Btrfs: Pass fs_info to btrfs_num_copies() instead of mapping_tree
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27
28 static LIST_HEAD(buffers);
29 static LIST_HEAD(states);
30
31 #define LEAK_DEBUG 0
32 #if LEAK_DEBUG
33 static DEFINE_SPINLOCK(leak_lock);
34 #endif
35
36 #define BUFFER_LRU_MAX 64
37
38 struct tree_entry {
39 u64 start;
40 u64 end;
41 struct rb_node rb_node;
42 };
43
44 struct extent_page_data {
45 struct bio *bio;
46 struct extent_io_tree *tree;
47 get_extent_t *get_extent;
48 unsigned long bio_flags;
49
50 /* tells writepage not to lock the state bits for this range
51 * it still does the unlocking
52 */
53 unsigned int extent_locked:1;
54
55 /* tells the submit_bio code to use a WRITE_SYNC */
56 unsigned int sync_io:1;
57 };
58
59 static noinline void flush_write_bio(void *data);
60 static inline struct btrfs_fs_info *
61 tree_fs_info(struct extent_io_tree *tree)
62 {
63 return btrfs_sb(tree->mapping->host->i_sb);
64 }
65
66 int __init extent_io_init(void)
67 {
68 extent_state_cache = kmem_cache_create("btrfs_extent_state",
69 sizeof(struct extent_state), 0,
70 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
71 if (!extent_state_cache)
72 return -ENOMEM;
73
74 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
75 sizeof(struct extent_buffer), 0,
76 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
77 if (!extent_buffer_cache)
78 goto free_state_cache;
79 return 0;
80
81 free_state_cache:
82 kmem_cache_destroy(extent_state_cache);
83 return -ENOMEM;
84 }
85
86 void extent_io_exit(void)
87 {
88 struct extent_state *state;
89 struct extent_buffer *eb;
90
91 while (!list_empty(&states)) {
92 state = list_entry(states.next, struct extent_state, leak_list);
93 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
94 "state %lu in tree %p refs %d\n",
95 (unsigned long long)state->start,
96 (unsigned long long)state->end,
97 state->state, state->tree, atomic_read(&state->refs));
98 list_del(&state->leak_list);
99 kmem_cache_free(extent_state_cache, state);
100
101 }
102
103 while (!list_empty(&buffers)) {
104 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
105 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
106 "refs %d\n", (unsigned long long)eb->start,
107 eb->len, atomic_read(&eb->refs));
108 list_del(&eb->leak_list);
109 kmem_cache_free(extent_buffer_cache, eb);
110 }
111
112 /*
113 * Make sure all delayed rcu free are flushed before we
114 * destroy caches.
115 */
116 rcu_barrier();
117 if (extent_state_cache)
118 kmem_cache_destroy(extent_state_cache);
119 if (extent_buffer_cache)
120 kmem_cache_destroy(extent_buffer_cache);
121 }
122
123 void extent_io_tree_init(struct extent_io_tree *tree,
124 struct address_space *mapping)
125 {
126 tree->state = RB_ROOT;
127 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
128 tree->ops = NULL;
129 tree->dirty_bytes = 0;
130 spin_lock_init(&tree->lock);
131 spin_lock_init(&tree->buffer_lock);
132 tree->mapping = mapping;
133 }
134
135 static struct extent_state *alloc_extent_state(gfp_t mask)
136 {
137 struct extent_state *state;
138 #if LEAK_DEBUG
139 unsigned long flags;
140 #endif
141
142 state = kmem_cache_alloc(extent_state_cache, mask);
143 if (!state)
144 return state;
145 state->state = 0;
146 state->private = 0;
147 state->tree = NULL;
148 #if LEAK_DEBUG
149 spin_lock_irqsave(&leak_lock, flags);
150 list_add(&state->leak_list, &states);
151 spin_unlock_irqrestore(&leak_lock, flags);
152 #endif
153 atomic_set(&state->refs, 1);
154 init_waitqueue_head(&state->wq);
155 trace_alloc_extent_state(state, mask, _RET_IP_);
156 return state;
157 }
158
159 void free_extent_state(struct extent_state *state)
160 {
161 if (!state)
162 return;
163 if (atomic_dec_and_test(&state->refs)) {
164 #if LEAK_DEBUG
165 unsigned long flags;
166 #endif
167 WARN_ON(state->tree);
168 #if LEAK_DEBUG
169 spin_lock_irqsave(&leak_lock, flags);
170 list_del(&state->leak_list);
171 spin_unlock_irqrestore(&leak_lock, flags);
172 #endif
173 trace_free_extent_state(state, _RET_IP_);
174 kmem_cache_free(extent_state_cache, state);
175 }
176 }
177
178 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
179 struct rb_node *node)
180 {
181 struct rb_node **p = &root->rb_node;
182 struct rb_node *parent = NULL;
183 struct tree_entry *entry;
184
185 while (*p) {
186 parent = *p;
187 entry = rb_entry(parent, struct tree_entry, rb_node);
188
189 if (offset < entry->start)
190 p = &(*p)->rb_left;
191 else if (offset > entry->end)
192 p = &(*p)->rb_right;
193 else
194 return parent;
195 }
196
197 rb_link_node(node, parent, p);
198 rb_insert_color(node, root);
199 return NULL;
200 }
201
202 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
203 struct rb_node **prev_ret,
204 struct rb_node **next_ret)
205 {
206 struct rb_root *root = &tree->state;
207 struct rb_node *n = root->rb_node;
208 struct rb_node *prev = NULL;
209 struct rb_node *orig_prev = NULL;
210 struct tree_entry *entry;
211 struct tree_entry *prev_entry = NULL;
212
213 while (n) {
214 entry = rb_entry(n, struct tree_entry, rb_node);
215 prev = n;
216 prev_entry = entry;
217
218 if (offset < entry->start)
219 n = n->rb_left;
220 else if (offset > entry->end)
221 n = n->rb_right;
222 else
223 return n;
224 }
225
226 if (prev_ret) {
227 orig_prev = prev;
228 while (prev && offset > prev_entry->end) {
229 prev = rb_next(prev);
230 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
231 }
232 *prev_ret = prev;
233 prev = orig_prev;
234 }
235
236 if (next_ret) {
237 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
238 while (prev && offset < prev_entry->start) {
239 prev = rb_prev(prev);
240 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
241 }
242 *next_ret = prev;
243 }
244 return NULL;
245 }
246
247 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
248 u64 offset)
249 {
250 struct rb_node *prev = NULL;
251 struct rb_node *ret;
252
253 ret = __etree_search(tree, offset, &prev, NULL);
254 if (!ret)
255 return prev;
256 return ret;
257 }
258
259 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
260 struct extent_state *other)
261 {
262 if (tree->ops && tree->ops->merge_extent_hook)
263 tree->ops->merge_extent_hook(tree->mapping->host, new,
264 other);
265 }
266
267 /*
268 * utility function to look for merge candidates inside a given range.
269 * Any extents with matching state are merged together into a single
270 * extent in the tree. Extents with EXTENT_IO in their state field
271 * are not merged because the end_io handlers need to be able to do
272 * operations on them without sleeping (or doing allocations/splits).
273 *
274 * This should be called with the tree lock held.
275 */
276 static void merge_state(struct extent_io_tree *tree,
277 struct extent_state *state)
278 {
279 struct extent_state *other;
280 struct rb_node *other_node;
281
282 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
283 return;
284
285 other_node = rb_prev(&state->rb_node);
286 if (other_node) {
287 other = rb_entry(other_node, struct extent_state, rb_node);
288 if (other->end == state->start - 1 &&
289 other->state == state->state) {
290 merge_cb(tree, state, other);
291 state->start = other->start;
292 other->tree = NULL;
293 rb_erase(&other->rb_node, &tree->state);
294 free_extent_state(other);
295 }
296 }
297 other_node = rb_next(&state->rb_node);
298 if (other_node) {
299 other = rb_entry(other_node, struct extent_state, rb_node);
300 if (other->start == state->end + 1 &&
301 other->state == state->state) {
302 merge_cb(tree, state, other);
303 state->end = other->end;
304 other->tree = NULL;
305 rb_erase(&other->rb_node, &tree->state);
306 free_extent_state(other);
307 }
308 }
309 }
310
311 static void set_state_cb(struct extent_io_tree *tree,
312 struct extent_state *state, int *bits)
313 {
314 if (tree->ops && tree->ops->set_bit_hook)
315 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
316 }
317
318 static void clear_state_cb(struct extent_io_tree *tree,
319 struct extent_state *state, int *bits)
320 {
321 if (tree->ops && tree->ops->clear_bit_hook)
322 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
323 }
324
325 static void set_state_bits(struct extent_io_tree *tree,
326 struct extent_state *state, int *bits);
327
328 /*
329 * insert an extent_state struct into the tree. 'bits' are set on the
330 * struct before it is inserted.
331 *
332 * This may return -EEXIST if the extent is already there, in which case the
333 * state struct is freed.
334 *
335 * The tree lock is not taken internally. This is a utility function and
336 * probably isn't what you want to call (see set/clear_extent_bit).
337 */
338 static int insert_state(struct extent_io_tree *tree,
339 struct extent_state *state, u64 start, u64 end,
340 int *bits)
341 {
342 struct rb_node *node;
343
344 if (end < start)
345 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
346 (unsigned long long)end,
347 (unsigned long long)start);
348 state->start = start;
349 state->end = end;
350
351 set_state_bits(tree, state, bits);
352
353 node = tree_insert(&tree->state, end, &state->rb_node);
354 if (node) {
355 struct extent_state *found;
356 found = rb_entry(node, struct extent_state, rb_node);
357 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
358 "%llu %llu\n", (unsigned long long)found->start,
359 (unsigned long long)found->end,
360 (unsigned long long)start, (unsigned long long)end);
361 return -EEXIST;
362 }
363 state->tree = tree;
364 merge_state(tree, state);
365 return 0;
366 }
367
368 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
369 u64 split)
370 {
371 if (tree->ops && tree->ops->split_extent_hook)
372 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
373 }
374
375 /*
376 * split a given extent state struct in two, inserting the preallocated
377 * struct 'prealloc' as the newly created second half. 'split' indicates an
378 * offset inside 'orig' where it should be split.
379 *
380 * Before calling,
381 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
382 * are two extent state structs in the tree:
383 * prealloc: [orig->start, split - 1]
384 * orig: [ split, orig->end ]
385 *
386 * The tree locks are not taken by this function. They need to be held
387 * by the caller.
388 */
389 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
390 struct extent_state *prealloc, u64 split)
391 {
392 struct rb_node *node;
393
394 split_cb(tree, orig, split);
395
396 prealloc->start = orig->start;
397 prealloc->end = split - 1;
398 prealloc->state = orig->state;
399 orig->start = split;
400
401 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
402 if (node) {
403 free_extent_state(prealloc);
404 return -EEXIST;
405 }
406 prealloc->tree = tree;
407 return 0;
408 }
409
410 static struct extent_state *next_state(struct extent_state *state)
411 {
412 struct rb_node *next = rb_next(&state->rb_node);
413 if (next)
414 return rb_entry(next, struct extent_state, rb_node);
415 else
416 return NULL;
417 }
418
419 /*
420 * utility function to clear some bits in an extent state struct.
421 * it will optionally wake up any one waiting on this state (wake == 1).
422 *
423 * If no bits are set on the state struct after clearing things, the
424 * struct is freed and removed from the tree
425 */
426 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
427 struct extent_state *state,
428 int *bits, int wake)
429 {
430 struct extent_state *next;
431 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
432
433 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
434 u64 range = state->end - state->start + 1;
435 WARN_ON(range > tree->dirty_bytes);
436 tree->dirty_bytes -= range;
437 }
438 clear_state_cb(tree, state, bits);
439 state->state &= ~bits_to_clear;
440 if (wake)
441 wake_up(&state->wq);
442 if (state->state == 0) {
443 next = next_state(state);
444 if (state->tree) {
445 rb_erase(&state->rb_node, &tree->state);
446 state->tree = NULL;
447 free_extent_state(state);
448 } else {
449 WARN_ON(1);
450 }
451 } else {
452 merge_state(tree, state);
453 next = next_state(state);
454 }
455 return next;
456 }
457
458 static struct extent_state *
459 alloc_extent_state_atomic(struct extent_state *prealloc)
460 {
461 if (!prealloc)
462 prealloc = alloc_extent_state(GFP_ATOMIC);
463
464 return prealloc;
465 }
466
467 void extent_io_tree_panic(struct extent_io_tree *tree, int err)
468 {
469 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
470 "Extent tree was modified by another "
471 "thread while locked.");
472 }
473
474 /*
475 * clear some bits on a range in the tree. This may require splitting
476 * or inserting elements in the tree, so the gfp mask is used to
477 * indicate which allocations or sleeping are allowed.
478 *
479 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
480 * the given range from the tree regardless of state (ie for truncate).
481 *
482 * the range [start, end] is inclusive.
483 *
484 * This takes the tree lock, and returns 0 on success and < 0 on error.
485 */
486 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
487 int bits, int wake, int delete,
488 struct extent_state **cached_state,
489 gfp_t mask)
490 {
491 struct extent_state *state;
492 struct extent_state *cached;
493 struct extent_state *prealloc = NULL;
494 struct rb_node *node;
495 u64 last_end;
496 int err;
497 int clear = 0;
498
499 if (delete)
500 bits |= ~EXTENT_CTLBITS;
501 bits |= EXTENT_FIRST_DELALLOC;
502
503 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
504 clear = 1;
505 again:
506 if (!prealloc && (mask & __GFP_WAIT)) {
507 prealloc = alloc_extent_state(mask);
508 if (!prealloc)
509 return -ENOMEM;
510 }
511
512 spin_lock(&tree->lock);
513 if (cached_state) {
514 cached = *cached_state;
515
516 if (clear) {
517 *cached_state = NULL;
518 cached_state = NULL;
519 }
520
521 if (cached && cached->tree && cached->start <= start &&
522 cached->end > start) {
523 if (clear)
524 atomic_dec(&cached->refs);
525 state = cached;
526 goto hit_next;
527 }
528 if (clear)
529 free_extent_state(cached);
530 }
531 /*
532 * this search will find the extents that end after
533 * our range starts
534 */
535 node = tree_search(tree, start);
536 if (!node)
537 goto out;
538 state = rb_entry(node, struct extent_state, rb_node);
539 hit_next:
540 if (state->start > end)
541 goto out;
542 WARN_ON(state->end < start);
543 last_end = state->end;
544
545 /* the state doesn't have the wanted bits, go ahead */
546 if (!(state->state & bits)) {
547 state = next_state(state);
548 goto next;
549 }
550
551 /*
552 * | ---- desired range ---- |
553 * | state | or
554 * | ------------- state -------------- |
555 *
556 * We need to split the extent we found, and may flip
557 * bits on second half.
558 *
559 * If the extent we found extends past our range, we
560 * just split and search again. It'll get split again
561 * the next time though.
562 *
563 * If the extent we found is inside our range, we clear
564 * the desired bit on it.
565 */
566
567 if (state->start < start) {
568 prealloc = alloc_extent_state_atomic(prealloc);
569 BUG_ON(!prealloc);
570 err = split_state(tree, state, prealloc, start);
571 if (err)
572 extent_io_tree_panic(tree, err);
573
574 prealloc = NULL;
575 if (err)
576 goto out;
577 if (state->end <= end) {
578 state = clear_state_bit(tree, state, &bits, wake);
579 goto next;
580 }
581 goto search_again;
582 }
583 /*
584 * | ---- desired range ---- |
585 * | state |
586 * We need to split the extent, and clear the bit
587 * on the first half
588 */
589 if (state->start <= end && state->end > end) {
590 prealloc = alloc_extent_state_atomic(prealloc);
591 BUG_ON(!prealloc);
592 err = split_state(tree, state, prealloc, end + 1);
593 if (err)
594 extent_io_tree_panic(tree, err);
595
596 if (wake)
597 wake_up(&state->wq);
598
599 clear_state_bit(tree, prealloc, &bits, wake);
600
601 prealloc = NULL;
602 goto out;
603 }
604
605 state = clear_state_bit(tree, state, &bits, wake);
606 next:
607 if (last_end == (u64)-1)
608 goto out;
609 start = last_end + 1;
610 if (start <= end && state && !need_resched())
611 goto hit_next;
612 goto search_again;
613
614 out:
615 spin_unlock(&tree->lock);
616 if (prealloc)
617 free_extent_state(prealloc);
618
619 return 0;
620
621 search_again:
622 if (start > end)
623 goto out;
624 spin_unlock(&tree->lock);
625 if (mask & __GFP_WAIT)
626 cond_resched();
627 goto again;
628 }
629
630 static void wait_on_state(struct extent_io_tree *tree,
631 struct extent_state *state)
632 __releases(tree->lock)
633 __acquires(tree->lock)
634 {
635 DEFINE_WAIT(wait);
636 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
637 spin_unlock(&tree->lock);
638 schedule();
639 spin_lock(&tree->lock);
640 finish_wait(&state->wq, &wait);
641 }
642
643 /*
644 * waits for one or more bits to clear on a range in the state tree.
645 * The range [start, end] is inclusive.
646 * The tree lock is taken by this function
647 */
648 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
649 {
650 struct extent_state *state;
651 struct rb_node *node;
652
653 spin_lock(&tree->lock);
654 again:
655 while (1) {
656 /*
657 * this search will find all the extents that end after
658 * our range starts
659 */
660 node = tree_search(tree, start);
661 if (!node)
662 break;
663
664 state = rb_entry(node, struct extent_state, rb_node);
665
666 if (state->start > end)
667 goto out;
668
669 if (state->state & bits) {
670 start = state->start;
671 atomic_inc(&state->refs);
672 wait_on_state(tree, state);
673 free_extent_state(state);
674 goto again;
675 }
676 start = state->end + 1;
677
678 if (start > end)
679 break;
680
681 cond_resched_lock(&tree->lock);
682 }
683 out:
684 spin_unlock(&tree->lock);
685 }
686
687 static void set_state_bits(struct extent_io_tree *tree,
688 struct extent_state *state,
689 int *bits)
690 {
691 int bits_to_set = *bits & ~EXTENT_CTLBITS;
692
693 set_state_cb(tree, state, bits);
694 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
695 u64 range = state->end - state->start + 1;
696 tree->dirty_bytes += range;
697 }
698 state->state |= bits_to_set;
699 }
700
701 static void cache_state(struct extent_state *state,
702 struct extent_state **cached_ptr)
703 {
704 if (cached_ptr && !(*cached_ptr)) {
705 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
706 *cached_ptr = state;
707 atomic_inc(&state->refs);
708 }
709 }
710 }
711
712 static void uncache_state(struct extent_state **cached_ptr)
713 {
714 if (cached_ptr && (*cached_ptr)) {
715 struct extent_state *state = *cached_ptr;
716 *cached_ptr = NULL;
717 free_extent_state(state);
718 }
719 }
720
721 /*
722 * set some bits on a range in the tree. This may require allocations or
723 * sleeping, so the gfp mask is used to indicate what is allowed.
