Merge branch 'dev/gfp-flags' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30 return !RB_EMPTY_NODE(&state->rb_node);
31 }
32
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36
37 static DEFINE_SPINLOCK(leak_lock);
38
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47 }
48
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57 }
58
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
70 atomic_read(&state->refs));
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 struct inode *inode;
91 u64 isize;
92
93 if (!tree->mapping)
94 return;
95
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller, btrfs_ino(inode), isize, start, end);
102 }
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
109 #endif
110
111 #define BUFFER_LRU_MAX 64
112
113 struct tree_entry {
114 u64 start;
115 u64 end;
116 struct rb_node rb_node;
117 };
118
119 struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
132 };
133
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137 {
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
144 if (!set && (state->state & bits) == 0)
145 return;
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151 }
152
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157 if (!tree->mapping)
158 return NULL;
159 return btrfs_sb(tree->mapping->host->i_sb);
160 }
161
162 int __init extent_io_init(void)
163 {
164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state), 0,
166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
167 if (!extent_state_cache)
168 return -ENOMEM;
169
170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer), 0,
172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
173 if (!extent_buffer_cache)
174 goto free_state_cache;
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
184 return 0;
185
186 free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
190 free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
194 free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
196 extent_state_cache = NULL;
197 return -ENOMEM;
198 }
199
200 void extent_io_exit(void)
201 {
202 btrfs_leak_debug_check();
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
209 if (extent_state_cache)
210 kmem_cache_destroy(extent_state_cache);
211 if (extent_buffer_cache)
212 kmem_cache_destroy(extent_buffer_cache);
213 if (btrfs_bioset)
214 bioset_free(btrfs_bioset);
215 }
216
217 void extent_io_tree_init(struct extent_io_tree *tree,
218 struct address_space *mapping)
219 {
220 tree->state = RB_ROOT;
221 tree->ops = NULL;
222 tree->dirty_bytes = 0;
223 spin_lock_init(&tree->lock);
224 tree->mapping = mapping;
225 }
226
227 static struct extent_state *alloc_extent_state(gfp_t mask)
228 {
229 struct extent_state *state;
230
231 state = kmem_cache_alloc(extent_state_cache, mask);
232 if (!state)
233 return state;
234 state->state = 0;
235 state->private = 0;
236 RB_CLEAR_NODE(&state->rb_node);
237 btrfs_leak_debug_add(&state->leak_list, &states);
238 atomic_set(&state->refs, 1);
239 init_waitqueue_head(&state->wq);
240 trace_alloc_extent_state(state, mask, _RET_IP_);
241 return state;
242 }
243
244 void free_extent_state(struct extent_state *state)
245 {
246 if (!state)
247 return;
248 if (atomic_dec_and_test(&state->refs)) {
249 WARN_ON(extent_state_in_tree(state));
250 btrfs_leak_debug_del(&state->leak_list);
251 trace_free_extent_state(state, _RET_IP_);
252 kmem_cache_free(extent_state_cache, state);
253 }
254 }
255
256 static struct rb_node *tree_insert(struct rb_root *root,
257 struct rb_node *search_start,
258 u64 offset,
259 struct rb_node *node,
260 struct rb_node ***p_in,
261 struct rb_node **parent_in)
262 {
263 struct rb_node **p;
264 struct rb_node *parent = NULL;
265 struct tree_entry *entry;
266
267 if (p_in && parent_in) {
268 p = *p_in;
269 parent = *parent_in;
270 goto do_insert;
271 }
272
273 p = search_start ? &search_start : &root->rb_node;
274 while (*p) {
275 parent = *p;
276 entry = rb_entry(parent, struct tree_entry, rb_node);
277
278 if (offset < entry->start)
279 p = &(*p)->rb_left;
280 else if (offset > entry->end)
281 p = &(*p)->rb_right;
282 else
283 return parent;
284 }
285
286 do_insert:
287 rb_link_node(node, parent, p);
288 rb_insert_color(node, root);
289 return NULL;
290 }
291
292 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
293 struct rb_node **prev_ret,
294 struct rb_node **next_ret,
295 struct rb_node ***p_ret,
296 struct rb_node **parent_ret)
297 {
298 struct rb_root *root = &tree->state;
299 struct rb_node **n = &root->rb_node;
300 struct rb_node *prev = NULL;
301 struct rb_node *orig_prev = NULL;
302 struct tree_entry *entry;
303 struct tree_entry *prev_entry = NULL;
304
305 while (*n) {
306 prev = *n;
307 entry = rb_entry(prev, struct tree_entry, rb_node);
308 prev_entry = entry;
309
310 if (offset < entry->start)
311 n = &(*n)->rb_left;
312 else if (offset > entry->end)
313 n = &(*n)->rb_right;
314 else
315 return *n;
316 }
317
318 if (p_ret)
319 *p_ret = n;
320 if (parent_ret)
321 *parent_ret = prev;
322
323 if (prev_ret) {
324 orig_prev = prev;
325 while (prev && offset > prev_entry->end) {
326 prev = rb_next(prev);
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 }
329 *prev_ret = prev;
330 prev = orig_prev;
331 }
332
333 if (next_ret) {
334 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
335 while (prev && offset < prev_entry->start) {
336 prev = rb_prev(prev);
337 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
338 }
339 *next_ret = prev;
340 }
341 return NULL;
342 }
343
344 static inline struct rb_node *
345 tree_search_for_insert(struct extent_io_tree *tree,
346 u64 offset,
347 struct rb_node ***p_ret,
348 struct rb_node **parent_ret)
349 {
350 struct rb_node *prev = NULL;
351 struct rb_node *ret;
352
353 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
354 if (!ret)
355 return prev;
356 return ret;
357 }
358
359 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
360 u64 offset)
361 {
362 return tree_search_for_insert(tree, offset, NULL, NULL);
363 }
364
365 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
366 struct extent_state *other)
367 {
368 if (tree->ops && tree->ops->merge_extent_hook)
369 tree->ops->merge_extent_hook(tree->mapping->host, new,
370 other);
371 }
372
373 /*
374 * utility function to look for merge candidates inside a given range.
375 * Any extents with matching state are merged together into a single
376 * extent in the tree. Extents with EXTENT_IO in their state field
377 * are not merged because the end_io handlers need to be able to do
378 * operations on them without sleeping (or doing allocations/splits).
379 *
380 * This should be called with the tree lock held.
381 */
382 static void merge_state(struct extent_io_tree *tree,
383 struct extent_state *state)
384 {
385 struct extent_state *other;
386 struct rb_node *other_node;
387
388 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
389 return;
390
391 other_node = rb_prev(&state->rb_node);
392 if (other_node) {
393 other = rb_entry(other_node, struct extent_state, rb_node);
394 if (other->end == state->start - 1 &&
395 other->state == state->state) {
396 merge_cb(tree, state, other);
397 state->start = other->start;
398 rb_erase(&other->rb_node, &tree->state);
399 RB_CLEAR_NODE(&other->rb_node);
400 free_extent_state(other);
401 }
402 }
403 other_node = rb_next(&state->rb_node);
404 if (other_node) {
405 other = rb_entry(other_node, struct extent_state, rb_node);
406 if (other->start == state->end + 1 &&
407 other->state == state->state) {
408 merge_cb(tree, state, other);
409 state->end = other->end;
410 rb_erase(&other->rb_node, &tree->state);
411 RB_CLEAR_NODE(&other->rb_node);
412 free_extent_state(other);
413 }
414 }
415 }
416
417 static void set_state_cb(struct extent_io_tree *tree,
418 struct extent_state *state, unsigned *bits)
419 {
420 if (tree->ops && tree->ops->set_bit_hook)
421 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
422 }
423
424 static void clear_state_cb(struct extent_io_tree *tree,
425 struct extent_state *state, unsigned *bits)
426 {
427 if (tree->ops && tree->ops->clear_bit_hook)
428 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
429 }
430
431 static void set_state_bits(struct extent_io_tree *tree,
432 struct extent_state *state, unsigned *bits,
433 struct extent_changeset *changeset);
434
435 /*
436 * insert an extent_state struct into the tree. 'bits' are set on the
437 * struct before it is inserted.
438 *
439 * This may return -EEXIST if the extent is already there, in which case the
440 * state struct is freed.
441 *
442 * The tree lock is not taken internally. This is a utility function and
443 * probably isn't what you want to call (see set/clear_extent_bit).
444 */
445 static int insert_state(struct extent_io_tree *tree,
446 struct extent_state *state, u64 start, u64 end,
447 struct rb_node ***p,
448 struct rb_node **parent,
449 unsigned *bits, struct extent_changeset *changeset)
450 {
451 struct rb_node *node;
452
453 if (end < start)
454 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
455 end, start);
456 state->start = start;
457 state->end = end;
458
459 set_state_bits(tree, state, bits, changeset);
460
461 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
462 if (node) {
463 struct extent_state *found;
464 found = rb_entry(node, struct extent_state, rb_node);
465 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
466 "%llu %llu\n",
467 found->start, found->end, start, end);
468 return -EEXIST;
469 }
470 merge_state(tree, state);
471 return 0;
472 }
473
474 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
475 u64 split)
476 {
477 if (tree->ops && tree->ops->split_extent_hook)
478 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
479 }
480
481 /*
482 * split a given extent state struct in two, inserting the preallocated
483 * struct 'prealloc' as the newly created second half. 'split' indicates an
484 * offset inside 'orig' where it should be split.
485 *
486 * Before calling,
487 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
488 * are two extent state structs in the tree:
489 * prealloc: [orig->start, split - 1]
490 * orig: [ split, orig->end ]
491 *
492 * The tree locks are not taken by this function. They need to be held
493 * by the caller.
494 */
495 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
496 struct extent_state *prealloc, u64 split)
497 {
498 struct rb_node *node;
499
500 split_cb(tree, orig, split);
501
502 prealloc->start = orig->start;
503 prealloc->end = split - 1;
504 prealloc->state = orig->state;
505 orig->start = split;
506
507 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
508 &prealloc->rb_node, NULL, NULL);
509 if (node) {
510 free_extent_state(prealloc);
511 return -EEXIST;
512 }
513 return 0;
514 }
515
516 static struct extent_state *next_state(struct extent_state *state)
517 {
518 struct rb_node *next = rb_next(&state->rb_node);
519 if (next)
520 return rb_entry(next, struct extent_state, rb_node);
521 else
522 return NULL;
523 }
524
525 /*
526 * utility function to clear some bits in an extent state struct.
527 * it will optionally wake up any one waiting on this state (wake == 1).
528 *
529 * If no bits are set on the state struct after clearing things, the
530 * struct is freed and removed from the tree
531 */
532 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
533 struct extent_state *state,
534 unsigned *bits, int wake,
535 struct extent_changeset *changeset)
536 {
537 struct extent_state *next;
538 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
539
540 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
541 u64 range = state->end - state->start + 1;
542 WARN_ON(range > tree->dirty_bytes);
543 tree->dirty_bytes -= range;
544 }
545 clear_state_cb(tree, state, bits);
546 add_extent_changeset(state, bits_to_clear, changeset, 0);
547 state->state &= ~bits_to_clear;
548 if (wake)
549 wake_up(&state->wq);
550 if (state->state == 0) {
551 next = next_state(state);
552 if (extent_state_in_tree(state)) {
553 rb_erase(&state->rb_node, &tree->state);
554 RB_CLEAR_NODE(&state->rb_node);
555 free_extent_state(state);
556 } else {
557 WARN_ON(1);
558 }
559 } else {
560 merge_state(tree, state);
561 next = next_state(state);
562 }
563 return next;
564 }
565
566 static struct extent_state *
567 alloc_extent_state_atomic(struct extent_state *prealloc)
568 {
569 if (!prealloc)
570 prealloc = alloc_extent_state(GFP_ATOMIC);
571
572 return prealloc;
573 }
574
575 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
576 {
577 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
578 "Extent tree was modified by another "
579 "thread while locked.");
580 }
581
582 /*
583 * clear some bits on a range in the tree. This may require splitting
584 * or inserting elements in the tree, so the gfp mask is used to
585 * indicate which allocations or sleeping are allowed.
586 *
587 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
588 * the given range from the tree regardless of state (ie for truncate).
589 *
590 * the range [start, end] is inclusive.
591 *
592 * This takes the tree lock, and returns 0 on success and < 0 on error.
593 */
594 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
595 unsigned bits, int wake, int delete,
596 struct extent_state **cached_state,
597 gfp_t mask, struct extent_changeset *changeset)
598 {
599 struct extent_state *state;
600 struct extent_state *cached;
601 struct extent_state *prealloc = NULL;
602 struct rb_node *node;
603 u64 last_end;
604 int err;
605 int clear = 0;
606
607 btrfs_debug_check_extent_io_range(tree, start, end);
608
609 if (bits & EXTENT_DELALLOC)
610 bits |= EXTENT_NORESERVE;
611
612 if (delete)
613 bits |= ~EXTENT_CTLBITS;
614 bits |= EXTENT_FIRST_DELALLOC;
615
616 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
617 clear = 1;
618 again:
619 if (!prealloc && gfpflags_allow_blocking(mask)) {
620 /*
621 * Don't care for allocation failure here because we might end
622 * up not needing the pre-allocated extent state at all, which
623 * is the case if we only have in the tree extent states that
624 * cover our input range and don't cover too any other range.
625 * If we end up needing a new extent state we allocate it later.
626 */
627 prealloc = alloc_extent_state(mask);
628 }
629
630 spin_lock(&tree->lock);
631 if (cached_state) {
632 cached = *cached_state;
633
634 if (clear) {
635 *cached_state = NULL;
636 cached_state = NULL;
637 }
638
639 if (cached && extent_state_in_tree(cached) &&
640 cached->start <= start && cached->end > start) {
641 if (clear)
642 atomic_dec(&cached->refs);
643 state = cached;
644 goto hit_next;
645 }
646 if (clear)
647 free_extent_state(cached);
648 }
649 /*
650 * this search will find the extents that end after
651 * our range starts
652 */
653 node = tree_search(tree, start);
654 if (!node)
655 goto out;
656 state = rb_entry(node, struct extent_state, rb_node);
657 hit_next:
658 if (state->start > end)
659 goto out;
660 WARN_ON(state->end < start);
661 last_end = state->end;
662
663 /* the state doesn't have the wanted bits, go ahead */
664 if (!(state->state & bits)) {
665 state = next_state(state);
666 goto next;
667 }
668
669 /*
670 * | ---- desired range ---- |
671 * | state | or
672 * | ------------- state -------------- |
673 *
674 * We need to split the extent we found, and may flip
675 * bits on second half.
676 *
677 * If the extent we found extends past our range, we
678 * just split and search again. It'll get split again
679 * the next time though.
680 *
681 * If the extent we found is inside our range, we clear
682 * the desired bit on it.
683 */
684
685 if (state->start < start) {
686 prealloc = alloc_extent_state_atomic(prealloc);
687 BUG_ON(!prealloc);
688 err = split_state(tree, state, prealloc, start);
689 if (err)
690 extent_io_tree_panic(tree, err);
691
692 prealloc = NULL;
693 if (err)
694 goto out;
695 if (state->end <= end) {
696 state = clear_state_bit(tree, state, &bits, wake,
697 changeset);
698 goto next;
699 }
700 goto search_again;
701 }
702 /*
703 * | ---- desired range ---- |
704 * | state |
705 * We need to split the extent, and clear the bit
706 * on the first half
707 */
708 if (state->start <= end && state->end > end) {
709 prealloc = alloc_extent_state_atomic(prealloc);
710 BUG_ON(!prealloc);
711 err = split_state(tree, state, prealloc, end + 1);
712 if (err)
713 extent_io_tree_panic(tree, err);
714
715 if (wake)
716 wake_up(&state->wq);
717
718 clear_state_bit(tree, prealloc, &bits, wake, changeset);
719
720 prealloc = NULL;
721 goto out;
722 }
723
724 state = clear_state_bit(tree, state, &bits, wake, changeset);
725 next:
726 if (last_end == (u64)-1)
727 goto out;
728 start = last_end + 1;
729 if (start <= end && state && !need_resched())
730 goto hit_next;
731 goto search_again;
732
733 out:
734 spin_unlock(&tree->lock);
735 if (prealloc)
736 free_extent_state(prealloc);
737
738 return 0;
739
740 search_again:
741 if (start > end)
742 goto out;
743 spin_unlock(&tree->lock);
744 if (gfpflags_allow_blocking(mask))
745 cond_resched();
746 goto again;
747 }
748
749 static void wait_on_state(struct extent_io_tree *tree,
750 struct extent_state *state)
751 __releases(tree->lock)
752 __acquires(tree->lock)
753 {
754 DEFINE_WAIT(wait);
755 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
756 spin_unlock(&tree->lock);
757 schedule();
758 spin_lock(&tree->lock);
759 finish_wait(&state->wq, &wait);
760 }
761
762 /*
763 * waits for one or more bits to clear on a range in the state tree.
764 * The range [start, end] is inclusive.
765 * The tree lock is taken by this function
766 */
767 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
768 unsigned long bits)
769 {
770 struct extent_state *state;
771 struct rb_node *node;
772
773 btrfs_debug_check_extent_io_range(tree, start, end);
774
775 spin_lock(&tree->lock);
776 again:
777 while (1) {
778 /*
779 * this search will find all the extents that end after
780 * our range starts
781 */
782 node = tree_search(tree, start);
783 process_node:
784 if (!node)
785 break;
786
787 state = rb_entry(node, struct extent_state, rb_node);
788
789 if (state->start > end)
790 goto out;
791
792 if (state->state & bits) {
793 start = state->start;
794 atomic_inc(&state->refs);
795 wait_on_state(tree, state);
796 free_extent_state(state);
797 goto again;
798 }
799 start = state->end + 1;
800
801 if (start > end)
802 break;
803
804 if (!cond_resched_lock(&tree->lock)) {
805 node = rb_next(node);
806 goto process_node;
807 }
808 }
809 out:
810 spin_unlock(&tree->lock);
811 }
812
813 static void set_state_bits(struct extent_io_tree *tree,
814 struct extent_state *state,
815 unsigned *bits, struct extent_changeset *changeset)
816 {
817 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
818
819 set_state_cb(tree, state, bits);
820 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
821 u64 range = state->end - state->start + 1;
822 tree->dirty_bytes += range;
823 }
824 add_extent_changeset(state, bits_to_set, changeset, 1);
825 state->state |= bits_to_set;
826 }
827
828 static void cache_state_if_flags(struct extent_state *state,
829 struct extent_state **cached_ptr,
830 unsigned flags)
831 {
832 if (cached_ptr && !(*cached_ptr)) {
833 if (!flags || (state->state & flags)) {
834 *cached_ptr = state;
835 atomic_inc(&state->refs);
836 }
837 }
838 }
839
840 static void cache_state(struct extent_state *state,
841 struct extent_state **cached_ptr)
842 {
843 return cache_state_if_flags(state, cached_ptr,
844 EXTENT_IOBITS | EXTENT_BOUNDARY);
845 }
846
847 /*
848 * set some bits on a range in the tree. This may require allocations or
849 * sleeping, so the gfp mask is used to indicate what is allowed.
850 *
851 * If any of the exclusive bits are set, this will fail with -EEXIST if some
852 * part of the range already has the desired bits set. The start of the
853 * existing range is returned in failed_start in this case.
854 *
855 * [start, end] is inclusive This takes the tree lock.
856 */
857
858 static int __must_check
859 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
860 unsigned bits, unsigned exclusive_bits,
861 u64 *failed_start, struct extent_state **cached_state,
862 gfp_t mask, struct extent_changeset *changeset)
863 {
864 struct extent_state *state;
865 struct extent_state *prealloc = NULL;
866 struct rb_node *node;
867 struct rb_node **p;
868 struct rb_node *parent;
869 int err = 0;
870 u64 last_start;
871 u64 last_end;
872
873 btrfs_debug_check_extent_io_range(tree, start, end);
874
875 bits |= EXTENT_FIRST_DELALLOC;
876 again:
877 if (!prealloc && gfpflags_allow_blocking(mask)) {
878 prealloc = alloc_extent_state(mask);
879 BUG_ON(!prealloc);
880 }
881
882 spin_lock(&tree->lock);
883 if (cached_state && *cached_state) {
884 state = *cached_state;
885 if (state->start <= start && state->end > start &&
886 extent_state_in_tree(state)) {
887 node = &state->rb_node;
888 goto hit_next;
889 }
890 }
891 /*
892 * this search will find all the extents that end after
893 * our range starts.
