Btrfs: remove unneeded btrfs_start_delalloc_inodes call
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/version.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20
21 /* temporary define until extent_map moves out of btrfs */
22 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
23 unsigned long extra_flags,
24 void (*ctor)(void *, struct kmem_cache *,
25 unsigned long));
26
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29
30 static LIST_HEAD(buffers);
31 static LIST_HEAD(states);
32
33 #define LEAK_DEBUG 0
34 #ifdef LEAK_DEBUG
35 static spinlock_t leak_lock = SPIN_LOCK_UNLOCKED;
36 #endif
37
38 #define BUFFER_LRU_MAX 64
39
40 struct tree_entry {
41 u64 start;
42 u64 end;
43 struct rb_node rb_node;
44 };
45
46 struct extent_page_data {
47 struct bio *bio;
48 struct extent_io_tree *tree;
49 get_extent_t *get_extent;
50
51 /* tells writepage not to lock the state bits for this range
52 * it still does the unlocking
53 */
54 int extent_locked;
55 };
56
57 int __init extent_io_init(void)
58 {
59 extent_state_cache = btrfs_cache_create("extent_state",
60 sizeof(struct extent_state), 0,
61 NULL);
62 if (!extent_state_cache)
63 return -ENOMEM;
64
65 extent_buffer_cache = btrfs_cache_create("extent_buffers",
66 sizeof(struct extent_buffer), 0,
67 NULL);
68 if (!extent_buffer_cache)
69 goto free_state_cache;
70 return 0;
71
72 free_state_cache:
73 kmem_cache_destroy(extent_state_cache);
74 return -ENOMEM;
75 }
76
77 void extent_io_exit(void)
78 {
79 struct extent_state *state;
80 struct extent_buffer *eb;
81
82 while (!list_empty(&states)) {
83 state = list_entry(states.next, struct extent_state, leak_list);
84 printk("state leak: start %Lu end %Lu state %lu in tree %p refs %d\n", state->start, state->end, state->state, state->tree, atomic_read(&state->refs));
85 list_del(&state->leak_list);
86 kmem_cache_free(extent_state_cache, state);
87
88 }
89
90 while (!list_empty(&buffers)) {
91 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
92 printk("buffer leak start %Lu len %lu refs %d\n", eb->start, eb->len, atomic_read(&eb->refs));
93 list_del(&eb->leak_list);
94 kmem_cache_free(extent_buffer_cache, eb);
95 }
96 if (extent_state_cache)
97 kmem_cache_destroy(extent_state_cache);
98 if (extent_buffer_cache)
99 kmem_cache_destroy(extent_buffer_cache);
100 }
101
102 void extent_io_tree_init(struct extent_io_tree *tree,
103 struct address_space *mapping, gfp_t mask)
104 {
105 tree->state.rb_node = NULL;
106 tree->buffer.rb_node = NULL;
107 tree->ops = NULL;
108 tree->dirty_bytes = 0;
109 spin_lock_init(&tree->lock);
110 spin_lock_init(&tree->buffer_lock);
111 tree->mapping = mapping;
112 }
113 EXPORT_SYMBOL(extent_io_tree_init);
114
115 struct extent_state *alloc_extent_state(gfp_t mask)
116 {
117 struct extent_state *state;
118 #ifdef LEAK_DEBUG
119 unsigned long flags;
120 #endif
121
122 state = kmem_cache_alloc(extent_state_cache, mask);
123 if (!state)
124 return state;
125 state->state = 0;
126 state->private = 0;
127 state->tree = NULL;
128 #ifdef LEAK_DEBUG
129 spin_lock_irqsave(&leak_lock, flags);
130 list_add(&state->leak_list, &states);
131 spin_unlock_irqrestore(&leak_lock, flags);
132 #endif
133 atomic_set(&state->refs, 1);
134 init_waitqueue_head(&state->wq);
135 return state;
136 }
137 EXPORT_SYMBOL(alloc_extent_state);
138
139 void free_extent_state(struct extent_state *state)
140 {
141 if (!state)
142 return;
143 if (atomic_dec_and_test(&state->refs)) {
144 #ifdef LEAK_DEBUG
145 unsigned long flags;
146 #endif
147 WARN_ON(state->tree);
148 #ifdef LEAK_DEBUG
149 spin_lock_irqsave(&leak_lock, flags);
150 list_del(&state->leak_list);
151 spin_unlock_irqrestore(&leak_lock, flags);
152 #endif
153 kmem_cache_free(extent_state_cache, state);
154 }
155 }
156 EXPORT_SYMBOL(free_extent_state);
157
158 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
159 struct rb_node *node)
160 {
161 struct rb_node ** p = &root->rb_node;
162 struct rb_node * parent = NULL;
163 struct tree_entry *entry;
164
165 while(*p) {
166 parent = *p;
167 entry = rb_entry(parent, struct tree_entry, rb_node);
168
169 if (offset < entry->start)
170 p = &(*p)->rb_left;
171 else if (offset > entry->end)
172 p = &(*p)->rb_right;
173 else
174 return parent;
175 }
176
177 entry = rb_entry(node, struct tree_entry, rb_node);
178 rb_link_node(node, parent, p);
179 rb_insert_color(node, root);
180 return NULL;
181 }
182
183 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
184 struct rb_node **prev_ret,
185 struct rb_node **next_ret)
186 {
187 struct rb_root *root = &tree->state;
188 struct rb_node * n = root->rb_node;
189 struct rb_node *prev = NULL;
190 struct rb_node *orig_prev = NULL;
191 struct tree_entry *entry;
192 struct tree_entry *prev_entry = NULL;
193
194 while(n) {
195 entry = rb_entry(n, struct tree_entry, rb_node);
196 prev = n;
197 prev_entry = entry;
198
199 if (offset < entry->start)
200 n = n->rb_left;
201 else if (offset > entry->end)
202 n = n->rb_right;
203 else {
204 return n;
205 }
206 }
207
208 if (prev_ret) {
209 orig_prev = prev;
210 while(prev && offset > prev_entry->end) {
211 prev = rb_next(prev);
212 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
213 }
214 *prev_ret = prev;
215 prev = orig_prev;
216 }
217
218 if (next_ret) {
219 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
220 while(prev && offset < prev_entry->start) {
221 prev = rb_prev(prev);
222 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
223 }
224 *next_ret = prev;
225 }
226 return NULL;
227 }
228
229 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
230 u64 offset)
231 {
232 struct rb_node *prev = NULL;
233 struct rb_node *ret;
234
235 ret = __etree_search(tree, offset, &prev, NULL);
236 if (!ret) {
237 return prev;
238 }
239 return ret;
240 }
241
242 static struct extent_buffer *buffer_tree_insert(struct extent_io_tree *tree,
243 u64 offset, struct rb_node *node)
244 {
245 struct rb_root *root = &tree->buffer;
246 struct rb_node ** p = &root->rb_node;
247 struct rb_node * parent = NULL;
248 struct extent_buffer *eb;
249
250 while(*p) {
251 parent = *p;
252 eb = rb_entry(parent, struct extent_buffer, rb_node);
253
254 if (offset < eb->start)
255 p = &(*p)->rb_left;
256 else if (offset > eb->start)
257 p = &(*p)->rb_right;
258 else
259 return eb;
260 }
261
262 rb_link_node(node, parent, p);
263 rb_insert_color(node, root);
264 return NULL;
265 }
266
267 static struct extent_buffer *buffer_search(struct extent_io_tree *tree,
268 u64 offset)
269 {
270 struct rb_root *root = &tree->buffer;
271 struct rb_node * n = root->rb_node;
272 struct extent_buffer *eb;
273
274 while(n) {
275 eb = rb_entry(n, struct extent_buffer, rb_node);
276 if (offset < eb->start)
277 n = n->rb_left;
278 else if (offset > eb->start)
279 n = n->rb_right;
280 else
281 return eb;
282 }
283 return NULL;
284 }
285
286 /*
287 * utility function to look for merge candidates inside a given range.
288 * Any extents with matching state are merged together into a single
289 * extent in the tree. Extents with EXTENT_IO in their state field
290 * are not merged because the end_io handlers need to be able to do
291 * operations on them without sleeping (or doing allocations/splits).
292 *
293 * This should be called with the tree lock held.
294 */
295 static int merge_state(struct extent_io_tree *tree,
296 struct extent_state *state)
297 {
298 struct extent_state *other;
299 struct rb_node *other_node;
300
301 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
302 return 0;
303
304 other_node = rb_prev(&state->rb_node);
305 if (other_node) {
306 other = rb_entry(other_node, struct extent_state, rb_node);
307 if (other->end == state->start - 1 &&
308 other->state == state->state) {
309 state->start = other->start;
310 other->tree = NULL;
311 rb_erase(&other->rb_node, &tree->state);
312 free_extent_state(other);
313 }
314 }
315 other_node = rb_next(&state->rb_node);
316 if (other_node) {
317 other = rb_entry(other_node, struct extent_state, rb_node);
318 if (other->start == state->end + 1 &&
319 other->state == state->state) {
320 other->start = state->start;
321 state->tree = NULL;
322 rb_erase(&state->rb_node, &tree->state);
323 free_extent_state(state);
324 }
325 }
326 return 0;
327 }
328
329 static void set_state_cb(struct extent_io_tree *tree,
330 struct extent_state *state,
331 unsigned long bits)
332 {
333 if (tree->ops && tree->ops->set_bit_hook) {
334 tree->ops->set_bit_hook(tree->mapping->host, state->start,
335 state->end, state->state, bits);
336 }
337 }
338
339 static void clear_state_cb(struct extent_io_tree *tree,
340 struct extent_state *state,
341 unsigned long bits)
342 {
343 if (tree->ops && tree->ops->set_bit_hook) {
344 tree->ops->clear_bit_hook(tree->mapping->host, state->start,
345 state->end, state->state, bits);
346 }
347 }
348
349 /*
350 * insert an extent_state struct into the tree. 'bits' are set on the
351 * struct before it is inserted.
352 *
353 * This may return -EEXIST if the extent is already there, in which case the
354 * state struct is freed.
355 *
356 * The tree lock is not taken internally. This is a utility function and
357 * probably isn't what you want to call (see set/clear_extent_bit).
358 */
359 static int insert_state(struct extent_io_tree *tree,
360 struct extent_state *state, u64 start, u64 end,
361 int bits)
362 {
363 struct rb_node *node;
364
365 if (end < start) {
366 printk("end < start %Lu %Lu\n", end, start);
367 WARN_ON(1);
368 }
369 if (bits & EXTENT_DIRTY)
370 tree->dirty_bytes += end - start + 1;
371 set_state_cb(tree, state, bits);
372 state->state |= bits;
373 state->start = start;
374 state->end = end;
375 node = tree_insert(&tree->state, end, &state->rb_node);
376 if (node) {
377 struct extent_state *found;
378 found = rb_entry(node, struct extent_state, rb_node);
379 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
380 free_extent_state(state);
381 return -EEXIST;
382 }
383 state->tree = tree;
384 merge_state(tree, state);
385 return 0;
386 }
387
388 /*
389 * split a given extent state struct in two, inserting the preallocated
390 * struct 'prealloc' as the newly created second half. 'split' indicates an
391 * offset inside 'orig' where it should be split.