724 *
725 * If any of the exclusive bits are set, this will fail with -EEXIST if some
726 * part of the range already has the desired bits set. The start of the
727 * existing range is returned in failed_start in this case.
728 *
729 * [start, end] is inclusive This takes the tree lock.
730 */
731
732 static int __must_check
733 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
734 int bits, int exclusive_bits, u64 *failed_start,
735 struct extent_state **cached_state, gfp_t mask)
736 {
737 struct extent_state *state;
738 struct extent_state *prealloc = NULL;
739 struct rb_node *node;
740 int err = 0;
741 u64 last_start;
742 u64 last_end;
743
744 bits |= EXTENT_FIRST_DELALLOC;
745 again:
746 if (!prealloc && (mask & __GFP_WAIT)) {
747 prealloc = alloc_extent_state(mask);
748 BUG_ON(!prealloc);
749 }
750
751 spin_lock(&tree->lock);
752 if (cached_state && *cached_state) {
753 state = *cached_state;
754 if (state->start <= start && state->end > start &&
755 state->tree) {
756 node = &state->rb_node;
757 goto hit_next;
758 }
759 }
760 /*
761 * this search will find all the extents that end after
762 * our range starts.
763 */
764 node = tree_search(tree, start);
765 if (!node) {
766 prealloc = alloc_extent_state_atomic(prealloc);
767 BUG_ON(!prealloc);
768 err = insert_state(tree, prealloc, start, end, &bits);
769 if (err)
770 extent_io_tree_panic(tree, err);
771
772 prealloc = NULL;
773 goto out;
774 }
775 state = rb_entry(node, struct extent_state, rb_node);
776 hit_next:
777 last_start = state->start;
778 last_end = state->end;
779
780 /*
781 * | ---- desired range ---- |
782 * | state |
783 *
784 * Just lock what we found and keep going
785 */
786 if (state->start == start && state->end <= end) {
787 if (state->state & exclusive_bits) {
788 *failed_start = state->start;
789 err = -EEXIST;
790 goto out;
791 }
792
793 set_state_bits(tree, state, &bits);
794 cache_state(state, cached_state);
795 merge_state(tree, state);
796 if (last_end == (u64)-1)
797 goto out;
798 start = last_end + 1;
799 state = next_state(state);
800 if (start < end && state && state->start == start &&
801 !need_resched())
802 goto hit_next;
803 goto search_again;
804 }
805
806 /*
807 * | ---- desired range ---- |
808 * | state |
809 * or
810 * | ------------- state -------------- |
811 *
812 * We need to split the extent we found, and may flip bits on
813 * second half.
814 *
815 * If the extent we found extends past our
816 * range, we just split and search again. It'll get split
817 * again the next time though.
818 *
819 * If the extent we found is inside our range, we set the
820 * desired bit on it.
821 */
822 if (state->start < start) {
823 if (state->state & exclusive_bits) {
824 *failed_start = start;
825 err = -EEXIST;
826 goto out;
827 }
828
829 prealloc = alloc_extent_state_atomic(prealloc);
830 BUG_ON(!prealloc);
831 err = split_state(tree, state, prealloc, start);
832 if (err)
833 extent_io_tree_panic(tree, err);
834
835 prealloc = NULL;
836 if (err)
837 goto out;
838 if (state->end <= end) {
839 set_state_bits(tree, state, &bits);
840 cache_state(state, cached_state);
841 merge_state(tree, state);
842 if (last_end == (u64)-1)
843 goto out;
844 start = last_end + 1;
845 state = next_state(state);
846 if (start < end && state && state->start == start &&
847 !need_resched())
848 goto hit_next;
849 }
850 goto search_again;
851 }
852 /*
853 * | ---- desired range ---- |
854 * | state | or | state |
855 *
856 * There's a hole, we need to insert something in it and
857 * ignore the extent we found.
858 */
859 if (state->start > start) {
860 u64 this_end;
861 if (end < last_start)
862 this_end = end;
863 else
864 this_end = last_start - 1;
865
866 prealloc = alloc_extent_state_atomic(prealloc);
867 BUG_ON(!prealloc);
868
869 /*
870 * Avoid to free 'prealloc' if it can be merged with
871 * the later extent.
872 */
873 err = insert_state(tree, prealloc, start, this_end,
874 &bits);
875 if (err)
876 extent_io_tree_panic(tree, err);
877
878 cache_state(prealloc, cached_state);
879 prealloc = NULL;
880 start = this_end + 1;
881 goto search_again;
882 }
883 /*
884 * | ---- desired range ---- |
885 * | state |
886 * We need to split the extent, and set the bit
887 * on the first half
888 */
889 if (state->start <= end && state->end > end) {
890 if (state->state & exclusive_bits) {
891 *failed_start = start;
892 err = -EEXIST;
893 goto out;
894 }
895
896 prealloc = alloc_extent_state_atomic(prealloc);
897 BUG_ON(!prealloc);
898 err = split_state(tree, state, prealloc, end + 1);
899 if (err)
900 extent_io_tree_panic(tree, err);
901
902 set_state_bits(tree, prealloc, &bits);
903 cache_state(prealloc, cached_state);
904 merge_state(tree, prealloc);
905 prealloc = NULL;
906 goto out;
907 }
908
909 goto search_again;
910
911 out:
912 spin_unlock(&tree->lock);
913 if (prealloc)
914 free_extent_state(prealloc);
915
916 return err;
917
918 search_again:
919 if (start > end)
920 goto out;
921 spin_unlock(&tree->lock);
922 if (mask & __GFP_WAIT)
923 cond_resched();
924 goto again;
925 }
926
927 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
928 u64 *failed_start, struct extent_state **cached_state,
929 gfp_t mask)
930 {
931 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
932 cached_state, mask);
933 }
934
935
936 /**
937 * convert_extent_bit - convert all bits in a given range from one bit to
938 * another
939 * @tree: the io tree to search
940 * @start: the start offset in bytes
941 * @end: the end offset in bytes (inclusive)
942 * @bits: the bits to set in this range
943 * @clear_bits: the bits to clear in this range
944 * @cached_state: state that we're going to cache
945 * @mask: the allocation mask
946 *
947 * This will go through and set bits for the given range. If any states exist
948 * already in this range they are set with the given bit and cleared of the
949 * clear_bits. This is only meant to be used by things that are mergeable, ie
950 * converting from say DELALLOC to DIRTY. This is not meant to be used with
951 * boundary bits like LOCK.
952 */
953 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
954 int bits, int clear_bits,
955 struct extent_state **cached_state, gfp_t mask)
956 {
957 struct extent_state *state;
958 struct extent_state *prealloc = NULL;
959 struct rb_node *node;
960 int err = 0;
961 u64 last_start;
962 u64 last_end;
963
964 again:
965 if (!prealloc && (mask & __GFP_WAIT)) {
966 prealloc = alloc_extent_state(mask);
967 if (!prealloc)
968 return -ENOMEM;
969 }
970
971 spin_lock(&tree->lock);
972 if (cached_state && *cached_state) {
973 state = *cached_state;
974 if (state->start <= start && state->end > start &&
975 state->tree) {
976 node = &state->rb_node;
977 goto hit_next;
978 }
979 }
980
981 /*
982 * this search will find all the extents that end after
983 * our range starts.
984 */
985 node = tree_search(tree, start);
986 if (!node) {
987 prealloc = alloc_extent_state_atomic(prealloc);
988 if (!prealloc) {
989 err = -ENOMEM;
990 goto out;
991 }
992 err = insert_state(tree, prealloc, start, end, &bits);
993 prealloc = NULL;
994 if (err)
995 extent_io_tree_panic(tree, err);
996 goto out;
997 }
998 state = rb_entry(node, struct extent_state, rb_node);
999 hit_next:
1000 last_start = state->start;
1001 last_end = state->end;
1002
1003 /*
1004 * | ---- desired range ---- |
1005 * | state |
1006 *
1007 * Just lock what we found and keep going
1008 */
1009 if (state->start == start && state->end <= end) {
1010 set_state_bits(tree, state, &bits);
1011 cache_state(state, cached_state);
1012 state = clear_state_bit(tree, state, &clear_bits, 0);
1013 if (last_end == (u64)-1)
1014 goto out;
1015 start = last_end + 1;
1016 if (start < end && state && state->start == start &&
1017 !need_resched())
1018 goto hit_next;
1019 goto search_again;
1020 }
1021
1022 /*
1023 * | ---- desired range ---- |
1024 * | state |
1025 * or
1026 * | ------------- state -------------- |
1027 *
1028 * We need to split the extent we found, and may flip bits on
1029 * second half.
1030 *
1031 * If the extent we found extends past our
1032 * range, we just split and search again. It'll get split
1033 * again the next time though.
1034 *
1035 * If the extent we found is inside our range, we set the
1036 * desired bit on it.
1037 */
1038 if (state->start < start) {
1039 prealloc = alloc_extent_state_atomic(prealloc);
1040 if (!prealloc) {
1041 err = -ENOMEM;
1042 goto out;
1043 }
1044 err = split_state(tree, state, prealloc, start);
1045 if (err)
1046 extent_io_tree_panic(tree, err);
1047 prealloc = NULL;
1048 if (err)
1049 goto out;
1050 if (state->end <= end) {
1051 set_state_bits(tree, state, &bits);
1052 cache_state(state, cached_state);
1053 state = clear_state_bit(tree, state, &clear_bits, 0);
1054 if (last_end == (u64)-1)
1055 goto out;
1056 start = last_end + 1;
1057 if (start < end && state && state->start == start &&
1058 !need_resched())
1059 goto hit_next;
1060 }
1061 goto search_again;
1062 }
1063 /*
1064 * | ---- desired range ---- |
1065 * | state | or | state |
1066 *
1067 * There's a hole, we need to insert something in it and
1068 * ignore the extent we found.
1069 */
1070 if (state->start > start) {
1071 u64 this_end;
1072 if (end < last_start)
1073 this_end = end;
1074 else
1075 this_end = last_start - 1;
1076
1077 prealloc = alloc_extent_state_atomic(prealloc);
1078 if (!prealloc) {
1079 err = -ENOMEM;
1080 goto out;
1081 }
1082
1083 /*
1084 * Avoid to free 'prealloc' if it can be merged with
1085 * the later extent.
1086 */
1087 err = insert_state(tree, prealloc, start, this_end,
1088 &bits);
1089 if (err)
1090 extent_io_tree_panic(tree, err);
1091 cache_state(prealloc, cached_state);
1092 prealloc = NULL;
1093 start = this_end + 1;
1094 goto search_again;
1095 }
1096 /*
1097 * | ---- desired range ---- |
1098 * | state |
1099 * We need to split the extent, and set the bit
1100 * on the first half
1101 */
1102 if (state->start <= end && state->end > end) {
1103 prealloc = alloc_extent_state_atomic(prealloc);
1104 if (!prealloc) {
1105 err = -ENOMEM;
1106 goto out;
1107 }
1108
1109 err = split_state(tree, state, prealloc, end + 1);
1110 if (err)
1111 extent_io_tree_panic(tree, err);
1112
1113 set_state_bits(tree, prealloc, &bits);
1114 cache_state(prealloc, cached_state);
1115 clear_state_bit(tree, prealloc, &clear_bits, 0);
1116 prealloc = NULL;
1117 goto out;
1118 }
1119
1120 goto search_again;
1121
1122 out:
1123 spin_unlock(&tree->lock);
1124 if (prealloc)
1125 free_extent_state(prealloc);
1126
1127 return err;
1128
1129 search_again:
1130 if (start > end)
1131 goto out;
1132 spin_unlock(&tree->lock);
1133 if (mask & __GFP_WAIT)
1134 cond_resched();
1135 goto again;
1136 }
1137
1138 /* wrappers around set/clear extent bit */
1139 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1140 gfp_t mask)
1141 {
1142 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1143 NULL, mask);
1144 }
1145
1146 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1147 int bits, gfp_t mask)
1148 {
1149 return set_extent_bit(tree, start, end, bits, NULL,
1150 NULL, mask);
1151 }
1152
1153 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1154 int bits, gfp_t mask)
1155 {
1156 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1157 }
1158
1159 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1160 struct extent_state **cached_state, gfp_t mask)
1161 {
1162 return set_extent_bit(tree, start, end,
1163 EXTENT_DELALLOC | EXTENT_UPTODATE,
1164 NULL, cached_state, mask);
1165 }
1166
1167 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1168 struct extent_state **cached_state, gfp_t mask)
1169 {
1170 return set_extent_bit(tree, start, end,
1171 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1172 NULL, cached_state, mask);
1173 }
1174
1175 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1176 gfp_t mask)
1177 {
1178 return clear_extent_bit(tree, start, end,
1179 EXTENT_DIRTY | EXTENT_DELALLOC |
1180 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1181 }
1182
1183 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1184 gfp_t mask)
1185 {
1186 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1187 NULL, mask);
1188 }
1189
1190 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1191 struct extent_state **cached_state, gfp_t mask)
1192 {
1193 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1194 cached_state, mask);
1195 }
1196
1197 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1198 struct extent_state **cached_state, gfp_t mask)
1199 {
1200 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1201 cached_state, mask);
1202 }
1203
1204 /*
1205 * either insert or lock state struct between start and end use mask to tell
1206 * us if waiting is desired.
1207 */
1208 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1209 int bits, struct extent_state **cached_state)
1210 {
1211 int err;
1212 u64 failed_start;
1213 while (1) {
1214 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1215 EXTENT_LOCKED, &failed_start,
1216 cached_state, GFP_NOFS);
1217 if (err == -EEXIST) {
1218 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1219 start = failed_start;
1220 } else
1221 break;
1222 WARN_ON(start > end);
1223 }
1224 return err;
1225 }
1226
1227 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1228 {
1229 return lock_extent_bits(tree, start, end, 0, NULL);
1230 }
1231
1232 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1233 {
1234 int err;
1235 u64 failed_start;
1236
1237 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1238 &failed_start, NULL, GFP_NOFS);
1239 if (err == -EEXIST) {
1240 if (failed_start > start)
1241 clear_extent_bit(tree, start, failed_start - 1,
1242 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1243 return 0;
1244 }
1245 return 1;
1246 }
1247
1248 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1249 struct extent_state **cached, gfp_t mask)
1250 {
1251 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1252 mask);
1253 }
1254
1255 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1256 {
1257 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1258 GFP_NOFS);
1259 }
1260
1261 /*
1262 * helper function to set both pages and extents in the tree writeback
1263 */
1264 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1265 {
1266 unsigned long index = start >> PAGE_CACHE_SHIFT;
1267 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1268 struct page *page;
1269
1270 while (index <= end_index) {
1271 page = find_get_page(tree->mapping, index);
1272 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1273 set_page_writeback(page);
1274 page_cache_release(page);
1275 index++;
1276 }
1277 return 0;
1278 }
1279
1280 /* find the first state struct with 'bits' set after 'start', and
1281 * return it. tree->lock must be held. NULL will returned if
1282 * nothing was found after 'start'
1283 */
1284 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1285 u64 start, int bits)
1286 {
1287 struct rb_node *node;
1288 struct extent_state *state;
1289
1290 /*
1291 * this search will find all the extents that end after
1292 * our range starts.
1293 */
1294 node = tree_search(tree, start);
1295 if (!node)
1296 goto out;
1297
1298 while (1) {
1299 state = rb_entry(node, struct extent_state, rb_node);
1300 if (state->end >= start && (state->state & bits))
1301 return state;
1302
1303 node = rb_next(node);
1304 if (!node)
1305 break;
1306 }
1307 out:
1308 return NULL;
1309 }
1310
1311 /*
1312 * find the first offset in the io tree with 'bits' set. zero is
1313 * returned if we find something, and *start_ret and *end_ret are
1314 * set to reflect the state struct that was found.
1315 *
1316 * If nothing was found, 1 is returned. If found something, return 0.
1317 */
1318 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1319 u64 *start_ret, u64 *end_ret, int bits,
1320 struct extent_state **cached_state)
1321 {
1322 struct extent_state *state;
1323 struct rb_node *n;
1324 int ret = 1;
1325
1326 spin_lock(&tree->lock);
1327 if (cached_state && *cached_state) {
1328 state = *cached_state;
1329 if (state->end == start - 1 && state->tree) {
1330 n = rb_next(&state->rb_node);
1331 while (n) {
1332 state = rb_entry(n, struct extent_state,
1333 rb_node);
1334 if (state->state & bits)
1335 goto got_it;
1336 n = rb_next(n);
1337 }
1338 free_extent_state(*cached_state);
1339 *cached_state = NULL;
1340 goto out;
1341 }
1342 free_extent_state(*cached_state);
1343 *cached_state = NULL;
1344 }
1345
1346 state = find_first_extent_bit_state(tree, start, bits);
1347 got_it:
1348 if (state) {
1349 cache_state(state, cached_state);
1350 *start_ret = state->start;
1351 *end_ret = state->end;
1352 ret = 0;
1353 }
1354 out:
1355 spin_unlock(&tree->lock);
1356 return ret;
1357 }
1358
1359 /*
1360 * find a contiguous range of bytes in the file marked as delalloc, not
1361 * more than 'max_bytes'. start and end are used to return the range,
1362 *
1363 * 1 is returned if we find something, 0 if nothing was in the tree
1364 */
1365 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1366 u64 *start, u64 *end, u64 max_bytes,
1367 struct extent_state **cached_state)
1368 {
1369 struct rb_node *node;
1370 struct extent_state *state;
1371 u64 cur_start = *start;
1372 u64 found = 0;
1373 u64 total_bytes = 0;
1374
1375 spin_lock(&tree->lock);
1376
1377 /*
1378 * this search will find all the extents that end after
1379 * our range starts.
