may flip bits on
950 * second half.
951 *
952 * If the extent we found extends past our
953 * range, we just split and search again. It'll get split
954 * again the next time though.
955 *
956 * If the extent we found is inside our range, we set the
957 * desired bit on it.
958 */
959 if (state->start < start) {
960 if (state->state & exclusive_bits) {
961 *failed_start = start;
962 err = -EEXIST;
963 goto out;
964 }
965
966 prealloc = alloc_extent_state_atomic(prealloc);
967 BUG_ON(!prealloc);
968 err = split_state(tree, state, prealloc, start);
969 if (err)
970 extent_io_tree_panic(tree, err);
971
972 prealloc = NULL;
973 if (err)
974 goto out;
975 if (state->end <= end) {
976 set_state_bits(tree, state, &bits, changeset);
977 cache_state(state, cached_state);
978 merge_state(tree, state);
979 if (last_end == (u64)-1)
980 goto out;
981 start = last_end + 1;
982 state = next_state(state);
983 if (start < end && state && state->start == start &&
984 !need_resched())
985 goto hit_next;
986 }
987 goto search_again;
988 }
989 /*
990 * | ---- desired range ---- |
991 * | state | or | state |
992 *
993 * There's a hole, we need to insert something in it and
994 * ignore the extent we found.
995 */
996 if (state->start > start) {
997 u64 this_end;
998 if (end < last_start)
999 this_end = end;
1000 else
1001 this_end = last_start - 1;
1002
1003 prealloc = alloc_extent_state_atomic(prealloc);
1004 BUG_ON(!prealloc);
1005
1006 /*
1007 * Avoid to free 'prealloc' if it can be merged with
1008 * the later extent.
1009 */
1010 err = insert_state(tree, prealloc, start, this_end,
1011 NULL, NULL, &bits, changeset);
1012 if (err)
1013 extent_io_tree_panic(tree, err);
1014
1015 cache_state(prealloc, cached_state);
1016 prealloc = NULL;
1017 start = this_end + 1;
1018 goto search_again;
1019 }
1020 /*
1021 * | ---- desired range ---- |
1022 * | state |
1023 * We need to split the extent, and set the bit
1024 * on the first half
1025 */
1026 if (state->start <= end && state->end > end) {
1027 if (state->state & exclusive_bits) {
1028 *failed_start = start;
1029 err = -EEXIST;
1030 goto out;
1031 }
1032
1033 prealloc = alloc_extent_state_atomic(prealloc);
1034 BUG_ON(!prealloc);
1035 err = split_state(tree, state, prealloc, end + 1);
1036 if (err)
1037 extent_io_tree_panic(tree, err);
1038
1039 set_state_bits(tree, prealloc, &bits, changeset);
1040 cache_state(prealloc, cached_state);
1041 merge_state(tree, prealloc);
1042 prealloc = NULL;
1043 goto out;
1044 }
1045
1046 search_again:
1047 if (start > end)
1048 goto out;
1049 spin_unlock(&tree->lock);
1050 if (gfpflags_allow_blocking(mask))
1051 cond_resched();
1052 goto again;
1053
1054 out:
1055 spin_unlock(&tree->lock);
1056 if (prealloc)
1057 free_extent_state(prealloc);
1058
1059 return err;
1060
1061 }
1062
1063 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1064 unsigned bits, u64 * failed_start,
1065 struct extent_state **cached_state, gfp_t mask)
1066 {
1067 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1068 cached_state, mask, NULL);
1069 }
1070
1071
1072 /**
1073 * convert_extent_bit - convert all bits in a given range from one bit to
1074 * another
1075 * @tree: the io tree to search
1076 * @start: the start offset in bytes
1077 * @end: the end offset in bytes (inclusive)
1078 * @bits: the bits to set in this range
1079 * @clear_bits: the bits to clear in this range
1080 * @cached_state: state that we're going to cache
1081 *
1082 * This will go through and set bits for the given range. If any states exist
1083 * already in this range they are set with the given bit and cleared of the
1084 * clear_bits. This is only meant to be used by things that are mergeable, ie
1085 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1086 * boundary bits like LOCK.
1087 *
1088 * All allocations are done with GFP_NOFS.
1089 */
1090 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1091 unsigned bits, unsigned clear_bits,
1092 struct extent_state **cached_state)
1093 {
1094 struct extent_state *state;
1095 struct extent_state *prealloc = NULL;
1096 struct rb_node *node;
1097 struct rb_node **p;
1098 struct rb_node *parent;
1099 int err = 0;
1100 u64 last_start;
1101 u64 last_end;
1102 bool first_iteration = true;
1103
1104 btrfs_debug_check_extent_io_range(tree, start, end);
1105
1106 again:
1107 if (!prealloc) {
1108 /*
1109 * Best effort, don't worry if extent state allocation fails
1110 * here for the first iteration. We might have a cached state
1111 * that matches exactly the target range, in which case no
1112 * extent state allocations are needed. We'll only know this
1113 * after locking the tree.
1114 */
1115 prealloc = alloc_extent_state(GFP_NOFS);
1116 if (!prealloc && !first_iteration)
1117 return -ENOMEM;
1118 }
1119
1120 spin_lock(&tree->lock);
1121 if (cached_state && *cached_state) {
1122 state = *cached_state;
1123 if (state->start <= start && state->end > start &&
1124 extent_state_in_tree(state)) {
1125 node = &state->rb_node;
1126 goto hit_next;
1127 }
1128 }
1129
1130 /*
1131 * this search will find all the extents that end after
1132 * our range starts.
1133 */
1134 node = tree_search_for_insert(tree, start, &p, &parent);
1135 if (!node) {
1136 prealloc = alloc_extent_state_atomic(prealloc);
1137 if (!prealloc) {
1138 err = -ENOMEM;
1139 goto out;
1140 }
1141 err = insert_state(tree, prealloc, start, end,
1142 &p, &parent, &bits, NULL);
1143 if (err)
1144 extent_io_tree_panic(tree, err);
1145 cache_state(prealloc, cached_state);
1146 prealloc = NULL;
1147 goto out;
1148 }
1149 state = rb_entry(node, struct extent_state, rb_node);
1150 hit_next:
1151 last_start = state->start;
1152 last_end = state->end;
1153
1154 /*
1155 * | ---- desired range ---- |
1156 * | state |
1157 *
1158 * Just lock what we found and keep going
1159 */
1160 if (state->start == start && state->end <= end) {
1161 set_state_bits(tree, state, &bits, NULL);
1162 cache_state(state, cached_state);
1163 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1164 if (last_end == (u64)-1)
1165 goto out;
1166 start = last_end + 1;
1167 if (start < end && state && state->start == start &&
1168 !need_resched())
1169 goto hit_next;
1170 goto search_again;
1171 }
1172
1173 /*
1174 * | ---- desired range ---- |
1175 * | state |
1176 * or
1177 * | ------------- state -------------- |
1178 *
1179 * We need to split the extent we found, and may flip bits on
1180 * second half.
1181 *
1182 * If the extent we found extends past our
1183 * range, we just split and search again. It'll get split
1184 * again the next time though.
1185 *
1186 * If the extent we found is inside our range, we set the
1187 * desired bit on it.
1188 */
1189 if (state->start < start) {
1190 prealloc = alloc_extent_state_atomic(prealloc);
1191 if (!prealloc) {
1192 err = -ENOMEM;
1193 goto out;
1194 }
1195 err = split_state(tree, state, prealloc, start);
1196 if (err)
1197 extent_io_tree_panic(tree, err);
1198 prealloc = NULL;
1199 if (err)
1200 goto out;
1201 if (state->end <= end) {
1202 set_state_bits(tree, state, &bits, NULL);
1203 cache_state(state, cached_state);
1204 state = clear_state_bit(tree, state, &clear_bits, 0,
1205 NULL);
1206 if (last_end == (u64)-1)
1207 goto out;
1208 start = last_end + 1;
1209 if (start < end && state && state->start == start &&
1210 !need_resched())
1211 goto hit_next;
1212 }
1213 goto search_again;
1214 }
1215 /*
1216 * | ---- desired range ---- |
1217 * | state | or | state |
1218 *
1219 * There's a hole, we need to insert something in it and
1220 * ignore the extent we found.
1221 */
1222 if (state->start > start) {
1223 u64 this_end;
1224 if (end < last_start)
1225 this_end = end;
1226 else
1227 this_end = last_start - 1;
1228
1229 prealloc = alloc_extent_state_atomic(prealloc);
1230 if (!prealloc) {
1231 err = -ENOMEM;
1232 goto out;
1233 }
1234
1235 /*
1236 * Avoid to free 'prealloc' if it can be merged with
1237 * the later extent.
1238 */
1239 err = insert_state(tree, prealloc, start, this_end,
1240 NULL, NULL, &bits, NULL);
1241 if (err)
1242 extent_io_tree_panic(tree, err);
1243 cache_state(prealloc, cached_state);
1244 prealloc = NULL;
1245 start = this_end + 1;
1246 goto search_again;
1247 }
1248 /*
1249 * | ---- desired range ---- |
1250 * | state |
1251 * We need to split the extent, and set the bit
1252 * on the first half
1253 */
1254 if (state->start <= end && state->end > end) {
1255 prealloc = alloc_extent_state_atomic(prealloc);
1256 if (!prealloc) {
1257 err = -ENOMEM;
1258 goto out;
1259 }
1260
1261 err = split_state(tree, state, prealloc, end + 1);
1262 if (err)
1263 extent_io_tree_panic(tree, err);
1264
1265 set_state_bits(tree, prealloc, &bits, NULL);
1266 cache_state(prealloc, cached_state);
1267 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1268 prealloc = NULL;
1269 goto out;
1270 }
1271
1272 search_again:
1273 if (start > end)
1274 goto out;
1275 spin_unlock(&tree->lock);
1276 cond_resched();
1277 first_iteration = false;
1278 goto again;
1279
1280 out:
1281 spin_unlock(&tree->lock);
1282 if (prealloc)
1283 free_extent_state(prealloc);
1284
1285 return err;
1286 }
1287
1288 /* wrappers around set/clear extent bit */
1289 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1290 unsigned bits, struct extent_changeset *changeset)
1291 {
1292 /*
1293 * We don't support EXTENT_LOCKED yet, as current changeset will
1294 * record any bits changed, so for EXTENT_LOCKED case, it will
1295 * either fail with -EEXIST or changeset will record the whole
1296 * range.
1297 */
1298 BUG_ON(bits & EXTENT_LOCKED);
1299
1300 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1301 changeset);
1302 }
1303
1304 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1305 unsigned bits, int wake, int delete,
1306 struct extent_state **cached, gfp_t mask)
1307 {
1308 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1309 cached, mask, NULL);
1310 }
1311
1312 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1313 unsigned bits, struct extent_changeset *changeset)
1314 {
1315 /*
1316 * Don't support EXTENT_LOCKED case, same reason as
1317 * set_record_extent_bits().
1318 */
1319 BUG_ON(bits & EXTENT_LOCKED);
1320
1321 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1322 changeset);
1323 }
1324
1325 /*
1326 * either insert or lock state struct between start and end use mask to tell
1327 * us if waiting is desired.
1328 */
1329 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1330 struct extent_state **cached_state)
1331 {
1332 int err;
1333 u64 failed_start;
1334
1335 while (1) {
1336 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1337 EXTENT_LOCKED, &failed_start,
1338 cached_state, GFP_NOFS, NULL);
1339 if (err == -EEXIST) {
1340 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1341 start = failed_start;
1342 } else
1343 break;
1344 WARN_ON(start > end);
1345 }
1346 return err;
1347 }
1348
1349 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1350 {
1351 int err;
1352 u64 failed_start;
1353
1354 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1355 &failed_start, NULL, GFP_NOFS, NULL);
1356 if (err == -EEXIST) {
1357 if (failed_start > start)
1358 clear_extent_bit(tree, start, failed_start - 1,
1359 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1360 return 0;
1361 }
1362 return 1;
1363 }
1364
1365 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1366 {
1367 unsigned long index = start >> PAGE_SHIFT;
1368 unsigned long end_index = end >> PAGE_SHIFT;
1369 struct page *page;
1370
1371 while (index <= end_index) {
1372 page = find_get_page(inode->i_mapping, index);
1373 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1374 clear_page_dirty_for_io(page);
1375 put_page(page);
1376 index++;
1377 }
1378 }
1379
1380 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1381 {
1382 unsigned long index = start >> PAGE_SHIFT;
1383 unsigned long end_index = end >> PAGE_SHIFT;
1384 struct page *page;
1385
1386 while (index <= end_index) {
1387 page = find_get_page(inode->i_mapping, index);
1388 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1389 __set_page_dirty_nobuffers(page);
1390 account_page_redirty(page);
1391 put_page(page);
1392 index++;
1393 }
1394 }
1395
1396 /*
1397 * helper function to set both pages and extents in the tree writeback
1398 */
1399 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1400 {
1401 unsigned long index = start >> PAGE_SHIFT;
1402 unsigned long end_index = end >> PAGE_SHIFT;
1403 struct page *page;
1404
1405 while (index <= end_index) {
1406 page = find_get_page(tree->mapping, index);
1407 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1408 set_page_writeback(page);
1409 put_page(page);
1410 index++;
1411 }
1412 }
1413
1414 /* find the first state struct with 'bits' set after 'start', and
1415 * return it. tree->lock must be held. NULL will returned if
1416 * nothing was found after 'start'
1417 */
1418 static struct extent_state *
1419 find_first_extent_bit_state(struct extent_io_tree *tree,
1420 u64 start, unsigned bits)
1421 {
1422 struct rb_node *node;
1423 struct extent_state *state;
1424
1425 /*
1426 * this search will find all the extents that end after
1427 * our range starts.
1428 */
1429 node = tree_search(tree, start);
1430 if (!node)
1431 goto out;
1432
1433 while (1) {
1434 state = rb_entry(node, struct extent_state, rb_node);
1435 if (state->end >= start && (state->state & bits))
1436 return state;
1437
1438 node = rb_next(node);
1439 if (!node)
1440 break;
1441 }
1442 out:
1443 return NULL;
1444 }
1445
1446 /*
1447 * find the first offset in the io tree with 'bits' set. zero is
1448 * returned if we find something, and *start_ret and *end_ret are
1449 * set to reflect the state struct that was found.
1450 *
1451 * If nothing was found, 1 is returned. If found something, return 0.
1452 */
1453 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1454 u64 *start_ret, u64 *end_ret, unsigned bits,
1455 struct extent_state **cached_state)
1456 {
1457 struct extent_state *state;
1458 struct rb_node *n;
1459 int ret = 1;
1460
1461 spin_lock(&tree->lock);
1462 if (cached_state && *cached_state) {
1463 state = *cached_state;
1464 if (state->end == start - 1 && extent_state_in_tree(state)) {
1465 n = rb_next(&state->rb_node);
1466 while (n) {
1467 state = rb_entry(n, struct extent_state,
1468 rb_node);
1469 if (state->state & bits)
1470 goto got_it;
1471 n = rb_next(n);
1472 }
1473 free_extent_state(*cached_state);
1474 *cached_state = NULL;
1475 goto out;
1476 }
1477 free_extent_state(*cached_state);
1478 *cached_state = NULL;
1479 }
1480
1481 state = find_first_extent_bit_state(tree, start, bits);
1482 got_it:
1483 if (state) {
1484 cache_state_if_flags(state, cached_state, 0);
1485 *start_ret = state->start;
1486 *end_ret = state->end;
1487 ret = 0;
1488 }
1489 out:
1490 spin_unlock(&tree->lock);
1491 return ret;
1492 }
1493
1494 /*
1495 * find a contiguous range of bytes in the file marked as delalloc, not
1496 * more than 'max_bytes'. start and end are used to return the range,
1497 *
1498 * 1 is returned if we find something, 0 if nothing was in the tree
1499 */
1500 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1501 u64 *start, u64 *end, u64 max_bytes,
1502 struct extent_state **cached_state)
1503 {
1504 struct rb_node *node;
1505 struct extent_state *state;
1506 u64 cur_start = *start;
1507 u64 found = 0;
1508 u64 total_bytes = 0;
1509
1510 spin_lock(&tree->lock);
1511
1512 /*
1513 * this search will find all the extents that end after
1514 * our range starts.