392 *
393 * Before calling,
394 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
395 * are two extent state structs in the tree:
396 * prealloc: [orig->start, split - 1]
397 * orig: [ split, orig->end ]
398 *
399 * The tree locks are not taken by this function. They need to be held
400 * by the caller.
401 */
402 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
403 struct extent_state *prealloc, u64 split)
404 {
405 struct rb_node *node;
406 prealloc->start = orig->start;
407 prealloc->end = split - 1;
408 prealloc->state = orig->state;
409 orig->start = split;
410
411 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
412 if (node) {
413 struct extent_state *found;
414 found = rb_entry(node, struct extent_state, rb_node);
415 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
416 free_extent_state(prealloc);
417 return -EEXIST;
418 }
419 prealloc->tree = tree;
420 return 0;
421 }
422
423 /*
424 * utility function to clear some bits in an extent state struct.
425 * it will optionally wake up any one waiting on this state (wake == 1), or
426 * forcibly remove the state from the tree (delete == 1).
427 *
428 * If no bits are set on the state struct after clearing things, the
429 * struct is freed and removed from the tree
430 */
431 static int clear_state_bit(struct extent_io_tree *tree,
432 struct extent_state *state, int bits, int wake,
433 int delete)
434 {
435 int ret = state->state & bits;
436
437 if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
438 u64 range = state->end - state->start + 1;
439 WARN_ON(range > tree->dirty_bytes);
440 tree->dirty_bytes -= range;
441 }
442 clear_state_cb(tree, state, bits);
443 state->state &= ~bits;
444 if (wake)
445 wake_up(&state->wq);
446 if (delete || state->state == 0) {
447 if (state->tree) {
448 clear_state_cb(tree, state, state->state);
449 rb_erase(&state->rb_node, &tree->state);
450 state->tree = NULL;
451 free_extent_state(state);
452 } else {
453 WARN_ON(1);
454 }
455 } else {
456 merge_state(tree, state);
457 }
458 return ret;
459 }
460
461 /*
462 * clear some bits on a range in the tree. This may require splitting
463 * or inserting elements in the tree, so the gfp mask is used to
464 * indicate which allocations or sleeping are allowed.
465 *
466 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
467 * the given range from the tree regardless of state (ie for truncate).
468 *
469 * the range [start, end] is inclusive.
470 *
471 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
472 * bits were already set, or zero if none of the bits were already set.
473 */
474 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
475 int bits, int wake, int delete, gfp_t mask)
476 {
477 struct extent_state *state;
478 struct extent_state *prealloc = NULL;
479 struct rb_node *node;
480 unsigned long flags;
481 int err;
482 int set = 0;
483
484 again:
485 if (!prealloc && (mask & __GFP_WAIT)) {
486 prealloc = alloc_extent_state(mask);
487 if (!prealloc)
488 return -ENOMEM;
489 }
490
491 spin_lock_irqsave(&tree->lock, flags);
492 /*
493 * this search will find the extents that end after
494 * our range starts
495 */
496 node = tree_search(tree, start);
497 if (!node)
498 goto out;
499 state = rb_entry(node, struct extent_state, rb_node);
500 if (state->start > end)
501 goto out;
502 WARN_ON(state->end < start);
503
504 /*
505 * | ---- desired range ---- |
506 * | state | or
507 * | ------------- state -------------- |
508 *
509 * We need to split the extent we found, and may flip
510 * bits on second half.
511 *
512 * If the extent we found extends past our range, we
513 * just split and search again. It'll get split again
514 * the next time though.
515 *
516 * If the extent we found is inside our range, we clear
517 * the desired bit on it.
518 */
519
520 if (state->start < start) {
521 if (!prealloc)
522 prealloc = alloc_extent_state(GFP_ATOMIC);
523 err = split_state(tree, state, prealloc, start);
524 BUG_ON(err == -EEXIST);
525 prealloc = NULL;
526 if (err)
527 goto out;
528 if (state->end <= end) {
529 start = state->end + 1;
530 set |= clear_state_bit(tree, state, bits,
531 wake, delete);
532 } else {
533 start = state->start;
534 }
535 goto search_again;
536 }
537 /*
538 * | ---- desired range ---- |
539 * | state |
540 * We need to split the extent, and clear the bit
541 * on the first half
542 */
543 if (state->start <= end && state->end > end) {
544 if (!prealloc)
545 prealloc = alloc_extent_state(GFP_ATOMIC);
546 err = split_state(tree, state, prealloc, end + 1);
547 BUG_ON(err == -EEXIST);
548
549 if (wake)
550 wake_up(&state->wq);
551 set |= clear_state_bit(tree, prealloc, bits,
552 wake, delete);
553 prealloc = NULL;
554 goto out;
555 }
556
557 start = state->end + 1;
558 set |= clear_state_bit(tree, state, bits, wake, delete);
559 goto search_again;
560
561 out:
562 spin_unlock_irqrestore(&tree->lock, flags);
563 if (prealloc)
564 free_extent_state(prealloc);
565
566 return set;
567
568 search_again:
569 if (start > end)
570 goto out;
571 spin_unlock_irqrestore(&tree->lock, flags);
572 if (mask & __GFP_WAIT)
573 cond_resched();
574 goto again;
575 }
576 EXPORT_SYMBOL(clear_extent_bit);
577
578 static int wait_on_state(struct extent_io_tree *tree,
579 struct extent_state *state)
580 __releases(tree->lock)
581 __acquires(tree->lock)
582 {
583 DEFINE_WAIT(wait);
584 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
585 spin_unlock_irq(&tree->lock);
586 schedule();
587 spin_lock_irq(&tree->lock);
588 finish_wait(&state->wq, &wait);
589 return 0;
590 }
591
592 /*
593 * waits for one or more bits to clear on a range in the state tree.
594 * The range [start, end] is inclusive.
595 * The tree lock is taken by this function
596 */
597 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
598 {
599 struct extent_state *state;
600 struct rb_node *node;
601
602 spin_lock_irq(&tree->lock);
603 again:
604 while (1) {
605 /*
606 * this search will find all the extents that end after
607 * our range starts
608 */
609 node = tree_search(tree, start);
610 if (!node)
611 break;
612
613 state = rb_entry(node, struct extent_state, rb_node);
614
615 if (state->start > end)
616 goto out;
617
618 if (state->state & bits) {
619 start = state->start;
620 atomic_inc(&state->refs);
621 wait_on_state(tree, state);
622 free_extent_state(state);
623 goto again;
624 }
625 start = state->end + 1;
626
627 if (start > end)
628 break;
629
630 if (need_resched()) {
631 spin_unlock_irq(&tree->lock);
632 cond_resched();
633 spin_lock_irq(&tree->lock);
634 }
635 }
636 out:
637 spin_unlock_irq(&tree->lock);
638 return 0;
639 }
640 EXPORT_SYMBOL(wait_extent_bit);
641
642 static void set_state_bits(struct extent_io_tree *tree,
643 struct extent_state *state,
644 int bits)
645 {
646 if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
647 u64 range = state->end - state->start + 1;
648 tree->dirty_bytes += range;
649 }
650 set_state_cb(tree, state, bits);
651 state->state |= bits;
652 }
653
654 /*
655 * set some bits on a range in the tree. This may require allocations
656 * or sleeping, so the gfp mask is used to indicate what is allowed.
657 *
658 * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
659 * range already has the desired bits set. The start of the existing
660 * range is returned in failed_start in this case.
661 *
662 * [start, end] is inclusive
663 * This takes the tree lock.
664 */
665 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
666 int exclusive, u64 *failed_start, gfp_t mask)
667 {
668 struct extent_state *state;
669 struct extent_state *prealloc = NULL;
670 struct rb_node *node;
671 unsigned long flags;
672 int err = 0;
673 int set;
674 u64 last_start;
675 u64 last_end;
676 again:
677 if (!prealloc && (mask & __GFP_WAIT)) {
678 prealloc = alloc_extent_state(mask);
679 if (!prealloc)
680 return -ENOMEM;
681 }
682
683 spin_lock_irqsave(&tree->lock, flags);
684 /*
685 * this search will find all the extents that end after
686 * our range starts.
687 */
688 node = tree_search(tree, start);
689 if (!node) {
690 err = insert_state(tree, prealloc, start, end, bits);
691 prealloc = NULL;
692 BUG_ON(err == -EEXIST);
693 goto out;
694 }
695
696 state = rb_entry(node, struct extent_state, rb_node);
697 last_start = state->start;
698 last_end = state->end;
699
700 /*
701 * | ---- desired range ---- |
702 * | state |
703 *
704 * Just lock what we found and keep going
705 */
706 if (state->start == start && state->end <= end) {
707 set = state->state & bits;
708 if (set && exclusive) {
709 *failed_start = state->start;
710 err = -EEXIST;
711 goto out;
712 }
713 set_state_bits(tree, state, bits);
714 start = state->end + 1;
715 merge_state(tree, state);
716 goto search_again;
717 }
718
719 /*
720 * | ---- desired range ---- |
721 * | state |
722 * or
723 * | ------------- state -------------- |
724 *
725 * We need to split the extent we found, and may flip bits on
726 * second half.
727 *
728 * If the extent we found extends past our
729 * range, we just split and search again. It'll get split
730 * again the next time though.
731 *
732 * If the extent we found is inside our range, we set the
733 * desired bit on it.
734 */
735 if (state->start < start) {
736 set = state->state & bits;
737 if (exclusive && set) {
738 *failed_start = start;
739 err = -EEXIST;
740 goto out;
741 }
742 err = split_state(tree, state, prealloc, start);
743 BUG_ON(err == -EEXIST);
744 prealloc = NULL;
745 if (err)
746 goto out;
747 if (state->end <= end) {
748 set_state_bits(tree, state, bits);
749 start = state->end + 1;
750 merge_state(tree, state);
751 } else {
752 start = state->start;
753 }
754 goto search_again;
755 }
756 /*
757 * | ---- desired range ---- |
758 * | state | or | state |
759 *
760 * There's a hole, we need to insert something in it and
761 * ignore the extent we found.