1380 */
1381 node = tree_search(tree, cur_start);
1382 if (!node) {
1383 if (!found)
1384 *end = (u64)-1;
1385 goto out;
1386 }
1387
1388 while (1) {
1389 state = rb_entry(node, struct extent_state, rb_node);
1390 if (found && (state->start != cur_start ||
1391 (state->state & EXTENT_BOUNDARY))) {
1392 goto out;
1393 }
1394 if (!(state->state & EXTENT_DELALLOC)) {
1395 if (!found)
1396 *end = state->end;
1397 goto out;
1398 }
1399 if (!found) {
1400 *start = state->start;
1401 *cached_state = state;
1402 atomic_inc(&state->refs);
1403 }
1404 found++;
1405 *end = state->end;
1406 cur_start = state->end + 1;
1407 node = rb_next(node);
1408 if (!node)
1409 break;
1410 total_bytes += state->end - state->start + 1;
1411 if (total_bytes >= max_bytes)
1412 break;
1413 }
1414 out:
1415 spin_unlock(&tree->lock);
1416 return found;
1417 }
1418
1419 static noinline void __unlock_for_delalloc(struct inode *inode,
1420 struct page *locked_page,
1421 u64 start, u64 end)
1422 {
1423 int ret;
1424 struct page *pages[16];
1425 unsigned long index = start >> PAGE_CACHE_SHIFT;
1426 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1427 unsigned long nr_pages = end_index - index + 1;
1428 int i;
1429
1430 if (index == locked_page->index && end_index == index)
1431 return;
1432
1433 while (nr_pages > 0) {
1434 ret = find_get_pages_contig(inode->i_mapping, index,
1435 min_t(unsigned long, nr_pages,
1436 ARRAY_SIZE(pages)), pages);
1437 for (i = 0; i < ret; i++) {
1438 if (pages[i] != locked_page)
1439 unlock_page(pages[i]);
1440 page_cache_release(pages[i]);
1441 }
1442 nr_pages -= ret;
1443 index += ret;
1444 cond_resched();
1445 }
1446 }
1447
1448 static noinline int lock_delalloc_pages(struct inode *inode,
1449 struct page *locked_page,
1450 u64 delalloc_start,
1451 u64 delalloc_end)
1452 {
1453 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1454 unsigned long start_index = index;
1455 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1456 unsigned long pages_locked = 0;
1457 struct page *pages[16];
1458 unsigned long nrpages;
1459 int ret;
1460 int i;
1461
1462 /* the caller is responsible for locking the start index */
1463 if (index == locked_page->index && index == end_index)
1464 return 0;
1465
1466 /* skip the page at the start index */
1467 nrpages = end_index - index + 1;
1468 while (nrpages > 0) {
1469 ret = find_get_pages_contig(inode->i_mapping, index,
1470 min_t(unsigned long,
1471 nrpages, ARRAY_SIZE(pages)), pages);
1472 if (ret == 0) {
1473 ret = -EAGAIN;
1474 goto done;
1475 }
1476 /* now we have an array of pages, lock them all */
1477 for (i = 0; i < ret; i++) {
1478 /*
1479 * the caller is taking responsibility for
1480 * locked_page
1481 */
1482 if (pages[i] != locked_page) {
1483 lock_page(pages[i]);
1484 if (!PageDirty(pages[i]) ||
1485 pages[i]->mapping != inode->i_mapping) {
1486 ret = -EAGAIN;
1487 unlock_page(pages[i]);
1488 page_cache_release(pages[i]);
1489 goto done;
1490 }
1491 }
1492 page_cache_release(pages[i]);
1493 pages_locked++;
1494 }
1495 nrpages -= ret;
1496 index += ret;
1497 cond_resched();
1498 }
1499 ret = 0;
1500 done:
1501 if (ret && pages_locked) {
1502 __unlock_for_delalloc(inode, locked_page,
1503 delalloc_start,
1504 ((u64)(start_index + pages_locked - 1)) <<
1505 PAGE_CACHE_SHIFT);
1506 }
1507 return ret;
1508 }
1509
1510 /*
1511 * find a contiguous range of bytes in the file marked as delalloc, not
1512 * more than 'max_bytes'. start and end are used to return the range,
1513 *
1514 * 1 is returned if we find something, 0 if nothing was in the tree
1515 */
1516 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1517 struct extent_io_tree *tree,
1518 struct page *locked_page,
1519 u64 *start, u64 *end,
1520 u64 max_bytes)
1521 {
1522 u64 delalloc_start;
1523 u64 delalloc_end;
1524 u64 found;
1525 struct extent_state *cached_state = NULL;
1526 int ret;
1527 int loops = 0;
1528
1529 again:
1530 /* step one, find a bunch of delalloc bytes starting at start */
1531 delalloc_start = *start;
1532 delalloc_end = 0;
1533 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1534 max_bytes, &cached_state);
1535 if (!found || delalloc_end <= *start) {
1536 *start = delalloc_start;
1537 *end = delalloc_end;
1538 free_extent_state(cached_state);
1539 return found;
1540 }
1541
1542 /*
1543 * start comes from the offset of locked_page. We have to lock
1544 * pages in order, so we can't process delalloc bytes before
1545 * locked_page
1546 */
1547 if (delalloc_start < *start)
1548 delalloc_start = *start;
1549
1550 /*
1551 * make sure to limit the number of pages we try to lock down
1552 * if we're looping.
1553 */
1554 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1555 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1556
1557 /* step two, lock all the pages after the page that has start */
1558 ret = lock_delalloc_pages(inode, locked_page,
1559 delalloc_start, delalloc_end);
1560 if (ret == -EAGAIN) {
1561 /* some of the pages are gone, lets avoid looping by
1562 * shortening the size of the delalloc range we're searching
1563 */
1564 free_extent_state(cached_state);
1565 if (!loops) {
1566 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1567 max_bytes = PAGE_CACHE_SIZE - offset;
1568 loops = 1;
1569 goto again;
1570 } else {
1571 found = 0;
1572 goto out_failed;
1573 }
1574 }
1575 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1576
1577 /* step three, lock the state bits for the whole range */
1578 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1579
1580 /* then test to make sure it is all still delalloc */
1581 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1582 EXTENT_DELALLOC, 1, cached_state);
1583 if (!ret) {
1584 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1585 &cached_state, GFP_NOFS);
1586 __unlock_for_delalloc(inode, locked_page,
1587 delalloc_start, delalloc_end);
1588 cond_resched();
1589 goto again;
1590 }
1591 free_extent_state(cached_state);
1592 *start = delalloc_start;
1593 *end = delalloc_end;
1594 out_failed:
1595 return found;
1596 }
1597
1598 int extent_clear_unlock_delalloc(struct inode *inode,
1599 struct extent_io_tree *tree,
1600 u64 start, u64 end, struct page *locked_page,
1601 unsigned long op)
1602 {
1603 int ret;
1604 struct page *pages[16];
1605 unsigned long index = start >> PAGE_CACHE_SHIFT;
1606 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1607 unsigned long nr_pages = end_index - index + 1;
1608 int i;
1609 int clear_bits = 0;
1610
1611 if (op & EXTENT_CLEAR_UNLOCK)
1612 clear_bits |= EXTENT_LOCKED;
1613 if (op & EXTENT_CLEAR_DIRTY)
1614 clear_bits |= EXTENT_DIRTY;
1615
1616 if (op & EXTENT_CLEAR_DELALLOC)
1617 clear_bits |= EXTENT_DELALLOC;
1618
1619 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1620 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1621 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1622 EXTENT_SET_PRIVATE2)))
1623 return 0;
1624
1625 while (nr_pages > 0) {
1626 ret = find_get_pages_contig(inode->i_mapping, index,
1627 min_t(unsigned long,
1628 nr_pages, ARRAY_SIZE(pages)), pages);
1629 for (i = 0; i < ret; i++) {
1630
1631 if (op & EXTENT_SET_PRIVATE2)
1632 SetPagePrivate2(pages[i]);
1633
1634 if (pages[i] == locked_page) {
1635 page_cache_release(pages[i]);
1636 continue;
1637 }
1638 if (op & EXTENT_CLEAR_DIRTY)
1639 clear_page_dirty_for_io(pages[i]);
1640 if (op & EXTENT_SET_WRITEBACK)
1641 set_page_writeback(pages[i]);
1642 if (op & EXTENT_END_WRITEBACK)
1643 end_page_writeback(pages[i]);
1644 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1645 unlock_page(pages[i]);
1646 page_cache_release(pages[i]);
1647 }
1648 nr_pages -= ret;
1649 index += ret;
1650 cond_resched();
1651 }
1652 return 0;
1653 }
1654
1655 /*
1656 * count the number of bytes in the tree that have a given bit(s)
1657 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1658 * cached. The total number found is returned.
1659 */
1660 u64 count_range_bits(struct extent_io_tree *tree,
1661 u64 *start, u64 search_end, u64 max_bytes,
1662 unsigned long bits, int contig)
1663 {
1664 struct rb_node *node;
1665 struct extent_state *state;
1666 u64 cur_start = *start;
1667 u64 total_bytes = 0;
1668 u64 last = 0;
1669 int found = 0;
1670
1671 if (search_end <= cur_start) {
1672 WARN_ON(1);
1673 return 0;
1674 }
1675
1676 spin_lock(&tree->lock);
1677 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1678 total_bytes = tree->dirty_bytes;
1679 goto out;
1680 }
1681 /*
1682 * this search will find all the extents that end after
1683 * our range starts.
1684 */
1685 node = tree_search(tree, cur_start);
1686 if (!node)
1687 goto out;
1688
1689 while (1) {
1690 state = rb_entry(node, struct extent_state, rb_node);
1691 if (state->start > search_end)
1692 break;
1693 if (contig && found && state->start > last + 1)
1694 break;
1695 if (state->end >= cur_start && (state->state & bits) == bits) {
1696 total_bytes += min(search_end, state->end) + 1 -
1697 max(cur_start, state->start);
1698 if (total_bytes >= max_bytes)
1699 break;
1700 if (!found) {
1701 *start = max(cur_start, state->start);
1702 found = 1;
1703 }
1704 last = state->end;
1705 } else if (contig && found) {
1706 break;
1707 }
1708 node = rb_next(node);
1709 if (!node)
1710 break;
1711 }
1712 out:
1713 spin_unlock(&tree->lock);
1714 return total_bytes;
1715 }
1716
1717 /*
1718 * set the private field for a given byte offset in the tree. If there isn't
1719 * an extent_state there already, this does nothing.
1720 */
1721 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1722 {
1723 struct rb_node *node;
1724 struct extent_state *state;
1725 int ret = 0;
1726
1727 spin_lock(&tree->lock);
1728 /*
1729 * this search will find all the extents that end after
1730 * our range starts.
1731 */
1732 node = tree_search(tree, start);
1733 if (!node) {
1734 ret = -ENOENT;
1735 goto out;
1736 }
1737 state = rb_entry(node, struct extent_state, rb_node);
1738 if (state->start != start) {
1739 ret = -ENOENT;
1740 goto out;
1741 }
1742 state->private = private;
1743 out:
1744 spin_unlock(&tree->lock);
1745 return ret;
1746 }
1747
1748 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1749 {
1750 struct rb_node *node;
1751 struct extent_state *state;
1752 int ret = 0;
1753
1754 spin_lock(&tree->lock);
1755 /*
1756 * this search will find all the extents that end after
1757 * our range starts.
1758 */
1759 node = tree_search(tree, start);
1760 if (!node) {
1761 ret = -ENOENT;
1762 goto out;
1763 }
1764 state = rb_entry(node, struct extent_state, rb_node);
1765 if (state->start != start) {
1766 ret = -ENOENT;
1767 goto out;
1768 }
1769 *private = state->private;
1770 out:
1771 spin_unlock(&tree->lock);
1772 return ret;
1773 }
1774
1775 /*
1776 * searches a range in the state tree for a given mask.
1777 * If 'filled' == 1, this returns 1 only if every extent in the tree
1778 * has the bits set. Otherwise, 1 is returned if any bit in the
1779 * range is found set.
1780 */
1781 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1782 int bits, int filled, struct extent_state *cached)
1783 {
1784 struct extent_state *state = NULL;
1785 struct rb_node *node;
1786 int bitset = 0;
1787
1788 spin_lock(&tree->lock);
1789 if (cached && cached->tree && cached->start <= start &&
1790 cached->end > start)
1791 node = &cached->rb_node;
1792 else
1793 node = tree_search(tree, start);
1794 while (node && start <= end) {
1795 state = rb_entry(node, struct extent_state, rb_node);
1796
1797 if (filled && state->start > start) {
1798 bitset = 0;
1799 break;
1800 }
1801
1802 if (state->start > end)
1803 break;
1804
1805 if (state->state & bits) {
1806 bitset = 1;
1807 if (!filled)
1808 break;
1809 } else if (filled) {
1810 bitset = 0;
1811 break;
1812 }
1813
1814 if (state->end == (u64)-1)
1815 break;
1816
1817 start = state->end + 1;
1818 if (start > end)
1819 break;
1820 node = rb_next(node);
1821 if (!node) {
1822 if (filled)
1823 bitset = 0;
1824 break;
1825 }
1826 }
1827 spin_unlock(&tree->lock);
1828 return bitset;
1829 }
1830
1831 /*
1832 * helper function to set a given page up to date if all the
1833 * extents in the tree for that page are up to date
1834 */
1835 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1836 {
1837 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1838 u64 end = start + PAGE_CACHE_SIZE - 1;
1839 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1840 SetPageUptodate(page);
1841 }
1842
1843 /*
1844 * helper function to unlock a page if all the extents in the tree
1845 * for that page are unlocked
1846 */
1847 static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1848 {
1849 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1850 u64 end = start + PAGE_CACHE_SIZE - 1;
1851 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1852 unlock_page(page);
1853 }
1854
1855 /*
1856 * helper function to end page writeback if all the extents
1857 * in the tree for that page are done with writeback
1858 */
1859 static void check_page_writeback(struct extent_io_tree *tree,
1860 struct page *page)
1861 {
1862 end_page_writeback(page);
1863 }
1864
1865 /*
1866 * When IO fails, either with EIO or csum verification fails, we
1867 * try other mirrors that might have a good copy of the data. This
1868 * io_failure_record is used to record state as we go through all the
1869 * mirrors. If another mirror has good data, the page is set up to date
1870 * and things continue. If a good mirror can't be found, the original
1871 * bio end_io callback is called to indicate things have failed.
1872 */
1873 struct io_failure_record {
1874 struct page *page;
1875 u64 start;
1876 u64 len;
1877 u64 logical;
1878 unsigned long bio_flags;
1879 int this_mirror;
1880 int failed_mirror;
1881 int in_validation;
1882 };
1883
1884 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1885 int did_repair)
1886 {
1887 int ret;
1888 int err = 0;
1889 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1890
1891 set_state_private(failure_tree, rec->start, 0);
1892 ret = clear_extent_bits(failure_tree, rec->start,
1893 rec->start + rec->len - 1,
1894 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1895 if (ret)
1896 err = ret;
1897
1898 if (did_repair) {
1899 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1900 rec->start + rec->len - 1,
1901 EXTENT_DAMAGED, GFP_NOFS);
1902 if (ret && !err)
1903 err = ret;
1904 }
1905
1906 kfree(rec);
1907 return err;
1908 }
1909
1910 static void repair_io_failure_callback(struct bio *bio, int err)
1911 {
1912 complete(bio->bi_private);
1913 }
1914
1915 /*
1916 * this bypasses the standard btrfs submit functions deliberately, as
1917 * the standard behavior is to write all copies in a raid setup. here we only
1918 * want to write the one bad copy. so we do the mapping for ourselves and issue
1919 * submit_bio directly.
1920 * to avoid any synchonization issues, wait for the data after writing, which
1921 * actually prevents the read that triggered the error from finishing.
1922 * currently, there can be no more than two copies of every data bit. thus,
1923 * exactly one rewrite is required.
