Merge tag 'upstream-4.8-rc1' of git://git.infradead.org/linux-ubifs
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30 return !RB_EMPTY_NODE(&state->rb_node);
31 }
32
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36
37 static DEFINE_SPINLOCK(leak_lock);
38
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47 }
48
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57 }
58
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
70 atomic_read(&state->refs));
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 struct inode *inode;
91 u64 isize;
92
93 if (!tree->mapping)
94 return;
95
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller, btrfs_ino(inode), isize, start, end);
102 }
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
109 #endif
110
111 #define BUFFER_LRU_MAX 64
112
113 struct tree_entry {
114 u64 start;
115 u64 end;
116 struct rb_node rb_node;
117 };
118
119 struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
132 };
133
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137 {
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
144 if (!set && (state->state & bits) == 0)
145 return;
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151 }
152
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157 if (!tree->mapping)
158 return NULL;
159 return btrfs_sb(tree->mapping->host->i_sb);
160 }
161
162 int __init extent_io_init(void)
163 {
164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state), 0,
166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
167 if (!extent_state_cache)
168 return -ENOMEM;
169
170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer), 0,
172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
173 if (!extent_buffer_cache)
174 goto free_state_cache;
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
184 return 0;
185
186 free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
190 free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
194 free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
196 extent_state_cache = NULL;
197 return -ENOMEM;
198 }
199
200 void extent_io_exit(void)
201 {
202 btrfs_leak_debug_check();
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
213 }
214
215 void extent_io_tree_init(struct extent_io_tree *tree,
216 struct address_space *mapping)
217 {
218 tree->state = RB_ROOT;
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
221 spin_lock_init(&tree->lock);
222 tree->mapping = mapping;
223 }
224
225 static struct extent_state *alloc_extent_state(gfp_t mask)
226 {
227 struct extent_state *state;
228
229 state = kmem_cache_alloc(extent_state_cache, mask);
230 if (!state)
231 return state;
232 state->state = 0;
233 state->failrec = NULL;
234 RB_CLEAR_NODE(&state->rb_node);
235 btrfs_leak_debug_add(&state->leak_list, &states);
236 atomic_set(&state->refs, 1);
237 init_waitqueue_head(&state->wq);
238 trace_alloc_extent_state(state, mask, _RET_IP_);
239 return state;
240 }
241
242 void free_extent_state(struct extent_state *state)
243 {
244 if (!state)
245 return;
246 if (atomic_dec_and_test(&state->refs)) {
247 WARN_ON(extent_state_in_tree(state));
248 btrfs_leak_debug_del(&state->leak_list);
249 trace_free_extent_state(state, _RET_IP_);
250 kmem_cache_free(extent_state_cache, state);
251 }
252 }
253
254 static struct rb_node *tree_insert(struct rb_root *root,
255 struct rb_node *search_start,
256 u64 offset,
257 struct rb_node *node,
258 struct rb_node ***p_in,
259 struct rb_node **parent_in)
260 {
261 struct rb_node **p;
262 struct rb_node *parent = NULL;
263 struct tree_entry *entry;
264
265 if (p_in && parent_in) {
266 p = *p_in;
267 parent = *parent_in;
268 goto do_insert;
269 }
270
271 p = search_start ? &search_start : &root->rb_node;
272 while (*p) {
273 parent = *p;
274 entry = rb_entry(parent, struct tree_entry, rb_node);
275
276 if (offset < entry->start)
277 p = &(*p)->rb_left;
278 else if (offset > entry->end)
279 p = &(*p)->rb_right;
280 else
281 return parent;
282 }
283
284 do_insert:
285 rb_link_node(node, parent, p);
286 rb_insert_color(node, root);
287 return NULL;
288 }
289
290 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
291 struct rb_node **prev_ret,
292 struct rb_node **next_ret,
293 struct rb_node ***p_ret,
294 struct rb_node **parent_ret)
295 {
296 struct rb_root *root = &tree->state;
297 struct rb_node **n = &root->rb_node;
298 struct rb_node *prev = NULL;
299 struct rb_node *orig_prev = NULL;
300 struct tree_entry *entry;
301 struct tree_entry *prev_entry = NULL;
302
303 while (*n) {
304 prev = *n;
305 entry = rb_entry(prev, struct tree_entry, rb_node);
306 prev_entry = entry;
307
308 if (offset < entry->start)
309 n = &(*n)->rb_left;
310 else if (offset > entry->end)
311 n = &(*n)->rb_right;
312 else
313 return *n;
314 }
315
316 if (p_ret)
317 *p_ret = n;
318 if (parent_ret)
319 *parent_ret = prev;
320
321 if (prev_ret) {
322 orig_prev = prev;
323 while (prev && offset > prev_entry->end) {
324 prev = rb_next(prev);
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 }
327 *prev_ret = prev;
328 prev = orig_prev;
329 }
330
331 if (next_ret) {
332 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
333 while (prev && offset < prev_entry->start) {
334 prev = rb_prev(prev);
335 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336 }
337 *next_ret = prev;
338 }
339 return NULL;
340 }
341
342 static inline struct rb_node *
343 tree_search_for_insert(struct extent_io_tree *tree,
344 u64 offset,
345 struct rb_node ***p_ret,
346 struct rb_node **parent_ret)
347 {
348 struct rb_node *prev = NULL;
349 struct rb_node *ret;
350
351 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
352 if (!ret)
353 return prev;
354 return ret;
355 }
356
357 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358 u64 offset)
359 {
360 return tree_search_for_insert(tree, offset, NULL, NULL);
361 }
362
363 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364 struct extent_state *other)
365 {
366 if (tree->ops && tree->ops->merge_extent_hook)
367 tree->ops->merge_extent_hook(tree->mapping->host, new,
368 other);
369 }
370
371 /*
372 * utility function to look for merge candidates inside a given range.
373 * Any extents with matching state are merged together into a single
374 * extent in the tree. Extents with EXTENT_IO in their state field
375 * are not merged because the end_io handlers need to be able to do
376 * operations on them without sleeping (or doing allocations/splits).
377 *
378 * This should be called with the tree lock held.
379 */
380 static void merge_state(struct extent_io_tree *tree,
381 struct extent_state *state)
382 {
383 struct extent_state *other;
384 struct rb_node *other_node;
385
386 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
387 return;
388
389 other_node = rb_prev(&state->rb_node);
390 if (other_node) {
391 other = rb_entry(other_node, struct extent_state, rb_node);
392 if (other->end == state->start - 1 &&
393 other->state == state->state) {
394 merge_cb(tree, state, other);
395 state->start = other->start;
396 rb_erase(&other->rb_node, &tree->state);
397 RB_CLEAR_NODE(&other->rb_node);
398 free_extent_state(other);
399 }
400 }
401 other_node = rb_next(&state->rb_node);
402 if (other_node) {
403 other = rb_entry(other_node, struct extent_state, rb_node);
404 if (other->start == state->end + 1 &&
405 other->state == state->state) {
406 merge_cb(tree, state, other);
407 state->end = other->end;
408 rb_erase(&other->rb_node, &tree->state);
409 RB_CLEAR_NODE(&other->rb_node);
410 free_extent_state(other);
411 }
412 }
413 }
414
415 static void set_state_cb(struct extent_io_tree *tree,
416 struct extent_state *state, unsigned *bits)
417 {
418 if (tree->ops && tree->ops->set_bit_hook)
419 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
420 }
421
422 static void clear_state_cb(struct extent_io_tree *tree,
423 struct extent_state *state, unsigned *bits)
424 {
425 if (tree->ops && tree->ops->clear_bit_hook)
426 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
427 }
428
429 static void set_state_bits(struct extent_io_tree *tree,
430 struct extent_state *state, unsigned *bits,
431 struct extent_changeset *changeset);
432
433 /*
434 * insert an extent_state struct into the tree. 'bits' are set on the
435 * struct before it is inserted.
436 *
437 * This may return -EEXIST if the extent is already there, in which case the
438 * state struct is freed.
439 *
440 * The tree lock is not taken internally. This is a utility function and
441 * probably isn't what you want to call (see set/clear_extent_bit).
442 */
443 static int insert_state(struct extent_io_tree *tree,
444 struct extent_state *state, u64 start, u64 end,
445 struct rb_node ***p,
446 struct rb_node **parent,
447 unsigned *bits, struct extent_changeset *changeset)
448 {
449 struct rb_node *node;
450
451 if (end < start)
452 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
453 end, start);
454 state->start = start;
455 state->end = end;
456
457 set_state_bits(tree, state, bits, changeset);
458
459 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
460 if (node) {
461 struct extent_state *found;
462 found = rb_entry(node, struct extent_state, rb_node);
463 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
464 "%llu %llu\n",
465 found->start, found->end, start, end);
466 return -EEXIST;
467 }
468 merge_state(tree, state);
469 return 0;
470 }
471
472 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
473 u64 split)
474 {
475 if (tree->ops && tree->ops->split_extent_hook)
476 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
477 }
478
479 /*
480 * split a given extent state struct in two, inserting the preallocated
481 * struct 'prealloc' as the newly created second half. 'split' indicates an
482 * offset inside 'orig' where it should be split.
483 *
484 * Before calling,
485 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
486 * are two extent state structs in the tree:
487 * prealloc: [orig->start, split - 1]
488 * orig: [ split, orig->end ]
489 *
490 * The tree locks are not taken by this function. They need to be held
491 * by the caller.
492 */
493 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
494 struct extent_state *prealloc, u64 split)
495 {
496 struct rb_node *node;
497
498 split_cb(tree, orig, split);
499
500 prealloc->start = orig->start;
501 prealloc->end = split - 1;
502 prealloc->state = orig->state;
503 orig->start = split;
504
505 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
506 &prealloc->rb_node, NULL, NULL);
507 if (node) {
508 free_extent_state(prealloc);
509 return -EEXIST;
510 }
511 return 0;
512 }
513
514 static struct extent_state *next_state(struct extent_state *state)
515 {
516 struct rb_node *next = rb_next(&state->rb_node);
517 if (next)
518 return rb_entry(next, struct extent_state, rb_node);
519 else
520 return NULL;
521 }
522
523 /*
524 * utility function to clear some bits in an extent state struct.
525 * it will optionally wake up any one waiting on this state (wake == 1).
526 *
527 * If no bits are set on the state struct after clearing things, the
528 * struct is freed and removed from the tree
529 */
530 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
531 struct extent_state *state,
532 unsigned *bits, int wake,
533 struct extent_changeset *changeset)
534 {
535 struct extent_state *next;
536 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
537
538 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
539 u64 range = state->end - state->start + 1;
540 WARN_ON(range > tree->dirty_bytes);
541 tree->dirty_bytes -= range;
542 }
543 clear_state_cb(tree, state, bits);
544 add_extent_changeset(state, bits_to_clear, changeset, 0);
545 state->state &= ~bits_to_clear;
546 if (wake)
547 wake_up(&state->wq);
548 if (state->state == 0) {
549 next = next_state(state);
550 if (extent_state_in_tree(state)) {
551 rb_erase(&state->rb_node, &tree->state);
552 RB_CLEAR_NODE(&state->rb_node);
553 free_extent_state(state);
554 } else {
555 WARN_ON(1);
556 }
557 } else {
558 merge_state(tree, state);
559 next = next_state(state);
560 }
561 return next;
562 }
563
564 static struct extent_state *
565 alloc_extent_state_atomic(struct extent_state *prealloc)
566 {
567 if (!prealloc)
568 prealloc = alloc_extent_state(GFP_ATOMIC);
569
570 return prealloc;
571 }
572
573 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
574 {
575 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
576 "Extent tree was modified by another "
577 "thread while locked.");
578 }
579
580 /*
581 * clear some bits on a range in the tree. This may require splitting
582 * or inserting elements in the tree, so the gfp mask is used to
583 * indicate which allocations or sleeping are allowed.
584 *
585 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
586 * the given range from the tree regardless of state (ie for truncate).
587 *
588 * the range [start, end] is inclusive.
589 *
590 * This takes the tree lock, and returns 0 on success and < 0 on error.
591 */
592 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
593 unsigned bits, int wake, int delete,
594 struct extent_state **cached_state,
595 gfp_t mask, struct extent_changeset *changeset)
596 {
597 struct extent_state *state;
598 struct extent_state *cached;
599 struct extent_state *prealloc = NULL;
600 struct rb_node *node;
601 u64 last_end;
602 int err;
603 int clear = 0;
604
605 btrfs_debug_check_extent_io_range(tree, start, end);
606
607 if (bits & EXTENT_DELALLOC)
608 bits |= EXTENT_NORESERVE;
609
610 if (delete)
611 bits |= ~EXTENT_CTLBITS;
612 bits |= EXTENT_FIRST_DELALLOC;
613
614 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
615 clear = 1;
616 again:
617 if (!prealloc && gfpflags_allow_blocking(mask)) {
618 /*
619 * Don't care for allocation failure here because we might end
620 * up not needing the pre-allocated extent state at all, which
621 * is the case if we only have in the tree extent states that
622 * cover our input range and don't cover too any other range.
623 * If we end up needing a new extent state we allocate it later.
624 */
625 prealloc = alloc_extent_state(mask);
626 }
627
628 spin_lock(&tree->lock);
629 if (cached_state) {
630 cached = *cached_state;
631
632 if (clear) {
633 *cached_state = NULL;
634 cached_state = NULL;
635 }
636
637 if (cached && extent_state_in_tree(cached) &&
638 cached->start <= start && cached->end > start) {
639 if (clear)
640 atomic_dec(&cached->refs);
641 state = cached;
642 goto hit_next;
643 }
644 if (clear)
645 free_extent_state(cached);
646 }
647 /*
648 * this search will find the extents that end after
649 * our range starts
650 */
651 node = tree_search(tree, start);
652 if (!node)
653 goto out;
654 state = rb_entry(node, struct extent_state, rb_node);
655 hit_next:
656 if (state->start > end)
657 goto out;
658 WARN_ON(state->end < start);
659 last_end = state->end;
660
661 /* the state doesn't have the wanted bits, go ahead */
662 if (!(state->state & bits)) {
663 state = next_state(state);
664 goto next;
665 }
666
667 /*
668 * | ---- desired range ---- |
669 * | state | or
670 * | ------------- state -------------- |
671 *
672 * We need to split the extent we found, and may flip
673 * bits on second half.
674 *
675 * If the extent we found extends past our range, we
676 * just split and search again. It'll get split again
677 * the next time though.
678 *
679 * If the extent we found is inside our range, we clear
680 * the desired bit on it.
681 */
682
683 if (state->start < start) {
684 prealloc = alloc_extent_state_atomic(prealloc);
685 BUG_ON(!prealloc);
686 err = split_state(tree, state, prealloc, start);
687 if (err)
688 extent_io_tree_panic(tree, err);
689
690 prealloc = NULL;
691 if (err)
692 goto out;
693 if (state->end <= end) {
694 state = clear_state_bit(tree, state, &bits, wake,
695 changeset);
696 goto next;
697 }
698 goto search_again;
699 }
700 /*
701 * | ---- desired range ---- |
702 * | state |
703 * We need to split the extent, and clear the bit
704 * on the first half
705 */
706 if (state->start <= end && state->end > end) {
707 prealloc = alloc_extent_state_atomic(prealloc);
708 BUG_ON(!prealloc);
709 err = split_state(tree, state, prealloc, end + 1);
710 if (err)
711 extent_io_tree_panic(tree, err);
712
713 if (wake)
714 wake_up(&state->wq);
715
716 clear_state_bit(tree, prealloc, &bits, wake, changeset);
717
718 prealloc = NULL;
719 goto out;
720 }
721
722 state = clear_state_bit(tree, state, &bits, wake, changeset);
723 next:
724 if (last_end == (u64)-1)
725 goto out;
726 start = last_end + 1;
727 if (start <= end && state && !need_resched())
728 goto hit_next;
729
730 search_again:
731 if (start > end)
732 goto out;
733 spin_unlock(&tree->lock);
734 if (gfpflags_allow_blocking(mask))
735 cond_resched();
736 goto again;
737
738 out:
739 spin_unlock(&tree->lock);
740 if (prealloc)
741 free_extent_state(prealloc);
742
743 return 0;
744
745 }
746
747 static void wait_on_state(struct extent_io_tree *tree,
748 struct extent_state *state)
749 __releases(tree->lock)
750 __acquires(tree->lock)
751 {
752 DEFINE_WAIT(wait);
753 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
754 spin_unlock(&tree->lock);
755 schedule();
756 spin_lock(&tree->lock);
757 finish_wait(&state->wq, &wait);
758 }
759
760 /*
761 * waits for one or more bits to clear on a range in the state tree.
762 * The range [start, end] is inclusive.
763 * The tree lock is taken by this function
764 */
765 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
766 unsigned long bits)
767 {
768 struct extent_state *state;
769 struct rb_node *node;
770
771 btrfs_debug_check_extent_io_range(tree, start, end);
772
773 spin_lock(&tree->lock);
774 again:
775 while (1) {
776 /*
777 * this search will find all the extents that end after
778 * our range starts
779 */
780 node = tree_search(tree, start);
781 process_node:
782 if (!node)
783 break;
784
785 state = rb_entry(node, struct extent_state, rb_node);
786
787 if (state->start > end)
788 goto out;
789
790 if (state->state & bits) {
791 start = state->start;
792 atomic_inc(&state->refs);
793 wait_on_state(tree, state);
794 free_extent_state(state);
795 goto again;
796 }
797 start = state->end + 1;
798
799 if (start > end)
800 break;
801
802 if (!cond_resched_lock(&tree->lock)) {
803 node = rb_next(node);
804 goto process_node;
805 }
806 }
807 out:
808 spin_unlock(&tree->lock);
809 }
810
811 static void set_state_bits(struct extent_io_tree *tree,
812 struct extent_state *state,
813 unsigned *bits, struct extent_changeset *changeset)
814 {
815 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
816
817 set_state_cb(tree, state, bits);
818 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
819 u64 range = state->end - state->start + 1;
820 tree->dirty_bytes += range;
821 }
822 add_extent_changeset(state, bits_to_set, changeset, 1);
823 state->state |= bits_to_set;
824 }
825
826 static void cache_state_if_flags(struct extent_state *state,
827 struct extent_state **cached_ptr,
828 unsigned flags)
829 {
830 if (cached_ptr && !(*cached_ptr)) {
831 if (!flags || (state->state & flags)) {
832 *cached_ptr = state;
833 atomic_inc(&state->refs);
834 }
835 }
836 }
837
838 static void cache_state(struct extent_state *state,
839 struct extent_state **cached_ptr)
840 {
841 return cache_state_if_flags(state, cached_ptr,
842 EXTENT_IOBITS | EXTENT_BOUNDARY);
843 }
844
845 /*
846 * set some bits on a range in the tree. This may require allocations or
847 * sleeping, so the gfp mask is used to indicate what is allowed.
848 *
849 * If any of the exclusive bits are set, this will fail with -EEXIST if some
850 * part of the range already has the desired bits set. The start of the
851 * existing range is returned in failed_start in this case.
852 *
853 * [start, end] is inclusive This takes the tree lock.
854 */
855
856 static int __must_check
857 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
858 unsigned bits, unsigned exclusive_bits,
859 u64 *failed_start, struct extent_state **cached_state,
860 gfp_t mask, struct extent_changeset *changeset)
861 {
862 struct extent_state *state;
863 struct extent_state *prealloc = NULL;
864 struct rb_node *node;
865 struct rb_node **p;
866 struct rb_node *parent;
867 int err = 0;
868 u64 last_start;
869 u64 last_end;
870
871 btrfs_debug_check_extent_io_range(tree, start, end);
872
873 bits |= EXTENT_FIRST_DELALLOC;
874 again:
875 if (!prealloc && gfpflags_allow_blocking(mask)) {
876 /*
877 * Don't care for allocation failure here because we might end
878 * up not needing the pre-allocated extent state at all, which
879 * is the case if we only have in the tree extent states that
880 * cover our input range and don't cover too any other range.
881 * If we end up needing a new extent state we allocate it later.
882 */
883 prealloc = alloc_extent_state(mask);
884 }
885
886 spin_lock(&tree->lock);
887 if (cached_state && *cached_state) {
888 state = *cached_state;
889 if (state->start <= start && state->end > start &&
890 extent_state_in_tree(state)) {
891 node = &state->rb_node;
892 goto hit_next;
893 }
894 }
895 /*
896 * this search will find all the extents that end after
897 * our range starts.