762 */
763 if (state->start > start) {
764 u64 this_end;
765 if (end < last_start)
766 this_end = end;
767 else
768 this_end = last_start -1;
769 err = insert_state(tree, prealloc, start, this_end,
770 bits);
771 prealloc = NULL;
772 BUG_ON(err == -EEXIST);
773 if (err)
774 goto out;
775 start = this_end + 1;
776 goto search_again;
777 }
778 /*
779 * | ---- desired range ---- |
780 * | state |
781 * We need to split the extent, and set the bit
782 * on the first half
783 */
784 if (state->start <= end && state->end > end) {
785 set = state->state & bits;
786 if (exclusive && set) {
787 *failed_start = start;
788 err = -EEXIST;
789 goto out;
790 }
791 err = split_state(tree, state, prealloc, end + 1);
792 BUG_ON(err == -EEXIST);
793
794 set_state_bits(tree, prealloc, bits);
795 merge_state(tree, prealloc);
796 prealloc = NULL;
797 goto out;
798 }
799
800 goto search_again;
801
802 out:
803 spin_unlock_irqrestore(&tree->lock, flags);
804 if (prealloc)
805 free_extent_state(prealloc);
806
807 return err;
808
809 search_again:
810 if (start > end)
811 goto out;
812 spin_unlock_irqrestore(&tree->lock, flags);
813 if (mask & __GFP_WAIT)
814 cond_resched();
815 goto again;
816 }
817 EXPORT_SYMBOL(set_extent_bit);
818
819 /* wrappers around set/clear extent bit */
820 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
821 gfp_t mask)
822 {
823 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
824 mask);
825 }
826 EXPORT_SYMBOL(set_extent_dirty);
827
828 int set_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end,
829 gfp_t mask)
830 {
831 return set_extent_bit(tree, start, end, EXTENT_ORDERED, 0, NULL, mask);
832 }
833 EXPORT_SYMBOL(set_extent_ordered);
834
835 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
836 int bits, gfp_t mask)
837 {
838 return set_extent_bit(tree, start, end, bits, 0, NULL,
839 mask);
840 }
841 EXPORT_SYMBOL(set_extent_bits);
842
843 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
844 int bits, gfp_t mask)
845 {
846 return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
847 }
848 EXPORT_SYMBOL(clear_extent_bits);
849
850 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
851 gfp_t mask)
852 {
853 return set_extent_bit(tree, start, end,
854 EXTENT_DELALLOC | EXTENT_DIRTY,
855 0, NULL, mask);
856 }
857 EXPORT_SYMBOL(set_extent_delalloc);
858
859 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
860 gfp_t mask)
861 {
862 return clear_extent_bit(tree, start, end,
863 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
864 }
865 EXPORT_SYMBOL(clear_extent_dirty);
866
867 int clear_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end,
868 gfp_t mask)
869 {
870 return clear_extent_bit(tree, start, end, EXTENT_ORDERED, 1, 0, mask);
871 }
872 EXPORT_SYMBOL(clear_extent_ordered);
873
874 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
875 gfp_t mask)
876 {
877 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
878 mask);
879 }
880 EXPORT_SYMBOL(set_extent_new);
881
882 int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
883 gfp_t mask)
884 {
885 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
886 }
887 EXPORT_SYMBOL(clear_extent_new);
888
889 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
890 gfp_t mask)
891 {
892 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
893 mask);
894 }
895 EXPORT_SYMBOL(set_extent_uptodate);
896
897 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
898 gfp_t mask)
899 {
900 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
901 }
902 EXPORT_SYMBOL(clear_extent_uptodate);
903
904 int set_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
905 gfp_t mask)
906 {
907 return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
908 0, NULL, mask);
909 }
910 EXPORT_SYMBOL(set_extent_writeback);
911
912 int clear_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
913 gfp_t mask)
914 {
915 return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
916 }
917 EXPORT_SYMBOL(clear_extent_writeback);
918
919 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
920 {
921 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
922 }
923 EXPORT_SYMBOL(wait_on_extent_writeback);
924
925 /*
926 * either insert or lock state struct between start and end use mask to tell
927 * us if waiting is desired.
928 */
929 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
930 {
931 int err;
932 u64 failed_start;
933 while (1) {
934 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
935 &failed_start, mask);
936 if (err == -EEXIST && (mask & __GFP_WAIT)) {
937 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
938 start = failed_start;
939 } else {
940 break;
941 }
942 WARN_ON(start > end);
943 }
944 return err;
945 }
946 EXPORT_SYMBOL(lock_extent);
947
948 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
949 gfp_t mask)
950 {
951 int err;
952 u64 failed_start;
953
954 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
955 &failed_start, mask);
956 if (err == -EEXIST) {
957 if (failed_start > start)
958 clear_extent_bit(tree, start, failed_start - 1,
959 EXTENT_LOCKED, 1, 0, mask);
960 return 0;
961 }
962 return 1;
963 }
964 EXPORT_SYMBOL(try_lock_extent);
965
966 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
967 gfp_t mask)
968 {
969 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
970 }
971 EXPORT_SYMBOL(unlock_extent);
972
973 /*
974 * helper function to set pages and extents in the tree dirty
975 */
976 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
977 {
978 unsigned long index = start >> PAGE_CACHE_SHIFT;
979 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
980 struct page *page;
981
982 while (index <= end_index) {
983 page = find_get_page(tree->mapping, index);
984 BUG_ON(!page);
985 __set_page_dirty_nobuffers(page);
986 page_cache_release(page);
987 index++;
988 }
989 set_extent_dirty(tree, start, end, GFP_NOFS);
990 return 0;
991 }
992 EXPORT_SYMBOL(set_range_dirty);
993
994 /*
995 * helper function to set both pages and extents in the tree writeback
996 */
997 int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
998 {
999 unsigned long index = start >> PAGE_CACHE_SHIFT;
1000 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1001 struct page *page;
1002
1003 while (index <= end_index) {
1004 page = find_get_page(tree->mapping, index);
1005 BUG_ON(!page);
1006 set_page_writeback(page);
1007 page_cache_release(page);
1008 index++;
1009 }
1010 set_extent_writeback(tree, start, end, GFP_NOFS);
1011 return 0;
1012 }
1013 EXPORT_SYMBOL(set_range_writeback);
1014
1015 /*
1016 * find the first offset in the io tree with 'bits' set. zero is
1017 * returned if we find something, and *start_ret and *end_ret are
1018 * set to reflect the state struct that was found.
1019 *
1020 * If nothing was found, 1 is returned, < 0 on error
1021 */
1022 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1023 u64 *start_ret, u64 *end_ret, int bits)
1024 {
1025 struct rb_node *node;
1026 struct extent_state *state;
1027 int ret = 1;
1028
1029 spin_lock_irq(&tree->lock);
1030 /*
1031 * this search will find all the extents that end after
1032 * our range starts.
1033 */
1034 node = tree_search(tree, start);
1035 if (!node) {
1036 goto out;
1037 }
1038
1039 while(1) {
1040 state = rb_entry(node, struct extent_state, rb_node);
1041 if (state->end >= start && (state->state & bits)) {
1042 *start_ret = state->start;
1043 *end_ret = state->end;
1044 ret = 0;
1045 break;
1046 }
1047 node = rb_next(node);
1048 if (!node)
1049 break;
1050 }
1051 out:
1052 spin_unlock_irq(&tree->lock);
1053 return ret;
1054 }
1055 EXPORT_SYMBOL(find_first_extent_bit);
1056
1057 /* find the first state struct with 'bits' set after 'start', and
1058 * return it. tree->lock must be held. NULL will returned if
1059 * nothing was found after 'start'
1060 */
1061 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1062 u64 start, int bits)
1063 {
1064 struct rb_node *node;
1065 struct extent_state *state;
1066
1067 /*
1068 * this search will find all the extents that end after
1069 * our range starts.
1070 */
1071 node = tree_search(tree, start);
1072 if (!node) {
1073 goto out;
1074 }
1075
1076 while(1) {
1077 state = rb_entry(node, struct extent_state, rb_node);
1078 if (state->end >= start && (state->state & bits)) {
1079 return state;
1080 }
1081 node = rb_next(node);
1082 if (!node)
1083 break;
1084 }
1085 out:
1086 return NULL;
1087 }
1088 EXPORT_SYMBOL(find_first_extent_bit_state);
1089
1090 /*
1091 * find a contiguous range of bytes in the file marked as delalloc, not
1092 * more than 'max_bytes'. start and end are used to return the range,
1093 *
1094 * 1 is returned if we find something, 0 if nothing was in the tree
1095 */
1096 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1097 u64 *start, u64 *end, u64 max_bytes)
1098 {
1099 struct rb_node *node;
1100 struct extent_state *state;
1101 u64 cur_start = *start;
1102 u64 found = 0;
1103 u64 total_bytes = 0;
1104
1105 spin_lock_irq(&tree->lock);
1106
1107 /*
1108 * this search will find all the extents that end after
1109 * our range starts.
1110 */
1111 node = tree_search(tree, cur_start);
1112 if (!node) {
1113 if (!found)
1114 *end = (u64)-1;
1115 goto out;
1116 }
1117
1118 while(1) {
1119 state = rb_entry(node, struct extent_state, rb_node);
1120 if (found && (state->start != cur_start ||
1121 (state->state & EXTENT_BOUNDARY))) {
1122 goto out;
1123 }
1124 if (!(state->state & EXTENT_DELALLOC)) {
1125 if (!found)
1126 *end = state->end;
1127 goto out;
1128 }
1129 if (!found)
1130 *start = state->start;
1131 found++;
1132 *end = state->end;
1133 cur_start = state->end + 1;
1134 node = rb_next(node);
1135 if (!node)
1136 break;
1137 total_bytes += state->end - state->start + 1;
1138 if (total_bytes >= max_bytes)
1139 break;
1140 }
1141 out:
1142 spin_unlock_irq(&tree->lock);
1143 return found;
1144 }
1145
1146 static noinline int __unlock_for_delalloc(struct inode *inode,
1147 struct page *locked_page,
1148 u64 start, u64 end)
1149 {
1150 int ret;
1151 struct page *pages[16];
1152 unsigned long index = start >> PAGE_CACHE_SHIFT;
1153 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1154 unsigned long nr_pages = end_index - index + 1;
1155 int i;
1156
1157 if (index == locked_page->index && end_index == index)
1158 return 0;
1159
1160 while(nr_pages > 0) {
1161 ret = find_get_pages_contig(inode->i_mapping, index,
1162 min_t(unsigned long, nr_pages,
1163 ARRAY_SIZE(pages)), pages);
1164 for (i = 0; i < ret; i++) {
1165 if (pages[i] != locked_page)
1166 unlock_page(pages[i]);
1167 page_cache_release(pages[i]);
1168 }
1169 nr_pages -= ret;
1170 index += ret;
1171 cond_resched();
1172 }
1173 return 0;
1174 }
1175
1176 static noinline int lock_delalloc_pages(struct inode *inode,
1177 struct page *locked_page,
1178 u64 delalloc_start,
1179 u64 delalloc_end)
1180 {
1181 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1182 unsigned long start_index = index;
1183 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1184 unsigned long pages_locked = 0;
1185 struct page *pages[16];
1186 unsigned long nrpages;
1187 int ret;
1188 int i;
1189
1190 /* the caller is responsible for locking the start index */
1191 if (index == locked_page->index && index == end_index)
1192 return 0;
1193
1194 /* skip the page at the start index */
1195 nrpages = end_index - index + 1;
1196 while(nrpages > 0) {
1197 ret = find_get_pages_contig(inode->i_mapping, index,
1198 min_t(unsigned long,
1199 nrpages, ARRAY_SIZE(pages)), pages);
1200 if (ret == 0) {
1201 ret = -EAGAIN;
1202 goto done;
1203 }
1204 /* now we have an array of pages, lock them all */
1205 for (i = 0; i < ret; i++) {
1206 /*
1207 * the caller is taking responsibility for
1208 * locked_page
1209 */
1210 if (pages[i] != locked_page) {
1211 lock_page(pages[i]);
1212 if (!PageDirty(pages[i]) ||
1213 pages[i]->mapping != inode->i_mapping) {
1214 ret = -EAGAIN;
1215 unlock_page(pages[i]);
1216 page_cache_release(pages[i]);
1217 goto done;
1218 }
1219 }
1220 page_cache_release(pages[i]);
1221 pages_locked++;
1222 }
1223 nrpages -= ret;
1224 index += ret;
1225 cond_resched();
1226 }
1227 ret = 0;
1228 done:
1229 if (ret && pages_locked) {
1230 __unlock_for_delalloc(inode, locked_page,
1231 delalloc_start,
1232 ((u64)(start_index + pages_locked - 1)) <<
1233 PAGE_CACHE_SHIFT);
1234 }
1235 return ret;
1236 }
1237
1238 /*
1239 * find a contiguous range of bytes in the file marked as delalloc, not
1240 * more than 'max_bytes'. start and end are used to return the range,
1241 *
1242 * 1 is returned if we find something, 0 if nothing was in the tree
1243 */
1244 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1245 struct extent_io_tree *tree,
1246 struct page *locked_page,
1247 u64 *start, u64 *end,
1248 u64 max_bytes)
1249 {
1250 u64 delalloc_start;
1251 u64 delalloc_end;
1252 u64 found;
1253 int ret;
1254 int loops = 0;
1255
1256 again:
1257 /* step one, find a bunch of delalloc bytes starting at start */
1258 delalloc_start = *start;
1259 delalloc_end = 0;
1260 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1261 max_bytes);
1262 if (!found || delalloc_end <= *start) {
1263 *start = delalloc_start;
1264 *end = delalloc_end;
1265 return found;
1266 }
1267
1268 /*
1269 * start comes from the offset of locked_page. We have to lock
1270 * pages in order, so we can't process delalloc bytes before
1271 * locked_page
1272 */
1273 if (delalloc_start < *start) {
1274 delalloc_start = *start;
1275 }
1276
1277 /*
1278 * make sure to limit the number of pages we try to lock down
1279 * if we're looping.