1924 */
1925 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1926 u64 length, u64 logical, struct page *page,
1927 int mirror_num)
1928 {
1929 struct bio *bio;
1930 struct btrfs_device *dev;
1931 DECLARE_COMPLETION_ONSTACK(compl);
1932 u64 map_length = 0;
1933 u64 sector;
1934 struct btrfs_bio *bbio = NULL;
1935 int ret;
1936
1937 BUG_ON(!mirror_num);
1938
1939 bio = bio_alloc(GFP_NOFS, 1);
1940 if (!bio)
1941 return -EIO;
1942 bio->bi_private = &compl;
1943 bio->bi_end_io = repair_io_failure_callback;
1944 bio->bi_size = 0;
1945 map_length = length;
1946
1947 ret = btrfs_map_block(map_tree, WRITE, logical,
1948 &map_length, &bbio, mirror_num);
1949 if (ret) {
1950 bio_put(bio);
1951 return -EIO;
1952 }
1953 BUG_ON(mirror_num != bbio->mirror_num);
1954 sector = bbio->stripes[mirror_num-1].physical >> 9;
1955 bio->bi_sector = sector;
1956 dev = bbio->stripes[mirror_num-1].dev;
1957 kfree(bbio);
1958 if (!dev || !dev->bdev || !dev->writeable) {
1959 bio_put(bio);
1960 return -EIO;
1961 }
1962 bio->bi_bdev = dev->bdev;
1963 bio_add_page(bio, page, length, start-page_offset(page));
1964 btrfsic_submit_bio(WRITE_SYNC, bio);
1965 wait_for_completion(&compl);
1966
1967 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1968 /* try to remap that extent elsewhere? */
1969 bio_put(bio);
1970 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
1971 return -EIO;
1972 }
1973
1974 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
1975 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
1976 start, rcu_str_deref(dev->name), sector);
1977
1978 bio_put(bio);
1979 return 0;
1980 }
1981
1982 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1983 int mirror_num)
1984 {
1985 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1986 u64 start = eb->start;
1987 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
1988 int ret = 0;
1989
1990 for (i = 0; i < num_pages; i++) {
1991 struct page *p = extent_buffer_page(eb, i);
1992 ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1993 start, p, mirror_num);
1994 if (ret)
1995 break;
1996 start += PAGE_CACHE_SIZE;
1997 }
1998
1999 return ret;
2000 }
2001
2002 /*
2003 * each time an IO finishes, we do a fast check in the IO failure tree
2004 * to see if we need to process or clean up an io_failure_record
2005 */
2006 static int clean_io_failure(u64 start, struct page *page)
2007 {
2008 u64 private;
2009 u64 private_failure;
2010 struct io_failure_record *failrec;
2011 struct btrfs_mapping_tree *map_tree;
2012 struct extent_state *state;
2013 int num_copies;
2014 int did_repair = 0;
2015 int ret;
2016 struct inode *inode = page->mapping->host;
2017
2018 private = 0;
2019 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2020 (u64)-1, 1, EXTENT_DIRTY, 0);
2021 if (!ret)
2022 return 0;
2023
2024 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2025 &private_failure);
2026 if (ret)
2027 return 0;
2028
2029 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2030 BUG_ON(!failrec->this_mirror);
2031
2032 if (failrec->in_validation) {
2033 /* there was no real error, just free the record */
2034 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2035 failrec->start);
2036 did_repair = 1;
2037 goto out;
2038 }
2039
2040 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2041 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2042 failrec->start,
2043 EXTENT_LOCKED);
2044 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2045
2046 if (state && state->start == failrec->start) {
2047 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2048 failrec->logical, failrec->len);
2049 if (num_copies > 1) {
2050 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
2051 ret = repair_io_failure(map_tree, start, failrec->len,
2052 failrec->logical, page,
2053 failrec->failed_mirror);
2054 did_repair = !ret;
2055 }
2056 }
2057
2058 out:
2059 if (!ret)
2060 ret = free_io_failure(inode, failrec, did_repair);
2061
2062 return ret;
2063 }
2064
2065 /*
2066 * this is a generic handler for readpage errors (default
2067 * readpage_io_failed_hook). if other copies exist, read those and write back
2068 * good data to the failed position. does not investigate in remapping the
2069 * failed extent elsewhere, hoping the device will be smart enough to do this as
2070 * needed
2071 */
2072
2073 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2074 u64 start, u64 end, int failed_mirror,
2075 struct extent_state *state)
2076 {
2077 struct io_failure_record *failrec = NULL;
2078 u64 private;
2079 struct extent_map *em;
2080 struct inode *inode = page->mapping->host;
2081 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2082 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2083 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2084 struct bio *bio;
2085 int num_copies;
2086 int ret;
2087 int read_mode;
2088 u64 logical;
2089
2090 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2091
2092 ret = get_state_private(failure_tree, start, &private);
2093 if (ret) {
2094 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2095 if (!failrec)
2096 return -ENOMEM;
2097 failrec->start = start;
2098 failrec->len = end - start + 1;
2099 failrec->this_mirror = 0;
2100 failrec->bio_flags = 0;
2101 failrec->in_validation = 0;
2102
2103 read_lock(&em_tree->lock);
2104 em = lookup_extent_mapping(em_tree, start, failrec->len);
2105 if (!em) {
2106 read_unlock(&em_tree->lock);
2107 kfree(failrec);
2108 return -EIO;
2109 }
2110
2111 if (em->start > start || em->start + em->len < start) {
2112 free_extent_map(em);
2113 em = NULL;
2114 }
2115 read_unlock(&em_tree->lock);
2116
2117 if (!em) {
2118 kfree(failrec);
2119 return -EIO;
2120 }
2121 logical = start - em->start;
2122 logical = em->block_start + logical;
2123 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2124 logical = em->block_start;
2125 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2126 extent_set_compress_type(&failrec->bio_flags,
2127 em->compress_type);
2128 }
2129 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2130 "len=%llu\n", logical, start, failrec->len);
2131 failrec->logical = logical;
2132 free_extent_map(em);
2133
2134 /* set the bits in the private failure tree */
2135 ret = set_extent_bits(failure_tree, start, end,
2136 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2137 if (ret >= 0)
2138 ret = set_state_private(failure_tree, start,
2139 (u64)(unsigned long)failrec);
2140 /* set the bits in the inode's tree */
2141 if (ret >= 0)
2142 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2143 GFP_NOFS);
2144 if (ret < 0) {
2145 kfree(failrec);
2146 return ret;
2147 }
2148 } else {
2149 failrec = (struct io_failure_record *)(unsigned long)private;
2150 pr_debug("bio_readpage_error: (found) logical=%llu, "
2151 "start=%llu, len=%llu, validation=%d\n",
2152 failrec->logical, failrec->start, failrec->len,
2153 failrec->in_validation);
2154 /*
2155 * when data can be on disk more than twice, add to failrec here
2156 * (e.g. with a list for failed_mirror) to make
2157 * clean_io_failure() clean all those errors at once.
2158 */
2159 }
2160 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2161 failrec->logical, failrec->len);
2162 if (num_copies == 1) {
2163 /*
2164 * we only have a single copy of the data, so don't bother with
2165 * all the retry and error correction code that follows. no
2166 * matter what the error is, it is very likely to persist.
2167 */
2168 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2169 "state=%p, num_copies=%d, next_mirror %d, "
2170 "failed_mirror %d\n", state, num_copies,
2171 failrec->this_mirror, failed_mirror);
2172 free_io_failure(inode, failrec, 0);
2173 return -EIO;
2174 }
2175
2176 if (!state) {
2177 spin_lock(&tree->lock);
2178 state = find_first_extent_bit_state(tree, failrec->start,
2179 EXTENT_LOCKED);
2180 if (state && state->start != failrec->start)
2181 state = NULL;
2182 spin_unlock(&tree->lock);
2183 }
2184
2185 /*
2186 * there are two premises:
2187 * a) deliver good data to the caller
2188 * b) correct the bad sectors on disk
2189 */
2190 if (failed_bio->bi_vcnt > 1) {
2191 /*
2192 * to fulfill b), we need to know the exact failing sectors, as
2193 * we don't want to rewrite any more than the failed ones. thus,
2194 * we need separate read requests for the failed bio
2195 *
2196 * if the following BUG_ON triggers, our validation request got
2197 * merged. we need separate requests for our algorithm to work.
2198 */
2199 BUG_ON(failrec->in_validation);
2200 failrec->in_validation = 1;
2201 failrec->this_mirror = failed_mirror;
2202 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2203 } else {
2204 /*
2205 * we're ready to fulfill a) and b) alongside. get a good copy
2206 * of the failed sector and if we succeed, we have setup
2207 * everything for repair_io_failure to do the rest for us.
2208 */
2209 if (failrec->in_validation) {
2210 BUG_ON(failrec->this_mirror != failed_mirror);
2211 failrec->in_validation = 0;
2212 failrec->this_mirror = 0;
2213 }
2214 failrec->failed_mirror = failed_mirror;
2215 failrec->this_mirror++;
2216 if (failrec->this_mirror == failed_mirror)
2217 failrec->this_mirror++;
2218 read_mode = READ_SYNC;
2219 }
2220
2221 if (!state || failrec->this_mirror > num_copies) {
2222 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2223 "next_mirror %d, failed_mirror %d\n", state,
2224 num_copies, failrec->this_mirror, failed_mirror);
2225 free_io_failure(inode, failrec, 0);
2226 return -EIO;
2227 }
2228
2229 bio = bio_alloc(GFP_NOFS, 1);
2230 if (!bio) {
2231 free_io_failure(inode, failrec, 0);
2232 return -EIO;
2233 }
2234 bio->bi_private = state;
2235 bio->bi_end_io = failed_bio->bi_end_io;
2236 bio->bi_sector = failrec->logical >> 9;
2237 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2238 bio->bi_size = 0;
2239
2240 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2241
2242 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2243 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2244 failrec->this_mirror, num_copies, failrec->in_validation);
2245
2246 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2247 failrec->this_mirror,
2248 failrec->bio_flags, 0);
2249 return ret;
2250 }
2251
2252 /* lots and lots of room for performance fixes in the end_bio funcs */
2253
2254 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2255 {
2256 int uptodate = (err == 0);
2257 struct extent_io_tree *tree;
2258 int ret;
2259
2260 tree = &BTRFS_I(page->mapping->host)->io_tree;
2261
2262 if (tree->ops && tree->ops->writepage_end_io_hook) {
2263 ret = tree->ops->writepage_end_io_hook(page, start,
2264 end, NULL, uptodate);
2265 if (ret)
2266 uptodate = 0;
2267 }
2268
2269 if (!uptodate) {
2270 ClearPageUptodate(page);
2271 SetPageError(page);
2272 }
2273 return 0;
2274 }
2275
2276 /*
2277 * after a writepage IO is done, we need to:
2278 * clear the uptodate bits on error
2279 * clear the writeback bits in the extent tree for this IO
2280 * end_page_writeback if the page has no more pending IO
2281 *
2282 * Scheduling is not allowed, so the extent state tree is expected
2283 * to have one and only one object corresponding to this IO.
2284 */
2285 static void end_bio_extent_writepage(struct bio *bio, int err)
2286 {
2287 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2288 struct extent_io_tree *tree;
2289 u64 start;
2290 u64 end;
2291 int whole_page;
2292
2293 do {
2294 struct page *page = bvec->bv_page;
2295 tree = &BTRFS_I(page->mapping->host)->io_tree;
2296
2297 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2298 bvec->bv_offset;
2299 end = start + bvec->bv_len - 1;
2300
2301 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2302 whole_page = 1;
2303 else
2304 whole_page = 0;
2305
2306 if (--bvec >= bio->bi_io_vec)
2307 prefetchw(&bvec->bv_page->flags);
2308
2309 if (end_extent_writepage(page, err, start, end))
2310 continue;
2311
2312 if (whole_page)
2313 end_page_writeback(page);
2314 else
2315 check_page_writeback(tree, page);
2316 } while (bvec >= bio->bi_io_vec);
2317
2318 bio_put(bio);
2319 }
2320
2321 /*
2322 * after a readpage IO is done, we need to:
2323 * clear the uptodate bits on error
2324 * set the uptodate bits if things worked
2325 * set the page up to date if all extents in the tree are uptodate
2326 * clear the lock bit in the extent tree
2327 * unlock the page if there are no other extents locked for it
2328 *
2329 * Scheduling is not allowed, so the extent state tree is expected
2330 * to have one and only one object corresponding to this IO.
2331 */
2332 static void end_bio_extent_readpage(struct bio *bio, int err)
2333 {
2334 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2335 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2336 struct bio_vec *bvec = bio->bi_io_vec;
2337 struct extent_io_tree *tree;
2338 u64 start;
2339 u64 end;
2340 int whole_page;
2341 int mirror;
2342 int ret;
2343
2344 if (err)
2345 uptodate = 0;
2346
2347 do {
2348 struct page *page = bvec->bv_page;
2349 struct extent_state *cached = NULL;
2350 struct extent_state *state;
2351
2352 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2353 "mirror=%ld\n", (u64)bio->bi_sector, err,
2354 (long int)bio->bi_bdev);
2355 tree = &BTRFS_I(page->mapping->host)->io_tree;
2356
2357 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2358 bvec->bv_offset;
2359 end = start + bvec->bv_len - 1;
2360
2361 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2362 whole_page = 1;
2363 else
2364 whole_page = 0;
2365
2366 if (++bvec <= bvec_end)
2367 prefetchw(&bvec->bv_page->flags);
2368
2369 spin_lock(&tree->lock);
2370 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2371 if (state && state->start == start) {
2372 /*
2373 * take a reference on the state, unlock will drop
2374 * the ref
2375 */
2376 cache_state(state, &cached);
2377 }
2378 spin_unlock(&tree->lock);
2379
2380 mirror = (int)(unsigned long)bio->bi_bdev;
2381 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2382 ret = tree->ops->readpage_end_io_hook(page, start, end,
2383 state, mirror);
2384 if (ret)
2385 uptodate = 0;
2386 else
2387 clean_io_failure(start, page);
2388 }
2389
2390 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2391 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2392 if (!ret && !err &&
2393 test_bit(BIO_UPTODATE, &bio->bi_flags))
2394 uptodate = 1;
2395 } else if (!uptodate) {
2396 /*
2397 * The generic bio_readpage_error handles errors the
2398 * following way: If possible, new read requests are
2399 * created and submitted and will end up in
2400 * end_bio_extent_readpage as well (if we're lucky, not
2401 * in the !uptodate case). In that case it returns 0 and
2402 * we just go on with the next page in our bio. If it
2403 * can't handle the error it will return -EIO and we
2404 * remain responsible for that page.
2405 */
2406 ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2407 if (ret == 0) {
2408 uptodate =
2409 test_bit(BIO_UPTODATE, &bio->bi_flags);
2410 if (err)
2411 uptodate = 0;
2412 uncache_state(&cached);
2413 continue;
2414 }
2415 }
2416
2417 if (uptodate && tree->track_uptodate) {
2418 set_extent_uptodate(tree, start, end, &cached,
2419 GFP_ATOMIC);
2420 }
2421 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2422
2423 if (whole_page) {
2424 if (uptodate) {
2425 SetPageUptodate(page);
2426 } else {
2427 ClearPageUptodate(page);
2428 SetPageError(page);
2429 }
2430 unlock_page(page);
2431 } else {
2432 if (uptodate) {
2433 check_page_uptodate(tree, page);
2434 } else {
2435 ClearPageUptodate(page);
2436 SetPageError(page);
2437 }
2438 check_page_locked(tree, page);
2439 }
2440 } while (bvec <= bvec_end);
2441
2442 bio_put(bio);
2443 }
2444
2445 struct bio *
2446 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2447 gfp_t gfp_flags)
2448 {
2449 struct bio *bio;
2450
2451 bio = bio_alloc(gfp_flags, nr_vecs);
2452
2453 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2454 while (!bio && (nr_vecs /= 2))
2455 bio = bio_alloc(gfp_flags, nr_vecs);
2456 }
2457
2458 if (bio) {
2459 bio->bi_size = 0;
2460 bio->bi_bdev = bdev;
2461 bio->bi_sector = first_sector;
2462 }
2463 return bio;
2464 }
2465
2466 /*
2467 * Since writes are async, they will only return -ENOMEM.
2468 * Reads can return the full range of I/O error conditions.
