x86: Move call to print_modules() out of show_regs()
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27
28 static LIST_HEAD(buffers);
29 static LIST_HEAD(states);
30
31 #define LEAK_DEBUG 0
32 #if LEAK_DEBUG
33 static DEFINE_SPINLOCK(leak_lock);
34 #endif
35
36 #define BUFFER_LRU_MAX 64
37
38 struct tree_entry {
39 u64 start;
40 u64 end;
41 struct rb_node rb_node;
42 };
43
44 struct extent_page_data {
45 struct bio *bio;
46 struct extent_io_tree *tree;
47 get_extent_t *get_extent;
48
49 /* tells writepage not to lock the state bits for this range
50 * it still does the unlocking
51 */
52 unsigned int extent_locked:1;
53
54 /* tells the submit_bio code to use a WRITE_SYNC */
55 unsigned int sync_io:1;
56 };
57
58 static noinline void flush_write_bio(void *data);
59 static inline struct btrfs_fs_info *
60 tree_fs_info(struct extent_io_tree *tree)
61 {
62 return btrfs_sb(tree->mapping->host->i_sb);
63 }
64
65 int __init extent_io_init(void)
66 {
67 extent_state_cache = kmem_cache_create("extent_state",
68 sizeof(struct extent_state), 0,
69 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
70 if (!extent_state_cache)
71 return -ENOMEM;
72
73 extent_buffer_cache = kmem_cache_create("extent_buffers",
74 sizeof(struct extent_buffer), 0,
75 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
76 if (!extent_buffer_cache)
77 goto free_state_cache;
78 return 0;
79
80 free_state_cache:
81 kmem_cache_destroy(extent_state_cache);
82 return -ENOMEM;
83 }
84
85 void extent_io_exit(void)
86 {
87 struct extent_state *state;
88 struct extent_buffer *eb;
89
90 while (!list_empty(&states)) {
91 state = list_entry(states.next, struct extent_state, leak_list);
92 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
93 "state %lu in tree %p refs %d\n",
94 (unsigned long long)state->start,
95 (unsigned long long)state->end,
96 state->state, state->tree, atomic_read(&state->refs));
97 list_del(&state->leak_list);
98 kmem_cache_free(extent_state_cache, state);
99
100 }
101
102 while (!list_empty(&buffers)) {
103 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
104 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
105 "refs %d\n", (unsigned long long)eb->start,
106 eb->len, atomic_read(&eb->refs));
107 list_del(&eb->leak_list);
108 kmem_cache_free(extent_buffer_cache, eb);
109 }
110 if (extent_state_cache)
111 kmem_cache_destroy(extent_state_cache);
112 if (extent_buffer_cache)
113 kmem_cache_destroy(extent_buffer_cache);
114 }
115
116 void extent_io_tree_init(struct extent_io_tree *tree,
117 struct address_space *mapping)
118 {
119 tree->state = RB_ROOT;
120 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
121 tree->ops = NULL;
122 tree->dirty_bytes = 0;
123 spin_lock_init(&tree->lock);
124 spin_lock_init(&tree->buffer_lock);
125 tree->mapping = mapping;
126 }
127
128 static struct extent_state *alloc_extent_state(gfp_t mask)
129 {
130 struct extent_state *state;
131 #if LEAK_DEBUG
132 unsigned long flags;
133 #endif
134
135 state = kmem_cache_alloc(extent_state_cache, mask);
136 if (!state)
137 return state;
138 state->state = 0;
139 state->private = 0;
140 state->tree = NULL;
141 #if LEAK_DEBUG
142 spin_lock_irqsave(&leak_lock, flags);
143 list_add(&state->leak_list, &states);
144 spin_unlock_irqrestore(&leak_lock, flags);
145 #endif
146 atomic_set(&state->refs, 1);
147 init_waitqueue_head(&state->wq);
148 trace_alloc_extent_state(state, mask, _RET_IP_);
149 return state;
150 }
151
152 void free_extent_state(struct extent_state *state)
153 {
154 if (!state)
155 return;
156 if (atomic_dec_and_test(&state->refs)) {
157 #if LEAK_DEBUG
158 unsigned long flags;
159 #endif
160 WARN_ON(state->tree);
161 #if LEAK_DEBUG
162 spin_lock_irqsave(&leak_lock, flags);
163 list_del(&state->leak_list);
164 spin_unlock_irqrestore(&leak_lock, flags);
165 #endif
166 trace_free_extent_state(state, _RET_IP_);
167 kmem_cache_free(extent_state_cache, state);
168 }
169 }
170
171 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
172 struct rb_node *node)
173 {
174 struct rb_node **p = &root->rb_node;
175 struct rb_node *parent = NULL;
176 struct tree_entry *entry;
177
178 while (*p) {
179 parent = *p;
180 entry = rb_entry(parent, struct tree_entry, rb_node);
181
182 if (offset < entry->start)
183 p = &(*p)->rb_left;
184 else if (offset > entry->end)
185 p = &(*p)->rb_right;
186 else
187 return parent;
188 }
189
190 rb_link_node(node, parent, p);
191 rb_insert_color(node, root);
192 return NULL;
193 }
194
195 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
196 struct rb_node **prev_ret,
197 struct rb_node **next_ret)
198 {
199 struct rb_root *root = &tree->state;
200 struct rb_node *n = root->rb_node;
201 struct rb_node *prev = NULL;
202 struct rb_node *orig_prev = NULL;
203 struct tree_entry *entry;
204 struct tree_entry *prev_entry = NULL;
205
206 while (n) {
207 entry = rb_entry(n, struct tree_entry, rb_node);
208 prev = n;
209 prev_entry = entry;
210
211 if (offset < entry->start)
212 n = n->rb_left;
213 else if (offset > entry->end)
214 n = n->rb_right;
215 else
216 return n;
217 }
218
219 if (prev_ret) {
220 orig_prev = prev;
221 while (prev && offset > prev_entry->end) {
222 prev = rb_next(prev);
223 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
224 }
225 *prev_ret = prev;
226 prev = orig_prev;
227 }
228
229 if (next_ret) {
230 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
231 while (prev && offset < prev_entry->start) {
232 prev = rb_prev(prev);
233 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
234 }
235 *next_ret = prev;
236 }
237 return NULL;
238 }
239
240 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
241 u64 offset)
242 {
243 struct rb_node *prev = NULL;
244 struct rb_node *ret;
245
246 ret = __etree_search(tree, offset, &prev, NULL);
247 if (!ret)
248 return prev;
249 return ret;
250 }
251
252 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
253 struct extent_state *other)
254 {
255 if (tree->ops && tree->ops->merge_extent_hook)
256 tree->ops->merge_extent_hook(tree->mapping->host, new,
257 other);
258 }
259
260 /*
261 * utility function to look for merge candidates inside a given range.
262 * Any extents with matching state are merged together into a single
263 * extent in the tree. Extents with EXTENT_IO in their state field
264 * are not merged because the end_io handlers need to be able to do
265 * operations on them without sleeping (or doing allocations/splits).
266 *
267 * This should be called with the tree lock held.
268 */
269 static void merge_state(struct extent_io_tree *tree,
270 struct extent_state *state)
271 {
272 struct extent_state *other;
273 struct rb_node *other_node;
274
275 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
276 return;
277
278 other_node = rb_prev(&state->rb_node);
279 if (other_node) {
280 other = rb_entry(other_node, struct extent_state, rb_node);
281 if (other->end == state->start - 1 &&
282 other->state == state->state) {
283 merge_cb(tree, state, other);
284 state->start = other->start;
285 other->tree = NULL;
286 rb_erase(&other->rb_node, &tree->state);
287 free_extent_state(other);
288 }
289 }
290 other_node = rb_next(&state->rb_node);
291 if (other_node) {
292 other = rb_entry(other_node, struct extent_state, rb_node);
293 if (other->start == state->end + 1 &&
294 other->state == state->state) {
295 merge_cb(tree, state, other);
296 state->end = other->end;
297 other->tree = NULL;
298 rb_erase(&other->rb_node, &tree->state);
299 free_extent_state(other);
300 }
301 }
302 }
303
304 static void set_state_cb(struct extent_io_tree *tree,
305 struct extent_state *state, int *bits)
306 {
307 if (tree->ops && tree->ops->set_bit_hook)
308 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
309 }
310
311 static void clear_state_cb(struct extent_io_tree *tree,
312 struct extent_state *state, int *bits)
313 {
314 if (tree->ops && tree->ops->clear_bit_hook)
315 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
316 }
317
318 static void set_state_bits(struct extent_io_tree *tree,
319 struct extent_state *state, int *bits);
320
321 /*
322 * insert an extent_state struct into the tree. 'bits' are set on the
323 * struct before it is inserted.
324 *
325 * This may return -EEXIST if the extent is already there, in which case the
326 * state struct is freed.
327 *
328 * The tree lock is not taken internally. This is a utility function and
329 * probably isn't what you want to call (see set/clear_extent_bit).
330 */
331 static int insert_state(struct extent_io_tree *tree,
332 struct extent_state *state, u64 start, u64 end,
333 int *bits)
334 {
335 struct rb_node *node;
336
337 if (end < start) {
338 printk(KERN_ERR "btrfs end < start %llu %llu\n",
339 (unsigned long long)end,
340 (unsigned long long)start);
341 WARN_ON(1);
342 }
343 state->start = start;
344 state->end = end;
345
346 set_state_bits(tree, state, bits);
347
348 node = tree_insert(&tree->state, end, &state->rb_node);
349 if (node) {
350 struct extent_state *found;
351 found = rb_entry(node, struct extent_state, rb_node);
352 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
353 "%llu %llu\n", (unsigned long long)found->start,
354 (unsigned long long)found->end,
355 (unsigned long long)start, (unsigned long long)end);
356 return -EEXIST;
357 }
358 state->tree = tree;
359 merge_state(tree, state);
360 return 0;
361 }
362
363 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
364 u64 split)
365 {
366 if (tree->ops && tree->ops->split_extent_hook)
367 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
368 }
369
370 /*
371 * split a given extent state struct in two, inserting the preallocated
372 * struct 'prealloc' as the newly created second half. 'split' indicates an
373 * offset inside 'orig' where it should be split.
374 *
375 * Before calling,
376 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
377 * are two extent state structs in the tree:
378 * prealloc: [orig->start, split - 1]
379 * orig: [ split, orig->end ]
380 *
381 * The tree locks are not taken by this function. They need to be held
382 * by the caller.
383 */
384 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
385 struct extent_state *prealloc, u64 split)
386 {
387 struct rb_node *node;
388
389 split_cb(tree, orig, split);
390
391 prealloc->start = orig->start;
392 prealloc->end = split - 1;
393 prealloc->state = orig->state;
394 orig->start = split;
395
396 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
397 if (node) {
398 free_extent_state(prealloc);
399 return -EEXIST;
400 }
401 prealloc->tree = tree;
402 return 0;
403 }
404
405 static struct extent_state *next_state(struct extent_state *state)
406 {
407 struct rb_node *next = rb_next(&state->rb_node);
408 if (next)
409 return rb_entry(next, struct extent_state, rb_node);
410 else
411 return NULL;
412 }
413
414 /*
415 * utility function to clear some bits in an extent state struct.
416 * it will optionally wake up any one waiting on this state (wake == 1).
417 *
418 * If no bits are set on the state struct after clearing things, the
419 * struct is freed and removed from the tree
420 */
421 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
422 struct extent_state *state,
423 int *bits, int wake)
424 {
425 struct extent_state *next;
426 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
427
428 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
429 u64 range = state->end - state->start + 1;
430 WARN_ON(range > tree->dirty_bytes);
431 tree->dirty_bytes -= range;
432 }
433 clear_state_cb(tree, state, bits);
434 state->state &= ~bits_to_clear;
435 if (wake)
436 wake_up(&state->wq);
437 if (state->state == 0) {
438 next = next_state(state);
439 if (state->tree) {
440 rb_erase(&state->rb_node, &tree->state);
441 state->tree = NULL;
442 free_extent_state(state);
443 } else {
444 WARN_ON(1);
445 }
446 } else {
447 merge_state(tree, state);
448 next = next_state(state);
449 }
450 return next;
451 }
452
453 static struct extent_state *
454 alloc_extent_state_atomic(struct extent_state *prealloc)
455 {
456 if (!prealloc)
457 prealloc = alloc_extent_state(GFP_ATOMIC);
458
459 return prealloc;
460 }
461
462 void extent_io_tree_panic(struct extent_io_tree *tree, int err)
463 {
464 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
465 "Extent tree was modified by another "
466 "thread while locked.");
467 }
468
469 /*
470 * clear some bits on a range in the tree. This may require splitting
471 * or inserting elements in the tree, so the gfp mask is used to
472 * indicate which allocations or sleeping are allowed.
473 *
474 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
475 * the given range from the tree regardless of state (ie for truncate).
476 *
477 * the range [start, end] is inclusive.
478 *
479 * This takes the tree lock, and returns 0 on success and < 0 on error.
480 */
481 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
482 int bits, int wake, int delete,
483 struct extent_state **cached_state,
484 gfp_t mask)
485 {
486 struct extent_state *state;
487 struct extent_state *cached;
488 struct extent_state *prealloc = NULL;
489 struct rb_node *node;
490 u64 last_end;
491 int err;
492 int clear = 0;
493
494 if (delete)
495 bits |= ~EXTENT_CTLBITS;
496 bits |= EXTENT_FIRST_DELALLOC;
497
498 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
499 clear = 1;
500 again:
501 if (!prealloc && (mask & __GFP_WAIT)) {
502 prealloc = alloc_extent_state(mask);
503 if (!prealloc)
504 return -ENOMEM;
505 }
506
507 spin_lock(&tree->lock);
508 if (cached_state) {
509 cached = *cached_state;
510
511 if (clear) {
512 *cached_state = NULL;
513 cached_state = NULL;
514 }
515
516 if (cached && cached->tree && cached->start <= start &&
517 cached->end > start) {
518 if (clear)
519 atomic_dec(&cached->refs);
520 state = cached;
521 goto hit_next;
522 }
523 if (clear)
524 free_extent_state(cached);
525 }
526 /*
527 * this search will find the extents that end after
528 * our range starts
529 */
530 node = tree_search(tree, start);
531 if (!node)
532 goto out;
533 state = rb_entry(node, struct extent_state, rb_node);
534 hit_next:
535 if (state->start > end)
536 goto out;
537 WARN_ON(state->end < start);
538 last_end = state->end;
539
540 /* the state doesn't have the wanted bits, go ahead */
541 if (!(state->state & bits)) {
542 state = next_state(state);
543 goto next;
544 }
545
546 /*
547 * | ---- desired range ---- |
548 * | state | or
549 * | ------------- state -------------- |
550 *
551 * We need to split the extent we found, and may flip
552 * bits on second half.
553 *
554 * If the extent we found extends past our range, we
555 * just split and search again. It'll get split again
556 * the next time though.
557 *
558 * If the extent we found is inside our range, we clear
559 * the desired bit on it.
560 */
561
562 if (state->start < start) {
563 prealloc = alloc_extent_state_atomic(prealloc);
564 BUG_ON(!prealloc);
565 err = split_state(tree, state, prealloc, start);
566 if (err)
567 extent_io_tree_panic(tree, err);
568
569 prealloc = NULL;
570 if (err)
571 goto out;
572 if (state->end <= end) {
573 state = clear_state_bit(tree, state, &bits, wake);
574 goto next;
575 }
576 goto search_again;
577 }
578 /*
579 * | ---- desired range ---- |
580 * | state |
581 * We need to split the extent, and clear the bit
582 * on the first half
583 */
584 if (state->start <= end && state->end > end) {
585 prealloc = alloc_extent_state_atomic(prealloc);
586 BUG_ON(!prealloc);
587 err = split_state(tree, state, prealloc, end + 1);
588 if (err)
589 extent_io_tree_panic(tree, err);
590
591 if (wake)
592 wake_up(&state->wq);
593
594 clear_state_bit(tree, prealloc, &bits, wake);
595
596 prealloc = NULL;
597 goto out;
598 }
599
600 state = clear_state_bit(tree, state, &bits, wake);
601 next:
602 if (last_end == (u64)-1)
603 goto out;
604 start = last_end + 1;
605 if (start <= end && state && !need_resched())
606 goto hit_next;
607 goto search_again;
608
609 out:
610 spin_unlock(&tree->lock);
611 if (prealloc)
612 free_extent_state(prealloc);
613
614 return 0;
615
616 search_again:
617 if (start > end)
618 goto out;
619 spin_unlock(&tree->lock);
620 if (mask & __GFP_WAIT)
621 cond_resched();
622 goto again;
623 }
624
625 static void wait_on_state(struct extent_io_tree *tree,
626 struct extent_state *state)
627 __releases(tree->lock)
628 __acquires(tree->lock)
629 {
630 DEFINE_WAIT(wait);
631 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
632 spin_unlock(&tree->lock);
633 schedule();
634 spin_lock(&tree->lock);
635 finish_wait(&state->wq, &wait);
636 }
637
638 /*
639 * waits for one or more bits to clear on a range in the state tree.
640 * The range [start, end] is inclusive.