1280 */
1281 if (delalloc_end + 1 - delalloc_start > max_bytes && loops) {
1282 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1283 }
1284 /* step two, lock all the pages after the page that has start */
1285 ret = lock_delalloc_pages(inode, locked_page,
1286 delalloc_start, delalloc_end);
1287 if (ret == -EAGAIN) {
1288 /* some of the pages are gone, lets avoid looping by
1289 * shortening the size of the delalloc range we're searching
1290 */
1291 if (!loops) {
1292 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1293 max_bytes = PAGE_CACHE_SIZE - offset;
1294 loops = 1;
1295 goto again;
1296 } else {
1297 found = 0;
1298 goto out_failed;
1299 }
1300 }
1301 BUG_ON(ret);
1302
1303 /* step three, lock the state bits for the whole range */
1304 lock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS);
1305
1306 /* then test to make sure it is all still delalloc */
1307 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1308 EXTENT_DELALLOC, 1);
1309 if (!ret) {
1310 unlock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS);
1311 __unlock_for_delalloc(inode, locked_page,
1312 delalloc_start, delalloc_end);
1313 cond_resched();
1314 goto again;
1315 }
1316 *start = delalloc_start;
1317 *end = delalloc_end;
1318 out_failed:
1319 return found;
1320 }
1321
1322 int extent_clear_unlock_delalloc(struct inode *inode,
1323 struct extent_io_tree *tree,
1324 u64 start, u64 end, struct page *locked_page,
1325 int unlock_pages,
1326 int clear_unlock,
1327 int clear_delalloc, int clear_dirty,
1328 int set_writeback,
1329 int end_writeback)
1330 {
1331 int ret;
1332 struct page *pages[16];
1333 unsigned long index = start >> PAGE_CACHE_SHIFT;
1334 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1335 unsigned long nr_pages = end_index - index + 1;
1336 int i;
1337 int clear_bits = 0;
1338
1339 if (clear_unlock)
1340 clear_bits |= EXTENT_LOCKED;
1341 if (clear_dirty)
1342 clear_bits |= EXTENT_DIRTY;
1343
1344 if (clear_delalloc)
1345 clear_bits |= EXTENT_DELALLOC;
1346
1347 clear_extent_bit(tree, start, end, clear_bits, 1, 0, GFP_NOFS);
1348 if (!(unlock_pages || clear_dirty || set_writeback || end_writeback))
1349 return 0;
1350
1351 while(nr_pages > 0) {
1352 ret = find_get_pages_contig(inode->i_mapping, index,
1353 min_t(unsigned long,
1354 nr_pages, ARRAY_SIZE(pages)), pages);
1355 for (i = 0; i < ret; i++) {
1356 if (pages[i] == locked_page) {
1357 page_cache_release(pages[i]);
1358 continue;
1359 }
1360 if (clear_dirty)
1361 clear_page_dirty_for_io(pages[i]);
1362 if (set_writeback)
1363 set_page_writeback(pages[i]);
1364 if (end_writeback)
1365 end_page_writeback(pages[i]);
1366 if (unlock_pages)
1367 unlock_page(pages[i]);
1368 page_cache_release(pages[i]);
1369 }
1370 nr_pages -= ret;
1371 index += ret;
1372 cond_resched();
1373 }
1374 return 0;
1375 }
1376 EXPORT_SYMBOL(extent_clear_unlock_delalloc);
1377
1378 /*
1379 * count the number of bytes in the tree that have a given bit(s)
1380 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1381 * cached. The total number found is returned.
1382 */
1383 u64 count_range_bits(struct extent_io_tree *tree,
1384 u64 *start, u64 search_end, u64 max_bytes,
1385 unsigned long bits)
1386 {
1387 struct rb_node *node;
1388 struct extent_state *state;
1389 u64 cur_start = *start;
1390 u64 total_bytes = 0;
1391 int found = 0;
1392
1393 if (search_end <= cur_start) {
1394 printk("search_end %Lu start %Lu\n", search_end, cur_start);
1395 WARN_ON(1);
1396 return 0;
1397 }
1398
1399 spin_lock_irq(&tree->lock);
1400 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1401 total_bytes = tree->dirty_bytes;
1402 goto out;
1403 }
1404 /*
1405 * this search will find all the extents that end after
1406 * our range starts.
1407 */
1408 node = tree_search(tree, cur_start);
1409 if (!node) {
1410 goto out;
1411 }
1412
1413 while(1) {
1414 state = rb_entry(node, struct extent_state, rb_node);
1415 if (state->start > search_end)
1416 break;
1417 if (state->end >= cur_start && (state->state & bits)) {
1418 total_bytes += min(search_end, state->end) + 1 -
1419 max(cur_start, state->start);
1420 if (total_bytes >= max_bytes)
1421 break;
1422 if (!found) {
1423 *start = state->start;
1424 found = 1;
1425 }
1426 }
1427 node = rb_next(node);
1428 if (!node)
1429 break;
1430 }
1431 out:
1432 spin_unlock_irq(&tree->lock);
1433 return total_bytes;
1434 }
1435 /*
1436 * helper function to lock both pages and extents in the tree.
1437 * pages must be locked first.
1438 */
1439 int lock_range(struct extent_io_tree *tree, u64 start, u64 end)
1440 {
1441 unsigned long index = start >> PAGE_CACHE_SHIFT;
1442 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1443 struct page *page;
1444 int err;
1445
1446 while (index <= end_index) {
1447 page = grab_cache_page(tree->mapping, index);
1448 if (!page) {
1449 err = -ENOMEM;
1450 goto failed;
1451 }
1452 if (IS_ERR(page)) {
1453 err = PTR_ERR(page);
1454 goto failed;
1455 }
1456 index++;
1457 }
1458 lock_extent(tree, start, end, GFP_NOFS);
1459 return 0;
1460
1461 failed:
1462 /*
1463 * we failed above in getting the page at 'index', so we undo here
1464 * up to but not including the page at 'index'
1465 */
1466 end_index = index;
1467 index = start >> PAGE_CACHE_SHIFT;
1468 while (index < end_index) {
1469 page = find_get_page(tree->mapping, index);
1470 unlock_page(page);
1471 page_cache_release(page);
1472 index++;
1473 }
1474 return err;
1475 }
1476 EXPORT_SYMBOL(lock_range);
1477
1478 /*
1479 * helper function to unlock both pages and extents in the tree.
1480 */
1481 int unlock_range(struct extent_io_tree *tree, u64 start, u64 end)
1482 {
1483 unsigned long index = start >> PAGE_CACHE_SHIFT;
1484 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1485 struct page *page;
1486
1487 while (index <= end_index) {
1488 page = find_get_page(tree->mapping, index);
1489 unlock_page(page);
1490 page_cache_release(page);
1491 index++;
1492 }
1493 unlock_extent(tree, start, end, GFP_NOFS);
1494 return 0;
1495 }
1496 EXPORT_SYMBOL(unlock_range);
1497
1498 /*
1499 * set the private field for a given byte offset in the tree. If there isn't
1500 * an extent_state there already, this does nothing.
1501 */
1502 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1503 {
1504 struct rb_node *node;
1505 struct extent_state *state;
1506 int ret = 0;
1507
1508 spin_lock_irq(&tree->lock);
1509 /*
1510 * this search will find all the extents that end after
1511 * our range starts.
1512 */
1513 node = tree_search(tree, start);
1514 if (!node) {
1515 ret = -ENOENT;
1516 goto out;
1517 }
1518 state = rb_entry(node, struct extent_state, rb_node);
1519 if (state->start != start) {
1520 ret = -ENOENT;
1521 goto out;
1522 }
1523 state->private = private;
1524 out:
1525 spin_unlock_irq(&tree->lock);
1526 return ret;
1527 }
1528
1529 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1530 {
1531 struct rb_node *node;
1532 struct extent_state *state;
1533 int ret = 0;
1534
1535 spin_lock_irq(&tree->lock);
1536 /*
1537 * this search will find all the extents that end after
1538 * our range starts.
1539 */
1540 node = tree_search(tree, start);
1541 if (!node) {
1542 ret = -ENOENT;
1543 goto out;
1544 }
1545 state = rb_entry(node, struct extent_state, rb_node);
1546 if (state->start != start) {
1547 ret = -ENOENT;
1548 goto out;
1549 }
1550 *private = state->private;
1551 out:
1552 spin_unlock_irq(&tree->lock);
1553 return ret;
1554 }
1555
1556 /*
1557 * searches a range in the state tree for a given mask.
1558 * If 'filled' == 1, this returns 1 only if every extent in the tree
1559 * has the bits set. Otherwise, 1 is returned if any bit in the
1560 * range is found set.