2469 */
2470 static int __must_check submit_one_bio(int rw, struct bio *bio,
2471 int mirror_num, unsigned long bio_flags)
2472 {
2473 int ret = 0;
2474 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2475 struct page *page = bvec->bv_page;
2476 struct extent_io_tree *tree = bio->bi_private;
2477 u64 start;
2478
2479 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2480
2481 bio->bi_private = NULL;
2482
2483 bio_get(bio);
2484
2485 if (tree->ops && tree->ops->submit_bio_hook)
2486 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2487 mirror_num, bio_flags, start);
2488 else
2489 btrfsic_submit_bio(rw, bio);
2490
2491 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2492 ret = -EOPNOTSUPP;
2493 bio_put(bio);
2494 return ret;
2495 }
2496
2497 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2498 unsigned long offset, size_t size, struct bio *bio,
2499 unsigned long bio_flags)
2500 {
2501 int ret = 0;
2502 if (tree->ops && tree->ops->merge_bio_hook)
2503 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2504 bio_flags);
2505 BUG_ON(ret < 0);
2506 return ret;
2507
2508 }
2509
2510 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2511 struct page *page, sector_t sector,
2512 size_t size, unsigned long offset,
2513 struct block_device *bdev,
2514 struct bio **bio_ret,
2515 unsigned long max_pages,
2516 bio_end_io_t end_io_func,
2517 int mirror_num,
2518 unsigned long prev_bio_flags,
2519 unsigned long bio_flags)
2520 {
2521 int ret = 0;
2522 struct bio *bio;
2523 int nr;
2524 int contig = 0;
2525 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2526 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2527 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2528
2529 if (bio_ret && *bio_ret) {
2530 bio = *bio_ret;
2531 if (old_compressed)
2532 contig = bio->bi_sector == sector;
2533 else
2534 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2535 sector;
2536
2537 if (prev_bio_flags != bio_flags || !contig ||
2538 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2539 bio_add_page(bio, page, page_size, offset) < page_size) {
2540 ret = submit_one_bio(rw, bio, mirror_num,
2541 prev_bio_flags);
2542 if (ret < 0)
2543 return ret;
2544 bio = NULL;
2545 } else {
2546 return 0;
2547 }
2548 }
2549 if (this_compressed)
2550 nr = BIO_MAX_PAGES;
2551 else
2552 nr = bio_get_nr_vecs(bdev);
2553
2554 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2555 if (!bio)
2556 return -ENOMEM;
2557
2558 bio_add_page(bio, page, page_size, offset);
2559 bio->bi_end_io = end_io_func;
2560 bio->bi_private = tree;
2561
2562 if (bio_ret)
2563 *bio_ret = bio;
2564 else
2565 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2566
2567 return ret;
2568 }
2569
2570 void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
2571 {
2572 if (!PagePrivate(page)) {
2573 SetPagePrivate(page);
2574 page_cache_get(page);
2575 set_page_private(page, (unsigned long)eb);
2576 } else {
2577 WARN_ON(page->private != (unsigned long)eb);
2578 }
2579 }
2580
2581 void set_page_extent_mapped(struct page *page)
2582 {
2583 if (!PagePrivate(page)) {
2584 SetPagePrivate(page);
2585 page_cache_get(page);
2586 set_page_private(page, EXTENT_PAGE_PRIVATE);
2587 }
2588 }
2589
2590 /*
2591 * basic readpage implementation. Locked extent state structs are inserted
2592 * into the tree that are removed when the IO is done (by the end_io
2593 * handlers)
2594 * XXX JDM: This needs looking at to ensure proper page locking
2595 */
2596 static int __extent_read_full_page(struct extent_io_tree *tree,
2597 struct page *page,
2598 get_extent_t *get_extent,
2599 struct bio **bio, int mirror_num,
2600 unsigned long *bio_flags)
2601 {
2602 struct inode *inode = page->mapping->host;
2603 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2604 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2605 u64 end;
2606 u64 cur = start;
2607 u64 extent_offset;
2608 u64 last_byte = i_size_read(inode);
2609 u64 block_start;
2610 u64 cur_end;
2611 sector_t sector;
2612 struct extent_map *em;
2613 struct block_device *bdev;
2614 struct btrfs_ordered_extent *ordered;
2615 int ret;
2616 int nr = 0;
2617 size_t pg_offset = 0;
2618 size_t iosize;
2619 size_t disk_io_size;
2620 size_t blocksize = inode->i_sb->s_blocksize;
2621 unsigned long this_bio_flag = 0;
2622
2623 set_page_extent_mapped(page);
2624
2625 if (!PageUptodate(page)) {
2626 if (cleancache_get_page(page) == 0) {
2627 BUG_ON(blocksize != PAGE_SIZE);
2628 goto out;
2629 }
2630 }
2631
2632 end = page_end;
2633 while (1) {
2634 lock_extent(tree, start, end);
2635 ordered = btrfs_lookup_ordered_extent(inode, start);
2636 if (!ordered)
2637 break;
2638 unlock_extent(tree, start, end);
2639 btrfs_start_ordered_extent(inode, ordered, 1);
2640 btrfs_put_ordered_extent(ordered);
2641 }
2642
2643 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2644 char *userpage;
2645 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2646
2647 if (zero_offset) {
2648 iosize = PAGE_CACHE_SIZE - zero_offset;
2649 userpage = kmap_atomic(page);
2650 memset(userpage + zero_offset, 0, iosize);
2651 flush_dcache_page(page);
2652 kunmap_atomic(userpage);
2653 }
2654 }
2655 while (cur <= end) {
2656 if (cur >= last_byte) {
2657 char *userpage;
2658 struct extent_state *cached = NULL;
2659
2660 iosize = PAGE_CACHE_SIZE - pg_offset;
2661 userpage = kmap_atomic(page);
2662 memset(userpage + pg_offset, 0, iosize);
2663 flush_dcache_page(page);
2664 kunmap_atomic(userpage);
2665 set_extent_uptodate(tree, cur, cur + iosize - 1,
2666 &cached, GFP_NOFS);
2667 unlock_extent_cached(tree, cur, cur + iosize - 1,
2668 &cached, GFP_NOFS);
2669 break;
2670 }
2671 em = get_extent(inode, page, pg_offset, cur,
2672 end - cur + 1, 0);
2673 if (IS_ERR_OR_NULL(em)) {
2674 SetPageError(page);
2675 unlock_extent(tree, cur, end);
2676 break;
2677 }
2678 extent_offset = cur - em->start;
2679 BUG_ON(extent_map_end(em) <= cur);
2680 BUG_ON(end < cur);
2681
2682 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2683 this_bio_flag = EXTENT_BIO_COMPRESSED;
2684 extent_set_compress_type(&this_bio_flag,
2685 em->compress_type);
2686 }
2687
2688 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2689 cur_end = min(extent_map_end(em) - 1, end);
2690 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2691 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2692 disk_io_size = em->block_len;
2693 sector = em->block_start >> 9;
2694 } else {
2695 sector = (em->block_start + extent_offset) >> 9;
2696 disk_io_size = iosize;
2697 }
2698 bdev = em->bdev;
2699 block_start = em->block_start;
2700 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2701 block_start = EXTENT_MAP_HOLE;
2702 free_extent_map(em);
2703 em = NULL;
2704
2705 /* we've found a hole, just zero and go on */
2706 if (block_start == EXTENT_MAP_HOLE) {
2707 char *userpage;
2708 struct extent_state *cached = NULL;
2709
2710 userpage = kmap_atomic(page);
2711 memset(userpage + pg_offset, 0, iosize);
2712 flush_dcache_page(page);
2713 kunmap_atomic(userpage);
2714
2715 set_extent_uptodate(tree, cur, cur + iosize - 1,
2716 &cached, GFP_NOFS);
2717 unlock_extent_cached(tree, cur, cur + iosize - 1,
2718 &cached, GFP_NOFS);
2719 cur = cur + iosize;
2720 pg_offset += iosize;
2721 continue;
2722 }
2723 /* the get_extent function already copied into the page */
2724 if (test_range_bit(tree, cur, cur_end,
2725 EXTENT_UPTODATE, 1, NULL)) {
2726 check_page_uptodate(tree, page);
2727 unlock_extent(tree, cur, cur + iosize - 1);
2728 cur = cur + iosize;
2729 pg_offset += iosize;
2730 continue;
2731 }
2732 /* we have an inline extent but it didn't get marked up
2733 * to date. Error out
2734 */
2735 if (block_start == EXTENT_MAP_INLINE) {
2736 SetPageError(page);
2737 unlock_extent(tree, cur, cur + iosize - 1);
2738 cur = cur + iosize;
2739 pg_offset += iosize;
2740 continue;
2741 }
2742
2743 ret = 0;
2744 if (tree->ops && tree->ops->readpage_io_hook) {
2745 ret = tree->ops->readpage_io_hook(page, cur,
2746 cur + iosize - 1);
2747 }
2748 if (!ret) {
2749 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2750 pnr -= page->index;
2751 ret = submit_extent_page(READ, tree, page,
2752 sector, disk_io_size, pg_offset,
2753 bdev, bio, pnr,
2754 end_bio_extent_readpage, mirror_num,
2755 *bio_flags,
2756 this_bio_flag);
2757 if (!ret) {
2758 nr++;
2759 *bio_flags = this_bio_flag;
2760 }
2761 }
2762 if (ret) {
2763 SetPageError(page);
2764 unlock_extent(tree, cur, cur + iosize - 1);
2765 }
2766 cur = cur + iosize;
2767 pg_offset += iosize;
2768 }
2769 out:
2770 if (!nr) {
2771 if (!PageError(page))
2772 SetPageUptodate(page);
2773 unlock_page(page);
2774 }
2775 return 0;
2776 }
2777
2778 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2779 get_extent_t *get_extent, int mirror_num)
2780 {
2781 struct bio *bio = NULL;
2782 unsigned long bio_flags = 0;
2783 int ret;
2784
2785 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2786 &bio_flags);
2787 if (bio)
2788 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2789 return ret;
2790 }
2791
2792 static noinline void update_nr_written(struct page *page,
2793 struct writeback_control *wbc,
2794 unsigned long nr_written)
2795 {
2796 wbc->nr_to_write -= nr_written;
2797 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2798 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2799 page->mapping->writeback_index = page->index + nr_written;
2800 }
2801
2802 /*
2803 * the writepage semantics are similar to regular writepage. extent
2804 * records are inserted to lock ranges in the tree, and as dirty areas
2805 * are found, they are marked writeback. Then the lock bits are removed
2806 * and the end_io handler clears the writeback ranges
2807 */
2808 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2809 void *data)
2810 {
2811 struct inode *inode = page->mapping->host;
2812 struct extent_page_data *epd = data;
2813 struct extent_io_tree *tree = epd->tree;
2814 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2815 u64 delalloc_start;
2816 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2817 u64 end;
2818 u64 cur = start;
2819 u64 extent_offset;
2820 u64 last_byte = i_size_read(inode);
2821 u64 block_start;
2822 u64 iosize;
2823 sector_t sector;
2824 struct extent_state *cached_state = NULL;
2825 struct extent_map *em;
2826 struct block_device *bdev;
2827 int ret;
2828 int nr = 0;
2829 size_t pg_offset = 0;
2830 size_t blocksize;
2831 loff_t i_size = i_size_read(inode);
2832 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2833 u64 nr_delalloc;
2834 u64 delalloc_end;
2835 int page_started;
2836 int compressed;
2837 int write_flags;
2838 unsigned long nr_written = 0;
2839 bool fill_delalloc = true;
2840
2841 if (wbc->sync_mode == WB_SYNC_ALL)
2842 write_flags = WRITE_SYNC;
2843 else
2844 write_flags = WRITE;
2845
2846 trace___extent_writepage(page, inode, wbc);
2847
2848 WARN_ON(!PageLocked(page));
2849
2850 ClearPageError(page);
2851
2852 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2853 if (page->index > end_index ||
2854 (page->index == end_index && !pg_offset)) {
2855 page->mapping->a_ops->invalidatepage(page, 0);
2856 unlock_page(page);
2857 return 0;
2858 }
2859
2860 if (page->index == end_index) {
2861 char *userpage;
2862
2863 userpage = kmap_atomic(page);
2864 memset(userpage + pg_offset, 0,
2865 PAGE_CACHE_SIZE - pg_offset);
2866 kunmap_atomic(userpage);
2867 flush_dcache_page(page);
2868 }
2869 pg_offset = 0;
2870
2871 set_page_extent_mapped(page);
2872
2873 if (!tree->ops || !tree->ops->fill_delalloc)
2874 fill_delalloc = false;
2875
2876 delalloc_start = start;
2877 delalloc_end = 0;
2878 page_started = 0;
2879 if (!epd->extent_locked && fill_delalloc) {
2880 u64 delalloc_to_write = 0;
2881 /*
2882 * make sure the wbc mapping index is at least updated
2883 * to this page.
2884 */
2885 update_nr_written(page, wbc, 0);
2886
2887 while (delalloc_end < page_end) {
2888 nr_delalloc = find_lock_delalloc_range(inode, tree,
2889 page,
2890 &delalloc_start,
2891 &delalloc_end,
2892 128 * 1024 * 1024);
2893 if (nr_delalloc == 0) {
2894 delalloc_start = delalloc_end + 1;
2895 continue;
2896 }
2897 ret = tree->ops->fill_delalloc(inode, page,
2898 delalloc_start,
2899 delalloc_end,
2900 &page_started,
2901 &nr_written);
2902 /* File system has been set read-only */
2903 if (ret) {
2904 SetPageError(page);
2905 goto done;
2906 }
2907 /*
2908 * delalloc_end is already one less than the total
2909 * length, so we don't subtract one from
2910 * PAGE_CACHE_SIZE
2911 */
2912 delalloc_to_write += (delalloc_end - delalloc_start +
2913 PAGE_CACHE_SIZE) >>
2914 PAGE_CACHE_SHIFT;
2915 delalloc_start = delalloc_end + 1;
2916 }
2917 if (wbc->nr_to_write < delalloc_to_write) {
2918 int thresh = 8192;
2919
2920 if (delalloc_to_write < thresh * 2)
2921 thresh = delalloc_to_write;
2922 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2923 thresh);
2924 }
2925
2926 /* did the fill delalloc function already unlock and start
2927 * the IO?
2928 */
2929 if (page_started) {
2930 ret = 0;
2931 /*
2932 * we've unlocked the page, so we can't update
2933 * the mapping's writeback index, just update
2934 * nr_to_write.
2935 */
2936 wbc->nr_to_write -= nr_written;
2937 goto done_unlocked;
2938 }
2939 }
2940 if (tree->ops && tree->ops->writepage_start_hook) {
2941 ret = tree->ops->writepage_start_hook(page, start,
2942 page_end);
2943 if (ret) {
2944 /* Fixup worker will requeue */
2945 if (ret == -EBUSY)
2946 wbc->pages_skipped++;
2947 else
2948 redirty_page_for_writepage(wbc, page);
2949 update_nr_written(page, wbc, nr_written);
2950 unlock_page(page);
2951 ret = 0;
2952 goto done_unlocked;
2953 }
2954 }
2955
2956 /*
2957 * we don't want to touch the inode after unlocking the page,
2958 * so we update the mapping writeback index now
2959 */
2960 update_nr_written(page, wbc, nr_written + 1);
2961
2962 end = page_end;
2963 if (last_byte <= start) {
2964 if (tree->ops && tree->ops->writepage_end_io_hook)
2965 tree->ops->writepage_end_io_hook(page, start,
2966 page_end, NULL, 1);
2967 goto done;
2968 }
2969
2970 blocksize = inode->i_sb->s_blocksize;
2971
2972 while (cur <= end) {
2973 if (cur >= last_byte) {
2974 if (tree->ops && tree->ops->writepage_end_io_hook)
2975 tree->ops->writepage_end_io_hook(page, cur,
2976 page_end, NULL, 1);
2977 break;
2978 }
2979 em = epd->get_extent(inode, page, pg_offset, cur,
2980 end - cur + 1, 1);
2981 if (IS_ERR_OR_NULL(em)) {
2982 SetPageError(page);
2983 break;
2984 }
2985
2986 extent_offset = cur - em->start;
2987 BUG_ON(extent_map_end(em) <= cur);
2988 BUG_ON(end < cur);
2989 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2990 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2991 sector = (em->block_start + extent_offset) >> 9;
2992 bdev = em->bdev;
2993 block_start = em->block_start;
2994 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2995 free_extent_map(em);
2996 em = NULL;
2997
2998 /*
2999 * compressed and inline extents are written through other
3000 * paths in the FS
3001 */
3002 if (compressed || block_start == EXTENT_MAP_HOLE ||
3003 block_start == EXTENT_MAP_INLINE) {
3004 /*
3005 * end_io notification does not happen here for
3006 * compressed extents
3007 */
3008 if (!compressed && tree->ops &&
3009 tree->ops->writepage_end_io_hook)
3010 tree->ops->writepage_end_io_hook(page, cur,
3011 cur + iosize - 1,
3012 NULL, 1);
3013 else if (compressed) {
3014 /* we don't want to end_page_writeback on
3015 * a compressed extent. this happens
3016 * elsewhere
3017 */
3018 nr++;
3019 }
3020
3021 cur += iosize;
3022 pg_offset += iosize;
3023 continue;
3024 }
3025 /* leave this out until we have a page_mkwrite call */
3026 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3027 EXTENT_DIRTY, 0, NULL)) {
3028 cur = cur + iosize;
3029 pg_offset += iosize;
3030 continue;
3031 }
3032
3033 if (tree->ops && tree->ops->writepage_io_hook) {
3034 ret = tree->ops->writepage_io_hook(page, cur,
3035 cur + iosize - 1);
3036 } else {
3037 ret = 0;
3038 }
3039 if (ret) {
3040 SetPageError(page);
3041 } else {
3042 unsigned long max_nr = end_index + 1;
3043
3044 set_range_writeback(tree, cur, cur + iosize - 1);
3045 if (!PageWriteback(page)) {
3046 printk(KERN_ERR "btrfs warning page %lu not "
3047 "writeback, cur %llu end %llu\n",
3048 page->index, (unsigned long long)cur,
3049 (unsigned long long)end);
3050 }
3051
3052 ret = submit_extent_page(write_flags, tree, page,
3053 sector, iosize, pg_offset,
3054 bdev, &epd->bio, max_nr,
3055 end_bio_extent_writepage,
3056 0, 0, 0);
3057 if (ret)
3058 SetPageError(page);
3059 }
3060 cur = cur + iosize;
3061 pg_offset += iosize;
3062 nr++;
3063 }
3064 done:
3065 if (nr == 0) {
3066 /* make sure the mapping tag for page dirty gets cleared */
3067 set_page_writeback(page);
3068 end_page_writeback(page);
3069 }
3070 unlock_page(page);
3071
3072 done_unlocked:
3073
3074 /* drop our reference on any cached states */
3075 free_extent_state(cached_state);
3076 return 0;
3077 }
3078
3079 static int eb_wait(void *word)
3080 {
3081 io_schedule();
3082 return 0;
3083 }
3084
3085 static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3086 {
3087 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3088 TASK_UNINTERRUPTIBLE);
3089 }
3090
3091 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3092 struct btrfs_fs_info *fs_info,
3093 struct extent_page_data *epd)
3094 {
3095 unsigned long i, num_pages;
3096 int flush = 0;
3097 int ret = 0;
3098
3099 if (!btrfs_try_tree_write_lock(eb)) {
3100 flush = 1;
3101 flush_write_bio(epd);
3102 btrfs_tree_lock(eb);
3103 }
3104
3105 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3106 btrfs_tree_unlock(eb);
3107 if (!epd->sync_io)
3108 return 0;
3109 if (!flush) {
3110 flush_write_bio(epd);
3111 flush = 1;
3112 }
3113 while (1) {
3114 wait_on_extent_buffer_writeback(eb);
3115 btrfs_tree_lock(eb);
3116 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3117 break;
3118 btrfs_tree_unlock(eb);
3119 }
3120 }
3121
3122 /*
3123 * We need to do this to prevent races in people who check if the eb is
3124 * under IO since we can end up having no IO bits set for a short period
3125 * of time.