641 * The tree lock is taken by this function
642 */
643 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
644 {
645 struct extent_state *state;
646 struct rb_node *node;
647
648 spin_lock(&tree->lock);
649 again:
650 while (1) {
651 /*
652 * this search will find all the extents that end after
653 * our range starts
654 */
655 node = tree_search(tree, start);
656 if (!node)
657 break;
658
659 state = rb_entry(node, struct extent_state, rb_node);
660
661 if (state->start > end)
662 goto out;
663
664 if (state->state & bits) {
665 start = state->start;
666 atomic_inc(&state->refs);
667 wait_on_state(tree, state);
668 free_extent_state(state);
669 goto again;
670 }
671 start = state->end + 1;
672
673 if (start > end)
674 break;
675
676 cond_resched_lock(&tree->lock);
677 }
678 out:
679 spin_unlock(&tree->lock);
680 }
681
682 static void set_state_bits(struct extent_io_tree *tree,
683 struct extent_state *state,
684 int *bits)
685 {
686 int bits_to_set = *bits & ~EXTENT_CTLBITS;
687
688 set_state_cb(tree, state, bits);
689 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
690 u64 range = state->end - state->start + 1;
691 tree->dirty_bytes += range;
692 }
693 state->state |= bits_to_set;
694 }
695
696 static void cache_state(struct extent_state *state,
697 struct extent_state **cached_ptr)
698 {
699 if (cached_ptr && !(*cached_ptr)) {
700 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
701 *cached_ptr = state;
702 atomic_inc(&state->refs);
703 }
704 }
705 }
706
707 static void uncache_state(struct extent_state **cached_ptr)
708 {
709 if (cached_ptr && (*cached_ptr)) {
710 struct extent_state *state = *cached_ptr;
711 *cached_ptr = NULL;
712 free_extent_state(state);
713 }
714 }
715
716 /*
717 * set some bits on a range in the tree. This may require allocations or
718 * sleeping, so the gfp mask is used to indicate what is allowed.
719 *
720 * If any of the exclusive bits are set, this will fail with -EEXIST if some
721 * part of the range already has the desired bits set. The start of the
722 * existing range is returned in failed_start in this case.
723 *
724 * [start, end] is inclusive This takes the tree lock.
725 */
726
727 static int __must_check
728 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
729 int bits, int exclusive_bits, u64 *failed_start,
730 struct extent_state **cached_state, gfp_t mask)
731 {
732 struct extent_state *state;
733 struct extent_state *prealloc = NULL;
734 struct rb_node *node;
735 int err = 0;
736 u64 last_start;
737 u64 last_end;
738
739 bits |= EXTENT_FIRST_DELALLOC;
740 again:
741 if (!prealloc && (mask & __GFP_WAIT)) {
742 prealloc = alloc_extent_state(mask);
743 BUG_ON(!prealloc);
744 }
745
746 spin_lock(&tree->lock);
747 if (cached_state && *cached_state) {
748 state = *cached_state;
749 if (state->start <= start && state->end > start &&
750 state->tree) {
751 node = &state->rb_node;
752 goto hit_next;
753 }
754 }
755 /*
756 * this search will find all the extents that end after
757 * our range starts.
758 */
759 node = tree_search(tree, start);
760 if (!node) {
761 prealloc = alloc_extent_state_atomic(prealloc);
762 BUG_ON(!prealloc);
763 err = insert_state(tree, prealloc, start, end, &bits);
764 if (err)
765 extent_io_tree_panic(tree, err);
766
767 prealloc = NULL;
768 goto out;
769 }
770 state = rb_entry(node, struct extent_state, rb_node);
771 hit_next:
772 last_start = state->start;
773 last_end = state->end;
774
775 /*
776 * | ---- desired range ---- |
777 * | state |
778 *
779 * Just lock what we found and keep going
780 */
781 if (state->start == start && state->end <= end) {
782 if (state->state & exclusive_bits) {
783 *failed_start = state->start;
784 err = -EEXIST;
785 goto out;
786 }
787
788 set_state_bits(tree, state, &bits);
789 cache_state(state, cached_state);
790 merge_state(tree, state);
791 if (last_end == (u64)-1)
792 goto out;
793 start = last_end + 1;
794 state = next_state(state);
795 if (start < end && state && state->start == start &&
796 !need_resched())
797 goto hit_next;
798 goto search_again;
799 }
800
801 /*
802 * | ---- desired range ---- |
803 * | state |
804 * or
805 * | ------------- state -------------- |
806 *
807 * We need to split the extent we found, and may flip bits on
808 * second half.
809 *
810 * If the extent we found extends past our
811 * range, we just split and search again. It'll get split
812 * again the next time though.
813 *
814 * If the extent we found is inside our range, we set the
815 * desired bit on it.
816 */
817 if (state->start < start) {
818 if (state->state & exclusive_bits) {
819 *failed_start = start;
820 err = -EEXIST;
821 goto out;
822 }
823
824 prealloc = alloc_extent_state_atomic(prealloc);
825 BUG_ON(!prealloc);
826 err = split_state(tree, state, prealloc, start);
827 if (err)
828 extent_io_tree_panic(tree, err);
829
830 prealloc = NULL;
831 if (err)
832 goto out;
833 if (state->end <= end) {
834 set_state_bits(tree, state, &bits);
835 cache_state(state, cached_state);
836 merge_state(tree, state);
837 if (last_end == (u64)-1)
838 goto out;
839 start = last_end + 1;
840 state = next_state(state);
841 if (start < end && state && state->start == start &&
842 !need_resched())
843 goto hit_next;
844 }
845 goto search_again;
846 }
847 /*
848 * | ---- desired range ---- |
849 * | state | or | state |
850 *
851 * There's a hole, we need to insert something in it and
852 * ignore the extent we found.
853 */
854 if (state->start > start) {
855 u64 this_end;
856 if (end < last_start)
857 this_end = end;
858 else
859 this_end = last_start - 1;
860
861 prealloc = alloc_extent_state_atomic(prealloc);
862 BUG_ON(!prealloc);
863
864 /*
865 * Avoid to free 'prealloc' if it can be merged with
866 * the later extent.
867 */
868 err = insert_state(tree, prealloc, start, this_end,
869 &bits);
870 if (err)
871 extent_io_tree_panic(tree, err);
872
873 cache_state(prealloc, cached_state);
874 prealloc = NULL;
875 start = this_end + 1;
876 goto search_again;
877 }
878 /*
879 * | ---- desired range ---- |
880 * | state |
881 * We need to split the extent, and set the bit
882 * on the first half
883 */
884 if (state->start <= end && state->end > end) {
885 if (state->state & exclusive_bits) {
886 *failed_start = start;
887 err = -EEXIST;
888 goto out;
889 }
890
891 prealloc = alloc_extent_state_atomic(prealloc);
892 BUG_ON(!prealloc);
893 err = split_state(tree, state, prealloc, end + 1);
894 if (err)
895 extent_io_tree_panic(tree, err);
896
897 set_state_bits(tree, prealloc, &bits);
898 cache_state(prealloc, cached_state);
899 merge_state(tree, prealloc);
900 prealloc = NULL;
901 goto out;
902 }
903
904 goto search_again;
905
906 out:
907 spin_unlock(&tree->lock);
908 if (prealloc)
909 free_extent_state(prealloc);
910
911 return err;
912
913 search_again:
914 if (start > end)
915 goto out;
916 spin_unlock(&tree->lock);
917 if (mask & __GFP_WAIT)
918 cond_resched();
919 goto again;
920 }
921
922 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
923 u64 *failed_start, struct extent_state **cached_state,
924 gfp_t mask)
925 {
926 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
927 cached_state, mask);
928 }
929
930
931 /**
932 * convert_extent - convert all bits in a given range from one bit to another
933 * @tree: the io tree to search
934 * @start: the start offset in bytes
935 * @end: the end offset in bytes (inclusive)
936 * @bits: the bits to set in this range
937 * @clear_bits: the bits to clear in this range
938 * @mask: the allocation mask
939 *
940 * This will go through and set bits for the given range. If any states exist
941 * already in this range they are set with the given bit and cleared of the
942 * clear_bits. This is only meant to be used by things that are mergeable, ie
943 * converting from say DELALLOC to DIRTY. This is not meant to be used with
944 * boundary bits like LOCK.
945 */
946 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
947 int bits, int clear_bits, gfp_t mask)
948 {
949 struct extent_state *state;
950 struct extent_state *prealloc = NULL;
951 struct rb_node *node;
952 int err = 0;
953 u64 last_start;
954 u64 last_end;
955
956 again:
957 if (!prealloc && (mask & __GFP_WAIT)) {
958 prealloc = alloc_extent_state(mask);
959 if (!prealloc)
960 return -ENOMEM;
961 }
962
963 spin_lock(&tree->lock);
964 /*
965 * this search will find all the extents that end after
966 * our range starts.
967 */
968 node = tree_search(tree, start);
969 if (!node) {
970 prealloc = alloc_extent_state_atomic(prealloc);
971 if (!prealloc) {
972 err = -ENOMEM;
973 goto out;
974 }
975 err = insert_state(tree, prealloc, start, end, &bits);
976 prealloc = NULL;
977 if (err)
978 extent_io_tree_panic(tree, err);
979 goto out;
980 }
981 state = rb_entry(node, struct extent_state, rb_node);
982 hit_next:
983 last_start = state->start;
984 last_end = state->end;
985
986 /*
987 * | ---- desired range ---- |
988 * | state |
989 *
990 * Just lock what we found and keep going
991 */
992 if (state->start == start && state->end <= end) {
993 set_state_bits(tree, state, &bits);
994 state = clear_state_bit(tree, state, &clear_bits, 0);
995 if (last_end == (u64)-1)
996 goto out;
997 start = last_end + 1;
998 if (start < end && state && state->start == start &&
999 !need_resched())
1000 goto hit_next;
1001 goto search_again;
1002 }
1003
1004 /*
1005 * | ---- desired range ---- |
1006 * | state |
1007 * or
1008 * | ------------- state -------------- |
1009 *
1010 * We need to split the extent we found, and may flip bits on
1011 * second half.
1012 *
1013 * If the extent we found extends past our
1014 * range, we just split and search again. It'll get split
1015 * again the next time though.
1016 *
1017 * If the extent we found is inside our range, we set the
1018 * desired bit on it.
1019 */
1020 if (state->start < start) {
1021 prealloc = alloc_extent_state_atomic(prealloc);
1022 if (!prealloc) {
1023 err = -ENOMEM;
1024 goto out;
1025 }
1026 err = split_state(tree, state, prealloc, start);
1027 if (err)
1028 extent_io_tree_panic(tree, err);
1029 prealloc = NULL;
1030 if (err)
1031 goto out;
1032 if (state->end <= end) {
1033 set_state_bits(tree, state, &bits);
1034 state = clear_state_bit(tree, state, &clear_bits, 0);
1035 if (last_end == (u64)-1)
1036 goto out;
1037 start = last_end + 1;
1038 if (start < end && state && state->start == start &&
1039 !need_resched())
1040 goto hit_next;
1041 }
1042 goto search_again;
1043 }
1044 /*
1045 * | ---- desired range ---- |
1046 * | state | or | state |
1047 *
1048 * There's a hole, we need to insert something in it and
1049 * ignore the extent we found.
1050 */
1051 if (state->start > start) {
1052 u64 this_end;
1053 if (end < last_start)
1054 this_end = end;
1055 else
1056 this_end = last_start - 1;
1057
1058 prealloc = alloc_extent_state_atomic(prealloc);
1059 if (!prealloc) {
1060 err = -ENOMEM;
1061 goto out;
1062 }
1063
1064 /*
1065 * Avoid to free 'prealloc' if it can be merged with
1066 * the later extent.
1067 */
1068 err = insert_state(tree, prealloc, start, this_end,
1069 &bits);
1070 if (err)
1071 extent_io_tree_panic(tree, err);
1072 prealloc = NULL;
1073 start = this_end + 1;
1074 goto search_again;
1075 }
1076 /*
1077 * | ---- desired range ---- |
1078 * | state |
1079 * We need to split the extent, and set the bit
1080 * on the first half
1081 */
1082 if (state->start <= end && state->end > end) {
1083 prealloc = alloc_extent_state_atomic(prealloc);
1084 if (!prealloc) {
1085 err = -ENOMEM;
1086 goto out;
1087 }
1088
1089 err = split_state(tree, state, prealloc, end + 1);
1090 if (err)
1091 extent_io_tree_panic(tree, err);
1092
1093 set_state_bits(tree, prealloc, &bits);
1094 clear_state_bit(tree, prealloc, &clear_bits, 0);
1095 prealloc = NULL;
1096 goto out;
1097 }
1098
1099 goto search_again;
1100
1101 out:
1102 spin_unlock(&tree->lock);
1103 if (prealloc)
1104 free_extent_state(prealloc);
1105
1106 return err;
1107
1108 search_again:
1109 if (start > end)
1110 goto out;
1111 spin_unlock(&tree->lock);
1112 if (mask & __GFP_WAIT)
1113 cond_resched();
1114 goto again;
1115 }
1116
1117 /* wrappers around set/clear extent bit */
1118 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1119 gfp_t mask)
1120 {
1121 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1122 NULL, mask);
1123 }
1124
1125 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1126 int bits, gfp_t mask)
1127 {
1128 return set_extent_bit(tree, start, end, bits, NULL,
1129 NULL, mask);
1130 }
1131
1132 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1133 int bits, gfp_t mask)
1134 {
1135 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1136 }
1137
1138 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1139 struct extent_state **cached_state, gfp_t mask)
1140 {
1141 return set_extent_bit(tree, start, end,
1142 EXTENT_DELALLOC | EXTENT_UPTODATE,
1143 NULL, cached_state, mask);
1144 }
1145
1146 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1147 gfp_t mask)
1148 {
1149 return clear_extent_bit(tree, start, end,
1150 EXTENT_DIRTY | EXTENT_DELALLOC |
1151 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1152 }
1153
1154 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1155 gfp_t mask)
1156 {
1157 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1158 NULL, mask);
1159 }
1160
1161 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1162 struct extent_state **cached_state, gfp_t mask)
1163 {
1164 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1165 cached_state, mask);
1166 }
1167
1168 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1169 struct extent_state **cached_state, gfp_t mask)
1170 {
1171 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1172 cached_state, mask);
1173 }
1174
1175 /*
1176 * either insert or lock state struct between start and end use mask to tell
1177 * us if waiting is desired.
1178 */
1179 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1180 int bits, struct extent_state **cached_state)
1181 {
1182 int err;
1183 u64 failed_start;
1184 while (1) {
1185 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1186 EXTENT_LOCKED, &failed_start,
1187 cached_state, GFP_NOFS);
1188 if (err == -EEXIST) {
1189 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1190 start = failed_start;
1191 } else
1192 break;
1193 WARN_ON(start > end);
1194 }
1195 return err;
1196 }
1197
1198 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1199 {
1200 return lock_extent_bits(tree, start, end, 0, NULL);
1201 }
1202
1203 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1204 {
1205 int err;
1206 u64 failed_start;
1207
1208 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1209 &failed_start, NULL, GFP_NOFS);
1210 if (err == -EEXIST) {
1211 if (failed_start > start)
1212 clear_extent_bit(tree, start, failed_start - 1,
1213 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1214 return 0;
1215 }
1216 return 1;
1217 }
1218
1219 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1220 struct extent_state **cached, gfp_t mask)
1221 {
1222 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1223 mask);
1224 }
1225
1226 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1227 {
1228 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1229 GFP_NOFS);
1230 }
1231
1232 /*
1233 * helper function to set both pages and extents in the tree writeback
1234 */
1235 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1236 {
1237 unsigned long index = start >> PAGE_CACHE_SHIFT;
1238 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1239 struct page *page;
1240
1241 while (index <= end_index) {
1242 page = find_get_page(tree->mapping, index);
1243 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1244 set_page_writeback(page);
1245 page_cache_release(page);
1246 index++;
1247 }
1248 return 0;
1249 }
1250
1251 /* find the first state struct with 'bits' set after 'start', and
1252 * return it. tree->lock must be held. NULL will returned if
1253 * nothing was found after 'start'
1254 */
1255 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1256 u64 start, int bits)
1257 {
1258 struct rb_node *node;
1259 struct extent_state *state;
1260
1261 /*
1262 * this search will find all the extents that end after
1263 * our range starts.
1264 */
1265 node = tree_search(tree, start);
1266 if (!node)
1267 goto out;
1268
1269 while (1) {
1270 state = rb_entry(node, struct extent_state, rb_node);
1271 if (state->end >= start && (state->state & bits))
1272 return state;
1273
1274 node = rb_next(node);
1275 if (!node)
1276 break;
1277 }
1278 out:
1279 return NULL;
1280 }
1281
1282 /*
1283 * find the first offset in the io tree with 'bits' set. zero is
1284 * returned if we find something, and *start_ret and *end_ret are
1285 * set to reflect the state struct that was found.
1286 *
1287 * If nothing was found, 1 is returned. If found something, return 0.
1288 */
1289 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1290 u64 *start_ret, u64 *end_ret, int bits)
1291 {
1292 struct extent_state *state;
1293 int ret = 1;
1294
1295 spin_lock(&tree->lock);
1296 state = find_first_extent_bit_state(tree, start, bits);
1297 if (state) {
1298 *start_ret = state->start;
1299 *end_ret = state->end;
1300 ret = 0;
1301 }
1302 spin_unlock(&tree->lock);
1303 return ret;
1304 }
1305
1306 /*
1307 * find a contiguous range of bytes in the file marked as delalloc, not
1308 * more than 'max_bytes'. start and end are used to return the range,
1309 *
1310 * 1 is returned if we find something, 0 if nothing was in the tree
1311 */
1312 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1313 u64 *start, u64 *end, u64 max_bytes,
1314 struct extent_state **cached_state)
1315 {
1316 struct rb_node *node;
1317 struct extent_state *state;
1318 u64 cur_start = *start;
1319 u64 found = 0;
1320 u64 total_bytes = 0;
1321
1322 spin_lock(&tree->lock);
1323
1324 /*
1325 * this search will find all the extents that end after
1326 * our range starts.