1561 */
1562 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1563 int bits, int filled)
1564 {
1565 struct extent_state *state = NULL;
1566 struct rb_node *node;
1567 int bitset = 0;
1568 unsigned long flags;
1569
1570 spin_lock_irqsave(&tree->lock, flags);
1571 node = tree_search(tree, start);
1572 while (node && start <= end) {
1573 state = rb_entry(node, struct extent_state, rb_node);
1574
1575 if (filled && state->start > start) {
1576 bitset = 0;
1577 break;
1578 }
1579
1580 if (state->start > end)
1581 break;
1582
1583 if (state->state & bits) {
1584 bitset = 1;
1585 if (!filled)
1586 break;
1587 } else if (filled) {
1588 bitset = 0;
1589 break;
1590 }
1591 start = state->end + 1;
1592 if (start > end)
1593 break;
1594 node = rb_next(node);
1595 if (!node) {
1596 if (filled)
1597 bitset = 0;
1598 break;
1599 }
1600 }
1601 spin_unlock_irqrestore(&tree->lock, flags);
1602 return bitset;
1603 }
1604 EXPORT_SYMBOL(test_range_bit);
1605
1606 /*
1607 * helper function to set a given page up to date if all the
1608 * extents in the tree for that page are up to date
1609 */
1610 static int check_page_uptodate(struct extent_io_tree *tree,
1611 struct page *page)
1612 {
1613 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1614 u64 end = start + PAGE_CACHE_SIZE - 1;
1615 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1616 SetPageUptodate(page);
1617 return 0;
1618 }
1619
1620 /*
1621 * helper function to unlock a page if all the extents in the tree
1622 * for that page are unlocked
1623 */
1624 static int check_page_locked(struct extent_io_tree *tree,
1625 struct page *page)
1626 {
1627 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1628 u64 end = start + PAGE_CACHE_SIZE - 1;
1629 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1630 unlock_page(page);
1631 return 0;
1632 }
1633
1634 /*
1635 * helper function to end page writeback if all the extents
1636 * in the tree for that page are done with writeback
1637 */
1638 static int check_page_writeback(struct extent_io_tree *tree,
1639 struct page *page)
1640 {
1641 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1642 u64 end = start + PAGE_CACHE_SIZE - 1;
1643 if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1644 end_page_writeback(page);
1645 return 0;
1646 }
1647
1648 /* lots and lots of room for performance fixes in the end_bio funcs */
1649
1650 /*
1651 * after a writepage IO is done, we need to:
1652 * clear the uptodate bits on error
1653 * clear the writeback bits in the extent tree for this IO
1654 * end_page_writeback if the page has no more pending IO
1655 *
1656 * Scheduling is not allowed, so the extent state tree is expected
1657 * to have one and only one object corresponding to this IO.
1658 */
1659 static void end_bio_extent_writepage(struct bio *bio, int err)
1660 {
1661 int uptodate = err == 0;
1662 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1663 struct extent_io_tree *tree;
1664 u64 start;
1665 u64 end;
1666 int whole_page;
1667 int ret;
1668
1669 do {
1670 struct page *page = bvec->bv_page;
1671 tree = &BTRFS_I(page->mapping->host)->io_tree;
1672
1673 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1674 bvec->bv_offset;
1675 end = start + bvec->bv_len - 1;
1676
1677 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1678 whole_page = 1;
1679 else
1680 whole_page = 0;
1681
1682 if (--bvec >= bio->bi_io_vec)
1683 prefetchw(&bvec->bv_page->flags);
1684 if (tree->ops && tree->ops->writepage_end_io_hook) {
1685 ret = tree->ops->writepage_end_io_hook(page, start,
1686 end, NULL, uptodate);
1687 if (ret)
1688 uptodate = 0;
1689 }
1690
1691 if (!uptodate && tree->ops &&
1692 tree->ops->writepage_io_failed_hook) {
1693 ret = tree->ops->writepage_io_failed_hook(bio, page,
1694 start, end, NULL);
1695 if (ret == 0) {
1696 uptodate = (err == 0);
1697 continue;
1698 }
1699 }
1700
1701 if (!uptodate) {
1702 clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1703 ClearPageUptodate(page);
1704 SetPageError(page);
1705 }
1706
1707 clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1708
1709 if (whole_page)
1710 end_page_writeback(page);
1711 else
1712 check_page_writeback(tree, page);
1713 } while (bvec >= bio->bi_io_vec);
1714
1715 bio_put(bio);
1716 }
1717
1718 /*
1719 * after a readpage IO is done, we need to:
1720 * clear the uptodate bits on error
1721 * set the uptodate bits if things worked
1722 * set the page up to date if all extents in the tree are uptodate
1723 * clear the lock bit in the extent tree
1724 * unlock the page if there are no other extents locked for it
1725 *
1726 * Scheduling is not allowed, so the extent state tree is expected
1727 * to have one and only one object corresponding to this IO.
1728 */
1729 static void end_bio_extent_readpage(struct bio *bio, int err)
1730 {
1731 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1732 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1733 struct extent_io_tree *tree;
1734 u64 start;
1735 u64 end;
1736 int whole_page;
1737 int ret;
1738
1739 do {
1740 struct page *page = bvec->bv_page;
1741 tree = &BTRFS_I(page->mapping->host)->io_tree;
1742
1743 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1744 bvec->bv_offset;
1745 end = start + bvec->bv_len - 1;
1746
1747 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1748 whole_page = 1;
1749 else
1750 whole_page = 0;
1751
1752 if (--bvec >= bio->bi_io_vec)
1753 prefetchw(&bvec->bv_page->flags);
1754
1755 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1756 ret = tree->ops->readpage_end_io_hook(page, start, end,
1757 NULL);
1758 if (ret)
1759 uptodate = 0;
1760 }
1761 if (!uptodate && tree->ops &&
1762 tree->ops->readpage_io_failed_hook) {
1763 ret = tree->ops->readpage_io_failed_hook(bio, page,
1764 start, end, NULL);
1765 if (ret == 0) {
1766 uptodate =
1767 test_bit(BIO_UPTODATE, &bio->bi_flags);
1768 continue;
1769 }
1770 }
1771
1772 if (uptodate) {
1773 set_extent_uptodate(tree, start, end,
1774 GFP_ATOMIC);
1775 }
1776 unlock_extent(tree, start, end, GFP_ATOMIC);
1777
1778 if (whole_page) {
1779 if (uptodate) {
1780 SetPageUptodate(page);
1781 } else {
1782 ClearPageUptodate(page);
1783 SetPageError(page);
1784 }
1785 unlock_page(page);
1786 } else {
1787 if (uptodate) {
1788 check_page_uptodate(tree, page);
1789 } else {
1790 ClearPageUptodate(page);
1791 SetPageError(page);
1792 }
1793 check_page_locked(tree, page);
1794 }
1795 } while (bvec >= bio->bi_io_vec);
1796
1797 bio_put(bio);
1798 }
1799
1800 /*
1801 * IO done from prepare_write is pretty simple, we just unlock
1802 * the structs in the extent tree when done, and set the uptodate bits
1803 * as appropriate.
1804 */
1805 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1806 {
1807 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1808 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1809 struct extent_io_tree *tree;
1810 u64 start;
1811 u64 end;
1812
1813 do {
1814 struct page *page = bvec->bv_page;
1815 tree = &BTRFS_I(page->mapping->host)->io_tree;
1816
1817 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1818 bvec->bv_offset;
1819 end = start + bvec->bv_len - 1;
1820
1821 if (--bvec >= bio->bi_io_vec)
1822 prefetchw(&bvec->bv_page->flags);
1823
1824 if (uptodate) {
1825 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1826 } else {
1827 ClearPageUptodate(page);
1828 SetPageError(page);
1829 }
1830
1831 unlock_extent(tree, start, end, GFP_ATOMIC);
1832
1833 } while (bvec >= bio->bi_io_vec);
1834
1835 bio_put(bio);
1836 }
1837
1838 static struct bio *
1839 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1840 gfp_t gfp_flags)
1841 {
1842 struct bio *bio;
1843
1844 bio = bio_alloc(gfp_flags, nr_vecs);
1845
1846 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1847 while (!bio && (nr_vecs /= 2))
1848 bio = bio_alloc(gfp_flags, nr_vecs);
1849 }
1850
1851 if (bio) {
1852 bio->bi_size = 0;
1853 bio->bi_bdev = bdev;
1854 bio->bi_sector = first_sector;
1855 }
1856 return bio;
1857 }
1858
1859 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1860 unsigned long bio_flags)
1861 {
1862 int ret = 0;
1863 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1864 struct page *page = bvec->bv_page;
1865 struct extent_io_tree *tree = bio->bi_private;
1866 u64 start;
1867 u64 end;
1868
1869 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1870 end = start + bvec->bv_len - 1;
1871
1872 bio->bi_private = NULL;
1873
1874 bio_get(bio);
1875
1876 if (tree->ops && tree->ops->submit_bio_hook)
1877 tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1878 mirror_num, bio_flags);
1879 else
1880 submit_bio(rw, bio);
1881 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1882 ret = -EOPNOTSUPP;
1883 bio_put(bio);
1884 return ret;
1885 }
1886
1887 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1888 struct page *page, sector_t sector,
1889 size_t size, unsigned long offset,
1890 struct block_device *bdev,
1891 struct bio **bio_ret,
1892 unsigned long max_pages,
1893 bio_end_io_t end_io_func,
1894 int mirror_num,
1895 unsigned long prev_bio_flags,
1896 unsigned long bio_flags)
1897 {
1898 int ret = 0;
1899 struct bio *bio;
1900 int nr;
1901 int contig = 0;
1902 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1903 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1904 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1905