894 */
895 node = tree_search_for_insert(tree, start, &p, &parent);
896 if (!node) {
897 prealloc = alloc_extent_state_atomic(prealloc);
898 BUG_ON(!prealloc);
899 err = insert_state(tree, prealloc, start, end,
900 &p, &parent, &bits, changeset);
901 if (err)
902 extent_io_tree_panic(tree, err);
903
904 cache_state(prealloc, cached_state);
905 prealloc = NULL;
906 goto out;
907 }
908 state = rb_entry(node, struct extent_state, rb_node);
909 hit_next:
910 last_start = state->start;
911 last_end = state->end;
912
913 /*
914 * | ---- desired range ---- |
915 * | state |
916 *
917 * Just lock what we found and keep going
918 */
919 if (state->start == start && state->end <= end) {
920 if (state->state & exclusive_bits) {
921 *failed_start = state->start;
922 err = -EEXIST;
923 goto out;
924 }
925
926 set_state_bits(tree, state, &bits, changeset);
927 cache_state(state, cached_state);
928 merge_state(tree, state);
929 if (last_end == (u64)-1)
930 goto out;
931 start = last_end + 1;
932 state = next_state(state);
933 if (start < end && state && state->start == start &&
934 !need_resched())
935 goto hit_next;
936 goto search_again;
937 }
938
939 /*
940 * | ---- desired range ---- |
941 * | state |
942 * or
943 * | ------------- state -------------- |
944 *
945 * We need to split the extent we found, and may flip bits on
946 * second half.
947 *
948 * If the extent we found extends past our
949 * range, we just split and search again. It'll get split
950 * again the next time though.
951 *
952 * If the extent we found is inside our range, we set the
953 * desired bit on it.
954 */
955 if (state->start < start) {
956 if (state->state & exclusive_bits) {
957 *failed_start = start;
958 err = -EEXIST;
959 goto out;
960 }
961
962 prealloc = alloc_extent_state_atomic(prealloc);
963 BUG_ON(!prealloc);
964 err = split_state(tree, state, prealloc, start);
965 if (err)
966 extent_io_tree_panic(tree, err);
967
968 prealloc = NULL;
969 if (err)
970 goto out;
971 if (state->end <= end) {
972 set_state_bits(tree, state, &bits, changeset);
973 cache_state(state, cached_state);
974 merge_state(tree, state);
975 if (last_end == (u64)-1)
976 goto out;
977 start = last_end + 1;
978 state = next_state(state);
979 if (start < end && state && state->start == start &&
980 !need_resched())
981 goto hit_next;
982 }
983 goto search_again;
984 }
985 /*
986 * | ---- desired range ---- |
987 * | state | or | state |
988 *
989 * There's a hole, we need to insert something in it and
990 * ignore the extent we found.
991 */
992 if (state->start > start) {
993 u64 this_end;
994 if (end < last_start)
995 this_end = end;
996 else
997 this_end = last_start - 1;
998
999 prealloc = alloc_extent_state_atomic(prealloc);
1000 BUG_ON(!prealloc);
1001
1002 /*
1003 * Avoid to free 'prealloc' if it can be merged with
1004 * the later extent.
1005 */
1006 err = insert_state(tree, prealloc, start, this_end,
1007 NULL, NULL, &bits, changeset);
1008 if (err)
1009 extent_io_tree_panic(tree, err);
1010
1011 cache_state(prealloc, cached_state);
1012 prealloc = NULL;
1013 start = this_end + 1;
1014 goto search_again;
1015 }
1016 /*
1017 * | ---- desired range ---- |
1018 * | state |
1019 * We need to split the extent, and set the bit
1020 * on the first half
1021 */
1022 if (state->start <= end && state->end > end) {
1023 if (state->state & exclusive_bits) {
1024 *failed_start = start;
1025 err = -EEXIST;
1026 goto out;
1027 }
1028
1029 prealloc = alloc_extent_state_atomic(prealloc);
1030 BUG_ON(!prealloc);
1031 err = split_state(tree, state, prealloc, end + 1);
1032 if (err)
1033 extent_io_tree_panic(tree, err);
1034
1035 set_state_bits(tree, prealloc, &bits, changeset);
1036 cache_state(prealloc, cached_state);
1037 merge_state(tree, prealloc);
1038 prealloc = NULL;
1039 goto out;
1040 }
1041
1042 goto search_again;
1043
1044 out:
1045 spin_unlock(&tree->lock);
1046 if (prealloc)
1047 free_extent_state(prealloc);
1048
1049 return err;
1050
1051 search_again:
1052 if (start > end)
1053 goto out;
1054 spin_unlock(&tree->lock);
1055 if (gfpflags_allow_blocking(mask))
1056 cond_resched();
1057 goto again;
1058 }
1059
1060 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1061 unsigned bits, u64 * failed_start,
1062 struct extent_state **cached_state, gfp_t mask)
1063 {
1064 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1065 cached_state, mask, NULL);
1066 }
1067
1068
1069 /**
1070 * convert_extent_bit - convert all bits in a given range from one bit to
1071 * another
1072 * @tree: the io tree to search
1073 * @start: the start offset in bytes
1074 * @end: the end offset in bytes (inclusive)
1075 * @bits: the bits to set in this range
1076 * @clear_bits: the bits to clear in this range
1077 * @cached_state: state that we're going to cache
1078 * @mask: the allocation mask
1079 *
1080 * This will go through and set bits for the given range. If any states exist
1081 * already in this range they are set with the given bit and cleared of the
1082 * clear_bits. This is only meant to be used by things that are mergeable, ie
1083 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1084 * boundary bits like LOCK.
1085 */
1086 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1087 unsigned bits, unsigned clear_bits,
1088 struct extent_state **cached_state, gfp_t mask)
1089 {
1090 struct extent_state *state;
1091 struct extent_state *prealloc = NULL;
1092 struct rb_node *node;
1093 struct rb_node **p;
1094 struct rb_node *parent;
1095 int err = 0;
1096 u64 last_start;
1097 u64 last_end;
1098 bool first_iteration = true;
1099
1100 btrfs_debug_check_extent_io_range(tree, start, end);
1101
1102 again:
1103 if (!prealloc && gfpflags_allow_blocking(mask)) {
1104 /*
1105 * Best effort, don't worry if extent state allocation fails
1106 * here for the first iteration. We might have a cached state
1107 * that matches exactly the target range, in which case no
1108 * extent state allocations are needed. We'll only know this
1109 * after locking the tree.
1110 */
1111 prealloc = alloc_extent_state(mask);
1112 if (!prealloc && !first_iteration)
1113 return -ENOMEM;
1114 }
1115
1116 spin_lock(&tree->lock);
1117 if (cached_state && *cached_state) {
1118 state = *cached_state;
1119 if (state->start <= start && state->end > start &&
1120 extent_state_in_tree(state)) {
1121 node = &state->rb_node;
1122 goto hit_next;
1123 }
1124 }
1125
1126 /*
1127 * this search will find all the extents that end after
1128 * our range starts.
1129 */
1130 node = tree_search_for_insert(tree, start, &p, &parent);
1131 if (!node) {
1132 prealloc = alloc_extent_state_atomic(prealloc);
1133 if (!prealloc) {
1134 err = -ENOMEM;
1135 goto out;
1136 }
1137 err = insert_state(tree, prealloc, start, end,
1138 &p, &parent, &bits, NULL);
1139 if (err)
1140 extent_io_tree_panic(tree, err);
1141 cache_state(prealloc, cached_state);
1142 prealloc = NULL;
1143 goto out;
1144 }
1145 state = rb_entry(node, struct extent_state, rb_node);
1146 hit_next:
1147 last_start = state->start;
1148 last_end = state->end;
1149
1150 /*
1151 * | ---- desired range ---- |
1152 * | state |
1153 *
1154 * Just lock what we found and keep going
1155 */
1156 if (state->start == start && state->end <= end) {
1157 set_state_bits(tree, state, &bits, NULL);
1158 cache_state(state, cached_state);
1159 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1160 if (last_end == (u64)-1)
1161 goto out;
1162 start = last_end + 1;
1163 if (start < end && state && state->start == start &&
1164 !need_resched())
1165 goto hit_next;
1166 goto search_again;
1167 }
1168
1169 /*
1170 * | ---- desired range ---- |
1171 * | state |
1172 * or
1173 * | ------------- state -------------- |
1174 *
1175 * We need to split the extent we found, and may flip bits on
1176 * second half.
1177 *
1178 * If the extent we found extends past our
1179 * range, we just split and search again. It'll get split
1180 * again the next time though.
1181 *
1182 * If the extent we found is inside our range, we set the
1183 * desired bit on it.
1184 */
1185 if (state->start < start) {
1186 prealloc = alloc_extent_state_atomic(prealloc);
1187 if (!prealloc) {
1188 err = -ENOMEM;
1189 goto out;
1190 }
1191 err = split_state(tree, state, prealloc, start);
1192 if (err)
1193 extent_io_tree_panic(tree, err);
1194 prealloc = NULL;
1195 if (err)
1196 goto out;
1197 if (state->end <= end) {
1198 set_state_bits(tree, state, &bits, NULL);
1199 cache_state(state, cached_state);
1200 state = clear_state_bit(tree, state, &clear_bits, 0,
1201 NULL);
1202 if (last_end == (u64)-1)
1203 goto out;
1204 start = last_end + 1;
1205 if (start < end && state && state->start == start &&
1206 !need_resched())
1207 goto hit_next;
1208 }
1209 goto search_again;
1210 }
1211 /*
1212 * | ---- desired range ---- |
1213 * | state | or | state |
1214 *
1215 * There's a hole, we need to insert something in it and
1216 * ignore the extent we found.
1217 */
1218 if (state->start > start) {
1219 u64 this_end;
1220 if (end < last_start)
1221 this_end = end;
1222 else
1223 this_end = last_start - 1;
1224
1225 prealloc = alloc_extent_state_atomic(prealloc);
1226 if (!prealloc) {
1227 err = -ENOMEM;
1228 goto out;
1229 }
1230
1231 /*
1232 * Avoid to free 'prealloc' if it can be merged with
1233 * the later extent.
1234 */
1235 err = insert_state(tree, prealloc, start, this_end,
1236 NULL, NULL, &bits, NULL);
1237 if (err)
1238 extent_io_tree_panic(tree, err);
1239 cache_state(prealloc, cached_state);
1240 prealloc = NULL;
1241 start = this_end + 1;
1242 goto search_again;
1243 }
1244 /*
1245 * | ---- desired range ---- |
1246 * | state |
1247 * We need to split the extent, and set the bit
1248 * on the first half
1249 */
1250 if (state->start <= end && state->end > end) {
1251 prealloc = alloc_extent_state_atomic(prealloc);
1252 if (!prealloc) {
1253 err = -ENOMEM;
1254 goto out;
1255 }
1256
1257 err = split_state(tree, state, prealloc, end + 1);
1258 if (err)
1259 extent_io_tree_panic(tree, err);
1260
1261 set_state_bits(tree, prealloc, &bits, NULL);
1262 cache_state(prealloc, cached_state);
1263 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1264 prealloc = NULL;
1265 goto out;
1266 }
1267
1268 goto search_again;
1269
1270 out:
1271 spin_unlock(&tree->lock);
1272 if (prealloc)
1273 free_extent_state(prealloc);
1274
1275 return err;
1276
1277 search_again:
1278 if (start > end)
1279 goto out;
1280 spin_unlock(&tree->lock);
1281 if (gfpflags_allow_blocking(mask))
1282 cond_resched();
1283 first_iteration = false;
1284 goto again;
1285 }
1286
1287 /* wrappers around set/clear extent bit */
1288 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1289 gfp_t mask)
1290 {
1291 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1292 NULL, mask);
1293 }
1294
1295 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1296 unsigned bits, gfp_t mask)
1297 {
1298 return set_extent_bit(tree, start, end, bits, NULL,
1299 NULL, mask);
1300 }
1301
1302 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1303 unsigned bits, gfp_t mask,
1304 struct extent_changeset *changeset)
1305 {
1306 /*
1307 * We don't support EXTENT_LOCKED yet, as current changeset will
1308 * record any bits changed, so for EXTENT_LOCKED case, it will
1309 * either fail with -EEXIST or changeset will record the whole
1310 * range.
1311 */
1312 BUG_ON(bits & EXTENT_LOCKED);
1313
1314 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask,
1315 changeset);
1316 }
1317
1318 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1319 unsigned bits, int wake, int delete,
1320 struct extent_state **cached, gfp_t mask)
1321 {
1322 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1323 cached, mask, NULL);
1324 }
1325
1326 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1327 unsigned bits, gfp_t mask)
1328 {
1329 int wake = 0;
1330
1331 if (bits & EXTENT_LOCKED)
1332 wake = 1;
1333
1334 return clear_extent_bit(tree, start, end, bits, wake, 0, NULL, mask);
1335 }
1336
1337 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1338 unsigned bits, gfp_t mask,
1339 struct extent_changeset *changeset)
1340 {
1341 /*
1342 * Don't support EXTENT_LOCKED case, same reason as
1343 * set_record_extent_bits().
1344 */
1345 BUG_ON(bits & EXTENT_LOCKED);
1346
1347 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask,
1348 changeset);
1349 }
1350
1351 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1352 struct extent_state **cached_state, gfp_t mask)
1353 {
1354 return set_extent_bit(tree, start, end,
1355 EXTENT_DELALLOC | EXTENT_UPTODATE,
1356 NULL, cached_state, mask);
1357 }
1358
1359 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1360 struct extent_state **cached_state, gfp_t mask)
1361 {
1362 return set_extent_bit(tree, start, end,
1363 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1364 NULL, cached_state, mask);
1365 }
1366
1367 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1368 gfp_t mask)
1369 {
1370 return clear_extent_bit(tree, start, end,
1371 EXTENT_DIRTY | EXTENT_DELALLOC |
1372 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1373 }
1374
1375 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1376 gfp_t mask)
1377 {
1378 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1379 NULL, mask);
1380 }
1381
1382 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1383 struct extent_state **cached_state, gfp_t mask)
1384 {
1385 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1386 cached_state, mask);
1387 }
1388
1389 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1390 struct extent_state **cached_state, gfp_t mask)
1391 {
1392 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1393 cached_state, mask);
1394 }
1395
1396 /*
1397 * either insert or lock state struct between start and end use mask to tell
1398 * us if waiting is desired.
1399 */
1400 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1401 unsigned bits, struct extent_state **cached_state)
1402 {
1403 int err;
1404 u64 failed_start;
1405
1406 while (1) {
1407 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1408 EXTENT_LOCKED, &failed_start,
1409 cached_state, GFP_NOFS, NULL);
1410 if (err == -EEXIST) {
1411 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1412 start = failed_start;
1413 } else
1414 break;
1415 WARN_ON(start > end);
1416 }
1417 return err;
1418 }
1419
1420 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1421 {
1422 return lock_extent_bits(tree, start, end, 0, NULL);
1423 }
1424
1425 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1426 {
1427 int err;
1428 u64 failed_start;
1429
1430 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1431 &failed_start, NULL, GFP_NOFS, NULL);
1432 if (err == -EEXIST) {
1433 if (failed_start > start)
1434 clear_extent_bit(tree, start, failed_start - 1,
1435 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1436 return 0;
1437 }
1438 return 1;
1439 }
1440
1441 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1442 struct extent_state **cached, gfp_t mask)
1443 {
1444 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1445 mask);
1446 }
1447
1448 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1449 {
1450 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1451 GFP_NOFS);
1452 }
1453
1454 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1455 {
1456 unsigned long index = start >> PAGE_CACHE_SHIFT;
1457 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1458 struct page *page;
1459
1460 while (index <= end_index) {
1461 page = find_get_page(inode->i_mapping, index);
1462 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1463 clear_page_dirty_for_io(page);
1464 page_cache_release(page);
1465 index++;
1466 }
1467 }
1468
1469 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1470 {
1471 unsigned long index = start >> PAGE_CACHE_SHIFT;
1472 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1473 struct page *page;
1474
1475 while (index <= end_index) {
1476 page = find_get_page(inode->i_mapping, index);
1477 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1478 __set_page_dirty_nobuffers(page);
1479 account_page_redirty(page);
1480 page_cache_release(page);
1481 index++;
1482 }
1483 }
1484
1485 /*
1486 * helper function to set both pages and extents in the tree writeback
1487 */
1488 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1489 {
1490 unsigned long index = start >> PAGE_CACHE_SHIFT;
1491 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1492 struct page *page;
1493
1494 while (index <= end_index) {
1495 page = find_get_page(tree->mapping, index);
1496 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1497 set_page_writeback(page);
1498 page_cache_release(page);
1499 index++;
1500 }
1501 }
1502
1503 /* find the first state struct with 'bits' set after 'start', and
1504 * return it. tree->lock must be held. NULL will returned if
1505 * nothing was found after 'start'
1506 */
1507 static struct extent_state *
1508 find_first_extent_bit_state(struct extent_io_tree *tree,
1509 u64 start, unsigned bits)
1510 {
1511 struct rb_node *node;
1512 struct extent_state *state;
1513
1514 /*
1515 * this search will find all the extents that end after
1516 * our range starts.
1517 */
1518 node = tree_search(tree, start);
1519 if (!node)
1520 goto out;
1521
1522 while (1) {
1523 state = rb_entry(node, struct extent_state, rb_node);
1524 if (state->end >= start && (state->state & bits))
1525 return state;
1526
1527 node = rb_next(node);
1528 if (!node)
1529 break;
1530 }
1531 out:
1532 return NULL;
1533 }
1534
1535 /*
1536 * find the first offset in the io tree with 'bits' set. zero is
1537 * returned if we find something, and *start_ret and *end_ret are
1538 * set to reflect the state struct that was found.
1539 *
1540 * If nothing was found, 1 is returned. If found something, return 0.
1541 */
1542 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1543 u64 *start_ret, u64 *end_ret, unsigned bits,
1544 struct extent_state **cached_state)
1545 {
1546 struct extent_state *state;
1547 struct rb_node *n;
1548 int ret = 1;
1549
1550 spin_lock(&tree->lock);
1551 if (cached_state && *cached_state) {
1552 state = *cached_state;
1553 if (state->end == start - 1 && extent_state_in_tree(state)) {
1554 n = rb_next(&state->rb_node);
1555 while (n) {
1556 state = rb_entry(n, struct extent_state,
1557 rb_node);
1558 if (state->state & bits)
1559 goto got_it;
1560 n = rb_next(n);
1561 }
1562 free_extent_state(*cached_state);
1563 *cached_state = NULL;
1564 goto out;
1565 }
1566 free_extent_state(*cached_state);
1567 *cached_state = NULL;
1568 }
1569
1570 state = find_first_extent_bit_state(tree, start, bits);
1571 got_it:
1572 if (state) {
1573 cache_state_if_flags(state, cached_state, 0);
1574 *start_ret = state->start;
1575 *end_ret = state->end;
1576 ret = 0;
1577 }
1578 out:
1579 spin_unlock(&tree->lock);
1580 return ret;
1581 }
1582
1583 /*
1584 * find a contiguous range of bytes in the file marked as delalloc, not
1585 * more than 'max_bytes'. start and end are used to return the range,
1586 *
1587 * 1 is returned if we find something, 0 if nothing was in the tree
1588 */
1589 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1590 u64 *start, u64 *end, u64 max_bytes,
1591 struct extent_state **cached_state)
1592 {
1593 struct rb_node *node;
1594 struct extent_state *state;
1595 u64 cur_start = *start;
1596 u64 found = 0;
1597 u64 total_bytes = 0;
1598
1599 spin_lock(&tree->lock);
1600
1601 /*
1602 * this search will find all the extents that end after
1603 * our range starts.