1515 */
1516 node = tree_search(tree, cur_start);
1517 if (!node) {
1518 if (!found)
1519 *end = (u64)-1;
1520 goto out;
1521 }
1522
1523 while (1) {
1524 state = rb_entry(node, struct extent_state, rb_node);
1525 if (found && (state->start != cur_start ||
1526 (state->state & EXTENT_BOUNDARY))) {
1527 goto out;
1528 }
1529 if (!(state->state & EXTENT_DELALLOC)) {
1530 if (!found)
1531 *end = state->end;
1532 goto out;
1533 }
1534 if (!found) {
1535 *start = state->start;
1536 *cached_state = state;
1537 atomic_inc(&state->refs);
1538 }
1539 found++;
1540 *end = state->end;
1541 cur_start = state->end + 1;
1542 node = rb_next(node);
1543 total_bytes += state->end - state->start + 1;
1544 if (total_bytes >= max_bytes)
1545 break;
1546 if (!node)
1547 break;
1548 }
1549 out:
1550 spin_unlock(&tree->lock);
1551 return found;
1552 }
1553
1554 static noinline void __unlock_for_delalloc(struct inode *inode,
1555 struct page *locked_page,
1556 u64 start, u64 end)
1557 {
1558 int ret;
1559 struct page *pages[16];
1560 unsigned long index = start >> PAGE_SHIFT;
1561 unsigned long end_index = end >> PAGE_SHIFT;
1562 unsigned long nr_pages = end_index - index + 1;
1563 int i;
1564
1565 if (index == locked_page->index && end_index == index)
1566 return;
1567
1568 while (nr_pages > 0) {
1569 ret = find_get_pages_contig(inode->i_mapping, index,
1570 min_t(unsigned long, nr_pages,
1571 ARRAY_SIZE(pages)), pages);
1572 for (i = 0; i < ret; i++) {
1573 if (pages[i] != locked_page)
1574 unlock_page(pages[i]);
1575 put_page(pages[i]);
1576 }
1577 nr_pages -= ret;
1578 index += ret;
1579 cond_resched();
1580 }
1581 }
1582
1583 static noinline int lock_delalloc_pages(struct inode *inode,
1584 struct page *locked_page,
1585 u64 delalloc_start,
1586 u64 delalloc_end)
1587 {
1588 unsigned long index = delalloc_start >> PAGE_SHIFT;
1589 unsigned long start_index = index;
1590 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1591 unsigned long pages_locked = 0;
1592 struct page *pages[16];
1593 unsigned long nrpages;
1594 int ret;
1595 int i;
1596
1597 /* the caller is responsible for locking the start index */
1598 if (index == locked_page->index && index == end_index)
1599 return 0;
1600
1601 /* skip the page at the start index */
1602 nrpages = end_index - index + 1;
1603 while (nrpages > 0) {
1604 ret = find_get_pages_contig(inode->i_mapping, index,
1605 min_t(unsigned long,
1606 nrpages, ARRAY_SIZE(pages)), pages);
1607 if (ret == 0) {
1608 ret = -EAGAIN;
1609 goto done;
1610 }
1611 /* now we have an array of pages, lock them all */
1612 for (i = 0; i < ret; i++) {
1613 /*
1614 * the caller is taking responsibility for
1615 * locked_page
1616 */
1617 if (pages[i] != locked_page) {
1618 lock_page(pages[i]);
1619 if (!PageDirty(pages[i]) ||
1620 pages[i]->mapping != inode->i_mapping) {
1621 ret = -EAGAIN;
1622 unlock_page(pages[i]);
1623 put_page(pages[i]);
1624 goto done;
1625 }
1626 }
1627 put_page(pages[i]);
1628 pages_locked++;
1629 }
1630 nrpages -= ret;
1631 index += ret;
1632 cond_resched();
1633 }
1634 ret = 0;
1635 done:
1636 if (ret && pages_locked) {
1637 __unlock_for_delalloc(inode, locked_page,
1638 delalloc_start,
1639 ((u64)(start_index + pages_locked - 1)) <<
1640 PAGE_SHIFT);
1641 }
1642 return ret;
1643 }
1644
1645 /*
1646 * find a contiguous range of bytes in the file marked as delalloc, not
1647 * more than 'max_bytes'. start and end are used to return the range,
1648 *
1649 * 1 is returned if we find something, 0 if nothing was in the tree
1650 */
1651 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1652 struct extent_io_tree *tree,
1653 struct page *locked_page, u64 *start,
1654 u64 *end, u64 max_bytes)
1655 {
1656 u64 delalloc_start;
1657 u64 delalloc_end;
1658 u64 found;
1659 struct extent_state *cached_state = NULL;
1660 int ret;
1661 int loops = 0;
1662
1663 again:
1664 /* step one, find a bunch of delalloc bytes starting at start */
1665 delalloc_start = *start;
1666 delalloc_end = 0;
1667 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1668 max_bytes, &cached_state);
1669 if (!found || delalloc_end <= *start) {
1670 *start = delalloc_start;
1671 *end = delalloc_end;
1672 free_extent_state(cached_state);
1673 return 0;
1674 }
1675
1676 /*
1677 * start comes from the offset of locked_page. We have to lock
1678 * pages in order, so we can't process delalloc bytes before
1679 * locked_page
1680 */
1681 if (delalloc_start < *start)
1682 delalloc_start = *start;
1683
1684 /*
1685 * make sure to limit the number of pages we try to lock down
1686 */
1687 if (delalloc_end + 1 - delalloc_start > max_bytes)
1688 delalloc_end = delalloc_start + max_bytes - 1;
1689
1690 /* step two, lock all the pages after the page that has start */
1691 ret = lock_delalloc_pages(inode, locked_page,
1692 delalloc_start, delalloc_end);
1693 if (ret == -EAGAIN) {
1694 /* some of the pages are gone, lets avoid looping by
1695 * shortening the size of the delalloc range we're searching
1696 */
1697 free_extent_state(cached_state);
1698 cached_state = NULL;
1699 if (!loops) {
1700 max_bytes = PAGE_SIZE;
1701 loops = 1;
1702 goto again;
1703 } else {
1704 found = 0;
1705 goto out_failed;
1706 }
1707 }
1708 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1709
1710 /* step three, lock the state bits for the whole range */
1711 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1712
1713 /* then test to make sure it is all still delalloc */
1714 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1715 EXTENT_DELALLOC, 1, cached_state);
1716 if (!ret) {
1717 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1718 &cached_state, GFP_NOFS);
1719 __unlock_for_delalloc(inode, locked_page,
1720 delalloc_start, delalloc_end);
1721 cond_resched();
1722 goto again;
1723 }
1724 free_extent_state(cached_state);
1725 *start = delalloc_start;
1726 *end = delalloc_end;
1727 out_failed:
1728 return found;
1729 }
1730
1731 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1732 struct page *locked_page,
1733 unsigned clear_bits,
1734 unsigned long page_ops)
1735 {
1736 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1737 int ret;
1738 struct page *pages[16];
1739 unsigned long index = start >> PAGE_SHIFT;
1740 unsigned long end_index = end >> PAGE_SHIFT;
1741 unsigned long nr_pages = end_index - index + 1;
1742 int i;
1743
1744 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1745 if (page_ops == 0)
1746 return;
1747
1748 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1749 mapping_set_error(inode->i_mapping, -EIO);
1750
1751 while (nr_pages > 0) {
1752 ret = find_get_pages_contig(inode->i_mapping, index,
1753 min_t(unsigned long,
1754 nr_pages, ARRAY_SIZE(pages)), pages);
1755 for (i = 0; i < ret; i++) {
1756
1757 if (page_ops & PAGE_SET_PRIVATE2)
1758 SetPagePrivate2(pages[i]);
1759
1760 if (pages[i] == locked_page) {
1761 put_page(pages[i]);
1762 continue;
1763 }
1764 if (page_ops & PAGE_CLEAR_DIRTY)
1765 clear_page_dirty_for_io(pages[i]);
1766 if (page_ops & PAGE_SET_WRITEBACK)
1767 set_page_writeback(pages[i]);
1768 if (page_ops & PAGE_SET_ERROR)
1769 SetPageError(pages[i]);
1770 if (page_ops & PAGE_END_WRITEBACK)
1771 end_page_writeback(pages[i]);
1772 if (page_ops & PAGE_UNLOCK)
1773 unlock_page(pages[i]);
1774 put_page(pages[i]);
1775 }
1776 nr_pages -= ret;
1777 index += ret;
1778 cond_resched();
1779 }
1780 }
1781
1782 /*
1783 * count the number of bytes in the tree that have a given bit(s)
1784 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1785 * cached. The total number found is returned.
1786 */
1787 u64 count_range_bits(struct extent_io_tree *tree,
1788 u64 *start, u64 search_end, u64 max_bytes,
1789 unsigned bits, int contig)
1790 {
1791 struct rb_node *node;
1792 struct extent_state *state;
1793 u64 cur_start = *start;
1794 u64 total_bytes = 0;
1795 u64 last = 0;
1796 int found = 0;
1797
1798 if (WARN_ON(search_end <= cur_start))
1799 return 0;
1800
1801 spin_lock(&tree->lock);
1802 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1803 total_bytes = tree->dirty_bytes;
1804 goto out;
1805 }
1806 /*
1807 * this search will find all the extents that end after
1808 * our range starts.
1809 */
1810 node = tree_search(tree, cur_start);
1811 if (!node)
1812 goto out;
1813
1814 while (1) {
1815 state = rb_entry(node, struct extent_state, rb_node);
1816 if (state->start > search_end)
1817 break;
1818 if (contig && found && state->start > last + 1)
1819 break;
1820 if (state->end >= cur_start && (state->state & bits) == bits) {
1821 total_bytes += min(search_end, state->end) + 1 -
1822 max(cur_start, state->start);
1823 if (total_bytes >= max_bytes)
1824 break;
1825 if (!found) {
1826 *start = max(cur_start, state->start);
1827 found = 1;
1828 }
1829 last = state->end;
1830 } else if (contig && found) {
1831 break;
1832 }
1833 node = rb_next(node);
1834 if (!node)
1835 break;
1836 }
1837 out:
1838 spin_unlock(&tree->lock);
1839 return total_bytes;
1840 }
1841
1842 /*
1843 * set the private field for a given byte offset in the tree. If there isn't
1844 * an extent_state there already, this does nothing.
1845 */
1846 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1847 struct io_failure_record *failrec)
1848 {
1849 struct rb_node *node;
1850 struct extent_state *state;
1851 int ret = 0;
1852
1853 spin_lock(&tree->lock);
1854 /*
1855 * this search will find all the extents that end after
1856 * our range starts.
1857 */
1858 node = tree_search(tree, start);
1859 if (!node) {
1860 ret = -ENOENT;
1861 goto out;
1862 }
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1865 ret = -ENOENT;
1866 goto out;
1867 }
1868 state->failrec = failrec;
1869 out:
1870 spin_unlock(&tree->lock);
1871 return ret;
1872 }
1873
1874 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1875 struct io_failure_record **failrec)
1876 {
1877 struct rb_node *node;
1878 struct extent_state *state;
1879 int ret = 0;
1880
1881 spin_lock(&tree->lock);
1882 /*
1883 * this search will find all the extents that end after
1884 * our range starts.
1885 */
1886 node = tree_search(tree, start);
1887 if (!node) {
1888 ret = -ENOENT;
1889 goto out;
1890 }
1891 state = rb_entry(node, struct extent_state, rb_node);
1892 if (state->start != start) {
1893 ret = -ENOENT;
1894 goto out;
1895 }
1896 *failrec = state->failrec;
1897 out:
1898 spin_unlock(&tree->lock);
1899 return ret;
1900 }
1901
1902 /*
1903 * searches a range in the state tree for a given mask.
1904 * If 'filled' == 1, this returns 1 only if every extent in the tree
1905 * has the bits set. Otherwise, 1 is returned if any bit in the
1906 * range is found set.
1907 */
1908 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1909 unsigned bits, int filled, struct extent_state *cached)
1910 {
1911 struct extent_state *state = NULL;
1912 struct rb_node *node;
1913 int bitset = 0;
1914
1915 spin_lock(&tree->lock);
1916 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1917 cached->end > start)
1918 node = &cached->rb_node;
1919 else
1920 node = tree_search(tree, start);
1921 while (node && start <= end) {
1922 state = rb_entry(node, struct extent_state, rb_node);
1923
1924 if (filled && state->start > start) {
1925 bitset = 0;
1926 break;
1927 }
1928
1929 if (state->start > end)
1930 break;
1931
1932 if (state->state & bits) {
1933 bitset = 1;
1934 if (!filled)
1935 break;
1936 } else if (filled) {
1937 bitset = 0;
1938 break;
1939 }
1940
1941 if (state->end == (u64)-1)
1942 break;
1943
1944 start = state->end + 1;
1945 if (start > end)
1946 break;
1947 node = rb_next(node);
1948 if (!node) {
1949 if (filled)
1950 bitset = 0;
1951 break;
1952 }
1953 }
1954 spin_unlock(&tree->lock);
1955 return bitset;
1956 }
1957
1958 /*
1959 * helper function to set a given page up to date if all the
1960 * extents in the tree for that page are up to date
1961 */
1962 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1963 {
1964 u64 start = page_offset(page);
1965 u64 end = start + PAGE_SIZE - 1;
1966 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1967 SetPageUptodate(page);
1968 }
1969
1970 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1971 {
1972 int ret;
1973 int err = 0;
1974 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1975
1976 set_state_failrec(failure_tree, rec->start, NULL);
1977 ret = clear_extent_bits(failure_tree, rec->start,
1978 rec->start + rec->len - 1,
1979 EXTENT_LOCKED | EXTENT_DIRTY);
1980 if (ret)
1981 err = ret;
1982
1983 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1984 rec->start + rec->len - 1,
1985 EXTENT_DAMAGED);
1986 if (ret && !err)
1987 err = ret;
1988
1989 kfree(rec);
1990 return err;
1991 }
1992
1993 /*
1994 * this bypasses the standard btrfs submit functions deliberately, as
1995 * the standard behavior is to write all copies in a raid setup. here we only
1996 * want to write the one bad copy. so we do the mapping for ourselves and issue
1997 * submit_bio directly.
1998 * to avoid any synchronization issues, wait for the data after writing, which
1999 * actually prevents the read that triggered the error from finishing.
2000 * currently, there can be no more than two copies of every data bit. thus,
2001 * exactly one rewrite is required.
2002 */
2003 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2004 struct page *page, unsigned int pg_offset, int mirror_num)
2005 {
2006 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2007 struct bio *bio;
2008 struct btrfs_device *dev;
2009 u64 map_length = 0;
2010 u64 sector;
2011 struct btrfs_bio *bbio = NULL;
2012 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2013 int ret;
2014
2015 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2016 BUG_ON(!mirror_num);
2017
2018 /* we can't repair anything in raid56 yet */
2019 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2020 return 0;
2021
2022 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2023 if (!bio)
2024 return -EIO;
2025 bio->bi_iter.bi_size = 0;
2026 map_length = length;
2027
2028 /*
2029 * Avoid races with device replace and make sure our bbio has devices
2030 * associated to its stripes that don't go away while we are doing the
2031 * read repair operation.
2032 */
2033 btrfs_bio_counter_inc_blocked(fs_info);
2034 ret = btrfs_map_block(fs_info, WRITE, logical,
2035 &map_length, &bbio, mirror_num);
2036 if (ret) {
2037 btrfs_bio_counter_dec(fs_info);
2038 bio_put(bio);
2039 return -EIO;
2040 }
2041 BUG_ON(mirror_num != bbio->mirror_num);
2042 sector = bbio->stripes[mirror_num-1].physical >> 9;
2043 bio->bi_iter.bi_sector = sector;
2044 dev = bbio->stripes[mirror_num-1].dev;
2045 btrfs_put_bbio(bbio);
2046 if (!dev || !dev->bdev || !dev->writeable) {
2047 btrfs_bio_counter_dec(fs_info);
2048 bio_put(bio);
2049 return -EIO;
2050 }
2051 bio->bi_bdev = dev->bdev;
2052 bio->bi_rw = WRITE_SYNC;
2053 bio_add_page(bio, page, length, pg_offset);
2054
2055 if (btrfsic_submit_bio_wait(bio)) {
2056 /* try to remap that extent elsewhere? */
2057 btrfs_bio_counter_dec(fs_info);
2058 bio_put(bio);
2059 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2060 return -EIO;
2061 }
2062
2063 btrfs_info_rl_in_rcu(fs_info,
2064 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2065 btrfs_ino(inode), start,
2066 rcu_str_deref(dev->name), sector);
2067 btrfs_bio_counter_dec(fs_info);
2068 bio_put(bio);
2069 return 0;
2070 }
2071
2072 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2073 int mirror_num)
2074 {
2075 u64 start = eb->start;
2076 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2077 int ret = 0;
2078
2079 if (root->fs_info->sb->s_flags & MS_RDONLY)
2080 return -EROFS;
2081
2082 for (i = 0; i < num_pages; i++) {
2083 struct page *p = eb->pages[i];
2084
2085 ret = repair_io_failure(root->fs_info->btree_inode, start,
2086 PAGE_SIZE, start, p,
2087 start - page_offset(p), mirror_num);
2088 if (ret)
2089 break;
2090 start += PAGE_SIZE;
2091 }
2092
2093 return ret;
2094 }
2095
2096 /*
2097 * each time an IO finishes, we do a fast check in the IO failure tree
2098 * to see if we need to process or clean up an io_failure_record
2099 */
2100 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2101 unsigned int pg_offset)
2102 {
2103 u64 private;
2104 struct io_failure_record *failrec;
2105 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2106 struct extent_state *state;
2107 int num_copies;
2108 int ret;
2109
2110 private = 0;
2111 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2112 (u64)-1, 1, EXTENT_DIRTY, 0);
2113 if (!ret)
2114 return 0;
2115
2116 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2117 &failrec);
2118 if (ret)
2119 return 0;
2120
2121 BUG_ON(!failrec->this_mirror);
2122
2123 if (failrec->in_validation) {
2124 /* there was no real error, just free the record */
2125 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2126 failrec->start);
2127 goto out;
2128 }
2129 if (fs_info->sb->s_flags & MS_RDONLY)
2130 goto out;
2131
2132 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2133 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2134 failrec->start,
2135 EXTENT_LOCKED);
2136 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2137
2138 if (state && state->start <= failrec->start &&
2139 state->end >= failrec->start + failrec->len - 1) {
2140 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2141 failrec->len);
2142 if (num_copies > 1) {
2143 repair_io_failure(inode, start, failrec->len,
2144 failrec->logical, page,
2145 pg_offset, failrec->failed_mirror);
2146 }
2147 }
2148
2149 out:
2150 free_io_failure(inode, failrec);
2151
2152 return 0;
2153 }
2154
2155 /*
2156 * Can be called when
2157 * - hold extent lock
2158 * - under ordered extent
2159 * - the inode is freeing
2160 */
2161 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2162 {
2163 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2164 struct io_failure_record *failrec;
2165 struct extent_state *state, *next;
2166
2167 if (RB_EMPTY_ROOT(&failure_tree->state))
2168 return;
2169
2170 spin_lock(&failure_tree->lock);
2171 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2172 while (state) {
2173 if (state->start > end)
2174 break;
2175
2176 ASSERT(state->end <= end);
2177
2178 next = next_state(state);
2179
2180 failrec = state->failrec;
2181 free_extent_state(state);
2182 kfree(failrec);
2183
2184 state = next;
2185 }
2186 spin_unlock(&failure_tree->lock);
2187 }
2188
2189 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2190 struct io_failure_record **failrec_ret)
2191 {
2192 struct io_failure_record *failrec;
2193 struct extent_map *em;
2194 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2195 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2196 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2197 int ret;
2198 u64 logical;
2199
2200 ret = get_state_failrec(failure_tree, start, &failrec);
2201 if (ret) {
2202 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2203 if (!failrec)
2204 return -ENOMEM;
2205
2206 failrec->start = start;
2207 failrec->len = end - start + 1;
2208 failrec->this_mirror = 0;
2209 failrec->bio_flags = 0;
2210 failrec->in_validation = 0;
2211
2212 read_lock(&em_tree->lock);
2213 em = lookup_extent_mapping(em_tree, start, failrec->len);
2214 if (!em) {
2215 read_unlock(&em_tree->lock);
2216 kfree(failrec);
2217 return -EIO;
2218 }
2219
2220 if (em->start > start || em->start + em->len <= start) {
2221 free_extent_map(em);
2222 em = NULL;
2223 }
2224 read_unlock(&em_tree->lock);
2225 if (!em) {
2226 kfree(failrec);
2227 return -EIO;
2228 }
2229
2230 logical = start - em->start;
2231 logical = em->block_start + logical;
2232 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2233 logical = em->block_start;
2234 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2235 extent_set_compress_type(&failrec->bio_flags,
2236 em->compress_type);
2237 }
2238
2239 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2240 logical, start, failrec->len);
2241
2242 failrec->logical = logical;
2243 free_extent_map(em);
2244
2245 /* set the bits in the private failure tree */
2246 ret = set_extent_bits(failure_tree, start, end,
2247 EXTENT_LOCKED | EXTENT_DIRTY);
2248 if (ret >= 0)
2249 ret = set_state_failrec(failure_tree, start, failrec);
2250 /* set the bits in the inode's tree */
2251 if (ret >= 0)
2252 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2253 if (ret < 0) {
2254 kfree(failrec);
2255 return ret;
2256 }
2257 } else {
2258 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2259 failrec->logical, failrec->start, failrec->len,
2260 failrec->in_validation);
2261 /*
2262 * when data can be on disk more than twice, add to failrec here
2263 * (e.g. with a list for failed_mirror) to make
2264 * clean_io_failure() clean all those errors at once.