1906 if (bio_ret && *bio_ret) {
1907 bio = *bio_ret;
1908 if (old_compressed)
1909 contig = bio->bi_sector == sector;
1910 else
1911 contig = bio->bi_sector + (bio->bi_size >> 9) ==
1912 sector;
1913
1914 if (prev_bio_flags != bio_flags || !contig ||
1915 (tree->ops && tree->ops->merge_bio_hook &&
1916 tree->ops->merge_bio_hook(page, offset, page_size, bio,
1917 bio_flags)) ||
1918 bio_add_page(bio, page, page_size, offset) < page_size) {
1919 ret = submit_one_bio(rw, bio, mirror_num,
1920 prev_bio_flags);
1921 bio = NULL;
1922 } else {
1923 return 0;
1924 }
1925 }
1926 if (this_compressed)
1927 nr = BIO_MAX_PAGES;
1928 else
1929 nr = bio_get_nr_vecs(bdev);
1930
1931 bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1932 if (!bio) {
1933 printk("failed to allocate bio nr %d\n", nr);
1934 }
1935
1936 bio_add_page(bio, page, page_size, offset);
1937 bio->bi_end_io = end_io_func;
1938 bio->bi_private = tree;
1939
1940 if (bio_ret) {
1941 *bio_ret = bio;
1942 } else {
1943 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1944 }
1945
1946 return ret;
1947 }
1948
1949 void set_page_extent_mapped(struct page *page)
1950 {
1951 if (!PagePrivate(page)) {
1952 SetPagePrivate(page);
1953 page_cache_get(page);
1954 set_page_private(page, EXTENT_PAGE_PRIVATE);
1955 }
1956 }
1957 EXPORT_SYMBOL(set_page_extent_mapped);
1958
1959 void set_page_extent_head(struct page *page, unsigned long len)
1960 {
1961 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1962 }
1963
1964 /*
1965 * basic readpage implementation. Locked extent state structs are inserted
1966 * into the tree that are removed when the IO is done (by the end_io
1967 * handlers)
1968 */
1969 static int __extent_read_full_page(struct extent_io_tree *tree,
1970 struct page *page,
1971 get_extent_t *get_extent,
1972 struct bio **bio, int mirror_num,
1973 unsigned long *bio_flags)
1974 {
1975 struct inode *inode = page->mapping->host;
1976 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1977 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1978 u64 end;
1979 u64 cur = start;
1980 u64 extent_offset;
1981 u64 last_byte = i_size_read(inode);
1982 u64 block_start;
1983 u64 cur_end;
1984 sector_t sector;
1985 struct extent_map *em;
1986 struct block_device *bdev;
1987 int ret;
1988 int nr = 0;
1989 size_t page_offset = 0;
1990 size_t iosize;
1991 size_t disk_io_size;
1992 size_t blocksize = inode->i_sb->s_blocksize;
1993 unsigned long this_bio_flag = 0;
1994
1995 set_page_extent_mapped(page);
1996
1997 end = page_end;
1998 lock_extent(tree, start, end, GFP_NOFS);
1999
2000 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2001 char *userpage;
2002 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2003
2004 if (zero_offset) {
2005 iosize = PAGE_CACHE_SIZE - zero_offset;
2006 userpage = kmap_atomic(page, KM_USER0);
2007 memset(userpage + zero_offset, 0, iosize);
2008 flush_dcache_page(page);
2009 kunmap_atomic(userpage, KM_USER0);
2010 }
2011 }
2012 while (cur <= end) {
2013 if (cur >= last_byte) {
2014 char *userpage;
2015 iosize = PAGE_CACHE_SIZE - page_offset;
2016 userpage = kmap_atomic(page, KM_USER0);
2017 memset(userpage + page_offset, 0, iosize);
2018 flush_dcache_page(page);
2019 kunmap_atomic(userpage, KM_USER0);
2020 set_extent_uptodate(tree, cur, cur + iosize - 1,
2021 GFP_NOFS);
2022 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2023 break;
2024 }
2025 em = get_extent(inode, page, page_offset, cur,
2026 end - cur + 1, 0);
2027 if (IS_ERR(em) || !em) {
2028 SetPageError(page);
2029 unlock_extent(tree, cur, end, GFP_NOFS);
2030 break;
2031 }
2032 extent_offset = cur - em->start;
2033 if (extent_map_end(em) <= cur) {
2034 printk("bad mapping em [%Lu %Lu] cur %Lu\n", em->start, extent_map_end(em), cur);
2035 }
2036 BUG_ON(extent_map_end(em) <= cur);
2037 if (end < cur) {
2038 printk("2bad mapping end %Lu cur %Lu\n", end, cur);
2039 }
2040 BUG_ON(end < cur);
2041
2042 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2043 this_bio_flag = EXTENT_BIO_COMPRESSED;
2044
2045 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2046 cur_end = min(extent_map_end(em) - 1, end);
2047 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2048 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2049 disk_io_size = em->block_len;
2050 sector = em->block_start >> 9;
2051 } else {
2052 sector = (em->block_start + extent_offset) >> 9;
2053 disk_io_size = iosize;
2054 }
2055 bdev = em->bdev;
2056 block_start = em->block_start;
2057 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2058 block_start = EXTENT_MAP_HOLE;
2059 free_extent_map(em);
2060 em = NULL;
2061
2062 /* we've found a hole, just zero and go on */
2063 if (block_start == EXTENT_MAP_HOLE) {
2064 char *userpage;
2065 userpage = kmap_atomic(page, KM_USER0);
2066 memset(userpage + page_offset, 0, iosize);
2067 flush_dcache_page(page);
2068 kunmap_atomic(userpage, KM_USER0);
2069
2070 set_extent_uptodate(tree, cur, cur + iosize - 1,
2071 GFP_NOFS);
2072 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2073 cur = cur + iosize;
2074 page_offset += iosize;
2075 continue;
2076 }
2077 /* the get_extent function already copied into the page */
2078 if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
2079 check_page_uptodate(tree, page);
2080 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2081 cur = cur + iosize;
2082 page_offset += iosize;
2083 continue;
2084 }
2085 /* we have an inline extent but it didn't get marked up
2086 * to date. Error out
2087 */
2088 if (block_start == EXTENT_MAP_INLINE) {
2089 SetPageError(page);
2090 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2091 cur = cur + iosize;
2092 page_offset += iosize;
2093 continue;
2094 }
2095
2096 ret = 0;
2097 if (tree->ops && tree->ops->readpage_io_hook) {
2098 ret = tree->ops->readpage_io_hook(page, cur,
2099 cur + iosize - 1);
2100 }
2101 if (!ret) {
2102 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2103 pnr -= page->index;
2104 ret = submit_extent_page(READ, tree, page,
2105 sector, disk_io_size, page_offset,
2106 bdev, bio, pnr,
2107 end_bio_extent_readpage, mirror_num,
2108 *bio_flags,
2109 this_bio_flag);
2110 nr++;
2111 *bio_flags = this_bio_flag;
2112 }
2113 if (ret)
2114 SetPageError(page);
2115 cur = cur + iosize;
2116 page_offset += iosize;
2117 }
2118 if (!nr) {
2119 if (!PageError(page))
2120 SetPageUptodate(page);
2121 unlock_page(page);
2122 }
2123 return 0;
2124 }
2125
2126 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2127 get_extent_t *get_extent)
2128 {
2129 struct bio *bio = NULL;
2130 unsigned long bio_flags = 0;
2131 int ret;
2132
2133 ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2134 &bio_flags);
2135 if (bio)
2136 submit_one_bio(READ, bio, 0, bio_flags);
2137 return ret;
2138 }
2139 EXPORT_SYMBOL(extent_read_full_page);
2140
2141 /*
2142 * the writepage semantics are similar to regular writepage. extent
2143 * records are inserted to lock ranges in the tree, and as dirty areas
2144 * are found, they are marked writeback. Then the lock bits are removed
2145 * and the end_io handler clears the writeback ranges
2146 */
2147 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2148 void *data)
2149 {
2150 struct inode *inode = page->mapping->host;
2151 struct extent_page_data *epd = data;
2152 struct extent_io_tree *tree = epd->tree;
2153 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2154 u64 delalloc_start;
2155 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2156 u64 end;
2157 u64 cur = start;
2158 u64 extent_offset;
2159 u64 last_byte = i_size_read(inode);
2160 u64 block_start;
2161 u64 iosize;
2162 u64 unlock_start;
2163 sector_t sector;
2164 struct extent_map *em;
2165 struct block_device *bdev;
2166 int ret;
2167 int nr = 0;
2168 size_t pg_offset = 0;
2169 size_t blocksize;
2170 loff_t i_size = i_size_read(inode);
2171 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2172 u64 nr_delalloc;
2173 u64 delalloc_end;
2174 int page_started;
2175 int compressed;
2176 unsigned long nr_written = 0;
2177
2178 WARN_ON(!PageLocked(page));
2179 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2180 if (page->index > end_index ||
2181 (page->index == end_index && !pg_offset)) {
2182 page->mapping->a_ops->invalidatepage(page, 0);
2183 unlock_page(page);
2184 return 0;
2185 }
2186
2187 if (page->index == end_index) {
2188 char *userpage;
2189
2190 userpage = kmap_atomic(page, KM_USER0);
2191 memset(userpage + pg_offset, 0,
2192 PAGE_CACHE_SIZE - pg_offset);
2193 kunmap_atomic(userpage, KM_USER0);
2194 flush_dcache_page(page);
2195 }
2196 pg_offset = 0;
2197
2198 set_page_extent_mapped(page);
2199
2200 delalloc_start = start;
2201 delalloc_end = 0;
2202 page_started = 0;
2203 if (!epd->extent_locked) {
2204 while(delalloc_end < page_end) {
2205 nr_delalloc = find_lock_delalloc_range(inode, tree,
2206 page,
2207 &delalloc_start,
2208 &delalloc_end,
2209 128 * 1024 * 1024);
2210 if (nr_delalloc == 0) {
2211 delalloc_start = delalloc_end + 1;
2212 continue;
2213 }
2214 tree->ops->fill_delalloc(inode, page, delalloc_start,
2215 delalloc_end, &page_started,
2216 &nr_written);
2217 delalloc_start = delalloc_end + 1;
2218 }
2219
2220 /* did the fill delalloc function already unlock and start
2221 * the IO?