3126 */
3127 spin_lock(&eb->refs_lock);
3128 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3129 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3130 spin_unlock(&eb->refs_lock);
3131 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3132 spin_lock(&fs_info->delalloc_lock);
3133 if (fs_info->dirty_metadata_bytes >= eb->len)
3134 fs_info->dirty_metadata_bytes -= eb->len;
3135 else
3136 WARN_ON(1);
3137 spin_unlock(&fs_info->delalloc_lock);
3138 ret = 1;
3139 } else {
3140 spin_unlock(&eb->refs_lock);
3141 }
3142
3143 btrfs_tree_unlock(eb);
3144
3145 if (!ret)
3146 return ret;
3147
3148 num_pages = num_extent_pages(eb->start, eb->len);
3149 for (i = 0; i < num_pages; i++) {
3150 struct page *p = extent_buffer_page(eb, i);
3151
3152 if (!trylock_page(p)) {
3153 if (!flush) {
3154 flush_write_bio(epd);
3155 flush = 1;
3156 }
3157 lock_page(p);
3158 }
3159 }
3160
3161 return ret;
3162 }
3163
3164 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3165 {
3166 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3167 smp_mb__after_clear_bit();
3168 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3169 }
3170
3171 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3172 {
3173 int uptodate = err == 0;
3174 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3175 struct extent_buffer *eb;
3176 int done;
3177
3178 do {
3179 struct page *page = bvec->bv_page;
3180
3181 bvec--;
3182 eb = (struct extent_buffer *)page->private;
3183 BUG_ON(!eb);
3184 done = atomic_dec_and_test(&eb->io_pages);
3185
3186 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3187 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3188 ClearPageUptodate(page);
3189 SetPageError(page);
3190 }
3191
3192 end_page_writeback(page);
3193
3194 if (!done)
3195 continue;
3196
3197 end_extent_buffer_writeback(eb);
3198 } while (bvec >= bio->bi_io_vec);
3199
3200 bio_put(bio);
3201
3202 }
3203
3204 static int write_one_eb(struct extent_buffer *eb,
3205 struct btrfs_fs_info *fs_info,
3206 struct writeback_control *wbc,
3207 struct extent_page_data *epd)
3208 {
3209 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3210 u64 offset = eb->start;
3211 unsigned long i, num_pages;
3212 unsigned long bio_flags = 0;
3213 int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3214 int ret = 0;
3215
3216 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3217 num_pages = num_extent_pages(eb->start, eb->len);
3218 atomic_set(&eb->io_pages, num_pages);
3219 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3220 bio_flags = EXTENT_BIO_TREE_LOG;
3221
3222 for (i = 0; i < num_pages; i++) {
3223 struct page *p = extent_buffer_page(eb, i);
3224
3225 clear_page_dirty_for_io(p);
3226 set_page_writeback(p);
3227 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3228 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3229 -1, end_bio_extent_buffer_writepage,
3230 0, epd->bio_flags, bio_flags);
3231 epd->bio_flags = bio_flags;
3232 if (ret) {
3233 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3234 SetPageError(p);
3235 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3236 end_extent_buffer_writeback(eb);
3237 ret = -EIO;
3238 break;
3239 }
3240 offset += PAGE_CACHE_SIZE;
3241 update_nr_written(p, wbc, 1);
3242 unlock_page(p);
3243 }
3244
3245 if (unlikely(ret)) {
3246 for (; i < num_pages; i++) {
3247 struct page *p = extent_buffer_page(eb, i);
3248 unlock_page(p);
3249 }
3250 }
3251
3252 return ret;
3253 }
3254
3255 int btree_write_cache_pages(struct address_space *mapping,
3256 struct writeback_control *wbc)
3257 {
3258 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3259 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3260 struct extent_buffer *eb, *prev_eb = NULL;
3261 struct extent_page_data epd = {
3262 .bio = NULL,
3263 .tree = tree,
3264 .extent_locked = 0,
3265 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3266 .bio_flags = 0,
3267 };
3268 int ret = 0;
3269 int done = 0;
3270 int nr_to_write_done = 0;
3271 struct pagevec pvec;
3272 int nr_pages;
3273 pgoff_t index;
3274 pgoff_t end; /* Inclusive */
3275 int scanned = 0;
3276 int tag;
3277
3278 pagevec_init(&pvec, 0);
3279 if (wbc->range_cyclic) {
3280 index = mapping->writeback_index; /* Start from prev offset */
3281 end = -1;
3282 } else {
3283 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3284 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3285 scanned = 1;
3286 }
3287 if (wbc->sync_mode == WB_SYNC_ALL)
3288 tag = PAGECACHE_TAG_TOWRITE;
3289 else
3290 tag = PAGECACHE_TAG_DIRTY;
3291 retry:
3292 if (wbc->sync_mode == WB_SYNC_ALL)
3293 tag_pages_for_writeback(mapping, index, end);
3294 while (!done && !nr_to_write_done && (index <= end) &&
3295 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3296 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3297 unsigned i;
3298
3299 scanned = 1;
3300 for (i = 0; i < nr_pages; i++) {
3301 struct page *page = pvec.pages[i];
3302
3303 if (!PagePrivate(page))
3304 continue;
3305
3306 if (!wbc->range_cyclic && page->index > end) {
3307 done = 1;
3308 break;
3309 }
3310
3311 spin_lock(&mapping->private_lock);
3312 if (!PagePrivate(page)) {
3313 spin_unlock(&mapping->private_lock);
3314 continue;
3315 }
3316
3317 eb = (struct extent_buffer *)page->private;
3318
3319 /*
3320 * Shouldn't happen and normally this would be a BUG_ON
3321 * but no sense in crashing the users box for something
3322 * we can survive anyway.
3323 */
3324 if (!eb) {
3325 spin_unlock(&mapping->private_lock);
3326 WARN_ON(1);
3327 continue;
3328 }
3329
3330 if (eb == prev_eb) {
3331 spin_unlock(&mapping->private_lock);
3332 continue;
3333 }
3334
3335 ret = atomic_inc_not_zero(&eb->refs);
3336 spin_unlock(&mapping->private_lock);
3337 if (!ret)
3338 continue;
3339
3340 prev_eb = eb;
3341 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3342 if (!ret) {
3343 free_extent_buffer(eb);
3344 continue;
3345 }
3346
3347 ret = write_one_eb(eb, fs_info, wbc, &epd);
3348 if (ret) {
3349 done = 1;
3350 free_extent_buffer(eb);
3351 break;
3352 }
3353 free_extent_buffer(eb);
3354
3355 /*
3356 * the filesystem may choose to bump up nr_to_write.
3357 * We have to make sure to honor the new nr_to_write
3358 * at any time
3359 */
3360 nr_to_write_done = wbc->nr_to_write <= 0;
3361 }
3362 pagevec_release(&pvec);
3363 cond_resched();
3364 }
3365 if (!scanned && !done) {
3366 /*
3367 * We hit the last page and there is more work to be done: wrap
3368 * back to the start of the file
3369 */
3370 scanned = 1;
3371 index = 0;
3372 goto retry;
3373 }
3374 flush_write_bio(&epd);
3375 return ret;
3376 }
3377
3378 /**
3379 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3380 * @mapping: address space structure to write
3381 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3382 * @writepage: function called for each page
3383 * @data: data passed to writepage function
3384 *
3385 * If a page is already under I/O, write_cache_pages() skips it, even
3386 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3387 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3388 * and msync() need to guarantee that all the data which was dirty at the time
3389 * the call was made get new I/O started against them. If wbc->sync_mode is
3390 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3391 * existing IO to complete.
3392 */
3393 static int extent_write_cache_pages(struct extent_io_tree *tree,
3394 struct address_space *mapping,
3395 struct writeback_control *wbc,
3396 writepage_t writepage, void *data,
3397 void (*flush_fn)(void *))
3398 {
3399 struct inode *inode = mapping->host;
3400 int ret = 0;
3401 int done = 0;
3402 int nr_to_write_done = 0;
3403 struct pagevec pvec;
3404 int nr_pages;
3405 pgoff_t index;
3406 pgoff_t end; /* Inclusive */
3407 int scanned = 0;
3408 int tag;
3409
3410 /*
3411 * We have to hold onto the inode so that ordered extents can do their
3412 * work when the IO finishes. The alternative to this is failing to add
3413 * an ordered extent if the igrab() fails there and that is a huge pain
3414 * to deal with, so instead just hold onto the inode throughout the
3415 * writepages operation. If it fails here we are freeing up the inode
3416 * anyway and we'd rather not waste our time writing out stuff that is
3417 * going to be truncated anyway.
3418 */
3419 if (!igrab(inode))
3420 return 0;
3421
3422 pagevec_init(&pvec, 0);
3423 if (wbc->range_cyclic) {
3424 index = mapping->writeback_index; /* Start from prev offset */
3425 end = -1;
3426 } else {
3427 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3428 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3429 scanned = 1;
3430 }
3431 if (wbc->sync_mode == WB_SYNC_ALL)
3432 tag = PAGECACHE_TAG_TOWRITE;
3433 else
3434 tag = PAGECACHE_TAG_DIRTY;
3435 retry:
3436 if (wbc->sync_mode == WB_SYNC_ALL)
3437 tag_pages_for_writeback(mapping, index, end);
3438 while (!done && !nr_to_write_done && (index <= end) &&
3439 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3440 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3441 unsigned i;
3442
3443 scanned = 1;
3444 for (i = 0; i < nr_pages; i++) {
3445 struct page *page = pvec.pages[i];
3446
3447 /*
3448 * At this point we hold neither mapping->tree_lock nor
3449 * lock on the page itself: the page may be truncated or
3450 * invalidated (changing page->mapping to NULL), or even
3451 * swizzled back from swapper_space to tmpfs file
3452 * mapping
3453 */
3454 if (tree->ops &&
3455 tree->ops->write_cache_pages_lock_hook) {
3456 tree->ops->write_cache_pages_lock_hook(page,
3457 data, flush_fn);
3458 } else {
3459 if (!trylock_page(page)) {
3460 flush_fn(data);
3461 lock_page(page);
3462 }
3463 }
3464
3465 if (unlikely(page->mapping != mapping)) {
3466 unlock_page(page);
3467 continue;
3468 }
3469
3470 if (!wbc->range_cyclic && page->index > end) {
3471 done = 1;
3472 unlock_page(page);
3473 continue;
3474 }
3475
3476 if (wbc->sync_mode != WB_SYNC_NONE) {
3477 if (PageWriteback(page))
3478 flush_fn(data);
3479 wait_on_page_writeback(page);
3480 }
3481
3482 if (PageWriteback(page) ||
3483 !clear_page_dirty_for_io(page)) {
3484 unlock_page(page);
3485 continue;
3486 }
3487
3488 ret = (*writepage)(page, wbc, data);
3489
3490 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3491 unlock_page(page);
3492 ret = 0;
3493 }
3494 if (ret)
3495 done = 1;
3496
3497 /*
3498 * the filesystem may choose to bump up nr_to_write.
3499 * We have to make sure to honor the new nr_to_write
3500 * at any time
3501 */
3502 nr_to_write_done = wbc->nr_to_write <= 0;
3503 }
3504 pagevec_release(&pvec);
3505 cond_resched();
3506 }
3507 if (!scanned && !done) {
3508 /*
3509 * We hit the last page and there is more work to be done: wrap
3510 * back to the start of the file
3511 */
3512 scanned = 1;
3513 index = 0;
3514 goto retry;
3515 }
3516 btrfs_add_delayed_iput(inode);
3517 return ret;
3518 }
3519
3520 static void flush_epd_write_bio(struct extent_page_data *epd)
3521 {
3522 if (epd->bio) {
3523 int rw = WRITE;
3524 int ret;
3525
3526 if (epd->sync_io)
3527 rw = WRITE_SYNC;
3528
3529 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3530 BUG_ON(ret < 0); /* -ENOMEM */
3531 epd->bio = NULL;
3532 }
3533 }
3534
3535 static noinline void flush_write_bio(void *data)
3536 {
3537 struct extent_page_data *epd = data;
3538 flush_epd_write_bio(epd);
3539 }
3540
3541 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3542 get_extent_t *get_extent,
3543 struct writeback_control *wbc)
3544 {
3545 int ret;
3546 struct extent_page_data epd = {
3547 .bio = NULL,
3548 .tree = tree,
3549 .get_extent = get_extent,
3550 .extent_locked = 0,
3551 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3552 .bio_flags = 0,
3553 };
3554
3555 ret = __extent_writepage(page, wbc, &epd);
3556
3557 flush_epd_write_bio(&epd);
3558 return ret;
3559 }
3560
3561 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3562 u64 start, u64 end, get_extent_t *get_extent,
3563 int mode)
3564 {
3565 int ret = 0;
3566 struct address_space *mapping = inode->i_mapping;
3567 struct page *page;
3568 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3569 PAGE_CACHE_SHIFT;
3570
3571 struct extent_page_data epd = {
3572 .bio = NULL,
3573 .tree = tree,
3574 .get_extent = get_extent,
3575 .extent_locked = 1,
3576 .sync_io = mode == WB_SYNC_ALL,
3577 .bio_flags = 0,
3578 };
3579 struct writeback_control wbc_writepages = {
3580 .sync_mode = mode,
3581 .nr_to_write = nr_pages * 2,
3582 .range_start = start,
3583 .range_end = end + 1,
3584 };
3585
3586 while (start <= end) {
3587 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3588 if (clear_page_dirty_for_io(page))
3589 ret = __extent_writepage(page, &wbc_writepages, &epd);
3590 else {
3591 if (tree->ops && tree->ops->writepage_end_io_hook)
3592 tree->ops->writepage_end_io_hook(page, start,
3593 start + PAGE_CACHE_SIZE - 1,
3594 NULL, 1);
3595 unlock_page(page);
3596 }
3597 page_cache_release(page);
3598 start += PAGE_CACHE_SIZE;
3599 }
3600
3601 flush_epd_write_bio(&epd);
3602 return ret;
3603 }
3604
3605 int extent_writepages(struct extent_io_tree *tree,
3606 struct address_space *mapping,
3607 get_extent_t *get_extent,
3608 struct writeback_control *wbc)
3609 {
3610 int ret = 0;
3611 struct extent_page_data epd = {
3612 .bio = NULL,
3613 .tree = tree,
3614 .get_extent = get_extent,
3615 .extent_locked = 0,
3616 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3617 .bio_flags = 0,
3618 };
3619
3620 ret = extent_write_cache_pages(tree, mapping, wbc,
3621 __extent_writepage, &epd,
3622 flush_write_bio);
3623 flush_epd_write_bio(&epd);
3624 return ret;
3625 }
3626
3627 int extent_readpages(struct extent_io_tree *tree,
3628 struct address_space *mapping,
3629 struct list_head *pages, unsigned nr_pages,
3630 get_extent_t get_extent)
3631 {
3632 struct bio *bio = NULL;
3633 unsigned page_idx;
3634 unsigned long bio_flags = 0;
3635 struct page *pagepool[16];
3636 struct page *page;
3637 int i = 0;
3638 int nr = 0;
3639
3640 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3641 page = list_entry(pages->prev, struct page, lru);
3642
3643 prefetchw(&page->flags);
3644 list_del(&page->lru);
3645 if (add_to_page_cache_lru(page, mapping,
3646 page->index, GFP_NOFS)) {
3647 page_cache_release(page);
3648 continue;
3649 }
3650
3651 pagepool[nr++] = page;
3652 if (nr < ARRAY_SIZE(pagepool))
3653 continue;
3654 for (i = 0; i < nr; i++) {
3655 __extent_read_full_page(tree, pagepool[i], get_extent,
3656 &bio, 0, &bio_flags);
3657 page_cache_release(pagepool[i]);
3658 }
3659 nr = 0;
3660 }
3661 for (i = 0; i < nr; i++) {
3662 __extent_read_full_page(tree, pagepool[i], get_extent,
3663 &bio, 0, &bio_flags);
3664 page_cache_release(pagepool[i]);
3665 }
3666
3667 BUG_ON(!list_empty(pages));
3668 if (bio)
3669 return submit_one_bio(READ, bio, 0, bio_flags);
3670 return 0;
3671 }
3672
3673 /*
3674 * basic invalidatepage code, this waits on any locked or writeback
3675 * ranges corresponding to the page, and then deletes any extent state
3676 * records from the tree
3677 */
3678 int extent_invalidatepage(struct extent_io_tree *tree,
3679 struct page *page, unsigned long offset)
3680 {
3681 struct extent_state *cached_state = NULL;
3682 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3683 u64 end = start + PAGE_CACHE_SIZE - 1;
3684 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3685
3686 start += (offset + blocksize - 1) & ~(blocksize - 1);
3687 if (start > end)
3688 return 0;
3689
3690 lock_extent_bits(tree, start, end, 0, &cached_state);
3691 wait_on_page_writeback(page);
3692 clear_extent_bit(tree, start, end,
3693 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3694 EXTENT_DO_ACCOUNTING,
3695 1, 1, &cached_state, GFP_NOFS);
3696 return 0;
3697 }
3698
3699 /*
3700 * a helper for releasepage, this tests for areas of the page that
3701 * are locked or under IO and drops the related state bits if it is safe
3702 * to drop the page.
3703 */
3704 int try_release_extent_state(struct extent_map_tree *map,
3705 struct extent_io_tree *tree, struct page *page,
3706 gfp_t mask)
3707 {
3708 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3709 u64 end = start + PAGE_CACHE_SIZE - 1;
3710 int ret = 1;
3711
3712 if (test_range_bit(tree, start, end,
3713 EXTENT_IOBITS, 0, NULL))
3714 ret = 0;
3715 else {
3716 if ((mask & GFP_NOFS) == GFP_NOFS)
3717 mask = GFP_NOFS;
3718 /*
3719 * at this point we can safely clear everything except the
3720 * locked bit and the nodatasum bit
3721 */
3722 ret = clear_extent_bit(tree, start, end,
3723 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3724 0, 0, NULL, mask);
3725
3726 /* if clear_extent_bit failed for enomem reasons,
3727 * we can't allow the release to continue.
3728 */
3729 if (ret < 0)
3730 ret = 0;
3731 else
3732 ret = 1;
3733 }
3734 return ret;
3735 }
3736
3737 /*
3738 * a helper for releasepage. As long as there are no locked extents
3739 * in the range corresponding to the page, both state records and extent
3740 * map records are removed
3741 */
3742 int try_release_extent_mapping(struct extent_map_tree *map,
3743 struct extent_io_tree *tree, struct page *page,
3744 gfp_t mask)
3745 {
3746 struct extent_map *em;
3747 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3748 u64 end = start + PAGE_CACHE_SIZE - 1;
3749
3750 if ((mask & __GFP_WAIT) &&
3751 page->mapping->host->i_size > 16 * 1024 * 1024) {
3752 u64 len;
3753 while (start <= end) {
3754 len = end - start + 1;
3755 write_lock(&map->lock);
3756 em = lookup_extent_mapping(map, start, len);
3757 if (!em) {
3758 write_unlock(&map->lock);
3759 break;
3760 }
3761 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3762 em->start != start) {
3763 write_unlock(&map->lock);
3764 free_extent_map(em);
3765 break;
3766 }
3767 if (!test_range_bit(tree, em->start,
3768 extent_map_end(em) - 1,
3769 EXTENT_LOCKED | EXTENT_WRITEBACK,
3770 0, NULL)) {
3771 remove_extent_mapping(map, em);
3772 /* once for the rb tree */
3773 free_extent_map(em);
3774 }
3775 start = extent_map_end(em);
3776 write_unlock(&map->lock);
3777
3778 /* once for us */
3779 free_extent_map(em);
3780 }
3781 }
3782 return try_release_extent_state(map, tree, page, mask);
3783 }
3784
3785 /*
3786 * helper function for fiemap, which doesn't want to see any holes.