2265 */
2266 }
2267
2268 *failrec_ret = failrec;
2269
2270 return 0;
2271 }
2272
2273 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2274 struct io_failure_record *failrec, int failed_mirror)
2275 {
2276 int num_copies;
2277
2278 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2279 failrec->logical, failrec->len);
2280 if (num_copies == 1) {
2281 /*
2282 * we only have a single copy of the data, so don't bother with
2283 * all the retry and error correction code that follows. no
2284 * matter what the error is, it is very likely to persist.
2285 */
2286 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2287 num_copies, failrec->this_mirror, failed_mirror);
2288 return 0;
2289 }
2290
2291 /*
2292 * there are two premises:
2293 * a) deliver good data to the caller
2294 * b) correct the bad sectors on disk
2295 */
2296 if (failed_bio->bi_vcnt > 1) {
2297 /*
2298 * to fulfill b), we need to know the exact failing sectors, as
2299 * we don't want to rewrite any more than the failed ones. thus,
2300 * we need separate read requests for the failed bio
2301 *
2302 * if the following BUG_ON triggers, our validation request got
2303 * merged. we need separate requests for our algorithm to work.
2304 */
2305 BUG_ON(failrec->in_validation);
2306 failrec->in_validation = 1;
2307 failrec->this_mirror = failed_mirror;
2308 } else {
2309 /*
2310 * we're ready to fulfill a) and b) alongside. get a good copy
2311 * of the failed sector and if we succeed, we have setup
2312 * everything for repair_io_failure to do the rest for us.
2313 */
2314 if (failrec->in_validation) {
2315 BUG_ON(failrec->this_mirror != failed_mirror);
2316 failrec->in_validation = 0;
2317 failrec->this_mirror = 0;
2318 }
2319 failrec->failed_mirror = failed_mirror;
2320 failrec->this_mirror++;
2321 if (failrec->this_mirror == failed_mirror)
2322 failrec->this_mirror++;
2323 }
2324
2325 if (failrec->this_mirror > num_copies) {
2326 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2327 num_copies, failrec->this_mirror, failed_mirror);
2328 return 0;
2329 }
2330
2331 return 1;
2332 }
2333
2334
2335 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2336 struct io_failure_record *failrec,
2337 struct page *page, int pg_offset, int icsum,
2338 bio_end_io_t *endio_func, void *data)
2339 {
2340 struct bio *bio;
2341 struct btrfs_io_bio *btrfs_failed_bio;
2342 struct btrfs_io_bio *btrfs_bio;
2343
2344 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2345 if (!bio)
2346 return NULL;
2347
2348 bio->bi_end_io = endio_func;
2349 bio->bi_iter.bi_sector = failrec->logical >> 9;
2350 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2351 bio->bi_iter.bi_size = 0;
2352 bio->bi_private = data;
2353
2354 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2355 if (btrfs_failed_bio->csum) {
2356 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2357 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2358
2359 btrfs_bio = btrfs_io_bio(bio);
2360 btrfs_bio->csum = btrfs_bio->csum_inline;
2361 icsum *= csum_size;
2362 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2363 csum_size);
2364 }
2365
2366 bio_add_page(bio, page, failrec->len, pg_offset);
2367
2368 return bio;
2369 }
2370
2371 /*
2372 * this is a generic handler for readpage errors (default
2373 * readpage_io_failed_hook). if other copies exist, read those and write back
2374 * good data to the failed position. does not investigate in remapping the
2375 * failed extent elsewhere, hoping the device will be smart enough to do this as
2376 * needed
2377 */
2378
2379 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2380 struct page *page, u64 start, u64 end,
2381 int failed_mirror)
2382 {
2383 struct io_failure_record *failrec;
2384 struct inode *inode = page->mapping->host;
2385 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2386 struct bio *bio;
2387 int read_mode;
2388 int ret;
2389
2390 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2391
2392 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2393 if (ret)
2394 return ret;
2395
2396 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2397 if (!ret) {
2398 free_io_failure(inode, failrec);
2399 return -EIO;
2400 }
2401
2402 if (failed_bio->bi_vcnt > 1)
2403 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2404 else
2405 read_mode = READ_SYNC;
2406
2407 phy_offset >>= inode->i_sb->s_blocksize_bits;
2408 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2409 start - page_offset(page),
2410 (int)phy_offset, failed_bio->bi_end_io,
2411 NULL);
2412 if (!bio) {
2413 free_io_failure(inode, failrec);
2414 return -EIO;
2415 }
2416 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2417
2418 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2419 read_mode, failrec->this_mirror, failrec->in_validation);
2420
2421 ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
2422 failrec->bio_flags, 0);
2423 if (ret) {
2424 free_io_failure(inode, failrec);
2425 bio_put(bio);
2426 }
2427
2428 return ret;
2429 }
2430
2431 /* lots and lots of room for performance fixes in the end_bio funcs */
2432
2433 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2434 {
2435 int uptodate = (err == 0);
2436 struct extent_io_tree *tree;
2437 int ret = 0;
2438
2439 tree = &BTRFS_I(page->mapping->host)->io_tree;
2440
2441 if (tree->ops && tree->ops->writepage_end_io_hook) {
2442 ret = tree->ops->writepage_end_io_hook(page, start,
2443 end, NULL, uptodate);
2444 if (ret)
2445 uptodate = 0;
2446 }
2447
2448 if (!uptodate) {
2449 ClearPageUptodate(page);
2450 SetPageError(page);
2451 ret = ret < 0 ? ret : -EIO;
2452 mapping_set_error(page->mapping, ret);
2453 }
2454 }
2455
2456 /*
2457 * after a writepage IO is done, we need to:
2458 * clear the uptodate bits on error
2459 * clear the writeback bits in the extent tree for this IO
2460 * end_page_writeback if the page has no more pending IO
2461 *
2462 * Scheduling is not allowed, so the extent state tree is expected
2463 * to have one and only one object corresponding to this IO.
2464 */
2465 static void end_bio_extent_writepage(struct bio *bio)
2466 {
2467 struct bio_vec *bvec;
2468 u64 start;
2469 u64 end;
2470 int i;
2471
2472 bio_for_each_segment_all(bvec, bio, i) {
2473 struct page *page = bvec->bv_page;
2474
2475 /* We always issue full-page reads, but if some block
2476 * in a page fails to read, blk_update_request() will
2477 * advance bv_offset and adjust bv_len to compensate.
2478 * Print a warning for nonzero offsets, and an error
2479 * if they don't add up to a full page. */
2480 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2481 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2482 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2483 "partial page write in btrfs with offset %u and length %u",
2484 bvec->bv_offset, bvec->bv_len);
2485 else
2486 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2487 "incomplete page write in btrfs with offset %u and "
2488 "length %u",
2489 bvec->bv_offset, bvec->bv_len);
2490 }
2491
2492 start = page_offset(page);
2493 end = start + bvec->bv_offset + bvec->bv_len - 1;
2494
2495 end_extent_writepage(page, bio->bi_error, start, end);
2496 end_page_writeback(page);
2497 }
2498
2499 bio_put(bio);
2500 }
2501
2502 static void
2503 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2504 int uptodate)
2505 {
2506 struct extent_state *cached = NULL;
2507 u64 end = start + len - 1;
2508
2509 if (uptodate && tree->track_uptodate)
2510 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2511 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2512 }
2513
2514 /*
2515 * after a readpage IO is done, we need to:
2516 * clear the uptodate bits on error
2517 * set the uptodate bits if things worked
2518 * set the page up to date if all extents in the tree are uptodate
2519 * clear the lock bit in the extent tree
2520 * unlock the page if there are no other extents locked for it
2521 *
2522 * Scheduling is not allowed, so the extent state tree is expected
2523 * to have one and only one object corresponding to this IO.
2524 */
2525 static void end_bio_extent_readpage(struct bio *bio)
2526 {
2527 struct bio_vec *bvec;
2528 int uptodate = !bio->bi_error;
2529 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2530 struct extent_io_tree *tree;
2531 u64 offset = 0;
2532 u64 start;
2533 u64 end;
2534 u64 len;
2535 u64 extent_start = 0;
2536 u64 extent_len = 0;
2537 int mirror;
2538 int ret;
2539 int i;
2540
2541 bio_for_each_segment_all(bvec, bio, i) {
2542 struct page *page = bvec->bv_page;
2543 struct inode *inode = page->mapping->host;
2544
2545 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2546 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2547 bio->bi_error, io_bio->mirror_num);
2548 tree = &BTRFS_I(inode)->io_tree;
2549
2550 /* We always issue full-page reads, but if some block
2551 * in a page fails to read, blk_update_request() will
2552 * advance bv_offset and adjust bv_len to compensate.
2553 * Print a warning for nonzero offsets, and an error
2554 * if they don't add up to a full page. */
2555 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2556 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2557 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2558 "partial page read in btrfs with offset %u and length %u",
2559 bvec->bv_offset, bvec->bv_len);
2560 else
2561 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2562 "incomplete page read in btrfs with offset %u and "
2563 "length %u",
2564 bvec->bv_offset, bvec->bv_len);
2565 }
2566
2567 start = page_offset(page);
2568 end = start + bvec->bv_offset + bvec->bv_len - 1;
2569 len = bvec->bv_len;
2570
2571 mirror = io_bio->mirror_num;
2572 if (likely(uptodate && tree->ops &&
2573 tree->ops->readpage_end_io_hook)) {
2574 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2575 page, start, end,
2576 mirror);
2577 if (ret)
2578 uptodate = 0;
2579 else
2580 clean_io_failure(inode, start, page, 0);
2581 }
2582
2583 if (likely(uptodate))
2584 goto readpage_ok;
2585
2586 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2587 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2588 if (!ret && !bio->bi_error)
2589 uptodate = 1;
2590 } else {
2591 /*
2592 * The generic bio_readpage_error handles errors the
2593 * following way: If possible, new read requests are
2594 * created and submitted and will end up in
2595 * end_bio_extent_readpage as well (if we're lucky, not
2596 * in the !uptodate case). In that case it returns 0 and
2597 * we just go on with the next page in our bio. If it
2598 * can't handle the error it will return -EIO and we
2599 * remain responsible for that page.
2600 */
2601 ret = bio_readpage_error(bio, offset, page, start, end,
2602 mirror);
2603 if (ret == 0) {
2604 uptodate = !bio->bi_error;
2605 offset += len;
2606 continue;
2607 }
2608 }
2609 readpage_ok:
2610 if (likely(uptodate)) {
2611 loff_t i_size = i_size_read(inode);
2612 pgoff_t end_index = i_size >> PAGE_SHIFT;
2613 unsigned off;
2614
2615 /* Zero out the end if this page straddles i_size */
2616 off = i_size & (PAGE_SIZE-1);
2617 if (page->index == end_index && off)
2618 zero_user_segment(page, off, PAGE_SIZE);
2619 SetPageUptodate(page);
2620 } else {
2621 ClearPageUptodate(page);
2622 SetPageError(page);
2623 }
2624 unlock_page(page);
2625 offset += len;
2626
2627 if (unlikely(!uptodate)) {
2628 if (extent_len) {
2629 endio_readpage_release_extent(tree,
2630 extent_start,
2631 extent_len, 1);
2632 extent_start = 0;
2633 extent_len = 0;
2634 }
2635 endio_readpage_release_extent(tree, start,
2636 end - start + 1, 0);
2637 } else if (!extent_len) {
2638 extent_start = start;
2639 extent_len = end + 1 - start;
2640 } else if (extent_start + extent_len == start) {
2641 extent_len += end + 1 - start;
2642 } else {
2643 endio_readpage_release_extent(tree, extent_start,
2644 extent_len, uptodate);
2645 extent_start = start;
2646 extent_len = end + 1 - start;
2647 }
2648 }
2649
2650 if (extent_len)
2651 endio_readpage_release_extent(tree, extent_start, extent_len,
2652 uptodate);
2653 if (io_bio->end_io)
2654 io_bio->end_io(io_bio, bio->bi_error);
2655 bio_put(bio);
2656 }
2657
2658 /*
2659 * this allocates from the btrfs_bioset. We're returning a bio right now
2660 * but you can call btrfs_io_bio for the appropriate container_of magic
2661 */
2662 struct bio *
2663 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2664 gfp_t gfp_flags)
2665 {
2666 struct btrfs_io_bio *btrfs_bio;
2667 struct bio *bio;
2668
2669 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2670
2671 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2672 while (!bio && (nr_vecs /= 2)) {
2673 bio = bio_alloc_bioset(gfp_flags,
2674 nr_vecs, btrfs_bioset);
2675 }
2676 }
2677
2678 if (bio) {
2679 bio->bi_bdev = bdev;
2680 bio->bi_iter.bi_sector = first_sector;
2681 btrfs_bio = btrfs_io_bio(bio);
2682 btrfs_bio->csum = NULL;
2683 btrfs_bio->csum_allocated = NULL;
2684 btrfs_bio->end_io = NULL;
2685 }
2686 return bio;
2687 }
2688
2689 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2690 {
2691 struct btrfs_io_bio *btrfs_bio;
2692 struct bio *new;
2693
2694 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2695 if (new) {
2696 btrfs_bio = btrfs_io_bio(new);
2697 btrfs_bio->csum = NULL;
2698 btrfs_bio->csum_allocated = NULL;
2699 btrfs_bio->end_io = NULL;
2700
2701 #ifdef CONFIG_BLK_CGROUP
2702 /* FIXME, put this into bio_clone_bioset */
2703 if (bio->bi_css)
2704 bio_associate_blkcg(new, bio->bi_css);
2705 #endif
2706 }
2707 return new;
2708 }
2709
2710 /* this also allocates from the btrfs_bioset */
2711 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2712 {
2713 struct btrfs_io_bio *btrfs_bio;
2714 struct bio *bio;
2715
2716 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2717 if (bio) {
2718 btrfs_bio = btrfs_io_bio(bio);
2719 btrfs_bio->csum = NULL;
2720 btrfs_bio->csum_allocated = NULL;
2721 btrfs_bio->end_io = NULL;
2722 }
2723 return bio;
2724 }
2725
2726
2727 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2728 unsigned long bio_flags)
2729 {
2730 int ret = 0;
2731 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2732 struct page *page = bvec->bv_page;
2733 struct extent_io_tree *tree = bio->bi_private;
2734 u64 start;
2735
2736 start = page_offset(page) + bvec->bv_offset;
2737
2738 bio->bi_private = NULL;
2739 bio_get(bio);
2740
2741 if (tree->ops && tree->ops->submit_bio_hook)
2742 ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
2743 mirror_num, bio_flags, start);
2744 else
2745 btrfsic_submit_bio(bio);
2746
2747 bio_put(bio);
2748 return ret;
2749 }
2750
2751 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2752 unsigned long offset, size_t size, struct bio *bio,
2753 unsigned long bio_flags)
2754 {
2755 int ret = 0;
2756 if (tree->ops && tree->ops->merge_bio_hook)
2757 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2758 bio_flags);
2759 return ret;
2760
2761 }
2762
2763 static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2764 struct writeback_control *wbc,
2765 struct page *page, sector_t sector,
2766 size_t size, unsigned long offset,
2767 struct block_device *bdev,
2768 struct bio **bio_ret,
2769 unsigned long max_pages,
2770 bio_end_io_t end_io_func,
2771 int mirror_num,
2772 unsigned long prev_bio_flags,
2773 unsigned long bio_flags,
2774 bool force_bio_submit)
2775 {
2776 int ret = 0;
2777 struct bio *bio;
2778 int contig = 0;
2779 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2780 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2781
2782 if (bio_ret && *bio_ret) {
2783 bio = *bio_ret;
2784 if (old_compressed)