898 */
899 node = tree_search_for_insert(tree, start, &p, &parent);
900 if (!node) {
901 prealloc = alloc_extent_state_atomic(prealloc);
902 BUG_ON(!prealloc);
903 err = insert_state(tree, prealloc, start, end,
904 &p, &parent, &bits, changeset);
905 if (err)
906 extent_io_tree_panic(tree, err);
907
908 cache_state(prealloc, cached_state);
909 prealloc = NULL;
910 goto out;
911 }
912 state = rb_entry(node, struct extent_state, rb_node);
913 hit_next:
914 last_start = state->start;
915 last_end = state->end;
916
917 /*
918 * | ---- desired range ---- |
919 * | state |
920 *
921 * Just lock what we found and keep going
922 */
923 if (state->start == start && state->end <= end) {
924 if (state->state & exclusive_bits) {
925 *failed_start = state->start;
926 err = -EEXIST;
927 goto out;
928 }
929
930 set_state_bits(tree, state, &bits, changeset);
931 cache_state(state, cached_state);
932 merge_state(tree, state);
933 if (last_end == (u64)-1)
934 goto out;
935 start = last_end + 1;
936 state = next_state(state);
937 if (start < end && state && state->start == start &&
938 !need_resched())
939 goto hit_next;
940 goto search_again;
941 }
942
943 /*
944 * | ---- desired range ---- |
945 * | state |
946 * or
947 * | ------------- state -------------- |
948 *
949 * We need to split the extent we found, and may flip bits on
950 * second half.
951 *
952 * If the extent we found extends past our
953 * range, we just split and search again. It'll get split
954 * again the next time though.
955 *
956 * If the extent we found is inside our range, we set the
957 * desired bit on it.
958 */
959 if (state->start < start) {
960 if (state->state & exclusive_bits) {
961 *failed_start = start;
962 err = -EEXIST;
963 goto out;
964 }
965
966 prealloc = alloc_extent_state_atomic(prealloc);
967 BUG_ON(!prealloc);
968 err = split_state(tree, state, prealloc, start);
969 if (err)
970 extent_io_tree_panic(tree, err);
971
972 prealloc = NULL;
973 if (err)
974 goto out;
975 if (state->end <= end) {
976 set_state_bits(tree, state, &bits, changeset);
977 cache_state(state, cached_state);
978 merge_state(tree, state);
979 if (last_end == (u64)-1)
980 goto out;
981 start = last_end + 1;
982 state = next_state(state);
983 if (start < end && state && state->start == start &&
984 !need_resched())
985 goto hit_next;
986 }
987 goto search_again;
988 }
989 /*
990 * | ---- desired range ---- |
991 * | state | or | state |
992 *
993 * There's a hole, we need to insert something in it and
994 * ignore the extent we found.
995 */
996 if (state->start > start) {
997 u64 this_end;
998 if (end < last_start)
999 this_end = end;
1000 else
1001 this_end = last_start - 1;
1002
1003 prealloc = alloc_extent_state_atomic(prealloc);
1004 BUG_ON(!prealloc);
1005
1006 /*
1007 * Avoid to free 'prealloc' if it can be merged with
1008 * the later extent.
1009 */
1010 err = insert_state(tree, prealloc, start, this_end,
1011 NULL, NULL, &bits, changeset);
1012 if (err)
1013 extent_io_tree_panic(tree, err);
1014
1015 cache_state(prealloc, cached_state);
1016 prealloc = NULL;
1017 start = this_end + 1;
1018 goto search_again;
1019 }
1020 /*
1021 * | ---- desired range ---- |
1022 * | state |
1023 * We need to split the extent, and set the bit
1024 * on the first half
1025 */
1026 if (state->start <= end && state->end > end) {
1027 if (state->state & exclusive_bits) {
1028 *failed_start = start;
1029 err = -EEXIST;
1030 goto out;
1031 }
1032
1033 prealloc = alloc_extent_state_atomic(prealloc);
1034 BUG_ON(!prealloc);
1035 err = split_state(tree, state, prealloc, end + 1);
1036 if (err)
1037 extent_io_tree_panic(tree, err);
1038
1039 set_state_bits(tree, prealloc, &bits, changeset);
1040 cache_state(prealloc, cached_state);
1041 merge_state(tree, prealloc);
1042 prealloc = NULL;
1043 goto out;
1044 }
1045
1046 search_again:
1047 if (start > end)
1048 goto out;
1049 spin_unlock(&tree->lock);
1050 if (gfpflags_allow_blocking(mask))
1051 cond_resched();
1052 goto again;
1053
1054 out:
1055 spin_unlock(&tree->lock);
1056 if (prealloc)
1057 free_extent_state(prealloc);
1058
1059 return err;
1060
1061 }
1062
1063 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1064 unsigned bits, u64 * failed_start,
1065 struct extent_state **cached_state, gfp_t mask)
1066 {
1067 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1068 cached_state, mask, NULL);
1069 }
1070
1071
1072 /**
1073 * convert_extent_bit - convert all bits in a given range from one bit to
1074 * another
1075 * @tree: the io tree to search
1076 * @start: the start offset in bytes
1077 * @end: the end offset in bytes (inclusive)
1078 * @bits: the bits to set in this range
1079 * @clear_bits: the bits to clear in this range
1080 * @cached_state: state that we're going to cache
1081 *
1082 * This will go through and set bits for the given range. If any states exist
1083 * already in this range they are set with the given bit and cleared of the
1084 * clear_bits. This is only meant to be used by things that are mergeable, ie
1085 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1086 * boundary bits like LOCK.
1087 *
1088 * All allocations are done with GFP_NOFS.
1089 */
1090 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1091 unsigned bits, unsigned clear_bits,
1092 struct extent_state **cached_state)
1093 {
1094 struct extent_state *state;
1095 struct extent_state *prealloc = NULL;
1096 struct rb_node *node;
1097 struct rb_node **p;
1098 struct rb_node *parent;
1099 int err = 0;
1100 u64 last_start;
1101 u64 last_end;
1102 bool first_iteration = true;
1103
1104 btrfs_debug_check_extent_io_range(tree, start, end);
1105
1106 again:
1107 if (!prealloc) {
1108 /*
1109 * Best effort, don't worry if extent state allocation fails
1110 * here for the first iteration. We might have a cached state
1111 * that matches exactly the target range, in which case no
1112 * extent state allocations are needed. We'll only know this
1113 * after locking the tree.
1114 */
1115 prealloc = alloc_extent_state(GFP_NOFS);
1116 if (!prealloc && !first_iteration)
1117 return -ENOMEM;
1118 }
1119
1120 spin_lock(&tree->lock);
1121 if (cached_state && *cached_state) {
1122 state = *cached_state;
1123 if (state->start <= start && state->end > start &&
1124 extent_state_in_tree(state)) {
1125 node = &state->rb_node;
1126 goto hit_next;
1127 }
1128 }
1129
1130 /*
1131 * this search will find all the extents that end after
1132 * our range starts.
1133 */
1134 node = tree_search_for_insert(tree, start, &p, &parent);
1135 if (!node) {
1136 prealloc = alloc_extent_state_atomic(prealloc);
1137 if (!prealloc) {
1138 err = -ENOMEM;
1139 goto out;
1140 }
1141 err = insert_state(tree, prealloc, start, end,
1142 &p, &parent, &bits, NULL);
1143 if (err)
1144 extent_io_tree_panic(tree, err);
1145 cache_state(prealloc, cached_state);
1146 prealloc = NULL;
1147 goto out;
1148 }
1149 state = rb_entry(node, struct extent_state, rb_node);
1150 hit_next:
1151 last_start = state->start;
1152 last_end = state->end;
1153
1154 /*
1155 * | ---- desired range ---- |
1156 * | state |
1157 *
1158 * Just lock what we found and keep going
1159 */
1160 if (state->start == start && state->end <= end) {
1161 set_state_bits(tree, state, &bits, NULL);
1162 cache_state(state, cached_state);
1163 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1164 if (last_end == (u64)-1)
1165 goto out;
1166 start = last_end + 1;
1167 if (start < end && state && state->start == start &&
1168 !need_resched())
1169 goto hit_next;
1170 goto search_again;
1171 }
1172
1173 /*
1174 * | ---- desired range ---- |
1175 * | state |
1176 * or
1177 * | ------------- state -------------- |
1178 *
1179 * We need to split the extent we found, and may flip bits on
1180 * second half.
1181 *
1182 * If the extent we found extends past our
1183 * range, we just split and search again. It'll get split
1184 * again the next time though.
1185 *
1186 * If the extent we found is inside our range, we set the
1187 * desired bit on it.
1188 */
1189 if (state->start < start) {
1190 prealloc = alloc_extent_state_atomic(prealloc);
1191 if (!prealloc) {
1192 err = -ENOMEM;
1193 goto out;
1194 }
1195 err = split_state(tree, state, prealloc, start);
1196 if (err)
1197 extent_io_tree_panic(tree, err);
1198 prealloc = NULL;
1199 if (err)
1200 goto out;
1201 if (state->end <= end) {
1202 set_state_bits(tree, state, &bits, NULL);
1203 cache_state(state, cached_state);
1204 state = clear_state_bit(tree, state, &clear_bits, 0,
1205 NULL);
1206 if (last_end == (u64)-1)
1207 goto out;
1208 start = last_end + 1;
1209 if (start < end && state && state->start == start &&
1210 !need_resched())
1211 goto hit_next;
1212 }
1213 goto search_again;
1214 }
1215 /*
1216 * | ---- desired range ---- |
1217 * | state | or | state |
1218 *
1219 * There's a hole, we need to insert something in it and
1220 * ignore the extent we found.
1221 */
1222 if (state->start > start) {
1223 u64 this_end;
1224 if (end < last_start)
1225 this_end = end;
1226 else
1227 this_end = last_start - 1;
1228
1229 prealloc = alloc_extent_state_atomic(prealloc);
1230 if (!prealloc) {
1231 err = -ENOMEM;
1232 goto out;
1233 }
1234
1235 /*
1236 * Avoid to free 'prealloc' if it can be merged with
1237 * the later extent.
1238 */
1239 err = insert_state(tree, prealloc, start, this_end,
1240 NULL, NULL, &bits, NULL);
1241 if (err)
1242 extent_io_tree_panic(tree, err);
1243 cache_state(prealloc, cached_state);
1244 prealloc = NULL;
1245 start = this_end + 1;
1246 goto search_again;
1247 }
1248 /*
1249 * | ---- desired range ---- |
1250 * | state |
1251 * We need to split the extent, and set the bit
1252 * on the first half
1253 */
1254 if (state->start <= end && state->end > end) {
1255 prealloc = alloc_extent_state_atomic(prealloc);
1256 if (!prealloc) {
1257 err = -ENOMEM;
1258 goto out;
1259 }
1260
1261 err = split_state(tree, state, prealloc, end + 1);
1262 if (err)
1263 extent_io_tree_panic(tree, err);
1264
1265 set_state_bits(tree, prealloc, &bits, NULL);
1266 cache_state(prealloc, cached_state);
1267 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1268 prealloc = NULL;
1269 goto out;
1270 }
1271
1272 search_again:
1273 if (start > end)
1274 goto out;
1275 spin_unlock(&tree->lock);
1276 cond_resched();
1277 first_iteration = false;
1278 goto again;
1279
1280 out:
1281 spin_unlock(&tree->lock);
1282 if (prealloc)
1283 free_extent_state(prealloc);
1284
1285 return err;
1286 }
1287
1288 /* wrappers around set/clear extent bit */
1289 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1290 unsigned bits, struct extent_changeset *changeset)
1291 {
1292 /*
1293 * We don't support EXTENT_LOCKED yet, as current changeset will
1294 * record any bits changed, so for EXTENT_LOCKED case, it will
1295 * either fail with -EEXIST or changeset will record the whole
1296 * range.
1297 */
1298 BUG_ON(bits & EXTENT_LOCKED);
1299
1300 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1301 changeset);
1302 }
1303
1304 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1305 unsigned bits, int wake, int delete,
1306 struct extent_state **cached, gfp_t mask)
1307 {
1308 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1309 cached, mask, NULL);
1310 }
1311
1312 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1313 unsigned bits, struct extent_changeset *changeset)
1314 {
1315 /*
1316 * Don't support EXTENT_LOCKED case, same reason as
1317 * set_record_extent_bits().
1318 */
1319 BUG_ON(bits & EXTENT_LOCKED);
1320
1321 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1322 changeset);
1323 }
1324
1325 /*
1326 * either insert or lock state struct between start and end use mask to tell
1327 * us if waiting is desired.
1328 */
1329 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1330 struct extent_state **cached_state)
1331 {
1332 int err;
1333 u64 failed_start;
1334
1335 while (1) {
1336 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1337 EXTENT_LOCKED, &failed_start,
1338 cached_state, GFP_NOFS, NULL);
1339 if (err == -EEXIST) {
1340 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1341 start = failed_start;
1342 } else
1343 break;
1344 WARN_ON(start > end);
1345 }
1346 return err;
1347 }
1348
1349 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1350 {
1351 int err;
1352 u64 failed_start;
1353
1354 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1355 &failed_start, NULL, GFP_NOFS, NULL);
1356 if (err == -EEXIST) {
1357 if (failed_start > start)
1358 clear_extent_bit(tree, start, failed_start - 1,
1359 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1360 return 0;
1361 }
1362 return 1;
1363 }
1364
1365 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1366 {
1367 unsigned long index = start >> PAGE_SHIFT;
1368 unsigned long end_index = end >> PAGE_SHIFT;
1369 struct page *page;
1370
1371 while (index <= end_index) {
1372 page = find_get_page(inode->i_mapping, index);
1373 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1374 clear_page_dirty_for_io(page);
1375 put_page(page);
1376 index++;
1377 }
1378 }
1379
1380 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1381 {
1382 unsigned long index = start >> PAGE_SHIFT;
1383 unsigned long end_index = end >> PAGE_SHIFT;
1384 struct page *page;
1385
1386 while (index <= end_index) {
1387 page = find_get_page(inode->i_mapping, index);
1388 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1389 __set_page_dirty_nobuffers(page);
1390 account_page_redirty(page);
1391 put_page(page);
1392 index++;
1393 }
1394 }
1395
1396 /*
1397 * helper function to set both pages and extents in the tree writeback
1398 */
1399 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1400 {
1401 unsigned long index = start >> PAGE_SHIFT;
1402 unsigned long end_index = end >> PAGE_SHIFT;
1403 struct page *page;
1404
1405 while (index <= end_index) {
1406 page = find_get_page(tree->mapping, index);
1407 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1408 set_page_writeback(page);
1409 put_page(page);
1410 index++;
1411 }
1412 }
1413
1414 /* find the first state struct with 'bits' set after 'start', and
1415 * return it. tree->lock must be held. NULL will returned if
1416 * nothing was found after 'start'
1417 */
1418 static struct extent_state *
1419 find_first_extent_bit_state(struct extent_io_tree *tree,
1420 u64 start, unsigned bits)
1421 {
1422 struct rb_node *node;
1423 struct extent_state *state;
1424
1425 /*
1426 * this search will find all the extents that end after
1427 * our range starts.
1428 */
1429 node = tree_search(tree, start);
1430 if (!node)
1431 goto out;
1432
1433 while (1) {
1434 state = rb_entry(node, struct extent_state, rb_node);
1435 if (state->end >= start && (state->state & bits))
1436 return state;
1437
1438 node = rb_next(node);
1439 if (!node)
1440 break;
1441 }
1442 out:
1443 return NULL;
1444 }
1445
1446 /*
1447 * find the first offset in the io tree with 'bits' set. zero is
1448 * returned if we find something, and *start_ret and *end_ret are
1449 * set to reflect the state struct that was found.
1450 *
1451 * If nothing was found, 1 is returned. If found something, return 0.
1452 */
1453 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1454 u64 *start_ret, u64 *end_ret, unsigned bits,
1455 struct extent_state **cached_state)
1456 {
1457 struct extent_state *state;
1458 struct rb_node *n;
1459 int ret = 1;
1460
1461 spin_lock(&tree->lock);
1462 if (cached_state && *cached_state) {
1463 state = *cached_state;
1464 if (state->end == start - 1 && extent_state_in_tree(state)) {
1465 n = rb_next(&state->rb_node);
1466 while (n) {
1467 state = rb_entry(n, struct extent_state,
1468 rb_node);
1469 if (state->state & bits)
1470 goto got_it;
1471 n = rb_next(n);
1472 }
1473 free_extent_state(*cached_state);
1474 *cached_state = NULL;
1475 goto out;
1476 }
1477 free_extent_state(*cached_state);
1478 *cached_state = NULL;
1479 }
1480
1481 state = find_first_extent_bit_state(tree, start, bits);
1482 got_it:
1483 if (state) {
1484 cache_state_if_flags(state, cached_state, 0);
1485 *start_ret = state->start;
1486 *end_ret = state->end;
1487 ret = 0;
1488 }
1489 out:
1490 spin_unlock(&tree->lock);
1491 return ret;
1492 }
1493
1494 /*
1495 * find a contiguous range of bytes in the file marked as delalloc, not
1496 * more than 'max_bytes'. start and end are used to return the range,
1497 *
1498 * 1 is returned if we find something, 0 if nothing was in the tree
1499 */
1500 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1501 u64 *start, u64 *end, u64 max_bytes,
1502 struct extent_state **cached_state)
1503 {
1504 struct rb_node *node;
1505 struct extent_state *state;
1506 u64 cur_start = *start;
1507 u64 found = 0;
1508 u64 total_bytes = 0;
1509
1510 spin_lock(&tree->lock);
1511
1512 /*
1513 * this search will find all the extents that end after
1514 * our range starts.
