powerpc: Fix up dma_alloc_coherent() on platforms without cache coherency.
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19
20 static struct kmem_cache *extent_state_cache;
21 static struct kmem_cache *extent_buffer_cache;
22
23 static LIST_HEAD(buffers);
24 static LIST_HEAD(states);
25
26 #define LEAK_DEBUG 0
27 #if LEAK_DEBUG
28 static DEFINE_SPINLOCK(leak_lock);
29 #endif
30
31 #define BUFFER_LRU_MAX 64
32
33 struct tree_entry {
34 u64 start;
35 u64 end;
36 struct rb_node rb_node;
37 };
38
39 struct extent_page_data {
40 struct bio *bio;
41 struct extent_io_tree *tree;
42 get_extent_t *get_extent;
43
44 /* tells writepage not to lock the state bits for this range
45 * it still does the unlocking
46 */
47 unsigned int extent_locked:1;
48
49 /* tells the submit_bio code to use a WRITE_SYNC */
50 unsigned int sync_io:1;
51 };
52
53 int __init extent_io_init(void)
54 {
55 extent_state_cache = kmem_cache_create("extent_state",
56 sizeof(struct extent_state), 0,
57 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
58 if (!extent_state_cache)
59 return -ENOMEM;
60
61 extent_buffer_cache = kmem_cache_create("extent_buffers",
62 sizeof(struct extent_buffer), 0,
63 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
64 if (!extent_buffer_cache)
65 goto free_state_cache;
66 return 0;
67
68 free_state_cache:
69 kmem_cache_destroy(extent_state_cache);
70 return -ENOMEM;
71 }
72
73 void extent_io_exit(void)
74 {
75 struct extent_state *state;
76 struct extent_buffer *eb;
77
78 while (!list_empty(&states)) {
79 state = list_entry(states.next, struct extent_state, leak_list);
80 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
81 "state %lu in tree %p refs %d\n",
82 (unsigned long long)state->start,
83 (unsigned long long)state->end,
84 state->state, state->tree, atomic_read(&state->refs));
85 list_del(&state->leak_list);
86 kmem_cache_free(extent_state_cache, state);
87
88 }
89
90 while (!list_empty(&buffers)) {
91 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
92 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
93 "refs %d\n", (unsigned long long)eb->start,
94 eb->len, atomic_read(&eb->refs));
95 list_del(&eb->leak_list);
96 kmem_cache_free(extent_buffer_cache, eb);
97 }
98 if (extent_state_cache)
99 kmem_cache_destroy(extent_state_cache);
100 if (extent_buffer_cache)
101 kmem_cache_destroy(extent_buffer_cache);
102 }
103
104 void extent_io_tree_init(struct extent_io_tree *tree,
105 struct address_space *mapping, gfp_t mask)
106 {
107 tree->state.rb_node = NULL;
108 tree->buffer.rb_node = NULL;
109 tree->ops = NULL;
110 tree->dirty_bytes = 0;
111 spin_lock_init(&tree->lock);
112 spin_lock_init(&tree->buffer_lock);
113 tree->mapping = mapping;
114 }
115
116 static struct extent_state *alloc_extent_state(gfp_t mask)
117 {
118 struct extent_state *state;
119 #if LEAK_DEBUG
120 unsigned long flags;
121 #endif
122
123 state = kmem_cache_alloc(extent_state_cache, mask);
124 if (!state)
125 return state;
126 state->state = 0;
127 state->private = 0;
128 state->tree = NULL;
129 #if LEAK_DEBUG
130 spin_lock_irqsave(&leak_lock, flags);
131 list_add(&state->leak_list, &states);
132 spin_unlock_irqrestore(&leak_lock, flags);
133 #endif
134 atomic_set(&state->refs, 1);
135 init_waitqueue_head(&state->wq);
136 return state;
137 }
138
139 static void free_extent_state(struct extent_state *state)
140 {
141 if (!state)
142 return;
143 if (atomic_dec_and_test(&state->refs)) {
144 #if LEAK_DEBUG
145 unsigned long flags;
146 #endif
147 WARN_ON(state->tree);
148 #if LEAK_DEBUG
149 spin_lock_irqsave(&leak_lock, flags);
150 list_del(&state->leak_list);
151 spin_unlock_irqrestore(&leak_lock, flags);
152 #endif
153 kmem_cache_free(extent_state_cache, state);
154 }
155 }
156
157 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
158 struct rb_node *node)
159 {
160 struct rb_node **p = &root->rb_node;
161 struct rb_node *parent = NULL;
162 struct tree_entry *entry;
163
164 while (*p) {
165 parent = *p;
166 entry = rb_entry(parent, struct tree_entry, rb_node);
167
168 if (offset < entry->start)
169 p = &(*p)->rb_left;
170 else if (offset > entry->end)
171 p = &(*p)->rb_right;
172 else
173 return parent;
174 }
175
176 entry = rb_entry(node, struct tree_entry, rb_node);
177 rb_link_node(node, parent, p);
178 rb_insert_color(node, root);
179 return NULL;
180 }
181
182 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
183 struct rb_node **prev_ret,
184 struct rb_node **next_ret)
185 {
186 struct rb_root *root = &tree->state;
187 struct rb_node *n = root->rb_node;
188 struct rb_node *prev = NULL;
189 struct rb_node *orig_prev = NULL;
190 struct tree_entry *entry;
191 struct tree_entry *prev_entry = NULL;
192
193 while (n) {
194 entry = rb_entry(n, struct tree_entry, rb_node);
195 prev = n;
196 prev_entry = entry;
197
198 if (offset < entry->start)
199 n = n->rb_left;
200 else if (offset > entry->end)
201 n = n->rb_right;
202 else
203 return n;
204 }
205
206 if (prev_ret) {
207 orig_prev = prev;
208 while (prev && offset > prev_entry->end) {
209 prev = rb_next(prev);
210 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
211 }
212 *prev_ret = prev;
213 prev = orig_prev;
214 }
215
216 if (next_ret) {
217 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
218 while (prev && offset < prev_entry->start) {
219 prev = rb_prev(prev);
220 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
221 }
222 *next_ret = prev;
223 }
224 return NULL;
225 }
226
227 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
228 u64 offset)
229 {
230 struct rb_node *prev = NULL;
231 struct rb_node *ret;
232
233 ret = __etree_search(tree, offset, &prev, NULL);
234 if (!ret)
235 return prev;
236 return ret;
237 }
238
239 static struct extent_buffer *buffer_tree_insert(struct extent_io_tree *tree,
240 u64 offset, struct rb_node *node)
241 {
242 struct rb_root *root = &tree->buffer;
243 struct rb_node **p = &root->rb_node;
244 struct rb_node *parent = NULL;
245 struct extent_buffer *eb;
246
247 while (*p) {
248 parent = *p;
249 eb = rb_entry(parent, struct extent_buffer, rb_node);
250
251 if (offset < eb->start)
252 p = &(*p)->rb_left;
253 else if (offset > eb->start)
254 p = &(*p)->rb_right;
255 else
256 return eb;
257 }
258
259 rb_link_node(node, parent, p);
260 rb_insert_color(node, root);
261 return NULL;
262 }
263
264 static struct extent_buffer *buffer_search(struct extent_io_tree *tree,
265 u64 offset)
266 {
267 struct rb_root *root = &tree->buffer;
268 struct rb_node *n = root->rb_node;
269 struct extent_buffer *eb;
270
271 while (n) {
272 eb = rb_entry(n, struct extent_buffer, rb_node);
273 if (offset < eb->start)
274 n = n->rb_left;
275 else if (offset > eb->start)
276 n = n->rb_right;
277 else
278 return eb;
279 }
280 return NULL;
281 }
282
283 /*
284 * utility function to look for merge candidates inside a given range.
285 * Any extents with matching state are merged together into a single
286 * extent in the tree. Extents with EXTENT_IO in their state field
287 * are not merged because the end_io handlers need to be able to do
288 * operations on them without sleeping (or doing allocations/splits).
289 *
290 * This should be called with the tree lock held.
291 */
292 static int merge_state(struct extent_io_tree *tree,
293 struct extent_state *state)
294 {
295 struct extent_state *other;
296 struct rb_node *other_node;
297
298 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
299 return 0;
300
301 other_node = rb_prev(&state->rb_node);
302 if (other_node) {
303 other = rb_entry(other_node, struct extent_state, rb_node);
304 if (other->end == state->start - 1 &&
305 other->state == state->state) {
306 state->start = other->start;
307 other->tree = NULL;
308 rb_erase(&other->rb_node, &tree->state);
309 free_extent_state(other);
310 }
311 }
312 other_node = rb_next(&state->rb_node);
313 if (other_node) {
314 other = rb_entry(other_node, struct extent_state, rb_node);
315 if (other->start == state->end + 1 &&
316 other->state == state->state) {
317 other->start = state->start;
318 state->tree = NULL;
319 rb_erase(&state->rb_node, &tree->state);
320 free_extent_state(state);
321 }
322 }
323 return 0;
324 }
325
326 static void set_state_cb(struct extent_io_tree *tree,
327 struct extent_state *state,
328 unsigned long bits)
329 {
330 if (tree->ops && tree->ops->set_bit_hook) {
331 tree->ops->set_bit_hook(tree->mapping->host, state->start,
332 state->end, state->state, bits);
333 }
334 }
335
336 static void clear_state_cb(struct extent_io_tree *tree,
337 struct extent_state *state,
338 unsigned long bits)
339 {
340 if (tree->ops && tree->ops->clear_bit_hook) {
341 tree->ops->clear_bit_hook(tree->mapping->host, state->start,
342 state->end, state->state, bits);
343 }
344 }
345
346 /*
347 * insert an extent_state struct into the tree. 'bits' are set on the
348 * struct before it is inserted.
349 *
350 * This may return -EEXIST if the extent is already there, in which case the
351 * state struct is freed.
352 *
353 * The tree lock is not taken internally. This is a utility function and
354 * probably isn't what you want to call (see set/clear_extent_bit).
355 */
356 static int insert_state(struct extent_io_tree *tree,
357 struct extent_state *state, u64 start, u64 end,
358 int bits)
359 {
360 struct rb_node *node;
361
362 if (end < start) {
363 printk(KERN_ERR "btrfs end < start %llu %llu\n",
364 (unsigned long long)end,
365 (unsigned long long)start);
366 WARN_ON(1);
367 }
368 if (bits & EXTENT_DIRTY)
369 tree->dirty_bytes += end - start + 1;
370 set_state_cb(tree, state, bits);
371 state->state |= bits;
372 state->start = start;
373 state->end = end;
374 node = tree_insert(&tree->state, end, &state->rb_node);
375 if (node) {
376 struct extent_state *found;
377 found = rb_entry(node, struct extent_state, rb_node);
378 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
379 "%llu %llu\n", (unsigned long long)found->start,
380 (unsigned long long)found->end,
381 (unsigned long long)start, (unsigned long long)end);
382 free_extent_state(state);
383 return -EEXIST;
384 }
385 state->tree = tree;
386 merge_state(tree, state);
387 return 0;
388 }
389
390 /*
391 * split a given extent state struct in two, inserting the preallocated
392 * struct 'prealloc' as the newly created second half. 'split' indicates an
393 * offset inside 'orig' where it should be split.
394 *
395 * Before calling,
396 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
397 * are two extent state structs in the tree:
398 * prealloc: [orig->start, split - 1]
399 * orig: [ split, orig->end ]
400 *
401 * The tree locks are not taken by this function. They need to be held
402 * by the caller.
403 */
404 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
405 struct extent_state *prealloc, u64 split)
406 {
407 struct rb_node *node;
408 prealloc->start = orig->start;
409 prealloc->end = split - 1;
410 prealloc->state = orig->state;
411 orig->start = split;
412
413 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
414 if (node) {
415 free_extent_state(prealloc);
416 return -EEXIST;
417 }
418 prealloc->tree = tree;
419 return 0;
420 }
421
422 /*
423 * utility function to clear some bits in an extent state struct.
424 * it will optionally wake up any one waiting on this state (wake == 1), or
425 * forcibly remove the state from the tree (delete == 1).
426 *
427 * If no bits are set on the state struct after clearing things, the
428 * struct is freed and removed from the tree
429 */
430 static int clear_state_bit(struct extent_io_tree *tree,
431 struct extent_state *state, int bits, int wake,
432 int delete)
433 {
434 int ret = state->state & bits;
435
436 if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
437 u64 range = state->end - state->start + 1;
438 WARN_ON(range > tree->dirty_bytes);
439 tree->dirty_bytes -= range;
440 }
441 clear_state_cb(tree, state, bits);
442 state->state &= ~bits;
443 if (wake)
444 wake_up(&state->wq);
445 if (delete || state->state == 0) {
446 if (state->tree) {
447 clear_state_cb(tree, state, state->state);
448 rb_erase(&state->rb_node, &tree->state);
449 state->tree = NULL;
450 free_extent_state(state);
451 } else {
452 WARN_ON(1);
453 }
454 } else {
455 merge_state(tree, state);
456 }
457 return ret;
458 }
459
460 /*
461 * clear some bits on a range in the tree. This may require splitting
462 * or inserting elements in the tree, so the gfp mask is used to
463 * indicate which allocations or sleeping are allowed.
464 *
465 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
466 * the given range from the tree regardless of state (ie for truncate).
467 *
468 * the range [start, end] is inclusive.
469 *
470 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
471 * bits were already set, or zero if none of the bits were already set.