2785 contig = bio->bi_iter.bi_sector == sector;
2786 else
2787 contig = bio_end_sector(bio) == sector;
2788
2789 if (prev_bio_flags != bio_flags || !contig ||
2790 force_bio_submit ||
2791 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2792 bio_add_page(bio, page, page_size, offset) < page_size) {
2793 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2794 if (ret < 0) {
2795 *bio_ret = NULL;
2796 return ret;
2797 }
2798 bio = NULL;
2799 } else {
2800 if (wbc)
2801 wbc_account_io(wbc, page, page_size);
2802 return 0;
2803 }
2804 }
2805
2806 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2807 GFP_NOFS | __GFP_HIGH);
2808 if (!bio)
2809 return -ENOMEM;
2810
2811 bio_add_page(bio, page, page_size, offset);
2812 bio->bi_end_io = end_io_func;
2813 bio->bi_private = tree;
2814 bio_set_op_attrs(bio, op, op_flags);
2815 if (wbc) {
2816 wbc_init_bio(wbc, bio);
2817 wbc_account_io(wbc, page, page_size);
2818 }
2819
2820 if (bio_ret)
2821 *bio_ret = bio;
2822 else
2823 ret = submit_one_bio(bio, mirror_num, bio_flags);
2824
2825 return ret;
2826 }
2827
2828 static void attach_extent_buffer_page(struct extent_buffer *eb,
2829 struct page *page)
2830 {
2831 if (!PagePrivate(page)) {
2832 SetPagePrivate(page);
2833 get_page(page);
2834 set_page_private(page, (unsigned long)eb);
2835 } else {
2836 WARN_ON(page->private != (unsigned long)eb);
2837 }
2838 }
2839
2840 void set_page_extent_mapped(struct page *page)
2841 {
2842 if (!PagePrivate(page)) {
2843 SetPagePrivate(page);
2844 get_page(page);
2845 set_page_private(page, EXTENT_PAGE_PRIVATE);
2846 }
2847 }
2848
2849 static struct extent_map *
2850 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2851 u64 start, u64 len, get_extent_t *get_extent,
2852 struct extent_map **em_cached)
2853 {
2854 struct extent_map *em;
2855
2856 if (em_cached && *em_cached) {
2857 em = *em_cached;
2858 if (extent_map_in_tree(em) && start >= em->start &&
2859 start < extent_map_end(em)) {
2860 atomic_inc(&em->refs);
2861 return em;
2862 }
2863
2864 free_extent_map(em);
2865 *em_cached = NULL;
2866 }
2867
2868 em = get_extent(inode, page, pg_offset, start, len, 0);
2869 if (em_cached && !IS_ERR_OR_NULL(em)) {
2870 BUG_ON(*em_cached);
2871 atomic_inc(&em->refs);
2872 *em_cached = em;
2873 }
2874 return em;
2875 }
2876 /*
2877 * basic readpage implementation. Locked extent state structs are inserted
2878 * into the tree that are removed when the IO is done (by the end_io
2879 * handlers)
2880 * XXX JDM: This needs looking at to ensure proper page locking
2881 * return 0 on success, otherwise return error
2882 */
2883 static int __do_readpage(struct extent_io_tree *tree,
2884 struct page *page,
2885 get_extent_t *get_extent,
2886 struct extent_map **em_cached,
2887 struct bio **bio, int mirror_num,
2888 unsigned long *bio_flags, int read_flags,
2889 u64 *prev_em_start)
2890 {
2891 struct inode *inode = page->mapping->host;
2892 u64 start = page_offset(page);
2893 u64 page_end = start + PAGE_SIZE - 1;
2894 u64 end;
2895 u64 cur = start;
2896 u64 extent_offset;
2897 u64 last_byte = i_size_read(inode);
2898 u64 block_start;
2899 u64 cur_end;
2900 sector_t sector;
2901 struct extent_map *em;
2902 struct block_device *bdev;
2903 int ret = 0;
2904 int nr = 0;
2905 size_t pg_offset = 0;
2906 size_t iosize;
2907 size_t disk_io_size;
2908 size_t blocksize = inode->i_sb->s_blocksize;
2909 unsigned long this_bio_flag = 0;
2910
2911 set_page_extent_mapped(page);
2912
2913 end = page_end;
2914 if (!PageUptodate(page)) {
2915 if (cleancache_get_page(page) == 0) {
2916 BUG_ON(blocksize != PAGE_SIZE);
2917 unlock_extent(tree, start, end);
2918 goto out;
2919 }
2920 }
2921
2922 if (page->index == last_byte >> PAGE_SHIFT) {
2923 char *userpage;
2924 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2925
2926 if (zero_offset) {
2927 iosize = PAGE_SIZE - zero_offset;
2928 userpage = kmap_atomic(page);
2929 memset(userpage + zero_offset, 0, iosize);
2930 flush_dcache_page(page);
2931 kunmap_atomic(userpage);
2932 }
2933 }
2934 while (cur <= end) {
2935 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
2936 bool force_bio_submit = false;
2937
2938 if (cur >= last_byte) {
2939 char *userpage;
2940 struct extent_state *cached = NULL;
2941
2942 iosize = PAGE_SIZE - pg_offset;
2943 userpage = kmap_atomic(page);
2944 memset(userpage + pg_offset, 0, iosize);
2945 flush_dcache_page(page);
2946 kunmap_atomic(userpage);
2947 set_extent_uptodate(tree, cur, cur + iosize - 1,
2948 &cached, GFP_NOFS);
2949 unlock_extent_cached(tree, cur,
2950 cur + iosize - 1,
2951 &cached, GFP_NOFS);
2952 break;
2953 }
2954 em = __get_extent_map(inode, page, pg_offset, cur,
2955 end - cur + 1, get_extent, em_cached);
2956 if (IS_ERR_OR_NULL(em)) {
2957 SetPageError(page);
2958 unlock_extent(tree, cur, end);
2959 break;
2960 }
2961 extent_offset = cur - em->start;
2962 BUG_ON(extent_map_end(em) <= cur);
2963 BUG_ON(end < cur);
2964
2965 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2966 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2967 extent_set_compress_type(&this_bio_flag,
2968 em->compress_type);
2969 }
2970
2971 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2972 cur_end = min(extent_map_end(em) - 1, end);
2973 iosize = ALIGN(iosize, blocksize);
2974 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2975 disk_io_size = em->block_len;
2976 sector = em->block_start >> 9;
2977 } else {
2978 sector = (em->block_start + extent_offset) >> 9;
2979 disk_io_size = iosize;
2980 }
2981 bdev = em->bdev;
2982 block_start = em->block_start;
2983 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2984 block_start = EXTENT_MAP_HOLE;
2985
2986 /*
2987 * If we have a file range that points to a compressed extent
2988 * and it's followed by a consecutive file range that points to
2989 * to the same compressed extent (possibly with a different
2990 * offset and/or length, so it either points to the whole extent
2991 * or only part of it), we must make sure we do not submit a
2992 * single bio to populate the pages for the 2 ranges because
2993 * this makes the compressed extent read zero out the pages
2994 * belonging to the 2nd range. Imagine the following scenario:
2995 *
2996 * File layout
2997 * [0 - 8K] [8K - 24K]
2998 * | |
2999 * | |
3000 * points to extent X, points to extent X,
3001 * offset 4K, length of 8K offset 0, length 16K
3002 *
3003 * [extent X, compressed length = 4K uncompressed length = 16K]
3004 *
3005 * If the bio to read the compressed extent covers both ranges,
3006 * it will decompress extent X into the pages belonging to the
3007 * first range and then it will stop, zeroing out the remaining
3008 * pages that belong to the other range that points to extent X.
3009 * So here we make sure we submit 2 bios, one for the first
3010 * range and another one for the third range. Both will target
3011 * the same physical extent from disk, but we can't currently
3012 * make the compressed bio endio callback populate the pages
3013 * for both ranges because each compressed bio is tightly
3014 * coupled with a single extent map, and each range can have
3015 * an extent map with a different offset value relative to the
3016 * uncompressed data of our extent and different lengths. This
3017 * is a corner case so we prioritize correctness over
3018 * non-optimal behavior (submitting 2 bios for the same extent).
3019 */
3020 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3021 prev_em_start && *prev_em_start != (u64)-1 &&
3022 *prev_em_start != em->orig_start)
3023 force_bio_submit = true;
3024
3025 if (prev_em_start)
3026 *prev_em_start = em->orig_start;
3027
3028 free_extent_map(em);
3029 em = NULL;
3030
3031 /* we've found a hole, just zero and go on */
3032 if (block_start == EXTENT_MAP_HOLE) {
3033 char *userpage;
3034 struct extent_state *cached = NULL;
3035
3036 userpage = kmap_atomic(page);
3037 memset(userpage + pg_offset, 0, iosize);
3038 flush_dcache_page(page);
3039 kunmap_atomic(userpage);
3040
3041 set_extent_uptodate(tree, cur, cur + iosize - 1,
3042 &cached, GFP_NOFS);
3043 unlock_extent_cached(tree, cur,
3044 cur + iosize - 1,
3045 &cached, GFP_NOFS);
3046 cur = cur + iosize;
3047 pg_offset += iosize;
3048 continue;
3049 }
3050 /* the get_extent function already copied into the page */
3051 if (test_range_bit(tree, cur, cur_end,
3052 EXTENT_UPTODATE, 1, NULL)) {
3053 check_page_uptodate(tree, page);
3054 unlock_extent(tree, cur, cur + iosize - 1);
3055 cur = cur + iosize;
3056 pg_offset += iosize;
3057 continue;
3058 }
3059 /* we have an inline extent but it didn't get marked up
3060 * to date. Error out
3061 */
3062 if (block_start == EXTENT_MAP_INLINE) {
3063 SetPageError(page);
3064 unlock_extent(tree, cur, cur + iosize - 1);
3065 cur = cur + iosize;
3066 pg_offset += iosize;
3067 continue;
3068 }
3069
3070 pnr -= page->index;
3071 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3072 page, sector, disk_io_size, pg_offset,
3073 bdev, bio, pnr,
3074 end_bio_extent_readpage, mirror_num,
3075 *bio_flags,
3076 this_bio_flag,
3077 force_bio_submit);
3078 if (!ret) {
3079 nr++;
3080 *bio_flags = this_bio_flag;
3081 } else {
3082 SetPageError(page);
3083 unlock_extent(tree, cur, cur + iosize - 1);
3084 goto out;
3085 }
3086 cur = cur + iosize;
3087 pg_offset += iosize;
3088 }
3089 out:
3090 if (!nr) {
3091 if (!PageError(page))
3092 SetPageUptodate(page);
3093 unlock_page(page);
3094 }
3095 return ret;
3096 }
3097
3098 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3099 struct page *pages[], int nr_pages,
3100 u64 start, u64 end,
3101 get_extent_t *get_extent,
3102 struct extent_map **em_cached,
3103 struct bio **bio, int mirror_num,
3104 unsigned long *bio_flags,
3105 u64 *prev_em_start)
3106 {
3107 struct inode *inode;
3108 struct btrfs_ordered_extent *ordered;
3109 int index;
3110
3111 inode = pages[0]->mapping->host;
3112 while (1) {
3113 lock_extent(tree, start, end);
3114 ordered = btrfs_lookup_ordered_range(inode, start,
3115 end - start + 1);
3116 if (!ordered)
3117 break;
3118 unlock_extent(tree, start, end);
3119 btrfs_start_ordered_extent(inode, ordered, 1);
3120 btrfs_put_ordered_extent(ordered);
3121 }
3122
3123 for (index = 0; index < nr_pages; index++) {
3124 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3125 mirror_num, bio_flags, 0, prev_em_start);
3126 put_page(pages[index]);
3127 }
3128 }
3129
3130 static void __extent_readpages(struct extent_io_tree *tree,
3131 struct page *pages[],
3132 int nr_pages, get_extent_t *get_extent,
3133 struct extent_map **em_cached,
3134 struct bio **bio, int mirror_num,
3135 unsigned long *bio_flags,
3136 u64 *prev_em_start)
3137 {
3138 u64 start = 0;
3139 u64 end = 0;
3140 u64 page_start;
3141 int index;
3142 int first_index = 0;
3143
3144 for (index = 0; index < nr_pages; index++) {
3145 page_start = page_offset(pages[index]);
3146 if (!end) {
3147 start = page_start;
3148 end = start + PAGE_SIZE - 1;
3149 first_index = index;
3150 } else if (end + 1 == page_start) {
3151 end += PAGE_SIZE;
3152 } else {
3153 __do_contiguous_readpages(tree, &pages[first_index],
3154 index - first_index, start,
3155 end, get_extent, em_cached,
3156 bio, mirror_num, bio_flags,
3157 prev_em_start);
3158 start = page_start;
3159 end = start + PAGE_SIZE - 1;
3160 first_index = index;
3161 }
3162 }
3163
3164 if (end)
3165 __do_contiguous_readpages(tree, &pages[first_index],
3166 index - first_index, start,
3167 end, get_extent, em_cached, bio,
3168 mirror_num, bio_flags,
3169 prev_em_start);
3170 }
3171
3172 static int __extent_read_full_page(struct extent_io_tree *tree,
3173 struct page *page,
3174 get_extent_t *get_extent,
3175 struct bio **bio, int mirror_num,
3176 unsigned long *bio_flags, int read_flags)
3177 {
3178 struct inode *inode = page->mapping->host;
3179 struct btrfs_ordered_extent *ordered;
3180 u64 start = page_offset(page);
3181 u64 end = start + PAGE_SIZE - 1;
3182 int ret;
3183
3184 while (1) {
3185 lock_extent(tree, start, end);
3186 ordered = btrfs_lookup_ordered_range(inode, start,
3187 PAGE_SIZE);
3188 if (!ordered)
3189 break;
3190 unlock_extent(tree, start, end);
3191 btrfs_start_ordered_extent(inode, ordered, 1);
3192 btrfs_put_ordered_extent(ordered);
3193 }
3194
3195 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3196 bio_flags, read_flags, NULL);
3197 return ret;
3198 }
3199
3200 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3201 get_extent_t *get_extent, int mirror_num)
3202 {
3203 struct bio *bio = NULL;
3204 unsigned long bio_flags = 0;
3205 int ret;
3206
3207 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3208 &bio_flags, 0);
3209 if (bio)
3210 ret = submit_one_bio(bio, mirror_num, bio_flags);
3211 return ret;
3212 }
3213
3214 static void update_nr_written(struct page *page, struct writeback_control *wbc,
3215 unsigned long nr_written)
3216 {
3217 wbc->nr_to_write -= nr_written;
3218 }
3219
3220 /*
3221 * helper for __extent_writepage, doing all of the delayed allocation setup.
3222 *
3223 * This returns 1 if our fill_delalloc function did all the work required
3224 * to write the page (copy into inline extent). In this case the IO has
3225 * been started and the page is already unlocked.
3226 *
3227 * This returns 0 if all went well (page still locked)
3228 * This returns < 0 if there were errors (page still locked)
3229 */
3230 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3231 struct page *page, struct writeback_control *wbc,
3232 struct extent_page_data *epd,
3233 u64 delalloc_start,
3234 unsigned long *nr_written)
3235 {
3236 struct extent_io_tree *tree = epd->tree;
3237 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3238 u64 nr_delalloc;
3239 u64 delalloc_to_write = 0;
3240 u64 delalloc_end = 0;
3241 int ret;
3242 int page_started = 0;
3243
3244 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3245 return 0;
3246
3247 while (delalloc_end < page_end) {
3248 nr_delalloc = find_lock_delalloc_range(inode, tree,
3249 page,
3250 &delalloc_start,
3251 &delalloc_end,
3252 BTRFS_MAX_EXTENT_SIZE);
3253 if (nr_delalloc == 0) {
3254 delalloc_start = delalloc_end + 1;
3255 continue;
3256 }
3257 ret = tree->ops->fill_delalloc(inode, page,
3258 delalloc_start,
3259 delalloc_end,
3260 &page_started,
3261 nr_written);
3262 /* File system has been set read-only */
3263 if (ret) {
3264 SetPageError(page);
3265 /* fill_delalloc should be return < 0 for error
3266 * but just in case, we use > 0 here meaning the
3267 * IO is started, so we don't want to return > 0
3268 * unless things are going well.
3269 */
3270 ret = ret < 0 ? ret : -EIO;
3271 goto done;
3272 }
3273 /*
3274 * delalloc_end is already one less than the total length, so
3275 * we don't subtract one from PAGE_SIZE
3276 */
3277 delalloc_to_write += (delalloc_end - delalloc_start +
3278 PAGE_SIZE) >> PAGE_SHIFT;
3279 delalloc_start = delalloc_end + 1;
3280 }
3281 if (wbc->nr_to_write < delalloc_to_write) {
3282 int thresh = 8192;
3283
3284 if (delalloc_to_write < thresh * 2)
3285 thresh = delalloc_to_write;
3286 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3287 thresh);
3288 }
3289
3290 /* did the fill delalloc function already unlock and start
3291 * the IO?
3292 */
3293 if (page_started) {
3294 /*
3295 * we've unlocked the page, so we can't update
3296 * the mapping's writeback index, just update
3297 * nr_to_write.
3298 */
3299 wbc->nr_to_write -= *nr_written;
3300 return 1;
3301 }
3302
3303 ret = 0;
3304
3305 done:
3306 return ret;
3307 }
3308
3309 /*
3310 * helper for __extent_writepage. This calls the writepage start hooks,
3311 * and does the loop to map the page into extents and bios.