3787 * This maps until we find something past 'last'
3788 */
3789 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3790 u64 offset,
3791 u64 last,
3792 get_extent_t *get_extent)
3793 {
3794 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3795 struct extent_map *em;
3796 u64 len;
3797
3798 if (offset >= last)
3799 return NULL;
3800
3801 while(1) {
3802 len = last - offset;
3803 if (len == 0)
3804 break;
3805 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3806 em = get_extent(inode, NULL, 0, offset, len, 0);
3807 if (IS_ERR_OR_NULL(em))
3808 return em;
3809
3810 /* if this isn't a hole return it */
3811 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3812 em->block_start != EXTENT_MAP_HOLE) {
3813 return em;
3814 }
3815
3816 /* this is a hole, advance to the next extent */
3817 offset = extent_map_end(em);
3818 free_extent_map(em);
3819 if (offset >= last)
3820 break;
3821 }
3822 return NULL;
3823 }
3824
3825 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3826 __u64 start, __u64 len, get_extent_t *get_extent)
3827 {
3828 int ret = 0;
3829 u64 off = start;
3830 u64 max = start + len;
3831 u32 flags = 0;
3832 u32 found_type;
3833 u64 last;
3834 u64 last_for_get_extent = 0;
3835 u64 disko = 0;
3836 u64 isize = i_size_read(inode);
3837 struct btrfs_key found_key;
3838 struct extent_map *em = NULL;
3839 struct extent_state *cached_state = NULL;
3840 struct btrfs_path *path;
3841 struct btrfs_file_extent_item *item;
3842 int end = 0;
3843 u64 em_start = 0;
3844 u64 em_len = 0;
3845 u64 em_end = 0;
3846 unsigned long emflags;
3847
3848 if (len == 0)
3849 return -EINVAL;
3850
3851 path = btrfs_alloc_path();
3852 if (!path)
3853 return -ENOMEM;
3854 path->leave_spinning = 1;
3855
3856 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3857 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3858
3859 /*
3860 * lookup the last file extent. We're not using i_size here
3861 * because there might be preallocation past i_size
3862 */
3863 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3864 path, btrfs_ino(inode), -1, 0);
3865 if (ret < 0) {
3866 btrfs_free_path(path);
3867 return ret;
3868 }
3869 WARN_ON(!ret);
3870 path->slots[0]--;
3871 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3872 struct btrfs_file_extent_item);
3873 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3874 found_type = btrfs_key_type(&found_key);
3875
3876 /* No extents, but there might be delalloc bits */
3877 if (found_key.objectid != btrfs_ino(inode) ||
3878 found_type != BTRFS_EXTENT_DATA_KEY) {
3879 /* have to trust i_size as the end */
3880 last = (u64)-1;
3881 last_for_get_extent = isize;
3882 } else {
3883 /*
3884 * remember the start of the last extent. There are a
3885 * bunch of different factors that go into the length of the
3886 * extent, so its much less complex to remember where it started
3887 */
3888 last = found_key.offset;
3889 last_for_get_extent = last + 1;
3890 }
3891 btrfs_free_path(path);
3892
3893 /*
3894 * we might have some extents allocated but more delalloc past those
3895 * extents. so, we trust isize unless the start of the last extent is
3896 * beyond isize
3897 */
3898 if (last < isize) {
3899 last = (u64)-1;
3900 last_for_get_extent = isize;
3901 }
3902
3903 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3904 &cached_state);
3905
3906 em = get_extent_skip_holes(inode, start, last_for_get_extent,
3907 get_extent);
3908 if (!em)
3909 goto out;
3910 if (IS_ERR(em)) {
3911 ret = PTR_ERR(em);
3912 goto out;
3913 }
3914
3915 while (!end) {
3916 u64 offset_in_extent;
3917
3918 /* break if the extent we found is outside the range */
3919 if (em->start >= max || extent_map_end(em) < off)
3920 break;
3921
3922 /*
3923 * get_extent may return an extent that starts before our
3924 * requested range. We have to make sure the ranges
3925 * we return to fiemap always move forward and don't
3926 * overlap, so adjust the offsets here
3927 */
3928 em_start = max(em->start, off);
3929
3930 /*
3931 * record the offset from the start of the extent
3932 * for adjusting the disk offset below
3933 */
3934 offset_in_extent = em_start - em->start;
3935 em_end = extent_map_end(em);
3936 em_len = em_end - em_start;
3937 emflags = em->flags;
3938 disko = 0;
3939 flags = 0;
3940
3941 /*
3942 * bump off for our next call to get_extent
3943 */
3944 off = extent_map_end(em);
3945 if (off >= max)
3946 end = 1;
3947
3948 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3949 end = 1;
3950 flags |= FIEMAP_EXTENT_LAST;
3951 } else if (em->block_start == EXTENT_MAP_INLINE) {
3952 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3953 FIEMAP_EXTENT_NOT_ALIGNED);
3954 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3955 flags |= (FIEMAP_EXTENT_DELALLOC |
3956 FIEMAP_EXTENT_UNKNOWN);
3957 } else {
3958 disko = em->block_start + offset_in_extent;
3959 }
3960 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3961 flags |= FIEMAP_EXTENT_ENCODED;
3962
3963 free_extent_map(em);
3964 em = NULL;
3965 if ((em_start >= last) || em_len == (u64)-1 ||
3966 (last == (u64)-1 && isize <= em_end)) {
3967 flags |= FIEMAP_EXTENT_LAST;
3968 end = 1;
3969 }
3970
3971 /* now scan forward to see if this is really the last extent. */
3972 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3973 get_extent);
3974 if (IS_ERR(em)) {
3975 ret = PTR_ERR(em);
3976 goto out;
3977 }
3978 if (!em) {
3979 flags |= FIEMAP_EXTENT_LAST;
3980 end = 1;
3981 }
3982 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3983 em_len, flags);
3984 if (ret)
3985 goto out_free;
3986 }
3987 out_free:
3988 free_extent_map(em);
3989 out:
3990 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3991 &cached_state, GFP_NOFS);
3992 return ret;
3993 }
3994
3995 static void __free_extent_buffer(struct extent_buffer *eb)
3996 {
3997 #if LEAK_DEBUG
3998 unsigned long flags;
3999 spin_lock_irqsave(&leak_lock, flags);
4000 list_del(&eb->leak_list);
4001 spin_unlock_irqrestore(&leak_lock, flags);
4002 #endif
4003 if (eb->pages && eb->pages != eb->inline_pages)
4004 kfree(eb->pages);
4005 kmem_cache_free(extent_buffer_cache, eb);
4006 }
4007
4008 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4009 u64 start,
4010 unsigned long len,
4011 gfp_t mask)
4012 {
4013 struct extent_buffer *eb = NULL;
4014 #if LEAK_DEBUG
4015 unsigned long flags;
4016 #endif
4017
4018 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4019 if (eb == NULL)
4020 return NULL;
4021 eb->start = start;
4022 eb->len = len;
4023 eb->tree = tree;
4024 eb->bflags = 0;
4025 rwlock_init(&eb->lock);
4026 atomic_set(&eb->write_locks, 0);
4027 atomic_set(&eb->read_locks, 0);
4028 atomic_set(&eb->blocking_readers, 0);
4029 atomic_set(&eb->blocking_writers, 0);
4030 atomic_set(&eb->spinning_readers, 0);
4031 atomic_set(&eb->spinning_writers, 0);
4032 eb->lock_nested = 0;
4033 init_waitqueue_head(&eb->write_lock_wq);
4034 init_waitqueue_head(&eb->read_lock_wq);
4035
4036 #if LEAK_DEBUG
4037 spin_lock_irqsave(&leak_lock, flags);
4038 list_add(&eb->leak_list, &buffers);
4039 spin_unlock_irqrestore(&leak_lock, flags);
4040 #endif
4041 spin_lock_init(&eb->refs_lock);
4042 atomic_set(&eb->refs, 1);
4043 atomic_set(&eb->io_pages, 0);
4044
4045 if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
4046 struct page **pages;
4047 int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
4048 PAGE_CACHE_SHIFT;
4049 pages = kzalloc(num_pages, mask);
4050 if (!pages) {
4051 __free_extent_buffer(eb);
4052 return NULL;
4053 }
4054 eb->pages = pages;
4055 } else {
4056 eb->pages = eb->inline_pages;
4057 }
4058
4059 return eb;
4060 }
4061
4062 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4063 {
4064 unsigned long i;
4065 struct page *p;
4066 struct extent_buffer *new;
4067 unsigned long num_pages = num_extent_pages(src->start, src->len);
4068
4069 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4070 if (new == NULL)
4071 return NULL;
4072
4073 for (i = 0; i < num_pages; i++) {
4074 p = alloc_page(GFP_ATOMIC);
4075 BUG_ON(!p);
4076 attach_extent_buffer_page(new, p);
4077 WARN_ON(PageDirty(p));
4078 SetPageUptodate(p);
4079 new->pages[i] = p;
4080 }
4081
4082 copy_extent_buffer(new, src, 0, 0, src->len);
4083 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4084 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4085
4086 return new;
4087 }
4088
4089 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4090 {
4091 struct extent_buffer *eb;
4092 unsigned long num_pages = num_extent_pages(0, len);
4093 unsigned long i;
4094
4095 eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4096 if (!eb)
4097 return NULL;
4098
4099 for (i = 0; i < num_pages; i++) {
4100 eb->pages[i] = alloc_page(GFP_ATOMIC);
4101 if (!eb->pages[i])
4102 goto err;
4103 }
4104 set_extent_buffer_uptodate(eb);
4105 btrfs_set_header_nritems(eb, 0);
4106 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4107
4108 return eb;
4109 err:
4110 for (; i > 0; i--)
4111 __free_page(eb->pages[i - 1]);
4112 __free_extent_buffer(eb);
4113 return NULL;
4114 }
4115
4116 static int extent_buffer_under_io(struct extent_buffer *eb)
4117 {
4118 return (atomic_read(&eb->io_pages) ||
4119 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4120 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4121 }
4122
4123 /*
4124 * Helper for releasing extent buffer page.
4125 */
4126 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4127 unsigned long start_idx)
4128 {
4129 unsigned long index;
4130 unsigned long num_pages;
4131 struct page *page;
4132 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4133
4134 BUG_ON(extent_buffer_under_io(eb));
4135
4136 num_pages = num_extent_pages(eb->start, eb->len);
4137 index = start_idx + num_pages;
4138 if (start_idx >= index)
4139 return;
4140
4141 do {
4142 index--;
4143 page = extent_buffer_page(eb, index);
4144 if (page && mapped) {
4145 spin_lock(&page->mapping->private_lock);
4146 /*
4147 * We do this since we'll remove the pages after we've
4148 * removed the eb from the radix tree, so we could race
4149 * and have this page now attached to the new eb. So
4150 * only clear page_private if it's still connected to
4151 * this eb.
4152 */
4153 if (PagePrivate(page) &&
4154 page->private == (unsigned long)eb) {
4155 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4156 BUG_ON(PageDirty(page));
4157 BUG_ON(PageWriteback(page));
4158 /*
4159 * We need to make sure we haven't be attached
4160 * to a new eb.
4161 */
4162 ClearPagePrivate(page);
4163 set_page_private(page, 0);
4164 /* One for the page private */
4165 page_cache_release(page);
4166 }
4167 spin_unlock(&page->mapping->private_lock);
4168
4169 }
4170 if (page) {
4171 /* One for when we alloced the page */
4172 page_cache_release(page);
4173 }
4174 } while (index != start_idx);
4175 }
4176
4177 /*
4178 * Helper for releasing the extent buffer.
4179 */
4180 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4181 {
4182 btrfs_release_extent_buffer_page(eb, 0);
4183 __free_extent_buffer(eb);
4184 }
4185
4186 static void check_buffer_tree_ref(struct extent_buffer *eb)
4187 {
4188 /* the ref bit is tricky. We have to make sure it is set
4189 * if we have the buffer dirty. Otherwise the
4190 * code to free a buffer can end up dropping a dirty
4191 * page
4192 *
4193 * Once the ref bit is set, it won't go away while the
4194 * buffer is dirty or in writeback, and it also won't
4195 * go away while we have the reference count on the
4196 * eb bumped.
4197 *
4198 * We can't just set the ref bit without bumping the
4199 * ref on the eb because free_extent_buffer might
4200 * see the ref bit and try to clear it. If this happens
4201 * free_extent_buffer might end up dropping our original
4202 * ref by mistake and freeing the page before we are able
4203 * to add one more ref.
4204 *
4205 * So bump the ref count first, then set the bit. If someone
4206 * beat us to it, drop the ref we added.
4207 */
4208 spin_lock(&eb->refs_lock);
4209 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4210 atomic_inc(&eb->refs);
4211 spin_unlock(&eb->refs_lock);
4212 }
4213
4214 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4215 {
4216 unsigned long num_pages, i;
4217
4218 check_buffer_tree_ref(eb);
4219
4220 num_pages = num_extent_pages(eb->start, eb->len);
4221 for (i = 0; i < num_pages; i++) {
4222 struct page *p = extent_buffer_page(eb, i);
4223 mark_page_accessed(p);
4224 }
4225 }
4226
4227 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4228 u64 start, unsigned long len)
4229 {
4230 unsigned long num_pages = num_extent_pages(start, len);
4231 unsigned long i;
4232 unsigned long index = start >> PAGE_CACHE_SHIFT;
4233 struct extent_buffer *eb;
4234 struct extent_buffer *exists = NULL;
4235 struct page *p;
4236 struct address_space *mapping = tree->mapping;
4237 int uptodate = 1;
4238 int ret;
4239
4240 rcu_read_lock();
4241 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4242 if (eb && atomic_inc_not_zero(&eb->refs)) {
4243 rcu_read_unlock();
4244 mark_extent_buffer_accessed(eb);
4245 return eb;
4246 }
4247 rcu_read_unlock();
4248
4249 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4250 if (!eb)
4251 return NULL;
4252
4253 for (i = 0; i < num_pages; i++, index++) {
4254 p = find_or_create_page(mapping, index, GFP_NOFS);
4255 if (!p)
4256 goto free_eb;
4257
4258 spin_lock(&mapping->private_lock);
4259 if (PagePrivate(p)) {
4260 /*
4261 * We could have already allocated an eb for this page
4262 * and attached one so lets see if we can get a ref on
4263 * the existing eb, and if we can we know it's good and
4264 * we can just return that one, else we know we can just
4265 * overwrite page->private.
4266 */
4267 exists = (struct extent_buffer *)p->private;
4268 if (atomic_inc_not_zero(&exists->refs)) {
4269 spin_unlock(&mapping->private_lock);
4270 unlock_page(p);
4271 page_cache_release(p);
4272 mark_extent_buffer_accessed(exists);
4273 goto free_eb;
4274 }
4275
4276 /*
4277 * Do this so attach doesn't complain and we need to
4278 * drop the ref the old guy had.
4279 */
4280 ClearPagePrivate(p);
4281 WARN_ON(PageDirty(p));
4282 page_cache_release(p);
4283 }
4284 attach_extent_buffer_page(eb, p);
4285 spin_unlock(&mapping->private_lock);
4286 WARN_ON(PageDirty(p));
4287 mark_page_accessed(p);
4288 eb->pages[i] = p;
4289 if (!PageUptodate(p))
4290 uptodate = 0;
4291
4292 /*
4293 * see below about how we avoid a nasty race with release page
4294 * and why we unlock later
4295 */
4296 }
4297 if (uptodate)
4298 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4299 again:
4300 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4301 if (ret)
4302 goto free_eb;
4303
4304 spin_lock(&tree->buffer_lock);
4305 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4306 if (ret == -EEXIST) {
4307 exists = radix_tree_lookup(&tree->buffer,
4308 start >> PAGE_CACHE_SHIFT);
4309 if (!atomic_inc_not_zero(&exists->refs)) {
4310 spin_unlock(&tree->buffer_lock);
4311 radix_tree_preload_end();
4312 exists = NULL;
4313 goto again;
4314 }
4315 spin_unlock(&tree->buffer_lock);
4316 radix_tree_preload_end();
4317 mark_extent_buffer_accessed(exists);
4318 goto free_eb;
4319 }
4320 /* add one reference for the tree */
4321 check_buffer_tree_ref(eb);
4322 spin_unlock(&tree->buffer_lock);
4323 radix_tree_preload_end();
4324
4325 /*
4326 * there is a race where release page may have
4327 * tried to find this extent buffer in the radix
4328 * but failed. It will tell the VM it is safe to
4329 * reclaim the, and it will clear the page private bit.
4330 * We must make sure to set the page private bit properly
4331 * after the extent buffer is in the radix tree so
4332 * it doesn't get lost
4333 */
4334 SetPageChecked(eb->pages[0]);
4335 for (i = 1; i < num_pages; i++) {
4336 p = extent_buffer_page(eb, i);
4337 ClearPageChecked(p);
4338 unlock_page(p);
4339 }
4340 unlock_page(eb->pages[0]);
4341 return eb;
4342
4343 free_eb:
4344 for (i = 0; i < num_pages; i++) {
4345 if (eb->pages[i])
4346 unlock_page(eb->pages[i]);
4347 }
4348
4349 WARN_ON(!atomic_dec_and_test(&eb->refs));
4350 btrfs_release_extent_buffer(eb);
4351 return exists;
4352 }
4353
4354 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4355 u64 start, unsigned long len)
4356 {
4357 struct extent_buffer *eb;
4358
4359 rcu_read_lock();
4360 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4361 if (eb && atomic_inc_not_zero(&eb->refs)) {
4362 rcu_read_unlock();
4363 mark_extent_buffer_accessed(eb);
4364 return eb;
4365 }
4366 rcu_read_unlock();
4367
4368 return NULL;
4369 }
4370
4371 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4372 {
4373 struct extent_buffer *eb =
4374 container_of(head, struct extent_buffer, rcu_head);
4375
4376 __free_extent_buffer(eb);
4377 }
4378
4379 /* Expects to have eb->eb_lock already held */
4380 static int release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4381 {
4382 WARN_ON(atomic_read(&eb->refs) == 0);
4383 if (atomic_dec_and_test(&eb->refs)) {
4384 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4385 spin_unlock(&eb->refs_lock);
4386 } else {
4387 struct extent_io_tree *tree = eb->tree;
4388
4389 spin_unlock(&eb->refs_lock);
4390
4391 spin_lock(&tree->buffer_lock);
4392 radix_tree_delete(&tree->buffer,
4393 eb->start >> PAGE_CACHE_SHIFT);
4394 spin_unlock(&tree->buffer_lock);
4395 }
4396
4397 /* Should be safe to release our pages at this point */
4398 btrfs_release_extent_buffer_page(eb, 0);
4399 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4400 return 1;
4401 }
4402 spin_unlock(&eb->refs_lock);
4403
4404 return 0;
4405 }
4406
4407 void free_extent_buffer(struct extent_buffer *eb)
4408 {
4409 if (!eb)
4410 return;
4411
4412 spin_lock(&eb->refs_lock);
4413 if (atomic_read(&eb->refs) == 2 &&
4414 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4415 atomic_dec(&eb->refs);
4416
4417 if (atomic_read(&eb->refs) == 2 &&
4418 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4419 !extent_buffer_under_io(eb) &&
4420 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4421 atomic_dec(&eb->refs);
4422
4423 /*
4424 * I know this is terrible, but it's temporary until we stop tracking
4425 * the uptodate bits and such for the extent buffers.