1515 */
1516 node = tree_search(tree, cur_start);
1517 if (!node) {
1518 if (!found)
1519 *end = (u64)-1;
1520 goto out;
1521 }
1522
1523 while (1) {
1524 state = rb_entry(node, struct extent_state, rb_node);
1525 if (found && (state->start != cur_start ||
1526 (state->state & EXTENT_BOUNDARY))) {
1527 goto out;
1528 }
1529 if (!(state->state & EXTENT_DELALLOC)) {
1530 if (!found)
1531 *end = state->end;
1532 goto out;
1533 }
1534 if (!found) {
1535 *start = state->start;
1536 *cached_state = state;
1537 atomic_inc(&state->refs);
1538 }
1539 found++;
1540 *end = state->end;
1541 cur_start = state->end + 1;
1542 node = rb_next(node);
1543 total_bytes += state->end - state->start + 1;
1544 if (total_bytes >= max_bytes)
1545 break;
1546 if (!node)
1547 break;
1548 }
1549 out:
1550 spin_unlock(&tree->lock);
1551 return found;
1552 }
1553
1554 static noinline void __unlock_for_delalloc(struct inode *inode,
1555 struct page *locked_page,
1556 u64 start, u64 end)
1557 {
1558 int ret;
1559 struct page *pages[16];
1560 unsigned long index = start >> PAGE_SHIFT;
1561 unsigned long end_index = end >> PAGE_SHIFT;
1562 unsigned long nr_pages = end_index - index + 1;
1563 int i;
1564
1565 if (index == locked_page->index && end_index == index)
1566 return;
1567
1568 while (nr_pages > 0) {
1569 ret = find_get_pages_contig(inode->i_mapping, index,
1570 min_t(unsigned long, nr_pages,
1571 ARRAY_SIZE(pages)), pages);
1572 for (i = 0; i < ret; i++) {
1573 if (pages[i] != locked_page)
1574 unlock_page(pages[i]);
1575 put_page(pages[i]);
1576 }
1577 nr_pages -= ret;
1578 index += ret;
1579 cond_resched();
1580 }
1581 }
1582
1583 static noinline int lock_delalloc_pages(struct inode *inode,
1584 struct page *locked_page,
1585 u64 delalloc_start,
1586 u64 delalloc_end)
1587 {
1588 unsigned long index = delalloc_start >> PAGE_SHIFT;
1589 unsigned long start_index = index;
1590 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1591 unsigned long pages_locked = 0;
1592 struct page *pages[16];
1593 unsigned long nrpages;
1594 int ret;
1595 int i;
1596
1597 /* the caller is responsible for locking the start index */
1598 if (index == locked_page->index && index == end_index)
1599 return 0;
1600
1601 /* skip the page at the start index */
1602 nrpages = end_index - index + 1;
1603 while (nrpages > 0) {
1604 ret = find_get_pages_contig(inode->i_mapping, index,
1605 min_t(unsigned long,
1606 nrpages, ARRAY_SIZE(pages)), pages);
1607 if (ret == 0) {
1608 ret = -EAGAIN;
1609 goto done;
1610 }
1611 /* now we have an array of pages, lock them all */
1612 for (i = 0; i < ret; i++) {
1613 /*
1614 * the caller is taking responsibility for
1615 * locked_page
1616 */
1617 if (pages[i] != locked_page) {
1618 lock_page(pages[i]);
1619 if (!PageDirty(pages[i]) ||
1620 pages[i]->mapping != inode->i_mapping) {
1621 ret = -EAGAIN;
1622 unlock_page(pages[i]);
1623 put_page(pages[i]);
1624 goto done;
1625 }
1626 }
1627 put_page(pages[i]);
1628 pages_locked++;
1629 }
1630 nrpages -= ret;
1631 index += ret;
1632 cond_resched();
1633 }
1634 ret = 0;
1635 done:
1636 if (ret && pages_locked) {
1637 __unlock_for_delalloc(inode, locked_page,
1638 delalloc_start,
1639 ((u64)(start_index + pages_locked - 1)) <<
1640 PAGE_SHIFT);
1641 }
1642 return ret;
1643 }
1644
1645 /*
1646 * find a contiguous range of bytes in the file marked as delalloc, not
1647 * more than 'max_bytes'. start and end are used to return the range,
1648 *
1649 * 1 is returned if we find something, 0 if nothing was in the tree
1650 */
1651 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1652 struct extent_io_tree *tree,
1653 struct page *locked_page, u64 *start,
1654 u64 *end, u64 max_bytes)
1655 {
1656 u64 delalloc_start;
1657 u64 delalloc_end;
1658 u64 found;
1659 struct extent_state *cached_state = NULL;
1660 int ret;
1661 int loops = 0;
1662
1663 again:
1664 /* step one, find a bunch of delalloc bytes starting at start */
1665 delalloc_start = *start;
1666 delalloc_end = 0;
1667 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1668 max_bytes, &cached_state);
1669 if (!found || delalloc_end <= *start) {
1670 *start = delalloc_start;
1671 *end = delalloc_end;
1672 free_extent_state(cached_state);
1673 return 0;
1674 }
1675
1676 /*
1677 * start comes from the offset of locked_page. We have to lock
1678 * pages in order, so we can't process delalloc bytes before
1679 * locked_page
1680 */
1681 if (delalloc_start < *start)
1682 delalloc_start = *start;
1683
1684 /*
1685 * make sure to limit the number of pages we try to lock down
1686 */
1687 if (delalloc_end + 1 - delalloc_start > max_bytes)
1688 delalloc_end = delalloc_start + max_bytes - 1;
1689
1690 /* step two, lock all the pages after the page that has start */
1691 ret = lock_delalloc_pages(inode, locked_page,
1692 delalloc_start, delalloc_end);
1693 if (ret == -EAGAIN) {
1694 /* some of the pages are gone, lets avoid looping by
1695 * shortening the size of the delalloc range we're searching
1696 */
1697 free_extent_state(cached_state);
1698 cached_state = NULL;
1699 if (!loops) {
1700 max_bytes = PAGE_SIZE;
1701 loops = 1;
1702 goto again;
1703 } else {
1704 found = 0;
1705 goto out_failed;
1706 }
1707 }
1708 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1709
1710 /* step three, lock the state bits for the whole range */
1711 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1712
1713 /* then test to make sure it is all still delalloc */
1714 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1715 EXTENT_DELALLOC, 1, cached_state);
1716 if (!ret) {
1717 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1718 &cached_state, GFP_NOFS);
1719 __unlock_for_delalloc(inode, locked_page,
1720 delalloc_start, delalloc_end);
1721 cond_resched();
1722 goto again;
1723 }
1724 free_extent_state(cached_state);
1725 *start = delalloc_start;
1726 *end = delalloc_end;
1727 out_failed:
1728 return found;
1729 }
1730
1731 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1732 struct page *locked_page,
1733 unsigned clear_bits,
1734 unsigned long page_ops)
1735 {
1736 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1737 int ret;
1738 struct page *pages[16];
1739 unsigned long index = start >> PAGE_SHIFT;
1740 unsigned long end_index = end >> PAGE_SHIFT;
1741 unsigned long nr_pages = end_index - index + 1;
1742 int i;
1743
1744 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1745 if (page_ops == 0)
1746 return;
1747
1748 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1749 mapping_set_error(inode->i_mapping, -EIO);
1750
1751 while (nr_pages > 0) {
1752 ret = find_get_pages_contig(inode->i_mapping, index,
1753 min_t(unsigned long,
1754 nr_pages, ARRAY_SIZE(pages)), pages);
1755 for (i = 0; i < ret; i++) {
1756
1757 if (page_ops & PAGE_SET_PRIVATE2)
1758 SetPagePrivate2(pages[i]);
1759
1760 if (pages[i] == locked_page) {
1761 put_page(pages[i]);
1762 continue;
1763 }
1764 if (page_ops & PAGE_CLEAR_DIRTY)
1765 clear_page_dirty_for_io(pages[i]);
1766 if (page_ops & PAGE_SET_WRITEBACK)
1767 set_page_writeback(pages[i]);
1768 if (page_ops & PAGE_SET_ERROR)
1769 SetPageError(pages[i]);
1770 if (page_ops & PAGE_END_WRITEBACK)
1771 end_page_writeback(pages[i]);
1772 if (page_ops & PAGE_UNLOCK)
1773 unlock_page(pages[i]);
1774 put_page(pages[i]);
1775 }
1776 nr_pages -= ret;
1777 index += ret;
1778 cond_resched();
1779 }
1780 }
1781
1782 /*
1783 * count the number of bytes in the tree that have a given bit(s)
1784 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1785 * cached. The total number found is returned.
1786 */
1787 u64 count_range_bits(struct extent_io_tree *tree,
1788 u64 *start, u64 search_end, u64 max_bytes,
1789 unsigned bits, int contig)
1790 {
1791 struct rb_node *node;
1792 struct extent_state *state;
1793 u64 cur_start = *start;
1794 u64 total_bytes = 0;
1795 u64 last = 0;
1796 int found = 0;
1797
1798 if (WARN_ON(search_end <= cur_start))
1799 return 0;
1800
1801 spin_lock(&tree->lock);
1802 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1803 total_bytes = tree->dirty_bytes;
1804 goto out;
1805 }
1806 /*
1807 * this search will find all the extents that end after
1808 * our range starts.
1809 */
1810 node = tree_search(tree, cur_start);
1811 if (!node)
1812 goto out;
1813
1814 while (1) {
1815 state = rb_entry(node, struct extent_state, rb_node);
1816 if (state->start > search_end)
1817 break;
1818 if (contig && found && state->start > last + 1)
1819 break;
1820 if (state->end >= cur_start && (state->state & bits) == bits) {
1821 total_bytes += min(search_end, state->end) + 1 -
1822 max(cur_start, state->start);
1823 if (total_bytes >= max_bytes)
1824 break;
1825 if (!found) {
1826 *start = max(cur_start, state->start);
1827 found = 1;
1828 }
1829 last = state->end;
1830 } else if (contig && found) {
1831 break;
1832 }
1833 node = rb_next(node);
1834 if (!node)
1835 break;
1836 }
1837 out:
1838 spin_unlock(&tree->lock);
1839 return total_bytes;
1840 }
1841
1842 /*
1843 * set the private field for a given byte offset in the tree. If there isn't
1844 * an extent_state there already, this does nothing.
1845 */
1846 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1847 struct io_failure_record *failrec)
1848 {
1849 struct rb_node *node;
1850 struct extent_state *state;
1851 int ret = 0;
1852
1853 spin_lock(&tree->lock);
1854 /*
1855 * this search will find all the extents that end after
1856 * our range starts.
1857 */
1858 node = tree_search(tree, start);
1859 if (!node) {
1860 ret = -ENOENT;
1861 goto out;
1862 }
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1865 ret = -ENOENT;
1866 goto out;
1867 }
1868 state->failrec = failrec;
1869 out:
1870 spin_unlock(&tree->lock);
1871 return ret;
1872 }
1873
1874 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1875 struct io_failure_record **failrec)
1876 {
1877 struct rb_node *node;
1878 struct extent_state *state;
1879 int ret = 0;
1880
1881 spin_lock(&tree->lock);
1882 /*
1883 * this search will find all the extents that end after
1884 * our range starts.
1885 */
1886 node = tree_search(tree, start);
1887 if (!node) {
1888 ret = -ENOENT;
1889 goto out;
1890 }
1891 state = rb_entry(node, struct extent_state, rb_node);
1892 if (state->start != start) {
1893 ret = -ENOENT;
1894 goto out;
1895 }
1896 *failrec = state->failrec;
1897 out:
1898 spin_unlock(&tree->lock);
1899 return ret;
1900 }
1901
1902 /*
1903 * searches a range in the state tree for a given mask.
1904 * If 'filled' == 1, this returns 1 only if every extent in the tree
1905 * has the bits set. Otherwise, 1 is returned if any bit in the
1906 * range is found set.
1907 */
1908 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1909 unsigned bits, int filled, struct extent_state *cached)
1910 {
1911 struct extent_state *state = NULL;
1912 struct rb_node *node;
1913 int bitset = 0;
1914
1915 spin_lock(&tree->lock);
1916 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1917 cached->end > start)
1918 node = &cached->rb_node;
1919 else
1920 node = tree_search(tree, start);
1921 while (node && start <= end) {
1922 state = rb_entry(node, struct extent_state, rb_node);
1923
1924 if (filled && state->start > start) {
1925 bitset = 0;
1926 break;
1927 }
1928
1929 if (state->start > end)
1930 break;
1931
1932 if (state->state & bits) {
1933 bitset = 1;
1934 if (!filled)
1935 break;
1936 } else if (filled) {
1937 bitset = 0;
1938 break;
1939 }
1940
1941 if (state->end == (u64)-1)
1942 break;
1943
1944 start = state->end + 1;
1945 if (start > end)
1946 break;
1947 node = rb_next(node);
1948 if (!node) {
1949 if (filled)
1950 bitset = 0;
1951 break;
1952 }
1953 }
1954 spin_unlock(&tree->lock);
1955 return bitset;
1956 }
1957
1958 /*
1959 * helper function to set a given page up to date if all the
1960 * extents in the tree for that page are up to date
1961 */
1962 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1963 {
1964 u64 start = page_offset(page);
1965 u64 end = start + PAGE_SIZE - 1;
1966 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1967 SetPageUptodate(page);
1968 }
1969
1970 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1971 {
1972 int ret;
1973 int err = 0;
1974 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1975
1976 set_state_failrec(failure_tree, rec->start, NULL);
1977 ret = clear_extent_bits(failure_tree, rec->start,
1978 rec->start + rec->len - 1,
1979 EXTENT_LOCKED | EXTENT_DIRTY);
1980 if (ret)
1981 err = ret;
1982
1983 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1984 rec->start + rec->len - 1,
1985 EXTENT_DAMAGED);
1986 if (ret && !err)
1987 err = ret;
1988
1989 kfree(rec);
1990 return err;
1991 }
1992
1993 /*
1994 * this bypasses the standard btrfs submit functions deliberately, as
1995 * the standard behavior is to write all copies in a raid setup. here we only
1996 * want to write the one bad copy. so we do the mapping for ourselves and issue
1997 * submit_bio directly.
1998 * to avoid any synchronization issues, wait for the data after writing, which
1999 * actually prevents the read that triggered the error from finishing.
2000 * currently, there can be no more than two copies of every data bit. thus,
2001 * exactly one rewrite is required.
2002 */
2003 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2004 struct page *page, unsigned int pg_offset, int mirror_num)
2005 {
2006 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2007 struct bio *bio;
2008 struct btrfs_device *dev;
2009 u64 map_length = 0;
2010 u64 sector;
2011 struct btrfs_bio *bbio = NULL;
2012 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2013 int ret;
2014
2015 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2016 BUG_ON(!mirror_num);
2017
2018 /* we can't repair anything in raid56 yet */
2019 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2020 return 0;
2021
2022 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2023 if (!bio)
2024 return -EIO;
2025 bio->bi_iter.bi_size = 0;
2026 map_length = length;
2027
2028 /*
2029 * Avoid races with device replace and make sure our bbio has devices
2030 * associated to its stripes that don't go away while we are doing the
2031 * read repair operation.
2032 */
2033 btrfs_bio_counter_inc_blocked(fs_info);
2034 ret = btrfs_map_block(fs_info, WRITE, logical,
2035 &map_length, &bbio, mirror_num);
2036 if (ret) {
2037 btrfs_bio_counter_dec(fs_info);
2038 bio_put(bio);
2039 return -EIO;
2040 }
2041 BUG_ON(mirror_num != bbio->mirror_num);
2042 sector = bbio->stripes[mirror_num-1].physical >> 9;
2043 bio->bi_iter.bi_sector = sector;
2044 dev = bbio->stripes[mirror_num-1].dev;
2045 btrfs_put_bbio(bbio);
2046 if (!dev || !dev->bdev || !dev->writeable) {
2047 btrfs_bio_counter_dec(fs_info);
2048 bio_put(bio);
2049 return -EIO;
2050 }
2051 bio->bi_bdev = dev->bdev;
2052 bio->bi_rw = WRITE_SYNC;
2053 bio_add_page(bio, page, length, pg_offset);
2054
2055 if (btrfsic_submit_bio_wait(bio)) {
2056 /* try to remap that extent elsewhere? */
2057 btrfs_bio_counter_dec(fs_info);
2058 bio_put(bio);
2059 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2060 return -EIO;
2061 }
2062
2063 btrfs_info_rl_in_rcu(fs_info,
2064 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2065 btrfs_ino(inode), start,
2066 rcu_str_deref(dev->name), sector);
2067 btrfs_bio_counter_dec(fs_info);
2068 bio_put(bio);
2069 return 0;
2070 }
2071
2072 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2073 int mirror_num)
2074 {
2075 u64 start = eb->start;
2076 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2077 int ret = 0;
2078
2079 if (root->fs_info->sb->s_flags & MS_RDONLY)
2080 return -EROFS;
2081
2082 for (i = 0; i < num_pages; i++) {
2083 struct page *p = eb->pages[i];
2084
2085 ret = repair_io_failure(root->fs_info->btree_inode, start,
2086 PAGE_SIZE, start, p,
2087 start - page_offset(p), mirror_num);
2088 if (ret)
2089 break;
2090 start += PAGE_SIZE;
2091 }
2092
2093 return ret;
2094 }
2095
2096 /*
2097 * each time an IO finishes, we do a fast check in the IO failure tree
2098 * to see if we need to process or clean up an io_failure_record
2099 */
2100 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2101 unsigned int pg_offset)
2102 {
2103 u64 private;
2104 struct io_failure_record *failrec;
2105 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2106 struct extent_state *state;
2107 int num_copies;
2108 int ret;
2109
2110 private = 0;
2111 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2112 (u64)-1, 1, EXTENT_DIRTY, 0);
2113 if (!ret)
2114 return 0;
2115
2116 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2117 &failrec);
2118 if (ret)
2119 return 0;
2120
2121 BUG_ON(!failrec->this_mirror);
2122
2123 if (failrec->in_validation) {
2124 /* there was no real error, just free the record */
2125 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2126 failrec->start);
2127 goto out;
2128 }
2129 if (fs_info->sb->s_flags & MS_RDONLY)
2130 goto out;
2131
2132 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2133 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2134 failrec->start,
2135 EXTENT_LOCKED);
2136 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2137
2138 if (state && state->start <= failrec->start &&
2139 state->end >= failrec->start + failrec->len - 1) {
2140 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2141 failrec->len);
2142 if (num_copies > 1) {
2143 repair_io_failure(inode, start, failrec->len,
2144 failrec->logical, page,
2145 pg_offset, failrec->failed_mirror);
2146 }
2147 }
2148
2149 out:
2150 free_io_failure(inode, failrec);
2151
2152 return 0;
2153 }
2154
2155 /*
2156 * Can be called when
2157 * - hold extent lock
2158 * - under ordered extent
2159 * - the inode is freeing
2160 */
2161 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2162 {
2163 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2164 struct io_failure_record *failrec;
2165 struct extent_state *state, *next;
2166
2167 if (RB_EMPTY_ROOT(&failure_tree->state))
2168 return;
2169
2170 spin_lock(&failure_tree->lock);
2171 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2172 while (state) {
2173 if (state->start > end)
2174 break;
2175
2176 ASSERT(state->end <= end);
2177
2178 next = next_state(state);
2179
2180 failrec = state->failrec;
2181 free_extent_state(state);
2182 kfree(failrec);
2183
2184 state = next;
2185 }
2186 spin_unlock(&failure_tree->lock);
2187 }
2188
2189 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2190 struct io_failure_record **failrec_ret)
2191 {
2192 struct io_failure_record *failrec;
2193 struct extent_map *em;
2194 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2195 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2196 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2197 int ret;
2198 u64 logical;
2199
2200 ret = get_state_failrec(failure_tree, start, &failrec);
2201 if (ret) {
2202 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2203 if (!failrec)
2204 return -ENOMEM;
2205
2206 failrec->start = start;
2207 failrec->len = end - start + 1;
2208 failrec->this_mirror = 0;
2209 failrec->bio_flags = 0;
2210 failrec->in_validation = 0;
2211
2212 read_lock(&em_tree->lock);
2213 em = lookup_extent_mapping(em_tree, start, failrec->len);
2214 if (!em) {
2215 read_unlock(&em_tree->lock);
2216 kfree(failrec);
2217 return -EIO;
2218 }
2219
2220 if (em->start > start || em->start + em->len <= start) {
2221 free_extent_map(em);
2222 em = NULL;
2223 }
2224 read_unlock(&em_tree->lock);
2225 if (!em) {
2226 kfree(failrec);
2227 return -EIO;
2228 }
2229
2230 logical = start - em->start;
2231 logical = em->block_start + logical;
2232 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2233 logical = em->block_start;
2234 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2235 extent_set_compress_type(&failrec->bio_flags,
2236 em->compress_type);
2237 }
2238
2239 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2240 logical, start, failrec->len);
2241
2242 failrec->logical = logical;
2243 free_extent_map(em);
2244
2245 /* set the bits in the private failure tree */
2246 ret = set_extent_bits(failure_tree, start, end,
2247 EXTENT_LOCKED | EXTENT_DIRTY);
2248 if (ret >= 0)
2249 ret = set_state_failrec(failure_tree, start, failrec);
2250 /* set the bits in the inode's tree */
2251 if (ret >= 0)
2252 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2253 if (ret < 0) {
2254 kfree(failrec);
2255 return ret;
2256 }
2257 } else {
2258 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2259 failrec->logical, failrec->start, failrec->len,
2260 failrec->in_validation);
2261 /*
2262 * when data can be on disk more than twice, add to failrec here
2263 * (e.g. with a list for failed_mirror) to make
2264 * clean_io_failure() clean all those errors at once.
2265 */
2266 }
2267
2268 *failrec_ret = failrec;
2269
2270 return 0;
2271 }
2272
2273 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2274 struct io_failure_record *failrec, int failed_mirror)
2275 {
2276 int num_copies;
2277
2278 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2279 failrec->logical, failrec->len);
2280 if (num_copies == 1) {
2281 /*
2282 * we only have a single copy of the data, so don't bother with
2283 * all the retry and error correction code that follows. no
2284 * matter what the error is, it is very likely to persist.
2285 */
2286 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2287 num_copies, failrec->this_mirror, failed_mirror);
2288 return 0;
2289 }
2290
2291 /*
2292 * there are two premises:
2293 * a) deliver good data to the caller
2294 * b) correct the bad sectors on disk
2295 */
2296 if (failed_bio->bi_vcnt > 1) {
2297 /*
2298 * to fulfill b), we need to know the exact failing sectors, as
2299 * we don't want to rewrite any more than the failed ones. thus,
2300 * we need separate read requests for the failed bio
2301 *
2302 * if the following BUG_ON triggers, our validation request got
2303 * merged. we need separate requests for our algorithm to work.
2304 */
2305 BUG_ON(failrec->in_validation);
2306 failrec->in_validation = 1;
2307 failrec->this_mirror = failed_mirror;
2308 } else {
2309 /*
2310 * we're ready to fulfill a) and b) alongside. get a good copy
2311 * of the failed sector and if we succeed, we have setup
2312 * everything for repair_io_failure to do the rest for us.