1327 */
1328 node = tree_search(tree, cur_start);
1329 if (!node) {
1330 if (!found)
1331 *end = (u64)-1;
1332 goto out;
1333 }
1334
1335 while (1) {
1336 state = rb_entry(node, struct extent_state, rb_node);
1337 if (found && (state->start != cur_start ||
1338 (state->state & EXTENT_BOUNDARY))) {
1339 goto out;
1340 }
1341 if (!(state->state & EXTENT_DELALLOC)) {
1342 if (!found)
1343 *end = state->end;
1344 goto out;
1345 }
1346 if (!found) {
1347 *start = state->start;
1348 *cached_state = state;
1349 atomic_inc(&state->refs);
1350 }
1351 found++;
1352 *end = state->end;
1353 cur_start = state->end + 1;
1354 node = rb_next(node);
1355 if (!node)
1356 break;
1357 total_bytes += state->end - state->start + 1;
1358 if (total_bytes >= max_bytes)
1359 break;
1360 }
1361 out:
1362 spin_unlock(&tree->lock);
1363 return found;
1364 }
1365
1366 static noinline void __unlock_for_delalloc(struct inode *inode,
1367 struct page *locked_page,
1368 u64 start, u64 end)
1369 {
1370 int ret;
1371 struct page *pages[16];
1372 unsigned long index = start >> PAGE_CACHE_SHIFT;
1373 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1374 unsigned long nr_pages = end_index - index + 1;
1375 int i;
1376
1377 if (index == locked_page->index && end_index == index)
1378 return;
1379
1380 while (nr_pages > 0) {
1381 ret = find_get_pages_contig(inode->i_mapping, index,
1382 min_t(unsigned long, nr_pages,
1383 ARRAY_SIZE(pages)), pages);
1384 for (i = 0; i < ret; i++) {
1385 if (pages[i] != locked_page)
1386 unlock_page(pages[i]);
1387 page_cache_release(pages[i]);
1388 }
1389 nr_pages -= ret;
1390 index += ret;
1391 cond_resched();
1392 }
1393 }
1394
1395 static noinline int lock_delalloc_pages(struct inode *inode,
1396 struct page *locked_page,
1397 u64 delalloc_start,
1398 u64 delalloc_end)
1399 {
1400 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1401 unsigned long start_index = index;
1402 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1403 unsigned long pages_locked = 0;
1404 struct page *pages[16];
1405 unsigned long nrpages;
1406 int ret;
1407 int i;
1408
1409 /* the caller is responsible for locking the start index */
1410 if (index == locked_page->index && index == end_index)
1411 return 0;
1412
1413 /* skip the page at the start index */
1414 nrpages = end_index - index + 1;
1415 while (nrpages > 0) {
1416 ret = find_get_pages_contig(inode->i_mapping, index,
1417 min_t(unsigned long,
1418 nrpages, ARRAY_SIZE(pages)), pages);
1419 if (ret == 0) {
1420 ret = -EAGAIN;
1421 goto done;
1422 }
1423 /* now we have an array of pages, lock them all */
1424 for (i = 0; i < ret; i++) {
1425 /*
1426 * the caller is taking responsibility for
1427 * locked_page
1428 */
1429 if (pages[i] != locked_page) {
1430 lock_page(pages[i]);
1431 if (!PageDirty(pages[i]) ||
1432 pages[i]->mapping != inode->i_mapping) {
1433 ret = -EAGAIN;
1434 unlock_page(pages[i]);
1435 page_cache_release(pages[i]);
1436 goto done;
1437 }
1438 }
1439 page_cache_release(pages[i]);
1440 pages_locked++;
1441 }
1442 nrpages -= ret;
1443 index += ret;
1444 cond_resched();
1445 }
1446 ret = 0;
1447 done:
1448 if (ret && pages_locked) {
1449 __unlock_for_delalloc(inode, locked_page,
1450 delalloc_start,
1451 ((u64)(start_index + pages_locked - 1)) <<
1452 PAGE_CACHE_SHIFT);
1453 }
1454 return ret;
1455 }
1456
1457 /*
1458 * find a contiguous range of bytes in the file marked as delalloc, not
1459 * more than 'max_bytes'. start and end are used to return the range,
1460 *
1461 * 1 is returned if we find something, 0 if nothing was in the tree
1462 */
1463 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1464 struct extent_io_tree *tree,
1465 struct page *locked_page,
1466 u64 *start, u64 *end,
1467 u64 max_bytes)
1468 {
1469 u64 delalloc_start;
1470 u64 delalloc_end;
1471 u64 found;
1472 struct extent_state *cached_state = NULL;
1473 int ret;
1474 int loops = 0;
1475
1476 again:
1477 /* step one, find a bunch of delalloc bytes starting at start */
1478 delalloc_start = *start;
1479 delalloc_end = 0;
1480 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1481 max_bytes, &cached_state);
1482 if (!found || delalloc_end <= *start) {
1483 *start = delalloc_start;
1484 *end = delalloc_end;
1485 free_extent_state(cached_state);
1486 return found;
1487 }
1488
1489 /*
1490 * start comes from the offset of locked_page. We have to lock
1491 * pages in order, so we can't process delalloc bytes before
1492 * locked_page
1493 */
1494 if (delalloc_start < *start)
1495 delalloc_start = *start;
1496
1497 /*
1498 * make sure to limit the number of pages we try to lock down
1499 * if we're looping.
1500 */
1501 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1502 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1503
1504 /* step two, lock all the pages after the page that has start */
1505 ret = lock_delalloc_pages(inode, locked_page,
1506 delalloc_start, delalloc_end);
1507 if (ret == -EAGAIN) {
1508 /* some of the pages are gone, lets avoid looping by
1509 * shortening the size of the delalloc range we're searching
1510 */
1511 free_extent_state(cached_state);
1512 if (!loops) {
1513 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1514 max_bytes = PAGE_CACHE_SIZE - offset;
1515 loops = 1;
1516 goto again;
1517 } else {
1518 found = 0;
1519 goto out_failed;
1520 }
1521 }
1522 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1523
1524 /* step three, lock the state bits for the whole range */
1525 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1526
1527 /* then test to make sure it is all still delalloc */
1528 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1529 EXTENT_DELALLOC, 1, cached_state);
1530 if (!ret) {
1531 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1532 &cached_state, GFP_NOFS);
1533 __unlock_for_delalloc(inode, locked_page,
1534 delalloc_start, delalloc_end);
1535 cond_resched();
1536 goto again;
1537 }
1538 free_extent_state(cached_state);
1539 *start = delalloc_start;
1540 *end = delalloc_end;
1541 out_failed:
1542 return found;
1543 }
1544
1545 int extent_clear_unlock_delalloc(struct inode *inode,
1546 struct extent_io_tree *tree,
1547 u64 start, u64 end, struct page *locked_page,
1548 unsigned long op)
1549 {
1550 int ret;
1551 struct page *pages[16];
1552 unsigned long index = start >> PAGE_CACHE_SHIFT;
1553 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1554 unsigned long nr_pages = end_index - index + 1;
1555 int i;
1556 int clear_bits = 0;
1557
1558 if (op & EXTENT_CLEAR_UNLOCK)
1559 clear_bits |= EXTENT_LOCKED;
1560 if (op & EXTENT_CLEAR_DIRTY)
1561 clear_bits |= EXTENT_DIRTY;
1562
1563 if (op & EXTENT_CLEAR_DELALLOC)
1564 clear_bits |= EXTENT_DELALLOC;
1565
1566 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1567 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1568 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1569 EXTENT_SET_PRIVATE2)))
1570 return 0;
1571
1572 while (nr_pages > 0) {
1573 ret = find_get_pages_contig(inode->i_mapping, index,
1574 min_t(unsigned long,
1575 nr_pages, ARRAY_SIZE(pages)), pages);
1576 for (i = 0; i < ret; i++) {
1577
1578 if (op & EXTENT_SET_PRIVATE2)
1579 SetPagePrivate2(pages[i]);
1580
1581 if (pages[i] == locked_page) {
1582 page_cache_release(pages[i]);
1583 continue;
1584 }
1585 if (op & EXTENT_CLEAR_DIRTY)
1586 clear_page_dirty_for_io(pages[i]);
1587 if (op & EXTENT_SET_WRITEBACK)
1588 set_page_writeback(pages[i]);
1589 if (op & EXTENT_END_WRITEBACK)
1590 end_page_writeback(pages[i]);
1591 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1592 unlock_page(pages[i]);
1593 page_cache_release(pages[i]);
1594 }
1595 nr_pages -= ret;
1596 index += ret;
1597 cond_resched();
1598 }
1599 return 0;
1600 }
1601
1602 /*
1603 * count the number of bytes in the tree that have a given bit(s)
1604 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1605 * cached. The total number found is returned.
1606 */
1607 u64 count_range_bits(struct extent_io_tree *tree,
1608 u64 *start, u64 search_end, u64 max_bytes,
1609 unsigned long bits, int contig)
1610 {
1611 struct rb_node *node;
1612 struct extent_state *state;
1613 u64 cur_start = *start;
1614 u64 total_bytes = 0;
1615 u64 last = 0;
1616 int found = 0;
1617
1618 if (search_end <= cur_start) {
1619 WARN_ON(1);
1620 return 0;
1621 }
1622
1623 spin_lock(&tree->lock);
1624 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1625 total_bytes = tree->dirty_bytes;
1626 goto out;
1627 }
1628 /*
1629 * this search will find all the extents that end after
1630 * our range starts.
1631 */
1632 node = tree_search(tree, cur_start);
1633 if (!node)
1634 goto out;
1635
1636 while (1) {
1637 state = rb_entry(node, struct extent_state, rb_node);
1638 if (state->start > search_end)
1639 break;
1640 if (contig && found && state->start > last + 1)
1641 break;
1642 if (state->end >= cur_start && (state->state & bits) == bits) {
1643 total_bytes += min(search_end, state->end) + 1 -
1644 max(cur_start, state->start);
1645 if (total_bytes >= max_bytes)
1646 break;
1647 if (!found) {
1648 *start = max(cur_start, state->start);
1649 found = 1;
1650 }
1651 last = state->end;
1652 } else if (contig && found) {
1653 break;
1654 }
1655 node = rb_next(node);
1656 if (!node)
1657 break;
1658 }
1659 out:
1660 spin_unlock(&tree->lock);
1661 return total_bytes;
1662 }
1663
1664 /*
1665 * set the private field for a given byte offset in the tree. If there isn't
1666 * an extent_state there already, this does nothing.
1667 */
1668 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1669 {
1670 struct rb_node *node;
1671 struct extent_state *state;
1672 int ret = 0;
1673
1674 spin_lock(&tree->lock);
1675 /*
1676 * this search will find all the extents that end after
1677 * our range starts.
1678 */
1679 node = tree_search(tree, start);
1680 if (!node) {
1681 ret = -ENOENT;
1682 goto out;
1683 }
1684 state = rb_entry(node, struct extent_state, rb_node);
1685 if (state->start != start) {
1686 ret = -ENOENT;
1687 goto out;
1688 }
1689 state->private = private;
1690 out:
1691 spin_unlock(&tree->lock);
1692 return ret;
1693 }
1694
1695 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1696 {
1697 struct rb_node *node;
1698 struct extent_state *state;
1699 int ret = 0;
1700
1701 spin_lock(&tree->lock);
1702 /*
1703 * this search will find all the extents that end after
1704 * our range starts.
1705 */
1706 node = tree_search(tree, start);
1707 if (!node) {
1708 ret = -ENOENT;
1709 goto out;
1710 }
1711 state = rb_entry(node, struct extent_state, rb_node);
1712 if (state->start != start) {
1713 ret = -ENOENT;
1714 goto out;
1715 }
1716 *private = state->private;
1717 out:
1718 spin_unlock(&tree->lock);
1719 return ret;
1720 }
1721
1722 /*
1723 * searches a range in the state tree for a given mask.
1724 * If 'filled' == 1, this returns 1 only if every extent in the tree
1725 * has the bits set. Otherwise, 1 is returned if any bit in the
1726 * range is found set.
1727 */
1728 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1729 int bits, int filled, struct extent_state *cached)
1730 {
1731 struct extent_state *state = NULL;
1732 struct rb_node *node;
1733 int bitset = 0;
1734
1735 spin_lock(&tree->lock);
1736 if (cached && cached->tree && cached->start <= start &&
1737 cached->end > start)
1738 node = &cached->rb_node;
1739 else
1740 node = tree_search(tree, start);
1741 while (node && start <= end) {
1742 state = rb_entry(node, struct extent_state, rb_node);
1743
1744 if (filled && state->start > start) {
1745 bitset = 0;
1746 break;
1747 }
1748
1749 if (state->start > end)
1750 break;
1751
1752 if (state->state & bits) {
1753 bitset = 1;
1754 if (!filled)
1755 break;
1756 } else if (filled) {
1757 bitset = 0;
1758 break;
1759 }
1760
1761 if (state->end == (u64)-1)
1762 break;
1763
1764 start = state->end + 1;
1765 if (start > end)
1766 break;
1767 node = rb_next(node);
1768 if (!node) {
1769 if (filled)
1770 bitset = 0;
1771 break;
1772 }
1773 }
1774 spin_unlock(&tree->lock);
1775 return bitset;
1776 }
1777
1778 /*
1779 * helper function to set a given page up to date if all the
1780 * extents in the tree for that page are up to date
1781 */
1782 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1783 {
1784 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1785 u64 end = start + PAGE_CACHE_SIZE - 1;
1786 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1787 SetPageUptodate(page);
1788 }
1789
1790 /*
1791 * helper function to unlock a page if all the extents in the tree
1792 * for that page are unlocked
1793 */
1794 static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1795 {
1796 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1797 u64 end = start + PAGE_CACHE_SIZE - 1;
1798 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1799 unlock_page(page);
1800 }
1801
1802 /*
1803 * helper function to end page writeback if all the extents
1804 * in the tree for that page are done with writeback
1805 */
1806 static void check_page_writeback(struct extent_io_tree *tree,
1807 struct page *page)
1808 {
1809 end_page_writeback(page);
1810 }
1811
1812 /*
1813 * When IO fails, either with EIO or csum verification fails, we
1814 * try other mirrors that might have a good copy of the data. This
1815 * io_failure_record is used to record state as we go through all the
1816 * mirrors. If another mirror has good data, the page is set up to date
1817 * and things continue. If a good mirror can't be found, the original
1818 * bio end_io callback is called to indicate things have failed.
1819 */
1820 struct io_failure_record {
1821 struct page *page;
1822 u64 start;
1823 u64 len;
1824 u64 logical;
1825 unsigned long bio_flags;
1826 int this_mirror;
1827 int failed_mirror;
1828 int in_validation;
1829 };
1830
1831 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1832 int did_repair)
1833 {
1834 int ret;
1835 int err = 0;
1836 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1837
1838 set_state_private(failure_tree, rec->start, 0);
1839 ret = clear_extent_bits(failure_tree, rec->start,
1840 rec->start + rec->len - 1,
1841 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1842 if (ret)
1843 err = ret;
1844
1845 if (did_repair) {
1846 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1847 rec->start + rec->len - 1,
1848 EXTENT_DAMAGED, GFP_NOFS);
1849 if (ret && !err)
1850 err = ret;
1851 }
1852
1853 kfree(rec);
1854 return err;
1855 }
1856
1857 static void repair_io_failure_callback(struct bio *bio, int err)
1858 {
1859 complete(bio->bi_private);
1860 }
1861
1862 /*
1863 * this bypasses the standard btrfs submit functions deliberately, as
1864 * the standard behavior is to write all copies in a raid setup. here we only
1865 * want to write the one bad copy. so we do the mapping for ourselves and issue
1866 * submit_bio directly.
1867 * to avoid any synchonization issues, wait for the data after writing, which
1868 * actually prevents the read that triggered the error from finishing.
1869 * currently, there can be no more than two copies of every data bit. thus,
1870 * exactly one rewrite is required.