4426 */
4427 release_extent_buffer(eb, GFP_ATOMIC);
4428 }
4429
4430 void free_extent_buffer_stale(struct extent_buffer *eb)
4431 {
4432 if (!eb)
4433 return;
4434
4435 spin_lock(&eb->refs_lock);
4436 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4437
4438 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4439 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4440 atomic_dec(&eb->refs);
4441 release_extent_buffer(eb, GFP_NOFS);
4442 }
4443
4444 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4445 {
4446 unsigned long i;
4447 unsigned long num_pages;
4448 struct page *page;
4449
4450 num_pages = num_extent_pages(eb->start, eb->len);
4451
4452 for (i = 0; i < num_pages; i++) {
4453 page = extent_buffer_page(eb, i);
4454 if (!PageDirty(page))
4455 continue;
4456
4457 lock_page(page);
4458 WARN_ON(!PagePrivate(page));
4459
4460 clear_page_dirty_for_io(page);
4461 spin_lock_irq(&page->mapping->tree_lock);
4462 if (!PageDirty(page)) {
4463 radix_tree_tag_clear(&page->mapping->page_tree,
4464 page_index(page),
4465 PAGECACHE_TAG_DIRTY);
4466 }
4467 spin_unlock_irq(&page->mapping->tree_lock);
4468 ClearPageError(page);
4469 unlock_page(page);
4470 }
4471 WARN_ON(atomic_read(&eb->refs) == 0);
4472 }
4473
4474 int set_extent_buffer_dirty(struct extent_buffer *eb)
4475 {
4476 unsigned long i;
4477 unsigned long num_pages;
4478 int was_dirty = 0;
4479
4480 check_buffer_tree_ref(eb);
4481
4482 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4483
4484 num_pages = num_extent_pages(eb->start, eb->len);
4485 WARN_ON(atomic_read(&eb->refs) == 0);
4486 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4487
4488 for (i = 0; i < num_pages; i++)
4489 set_page_dirty(extent_buffer_page(eb, i));
4490 return was_dirty;
4491 }
4492
4493 static int range_straddles_pages(u64 start, u64 len)
4494 {
4495 if (len < PAGE_CACHE_SIZE)
4496 return 1;
4497 if (start & (PAGE_CACHE_SIZE - 1))
4498 return 1;
4499 if ((start + len) & (PAGE_CACHE_SIZE - 1))
4500 return 1;
4501 return 0;
4502 }
4503
4504 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4505 {
4506 unsigned long i;
4507 struct page *page;
4508 unsigned long num_pages;
4509
4510 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4511 num_pages = num_extent_pages(eb->start, eb->len);
4512 for (i = 0; i < num_pages; i++) {
4513 page = extent_buffer_page(eb, i);
4514 if (page)
4515 ClearPageUptodate(page);
4516 }
4517 return 0;
4518 }
4519
4520 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4521 {
4522 unsigned long i;
4523 struct page *page;
4524 unsigned long num_pages;
4525
4526 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4527 num_pages = num_extent_pages(eb->start, eb->len);
4528 for (i = 0; i < num_pages; i++) {
4529 page = extent_buffer_page(eb, i);
4530 SetPageUptodate(page);
4531 }
4532 return 0;
4533 }
4534
4535 int extent_range_uptodate(struct extent_io_tree *tree,
4536 u64 start, u64 end)
4537 {
4538 struct page *page;
4539 int ret;
4540 int pg_uptodate = 1;
4541 int uptodate;
4542 unsigned long index;
4543
4544 if (range_straddles_pages(start, end - start + 1)) {
4545 ret = test_range_bit(tree, start, end,
4546 EXTENT_UPTODATE, 1, NULL);
4547 if (ret)
4548 return 1;
4549 }
4550 while (start <= end) {
4551 index = start >> PAGE_CACHE_SHIFT;
4552 page = find_get_page(tree->mapping, index);
4553 if (!page)
4554 return 1;
4555 uptodate = PageUptodate(page);
4556 page_cache_release(page);
4557 if (!uptodate) {
4558 pg_uptodate = 0;
4559 break;
4560 }
4561 start += PAGE_CACHE_SIZE;
4562 }
4563 return pg_uptodate;
4564 }
4565
4566 int extent_buffer_uptodate(struct extent_buffer *eb)
4567 {
4568 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4569 }
4570
4571 int read_extent_buffer_pages(struct extent_io_tree *tree,
4572 struct extent_buffer *eb, u64 start, int wait,
4573 get_extent_t *get_extent, int mirror_num)
4574 {
4575 unsigned long i;
4576 unsigned long start_i;
4577 struct page *page;
4578 int err;
4579 int ret = 0;
4580 int locked_pages = 0;
4581 int all_uptodate = 1;
4582 unsigned long num_pages;
4583 unsigned long num_reads = 0;
4584 struct bio *bio = NULL;
4585 unsigned long bio_flags = 0;
4586
4587 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4588 return 0;
4589
4590 if (start) {
4591 WARN_ON(start < eb->start);
4592 start_i = (start >> PAGE_CACHE_SHIFT) -
4593 (eb->start >> PAGE_CACHE_SHIFT);
4594 } else {
4595 start_i = 0;
4596 }
4597
4598 num_pages = num_extent_pages(eb->start, eb->len);
4599 for (i = start_i; i < num_pages; i++) {
4600 page = extent_buffer_page(eb, i);
4601 if (wait == WAIT_NONE) {
4602 if (!trylock_page(page))
4603 goto unlock_exit;
4604 } else {
4605 lock_page(page);
4606 }
4607 locked_pages++;
4608 if (!PageUptodate(page)) {
4609 num_reads++;
4610 all_uptodate = 0;
4611 }
4612 }
4613 if (all_uptodate) {
4614 if (start_i == 0)
4615 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4616 goto unlock_exit;
4617 }
4618
4619 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4620 eb->read_mirror = 0;
4621 atomic_set(&eb->io_pages, num_reads);
4622 for (i = start_i; i < num_pages; i++) {
4623 page = extent_buffer_page(eb, i);
4624 if (!PageUptodate(page)) {
4625 ClearPageError(page);
4626 err = __extent_read_full_page(tree, page,
4627 get_extent, &bio,
4628 mirror_num, &bio_flags);
4629 if (err)
4630 ret = err;
4631 } else {
4632 unlock_page(page);
4633 }
4634 }
4635
4636 if (bio) {
4637 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4638 if (err)
4639 return err;
4640 }
4641
4642 if (ret || wait != WAIT_COMPLETE)
4643 return ret;
4644
4645 for (i = start_i; i < num_pages; i++) {
4646 page = extent_buffer_page(eb, i);
4647 wait_on_page_locked(page);
4648 if (!PageUptodate(page))
4649 ret = -EIO;
4650 }
4651
4652 return ret;
4653
4654 unlock_exit:
4655 i = start_i;
4656 while (locked_pages > 0) {
4657 page = extent_buffer_page(eb, i);
4658 i++;
4659 unlock_page(page);
4660 locked_pages--;
4661 }
4662 return ret;
4663 }
4664
4665 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4666 unsigned long start,
4667 unsigned long len)
4668 {
4669 size_t cur;
4670 size_t offset;
4671 struct page *page;
4672 char *kaddr;
4673 char *dst = (char *)dstv;
4674 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4675 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4676
4677 WARN_ON(start > eb->len);
4678 WARN_ON(start + len > eb->start + eb->len);
4679
4680 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4681
4682 while (len > 0) {
4683 page = extent_buffer_page(eb, i);
4684
4685 cur = min(len, (PAGE_CACHE_SIZE - offset));
4686 kaddr = page_address(page);
4687 memcpy(dst, kaddr + offset, cur);
4688
4689 dst += cur;
4690 len -= cur;
4691 offset = 0;
4692 i++;
4693 }
4694 }
4695
4696 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4697 unsigned long min_len, char **map,
4698 unsigned long *map_start,
4699 unsigned long *map_len)
4700 {
4701 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4702 char *kaddr;
4703 struct page *p;
4704 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4705 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4706 unsigned long end_i = (start_offset + start + min_len - 1) >>
4707 PAGE_CACHE_SHIFT;
4708
4709 if (i != end_i)
4710 return -EINVAL;
4711
4712 if (i == 0) {
4713 offset = start_offset;
4714 *map_start = 0;
4715 } else {
4716 offset = 0;
4717 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4718 }
4719
4720 if (start + min_len > eb->len) {
4721 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4722 "wanted %lu %lu\n", (unsigned long long)eb->start,
4723 eb->len, start, min_len);
4724 return -EINVAL;
4725 }
4726
4727 p = extent_buffer_page(eb, i);
4728 kaddr = page_address(p);
4729 *map = kaddr + offset;
4730 *map_len = PAGE_CACHE_SIZE - offset;
4731 return 0;
4732 }
4733
4734 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4735 unsigned long start,
4736 unsigned long len)
4737 {
4738 size_t cur;
4739 size_t offset;
4740 struct page *page;
4741 char *kaddr;
4742 char *ptr = (char *)ptrv;
4743 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4744 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4745 int ret = 0;
4746
4747 WARN_ON(start > eb->len);
4748 WARN_ON(start + len > eb->start + eb->len);
4749
4750 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4751
4752 while (len > 0) {
4753 page = extent_buffer_page(eb, i);
4754
4755 cur = min(len, (PAGE_CACHE_SIZE - offset));
4756
4757 kaddr = page_address(page);
4758 ret = memcmp(ptr, kaddr + offset, cur);
4759 if (ret)
4760 break;
4761
4762 ptr += cur;
4763 len -= cur;
4764 offset = 0;
4765 i++;
4766 }
4767 return ret;
4768 }
4769
4770 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4771 unsigned long start, unsigned long len)
4772 {
4773 size_t cur;
4774 size_t offset;
4775 struct page *page;
4776 char *kaddr;
4777 char *src = (char *)srcv;
4778 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4779 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4780
4781 WARN_ON(start > eb->len);
4782 WARN_ON(start + len > eb->start + eb->len);
4783
4784 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4785
4786 while (len > 0) {
4787 page = extent_buffer_page(eb, i);
4788 WARN_ON(!PageUptodate(page));
4789
4790 cur = min(len, PAGE_CACHE_SIZE - offset);
4791 kaddr = page_address(page);
4792 memcpy(kaddr + offset, src, cur);
4793
4794 src += cur;
4795 len -= cur;
4796 offset = 0;
4797 i++;
4798 }
4799 }
4800
4801 void memset_extent_buffer(struct extent_buffer *eb, char c,
4802 unsigned long start, unsigned long len)
4803 {
4804 size_t cur;
4805 size_t offset;
4806 struct page *page;
4807 char *kaddr;
4808 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4809 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4810
4811 WARN_ON(start > eb->len);
4812 WARN_ON(start + len > eb->start + eb->len);
4813
4814 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4815
4816 while (len > 0) {
4817 page = extent_buffer_page(eb, i);
4818 WARN_ON(!PageUptodate(page));
4819
4820 cur = min(len, PAGE_CACHE_SIZE - offset);
4821 kaddr = page_address(page);
4822 memset(kaddr + offset, c, cur);
4823
4824 len -= cur;
4825 offset = 0;
4826 i++;
4827 }
4828 }
4829
4830 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4831 unsigned long dst_offset, unsigned long src_offset,
4832 unsigned long len)
4833 {
4834 u64 dst_len = dst->len;
4835 size_t cur;
4836 size_t offset;
4837 struct page *page;
4838 char *kaddr;
4839 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4840 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4841
4842 WARN_ON(src->len != dst_len);
4843
4844 offset = (start_offset + dst_offset) &
4845 ((unsigned long)PAGE_CACHE_SIZE - 1);
4846
4847 while (len > 0) {
4848 page = extent_buffer_page(dst, i);
4849 WARN_ON(!PageUptodate(page));
4850
4851 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4852
4853 kaddr = page_address(page);
4854 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4855
4856 src_offset += cur;
4857 len -= cur;
4858 offset = 0;
4859 i++;
4860 }
4861 }
4862
4863 static void move_pages(struct page *dst_page, struct page *src_page,
4864 unsigned long dst_off, unsigned long src_off,
4865 unsigned long len)
4866 {
4867 char *dst_kaddr = page_address(dst_page);
4868 if (dst_page == src_page) {
4869 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4870 } else {
4871 char *src_kaddr = page_address(src_page);
4872 char *p = dst_kaddr + dst_off + len;
4873 char *s = src_kaddr + src_off + len;
4874
4875 while (len--)
4876 *--p = *--s;
4877 }
4878 }
4879
4880 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4881 {
4882 unsigned long distance = (src > dst) ? src - dst : dst - src;
4883 return distance < len;
4884 }
4885
4886 static void copy_pages(struct page *dst_page, struct page *src_page,
4887 unsigned long dst_off, unsigned long src_off,
4888 unsigned long len)
4889 {
4890 char *dst_kaddr = page_address(dst_page);
4891 char *src_kaddr;
4892 int must_memmove = 0;
4893
4894 if (dst_page != src_page) {
4895 src_kaddr = page_address(src_page);
4896 } else {
4897 src_kaddr = dst_kaddr;
4898 if (areas_overlap(src_off, dst_off, len))
4899 must_memmove = 1;
4900 }
4901
4902 if (must_memmove)
4903 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4904 else
4905 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4906 }
4907
4908 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4909 unsigned long src_offset, unsigned long len)
4910 {
4911 size_t cur;
4912 size_t dst_off_in_page;
4913 size_t src_off_in_page;
4914 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4915 unsigned long dst_i;
4916 unsigned long src_i;
4917
4918 if (src_offset + len > dst->len) {
4919 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4920 "len %lu dst len %lu\n", src_offset, len, dst->len);
4921 BUG_ON(1);
4922 }
4923 if (dst_offset + len > dst->len) {
4924 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4925 "len %lu dst len %lu\n", dst_offset, len, dst->len);
4926 BUG_ON(1);
4927 }
4928
4929 while (len > 0) {
4930 dst_off_in_page = (start_offset + dst_offset) &
4931 ((unsigned long)PAGE_CACHE_SIZE - 1);
4932 src_off_in_page = (start_offset + src_offset) &
4933 ((unsigned long)PAGE_CACHE_SIZE - 1);
4934
4935 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4936 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4937
4938 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4939 src_off_in_page));
4940 cur = min_t(unsigned long, cur,
4941 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4942
4943 copy_pages(extent_buffer_page(dst, dst_i),
4944 extent_buffer_page(dst, src_i),
4945 dst_off_in_page, src_off_in_page, cur);
4946
4947 src_offset += cur;
4948 dst_offset += cur;
4949 len -= cur;
4950 }
4951 }
4952
4953 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4954 unsigned long src_offset, unsigned long len)
4955 {
4956 size_t cur;
4957 size_t dst_off_in_page;
4958 size_t src_off_in_page;
4959 unsigned long dst_end = dst_offset + len - 1;
4960 unsigned long src_end = src_offset + len - 1;
4961 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4962 unsigned long dst_i;
4963 unsigned long src_i;
4964
4965 if (src_offset + len > dst->len) {
4966 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4967 "len %lu len %lu\n", src_offset, len, dst->len);
4968 BUG_ON(1);
4969 }
4970 if (dst_offset + len > dst->len) {
4971 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4972 "len %lu len %lu\n", dst_offset, len, dst->len);
4973 BUG_ON(1);
4974 }
4975 if (dst_offset < src_offset) {
4976 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4977 return;
4978 }
4979 while (len > 0) {
4980 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4981 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4982
4983 dst_off_in_page = (start_offset + dst_end) &
4984 ((unsigned long)PAGE_CACHE_SIZE - 1);
4985 src_off_in_page = (start_offset + src_end) &
4986 ((unsigned long)PAGE_CACHE_SIZE - 1);
4987
4988 cur = min_t(unsigned long, len, src_off_in_page + 1);
4989 cur = min(cur, dst_off_in_page + 1);
4990 move_pages(extent_buffer_page(dst, dst_i),
4991 extent_buffer_page(dst, src_i),
4992 dst_off_in_page - cur + 1,
4993 src_off_in_page - cur + 1, cur);
4994
4995 dst_end -= cur;
4996 src_end -= cur;
4997 len -= cur;
4998 }
4999 }
5000
5001 int try_release_extent_buffer(struct page *page, gfp_t mask)
5002 {
5003 struct extent_buffer *eb;
5004
5005 /*
5006 * We need to make sure noboody is attaching this page to an eb right
5007 * now.
5008 */
5009 spin_lock(&page->mapping->private_lock);
5010 if (!PagePrivate(page)) {
5011 spin_unlock(&page->mapping->private_lock);
5012 return 1;
5013 }
5014
5015 eb = (struct extent_buffer *)page->private;
5016 BUG_ON(!eb);
5017
5018 /*
5019 * This is a little awful but should be ok, we need to make sure that
5020 * the eb doesn't disappear out from under us while we're looking at
5021 * this page.
5022 */
5023 spin_lock(&eb->refs_lock);
5024 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5025 spin_unlock(&eb->refs_lock);
5026 spin_unlock(&page->mapping->private_lock);
5027 return 0;
5028 }
5029 spin_unlock(&page->mapping->private_lock);
5030
5031 if ((mask & GFP_NOFS) == GFP_NOFS)
5032 mask = GFP_NOFS;
5033
5034 /*
5035 * If tree ref isn't set then we know the ref on this eb is a real ref,
5036 * so just return, this page will likely be freed soon anyway.
5037 */
5038 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5039 spin_unlock(&eb->refs_lock);
5040 return 0;
5041 }
5042
5043 return release_extent_buffer(eb, mask);
5044 }
This page took 0.210677 seconds and 5 git commands to generate.