1604 */
1605 node = tree_search(tree, cur_start);
1606 if (!node) {
1607 if (!found)
1608 *end = (u64)-1;
1609 goto out;
1610 }
1611
1612 while (1) {
1613 state = rb_entry(node, struct extent_state, rb_node);
1614 if (found && (state->start != cur_start ||
1615 (state->state & EXTENT_BOUNDARY))) {
1616 goto out;
1617 }
1618 if (!(state->state & EXTENT_DELALLOC)) {
1619 if (!found)
1620 *end = state->end;
1621 goto out;
1622 }
1623 if (!found) {
1624 *start = state->start;
1625 *cached_state = state;
1626 atomic_inc(&state->refs);
1627 }
1628 found++;
1629 *end = state->end;
1630 cur_start = state->end + 1;
1631 node = rb_next(node);
1632 total_bytes += state->end - state->start + 1;
1633 if (total_bytes >= max_bytes)
1634 break;
1635 if (!node)
1636 break;
1637 }
1638 out:
1639 spin_unlock(&tree->lock);
1640 return found;
1641 }
1642
1643 static noinline void __unlock_for_delalloc(struct inode *inode,
1644 struct page *locked_page,
1645 u64 start, u64 end)
1646 {
1647 int ret;
1648 struct page *pages[16];
1649 unsigned long index = start >> PAGE_CACHE_SHIFT;
1650 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1651 unsigned long nr_pages = end_index - index + 1;
1652 int i;
1653
1654 if (index == locked_page->index && end_index == index)
1655 return;
1656
1657 while (nr_pages > 0) {
1658 ret = find_get_pages_contig(inode->i_mapping, index,
1659 min_t(unsigned long, nr_pages,
1660 ARRAY_SIZE(pages)), pages);
1661 for (i = 0; i < ret; i++) {
1662 if (pages[i] != locked_page)
1663 unlock_page(pages[i]);
1664 page_cache_release(pages[i]);
1665 }
1666 nr_pages -= ret;
1667 index += ret;
1668 cond_resched();
1669 }
1670 }
1671
1672 static noinline int lock_delalloc_pages(struct inode *inode,
1673 struct page *locked_page,
1674 u64 delalloc_start,
1675 u64 delalloc_end)
1676 {
1677 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1678 unsigned long start_index = index;
1679 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1680 unsigned long pages_locked = 0;
1681 struct page *pages[16];
1682 unsigned long nrpages;
1683 int ret;
1684 int i;
1685
1686 /* the caller is responsible for locking the start index */
1687 if (index == locked_page->index && index == end_index)
1688 return 0;
1689
1690 /* skip the page at the start index */
1691 nrpages = end_index - index + 1;
1692 while (nrpages > 0) {
1693 ret = find_get_pages_contig(inode->i_mapping, index,
1694 min_t(unsigned long,
1695 nrpages, ARRAY_SIZE(pages)), pages);
1696 if (ret == 0) {
1697 ret = -EAGAIN;
1698 goto done;
1699 }
1700 /* now we have an array of pages, lock them all */
1701 for (i = 0; i < ret; i++) {
1702 /*
1703 * the caller is taking responsibility for
1704 * locked_page
1705 */
1706 if (pages[i] != locked_page) {
1707 lock_page(pages[i]);
1708 if (!PageDirty(pages[i]) ||
1709 pages[i]->mapping != inode->i_mapping) {
1710 ret = -EAGAIN;
1711 unlock_page(pages[i]);
1712 page_cache_release(pages[i]);
1713 goto done;
1714 }
1715 }
1716 page_cache_release(pages[i]);
1717 pages_locked++;
1718 }
1719 nrpages -= ret;
1720 index += ret;
1721 cond_resched();
1722 }
1723 ret = 0;
1724 done:
1725 if (ret && pages_locked) {
1726 __unlock_for_delalloc(inode, locked_page,
1727 delalloc_start,
1728 ((u64)(start_index + pages_locked - 1)) <<
1729 PAGE_CACHE_SHIFT);
1730 }
1731 return ret;
1732 }
1733
1734 /*
1735 * find a contiguous range of bytes in the file marked as delalloc, not
1736 * more than 'max_bytes'. start and end are used to return the range,
1737 *
1738 * 1 is returned if we find something, 0 if nothing was in the tree
1739 */
1740 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1741 struct extent_io_tree *tree,
1742 struct page *locked_page, u64 *start,
1743 u64 *end, u64 max_bytes)
1744 {
1745 u64 delalloc_start;
1746 u64 delalloc_end;
1747 u64 found;
1748 struct extent_state *cached_state = NULL;
1749 int ret;
1750 int loops = 0;
1751
1752 again:
1753 /* step one, find a bunch of delalloc bytes starting at start */
1754 delalloc_start = *start;
1755 delalloc_end = 0;
1756 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1757 max_bytes, &cached_state);
1758 if (!found || delalloc_end <= *start) {
1759 *start = delalloc_start;
1760 *end = delalloc_end;
1761 free_extent_state(cached_state);
1762 return 0;
1763 }
1764
1765 /*
1766 * start comes from the offset of locked_page. We have to lock
1767 * pages in order, so we can't process delalloc bytes before
1768 * locked_page
1769 */
1770 if (delalloc_start < *start)
1771 delalloc_start = *start;
1772
1773 /*
1774 * make sure to limit the number of pages we try to lock down
1775 */
1776 if (delalloc_end + 1 - delalloc_start > max_bytes)
1777 delalloc_end = delalloc_start + max_bytes - 1;
1778
1779 /* step two, lock all the pages after the page that has start */
1780 ret = lock_delalloc_pages(inode, locked_page,
1781 delalloc_start, delalloc_end);
1782 if (ret == -EAGAIN) {
1783 /* some of the pages are gone, lets avoid looping by
1784 * shortening the size of the delalloc range we're searching
1785 */
1786 free_extent_state(cached_state);
1787 cached_state = NULL;
1788 if (!loops) {
1789 max_bytes = PAGE_CACHE_SIZE;
1790 loops = 1;
1791 goto again;
1792 } else {
1793 found = 0;
1794 goto out_failed;
1795 }
1796 }
1797 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1798
1799 /* step three, lock the state bits for the whole range */
1800 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1801
1802 /* then test to make sure it is all still delalloc */
1803 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1804 EXTENT_DELALLOC, 1, cached_state);
1805 if (!ret) {
1806 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1807 &cached_state, GFP_NOFS);
1808 __unlock_for_delalloc(inode, locked_page,
1809 delalloc_start, delalloc_end);
1810 cond_resched();
1811 goto again;
1812 }
1813 free_extent_state(cached_state);
1814 *start = delalloc_start;
1815 *end = delalloc_end;
1816 out_failed:
1817 return found;
1818 }
1819
1820 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1821 struct page *locked_page,
1822 unsigned clear_bits,
1823 unsigned long page_ops)
1824 {
1825 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1826 int ret;
1827 struct page *pages[16];
1828 unsigned long index = start >> PAGE_CACHE_SHIFT;
1829 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1830 unsigned long nr_pages = end_index - index + 1;
1831 int i;
1832
1833 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1834 if (page_ops == 0)
1835 return;
1836
1837 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1838 mapping_set_error(inode->i_mapping, -EIO);
1839
1840 while (nr_pages > 0) {
1841 ret = find_get_pages_contig(inode->i_mapping, index,
1842 min_t(unsigned long,
1843 nr_pages, ARRAY_SIZE(pages)), pages);
1844 for (i = 0; i < ret; i++) {
1845
1846 if (page_ops & PAGE_SET_PRIVATE2)
1847 SetPagePrivate2(pages[i]);
1848
1849 if (pages[i] == locked_page) {
1850 page_cache_release(pages[i]);
1851 continue;
1852 }
1853 if (page_ops & PAGE_CLEAR_DIRTY)
1854 clear_page_dirty_for_io(pages[i]);
1855 if (page_ops & PAGE_SET_WRITEBACK)
1856 set_page_writeback(pages[i]);
1857 if (page_ops & PAGE_SET_ERROR)
1858 SetPageError(pages[i]);
1859 if (page_ops & PAGE_END_WRITEBACK)
1860 end_page_writeback(pages[i]);
1861 if (page_ops & PAGE_UNLOCK)
1862 unlock_page(pages[i]);
1863 page_cache_release(pages[i]);
1864 }
1865 nr_pages -= ret;
1866 index += ret;
1867 cond_resched();
1868 }
1869 }
1870
1871 /*
1872 * count the number of bytes in the tree that have a given bit(s)
1873 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1874 * cached. The total number found is returned.
1875 */
1876 u64 count_range_bits(struct extent_io_tree *tree,
1877 u64 *start, u64 search_end, u64 max_bytes,
1878 unsigned bits, int contig)
1879 {
1880 struct rb_node *node;
1881 struct extent_state *state;
1882 u64 cur_start = *start;
1883 u64 total_bytes = 0;
1884 u64 last = 0;
1885 int found = 0;
1886
1887 if (WARN_ON(search_end <= cur_start))
1888 return 0;
1889
1890 spin_lock(&tree->lock);
1891 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1892 total_bytes = tree->dirty_bytes;
1893 goto out;
1894 }
1895 /*
1896 * this search will find all the extents that end after
1897 * our range starts.
1898 */
1899 node = tree_search(tree, cur_start);
1900 if (!node)
1901 goto out;
1902
1903 while (1) {
1904 state = rb_entry(node, struct extent_state, rb_node);
1905 if (state->start > search_end)
1906 break;
1907 if (contig && found && state->start > last + 1)
1908 break;
1909 if (state->end >= cur_start && (state->state & bits) == bits) {
1910 total_bytes += min(search_end, state->end) + 1 -
1911 max(cur_start, state->start);
1912 if (total_bytes >= max_bytes)
1913 break;
1914 if (!found) {
1915 *start = max(cur_start, state->start);
1916 found = 1;
1917 }
1918 last = state->end;
1919 } else if (contig && found) {
1920 break;
1921 }
1922 node = rb_next(node);
1923 if (!node)
1924 break;
1925 }
1926 out:
1927 spin_unlock(&tree->lock);
1928 return total_bytes;
1929 }
1930
1931 /*
1932 * set the private field for a given byte offset in the tree. If there isn't
1933 * an extent_state there already, this does nothing.
1934 */
1935 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1936 {
1937 struct rb_node *node;
1938 struct extent_state *state;
1939 int ret = 0;
1940
1941 spin_lock(&tree->lock);
1942 /*
1943 * this search will find all the extents that end after
1944 * our range starts.
1945 */
1946 node = tree_search(tree, start);
1947 if (!node) {
1948 ret = -ENOENT;
1949 goto out;
1950 }
1951 state = rb_entry(node, struct extent_state, rb_node);
1952 if (state->start != start) {
1953 ret = -ENOENT;
1954 goto out;
1955 }
1956 state->private = private;
1957 out:
1958 spin_unlock(&tree->lock);
1959 return ret;
1960 }
1961
1962 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1963 {
1964 struct rb_node *node;
1965 struct extent_state *state;
1966 int ret = 0;
1967
1968 spin_lock(&tree->lock);
1969 /*
1970 * this search will find all the extents that end after
1971 * our range starts.
1972 */
1973 node = tree_search(tree, start);
1974 if (!node) {
1975 ret = -ENOENT;
1976 goto out;
1977 }
1978 state = rb_entry(node, struct extent_state, rb_node);
1979 if (state->start != start) {
1980 ret = -ENOENT;
1981 goto out;
1982 }
1983 *private = state->private;
1984 out:
1985 spin_unlock(&tree->lock);
1986 return ret;
1987 }
1988
1989 /*
1990 * searches a range in the state tree for a given mask.
1991 * If 'filled' == 1, this returns 1 only if every extent in the tree
1992 * has the bits set. Otherwise, 1 is returned if any bit in the
1993 * range is found set.
1994 */
1995 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1996 unsigned bits, int filled, struct extent_state *cached)
1997 {
1998 struct extent_state *state = NULL;
1999 struct rb_node *node;
2000 int bitset = 0;
2001
2002 spin_lock(&tree->lock);
2003 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2004 cached->end > start)
2005 node = &cached->rb_node;
2006 else
2007 node = tree_search(tree, start);
2008 while (node && start <= end) {
2009 state = rb_entry(node, struct extent_state, rb_node);
2010
2011 if (filled && state->start > start) {
2012 bitset = 0;
2013 break;
2014 }
2015
2016 if (state->start > end)
2017 break;
2018
2019 if (state->state & bits) {
2020 bitset = 1;
2021 if (!filled)
2022 break;
2023 } else if (filled) {
2024 bitset = 0;
2025 break;
2026 }
2027
2028 if (state->end == (u64)-1)
2029 break;
2030
2031 start = state->end + 1;
2032 if (start > end)
2033 break;
2034 node = rb_next(node);
2035 if (!node) {
2036 if (filled)
2037 bitset = 0;
2038 break;
2039 }
2040 }
2041 spin_unlock(&tree->lock);
2042 return bitset;
2043 }
2044
2045 /*
2046 * helper function to set a given page up to date if all the
2047 * extents in the tree for that page are up to date
2048 */
2049 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2050 {
2051 u64 start = page_offset(page);
2052 u64 end = start + PAGE_CACHE_SIZE - 1;
2053 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2054 SetPageUptodate(page);
2055 }
2056
2057 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
2058 {
2059 int ret;
2060 int err = 0;
2061 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2062
2063 set_state_private(failure_tree, rec->start, 0);
2064 ret = clear_extent_bits(failure_tree, rec->start,
2065 rec->start + rec->len - 1,
2066 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2067 if (ret)
2068 err = ret;
2069
2070 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2071 rec->start + rec->len - 1,
2072 EXTENT_DAMAGED, GFP_NOFS);
2073 if (ret && !err)
2074 err = ret;
2075
2076 kfree(rec);
2077 return err;
2078 }
2079
2080 /*
2081 * this bypasses the standard btrfs submit functions deliberately, as
2082 * the standard behavior is to write all copies in a raid setup. here we only
2083 * want to write the one bad copy. so we do the mapping for ourselves and issue
2084 * submit_bio directly.
2085 * to avoid any synchronization issues, wait for the data after writing, which
2086 * actually prevents the read that triggered the error from finishing.
2087 * currently, there can be no more than two copies of every data bit. thus,
2088 * exactly one rewrite is required.
2089 */
2090 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2091 struct page *page, unsigned int pg_offset, int mirror_num)
2092 {
2093 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2094 struct bio *bio;
2095 struct btrfs_device *dev;
2096 u64 map_length = 0;
2097 u64 sector;
2098 struct btrfs_bio *bbio = NULL;
2099 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2100 int ret;
2101
2102 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2103 BUG_ON(!mirror_num);
2104
2105 /* we can't repair anything in raid56 yet */
2106 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2107 return 0;
2108
2109 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2110 if (!bio)
2111 return -EIO;
2112 bio->bi_iter.bi_size = 0;
2113 map_length = length;
2114
2115 ret = btrfs_map_block(fs_info, WRITE, logical,
2116 &map_length, &bbio, mirror_num);
2117 if (ret) {
2118 bio_put(bio);
2119 return -EIO;
2120 }
2121 BUG_ON(mirror_num != bbio->mirror_num);
2122 sector = bbio->stripes[mirror_num-1].physical >> 9;
2123 bio->bi_iter.bi_sector = sector;
2124 dev = bbio->stripes[mirror_num-1].dev;
2125 btrfs_put_bbio(bbio);
2126 if (!dev || !dev->bdev || !dev->writeable) {
2127 bio_put(bio);
2128 return -EIO;
2129 }
2130 bio->bi_bdev = dev->bdev;
2131 bio_add_page(bio, page, length, pg_offset);
2132
2133 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2134 /* try to remap that extent elsewhere? */
2135 bio_put(bio);
2136 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2137 return -EIO;
2138 }
2139
2140 btrfs_info_rl_in_rcu(fs_info,
2141 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2142 btrfs_ino(inode), start,
2143 rcu_str_deref(dev->name), sector);
2144 bio_put(bio);
2145 return 0;
2146 }
2147
2148 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2149 int mirror_num)
2150 {
2151 u64 start = eb->start;
2152 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2153 int ret = 0;
2154
2155 if (root->fs_info->sb->s_flags & MS_RDONLY)
2156 return -EROFS;
2157
2158 for (i = 0; i < num_pages; i++) {
2159 struct page *p = eb->pages[i];
2160
2161 ret = repair_io_failure(root->fs_info->btree_inode, start,
2162 PAGE_CACHE_SIZE, start, p,
2163 start - page_offset(p), mirror_num);
2164 if (ret)
2165 break;
2166 start += PAGE_CACHE_SIZE;
2167 }
2168
2169 return ret;
2170 }
2171
2172 /*
2173 * each time an IO finishes, we do a fast check in the IO failure tree
2174 * to see if we need to process or clean up an io_failure_record
2175 */
2176 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2177 unsigned int pg_offset)
2178 {
2179 u64 private;
2180 u64 private_failure;
2181 struct io_failure_record *failrec;
2182 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2183 struct extent_state *state;
2184 int num_copies;
2185 int ret;
2186
2187 private = 0;
2188 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2189 (u64)-1, 1, EXTENT_DIRTY, 0);
2190 if (!ret)
2191 return 0;
2192
2193 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2194 &private_failure);
2195 if (ret)
2196 return 0;
2197
2198 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2199 BUG_ON(!failrec->this_mirror);
2200
2201 if (failrec->in_validation) {
2202 /* there was no real error, just free the record */
2203 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2204 failrec->start);
2205 goto out;
2206 }
2207 if (fs_info->sb->s_flags & MS_RDONLY)
2208 goto out;
2209
2210 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2211 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2212 failrec->start,
2213 EXTENT_LOCKED);
2214 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2215
2216 if (state && state->start <= failrec->start &&
2217 state->end >= failrec->start + failrec->len - 1) {
2218 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2219 failrec->len);
2220 if (num_copies > 1) {
2221 repair_io_failure(inode, start, failrec->len,
2222 failrec->logical, page,
2223 pg_offset, failrec->failed_mirror);
2224 }
2225 }
2226
2227 out:
2228 free_io_failure(inode, failrec);
2229
2230 return 0;
2231 }
2232
2233 /*
2234 * Can be called when
2235 * - hold extent lock
2236 * - under ordered extent
2237 * - the inode is freeing
2238 */
2239 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2240 {
2241 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2242 struct io_failure_record *failrec;
2243 struct extent_state *state, *next;
2244
2245 if (RB_EMPTY_ROOT(&failure_tree->state))
2246 return;
2247
2248 spin_lock(&failure_tree->lock);
2249 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2250 while (state) {
2251 if (state->start > end)
2252 break;
2253
2254 ASSERT(state->end <= end);
2255
2256 next = next_state(state);
2257
2258 failrec = (struct io_failure_record *)(unsigned long)state->private;
2259 free_extent_state(state);
2260 kfree(failrec);
2261
2262 state = next;
2263 }
2264 spin_unlock(&failure_tree->lock);
2265 }
2266
2267 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2268 struct io_failure_record **failrec_ret)
2269 {
2270 struct io_failure_record *failrec;
2271 u64 private;
2272 struct extent_map *em;
2273 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2274 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2275 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2276 int ret;
2277 u64 logical;
2278
2279 ret = get_state_private(failure_tree, start, &private);
2280 if (ret) {
2281 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2282 if (!failrec)
2283 return -ENOMEM;
2284
2285 failrec->start = start;
2286 failrec->len = end - start + 1;
2287 failrec->this_mirror = 0;
2288 failrec->bio_flags = 0;
2289 failrec->in_validation = 0;
2290
2291 read_lock(&em_tree->lock);
2292 em = lookup_extent_mapping(em_tree, start, failrec->len);
2293 if (!em) {
2294 read_unlock(&em_tree->lock);
2295 kfree(failrec);
2296 return -EIO;
2297 }
2298
2299 if (em->start > start || em->start + em->len <= start) {
2300 free_extent_map(em);
2301 em = NULL;
2302 }
2303 read_unlock(&em_tree->lock);
2304 if (!em) {
2305 kfree(failrec);
2306 return -EIO;
2307 }
2308
2309 logical = start - em->start;
2310 logical = em->block_start + logical;
2311 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2312 logical = em->block_start;
2313 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2314 extent_set_compress_type(&failrec->bio_flags,
2315 em->compress_type);
2316 }
2317
2318 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2319 logical, start, failrec->len);
2320
2321 failrec->logical = logical;
2322 free_extent_map(em);
2323
2324 /* set the bits in the private failure tree */
2325 ret = set_extent_bits(failure_tree, start, end,
2326 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2327 if (ret >= 0)
2328 ret = set_state_private(failure_tree, start,
2329 (u64)(unsigned long)failrec);
2330 /* set the bits in the inode's tree */
2331 if (ret >= 0)
2332 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2333 GFP_NOFS);
2334 if (ret < 0) {
2335 kfree(failrec);
2336 return ret;
2337 }
2338 } else {
2339 failrec = (struct io_failure_record *)(unsigned long)private;
2340 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2341 failrec->logical, failrec->start, failrec->len,
2342 failrec->in_validation);
2343 /*
2344 * when data can be on disk more than twice, add to failrec here
2345 * (e.g. with a list for failed_mirror) to make
2346 * clean_io_failure() clean all those errors at once.