472 */
473 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
474 int bits, int wake, int delete, gfp_t mask)
475 {
476 struct extent_state *state;
477 struct extent_state *prealloc = NULL;
478 struct rb_node *node;
479 int err;
480 int set = 0;
481
482 again:
483 if (!prealloc && (mask & __GFP_WAIT)) {
484 prealloc = alloc_extent_state(mask);
485 if (!prealloc)
486 return -ENOMEM;
487 }
488
489 spin_lock(&tree->lock);
490 /*
491 * this search will find the extents that end after
492 * our range starts
493 */
494 node = tree_search(tree, start);
495 if (!node)
496 goto out;
497 state = rb_entry(node, struct extent_state, rb_node);
498 if (state->start > end)
499 goto out;
500 WARN_ON(state->end < start);
501
502 /*
503 * | ---- desired range ---- |
504 * | state | or
505 * | ------------- state -------------- |
506 *
507 * We need to split the extent we found, and may flip
508 * bits on second half.
509 *
510 * If the extent we found extends past our range, we
511 * just split and search again. It'll get split again
512 * the next time though.
513 *
514 * If the extent we found is inside our range, we clear
515 * the desired bit on it.
516 */
517
518 if (state->start < start) {
519 if (!prealloc)
520 prealloc = alloc_extent_state(GFP_ATOMIC);
521 err = split_state(tree, state, prealloc, start);
522 BUG_ON(err == -EEXIST);
523 prealloc = NULL;
524 if (err)
525 goto out;
526 if (state->end <= end) {
527 start = state->end + 1;
528 set |= clear_state_bit(tree, state, bits,
529 wake, delete);
530 } else {
531 start = state->start;
532 }
533 goto search_again;
534 }
535 /*
536 * | ---- desired range ---- |
537 * | state |
538 * We need to split the extent, and clear the bit
539 * on the first half
540 */
541 if (state->start <= end && state->end > end) {
542 if (!prealloc)
543 prealloc = alloc_extent_state(GFP_ATOMIC);
544 err = split_state(tree, state, prealloc, end + 1);
545 BUG_ON(err == -EEXIST);
546
547 if (wake)
548 wake_up(&state->wq);
549 set |= clear_state_bit(tree, prealloc, bits,
550 wake, delete);
551 prealloc = NULL;
552 goto out;
553 }
554
555 start = state->end + 1;
556 set |= clear_state_bit(tree, state, bits, wake, delete);
557 goto search_again;
558
559 out:
560 spin_unlock(&tree->lock);
561 if (prealloc)
562 free_extent_state(prealloc);
563
564 return set;
565
566 search_again:
567 if (start > end)
568 goto out;
569 spin_unlock(&tree->lock);
570 if (mask & __GFP_WAIT)
571 cond_resched();
572 goto again;
573 }
574
575 static int wait_on_state(struct extent_io_tree *tree,
576 struct extent_state *state)
577 __releases(tree->lock)
578 __acquires(tree->lock)
579 {
580 DEFINE_WAIT(wait);
581 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
582 spin_unlock(&tree->lock);
583 schedule();
584 spin_lock(&tree->lock);
585 finish_wait(&state->wq, &wait);
586 return 0;
587 }
588
589 /*
590 * waits for one or more bits to clear on a range in the state tree.
591 * The range [start, end] is inclusive.
592 * The tree lock is taken by this function
593 */
594 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
595 {
596 struct extent_state *state;
597 struct rb_node *node;
598
599 spin_lock(&tree->lock);
600 again:
601 while (1) {
602 /*
603 * this search will find all the extents that end after
604 * our range starts
605 */
606 node = tree_search(tree, start);
607 if (!node)
608 break;
609
610 state = rb_entry(node, struct extent_state, rb_node);
611
612 if (state->start > end)
613 goto out;
614
615 if (state->state & bits) {
616 start = state->start;
617 atomic_inc(&state->refs);
618 wait_on_state(tree, state);
619 free_extent_state(state);
620 goto again;
621 }
622 start = state->end + 1;
623
624 if (start > end)
625 break;
626
627 if (need_resched()) {
628 spin_unlock(&tree->lock);
629 cond_resched();
630 spin_lock(&tree->lock);
631 }
632 }
633 out:
634 spin_unlock(&tree->lock);
635 return 0;
636 }
637
638 static void set_state_bits(struct extent_io_tree *tree,
639 struct extent_state *state,
640 int bits)
641 {
642 if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
643 u64 range = state->end - state->start + 1;
644 tree->dirty_bytes += range;
645 }
646 set_state_cb(tree, state, bits);
647 state->state |= bits;
648 }
649
650 /*
651 * set some bits on a range in the tree. This may require allocations
652 * or sleeping, so the gfp mask is used to indicate what is allowed.
653 *
654 * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
655 * range already has the desired bits set. The start of the existing
656 * range is returned in failed_start in this case.
657 *
658 * [start, end] is inclusive
659 * This takes the tree lock.
660 */
661 static int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
662 int bits, int exclusive, u64 *failed_start,
663 gfp_t mask)
664 {
665 struct extent_state *state;
666 struct extent_state *prealloc = NULL;
667 struct rb_node *node;
668 int err = 0;
669 int set;
670 u64 last_start;
671 u64 last_end;
672 again:
673 if (!prealloc && (mask & __GFP_WAIT)) {
674 prealloc = alloc_extent_state(mask);
675 if (!prealloc)
676 return -ENOMEM;
677 }
678
679 spin_lock(&tree->lock);
680 /*
681 * this search will find all the extents that end after
682 * our range starts.
683 */
684 node = tree_search(tree, start);
685 if (!node) {
686 err = insert_state(tree, prealloc, start, end, bits);
687 prealloc = NULL;
688 BUG_ON(err == -EEXIST);
689 goto out;
690 }
691
692 state = rb_entry(node, struct extent_state, rb_node);
693 last_start = state->start;
694 last_end = state->end;
695
696 /*
697 * | ---- desired range ---- |
698 * | state |
699 *
700 * Just lock what we found and keep going
701 */
702 if (state->start == start && state->end <= end) {
703 set = state->state & bits;
704 if (set && exclusive) {
705 *failed_start = state->start;
706 err = -EEXIST;
707 goto out;
708 }
709 set_state_bits(tree, state, bits);
710 start = state->end + 1;
711 merge_state(tree, state);
712 goto search_again;
713 }
714
715 /*
716 * | ---- desired range ---- |
717 * | state |
718 * or
719 * | ------------- state -------------- |
720 *
721 * We need to split the extent we found, and may flip bits on
722 * second half.
723 *
724 * If the extent we found extends past our
725 * range, we just split and search again. It'll get split
726 * again the next time though.
727 *
728 * If the extent we found is inside our range, we set the
729 * desired bit on it.
730 */
731 if (state->start < start) {
732 set = state->state & bits;
733 if (exclusive && set) {
734 *failed_start = start;
735 err = -EEXIST;
736 goto out;
737 }
738 err = split_state(tree, state, prealloc, start);
739 BUG_ON(err == -EEXIST);
740 prealloc = NULL;
741 if (err)
742 goto out;
743 if (state->end <= end) {
744 set_state_bits(tree, state, bits);
745 start = state->end + 1;
746 merge_state(tree, state);
747 } else {
748 start = state->start;
749 }
750 goto search_again;
751 }
752 /*
753 * | ---- desired range ---- |
754 * | state | or | state |
755 *
756 * There's a hole, we need to insert something in it and
757 * ignore the extent we found.
758 */
759 if (state->start > start) {
760 u64 this_end;
761 if (end < last_start)
762 this_end = end;
763 else
764 this_end = last_start - 1;
765 err = insert_state(tree, prealloc, start, this_end,
766 bits);
767 prealloc = NULL;
768 BUG_ON(err == -EEXIST);
769 if (err)
770 goto out;
771 start = this_end + 1;
772 goto search_again;
773 }
774 /*
775 * | ---- desired range ---- |
776 * | state |
777 * We need to split the extent, and set the bit
778 * on the first half
779 */
780 if (state->start <= end && state->end > end) {
781 set = state->state & bits;
782 if (exclusive && set) {
783 *failed_start = start;
784 err = -EEXIST;
785 goto out;
786 }
787 err = split_state(tree, state, prealloc, end + 1);
788 BUG_ON(err == -EEXIST);
789
790 set_state_bits(tree, prealloc, bits);
791 merge_state(tree, prealloc);
792 prealloc = NULL;
793 goto out;
794 }
795
796 goto search_again;
797
798 out:
799 spin_unlock(&tree->lock);
800 if (prealloc)
801 free_extent_state(prealloc);
802
803 return err;
804
805 search_again:
806 if (start > end)
807 goto out;
808 spin_unlock(&tree->lock);
809 if (mask & __GFP_WAIT)
810 cond_resched();
811 goto again;
812 }
813
814 /* wrappers around set/clear extent bit */
815 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
816 gfp_t mask)
817 {
818 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
819 mask);
820 }
821
822 int set_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end,
823 gfp_t mask)
824 {
825 return set_extent_bit(tree, start, end, EXTENT_ORDERED, 0, NULL, mask);
826 }
827
828 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
829 int bits, gfp_t mask)
830 {
831 return set_extent_bit(tree, start, end, bits, 0, NULL,
832 mask);
833 }
834
835 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
836 int bits, gfp_t mask)
837 {
838 return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
839 }
840
841 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
842 gfp_t mask)
843 {
844 return set_extent_bit(tree, start, end,
845 EXTENT_DELALLOC | EXTENT_DIRTY,
846 0, NULL, mask);
847 }
848
849 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
850 gfp_t mask)
851 {
852 return clear_extent_bit(tree, start, end,
853 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
854 }
855
856 int clear_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end,
857 gfp_t mask)
858 {
859 return clear_extent_bit(tree, start, end, EXTENT_ORDERED, 1, 0, mask);
860 }
861
862 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
863 gfp_t mask)
864 {
865 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
866 mask);
867 }
868
869 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
870 gfp_t mask)
871 {
872 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
873 }
874
875 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
876 gfp_t mask)
877 {
878 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
879 mask);
880 }
881
882 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
883 u64 end, gfp_t mask)
884 {
885 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
886 }
887
888 static int set_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
889 gfp_t mask)
890 {
891 return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
892 0, NULL, mask);
893 }
894
895 static int clear_extent_writeback(struct extent_io_tree *tree, u64 start,
896 u64 end, gfp_t mask)
897 {
898 return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
899 }
900
901 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
902 {
903 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
904 }
905
906 /*
907 * either insert or lock state struct between start and end use mask to tell
908 * us if waiting is desired.
909 */
910 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
911 {
912 int err;
913 u64 failed_start;
914 while (1) {
915 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
916 &failed_start, mask);
917 if (err == -EEXIST && (mask & __GFP_WAIT)) {
918 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
919 start = failed_start;
920 } else {
921 break;
922 }
923 WARN_ON(start > end);
924 }
925 return err;
926 }
927
928 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
929 gfp_t mask)
930 {
931 int err;
932 u64 failed_start;
933
934 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
935 &failed_start, mask);
936 if (err == -EEXIST) {
937 if (failed_start > start)
938 clear_extent_bit(tree, start, failed_start - 1,
939 EXTENT_LOCKED, 1, 0, mask);
940 return 0;
941 }
942 return 1;
943 }
944
945 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
946 gfp_t mask)
947 {
948 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
949 }
950
951 /*
952 * helper function to set pages and extents in the tree dirty
953 */
954 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
955 {
956 unsigned long index = start >> PAGE_CACHE_SHIFT;
957 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
958 struct page *page;
959
960 while (index <= end_index) {
961 page = find_get_page(tree->mapping, index);
962 BUG_ON(!page);
963 __set_page_dirty_nobuffers(page);
964 page_cache_release(page);
965 index++;
966 }
967 set_extent_dirty(tree, start, end, GFP_NOFS);
968 return 0;
969 }
970
971 /*
972 * helper function to set both pages and extents in the tree writeback
973 */
974 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
975 {
976 unsigned long index = start >> PAGE_CACHE_SHIFT;
977 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
978 struct page *page;
979
980 while (index <= end_index) {
981 page = find_get_page(tree->mapping, index);
982 BUG_ON(!page);
983 set_page_writeback(page);
984 page_cache_release(page);
985 index++;
986 }
987 set_extent_writeback(tree, start, end, GFP_NOFS);
988 return 0;
989 }
990
991 /*
992 * find the first offset in the io tree with 'bits' set. zero is
993 * returned if we find something, and *start_ret and *end_ret are
994 * set to reflect the state struct that was found.
995 *
996 * If nothing was found, 1 is returned, < 0 on error
997 */
998 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
999 u64 *start_ret, u64 *end_ret, int bits)
1000 {
1001 struct rb_node *node;
1002 struct extent_state *state;
1003 int ret = 1;
1004
1005 spin_lock(&tree->lock);
1006 /*
1007 * this search will find all the extents that end after
1008 * our range starts.
1009 */
1010 node = tree_search(tree, start);
1011 if (!node)
1012 goto out;
1013
1014 while (1) {
1015 state = rb_entry(node, struct extent_state, rb_node);
1016 if (state->end >= start && (state->state & bits)) {
1017 *start_ret = state->start;
1018 *end_ret = state->end;
1019 ret = 0;
1020 break;
1021 }
1022 node = rb_next(node);
1023 if (!node)
1024 break;
1025 }
1026 out:
1027 spin_unlock(&tree->lock);
1028 return ret;
1029 }
1030
1031 /* find the first state struct with 'bits' set after 'start', and
1032 * return it. tree->lock must be held. NULL will returned if
1033 * nothing was found after 'start'
1034 */
1035 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1036 u64 start, int bits)
1037 {
1038 struct rb_node *node;
1039 struct extent_state *state;
1040
1041 /*
1042 * this search will find all the extents that end after
1043 * our range starts.