2313 */
2314 if (failrec->in_validation) {
2315 BUG_ON(failrec->this_mirror != failed_mirror);
2316 failrec->in_validation = 0;
2317 failrec->this_mirror = 0;
2318 }
2319 failrec->failed_mirror = failed_mirror;
2320 failrec->this_mirror++;
2321 if (failrec->this_mirror == failed_mirror)
2322 failrec->this_mirror++;
2323 }
2324
2325 if (failrec->this_mirror > num_copies) {
2326 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2327 num_copies, failrec->this_mirror, failed_mirror);
2328 return 0;
2329 }
2330
2331 return 1;
2332 }
2333
2334
2335 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2336 struct io_failure_record *failrec,
2337 struct page *page, int pg_offset, int icsum,
2338 bio_end_io_t *endio_func, void *data)
2339 {
2340 struct bio *bio;
2341 struct btrfs_io_bio *btrfs_failed_bio;
2342 struct btrfs_io_bio *btrfs_bio;
2343
2344 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2345 if (!bio)
2346 return NULL;
2347
2348 bio->bi_end_io = endio_func;
2349 bio->bi_iter.bi_sector = failrec->logical >> 9;
2350 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2351 bio->bi_iter.bi_size = 0;
2352 bio->bi_private = data;
2353
2354 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2355 if (btrfs_failed_bio->csum) {
2356 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2357 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2358
2359 btrfs_bio = btrfs_io_bio(bio);
2360 btrfs_bio->csum = btrfs_bio->csum_inline;
2361 icsum *= csum_size;
2362 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2363 csum_size);
2364 }
2365
2366 bio_add_page(bio, page, failrec->len, pg_offset);
2367
2368 return bio;
2369 }
2370
2371 /*
2372 * this is a generic handler for readpage errors (default
2373 * readpage_io_failed_hook). if other copies exist, read those and write back
2374 * good data to the failed position. does not investigate in remapping the
2375 * failed extent elsewhere, hoping the device will be smart enough to do this as
2376 * needed
2377 */
2378
2379 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2380 struct page *page, u64 start, u64 end,
2381 int failed_mirror)
2382 {
2383 struct io_failure_record *failrec;
2384 struct inode *inode = page->mapping->host;
2385 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2386 struct bio *bio;
2387 int read_mode;
2388 int ret;
2389
2390 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2391
2392 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2393 if (ret)
2394 return ret;
2395
2396 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2397 if (!ret) {
2398 free_io_failure(inode, failrec);
2399 return -EIO;
2400 }
2401
2402 if (failed_bio->bi_vcnt > 1)
2403 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2404 else
2405 read_mode = READ_SYNC;
2406
2407 phy_offset >>= inode->i_sb->s_blocksize_bits;
2408 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2409 start - page_offset(page),
2410 (int)phy_offset, failed_bio->bi_end_io,
2411 NULL);
2412 if (!bio) {
2413 free_io_failure(inode, failrec);
2414 return -EIO;
2415 }
2416 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2417
2418 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2419 read_mode, failrec->this_mirror, failrec->in_validation);
2420
2421 ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
2422 failrec->bio_flags, 0);
2423 if (ret) {
2424 free_io_failure(inode, failrec);
2425 bio_put(bio);
2426 }
2427
2428 return ret;
2429 }
2430
2431 /* lots and lots of room for performance fixes in the end_bio funcs */
2432
2433 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2434 {
2435 int uptodate = (err == 0);
2436 struct extent_io_tree *tree;
2437 int ret = 0;
2438
2439 tree = &BTRFS_I(page->mapping->host)->io_tree;
2440
2441 if (tree->ops && tree->ops->writepage_end_io_hook) {
2442 ret = tree->ops->writepage_end_io_hook(page, start,
2443 end, NULL, uptodate);
2444 if (ret)
2445 uptodate = 0;
2446 }
2447
2448 if (!uptodate) {
2449 ClearPageUptodate(page);
2450 SetPageError(page);
2451 ret = ret < 0 ? ret : -EIO;
2452 mapping_set_error(page->mapping, ret);
2453 }
2454 }
2455
2456 /*
2457 * after a writepage IO is done, we need to:
2458 * clear the uptodate bits on error
2459 * clear the writeback bits in the extent tree for this IO
2460 * end_page_writeback if the page has no more pending IO
2461 *
2462 * Scheduling is not allowed, so the extent state tree is expected
2463 * to have one and only one object corresponding to this IO.
2464 */
2465 static void end_bio_extent_writepage(struct bio *bio)
2466 {
2467 struct bio_vec *bvec;
2468 u64 start;
2469 u64 end;
2470 int i;
2471
2472 bio_for_each_segment_all(bvec, bio, i) {
2473 struct page *page = bvec->bv_page;
2474
2475 /* We always issue full-page reads, but if some block
2476 * in a page fails to read, blk_update_request() will
2477 * advance bv_offset and adjust bv_len to compensate.
2478 * Print a warning for nonzero offsets, and an error
2479 * if they don't add up to a full page. */
2480 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2481 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2482 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2483 "partial page write in btrfs with offset %u and length %u",
2484 bvec->bv_offset, bvec->bv_len);
2485 else
2486 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2487 "incomplete page write in btrfs with offset %u and "
2488 "length %u",
2489 bvec->bv_offset, bvec->bv_len);
2490 }
2491
2492 start = page_offset(page);
2493 end = start + bvec->bv_offset + bvec->bv_len - 1;
2494
2495 end_extent_writepage(page, bio->bi_error, start, end);
2496 end_page_writeback(page);
2497 }
2498
2499 bio_put(bio);
2500 }
2501
2502 static void
2503 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2504 int uptodate)
2505 {
2506 struct extent_state *cached = NULL;
2507 u64 end = start + len - 1;
2508
2509 if (uptodate && tree->track_uptodate)
2510 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2511 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2512 }
2513
2514 /*
2515 * after a readpage IO is done, we need to:
2516 * clear the uptodate bits on error
2517 * set the uptodate bits if things worked
2518 * set the page up to date if all extents in the tree are uptodate
2519 * clear the lock bit in the extent tree
2520 * unlock the page if there are no other extents locked for it
2521 *
2522 * Scheduling is not allowed, so the extent state tree is expected
2523 * to have one and only one object corresponding to this IO.
2524 */
2525 static void end_bio_extent_readpage(struct bio *bio)
2526 {
2527 struct bio_vec *bvec;
2528 int uptodate = !bio->bi_error;
2529 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2530 struct extent_io_tree *tree;
2531 u64 offset = 0;
2532 u64 start;
2533 u64 end;
2534 u64 len;
2535 u64 extent_start = 0;
2536 u64 extent_len = 0;
2537 int mirror;
2538 int ret;
2539 int i;
2540
2541 bio_for_each_segment_all(bvec, bio, i) {
2542 struct page *page = bvec->bv_page;
2543 struct inode *inode = page->mapping->host;
2544
2545 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2546 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2547 bio->bi_error, io_bio->mirror_num);
2548 tree = &BTRFS_I(inode)->io_tree;
2549
2550 /* We always issue full-page reads, but if some block
2551 * in a page fails to read, blk_update_request() will
2552 * advance bv_offset and adjust bv_len to compensate.
2553 * Print a warning for nonzero offsets, and an error
2554 * if they don't add up to a full page. */
2555 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2556 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2557 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2558 "partial page read in btrfs with offset %u and length %u",
2559 bvec->bv_offset, bvec->bv_len);
2560 else
2561 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2562 "incomplete page read in btrfs with offset %u and "
2563 "length %u",
2564 bvec->bv_offset, bvec->bv_len);
2565 }
2566
2567 start = page_offset(page);
2568 end = start + bvec->bv_offset + bvec->bv_len - 1;
2569 len = bvec->bv_len;
2570
2571 mirror = io_bio->mirror_num;
2572 if (likely(uptodate && tree->ops &&
2573 tree->ops->readpage_end_io_hook)) {
2574 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2575 page, start, end,
2576 mirror);
2577 if (ret)
2578 uptodate = 0;
2579 else
2580 clean_io_failure(inode, start, page, 0);
2581 }
2582
2583 if (likely(uptodate))
2584 goto readpage_ok;
2585
2586 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2587 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2588 if (!ret && !bio->bi_error)
2589 uptodate = 1;
2590 } else {
2591 /*
2592 * The generic bio_readpage_error handles errors the
2593 * following way: If possible, new read requests are
2594 * created and submitted and will end up in
2595 * end_bio_extent_readpage as well (if we're lucky, not
2596 * in the !uptodate case). In that case it returns 0 and
2597 * we just go on with the next page in our bio. If it
2598 * can't handle the error it will return -EIO and we
2599 * remain responsible for that page.
2600 */
2601 ret = bio_readpage_error(bio, offset, page, start, end,
2602 mirror);
2603 if (ret == 0) {
2604 uptodate = !bio->bi_error;
2605 offset += len;
2606 continue;
2607 }
2608 }
2609 readpage_ok:
2610 if (likely(uptodate)) {
2611 loff_t i_size = i_size_read(inode);
2612 pgoff_t end_index = i_size >> PAGE_SHIFT;
2613 unsigned off;
2614
2615 /* Zero out the end if this page straddles i_size */
2616 off = i_size & (PAGE_SIZE-1);
2617 if (page->index == end_index && off)
2618 zero_user_segment(page, off, PAGE_SIZE);
2619 SetPageUptodate(page);
2620 } else {
2621 ClearPageUptodate(page);
2622 SetPageError(page);
2623 }
2624 unlock_page(page);
2625 offset += len;
2626
2627 if (unlikely(!uptodate)) {
2628 if (extent_len) {
2629 endio_readpage_release_extent(tree,
2630 extent_start,
2631 extent_len, 1);
2632 extent_start = 0;
2633 extent_len = 0;
2634 }
2635 endio_readpage_release_extent(tree, start,
2636 end - start + 1, 0);
2637 } else if (!extent_len) {
2638 extent_start = start;
2639 extent_len = end + 1 - start;
2640 } else if (extent_start + extent_len == start) {
2641 extent_len += end + 1 - start;
2642 } else {
2643 endio_readpage_release_extent(tree, extent_start,
2644 extent_len, uptodate);
2645 extent_start = start;
2646 extent_len = end + 1 - start;
2647 }
2648 }
2649
2650 if (extent_len)
2651 endio_readpage_release_extent(tree, extent_start, extent_len,
2652 uptodate);
2653 if (io_bio->end_io)
2654 io_bio->end_io(io_bio, bio->bi_error);
2655 bio_put(bio);
2656 }
2657
2658 /*
2659 * this allocates from the btrfs_bioset. We're returning a bio right now
2660 * but you can call btrfs_io_bio for the appropriate container_of magic
2661 */
2662 struct bio *
2663 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2664 gfp_t gfp_flags)
2665 {
2666 struct btrfs_io_bio *btrfs_bio;
2667 struct bio *bio;
2668
2669 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2670
2671 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2672 while (!bio && (nr_vecs /= 2)) {
2673 bio = bio_alloc_bioset(gfp_flags,
2674 nr_vecs, btrfs_bioset);
2675 }
2676 }
2677
2678 if (bio) {
2679 bio->bi_bdev = bdev;
2680 bio->bi_iter.bi_sector = first_sector;
2681 btrfs_bio = btrfs_io_bio(bio);
2682 btrfs_bio->csum = NULL;
2683 btrfs_bio->csum_allocated = NULL;
2684 btrfs_bio->end_io = NULL;
2685 }
2686 return bio;
2687 }
2688
2689 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2690 {
2691 struct btrfs_io_bio *btrfs_bio;
2692 struct bio *new;
2693
2694 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2695 if (new) {
2696 btrfs_bio = btrfs_io_bio(new);
2697 btrfs_bio->csum = NULL;
2698 btrfs_bio->csum_allocated = NULL;
2699 btrfs_bio->end_io = NULL;
2700
2701 #ifdef CONFIG_BLK_CGROUP
2702 /* FIXME, put this into bio_clone_bioset */
2703 if (bio->bi_css)
2704 bio_associate_blkcg(new, bio->bi_css);
2705 #endif
2706 }
2707 return new;
2708 }
2709
2710 /* this also allocates from the btrfs_bioset */
2711 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2712 {
2713 struct btrfs_io_bio *btrfs_bio;
2714 struct bio *bio;
2715
2716 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2717 if (bio) {
2718 btrfs_bio = btrfs_io_bio(bio);
2719 btrfs_bio->csum = NULL;
2720 btrfs_bio->csum_allocated = NULL;
2721 btrfs_bio->end_io = NULL;
2722 }
2723 return bio;
2724 }
2725
2726
2727 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2728 unsigned long bio_flags)
2729 {
2730 int ret = 0;
2731 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2732 struct page *page = bvec->bv_page;
2733 struct extent_io_tree *tree = bio->bi_private;
2734 u64 start;
2735
2736 start = page_offset(page) + bvec->bv_offset;
2737
2738 bio->bi_private = NULL;
2739 bio_get(bio);
2740
2741 if (tree->ops && tree->ops->submit_bio_hook)
2742 ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
2743 mirror_num, bio_flags, start);
2744 else
2745 btrfsic_submit_bio(bio);
2746
2747 bio_put(bio);
2748 return ret;
2749 }
2750
2751 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2752 unsigned long offset, size_t size, struct bio *bio,
2753 unsigned long bio_flags)
2754 {
2755 int ret = 0;
2756 if (tree->ops && tree->ops->merge_bio_hook)
2757 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2758 bio_flags);
2759 BUG_ON(ret < 0);
2760 return ret;
2761
2762 }
2763
2764 static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2765 struct writeback_control *wbc,
2766 struct page *page, sector_t sector,
2767 size_t size, unsigned long offset,
2768 struct block_device *bdev,
2769 struct bio **bio_ret,
2770 unsigned long max_pages,
2771 bio_end_io_t end_io_func,
2772 int mirror_num,
2773 unsigned long prev_bio_flags,
2774 unsigned long bio_flags,
2775 bool force_bio_submit)
2776 {
2777 int ret = 0;
2778 struct bio *bio;
2779 int contig = 0;
2780 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2781 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2782
2783 if (bio_ret && *bio_ret) {
2784 bio = *bio_ret;
2785 if (old_compressed)
2786 contig = bio->bi_iter.bi_sector == sector;
2787 else
2788 contig = bio_end_sector(bio) == sector;
2789
2790 if (prev_bio_flags != bio_flags || !contig ||
2791 force_bio_submit ||
2792 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2793 bio_add_page(bio, page, page_size, offset) < page_size) {
2794 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2795 if (ret < 0) {
2796 *bio_ret = NULL;
2797 return ret;
2798 }
2799 bio = NULL;
2800 } else {
2801 if (wbc)
2802 wbc_account_io(wbc, page, page_size);
2803 return 0;
2804 }
2805 }
2806
2807 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2808 GFP_NOFS | __GFP_HIGH);
2809 if (!bio)
2810 return -ENOMEM;
2811
2812 bio_add_page(bio, page, page_size, offset);
2813 bio->bi_end_io = end_io_func;
2814 bio->bi_private = tree;
2815 bio_set_op_attrs(bio, op, op_flags);
2816 if (wbc) {
2817 wbc_init_bio(wbc, bio);
2818 wbc_account_io(wbc, page, page_size);
2819 }
2820
2821 if (bio_ret)
2822 *bio_ret = bio;
2823 else
2824 ret = submit_one_bio(bio, mirror_num, bio_flags);
2825
2826 return ret;
2827 }
2828
2829 static void attach_extent_buffer_page(struct extent_buffer *eb,
2830 struct page *page)
2831 {
2832 if (!PagePrivate(page)) {
2833 SetPagePrivate(page);
2834 get_page(page);
2835 set_page_private(page, (unsigned long)eb);
2836 } else {
2837 WARN_ON(page->private != (unsigned long)eb);
2838 }
2839 }
2840
2841 void set_page_extent_mapped(struct page *page)
2842 {
2843 if (!PagePrivate(page)) {
2844 SetPagePrivate(page);
2845 get_page(page);
2846 set_page_private(page, EXTENT_PAGE_PRIVATE);
2847 }
2848 }
2849
2850 static struct extent_map *
2851 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2852 u64 start, u64 len, get_extent_t *get_extent,
2853 struct extent_map **em_cached)
2854 {
2855 struct extent_map *em;
2856
2857 if (em_cached && *em_cached) {
2858 em = *em_cached;
2859 if (extent_map_in_tree(em) && start >= em->start &&
2860 start < extent_map_end(em)) {
2861 atomic_inc(&em->refs);
2862 return em;
2863 }
2864
2865 free_extent_map(em);
2866 *em_cached = NULL;
2867 }
2868
2869 em = get_extent(inode, page, pg_offset, start, len, 0);
2870 if (em_cached && !IS_ERR_OR_NULL(em)) {
2871 BUG_ON(*em_cached);
2872 atomic_inc(&em->refs);
2873 *em_cached = em;
2874 }
2875 return em;
2876 }
2877 /*
2878 * basic readpage implementation. Locked extent state structs are inserted
2879 * into the tree that are removed when the IO is done (by the end_io
2880 * handlers)
2881 * XXX JDM: This needs looking at to ensure proper page locking
2882 */
2883 static int __do_readpage(struct extent_io_tree *tree,
2884 struct page *page,
2885 get_extent_t *get_extent,
2886 struct extent_map **em_cached,
2887 struct bio **bio, int mirror_num,
2888 unsigned long *bio_flags, int read_flags,
2889 u64 *prev_em_start)
2890 {
2891 struct inode *inode = page->mapping->host;
2892 u64 start = page_offset(page);
2893 u64 page_end = start + PAGE_SIZE - 1;
2894 u64 end;
2895 u64 cur = start;
2896 u64 extent_offset;
2897 u64 last_byte = i_size_read(inode);
2898 u64 block_start;
2899 u64 cur_end;
2900 sector_t sector;
2901 struct extent_map *em;
2902 struct block_device *bdev;
2903 int ret;
2904 int nr = 0;
2905 size_t pg_offset = 0;
2906 size_t iosize;
2907 size_t disk_io_size;
2908 size_t blocksize = inode->i_sb->s_blocksize;
2909 unsigned long this_bio_flag = 0;
2910
2911 set_page_extent_mapped(page);
2912
2913 end = page_end;
2914 if (!PageUptodate(page)) {
2915 if (cleancache_get_page(page) == 0) {
2916 BUG_ON(blocksize != PAGE_SIZE);
2917 unlock_extent(tree, start, end);
2918 goto out;
2919 }
2920 }
2921
2922 if (page->index == last_byte >> PAGE_SHIFT) {
2923 char *userpage;
2924 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2925
2926 if (zero_offset) {
2927 iosize = PAGE_SIZE - zero_offset;
2928 userpage = kmap_atomic(page);
2929 memset(userpage + zero_offset, 0, iosize);
2930 flush_dcache_page(page);
2931 kunmap_atomic(userpage);
2932 }
2933 }
2934 while (cur <= end) {
2935 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
2936 bool force_bio_submit = false;
2937
2938 if (cur >= last_byte) {
2939 char *userpage;
2940 struct extent_state *cached = NULL;
2941
2942 iosize = PAGE_SIZE - pg_offset;
2943 userpage = kmap_atomic(page);
2944 memset(userpage + pg_offset, 0, iosize);
2945 flush_dcache_page(page);
2946 kunmap_atomic(userpage);
2947 set_extent_uptodate(tree, cur, cur + iosize - 1,
2948 &cached, GFP_NOFS);
2949 unlock_extent_cached(tree, cur,
2950 cur + iosize - 1,
2951 &cached, GFP_NOFS);
2952 break;
2953 }
2954 em = __get_extent_map(inode, page, pg_offset, cur,
2955 end - cur + 1, get_extent, em_cached);
2956 if (IS_ERR_OR_NULL(em)) {
2957 SetPageError(page);
2958 unlock_extent(tree, cur, end);
2959 break;
2960 }
2961 extent_offset = cur - em->start;
2962 BUG_ON(extent_map_end(em) <= cur);
2963 BUG_ON(end < cur);
2964
2965 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2966 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2967 extent_set_compress_type(&this_bio_flag,
2968 em->compress_type);
2969 }
2970
2971 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2972 cur_end = min(extent_map_end(em) - 1, end);
2973 iosize = ALIGN(iosize, blocksize);
2974 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2975 disk_io_size = em->block_len;
2976 sector = em->block_start >> 9;
2977 } else {
2978 sector = (em->block_start + extent_offset) >> 9;
2979 disk_io_size = iosize;
2980 }
2981 bdev = em->bdev;
2982 block_start = em->block_start;
2983 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2984 block_start = EXTENT_MAP_HOLE;
2985
2986 /*
2987 * If we have a file range that points to a compressed extent
2988 * and it's followed by a consecutive file range that points to
2989 * to the same compressed extent (possibly with a different
2990 * offset and/or length, so it either points to the whole extent
2991 * or only part of it), we must make sure we do not submit a
2992 * single bio to populate the pages for the 2 ranges because
2993 * this makes the compressed extent read zero out the pages
2994 * belonging to the 2nd range. Imagine the following scenario:
2995 *
2996 * File layout
2997 * [0 - 8K] [8K - 24K]
2998 * | |
2999 * | |
3000 * points to extent X, points to extent X,
3001 * offset 4K, length of 8K offset 0, length 16K
3002 *
3003 * [extent X, compressed length = 4K uncompressed length = 16K]
3004 *
3005 * If the bio to read the compressed extent covers both ranges,
3006 * it will decompress extent X into the pages belonging to the
3007 * first range and then it will stop, zeroing out the remaining
3008 * pages that belong to the other range that points to extent X.
3009 * So here we make sure we submit 2 bios, one for the first
3010 * range and another one for the third range. Both will target
3011 * the same physical extent from disk, but we can't currently
3012 * make the compressed bio endio callback populate the pages
3013 * for both ranges because each compressed bio is tightly
3014 * coupled with a single extent map, and each range can have
3015 * an extent map with a different offset value relative to the
3016 * uncompressed data of our extent and different lengths. This
3017 * is a corner case so we prioritize correctness over
3018 * non-optimal behavior (submitting 2 bios for the same extent).