2222 */
2223 if (page_started) {
2224 ret = 0;
2225 goto update_nr_written;
2226 }
2227 }
2228 lock_extent(tree, start, page_end, GFP_NOFS);
2229
2230 unlock_start = start;
2231
2232 if (tree->ops && tree->ops->writepage_start_hook) {
2233 ret = tree->ops->writepage_start_hook(page, start,
2234 page_end);
2235 if (ret == -EAGAIN) {
2236 unlock_extent(tree, start, page_end, GFP_NOFS);
2237 redirty_page_for_writepage(wbc, page);
2238 unlock_page(page);
2239 ret = 0;
2240 goto update_nr_written;
2241 }
2242 }
2243
2244 nr_written++;
2245
2246 end = page_end;
2247 if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
2248 printk("found delalloc bits after lock_extent\n");
2249 }
2250
2251 if (last_byte <= start) {
2252 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
2253 unlock_extent(tree, start, page_end, GFP_NOFS);
2254 if (tree->ops && tree->ops->writepage_end_io_hook)
2255 tree->ops->writepage_end_io_hook(page, start,
2256 page_end, NULL, 1);
2257 unlock_start = page_end + 1;
2258 goto done;
2259 }
2260
2261 set_extent_uptodate(tree, start, page_end, GFP_NOFS);
2262 blocksize = inode->i_sb->s_blocksize;
2263
2264 while (cur <= end) {
2265 if (cur >= last_byte) {
2266 clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
2267 unlock_extent(tree, unlock_start, page_end, GFP_NOFS);
2268 if (tree->ops && tree->ops->writepage_end_io_hook)
2269 tree->ops->writepage_end_io_hook(page, cur,
2270 page_end, NULL, 1);
2271 unlock_start = page_end + 1;
2272 break;
2273 }
2274 em = epd->get_extent(inode, page, pg_offset, cur,
2275 end - cur + 1, 1);
2276 if (IS_ERR(em) || !em) {
2277 SetPageError(page);
2278 break;
2279 }
2280
2281 extent_offset = cur - em->start;
2282 BUG_ON(extent_map_end(em) <= cur);
2283 BUG_ON(end < cur);
2284 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2285 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2286 sector = (em->block_start + extent_offset) >> 9;
2287 bdev = em->bdev;
2288 block_start = em->block_start;
2289 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2290 free_extent_map(em);
2291 em = NULL;
2292
2293 /*
2294 * compressed and inline extents are written through other
2295 * paths in the FS
2296 */
2297 if (compressed || block_start == EXTENT_MAP_HOLE ||
2298 block_start == EXTENT_MAP_INLINE) {
2299 clear_extent_dirty(tree, cur,
2300 cur + iosize - 1, GFP_NOFS);
2301
2302 unlock_extent(tree, unlock_start, cur + iosize -1,
2303 GFP_NOFS);
2304
2305 /*
2306 * end_io notification does not happen here for
2307 * compressed extents
2308 */
2309 if (!compressed && tree->ops &&
2310 tree->ops->writepage_end_io_hook)
2311 tree->ops->writepage_end_io_hook(page, cur,
2312 cur + iosize - 1,
2313 NULL, 1);
2314 else if (compressed) {
2315 /* we don't want to end_page_writeback on
2316 * a compressed extent. this happens
2317 * elsewhere
2318 */
2319 nr++;
2320 }
2321
2322 cur += iosize;
2323 pg_offset += iosize;
2324 unlock_start = cur;
2325 continue;
2326 }
2327 /* leave this out until we have a page_mkwrite call */
2328 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2329 EXTENT_DIRTY, 0)) {
2330 cur = cur + iosize;
2331 pg_offset += iosize;
2332 continue;
2333 }
2334
2335 clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
2336 if (tree->ops && tree->ops->writepage_io_hook) {
2337 ret = tree->ops->writepage_io_hook(page, cur,
2338 cur + iosize - 1);
2339 } else {
2340 ret = 0;
2341 }
2342 if (ret) {
2343 SetPageError(page);
2344 } else {
2345 unsigned long max_nr = end_index + 1;
2346
2347 set_range_writeback(tree, cur, cur + iosize - 1);
2348 if (!PageWriteback(page)) {
2349 printk("warning page %lu not writeback, "
2350 "cur %llu end %llu\n", page->index,
2351 (unsigned long long)cur,
2352 (unsigned long long)end);
2353 }
2354
2355 ret = submit_extent_page(WRITE, tree, page, sector,
2356 iosize, pg_offset, bdev,
2357 &epd->bio, max_nr,
2358 end_bio_extent_writepage,
2359 0, 0, 0);
2360 if (ret)
2361 SetPageError(page);
2362 }
2363 cur = cur + iosize;
2364 pg_offset += iosize;
2365 nr++;
2366 }
2367 done:
2368 if (nr == 0) {
2369 /* make sure the mapping tag for page dirty gets cleared */
2370 set_page_writeback(page);
2371 end_page_writeback(page);
2372 }
2373 if (unlock_start <= page_end)
2374 unlock_extent(tree, unlock_start, page_end, GFP_NOFS);
2375 unlock_page(page);
2376
2377 update_nr_written:
2378 wbc->nr_to_write -= nr_written;
2379 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2380 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2381 page->mapping->writeback_index = page->index + nr_written;
2382 return 0;
2383 }
2384
2385 /**
2386 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2387 * @mapping: address space structure to write
2388 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2389 * @writepage: function called for each page
2390 * @data: data passed to writepage function
2391 *
2392 * If a page is already under I/O, write_cache_pages() skips it, even
2393 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2394 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2395 * and msync() need to guarantee that all the data which was dirty at the time
2396 * the call was made get new I/O started against them. If wbc->sync_mode is
2397 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2398 * existing IO to complete.
2399 */
2400 int extent_write_cache_pages(struct extent_io_tree *tree,
2401 struct address_space *mapping,
2402 struct writeback_control *wbc,
2403 writepage_t writepage, void *data,
2404 void (*flush_fn)(void *))
2405 {
2406 struct backing_dev_info *bdi = mapping->backing_dev_info;
2407 int ret = 0;
2408 int done = 0;
2409 struct pagevec pvec;
2410 int nr_pages;
2411 pgoff_t index;
2412 pgoff_t end; /* Inclusive */
2413 int scanned = 0;
2414 int range_whole = 0;
2415
2416 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2417 wbc->encountered_congestion = 1;
2418 return 0;
2419 }
2420
2421 pagevec_init(&pvec, 0);
2422 if (wbc->range_cyclic) {
2423 index = mapping->writeback_index; /* Start from prev offset */
2424 end = -1;
2425 } else {
2426 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2427 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2428 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2429 range_whole = 1;
2430 scanned = 1;
2431 }
2432 retry:
2433 while (!done && (index <= end) &&
2434 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2435 PAGECACHE_TAG_DIRTY,
2436 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2437 unsigned i;
2438
2439 scanned = 1;
2440 for (i = 0; i < nr_pages; i++) {
2441 struct page *page = pvec.pages[i];
2442
2443 /*
2444 * At this point we hold neither mapping->tree_lock nor
2445 * lock on the page itself: the page may be truncated or
2446 * invalidated (changing page->mapping to NULL), or even
2447 * swizzled back from swapper_space to tmpfs file
2448 * mapping
2449 */
2450 if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2451 tree->ops->write_cache_pages_lock_hook(page);
2452 else
2453 lock_page(page);
2454
2455 if (unlikely(page->mapping != mapping)) {
2456 unlock_page(page);
2457 continue;
2458 }
2459
2460 if (!wbc->range_cyclic && page->index > end) {
2461 done = 1;
2462 unlock_page(page);
2463 continue;
2464 }
2465
2466 if (wbc->sync_mode != WB_SYNC_NONE) {
2467 if (PageWriteback(page))
2468 flush_fn(data);
2469 wait_on_page_writeback(page);
2470 }
2471
2472 if (PageWriteback(page) ||
2473 !clear_page_dirty_for_io(page)) {
2474 unlock_page(page);
2475 continue;
2476 }
2477
2478 ret = (*writepage)(page, wbc, data);
2479
2480 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2481 unlock_page(page);
2482 ret = 0;
2483 }
2484 if (ret || wbc->nr_to_write <= 0)
2485 done = 1;
2486 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2487 wbc->encountered_congestion = 1;
2488 done = 1;
2489 }
2490 }
2491 pagevec_release(&pvec);
2492 cond_resched();
2493 }
2494 if (!scanned && !done) {
2495 /*
2496 * We hit the last page and there is more work to be done: wrap
2497 * back to the start of the file
2498 */
2499 scanned = 1;
2500 index = 0;
2501 goto retry;
2502 }
2503 return ret;
2504 }
2505 EXPORT_SYMBOL(extent_write_cache_pages);
2506
2507 static noinline void flush_write_bio(void *data)
2508 {
2509 struct extent_page_data *epd = data;
2510 if (epd->bio) {
2511 submit_one_bio(WRITE, epd->bio, 0, 0);
2512 epd->bio = NULL;
2513 }
2514 }
2515
2516 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2517 get_extent_t *get_extent,
2518 struct writeback_control *wbc)
2519 {
2520 int ret;
2521 struct address_space *mapping = page->mapping;
2522 struct extent_page_data epd = {
2523 .bio = NULL,
2524 .tree = tree,
2525 .get_extent = get_extent,
2526 .extent_locked = 0,
2527 };
2528 struct writeback_control wbc_writepages = {
2529 .bdi = wbc->bdi,
2530 .sync_mode = WB_SYNC_NONE,
2531 .older_than_this = NULL,
2532 .nr_to_write = 64,
2533 .range_start = page_offset(page) + PAGE_CACHE_SIZE,
2534 .range_end = (loff_t)-1,
2535 };
2536
2537
2538 ret = __extent_writepage(page, wbc, &epd);
2539
2540 extent_write_cache_pages(tree, mapping, &wbc_writepages,
2541 __extent_writepage, &epd, flush_write_bio);
2542 if (epd.bio) {
2543 submit_one_bio(WRITE, epd.bio, 0, 0);
2544 }
2545 return ret;
2546 }
2547 EXPORT_SYMBOL(extent_write_full_page);
2548
2549 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2550 u64 start, u64 end, get_extent_t *get_extent,
2551 int mode)
2552 {
2553 int ret = 0;
2554 struct address_space *mapping = inode->i_mapping;
2555 struct page *page;
2556 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2557 PAGE_CACHE_SHIFT;
2558
2559 struct extent_page_data epd = {
2560 .bio = NULL,
2561 .tree = tree,
2562 .get_extent = get_extent,
2563 .extent_locked = 1,
2564 };
2565 struct writeback_control wbc_writepages = {
2566 .bdi = inode->i_mapping->backing_dev_info,
2567 .sync_mode = mode,
2568 .older_than_this = NULL,
2569 .nr_to_write = nr_pages * 2,
2570 .range_start = start,
2571 .range_end = end + 1,
2572 };
2573
2574 while(start <= end) {
2575 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2576 if (clear_page_dirty_for_io(page))
2577 ret = __extent_writepage(page, &wbc_writepages, &epd);
2578 else {
2579 if (tree->ops && tree->ops->writepage_end_io_hook)
2580 tree->ops->writepage_end_io_hook(page, start,
2581 start + PAGE_CACHE_SIZE - 1,
2582 NULL, 1);
2583 unlock_page(page);
2584 }
2585 page_cache_release(page);
2586 start += PAGE_CACHE_SIZE;
2587 }
2588
2589 if (epd.bio)
2590 submit_one_bio(WRITE, epd.bio, 0, 0);
2591 return ret;
2592 }
2593 EXPORT_SYMBOL(extent_write_locked_range);
2594
2595
2596 int extent_writepages(struct extent_io_tree *tree,
2597 struct address_space *mapping,
2598 get_extent_t *get_extent,