2347 */
2348 }
2349
2350 *failrec_ret = failrec;
2351
2352 return 0;
2353 }
2354
2355 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2356 struct io_failure_record *failrec, int failed_mirror)
2357 {
2358 int num_copies;
2359
2360 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2361 failrec->logical, failrec->len);
2362 if (num_copies == 1) {
2363 /*
2364 * we only have a single copy of the data, so don't bother with
2365 * all the retry and error correction code that follows. no
2366 * matter what the error is, it is very likely to persist.
2367 */
2368 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2369 num_copies, failrec->this_mirror, failed_mirror);
2370 return 0;
2371 }
2372
2373 /*
2374 * there are two premises:
2375 * a) deliver good data to the caller
2376 * b) correct the bad sectors on disk
2377 */
2378 if (failed_bio->bi_vcnt > 1) {
2379 /*
2380 * to fulfill b), we need to know the exact failing sectors, as
2381 * we don't want to rewrite any more than the failed ones. thus,
2382 * we need separate read requests for the failed bio
2383 *
2384 * if the following BUG_ON triggers, our validation request got
2385 * merged. we need separate requests for our algorithm to work.
2386 */
2387 BUG_ON(failrec->in_validation);
2388 failrec->in_validation = 1;
2389 failrec->this_mirror = failed_mirror;
2390 } else {
2391 /*
2392 * we're ready to fulfill a) and b) alongside. get a good copy
2393 * of the failed sector and if we succeed, we have setup
2394 * everything for repair_io_failure to do the rest for us.
2395 */
2396 if (failrec->in_validation) {
2397 BUG_ON(failrec->this_mirror != failed_mirror);
2398 failrec->in_validation = 0;
2399 failrec->this_mirror = 0;
2400 }
2401 failrec->failed_mirror = failed_mirror;
2402 failrec->this_mirror++;
2403 if (failrec->this_mirror == failed_mirror)
2404 failrec->this_mirror++;
2405 }
2406
2407 if (failrec->this_mirror > num_copies) {
2408 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2409 num_copies, failrec->this_mirror, failed_mirror);
2410 return 0;
2411 }
2412
2413 return 1;
2414 }
2415
2416
2417 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2418 struct io_failure_record *failrec,
2419 struct page *page, int pg_offset, int icsum,
2420 bio_end_io_t *endio_func, void *data)
2421 {
2422 struct bio *bio;
2423 struct btrfs_io_bio *btrfs_failed_bio;
2424 struct btrfs_io_bio *btrfs_bio;
2425
2426 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2427 if (!bio)
2428 return NULL;
2429
2430 bio->bi_end_io = endio_func;
2431 bio->bi_iter.bi_sector = failrec->logical >> 9;
2432 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2433 bio->bi_iter.bi_size = 0;
2434 bio->bi_private = data;
2435
2436 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2437 if (btrfs_failed_bio->csum) {
2438 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2439 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2440
2441 btrfs_bio = btrfs_io_bio(bio);
2442 btrfs_bio->csum = btrfs_bio->csum_inline;
2443 icsum *= csum_size;
2444 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2445 csum_size);
2446 }
2447
2448 bio_add_page(bio, page, failrec->len, pg_offset);
2449
2450 return bio;
2451 }
2452
2453 /*
2454 * this is a generic handler for readpage errors (default
2455 * readpage_io_failed_hook). if other copies exist, read those and write back
2456 * good data to the failed position. does not investigate in remapping the
2457 * failed extent elsewhere, hoping the device will be smart enough to do this as
2458 * needed
2459 */
2460
2461 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2462 struct page *page, u64 start, u64 end,
2463 int failed_mirror)
2464 {
2465 struct io_failure_record *failrec;
2466 struct inode *inode = page->mapping->host;
2467 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2468 struct bio *bio;
2469 int read_mode;
2470 int ret;
2471
2472 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2473
2474 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2475 if (ret)
2476 return ret;
2477
2478 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2479 if (!ret) {
2480 free_io_failure(inode, failrec);
2481 return -EIO;
2482 }
2483
2484 if (failed_bio->bi_vcnt > 1)
2485 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2486 else
2487 read_mode = READ_SYNC;
2488
2489 phy_offset >>= inode->i_sb->s_blocksize_bits;
2490 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2491 start - page_offset(page),
2492 (int)phy_offset, failed_bio->bi_end_io,
2493 NULL);
2494 if (!bio) {
2495 free_io_failure(inode, failrec);
2496 return -EIO;
2497 }
2498
2499 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2500 read_mode, failrec->this_mirror, failrec->in_validation);
2501
2502 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2503 failrec->this_mirror,
2504 failrec->bio_flags, 0);
2505 if (ret) {
2506 free_io_failure(inode, failrec);
2507 bio_put(bio);
2508 }
2509
2510 return ret;
2511 }
2512
2513 /* lots and lots of room for performance fixes in the end_bio funcs */
2514
2515 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2516 {
2517 int uptodate = (err == 0);
2518 struct extent_io_tree *tree;
2519 int ret = 0;
2520
2521 tree = &BTRFS_I(page->mapping->host)->io_tree;
2522
2523 if (tree->ops && tree->ops->writepage_end_io_hook) {
2524 ret = tree->ops->writepage_end_io_hook(page, start,
2525 end, NULL, uptodate);
2526 if (ret)
2527 uptodate = 0;
2528 }
2529
2530 if (!uptodate) {
2531 ClearPageUptodate(page);
2532 SetPageError(page);
2533 ret = ret < 0 ? ret : -EIO;
2534 mapping_set_error(page->mapping, ret);
2535 }
2536 }
2537
2538 /*
2539 * after a writepage IO is done, we need to:
2540 * clear the uptodate bits on error
2541 * clear the writeback bits in the extent tree for this IO
2542 * end_page_writeback if the page has no more pending IO
2543 *
2544 * Scheduling is not allowed, so the extent state tree is expected
2545 * to have one and only one object corresponding to this IO.
2546 */
2547 static void end_bio_extent_writepage(struct bio *bio)
2548 {
2549 struct bio_vec *bvec;
2550 u64 start;
2551 u64 end;
2552 int i;
2553
2554 bio_for_each_segment_all(bvec, bio, i) {
2555 struct page *page = bvec->bv_page;
2556
2557 /* We always issue full-page reads, but if some block
2558 * in a page fails to read, blk_update_request() will
2559 * advance bv_offset and adjust bv_len to compensate.
2560 * Print a warning for nonzero offsets, and an error
2561 * if they don't add up to a full page. */
2562 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2563 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2564 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2565 "partial page write in btrfs with offset %u and length %u",
2566 bvec->bv_offset, bvec->bv_len);
2567 else
2568 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2569 "incomplete page write in btrfs with offset %u and "
2570 "length %u",
2571 bvec->bv_offset, bvec->bv_len);
2572 }
2573
2574 start = page_offset(page);
2575 end = start + bvec->bv_offset + bvec->bv_len - 1;
2576
2577 end_extent_writepage(page, bio->bi_error, start, end);
2578 end_page_writeback(page);
2579 }
2580
2581 bio_put(bio);
2582 }
2583
2584 static void
2585 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2586 int uptodate)
2587 {
2588 struct extent_state *cached = NULL;
2589 u64 end = start + len - 1;
2590
2591 if (uptodate && tree->track_uptodate)
2592 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2593 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2594 }
2595
2596 /*
2597 * after a readpage IO is done, we need to:
2598 * clear the uptodate bits on error
2599 * set the uptodate bits if things worked
2600 * set the page up to date if all extents in the tree are uptodate
2601 * clear the lock bit in the extent tree
2602 * unlock the page if there are no other extents locked for it
2603 *
2604 * Scheduling is not allowed, so the extent state tree is expected
2605 * to have one and only one object corresponding to this IO.
2606 */
2607 static void end_bio_extent_readpage(struct bio *bio)
2608 {
2609 struct bio_vec *bvec;
2610 int uptodate = !bio->bi_error;
2611 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2612 struct extent_io_tree *tree;
2613 u64 offset = 0;
2614 u64 start;
2615 u64 end;
2616 u64 len;
2617 u64 extent_start = 0;
2618 u64 extent_len = 0;
2619 int mirror;
2620 int ret;
2621 int i;
2622
2623 bio_for_each_segment_all(bvec, bio, i) {
2624 struct page *page = bvec->bv_page;
2625 struct inode *inode = page->mapping->host;
2626
2627 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2628 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2629 bio->bi_error, io_bio->mirror_num);
2630 tree = &BTRFS_I(inode)->io_tree;
2631
2632 /* We always issue full-page reads, but if some block
2633 * in a page fails to read, blk_update_request() will
2634 * advance bv_offset and adjust bv_len to compensate.
2635 * Print a warning for nonzero offsets, and an error
2636 * if they don't add up to a full page. */
2637 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2638 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2639 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2640 "partial page read in btrfs with offset %u and length %u",
2641 bvec->bv_offset, bvec->bv_len);
2642 else
2643 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2644 "incomplete page read in btrfs with offset %u and "
2645 "length %u",
2646 bvec->bv_offset, bvec->bv_len);
2647 }
2648
2649 start = page_offset(page);
2650 end = start + bvec->bv_offset + bvec->bv_len - 1;
2651 len = bvec->bv_len;
2652
2653 mirror = io_bio->mirror_num;
2654 if (likely(uptodate && tree->ops &&
2655 tree->ops->readpage_end_io_hook)) {
2656 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2657 page, start, end,
2658 mirror);
2659 if (ret)
2660 uptodate = 0;
2661 else
2662 clean_io_failure(inode, start, page, 0);
2663 }
2664
2665 if (likely(uptodate))
2666 goto readpage_ok;
2667
2668 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2669 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2670 if (!ret && !bio->bi_error)
2671 uptodate = 1;
2672 } else {
2673 /*
2674 * The generic bio_readpage_error handles errors the
2675 * following way: If possible, new read requests are
2676 * created and submitted and will end up in
2677 * end_bio_extent_readpage as well (if we're lucky, not
2678 * in the !uptodate case). In that case it returns 0 and
2679 * we just go on with the next page in our bio. If it
2680 * can't handle the error it will return -EIO and we
2681 * remain responsible for that page.
2682 */
2683 ret = bio_readpage_error(bio, offset, page, start, end,
2684 mirror);
2685 if (ret == 0) {
2686 uptodate = !bio->bi_error;
2687 offset += len;
2688 continue;
2689 }
2690 }
2691 readpage_ok:
2692 if (likely(uptodate)) {
2693 loff_t i_size = i_size_read(inode);
2694 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2695 unsigned off;
2696
2697 /* Zero out the end if this page straddles i_size */
2698 off = i_size & (PAGE_CACHE_SIZE-1);
2699 if (page->index == end_index && off)
2700 zero_user_segment(page, off, PAGE_CACHE_SIZE);
2701 SetPageUptodate(page);
2702 } else {
2703 ClearPageUptodate(page);
2704 SetPageError(page);
2705 }
2706 unlock_page(page);
2707 offset += len;
2708
2709 if (unlikely(!uptodate)) {
2710 if (extent_len) {
2711 endio_readpage_release_extent(tree,
2712 extent_start,
2713 extent_len, 1);
2714 extent_start = 0;
2715 extent_len = 0;
2716 }
2717 endio_readpage_release_extent(tree, start,
2718 end - start + 1, 0);
2719 } else if (!extent_len) {
2720 extent_start = start;
2721 extent_len = end + 1 - start;
2722 } else if (extent_start + extent_len == start) {
2723 extent_len += end + 1 - start;
2724 } else {
2725 endio_readpage_release_extent(tree, extent_start,
2726 extent_len, uptodate);
2727 extent_start = start;
2728 extent_len = end + 1 - start;
2729 }
2730 }
2731
2732 if (extent_len)
2733 endio_readpage_release_extent(tree, extent_start, extent_len,
2734 uptodate);
2735 if (io_bio->end_io)
2736 io_bio->end_io(io_bio, bio->bi_error);
2737 bio_put(bio);
2738 }
2739
2740 /*
2741 * this allocates from the btrfs_bioset. We're returning a bio right now
2742 * but you can call btrfs_io_bio for the appropriate container_of magic
2743 */
2744 struct bio *
2745 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2746 gfp_t gfp_flags)
2747 {
2748 struct btrfs_io_bio *btrfs_bio;
2749 struct bio *bio;
2750
2751 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2752
2753 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2754 while (!bio && (nr_vecs /= 2)) {
2755 bio = bio_alloc_bioset(gfp_flags,
2756 nr_vecs, btrfs_bioset);
2757 }
2758 }
2759
2760 if (bio) {
2761 bio->bi_bdev = bdev;
2762 bio->bi_iter.bi_sector = first_sector;
2763 btrfs_bio = btrfs_io_bio(bio);
2764 btrfs_bio->csum = NULL;
2765 btrfs_bio->csum_allocated = NULL;
2766 btrfs_bio->end_io = NULL;
2767 }
2768 return bio;
2769 }
2770
2771 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2772 {
2773 struct btrfs_io_bio *btrfs_bio;
2774 struct bio *new;
2775
2776 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2777 if (new) {
2778 btrfs_bio = btrfs_io_bio(new);
2779 btrfs_bio->csum = NULL;
2780 btrfs_bio->csum_allocated = NULL;
2781 btrfs_bio->end_io = NULL;
2782
2783 #ifdef CONFIG_BLK_CGROUP
2784 /* FIXME, put this into bio_clone_bioset */
2785 if (bio->bi_css)
2786 bio_associate_blkcg(new, bio->bi_css);
2787 #endif
2788 }
2789 return new;
2790 }
2791
2792 /* this also allocates from the btrfs_bioset */
2793 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2794 {
2795 struct btrfs_io_bio *btrfs_bio;
2796 struct bio *bio;
2797
2798 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2799 if (bio) {
2800 btrfs_bio = btrfs_io_bio(bio);
2801 btrfs_bio->csum = NULL;
2802 btrfs_bio->csum_allocated = NULL;
2803 btrfs_bio->end_io = NULL;
2804 }
2805 return bio;
2806 }
2807
2808
2809 static int __must_check submit_one_bio(int rw, struct bio *bio,
2810 int mirror_num, unsigned long bio_flags)
2811 {
2812 int ret = 0;
2813 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2814 struct page *page = bvec->bv_page;
2815 struct extent_io_tree *tree = bio->bi_private;
2816 u64 start;
2817
2818 start = page_offset(page) + bvec->bv_offset;
2819
2820 bio->bi_private = NULL;
2821
2822 bio_get(bio);
2823
2824 if (tree->ops && tree->ops->submit_bio_hook)
2825 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2826 mirror_num, bio_flags, start);
2827 else
2828 btrfsic_submit_bio(rw, bio);
2829
2830 bio_put(bio);
2831 return ret;
2832 }
2833
2834 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2835 unsigned long offset, size_t size, struct bio *bio,
2836 unsigned long bio_flags)
2837 {
2838 int ret = 0;
2839 if (tree->ops && tree->ops->merge_bio_hook)
2840 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2841 bio_flags);
2842 BUG_ON(ret < 0);
2843 return ret;
2844
2845 }
2846
2847 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2848 struct writeback_control *wbc,
2849 struct page *page, sector_t sector,
2850 size_t size, unsigned long offset,
2851 struct block_device *bdev,
2852 struct bio **bio_ret,
2853 unsigned long max_pages,
2854 bio_end_io_t end_io_func,
2855 int mirror_num,
2856 unsigned long prev_bio_flags,
2857 unsigned long bio_flags,
2858 bool force_bio_submit)
2859 {
2860 int ret = 0;
2861 struct bio *bio;
2862 int contig = 0;
2863 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2864 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2865
2866 if (bio_ret && *bio_ret) {
2867 bio = *bio_ret;
2868 if (old_compressed)
2869 contig = bio->bi_iter.bi_sector == sector;
2870 else
2871 contig = bio_end_sector(bio) == sector;
2872
2873 if (prev_bio_flags != bio_flags || !contig ||
2874 force_bio_submit ||
2875 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2876 bio_add_page(bio, page, page_size, offset) < page_size) {
2877 ret = submit_one_bio(rw, bio, mirror_num,
2878 prev_bio_flags);
2879 if (ret < 0) {
2880 *bio_ret = NULL;
2881 return ret;
2882 }
2883 bio = NULL;
2884 } else {
2885 if (wbc)
2886 wbc_account_io(wbc, page, page_size);
2887 return 0;
2888 }
2889 }
2890
2891 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2892 GFP_NOFS | __GFP_HIGH);
2893 if (!bio)
2894 return -ENOMEM;
2895
2896 bio_add_page(bio, page, page_size, offset);
2897 bio->bi_end_io = end_io_func;
2898 bio->bi_private = tree;
2899 if (wbc) {
2900 wbc_init_bio(wbc, bio);
2901 wbc_account_io(wbc, page, page_size);
2902 }
2903
2904 if (bio_ret)
2905 *bio_ret = bio;
2906 else
2907 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2908
2909 return ret;
2910 }
2911
2912 static void attach_extent_buffer_page(struct extent_buffer *eb,
2913 struct page *page)
2914 {
2915 if (!PagePrivate(page)) {
2916 SetPagePrivate(page);
2917 page_cache_get(page);
2918 set_page_private(page, (unsigned long)eb);
2919 } else {
2920 WARN_ON(page->private != (unsigned long)eb);
2921 }
2922 }
2923
2924 void set_page_extent_mapped(struct page *page)
2925 {
2926 if (!PagePrivate(page)) {
2927 SetPagePrivate(page);
2928 page_cache_get(page);
2929 set_page_private(page, EXTENT_PAGE_PRIVATE);
2930 }
2931 }
2932
2933 static struct extent_map *
2934 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2935 u64 start, u64 len, get_extent_t *get_extent,
2936 struct extent_map **em_cached)
2937 {
2938 struct extent_map *em;
2939
2940 if (em_cached && *em_cached) {
2941 em = *em_cached;
2942 if (extent_map_in_tree(em) && start >= em->start &&
2943 start < extent_map_end(em)) {
2944 atomic_inc(&em->refs);
2945 return em;
2946 }
2947
2948 free_extent_map(em);
2949 *em_cached = NULL;
2950 }
2951
2952 em = get_extent(inode, page, pg_offset, start, len, 0);
2953 if (em_cached && !IS_ERR_OR_NULL(em)) {
2954 BUG_ON(*em_cached);
2955 atomic_inc(&em->refs);
2956 *em_cached = em;
2957 }
2958 return em;
2959 }
2960 /*
2961 * basic readpage implementation. Locked extent state structs are inserted
2962 * into the tree that are removed when the IO is done (by the end_io
2963 * handlers)
2964 * XXX JDM: This needs looking at to ensure proper page locking
2965 */
2966 static int __do_readpage(struct extent_io_tree *tree,
2967 struct page *page,
2968 get_extent_t *get_extent,
2969 struct extent_map **em_cached,
2970 struct bio **bio, int mirror_num,
2971 unsigned long *bio_flags, int rw,
2972 u64 *prev_em_start)
2973 {
2974 struct inode *inode = page->mapping->host;
2975 u64 start = page_offset(page);
2976 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2977 u64 end;
2978 u64 cur = start;
2979 u64 extent_offset;
2980 u64 last_byte = i_size_read(inode);
2981 u64 block_start;
2982 u64 cur_end;
2983 sector_t sector;
2984 struct extent_map *em;
2985 struct block_device *bdev;
2986 int ret;
2987 int nr = 0;
2988 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2989 size_t pg_offset = 0;
2990 size_t iosize;
2991 size_t disk_io_size;
2992 size_t blocksize = inode->i_sb->s_blocksize;
2993 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2994
2995 set_page_extent_mapped(page);
2996
2997 end = page_end;
2998 if (!PageUptodate(page)) {
2999 if (cleancache_get_page(page) == 0) {
3000 BUG_ON(blocksize != PAGE_SIZE);
3001 unlock_extent(tree, start, end);
3002 goto out;
3003 }
3004 }
3005
3006 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
3007 char *userpage;
3008 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
3009
3010 if (zero_offset) {
3011 iosize = PAGE_CACHE_SIZE - zero_offset;
3012 userpage = kmap_atomic(page);
3013 memset(userpage + zero_offset, 0, iosize);
3014 flush_dcache_page(page);
3015 kunmap_atomic(userpage);
3016 }
3017 }
3018 while (cur <= end) {
3019 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
3020 bool force_bio_submit = false;
3021
3022 if (cur >= last_byte) {
3023 char *userpage;
3024 struct extent_state *cached = NULL;
3025
3026 iosize = PAGE_CACHE_SIZE - pg_offset;
3027 userpage = kmap_atomic(page);
3028 memset(userpage + pg_offset, 0, iosize);
3029 flush_dcache_page(page);
3030 kunmap_atomic(userpage);
3031 set_extent_uptodate(tree, cur, cur + iosize - 1,
3032 &cached, GFP_NOFS);
3033 if (!parent_locked)
3034 unlock_extent_cached(tree, cur,
3035 cur + iosize - 1,
3036 &cached, GFP_NOFS);
3037 break;
3038 }
3039 em = __get_extent_map(inode, page, pg_offset, cur,
3040 end - cur + 1, get_extent, em_cached);
3041 if (IS_ERR_OR_NULL(em)) {
3042 SetPageError(page);
3043 if (!parent_locked)
3044 unlock_extent(tree, cur, end);
3045 break;
3046 }
3047 extent_offset = cur - em->start;
3048 BUG_ON(extent_map_end(em) <= cur);
3049 BUG_ON(end < cur);
3050
3051 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3052 this_bio_flag |= EXTENT_BIO_COMPRESSED;
3053 extent_set_compress_type(&this_bio_flag,
3054 em->compress_type);
3055 }
3056
3057 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3058 cur_end = min(extent_map_end(em) - 1, end);
3059 iosize = ALIGN(iosize, blocksize);
3060 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3061 disk_io_size = em->block_len;
3062 sector = em->block_start >> 9;
3063 } else {
3064 sector = (em->block_start + extent_offset) >> 9;
3065 disk_io_size = iosize;
3066 }
3067 bdev = em->bdev;
3068 block_start = em->block_start;
3069 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3070 block_start = EXTENT_MAP_HOLE;
3071
3072 /*
3073 * If we have a file range that points to a compressed extent
3074 * and it's followed by a consecutive file range that points to
3075 * to the same compressed extent (possibly with a different
3076 * offset and/or length, so it either points to the whole extent
3077 * or only part of it), we must make sure we do not submit a
3078 * single bio to populate the pages for the 2 ranges because
3079 * this makes the compressed extent read zero out the pages
3080 * belonging to the 2nd range. Imagine the following scenario:
3081 *
3082 * File layout
3083 * [0 - 8K] [8K - 24K]
3084 * | |
3085 * | |
3086 * points to extent X, points to extent X,
3087 * offset 4K, length of 8K offset 0, length 16K
3088 *
3089 * [extent X, compressed length = 4K uncompressed length = 16K]
3090 *
3091 * If the bio to read the compressed extent covers both ranges,
3092 * it will decompress extent X into the pages belonging to the
3093 * first range and then it will stop, zeroing out the remaining
3094 * pages that belong to the other range that points to extent X.