3019 */
3020 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3021 prev_em_start && *prev_em_start != (u64)-1 &&
3022 *prev_em_start != em->orig_start)
3023 force_bio_submit = true;
3024
3025 if (prev_em_start)
3026 *prev_em_start = em->orig_start;
3027
3028 free_extent_map(em);
3029 em = NULL;
3030
3031 /* we've found a hole, just zero and go on */
3032 if (block_start == EXTENT_MAP_HOLE) {
3033 char *userpage;
3034 struct extent_state *cached = NULL;
3035
3036 userpage = kmap_atomic(page);
3037 memset(userpage + pg_offset, 0, iosize);
3038 flush_dcache_page(page);
3039 kunmap_atomic(userpage);
3040
3041 set_extent_uptodate(tree, cur, cur + iosize - 1,
3042 &cached, GFP_NOFS);
3043 unlock_extent_cached(tree, cur,
3044 cur + iosize - 1,
3045 &cached, GFP_NOFS);
3046 cur = cur + iosize;
3047 pg_offset += iosize;
3048 continue;
3049 }
3050 /* the get_extent function already copied into the page */
3051 if (test_range_bit(tree, cur, cur_end,
3052 EXTENT_UPTODATE, 1, NULL)) {
3053 check_page_uptodate(tree, page);
3054 unlock_extent(tree, cur, cur + iosize - 1);
3055 cur = cur + iosize;
3056 pg_offset += iosize;
3057 continue;
3058 }
3059 /* we have an inline extent but it didn't get marked up
3060 * to date. Error out
3061 */
3062 if (block_start == EXTENT_MAP_INLINE) {
3063 SetPageError(page);
3064 unlock_extent(tree, cur, cur + iosize - 1);
3065 cur = cur + iosize;
3066 pg_offset += iosize;
3067 continue;
3068 }
3069
3070 pnr -= page->index;
3071 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3072 page, sector, disk_io_size, pg_offset,
3073 bdev, bio, pnr,
3074 end_bio_extent_readpage, mirror_num,
3075 *bio_flags,
3076 this_bio_flag,
3077 force_bio_submit);
3078 if (!ret) {
3079 nr++;
3080 *bio_flags = this_bio_flag;
3081 } else {
3082 SetPageError(page);
3083 unlock_extent(tree, cur, cur + iosize - 1);
3084 }
3085 cur = cur + iosize;
3086 pg_offset += iosize;
3087 }
3088 out:
3089 if (!nr) {
3090 if (!PageError(page))
3091 SetPageUptodate(page);
3092 unlock_page(page);
3093 }
3094 return 0;
3095 }
3096
3097 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3098 struct page *pages[], int nr_pages,
3099 u64 start, u64 end,
3100 get_extent_t *get_extent,
3101 struct extent_map **em_cached,
3102 struct bio **bio, int mirror_num,
3103 unsigned long *bio_flags,
3104 u64 *prev_em_start)
3105 {
3106 struct inode *inode;
3107 struct btrfs_ordered_extent *ordered;
3108 int index;
3109
3110 inode = pages[0]->mapping->host;
3111 while (1) {
3112 lock_extent(tree, start, end);
3113 ordered = btrfs_lookup_ordered_range(inode, start,
3114 end - start + 1);
3115 if (!ordered)
3116 break;
3117 unlock_extent(tree, start, end);
3118 btrfs_start_ordered_extent(inode, ordered, 1);
3119 btrfs_put_ordered_extent(ordered);
3120 }
3121
3122 for (index = 0; index < nr_pages; index++) {
3123 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3124 mirror_num, bio_flags, 0, prev_em_start);
3125 put_page(pages[index]);
3126 }
3127 }
3128
3129 static void __extent_readpages(struct extent_io_tree *tree,
3130 struct page *pages[],
3131 int nr_pages, get_extent_t *get_extent,
3132 struct extent_map **em_cached,
3133 struct bio **bio, int mirror_num,
3134 unsigned long *bio_flags,
3135 u64 *prev_em_start)
3136 {
3137 u64 start = 0;
3138 u64 end = 0;
3139 u64 page_start;
3140 int index;
3141 int first_index = 0;
3142
3143 for (index = 0; index < nr_pages; index++) {
3144 page_start = page_offset(pages[index]);
3145 if (!end) {
3146 start = page_start;
3147 end = start + PAGE_SIZE - 1;
3148 first_index = index;
3149 } else if (end + 1 == page_start) {
3150 end += PAGE_SIZE;
3151 } else {
3152 __do_contiguous_readpages(tree, &pages[first_index],
3153 index - first_index, start,
3154 end, get_extent, em_cached,
3155 bio, mirror_num, bio_flags,
3156 prev_em_start);
3157 start = page_start;
3158 end = start + PAGE_SIZE - 1;
3159 first_index = index;
3160 }
3161 }
3162
3163 if (end)
3164 __do_contiguous_readpages(tree, &pages[first_index],
3165 index - first_index, start,
3166 end, get_extent, em_cached, bio,
3167 mirror_num, bio_flags,
3168 prev_em_start);
3169 }
3170
3171 static int __extent_read_full_page(struct extent_io_tree *tree,
3172 struct page *page,
3173 get_extent_t *get_extent,
3174 struct bio **bio, int mirror_num,
3175 unsigned long *bio_flags, int read_flags)
3176 {
3177 struct inode *inode = page->mapping->host;
3178 struct btrfs_ordered_extent *ordered;
3179 u64 start = page_offset(page);
3180 u64 end = start + PAGE_SIZE - 1;
3181 int ret;
3182
3183 while (1) {
3184 lock_extent(tree, start, end);
3185 ordered = btrfs_lookup_ordered_range(inode, start,
3186 PAGE_SIZE);
3187 if (!ordered)
3188 break;
3189 unlock_extent(tree, start, end);
3190 btrfs_start_ordered_extent(inode, ordered, 1);
3191 btrfs_put_ordered_extent(ordered);
3192 }
3193
3194 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3195 bio_flags, read_flags, NULL);
3196 return ret;
3197 }
3198
3199 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3200 get_extent_t *get_extent, int mirror_num)
3201 {
3202 struct bio *bio = NULL;
3203 unsigned long bio_flags = 0;
3204 int ret;
3205
3206 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3207 &bio_flags, 0);
3208 if (bio)
3209 ret = submit_one_bio(bio, mirror_num, bio_flags);
3210 return ret;
3211 }
3212
3213 static void update_nr_written(struct page *page, struct writeback_control *wbc,
3214 unsigned long nr_written)
3215 {
3216 wbc->nr_to_write -= nr_written;
3217 }
3218
3219 /*
3220 * helper for __extent_writepage, doing all of the delayed allocation setup.
3221 *
3222 * This returns 1 if our fill_delalloc function did all the work required
3223 * to write the page (copy into inline extent). In this case the IO has
3224 * been started and the page is already unlocked.
3225 *
3226 * This returns 0 if all went well (page still locked)
3227 * This returns < 0 if there were errors (page still locked)
3228 */
3229 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3230 struct page *page, struct writeback_control *wbc,
3231 struct extent_page_data *epd,
3232 u64 delalloc_start,
3233 unsigned long *nr_written)
3234 {
3235 struct extent_io_tree *tree = epd->tree;
3236 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3237 u64 nr_delalloc;
3238 u64 delalloc_to_write = 0;
3239 u64 delalloc_end = 0;
3240 int ret;
3241 int page_started = 0;
3242
3243 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3244 return 0;
3245
3246 while (delalloc_end < page_end) {
3247 nr_delalloc = find_lock_delalloc_range(inode, tree,
3248 page,
3249 &delalloc_start,
3250 &delalloc_end,
3251 BTRFS_MAX_EXTENT_SIZE);
3252 if (nr_delalloc == 0) {
3253 delalloc_start = delalloc_end + 1;
3254 continue;
3255 }
3256 ret = tree->ops->fill_delalloc(inode, page,
3257 delalloc_start,
3258 delalloc_end,
3259 &page_started,
3260 nr_written);
3261 /* File system has been set read-only */
3262 if (ret) {
3263 SetPageError(page);
3264 /* fill_delalloc should be return < 0 for error
3265 * but just in case, we use > 0 here meaning the
3266 * IO is started, so we don't want to return > 0
3267 * unless things are going well.
3268 */
3269 ret = ret < 0 ? ret : -EIO;
3270 goto done;
3271 }
3272 /*
3273 * delalloc_end is already one less than the total length, so
3274 * we don't subtract one from PAGE_SIZE
3275 */
3276 delalloc_to_write += (delalloc_end - delalloc_start +
3277 PAGE_SIZE) >> PAGE_SHIFT;
3278 delalloc_start = delalloc_end + 1;
3279 }
3280 if (wbc->nr_to_write < delalloc_to_write) {
3281 int thresh = 8192;
3282
3283 if (delalloc_to_write < thresh * 2)
3284 thresh = delalloc_to_write;
3285 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3286 thresh);
3287 }
3288
3289 /* did the fill delalloc function already unlock and start
3290 * the IO?
3291 */
3292 if (page_started) {
3293 /*
3294 * we've unlocked the page, so we can't update
3295 * the mapping's writeback index, just update
3296 * nr_to_write.
3297 */
3298 wbc->nr_to_write -= *nr_written;
3299 return 1;
3300 }
3301
3302 ret = 0;
3303
3304 done:
3305 return ret;
3306 }
3307
3308 /*
3309 * helper for __extent_writepage. This calls the writepage start hooks,
3310 * and does the loop to map the page into extents and bios.
3311 *
3312 * We return 1 if the IO is started and the page is unlocked,
3313 * 0 if all went well (page still locked)
3314 * < 0 if there were errors (page still locked)
3315 */
3316 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3317 struct page *page,
3318 struct writeback_control *wbc,
3319 struct extent_page_data *epd,
3320 loff_t i_size,
3321 unsigned long nr_written,
3322 int write_flags, int *nr_ret)
3323 {
3324 struct extent_io_tree *tree = epd->tree;
3325 u64 start = page_offset(page);
3326 u64 page_end = start + PAGE_SIZE - 1;
3327 u64 end;
3328 u64 cur = start;
3329 u64 extent_offset;
3330 u64 block_start;
3331 u64 iosize;
3332 sector_t sector;
3333 struct extent_state *cached_state = NULL;
3334 struct extent_map *em;
3335 struct block_device *bdev;
3336 size_t pg_offset = 0;
3337 size_t blocksize;
3338 int ret = 0;
3339 int nr = 0;
3340 bool compressed;
3341
3342 if (tree->ops && tree->ops->writepage_start_hook) {
3343 ret = tree->ops->writepage_start_hook(page, start,
3344 page_end);
3345 if (ret) {
3346 /* Fixup worker will requeue */
3347 if (ret == -EBUSY)
3348 wbc->pages_skipped++;
3349 else
3350 redirty_page_for_writepage(wbc, page);
3351
3352 update_nr_written(page, wbc, nr_written);
3353 unlock_page(page);
3354 ret = 1;
3355 goto done_unlocked;
3356 }
3357 }
3358
3359 /*
3360 * we don't want to touch the inode after unlocking the page,
3361 * so we update the mapping writeback index now
3362 */
3363 update_nr_written(page, wbc, nr_written + 1);
3364
3365 end = page_end;
3366 if (i_size <= start) {
3367 if (tree->ops && tree->ops->writepage_end_io_hook)
3368 tree->ops->writepage_end_io_hook(page, start,
3369 page_end, NULL, 1);
3370 goto done;
3371 }
3372
3373 blocksize = inode->i_sb->s_blocksize;
3374
3375 while (cur <= end) {
3376 u64 em_end;
3377 unsigned long max_nr;
3378
3379 if (cur >= i_size) {
3380 if (tree->ops && tree->ops->writepage_end_io_hook)
3381 tree->ops->writepage_end_io_hook(page, cur,
3382 page_end, NULL, 1);
3383 break;
3384 }
3385 em = epd->get_extent(inode, page, pg_offset, cur,
3386 end - cur + 1, 1);
3387 if (IS_ERR_OR_NULL(em)) {
3388 SetPageError(page);
3389 ret = PTR_ERR_OR_ZERO(em);
3390 break;
3391 }
3392
3393 extent_offset = cur - em->start;
3394 em_end = extent_map_end(em);
3395 BUG_ON(em_end <= cur);
3396 BUG_ON(end < cur);
3397 iosize = min(em_end - cur, end - cur + 1);
3398 iosize = ALIGN(iosize, blocksize);
3399 sector = (em->block_start + extent_offset) >> 9;
3400 bdev = em->bdev;
3401 block_start = em->block_start;
3402 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3403 free_extent_map(em);
3404 em = NULL;
3405
3406 /*
3407 * compressed and inline extents are written through other
3408 * paths in the FS
3409 */
3410 if (compressed || block_start == EXTENT_MAP_HOLE ||
3411 block_start == EXTENT_MAP_INLINE) {
3412 /*
3413 * end_io notification does not happen here for
3414 * compressed extents
3415 */
3416 if (!compressed && tree->ops &&
3417 tree->ops->writepage_end_io_hook)
3418 tree->ops->writepage_end_io_hook(page, cur,
3419 cur + iosize - 1,
3420 NULL, 1);
3421 else if (compressed) {
3422 /* we don't want to end_page_writeback on
3423 * a compressed extent. this happens
3424 * elsewhere
3425 */
3426 nr++;
3427 }
3428
3429 cur += iosize;
3430 pg_offset += iosize;
3431 continue;
3432 }
3433
3434 max_nr = (i_size >> PAGE_SHIFT) + 1;
3435
3436 set_range_writeback(tree, cur, cur + iosize - 1);
3437 if (!PageWriteback(page)) {
3438 btrfs_err(BTRFS_I(inode)->root->fs_info,
3439 "page %lu not writeback, cur %llu end %llu",
3440 page->index, cur, end);
3441 }
3442
3443 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3444 page, sector, iosize, pg_offset,
3445 bdev, &epd->bio, max_nr,
3446 end_bio_extent_writepage,
3447 0, 0, 0, false);
3448 if (ret)
3449 SetPageError(page);
3450
3451 cur = cur + iosize;
3452 pg_offset += iosize;
3453 nr++;
3454 }
3455 done:
3456 *nr_ret = nr;
3457
3458 done_unlocked:
3459
3460 /* drop our reference on any cached states */
3461 free_extent_state(cached_state);
3462 return ret;
3463 }
3464
3465 /*
3466 * the writepage semantics are similar to regular writepage. extent
3467 * records are inserted to lock ranges in the tree, and as dirty areas
3468 * are found, they are marked writeback. Then the lock bits are removed
3469 * and the end_io handler clears the writeback ranges
3470 */
3471 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3472 void *data)
3473 {
3474 struct inode *inode = page->mapping->host;
3475 struct extent_page_data *epd = data;
3476 u64 start = page_offset(page);
3477 u64 page_end = start + PAGE_SIZE - 1;
3478 int ret;
3479 int nr = 0;
3480 size_t pg_offset = 0;
3481 loff_t i_size = i_size_read(inode);
3482 unsigned long end_index = i_size >> PAGE_SHIFT;
3483 int write_flags = 0;
3484 unsigned long nr_written = 0;
3485
3486 if (wbc->sync_mode == WB_SYNC_ALL)
3487 write_flags = WRITE_SYNC;
3488
3489 trace___extent_writepage(page, inode, wbc);
3490
3491 WARN_ON(!PageLocked(page));
3492
3493 ClearPageError(page);
3494
3495 pg_offset = i_size & (PAGE_SIZE - 1);
3496 if (page->index > end_index ||
3497 (page->index == end_index && !pg_offset)) {
3498 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3499 unlock_page(page);
3500 return 0;
3501 }
3502
3503 if (page->index == end_index) {
3504 char *userpage;
3505
3506 userpage = kmap_atomic(page);
3507 memset(userpage + pg_offset, 0,
3508 PAGE_SIZE - pg_offset);
3509 kunmap_atomic(userpage);
3510 flush_dcache_page(page);
3511 }
3512
3513 pg_offset = 0;
3514
3515 set_page_extent_mapped(page);
3516
3517 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3518 if (ret == 1)
3519 goto done_unlocked;
3520 if (ret)
3521 goto done;
3522
3523 ret = __extent_writepage_io(inode, page, wbc, epd,
3524 i_size, nr_written, write_flags, &nr);
3525 if (ret == 1)
3526 goto done_unlocked;
3527
3528 done:
3529 if (nr == 0) {
3530 /* make sure the mapping tag for page dirty gets cleared */
3531 set_page_writeback(page);
3532 end_page_writeback(page);
3533 }
3534 if (PageError(page)) {
3535 ret = ret < 0 ? ret : -EIO;
3536 end_extent_writepage(page, ret, start, page_end);
3537 }
3538 unlock_page(page);
3539 return ret;
3540
3541 done_unlocked:
3542 return 0;
3543 }
3544
3545 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3546 {
3547 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3548 TASK_UNINTERRUPTIBLE);
3549 }
3550
3551 static noinline_for_stack int
3552 lock_extent_buffer_for_io(struct extent_buffer *eb,
3553 struct btrfs_fs_info *fs_info,
3554 struct extent_page_data *epd)
3555 {
3556 unsigned long i, num_pages;
3557 int flush = 0;
3558 int ret = 0;
3559
3560 if (!btrfs_try_tree_write_lock(eb)) {
3561 flush = 1;
3562 flush_write_bio(epd);
3563 btrfs_tree_lock(eb);
3564 }
3565
3566 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3567 btrfs_tree_unlock(eb);
3568 if (!epd->sync_io)
3569 return 0;
3570 if (!flush) {
3571 flush_write_bio(epd);
3572 flush = 1;
3573 }
3574 while (1) {
3575 wait_on_extent_buffer_writeback(eb);
3576 btrfs_tree_lock(eb);
3577 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3578 break;
3579 btrfs_tree_unlock(eb);
3580 }
3581 }
3582
3583 /*
3584 * We need to do this to prevent races in people who check if the eb is
3585 * under IO since we can end up having no IO bits set for a short period
3586 * of time.
3587 */
3588 spin_lock(&eb->refs_lock);
3589 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3590 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3591 spin_unlock(&eb->refs_lock);
3592 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3593 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3594 -eb->len,
3595 fs_info->dirty_metadata_batch);
3596 ret = 1;
3597 } else {
3598 spin_unlock(&eb->refs_lock);
3599 }
3600
3601 btrfs_tree_unlock(eb);
3602
3603 if (!ret)
3604 return ret;
3605
3606 num_pages = num_extent_pages(eb->start, eb->len);
3607 for (i = 0; i < num_pages; i++) {
3608 struct page *p = eb->pages[i];
3609
3610 if (!trylock_page(p)) {
3611 if (!flush) {
3612 flush_write_bio(epd);
3613 flush = 1;
3614 }
3615 lock_page(p);
3616 }
3617 }
3618
3619 return ret;
3620 }
3621
3622 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3623 {
3624 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3625 smp_mb__after_atomic();
3626 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3627 }
3628
3629 static void set_btree_ioerr(struct page *page)
3630 {
3631 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3632 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3633
3634 SetPageError(page);
3635 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3636 return;
3637
3638 /*
3639 * If writeback for a btree extent that doesn't belong to a log tree
3640 * failed, increment the counter transaction->eb_write_errors.
3641 * We do this because while the transaction is running and before it's
3642 * committing (when we call filemap_fdata[write|wait]_range against
3643 * the btree inode), we might have
3644 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3645 * returns an error or an error happens during writeback, when we're
3646 * committing the transaction we wouldn't know about it, since the pages
3647 * can be no longer dirty nor marked anymore for writeback (if a
3648 * subsequent modification to the extent buffer didn't happen before the
3649 * transaction commit), which makes filemap_fdata[write|wait]_range not
3650 * able to find the pages tagged with SetPageError at transaction
3651 * commit time. So if this happens we must abort the transaction,
3652 * otherwise we commit a super block with btree roots that point to
3653 * btree nodes/leafs whose content on disk is invalid - either garbage
3654 * or the content of some node/leaf from a past generation that got
3655 * cowed or deleted and is no longer valid.
3656 *
3657 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3658 * not be enough - we need to distinguish between log tree extents vs
3659 * non-log tree extents, and the next filemap_fdatawait_range() call
3660 * will catch and clear such errors in the mapping - and that call might
3661 * be from a log sync and not from a transaction commit. Also, checking
3662 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3663 * not done and would not be reliable - the eb might have been released
3664 * from memory and reading it back again means that flag would not be
3665 * set (since it's a runtime flag, not persisted on disk).
3666 *
3667 * Using the flags below in the btree inode also makes us achieve the
3668 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3669 * writeback for all dirty pages and before filemap_fdatawait_range()
3670 * is called, the writeback for all dirty pages had already finished
3671 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3672 * filemap_fdatawait_range() would return success, as it could not know
3673 * that writeback errors happened (the pages were no longer tagged for
3674 * writeback).