3312 *
3313 * We return 1 if the IO is started and the page is unlocked,
3314 * 0 if all went well (page still locked)
3315 * < 0 if there were errors (page still locked)
3316 */
3317 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3318 struct page *page,
3319 struct writeback_control *wbc,
3320 struct extent_page_data *epd,
3321 loff_t i_size,
3322 unsigned long nr_written,
3323 int write_flags, int *nr_ret)
3324 {
3325 struct extent_io_tree *tree = epd->tree;
3326 u64 start = page_offset(page);
3327 u64 page_end = start + PAGE_SIZE - 1;
3328 u64 end;
3329 u64 cur = start;
3330 u64 extent_offset;
3331 u64 block_start;
3332 u64 iosize;
3333 sector_t sector;
3334 struct extent_state *cached_state = NULL;
3335 struct extent_map *em;
3336 struct block_device *bdev;
3337 size_t pg_offset = 0;
3338 size_t blocksize;
3339 int ret = 0;
3340 int nr = 0;
3341 bool compressed;
3342
3343 if (tree->ops && tree->ops->writepage_start_hook) {
3344 ret = tree->ops->writepage_start_hook(page, start,
3345 page_end);
3346 if (ret) {
3347 /* Fixup worker will requeue */
3348 if (ret == -EBUSY)
3349 wbc->pages_skipped++;
3350 else
3351 redirty_page_for_writepage(wbc, page);
3352
3353 update_nr_written(page, wbc, nr_written);
3354 unlock_page(page);
3355 ret = 1;
3356 goto done_unlocked;
3357 }
3358 }
3359
3360 /*
3361 * we don't want to touch the inode after unlocking the page,
3362 * so we update the mapping writeback index now
3363 */
3364 update_nr_written(page, wbc, nr_written + 1);
3365
3366 end = page_end;
3367 if (i_size <= start) {
3368 if (tree->ops && tree->ops->writepage_end_io_hook)
3369 tree->ops->writepage_end_io_hook(page, start,
3370 page_end, NULL, 1);
3371 goto done;
3372 }
3373
3374 blocksize = inode->i_sb->s_blocksize;
3375
3376 while (cur <= end) {
3377 u64 em_end;
3378 unsigned long max_nr;
3379
3380 if (cur >= i_size) {
3381 if (tree->ops && tree->ops->writepage_end_io_hook)
3382 tree->ops->writepage_end_io_hook(page, cur,
3383 page_end, NULL, 1);
3384 break;
3385 }
3386 em = epd->get_extent(inode, page, pg_offset, cur,
3387 end - cur + 1, 1);
3388 if (IS_ERR_OR_NULL(em)) {
3389 SetPageError(page);
3390 ret = PTR_ERR_OR_ZERO(em);
3391 break;
3392 }
3393
3394 extent_offset = cur - em->start;
3395 em_end = extent_map_end(em);
3396 BUG_ON(em_end <= cur);
3397 BUG_ON(end < cur);
3398 iosize = min(em_end - cur, end - cur + 1);
3399 iosize = ALIGN(iosize, blocksize);
3400 sector = (em->block_start + extent_offset) >> 9;
3401 bdev = em->bdev;
3402 block_start = em->block_start;
3403 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3404 free_extent_map(em);
3405 em = NULL;
3406
3407 /*
3408 * compressed and inline extents are written through other
3409 * paths in the FS
3410 */
3411 if (compressed || block_start == EXTENT_MAP_HOLE ||
3412 block_start == EXTENT_MAP_INLINE) {
3413 /*
3414 * end_io notification does not happen here for
3415 * compressed extents
3416 */
3417 if (!compressed && tree->ops &&
3418 tree->ops->writepage_end_io_hook)
3419 tree->ops->writepage_end_io_hook(page, cur,
3420 cur + iosize - 1,
3421 NULL, 1);
3422 else if (compressed) {
3423 /* we don't want to end_page_writeback on
3424 * a compressed extent. this happens
3425 * elsewhere
3426 */
3427 nr++;
3428 }
3429
3430 cur += iosize;
3431 pg_offset += iosize;
3432 continue;
3433 }
3434
3435 max_nr = (i_size >> PAGE_SHIFT) + 1;
3436
3437 set_range_writeback(tree, cur, cur + iosize - 1);
3438 if (!PageWriteback(page)) {
3439 btrfs_err(BTRFS_I(inode)->root->fs_info,
3440 "page %lu not writeback, cur %llu end %llu",
3441 page->index, cur, end);
3442 }
3443
3444 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3445 page, sector, iosize, pg_offset,
3446 bdev, &epd->bio, max_nr,
3447 end_bio_extent_writepage,
3448 0, 0, 0, false);
3449 if (ret)
3450 SetPageError(page);
3451
3452 cur = cur + iosize;
3453 pg_offset += iosize;
3454 nr++;
3455 }
3456 done:
3457 *nr_ret = nr;
3458
3459 done_unlocked:
3460
3461 /* drop our reference on any cached states */
3462 free_extent_state(cached_state);
3463 return ret;
3464 }
3465
3466 /*
3467 * the writepage semantics are similar to regular writepage. extent
3468 * records are inserted to lock ranges in the tree, and as dirty areas
3469 * are found, they are marked writeback. Then the lock bits are removed
3470 * and the end_io handler clears the writeback ranges
3471 */
3472 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3473 void *data)
3474 {
3475 struct inode *inode = page->mapping->host;
3476 struct extent_page_data *epd = data;
3477 u64 start = page_offset(page);
3478 u64 page_end = start + PAGE_SIZE - 1;
3479 int ret;
3480 int nr = 0;
3481 size_t pg_offset = 0;
3482 loff_t i_size = i_size_read(inode);
3483 unsigned long end_index = i_size >> PAGE_SHIFT;
3484 int write_flags = 0;
3485 unsigned long nr_written = 0;
3486
3487 if (wbc->sync_mode == WB_SYNC_ALL)
3488 write_flags = WRITE_SYNC;
3489
3490 trace___extent_writepage(page, inode, wbc);
3491
3492 WARN_ON(!PageLocked(page));
3493
3494 ClearPageError(page);
3495
3496 pg_offset = i_size & (PAGE_SIZE - 1);
3497 if (page->index > end_index ||
3498 (page->index == end_index && !pg_offset)) {
3499 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3500 unlock_page(page);
3501 return 0;
3502 }
3503
3504 if (page->index == end_index) {
3505 char *userpage;
3506
3507 userpage = kmap_atomic(page);
3508 memset(userpage + pg_offset, 0,
3509 PAGE_SIZE - pg_offset);
3510 kunmap_atomic(userpage);
3511 flush_dcache_page(page);
3512 }
3513
3514 pg_offset = 0;
3515
3516 set_page_extent_mapped(page);
3517
3518 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3519 if (ret == 1)
3520 goto done_unlocked;
3521 if (ret)
3522 goto done;
3523
3524 ret = __extent_writepage_io(inode, page, wbc, epd,
3525 i_size, nr_written, write_flags, &nr);
3526 if (ret == 1)
3527 goto done_unlocked;
3528
3529 done:
3530 if (nr == 0) {
3531 /* make sure the mapping tag for page dirty gets cleared */
3532 set_page_writeback(page);
3533 end_page_writeback(page);
3534 }
3535 if (PageError(page)) {
3536 ret = ret < 0 ? ret : -EIO;
3537 end_extent_writepage(page, ret, start, page_end);
3538 }
3539 unlock_page(page);
3540 return ret;
3541
3542 done_unlocked:
3543 return 0;
3544 }
3545
3546 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3547 {
3548 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3549 TASK_UNINTERRUPTIBLE);
3550 }
3551
3552 static noinline_for_stack int
3553 lock_extent_buffer_for_io(struct extent_buffer *eb,
3554 struct btrfs_fs_info *fs_info,
3555 struct extent_page_data *epd)
3556 {
3557 unsigned long i, num_pages;
3558 int flush = 0;
3559 int ret = 0;
3560
3561 if (!btrfs_try_tree_write_lock(eb)) {
3562 flush = 1;
3563 flush_write_bio(epd);
3564 btrfs_tree_lock(eb);
3565 }
3566
3567 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3568 btrfs_tree_unlock(eb);
3569 if (!epd->sync_io)
3570 return 0;
3571 if (!flush) {
3572 flush_write_bio(epd);
3573 flush = 1;
3574 }
3575 while (1) {
3576 wait_on_extent_buffer_writeback(eb);
3577 btrfs_tree_lock(eb);
3578 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3579 break;
3580 btrfs_tree_unlock(eb);
3581 }
3582 }
3583
3584 /*
3585 * We need to do this to prevent races in people who check if the eb is
3586 * under IO since we can end up having no IO bits set for a short period
3587 * of time.
3588 */
3589 spin_lock(&eb->refs_lock);
3590 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3591 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3592 spin_unlock(&eb->refs_lock);
3593 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3594 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3595 -eb->len,
3596 fs_info->dirty_metadata_batch);
3597 ret = 1;
3598 } else {
3599 spin_unlock(&eb->refs_lock);
3600 }
3601
3602 btrfs_tree_unlock(eb);
3603
3604 if (!ret)
3605 return ret;
3606
3607 num_pages = num_extent_pages(eb->start, eb->len);
3608 for (i = 0; i < num_pages; i++) {
3609 struct page *p = eb->pages[i];
3610
3611 if (!trylock_page(p)) {
3612 if (!flush) {
3613 flush_write_bio(epd);
3614 flush = 1;
3615 }
3616 lock_page(p);
3617 }
3618 }
3619
3620 return ret;
3621 }
3622
3623 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3624 {
3625 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3626 smp_mb__after_atomic();
3627 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3628 }
3629
3630 static void set_btree_ioerr(struct page *page)
3631 {
3632 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3633 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3634
3635 SetPageError(page);
3636 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3637 return;
3638
3639 /*
3640 * If writeback for a btree extent that doesn't belong to a log tree
3641 * failed, increment the counter transaction->eb_write_errors.
3642 * We do this because while the transaction is running and before it's
3643 * committing (when we call filemap_fdata[write|wait]_range against
3644 * the btree inode), we might have
3645 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3646 * returns an error or an error happens during writeback, when we're
3647 * committing the transaction we wouldn't know about it, since the pages
3648 * can be no longer dirty nor marked anymore for writeback (if a
3649 * subsequent modification to the extent buffer didn't happen before the
3650 * transaction commit), which makes filemap_fdata[write|wait]_range not
3651 * able to find the pages tagged with SetPageError at transaction
3652 * commit time. So if this happens we must abort the transaction,
3653 * otherwise we commit a super block with btree roots that point to
3654 * btree nodes/leafs whose content on disk is invalid - either garbage
3655 * or the content of some node/leaf from a past generation that got
3656 * cowed or deleted and is no longer valid.
3657 *
3658 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3659 * not be enough - we need to distinguish between log tree extents vs
3660 * non-log tree extents, and the next filemap_fdatawait_range() call
3661 * will catch and clear such errors in the mapping - and that call might
3662 * be from a log sync and not from a transaction commit. Also, checking
3663 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3664 * not done and would not be reliable - the eb might have been released
3665 * from memory and reading it back again means that flag would not be
3666 * set (since it's a runtime flag, not persisted on disk).
3667 *
3668 * Using the flags below in the btree inode also makes us achieve the
3669 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3670 * writeback for all dirty pages and before filemap_fdatawait_range()
3671 * is called, the writeback for all dirty pages had already finished
3672 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3673 * filemap_fdatawait_range() would return success, as it could not know
3674 * that writeback errors happened (the pages were no longer tagged for
3675 * writeback).
3676 */
3677 switch (eb->log_index) {
3678 case -1:
3679 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3680 break;
3681 case 0:
3682 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3683 break;
3684 case 1:
3685 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3686 break;
3687 default:
3688 BUG(); /* unexpected, logic error */
3689 }
3690 }
3691
3692 static void end_bio_extent_buffer_writepage(struct bio *bio)
3693 {
3694 struct bio_vec *bvec;
3695 struct extent_buffer *eb;
3696 int i, done;
3697
3698 bio_for_each_segment_all(bvec, bio, i) {
3699 struct page *page = bvec->bv_page;
3700
3701 eb = (struct extent_buffer *)page->private;
3702 BUG_ON(!eb);
3703 done = atomic_dec_and_test(&eb->io_pages);
3704
3705 if (bio->bi_error ||
3706 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3707 ClearPageUptodate(page);
3708 set_btree_ioerr(page);
3709 }
3710
3711 end_page_writeback(page);
3712
3713 if (!done)
3714 continue;
3715
3716 end_extent_buffer_writeback(eb);
3717 }
3718
3719 bio_put(bio);
3720 }
3721
3722 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3723 struct btrfs_fs_info *fs_info,
3724 struct writeback_control *wbc,
3725 struct extent_page_data *epd)
3726 {
3727 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3728 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3729 u64 offset = eb->start;
3730 unsigned long i, num_pages;
3731 unsigned long bio_flags = 0;
3732 int write_flags = (epd->sync_io ? WRITE_SYNC : 0) | REQ_META;
3733 int ret = 0;
3734
3735 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3736 num_pages = num_extent_pages(eb->start, eb->len);
3737 atomic_set(&eb->io_pages, num_pages);
3738 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3739 bio_flags = EXTENT_BIO_TREE_LOG;
3740
3741 for (i = 0; i < num_pages; i++) {
3742 struct page *p = eb->pages[i];
3743
3744 clear_page_dirty_for_io(p);
3745 set_page_writeback(p);
3746 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3747 p, offset >> 9, PAGE_SIZE, 0, bdev,
3748 &epd->bio, -1,
3749 end_bio_extent_buffer_writepage,
3750 0, epd->bio_flags, bio_flags, false);
3751 epd->bio_flags = bio_flags;
3752 if (ret) {
3753 set_btree_ioerr(p);
3754 end_page_writeback(p);
3755 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3756 end_extent_buffer_writeback(eb);
3757 ret = -EIO;
3758 break;
3759 }
3760 offset += PAGE_SIZE;
3761 update_nr_written(p, wbc, 1);
3762 unlock_page(p);
3763 }
3764
3765 if (unlikely(ret)) {
3766 for (; i < num_pages; i++) {
3767 struct page *p = eb->pages[i];
3768 clear_page_dirty_for_io(p);
3769 unlock_page(p);
3770 }
3771 }
3772
3773 return ret;
3774 }
3775
3776 int btree_write_cache_pages(struct address_space *mapping,
3777 struct writeback_control *wbc)
3778 {
3779 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3780 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3781 struct extent_buffer *eb, *prev_eb = NULL;
3782 struct extent_page_data epd = {
3783 .bio = NULL,
3784 .tree = tree,
3785 .extent_locked = 0,
3786 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3787 .bio_flags = 0,
3788 };
3789 int ret = 0;
3790 int done = 0;
3791 int nr_to_write_done = 0;
3792 struct pagevec pvec;
3793 int nr_pages;
3794 pgoff_t index;
3795 pgoff_t end; /* Inclusive */
3796 int scanned = 0;
3797 int tag;
3798
3799 pagevec_init(&pvec, 0);
3800 if (wbc->range_cyclic) {
3801 index = mapping->writeback_index; /* Start from prev offset */
3802 end = -1;
3803 } else {
3804 index = wbc->range_start >> PAGE_SHIFT;
3805 end = wbc->range_end >> PAGE_SHIFT;
3806 scanned = 1;
3807 }
3808 if (wbc->sync_mode == WB_SYNC_ALL)
3809 tag = PAGECACHE_TAG_TOWRITE;
3810 else
3811 tag = PAGECACHE_TAG_DIRTY;
3812 retry:
3813 if (wbc->sync_mode == WB_SYNC_ALL)
3814 tag_pages_for_writeback(mapping, index, end);
3815 while (!done && !nr_to_write_done && (index <= end) &&
3816 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3817 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3818 unsigned i;
3819
3820 scanned = 1;
3821 for (i = 0; i < nr_pages; i++) {
3822 struct page *page = pvec.pages[i];
3823
3824 if (!PagePrivate(page))
3825 continue;
3826
3827 if (!wbc->range_cyclic && page->index > end) {
3828 done = 1;
3829 break;
3830 }
3831
3832 spin_lock(&mapping->private_lock);
3833 if (!PagePrivate(page)) {
3834 spin_unlock(&mapping->private_lock);
3835 continue;
3836 }
3837
3838 eb = (struct extent_buffer *)page->private;
3839
3840 /*
3841 * Shouldn't happen and normally this would be a BUG_ON
3842 * but no sense in crashing the users box for something
3843 * we can survive anyway.
3844 */
3845 if (WARN_ON(!eb)) {
3846 spin_unlock(&mapping->private_lock);
3847 continue;
3848 }
3849
3850 if (eb == prev_eb) {
3851 spin_unlock(&mapping->private_lock);
3852 continue;
3853 }
3854
3855 ret = atomic_inc_not_zero(&eb->refs);
3856 spin_unlock(&mapping->private_lock);
3857 if (!ret)
3858 continue;
3859
3860 prev_eb = eb;
3861 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3862 if (!ret) {
3863 free_extent_buffer(eb);
3864 continue;
3865 }
3866
3867 ret = write_one_eb(eb, fs_info, wbc, &epd);
3868 if (ret) {
3869 done = 1;
3870 free_extent_buffer(eb);
3871 break;
3872 }
3873 free_extent_buffer(eb);
3874
3875 /*
3876 * the filesystem may choose to bump up nr_to_write.
3877 * We have to make sure to honor the new nr_to_write
3878 * at any time
3879 */
3880 nr_to_write_done = wbc->nr_to_write <= 0;
3881 }
3882 pagevec_release(&pvec);
3883 cond_resched();
3884 }
3885 if (!scanned && !done) {
3886 /*
3887 * We hit the last page and there is more work to be done: wrap
3888 * back to the start of the file
3889 */
3890 scanned = 1;
3891 index = 0;
3892 goto retry;
3893 }
3894 flush_write_bio(&epd);
3895 return ret;
3896 }
3897
3898 /**
3899 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3900 * @mapping: address space structure to write
3901 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3902 * @writepage: function called for each page
3903 * @data: data passed to writepage function
3904 *
3905 * If a page is already under I/O, write_cache_pages() skips it, even
3906 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3907 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3908 * and msync() need to guarantee that all the data which was dirty at the time
3909 * the call was made get new I/O started against them. If wbc->sync_mode is
3910 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3911 * existing IO to complete.
3912 */
3913 static int extent_write_cache_pages(struct extent_io_tree *tree,
3914 struct address_space *mapping,
3915 struct writeback_control *wbc,
3916 writepage_t writepage, void *data,
3917 void (*flush_fn)(void *))
3918 {
3919 struct inode *inode = mapping->host;
3920 int ret = 0;
3921 int done = 0;
3922 int nr_to_write_done = 0;
3923 struct pagevec pvec;
3924 int nr_pages;
3925 pgoff_t index;
3926 pgoff_t end; /* Inclusive */
3927 pgoff_t done_index;
3928 int range_whole = 0;
3929 int scanned = 0;
3930 int tag;
3931
3932 /*
3933 * We have to hold onto the inode so that ordered extents can do their
3934 * work when the IO finishes. The alternative to this is failing to add
3935 * an ordered extent if the igrab() fails there and that is a huge pain
3936 * to deal with, so instead just hold onto the inode throughout the
3937 * writepages operation. If it fails here we are freeing up the inode
3938 * anyway and we'd rather not waste our time writing out stuff that is
3939 * going to be truncated anyway.