1044 */
1045 node = tree_search(tree, start);
1046 if (!node)
1047 goto out;
1048
1049 while (1) {
1050 state = rb_entry(node, struct extent_state, rb_node);
1051 if (state->end >= start && (state->state & bits))
1052 return state;
1053
1054 node = rb_next(node);
1055 if (!node)
1056 break;
1057 }
1058 out:
1059 return NULL;
1060 }
1061
1062 /*
1063 * find a contiguous range of bytes in the file marked as delalloc, not
1064 * more than 'max_bytes'. start and end are used to return the range,
1065 *
1066 * 1 is returned if we find something, 0 if nothing was in the tree
1067 */
1068 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1069 u64 *start, u64 *end, u64 max_bytes)
1070 {
1071 struct rb_node *node;
1072 struct extent_state *state;
1073 u64 cur_start = *start;
1074 u64 found = 0;
1075 u64 total_bytes = 0;
1076
1077 spin_lock(&tree->lock);
1078
1079 /*
1080 * this search will find all the extents that end after
1081 * our range starts.
1082 */
1083 node = tree_search(tree, cur_start);
1084 if (!node) {
1085 if (!found)
1086 *end = (u64)-1;
1087 goto out;
1088 }
1089
1090 while (1) {
1091 state = rb_entry(node, struct extent_state, rb_node);
1092 if (found && (state->start != cur_start ||
1093 (state->state & EXTENT_BOUNDARY))) {
1094 goto out;
1095 }
1096 if (!(state->state & EXTENT_DELALLOC)) {
1097 if (!found)
1098 *end = state->end;
1099 goto out;
1100 }
1101 if (!found)
1102 *start = state->start;
1103 found++;
1104 *end = state->end;
1105 cur_start = state->end + 1;
1106 node = rb_next(node);
1107 if (!node)
1108 break;
1109 total_bytes += state->end - state->start + 1;
1110 if (total_bytes >= max_bytes)
1111 break;
1112 }
1113 out:
1114 spin_unlock(&tree->lock);
1115 return found;
1116 }
1117
1118 static noinline int __unlock_for_delalloc(struct inode *inode,
1119 struct page *locked_page,
1120 u64 start, u64 end)
1121 {
1122 int ret;
1123 struct page *pages[16];
1124 unsigned long index = start >> PAGE_CACHE_SHIFT;
1125 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1126 unsigned long nr_pages = end_index - index + 1;
1127 int i;
1128
1129 if (index == locked_page->index && end_index == index)
1130 return 0;
1131
1132 while (nr_pages > 0) {
1133 ret = find_get_pages_contig(inode->i_mapping, index,
1134 min_t(unsigned long, nr_pages,
1135 ARRAY_SIZE(pages)), pages);
1136 for (i = 0; i < ret; i++) {
1137 if (pages[i] != locked_page)
1138 unlock_page(pages[i]);
1139 page_cache_release(pages[i]);
1140 }
1141 nr_pages -= ret;
1142 index += ret;
1143 cond_resched();
1144 }
1145 return 0;
1146 }
1147
1148 static noinline int lock_delalloc_pages(struct inode *inode,
1149 struct page *locked_page,
1150 u64 delalloc_start,
1151 u64 delalloc_end)
1152 {
1153 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1154 unsigned long start_index = index;
1155 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1156 unsigned long pages_locked = 0;
1157 struct page *pages[16];
1158 unsigned long nrpages;
1159 int ret;
1160 int i;
1161
1162 /* the caller is responsible for locking the start index */
1163 if (index == locked_page->index && index == end_index)
1164 return 0;
1165
1166 /* skip the page at the start index */
1167 nrpages = end_index - index + 1;
1168 while (nrpages > 0) {
1169 ret = find_get_pages_contig(inode->i_mapping, index,
1170 min_t(unsigned long,
1171 nrpages, ARRAY_SIZE(pages)), pages);
1172 if (ret == 0) {
1173 ret = -EAGAIN;
1174 goto done;
1175 }
1176 /* now we have an array of pages, lock them all */
1177 for (i = 0; i < ret; i++) {
1178 /*
1179 * the caller is taking responsibility for
1180 * locked_page
1181 */
1182 if (pages[i] != locked_page) {
1183 lock_page(pages[i]);
1184 if (!PageDirty(pages[i]) ||
1185 pages[i]->mapping != inode->i_mapping) {
1186 ret = -EAGAIN;
1187 unlock_page(pages[i]);
1188 page_cache_release(pages[i]);
1189 goto done;
1190 }
1191 }
1192 page_cache_release(pages[i]);
1193 pages_locked++;
1194 }
1195 nrpages -= ret;
1196 index += ret;
1197 cond_resched();
1198 }
1199 ret = 0;
1200 done:
1201 if (ret && pages_locked) {
1202 __unlock_for_delalloc(inode, locked_page,
1203 delalloc_start,
1204 ((u64)(start_index + pages_locked - 1)) <<
1205 PAGE_CACHE_SHIFT);
1206 }
1207 return ret;
1208 }
1209
1210 /*
1211 * find a contiguous range of bytes in the file marked as delalloc, not
1212 * more than 'max_bytes'. start and end are used to return the range,
1213 *
1214 * 1 is returned if we find something, 0 if nothing was in the tree
1215 */
1216 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1217 struct extent_io_tree *tree,
1218 struct page *locked_page,
1219 u64 *start, u64 *end,
1220 u64 max_bytes)
1221 {
1222 u64 delalloc_start;
1223 u64 delalloc_end;
1224 u64 found;
1225 int ret;
1226 int loops = 0;
1227
1228 again:
1229 /* step one, find a bunch of delalloc bytes starting at start */
1230 delalloc_start = *start;
1231 delalloc_end = 0;
1232 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1233 max_bytes);
1234 if (!found || delalloc_end <= *start) {
1235 *start = delalloc_start;
1236 *end = delalloc_end;
1237 return found;
1238 }
1239
1240 /*
1241 * start comes from the offset of locked_page. We have to lock
1242 * pages in order, so we can't process delalloc bytes before
1243 * locked_page
1244 */
1245 if (delalloc_start < *start)
1246 delalloc_start = *start;
1247
1248 /*
1249 * make sure to limit the number of pages we try to lock down
1250 * if we're looping.
1251 */
1252 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1253 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1254
1255 /* step two, lock all the pages after the page that has start */
1256 ret = lock_delalloc_pages(inode, locked_page,
1257 delalloc_start, delalloc_end);
1258 if (ret == -EAGAIN) {
1259 /* some of the pages are gone, lets avoid looping by
1260 * shortening the size of the delalloc range we're searching
1261 */
1262 if (!loops) {
1263 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1264 max_bytes = PAGE_CACHE_SIZE - offset;
1265 loops = 1;
1266 goto again;
1267 } else {
1268 found = 0;
1269 goto out_failed;
1270 }
1271 }
1272 BUG_ON(ret);
1273
1274 /* step three, lock the state bits for the whole range */
1275 lock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS);
1276
1277 /* then test to make sure it is all still delalloc */
1278 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1279 EXTENT_DELALLOC, 1);
1280 if (!ret) {
1281 unlock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS);
1282 __unlock_for_delalloc(inode, locked_page,
1283 delalloc_start, delalloc_end);
1284 cond_resched();
1285 goto again;
1286 }
1287 *start = delalloc_start;
1288 *end = delalloc_end;
1289 out_failed:
1290 return found;
1291 }
1292
1293 int extent_clear_unlock_delalloc(struct inode *inode,
1294 struct extent_io_tree *tree,
1295 u64 start, u64 end, struct page *locked_page,
1296 int unlock_pages,
1297 int clear_unlock,
1298 int clear_delalloc, int clear_dirty,
1299 int set_writeback,
1300 int end_writeback)
1301 {
1302 int ret;
1303 struct page *pages[16];
1304 unsigned long index = start >> PAGE_CACHE_SHIFT;
1305 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1306 unsigned long nr_pages = end_index - index + 1;
1307 int i;
1308 int clear_bits = 0;
1309
1310 if (clear_unlock)
1311 clear_bits |= EXTENT_LOCKED;
1312 if (clear_dirty)
1313 clear_bits |= EXTENT_DIRTY;
1314
1315 if (clear_delalloc)
1316 clear_bits |= EXTENT_DELALLOC;
1317
1318 clear_extent_bit(tree, start, end, clear_bits, 1, 0, GFP_NOFS);
1319 if (!(unlock_pages || clear_dirty || set_writeback || end_writeback))
1320 return 0;
1321
1322 while (nr_pages > 0) {
1323 ret = find_get_pages_contig(inode->i_mapping, index,
1324 min_t(unsigned long,
1325 nr_pages, ARRAY_SIZE(pages)), pages);
1326 for (i = 0; i < ret; i++) {
1327 if (pages[i] == locked_page) {
1328 page_cache_release(pages[i]);
1329 continue;
1330 }
1331 if (clear_dirty)
1332 clear_page_dirty_for_io(pages[i]);
1333 if (set_writeback)
1334 set_page_writeback(pages[i]);
1335 if (end_writeback)
1336 end_page_writeback(pages[i]);
1337 if (unlock_pages)
1338 unlock_page(pages[i]);
1339 page_cache_release(pages[i]);
1340 }
1341 nr_pages -= ret;
1342 index += ret;
1343 cond_resched();
1344 }
1345 return 0;
1346 }
1347
1348 /*
1349 * count the number of bytes in the tree that have a given bit(s)
1350 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1351 * cached. The total number found is returned.
1352 */
1353 u64 count_range_bits(struct extent_io_tree *tree,
1354 u64 *start, u64 search_end, u64 max_bytes,
1355 unsigned long bits)
1356 {
1357 struct rb_node *node;
1358 struct extent_state *state;
1359 u64 cur_start = *start;
1360 u64 total_bytes = 0;
1361 int found = 0;
1362
1363 if (search_end <= cur_start) {
1364 WARN_ON(1);
1365 return 0;
1366 }
1367
1368 spin_lock(&tree->lock);
1369 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1370 total_bytes = tree->dirty_bytes;
1371 goto out;
1372 }
1373 /*
1374 * this search will find all the extents that end after
1375 * our range starts.
1376 */
1377 node = tree_search(tree, cur_start);
1378 if (!node)
1379 goto out;
1380
1381 while (1) {
1382 state = rb_entry(node, struct extent_state, rb_node);
1383 if (state->start > search_end)
1384 break;
1385 if (state->end >= cur_start && (state->state & bits)) {
1386 total_bytes += min(search_end, state->end) + 1 -
1387 max(cur_start, state->start);
1388 if (total_bytes >= max_bytes)
1389 break;
1390 if (!found) {
1391 *start = state->start;
1392 found = 1;
1393 }
1394 }
1395 node = rb_next(node);
1396 if (!node)
1397 break;
1398 }
1399 out:
1400 spin_unlock(&tree->lock);
1401 return total_bytes;
1402 }
1403
1404 /*
1405 * set the private field for a given byte offset in the tree. If there isn't
1406 * an extent_state there already, this does nothing.
1407 */
1408 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1409 {
1410 struct rb_node *node;
1411 struct extent_state *state;
1412 int ret = 0;
1413
1414 spin_lock(&tree->lock);
1415 /*
1416 * this search will find all the extents that end after
1417 * our range starts.
1418 */
1419 node = tree_search(tree, start);
1420 if (!node) {
1421 ret = -ENOENT;
1422 goto out;
1423 }
1424 state = rb_entry(node, struct extent_state, rb_node);
1425 if (state->start != start) {
1426 ret = -ENOENT;
1427 goto out;
1428 }
1429 state->private = private;
1430 out:
1431 spin_unlock(&tree->lock);
1432 return ret;
1433 }
1434
1435 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1436 {
1437 struct rb_node *node;
1438 struct extent_state *state;
1439 int ret = 0;
1440
1441 spin_lock(&tree->lock);
1442 /*
1443 * this search will find all the extents that end after
1444 * our range starts.
1445 */
1446 node = tree_search(tree, start);
1447 if (!node) {
1448 ret = -ENOENT;
1449 goto out;
1450 }
1451 state = rb_entry(node, struct extent_state, rb_node);
1452 if (state->start != start) {
1453 ret = -ENOENT;
1454 goto out;
1455 }
1456 *private = state->private;
1457 out:
1458 spin_unlock(&tree->lock);
1459 return ret;
1460 }
1461
1462 /*
1463 * searches a range in the state tree for a given mask.
1464 * If 'filled' == 1, this returns 1 only if every extent in the tree
1465 * has the bits set. Otherwise, 1 is returned if any bit in the
1466 * range is found set.