3675 */
3676 switch (eb->log_index) {
3677 case -1:
3678 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3679 break;
3680 case 0:
3681 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3682 break;
3683 case 1:
3684 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3685 break;
3686 default:
3687 BUG(); /* unexpected, logic error */
3688 }
3689 }
3690
3691 static void end_bio_extent_buffer_writepage(struct bio *bio)
3692 {
3693 struct bio_vec *bvec;
3694 struct extent_buffer *eb;
3695 int i, done;
3696
3697 bio_for_each_segment_all(bvec, bio, i) {
3698 struct page *page = bvec->bv_page;
3699
3700 eb = (struct extent_buffer *)page->private;
3701 BUG_ON(!eb);
3702 done = atomic_dec_and_test(&eb->io_pages);
3703
3704 if (bio->bi_error ||
3705 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3706 ClearPageUptodate(page);
3707 set_btree_ioerr(page);
3708 }
3709
3710 end_page_writeback(page);
3711
3712 if (!done)
3713 continue;
3714
3715 end_extent_buffer_writeback(eb);
3716 }
3717
3718 bio_put(bio);
3719 }
3720
3721 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3722 struct btrfs_fs_info *fs_info,
3723 struct writeback_control *wbc,
3724 struct extent_page_data *epd)
3725 {
3726 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3727 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3728 u64 offset = eb->start;
3729 unsigned long i, num_pages;
3730 unsigned long bio_flags = 0;
3731 int write_flags = (epd->sync_io ? WRITE_SYNC : 0) | REQ_META;
3732 int ret = 0;
3733
3734 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3735 num_pages = num_extent_pages(eb->start, eb->len);
3736 atomic_set(&eb->io_pages, num_pages);
3737 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3738 bio_flags = EXTENT_BIO_TREE_LOG;
3739
3740 for (i = 0; i < num_pages; i++) {
3741 struct page *p = eb->pages[i];
3742
3743 clear_page_dirty_for_io(p);
3744 set_page_writeback(p);
3745 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3746 p, offset >> 9, PAGE_SIZE, 0, bdev,
3747 &epd->bio, -1,
3748 end_bio_extent_buffer_writepage,
3749 0, epd->bio_flags, bio_flags, false);
3750 epd->bio_flags = bio_flags;
3751 if (ret) {
3752 set_btree_ioerr(p);
3753 end_page_writeback(p);
3754 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3755 end_extent_buffer_writeback(eb);
3756 ret = -EIO;
3757 break;
3758 }
3759 offset += PAGE_SIZE;
3760 update_nr_written(p, wbc, 1);
3761 unlock_page(p);
3762 }
3763
3764 if (unlikely(ret)) {
3765 for (; i < num_pages; i++) {
3766 struct page *p = eb->pages[i];
3767 clear_page_dirty_for_io(p);
3768 unlock_page(p);
3769 }
3770 }
3771
3772 return ret;
3773 }
3774
3775 int btree_write_cache_pages(struct address_space *mapping,
3776 struct writeback_control *wbc)
3777 {
3778 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3779 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3780 struct extent_buffer *eb, *prev_eb = NULL;
3781 struct extent_page_data epd = {
3782 .bio = NULL,
3783 .tree = tree,
3784 .extent_locked = 0,
3785 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3786 .bio_flags = 0,
3787 };
3788 int ret = 0;
3789 int done = 0;
3790 int nr_to_write_done = 0;
3791 struct pagevec pvec;
3792 int nr_pages;
3793 pgoff_t index;
3794 pgoff_t end; /* Inclusive */
3795 int scanned = 0;
3796 int tag;
3797
3798 pagevec_init(&pvec, 0);
3799 if (wbc->range_cyclic) {
3800 index = mapping->writeback_index; /* Start from prev offset */
3801 end = -1;
3802 } else {
3803 index = wbc->range_start >> PAGE_SHIFT;
3804 end = wbc->range_end >> PAGE_SHIFT;
3805 scanned = 1;
3806 }
3807 if (wbc->sync_mode == WB_SYNC_ALL)
3808 tag = PAGECACHE_TAG_TOWRITE;
3809 else
3810 tag = PAGECACHE_TAG_DIRTY;
3811 retry:
3812 if (wbc->sync_mode == WB_SYNC_ALL)
3813 tag_pages_for_writeback(mapping, index, end);
3814 while (!done && !nr_to_write_done && (index <= end) &&
3815 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3816 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3817 unsigned i;
3818
3819 scanned = 1;
3820 for (i = 0; i < nr_pages; i++) {
3821 struct page *page = pvec.pages[i];
3822
3823 if (!PagePrivate(page))
3824 continue;
3825
3826 if (!wbc->range_cyclic && page->index > end) {
3827 done = 1;
3828 break;
3829 }
3830
3831 spin_lock(&mapping->private_lock);
3832 if (!PagePrivate(page)) {
3833 spin_unlock(&mapping->private_lock);
3834 continue;
3835 }
3836
3837 eb = (struct extent_buffer *)page->private;
3838
3839 /*
3840 * Shouldn't happen and normally this would be a BUG_ON
3841 * but no sense in crashing the users box for something
3842 * we can survive anyway.
3843 */
3844 if (WARN_ON(!eb)) {
3845 spin_unlock(&mapping->private_lock);
3846 continue;
3847 }
3848
3849 if (eb == prev_eb) {
3850 spin_unlock(&mapping->private_lock);
3851 continue;
3852 }
3853
3854 ret = atomic_inc_not_zero(&eb->refs);
3855 spin_unlock(&mapping->private_lock);
3856 if (!ret)
3857 continue;
3858
3859 prev_eb = eb;
3860 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3861 if (!ret) {
3862 free_extent_buffer(eb);
3863 continue;
3864 }
3865
3866 ret = write_one_eb(eb, fs_info, wbc, &epd);
3867 if (ret) {
3868 done = 1;
3869 free_extent_buffer(eb);
3870 break;
3871 }
3872 free_extent_buffer(eb);
3873
3874 /*
3875 * the filesystem may choose to bump up nr_to_write.
3876 * We have to make sure to honor the new nr_to_write
3877 * at any time
3878 */
3879 nr_to_write_done = wbc->nr_to_write <= 0;
3880 }
3881 pagevec_release(&pvec);
3882 cond_resched();
3883 }
3884 if (!scanned && !done) {
3885 /*
3886 * We hit the last page and there is more work to be done: wrap
3887 * back to the start of the file
3888 */
3889 scanned = 1;
3890 index = 0;
3891 goto retry;
3892 }
3893 flush_write_bio(&epd);
3894 return ret;
3895 }
3896
3897 /**
3898 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3899 * @mapping: address space structure to write
3900 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3901 * @writepage: function called for each page
3902 * @data: data passed to writepage function
3903 *
3904 * If a page is already under I/O, write_cache_pages() skips it, even
3905 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3906 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3907 * and msync() need to guarantee that all the data which was dirty at the time
3908 * the call was made get new I/O started against them. If wbc->sync_mode is
3909 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3910 * existing IO to complete.
3911 */
3912 static int extent_write_cache_pages(struct extent_io_tree *tree,
3913 struct address_space *mapping,
3914 struct writeback_control *wbc,
3915 writepage_t writepage, void *data,
3916 void (*flush_fn)(void *))
3917 {
3918 struct inode *inode = mapping->host;
3919 int ret = 0;
3920 int done = 0;
3921 int nr_to_write_done = 0;
3922 struct pagevec pvec;
3923 int nr_pages;
3924 pgoff_t index;
3925 pgoff_t end; /* Inclusive */
3926 pgoff_t done_index;
3927 int range_whole = 0;
3928 int scanned = 0;
3929 int tag;
3930
3931 /*
3932 * We have to hold onto the inode so that ordered extents can do their
3933 * work when the IO finishes. The alternative to this is failing to add
3934 * an ordered extent if the igrab() fails there and that is a huge pain
3935 * to deal with, so instead just hold onto the inode throughout the
3936 * writepages operation. If it fails here we are freeing up the inode
3937 * anyway and we'd rather not waste our time writing out stuff that is
3938 * going to be truncated anyway.
3939 */
3940 if (!igrab(inode))
3941 return 0;
3942
3943 pagevec_init(&pvec, 0);
3944 if (wbc->range_cyclic) {
3945 index = mapping->writeback_index; /* Start from prev offset */
3946 end = -1;
3947 } else {
3948 index = wbc->range_start >> PAGE_SHIFT;
3949 end = wbc->range_end >> PAGE_SHIFT;
3950 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3951 range_whole = 1;
3952 scanned = 1;
3953 }
3954 if (wbc->sync_mode == WB_SYNC_ALL)
3955 tag = PAGECACHE_TAG_TOWRITE;
3956 else
3957 tag = PAGECACHE_TAG_DIRTY;
3958 retry:
3959 if (wbc->sync_mode == WB_SYNC_ALL)
3960 tag_pages_for_writeback(mapping, index, end);
3961 done_index = index;
3962 while (!done && !nr_to_write_done && (index <= end) &&
3963 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3964 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3965 unsigned i;
3966
3967 scanned = 1;
3968 for (i = 0; i < nr_pages; i++) {
3969 struct page *page = pvec.pages[i];
3970
3971 done_index = page->index;
3972 /*
3973 * At this point we hold neither mapping->tree_lock nor
3974 * lock on the page itself: the page may be truncated or
3975 * invalidated (changing page->mapping to NULL), or even
3976 * swizzled back from swapper_space to tmpfs file
3977 * mapping
3978 */
3979 if (!trylock_page(page)) {
3980 flush_fn(data);
3981 lock_page(page);
3982 }
3983
3984 if (unlikely(page->mapping != mapping)) {
3985 unlock_page(page);
3986 continue;
3987 }
3988
3989 if (!wbc->range_cyclic && page->index > end) {
3990 done = 1;
3991 unlock_page(page);
3992 continue;
3993 }
3994
3995 if (wbc->sync_mode != WB_SYNC_NONE) {
3996 if (PageWriteback(page))
3997 flush_fn(data);
3998 wait_on_page_writeback(page);
3999 }
4000
4001 if (PageWriteback(page) ||
4002 !clear_page_dirty_for_io(page)) {
4003 unlock_page(page);
4004 continue;
4005 }
4006
4007 ret = (*writepage)(page, wbc, data);
4008
4009 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4010 unlock_page(page);
4011 ret = 0;
4012 }
4013 if (ret < 0) {
4014 /*
4015 * done_index is set past this page,
4016 * so media errors will not choke
4017 * background writeout for the entire
4018 * file. This has consequences for
4019 * range_cyclic semantics (ie. it may
4020 * not be suitable for data integrity
4021 * writeout).
4022 */
4023 done_index = page->index + 1;
4024 done = 1;
4025 break;
4026 }
4027
4028 /*
4029 * the filesystem may choose to bump up nr_to_write.
4030 * We have to make sure to honor the new nr_to_write
4031 * at any time
4032 */
4033 nr_to_write_done = wbc->nr_to_write <= 0;
4034 }
4035 pagevec_release(&pvec);
4036 cond_resched();
4037 }
4038 if (!scanned && !done) {
4039 /*
4040 * We hit the last page and there is more work to be done: wrap
4041 * back to the start of the file
4042 */
4043 scanned = 1;
4044 index = 0;
4045 goto retry;
4046 }
4047
4048 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4049 mapping->writeback_index = done_index;
4050
4051 btrfs_add_delayed_iput(inode);
4052 return ret;
4053 }
4054
4055 static void flush_epd_write_bio(struct extent_page_data *epd)
4056 {
4057 if (epd->bio) {
4058 int ret;
4059
4060 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4061 epd->sync_io ? WRITE_SYNC : 0);
4062
4063 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4064 BUG_ON(ret < 0); /* -ENOMEM */
4065 epd->bio = NULL;
4066 }
4067 }
4068
4069 static noinline void flush_write_bio(void *data)
4070 {
4071 struct extent_page_data *epd = data;
4072 flush_epd_write_bio(epd);
4073 }
4074
4075 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4076 get_extent_t *get_extent,
4077 struct writeback_control *wbc)
4078 {
4079 int ret;
4080 struct extent_page_data epd = {
4081 .bio = NULL,
4082 .tree = tree,
4083 .get_extent = get_extent,
4084 .extent_locked = 0,
4085 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4086 .bio_flags = 0,
4087 };
4088
4089 ret = __extent_writepage(page, wbc, &epd);
4090
4091 flush_epd_write_bio(&epd);
4092 return ret;
4093 }
4094
4095 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4096 u64 start, u64 end, get_extent_t *get_extent,
4097 int mode)
4098 {
4099 int ret = 0;
4100 struct address_space *mapping = inode->i_mapping;
4101 struct page *page;
4102 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4103 PAGE_SHIFT;
4104
4105 struct extent_page_data epd = {
4106 .bio = NULL,
4107 .tree = tree,
4108 .get_extent = get_extent,
4109 .extent_locked = 1,
4110 .sync_io = mode == WB_SYNC_ALL,
4111 .bio_flags = 0,
4112 };
4113 struct writeback_control wbc_writepages = {
4114 .sync_mode = mode,
4115 .nr_to_write = nr_pages * 2,
4116 .range_start = start,
4117 .range_end = end + 1,
4118 };
4119
4120 while (start <= end) {
4121 page = find_get_page(mapping, start >> PAGE_SHIFT);
4122 if (clear_page_dirty_for_io(page))
4123 ret = __extent_writepage(page, &wbc_writepages, &epd);
4124 else {
4125 if (tree->ops && tree->ops->writepage_end_io_hook)
4126 tree->ops->writepage_end_io_hook(page, start,
4127 start + PAGE_SIZE - 1,
4128 NULL, 1);
4129 unlock_page(page);
4130 }
4131 put_page(page);
4132 start += PAGE_SIZE;
4133 }
4134
4135 flush_epd_write_bio(&epd);
4136 return ret;
4137 }
4138
4139 int extent_writepages(struct extent_io_tree *tree,
4140 struct address_space *mapping,
4141 get_extent_t *get_extent,
4142 struct writeback_control *wbc)
4143 {
4144 int ret = 0;
4145 struct extent_page_data epd = {
4146 .bio = NULL,
4147 .tree = tree,
4148 .get_extent = get_extent,
4149 .extent_locked = 0,
4150 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4151 .bio_flags = 0,
4152 };
4153
4154 ret = extent_write_cache_pages(tree, mapping, wbc,
4155 __extent_writepage, &epd,
4156 flush_write_bio);
4157 flush_epd_write_bio(&epd);
4158 return ret;
4159 }
4160
4161 int extent_readpages(struct extent_io_tree *tree,
4162 struct address_space *mapping,
4163 struct list_head *pages, unsigned nr_pages,
4164 get_extent_t get_extent)
4165 {
4166 struct bio *bio = NULL;
4167 unsigned page_idx;
4168 unsigned long bio_flags = 0;
4169 struct page *pagepool[16];
4170 struct page *page;
4171 struct extent_map *em_cached = NULL;
4172 int nr = 0;
4173 u64 prev_em_start = (u64)-1;
4174
4175 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4176 page = list_entry(pages->prev, struct page, lru);
4177
4178 prefetchw(&page->flags);
4179 list_del(&page->lru);
4180 if (add_to_page_cache_lru(page, mapping,
4181 page->index,
4182 readahead_gfp_mask(mapping))) {
4183 put_page(page);
4184 continue;
4185 }
4186
4187 pagepool[nr++] = page;
4188 if (nr < ARRAY_SIZE(pagepool))
4189 continue;
4190 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4191 &bio, 0, &bio_flags, &prev_em_start);
4192 nr = 0;
4193 }
4194 if (nr)
4195 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4196 &bio, 0, &bio_flags, &prev_em_start);
4197
4198 if (em_cached)
4199 free_extent_map(em_cached);
4200
4201 BUG_ON(!list_empty(pages));
4202 if (bio)
4203 return submit_one_bio(bio, 0, bio_flags);
4204 return 0;
4205 }
4206
4207 /*
4208 * basic invalidatepage code, this waits on any locked or writeback
4209 * ranges corresponding to the page, and then deletes any extent state
4210 * records from the tree
4211 */
4212 int extent_invalidatepage(struct extent_io_tree *tree,
4213 struct page *page, unsigned long offset)
4214 {
4215 struct extent_state *cached_state = NULL;
4216 u64 start = page_offset(page);
4217 u64 end = start + PAGE_SIZE - 1;
4218 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4219
4220 start += ALIGN(offset, blocksize);
4221 if (start > end)
4222 return 0;
4223
4224 lock_extent_bits(tree, start, end, &cached_state);
4225 wait_on_page_writeback(page);
4226 clear_extent_bit(tree, start, end,
4227 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4228 EXTENT_DO_ACCOUNTING,
4229 1, 1, &cached_state, GFP_NOFS);
4230 return 0;
4231 }
4232
4233 /*
4234 * a helper for releasepage, this tests for areas of the page that
4235 * are locked or under IO and drops the related state bits if it is safe
4236 * to drop the page.
4237 */
4238 static int try_release_extent_state(struct extent_map_tree *map,
4239 struct extent_io_tree *tree,
4240 struct page *page, gfp_t mask)
4241 {
4242 u64 start = page_offset(page);
4243 u64 end = start + PAGE_SIZE - 1;
4244 int ret = 1;
4245
4246 if (test_range_bit(tree, start, end,
4247 EXTENT_IOBITS, 0, NULL))
4248 ret = 0;
4249 else {
4250 if ((mask & GFP_NOFS) == GFP_NOFS)
4251 mask = GFP_NOFS;
4252 /*
4253 * at this point we can safely clear everything except the
4254 * locked bit and the nodatasum bit
4255 */
4256 ret = clear_extent_bit(tree, start, end,
4257 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4258 0, 0, NULL, mask);
4259
4260 /* if clear_extent_bit failed for enomem reasons,
4261 * we can't allow the release to continue.
4262 */
4263 if (ret < 0)
4264 ret = 0;
4265 else
4266 ret = 1;
4267 }
4268 return ret;
4269 }
4270
4271 /*
4272 * a helper for releasepage. As long as there are no locked extents
4273 * in the range corresponding to the page, both state records and extent
4274 * map records are removed
4275 */
4276 int try_release_extent_mapping(struct extent_map_tree *map,
4277 struct extent_io_tree *tree, struct page *page,
4278 gfp_t mask)
4279 {
4280 struct extent_map *em;
4281 u64 start = page_offset(page);
4282 u64 end = start + PAGE_SIZE - 1;
4283
4284 if (gfpflags_allow_blocking(mask) &&
4285 page->mapping->host->i_size > SZ_16M) {
4286 u64 len;
4287 while (start <= end) {
4288 len = end - start + 1;
4289 write_lock(&map->lock);
4290 em = lookup_extent_mapping(map, start, len);
4291 if (!em) {
4292 write_unlock(&map->lock);
4293 break;
4294 }
4295 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4296 em->start != start) {
4297 write_unlock(&map->lock);
4298 free_extent_map(em);
4299 break;
4300 }
4301 if (!test_range_bit(tree, em->start,
4302 extent_map_end(em) - 1,
4303 EXTENT_LOCKED | EXTENT_WRITEBACK,
4304 0, NULL)) {
4305 remove_extent_mapping(map, em);
4306 /* once for the rb tree */
4307 free_extent_map(em);
4308 }
4309 start = extent_map_end(em);
4310 write_unlock(&map->lock);
4311
4312 /* once for us */
4313 free_extent_map(em);
4314 }
4315 }
4316 return try_release_extent_state(map, tree, page, mask);
4317 }
4318
4319 /*
4320 * helper function for fiemap, which doesn't want to see any holes.