1871 */
1872 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1873 u64 length, u64 logical, struct page *page,
1874 int mirror_num)
1875 {
1876 struct bio *bio;
1877 struct btrfs_device *dev;
1878 DECLARE_COMPLETION_ONSTACK(compl);
1879 u64 map_length = 0;
1880 u64 sector;
1881 struct btrfs_bio *bbio = NULL;
1882 int ret;
1883
1884 BUG_ON(!mirror_num);
1885
1886 bio = bio_alloc(GFP_NOFS, 1);
1887 if (!bio)
1888 return -EIO;
1889 bio->bi_private = &compl;
1890 bio->bi_end_io = repair_io_failure_callback;
1891 bio->bi_size = 0;
1892 map_length = length;
1893
1894 ret = btrfs_map_block(map_tree, WRITE, logical,
1895 &map_length, &bbio, mirror_num);
1896 if (ret) {
1897 bio_put(bio);
1898 return -EIO;
1899 }
1900 BUG_ON(mirror_num != bbio->mirror_num);
1901 sector = bbio->stripes[mirror_num-1].physical >> 9;
1902 bio->bi_sector = sector;
1903 dev = bbio->stripes[mirror_num-1].dev;
1904 kfree(bbio);
1905 if (!dev || !dev->bdev || !dev->writeable) {
1906 bio_put(bio);
1907 return -EIO;
1908 }
1909 bio->bi_bdev = dev->bdev;
1910 bio_add_page(bio, page, length, start-page_offset(page));
1911 btrfsic_submit_bio(WRITE_SYNC, bio);
1912 wait_for_completion(&compl);
1913
1914 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1915 /* try to remap that extent elsewhere? */
1916 bio_put(bio);
1917 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
1918 return -EIO;
1919 }
1920
1921 printk_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
1922 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
1923 start, rcu_str_deref(dev->name), sector);
1924
1925 bio_put(bio);
1926 return 0;
1927 }
1928
1929 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1930 int mirror_num)
1931 {
1932 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1933 u64 start = eb->start;
1934 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
1935 int ret = 0;
1936
1937 for (i = 0; i < num_pages; i++) {
1938 struct page *p = extent_buffer_page(eb, i);
1939 ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1940 start, p, mirror_num);
1941 if (ret)
1942 break;
1943 start += PAGE_CACHE_SIZE;
1944 }
1945
1946 return ret;
1947 }
1948
1949 /*
1950 * each time an IO finishes, we do a fast check in the IO failure tree
1951 * to see if we need to process or clean up an io_failure_record
1952 */
1953 static int clean_io_failure(u64 start, struct page *page)
1954 {
1955 u64 private;
1956 u64 private_failure;
1957 struct io_failure_record *failrec;
1958 struct btrfs_mapping_tree *map_tree;
1959 struct extent_state *state;
1960 int num_copies;
1961 int did_repair = 0;
1962 int ret;
1963 struct inode *inode = page->mapping->host;
1964
1965 private = 0;
1966 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1967 (u64)-1, 1, EXTENT_DIRTY, 0);
1968 if (!ret)
1969 return 0;
1970
1971 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1972 &private_failure);
1973 if (ret)
1974 return 0;
1975
1976 failrec = (struct io_failure_record *)(unsigned long) private_failure;
1977 BUG_ON(!failrec->this_mirror);
1978
1979 if (failrec->in_validation) {
1980 /* there was no real error, just free the record */
1981 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1982 failrec->start);
1983 did_repair = 1;
1984 goto out;
1985 }
1986
1987 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1988 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1989 failrec->start,
1990 EXTENT_LOCKED);
1991 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1992
1993 if (state && state->start == failrec->start) {
1994 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
1995 num_copies = btrfs_num_copies(map_tree, failrec->logical,
1996 failrec->len);
1997 if (num_copies > 1) {
1998 ret = repair_io_failure(map_tree, start, failrec->len,
1999 failrec->logical, page,
2000 failrec->failed_mirror);
2001 did_repair = !ret;
2002 }
2003 }
2004
2005 out:
2006 if (!ret)
2007 ret = free_io_failure(inode, failrec, did_repair);
2008
2009 return ret;
2010 }
2011
2012 /*
2013 * this is a generic handler for readpage errors (default
2014 * readpage_io_failed_hook). if other copies exist, read those and write back
2015 * good data to the failed position. does not investigate in remapping the
2016 * failed extent elsewhere, hoping the device will be smart enough to do this as
2017 * needed
2018 */
2019
2020 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2021 u64 start, u64 end, int failed_mirror,
2022 struct extent_state *state)
2023 {
2024 struct io_failure_record *failrec = NULL;
2025 u64 private;
2026 struct extent_map *em;
2027 struct inode *inode = page->mapping->host;
2028 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2029 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2030 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2031 struct bio *bio;
2032 int num_copies;
2033 int ret;
2034 int read_mode;
2035 u64 logical;
2036
2037 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2038
2039 ret = get_state_private(failure_tree, start, &private);
2040 if (ret) {
2041 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2042 if (!failrec)
2043 return -ENOMEM;
2044 failrec->start = start;
2045 failrec->len = end - start + 1;
2046 failrec->this_mirror = 0;
2047 failrec->bio_flags = 0;
2048 failrec->in_validation = 0;
2049
2050 read_lock(&em_tree->lock);
2051 em = lookup_extent_mapping(em_tree, start, failrec->len);
2052 if (!em) {
2053 read_unlock(&em_tree->lock);
2054 kfree(failrec);
2055 return -EIO;
2056 }
2057
2058 if (em->start > start || em->start + em->len < start) {
2059 free_extent_map(em);
2060 em = NULL;
2061 }
2062 read_unlock(&em_tree->lock);
2063
2064 if (!em || IS_ERR(em)) {
2065 kfree(failrec);
2066 return -EIO;
2067 }
2068 logical = start - em->start;
2069 logical = em->block_start + logical;
2070 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2071 logical = em->block_start;
2072 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2073 extent_set_compress_type(&failrec->bio_flags,
2074 em->compress_type);
2075 }
2076 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2077 "len=%llu\n", logical, start, failrec->len);
2078 failrec->logical = logical;
2079 free_extent_map(em);
2080
2081 /* set the bits in the private failure tree */
2082 ret = set_extent_bits(failure_tree, start, end,
2083 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2084 if (ret >= 0)
2085 ret = set_state_private(failure_tree, start,
2086 (u64)(unsigned long)failrec);
2087 /* set the bits in the inode's tree */
2088 if (ret >= 0)
2089 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2090 GFP_NOFS);
2091 if (ret < 0) {
2092 kfree(failrec);
2093 return ret;
2094 }
2095 } else {
2096 failrec = (struct io_failure_record *)(unsigned long)private;
2097 pr_debug("bio_readpage_error: (found) logical=%llu, "
2098 "start=%llu, len=%llu, validation=%d\n",
2099 failrec->logical, failrec->start, failrec->len,
2100 failrec->in_validation);
2101 /*
2102 * when data can be on disk more than twice, add to failrec here
2103 * (e.g. with a list for failed_mirror) to make
2104 * clean_io_failure() clean all those errors at once.
2105 */
2106 }
2107 num_copies = btrfs_num_copies(
2108 &BTRFS_I(inode)->root->fs_info->mapping_tree,
2109 failrec->logical, failrec->len);
2110 if (num_copies == 1) {
2111 /*
2112 * we only have a single copy of the data, so don't bother with
2113 * all the retry and error correction code that follows. no
2114 * matter what the error is, it is very likely to persist.
2115 */
2116 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2117 "state=%p, num_copies=%d, next_mirror %d, "
2118 "failed_mirror %d\n", state, num_copies,
2119 failrec->this_mirror, failed_mirror);
2120 free_io_failure(inode, failrec, 0);
2121 return -EIO;
2122 }
2123
2124 if (!state) {
2125 spin_lock(&tree->lock);
2126 state = find_first_extent_bit_state(tree, failrec->start,
2127 EXTENT_LOCKED);
2128 if (state && state->start != failrec->start)
2129 state = NULL;
2130 spin_unlock(&tree->lock);
2131 }
2132
2133 /*
2134 * there are two premises:
2135 * a) deliver good data to the caller
2136 * b) correct the bad sectors on disk
2137 */
2138 if (failed_bio->bi_vcnt > 1) {
2139 /*
2140 * to fulfill b), we need to know the exact failing sectors, as
2141 * we don't want to rewrite any more than the failed ones. thus,
2142 * we need separate read requests for the failed bio
2143 *
2144 * if the following BUG_ON triggers, our validation request got
2145 * merged. we need separate requests for our algorithm to work.
2146 */
2147 BUG_ON(failrec->in_validation);
2148 failrec->in_validation = 1;
2149 failrec->this_mirror = failed_mirror;
2150 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2151 } else {
2152 /*
2153 * we're ready to fulfill a) and b) alongside. get a good copy
2154 * of the failed sector and if we succeed, we have setup
2155 * everything for repair_io_failure to do the rest for us.
2156 */
2157 if (failrec->in_validation) {
2158 BUG_ON(failrec->this_mirror != failed_mirror);
2159 failrec->in_validation = 0;
2160 failrec->this_mirror = 0;
2161 }
2162 failrec->failed_mirror = failed_mirror;
2163 failrec->this_mirror++;
2164 if (failrec->this_mirror == failed_mirror)
2165 failrec->this_mirror++;
2166 read_mode = READ_SYNC;
2167 }
2168
2169 if (!state || failrec->this_mirror > num_copies) {
2170 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2171 "next_mirror %d, failed_mirror %d\n", state,
2172 num_copies, failrec->this_mirror, failed_mirror);
2173 free_io_failure(inode, failrec, 0);
2174 return -EIO;
2175 }
2176
2177 bio = bio_alloc(GFP_NOFS, 1);
2178 if (!bio) {
2179 free_io_failure(inode, failrec, 0);
2180 return -EIO;
2181 }
2182 bio->bi_private = state;
2183 bio->bi_end_io = failed_bio->bi_end_io;
2184 bio->bi_sector = failrec->logical >> 9;
2185 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2186 bio->bi_size = 0;
2187
2188 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2189
2190 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2191 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2192 failrec->this_mirror, num_copies, failrec->in_validation);
2193
2194 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2195 failrec->this_mirror,
2196 failrec->bio_flags, 0);
2197 return ret;
2198 }
2199
2200 /* lots and lots of room for performance fixes in the end_bio funcs */
2201
2202 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2203 {
2204 int uptodate = (err == 0);
2205 struct extent_io_tree *tree;
2206 int ret;
2207
2208 tree = &BTRFS_I(page->mapping->host)->io_tree;
2209
2210 if (tree->ops && tree->ops->writepage_end_io_hook) {
2211 ret = tree->ops->writepage_end_io_hook(page, start,
2212 end, NULL, uptodate);
2213 if (ret)
2214 uptodate = 0;
2215 }
2216
2217 if (!uptodate) {
2218 ClearPageUptodate(page);
2219 SetPageError(page);
2220 }
2221 return 0;
2222 }
2223
2224 /*
2225 * after a writepage IO is done, we need to:
2226 * clear the uptodate bits on error
2227 * clear the writeback bits in the extent tree for this IO
2228 * end_page_writeback if the page has no more pending IO
2229 *
2230 * Scheduling is not allowed, so the extent state tree is expected
2231 * to have one and only one object corresponding to this IO.
2232 */
2233 static void end_bio_extent_writepage(struct bio *bio, int err)
2234 {
2235 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2236 struct extent_io_tree *tree;
2237 u64 start;
2238 u64 end;
2239 int whole_page;
2240
2241 do {
2242 struct page *page = bvec->bv_page;
2243 tree = &BTRFS_I(page->mapping->host)->io_tree;
2244
2245 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2246 bvec->bv_offset;
2247 end = start + bvec->bv_len - 1;
2248
2249 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2250 whole_page = 1;
2251 else
2252 whole_page = 0;
2253
2254 if (--bvec >= bio->bi_io_vec)
2255 prefetchw(&bvec->bv_page->flags);
2256
2257 if (end_extent_writepage(page, err, start, end))
2258 continue;
2259
2260 if (whole_page)
2261 end_page_writeback(page);
2262 else
2263 check_page_writeback(tree, page);
2264 } while (bvec >= bio->bi_io_vec);
2265
2266 bio_put(bio);
2267 }
2268
2269 /*
2270 * after a readpage IO is done, we need to:
2271 * clear the uptodate bits on error
2272 * set the uptodate bits if things worked
2273 * set the page up to date if all extents in the tree are uptodate
2274 * clear the lock bit in the extent tree
2275 * unlock the page if there are no other extents locked for it
2276 *
2277 * Scheduling is not allowed, so the extent state tree is expected
2278 * to have one and only one object corresponding to this IO.
2279 */
2280 static void end_bio_extent_readpage(struct bio *bio, int err)
2281 {
2282 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2283 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2284 struct bio_vec *bvec = bio->bi_io_vec;
2285 struct extent_io_tree *tree;
2286 u64 start;
2287 u64 end;
2288 int whole_page;
2289 int mirror;
2290 int ret;
2291
2292 if (err)
2293 uptodate = 0;
2294
2295 do {
2296 struct page *page = bvec->bv_page;
2297 struct extent_state *cached = NULL;
2298 struct extent_state *state;
2299
2300 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2301 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2302 (long int)bio->bi_bdev);
2303 tree = &BTRFS_I(page->mapping->host)->io_tree;
2304
2305 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2306 bvec->bv_offset;
2307 end = start + bvec->bv_len - 1;
2308
2309 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2310 whole_page = 1;
2311 else
2312 whole_page = 0;
2313
2314 if (++bvec <= bvec_end)
2315 prefetchw(&bvec->bv_page->flags);
2316
2317 spin_lock(&tree->lock);
2318 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2319 if (state && state->start == start) {
2320 /*
2321 * take a reference on the state, unlock will drop
2322 * the ref
2323 */
2324 cache_state(state, &cached);
2325 }
2326 spin_unlock(&tree->lock);
2327
2328 mirror = (int)(unsigned long)bio->bi_bdev;
2329 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2330 ret = tree->ops->readpage_end_io_hook(page, start, end,
2331 state, mirror);
2332 if (ret) {
2333 /* no IO indicated but software detected errors
2334 * in the block, either checksum errors or
2335 * issues with the contents */
2336 struct btrfs_root *root =
2337 BTRFS_I(page->mapping->host)->root;
2338 struct btrfs_device *device;
2339
2340 uptodate = 0;
2341 device = btrfs_find_device_for_logical(
2342 root, start, mirror);
2343 if (device)
2344 btrfs_dev_stat_inc_and_print(device,
2345 BTRFS_DEV_STAT_CORRUPTION_ERRS);
2346 } else {
2347 clean_io_failure(start, page);
2348 }
2349 }
2350
2351 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2352 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2353 if (!ret && !err &&
2354 test_bit(BIO_UPTODATE, &bio->bi_flags))
2355 uptodate = 1;
2356 } else if (!uptodate) {
2357 /*
2358 * The generic bio_readpage_error handles errors the
2359 * following way: If possible, new read requests are
2360 * created and submitted and will end up in
2361 * end_bio_extent_readpage as well (if we're lucky, not
2362 * in the !uptodate case). In that case it returns 0 and
2363 * we just go on with the next page in our bio. If it
2364 * can't handle the error it will return -EIO and we
2365 * remain responsible for that page.
2366 */
2367 ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2368 if (ret == 0) {
2369 uptodate =
2370 test_bit(BIO_UPTODATE, &bio->bi_flags);
2371 if (err)
2372 uptodate = 0;
2373 uncache_state(&cached);
2374 continue;
2375 }
2376 }
2377
2378 if (uptodate && tree->track_uptodate) {
2379 set_extent_uptodate(tree, start, end, &cached,
2380 GFP_ATOMIC);
2381 }
2382 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2383
2384 if (whole_page) {
2385 if (uptodate) {
2386 SetPageUptodate(page);
2387 } else {
2388 ClearPageUptodate(page);
2389 SetPageError(page);
2390 }
2391 unlock_page(page);
2392 } else {
2393 if (uptodate) {
2394 check_page_uptodate(tree, page);
2395 } else {
2396 ClearPageUptodate(page);
2397 SetPageError(page);
2398 }
2399 check_page_locked(tree, page);
2400 }
2401 } while (bvec <= bvec_end);
2402
2403 bio_put(bio);
2404 }
2405
2406 struct bio *
2407 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2408 gfp_t gfp_flags)
2409 {
2410 struct bio *bio;
2411
2412 bio = bio_alloc(gfp_flags, nr_vecs);
2413
2414 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2415 while (!bio && (nr_vecs /= 2))
2416 bio = bio_alloc(gfp_flags, nr_vecs);
2417 }
2418
2419 if (bio) {
2420 bio->bi_size = 0;
2421 bio->bi_bdev = bdev;
2422 bio->bi_sector = first_sector;
2423 }
2424 return bio;
2425 }
2426
2427 /*
2428 * Since writes are async, they will only return -ENOMEM.
2429 * Reads can return the full range of I/O error conditions.