1467 */
1468 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1469 int bits, int filled)
1470 {
1471 struct extent_state *state = NULL;
1472 struct rb_node *node;
1473 int bitset = 0;
1474
1475 spin_lock(&tree->lock);
1476 node = tree_search(tree, start);
1477 while (node && start <= end) {
1478 state = rb_entry(node, struct extent_state, rb_node);
1479
1480 if (filled && state->start > start) {
1481 bitset = 0;
1482 break;
1483 }
1484
1485 if (state->start > end)
1486 break;
1487
1488 if (state->state & bits) {
1489 bitset = 1;
1490 if (!filled)
1491 break;
1492 } else if (filled) {
1493 bitset = 0;
1494 break;
1495 }
1496 start = state->end + 1;
1497 if (start > end)
1498 break;
1499 node = rb_next(node);
1500 if (!node) {
1501 if (filled)
1502 bitset = 0;
1503 break;
1504 }
1505 }
1506 spin_unlock(&tree->lock);
1507 return bitset;
1508 }
1509
1510 /*
1511 * helper function to set a given page up to date if all the
1512 * extents in the tree for that page are up to date
1513 */
1514 static int check_page_uptodate(struct extent_io_tree *tree,
1515 struct page *page)
1516 {
1517 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1518 u64 end = start + PAGE_CACHE_SIZE - 1;
1519 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1520 SetPageUptodate(page);
1521 return 0;
1522 }
1523
1524 /*
1525 * helper function to unlock a page if all the extents in the tree
1526 * for that page are unlocked
1527 */
1528 static int check_page_locked(struct extent_io_tree *tree,
1529 struct page *page)
1530 {
1531 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1532 u64 end = start + PAGE_CACHE_SIZE - 1;
1533 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1534 unlock_page(page);
1535 return 0;
1536 }
1537
1538 /*
1539 * helper function to end page writeback if all the extents
1540 * in the tree for that page are done with writeback
1541 */
1542 static int check_page_writeback(struct extent_io_tree *tree,
1543 struct page *page)
1544 {
1545 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1546 u64 end = start + PAGE_CACHE_SIZE - 1;
1547 if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1548 end_page_writeback(page);
1549 return 0;
1550 }
1551
1552 /* lots and lots of room for performance fixes in the end_bio funcs */
1553
1554 /*
1555 * after a writepage IO is done, we need to:
1556 * clear the uptodate bits on error
1557 * clear the writeback bits in the extent tree for this IO
1558 * end_page_writeback if the page has no more pending IO
1559 *
1560 * Scheduling is not allowed, so the extent state tree is expected
1561 * to have one and only one object corresponding to this IO.
1562 */
1563 static void end_bio_extent_writepage(struct bio *bio, int err)
1564 {
1565 int uptodate = err == 0;
1566 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1567 struct extent_io_tree *tree;
1568 u64 start;
1569 u64 end;
1570 int whole_page;
1571 int ret;
1572
1573 do {
1574 struct page *page = bvec->bv_page;
1575 tree = &BTRFS_I(page->mapping->host)->io_tree;
1576
1577 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1578 bvec->bv_offset;
1579 end = start + bvec->bv_len - 1;
1580
1581 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1582 whole_page = 1;
1583 else
1584 whole_page = 0;
1585
1586 if (--bvec >= bio->bi_io_vec)
1587 prefetchw(&bvec->bv_page->flags);
1588 if (tree->ops && tree->ops->writepage_end_io_hook) {
1589 ret = tree->ops->writepage_end_io_hook(page, start,
1590 end, NULL, uptodate);
1591 if (ret)
1592 uptodate = 0;
1593 }
1594
1595 if (!uptodate && tree->ops &&
1596 tree->ops->writepage_io_failed_hook) {
1597 ret = tree->ops->writepage_io_failed_hook(bio, page,
1598 start, end, NULL);
1599 if (ret == 0) {
1600 uptodate = (err == 0);
1601 continue;
1602 }
1603 }
1604
1605 if (!uptodate) {
1606 clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1607 ClearPageUptodate(page);
1608 SetPageError(page);
1609 }
1610
1611 clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1612
1613 if (whole_page)
1614 end_page_writeback(page);
1615 else
1616 check_page_writeback(tree, page);
1617 } while (bvec >= bio->bi_io_vec);
1618
1619 bio_put(bio);
1620 }
1621
1622 /*
1623 * after a readpage IO is done, we need to:
1624 * clear the uptodate bits on error
1625 * set the uptodate bits if things worked
1626 * set the page up to date if all extents in the tree are uptodate
1627 * clear the lock bit in the extent tree
1628 * unlock the page if there are no other extents locked for it
1629 *
1630 * Scheduling is not allowed, so the extent state tree is expected
1631 * to have one and only one object corresponding to this IO.
1632 */
1633 static void end_bio_extent_readpage(struct bio *bio, int err)
1634 {
1635 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1636 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1637 struct extent_io_tree *tree;
1638 u64 start;
1639 u64 end;
1640 int whole_page;
1641 int ret;
1642
1643 if (err)
1644 uptodate = 0;
1645
1646 do {
1647 struct page *page = bvec->bv_page;
1648 tree = &BTRFS_I(page->mapping->host)->io_tree;
1649
1650 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1651 bvec->bv_offset;
1652 end = start + bvec->bv_len - 1;
1653
1654 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1655 whole_page = 1;
1656 else
1657 whole_page = 0;
1658
1659 if (--bvec >= bio->bi_io_vec)
1660 prefetchw(&bvec->bv_page->flags);
1661
1662 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1663 ret = tree->ops->readpage_end_io_hook(page, start, end,
1664 NULL);
1665 if (ret)
1666 uptodate = 0;
1667 }
1668 if (!uptodate && tree->ops &&
1669 tree->ops->readpage_io_failed_hook) {
1670 ret = tree->ops->readpage_io_failed_hook(bio, page,
1671 start, end, NULL);
1672 if (ret == 0) {
1673 uptodate =
1674 test_bit(BIO_UPTODATE, &bio->bi_flags);
1675 if (err)
1676 uptodate = 0;
1677 continue;
1678 }
1679 }
1680
1681 if (uptodate) {
1682 set_extent_uptodate(tree, start, end,
1683 GFP_ATOMIC);
1684 }
1685 unlock_extent(tree, start, end, GFP_ATOMIC);
1686
1687 if (whole_page) {
1688 if (uptodate) {
1689 SetPageUptodate(page);
1690 } else {
1691 ClearPageUptodate(page);
1692 SetPageError(page);
1693 }
1694 unlock_page(page);
1695 } else {
1696 if (uptodate) {
1697 check_page_uptodate(tree, page);
1698 } else {
1699 ClearPageUptodate(page);
1700 SetPageError(page);
1701 }
1702 check_page_locked(tree, page);
1703 }
1704 } while (bvec >= bio->bi_io_vec);
1705
1706 bio_put(bio);
1707 }
1708
1709 /*
1710 * IO done from prepare_write is pretty simple, we just unlock
1711 * the structs in the extent tree when done, and set the uptodate bits
1712 * as appropriate.
1713 */
1714 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1715 {
1716 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1717 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1718 struct extent_io_tree *tree;
1719 u64 start;
1720 u64 end;
1721
1722 do {
1723 struct page *page = bvec->bv_page;
1724 tree = &BTRFS_I(page->mapping->host)->io_tree;
1725
1726 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1727 bvec->bv_offset;
1728 end = start + bvec->bv_len - 1;
1729
1730 if (--bvec >= bio->bi_io_vec)
1731 prefetchw(&bvec->bv_page->flags);
1732
1733 if (uptodate) {
1734 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1735 } else {
1736 ClearPageUptodate(page);
1737 SetPageError(page);
1738 }
1739
1740 unlock_extent(tree, start, end, GFP_ATOMIC);
1741
1742 } while (bvec >= bio->bi_io_vec);
1743
1744 bio_put(bio);
1745 }
1746
1747 static struct bio *
1748 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1749 gfp_t gfp_flags)
1750 {
1751 struct bio *bio;
1752
1753 bio = bio_alloc(gfp_flags, nr_vecs);
1754
1755 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1756 while (!bio && (nr_vecs /= 2))
1757 bio = bio_alloc(gfp_flags, nr_vecs);
1758 }
1759
1760 if (bio) {
1761 bio->bi_size = 0;
1762 bio->bi_bdev = bdev;
1763 bio->bi_sector = first_sector;
1764 }
1765 return bio;
1766 }
1767
1768 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1769 unsigned long bio_flags)
1770 {
1771 int ret = 0;
1772 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1773 struct page *page = bvec->bv_page;
1774 struct extent_io_tree *tree = bio->bi_private;
1775 u64 start;
1776 u64 end;
1777
1778 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1779 end = start + bvec->bv_len - 1;
1780
1781 bio->bi_private = NULL;
1782
1783 bio_get(bio);
1784
1785 if (tree->ops && tree->ops->submit_bio_hook)
1786 tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1787 mirror_num, bio_flags);
1788 else
1789 submit_bio(rw, bio);
1790 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1791 ret = -EOPNOTSUPP;
1792 bio_put(bio);
1793 return ret;
1794 }
1795
1796 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1797 struct page *page, sector_t sector,
1798 size_t size, unsigned long offset,
1799 struct block_device *bdev,
1800 struct bio **bio_ret,
1801 unsigned long max_pages,
1802 bio_end_io_t end_io_func,
1803 int mirror_num,
1804 unsigned long prev_bio_flags,
1805 unsigned long bio_flags)
1806 {
1807 int ret = 0;
1808 struct bio *bio;
1809 int nr;
1810 int contig = 0;
1811 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1812 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1813 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1814
1815 if (bio_ret && *bio_ret) {
1816 bio = *bio_ret;
1817 if (old_compressed)
1818 contig = bio->bi_sector == sector;
1819 else
1820 contig = bio->bi_sector + (bio->bi_size >> 9) ==
1821 sector;
1822
1823 if (prev_bio_flags != bio_flags || !contig ||
1824 (tree->ops && tree->ops->merge_bio_hook &&
1825 tree->ops->merge_bio_hook(page, offset, page_size, bio,
1826 bio_flags)) ||
1827 bio_add_page(bio, page, page_size, offset) < page_size) {
1828 ret = submit_one_bio(rw, bio, mirror_num,
1829 prev_bio_flags);
1830 bio = NULL;
1831 } else {
1832 return 0;
1833 }
1834 }
1835 if (this_compressed)
1836 nr = BIO_MAX_PAGES;
1837 else
1838 nr = bio_get_nr_vecs(bdev);
1839
1840 bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1841
1842 bio_add_page(bio, page, page_size, offset);
1843 bio->bi_end_io = end_io_func;
1844 bio->bi_private = tree;
1845
1846 if (bio_ret)
1847 *bio_ret = bio;
1848 else
1849 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1850
1851 return ret;
1852 }
1853
1854 void set_page_extent_mapped(struct page *page)
1855 {
1856 if (!PagePrivate(page)) {
1857 SetPagePrivate(page);
1858 page_cache_get(page);
1859 set_page_private(page, EXTENT_PAGE_PRIVATE);
1860 }
1861 }
1862
1863 static void set_page_extent_head(struct page *page, unsigned long len)
1864 {
1865 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1866 }
1867
1868 /*
1869 * basic readpage implementation. Locked extent state structs are inserted
1870 * into the tree that are removed when the IO is done (by the end_io
1871 * handlers)
1872 */
1873 static int __extent_read_full_page(struct extent_io_tree *tree,
1874 struct page *page,
1875 get_extent_t *get_extent,
1876 struct bio **bio, int mirror_num,
1877 unsigned long *bio_flags)
1878 {
1879 struct inode *inode = page->mapping->host;
1880 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1881 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1882 u64 end;
1883 u64 cur = start;
1884 u64 extent_offset;
1885 u64 last_byte = i_size_read(inode);
1886 u64 block_start;
1887 u64 cur_end;
1888 sector_t sector;
1889 struct extent_map *em;
1890 struct block_device *bdev;
1891 int ret;
1892 int nr = 0;
1893 size_t page_offset = 0;
1894 size_t iosize;
1895 size_t disk_io_size;
1896 size_t blocksize = inode->i_sb->s_blocksize;
1897 unsigned long this_bio_flag = 0;
1898
1899 set_page_extent_mapped(page);
1900
1901 end = page_end;
1902 lock_extent(tree, start, end, GFP_NOFS);
1903
1904 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
1905 char *userpage;
1906 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
1907
1908 if (zero_offset) {
1909 iosize = PAGE_CACHE_SIZE - zero_offset;
1910 userpage = kmap_atomic(page, KM_USER0);
1911 memset(userpage + zero_offset, 0, iosize);
1912 flush_dcache_page(page);
1913 kunmap_atomic(userpage, KM_USER0);
1914 }
1915 }