3095 * So here we make sure we submit 2 bios, one for the first
3096 * range and another one for the third range. Both will target
3097 * the same physical extent from disk, but we can't currently
3098 * make the compressed bio endio callback populate the pages
3099 * for both ranges because each compressed bio is tightly
3100 * coupled with a single extent map, and each range can have
3101 * an extent map with a different offset value relative to the
3102 * uncompressed data of our extent and different lengths. This
3103 * is a corner case so we prioritize correctness over
3104 * non-optimal behavior (submitting 2 bios for the same extent).
3105 */
3106 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3107 prev_em_start && *prev_em_start != (u64)-1 &&
3108 *prev_em_start != em->orig_start)
3109 force_bio_submit = true;
3110
3111 if (prev_em_start)
3112 *prev_em_start = em->orig_start;
3113
3114 free_extent_map(em);
3115 em = NULL;
3116
3117 /* we've found a hole, just zero and go on */
3118 if (block_start == EXTENT_MAP_HOLE) {
3119 char *userpage;
3120 struct extent_state *cached = NULL;
3121
3122 userpage = kmap_atomic(page);
3123 memset(userpage + pg_offset, 0, iosize);
3124 flush_dcache_page(page);
3125 kunmap_atomic(userpage);
3126
3127 set_extent_uptodate(tree, cur, cur + iosize - 1,
3128 &cached, GFP_NOFS);
3129 if (parent_locked)
3130 free_extent_state(cached);
3131 else
3132 unlock_extent_cached(tree, cur,
3133 cur + iosize - 1,
3134 &cached, GFP_NOFS);
3135 cur = cur + iosize;
3136 pg_offset += iosize;
3137 continue;
3138 }
3139 /* the get_extent function already copied into the page */
3140 if (test_range_bit(tree, cur, cur_end,
3141 EXTENT_UPTODATE, 1, NULL)) {
3142 check_page_uptodate(tree, page);
3143 if (!parent_locked)
3144 unlock_extent(tree, cur, cur + iosize - 1);
3145 cur = cur + iosize;
3146 pg_offset += iosize;
3147 continue;
3148 }
3149 /* we have an inline extent but it didn't get marked up
3150 * to date. Error out
3151 */
3152 if (block_start == EXTENT_MAP_INLINE) {
3153 SetPageError(page);
3154 if (!parent_locked)
3155 unlock_extent(tree, cur, cur + iosize - 1);
3156 cur = cur + iosize;
3157 pg_offset += iosize;
3158 continue;
3159 }
3160
3161 pnr -= page->index;
3162 ret = submit_extent_page(rw, tree, NULL, page,
3163 sector, disk_io_size, pg_offset,
3164 bdev, bio, pnr,
3165 end_bio_extent_readpage, mirror_num,
3166 *bio_flags,
3167 this_bio_flag,
3168 force_bio_submit);
3169 if (!ret) {
3170 nr++;
3171 *bio_flags = this_bio_flag;
3172 } else {
3173 SetPageError(page);
3174 if (!parent_locked)
3175 unlock_extent(tree, cur, cur + iosize - 1);
3176 }
3177 cur = cur + iosize;
3178 pg_offset += iosize;
3179 }
3180 out:
3181 if (!nr) {
3182 if (!PageError(page))
3183 SetPageUptodate(page);
3184 unlock_page(page);
3185 }
3186 return 0;
3187 }
3188
3189 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3190 struct page *pages[], int nr_pages,
3191 u64 start, u64 end,
3192 get_extent_t *get_extent,
3193 struct extent_map **em_cached,
3194 struct bio **bio, int mirror_num,
3195 unsigned long *bio_flags, int rw,
3196 u64 *prev_em_start)
3197 {
3198 struct inode *inode;
3199 struct btrfs_ordered_extent *ordered;
3200 int index;
3201
3202 inode = pages[0]->mapping->host;
3203 while (1) {
3204 lock_extent(tree, start, end);
3205 ordered = btrfs_lookup_ordered_range(inode, start,
3206 end - start + 1);
3207 if (!ordered)
3208 break;
3209 unlock_extent(tree, start, end);
3210 btrfs_start_ordered_extent(inode, ordered, 1);
3211 btrfs_put_ordered_extent(ordered);
3212 }
3213
3214 for (index = 0; index < nr_pages; index++) {
3215 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3216 mirror_num, bio_flags, rw, prev_em_start);
3217 page_cache_release(pages[index]);
3218 }
3219 }
3220
3221 static void __extent_readpages(struct extent_io_tree *tree,
3222 struct page *pages[],
3223 int nr_pages, get_extent_t *get_extent,
3224 struct extent_map **em_cached,
3225 struct bio **bio, int mirror_num,
3226 unsigned long *bio_flags, int rw,
3227 u64 *prev_em_start)
3228 {
3229 u64 start = 0;
3230 u64 end = 0;
3231 u64 page_start;
3232 int index;
3233 int first_index = 0;
3234
3235 for (index = 0; index < nr_pages; index++) {
3236 page_start = page_offset(pages[index]);
3237 if (!end) {
3238 start = page_start;
3239 end = start + PAGE_CACHE_SIZE - 1;
3240 first_index = index;
3241 } else if (end + 1 == page_start) {
3242 end += PAGE_CACHE_SIZE;
3243 } else {
3244 __do_contiguous_readpages(tree, &pages[first_index],
3245 index - first_index, start,
3246 end, get_extent, em_cached,
3247 bio, mirror_num, bio_flags,
3248 rw, prev_em_start);
3249 start = page_start;
3250 end = start + PAGE_CACHE_SIZE - 1;
3251 first_index = index;
3252 }
3253 }
3254
3255 if (end)
3256 __do_contiguous_readpages(tree, &pages[first_index],
3257 index - first_index, start,
3258 end, get_extent, em_cached, bio,
3259 mirror_num, bio_flags, rw,
3260 prev_em_start);
3261 }
3262
3263 static int __extent_read_full_page(struct extent_io_tree *tree,
3264 struct page *page,
3265 get_extent_t *get_extent,
3266 struct bio **bio, int mirror_num,
3267 unsigned long *bio_flags, int rw)
3268 {
3269 struct inode *inode = page->mapping->host;
3270 struct btrfs_ordered_extent *ordered;
3271 u64 start = page_offset(page);
3272 u64 end = start + PAGE_CACHE_SIZE - 1;
3273 int ret;
3274
3275 while (1) {
3276 lock_extent(tree, start, end);
3277 ordered = btrfs_lookup_ordered_extent(inode, start);
3278 if (!ordered)
3279 break;
3280 unlock_extent(tree, start, end);
3281 btrfs_start_ordered_extent(inode, ordered, 1);
3282 btrfs_put_ordered_extent(ordered);
3283 }
3284
3285 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3286 bio_flags, rw, NULL);
3287 return ret;
3288 }
3289
3290 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3291 get_extent_t *get_extent, int mirror_num)
3292 {
3293 struct bio *bio = NULL;
3294 unsigned long bio_flags = 0;
3295 int ret;
3296
3297 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3298 &bio_flags, READ);
3299 if (bio)
3300 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3301 return ret;
3302 }
3303
3304 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3305 get_extent_t *get_extent, int mirror_num)
3306 {
3307 struct bio *bio = NULL;
3308 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3309 int ret;
3310
3311 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3312 &bio_flags, READ, NULL);
3313 if (bio)
3314 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3315 return ret;
3316 }
3317
3318 static noinline void update_nr_written(struct page *page,
3319 struct writeback_control *wbc,
3320 unsigned long nr_written)
3321 {
3322 wbc->nr_to_write -= nr_written;
3323 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3324 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3325 page->mapping->writeback_index = page->index + nr_written;
3326 }
3327
3328 /*
3329 * helper for __extent_writepage, doing all of the delayed allocation setup.
3330 *
3331 * This returns 1 if our fill_delalloc function did all the work required
3332 * to write the page (copy into inline extent). In this case the IO has
3333 * been started and the page is already unlocked.
3334 *
3335 * This returns 0 if all went well (page still locked)
3336 * This returns < 0 if there were errors (page still locked)
3337 */
3338 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3339 struct page *page, struct writeback_control *wbc,
3340 struct extent_page_data *epd,
3341 u64 delalloc_start,
3342 unsigned long *nr_written)
3343 {
3344 struct extent_io_tree *tree = epd->tree;
3345 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3346 u64 nr_delalloc;
3347 u64 delalloc_to_write = 0;
3348 u64 delalloc_end = 0;
3349 int ret;
3350 int page_started = 0;
3351
3352 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3353 return 0;
3354
3355 while (delalloc_end < page_end) {
3356 nr_delalloc = find_lock_delalloc_range(inode, tree,
3357 page,
3358 &delalloc_start,
3359 &delalloc_end,
3360 BTRFS_MAX_EXTENT_SIZE);
3361 if (nr_delalloc == 0) {
3362 delalloc_start = delalloc_end + 1;
3363 continue;
3364 }
3365 ret = tree->ops->fill_delalloc(inode, page,
3366 delalloc_start,
3367 delalloc_end,
3368 &page_started,
3369 nr_written);
3370 /* File system has been set read-only */
3371 if (ret) {
3372 SetPageError(page);
3373 /* fill_delalloc should be return < 0 for error
3374 * but just in case, we use > 0 here meaning the
3375 * IO is started, so we don't want to return > 0
3376 * unless things are going well.
3377 */
3378 ret = ret < 0 ? ret : -EIO;
3379 goto done;
3380 }
3381 /*
3382 * delalloc_end is already one less than the total
3383 * length, so we don't subtract one from
3384 * PAGE_CACHE_SIZE
3385 */
3386 delalloc_to_write += (delalloc_end - delalloc_start +
3387 PAGE_CACHE_SIZE) >>
3388 PAGE_CACHE_SHIFT;
3389 delalloc_start = delalloc_end + 1;
3390 }
3391 if (wbc->nr_to_write < delalloc_to_write) {
3392 int thresh = 8192;
3393
3394 if (delalloc_to_write < thresh * 2)
3395 thresh = delalloc_to_write;
3396 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3397 thresh);
3398 }
3399
3400 /* did the fill delalloc function already unlock and start
3401 * the IO?
3402 */
3403 if (page_started) {
3404 /*
3405 * we've unlocked the page, so we can't update
3406 * the mapping's writeback index, just update
3407 * nr_to_write.
3408 */
3409 wbc->nr_to_write -= *nr_written;
3410 return 1;
3411 }
3412
3413 ret = 0;
3414
3415 done:
3416 return ret;
3417 }
3418
3419 /*
3420 * helper for __extent_writepage. This calls the writepage start hooks,
3421 * and does the loop to map the page into extents and bios.
3422 *
3423 * We return 1 if the IO is started and the page is unlocked,
3424 * 0 if all went well (page still locked)
3425 * < 0 if there were errors (page still locked)
3426 */
3427 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3428 struct page *page,
3429 struct writeback_control *wbc,
3430 struct extent_page_data *epd,
3431 loff_t i_size,
3432 unsigned long nr_written,
3433 int write_flags, int *nr_ret)
3434 {
3435 struct extent_io_tree *tree = epd->tree;
3436 u64 start = page_offset(page);
3437 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3438 u64 end;
3439 u64 cur = start;
3440 u64 extent_offset;
3441 u64 block_start;
3442 u64 iosize;
3443 sector_t sector;
3444 struct extent_state *cached_state = NULL;
3445 struct extent_map *em;
3446 struct block_device *bdev;
3447 size_t pg_offset = 0;
3448 size_t blocksize;
3449 int ret = 0;
3450 int nr = 0;
3451 bool compressed;
3452
3453 if (tree->ops && tree->ops->writepage_start_hook) {
3454 ret = tree->ops->writepage_start_hook(page, start,
3455 page_end);
3456 if (ret) {
3457 /* Fixup worker will requeue */
3458 if (ret == -EBUSY)
3459 wbc->pages_skipped++;
3460 else
3461 redirty_page_for_writepage(wbc, page);
3462
3463 update_nr_written(page, wbc, nr_written);
3464 unlock_page(page);
3465 ret = 1;
3466 goto done_unlocked;
3467 }
3468 }
3469
3470 /*
3471 * we don't want to touch the inode after unlocking the page,
3472 * so we update the mapping writeback index now
3473 */
3474 update_nr_written(page, wbc, nr_written + 1);
3475
3476 end = page_end;
3477 if (i_size <= start) {
3478 if (tree->ops && tree->ops->writepage_end_io_hook)
3479 tree->ops->writepage_end_io_hook(page, start,
3480 page_end, NULL, 1);
3481 goto done;
3482 }
3483
3484 blocksize = inode->i_sb->s_blocksize;
3485
3486 while (cur <= end) {
3487 u64 em_end;
3488 if (cur >= i_size) {
3489 if (tree->ops && tree->ops->writepage_end_io_hook)
3490 tree->ops->writepage_end_io_hook(page, cur,
3491 page_end, NULL, 1);
3492 break;
3493 }
3494 em = epd->get_extent(inode, page, pg_offset, cur,
3495 end - cur + 1, 1);
3496 if (IS_ERR_OR_NULL(em)) {
3497 SetPageError(page);
3498 ret = PTR_ERR_OR_ZERO(em);
3499 break;
3500 }
3501
3502 extent_offset = cur - em->start;
3503 em_end = extent_map_end(em);
3504 BUG_ON(em_end <= cur);
3505 BUG_ON(end < cur);
3506 iosize = min(em_end - cur, end - cur + 1);
3507 iosize = ALIGN(iosize, blocksize);
3508 sector = (em->block_start + extent_offset) >> 9;
3509 bdev = em->bdev;
3510 block_start = em->block_start;
3511 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3512 free_extent_map(em);
3513 em = NULL;
3514
3515 /*
3516 * compressed and inline extents are written through other
3517 * paths in the FS
3518 */
3519 if (compressed || block_start == EXTENT_MAP_HOLE ||
3520 block_start == EXTENT_MAP_INLINE) {
3521 /*
3522 * end_io notification does not happen here for
3523 * compressed extents
3524 */
3525 if (!compressed && tree->ops &&
3526 tree->ops->writepage_end_io_hook)
3527 tree->ops->writepage_end_io_hook(page, cur,
3528 cur + iosize - 1,
3529 NULL, 1);
3530 else if (compressed) {
3531 /* we don't want to end_page_writeback on
3532 * a compressed extent. this happens
3533 * elsewhere
3534 */
3535 nr++;
3536 }
3537
3538 cur += iosize;
3539 pg_offset += iosize;
3540 continue;
3541 }
3542
3543 if (tree->ops && tree->ops->writepage_io_hook) {
3544 ret = tree->ops->writepage_io_hook(page, cur,
3545 cur + iosize - 1);
3546 } else {
3547 ret = 0;
3548 }
3549 if (ret) {
3550 SetPageError(page);
3551 } else {
3552 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3553
3554 set_range_writeback(tree, cur, cur + iosize - 1);
3555 if (!PageWriteback(page)) {
3556 btrfs_err(BTRFS_I(inode)->root->fs_info,
3557 "page %lu not writeback, cur %llu end %llu",
3558 page->index, cur, end);
3559 }
3560
3561 ret = submit_extent_page(write_flags, tree, wbc, page,
3562 sector, iosize, pg_offset,
3563 bdev, &epd->bio, max_nr,
3564 end_bio_extent_writepage,
3565 0, 0, 0, false);
3566 if (ret)
3567 SetPageError(page);
3568 }
3569 cur = cur + iosize;
3570 pg_offset += iosize;
3571 nr++;
3572 }
3573 done:
3574 *nr_ret = nr;
3575
3576 done_unlocked:
3577
3578 /* drop our reference on any cached states */
3579 free_extent_state(cached_state);
3580 return ret;
3581 }
3582
3583 /*
3584 * the writepage semantics are similar to regular writepage. extent
3585 * records are inserted to lock ranges in the tree, and as dirty areas
3586 * are found, they are marked writeback. Then the lock bits are removed
3587 * and the end_io handler clears the writeback ranges
3588 */
3589 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3590 void *data)
3591 {
3592 struct inode *inode = page->mapping->host;
3593 struct extent_page_data *epd = data;
3594 u64 start = page_offset(page);
3595 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3596 int ret;
3597 int nr = 0;
3598 size_t pg_offset = 0;
3599 loff_t i_size = i_size_read(inode);
3600 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3601 int write_flags;
3602 unsigned long nr_written = 0;
3603
3604 if (wbc->sync_mode == WB_SYNC_ALL)
3605 write_flags = WRITE_SYNC;
3606 else
3607 write_flags = WRITE;
3608
3609 trace___extent_writepage(page, inode, wbc);
3610
3611 WARN_ON(!PageLocked(page));
3612
3613 ClearPageError(page);
3614
3615 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3616 if (page->index > end_index ||
3617 (page->index == end_index && !pg_offset)) {
3618 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3619 unlock_page(page);
3620 return 0;
3621 }
3622
3623 if (page->index == end_index) {
3624 char *userpage;
3625
3626 userpage = kmap_atomic(page);
3627 memset(userpage + pg_offset, 0,
3628 PAGE_CACHE_SIZE - pg_offset);
3629 kunmap_atomic(userpage);
3630 flush_dcache_page(page);
3631 }
3632
3633 pg_offset = 0;
3634
3635 set_page_extent_mapped(page);
3636
3637 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3638 if (ret == 1)
3639 goto done_unlocked;
3640 if (ret)
3641 goto done;
3642
3643 ret = __extent_writepage_io(inode, page, wbc, epd,
3644 i_size, nr_written, write_flags, &nr);
3645 if (ret == 1)
3646 goto done_unlocked;
3647
3648 done:
3649 if (nr == 0) {
3650 /* make sure the mapping tag for page dirty gets cleared */
3651 set_page_writeback(page);
3652 end_page_writeback(page);
3653 }
3654 if (PageError(page)) {
3655 ret = ret < 0 ? ret : -EIO;
3656 end_extent_writepage(page, ret, start, page_end);
3657 }
3658 unlock_page(page);
3659 return ret;
3660
3661 done_unlocked:
3662 return 0;
3663 }
3664
3665 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3666 {
3667 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3668 TASK_UNINTERRUPTIBLE);
3669 }
3670
3671 static noinline_for_stack int
3672 lock_extent_buffer_for_io(struct extent_buffer *eb,
3673 struct btrfs_fs_info *fs_info,
3674 struct extent_page_data *epd)
3675 {
3676 unsigned long i, num_pages;
3677 int flush = 0;
3678 int ret = 0;
3679
3680 if (!btrfs_try_tree_write_lock(eb)) {
3681 flush = 1;
3682 flush_write_bio(epd);
3683 btrfs_tree_lock(eb);
3684 }
3685
3686 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3687 btrfs_tree_unlock(eb);
3688 if (!epd->sync_io)
3689 return 0;
3690 if (!flush) {
3691 flush_write_bio(epd);
3692 flush = 1;
3693 }
3694 while (1) {
3695 wait_on_extent_buffer_writeback(eb);
3696 btrfs_tree_lock(eb);
3697 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3698 break;
3699 btrfs_tree_unlock(eb);
3700 }
3701 }
3702
3703 /*
3704 * We need to do this to prevent races in people who check if the eb is
3705 * under IO since we can end up having no IO bits set for a short period
3706 * of time.