2430 */
2431 static int __must_check submit_one_bio(int rw, struct bio *bio,
2432 int mirror_num, unsigned long bio_flags)
2433 {
2434 int ret = 0;
2435 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2436 struct page *page = bvec->bv_page;
2437 struct extent_io_tree *tree = bio->bi_private;
2438 u64 start;
2439
2440 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2441
2442 bio->bi_private = NULL;
2443
2444 bio_get(bio);
2445
2446 if (tree->ops && tree->ops->submit_bio_hook)
2447 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2448 mirror_num, bio_flags, start);
2449 else
2450 btrfsic_submit_bio(rw, bio);
2451
2452 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2453 ret = -EOPNOTSUPP;
2454 bio_put(bio);
2455 return ret;
2456 }
2457
2458 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2459 unsigned long offset, size_t size, struct bio *bio,
2460 unsigned long bio_flags)
2461 {
2462 int ret = 0;
2463 if (tree->ops && tree->ops->merge_bio_hook)
2464 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2465 bio_flags);
2466 BUG_ON(ret < 0);
2467 return ret;
2468
2469 }
2470
2471 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2472 struct page *page, sector_t sector,
2473 size_t size, unsigned long offset,
2474 struct block_device *bdev,
2475 struct bio **bio_ret,
2476 unsigned long max_pages,
2477 bio_end_io_t end_io_func,
2478 int mirror_num,
2479 unsigned long prev_bio_flags,
2480 unsigned long bio_flags)
2481 {
2482 int ret = 0;
2483 struct bio *bio;
2484 int nr;
2485 int contig = 0;
2486 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2487 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2488 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2489
2490 if (bio_ret && *bio_ret) {
2491 bio = *bio_ret;
2492 if (old_compressed)
2493 contig = bio->bi_sector == sector;
2494 else
2495 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2496 sector;
2497
2498 if (prev_bio_flags != bio_flags || !contig ||
2499 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2500 bio_add_page(bio, page, page_size, offset) < page_size) {
2501 ret = submit_one_bio(rw, bio, mirror_num,
2502 prev_bio_flags);
2503 if (ret < 0)
2504 return ret;
2505 bio = NULL;
2506 } else {
2507 return 0;
2508 }
2509 }
2510 if (this_compressed)
2511 nr = BIO_MAX_PAGES;
2512 else
2513 nr = bio_get_nr_vecs(bdev);
2514
2515 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2516 if (!bio)
2517 return -ENOMEM;
2518
2519 bio_add_page(bio, page, page_size, offset);
2520 bio->bi_end_io = end_io_func;
2521 bio->bi_private = tree;
2522
2523 if (bio_ret)
2524 *bio_ret = bio;
2525 else
2526 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2527
2528 return ret;
2529 }
2530
2531 void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
2532 {
2533 if (!PagePrivate(page)) {
2534 SetPagePrivate(page);
2535 page_cache_get(page);
2536 set_page_private(page, (unsigned long)eb);
2537 } else {
2538 WARN_ON(page->private != (unsigned long)eb);
2539 }
2540 }
2541
2542 void set_page_extent_mapped(struct page *page)
2543 {
2544 if (!PagePrivate(page)) {
2545 SetPagePrivate(page);
2546 page_cache_get(page);
2547 set_page_private(page, EXTENT_PAGE_PRIVATE);
2548 }
2549 }
2550
2551 /*
2552 * basic readpage implementation. Locked extent state structs are inserted
2553 * into the tree that are removed when the IO is done (by the end_io
2554 * handlers)
2555 * XXX JDM: This needs looking at to ensure proper page locking
2556 */
2557 static int __extent_read_full_page(struct extent_io_tree *tree,
2558 struct page *page,
2559 get_extent_t *get_extent,
2560 struct bio **bio, int mirror_num,
2561 unsigned long *bio_flags)
2562 {
2563 struct inode *inode = page->mapping->host;
2564 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2565 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2566 u64 end;
2567 u64 cur = start;
2568 u64 extent_offset;
2569 u64 last_byte = i_size_read(inode);
2570 u64 block_start;
2571 u64 cur_end;
2572 sector_t sector;
2573 struct extent_map *em;
2574 struct block_device *bdev;
2575 struct btrfs_ordered_extent *ordered;
2576 int ret;
2577 int nr = 0;
2578 size_t pg_offset = 0;
2579 size_t iosize;
2580 size_t disk_io_size;
2581 size_t blocksize = inode->i_sb->s_blocksize;
2582 unsigned long this_bio_flag = 0;
2583
2584 set_page_extent_mapped(page);
2585
2586 if (!PageUptodate(page)) {
2587 if (cleancache_get_page(page) == 0) {
2588 BUG_ON(blocksize != PAGE_SIZE);
2589 goto out;
2590 }
2591 }
2592
2593 end = page_end;
2594 while (1) {
2595 lock_extent(tree, start, end);
2596 ordered = btrfs_lookup_ordered_extent(inode, start);
2597 if (!ordered)
2598 break;
2599 unlock_extent(tree, start, end);
2600 btrfs_start_ordered_extent(inode, ordered, 1);
2601 btrfs_put_ordered_extent(ordered);
2602 }
2603
2604 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2605 char *userpage;
2606 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2607
2608 if (zero_offset) {
2609 iosize = PAGE_CACHE_SIZE - zero_offset;
2610 userpage = kmap_atomic(page);
2611 memset(userpage + zero_offset, 0, iosize);
2612 flush_dcache_page(page);
2613 kunmap_atomic(userpage);
2614 }
2615 }
2616 while (cur <= end) {
2617 if (cur >= last_byte) {
2618 char *userpage;
2619 struct extent_state *cached = NULL;
2620
2621 iosize = PAGE_CACHE_SIZE - pg_offset;
2622 userpage = kmap_atomic(page);
2623 memset(userpage + pg_offset, 0, iosize);
2624 flush_dcache_page(page);
2625 kunmap_atomic(userpage);
2626 set_extent_uptodate(tree, cur, cur + iosize - 1,
2627 &cached, GFP_NOFS);
2628 unlock_extent_cached(tree, cur, cur + iosize - 1,
2629 &cached, GFP_NOFS);
2630 break;
2631 }
2632 em = get_extent(inode, page, pg_offset, cur,
2633 end - cur + 1, 0);
2634 if (IS_ERR_OR_NULL(em)) {
2635 SetPageError(page);
2636 unlock_extent(tree, cur, end);
2637 break;
2638 }
2639 extent_offset = cur - em->start;
2640 BUG_ON(extent_map_end(em) <= cur);
2641 BUG_ON(end < cur);
2642
2643 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2644 this_bio_flag = EXTENT_BIO_COMPRESSED;
2645 extent_set_compress_type(&this_bio_flag,
2646 em->compress_type);
2647 }
2648
2649 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2650 cur_end = min(extent_map_end(em) - 1, end);
2651 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2652 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2653 disk_io_size = em->block_len;
2654 sector = em->block_start >> 9;
2655 } else {
2656 sector = (em->block_start + extent_offset) >> 9;
2657 disk_io_size = iosize;
2658 }
2659 bdev = em->bdev;
2660 block_start = em->block_start;
2661 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2662 block_start = EXTENT_MAP_HOLE;
2663 free_extent_map(em);
2664 em = NULL;
2665
2666 /* we've found a hole, just zero and go on */
2667 if (block_start == EXTENT_MAP_HOLE) {
2668 char *userpage;
2669 struct extent_state *cached = NULL;
2670
2671 userpage = kmap_atomic(page);
2672 memset(userpage + pg_offset, 0, iosize);
2673 flush_dcache_page(page);
2674 kunmap_atomic(userpage);
2675
2676 set_extent_uptodate(tree, cur, cur + iosize - 1,
2677 &cached, GFP_NOFS);
2678 unlock_extent_cached(tree, cur, cur + iosize - 1,
2679 &cached, GFP_NOFS);
2680 cur = cur + iosize;
2681 pg_offset += iosize;
2682 continue;
2683 }
2684 /* the get_extent function already copied into the page */
2685 if (test_range_bit(tree, cur, cur_end,
2686 EXTENT_UPTODATE, 1, NULL)) {
2687 check_page_uptodate(tree, page);
2688 unlock_extent(tree, cur, cur + iosize - 1);
2689 cur = cur + iosize;
2690 pg_offset += iosize;
2691 continue;
2692 }
2693 /* we have an inline extent but it didn't get marked up
2694 * to date. Error out
2695 */
2696 if (block_start == EXTENT_MAP_INLINE) {
2697 SetPageError(page);
2698 unlock_extent(tree, cur, cur + iosize - 1);
2699 cur = cur + iosize;
2700 pg_offset += iosize;
2701 continue;
2702 }
2703
2704 ret = 0;
2705 if (tree->ops && tree->ops->readpage_io_hook) {
2706 ret = tree->ops->readpage_io_hook(page, cur,
2707 cur + iosize - 1);
2708 }
2709 if (!ret) {
2710 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2711 pnr -= page->index;
2712 ret = submit_extent_page(READ, tree, page,
2713 sector, disk_io_size, pg_offset,
2714 bdev, bio, pnr,
2715 end_bio_extent_readpage, mirror_num,
2716 *bio_flags,
2717 this_bio_flag);
2718 BUG_ON(ret == -ENOMEM);
2719 nr++;
2720 *bio_flags = this_bio_flag;
2721 }
2722 if (ret)
2723 SetPageError(page);
2724 cur = cur + iosize;
2725 pg_offset += iosize;
2726 }
2727 out:
2728 if (!nr) {
2729 if (!PageError(page))
2730 SetPageUptodate(page);
2731 unlock_page(page);
2732 }
2733 return 0;
2734 }
2735
2736 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2737 get_extent_t *get_extent, int mirror_num)
2738 {
2739 struct bio *bio = NULL;
2740 unsigned long bio_flags = 0;
2741 int ret;
2742
2743 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2744 &bio_flags);
2745 if (bio)
2746 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2747 return ret;
2748 }
2749
2750 static noinline void update_nr_written(struct page *page,
2751 struct writeback_control *wbc,
2752 unsigned long nr_written)
2753 {
2754 wbc->nr_to_write -= nr_written;
2755 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2756 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2757 page->mapping->writeback_index = page->index + nr_written;
2758 }
2759
2760 /*
2761 * the writepage semantics are similar to regular writepage. extent
2762 * records are inserted to lock ranges in the tree, and as dirty areas
2763 * are found, they are marked writeback. Then the lock bits are removed
2764 * and the end_io handler clears the writeback ranges
2765 */
2766 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2767 void *data)
2768 {
2769 struct inode *inode = page->mapping->host;
2770 struct extent_page_data *epd = data;
2771 struct extent_io_tree *tree = epd->tree;
2772 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2773 u64 delalloc_start;
2774 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2775 u64 end;
2776 u64 cur = start;
2777 u64 extent_offset;
2778 u64 last_byte = i_size_read(inode);
2779 u64 block_start;
2780 u64 iosize;
2781 sector_t sector;
2782 struct extent_state *cached_state = NULL;
2783 struct extent_map *em;
2784 struct block_device *bdev;
2785 int ret;
2786 int nr = 0;
2787 size_t pg_offset = 0;
2788 size_t blocksize;
2789 loff_t i_size = i_size_read(inode);
2790 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2791 u64 nr_delalloc;
2792 u64 delalloc_end;
2793 int page_started;
2794 int compressed;
2795 int write_flags;
2796 unsigned long nr_written = 0;
2797 bool fill_delalloc = true;
2798
2799 if (wbc->sync_mode == WB_SYNC_ALL)
2800 write_flags = WRITE_SYNC;
2801 else
2802 write_flags = WRITE;
2803
2804 trace___extent_writepage(page, inode, wbc);
2805
2806 WARN_ON(!PageLocked(page));
2807
2808 ClearPageError(page);
2809
2810 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2811 if (page->index > end_index ||
2812 (page->index == end_index && !pg_offset)) {
2813 page->mapping->a_ops->invalidatepage(page, 0);
2814 unlock_page(page);
2815 return 0;
2816 }
2817
2818 if (page->index == end_index) {
2819 char *userpage;
2820
2821 userpage = kmap_atomic(page);
2822 memset(userpage + pg_offset, 0,
2823 PAGE_CACHE_SIZE - pg_offset);
2824 kunmap_atomic(userpage);
2825 flush_dcache_page(page);
2826 }
2827 pg_offset = 0;
2828
2829 set_page_extent_mapped(page);
2830
2831 if (!tree->ops || !tree->ops->fill_delalloc)
2832 fill_delalloc = false;
2833
2834 delalloc_start = start;
2835 delalloc_end = 0;
2836 page_started = 0;
2837 if (!epd->extent_locked && fill_delalloc) {
2838 u64 delalloc_to_write = 0;
2839 /*
2840 * make sure the wbc mapping index is at least updated
2841 * to this page.
2842 */
2843 update_nr_written(page, wbc, 0);
2844
2845 while (delalloc_end < page_end) {
2846 nr_delalloc = find_lock_delalloc_range(inode, tree,
2847 page,
2848 &delalloc_start,
2849 &delalloc_end,
2850 128 * 1024 * 1024);
2851 if (nr_delalloc == 0) {
2852 delalloc_start = delalloc_end + 1;
2853 continue;
2854 }
2855 ret = tree->ops->fill_delalloc(inode, page,
2856 delalloc_start,
2857 delalloc_end,
2858 &page_started,
2859 &nr_written);
2860 /* File system has been set read-only */
2861 if (ret) {
2862 SetPageError(page);
2863 goto done;
2864 }
2865 /*
2866 * delalloc_end is already one less than the total
2867 * length, so we don't subtract one from
2868 * PAGE_CACHE_SIZE
2869 */
2870 delalloc_to_write += (delalloc_end - delalloc_start +
2871 PAGE_CACHE_SIZE) >>
2872 PAGE_CACHE_SHIFT;
2873 delalloc_start = delalloc_end + 1;
2874 }
2875 if (wbc->nr_to_write < delalloc_to_write) {
2876 int thresh = 8192;
2877
2878 if (delalloc_to_write < thresh * 2)
2879 thresh = delalloc_to_write;
2880 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2881 thresh);
2882 }
2883
2884 /* did the fill delalloc function already unlock and start
2885 * the IO?
2886 */
2887 if (page_started) {
2888 ret = 0;
2889 /*
2890 * we've unlocked the page, so we can't update
2891 * the mapping's writeback index, just update
2892 * nr_to_write.
2893 */
2894 wbc->nr_to_write -= nr_written;
2895 goto done_unlocked;
2896 }
2897 }
2898 if (tree->ops && tree->ops->writepage_start_hook) {
2899 ret = tree->ops->writepage_start_hook(page, start,
2900 page_end);
2901 if (ret) {
2902 /* Fixup worker will requeue */
2903 if (ret == -EBUSY)
2904 wbc->pages_skipped++;
2905 else
2906 redirty_page_for_writepage(wbc, page);
2907 update_nr_written(page, wbc, nr_written);
2908 unlock_page(page);
2909 ret = 0;
2910 goto done_unlocked;
2911 }
2912 }
2913
2914 /*
2915 * we don't want to touch the inode after unlocking the page,
2916 * so we update the mapping writeback index now
2917 */
2918 update_nr_written(page, wbc, nr_written + 1);
2919
2920 end = page_end;
2921 if (last_byte <= start) {
2922 if (tree->ops && tree->ops->writepage_end_io_hook)
2923 tree->ops->writepage_end_io_hook(page, start,
2924 page_end, NULL, 1);
2925 goto done;
2926 }
2927
2928 blocksize = inode->i_sb->s_blocksize;
2929
2930 while (cur <= end) {
2931 if (cur >= last_byte) {
2932 if (tree->ops && tree->ops->writepage_end_io_hook)
2933 tree->ops->writepage_end_io_hook(page, cur,
2934 page_end, NULL, 1);
2935 break;
2936 }
2937 em = epd->get_extent(inode, page, pg_offset, cur,
2938 end - cur + 1, 1);
2939 if (IS_ERR_OR_NULL(em)) {
2940 SetPageError(page);
2941 break;
2942 }
2943
2944 extent_offset = cur - em->start;
2945 BUG_ON(extent_map_end(em) <= cur);
2946 BUG_ON(end < cur);
2947 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2948 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2949 sector = (em->block_start + extent_offset) >> 9;
2950 bdev = em->bdev;
2951 block_start = em->block_start;
2952 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2953 free_extent_map(em);
2954 em = NULL;
2955
2956 /*
2957 * compressed and inline extents are written through other
2958 * paths in the FS
2959 */
2960 if (compressed || block_start == EXTENT_MAP_HOLE ||
2961 block_start == EXTENT_MAP_INLINE) {
2962 /*
2963 * end_io notification does not happen here for
2964 * compressed extents
2965 */
2966 if (!compressed && tree->ops &&
2967 tree->ops->writepage_end_io_hook)
2968 tree->ops->writepage_end_io_hook(page, cur,
2969 cur + iosize - 1,
2970 NULL, 1);
2971 else if (compressed) {
2972 /* we don't want to end_page_writeback on
2973 * a compressed extent. this happens
2974 * elsewhere
2975 */
2976 nr++;
2977 }
2978
2979 cur += iosize;
2980 pg_offset += iosize;
2981 continue;
2982 }
2983 /* leave this out until we have a page_mkwrite call */
2984 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2985 EXTENT_DIRTY, 0, NULL)) {
2986 cur = cur + iosize;
2987 pg_offset += iosize;
2988 continue;
2989 }
2990
2991 if (tree->ops && tree->ops->writepage_io_hook) {
2992 ret = tree->ops->writepage_io_hook(page, cur,
2993 cur + iosize - 1);
2994 } else {
2995 ret = 0;
2996 }
2997 if (ret) {
2998 SetPageError(page);
2999 } else {
3000 unsigned long max_nr = end_index + 1;
3001
3002 set_range_writeback(tree, cur, cur + iosize - 1);
3003 if (!PageWriteback(page)) {
3004 printk(KERN_ERR "btrfs warning page %lu not "
3005 "writeback, cur %llu end %llu\n",
3006 page->index, (unsigned long long)cur,
3007 (unsigned long long)end);
3008 }
3009
3010 ret = submit_extent_page(write_flags, tree, page,
3011 sector, iosize, pg_offset,
3012 bdev, &epd->bio, max_nr,
3013 end_bio_extent_writepage,
3014 0, 0, 0);
3015 if (ret)
3016 SetPageError(page);
3017 }
3018 cur = cur + iosize;
3019 pg_offset += iosize;
3020 nr++;
3021 }
3022 done:
3023 if (nr == 0) {
3024 /* make sure the mapping tag for page dirty gets cleared */
3025 set_page_writeback(page);
3026 end_page_writeback(page);
3027 }
3028 unlock_page(page);
3029
3030 done_unlocked:
3031
3032 /* drop our reference on any cached states */
3033 free_extent_state(cached_state);
3034 return 0;
3035 }
3036
3037 static int eb_wait(void *word)
3038 {
3039 io_schedule();
3040 return 0;
3041 }
3042
3043 static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3044 {
3045 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3046 TASK_UNINTERRUPTIBLE);
3047 }
3048
3049 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3050 struct btrfs_fs_info *fs_info,
3051 struct extent_page_data *epd)
3052 {
3053 unsigned long i, num_pages;
3054 int flush = 0;
3055 int ret = 0;
3056
3057 if (!btrfs_try_tree_write_lock(eb)) {
3058 flush = 1;
3059 flush_write_bio(epd);
3060 btrfs_tree_lock(eb);
3061 }
3062
3063 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3064 btrfs_tree_unlock(eb);
3065 if (!epd->sync_io)
3066 return 0;
3067 if (!flush) {
3068 flush_write_bio(epd);
3069 flush = 1;
3070 }
3071 while (1) {
3072 wait_on_extent_buffer_writeback(eb);
3073 btrfs_tree_lock(eb);
3074 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3075 break;
3076 btrfs_tree_unlock(eb);
3077 }
3078 }
3079
3080 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3081 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3082 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3083 spin_lock(&fs_info->delalloc_lock);
3084 if (fs_info->dirty_metadata_bytes >= eb->len)
3085 fs_info->dirty_metadata_bytes -= eb->len;
3086 else
3087 WARN_ON(1);
3088 spin_unlock(&fs_info->delalloc_lock);
3089 ret = 1;
3090 }
3091
3092 btrfs_tree_unlock(eb);
3093
3094 if (!ret)
3095 return ret;
3096
3097 num_pages = num_extent_pages(eb->start, eb->len);
3098 for (i = 0; i < num_pages; i++) {
3099 struct page *p = extent_buffer_page(eb, i);
3100
3101 if (!trylock_page(p)) {
3102 if (!flush) {
3103 flush_write_bio(epd);
3104 flush = 1;
3105 }
3106 lock_page(p);
3107 }
3108 }
3109
3110 return ret;
3111 }
3112
3113 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3114 {
3115 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3116 smp_mb__after_clear_bit();
3117 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3118 }
3119
3120 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3121 {
3122 int uptodate = err == 0;
3123 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3124 struct extent_buffer *eb;
3125 int done;
3126
3127 do {
3128 struct page *page = bvec->bv_page;
3129
3130 bvec--;
3131 eb = (struct extent_buffer *)page->private;
3132 BUG_ON(!eb);
3133 done = atomic_dec_and_test(&eb->io_pages);
3134
3135 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3136 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3137 ClearPageUptodate(page);
3138 SetPageError(page);
3139 }
3140
3141 end_page_writeback(page);
3142
3143 if (!done)
3144 continue;
3145
3146 end_extent_buffer_writeback(eb);
3147 } while (bvec >= bio->bi_io_vec);
3148
3149 bio_put(bio);
3150
3151 }
3152
3153 static int write_one_eb(struct extent_buffer *eb,
3154 struct btrfs_fs_info *fs_info,
3155 struct writeback_control *wbc,
3156 struct extent_page_data *epd)
3157 {
3158 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3159 u64 offset = eb->start;
3160 unsigned long i, num_pages;
3161 int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3162 int ret = 0;
3163
3164 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3165 num_pages = num_extent_pages(eb->start, eb->len);
3166 atomic_set(&eb->io_pages, num_pages);
3167 for (i = 0; i < num_pages; i++) {
3168 struct page *p = extent_buffer_page(eb, i);
3169
3170 clear_page_dirty_for_io(p);
3171 set_page_writeback(p);
3172 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3173 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3174 -1, end_bio_extent_buffer_writepage,
3175 0, 0, 0);
3176 if (ret) {
3177 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3178 SetPageError(p);
3179 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3180 end_extent_buffer_writeback(eb);
3181 ret = -EIO;
3182 break;
3183 }
3184 offset += PAGE_CACHE_SIZE;
3185 update_nr_written(p, wbc, 1);
3186 unlock_page(p);
3187 }
3188
3189 if (unlikely(ret)) {
3190 for (; i < num_pages; i++) {
3191 struct page *p = extent_buffer_page(eb, i);
3192 unlock_page(p);
3193 }
3194 }
3195
3196 return ret;
3197 }
3198
3199 int btree_write_cache_pages(struct address_space *mapping,
3200 struct writeback_control *wbc)
3201 {
3202 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3203 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3204 struct extent_buffer *eb, *prev_eb = NULL;
3205 struct extent_page_data epd = {
3206 .bio = NULL,
3207 .tree = tree,
3208 .extent_locked = 0,
3209 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3210 };
3211 int ret = 0;
3212 int done = 0;
3213 int nr_to_write_done = 0;
3214 struct pagevec pvec;
3215 int nr_pages;
3216 pgoff_t index;
3217 pgoff_t end; /* Inclusive */
3218 int scanned = 0;
3219 int tag;
3220
3221 pagevec_init(&pvec, 0);
3222 if (wbc->range_cyclic) {
3223 index = mapping->writeback_index; /* Start from prev offset */
3224 end = -1;
3225 } else {
3226 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3227 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3228 scanned = 1;
3229 }
3230 if (wbc->sync_mode == WB_SYNC_ALL)
3231 tag = PAGECACHE_TAG_TOWRITE;
3232 else
3233 tag = PAGECACHE_TAG_DIRTY;
3234 retry:
3235 if (wbc->sync_mode == WB_SYNC_ALL)
3236 tag_pages_for_writeback(mapping, index, end);
3237 while (!done && !nr_to_write_done && (index <= end) &&
3238 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3239 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3240 unsigned i;
3241
3242 scanned = 1;
3243 for (i = 0; i < nr_pages; i++) {
3244 struct page *page = pvec.pages[i];
3245
3246 if (!PagePrivate(page))
3247 continue;
3248
3249 if (!wbc->range_cyclic && page->index > end) {
3250 done = 1;
3251 break;
3252 }
3253
3254 eb = (struct extent_buffer *)page->private;
3255 if (!eb) {
3256 WARN_ON(1);
3257 continue;
3258 }
3259
3260 if (eb == prev_eb)
3261 continue;
3262
3263 if (!atomic_inc_not_zero(&eb->refs)) {
3264 WARN_ON(1);
3265 continue;
3266 }
3267
3268 prev_eb = eb;
3269 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3270 if (!ret) {
3271 free_extent_buffer(eb);
3272 continue;
3273 }
3274
3275 ret = write_one_eb(eb, fs_info, wbc, &epd);
3276 if (ret) {
3277 done = 1;
3278 free_extent_buffer(eb);
3279 break;
3280 }
3281 free_extent_buffer(eb);
3282
3283 /*
3284 * the filesystem may choose to bump up nr_to_write.