4321 * This maps until we find something past 'last'
4322 */
4323 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4324 u64 offset,
4325 u64 last,
4326 get_extent_t *get_extent)
4327 {
4328 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4329 struct extent_map *em;
4330 u64 len;
4331
4332 if (offset >= last)
4333 return NULL;
4334
4335 while (1) {
4336 len = last - offset;
4337 if (len == 0)
4338 break;
4339 len = ALIGN(len, sectorsize);
4340 em = get_extent(inode, NULL, 0, offset, len, 0);
4341 if (IS_ERR_OR_NULL(em))
4342 return em;
4343
4344 /* if this isn't a hole return it */
4345 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4346 em->block_start != EXTENT_MAP_HOLE) {
4347 return em;
4348 }
4349
4350 /* this is a hole, advance to the next extent */
4351 offset = extent_map_end(em);
4352 free_extent_map(em);
4353 if (offset >= last)
4354 break;
4355 }
4356 return NULL;
4357 }
4358
4359 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4360 __u64 start, __u64 len, get_extent_t *get_extent)
4361 {
4362 int ret = 0;
4363 u64 off = start;
4364 u64 max = start + len;
4365 u32 flags = 0;
4366 u32 found_type;
4367 u64 last;
4368 u64 last_for_get_extent = 0;
4369 u64 disko = 0;
4370 u64 isize = i_size_read(inode);
4371 struct btrfs_key found_key;
4372 struct extent_map *em = NULL;
4373 struct extent_state *cached_state = NULL;
4374 struct btrfs_path *path;
4375 struct btrfs_root *root = BTRFS_I(inode)->root;
4376 int end = 0;
4377 u64 em_start = 0;
4378 u64 em_len = 0;
4379 u64 em_end = 0;
4380
4381 if (len == 0)
4382 return -EINVAL;
4383
4384 path = btrfs_alloc_path();
4385 if (!path)
4386 return -ENOMEM;
4387 path->leave_spinning = 1;
4388
4389 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4390 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4391
4392 /*
4393 * lookup the last file extent. We're not using i_size here
4394 * because there might be preallocation past i_size
4395 */
4396 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4397 0);
4398 if (ret < 0) {
4399 btrfs_free_path(path);
4400 return ret;
4401 } else {
4402 WARN_ON(!ret);
4403 if (ret == 1)
4404 ret = 0;
4405 }
4406
4407 path->slots[0]--;
4408 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4409 found_type = found_key.type;
4410
4411 /* No extents, but there might be delalloc bits */
4412 if (found_key.objectid != btrfs_ino(inode) ||
4413 found_type != BTRFS_EXTENT_DATA_KEY) {
4414 /* have to trust i_size as the end */
4415 last = (u64)-1;
4416 last_for_get_extent = isize;
4417 } else {
4418 /*
4419 * remember the start of the last extent. There are a
4420 * bunch of different factors that go into the length of the
4421 * extent, so its much less complex to remember where it started
4422 */
4423 last = found_key.offset;
4424 last_for_get_extent = last + 1;
4425 }
4426 btrfs_release_path(path);
4427
4428 /*
4429 * we might have some extents allocated but more delalloc past those
4430 * extents. so, we trust isize unless the start of the last extent is
4431 * beyond isize
4432 */
4433 if (last < isize) {
4434 last = (u64)-1;
4435 last_for_get_extent = isize;
4436 }
4437
4438 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4439 &cached_state);
4440
4441 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4442 get_extent);
4443 if (!em)
4444 goto out;
4445 if (IS_ERR(em)) {
4446 ret = PTR_ERR(em);
4447 goto out;
4448 }
4449
4450 while (!end) {
4451 u64 offset_in_extent = 0;
4452
4453 /* break if the extent we found is outside the range */
4454 if (em->start >= max || extent_map_end(em) < off)
4455 break;
4456
4457 /*
4458 * get_extent may return an extent that starts before our
4459 * requested range. We have to make sure the ranges
4460 * we return to fiemap always move forward and don't
4461 * overlap, so adjust the offsets here
4462 */
4463 em_start = max(em->start, off);
4464
4465 /*
4466 * record the offset from the start of the extent
4467 * for adjusting the disk offset below. Only do this if the
4468 * extent isn't compressed since our in ram offset may be past
4469 * what we have actually allocated on disk.
4470 */
4471 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4472 offset_in_extent = em_start - em->start;
4473 em_end = extent_map_end(em);
4474 em_len = em_end - em_start;
4475 disko = 0;
4476 flags = 0;
4477
4478 /*
4479 * bump off for our next call to get_extent
4480 */
4481 off = extent_map_end(em);
4482 if (off >= max)
4483 end = 1;
4484
4485 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4486 end = 1;
4487 flags |= FIEMAP_EXTENT_LAST;
4488 } else if (em->block_start == EXTENT_MAP_INLINE) {
4489 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4490 FIEMAP_EXTENT_NOT_ALIGNED);
4491 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4492 flags |= (FIEMAP_EXTENT_DELALLOC |
4493 FIEMAP_EXTENT_UNKNOWN);
4494 } else if (fieinfo->fi_extents_max) {
4495 u64 bytenr = em->block_start -
4496 (em->start - em->orig_start);
4497
4498 disko = em->block_start + offset_in_extent;
4499
4500 /*
4501 * As btrfs supports shared space, this information
4502 * can be exported to userspace tools via
4503 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4504 * then we're just getting a count and we can skip the
4505 * lookup stuff.
4506 */
4507 ret = btrfs_check_shared(NULL, root->fs_info,
4508 root->objectid,
4509 btrfs_ino(inode), bytenr);
4510 if (ret < 0)
4511 goto out_free;
4512 if (ret)
4513 flags |= FIEMAP_EXTENT_SHARED;
4514 ret = 0;
4515 }
4516 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4517 flags |= FIEMAP_EXTENT_ENCODED;
4518 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4519 flags |= FIEMAP_EXTENT_UNWRITTEN;
4520
4521 free_extent_map(em);
4522 em = NULL;
4523 if ((em_start >= last) || em_len == (u64)-1 ||
4524 (last == (u64)-1 && isize <= em_end)) {
4525 flags |= FIEMAP_EXTENT_LAST;
4526 end = 1;
4527 }
4528
4529 /* now scan forward to see if this is really the last extent. */
4530 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4531 get_extent);
4532 if (IS_ERR(em)) {
4533 ret = PTR_ERR(em);
4534 goto out;
4535 }
4536 if (!em) {
4537 flags |= FIEMAP_EXTENT_LAST;
4538 end = 1;
4539 }
4540 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4541 em_len, flags);
4542 if (ret) {
4543 if (ret == 1)
4544 ret = 0;
4545 goto out_free;
4546 }
4547 }
4548 out_free:
4549 free_extent_map(em);
4550 out:
4551 btrfs_free_path(path);
4552 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4553 &cached_state, GFP_NOFS);
4554 return ret;
4555 }
4556
4557 static void __free_extent_buffer(struct extent_buffer *eb)
4558 {
4559 btrfs_leak_debug_del(&eb->leak_list);
4560 kmem_cache_free(extent_buffer_cache, eb);
4561 }
4562
4563 int extent_buffer_under_io(struct extent_buffer *eb)
4564 {
4565 return (atomic_read(&eb->io_pages) ||
4566 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4567 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4568 }
4569
4570 /*
4571 * Helper for releasing extent buffer page.
4572 */
4573 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4574 {
4575 unsigned long index;
4576 struct page *page;
4577 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4578
4579 BUG_ON(extent_buffer_under_io(eb));
4580
4581 index = num_extent_pages(eb->start, eb->len);
4582 if (index == 0)
4583 return;
4584
4585 do {
4586 index--;
4587 page = eb->pages[index];
4588 if (!page)
4589 continue;
4590 if (mapped)
4591 spin_lock(&page->mapping->private_lock);
4592 /*
4593 * We do this since we'll remove the pages after we've
4594 * removed the eb from the radix tree, so we could race
4595 * and have this page now attached to the new eb. So
4596 * only clear page_private if it's still connected to
4597 * this eb.
4598 */
4599 if (PagePrivate(page) &&
4600 page->private == (unsigned long)eb) {
4601 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4602 BUG_ON(PageDirty(page));
4603 BUG_ON(PageWriteback(page));
4604 /*
4605 * We need to make sure we haven't be attached
4606 * to a new eb.
4607 */
4608 ClearPagePrivate(page);
4609 set_page_private(page, 0);
4610 /* One for the page private */
4611 put_page(page);
4612 }
4613
4614 if (mapped)
4615 spin_unlock(&page->mapping->private_lock);
4616
4617 /* One for when we allocated the page */
4618 put_page(page);
4619 } while (index != 0);
4620 }
4621
4622 /*
4623 * Helper for releasing the extent buffer.
4624 */
4625 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4626 {
4627 btrfs_release_extent_buffer_page(eb);
4628 __free_extent_buffer(eb);
4629 }
4630
4631 static struct extent_buffer *
4632 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4633 unsigned long len)
4634 {
4635 struct extent_buffer *eb = NULL;
4636
4637 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4638 eb->start = start;
4639 eb->len = len;
4640 eb->fs_info = fs_info;
4641 eb->bflags = 0;
4642 rwlock_init(&eb->lock);
4643 atomic_set(&eb->write_locks, 0);
4644 atomic_set(&eb->read_locks, 0);
4645 atomic_set(&eb->blocking_readers, 0);
4646 atomic_set(&eb->blocking_writers, 0);
4647 atomic_set(&eb->spinning_readers, 0);
4648 atomic_set(&eb->spinning_writers, 0);
4649 eb->lock_nested = 0;
4650 init_waitqueue_head(&eb->write_lock_wq);
4651 init_waitqueue_head(&eb->read_lock_wq);
4652
4653 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4654
4655 spin_lock_init(&eb->refs_lock);
4656 atomic_set(&eb->refs, 1);
4657 atomic_set(&eb->io_pages, 0);
4658
4659 /*
4660 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4661 */
4662 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4663 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4664 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4665
4666 return eb;
4667 }
4668
4669 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4670 {
4671 unsigned long i;
4672 struct page *p;
4673 struct extent_buffer *new;
4674 unsigned long num_pages = num_extent_pages(src->start, src->len);
4675
4676 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4677 if (new == NULL)
4678 return NULL;
4679
4680 for (i = 0; i < num_pages; i++) {
4681 p = alloc_page(GFP_NOFS);
4682 if (!p) {
4683 btrfs_release_extent_buffer(new);
4684 return NULL;
4685 }
4686 attach_extent_buffer_page(new, p);
4687 WARN_ON(PageDirty(p));
4688 SetPageUptodate(p);
4689 new->pages[i] = p;
4690 }
4691
4692 copy_extent_buffer(new, src, 0, 0, src->len);
4693 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4694 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4695
4696 return new;
4697 }
4698
4699 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4700 u64 start, unsigned long len)
4701 {
4702 struct extent_buffer *eb;
4703 unsigned long num_pages;
4704 unsigned long i;
4705
4706 num_pages = num_extent_pages(start, len);
4707
4708 eb = __alloc_extent_buffer(fs_info, start, len);
4709 if (!eb)
4710 return NULL;
4711
4712 for (i = 0; i < num_pages; i++) {
4713 eb->pages[i] = alloc_page(GFP_NOFS);
4714 if (!eb->pages[i])
4715 goto err;
4716 }
4717 set_extent_buffer_uptodate(eb);
4718 btrfs_set_header_nritems(eb, 0);
4719 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4720
4721 return eb;
4722 err:
4723 for (; i > 0; i--)
4724 __free_page(eb->pages[i - 1]);
4725 __free_extent_buffer(eb);
4726 return NULL;
4727 }
4728
4729 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4730 u64 start, u32 nodesize)
4731 {
4732 unsigned long len;
4733
4734 if (!fs_info) {
4735 /*
4736 * Called only from tests that don't always have a fs_info
4737 * available
4738 */
4739 len = nodesize;
4740 } else {
4741 len = fs_info->tree_root->nodesize;
4742 }
4743
4744 return __alloc_dummy_extent_buffer(fs_info, start, len);
4745 }
4746
4747 static void check_buffer_tree_ref(struct extent_buffer *eb)
4748 {
4749 int refs;
4750 /* the ref bit is tricky. We have to make sure it is set
4751 * if we have the buffer dirty. Otherwise the
4752 * code to free a buffer can end up dropping a dirty
4753 * page
4754 *
4755 * Once the ref bit is set, it won't go away while the
4756 * buffer is dirty or in writeback, and it also won't
4757 * go away while we have the reference count on the
4758 * eb bumped.
4759 *
4760 * We can't just set the ref bit without bumping the
4761 * ref on the eb because free_extent_buffer might
4762 * see the ref bit and try to clear it. If this happens
4763 * free_extent_buffer might end up dropping our original
4764 * ref by mistake and freeing the page before we are able
4765 * to add one more ref.
4766 *
4767 * So bump the ref count first, then set the bit. If someone
4768 * beat us to it, drop the ref we added.
4769 */
4770 refs = atomic_read(&eb->refs);
4771 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4772 return;
4773
4774 spin_lock(&eb->refs_lock);
4775 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4776 atomic_inc(&eb->refs);
4777 spin_unlock(&eb->refs_lock);
4778 }
4779
4780 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4781 struct page *accessed)
4782 {
4783 unsigned long num_pages, i;
4784
4785 check_buffer_tree_ref(eb);
4786
4787 num_pages = num_extent_pages(eb->start, eb->len);
4788 for (i = 0; i < num_pages; i++) {
4789 struct page *p = eb->pages[i];
4790
4791 if (p != accessed)
4792 mark_page_accessed(p);
4793 }
4794 }
4795
4796 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4797 u64 start)
4798 {
4799 struct extent_buffer *eb;
4800
4801 rcu_read_lock();
4802 eb = radix_tree_lookup(&fs_info->buffer_radix,
4803 start >> PAGE_SHIFT);
4804 if (eb && atomic_inc_not_zero(&eb->refs)) {
4805 rcu_read_unlock();
4806 /*
4807 * Lock our eb's refs_lock to avoid races with
4808 * free_extent_buffer. When we get our eb it might be flagged
4809 * with EXTENT_BUFFER_STALE and another task running
4810 * free_extent_buffer might have seen that flag set,
4811 * eb->refs == 2, that the buffer isn't under IO (dirty and
4812 * writeback flags not set) and it's still in the tree (flag
4813 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4814 * of decrementing the extent buffer's reference count twice.
4815 * So here we could race and increment the eb's reference count,
4816 * clear its stale flag, mark it as dirty and drop our reference
4817 * before the other task finishes executing free_extent_buffer,
4818 * which would later result in an attempt to free an extent
4819 * buffer that is dirty.
4820 */
4821 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4822 spin_lock(&eb->refs_lock);
4823 spin_unlock(&eb->refs_lock);
4824 }
4825 mark_extent_buffer_accessed(eb, NULL);
4826 return eb;
4827 }
4828 rcu_read_unlock();
4829
4830 return NULL;
4831 }
4832
4833 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4834 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4835 u64 start, u32 nodesize)
4836 {
4837 struct extent_buffer *eb, *exists = NULL;
4838 int ret;
4839
4840 eb = find_extent_buffer(fs_info, start);
4841 if (eb)
4842 return eb;
4843 eb = alloc_dummy_extent_buffer(fs_info, start, nodesize);
4844 if (!eb)
4845 return NULL;
4846 eb->fs_info = fs_info;
4847 again:
4848 ret = radix_tree_preload(GFP_NOFS);
4849 if (ret)
4850 goto free_eb;
4851 spin_lock(&fs_info->buffer_lock);
4852 ret = radix_tree_insert(&fs_info->buffer_radix,
4853 start >> PAGE_SHIFT, eb);
4854 spin_unlock(&fs_info->buffer_lock);
4855 radix_tree_preload_end();
4856 if (ret == -EEXIST) {
4857 exists = find_extent_buffer(fs_info, start);
4858 if (exists)
4859 goto free_eb;
4860 else
4861 goto again;
4862 }
4863 check_buffer_tree_ref(eb);
4864 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4865
4866 /*
4867 * We will free dummy extent buffer's if they come into
4868 * free_extent_buffer with a ref count of 2, but if we are using this we
4869 * want the buffers to stay in memory until we're done with them, so
4870 * bump the ref count again.
4871 */
4872 atomic_inc(&eb->refs);
4873 return eb;
4874 free_eb:
4875 btrfs_release_extent_buffer(eb);
4876 return exists;
4877 }
4878 #endif
4879
4880 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4881 u64 start)
4882 {
4883 unsigned long len = fs_info->tree_root->nodesize;
4884 unsigned long num_pages = num_extent_pages(start, len);
4885 unsigned long i;
4886 unsigned long index = start >> PAGE_SHIFT;
4887 struct extent_buffer *eb;
4888 struct extent_buffer *exists = NULL;
4889 struct page *p;
4890 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4891 int uptodate = 1;
4892 int ret;
4893
4894 if (!IS_ALIGNED(start, fs_info->tree_root->sectorsize)) {
4895 btrfs_err(fs_info, "bad tree block start %llu", start);
4896 return ERR_PTR(-EINVAL);
4897 }
4898
4899 eb = find_extent_buffer(fs_info, start);
4900 if (eb)
4901 return eb;
4902
4903 eb = __alloc_extent_buffer(fs_info, start, len);
4904 if (!eb)
4905 return ERR_PTR(-ENOMEM);
4906
4907 for (i = 0; i < num_pages; i++, index++) {
4908 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4909 if (!p) {
4910 exists = ERR_PTR(-ENOMEM);
4911 goto free_eb;
4912 }
4913
4914 spin_lock(&mapping->private_lock);
4915 if (PagePrivate(p)) {
4916 /*
4917 * We could have already allocated an eb for this page
4918 * and attached one so lets see if we can get a ref on
4919 * the existing eb, and if we can we know it's good and
4920 * we can just return that one, else we know we can just
4921 * overwrite page->private.
4922 */
4923 exists = (struct extent_buffer *)p->private;
4924 if (atomic_inc_not_zero(&exists->refs)) {
4925 spin_unlock(&mapping->private_lock);
4926 unlock_page(p);
4927 put_page(p);
4928 mark_extent_buffer_accessed(exists, p);
4929 goto free_eb;
4930 }
4931 exists = NULL;
4932
4933 /*
4934 * Do this so attach doesn't complain and we need to
4935 * drop the ref the old guy had.
4936 */
4937 ClearPagePrivate(p);
4938 WARN_ON(PageDirty(p));
4939 put_page(p);
4940 }
4941 attach_extent_buffer_page(eb, p);
4942 spin_unlock(&mapping->private_lock);
4943 WARN_ON(PageDirty(p));
4944 eb->pages[i] = p;
4945 if (!PageUptodate(p))
4946 uptodate = 0;
4947
4948 /*
4949 * see below about how we avoid a nasty race with release page
4950 * and why we unlock later
4951 */
4952 }
4953 if (uptodate)
4954 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4955 again:
4956 ret = radix_tree_preload(GFP_NOFS);
4957 if (ret) {
4958 exists = ERR_PTR(ret);
4959 goto free_eb;
4960 }
4961
4962 spin_lock(&fs_info->buffer_lock);
4963 ret = radix_tree_insert(&fs_info->buffer_radix,
4964 start >> PAGE_SHIFT, eb);
4965 spin_unlock(&fs_info->buffer_lock);
4966 radix_tree_preload_end();
4967 if (ret == -EEXIST) {
4968 exists = find_extent_buffer(fs_info, start);
4969 if (exists)
4970 goto free_eb;
4971 else
4972 goto again;
4973 }
4974 /* add one reference for the tree */
4975 check_buffer_tree_ref(eb);
4976 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4977
4978 /*
4979 * there is a race where release page may have
4980 * tried to find this extent buffer in the radix
4981 * but failed. It will tell the VM it is safe to
4982 * reclaim the, and it will clear the page private bit.
4983 * We must make sure to set the page private bit properly
4984 * after the extent buffer is in the radix tree so
4985 * it doesn't get lost
4986 */
4987 SetPageChecked(eb->pages[0]);
4988 for (i = 1; i < num_pages; i++) {
4989 p = eb->pages[i];
4990 ClearPageChecked(p);
4991 unlock_page(p);
4992 }
4993 unlock_page(eb->pages[0]);
4994 return eb;
4995
4996 free_eb:
4997 WARN_ON(!atomic_dec_and_test(&eb->refs));
4998 for (i = 0; i < num_pages; i++) {
4999 if (eb->pages[i])
5000 unlock_page(eb->pages[i]);
5001 }
5002
5003 btrfs_release_extent_buffer(eb);
5004 return exists;
5005 }
5006
5007 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5008 {
5009 struct extent_buffer *eb =
5010 container_of(head, struct extent_buffer, rcu_head);
5011
5012 __free_extent_buffer(eb);
5013 }
5014
5015 /* Expects to have eb->eb_lock already held */
5016 static int release_extent_buffer(struct extent_buffer *eb)
5017 {
5018 WARN_ON(atomic_read(&eb->refs) == 0);
5019 if (atomic_dec_and_test(&eb->refs)) {
5020 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5021 struct btrfs_fs_info *fs_info = eb->fs_info;
5022
5023 spin_unlock(&eb->refs_lock);
5024
5025 spin_lock(&fs_info->buffer_lock);
5026 radix_tree_delete(&fs_info->buffer_radix,
5027 eb->start >> PAGE_SHIFT);
5028 spin_unlock(&fs_info->buffer_lock);
5029 } else {
5030 spin_unlock(&eb->refs_lock);
5031 }
5032
5033 /* Should be safe to release our pages at this point */
5034 btrfs_release_extent_buffer_page(eb);
5035 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5036 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5037 __free_extent_buffer(eb);
5038 return 1;
5039 }
5040 #endif
5041 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5042 return 1;
5043 }
5044 spin_unlock(&eb->refs_lock);
5045
5046 return 0;
5047 }
5048
5049 void free_extent_buffer(struct extent_buffer *eb)
5050 {
5051 int refs;
5052 int old;
5053 if (!eb)
5054 return;
5055
5056 while (1) {
5057 refs = atomic_read(&eb->refs);
5058 if (refs <= 3)
5059 break;
5060 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5061 if (old == refs)
5062 return;
5063 }
5064
5065 spin_lock(&eb->refs_lock);
5066 if (atomic_read(&eb->refs) == 2 &&
5067 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5068 atomic_dec(&eb->refs);
5069
5070 if (atomic_read(&eb->refs) == 2 &&
5071 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5072 !extent_buffer_under_io(eb) &&
5073 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5074 atomic_dec(&eb->refs);
5075
5076 /*
5077 * I know this is terrible, but it's temporary until we stop tracking
5078 * the uptodate bits and such for the extent buffers.