1916 while (cur <= end) {
1917 if (cur >= last_byte) {
1918 char *userpage;
1919 iosize = PAGE_CACHE_SIZE - page_offset;
1920 userpage = kmap_atomic(page, KM_USER0);
1921 memset(userpage + page_offset, 0, iosize);
1922 flush_dcache_page(page);
1923 kunmap_atomic(userpage, KM_USER0);
1924 set_extent_uptodate(tree, cur, cur + iosize - 1,
1925 GFP_NOFS);
1926 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1927 break;
1928 }
1929 em = get_extent(inode, page, page_offset, cur,
1930 end - cur + 1, 0);
1931 if (IS_ERR(em) || !em) {
1932 SetPageError(page);
1933 unlock_extent(tree, cur, end, GFP_NOFS);
1934 break;
1935 }
1936 extent_offset = cur - em->start;
1937 BUG_ON(extent_map_end(em) <= cur);
1938 BUG_ON(end < cur);
1939
1940 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1941 this_bio_flag = EXTENT_BIO_COMPRESSED;
1942
1943 iosize = min(extent_map_end(em) - cur, end - cur + 1);
1944 cur_end = min(extent_map_end(em) - 1, end);
1945 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1946 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
1947 disk_io_size = em->block_len;
1948 sector = em->block_start >> 9;
1949 } else {
1950 sector = (em->block_start + extent_offset) >> 9;
1951 disk_io_size = iosize;
1952 }
1953 bdev = em->bdev;
1954 block_start = em->block_start;
1955 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1956 block_start = EXTENT_MAP_HOLE;
1957 free_extent_map(em);
1958 em = NULL;
1959
1960 /* we've found a hole, just zero and go on */
1961 if (block_start == EXTENT_MAP_HOLE) {
1962 char *userpage;
1963 userpage = kmap_atomic(page, KM_USER0);
1964 memset(userpage + page_offset, 0, iosize);
1965 flush_dcache_page(page);
1966 kunmap_atomic(userpage, KM_USER0);
1967
1968 set_extent_uptodate(tree, cur, cur + iosize - 1,
1969 GFP_NOFS);
1970 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1971 cur = cur + iosize;
1972 page_offset += iosize;
1973 continue;
1974 }
1975 /* the get_extent function already copied into the page */
1976 if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1977 check_page_uptodate(tree, page);
1978 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1979 cur = cur + iosize;
1980 page_offset += iosize;
1981 continue;
1982 }
1983 /* we have an inline extent but it didn't get marked up
1984 * to date. Error out
1985 */
1986 if (block_start == EXTENT_MAP_INLINE) {
1987 SetPageError(page);
1988 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1989 cur = cur + iosize;
1990 page_offset += iosize;
1991 continue;
1992 }
1993
1994 ret = 0;
1995 if (tree->ops && tree->ops->readpage_io_hook) {
1996 ret = tree->ops->readpage_io_hook(page, cur,
1997 cur + iosize - 1);
1998 }
1999 if (!ret) {
2000 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2001 pnr -= page->index;
2002 ret = submit_extent_page(READ, tree, page,
2003 sector, disk_io_size, page_offset,
2004 bdev, bio, pnr,
2005 end_bio_extent_readpage, mirror_num,
2006 *bio_flags,
2007 this_bio_flag);
2008 nr++;
2009 *bio_flags = this_bio_flag;
2010 }
2011 if (ret)
2012 SetPageError(page);
2013 cur = cur + iosize;
2014 page_offset += iosize;
2015 }
2016 if (!nr) {
2017 if (!PageError(page))
2018 SetPageUptodate(page);
2019 unlock_page(page);
2020 }
2021 return 0;
2022 }
2023
2024 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2025 get_extent_t *get_extent)
2026 {
2027 struct bio *bio = NULL;
2028 unsigned long bio_flags = 0;
2029 int ret;
2030
2031 ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2032 &bio_flags);
2033 if (bio)
2034 submit_one_bio(READ, bio, 0, bio_flags);
2035 return ret;
2036 }
2037
2038 static noinline void update_nr_written(struct page *page,
2039 struct writeback_control *wbc,
2040 unsigned long nr_written)
2041 {
2042 wbc->nr_to_write -= nr_written;
2043 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2044 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2045 page->mapping->writeback_index = page->index + nr_written;
2046 }
2047
2048 /*
2049 * the writepage semantics are similar to regular writepage. extent
2050 * records are inserted to lock ranges in the tree, and as dirty areas
2051 * are found, they are marked writeback. Then the lock bits are removed
2052 * and the end_io handler clears the writeback ranges
2053 */
2054 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2055 void *data)
2056 {
2057 struct inode *inode = page->mapping->host;
2058 struct extent_page_data *epd = data;
2059 struct extent_io_tree *tree = epd->tree;
2060 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2061 u64 delalloc_start;
2062 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2063 u64 end;
2064 u64 cur = start;
2065 u64 extent_offset;
2066 u64 last_byte = i_size_read(inode);
2067 u64 block_start;
2068 u64 iosize;
2069 u64 unlock_start;
2070 sector_t sector;
2071 struct extent_map *em;
2072 struct block_device *bdev;
2073 int ret;
2074 int nr = 0;
2075 size_t pg_offset = 0;
2076 size_t blocksize;
2077 loff_t i_size = i_size_read(inode);
2078 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2079 u64 nr_delalloc;
2080 u64 delalloc_end;
2081 int page_started;
2082 int compressed;
2083 int write_flags;
2084 unsigned long nr_written = 0;
2085
2086 if (wbc->sync_mode == WB_SYNC_ALL)
2087 write_flags = WRITE_SYNC_PLUG;
2088 else
2089 write_flags = WRITE;
2090
2091 WARN_ON(!PageLocked(page));
2092 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2093 if (page->index > end_index ||
2094 (page->index == end_index && !pg_offset)) {
2095 page->mapping->a_ops->invalidatepage(page, 0);
2096 unlock_page(page);
2097 return 0;
2098 }
2099
2100 if (page->index == end_index) {
2101 char *userpage;
2102
2103 userpage = kmap_atomic(page, KM_USER0);
2104 memset(userpage + pg_offset, 0,
2105 PAGE_CACHE_SIZE - pg_offset);
2106 kunmap_atomic(userpage, KM_USER0);
2107 flush_dcache_page(page);
2108 }
2109 pg_offset = 0;
2110
2111 set_page_extent_mapped(page);
2112
2113 delalloc_start = start;
2114 delalloc_end = 0;
2115 page_started = 0;
2116 if (!epd->extent_locked) {
2117 /*
2118 * make sure the wbc mapping index is at least updated
2119 * to this page.
2120 */
2121 update_nr_written(page, wbc, 0);
2122
2123 while (delalloc_end < page_end) {
2124 nr_delalloc = find_lock_delalloc_range(inode, tree,
2125 page,
2126 &delalloc_start,
2127 &delalloc_end,
2128 128 * 1024 * 1024);
2129 if (nr_delalloc == 0) {
2130 delalloc_start = delalloc_end + 1;
2131 continue;
2132 }
2133 tree->ops->fill_delalloc(inode, page, delalloc_start,
2134 delalloc_end, &page_started,
2135 &nr_written);
2136 delalloc_start = delalloc_end + 1;
2137 }
2138
2139 /* did the fill delalloc function already unlock and start
2140 * the IO?
2141 */
2142 if (page_started) {
2143 ret = 0;
2144 /*
2145 * we've unlocked the page, so we can't update
2146 * the mapping's writeback index, just update
2147 * nr_to_write.
2148 */
2149 wbc->nr_to_write -= nr_written;
2150 goto done_unlocked;
2151 }
2152 }
2153 lock_extent(tree, start, page_end, GFP_NOFS);
2154
2155 unlock_start = start;
2156
2157 if (tree->ops && tree->ops->writepage_start_hook) {
2158 ret = tree->ops->writepage_start_hook(page, start,
2159 page_end);
2160 if (ret == -EAGAIN) {
2161 unlock_extent(tree, start, page_end, GFP_NOFS);
2162 redirty_page_for_writepage(wbc, page);
2163 update_nr_written(page, wbc, nr_written);
2164 unlock_page(page);
2165 ret = 0;
2166 goto done_unlocked;
2167 }
2168 }
2169
2170 /*
2171 * we don't want to touch the inode after unlocking the page,
2172 * so we update the mapping writeback index now
2173 */
2174 update_nr_written(page, wbc, nr_written + 1);
2175
2176 end = page_end;
2177 if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0))
2178 printk(KERN_ERR "btrfs delalloc bits after lock_extent\n");
2179
2180 if (last_byte <= start) {
2181 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
2182 unlock_extent(tree, start, page_end, GFP_NOFS);
2183 if (tree->ops && tree->ops->writepage_end_io_hook)
2184 tree->ops->writepage_end_io_hook(page, start,
2185 page_end, NULL, 1);
2186 unlock_start = page_end + 1;
2187 goto done;
2188 }
2189
2190 set_extent_uptodate(tree, start, page_end, GFP_NOFS);
2191 blocksize = inode->i_sb->s_blocksize;
2192
2193 while (cur <= end) {
2194 if (cur >= last_byte) {
2195 clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
2196 unlock_extent(tree, unlock_start, page_end, GFP_NOFS);
2197 if (tree->ops && tree->ops->writepage_end_io_hook)
2198 tree->ops->writepage_end_io_hook(page, cur,
2199 page_end, NULL, 1);
2200 unlock_start = page_end + 1;
2201 break;
2202 }
2203 em = epd->get_extent(inode, page, pg_offset, cur,
2204 end - cur + 1, 1);
2205 if (IS_ERR(em) || !em) {
2206 SetPageError(page);
2207 break;
2208 }
2209
2210 extent_offset = cur - em->start;
2211 BUG_ON(extent_map_end(em) <= cur);
2212 BUG_ON(end < cur);
2213 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2214 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2215 sector = (em->block_start + extent_offset) >> 9;
2216 bdev = em->bdev;
2217 block_start = em->block_start;
2218 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2219 free_extent_map(em);
2220 em = NULL;
2221
2222 /*
2223 * compressed and inline extents are written through other
2224 * paths in the FS
2225 */
2226 if (compressed || block_start == EXTENT_MAP_HOLE ||
2227 block_start == EXTENT_MAP_INLINE) {
2228 clear_extent_dirty(tree, cur,
2229 cur + iosize - 1, GFP_NOFS);
2230
2231 unlock_extent(tree, unlock_start, cur + iosize - 1,
2232 GFP_NOFS);
2233
2234 /*
2235 * end_io notification does not happen here for
2236 * compressed extents
2237 */
2238 if (!compressed && tree->ops &&
2239 tree->ops->writepage_end_io_hook)
2240 tree->ops->writepage_end_io_hook(page, cur,
2241 cur + iosize - 1,
2242 NULL, 1);
2243 else if (compressed) {
2244 /* we don't want to end_page_writeback on
2245 * a compressed extent. this happens
2246 * elsewhere
2247 */
2248 nr++;
2249 }
2250
2251 cur += iosize;
2252 pg_offset += iosize;
2253 unlock_start = cur;
2254 continue;
2255 }
2256 /* leave this out until we have a page_mkwrite call */
2257 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2258 EXTENT_DIRTY, 0)) {
2259 cur = cur + iosize;
2260 pg_offset += iosize;
2261 continue;
2262 }
2263
2264 clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
2265 if (tree->ops && tree->ops->writepage_io_hook) {
2266 ret = tree->ops->writepage_io_hook(page, cur,
2267 cur + iosize - 1);
2268 } else {
2269 ret = 0;
2270 }
2271 if (ret) {
2272 SetPageError(page);
2273 } else {
2274 unsigned long max_nr = end_index + 1;
2275
2276 set_range_writeback(tree, cur, cur + iosize - 1);
2277 if (!PageWriteback(page)) {
2278 printk(KERN_ERR "btrfs warning page %lu not "
2279 "writeback, cur %llu end %llu\n",
2280 page->index, (unsigned long long)cur,
2281 (unsigned long long)end);
2282 }
2283
2284 ret = submit_extent_page(write_flags, tree, page,
2285 sector, iosize, pg_offset,
2286 bdev, &epd->bio, max_nr,
2287 end_bio_extent_writepage,
2288 0, 0, 0);
2289 if (ret)
2290 SetPageError(page);
2291 }
2292 cur = cur + iosize;
2293 pg_offset += iosize;
2294 nr++;
2295 }
2296 done:
2297 if (nr == 0) {
2298 /* make sure the mapping tag for page dirty gets cleared */
2299 set_page_writeback(page);
2300 end_page_writeback(page);
2301 }
2302 if (unlock_start <= page_end)
2303 unlock_extent(tree, unlock_start, page_end, GFP_NOFS);
2304 unlock_page(page);
2305
2306 done_unlocked:
2307
2308 return 0;
2309 }
2310
2311 /**
2312 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2313 * @mapping: address space structure to write
2314 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2315 * @writepage: function called for each page
2316 * @data: data passed to writepage function
2317 *
2318 * If a page is already under I/O, write_cache_pages() skips it, even
2319 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2320 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2321 * and msync() need to guarantee that all the data which was dirty at the time
2322 * the call was made get new I/O started against them. If wbc->sync_mode is
2323 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2324 * existing IO to complete.