3285 * We have to make sure to honor the new nr_to_write
3286 * at any time
3287 */
3288 nr_to_write_done = wbc->nr_to_write <= 0;
3289 }
3290 pagevec_release(&pvec);
3291 cond_resched();
3292 }
3293 if (!scanned && !done) {
3294 /*
3295 * We hit the last page and there is more work to be done: wrap
3296 * back to the start of the file
3297 */
3298 scanned = 1;
3299 index = 0;
3300 goto retry;
3301 }
3302 flush_write_bio(&epd);
3303 return ret;
3304 }
3305
3306 /**
3307 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3308 * @mapping: address space structure to write
3309 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3310 * @writepage: function called for each page
3311 * @data: data passed to writepage function
3312 *
3313 * If a page is already under I/O, write_cache_pages() skips it, even
3314 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3315 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3316 * and msync() need to guarantee that all the data which was dirty at the time
3317 * the call was made get new I/O started against them. If wbc->sync_mode is
3318 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3319 * existing IO to complete.
3320 */
3321 static int extent_write_cache_pages(struct extent_io_tree *tree,
3322 struct address_space *mapping,
3323 struct writeback_control *wbc,
3324 writepage_t writepage, void *data,
3325 void (*flush_fn)(void *))
3326 {
3327 int ret = 0;
3328 int done = 0;
3329 int nr_to_write_done = 0;
3330 struct pagevec pvec;
3331 int nr_pages;
3332 pgoff_t index;
3333 pgoff_t end; /* Inclusive */
3334 int scanned = 0;
3335 int tag;
3336
3337 pagevec_init(&pvec, 0);
3338 if (wbc->range_cyclic) {
3339 index = mapping->writeback_index; /* Start from prev offset */
3340 end = -1;
3341 } else {
3342 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3343 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3344 scanned = 1;
3345 }
3346 if (wbc->sync_mode == WB_SYNC_ALL)
3347 tag = PAGECACHE_TAG_TOWRITE;
3348 else
3349 tag = PAGECACHE_TAG_DIRTY;
3350 retry:
3351 if (wbc->sync_mode == WB_SYNC_ALL)
3352 tag_pages_for_writeback(mapping, index, end);
3353 while (!done && !nr_to_write_done && (index <= end) &&
3354 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3355 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3356 unsigned i;
3357
3358 scanned = 1;
3359 for (i = 0; i < nr_pages; i++) {
3360 struct page *page = pvec.pages[i];
3361
3362 /*
3363 * At this point we hold neither mapping->tree_lock nor
3364 * lock on the page itself: the page may be truncated or
3365 * invalidated (changing page->mapping to NULL), or even
3366 * swizzled back from swapper_space to tmpfs file
3367 * mapping
3368 */
3369 if (tree->ops &&
3370 tree->ops->write_cache_pages_lock_hook) {
3371 tree->ops->write_cache_pages_lock_hook(page,
3372 data, flush_fn);
3373 } else {
3374 if (!trylock_page(page)) {
3375 flush_fn(data);
3376 lock_page(page);
3377 }
3378 }
3379
3380 if (unlikely(page->mapping != mapping)) {
3381 unlock_page(page);
3382 continue;
3383 }
3384
3385 if (!wbc->range_cyclic && page->index > end) {
3386 done = 1;
3387 unlock_page(page);
3388 continue;
3389 }
3390
3391 if (wbc->sync_mode != WB_SYNC_NONE) {
3392 if (PageWriteback(page))
3393 flush_fn(data);
3394 wait_on_page_writeback(page);
3395 }
3396
3397 if (PageWriteback(page) ||
3398 !clear_page_dirty_for_io(page)) {
3399 unlock_page(page);
3400 continue;
3401 }
3402
3403 ret = (*writepage)(page, wbc, data);
3404
3405 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3406 unlock_page(page);
3407 ret = 0;
3408 }
3409 if (ret)
3410 done = 1;
3411
3412 /*
3413 * the filesystem may choose to bump up nr_to_write.
3414 * We have to make sure to honor the new nr_to_write
3415 * at any time
3416 */
3417 nr_to_write_done = wbc->nr_to_write <= 0;
3418 }
3419 pagevec_release(&pvec);
3420 cond_resched();
3421 }
3422 if (!scanned && !done) {
3423 /*
3424 * We hit the last page and there is more work to be done: wrap
3425 * back to the start of the file
3426 */
3427 scanned = 1;
3428 index = 0;
3429 goto retry;
3430 }
3431 return ret;
3432 }
3433
3434 static void flush_epd_write_bio(struct extent_page_data *epd)
3435 {
3436 if (epd->bio) {
3437 int rw = WRITE;
3438 int ret;
3439
3440 if (epd->sync_io)
3441 rw = WRITE_SYNC;
3442
3443 ret = submit_one_bio(rw, epd->bio, 0, 0);
3444 BUG_ON(ret < 0); /* -ENOMEM */
3445 epd->bio = NULL;
3446 }
3447 }
3448
3449 static noinline void flush_write_bio(void *data)
3450 {
3451 struct extent_page_data *epd = data;
3452 flush_epd_write_bio(epd);
3453 }
3454
3455 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3456 get_extent_t *get_extent,
3457 struct writeback_control *wbc)
3458 {
3459 int ret;
3460 struct extent_page_data epd = {
3461 .bio = NULL,
3462 .tree = tree,
3463 .get_extent = get_extent,
3464 .extent_locked = 0,
3465 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3466 };
3467
3468 ret = __extent_writepage(page, wbc, &epd);
3469
3470 flush_epd_write_bio(&epd);
3471 return ret;
3472 }
3473
3474 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3475 u64 start, u64 end, get_extent_t *get_extent,
3476 int mode)
3477 {
3478 int ret = 0;
3479 struct address_space *mapping = inode->i_mapping;
3480 struct page *page;
3481 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3482 PAGE_CACHE_SHIFT;
3483
3484 struct extent_page_data epd = {
3485 .bio = NULL,
3486 .tree = tree,
3487 .get_extent = get_extent,
3488 .extent_locked = 1,
3489 .sync_io = mode == WB_SYNC_ALL,
3490 };
3491 struct writeback_control wbc_writepages = {
3492 .sync_mode = mode,
3493 .nr_to_write = nr_pages * 2,
3494 .range_start = start,
3495 .range_end = end + 1,
3496 };
3497
3498 while (start <= end) {
3499 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3500 if (clear_page_dirty_for_io(page))
3501 ret = __extent_writepage(page, &wbc_writepages, &epd);
3502 else {
3503 if (tree->ops && tree->ops->writepage_end_io_hook)
3504 tree->ops->writepage_end_io_hook(page, start,
3505 start + PAGE_CACHE_SIZE - 1,
3506 NULL, 1);
3507 unlock_page(page);
3508 }
3509 page_cache_release(page);
3510 start += PAGE_CACHE_SIZE;
3511 }
3512
3513 flush_epd_write_bio(&epd);
3514 return ret;
3515 }
3516
3517 int extent_writepages(struct extent_io_tree *tree,
3518 struct address_space *mapping,
3519 get_extent_t *get_extent,
3520 struct writeback_control *wbc)
3521 {
3522 int ret = 0;
3523 struct extent_page_data epd = {
3524 .bio = NULL,
3525 .tree = tree,
3526 .get_extent = get_extent,
3527 .extent_locked = 0,
3528 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3529 };
3530
3531 ret = extent_write_cache_pages(tree, mapping, wbc,
3532 __extent_writepage, &epd,
3533 flush_write_bio);
3534 flush_epd_write_bio(&epd);
3535 return ret;
3536 }
3537
3538 int extent_readpages(struct extent_io_tree *tree,
3539 struct address_space *mapping,
3540 struct list_head *pages, unsigned nr_pages,
3541 get_extent_t get_extent)
3542 {
3543 struct bio *bio = NULL;
3544 unsigned page_idx;
3545 unsigned long bio_flags = 0;
3546
3547 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3548 struct page *page = list_entry(pages->prev, struct page, lru);
3549
3550 prefetchw(&page->flags);
3551 list_del(&page->lru);
3552 if (!add_to_page_cache_lru(page, mapping,
3553 page->index, GFP_NOFS)) {
3554 __extent_read_full_page(tree, page, get_extent,
3555 &bio, 0, &bio_flags);
3556 }
3557 page_cache_release(page);
3558 }
3559 BUG_ON(!list_empty(pages));
3560 if (bio)
3561 return submit_one_bio(READ, bio, 0, bio_flags);
3562 return 0;
3563 }
3564
3565 /*
3566 * basic invalidatepage code, this waits on any locked or writeback
3567 * ranges corresponding to the page, and then deletes any extent state
3568 * records from the tree
3569 */
3570 int extent_invalidatepage(struct extent_io_tree *tree,
3571 struct page *page, unsigned long offset)
3572 {
3573 struct extent_state *cached_state = NULL;
3574 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3575 u64 end = start + PAGE_CACHE_SIZE - 1;
3576 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3577
3578 start += (offset + blocksize - 1) & ~(blocksize - 1);
3579 if (start > end)
3580 return 0;
3581
3582 lock_extent_bits(tree, start, end, 0, &cached_state);
3583 wait_on_page_writeback(page);
3584 clear_extent_bit(tree, start, end,
3585 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3586 EXTENT_DO_ACCOUNTING,
3587 1, 1, &cached_state, GFP_NOFS);
3588 return 0;
3589 }
3590
3591 /*
3592 * a helper for releasepage, this tests for areas of the page that
3593 * are locked or under IO and drops the related state bits if it is safe
3594 * to drop the page.
3595 */
3596 int try_release_extent_state(struct extent_map_tree *map,
3597 struct extent_io_tree *tree, struct page *page,
3598 gfp_t mask)
3599 {
3600 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3601 u64 end = start + PAGE_CACHE_SIZE - 1;
3602 int ret = 1;
3603
3604 if (test_range_bit(tree, start, end,
3605 EXTENT_IOBITS, 0, NULL))
3606 ret = 0;
3607 else {
3608 if ((mask & GFP_NOFS) == GFP_NOFS)
3609 mask = GFP_NOFS;
3610 /*
3611 * at this point we can safely clear everything except the
3612 * locked bit and the nodatasum bit
3613 */
3614 ret = clear_extent_bit(tree, start, end,
3615 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3616 0, 0, NULL, mask);
3617
3618 /* if clear_extent_bit failed for enomem reasons,
3619 * we can't allow the release to continue.
3620 */
3621 if (ret < 0)
3622 ret = 0;
3623 else
3624 ret = 1;
3625 }
3626 return ret;
3627 }
3628
3629 /*
3630 * a helper for releasepage. As long as there are no locked extents
3631 * in the range corresponding to the page, both state records and extent
3632 * map records are removed
3633 */
3634 int try_release_extent_mapping(struct extent_map_tree *map,
3635 struct extent_io_tree *tree, struct page *page,
3636 gfp_t mask)
3637 {
3638 struct extent_map *em;
3639 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3640 u64 end = start + PAGE_CACHE_SIZE - 1;
3641
3642 if ((mask & __GFP_WAIT) &&
3643 page->mapping->host->i_size > 16 * 1024 * 1024) {
3644 u64 len;
3645 while (start <= end) {
3646 len = end - start + 1;
3647 write_lock(&map->lock);
3648 em = lookup_extent_mapping(map, start, len);
3649 if (!em) {
3650 write_unlock(&map->lock);
3651 break;
3652 }
3653 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3654 em->start != start) {
3655 write_unlock(&map->lock);
3656 free_extent_map(em);
3657 break;
3658 }
3659 if (!test_range_bit(tree, em->start,
3660 extent_map_end(em) - 1,
3661 EXTENT_LOCKED | EXTENT_WRITEBACK,
3662 0, NULL)) {
3663 remove_extent_mapping(map, em);
3664 /* once for the rb tree */
3665 free_extent_map(em);
3666 }
3667 start = extent_map_end(em);
3668 write_unlock(&map->lock);
3669
3670 /* once for us */
3671 free_extent_map(em);
3672 }
3673 }
3674 return try_release_extent_state(map, tree, page, mask);
3675 }
3676
3677 /*
3678 * helper function for fiemap, which doesn't want to see any holes.