3940 */
3941 if (!igrab(inode))
3942 return 0;
3943
3944 pagevec_init(&pvec, 0);
3945 if (wbc->range_cyclic) {
3946 index = mapping->writeback_index; /* Start from prev offset */
3947 end = -1;
3948 } else {
3949 index = wbc->range_start >> PAGE_SHIFT;
3950 end = wbc->range_end >> PAGE_SHIFT;
3951 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3952 range_whole = 1;
3953 scanned = 1;
3954 }
3955 if (wbc->sync_mode == WB_SYNC_ALL)
3956 tag = PAGECACHE_TAG_TOWRITE;
3957 else
3958 tag = PAGECACHE_TAG_DIRTY;
3959 retry:
3960 if (wbc->sync_mode == WB_SYNC_ALL)
3961 tag_pages_for_writeback(mapping, index, end);
3962 done_index = index;
3963 while (!done && !nr_to_write_done && (index <= end) &&
3964 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3965 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3966 unsigned i;
3967
3968 scanned = 1;
3969 for (i = 0; i < nr_pages; i++) {
3970 struct page *page = pvec.pages[i];
3971
3972 done_index = page->index;
3973 /*
3974 * At this point we hold neither mapping->tree_lock nor
3975 * lock on the page itself: the page may be truncated or
3976 * invalidated (changing page->mapping to NULL), or even
3977 * swizzled back from swapper_space to tmpfs file
3978 * mapping
3979 */
3980 if (!trylock_page(page)) {
3981 flush_fn(data);
3982 lock_page(page);
3983 }
3984
3985 if (unlikely(page->mapping != mapping)) {
3986 unlock_page(page);
3987 continue;
3988 }
3989
3990 if (!wbc->range_cyclic && page->index > end) {
3991 done = 1;
3992 unlock_page(page);
3993 continue;
3994 }
3995
3996 if (wbc->sync_mode != WB_SYNC_NONE) {
3997 if (PageWriteback(page))
3998 flush_fn(data);
3999 wait_on_page_writeback(page);
4000 }
4001
4002 if (PageWriteback(page) ||
4003 !clear_page_dirty_for_io(page)) {
4004 unlock_page(page);
4005 continue;
4006 }
4007
4008 ret = (*writepage)(page, wbc, data);
4009
4010 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4011 unlock_page(page);
4012 ret = 0;
4013 }
4014 if (ret < 0) {
4015 /*
4016 * done_index is set past this page,
4017 * so media errors will not choke
4018 * background writeout for the entire
4019 * file. This has consequences for
4020 * range_cyclic semantics (ie. it may
4021 * not be suitable for data integrity
4022 * writeout).
4023 */
4024 done_index = page->index + 1;
4025 done = 1;
4026 break;
4027 }
4028
4029 /*
4030 * the filesystem may choose to bump up nr_to_write.
4031 * We have to make sure to honor the new nr_to_write
4032 * at any time
4033 */
4034 nr_to_write_done = wbc->nr_to_write <= 0;
4035 }
4036 pagevec_release(&pvec);
4037 cond_resched();
4038 }
4039 if (!scanned && !done) {
4040 /*
4041 * We hit the last page and there is more work to be done: wrap
4042 * back to the start of the file
4043 */
4044 scanned = 1;
4045 index = 0;
4046 goto retry;
4047 }
4048
4049 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4050 mapping->writeback_index = done_index;
4051
4052 btrfs_add_delayed_iput(inode);
4053 return ret;
4054 }
4055
4056 static void flush_epd_write_bio(struct extent_page_data *epd)
4057 {
4058 if (epd->bio) {
4059 int ret;
4060
4061 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4062 epd->sync_io ? WRITE_SYNC : 0);
4063
4064 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4065 BUG_ON(ret < 0); /* -ENOMEM */
4066 epd->bio = NULL;
4067 }
4068 }
4069
4070 static noinline void flush_write_bio(void *data)
4071 {
4072 struct extent_page_data *epd = data;
4073 flush_epd_write_bio(epd);
4074 }
4075
4076 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4077 get_extent_t *get_extent,
4078 struct writeback_control *wbc)
4079 {
4080 int ret;
4081 struct extent_page_data epd = {
4082 .bio = NULL,
4083 .tree = tree,
4084 .get_extent = get_extent,
4085 .extent_locked = 0,
4086 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4087 .bio_flags = 0,
4088 };
4089
4090 ret = __extent_writepage(page, wbc, &epd);
4091
4092 flush_epd_write_bio(&epd);
4093 return ret;
4094 }
4095
4096 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4097 u64 start, u64 end, get_extent_t *get_extent,
4098 int mode)
4099 {
4100 int ret = 0;
4101 struct address_space *mapping = inode->i_mapping;
4102 struct page *page;
4103 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4104 PAGE_SHIFT;
4105
4106 struct extent_page_data epd = {
4107 .bio = NULL,
4108 .tree = tree,
4109 .get_extent = get_extent,
4110 .extent_locked = 1,
4111 .sync_io = mode == WB_SYNC_ALL,
4112 .bio_flags = 0,
4113 };
4114 struct writeback_control wbc_writepages = {
4115 .sync_mode = mode,
4116 .nr_to_write = nr_pages * 2,
4117 .range_start = start,
4118 .range_end = end + 1,
4119 };
4120
4121 while (start <= end) {
4122 page = find_get_page(mapping, start >> PAGE_SHIFT);
4123 if (clear_page_dirty_for_io(page))
4124 ret = __extent_writepage(page, &wbc_writepages, &epd);
4125 else {
4126 if (tree->ops && tree->ops->writepage_end_io_hook)
4127 tree->ops->writepage_end_io_hook(page, start,
4128 start + PAGE_SIZE - 1,
4129 NULL, 1);
4130 unlock_page(page);
4131 }
4132 put_page(page);
4133 start += PAGE_SIZE;
4134 }
4135
4136 flush_epd_write_bio(&epd);
4137 return ret;
4138 }
4139
4140 int extent_writepages(struct extent_io_tree *tree,
4141 struct address_space *mapping,
4142 get_extent_t *get_extent,
4143 struct writeback_control *wbc)
4144 {
4145 int ret = 0;
4146 struct extent_page_data epd = {
4147 .bio = NULL,
4148 .tree = tree,
4149 .get_extent = get_extent,
4150 .extent_locked = 0,
4151 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4152 .bio_flags = 0,
4153 };
4154
4155 ret = extent_write_cache_pages(tree, mapping, wbc,
4156 __extent_writepage, &epd,
4157 flush_write_bio);
4158 flush_epd_write_bio(&epd);
4159 return ret;
4160 }
4161
4162 int extent_readpages(struct extent_io_tree *tree,
4163 struct address_space *mapping,
4164 struct list_head *pages, unsigned nr_pages,
4165 get_extent_t get_extent)
4166 {
4167 struct bio *bio = NULL;
4168 unsigned page_idx;
4169 unsigned long bio_flags = 0;
4170 struct page *pagepool[16];
4171 struct page *page;
4172 struct extent_map *em_cached = NULL;
4173 int nr = 0;
4174 u64 prev_em_start = (u64)-1;
4175
4176 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4177 page = list_entry(pages->prev, struct page, lru);
4178
4179 prefetchw(&page->flags);
4180 list_del(&page->lru);
4181 if (add_to_page_cache_lru(page, mapping,
4182 page->index,
4183 readahead_gfp_mask(mapping))) {
4184 put_page(page);
4185 continue;
4186 }
4187
4188 pagepool[nr++] = page;
4189 if (nr < ARRAY_SIZE(pagepool))
4190 continue;
4191 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4192 &bio, 0, &bio_flags, &prev_em_start);
4193 nr = 0;
4194 }
4195 if (nr)
4196 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4197 &bio, 0, &bio_flags, &prev_em_start);
4198
4199 if (em_cached)
4200 free_extent_map(em_cached);
4201
4202 BUG_ON(!list_empty(pages));
4203 if (bio)
4204 return submit_one_bio(bio, 0, bio_flags);
4205 return 0;
4206 }
4207
4208 /*
4209 * basic invalidatepage code, this waits on any locked or writeback
4210 * ranges corresponding to the page, and then deletes any extent state
4211 * records from the tree
4212 */
4213 int extent_invalidatepage(struct extent_io_tree *tree,
4214 struct page *page, unsigned long offset)
4215 {
4216 struct extent_state *cached_state = NULL;
4217 u64 start = page_offset(page);
4218 u64 end = start + PAGE_SIZE - 1;
4219 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4220
4221 start += ALIGN(offset, blocksize);
4222 if (start > end)
4223 return 0;
4224
4225 lock_extent_bits(tree, start, end, &cached_state);
4226 wait_on_page_writeback(page);
4227 clear_extent_bit(tree, start, end,
4228 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4229 EXTENT_DO_ACCOUNTING,
4230 1, 1, &cached_state, GFP_NOFS);
4231 return 0;
4232 }
4233
4234 /*
4235 * a helper for releasepage, this tests for areas of the page that
4236 * are locked or under IO and drops the related state bits if it is safe
4237 * to drop the page.
4238 */
4239 static int try_release_extent_state(struct extent_map_tree *map,
4240 struct extent_io_tree *tree,
4241 struct page *page, gfp_t mask)
4242 {
4243 u64 start = page_offset(page);
4244 u64 end = start + PAGE_SIZE - 1;
4245 int ret = 1;
4246
4247 if (test_range_bit(tree, start, end,
4248 EXTENT_IOBITS, 0, NULL))
4249 ret = 0;
4250 else {
4251 if ((mask & GFP_NOFS) == GFP_NOFS)
4252 mask = GFP_NOFS;
4253 /*
4254 * at this point we can safely clear everything except the
4255 * locked bit and the nodatasum bit
4256 */
4257 ret = clear_extent_bit(tree, start, end,
4258 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4259 0, 0, NULL, mask);
4260
4261 /* if clear_extent_bit failed for enomem reasons,
4262 * we can't allow the release to continue.
4263 */
4264 if (ret < 0)
4265 ret = 0;
4266 else
4267 ret = 1;
4268 }
4269 return ret;
4270 }
4271
4272 /*
4273 * a helper for releasepage. As long as there are no locked extents
4274 * in the range corresponding to the page, both state records and extent
4275 * map records are removed
4276 */
4277 int try_release_extent_mapping(struct extent_map_tree *map,
4278 struct extent_io_tree *tree, struct page *page,
4279 gfp_t mask)
4280 {
4281 struct extent_map *em;
4282 u64 start = page_offset(page);
4283 u64 end = start + PAGE_SIZE - 1;
4284
4285 if (gfpflags_allow_blocking(mask) &&
4286 page->mapping->host->i_size > SZ_16M) {
4287 u64 len;
4288 while (start <= end) {
4289 len = end - start + 1;
4290 write_lock(&map->lock);
4291 em = lookup_extent_mapping(map, start, len);
4292 if (!em) {
4293 write_unlock(&map->lock);
4294 break;
4295 }
4296 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4297 em->start != start) {
4298 write_unlock(&map->lock);
4299 free_extent_map(em);
4300 break;
4301 }
4302 if (!test_range_bit(tree, em->start,
4303 extent_map_end(em) - 1,
4304 EXTENT_LOCKED | EXTENT_WRITEBACK,
4305 0, NULL)) {
4306 remove_extent_mapping(map, em);
4307 /* once for the rb tree */
4308 free_extent_map(em);
4309 }
4310 start = extent_map_end(em);
4311 write_unlock(&map->lock);
4312
4313 /* once for us */
4314 free_extent_map(em);
4315 }
4316 }
4317 return try_release_extent_state(map, tree, page, mask);
4318 }
4319
4320 /*
4321 * helper function for fiemap, which doesn't want to see any holes.
4322 * This maps until we find something past 'last'
4323 */
4324 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4325 u64 offset,
4326 u64 last,
4327 get_extent_t *get_extent)
4328 {
4329 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4330 struct extent_map *em;
4331 u64 len;
4332
4333 if (offset >= last)
4334 return NULL;
4335
4336 while (1) {
4337 len = last - offset;
4338 if (len == 0)
4339 break;
4340 len = ALIGN(len, sectorsize);
4341 em = get_extent(inode, NULL, 0, offset, len, 0);
4342 if (IS_ERR_OR_NULL(em))
4343 return em;
4344
4345 /* if this isn't a hole return it */
4346 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4347 em->block_start != EXTENT_MAP_HOLE) {
4348 return em;
4349 }
4350
4351 /* this is a hole, advance to the next extent */
4352 offset = extent_map_end(em);
4353 free_extent_map(em);
4354 if (offset >= last)
4355 break;
4356 }
4357 return NULL;
4358 }
4359
4360 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4361 __u64 start, __u64 len, get_extent_t *get_extent)
4362 {
4363 int ret = 0;
4364 u64 off = start;
4365 u64 max = start + len;
4366 u32 flags = 0;
4367 u32 found_type;
4368 u64 last;
4369 u64 last_for_get_extent = 0;
4370 u64 disko = 0;
4371 u64 isize = i_size_read(inode);
4372 struct btrfs_key found_key;
4373 struct extent_map *em = NULL;
4374 struct extent_state *cached_state = NULL;
4375 struct btrfs_path *path;
4376 struct btrfs_root *root = BTRFS_I(inode)->root;
4377 int end = 0;
4378 u64 em_start = 0;
4379 u64 em_len = 0;
4380 u64 em_end = 0;
4381
4382 if (len == 0)
4383 return -EINVAL;
4384
4385 path = btrfs_alloc_path();
4386 if (!path)
4387 return -ENOMEM;
4388 path->leave_spinning = 1;
4389
4390 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4391 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4392
4393 /*
4394 * lookup the last file extent. We're not using i_size here
4395 * because there might be preallocation past i_size
4396 */
4397 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4398 0);
4399 if (ret < 0) {
4400 btrfs_free_path(path);
4401 return ret;
4402 } else {
4403 WARN_ON(!ret);
4404 if (ret == 1)
4405 ret = 0;
4406 }
4407
4408 path->slots[0]--;
4409 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4410 found_type = found_key.type;
4411
4412 /* No extents, but there might be delalloc bits */
4413 if (found_key.objectid != btrfs_ino(inode) ||
4414 found_type != BTRFS_EXTENT_DATA_KEY) {
4415 /* have to trust i_size as the end */
4416 last = (u64)-1;
4417 last_for_get_extent = isize;
4418 } else {
4419 /*
4420 * remember the start of the last extent. There are a
4421 * bunch of different factors that go into the length of the
4422 * extent, so its much less complex to remember where it started
4423 */
4424 last = found_key.offset;
4425 last_for_get_extent = last + 1;
4426 }
4427 btrfs_release_path(path);
4428
4429 /*
4430 * we might have some extents allocated but more delalloc past those
4431 * extents. so, we trust isize unless the start of the last extent is
4432 * beyond isize
4433 */
4434 if (last < isize) {
4435 last = (u64)-1;
4436 last_for_get_extent = isize;
4437 }
4438
4439 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4440 &cached_state);
4441
4442 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4443 get_extent);
4444 if (!em)
4445 goto out;
4446 if (IS_ERR(em)) {
4447 ret = PTR_ERR(em);
4448 goto out;
4449 }
4450
4451 while (!end) {
4452 u64 offset_in_extent = 0;
4453
4454 /* break if the extent we found is outside the range */
4455 if (em->start >= max || extent_map_end(em) < off)
4456 break;
4457
4458 /*
4459 * get_extent may return an extent that starts before our
4460 * requested range. We have to make sure the ranges
4461 * we return to fiemap always move forward and don't
4462 * overlap, so adjust the offsets here
4463 */
4464 em_start = max(em->start, off);
4465
4466 /*
4467 * record the offset from the start of the extent
4468 * for adjusting the disk offset below. Only do this if the
4469 * extent isn't compressed since our in ram offset may be past
4470 * what we have actually allocated on disk.
4471 */
4472 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4473 offset_in_extent = em_start - em->start;
4474 em_end = extent_map_end(em);
4475 em_len = em_end - em_start;
4476 disko = 0;
4477 flags = 0;
4478
4479 /*
4480 * bump off for our next call to get_extent
4481 */
4482 off = extent_map_end(em);
4483 if (off >= max)
4484 end = 1;
4485
4486 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4487 end = 1;
4488 flags |= FIEMAP_EXTENT_LAST;
4489 } else if (em->block_start == EXTENT_MAP_INLINE) {
4490 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4491 FIEMAP_EXTENT_NOT_ALIGNED);
4492 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4493 flags |= (FIEMAP_EXTENT_DELALLOC |
4494 FIEMAP_EXTENT_UNKNOWN);
4495 } else if (fieinfo->fi_extents_max) {
4496 u64 bytenr = em->block_start -
4497 (em->start - em->orig_start);
4498
4499 disko = em->block_start + offset_in_extent;
4500
4501 /*
4502 * As btrfs supports shared space, this information
4503 * can be exported to userspace tools via
4504 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4505 * then we're just getting a count and we can skip the
4506 * lookup stuff.
4507 */
4508 ret = btrfs_check_shared(NULL, root->fs_info,
4509 root->objectid,
4510 btrfs_ino(inode), bytenr);
4511 if (ret < 0)
4512 goto out_free;
4513 if (ret)
4514 flags |= FIEMAP_EXTENT_SHARED;
4515 ret = 0;
4516 }
4517 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4518 flags |= FIEMAP_EXTENT_ENCODED;
4519 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4520 flags |= FIEMAP_EXTENT_UNWRITTEN;
4521
4522 free_extent_map(em);
4523 em = NULL;
4524 if ((em_start >= last) || em_len == (u64)-1 ||
4525 (last == (u64)-1 && isize <= em_end)) {
4526 flags |= FIEMAP_EXTENT_LAST;
4527 end = 1;
4528 }
4529
4530 /* now scan forward to see if this is really the last extent. */
4531 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4532 get_extent);
4533 if (IS_ERR(em)) {
4534 ret = PTR_ERR(em);
4535 goto out;
4536 }
4537 if (!em) {
4538 flags |= FIEMAP_EXTENT_LAST;
4539 end = 1;
4540 }
4541 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4542 em_len, flags);
4543 if (ret) {
4544 if (ret == 1)
4545 ret = 0;
4546 goto out_free;
4547 }
4548 }
4549 out_free:
4550 free_extent_map(em);
4551 out:
4552 btrfs_free_path(path);
4553 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4554 &cached_state, GFP_NOFS);
4555 return ret;
4556 }
4557
4558 static void __free_extent_buffer(struct extent_buffer *eb)
4559 {
4560 btrfs_leak_debug_del(&eb->leak_list);
4561 kmem_cache_free(extent_buffer_cache, eb);
4562 }
4563
4564 int extent_buffer_under_io(struct extent_buffer *eb)
4565 {
4566 return (atomic_read(&eb->io_pages) ||
4567 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4568 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4569 }
4570
4571 /*
4572 * Helper for releasing extent buffer page.
4573 */
4574 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4575 {
4576 unsigned long index;
4577 struct page *page;
4578 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4579
4580 BUG_ON(extent_buffer_under_io(eb));
4581
4582 index = num_extent_pages(eb->start, eb->len);
4583 if (index == 0)
4584 return;
4585
4586 do {
4587 index--;
4588 page = eb->pages[index];
4589 if (!page)
4590 continue;
4591 if (mapped)
4592 spin_lock(&page->mapping->private_lock);
4593 /*
4594 * We do this since we'll remove the pages after we've
4595 * removed the eb from the radix tree, so we could race
4596 * and have this page now attached to the new eb. So
4597 * only clear page_private if it's still connected to
4598 * this eb.