2325 */
2326 static int extent_write_cache_pages(struct extent_io_tree *tree,
2327 struct address_space *mapping,
2328 struct writeback_control *wbc,
2329 writepage_t writepage, void *data,
2330 void (*flush_fn)(void *))
2331 {
2332 struct backing_dev_info *bdi = mapping->backing_dev_info;
2333 int ret = 0;
2334 int done = 0;
2335 struct pagevec pvec;
2336 int nr_pages;
2337 pgoff_t index;
2338 pgoff_t end; /* Inclusive */
2339 int scanned = 0;
2340 int range_whole = 0;
2341
2342 pagevec_init(&pvec, 0);
2343 if (wbc->range_cyclic) {
2344 index = mapping->writeback_index; /* Start from prev offset */
2345 end = -1;
2346 } else {
2347 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2348 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2349 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2350 range_whole = 1;
2351 scanned = 1;
2352 }
2353 retry:
2354 while (!done && (index <= end) &&
2355 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2356 PAGECACHE_TAG_DIRTY, min(end - index,
2357 (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2358 unsigned i;
2359
2360 scanned = 1;
2361 for (i = 0; i < nr_pages; i++) {
2362 struct page *page = pvec.pages[i];
2363
2364 /*
2365 * At this point we hold neither mapping->tree_lock nor
2366 * lock on the page itself: the page may be truncated or
2367 * invalidated (changing page->mapping to NULL), or even
2368 * swizzled back from swapper_space to tmpfs file
2369 * mapping
2370 */
2371 if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2372 tree->ops->write_cache_pages_lock_hook(page);
2373 else
2374 lock_page(page);
2375
2376 if (unlikely(page->mapping != mapping)) {
2377 unlock_page(page);
2378 continue;
2379 }
2380
2381 if (!wbc->range_cyclic && page->index > end) {
2382 done = 1;
2383 unlock_page(page);
2384 continue;
2385 }
2386
2387 if (wbc->sync_mode != WB_SYNC_NONE) {
2388 if (PageWriteback(page))
2389 flush_fn(data);
2390 wait_on_page_writeback(page);
2391 }
2392
2393 if (PageWriteback(page) ||
2394 !clear_page_dirty_for_io(page)) {
2395 unlock_page(page);
2396 continue;
2397 }
2398
2399 ret = (*writepage)(page, wbc, data);
2400
2401 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2402 unlock_page(page);
2403 ret = 0;
2404 }
2405 if (ret || wbc->nr_to_write <= 0)
2406 done = 1;
2407 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2408 wbc->encountered_congestion = 1;
2409 done = 1;
2410 }
2411 }
2412 pagevec_release(&pvec);
2413 cond_resched();
2414 }
2415 if (!scanned && !done) {
2416 /*
2417 * We hit the last page and there is more work to be done: wrap
2418 * back to the start of the file
2419 */
2420 scanned = 1;
2421 index = 0;
2422 goto retry;
2423 }
2424 return ret;
2425 }
2426
2427 static void flush_epd_write_bio(struct extent_page_data *epd)
2428 {
2429 if (epd->bio) {
2430 if (epd->sync_io)
2431 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2432 else
2433 submit_one_bio(WRITE, epd->bio, 0, 0);
2434 epd->bio = NULL;
2435 }
2436 }
2437
2438 static noinline void flush_write_bio(void *data)
2439 {
2440 struct extent_page_data *epd = data;
2441 flush_epd_write_bio(epd);
2442 }
2443
2444 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2445 get_extent_t *get_extent,
2446 struct writeback_control *wbc)
2447 {
2448 int ret;
2449 struct address_space *mapping = page->mapping;
2450 struct extent_page_data epd = {
2451 .bio = NULL,
2452 .tree = tree,
2453 .get_extent = get_extent,
2454 .extent_locked = 0,
2455 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2456 };
2457 struct writeback_control wbc_writepages = {
2458 .bdi = wbc->bdi,
2459 .sync_mode = wbc->sync_mode,
2460 .older_than_this = NULL,
2461 .nr_to_write = 64,
2462 .range_start = page_offset(page) + PAGE_CACHE_SIZE,
2463 .range_end = (loff_t)-1,
2464 };
2465
2466 ret = __extent_writepage(page, wbc, &epd);
2467
2468 extent_write_cache_pages(tree, mapping, &wbc_writepages,
2469 __extent_writepage, &epd, flush_write_bio);
2470 flush_epd_write_bio(&epd);
2471 return ret;
2472 }
2473
2474 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2475 u64 start, u64 end, get_extent_t *get_extent,
2476 int mode)
2477 {
2478 int ret = 0;
2479 struct address_space *mapping = inode->i_mapping;
2480 struct page *page;
2481 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2482 PAGE_CACHE_SHIFT;
2483
2484 struct extent_page_data epd = {
2485 .bio = NULL,
2486 .tree = tree,
2487 .get_extent = get_extent,
2488 .extent_locked = 1,
2489 .sync_io = mode == WB_SYNC_ALL,
2490 };
2491 struct writeback_control wbc_writepages = {
2492 .bdi = inode->i_mapping->backing_dev_info,
2493 .sync_mode = mode,
2494 .older_than_this = NULL,
2495 .nr_to_write = nr_pages * 2,
2496 .range_start = start,
2497 .range_end = end + 1,
2498 };
2499
2500 while (start <= end) {
2501 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2502 if (clear_page_dirty_for_io(page))
2503 ret = __extent_writepage(page, &wbc_writepages, &epd);
2504 else {
2505 if (tree->ops && tree->ops->writepage_end_io_hook)
2506 tree->ops->writepage_end_io_hook(page, start,
2507 start + PAGE_CACHE_SIZE - 1,
2508 NULL, 1);
2509 unlock_page(page);
2510 }
2511 page_cache_release(page);
2512 start += PAGE_CACHE_SIZE;
2513 }
2514
2515 flush_epd_write_bio(&epd);
2516 return ret;
2517 }
2518
2519 int extent_writepages(struct extent_io_tree *tree,
2520 struct address_space *mapping,
2521 get_extent_t *get_extent,
2522 struct writeback_control *wbc)
2523 {
2524 int ret = 0;
2525 struct extent_page_data epd = {
2526 .bio = NULL,
2527 .tree = tree,
2528 .get_extent = get_extent,
2529 .extent_locked = 0,
2530 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2531 };
2532
2533 ret = extent_write_cache_pages(tree, mapping, wbc,
2534 __extent_writepage, &epd,
2535 flush_write_bio);
2536 flush_epd_write_bio(&epd);
2537 return ret;
2538 }
2539
2540 int extent_readpages(struct extent_io_tree *tree,
2541 struct address_space *mapping,
2542 struct list_head *pages, unsigned nr_pages,
2543 get_extent_t get_extent)
2544 {
2545 struct bio *bio = NULL;
2546 unsigned page_idx;
2547 struct pagevec pvec;
2548 unsigned long bio_flags = 0;
2549
2550 pagevec_init(&pvec, 0);
2551 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2552 struct page *page = list_entry(pages->prev, struct page, lru);
2553
2554 prefetchw(&page->flags);
2555 list_del(&page->lru);
2556 /*
2557 * what we want to do here is call add_to_page_cache_lru,
2558 * but that isn't exported, so we reproduce it here
2559 */
2560 if (!add_to_page_cache(page, mapping,
2561 page->index, GFP_KERNEL)) {
2562
2563 /* open coding of lru_cache_add, also not exported */
2564 page_cache_get(page);
2565 if (!pagevec_add(&pvec, page))
2566 __pagevec_lru_add_file(&pvec);
2567 __extent_read_full_page(tree, page, get_extent,
2568 &bio, 0, &bio_flags);
2569 }
2570 page_cache_release(page);
2571 }
2572 if (pagevec_count(&pvec))
2573 __pagevec_lru_add_file(&pvec);
2574 BUG_ON(!list_empty(pages));
2575 if (bio)
2576 submit_one_bio(READ, bio, 0, bio_flags);
2577 return 0;
2578 }
2579
2580 /*
2581 * basic invalidatepage code, this waits on any locked or writeback
2582 * ranges corresponding to the page, and then deletes any extent state
2583 * records from the tree
2584 */
2585 int extent_invalidatepage(struct extent_io_tree *tree,
2586 struct page *page, unsigned long offset)
2587 {
2588 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2589 u64 end = start + PAGE_CACHE_SIZE - 1;
2590 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2591
2592 start += (offset + blocksize - 1) & ~(blocksize - 1);
2593 if (start > end)
2594 return 0;
2595
2596 lock_extent(tree, start, end, GFP_NOFS);
2597 wait_on_extent_writeback(tree, start, end);
2598 clear_extent_bit(tree, start, end,
2599 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2600 1, 1, GFP_NOFS);
2601 return 0;
2602 }
2603
2604 /*
2605 * simple commit_write call, set_range_dirty is used to mark both
2606 * the pages and the extent records as dirty
2607 */
2608 int extent_commit_write(struct extent_io_tree *tree,
2609 struct inode *inode, struct page *page,
2610 unsigned from, unsigned to)
2611 {
2612 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2613
2614 set_page_extent_mapped(page);
2615 set_page_dirty(page);
2616
2617 if (pos > inode->i_size) {
2618 i_size_write(inode, pos);
2619 mark_inode_dirty(inode);
2620 }
2621 return 0;
2622 }
2623
2624 int extent_prepare_write(struct extent_io_tree *tree,
2625 struct inode *inode, struct page *page,
2626 unsigned from, unsigned to, get_extent_t *get_extent)
2627 {
2628 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2629 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2630 u64 block_start;
2631 u64 orig_block_start;
2632 u64 block_end;
2633 u64 cur_end;
2634 struct extent_map *em;
2635 unsigned blocksize = 1 << inode->i_blkbits;
2636 size_t page_offset = 0;
2637 size_t block_off_start;
2638 size_t block_off_end;
2639 int err = 0;
2640 int iocount = 0;
2641 int ret = 0;
2642 int isnew;
2643
2644 set_page_extent_mapped(page);
2645
2646 block_start = (page_start + from) & ~((u64)blocksize - 1);
2647 block_end = (page_start + to - 1) | (blocksize - 1);
2648 orig_block_start = block_start;
2649
2650 lock_extent(tree, page_start, page_end, GFP_NOFS);
2651 while (block_start <= block_end) {
2652 em = get_extent(inode, page, page_offset, block_start,
2653 block_end - block_start + 1, 1);
2654 if (IS_ERR(em) || !em)
2655 goto err;
2656
2657 cur_end = min(block_end, extent_map_end(em) - 1);
2658 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2659 block_off_end = block_off_start + blocksize;
2660 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2661
2662 if (!PageUptodate(page) && isnew &&
2663 (block_off_end > to || block_off_start < from)) {
2664 void *kaddr;
2665
2666 kaddr = kmap_atomic(page, KM_USER0);
2667 if (block_off_end > to)
2668 memset(kaddr + to, 0, block_off_end - to);
2669 if (block_off_start < from)
2670 memset(kaddr + block_off_start, 0,
2671 from - block_off_start);
2672 flush_dcache_page(page);
2673 kunmap_atomic(kaddr, KM_USER0);
2674 }
2675 if ((em->block_start != EXTENT_MAP_HOLE &&
2676 em->block_start != EXTENT_MAP_INLINE) &&
2677 !isnew && !PageUptodate(page) &&
2678 (block_off_end > to || block_off_start < from) &&
2679 !test_range_bit(tree, block_start, cur_end,
2680 EXTENT_UPTODATE, 1)) {
2681 u64 sector;
2682 u64 extent_offset = block_start - em->start;
2683 size_t iosize;
2684 sector = (em->block_start + extent_offset) >> 9;
2685 iosize = (cur_end - block_start + blocksize) &
2686 ~((u64)blocksize - 1);
2687 /*
2688 * we've already got the extent locked, but we
2689 * need to split the state such that our end_bio
2690 * handler can clear the lock.
2691 */
2692 set_extent_bit(tree, block_start,
2693 block_start + iosize - 1,
2694 EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2695 ret = submit_extent_page(READ, tree, page,
2696 sector, iosize, page_offset, em->bdev,
2697 NULL, 1,
2698 end_bio_extent_preparewrite, 0,
2699 0, 0);
2700 iocount++;
2701 block_start = block_start + iosize;
2702 } else {
2703 set_extent_uptodate(tree, block_start, cur_end,
2704 GFP_NOFS);
2705 unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2706 block_start = cur_end + 1;
2707 }
2708 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2709 free_extent_map(em);
2710 }
2711 if (iocount) {
2712 wait_extent_bit(tree, orig_block_start,
2713 block_end, EXTENT_LOCKED);
2714 }
2715 check_page_uptodate(tree, page);
2716 err:
2717 /* FIXME, zero out newly allocated blocks on error */
2718 return err;
2719 }
2720
2721 /*
2722 * a helper for releasepage, this tests for areas of the page that
2723 * are locked or under IO and drops the related state bits if it is safe
2724 * to drop the page.