3707 */
3708 spin_lock(&eb->refs_lock);
3709 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3710 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3711 spin_unlock(&eb->refs_lock);
3712 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3713 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3714 -eb->len,
3715 fs_info->dirty_metadata_batch);
3716 ret = 1;
3717 } else {
3718 spin_unlock(&eb->refs_lock);
3719 }
3720
3721 btrfs_tree_unlock(eb);
3722
3723 if (!ret)
3724 return ret;
3725
3726 num_pages = num_extent_pages(eb->start, eb->len);
3727 for (i = 0; i < num_pages; i++) {
3728 struct page *p = eb->pages[i];
3729
3730 if (!trylock_page(p)) {
3731 if (!flush) {
3732 flush_write_bio(epd);
3733 flush = 1;
3734 }
3735 lock_page(p);
3736 }
3737 }
3738
3739 return ret;
3740 }
3741
3742 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3743 {
3744 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3745 smp_mb__after_atomic();
3746 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3747 }
3748
3749 static void set_btree_ioerr(struct page *page)
3750 {
3751 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3752 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3753
3754 SetPageError(page);
3755 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3756 return;
3757
3758 /*
3759 * If writeback for a btree extent that doesn't belong to a log tree
3760 * failed, increment the counter transaction->eb_write_errors.
3761 * We do this because while the transaction is running and before it's
3762 * committing (when we call filemap_fdata[write|wait]_range against
3763 * the btree inode), we might have
3764 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3765 * returns an error or an error happens during writeback, when we're
3766 * committing the transaction we wouldn't know about it, since the pages
3767 * can be no longer dirty nor marked anymore for writeback (if a
3768 * subsequent modification to the extent buffer didn't happen before the
3769 * transaction commit), which makes filemap_fdata[write|wait]_range not
3770 * able to find the pages tagged with SetPageError at transaction
3771 * commit time. So if this happens we must abort the transaction,
3772 * otherwise we commit a super block with btree roots that point to
3773 * btree nodes/leafs whose content on disk is invalid - either garbage
3774 * or the content of some node/leaf from a past generation that got
3775 * cowed or deleted and is no longer valid.
3776 *
3777 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3778 * not be enough - we need to distinguish between log tree extents vs
3779 * non-log tree extents, and the next filemap_fdatawait_range() call
3780 * will catch and clear such errors in the mapping - and that call might
3781 * be from a log sync and not from a transaction commit. Also, checking
3782 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3783 * not done and would not be reliable - the eb might have been released
3784 * from memory and reading it back again means that flag would not be
3785 * set (since it's a runtime flag, not persisted on disk).
3786 *
3787 * Using the flags below in the btree inode also makes us achieve the
3788 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3789 * writeback for all dirty pages and before filemap_fdatawait_range()
3790 * is called, the writeback for all dirty pages had already finished
3791 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3792 * filemap_fdatawait_range() would return success, as it could not know
3793 * that writeback errors happened (the pages were no longer tagged for
3794 * writeback).
3795 */
3796 switch (eb->log_index) {
3797 case -1:
3798 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3799 break;
3800 case 0:
3801 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3802 break;
3803 case 1:
3804 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3805 break;
3806 default:
3807 BUG(); /* unexpected, logic error */
3808 }
3809 }
3810
3811 static void end_bio_extent_buffer_writepage(struct bio *bio)
3812 {
3813 struct bio_vec *bvec;
3814 struct extent_buffer *eb;
3815 int i, done;
3816
3817 bio_for_each_segment_all(bvec, bio, i) {
3818 struct page *page = bvec->bv_page;
3819
3820 eb = (struct extent_buffer *)page->private;
3821 BUG_ON(!eb);
3822 done = atomic_dec_and_test(&eb->io_pages);
3823
3824 if (bio->bi_error ||
3825 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3826 ClearPageUptodate(page);
3827 set_btree_ioerr(page);
3828 }
3829
3830 end_page_writeback(page);
3831
3832 if (!done)
3833 continue;
3834
3835 end_extent_buffer_writeback(eb);
3836 }
3837
3838 bio_put(bio);
3839 }
3840
3841 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3842 struct btrfs_fs_info *fs_info,
3843 struct writeback_control *wbc,
3844 struct extent_page_data *epd)
3845 {
3846 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3847 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3848 u64 offset = eb->start;
3849 unsigned long i, num_pages;
3850 unsigned long bio_flags = 0;
3851 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3852 int ret = 0;
3853
3854 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3855 num_pages = num_extent_pages(eb->start, eb->len);
3856 atomic_set(&eb->io_pages, num_pages);
3857 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3858 bio_flags = EXTENT_BIO_TREE_LOG;
3859
3860 for (i = 0; i < num_pages; i++) {
3861 struct page *p = eb->pages[i];
3862
3863 clear_page_dirty_for_io(p);
3864 set_page_writeback(p);
3865 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
3866 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3867 -1, end_bio_extent_buffer_writepage,
3868 0, epd->bio_flags, bio_flags, false);
3869 epd->bio_flags = bio_flags;
3870 if (ret) {
3871 set_btree_ioerr(p);
3872 end_page_writeback(p);
3873 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3874 end_extent_buffer_writeback(eb);
3875 ret = -EIO;
3876 break;
3877 }
3878 offset += PAGE_CACHE_SIZE;
3879 update_nr_written(p, wbc, 1);
3880 unlock_page(p);
3881 }
3882
3883 if (unlikely(ret)) {
3884 for (; i < num_pages; i++) {
3885 struct page *p = eb->pages[i];
3886 clear_page_dirty_for_io(p);
3887 unlock_page(p);
3888 }
3889 }
3890
3891 return ret;
3892 }
3893
3894 int btree_write_cache_pages(struct address_space *mapping,
3895 struct writeback_control *wbc)
3896 {
3897 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3898 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3899 struct extent_buffer *eb, *prev_eb = NULL;
3900 struct extent_page_data epd = {
3901 .bio = NULL,
3902 .tree = tree,
3903 .extent_locked = 0,
3904 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3905 .bio_flags = 0,
3906 };
3907 int ret = 0;
3908 int done = 0;
3909 int nr_to_write_done = 0;
3910 struct pagevec pvec;
3911 int nr_pages;
3912 pgoff_t index;
3913 pgoff_t end; /* Inclusive */
3914 int scanned = 0;
3915 int tag;
3916
3917 pagevec_init(&pvec, 0);
3918 if (wbc->range_cyclic) {
3919 index = mapping->writeback_index; /* Start from prev offset */
3920 end = -1;
3921 } else {
3922 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3923 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3924 scanned = 1;
3925 }
3926 if (wbc->sync_mode == WB_SYNC_ALL)
3927 tag = PAGECACHE_TAG_TOWRITE;
3928 else
3929 tag = PAGECACHE_TAG_DIRTY;
3930 retry:
3931 if (wbc->sync_mode == WB_SYNC_ALL)
3932 tag_pages_for_writeback(mapping, index, end);
3933 while (!done && !nr_to_write_done && (index <= end) &&
3934 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3935 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3936 unsigned i;
3937
3938 scanned = 1;
3939 for (i = 0; i < nr_pages; i++) {
3940 struct page *page = pvec.pages[i];
3941
3942 if (!PagePrivate(page))
3943 continue;
3944
3945 if (!wbc->range_cyclic && page->index > end) {
3946 done = 1;
3947 break;
3948 }
3949
3950 spin_lock(&mapping->private_lock);
3951 if (!PagePrivate(page)) {
3952 spin_unlock(&mapping->private_lock);
3953 continue;
3954 }
3955
3956 eb = (struct extent_buffer *)page->private;
3957
3958 /*
3959 * Shouldn't happen and normally this would be a BUG_ON
3960 * but no sense in crashing the users box for something
3961 * we can survive anyway.
3962 */
3963 if (WARN_ON(!eb)) {
3964 spin_unlock(&mapping->private_lock);
3965 continue;
3966 }
3967
3968 if (eb == prev_eb) {
3969 spin_unlock(&mapping->private_lock);
3970 continue;
3971 }
3972
3973 ret = atomic_inc_not_zero(&eb->refs);
3974 spin_unlock(&mapping->private_lock);
3975 if (!ret)
3976 continue;
3977
3978 prev_eb = eb;
3979 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3980 if (!ret) {
3981 free_extent_buffer(eb);
3982 continue;
3983 }
3984
3985 ret = write_one_eb(eb, fs_info, wbc, &epd);
3986 if (ret) {
3987 done = 1;
3988 free_extent_buffer(eb);
3989 break;
3990 }
3991 free_extent_buffer(eb);
3992
3993 /*
3994 * the filesystem may choose to bump up nr_to_write.
3995 * We have to make sure to honor the new nr_to_write
3996 * at any time
3997 */
3998 nr_to_write_done = wbc->nr_to_write <= 0;
3999 }
4000 pagevec_release(&pvec);
4001 cond_resched();
4002 }
4003 if (!scanned && !done) {
4004 /*
4005 * We hit the last page and there is more work to be done: wrap
4006 * back to the start of the file
4007 */
4008 scanned = 1;
4009 index = 0;
4010 goto retry;
4011 }
4012 flush_write_bio(&epd);
4013 return ret;
4014 }
4015
4016 /**
4017 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4018 * @mapping: address space structure to write
4019 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4020 * @writepage: function called for each page
4021 * @data: data passed to writepage function
4022 *
4023 * If a page is already under I/O, write_cache_pages() skips it, even
4024 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4025 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4026 * and msync() need to guarantee that all the data which was dirty at the time
4027 * the call was made get new I/O started against them. If wbc->sync_mode is
4028 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4029 * existing IO to complete.
4030 */
4031 static int extent_write_cache_pages(struct extent_io_tree *tree,
4032 struct address_space *mapping,
4033 struct writeback_control *wbc,
4034 writepage_t writepage, void *data,
4035 void (*flush_fn)(void *))
4036 {
4037 struct inode *inode = mapping->host;
4038 int ret = 0;
4039 int done = 0;
4040 int err = 0;
4041 int nr_to_write_done = 0;
4042 struct pagevec pvec;
4043 int nr_pages;
4044 pgoff_t index;
4045 pgoff_t end; /* Inclusive */
4046 int scanned = 0;
4047 int tag;
4048
4049 /*
4050 * We have to hold onto the inode so that ordered extents can do their
4051 * work when the IO finishes. The alternative to this is failing to add
4052 * an ordered extent if the igrab() fails there and that is a huge pain
4053 * to deal with, so instead just hold onto the inode throughout the
4054 * writepages operation. If it fails here we are freeing up the inode
4055 * anyway and we'd rather not waste our time writing out stuff that is
4056 * going to be truncated anyway.
4057 */
4058 if (!igrab(inode))
4059 return 0;
4060
4061 pagevec_init(&pvec, 0);
4062 if (wbc->range_cyclic) {
4063 index = mapping->writeback_index; /* Start from prev offset */
4064 end = -1;
4065 } else {
4066 index = wbc->range_start >> PAGE_CACHE_SHIFT;
4067 end = wbc->range_end >> PAGE_CACHE_SHIFT;
4068 scanned = 1;
4069 }
4070 if (wbc->sync_mode == WB_SYNC_ALL)
4071 tag = PAGECACHE_TAG_TOWRITE;
4072 else
4073 tag = PAGECACHE_TAG_DIRTY;
4074 retry:
4075 if (wbc->sync_mode == WB_SYNC_ALL)
4076 tag_pages_for_writeback(mapping, index, end);
4077 while (!done && !nr_to_write_done && (index <= end) &&
4078 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
4079 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
4080 unsigned i;
4081
4082 scanned = 1;
4083 for (i = 0; i < nr_pages; i++) {
4084 struct page *page = pvec.pages[i];
4085
4086 /*
4087 * At this point we hold neither mapping->tree_lock nor
4088 * lock on the page itself: the page may be truncated or
4089 * invalidated (changing page->mapping to NULL), or even
4090 * swizzled back from swapper_space to tmpfs file
4091 * mapping
4092 */
4093 if (!trylock_page(page)) {
4094 flush_fn(data);
4095 lock_page(page);
4096 }
4097
4098 if (unlikely(page->mapping != mapping)) {
4099 unlock_page(page);
4100 continue;
4101 }
4102
4103 if (!wbc->range_cyclic && page->index > end) {
4104 done = 1;
4105 unlock_page(page);
4106 continue;
4107 }
4108
4109 if (wbc->sync_mode != WB_SYNC_NONE) {
4110 if (PageWriteback(page))
4111 flush_fn(data);
4112 wait_on_page_writeback(page);
4113 }
4114
4115 if (PageWriteback(page) ||
4116 !clear_page_dirty_for_io(page)) {
4117 unlock_page(page);
4118 continue;
4119 }
4120
4121 ret = (*writepage)(page, wbc, data);
4122
4123 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4124 unlock_page(page);
4125 ret = 0;
4126 }
4127 if (!err && ret < 0)
4128 err = ret;
4129
4130 /*
4131 * the filesystem may choose to bump up nr_to_write.
4132 * We have to make sure to honor the new nr_to_write
4133 * at any time
4134 */
4135 nr_to_write_done = wbc->nr_to_write <= 0;
4136 }
4137 pagevec_release(&pvec);
4138 cond_resched();
4139 }
4140 if (!scanned && !done && !err) {
4141 /*
4142 * We hit the last page and there is more work to be done: wrap
4143 * back to the start of the file
4144 */
4145 scanned = 1;
4146 index = 0;
4147 goto retry;
4148 }
4149 btrfs_add_delayed_iput(inode);
4150 return err;
4151 }
4152
4153 static void flush_epd_write_bio(struct extent_page_data *epd)
4154 {
4155 if (epd->bio) {
4156 int rw = WRITE;
4157 int ret;
4158
4159 if (epd->sync_io)
4160 rw = WRITE_SYNC;
4161
4162 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4163 BUG_ON(ret < 0); /* -ENOMEM */
4164 epd->bio = NULL;
4165 }
4166 }
4167
4168 static noinline void flush_write_bio(void *data)
4169 {
4170 struct extent_page_data *epd = data;
4171 flush_epd_write_bio(epd);
4172 }
4173
4174 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4175 get_extent_t *get_extent,
4176 struct writeback_control *wbc)
4177 {
4178 int ret;
4179 struct extent_page_data epd = {
4180 .bio = NULL,
4181 .tree = tree,
4182 .get_extent = get_extent,
4183 .extent_locked = 0,
4184 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4185 .bio_flags = 0,
4186 };
4187
4188 ret = __extent_writepage(page, wbc, &epd);
4189
4190 flush_epd_write_bio(&epd);
4191 return ret;
4192 }
4193
4194 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4195 u64 start, u64 end, get_extent_t *get_extent,
4196 int mode)
4197 {
4198 int ret = 0;
4199 struct address_space *mapping = inode->i_mapping;
4200 struct page *page;
4201 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4202 PAGE_CACHE_SHIFT;
4203
4204 struct extent_page_data epd = {
4205 .bio = NULL,
4206 .tree = tree,
4207 .get_extent = get_extent,
4208 .extent_locked = 1,
4209 .sync_io = mode == WB_SYNC_ALL,
4210 .bio_flags = 0,
4211 };
4212 struct writeback_control wbc_writepages = {
4213 .sync_mode = mode,
4214 .nr_to_write = nr_pages * 2,
4215 .range_start = start,
4216 .range_end = end + 1,
4217 };
4218
4219 while (start <= end) {
4220 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4221 if (clear_page_dirty_for_io(page))
4222 ret = __extent_writepage(page, &wbc_writepages, &epd);
4223 else {
4224 if (tree->ops && tree->ops->writepage_end_io_hook)
4225 tree->ops->writepage_end_io_hook(page, start,
4226 start + PAGE_CACHE_SIZE - 1,
4227 NULL, 1);
4228 unlock_page(page);
4229 }
4230 page_cache_release(page);
4231 start += PAGE_CACHE_SIZE;
4232 }
4233
4234 flush_epd_write_bio(&epd);
4235 return ret;
4236 }
4237
4238 int extent_writepages(struct extent_io_tree *tree,
4239 struct address_space *mapping,
4240 get_extent_t *get_extent,
4241 struct writeback_control *wbc)
4242 {
4243 int ret = 0;
4244 struct extent_page_data epd = {
4245 .bio = NULL,
4246 .tree = tree,
4247 .get_extent = get_extent,
4248 .extent_locked = 0,
4249 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4250 .bio_flags = 0,
4251 };
4252
4253 ret = extent_write_cache_pages(tree, mapping, wbc,
4254 __extent_writepage, &epd,
4255 flush_write_bio);
4256 flush_epd_write_bio(&epd);
4257 return ret;
4258 }
4259
4260 int extent_readpages(struct extent_io_tree *tree,
4261 struct address_space *mapping,
4262 struct list_head *pages, unsigned nr_pages,
4263 get_extent_t get_extent)
4264 {
4265 struct bio *bio = NULL;
4266 unsigned page_idx;
4267 unsigned long bio_flags = 0;
4268 struct page *pagepool[16];
4269 struct page *page;
4270 struct extent_map *em_cached = NULL;
4271 int nr = 0;
4272 u64 prev_em_start = (u64)-1;
4273
4274 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4275 page = list_entry(pages->prev, struct page, lru);
4276
4277 prefetchw(&page->flags);
4278 list_del(&page->lru);
4279 if (add_to_page_cache_lru(page, mapping,
4280 page->index, GFP_NOFS)) {
4281 page_cache_release(page);
4282 continue;
4283 }
4284
4285 pagepool[nr++] = page;
4286 if (nr < ARRAY_SIZE(pagepool))
4287 continue;
4288 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4289 &bio, 0, &bio_flags, READ, &prev_em_start);
4290 nr = 0;
4291 }
4292 if (nr)
4293 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4294 &bio, 0, &bio_flags, READ, &prev_em_start);
4295
4296 if (em_cached)
4297 free_extent_map(em_cached);
4298
4299 BUG_ON(!list_empty(pages));
4300 if (bio)
4301 return submit_one_bio(READ, bio, 0, bio_flags);
4302 return 0;
4303 }
4304
4305 /*
4306 * basic invalidatepage code, this waits on any locked or writeback
4307 * ranges corresponding to the page, and then deletes any extent state
4308 * records from the tree
4309 */
4310 int extent_invalidatepage(struct extent_io_tree *tree,
4311 struct page *page, unsigned long offset)
4312 {
4313 struct extent_state *cached_state = NULL;
4314 u64 start = page_offset(page);
4315 u64 end = start + PAGE_CACHE_SIZE - 1;
4316 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4317
4318 start += ALIGN(offset, blocksize);
4319 if (start > end)
4320 return 0;
4321
4322 lock_extent_bits(tree, start, end, 0, &cached_state);
4323 wait_on_page_writeback(page);
4324 clear_extent_bit(tree, start, end,
4325 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4326 EXTENT_DO_ACCOUNTING,
4327 1, 1, &cached_state, GFP_NOFS);
4328 return 0;
4329 }
4330
4331 /*
4332 * a helper for releasepage, this tests for areas of the page that
4333 * are locked or under IO and drops the related state bits if it is safe
4334 * to drop the page.