4599 */
4600 if (PagePrivate(page) &&
4601 page->private == (unsigned long)eb) {
4602 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4603 BUG_ON(PageDirty(page));
4604 BUG_ON(PageWriteback(page));
4605 /*
4606 * We need to make sure we haven't be attached
4607 * to a new eb.
4608 */
4609 ClearPagePrivate(page);
4610 set_page_private(page, 0);
4611 /* One for the page private */
4612 put_page(page);
4613 }
4614
4615 if (mapped)
4616 spin_unlock(&page->mapping->private_lock);
4617
4618 /* One for when we allocated the page */
4619 put_page(page);
4620 } while (index != 0);
4621 }
4622
4623 /*
4624 * Helper for releasing the extent buffer.
4625 */
4626 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4627 {
4628 btrfs_release_extent_buffer_page(eb);
4629 __free_extent_buffer(eb);
4630 }
4631
4632 static struct extent_buffer *
4633 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4634 unsigned long len)
4635 {
4636 struct extent_buffer *eb = NULL;
4637
4638 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4639 eb->start = start;
4640 eb->len = len;
4641 eb->fs_info = fs_info;
4642 eb->bflags = 0;
4643 rwlock_init(&eb->lock);
4644 atomic_set(&eb->write_locks, 0);
4645 atomic_set(&eb->read_locks, 0);
4646 atomic_set(&eb->blocking_readers, 0);
4647 atomic_set(&eb->blocking_writers, 0);
4648 atomic_set(&eb->spinning_readers, 0);
4649 atomic_set(&eb->spinning_writers, 0);
4650 eb->lock_nested = 0;
4651 init_waitqueue_head(&eb->write_lock_wq);
4652 init_waitqueue_head(&eb->read_lock_wq);
4653
4654 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4655
4656 spin_lock_init(&eb->refs_lock);
4657 atomic_set(&eb->refs, 1);
4658 atomic_set(&eb->io_pages, 0);
4659
4660 /*
4661 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4662 */
4663 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4664 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4665 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4666
4667 return eb;
4668 }
4669
4670 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4671 {
4672 unsigned long i;
4673 struct page *p;
4674 struct extent_buffer *new;
4675 unsigned long num_pages = num_extent_pages(src->start, src->len);
4676
4677 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4678 if (new == NULL)
4679 return NULL;
4680
4681 for (i = 0; i < num_pages; i++) {
4682 p = alloc_page(GFP_NOFS);
4683 if (!p) {
4684 btrfs_release_extent_buffer(new);
4685 return NULL;
4686 }
4687 attach_extent_buffer_page(new, p);
4688 WARN_ON(PageDirty(p));
4689 SetPageUptodate(p);
4690 new->pages[i] = p;
4691 }
4692
4693 copy_extent_buffer(new, src, 0, 0, src->len);
4694 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4695 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4696
4697 return new;
4698 }
4699
4700 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4701 u64 start, unsigned long len)
4702 {
4703 struct extent_buffer *eb;
4704 unsigned long num_pages;
4705 unsigned long i;
4706
4707 num_pages = num_extent_pages(start, len);
4708
4709 eb = __alloc_extent_buffer(fs_info, start, len);
4710 if (!eb)
4711 return NULL;
4712
4713 for (i = 0; i < num_pages; i++) {
4714 eb->pages[i] = alloc_page(GFP_NOFS);
4715 if (!eb->pages[i])
4716 goto err;
4717 }
4718 set_extent_buffer_uptodate(eb);
4719 btrfs_set_header_nritems(eb, 0);
4720 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4721
4722 return eb;
4723 err:
4724 for (; i > 0; i--)
4725 __free_page(eb->pages[i - 1]);
4726 __free_extent_buffer(eb);
4727 return NULL;
4728 }
4729
4730 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4731 u64 start, u32 nodesize)
4732 {
4733 unsigned long len;
4734
4735 if (!fs_info) {
4736 /*
4737 * Called only from tests that don't always have a fs_info
4738 * available
4739 */
4740 len = nodesize;
4741 } else {
4742 len = fs_info->tree_root->nodesize;
4743 }
4744
4745 return __alloc_dummy_extent_buffer(fs_info, start, len);
4746 }
4747
4748 static void check_buffer_tree_ref(struct extent_buffer *eb)
4749 {
4750 int refs;
4751 /* the ref bit is tricky. We have to make sure it is set
4752 * if we have the buffer dirty. Otherwise the
4753 * code to free a buffer can end up dropping a dirty
4754 * page
4755 *
4756 * Once the ref bit is set, it won't go away while the
4757 * buffer is dirty or in writeback, and it also won't
4758 * go away while we have the reference count on the
4759 * eb bumped.
4760 *
4761 * We can't just set the ref bit without bumping the
4762 * ref on the eb because free_extent_buffer might
4763 * see the ref bit and try to clear it. If this happens
4764 * free_extent_buffer might end up dropping our original
4765 * ref by mistake and freeing the page before we are able
4766 * to add one more ref.
4767 *
4768 * So bump the ref count first, then set the bit. If someone
4769 * beat us to it, drop the ref we added.
4770 */
4771 refs = atomic_read(&eb->refs);
4772 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4773 return;
4774
4775 spin_lock(&eb->refs_lock);
4776 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4777 atomic_inc(&eb->refs);
4778 spin_unlock(&eb->refs_lock);
4779 }
4780
4781 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4782 struct page *accessed)
4783 {
4784 unsigned long num_pages, i;
4785
4786 check_buffer_tree_ref(eb);
4787
4788 num_pages = num_extent_pages(eb->start, eb->len);
4789 for (i = 0; i < num_pages; i++) {
4790 struct page *p = eb->pages[i];
4791
4792 if (p != accessed)
4793 mark_page_accessed(p);
4794 }
4795 }
4796
4797 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4798 u64 start)
4799 {
4800 struct extent_buffer *eb;
4801
4802 rcu_read_lock();
4803 eb = radix_tree_lookup(&fs_info->buffer_radix,
4804 start >> PAGE_SHIFT);
4805 if (eb && atomic_inc_not_zero(&eb->refs)) {
4806 rcu_read_unlock();
4807 /*
4808 * Lock our eb's refs_lock to avoid races with
4809 * free_extent_buffer. When we get our eb it might be flagged
4810 * with EXTENT_BUFFER_STALE and another task running
4811 * free_extent_buffer might have seen that flag set,
4812 * eb->refs == 2, that the buffer isn't under IO (dirty and
4813 * writeback flags not set) and it's still in the tree (flag
4814 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4815 * of decrementing the extent buffer's reference count twice.
4816 * So here we could race and increment the eb's reference count,
4817 * clear its stale flag, mark it as dirty and drop our reference
4818 * before the other task finishes executing free_extent_buffer,
4819 * which would later result in an attempt to free an extent
4820 * buffer that is dirty.
4821 */
4822 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4823 spin_lock(&eb->refs_lock);
4824 spin_unlock(&eb->refs_lock);
4825 }
4826 mark_extent_buffer_accessed(eb, NULL);
4827 return eb;
4828 }
4829 rcu_read_unlock();
4830
4831 return NULL;
4832 }
4833
4834 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4835 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4836 u64 start, u32 nodesize)
4837 {
4838 struct extent_buffer *eb, *exists = NULL;
4839 int ret;
4840
4841 eb = find_extent_buffer(fs_info, start);
4842 if (eb)
4843 return eb;
4844 eb = alloc_dummy_extent_buffer(fs_info, start, nodesize);
4845 if (!eb)
4846 return NULL;
4847 eb->fs_info = fs_info;
4848 again:
4849 ret = radix_tree_preload(GFP_NOFS);
4850 if (ret)
4851 goto free_eb;
4852 spin_lock(&fs_info->buffer_lock);
4853 ret = radix_tree_insert(&fs_info->buffer_radix,
4854 start >> PAGE_SHIFT, eb);
4855 spin_unlock(&fs_info->buffer_lock);
4856 radix_tree_preload_end();
4857 if (ret == -EEXIST) {
4858 exists = find_extent_buffer(fs_info, start);
4859 if (exists)
4860 goto free_eb;
4861 else
4862 goto again;
4863 }
4864 check_buffer_tree_ref(eb);
4865 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4866
4867 /*
4868 * We will free dummy extent buffer's if they come into
4869 * free_extent_buffer with a ref count of 2, but if we are using this we
4870 * want the buffers to stay in memory until we're done with them, so
4871 * bump the ref count again.
4872 */
4873 atomic_inc(&eb->refs);
4874 return eb;
4875 free_eb:
4876 btrfs_release_extent_buffer(eb);
4877 return exists;
4878 }
4879 #endif
4880
4881 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4882 u64 start)
4883 {
4884 unsigned long len = fs_info->tree_root->nodesize;
4885 unsigned long num_pages = num_extent_pages(start, len);
4886 unsigned long i;
4887 unsigned long index = start >> PAGE_SHIFT;
4888 struct extent_buffer *eb;
4889 struct extent_buffer *exists = NULL;
4890 struct page *p;
4891 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4892 int uptodate = 1;
4893 int ret;
4894
4895 if (!IS_ALIGNED(start, fs_info->tree_root->sectorsize)) {
4896 btrfs_err(fs_info, "bad tree block start %llu", start);
4897 return ERR_PTR(-EINVAL);
4898 }
4899
4900 eb = find_extent_buffer(fs_info, start);
4901 if (eb)
4902 return eb;
4903
4904 eb = __alloc_extent_buffer(fs_info, start, len);
4905 if (!eb)
4906 return ERR_PTR(-ENOMEM);
4907
4908 for (i = 0; i < num_pages; i++, index++) {
4909 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4910 if (!p) {
4911 exists = ERR_PTR(-ENOMEM);
4912 goto free_eb;
4913 }
4914
4915 spin_lock(&mapping->private_lock);
4916 if (PagePrivate(p)) {
4917 /*
4918 * We could have already allocated an eb for this page
4919 * and attached one so lets see if we can get a ref on
4920 * the existing eb, and if we can we know it's good and
4921 * we can just return that one, else we know we can just
4922 * overwrite page->private.
4923 */
4924 exists = (struct extent_buffer *)p->private;
4925 if (atomic_inc_not_zero(&exists->refs)) {
4926 spin_unlock(&mapping->private_lock);
4927 unlock_page(p);
4928 put_page(p);
4929 mark_extent_buffer_accessed(exists, p);
4930 goto free_eb;
4931 }
4932 exists = NULL;
4933
4934 /*
4935 * Do this so attach doesn't complain and we need to
4936 * drop the ref the old guy had.
4937 */
4938 ClearPagePrivate(p);
4939 WARN_ON(PageDirty(p));
4940 put_page(p);
4941 }
4942 attach_extent_buffer_page(eb, p);
4943 spin_unlock(&mapping->private_lock);
4944 WARN_ON(PageDirty(p));
4945 eb->pages[i] = p;
4946 if (!PageUptodate(p))
4947 uptodate = 0;
4948
4949 /*
4950 * see below about how we avoid a nasty race with release page
4951 * and why we unlock later
4952 */
4953 }
4954 if (uptodate)
4955 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4956 again:
4957 ret = radix_tree_preload(GFP_NOFS);
4958 if (ret) {
4959 exists = ERR_PTR(ret);
4960 goto free_eb;
4961 }
4962
4963 spin_lock(&fs_info->buffer_lock);
4964 ret = radix_tree_insert(&fs_info->buffer_radix,
4965 start >> PAGE_SHIFT, eb);
4966 spin_unlock(&fs_info->buffer_lock);
4967 radix_tree_preload_end();
4968 if (ret == -EEXIST) {
4969 exists = find_extent_buffer(fs_info, start);
4970 if (exists)
4971 goto free_eb;
4972 else
4973 goto again;
4974 }
4975 /* add one reference for the tree */
4976 check_buffer_tree_ref(eb);
4977 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4978
4979 /*
4980 * there is a race where release page may have
4981 * tried to find this extent buffer in the radix
4982 * but failed. It will tell the VM it is safe to
4983 * reclaim the, and it will clear the page private bit.
4984 * We must make sure to set the page private bit properly
4985 * after the extent buffer is in the radix tree so
4986 * it doesn't get lost
4987 */
4988 SetPageChecked(eb->pages[0]);
4989 for (i = 1; i < num_pages; i++) {
4990 p = eb->pages[i];
4991 ClearPageChecked(p);
4992 unlock_page(p);
4993 }
4994 unlock_page(eb->pages[0]);
4995 return eb;
4996
4997 free_eb:
4998 WARN_ON(!atomic_dec_and_test(&eb->refs));
4999 for (i = 0; i < num_pages; i++) {
5000 if (eb->pages[i])
5001 unlock_page(eb->pages[i]);
5002 }
5003
5004 btrfs_release_extent_buffer(eb);
5005 return exists;
5006 }
5007
5008 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5009 {
5010 struct extent_buffer *eb =
5011 container_of(head, struct extent_buffer, rcu_head);
5012
5013 __free_extent_buffer(eb);
5014 }
5015
5016 /* Expects to have eb->eb_lock already held */
5017 static int release_extent_buffer(struct extent_buffer *eb)
5018 {
5019 WARN_ON(atomic_read(&eb->refs) == 0);
5020 if (atomic_dec_and_test(&eb->refs)) {
5021 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5022 struct btrfs_fs_info *fs_info = eb->fs_info;
5023
5024 spin_unlock(&eb->refs_lock);
5025
5026 spin_lock(&fs_info->buffer_lock);
5027 radix_tree_delete(&fs_info->buffer_radix,
5028 eb->start >> PAGE_SHIFT);
5029 spin_unlock(&fs_info->buffer_lock);
5030 } else {
5031 spin_unlock(&eb->refs_lock);
5032 }
5033
5034 /* Should be safe to release our pages at this point */
5035 btrfs_release_extent_buffer_page(eb);
5036 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5037 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5038 __free_extent_buffer(eb);
5039 return 1;
5040 }
5041 #endif
5042 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5043 return 1;
5044 }
5045 spin_unlock(&eb->refs_lock);
5046
5047 return 0;
5048 }
5049
5050 void free_extent_buffer(struct extent_buffer *eb)
5051 {
5052 int refs;
5053 int old;
5054 if (!eb)
5055 return;
5056
5057 while (1) {
5058 refs = atomic_read(&eb->refs);
5059 if (refs <= 3)
5060 break;
5061 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5062 if (old == refs)
5063 return;
5064 }
5065
5066 spin_lock(&eb->refs_lock);
5067 if (atomic_read(&eb->refs) == 2 &&
5068 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5069 atomic_dec(&eb->refs);
5070
5071 if (atomic_read(&eb->refs) == 2 &&
5072 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5073 !extent_buffer_under_io(eb) &&
5074 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5075 atomic_dec(&eb->refs);
5076
5077 /*
5078 * I know this is terrible, but it's temporary until we stop tracking
5079 * the uptodate bits and such for the extent buffers.
5080 */
5081 release_extent_buffer(eb);
5082 }
5083
5084 void free_extent_buffer_stale(struct extent_buffer *eb)
5085 {
5086 if (!eb)
5087 return;
5088
5089 spin_lock(&eb->refs_lock);
5090 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5091
5092 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5093 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5094 atomic_dec(&eb->refs);
5095 release_extent_buffer(eb);
5096 }
5097
5098 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5099 {
5100 unsigned long i;
5101 unsigned long num_pages;
5102 struct page *page;
5103
5104 num_pages = num_extent_pages(eb->start, eb->len);
5105
5106 for (i = 0; i < num_pages; i++) {
5107 page = eb->pages[i];
5108 if (!PageDirty(page))
5109 continue;
5110
5111 lock_page(page);
5112 WARN_ON(!PagePrivate(page));
5113
5114 clear_page_dirty_for_io(page);
5115 spin_lock_irq(&page->mapping->tree_lock);
5116 if (!PageDirty(page)) {
5117 radix_tree_tag_clear(&page->mapping->page_tree,
5118 page_index(page),
5119 PAGECACHE_TAG_DIRTY);
5120 }
5121 spin_unlock_irq(&page->mapping->tree_lock);
5122 ClearPageError(page);
5123 unlock_page(page);
5124 }
5125 WARN_ON(atomic_read(&eb->refs) == 0);
5126 }
5127
5128 int set_extent_buffer_dirty(struct extent_buffer *eb)
5129 {
5130 unsigned long i;
5131 unsigned long num_pages;
5132 int was_dirty = 0;
5133
5134 check_buffer_tree_ref(eb);
5135
5136 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5137
5138 num_pages = num_extent_pages(eb->start, eb->len);
5139 WARN_ON(atomic_read(&eb->refs) == 0);
5140 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5141
5142 for (i = 0; i < num_pages; i++)
5143 set_page_dirty(eb->pages[i]);
5144 return was_dirty;
5145 }
5146
5147 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5148 {
5149 unsigned long i;
5150 struct page *page;
5151 unsigned long num_pages;
5152
5153 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5154 num_pages = num_extent_pages(eb->start, eb->len);
5155 for (i = 0; i < num_pages; i++) {
5156 page = eb->pages[i];
5157 if (page)
5158 ClearPageUptodate(page);
5159 }
5160 }
5161
5162 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5163 {
5164 unsigned long i;
5165 struct page *page;
5166 unsigned long num_pages;
5167
5168 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5169 num_pages = num_extent_pages(eb->start, eb->len);
5170 for (i = 0; i < num_pages; i++) {
5171 page = eb->pages[i];
5172 SetPageUptodate(page);
5173 }
5174 }
5175
5176 int extent_buffer_uptodate(struct extent_buffer *eb)
5177 {
5178 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5179 }
5180
5181 int read_extent_buffer_pages(struct extent_io_tree *tree,
5182 struct extent_buffer *eb, u64 start, int wait,
5183 get_extent_t *get_extent, int mirror_num)
5184 {
5185 unsigned long i;
5186 unsigned long start_i;
5187 struct page *page;
5188 int err;
5189 int ret = 0;
5190 int locked_pages = 0;
5191 int all_uptodate = 1;
5192 unsigned long num_pages;
5193 unsigned long num_reads = 0;
5194 struct bio *bio = NULL;
5195 unsigned long bio_flags = 0;
5196
5197 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5198 return 0;
5199
5200 if (start) {
5201 WARN_ON(start < eb->start);
5202 start_i = (start >> PAGE_SHIFT) -
5203 (eb->start >> PAGE_SHIFT);
5204 } else {
5205 start_i = 0;
5206 }
5207
5208 num_pages = num_extent_pages(eb->start, eb->len);
5209 for (i = start_i; i < num_pages; i++) {
5210 page = eb->pages[i];
5211 if (wait == WAIT_NONE) {
5212 if (!trylock_page(page))
5213 goto unlock_exit;
5214 } else {
5215 lock_page(page);
5216 }
5217 locked_pages++;
5218 if (!PageUptodate(page)) {
5219 num_reads++;
5220 all_uptodate = 0;
5221 }
5222 }
5223 if (all_uptodate) {
5224 if (start_i == 0)
5225 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5226 goto unlock_exit;
5227 }
5228
5229 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5230 eb->read_mirror = 0;
5231 atomic_set(&eb->io_pages, num_reads);
5232 for (i = start_i; i < num_pages; i++) {
5233 page = eb->pages[i];
5234
5235 if (!PageUptodate(page)) {
5236 if (ret) {
5237 atomic_dec(&eb->io_pages);
5238 unlock_page(page);
5239 continue;
5240 }
5241
5242 ClearPageError(page);
5243 err = __extent_read_full_page(tree, page,
5244 get_extent, &bio,
5245 mirror_num, &bio_flags,
5246 REQ_META);
5247 if (err) {
5248 ret = err;
5249 /*
5250 * We use &bio in above __extent_read_full_page,
5251 * so we ensure that if it returns error, the
5252 * current page fails to add itself to bio and
5253 * it's been unlocked.