2725 */
2726 int try_release_extent_state(struct extent_map_tree *map,
2727 struct extent_io_tree *tree, struct page *page,
2728 gfp_t mask)
2729 {
2730 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2731 u64 end = start + PAGE_CACHE_SIZE - 1;
2732 int ret = 1;
2733
2734 if (test_range_bit(tree, start, end,
2735 EXTENT_IOBITS | EXTENT_ORDERED, 0))
2736 ret = 0;
2737 else {
2738 if ((mask & GFP_NOFS) == GFP_NOFS)
2739 mask = GFP_NOFS;
2740 clear_extent_bit(tree, start, end, EXTENT_UPTODATE,
2741 1, 1, mask);
2742 }
2743 return ret;
2744 }
2745
2746 /*
2747 * a helper for releasepage. As long as there are no locked extents
2748 * in the range corresponding to the page, both state records and extent
2749 * map records are removed
2750 */
2751 int try_release_extent_mapping(struct extent_map_tree *map,
2752 struct extent_io_tree *tree, struct page *page,
2753 gfp_t mask)
2754 {
2755 struct extent_map *em;
2756 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2757 u64 end = start + PAGE_CACHE_SIZE - 1;
2758
2759 if ((mask & __GFP_WAIT) &&
2760 page->mapping->host->i_size > 16 * 1024 * 1024) {
2761 u64 len;
2762 while (start <= end) {
2763 len = end - start + 1;
2764 spin_lock(&map->lock);
2765 em = lookup_extent_mapping(map, start, len);
2766 if (!em || IS_ERR(em)) {
2767 spin_unlock(&map->lock);
2768 break;
2769 }
2770 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2771 em->start != start) {
2772 spin_unlock(&map->lock);
2773 free_extent_map(em);
2774 break;
2775 }
2776 if (!test_range_bit(tree, em->start,
2777 extent_map_end(em) - 1,
2778 EXTENT_LOCKED | EXTENT_WRITEBACK |
2779 EXTENT_ORDERED,
2780 0)) {
2781 remove_extent_mapping(map, em);
2782 /* once for the rb tree */
2783 free_extent_map(em);
2784 }
2785 start = extent_map_end(em);
2786 spin_unlock(&map->lock);
2787
2788 /* once for us */
2789 free_extent_map(em);
2790 }
2791 }
2792 return try_release_extent_state(map, tree, page, mask);
2793 }
2794
2795 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2796 get_extent_t *get_extent)
2797 {
2798 struct inode *inode = mapping->host;
2799 u64 start = iblock << inode->i_blkbits;
2800 sector_t sector = 0;
2801 size_t blksize = (1 << inode->i_blkbits);
2802 struct extent_map *em;
2803
2804 lock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2805 GFP_NOFS);
2806 em = get_extent(inode, NULL, 0, start, blksize, 0);
2807 unlock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2808 GFP_NOFS);
2809 if (!em || IS_ERR(em))
2810 return 0;
2811
2812 if (em->block_start > EXTENT_MAP_LAST_BYTE)
2813 goto out;
2814
2815 sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2816 out:
2817 free_extent_map(em);
2818 return sector;
2819 }
2820
2821 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2822 __u64 start, __u64 len, get_extent_t *get_extent)
2823 {
2824 int ret;
2825 u64 off = start;
2826 u64 max = start + len;
2827 u32 flags = 0;
2828 u64 disko = 0;
2829 struct extent_map *em = NULL;
2830 int end = 0;
2831 u64 em_start = 0, em_len = 0;
2832 unsigned long emflags;
2833 ret = 0;
2834
2835 if (len == 0)
2836 return -EINVAL;
2837
2838 lock_extent(&BTRFS_I(inode)->io_tree, start, start + len,
2839 GFP_NOFS);
2840 em = get_extent(inode, NULL, 0, off, max - off, 0);
2841 if (!em)
2842 goto out;
2843 if (IS_ERR(em)) {
2844 ret = PTR_ERR(em);
2845 goto out;
2846 }
2847 while (!end) {
2848 off = em->start + em->len;
2849 if (off >= max)
2850 end = 1;
2851
2852 em_start = em->start;
2853 em_len = em->len;
2854
2855 disko = 0;
2856 flags = 0;
2857
2858 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
2859 end = 1;
2860 flags |= FIEMAP_EXTENT_LAST;
2861 } else if (em->block_start == EXTENT_MAP_HOLE) {
2862 flags |= FIEMAP_EXTENT_UNWRITTEN;
2863 } else if (em->block_start == EXTENT_MAP_INLINE) {
2864 flags |= (FIEMAP_EXTENT_DATA_INLINE |
2865 FIEMAP_EXTENT_NOT_ALIGNED);
2866 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
2867 flags |= (FIEMAP_EXTENT_DELALLOC |
2868 FIEMAP_EXTENT_UNKNOWN);
2869 } else {
2870 disko = em->block_start;
2871 }
2872 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2873 flags |= FIEMAP_EXTENT_ENCODED;
2874
2875 emflags = em->flags;
2876 free_extent_map(em);
2877 em = NULL;
2878
2879 if (!end) {
2880 em = get_extent(inode, NULL, 0, off, max - off, 0);
2881 if (!em)
2882 goto out;
2883 if (IS_ERR(em)) {
2884 ret = PTR_ERR(em);
2885 goto out;
2886 }
2887 emflags = em->flags;
2888 }
2889 if (test_bit(EXTENT_FLAG_VACANCY, &emflags)) {
2890 flags |= FIEMAP_EXTENT_LAST;
2891 end = 1;
2892 }
2893
2894 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
2895 em_len, flags);
2896 if (ret)
2897 goto out_free;
2898 }
2899 out_free:
2900 free_extent_map(em);
2901 out:
2902 unlock_extent(&BTRFS_I(inode)->io_tree, start, start + len,
2903 GFP_NOFS);
2904 return ret;
2905 }
2906
2907 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2908 unsigned long i)
2909 {
2910 struct page *p;
2911 struct address_space *mapping;
2912
2913 if (i == 0)
2914 return eb->first_page;
2915 i += eb->start >> PAGE_CACHE_SHIFT;
2916 mapping = eb->first_page->mapping;
2917 if (!mapping)
2918 return NULL;
2919
2920 /*
2921 * extent_buffer_page is only called after pinning the page
2922 * by increasing the reference count. So we know the page must
2923 * be in the radix tree.
2924 */
2925 rcu_read_lock();
2926 p = radix_tree_lookup(&mapping->page_tree, i);
2927 rcu_read_unlock();
2928
2929 return p;
2930 }
2931
2932 static inline unsigned long num_extent_pages(u64 start, u64 len)
2933 {
2934 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2935 (start >> PAGE_CACHE_SHIFT);
2936 }
2937
2938 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
2939 u64 start,
2940 unsigned long len,
2941 gfp_t mask)
2942 {
2943 struct extent_buffer *eb = NULL;
2944 #if LEAK_DEBUG
2945 unsigned long flags;
2946 #endif
2947
2948 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2949 eb->start = start;
2950 eb->len = len;
2951 spin_lock_init(&eb->lock);
2952 init_waitqueue_head(&eb->lock_wq);
2953
2954 #if LEAK_DEBUG
2955 spin_lock_irqsave(&leak_lock, flags);
2956 list_add(&eb->leak_list, &buffers);
2957 spin_unlock_irqrestore(&leak_lock, flags);
2958 #endif
2959 atomic_set(&eb->refs, 1);
2960
2961 return eb;
2962 }
2963
2964 static void __free_extent_buffer(struct extent_buffer *eb)
2965 {
2966 #if LEAK_DEBUG
2967 unsigned long flags;
2968 spin_lock_irqsave(&leak_lock, flags);
2969 list_del(&eb->leak_list);
2970 spin_unlock_irqrestore(&leak_lock, flags);
2971 #endif
2972 kmem_cache_free(extent_buffer_cache, eb);
2973 }
2974
2975 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
2976 u64 start, unsigned long len,
2977 struct page *page0,
2978 gfp_t mask)
2979 {
2980 unsigned long num_pages = num_extent_pages(start, len);
2981 unsigned long i;
2982 unsigned long index = start >> PAGE_CACHE_SHIFT;
2983 struct extent_buffer *eb;
2984 struct extent_buffer *exists = NULL;
2985 struct page *p;
2986 struct address_space *mapping = tree->mapping;
2987 int uptodate = 1;
2988
2989 spin_lock(&tree->buffer_lock);
2990 eb = buffer_search(tree, start);
2991 if (eb) {
2992 atomic_inc(&eb->refs);
2993 spin_unlock(&tree->buffer_lock);
2994 mark_page_accessed(eb->first_page);
2995 return eb;
2996 }
2997 spin_unlock(&tree->buffer_lock);
2998
2999 eb = __alloc_extent_buffer(tree, start, len, mask);
3000 if (!eb)
3001 return NULL;
3002
3003 if (page0) {
3004 eb->first_page = page0;
3005 i = 1;
3006 index++;
3007 page_cache_get(page0);
3008 mark_page_accessed(page0);
3009 set_page_extent_mapped(page0);
3010 set_page_extent_head(page0, len);
3011 uptodate = PageUptodate(page0);
3012 } else {
3013 i = 0;
3014 }
3015 for (; i < num_pages; i++, index++) {
3016 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3017 if (!p) {
3018 WARN_ON(1);
3019 goto free_eb;
3020 }
3021 set_page_extent_mapped(p);
3022 mark_page_accessed(p);
3023 if (i == 0) {
3024 eb->first_page = p;
3025 set_page_extent_head(p, len);
3026 } else {
3027 set_page_private(p, EXTENT_PAGE_PRIVATE);
3028 }
3029 if (!PageUptodate(p))
3030 uptodate = 0;
3031 unlock_page(p);
3032 }
3033 if (uptodate)
3034 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3035
3036 spin_lock(&tree->buffer_lock);
3037 exists = buffer_tree_insert(tree, start, &eb->rb_node);
3038 if (exists) {
3039 /* add one reference for the caller */
3040 atomic_inc(&exists->refs);
3041 spin_unlock(&tree->buffer_lock);
3042 goto free_eb;
3043 }
3044 spin_unlock(&tree->buffer_lock);
3045
3046 /* add one reference for the tree */
3047 atomic_inc(&eb->refs);
3048 return eb;
3049
3050 free_eb:
3051 if (!atomic_dec_and_test(&eb->refs))
3052 return exists;
3053 for (index = 1; index < i; index++)
3054 page_cache_release(extent_buffer_page(eb, index));
3055 page_cache_release(extent_buffer_page(eb, 0));
3056 __free_extent_buffer(eb);
3057 return exists;
3058 }
3059
3060 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3061 u64 start, unsigned long len,
3062 gfp_t mask)
3063 {
3064 struct extent_buffer *eb;
3065
3066 spin_lock(&tree->buffer_lock);
3067 eb = buffer_search(tree, start);
3068 if (eb)
3069 atomic_inc(&eb->refs);
3070 spin_unlock(&tree->buffer_lock);
3071
3072 if (eb)
3073 mark_page_accessed(eb->first_page);
3074
3075 return eb;
3076 }
3077
3078 void free_extent_buffer(struct extent_buffer *eb)
3079 {
3080 if (!eb)
3081 return;
3082
3083 if (!atomic_dec_and_test(&eb->refs))
3084 return;
3085
3086 WARN_ON(1);
3087 }
3088
3089 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3090 struct extent_buffer *eb)
3091 {
3092 unsigned long i;
3093 unsigned long num_pages;
3094 struct page *page;
3095
3096 num_pages = num_extent_pages(eb->start, eb->len);
3097
3098 for (i = 0; i < num_pages; i++) {
3099 page = extent_buffer_page(eb, i);
3100 if (!PageDirty(page))
3101 continue;
3102
3103 lock_page(page);
3104 if (i == 0)
3105 set_page_extent_head(page, eb->len);
3106 else
3107 set_page_private(page, EXTENT_PAGE_PRIVATE);
3108
3109 clear_page_dirty_for_io(page);
3110 spin_lock_irq(&page->mapping->tree_lock);
3111 if (!PageDirty(page)) {
3112 radix_tree_tag_clear(&page->mapping->page_tree,
3113 page_index(page),
3114 PAGECACHE_TAG_DIRTY);
3115 }
3116 spin_unlock_irq(&page->mapping->tree_lock);
3117 unlock_page(page);
3118 }
3119 return 0;
3120 }
3121
3122 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3123 struct extent_buffer *eb)
3124 {
3125 return wait_on_extent_writeback(tree, eb->start,
3126 eb->start + eb->len - 1);
3127 }
3128
3129 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3130 struct extent_buffer *eb)
3131 {
3132 unsigned long i;
3133 unsigned long num_pages;
3134 int was_dirty = 0;
3135
3136 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3137 num_pages = num_extent_pages(eb->start, eb->len);
3138 for (i = 0; i < num_pages; i++)
3139 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3140 return was_dirty;
3141 }
3142
3143 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3144 struct extent_buffer *eb)
3145 {
3146 unsigned long i;
3147 struct page *page;
3148 unsigned long num_pages;
3149
3150 num_pages = num_extent_pages(eb->start, eb->len);
3151 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3152
3153 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3154 GFP_NOFS);
3155 for (i = 0; i < num_pages; i++) {
3156 page = extent_buffer_page(eb, i);
3157 if (page)
3158 ClearPageUptodate(page);
3159 }
3160 return 0;
3161 }
3162
3163 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3164 struct extent_buffer *eb)
3165 {
3166 unsigned long i;
3167 struct page *page;
3168 unsigned long num_pages;
3169
3170 num_pages = num_extent_pages(eb->start, eb->len);
3171
3172 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3173 GFP_NOFS);
3174 for (i = 0; i < num_pages; i++) {
3175 page = extent_buffer_page(eb, i);
3176 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3177 ((i == num_pages - 1) &&
3178 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3179 check_page_uptodate(tree, page);
3180 continue;
3181 }
3182 SetPageUptodate(page);
3183 }
3184 return 0;
3185 }
3186
3187 int extent_range_uptodate(struct extent_io_tree *tree,
3188 u64 start, u64 end)
3189 {
3190 struct page *page;
3191 int ret;
3192 int pg_uptodate = 1;
3193 int uptodate;
3194 unsigned long index;
3195
3196 ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1);
3197 if (ret)
3198 return 1;
3199 while (start <= end) {
3200 index = start >> PAGE_CACHE_SHIFT;
3201 page = find_get_page(tree->mapping, index);
3202 uptodate = PageUptodate(page);
3203 page_cache_release(page);
3204 if (!uptodate) {
3205 pg_uptodate = 0;
3206 break;
3207 }
3208 start += PAGE_CACHE_SIZE;
3209 }
3210 return pg_uptodate;
3211 }
3212
3213 int extent_buffer_uptodate(struct extent_io_tree *tree,
3214 struct extent_buffer *eb)
3215 {
3216 int ret = 0;
3217 unsigned long num_pages;
3218 unsigned long i;
3219 struct page *page;
3220 int pg_uptodate = 1;
3221
3222 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3223 return 1;
3224
3225 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3226 EXTENT_UPTODATE, 1);
3227 if (ret)
3228 return ret;
3229
3230 num_pages = num_extent_pages(eb->start, eb->len);
3231 for (i = 0; i < num_pages; i++) {
3232 page = extent_buffer_page(eb, i);
3233 if (!PageUptodate(page)) {
3234 pg_uptodate = 0;
3235 break;
3236 }
3237 }
3238 return pg_uptodate;
3239 }
3240
3241 int read_extent_buffer_pages(struct extent_io_tree *tree,