4335 */
4336 static int try_release_extent_state(struct extent_map_tree *map,
4337 struct extent_io_tree *tree,
4338 struct page *page, gfp_t mask)
4339 {
4340 u64 start = page_offset(page);
4341 u64 end = start + PAGE_CACHE_SIZE - 1;
4342 int ret = 1;
4343
4344 if (test_range_bit(tree, start, end,
4345 EXTENT_IOBITS, 0, NULL))
4346 ret = 0;
4347 else {
4348 if ((mask & GFP_NOFS) == GFP_NOFS)
4349 mask = GFP_NOFS;
4350 /*
4351 * at this point we can safely clear everything except the
4352 * locked bit and the nodatasum bit
4353 */
4354 ret = clear_extent_bit(tree, start, end,
4355 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4356 0, 0, NULL, mask);
4357
4358 /* if clear_extent_bit failed for enomem reasons,
4359 * we can't allow the release to continue.
4360 */
4361 if (ret < 0)
4362 ret = 0;
4363 else
4364 ret = 1;
4365 }
4366 return ret;
4367 }
4368
4369 /*
4370 * a helper for releasepage. As long as there are no locked extents
4371 * in the range corresponding to the page, both state records and extent
4372 * map records are removed
4373 */
4374 int try_release_extent_mapping(struct extent_map_tree *map,
4375 struct extent_io_tree *tree, struct page *page,
4376 gfp_t mask)
4377 {
4378 struct extent_map *em;
4379 u64 start = page_offset(page);
4380 u64 end = start + PAGE_CACHE_SIZE - 1;
4381
4382 if (gfpflags_allow_blocking(mask) &&
4383 page->mapping->host->i_size > 16 * 1024 * 1024) {
4384 u64 len;
4385 while (start <= end) {
4386 len = end - start + 1;
4387 write_lock(&map->lock);
4388 em = lookup_extent_mapping(map, start, len);
4389 if (!em) {
4390 write_unlock(&map->lock);
4391 break;
4392 }
4393 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4394 em->start != start) {
4395 write_unlock(&map->lock);
4396 free_extent_map(em);
4397 break;
4398 }
4399 if (!test_range_bit(tree, em->start,
4400 extent_map_end(em) - 1,
4401 EXTENT_LOCKED | EXTENT_WRITEBACK,
4402 0, NULL)) {
4403 remove_extent_mapping(map, em);
4404 /* once for the rb tree */
4405 free_extent_map(em);
4406 }
4407 start = extent_map_end(em);
4408 write_unlock(&map->lock);
4409
4410 /* once for us */
4411 free_extent_map(em);
4412 }
4413 }
4414 return try_release_extent_state(map, tree, page, mask);
4415 }
4416
4417 /*
4418 * helper function for fiemap, which doesn't want to see any holes.
4419 * This maps until we find something past 'last'
4420 */
4421 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4422 u64 offset,
4423 u64 last,
4424 get_extent_t *get_extent)
4425 {
4426 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4427 struct extent_map *em;
4428 u64 len;
4429
4430 if (offset >= last)
4431 return NULL;
4432
4433 while (1) {
4434 len = last - offset;
4435 if (len == 0)
4436 break;
4437 len = ALIGN(len, sectorsize);
4438 em = get_extent(inode, NULL, 0, offset, len, 0);
4439 if (IS_ERR_OR_NULL(em))
4440 return em;
4441
4442 /* if this isn't a hole return it */
4443 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4444 em->block_start != EXTENT_MAP_HOLE) {
4445 return em;
4446 }
4447
4448 /* this is a hole, advance to the next extent */
4449 offset = extent_map_end(em);
4450 free_extent_map(em);
4451 if (offset >= last)
4452 break;
4453 }
4454 return NULL;
4455 }
4456
4457 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4458 __u64 start, __u64 len, get_extent_t *get_extent)
4459 {
4460 int ret = 0;
4461 u64 off = start;
4462 u64 max = start + len;
4463 u32 flags = 0;
4464 u32 found_type;
4465 u64 last;
4466 u64 last_for_get_extent = 0;
4467 u64 disko = 0;
4468 u64 isize = i_size_read(inode);
4469 struct btrfs_key found_key;
4470 struct extent_map *em = NULL;
4471 struct extent_state *cached_state = NULL;
4472 struct btrfs_path *path;
4473 struct btrfs_root *root = BTRFS_I(inode)->root;
4474 int end = 0;
4475 u64 em_start = 0;
4476 u64 em_len = 0;
4477 u64 em_end = 0;
4478
4479 if (len == 0)
4480 return -EINVAL;
4481
4482 path = btrfs_alloc_path();
4483 if (!path)
4484 return -ENOMEM;
4485 path->leave_spinning = 1;
4486
4487 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4488 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4489
4490 /*
4491 * lookup the last file extent. We're not using i_size here
4492 * because there might be preallocation past i_size
4493 */
4494 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4495 0);
4496 if (ret < 0) {
4497 btrfs_free_path(path);
4498 return ret;
4499 }
4500 WARN_ON(!ret);
4501 path->slots[0]--;
4502 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4503 found_type = found_key.type;
4504
4505 /* No extents, but there might be delalloc bits */
4506 if (found_key.objectid != btrfs_ino(inode) ||
4507 found_type != BTRFS_EXTENT_DATA_KEY) {
4508 /* have to trust i_size as the end */
4509 last = (u64)-1;
4510 last_for_get_extent = isize;
4511 } else {
4512 /*
4513 * remember the start of the last extent. There are a
4514 * bunch of different factors that go into the length of the
4515 * extent, so its much less complex to remember where it started
4516 */
4517 last = found_key.offset;
4518 last_for_get_extent = last + 1;
4519 }
4520 btrfs_release_path(path);
4521
4522 /*
4523 * we might have some extents allocated but more delalloc past those
4524 * extents. so, we trust isize unless the start of the last extent is
4525 * beyond isize
4526 */
4527 if (last < isize) {
4528 last = (u64)-1;
4529 last_for_get_extent = isize;
4530 }
4531
4532 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4533 &cached_state);
4534
4535 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4536 get_extent);
4537 if (!em)
4538 goto out;
4539 if (IS_ERR(em)) {
4540 ret = PTR_ERR(em);
4541 goto out;
4542 }
4543
4544 while (!end) {
4545 u64 offset_in_extent = 0;
4546
4547 /* break if the extent we found is outside the range */
4548 if (em->start >= max || extent_map_end(em) < off)
4549 break;
4550
4551 /*
4552 * get_extent may return an extent that starts before our
4553 * requested range. We have to make sure the ranges
4554 * we return to fiemap always move forward and don't
4555 * overlap, so adjust the offsets here
4556 */
4557 em_start = max(em->start, off);
4558
4559 /*
4560 * record the offset from the start of the extent
4561 * for adjusting the disk offset below. Only do this if the
4562 * extent isn't compressed since our in ram offset may be past
4563 * what we have actually allocated on disk.
4564 */
4565 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4566 offset_in_extent = em_start - em->start;
4567 em_end = extent_map_end(em);
4568 em_len = em_end - em_start;
4569 disko = 0;
4570 flags = 0;
4571
4572 /*
4573 * bump off for our next call to get_extent
4574 */
4575 off = extent_map_end(em);
4576 if (off >= max)
4577 end = 1;
4578
4579 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4580 end = 1;
4581 flags |= FIEMAP_EXTENT_LAST;
4582 } else if (em->block_start == EXTENT_MAP_INLINE) {
4583 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4584 FIEMAP_EXTENT_NOT_ALIGNED);
4585 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4586 flags |= (FIEMAP_EXTENT_DELALLOC |
4587 FIEMAP_EXTENT_UNKNOWN);
4588 } else if (fieinfo->fi_extents_max) {
4589 u64 bytenr = em->block_start -
4590 (em->start - em->orig_start);
4591
4592 disko = em->block_start + offset_in_extent;
4593
4594 /*
4595 * As btrfs supports shared space, this information
4596 * can be exported to userspace tools via
4597 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4598 * then we're just getting a count and we can skip the
4599 * lookup stuff.
4600 */
4601 ret = btrfs_check_shared(NULL, root->fs_info,
4602 root->objectid,
4603 btrfs_ino(inode), bytenr);
4604 if (ret < 0)
4605 goto out_free;
4606 if (ret)
4607 flags |= FIEMAP_EXTENT_SHARED;
4608 ret = 0;
4609 }
4610 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4611 flags |= FIEMAP_EXTENT_ENCODED;
4612 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4613 flags |= FIEMAP_EXTENT_UNWRITTEN;
4614
4615 free_extent_map(em);
4616 em = NULL;
4617 if ((em_start >= last) || em_len == (u64)-1 ||
4618 (last == (u64)-1 && isize <= em_end)) {
4619 flags |= FIEMAP_EXTENT_LAST;
4620 end = 1;
4621 }
4622
4623 /* now scan forward to see if this is really the last extent. */
4624 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4625 get_extent);
4626 if (IS_ERR(em)) {
4627 ret = PTR_ERR(em);
4628 goto out;
4629 }
4630 if (!em) {
4631 flags |= FIEMAP_EXTENT_LAST;
4632 end = 1;
4633 }
4634 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4635 em_len, flags);
4636 if (ret) {
4637 if (ret == 1)
4638 ret = 0;
4639 goto out_free;
4640 }
4641 }
4642 out_free:
4643 free_extent_map(em);
4644 out:
4645 btrfs_free_path(path);
4646 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4647 &cached_state, GFP_NOFS);
4648 return ret;
4649 }
4650
4651 static void __free_extent_buffer(struct extent_buffer *eb)
4652 {
4653 btrfs_leak_debug_del(&eb->leak_list);
4654 kmem_cache_free(extent_buffer_cache, eb);
4655 }
4656
4657 int extent_buffer_under_io(struct extent_buffer *eb)
4658 {
4659 return (atomic_read(&eb->io_pages) ||
4660 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4661 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4662 }
4663
4664 /*
4665 * Helper for releasing extent buffer page.
4666 */
4667 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4668 {
4669 unsigned long index;
4670 struct page *page;
4671 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4672
4673 BUG_ON(extent_buffer_under_io(eb));
4674
4675 index = num_extent_pages(eb->start, eb->len);
4676 if (index == 0)
4677 return;
4678
4679 do {
4680 index--;
4681 page = eb->pages[index];
4682 if (!page)
4683 continue;
4684 if (mapped)
4685 spin_lock(&page->mapping->private_lock);
4686 /*
4687 * We do this since we'll remove the pages after we've
4688 * removed the eb from the radix tree, so we could race
4689 * and have this page now attached to the new eb. So
4690 * only clear page_private if it's still connected to
4691 * this eb.
4692 */
4693 if (PagePrivate(page) &&
4694 page->private == (unsigned long)eb) {
4695 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4696 BUG_ON(PageDirty(page));
4697 BUG_ON(PageWriteback(page));
4698 /*
4699 * We need to make sure we haven't be attached
4700 * to a new eb.
4701 */
4702 ClearPagePrivate(page);
4703 set_page_private(page, 0);
4704 /* One for the page private */
4705 page_cache_release(page);
4706 }
4707
4708 if (mapped)
4709 spin_unlock(&page->mapping->private_lock);
4710
4711 /* One for when we alloced the page */
4712 page_cache_release(page);
4713 } while (index != 0);
4714 }
4715
4716 /*
4717 * Helper for releasing the extent buffer.
4718 */
4719 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4720 {
4721 btrfs_release_extent_buffer_page(eb);
4722 __free_extent_buffer(eb);
4723 }
4724
4725 static struct extent_buffer *
4726 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4727 unsigned long len)
4728 {
4729 struct extent_buffer *eb = NULL;
4730
4731 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4732 eb->start = start;
4733 eb->len = len;
4734 eb->fs_info = fs_info;
4735 eb->bflags = 0;
4736 rwlock_init(&eb->lock);
4737 atomic_set(&eb->write_locks, 0);
4738 atomic_set(&eb->read_locks, 0);
4739 atomic_set(&eb->blocking_readers, 0);
4740 atomic_set(&eb->blocking_writers, 0);
4741 atomic_set(&eb->spinning_readers, 0);
4742 atomic_set(&eb->spinning_writers, 0);
4743 eb->lock_nested = 0;
4744 init_waitqueue_head(&eb->write_lock_wq);
4745 init_waitqueue_head(&eb->read_lock_wq);
4746
4747 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4748
4749 spin_lock_init(&eb->refs_lock);
4750 atomic_set(&eb->refs, 1);
4751 atomic_set(&eb->io_pages, 0);
4752
4753 /*
4754 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4755 */
4756 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4757 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4758 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4759
4760 return eb;
4761 }
4762
4763 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4764 {
4765 unsigned long i;
4766 struct page *p;
4767 struct extent_buffer *new;
4768 unsigned long num_pages = num_extent_pages(src->start, src->len);
4769
4770 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4771 if (new == NULL)
4772 return NULL;
4773
4774 for (i = 0; i < num_pages; i++) {
4775 p = alloc_page(GFP_NOFS);
4776 if (!p) {
4777 btrfs_release_extent_buffer(new);
4778 return NULL;
4779 }
4780 attach_extent_buffer_page(new, p);
4781 WARN_ON(PageDirty(p));
4782 SetPageUptodate(p);
4783 new->pages[i] = p;
4784 }
4785
4786 copy_extent_buffer(new, src, 0, 0, src->len);
4787 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4788 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4789
4790 return new;
4791 }
4792
4793 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4794 u64 start)
4795 {
4796 struct extent_buffer *eb;
4797 unsigned long len;
4798 unsigned long num_pages;
4799 unsigned long i;
4800
4801 if (!fs_info) {
4802 /*
4803 * Called only from tests that don't always have a fs_info
4804 * available, but we know that nodesize is 4096
4805 */
4806 len = 4096;
4807 } else {
4808 len = fs_info->tree_root->nodesize;
4809 }
4810 num_pages = num_extent_pages(0, len);
4811
4812 eb = __alloc_extent_buffer(fs_info, start, len);
4813 if (!eb)
4814 return NULL;
4815
4816 for (i = 0; i < num_pages; i++) {
4817 eb->pages[i] = alloc_page(GFP_NOFS);
4818 if (!eb->pages[i])
4819 goto err;
4820 }
4821 set_extent_buffer_uptodate(eb);
4822 btrfs_set_header_nritems(eb, 0);
4823 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4824
4825 return eb;
4826 err:
4827 for (; i > 0; i--)
4828 __free_page(eb->pages[i - 1]);
4829 __free_extent_buffer(eb);
4830 return NULL;
4831 }
4832
4833 static void check_buffer_tree_ref(struct extent_buffer *eb)
4834 {
4835 int refs;
4836 /* the ref bit is tricky. We have to make sure it is set
4837 * if we have the buffer dirty. Otherwise the
4838 * code to free a buffer can end up dropping a dirty
4839 * page
4840 *
4841 * Once the ref bit is set, it won't go away while the
4842 * buffer is dirty or in writeback, and it also won't
4843 * go away while we have the reference count on the
4844 * eb bumped.
4845 *
4846 * We can't just set the ref bit without bumping the
4847 * ref on the eb because free_extent_buffer might
4848 * see the ref bit and try to clear it. If this happens
4849 * free_extent_buffer might end up dropping our original
4850 * ref by mistake and freeing the page before we are able
4851 * to add one more ref.
4852 *
4853 * So bump the ref count first, then set the bit. If someone
4854 * beat us to it, drop the ref we added.
4855 */
4856 refs = atomic_read(&eb->refs);
4857 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4858 return;
4859
4860 spin_lock(&eb->refs_lock);
4861 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4862 atomic_inc(&eb->refs);
4863 spin_unlock(&eb->refs_lock);
4864 }
4865
4866 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4867 struct page *accessed)
4868 {
4869 unsigned long num_pages, i;
4870
4871 check_buffer_tree_ref(eb);
4872
4873 num_pages = num_extent_pages(eb->start, eb->len);
4874 for (i = 0; i < num_pages; i++) {
4875 struct page *p = eb->pages[i];
4876
4877 if (p != accessed)
4878 mark_page_accessed(p);
4879 }
4880 }
4881
4882 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4883 u64 start)
4884 {
4885 struct extent_buffer *eb;
4886
4887 rcu_read_lock();
4888 eb = radix_tree_lookup(&fs_info->buffer_radix,
4889 start >> PAGE_CACHE_SHIFT);
4890 if (eb && atomic_inc_not_zero(&eb->refs)) {
4891 rcu_read_unlock();
4892 /*
4893 * Lock our eb's refs_lock to avoid races with
4894 * free_extent_buffer. When we get our eb it might be flagged
4895 * with EXTENT_BUFFER_STALE and another task running
4896 * free_extent_buffer might have seen that flag set,
4897 * eb->refs == 2, that the buffer isn't under IO (dirty and
4898 * writeback flags not set) and it's still in the tree (flag
4899 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4900 * of decrementing the extent buffer's reference count twice.
4901 * So here we could race and increment the eb's reference count,
4902 * clear its stale flag, mark it as dirty and drop our reference
4903 * before the other task finishes executing free_extent_buffer,
4904 * which would later result in an attempt to free an extent
4905 * buffer that is dirty.
4906 */
4907 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4908 spin_lock(&eb->refs_lock);
4909 spin_unlock(&eb->refs_lock);
4910 }
4911 mark_extent_buffer_accessed(eb, NULL);
4912 return eb;
4913 }
4914 rcu_read_unlock();
4915
4916 return NULL;
4917 }
4918
4919 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4920 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4921 u64 start)
4922 {
4923 struct extent_buffer *eb, *exists = NULL;
4924 int ret;
4925
4926 eb = find_extent_buffer(fs_info, start);
4927 if (eb)
4928 return eb;
4929 eb = alloc_dummy_extent_buffer(fs_info, start);
4930 if (!eb)
4931 return NULL;
4932 eb->fs_info = fs_info;
4933 again:
4934 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4935 if (ret)
4936 goto free_eb;
4937 spin_lock(&fs_info->buffer_lock);
4938 ret = radix_tree_insert(&fs_info->buffer_radix,
4939 start >> PAGE_CACHE_SHIFT, eb);
4940 spin_unlock(&fs_info->buffer_lock);
4941 radix_tree_preload_end();
4942 if (ret == -EEXIST) {
4943 exists = find_extent_buffer(fs_info, start);
4944 if (exists)
4945 goto free_eb;
4946 else
4947 goto again;
4948 }
4949 check_buffer_tree_ref(eb);
4950 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4951
4952 /*
4953 * We will free dummy extent buffer's if they come into
4954 * free_extent_buffer with a ref count of 2, but if we are using this we
4955 * want the buffers to stay in memory until we're done with them, so
4956 * bump the ref count again.
4957 */
4958 atomic_inc(&eb->refs);
4959 return eb;
4960 free_eb:
4961 btrfs_release_extent_buffer(eb);
4962 return exists;
4963 }
4964 #endif
4965
4966 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4967 u64 start)
4968 {
4969 unsigned long len = fs_info->tree_root->nodesize;
4970 unsigned long num_pages = num_extent_pages(start, len);
4971 unsigned long i;
4972 unsigned long index = start >> PAGE_CACHE_SHIFT;
4973 struct extent_buffer *eb;
4974 struct extent_buffer *exists = NULL;
4975 struct page *p;
4976 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4977 int uptodate = 1;
4978 int ret;
4979
4980 eb = find_extent_buffer(fs_info, start);
4981 if (eb)
4982 return eb;
4983
4984 eb = __alloc_extent_buffer(fs_info, start, len);
4985 if (!eb)
4986 return NULL;
4987
4988 for (i = 0; i < num_pages; i++, index++) {
4989 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4990 if (!p)
4991 goto free_eb;
4992
4993 spin_lock(&mapping->private_lock);
4994 if (PagePrivate(p)) {
4995 /*
4996 * We could have already allocated an eb for this page
4997 * and attached one so lets see if we can get a ref on
4998 * the existing eb, and if we can we know it's good and
4999 * we can just return that one, else we know we can just
5000 * overwrite page->private.
5001 */
5002 exists = (struct extent_buffer *)p->private;
5003 if (atomic_inc_not_zero(&exists->refs)) {
5004 spin_unlock(&mapping->private_lock);
5005 unlock_page(p);
5006 page_cache_release(p);
5007 mark_extent_buffer_accessed(exists, p);
5008 goto free_eb;
5009 }
5010 exists = NULL;
5011
5012 /*
5013 * Do this so attach doesn't complain and we need to
5014 * drop the ref the old guy had.