5079 */
5080 release_extent_buffer(eb);
5081 }
5082
5083 void free_extent_buffer_stale(struct extent_buffer *eb)
5084 {
5085 if (!eb)
5086 return;
5087
5088 spin_lock(&eb->refs_lock);
5089 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5090
5091 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5092 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5093 atomic_dec(&eb->refs);
5094 release_extent_buffer(eb);
5095 }
5096
5097 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5098 {
5099 unsigned long i;
5100 unsigned long num_pages;
5101 struct page *page;
5102
5103 num_pages = num_extent_pages(eb->start, eb->len);
5104
5105 for (i = 0; i < num_pages; i++) {
5106 page = eb->pages[i];
5107 if (!PageDirty(page))
5108 continue;
5109
5110 lock_page(page);
5111 WARN_ON(!PagePrivate(page));
5112
5113 clear_page_dirty_for_io(page);
5114 spin_lock_irq(&page->mapping->tree_lock);
5115 if (!PageDirty(page)) {
5116 radix_tree_tag_clear(&page->mapping->page_tree,
5117 page_index(page),
5118 PAGECACHE_TAG_DIRTY);
5119 }
5120 spin_unlock_irq(&page->mapping->tree_lock);
5121 ClearPageError(page);
5122 unlock_page(page);
5123 }
5124 WARN_ON(atomic_read(&eb->refs) == 0);
5125 }
5126
5127 int set_extent_buffer_dirty(struct extent_buffer *eb)
5128 {
5129 unsigned long i;
5130 unsigned long num_pages;
5131 int was_dirty = 0;
5132
5133 check_buffer_tree_ref(eb);
5134
5135 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5136
5137 num_pages = num_extent_pages(eb->start, eb->len);
5138 WARN_ON(atomic_read(&eb->refs) == 0);
5139 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5140
5141 for (i = 0; i < num_pages; i++)
5142 set_page_dirty(eb->pages[i]);
5143 return was_dirty;
5144 }
5145
5146 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5147 {
5148 unsigned long i;
5149 struct page *page;
5150 unsigned long num_pages;
5151
5152 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5153 num_pages = num_extent_pages(eb->start, eb->len);
5154 for (i = 0; i < num_pages; i++) {
5155 page = eb->pages[i];
5156 if (page)
5157 ClearPageUptodate(page);
5158 }
5159 }
5160
5161 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5162 {
5163 unsigned long i;
5164 struct page *page;
5165 unsigned long num_pages;
5166
5167 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5168 num_pages = num_extent_pages(eb->start, eb->len);
5169 for (i = 0; i < num_pages; i++) {
5170 page = eb->pages[i];
5171 SetPageUptodate(page);
5172 }
5173 }
5174
5175 int extent_buffer_uptodate(struct extent_buffer *eb)
5176 {
5177 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5178 }
5179
5180 int read_extent_buffer_pages(struct extent_io_tree *tree,
5181 struct extent_buffer *eb, u64 start, int wait,
5182 get_extent_t *get_extent, int mirror_num)
5183 {
5184 unsigned long i;
5185 unsigned long start_i;
5186 struct page *page;
5187 int err;
5188 int ret = 0;
5189 int locked_pages = 0;
5190 int all_uptodate = 1;
5191 unsigned long num_pages;
5192 unsigned long num_reads = 0;
5193 struct bio *bio = NULL;
5194 unsigned long bio_flags = 0;
5195
5196 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5197 return 0;
5198
5199 if (start) {
5200 WARN_ON(start < eb->start);
5201 start_i = (start >> PAGE_SHIFT) -
5202 (eb->start >> PAGE_SHIFT);
5203 } else {
5204 start_i = 0;
5205 }
5206
5207 num_pages = num_extent_pages(eb->start, eb->len);
5208 for (i = start_i; i < num_pages; i++) {
5209 page = eb->pages[i];
5210 if (wait == WAIT_NONE) {
5211 if (!trylock_page(page))
5212 goto unlock_exit;
5213 } else {
5214 lock_page(page);
5215 }
5216 locked_pages++;
5217 if (!PageUptodate(page)) {
5218 num_reads++;
5219 all_uptodate = 0;
5220 }
5221 }
5222 if (all_uptodate) {
5223 if (start_i == 0)
5224 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5225 goto unlock_exit;
5226 }
5227
5228 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5229 eb->read_mirror = 0;
5230 atomic_set(&eb->io_pages, num_reads);
5231 for (i = start_i; i < num_pages; i++) {
5232 page = eb->pages[i];
5233 if (!PageUptodate(page)) {
5234 ClearPageError(page);
5235 err = __extent_read_full_page(tree, page,
5236 get_extent, &bio,
5237 mirror_num, &bio_flags,
5238 REQ_META);
5239 if (err)
5240 ret = err;
5241 } else {
5242 unlock_page(page);
5243 }
5244 }
5245
5246 if (bio) {
5247 err = submit_one_bio(bio, mirror_num, bio_flags);
5248 if (err)
5249 return err;
5250 }
5251
5252 if (ret || wait != WAIT_COMPLETE)
5253 return ret;
5254
5255 for (i = start_i; i < num_pages; i++) {
5256 page = eb->pages[i];
5257 wait_on_page_locked(page);
5258 if (!PageUptodate(page))
5259 ret = -EIO;
5260 }
5261
5262 return ret;
5263
5264 unlock_exit:
5265 i = start_i;
5266 while (locked_pages > 0) {
5267 page = eb->pages[i];
5268 i++;
5269 unlock_page(page);
5270 locked_pages--;
5271 }
5272 return ret;
5273 }
5274
5275 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5276 unsigned long start,
5277 unsigned long len)
5278 {
5279 size_t cur;
5280 size_t offset;
5281 struct page *page;
5282 char *kaddr;
5283 char *dst = (char *)dstv;
5284 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5285 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5286
5287 WARN_ON(start > eb->len);
5288 WARN_ON(start + len > eb->start + eb->len);
5289
5290 offset = (start_offset + start) & (PAGE_SIZE - 1);
5291
5292 while (len > 0) {
5293 page = eb->pages[i];
5294
5295 cur = min(len, (PAGE_SIZE - offset));
5296 kaddr = page_address(page);
5297 memcpy(dst, kaddr + offset, cur);
5298
5299 dst += cur;
5300 len -= cur;
5301 offset = 0;
5302 i++;
5303 }
5304 }
5305
5306 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5307 unsigned long start,
5308 unsigned long len)
5309 {
5310 size_t cur;
5311 size_t offset;
5312 struct page *page;
5313 char *kaddr;
5314 char __user *dst = (char __user *)dstv;
5315 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5316 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5317 int ret = 0;
5318
5319 WARN_ON(start > eb->len);
5320 WARN_ON(start + len > eb->start + eb->len);
5321
5322 offset = (start_offset + start) & (PAGE_SIZE - 1);
5323
5324 while (len > 0) {
5325 page = eb->pages[i];
5326
5327 cur = min(len, (PAGE_SIZE - offset));
5328 kaddr = page_address(page);
5329 if (copy_to_user(dst, kaddr + offset, cur)) {
5330 ret = -EFAULT;
5331 break;
5332 }
5333
5334 dst += cur;
5335 len -= cur;
5336 offset = 0;
5337 i++;
5338 }
5339
5340 return ret;
5341 }
5342
5343 /*
5344 * return 0 if the item is found within a page.
5345 * return 1 if the item spans two pages.
5346 * return -EINVAL otherwise.
5347 */
5348 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5349 unsigned long min_len, char **map,
5350 unsigned long *map_start,
5351 unsigned long *map_len)
5352 {
5353 size_t offset = start & (PAGE_SIZE - 1);
5354 char *kaddr;
5355 struct page *p;
5356 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5357 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5358 unsigned long end_i = (start_offset + start + min_len - 1) >>
5359 PAGE_SHIFT;
5360
5361 if (i != end_i)
5362 return 1;
5363
5364 if (i == 0) {
5365 offset = start_offset;
5366 *map_start = 0;
5367 } else {
5368 offset = 0;
5369 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5370 }
5371
5372 if (start + min_len > eb->len) {
5373 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5374 "wanted %lu %lu\n",
5375 eb->start, eb->len, start, min_len);
5376 return -EINVAL;
5377 }
5378
5379 p = eb->pages[i];
5380 kaddr = page_address(p);
5381 *map = kaddr + offset;
5382 *map_len = PAGE_SIZE - offset;
5383 return 0;
5384 }
5385
5386 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5387 unsigned long start,
5388 unsigned long len)
5389 {
5390 size_t cur;
5391 size_t offset;
5392 struct page *page;
5393 char *kaddr;
5394 char *ptr = (char *)ptrv;
5395 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5396 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5397 int ret = 0;
5398
5399 WARN_ON(start > eb->len);
5400 WARN_ON(start + len > eb->start + eb->len);
5401
5402 offset = (start_offset + start) & (PAGE_SIZE - 1);
5403
5404 while (len > 0) {
5405 page = eb->pages[i];
5406
5407 cur = min(len, (PAGE_SIZE - offset));
5408
5409 kaddr = page_address(page);
5410 ret = memcmp(ptr, kaddr + offset, cur);
5411 if (ret)
5412 break;
5413
5414 ptr += cur;
5415 len -= cur;
5416 offset = 0;
5417 i++;
5418 }
5419 return ret;
5420 }
5421
5422 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5423 unsigned long start, unsigned long len)
5424 {
5425 size_t cur;
5426 size_t offset;
5427 struct page *page;
5428 char *kaddr;
5429 char *src = (char *)srcv;
5430 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5431 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5432
5433 WARN_ON(start > eb->len);
5434 WARN_ON(start + len > eb->start + eb->len);
5435
5436 offset = (start_offset + start) & (PAGE_SIZE - 1);
5437
5438 while (len > 0) {
5439 page = eb->pages[i];
5440 WARN_ON(!PageUptodate(page));
5441
5442 cur = min(len, PAGE_SIZE - offset);
5443 kaddr = page_address(page);
5444 memcpy(kaddr + offset, src, cur);
5445
5446 src += cur;
5447 len -= cur;
5448 offset = 0;
5449 i++;
5450 }
5451 }
5452
5453 void memset_extent_buffer(struct extent_buffer *eb, char c,
5454 unsigned long start, unsigned long len)
5455 {
5456 size_t cur;
5457 size_t offset;
5458 struct page *page;
5459 char *kaddr;
5460 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5461 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5462
5463 WARN_ON(start > eb->len);
5464 WARN_ON(start + len > eb->start + eb->len);
5465
5466 offset = (start_offset + start) & (PAGE_SIZE - 1);
5467
5468 while (len > 0) {
5469 page = eb->pages[i];
5470 WARN_ON(!PageUptodate(page));
5471
5472 cur = min(len, PAGE_SIZE - offset);
5473 kaddr = page_address(page);
5474 memset(kaddr + offset, c, cur);
5475
5476 len -= cur;
5477 offset = 0;
5478 i++;
5479 }
5480 }
5481
5482 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5483 unsigned long dst_offset, unsigned long src_offset,
5484 unsigned long len)
5485 {
5486 u64 dst_len = dst->len;
5487 size_t cur;
5488 size_t offset;
5489 struct page *page;
5490 char *kaddr;
5491 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5492 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5493
5494 WARN_ON(src->len != dst_len);
5495
5496 offset = (start_offset + dst_offset) &
5497 (PAGE_SIZE - 1);
5498
5499 while (len > 0) {
5500 page = dst->pages[i];
5501 WARN_ON(!PageUptodate(page));
5502
5503 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5504
5505 kaddr = page_address(page);
5506 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5507
5508 src_offset += cur;
5509 len -= cur;
5510 offset = 0;
5511 i++;
5512 }
5513 }
5514
5515 /*
5516 * The extent buffer bitmap operations are done with byte granularity because
5517 * bitmap items are not guaranteed to be aligned to a word and therefore a
5518 * single word in a bitmap may straddle two pages in the extent buffer.
5519 */
5520 #define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5521 #define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5522 #define BITMAP_FIRST_BYTE_MASK(start) \
5523 ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5524 #define BITMAP_LAST_BYTE_MASK(nbits) \
5525 (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5526
5527 /*
5528 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5529 * given bit number
5530 * @eb: the extent buffer
5531 * @start: offset of the bitmap item in the extent buffer
5532 * @nr: bit number
5533 * @page_index: return index of the page in the extent buffer that contains the
5534 * given bit number
5535 * @page_offset: return offset into the page given by page_index
5536 *
5537 * This helper hides the ugliness of finding the byte in an extent buffer which
5538 * contains a given bit.
5539 */
5540 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5541 unsigned long start, unsigned long nr,
5542 unsigned long *page_index,
5543 size_t *page_offset)
5544 {
5545 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5546 size_t byte_offset = BIT_BYTE(nr);
5547 size_t offset;
5548
5549 /*
5550 * The byte we want is the offset of the extent buffer + the offset of
5551 * the bitmap item in the extent buffer + the offset of the byte in the
5552 * bitmap item.
5553 */
5554 offset = start_offset + start + byte_offset;
5555
5556 *page_index = offset >> PAGE_SHIFT;
5557 *page_offset = offset & (PAGE_SIZE - 1);
5558 }
5559
5560 /**
5561 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5562 * @eb: the extent buffer
5563 * @start: offset of the bitmap item in the extent buffer
5564 * @nr: bit number to test
5565 */
5566 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5567 unsigned long nr)
5568 {
5569 char *kaddr;
5570 struct page *page;
5571 unsigned long i;
5572 size_t offset;
5573
5574 eb_bitmap_offset(eb, start, nr, &i, &offset);
5575 page = eb->pages[i];
5576 WARN_ON(!PageUptodate(page));
5577 kaddr = page_address(page);
5578 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5579 }
5580
5581 /**
5582 * extent_buffer_bitmap_set - set an area of a bitmap
5583 * @eb: the extent buffer
5584 * @start: offset of the bitmap item in the extent buffer
5585 * @pos: bit number of the first bit
5586 * @len: number of bits to set
5587 */
5588 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5589 unsigned long pos, unsigned long len)
5590 {
5591 char *kaddr;
5592 struct page *page;
5593 unsigned long i;
5594 size_t offset;
5595 const unsigned int size = pos + len;
5596 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5597 unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5598
5599 eb_bitmap_offset(eb, start, pos, &i, &offset);
5600 page = eb->pages[i];
5601 WARN_ON(!PageUptodate(page));
5602 kaddr = page_address(page);
5603
5604 while (len >= bits_to_set) {
5605 kaddr[offset] |= mask_to_set;
5606 len -= bits_to_set;
5607 bits_to_set = BITS_PER_BYTE;
5608 mask_to_set = ~0U;
5609 if (++offset >= PAGE_SIZE && len > 0) {
5610 offset = 0;
5611 page = eb->pages[++i];
5612 WARN_ON(!PageUptodate(page));
5613 kaddr = page_address(page);
5614 }
5615 }
5616 if (len) {
5617 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5618 kaddr[offset] |= mask_to_set;
5619 }
5620 }
5621
5622
5623 /**
5624 * extent_buffer_bitmap_clear - clear an area of a bitmap
5625 * @eb: the extent buffer
5626 * @start: offset of the bitmap item in the extent buffer
5627 * @pos: bit number of the first bit
5628 * @len: number of bits to clear
5629 */
5630 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5631 unsigned long pos, unsigned long len)
5632 {
5633 char *kaddr;
5634 struct page *page;
5635 unsigned long i;
5636 size_t offset;
5637 const unsigned int size = pos + len;
5638 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5639 unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5640
5641 eb_bitmap_offset(eb, start, pos, &i, &offset);
5642 page = eb->pages[i];
5643 WARN_ON(!PageUptodate(page));
5644 kaddr = page_address(page);
5645
5646 while (len >= bits_to_clear) {
5647 kaddr[offset] &= ~mask_to_clear;
5648 len -= bits_to_clear;
5649 bits_to_clear = BITS_PER_BYTE;
5650 mask_to_clear = ~0U;
5651 if (++offset >= PAGE_SIZE && len > 0) {
5652 offset = 0;
5653 page = eb->pages[++i];
5654 WARN_ON(!PageUptodate(page));
5655 kaddr = page_address(page);
5656 }
5657 }
5658 if (len) {
5659 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5660 kaddr[offset] &= ~mask_to_clear;
5661 }
5662 }
5663
5664 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5665 {
5666 unsigned long distance = (src > dst) ? src - dst : dst - src;
5667 return distance < len;
5668 }
5669
5670 static void copy_pages(struct page *dst_page, struct page *src_page,
5671 unsigned long dst_off, unsigned long src_off,
5672 unsigned long len)
5673 {
5674 char *dst_kaddr = page_address(dst_page);
5675 char *src_kaddr;
5676 int must_memmove = 0;
5677
5678 if (dst_page != src_page) {
5679 src_kaddr = page_address(src_page);
5680 } else {
5681 src_kaddr = dst_kaddr;
5682 if (areas_overlap(src_off, dst_off, len))
5683 must_memmove = 1;
5684 }
5685
5686 if (must_memmove)
5687 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5688 else
5689 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5690 }
5691
5692 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5693 unsigned long src_offset, unsigned long len)
5694 {
5695 size_t cur;
5696 size_t dst_off_in_page;
5697 size_t src_off_in_page;
5698 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5699 unsigned long dst_i;
5700 unsigned long src_i;
5701
5702 if (src_offset + len > dst->len) {
5703 btrfs_err(dst->fs_info,
5704 "memmove bogus src_offset %lu move "
5705 "len %lu dst len %lu", src_offset, len, dst->len);
5706 BUG_ON(1);
5707 }
5708 if (dst_offset + len > dst->len) {
5709 btrfs_err(dst->fs_info,
5710 "memmove bogus dst_offset %lu move "
5711 "len %lu dst len %lu", dst_offset, len, dst->len);
5712 BUG_ON(1);
5713 }
5714
5715 while (len > 0) {
5716 dst_off_in_page = (start_offset + dst_offset) &
5717 (PAGE_SIZE - 1);
5718 src_off_in_page = (start_offset + src_offset) &
5719 (PAGE_SIZE - 1);
5720
5721 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5722 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5723
5724 cur = min(len, (unsigned long)(PAGE_SIZE -
5725 src_off_in_page));
5726 cur = min_t(unsigned long, cur,
5727 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5728
5729 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5730 dst_off_in_page, src_off_in_page, cur);
5731
5732 src_offset += cur;
5733 dst_offset += cur;
5734 len -= cur;
5735 }
5736 }
5737
5738 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5739 unsigned long src_offset, unsigned long len)
5740 {
5741 size_t cur;
5742 size_t dst_off_in_page;
5743 size_t src_off_in_page;
5744 unsigned long dst_end = dst_offset + len - 1;
5745 unsigned long src_end = src_offset + len - 1;
5746 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5747 unsigned long dst_i;
5748 unsigned long src_i;
5749
5750 if (src_offset + len > dst->len) {
5751 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5752 "len %lu len %lu", src_offset, len, dst->len);
5753 BUG_ON(1);
5754 }
5755 if (dst_offset + len > dst->len) {
5756 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5757 "len %lu len %lu", dst_offset, len, dst->len);
5758 BUG_ON(1);
5759 }
5760 if (dst_offset < src_offset) {
5761 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5762 return;
5763 }
5764 while (len > 0) {
5765 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5766 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5767
5768 dst_off_in_page = (start_offset + dst_end) &
5769 (PAGE_SIZE - 1);
5770 src_off_in_page = (start_offset + src_end) &
5771 (PAGE_SIZE - 1);
5772
5773 cur = min_t(unsigned long, len, src_off_in_page + 1);
5774 cur = min(cur, dst_off_in_page + 1);
5775 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5776 dst_off_in_page - cur + 1,
5777 src_off_in_page - cur + 1, cur);
5778
5779 dst_end -= cur;
5780 src_end -= cur;
5781 len -= cur;
5782 }
5783 }
5784
5785 int try_release_extent_buffer(struct page *page)
5786 {
5787 struct extent_buffer *eb;
5788
5789 /*
5790 * We need to make sure nobody is attaching this page to an eb right
5791 * now.
5792 */
5793 spin_lock(&page->mapping->private_lock);
5794 if (!PagePrivate(page)) {
5795 spin_unlock(&page->mapping->private_lock);
5796 return 1;
5797 }
5798
5799 eb = (struct extent_buffer *)page->private;
5800 BUG_ON(!eb);
5801
5802 /*
5803 * This is a little awful but should be ok, we need to make sure that
5804 * the eb doesn't disappear out from under us while we're looking at
5805 * this page.
5806 */
5807 spin_lock(&eb->refs_lock);
5808 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5809 spin_unlock(&eb->refs_lock);
5810 spin_unlock(&page->mapping->private_lock);
5811 return 0;
5812 }
5813 spin_unlock(&page->mapping->private_lock);
5814
5815 /*
5816 * If tree ref isn't set then we know the ref on this eb is a real ref,
5817 * so just return, this page will likely be freed soon anyway.
5818 */
5819 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5820 spin_unlock(&eb->refs_lock);
5821 return 0;
5822 }
5823
5824 return release_extent_buffer(eb);
5825 }
This page took 0.160185 seconds and 5 git commands to generate.