3242 struct extent_buffer *eb,
3243 u64 start, int wait,
3244 get_extent_t *get_extent, int mirror_num)
3245 {
3246 unsigned long i;
3247 unsigned long start_i;
3248 struct page *page;
3249 int err;
3250 int ret = 0;
3251 int locked_pages = 0;
3252 int all_uptodate = 1;
3253 int inc_all_pages = 0;
3254 unsigned long num_pages;
3255 struct bio *bio = NULL;
3256 unsigned long bio_flags = 0;
3257
3258 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3259 return 0;
3260
3261 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3262 EXTENT_UPTODATE, 1)) {
3263 return 0;
3264 }
3265
3266 if (start) {
3267 WARN_ON(start < eb->start);
3268 start_i = (start >> PAGE_CACHE_SHIFT) -
3269 (eb->start >> PAGE_CACHE_SHIFT);
3270 } else {
3271 start_i = 0;
3272 }
3273
3274 num_pages = num_extent_pages(eb->start, eb->len);
3275 for (i = start_i; i < num_pages; i++) {
3276 page = extent_buffer_page(eb, i);
3277 if (!wait) {
3278 if (!trylock_page(page))
3279 goto unlock_exit;
3280 } else {
3281 lock_page(page);
3282 }
3283 locked_pages++;
3284 if (!PageUptodate(page))
3285 all_uptodate = 0;
3286 }
3287 if (all_uptodate) {
3288 if (start_i == 0)
3289 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3290 goto unlock_exit;
3291 }
3292
3293 for (i = start_i; i < num_pages; i++) {
3294 page = extent_buffer_page(eb, i);
3295 if (inc_all_pages)
3296 page_cache_get(page);
3297 if (!PageUptodate(page)) {
3298 if (start_i == 0)
3299 inc_all_pages = 1;
3300 ClearPageError(page);
3301 err = __extent_read_full_page(tree, page,
3302 get_extent, &bio,
3303 mirror_num, &bio_flags);
3304 if (err)
3305 ret = err;
3306 } else {
3307 unlock_page(page);
3308 }
3309 }
3310
3311 if (bio)
3312 submit_one_bio(READ, bio, mirror_num, bio_flags);
3313
3314 if (ret || !wait)
3315 return ret;
3316
3317 for (i = start_i; i < num_pages; i++) {
3318 page = extent_buffer_page(eb, i);
3319 wait_on_page_locked(page);
3320 if (!PageUptodate(page))
3321 ret = -EIO;
3322 }
3323
3324 if (!ret)
3325 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3326 return ret;
3327
3328 unlock_exit:
3329 i = start_i;
3330 while (locked_pages > 0) {
3331 page = extent_buffer_page(eb, i);
3332 i++;
3333 unlock_page(page);
3334 locked_pages--;
3335 }
3336 return ret;
3337 }
3338
3339 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3340 unsigned long start,
3341 unsigned long len)
3342 {
3343 size_t cur;
3344 size_t offset;
3345 struct page *page;
3346 char *kaddr;
3347 char *dst = (char *)dstv;
3348 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3349 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3350
3351 WARN_ON(start > eb->len);
3352 WARN_ON(start + len > eb->start + eb->len);
3353
3354 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3355
3356 while (len > 0) {
3357 page = extent_buffer_page(eb, i);
3358
3359 cur = min(len, (PAGE_CACHE_SIZE - offset));
3360 kaddr = kmap_atomic(page, KM_USER1);
3361 memcpy(dst, kaddr + offset, cur);
3362 kunmap_atomic(kaddr, KM_USER1);
3363
3364 dst += cur;
3365 len -= cur;
3366 offset = 0;
3367 i++;
3368 }
3369 }
3370
3371 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3372 unsigned long min_len, char **token, char **map,
3373 unsigned long *map_start,
3374 unsigned long *map_len, int km)
3375 {
3376 size_t offset = start & (PAGE_CACHE_SIZE - 1);
3377 char *kaddr;
3378 struct page *p;
3379 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3380 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3381 unsigned long end_i = (start_offset + start + min_len - 1) >>
3382 PAGE_CACHE_SHIFT;
3383
3384 if (i != end_i)
3385 return -EINVAL;
3386
3387 if (i == 0) {
3388 offset = start_offset;
3389 *map_start = 0;
3390 } else {
3391 offset = 0;
3392 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3393 }
3394
3395 if (start + min_len > eb->len) {
3396 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3397 "wanted %lu %lu\n", (unsigned long long)eb->start,
3398 eb->len, start, min_len);
3399 WARN_ON(1);
3400 }
3401
3402 p = extent_buffer_page(eb, i);
3403 kaddr = kmap_atomic(p, km);
3404 *token = kaddr;
3405 *map = kaddr + offset;
3406 *map_len = PAGE_CACHE_SIZE - offset;
3407 return 0;
3408 }
3409
3410 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3411 unsigned long min_len,
3412 char **token, char **map,
3413 unsigned long *map_start,
3414 unsigned long *map_len, int km)
3415 {
3416 int err;
3417 int save = 0;
3418 if (eb->map_token) {
3419 unmap_extent_buffer(eb, eb->map_token, km);
3420 eb->map_token = NULL;
3421 save = 1;
3422 }
3423 err = map_private_extent_buffer(eb, start, min_len, token, map,
3424 map_start, map_len, km);
3425 if (!err && save) {
3426 eb->map_token = *token;
3427 eb->kaddr = *map;
3428 eb->map_start = *map_start;
3429 eb->map_len = *map_len;
3430 }
3431 return err;
3432 }
3433
3434 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3435 {
3436 kunmap_atomic(token, km);
3437 }
3438
3439 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3440 unsigned long start,
3441 unsigned long len)
3442 {
3443 size_t cur;
3444 size_t offset;
3445 struct page *page;
3446 char *kaddr;
3447 char *ptr = (char *)ptrv;
3448 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3449 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3450 int ret = 0;
3451
3452 WARN_ON(start > eb->len);
3453 WARN_ON(start + len > eb->start + eb->len);
3454
3455 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3456
3457 while (len > 0) {
3458 page = extent_buffer_page(eb, i);
3459
3460 cur = min(len, (PAGE_CACHE_SIZE - offset));
3461
3462 kaddr = kmap_atomic(page, KM_USER0);
3463 ret = memcmp(ptr, kaddr + offset, cur);
3464 kunmap_atomic(kaddr, KM_USER0);
3465 if (ret)
3466 break;
3467
3468 ptr += cur;
3469 len -= cur;
3470 offset = 0;
3471 i++;
3472 }
3473 return ret;
3474 }
3475
3476 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3477 unsigned long start, unsigned long len)
3478 {
3479 size_t cur;
3480 size_t offset;
3481 struct page *page;
3482 char *kaddr;
3483 char *src = (char *)srcv;
3484 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3485 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3486
3487 WARN_ON(start > eb->len);
3488 WARN_ON(start + len > eb->start + eb->len);
3489
3490 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3491
3492 while (len > 0) {
3493 page = extent_buffer_page(eb, i);
3494 WARN_ON(!PageUptodate(page));
3495
3496 cur = min(len, PAGE_CACHE_SIZE - offset);
3497 kaddr = kmap_atomic(page, KM_USER1);
3498 memcpy(kaddr + offset, src, cur);
3499 kunmap_atomic(kaddr, KM_USER1);
3500
3501 src += cur;
3502 len -= cur;
3503 offset = 0;
3504 i++;
3505 }
3506 }
3507
3508 void memset_extent_buffer(struct extent_buffer *eb, char c,
3509 unsigned long start, unsigned long len)
3510 {
3511 size_t cur;
3512 size_t offset;
3513 struct page *page;
3514 char *kaddr;
3515 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3516 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3517
3518 WARN_ON(start > eb->len);
3519 WARN_ON(start + len > eb->start + eb->len);
3520
3521 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3522
3523 while (len > 0) {
3524 page = extent_buffer_page(eb, i);
3525 WARN_ON(!PageUptodate(page));
3526
3527 cur = min(len, PAGE_CACHE_SIZE - offset);
3528 kaddr = kmap_atomic(page, KM_USER0);
3529 memset(kaddr + offset, c, cur);
3530 kunmap_atomic(kaddr, KM_USER0);
3531
3532 len -= cur;
3533 offset = 0;
3534 i++;
3535 }
3536 }
3537
3538 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3539 unsigned long dst_offset, unsigned long src_offset,
3540 unsigned long len)
3541 {
3542 u64 dst_len = dst->len;
3543 size_t cur;
3544 size_t offset;
3545 struct page *page;
3546 char *kaddr;
3547 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3548 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3549
3550 WARN_ON(src->len != dst_len);
3551
3552 offset = (start_offset + dst_offset) &
3553 ((unsigned long)PAGE_CACHE_SIZE - 1);
3554
3555 while (len > 0) {
3556 page = extent_buffer_page(dst, i);
3557 WARN_ON(!PageUptodate(page));
3558
3559 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3560
3561 kaddr = kmap_atomic(page, KM_USER0);
3562 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3563 kunmap_atomic(kaddr, KM_USER0);
3564
3565 src_offset += cur;
3566 len -= cur;
3567 offset = 0;
3568 i++;
3569 }
3570 }
3571
3572 static void move_pages(struct page *dst_page, struct page *src_page,
3573 unsigned long dst_off, unsigned long src_off,
3574 unsigned long len)
3575 {
3576 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3577 if (dst_page == src_page) {
3578 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3579 } else {
3580 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3581 char *p = dst_kaddr + dst_off + len;
3582 char *s = src_kaddr + src_off + len;
3583
3584 while (len--)
3585 *--p = *--s;
3586
3587 kunmap_atomic(src_kaddr, KM_USER1);
3588 }
3589 kunmap_atomic(dst_kaddr, KM_USER0);
3590 }
3591
3592 static void copy_pages(struct page *dst_page, struct page *src_page,
3593 unsigned long dst_off, unsigned long src_off,
3594 unsigned long len)
3595 {
3596 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3597 char *src_kaddr;
3598
3599 if (dst_page != src_page)
3600 src_kaddr = kmap_atomic(src_page, KM_USER1);
3601 else
3602 src_kaddr = dst_kaddr;
3603
3604 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3605 kunmap_atomic(dst_kaddr, KM_USER0);
3606 if (dst_page != src_page)
3607 kunmap_atomic(src_kaddr, KM_USER1);
3608 }
3609
3610 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3611 unsigned long src_offset, unsigned long len)
3612 {
3613 size_t cur;
3614 size_t dst_off_in_page;
3615 size_t src_off_in_page;
3616 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3617 unsigned long dst_i;
3618 unsigned long src_i;
3619
3620 if (src_offset + len > dst->len) {
3621 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3622 "len %lu dst len %lu\n", src_offset, len, dst->len);
3623 BUG_ON(1);
3624 }
3625 if (dst_offset + len > dst->len) {
3626 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3627 "len %lu dst len %lu\n", dst_offset, len, dst->len);
3628 BUG_ON(1);
3629 }
3630
3631 while (len > 0) {
3632 dst_off_in_page = (start_offset + dst_offset) &
3633 ((unsigned long)PAGE_CACHE_SIZE - 1);
3634 src_off_in_page = (start_offset + src_offset) &
3635 ((unsigned long)PAGE_CACHE_SIZE - 1);
3636
3637 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3638 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3639
3640 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3641 src_off_in_page));
3642 cur = min_t(unsigned long, cur,
3643 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3644
3645 copy_pages(extent_buffer_page(dst, dst_i),
3646 extent_buffer_page(dst, src_i),
3647 dst_off_in_page, src_off_in_page, cur);
3648
3649 src_offset += cur;
3650 dst_offset += cur;
3651 len -= cur;
3652 }
3653 }
3654
3655 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3656 unsigned long src_offset, unsigned long len)
3657 {
3658 size_t cur;
3659 size_t dst_off_in_page;
3660 size_t src_off_in_page;
3661 unsigned long dst_end = dst_offset + len - 1;
3662 unsigned long src_end = src_offset + len - 1;
3663 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3664 unsigned long dst_i;
3665 unsigned long src_i;
3666
3667 if (src_offset + len > dst->len) {
3668 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3669 "len %lu len %lu\n", src_offset, len, dst->len);
3670 BUG_ON(1);
3671 }
3672 if (dst_offset + len > dst->len) {
3673 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3674 "len %lu len %lu\n", dst_offset, len, dst->len);
3675 BUG_ON(1);
3676 }
3677 if (dst_offset < src_offset) {
3678 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3679 return;
3680 }
3681 while (len > 0) {
3682 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3683 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3684
3685 dst_off_in_page = (start_offset + dst_end) &
3686 ((unsigned long)PAGE_CACHE_SIZE - 1);
3687 src_off_in_page = (start_offset + src_end) &
3688 ((unsigned long)PAGE_CACHE_SIZE - 1);
3689
3690 cur = min_t(unsigned long, len, src_off_in_page + 1);
3691 cur = min(cur, dst_off_in_page + 1);
3692 move_pages(extent_buffer_page(dst, dst_i),
3693 extent_buffer_page(dst, src_i),
3694 dst_off_in_page - cur + 1,
3695 src_off_in_page - cur + 1, cur);
3696
3697 dst_end -= cur;
3698 src_end -= cur;
3699 len -= cur;
3700 }
3701 }
3702
3703 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3704 {
3705 u64 start = page_offset(page);
3706 struct extent_buffer *eb;
3707 int ret = 1;
3708 unsigned long i;
3709 unsigned long num_pages;
3710
3711 spin_lock(&tree->buffer_lock);
3712 eb = buffer_search(tree, start);
3713 if (!eb)
3714 goto out;
3715
3716 if (atomic_read(&eb->refs) > 1) {
3717 ret = 0;
3718 goto out;
3719 }
3720 if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3721 ret = 0;
3722 goto out;
3723 }
3724 /* at this point we can safely release the extent buffer */
3725 num_pages = num_extent_pages(eb->start, eb->len);
3726 for (i = 0; i < num_pages; i++)
3727 page_cache_release(extent_buffer_page(eb, i));
3728 rb_erase(&eb->rb_node, &tree->buffer);
3729 __free_extent_buffer(eb);
3730 out:
3731 spin_unlock(&tree->buffer_lock);
3732 return ret;
3733 }
This page took 0.15961 seconds and 5 git commands to generate.