5254 *
5255 * We must dec io_pages by ourselves.
5256 */
5257 atomic_dec(&eb->io_pages);
5258 }
5259 } else {
5260 unlock_page(page);
5261 }
5262 }
5263
5264 if (bio) {
5265 err = submit_one_bio(bio, mirror_num, bio_flags);
5266 if (err)
5267 return err;
5268 }
5269
5270 if (ret || wait != WAIT_COMPLETE)
5271 return ret;
5272
5273 for (i = start_i; i < num_pages; i++) {
5274 page = eb->pages[i];
5275 wait_on_page_locked(page);
5276 if (!PageUptodate(page))
5277 ret = -EIO;
5278 }
5279
5280 return ret;
5281
5282 unlock_exit:
5283 i = start_i;
5284 while (locked_pages > 0) {
5285 page = eb->pages[i];
5286 i++;
5287 unlock_page(page);
5288 locked_pages--;
5289 }
5290 return ret;
5291 }
5292
5293 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5294 unsigned long start,
5295 unsigned long len)
5296 {
5297 size_t cur;
5298 size_t offset;
5299 struct page *page;
5300 char *kaddr;
5301 char *dst = (char *)dstv;
5302 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5303 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5304
5305 WARN_ON(start > eb->len);
5306 WARN_ON(start + len > eb->start + eb->len);
5307
5308 offset = (start_offset + start) & (PAGE_SIZE - 1);
5309
5310 while (len > 0) {
5311 page = eb->pages[i];
5312
5313 cur = min(len, (PAGE_SIZE - offset));
5314 kaddr = page_address(page);
5315 memcpy(dst, kaddr + offset, cur);
5316
5317 dst += cur;
5318 len -= cur;
5319 offset = 0;
5320 i++;
5321 }
5322 }
5323
5324 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5325 unsigned long start,
5326 unsigned long len)
5327 {
5328 size_t cur;
5329 size_t offset;
5330 struct page *page;
5331 char *kaddr;
5332 char __user *dst = (char __user *)dstv;
5333 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5334 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5335 int ret = 0;
5336
5337 WARN_ON(start > eb->len);
5338 WARN_ON(start + len > eb->start + eb->len);
5339
5340 offset = (start_offset + start) & (PAGE_SIZE - 1);
5341
5342 while (len > 0) {
5343 page = eb->pages[i];
5344
5345 cur = min(len, (PAGE_SIZE - offset));
5346 kaddr = page_address(page);
5347 if (copy_to_user(dst, kaddr + offset, cur)) {
5348 ret = -EFAULT;
5349 break;
5350 }
5351
5352 dst += cur;
5353 len -= cur;
5354 offset = 0;
5355 i++;
5356 }
5357
5358 return ret;
5359 }
5360
5361 /*
5362 * return 0 if the item is found within a page.
5363 * return 1 if the item spans two pages.
5364 * return -EINVAL otherwise.
5365 */
5366 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5367 unsigned long min_len, char **map,
5368 unsigned long *map_start,
5369 unsigned long *map_len)
5370 {
5371 size_t offset = start & (PAGE_SIZE - 1);
5372 char *kaddr;
5373 struct page *p;
5374 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5375 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5376 unsigned long end_i = (start_offset + start + min_len - 1) >>
5377 PAGE_SHIFT;
5378
5379 if (i != end_i)
5380 return 1;
5381
5382 if (i == 0) {
5383 offset = start_offset;
5384 *map_start = 0;
5385 } else {
5386 offset = 0;
5387 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5388 }
5389
5390 if (start + min_len > eb->len) {
5391 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5392 "wanted %lu %lu\n",
5393 eb->start, eb->len, start, min_len);
5394 return -EINVAL;
5395 }
5396
5397 p = eb->pages[i];
5398 kaddr = page_address(p);
5399 *map = kaddr + offset;
5400 *map_len = PAGE_SIZE - offset;
5401 return 0;
5402 }
5403
5404 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5405 unsigned long start,
5406 unsigned long len)
5407 {
5408 size_t cur;
5409 size_t offset;
5410 struct page *page;
5411 char *kaddr;
5412 char *ptr = (char *)ptrv;
5413 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5414 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5415 int ret = 0;
5416
5417 WARN_ON(start > eb->len);
5418 WARN_ON(start + len > eb->start + eb->len);
5419
5420 offset = (start_offset + start) & (PAGE_SIZE - 1);
5421
5422 while (len > 0) {
5423 page = eb->pages[i];
5424
5425 cur = min(len, (PAGE_SIZE - offset));
5426
5427 kaddr = page_address(page);
5428 ret = memcmp(ptr, kaddr + offset, cur);
5429 if (ret)
5430 break;
5431
5432 ptr += cur;
5433 len -= cur;
5434 offset = 0;
5435 i++;
5436 }
5437 return ret;
5438 }
5439
5440 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5441 unsigned long start, unsigned long len)
5442 {
5443 size_t cur;
5444 size_t offset;
5445 struct page *page;
5446 char *kaddr;
5447 char *src = (char *)srcv;
5448 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5449 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5450
5451 WARN_ON(start > eb->len);
5452 WARN_ON(start + len > eb->start + eb->len);
5453
5454 offset = (start_offset + start) & (PAGE_SIZE - 1);
5455
5456 while (len > 0) {
5457 page = eb->pages[i];
5458 WARN_ON(!PageUptodate(page));
5459
5460 cur = min(len, PAGE_SIZE - offset);
5461 kaddr = page_address(page);
5462 memcpy(kaddr + offset, src, cur);
5463
5464 src += cur;
5465 len -= cur;
5466 offset = 0;
5467 i++;
5468 }
5469 }
5470
5471 void memset_extent_buffer(struct extent_buffer *eb, char c,
5472 unsigned long start, unsigned long len)
5473 {
5474 size_t cur;
5475 size_t offset;
5476 struct page *page;
5477 char *kaddr;
5478 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5479 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5480
5481 WARN_ON(start > eb->len);
5482 WARN_ON(start + len > eb->start + eb->len);
5483
5484 offset = (start_offset + start) & (PAGE_SIZE - 1);
5485
5486 while (len > 0) {
5487 page = eb->pages[i];
5488 WARN_ON(!PageUptodate(page));
5489
5490 cur = min(len, PAGE_SIZE - offset);
5491 kaddr = page_address(page);
5492 memset(kaddr + offset, c, cur);
5493
5494 len -= cur;
5495 offset = 0;
5496 i++;
5497 }
5498 }
5499
5500 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5501 unsigned long dst_offset, unsigned long src_offset,
5502 unsigned long len)
5503 {
5504 u64 dst_len = dst->len;
5505 size_t cur;
5506 size_t offset;
5507 struct page *page;
5508 char *kaddr;
5509 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5510 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5511
5512 WARN_ON(src->len != dst_len);
5513
5514 offset = (start_offset + dst_offset) &
5515 (PAGE_SIZE - 1);
5516
5517 while (len > 0) {
5518 page = dst->pages[i];
5519 WARN_ON(!PageUptodate(page));
5520
5521 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5522
5523 kaddr = page_address(page);
5524 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5525
5526 src_offset += cur;
5527 len -= cur;
5528 offset = 0;
5529 i++;
5530 }
5531 }
5532
5533 /*
5534 * The extent buffer bitmap operations are done with byte granularity because
5535 * bitmap items are not guaranteed to be aligned to a word and therefore a
5536 * single word in a bitmap may straddle two pages in the extent buffer.
5537 */
5538 #define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5539 #define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5540 #define BITMAP_FIRST_BYTE_MASK(start) \
5541 ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5542 #define BITMAP_LAST_BYTE_MASK(nbits) \
5543 (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5544
5545 /*
5546 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5547 * given bit number
5548 * @eb: the extent buffer
5549 * @start: offset of the bitmap item in the extent buffer
5550 * @nr: bit number
5551 * @page_index: return index of the page in the extent buffer that contains the
5552 * given bit number
5553 * @page_offset: return offset into the page given by page_index
5554 *
5555 * This helper hides the ugliness of finding the byte in an extent buffer which
5556 * contains a given bit.
5557 */
5558 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5559 unsigned long start, unsigned long nr,
5560 unsigned long *page_index,
5561 size_t *page_offset)
5562 {
5563 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5564 size_t byte_offset = BIT_BYTE(nr);
5565 size_t offset;
5566
5567 /*
5568 * The byte we want is the offset of the extent buffer + the offset of
5569 * the bitmap item in the extent buffer + the offset of the byte in the
5570 * bitmap item.
5571 */
5572 offset = start_offset + start + byte_offset;
5573
5574 *page_index = offset >> PAGE_SHIFT;
5575 *page_offset = offset & (PAGE_SIZE - 1);
5576 }
5577
5578 /**
5579 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5580 * @eb: the extent buffer
5581 * @start: offset of the bitmap item in the extent buffer
5582 * @nr: bit number to test
5583 */
5584 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5585 unsigned long nr)
5586 {
5587 char *kaddr;
5588 struct page *page;
5589 unsigned long i;
5590 size_t offset;
5591
5592 eb_bitmap_offset(eb, start, nr, &i, &offset);
5593 page = eb->pages[i];
5594 WARN_ON(!PageUptodate(page));
5595 kaddr = page_address(page);
5596 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5597 }
5598
5599 /**
5600 * extent_buffer_bitmap_set - set an area of a bitmap
5601 * @eb: the extent buffer
5602 * @start: offset of the bitmap item in the extent buffer
5603 * @pos: bit number of the first bit
5604 * @len: number of bits to set
5605 */
5606 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5607 unsigned long pos, unsigned long len)
5608 {
5609 char *kaddr;
5610 struct page *page;
5611 unsigned long i;
5612 size_t offset;
5613 const unsigned int size = pos + len;
5614 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5615 unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5616
5617 eb_bitmap_offset(eb, start, pos, &i, &offset);
5618 page = eb->pages[i];
5619 WARN_ON(!PageUptodate(page));
5620 kaddr = page_address(page);
5621
5622 while (len >= bits_to_set) {
5623 kaddr[offset] |= mask_to_set;
5624 len -= bits_to_set;
5625 bits_to_set = BITS_PER_BYTE;
5626 mask_to_set = ~0U;
5627 if (++offset >= PAGE_SIZE && len > 0) {
5628 offset = 0;
5629 page = eb->pages[++i];
5630 WARN_ON(!PageUptodate(page));
5631 kaddr = page_address(page);
5632 }
5633 }
5634 if (len) {
5635 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5636 kaddr[offset] |= mask_to_set;
5637 }
5638 }
5639
5640
5641 /**
5642 * extent_buffer_bitmap_clear - clear an area of a bitmap
5643 * @eb: the extent buffer
5644 * @start: offset of the bitmap item in the extent buffer
5645 * @pos: bit number of the first bit
5646 * @len: number of bits to clear
5647 */
5648 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5649 unsigned long pos, unsigned long len)
5650 {
5651 char *kaddr;
5652 struct page *page;
5653 unsigned long i;
5654 size_t offset;
5655 const unsigned int size = pos + len;
5656 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5657 unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5658
5659 eb_bitmap_offset(eb, start, pos, &i, &offset);
5660 page = eb->pages[i];
5661 WARN_ON(!PageUptodate(page));
5662 kaddr = page_address(page);
5663
5664 while (len >= bits_to_clear) {
5665 kaddr[offset] &= ~mask_to_clear;
5666 len -= bits_to_clear;
5667 bits_to_clear = BITS_PER_BYTE;
5668 mask_to_clear = ~0U;
5669 if (++offset >= PAGE_SIZE && len > 0) {
5670 offset = 0;
5671 page = eb->pages[++i];
5672 WARN_ON(!PageUptodate(page));
5673 kaddr = page_address(page);
5674 }
5675 }
5676 if (len) {
5677 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5678 kaddr[offset] &= ~mask_to_clear;
5679 }
5680 }
5681
5682 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5683 {
5684 unsigned long distance = (src > dst) ? src - dst : dst - src;
5685 return distance < len;
5686 }
5687
5688 static void copy_pages(struct page *dst_page, struct page *src_page,
5689 unsigned long dst_off, unsigned long src_off,
5690 unsigned long len)
5691 {
5692 char *dst_kaddr = page_address(dst_page);
5693 char *src_kaddr;
5694 int must_memmove = 0;
5695
5696 if (dst_page != src_page) {
5697 src_kaddr = page_address(src_page);
5698 } else {
5699 src_kaddr = dst_kaddr;
5700 if (areas_overlap(src_off, dst_off, len))
5701 must_memmove = 1;
5702 }
5703
5704 if (must_memmove)
5705 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5706 else
5707 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5708 }
5709
5710 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5711 unsigned long src_offset, unsigned long len)
5712 {
5713 size_t cur;
5714 size_t dst_off_in_page;
5715 size_t src_off_in_page;
5716 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5717 unsigned long dst_i;
5718 unsigned long src_i;
5719
5720 if (src_offset + len > dst->len) {
5721 btrfs_err(dst->fs_info,
5722 "memmove bogus src_offset %lu move "
5723 "len %lu dst len %lu", src_offset, len, dst->len);
5724 BUG_ON(1);
5725 }
5726 if (dst_offset + len > dst->len) {
5727 btrfs_err(dst->fs_info,
5728 "memmove bogus dst_offset %lu move "
5729 "len %lu dst len %lu", dst_offset, len, dst->len);
5730 BUG_ON(1);
5731 }
5732
5733 while (len > 0) {
5734 dst_off_in_page = (start_offset + dst_offset) &
5735 (PAGE_SIZE - 1);
5736 src_off_in_page = (start_offset + src_offset) &
5737 (PAGE_SIZE - 1);
5738
5739 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5740 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5741
5742 cur = min(len, (unsigned long)(PAGE_SIZE -
5743 src_off_in_page));
5744 cur = min_t(unsigned long, cur,
5745 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5746
5747 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5748 dst_off_in_page, src_off_in_page, cur);
5749
5750 src_offset += cur;
5751 dst_offset += cur;
5752 len -= cur;
5753 }
5754 }
5755
5756 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5757 unsigned long src_offset, unsigned long len)
5758 {
5759 size_t cur;
5760 size_t dst_off_in_page;
5761 size_t src_off_in_page;
5762 unsigned long dst_end = dst_offset + len - 1;
5763 unsigned long src_end = src_offset + len - 1;
5764 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5765 unsigned long dst_i;
5766 unsigned long src_i;
5767
5768 if (src_offset + len > dst->len) {
5769 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5770 "len %lu len %lu", src_offset, len, dst->len);
5771 BUG_ON(1);
5772 }
5773 if (dst_offset + len > dst->len) {
5774 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5775 "len %lu len %lu", dst_offset, len, dst->len);
5776 BUG_ON(1);
5777 }
5778 if (dst_offset < src_offset) {
5779 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5780 return;
5781 }
5782 while (len > 0) {
5783 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5784 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5785
5786 dst_off_in_page = (start_offset + dst_end) &
5787 (PAGE_SIZE - 1);
5788 src_off_in_page = (start_offset + src_end) &
5789 (PAGE_SIZE - 1);
5790
5791 cur = min_t(unsigned long, len, src_off_in_page + 1);
5792 cur = min(cur, dst_off_in_page + 1);
5793 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5794 dst_off_in_page - cur + 1,
5795 src_off_in_page - cur + 1, cur);
5796
5797 dst_end -= cur;
5798 src_end -= cur;
5799 len -= cur;
5800 }
5801 }
5802
5803 int try_release_extent_buffer(struct page *page)
5804 {
5805 struct extent_buffer *eb;
5806
5807 /*
5808 * We need to make sure nobody is attaching this page to an eb right
5809 * now.
5810 */
5811 spin_lock(&page->mapping->private_lock);
5812 if (!PagePrivate(page)) {
5813 spin_unlock(&page->mapping->private_lock);
5814 return 1;
5815 }
5816
5817 eb = (struct extent_buffer *)page->private;
5818 BUG_ON(!eb);
5819
5820 /*
5821 * This is a little awful but should be ok, we need to make sure that
5822 * the eb doesn't disappear out from under us while we're looking at
5823 * this page.
5824 */
5825 spin_lock(&eb->refs_lock);
5826 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5827 spin_unlock(&eb->refs_lock);
5828 spin_unlock(&page->mapping->private_lock);
5829 return 0;
5830 }
5831 spin_unlock(&page->mapping->private_lock);
5832
5833 /*
5834 * If tree ref isn't set then we know the ref on this eb is a real ref,
5835 * so just return, this page will likely be freed soon anyway.
5836 */
5837 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5838 spin_unlock(&eb->refs_lock);
5839 return 0;
5840 }
5841
5842 return release_extent_buffer(eb);
5843 }
This page took 0.171975 seconds and 5 git commands to generate.