3679 * This maps until we find something past 'last'
3680 */
3681 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3682 u64 offset,
3683 u64 last,
3684 get_extent_t *get_extent)
3685 {
3686 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3687 struct extent_map *em;
3688 u64 len;
3689
3690 if (offset >= last)
3691 return NULL;
3692
3693 while(1) {
3694 len = last - offset;
3695 if (len == 0)
3696 break;
3697 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3698 em = get_extent(inode, NULL, 0, offset, len, 0);
3699 if (IS_ERR_OR_NULL(em))
3700 return em;
3701
3702 /* if this isn't a hole return it */
3703 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3704 em->block_start != EXTENT_MAP_HOLE) {
3705 return em;
3706 }
3707
3708 /* this is a hole, advance to the next extent */
3709 offset = extent_map_end(em);
3710 free_extent_map(em);
3711 if (offset >= last)
3712 break;
3713 }
3714 return NULL;
3715 }
3716
3717 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3718 __u64 start, __u64 len, get_extent_t *get_extent)
3719 {
3720 int ret = 0;
3721 u64 off = start;
3722 u64 max = start + len;
3723 u32 flags = 0;
3724 u32 found_type;
3725 u64 last;
3726 u64 last_for_get_extent = 0;
3727 u64 disko = 0;
3728 u64 isize = i_size_read(inode);
3729 struct btrfs_key found_key;
3730 struct extent_map *em = NULL;
3731 struct extent_state *cached_state = NULL;
3732 struct btrfs_path *path;
3733 struct btrfs_file_extent_item *item;
3734 int end = 0;
3735 u64 em_start = 0;
3736 u64 em_len = 0;
3737 u64 em_end = 0;
3738 unsigned long emflags;
3739
3740 if (len == 0)
3741 return -EINVAL;
3742
3743 path = btrfs_alloc_path();
3744 if (!path)
3745 return -ENOMEM;
3746 path->leave_spinning = 1;
3747
3748 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3749 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3750
3751 /*
3752 * lookup the last file extent. We're not using i_size here
3753 * because there might be preallocation past i_size
3754 */
3755 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3756 path, btrfs_ino(inode), -1, 0);
3757 if (ret < 0) {
3758 btrfs_free_path(path);
3759 return ret;
3760 }
3761 WARN_ON(!ret);
3762 path->slots[0]--;
3763 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3764 struct btrfs_file_extent_item);
3765 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3766 found_type = btrfs_key_type(&found_key);
3767
3768 /* No extents, but there might be delalloc bits */
3769 if (found_key.objectid != btrfs_ino(inode) ||
3770 found_type != BTRFS_EXTENT_DATA_KEY) {
3771 /* have to trust i_size as the end */
3772 last = (u64)-1;
3773 last_for_get_extent = isize;
3774 } else {
3775 /*
3776 * remember the start of the last extent. There are a
3777 * bunch of different factors that go into the length of the
3778 * extent, so its much less complex to remember where it started
3779 */
3780 last = found_key.offset;
3781 last_for_get_extent = last + 1;
3782 }
3783 btrfs_free_path(path);
3784
3785 /*
3786 * we might have some extents allocated but more delalloc past those
3787 * extents. so, we trust isize unless the start of the last extent is
3788 * beyond isize
3789 */
3790 if (last < isize) {
3791 last = (u64)-1;
3792 last_for_get_extent = isize;
3793 }
3794
3795 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3796 &cached_state);
3797
3798 em = get_extent_skip_holes(inode, start, last_for_get_extent,
3799 get_extent);
3800 if (!em)
3801 goto out;
3802 if (IS_ERR(em)) {
3803 ret = PTR_ERR(em);
3804 goto out;
3805 }
3806
3807 while (!end) {
3808 u64 offset_in_extent;
3809
3810 /* break if the extent we found is outside the range */
3811 if (em->start >= max || extent_map_end(em) < off)
3812 break;
3813
3814 /*
3815 * get_extent may return an extent that starts before our
3816 * requested range. We have to make sure the ranges
3817 * we return to fiemap always move forward and don't
3818 * overlap, so adjust the offsets here
3819 */
3820 em_start = max(em->start, off);
3821
3822 /*
3823 * record the offset from the start of the extent
3824 * for adjusting the disk offset below
3825 */
3826 offset_in_extent = em_start - em->start;
3827 em_end = extent_map_end(em);
3828 em_len = em_end - em_start;
3829 emflags = em->flags;
3830 disko = 0;
3831 flags = 0;
3832
3833 /*
3834 * bump off for our next call to get_extent
3835 */
3836 off = extent_map_end(em);
3837 if (off >= max)
3838 end = 1;
3839
3840 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3841 end = 1;
3842 flags |= FIEMAP_EXTENT_LAST;
3843 } else if (em->block_start == EXTENT_MAP_INLINE) {
3844 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3845 FIEMAP_EXTENT_NOT_ALIGNED);
3846 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3847 flags |= (FIEMAP_EXTENT_DELALLOC |
3848 FIEMAP_EXTENT_UNKNOWN);
3849 } else {
3850 disko = em->block_start + offset_in_extent;
3851 }
3852 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3853 flags |= FIEMAP_EXTENT_ENCODED;
3854
3855 free_extent_map(em);
3856 em = NULL;
3857 if ((em_start >= last) || em_len == (u64)-1 ||
3858 (last == (u64)-1 && isize <= em_end)) {
3859 flags |= FIEMAP_EXTENT_LAST;
3860 end = 1;
3861 }
3862
3863 /* now scan forward to see if this is really the last extent. */
3864 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3865 get_extent);
3866 if (IS_ERR(em)) {
3867 ret = PTR_ERR(em);
3868 goto out;
3869 }
3870 if (!em) {
3871 flags |= FIEMAP_EXTENT_LAST;
3872 end = 1;
3873 }
3874 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3875 em_len, flags);
3876 if (ret)
3877 goto out_free;
3878 }
3879 out_free:
3880 free_extent_map(em);
3881 out:
3882 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3883 &cached_state, GFP_NOFS);
3884 return ret;
3885 }
3886
3887 inline struct page *extent_buffer_page(struct extent_buffer *eb,
3888 unsigned long i)
3889 {
3890 return eb->pages[i];
3891 }
3892
3893 inline unsigned long num_extent_pages(u64 start, u64 len)
3894 {
3895 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3896 (start >> PAGE_CACHE_SHIFT);
3897 }
3898
3899 static void __free_extent_buffer(struct extent_buffer *eb)
3900 {
3901 #if LEAK_DEBUG
3902 unsigned long flags;
3903 spin_lock_irqsave(&leak_lock, flags);
3904 list_del(&eb->leak_list);
3905 spin_unlock_irqrestore(&leak_lock, flags);
3906 #endif
3907 if (eb->pages && eb->pages != eb->inline_pages)
3908 kfree(eb->pages);
3909 kmem_cache_free(extent_buffer_cache, eb);
3910 }
3911
3912 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3913 u64 start,
3914 unsigned long len,
3915 gfp_t mask)
3916 {
3917 struct extent_buffer *eb = NULL;
3918 #if LEAK_DEBUG
3919 unsigned long flags;
3920 #endif
3921
3922 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3923 if (eb == NULL)
3924 return NULL;
3925 eb->start = start;
3926 eb->len = len;
3927 eb->tree = tree;
3928 eb->bflags = 0;
3929 rwlock_init(&eb->lock);
3930 atomic_set(&eb->write_locks, 0);
3931 atomic_set(&eb->read_locks, 0);
3932 atomic_set(&eb->blocking_readers, 0);
3933 atomic_set(&eb->blocking_writers, 0);
3934 atomic_set(&eb->spinning_readers, 0);
3935 atomic_set(&eb->spinning_writers, 0);
3936 eb->lock_nested = 0;
3937 init_waitqueue_head(&eb->write_lock_wq);
3938 init_waitqueue_head(&eb->read_lock_wq);
3939
3940 #if LEAK_DEBUG
3941 spin_lock_irqsave(&leak_lock, flags);
3942 list_add(&eb->leak_list, &buffers);
3943 spin_unlock_irqrestore(&leak_lock, flags);
3944 #endif
3945 spin_lock_init(&eb->refs_lock);
3946 atomic_set(&eb->refs, 1);
3947 atomic_set(&eb->io_pages, 0);
3948
3949 if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
3950 struct page **pages;
3951 int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
3952 PAGE_CACHE_SHIFT;
3953 pages = kzalloc(num_pages, mask);
3954 if (!pages) {
3955 __free_extent_buffer(eb);
3956 return NULL;
3957 }
3958 eb->pages = pages;
3959 } else {
3960 eb->pages = eb->inline_pages;
3961 }
3962
3963 return eb;
3964 }
3965
3966 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
3967 {
3968 unsigned long i;
3969 struct page *p;
3970 struct extent_buffer *new;
3971 unsigned long num_pages = num_extent_pages(src->start, src->len);
3972
3973 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
3974 if (new == NULL)
3975 return NULL;
3976
3977 for (i = 0; i < num_pages; i++) {
3978 p = alloc_page(GFP_ATOMIC);
3979 BUG_ON(!p);
3980 attach_extent_buffer_page(new, p);
3981 WARN_ON(PageDirty(p));
3982 SetPageUptodate(p);
3983 new->pages[i] = p;
3984 }
3985
3986 copy_extent_buffer(new, src, 0, 0, src->len);
3987 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
3988 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
3989
3990 return new;
3991 }
3992
3993 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
3994 {
3995 struct extent_buffer *eb;
3996 unsigned long num_pages = num_extent_pages(0, len);
3997 unsigned long i;
3998
3999 eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4000 if (!eb)
4001 return NULL;
4002
4003 for (i = 0; i < num_pages; i++) {
4004 eb->pages[i] = alloc_page(GFP_ATOMIC);
4005 if (!eb->pages[i])
4006 goto err;
4007 }
4008 set_extent_buffer_uptodate(eb);
4009 btrfs_set_header_nritems(eb, 0);
4010 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4011
4012 return eb;
4013 err:
4014 for (i--; i > 0; i--)
4015 __free_page(eb->pages[i]);
4016 __free_extent_buffer(eb);
4017 return NULL;
4018 }
4019
4020 static int extent_buffer_under_io(struct extent_buffer *eb)
4021 {
4022 return (atomic_read(&eb->io_pages) ||
4023 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4024 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4025 }
4026
4027 /*
4028 * Helper for releasing extent buffer page.
4029 */
4030 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4031 unsigned long start_idx)
4032 {
4033 unsigned long index;
4034 unsigned long num_pages;
4035 struct page *page;
4036 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4037
4038 BUG_ON(extent_buffer_under_io(eb));
4039
4040 num_pages = num_extent_pages(eb->start, eb->len);
4041 index = start_idx + num_pages;
4042 if (start_idx >= index)
4043 return;
4044
4045 do {
4046 index--;
4047 page = extent_buffer_page(eb, index);
4048 if (page && mapped) {
4049 spin_lock(&page->mapping->private_lock);
4050 /*
4051 * We do this since we'll remove the pages after we've
4052 * removed the eb from the radix tree, so we could race
4053 * and have this page now attached to the new eb. So
4054 * only clear page_private if it's still connected to
4055 * this eb.
4056 */
4057 if (PagePrivate(page) &&
4058 page->private == (unsigned long)eb) {
4059 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4060 BUG_ON(PageDirty(page));
4061 BUG_ON(PageWriteback(page));
4062 /*
4063 * We need to make sure we haven't be attached
4064 * to a new eb.
4065 */
4066 ClearPagePrivate(page);
4067 set_page_private(page, 0);
4068 /* One for the page private */
4069 page_cache_release(page);
4070 }
4071 spin_unlock(&page->mapping->private_lock);
4072
4073 }
4074 if (page) {
4075 /* One for when we alloced the page */
4076 page_cache_release(page);
4077 }
4078 } while (index != start_idx);
4079 }
4080
4081 /*
4082 * Helper for releasing the extent buffer.
4083 */
4084 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4085 {
4086 btrfs_release_extent_buffer_page(eb, 0);
4087 __free_extent_buffer(eb);
4088 }
4089
4090 static void check_buffer_tree_ref(struct extent_buffer *eb)
4091 {
4092 /* the ref bit is tricky. We have to make sure it is set
4093 * if we have the buffer dirty. Otherwise the
4094 * code to free a buffer can end up dropping a dirty
4095 * page
4096 *
4097 * Once the ref bit is set, it won't go away while the
4098 * buffer is dirty or in writeback, and it also won't
4099 * go away while we have the reference count on the
4100 * eb bumped.
4101 *
4102 * We can't just set the ref bit without bumping the
4103 * ref on the eb because free_extent_buffer might
4104 * see the ref bit and try to clear it. If this happens
4105 * free_extent_buffer might end up dropping our original
4106 * ref by mistake and freeing the page before we are able
4107 * to add one more ref.
4108 *
4109 * So bump the ref count first, then set the bit. If someone
4110 * beat us to it, drop the ref we added.
4111 */
4112 if (!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4113 atomic_inc(&eb->refs);
4114 if (test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4115 atomic_dec(&eb->refs);
4116 }
4117 }
4118
4119 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4120 {
4121 unsigned long num_pages, i;
4122
4123 check_buffer_tree_ref(eb);
4124
4125 num_pages = num_extent_pages(eb->start, eb->len);
4126 for (i = 0; i < num_pages; i++) {
4127 struct page *p = extent_buffer_page(eb, i);
4128 mark_page_accessed(p);
4129 }
4130 }
4131
4132 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4133 u64 start, unsigned long len)
4134 {
4135 unsigned long num_pages = num_extent_pages(start, len);
4136 unsigned long i;
4137 unsigned long index = start >> PAGE_CACHE_SHIFT;
4138 struct extent_buffer *eb;
4139 struct extent_buffer *exists = NULL;
4140 struct page *p;
4141 struct address_space *mapping = tree->mapping;
4142 int uptodate = 1;
4143 int ret;
4144
4145 rcu_read_lock();
4146 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4147 if (eb && atomic_inc_not_zero(&eb->refs)) {
4148 rcu_read_unlock();
4149 mark_extent_buffer_accessed(eb);
4150 return eb;
4151 }
4152 rcu_read_unlock();
4153
4154 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4155 if (!eb)
4156 return NULL;
4157
4158 for (i = 0; i < num_pages; i++, index++) {
4159 p = find_or_create_page(mapping, index, GFP_NOFS);
4160 if (!p) {
4161 WARN_ON(1);
4162 goto free_eb;
4163 }
4164
4165 spin_lock(&mapping->private_lock);
4166 if (PagePrivate(p)) {
4167 /*
4168 * We could have already allocated an eb for this page
4169 * and attached one so lets see if we can get a ref on
4170 * the existing eb, and if we can we know it's good and
4171 * we can just return that one, else we know we can just
4172 * overwrite page->private.
4173 */
4174 exists = (struct extent_buffer *)p->private;
4175 if (atomic_inc_not_zero(&exists->refs)) {
4176 spin_unlock(&mapping->private_lock);
4177 unlock_page(p);
4178 page_cache_release(p);
4179 mark_extent_buffer_accessed(exists);
4180 goto free_eb;
4181 }
4182
4183 /*
4184 * Do this so attach doesn't complain and we need to
4185 * drop the ref the old guy had.
4186 */
4187 ClearPagePrivate(p);
4188 WARN_ON(PageDirty(p));
4189 page_cache_release(p);
4190 }
4191 attach_extent_buffer_page(eb, p);
4192 spin_unlock(&mapping->private_lock);
4193 WARN_ON(PageDirty(p));
4194 mark_page_accessed(p);
4195 eb->pages[i] = p;
4196 if (!PageUptodate(p))
4197 uptodate = 0;
4198
4199 /*
4200 * see below about how we avoid a nasty race with release page
4201 * and why we unlock later
4202 */
4203 }
4204 if (uptodate)
4205 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4206 again:
4207 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4208 if (ret)
4209 goto free_eb;
4210
4211 spin_lock(&tree->buffer_lock);
4212 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4213 if (ret == -EEXIST) {
4214 exists = radix_tree_lookup(&tree->buffer,
4215 start >> PAGE_CACHE_SHIFT);
4216 if (!atomic_inc_not_zero(&exists->refs)) {
4217 spin_unlock(&tree->buffer_lock);
4218 radix_tree_preload_end();
4219 exists = NULL;
4220 goto again;
4221 }
4222 spin_unlock(&tree->buffer_lock);
4223 radix_tree_preload_end();
4224 mark_extent_buffer_accessed(exists);
4225 goto free_eb;
4226 }
4227 /* add one reference for the tree */
4228 spin_lock(&eb->refs_lock);
4229 check_buffer_tree_ref(eb);
4230 spin_unlock(&eb->refs_lock);
4231 spin_unlock(&tree->buffer_lock);
4232 radix_tree_preload_end();
4233
4234 /*
4235 * there is a race where release page may have
4236 * tried to find this extent buffer in the radix
4237 * but failed. It will tell the VM it is safe to
4238 * reclaim the, and it will clear the page private bit.
4239 * We must make sure to set the page private bit properly
4240 * after the extent buffer is in the radix tree so
4241 * it doesn't get lost
4242 */
4243 SetPageChecked(eb->pages[0]);
4244 for (i = 1; i < num_pages; i++) {
4245 p = extent_buffer_page(eb, i);
4246 ClearPageChecked(p);
4247 unlock_page(p);
4248 }
4249 unlock_page(eb->pages[0]);
4250 return eb;
4251
4252 free_eb:
4253 for (i = 0; i < num_pages; i++) {
4254 if (eb->pages[i])
4255 unlock_page(eb->pages[i]);
4256 }
4257
4258 WARN_ON(!atomic_dec_and_test(&eb->refs));
4259 btrfs_release_extent_buffer(eb);
4260 return exists;
4261 }
4262
4263 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4264 u64 start, unsigned long len)
4265 {
4266 struct extent_buffer *eb;
4267
4268 rcu_read_lock();
4269 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4270 if (eb && atomic_inc_not_zero(&eb->refs)) {
4271 rcu_read_unlock();
4272 mark_extent_buffer_accessed(eb);
4273 return eb;
4274 }
4275 rcu_read_unlock();
4276
4277 return NULL;
4278 }
4279
4280 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4281 {
4282 struct extent_buffer *eb =
4283 container_of(head, struct extent_buffer, rcu_head);
4284
4285 __free_extent_buffer(eb);
4286 }
4287
4288 /* Expects to have eb->eb_lock already held */
4289 static void release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4290 {
4291 WARN_ON(atomic_read(&eb->refs) == 0);
4292 if (atomic_dec_and_test(&eb->refs)) {
4293 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4294 spin_unlock(&eb->refs_lock);
4295 } else {
4296 struct extent_io_tree *tree = eb->tree;
4297
4298 spin_unlock(&eb->refs_lock);
4299
4300 spin_lock(&tree->buffer_lock);
4301 radix_tree_delete(&tree->buffer,
4302 eb->start >> PAGE_CACHE_SHIFT);
4303 spin_unlock(&tree->buffer_lock);
4304 }
4305
4306 /* Should be safe to release our pages at this point */
4307 btrfs_release_extent_buffer_page(eb, 0);
4308
4309 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4310 return;
4311 }
4312 spin_unlock(&eb->refs_lock);
4313 }
4314
4315 void free_extent_buffer(struct extent_buffer *eb)
4316 {
4317 if (!eb)
4318 return;
4319
4320 spin_lock(&eb->refs_lock);
4321 if (atomic_read(&eb->refs) == 2 &&
4322 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4323 atomic_dec(&eb->refs);
4324
4325 if (atomic_read(&eb->refs) == 2 &&
4326 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4327 !extent_buffer_under_io(eb) &&
4328 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4329 atomic_dec(&eb->refs);
4330
4331 /*
4332 * I know this is terrible, but it's temporary until we stop tracking
4333 * the uptodate bits and such for the extent buffers.