5015 */
5016 ClearPagePrivate(p);
5017 WARN_ON(PageDirty(p));
5018 page_cache_release(p);
5019 }
5020 attach_extent_buffer_page(eb, p);
5021 spin_unlock(&mapping->private_lock);
5022 WARN_ON(PageDirty(p));
5023 eb->pages[i] = p;
5024 if (!PageUptodate(p))
5025 uptodate = 0;
5026
5027 /*
5028 * see below about how we avoid a nasty race with release page
5029 * and why we unlock later
5030 */
5031 }
5032 if (uptodate)
5033 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5034 again:
5035 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
5036 if (ret)
5037 goto free_eb;
5038
5039 spin_lock(&fs_info->buffer_lock);
5040 ret = radix_tree_insert(&fs_info->buffer_radix,
5041 start >> PAGE_CACHE_SHIFT, eb);
5042 spin_unlock(&fs_info->buffer_lock);
5043 radix_tree_preload_end();
5044 if (ret == -EEXIST) {
5045 exists = find_extent_buffer(fs_info, start);
5046 if (exists)
5047 goto free_eb;
5048 else
5049 goto again;
5050 }
5051 /* add one reference for the tree */
5052 check_buffer_tree_ref(eb);
5053 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5054
5055 /*
5056 * there is a race where release page may have
5057 * tried to find this extent buffer in the radix
5058 * but failed. It will tell the VM it is safe to
5059 * reclaim the, and it will clear the page private bit.
5060 * We must make sure to set the page private bit properly
5061 * after the extent buffer is in the radix tree so
5062 * it doesn't get lost
5063 */
5064 SetPageChecked(eb->pages[0]);
5065 for (i = 1; i < num_pages; i++) {
5066 p = eb->pages[i];
5067 ClearPageChecked(p);
5068 unlock_page(p);
5069 }
5070 unlock_page(eb->pages[0]);
5071 return eb;
5072
5073 free_eb:
5074 WARN_ON(!atomic_dec_and_test(&eb->refs));
5075 for (i = 0; i < num_pages; i++) {
5076 if (eb->pages[i])
5077 unlock_page(eb->pages[i]);
5078 }
5079
5080 btrfs_release_extent_buffer(eb);
5081 return exists;
5082 }
5083
5084 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5085 {
5086 struct extent_buffer *eb =
5087 container_of(head, struct extent_buffer, rcu_head);
5088
5089 __free_extent_buffer(eb);
5090 }
5091
5092 /* Expects to have eb->eb_lock already held */
5093 static int release_extent_buffer(struct extent_buffer *eb)
5094 {
5095 WARN_ON(atomic_read(&eb->refs) == 0);
5096 if (atomic_dec_and_test(&eb->refs)) {
5097 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5098 struct btrfs_fs_info *fs_info = eb->fs_info;
5099
5100 spin_unlock(&eb->refs_lock);
5101
5102 spin_lock(&fs_info->buffer_lock);
5103 radix_tree_delete(&fs_info->buffer_radix,
5104 eb->start >> PAGE_CACHE_SHIFT);
5105 spin_unlock(&fs_info->buffer_lock);
5106 } else {
5107 spin_unlock(&eb->refs_lock);
5108 }
5109
5110 /* Should be safe to release our pages at this point */
5111 btrfs_release_extent_buffer_page(eb);
5112 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5113 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5114 __free_extent_buffer(eb);
5115 return 1;
5116 }
5117 #endif
5118 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5119 return 1;
5120 }
5121 spin_unlock(&eb->refs_lock);
5122
5123 return 0;
5124 }
5125
5126 void free_extent_buffer(struct extent_buffer *eb)
5127 {
5128 int refs;
5129 int old;
5130 if (!eb)
5131 return;
5132
5133 while (1) {
5134 refs = atomic_read(&eb->refs);
5135 if (refs <= 3)
5136 break;
5137 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5138 if (old == refs)
5139 return;
5140 }
5141
5142 spin_lock(&eb->refs_lock);
5143 if (atomic_read(&eb->refs) == 2 &&
5144 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5145 atomic_dec(&eb->refs);
5146
5147 if (atomic_read(&eb->refs) == 2 &&
5148 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5149 !extent_buffer_under_io(eb) &&
5150 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5151 atomic_dec(&eb->refs);
5152
5153 /*
5154 * I know this is terrible, but it's temporary until we stop tracking
5155 * the uptodate bits and such for the extent buffers.
5156 */
5157 release_extent_buffer(eb);
5158 }
5159
5160 void free_extent_buffer_stale(struct extent_buffer *eb)
5161 {
5162 if (!eb)
5163 return;
5164
5165 spin_lock(&eb->refs_lock);
5166 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5167
5168 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5169 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5170 atomic_dec(&eb->refs);
5171 release_extent_buffer(eb);
5172 }
5173
5174 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5175 {
5176 unsigned long i;
5177 unsigned long num_pages;
5178 struct page *page;
5179
5180 num_pages = num_extent_pages(eb->start, eb->len);
5181
5182 for (i = 0; i < num_pages; i++) {
5183 page = eb->pages[i];
5184 if (!PageDirty(page))
5185 continue;
5186
5187 lock_page(page);
5188 WARN_ON(!PagePrivate(page));
5189
5190 clear_page_dirty_for_io(page);
5191 spin_lock_irq(&page->mapping->tree_lock);
5192 if (!PageDirty(page)) {
5193 radix_tree_tag_clear(&page->mapping->page_tree,
5194 page_index(page),
5195 PAGECACHE_TAG_DIRTY);
5196 }
5197 spin_unlock_irq(&page->mapping->tree_lock);
5198 ClearPageError(page);
5199 unlock_page(page);
5200 }
5201 WARN_ON(atomic_read(&eb->refs) == 0);
5202 }
5203
5204 int set_extent_buffer_dirty(struct extent_buffer *eb)
5205 {
5206 unsigned long i;
5207 unsigned long num_pages;
5208 int was_dirty = 0;
5209
5210 check_buffer_tree_ref(eb);
5211
5212 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5213
5214 num_pages = num_extent_pages(eb->start, eb->len);
5215 WARN_ON(atomic_read(&eb->refs) == 0);
5216 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5217
5218 for (i = 0; i < num_pages; i++)
5219 set_page_dirty(eb->pages[i]);
5220 return was_dirty;
5221 }
5222
5223 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5224 {
5225 unsigned long i;
5226 struct page *page;
5227 unsigned long num_pages;
5228
5229 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5230 num_pages = num_extent_pages(eb->start, eb->len);
5231 for (i = 0; i < num_pages; i++) {
5232 page = eb->pages[i];
5233 if (page)
5234 ClearPageUptodate(page);
5235 }
5236 }
5237
5238 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5239 {
5240 unsigned long i;
5241 struct page *page;
5242 unsigned long num_pages;
5243
5244 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5245 num_pages = num_extent_pages(eb->start, eb->len);
5246 for (i = 0; i < num_pages; i++) {
5247 page = eb->pages[i];
5248 SetPageUptodate(page);
5249 }
5250 }
5251
5252 int extent_buffer_uptodate(struct extent_buffer *eb)
5253 {
5254 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5255 }
5256
5257 int read_extent_buffer_pages(struct extent_io_tree *tree,
5258 struct extent_buffer *eb, u64 start, int wait,
5259 get_extent_t *get_extent, int mirror_num)
5260 {
5261 unsigned long i;
5262 unsigned long start_i;
5263 struct page *page;
5264 int err;
5265 int ret = 0;
5266 int locked_pages = 0;
5267 int all_uptodate = 1;
5268 unsigned long num_pages;
5269 unsigned long num_reads = 0;
5270 struct bio *bio = NULL;
5271 unsigned long bio_flags = 0;
5272
5273 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5274 return 0;
5275
5276 if (start) {
5277 WARN_ON(start < eb->start);
5278 start_i = (start >> PAGE_CACHE_SHIFT) -
5279 (eb->start >> PAGE_CACHE_SHIFT);
5280 } else {
5281 start_i = 0;
5282 }
5283
5284 num_pages = num_extent_pages(eb->start, eb->len);
5285 for (i = start_i; i < num_pages; i++) {
5286 page = eb->pages[i];
5287 if (wait == WAIT_NONE) {
5288 if (!trylock_page(page))
5289 goto unlock_exit;
5290 } else {
5291 lock_page(page);
5292 }
5293 locked_pages++;
5294 if (!PageUptodate(page)) {
5295 num_reads++;
5296 all_uptodate = 0;
5297 }
5298 }
5299 if (all_uptodate) {
5300 if (start_i == 0)
5301 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5302 goto unlock_exit;
5303 }
5304
5305 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5306 eb->read_mirror = 0;
5307 atomic_set(&eb->io_pages, num_reads);
5308 for (i = start_i; i < num_pages; i++) {
5309 page = eb->pages[i];
5310 if (!PageUptodate(page)) {
5311 ClearPageError(page);
5312 err = __extent_read_full_page(tree, page,
5313 get_extent, &bio,
5314 mirror_num, &bio_flags,
5315 READ | REQ_META);
5316 if (err)
5317 ret = err;
5318 } else {
5319 unlock_page(page);
5320 }
5321 }
5322
5323 if (bio) {
5324 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5325 bio_flags);
5326 if (err)
5327 return err;
5328 }
5329
5330 if (ret || wait != WAIT_COMPLETE)
5331 return ret;
5332
5333 for (i = start_i; i < num_pages; i++) {
5334 page = eb->pages[i];
5335 wait_on_page_locked(page);
5336 if (!PageUptodate(page))
5337 ret = -EIO;
5338 }
5339
5340 return ret;
5341
5342 unlock_exit:
5343 i = start_i;
5344 while (locked_pages > 0) {
5345 page = eb->pages[i];
5346 i++;
5347 unlock_page(page);
5348 locked_pages--;
5349 }
5350 return ret;
5351 }
5352
5353 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5354 unsigned long start,
5355 unsigned long len)
5356 {
5357 size_t cur;
5358 size_t offset;
5359 struct page *page;
5360 char *kaddr;
5361 char *dst = (char *)dstv;
5362 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5363 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5364
5365 WARN_ON(start > eb->len);
5366 WARN_ON(start + len > eb->start + eb->len);
5367
5368 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5369
5370 while (len > 0) {
5371 page = eb->pages[i];
5372
5373 cur = min(len, (PAGE_CACHE_SIZE - offset));
5374 kaddr = page_address(page);
5375 memcpy(dst, kaddr + offset, cur);
5376
5377 dst += cur;
5378 len -= cur;
5379 offset = 0;
5380 i++;
5381 }
5382 }
5383
5384 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5385 unsigned long start,
5386 unsigned long len)
5387 {
5388 size_t cur;
5389 size_t offset;
5390 struct page *page;
5391 char *kaddr;
5392 char __user *dst = (char __user *)dstv;
5393 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5394 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5395 int ret = 0;
5396
5397 WARN_ON(start > eb->len);
5398 WARN_ON(start + len > eb->start + eb->len);
5399
5400 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5401
5402 while (len > 0) {
5403 page = eb->pages[i];
5404
5405 cur = min(len, (PAGE_CACHE_SIZE - offset));
5406 kaddr = page_address(page);
5407 if (copy_to_user(dst, kaddr + offset, cur)) {
5408 ret = -EFAULT;
5409 break;
5410 }
5411
5412 dst += cur;
5413 len -= cur;
5414 offset = 0;
5415 i++;
5416 }
5417
5418 return ret;
5419 }
5420
5421 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5422 unsigned long min_len, char **map,
5423 unsigned long *map_start,
5424 unsigned long *map_len)
5425 {
5426 size_t offset = start & (PAGE_CACHE_SIZE - 1);
5427 char *kaddr;
5428 struct page *p;
5429 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5430 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5431 unsigned long end_i = (start_offset + start + min_len - 1) >>
5432 PAGE_CACHE_SHIFT;
5433
5434 if (i != end_i)
5435 return -EINVAL;
5436
5437 if (i == 0) {
5438 offset = start_offset;
5439 *map_start = 0;
5440 } else {
5441 offset = 0;
5442 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5443 }
5444
5445 if (start + min_len > eb->len) {
5446 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5447 "wanted %lu %lu\n",
5448 eb->start, eb->len, start, min_len);
5449 return -EINVAL;
5450 }
5451
5452 p = eb->pages[i];
5453 kaddr = page_address(p);
5454 *map = kaddr + offset;
5455 *map_len = PAGE_CACHE_SIZE - offset;
5456 return 0;
5457 }
5458
5459 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5460 unsigned long start,
5461 unsigned long len)
5462 {
5463 size_t cur;
5464 size_t offset;
5465 struct page *page;
5466 char *kaddr;
5467 char *ptr = (char *)ptrv;
5468 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5469 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5470 int ret = 0;
5471
5472 WARN_ON(start > eb->len);
5473 WARN_ON(start + len > eb->start + eb->len);
5474
5475 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5476
5477 while (len > 0) {
5478 page = eb->pages[i];
5479
5480 cur = min(len, (PAGE_CACHE_SIZE - offset));
5481
5482 kaddr = page_address(page);
5483 ret = memcmp(ptr, kaddr + offset, cur);
5484 if (ret)
5485 break;
5486
5487 ptr += cur;
5488 len -= cur;
5489 offset = 0;
5490 i++;
5491 }
5492 return ret;
5493 }
5494
5495 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5496 unsigned long start, unsigned long len)
5497 {
5498 size_t cur;
5499 size_t offset;
5500 struct page *page;
5501 char *kaddr;
5502 char *src = (char *)srcv;
5503 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5504 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5505
5506 WARN_ON(start > eb->len);
5507 WARN_ON(start + len > eb->start + eb->len);
5508
5509 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5510
5511 while (len > 0) {
5512 page = eb->pages[i];
5513 WARN_ON(!PageUptodate(page));
5514
5515 cur = min(len, PAGE_CACHE_SIZE - offset);
5516 kaddr = page_address(page);
5517 memcpy(kaddr + offset, src, cur);
5518
5519 src += cur;
5520 len -= cur;
5521 offset = 0;
5522 i++;
5523 }
5524 }
5525
5526 void memset_extent_buffer(struct extent_buffer *eb, char c,
5527 unsigned long start, unsigned long len)
5528 {
5529 size_t cur;
5530 size_t offset;
5531 struct page *page;
5532 char *kaddr;
5533 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5534 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5535
5536 WARN_ON(start > eb->len);
5537 WARN_ON(start + len > eb->start + eb->len);
5538
5539 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5540
5541 while (len > 0) {
5542 page = eb->pages[i];
5543 WARN_ON(!PageUptodate(page));
5544
5545 cur = min(len, PAGE_CACHE_SIZE - offset);
5546 kaddr = page_address(page);
5547 memset(kaddr + offset, c, cur);
5548
5549 len -= cur;
5550 offset = 0;
5551 i++;
5552 }
5553 }
5554
5555 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5556 unsigned long dst_offset, unsigned long src_offset,
5557 unsigned long len)
5558 {
5559 u64 dst_len = dst->len;
5560 size_t cur;
5561 size_t offset;
5562 struct page *page;
5563 char *kaddr;
5564 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5565 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5566
5567 WARN_ON(src->len != dst_len);
5568
5569 offset = (start_offset + dst_offset) &
5570 (PAGE_CACHE_SIZE - 1);
5571
5572 while (len > 0) {
5573 page = dst->pages[i];
5574 WARN_ON(!PageUptodate(page));
5575
5576 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5577
5578 kaddr = page_address(page);
5579 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5580
5581 src_offset += cur;
5582 len -= cur;
5583 offset = 0;
5584 i++;
5585 }
5586 }
5587
5588 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5589 {
5590 unsigned long distance = (src > dst) ? src - dst : dst - src;
5591 return distance < len;
5592 }
5593
5594 static void copy_pages(struct page *dst_page, struct page *src_page,
5595 unsigned long dst_off, unsigned long src_off,
5596 unsigned long len)
5597 {
5598 char *dst_kaddr = page_address(dst_page);
5599 char *src_kaddr;
5600 int must_memmove = 0;
5601
5602 if (dst_page != src_page) {
5603 src_kaddr = page_address(src_page);
5604 } else {
5605 src_kaddr = dst_kaddr;
5606 if (areas_overlap(src_off, dst_off, len))
5607 must_memmove = 1;
5608 }
5609
5610 if (must_memmove)
5611 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5612 else
5613 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5614 }
5615
5616 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5617 unsigned long src_offset, unsigned long len)
5618 {
5619 size_t cur;
5620 size_t dst_off_in_page;
5621 size_t src_off_in_page;
5622 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5623 unsigned long dst_i;
5624 unsigned long src_i;
5625
5626 if (src_offset + len > dst->len) {
5627 btrfs_err(dst->fs_info,
5628 "memmove bogus src_offset %lu move "
5629 "len %lu dst len %lu", src_offset, len, dst->len);
5630 BUG_ON(1);
5631 }
5632 if (dst_offset + len > dst->len) {
5633 btrfs_err(dst->fs_info,
5634 "memmove bogus dst_offset %lu move "
5635 "len %lu dst len %lu", dst_offset, len, dst->len);
5636 BUG_ON(1);
5637 }
5638
5639 while (len > 0) {
5640 dst_off_in_page = (start_offset + dst_offset) &
5641 (PAGE_CACHE_SIZE - 1);
5642 src_off_in_page = (start_offset + src_offset) &
5643 (PAGE_CACHE_SIZE - 1);
5644
5645 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5646 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5647
5648 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5649 src_off_in_page));
5650 cur = min_t(unsigned long, cur,
5651 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5652
5653 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5654 dst_off_in_page, src_off_in_page, cur);
5655
5656 src_offset += cur;
5657 dst_offset += cur;
5658 len -= cur;
5659 }
5660 }
5661
5662 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5663 unsigned long src_offset, unsigned long len)
5664 {
5665 size_t cur;
5666 size_t dst_off_in_page;
5667 size_t src_off_in_page;
5668 unsigned long dst_end = dst_offset + len - 1;
5669 unsigned long src_end = src_offset + len - 1;
5670 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5671 unsigned long dst_i;
5672 unsigned long src_i;
5673
5674 if (src_offset + len > dst->len) {
5675 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5676 "len %lu len %lu", src_offset, len, dst->len);
5677 BUG_ON(1);
5678 }
5679 if (dst_offset + len > dst->len) {
5680 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5681 "len %lu len %lu", dst_offset, len, dst->len);
5682 BUG_ON(1);
5683 }
5684 if (dst_offset < src_offset) {
5685 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5686 return;
5687 }
5688 while (len > 0) {
5689 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5690 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5691
5692 dst_off_in_page = (start_offset + dst_end) &
5693 (PAGE_CACHE_SIZE - 1);
5694 src_off_in_page = (start_offset + src_end) &
5695 (PAGE_CACHE_SIZE - 1);
5696
5697 cur = min_t(unsigned long, len, src_off_in_page + 1);
5698 cur = min(cur, dst_off_in_page + 1);
5699 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5700 dst_off_in_page - cur + 1,
5701 src_off_in_page - cur + 1, cur);
5702
5703 dst_end -= cur;
5704 src_end -= cur;
5705 len -= cur;
5706 }
5707 }
5708
5709 int try_release_extent_buffer(struct page *page)
5710 {
5711 struct extent_buffer *eb;
5712
5713 /*
5714 * We need to make sure noboody is attaching this page to an eb right
5715 * now.
5716 */
5717 spin_lock(&page->mapping->private_lock);
5718 if (!PagePrivate(page)) {
5719 spin_unlock(&page->mapping->private_lock);
5720 return 1;
5721 }
5722
5723 eb = (struct extent_buffer *)page->private;
5724 BUG_ON(!eb);
5725
5726 /*
5727 * This is a little awful but should be ok, we need to make sure that
5728 * the eb doesn't disappear out from under us while we're looking at
5729 * this page.
5730 */
5731 spin_lock(&eb->refs_lock);
5732 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5733 spin_unlock(&eb->refs_lock);
5734 spin_unlock(&page->mapping->private_lock);
5735 return 0;
5736 }
5737 spin_unlock(&page->mapping->private_lock);
5738
5739 /*
5740 * If tree ref isn't set then we know the ref on this eb is a real ref,
5741 * so just return, this page will likely be freed soon anyway.
5742 */
5743 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5744 spin_unlock(&eb->refs_lock);
5745 return 0;
5746 }
5747
5748 return release_extent_buffer(eb);
5749 }
This page took 0.139552 seconds and 6 git commands to generate.