4334 */
4335 release_extent_buffer(eb, GFP_ATOMIC);
4336 }
4337
4338 void free_extent_buffer_stale(struct extent_buffer *eb)
4339 {
4340 if (!eb)
4341 return;
4342
4343 spin_lock(&eb->refs_lock);
4344 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4345
4346 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4347 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4348 atomic_dec(&eb->refs);
4349 release_extent_buffer(eb, GFP_NOFS);
4350 }
4351
4352 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4353 {
4354 unsigned long i;
4355 unsigned long num_pages;
4356 struct page *page;
4357
4358 num_pages = num_extent_pages(eb->start, eb->len);
4359
4360 for (i = 0; i < num_pages; i++) {
4361 page = extent_buffer_page(eb, i);
4362 if (!PageDirty(page))
4363 continue;
4364
4365 lock_page(page);
4366 WARN_ON(!PagePrivate(page));
4367
4368 clear_page_dirty_for_io(page);
4369 spin_lock_irq(&page->mapping->tree_lock);
4370 if (!PageDirty(page)) {
4371 radix_tree_tag_clear(&page->mapping->page_tree,
4372 page_index(page),
4373 PAGECACHE_TAG_DIRTY);
4374 }
4375 spin_unlock_irq(&page->mapping->tree_lock);
4376 ClearPageError(page);
4377 unlock_page(page);
4378 }
4379 WARN_ON(atomic_read(&eb->refs) == 0);
4380 }
4381
4382 int set_extent_buffer_dirty(struct extent_buffer *eb)
4383 {
4384 unsigned long i;
4385 unsigned long num_pages;
4386 int was_dirty = 0;
4387
4388 check_buffer_tree_ref(eb);
4389
4390 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4391
4392 num_pages = num_extent_pages(eb->start, eb->len);
4393 WARN_ON(atomic_read(&eb->refs) == 0);
4394 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4395
4396 for (i = 0; i < num_pages; i++)
4397 set_page_dirty(extent_buffer_page(eb, i));
4398 return was_dirty;
4399 }
4400
4401 static int range_straddles_pages(u64 start, u64 len)
4402 {
4403 if (len < PAGE_CACHE_SIZE)
4404 return 1;
4405 if (start & (PAGE_CACHE_SIZE - 1))
4406 return 1;
4407 if ((start + len) & (PAGE_CACHE_SIZE - 1))
4408 return 1;
4409 return 0;
4410 }
4411
4412 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4413 {
4414 unsigned long i;
4415 struct page *page;
4416 unsigned long num_pages;
4417
4418 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4419 num_pages = num_extent_pages(eb->start, eb->len);
4420 for (i = 0; i < num_pages; i++) {
4421 page = extent_buffer_page(eb, i);
4422 if (page)
4423 ClearPageUptodate(page);
4424 }
4425 return 0;
4426 }
4427
4428 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4429 {
4430 unsigned long i;
4431 struct page *page;
4432 unsigned long num_pages;
4433
4434 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4435 num_pages = num_extent_pages(eb->start, eb->len);
4436 for (i = 0; i < num_pages; i++) {
4437 page = extent_buffer_page(eb, i);
4438 SetPageUptodate(page);
4439 }
4440 return 0;
4441 }
4442
4443 int extent_range_uptodate(struct extent_io_tree *tree,
4444 u64 start, u64 end)
4445 {
4446 struct page *page;
4447 int ret;
4448 int pg_uptodate = 1;
4449 int uptodate;
4450 unsigned long index;
4451
4452 if (range_straddles_pages(start, end - start + 1)) {
4453 ret = test_range_bit(tree, start, end,
4454 EXTENT_UPTODATE, 1, NULL);
4455 if (ret)
4456 return 1;
4457 }
4458 while (start <= end) {
4459 index = start >> PAGE_CACHE_SHIFT;
4460 page = find_get_page(tree->mapping, index);
4461 if (!page)
4462 return 1;
4463 uptodate = PageUptodate(page);
4464 page_cache_release(page);
4465 if (!uptodate) {
4466 pg_uptodate = 0;
4467 break;
4468 }
4469 start += PAGE_CACHE_SIZE;
4470 }
4471 return pg_uptodate;
4472 }
4473
4474 int extent_buffer_uptodate(struct extent_buffer *eb)
4475 {
4476 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4477 }
4478
4479 int read_extent_buffer_pages(struct extent_io_tree *tree,
4480 struct extent_buffer *eb, u64 start, int wait,
4481 get_extent_t *get_extent, int mirror_num)
4482 {
4483 unsigned long i;
4484 unsigned long start_i;
4485 struct page *page;
4486 int err;
4487 int ret = 0;
4488 int locked_pages = 0;
4489 int all_uptodate = 1;
4490 unsigned long num_pages;
4491 unsigned long num_reads = 0;
4492 struct bio *bio = NULL;
4493 unsigned long bio_flags = 0;
4494
4495 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4496 return 0;
4497
4498 if (start) {
4499 WARN_ON(start < eb->start);
4500 start_i = (start >> PAGE_CACHE_SHIFT) -
4501 (eb->start >> PAGE_CACHE_SHIFT);
4502 } else {
4503 start_i = 0;
4504 }
4505
4506 num_pages = num_extent_pages(eb->start, eb->len);
4507 for (i = start_i; i < num_pages; i++) {
4508 page = extent_buffer_page(eb, i);
4509 if (wait == WAIT_NONE) {
4510 if (!trylock_page(page))
4511 goto unlock_exit;
4512 } else {
4513 lock_page(page);
4514 }
4515 locked_pages++;
4516 if (!PageUptodate(page)) {
4517 num_reads++;
4518 all_uptodate = 0;
4519 }
4520 }
4521 if (all_uptodate) {
4522 if (start_i == 0)
4523 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4524 goto unlock_exit;
4525 }
4526
4527 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4528 eb->read_mirror = 0;
4529 atomic_set(&eb->io_pages, num_reads);
4530 for (i = start_i; i < num_pages; i++) {
4531 page = extent_buffer_page(eb, i);
4532 if (!PageUptodate(page)) {
4533 ClearPageError(page);
4534 err = __extent_read_full_page(tree, page,
4535 get_extent, &bio,
4536 mirror_num, &bio_flags);
4537 if (err)
4538 ret = err;
4539 } else {
4540 unlock_page(page);
4541 }
4542 }
4543
4544 if (bio) {
4545 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4546 if (err)
4547 return err;
4548 }
4549
4550 if (ret || wait != WAIT_COMPLETE)
4551 return ret;
4552
4553 for (i = start_i; i < num_pages; i++) {
4554 page = extent_buffer_page(eb, i);
4555 wait_on_page_locked(page);
4556 if (!PageUptodate(page))
4557 ret = -EIO;
4558 }
4559
4560 return ret;
4561
4562 unlock_exit:
4563 i = start_i;
4564 while (locked_pages > 0) {
4565 page = extent_buffer_page(eb, i);
4566 i++;
4567 unlock_page(page);
4568 locked_pages--;
4569 }
4570 return ret;
4571 }
4572
4573 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4574 unsigned long start,
4575 unsigned long len)
4576 {
4577 size_t cur;
4578 size_t offset;
4579 struct page *page;
4580 char *kaddr;
4581 char *dst = (char *)dstv;
4582 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4583 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4584
4585 WARN_ON(start > eb->len);
4586 WARN_ON(start + len > eb->start + eb->len);
4587
4588 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4589
4590 while (len > 0) {
4591 page = extent_buffer_page(eb, i);
4592
4593 cur = min(len, (PAGE_CACHE_SIZE - offset));
4594 kaddr = page_address(page);
4595 memcpy(dst, kaddr + offset, cur);
4596
4597 dst += cur;
4598 len -= cur;
4599 offset = 0;
4600 i++;
4601 }
4602 }
4603
4604 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4605 unsigned long min_len, char **map,
4606 unsigned long *map_start,
4607 unsigned long *map_len)
4608 {
4609 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4610 char *kaddr;
4611 struct page *p;
4612 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4613 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4614 unsigned long end_i = (start_offset + start + min_len - 1) >>
4615 PAGE_CACHE_SHIFT;
4616
4617 if (i != end_i)
4618 return -EINVAL;
4619
4620 if (i == 0) {
4621 offset = start_offset;
4622 *map_start = 0;
4623 } else {
4624 offset = 0;
4625 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4626 }
4627
4628 if (start + min_len > eb->len) {
4629 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4630 "wanted %lu %lu\n", (unsigned long long)eb->start,
4631 eb->len, start, min_len);
4632 WARN_ON(1);
4633 return -EINVAL;
4634 }
4635
4636 p = extent_buffer_page(eb, i);
4637 kaddr = page_address(p);
4638 *map = kaddr + offset;
4639 *map_len = PAGE_CACHE_SIZE - offset;
4640 return 0;
4641 }
4642
4643 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4644 unsigned long start,
4645 unsigned long len)
4646 {
4647 size_t cur;
4648 size_t offset;
4649 struct page *page;
4650 char *kaddr;
4651 char *ptr = (char *)ptrv;
4652 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4653 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4654 int ret = 0;
4655
4656 WARN_ON(start > eb->len);
4657 WARN_ON(start + len > eb->start + eb->len);
4658
4659 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4660
4661 while (len > 0) {
4662 page = extent_buffer_page(eb, i);
4663
4664 cur = min(len, (PAGE_CACHE_SIZE - offset));
4665
4666 kaddr = page_address(page);
4667 ret = memcmp(ptr, kaddr + offset, cur);
4668 if (ret)
4669 break;
4670
4671 ptr += cur;
4672 len -= cur;
4673 offset = 0;
4674 i++;
4675 }
4676 return ret;
4677 }
4678
4679 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4680 unsigned long start, unsigned long len)
4681 {
4682 size_t cur;
4683 size_t offset;
4684 struct page *page;
4685 char *kaddr;
4686 char *src = (char *)srcv;
4687 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4688 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4689
4690 WARN_ON(start > eb->len);
4691 WARN_ON(start + len > eb->start + eb->len);
4692
4693 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4694
4695 while (len > 0) {
4696 page = extent_buffer_page(eb, i);
4697 WARN_ON(!PageUptodate(page));
4698
4699 cur = min(len, PAGE_CACHE_SIZE - offset);
4700 kaddr = page_address(page);
4701 memcpy(kaddr + offset, src, cur);
4702
4703 src += cur;
4704 len -= cur;
4705 offset = 0;
4706 i++;
4707 }
4708 }
4709
4710 void memset_extent_buffer(struct extent_buffer *eb, char c,
4711 unsigned long start, unsigned long len)
4712 {
4713 size_t cur;
4714 size_t offset;
4715 struct page *page;
4716 char *kaddr;
4717 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4718 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4719
4720 WARN_ON(start > eb->len);
4721 WARN_ON(start + len > eb->start + eb->len);
4722
4723 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4724
4725 while (len > 0) {
4726 page = extent_buffer_page(eb, i);
4727 WARN_ON(!PageUptodate(page));
4728
4729 cur = min(len, PAGE_CACHE_SIZE - offset);
4730 kaddr = page_address(page);
4731 memset(kaddr + offset, c, cur);
4732
4733 len -= cur;
4734 offset = 0;
4735 i++;
4736 }
4737 }
4738
4739 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4740 unsigned long dst_offset, unsigned long src_offset,
4741 unsigned long len)
4742 {
4743 u64 dst_len = dst->len;
4744 size_t cur;
4745 size_t offset;
4746 struct page *page;
4747 char *kaddr;
4748 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4749 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4750
4751 WARN_ON(src->len != dst_len);
4752
4753 offset = (start_offset + dst_offset) &
4754 ((unsigned long)PAGE_CACHE_SIZE - 1);
4755
4756 while (len > 0) {
4757 page = extent_buffer_page(dst, i);
4758 WARN_ON(!PageUptodate(page));
4759
4760 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4761
4762 kaddr = page_address(page);
4763 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4764
4765 src_offset += cur;
4766 len -= cur;
4767 offset = 0;
4768 i++;
4769 }
4770 }
4771
4772 static void move_pages(struct page *dst_page, struct page *src_page,
4773 unsigned long dst_off, unsigned long src_off,
4774 unsigned long len)
4775 {
4776 char *dst_kaddr = page_address(dst_page);
4777 if (dst_page == src_page) {
4778 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4779 } else {
4780 char *src_kaddr = page_address(src_page);
4781 char *p = dst_kaddr + dst_off + len;
4782 char *s = src_kaddr + src_off + len;
4783
4784 while (len--)
4785 *--p = *--s;
4786 }
4787 }
4788
4789 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4790 {
4791 unsigned long distance = (src > dst) ? src - dst : dst - src;
4792 return distance < len;
4793 }
4794
4795 static void copy_pages(struct page *dst_page, struct page *src_page,
4796 unsigned long dst_off, unsigned long src_off,
4797 unsigned long len)
4798 {
4799 char *dst_kaddr = page_address(dst_page);
4800 char *src_kaddr;
4801 int must_memmove = 0;
4802
4803 if (dst_page != src_page) {
4804 src_kaddr = page_address(src_page);
4805 } else {
4806 src_kaddr = dst_kaddr;
4807 if (areas_overlap(src_off, dst_off, len))
4808 must_memmove = 1;
4809 }
4810
4811 if (must_memmove)
4812 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4813 else
4814 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4815 }
4816
4817 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4818 unsigned long src_offset, unsigned long len)
4819 {
4820 size_t cur;
4821 size_t dst_off_in_page;
4822 size_t src_off_in_page;
4823 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4824 unsigned long dst_i;
4825 unsigned long src_i;
4826
4827 if (src_offset + len > dst->len) {
4828 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4829 "len %lu dst len %lu\n", src_offset, len, dst->len);
4830 BUG_ON(1);
4831 }
4832 if (dst_offset + len > dst->len) {
4833 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4834 "len %lu dst len %lu\n", dst_offset, len, dst->len);
4835 BUG_ON(1);
4836 }
4837
4838 while (len > 0) {
4839 dst_off_in_page = (start_offset + dst_offset) &
4840 ((unsigned long)PAGE_CACHE_SIZE - 1);
4841 src_off_in_page = (start_offset + src_offset) &
4842 ((unsigned long)PAGE_CACHE_SIZE - 1);
4843
4844 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4845 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4846
4847 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4848 src_off_in_page));
4849 cur = min_t(unsigned long, cur,
4850 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4851
4852 copy_pages(extent_buffer_page(dst, dst_i),
4853 extent_buffer_page(dst, src_i),
4854 dst_off_in_page, src_off_in_page, cur);
4855
4856 src_offset += cur;
4857 dst_offset += cur;
4858 len -= cur;
4859 }
4860 }
4861
4862 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4863 unsigned long src_offset, unsigned long len)
4864 {
4865 size_t cur;
4866 size_t dst_off_in_page;
4867 size_t src_off_in_page;
4868 unsigned long dst_end = dst_offset + len - 1;
4869 unsigned long src_end = src_offset + len - 1;
4870 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4871 unsigned long dst_i;
4872 unsigned long src_i;
4873
4874 if (src_offset + len > dst->len) {
4875 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4876 "len %lu len %lu\n", src_offset, len, dst->len);
4877 BUG_ON(1);
4878 }
4879 if (dst_offset + len > dst->len) {
4880 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4881 "len %lu len %lu\n", dst_offset, len, dst->len);
4882 BUG_ON(1);
4883 }
4884 if (dst_offset < src_offset) {
4885 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4886 return;
4887 }
4888 while (len > 0) {
4889 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4890 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4891
4892 dst_off_in_page = (start_offset + dst_end) &
4893 ((unsigned long)PAGE_CACHE_SIZE - 1);
4894 src_off_in_page = (start_offset + src_end) &
4895 ((unsigned long)PAGE_CACHE_SIZE - 1);
4896
4897 cur = min_t(unsigned long, len, src_off_in_page + 1);
4898 cur = min(cur, dst_off_in_page + 1);
4899 move_pages(extent_buffer_page(dst, dst_i),
4900 extent_buffer_page(dst, src_i),
4901 dst_off_in_page - cur + 1,
4902 src_off_in_page - cur + 1, cur);
4903
4904 dst_end -= cur;
4905 src_end -= cur;
4906 len -= cur;
4907 }
4908 }
4909
4910 int try_release_extent_buffer(struct page *page, gfp_t mask)
4911 {
4912 struct extent_buffer *eb;
4913
4914 /*
4915 * We need to make sure noboody is attaching this page to an eb right
4916 * now.
4917 */
4918 spin_lock(&page->mapping->private_lock);
4919 if (!PagePrivate(page)) {
4920 spin_unlock(&page->mapping->private_lock);
4921 return 1;
4922 }
4923
4924 eb = (struct extent_buffer *)page->private;
4925 BUG_ON(!eb);
4926
4927 /*
4928 * This is a little awful but should be ok, we need to make sure that
4929 * the eb doesn't disappear out from under us while we're looking at
4930 * this page.
4931 */
4932 spin_lock(&eb->refs_lock);
4933 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4934 spin_unlock(&eb->refs_lock);
4935 spin_unlock(&page->mapping->private_lock);
4936 return 0;
4937 }
4938 spin_unlock(&page->mapping->private_lock);
4939
4940 if ((mask & GFP_NOFS) == GFP_NOFS)
4941 mask = GFP_NOFS;
4942
4943 /*
4944 * If tree ref isn't set then we know the ref on this eb is a real ref,
4945 * so just return, this page will likely be freed soon anyway.
4946 */
4947 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4948 spin_unlock(&eb->refs_lock);
4949 return 0;
4950 }
4951 release_extent_buffer(eb, mask);
4952
4953 return 1;
4954 }
This page took 0.271946 seconds and 5 git commands to generate.