2599 struct writeback_control *wbc)
2600 {
2601 int ret = 0;
2602 struct extent_page_data epd = {
2603 .bio = NULL,
2604 .tree = tree,
2605 .get_extent = get_extent,
2606 .extent_locked = 0,
2607 };
2608
2609 ret = extent_write_cache_pages(tree, mapping, wbc,
2610 __extent_writepage, &epd,
2611 flush_write_bio);
2612 if (epd.bio) {
2613 submit_one_bio(WRITE, epd.bio, 0, 0);
2614 }
2615 return ret;
2616 }
2617 EXPORT_SYMBOL(extent_writepages);
2618
2619 int extent_readpages(struct extent_io_tree *tree,
2620 struct address_space *mapping,
2621 struct list_head *pages, unsigned nr_pages,
2622 get_extent_t get_extent)
2623 {
2624 struct bio *bio = NULL;
2625 unsigned page_idx;
2626 struct pagevec pvec;
2627 unsigned long bio_flags = 0;
2628
2629 pagevec_init(&pvec, 0);
2630 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2631 struct page *page = list_entry(pages->prev, struct page, lru);
2632
2633 prefetchw(&page->flags);
2634 list_del(&page->lru);
2635 /*
2636 * what we want to do here is call add_to_page_cache_lru,
2637 * but that isn't exported, so we reproduce it here
2638 */
2639 if (!add_to_page_cache(page, mapping,
2640 page->index, GFP_KERNEL)) {
2641
2642 /* open coding of lru_cache_add, also not exported */
2643 page_cache_get(page);
2644 if (!pagevec_add(&pvec, page))
2645 __pagevec_lru_add_file(&pvec);
2646 __extent_read_full_page(tree, page, get_extent,
2647 &bio, 0, &bio_flags);
2648 }
2649 page_cache_release(page);
2650 }
2651 if (pagevec_count(&pvec))
2652 __pagevec_lru_add_file(&pvec);
2653 BUG_ON(!list_empty(pages));
2654 if (bio)
2655 submit_one_bio(READ, bio, 0, bio_flags);
2656 return 0;
2657 }
2658 EXPORT_SYMBOL(extent_readpages);
2659
2660 /*
2661 * basic invalidatepage code, this waits on any locked or writeback
2662 * ranges corresponding to the page, and then deletes any extent state
2663 * records from the tree
2664 */
2665 int extent_invalidatepage(struct extent_io_tree *tree,
2666 struct page *page, unsigned long offset)
2667 {
2668 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2669 u64 end = start + PAGE_CACHE_SIZE - 1;
2670 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2671
2672 start += (offset + blocksize -1) & ~(blocksize - 1);
2673 if (start > end)
2674 return 0;
2675
2676 lock_extent(tree, start, end, GFP_NOFS);
2677 wait_on_extent_writeback(tree, start, end);
2678 clear_extent_bit(tree, start, end,
2679 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2680 1, 1, GFP_NOFS);
2681 return 0;
2682 }
2683 EXPORT_SYMBOL(extent_invalidatepage);
2684
2685 /*
2686 * simple commit_write call, set_range_dirty is used to mark both
2687 * the pages and the extent records as dirty
2688 */
2689 int extent_commit_write(struct extent_io_tree *tree,
2690 struct inode *inode, struct page *page,
2691 unsigned from, unsigned to)
2692 {
2693 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2694
2695 set_page_extent_mapped(page);
2696 set_page_dirty(page);
2697
2698 if (pos > inode->i_size) {
2699 i_size_write(inode, pos);
2700 mark_inode_dirty(inode);
2701 }
2702 return 0;
2703 }
2704 EXPORT_SYMBOL(extent_commit_write);
2705
2706 int extent_prepare_write(struct extent_io_tree *tree,
2707 struct inode *inode, struct page *page,
2708 unsigned from, unsigned to, get_extent_t *get_extent)
2709 {
2710 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2711 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2712 u64 block_start;
2713 u64 orig_block_start;
2714 u64 block_end;
2715 u64 cur_end;
2716 struct extent_map *em;
2717 unsigned blocksize = 1 << inode->i_blkbits;
2718 size_t page_offset = 0;
2719 size_t block_off_start;
2720 size_t block_off_end;
2721 int err = 0;
2722 int iocount = 0;
2723 int ret = 0;
2724 int isnew;
2725
2726 set_page_extent_mapped(page);
2727
2728 block_start = (page_start + from) & ~((u64)blocksize - 1);
2729 block_end = (page_start + to - 1) | (blocksize - 1);
2730 orig_block_start = block_start;
2731
2732 lock_extent(tree, page_start, page_end, GFP_NOFS);
2733 while(block_start <= block_end) {
2734 em = get_extent(inode, page, page_offset, block_start,
2735 block_end - block_start + 1, 1);
2736 if (IS_ERR(em) || !em) {
2737 goto err;
2738 }
2739 cur_end = min(block_end, extent_map_end(em) - 1);
2740 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2741 block_off_end = block_off_start + blocksize;
2742 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2743
2744 if (!PageUptodate(page) && isnew &&
2745 (block_off_end > to || block_off_start < from)) {
2746 void *kaddr;
2747
2748 kaddr = kmap_atomic(page, KM_USER0);
2749 if (block_off_end > to)
2750 memset(kaddr + to, 0, block_off_end - to);
2751 if (block_off_start < from)
2752 memset(kaddr + block_off_start, 0,
2753 from - block_off_start);
2754 flush_dcache_page(page);
2755 kunmap_atomic(kaddr, KM_USER0);
2756 }
2757 if ((em->block_start != EXTENT_MAP_HOLE &&
2758 em->block_start != EXTENT_MAP_INLINE) &&
2759 !isnew && !PageUptodate(page) &&
2760 (block_off_end > to || block_off_start < from) &&
2761 !test_range_bit(tree, block_start, cur_end,
2762 EXTENT_UPTODATE, 1)) {
2763 u64 sector;
2764 u64 extent_offset = block_start - em->start;
2765 size_t iosize;
2766 sector = (em->block_start + extent_offset) >> 9;
2767 iosize = (cur_end - block_start + blocksize) &
2768 ~((u64)blocksize - 1);
2769 /*
2770 * we've already got the extent locked, but we
2771 * need to split the state such that our end_bio
2772 * handler can clear the lock.
2773 */
2774 set_extent_bit(tree, block_start,
2775 block_start + iosize - 1,
2776 EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2777 ret = submit_extent_page(READ, tree, page,
2778 sector, iosize, page_offset, em->bdev,
2779 NULL, 1,
2780 end_bio_extent_preparewrite, 0,
2781 0, 0);
2782 iocount++;
2783 block_start = block_start + iosize;
2784 } else {
2785 set_extent_uptodate(tree, block_start, cur_end,
2786 GFP_NOFS);
2787 unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2788 block_start = cur_end + 1;
2789 }
2790 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2791 free_extent_map(em);
2792 }
2793 if (iocount) {
2794 wait_extent_bit(tree, orig_block_start,
2795 block_end, EXTENT_LOCKED);
2796 }
2797 check_page_uptodate(tree, page);
2798 err:
2799 /* FIXME, zero out newly allocated blocks on error */
2800 return err;
2801 }
2802 EXPORT_SYMBOL(extent_prepare_write);
2803
2804 /*
2805 * a helper for releasepage, this tests for areas of the page that
2806 * are locked or under IO and drops the related state bits if it is safe
2807 * to drop the page.
2808 */
2809 int try_release_extent_state(struct extent_map_tree *map,
2810 struct extent_io_tree *tree, struct page *page,
2811 gfp_t mask)
2812 {
2813 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2814 u64 end = start + PAGE_CACHE_SIZE - 1;
2815 int ret = 1;
2816
2817 if (test_range_bit(tree, start, end,
2818 EXTENT_IOBITS | EXTENT_ORDERED, 0))
2819 ret = 0;
2820 else {
2821 if ((mask & GFP_NOFS) == GFP_NOFS)
2822 mask = GFP_NOFS;
2823 clear_extent_bit(tree, start, end, EXTENT_UPTODATE,
2824 1, 1, mask);
2825 }
2826 return ret;
2827 }
2828 EXPORT_SYMBOL(try_release_extent_state);
2829
2830 /*
2831 * a helper for releasepage. As long as there are no locked extents
2832 * in the range corresponding to the page, both state records and extent
2833 * map records are removed
2834 */
2835 int try_release_extent_mapping(struct extent_map_tree *map,
2836 struct extent_io_tree *tree, struct page *page,
2837 gfp_t mask)
2838 {
2839 struct extent_map *em;
2840 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2841 u64 end = start + PAGE_CACHE_SIZE - 1;
2842
2843 if ((mask & __GFP_WAIT) &&
2844 page->mapping->host->i_size > 16 * 1024 * 1024) {
2845 u64 len;
2846 while (start <= end) {
2847 len = end - start + 1;
2848 spin_lock(&map->lock);
2849 em = lookup_extent_mapping(map, start, len);
2850 if (!em || IS_ERR(em)) {
2851 spin_unlock(&map->lock);
2852 break;
2853 }
2854 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2855 em->start != start) {
2856 spin_unlock(&map->lock);
2857 free_extent_map(em);
2858 break;
2859 }
2860 if (!test_range_bit(tree, em->start,
2861 extent_map_end(em) - 1,
2862 EXTENT_LOCKED | EXTENT_WRITEBACK |
2863 EXTENT_ORDERED,
2864 0)) {
2865 remove_extent_mapping(map, em);
2866 /* once for the rb tree */
2867 free_extent_map(em);
2868 }
2869 start = extent_map_end(em);
2870 spin_unlock(&map->lock);
2871
2872 /* once for us */
2873 free_extent_map(em);
2874 }
2875 }
2876 return try_release_extent_state(map, tree, page, mask);
2877 }
2878 EXPORT_SYMBOL(try_release_extent_mapping);
2879
2880 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2881 get_extent_t *get_extent)
2882 {
2883 struct inode *inode = mapping->host;
2884 u64 start = iblock << inode->i_blkbits;
2885 sector_t sector = 0;
2886 size_t blksize = (1 << inode->i_blkbits);
2887 struct extent_map *em;
2888
2889 lock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2890 GFP_NOFS);
2891 em = get_extent(inode, NULL, 0, start, blksize, 0);
2892 unlock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2893 GFP_NOFS);
2894 if (!em || IS_ERR(em))
2895 return 0;
2896
2897 if (em->block_start > EXTENT_MAP_LAST_BYTE)
2898 goto out;
2899
2900 sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2901 out:
2902 free_extent_map(em);
2903 return sector;
2904 }
2905
2906 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2907 unsigned long i)
2908 {
2909 struct page *p;
2910 struct address_space *mapping;
2911
2912 if (i == 0)
2913 return eb->first_page;
2914 i += eb->start >> PAGE_CACHE_SHIFT;
2915 mapping = eb->first_page->mapping;
2916 if (!mapping)
2917 return NULL;
2918
2919 /*
2920 * extent_buffer_page is only called after pinning the page
2921 * by increasing the reference count. So we know the page must
2922 * be in the radix tree.
2923 */
2924 rcu_read_lock();
2925 p = radix_tree_lookup(&mapping->page_tree, i);
2926 rcu_read_unlock();
2927
2928 return p;
2929 }
2930
2931 static inline unsigned long num_extent_pages(u64 start, u64 len)
2932 {
2933 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2934 (start >> PAGE_CACHE_SHIFT);
2935 }
2936
2937 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
2938 u64 start,
2939 unsigned long len,
2940 gfp_t mask)
2941 {
2942 struct extent_buffer *eb = NULL;
2943 #ifdef LEAK_DEBUG
2944 unsigned long flags;
2945 #endif
2946
2947 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2948 eb->start = start;
2949 eb->len = len;
2950 mutex_init(&eb->mutex);
2951 #ifdef LEAK_DEBUG
2952 spin_lock_irqsave(&leak_lock, flags);
2953 list_add(&eb->leak_list, &buffers);
2954 spin_unlock_irqrestore(&leak_lock, flags);
2955 #endif
2956 atomic_set(&eb->refs, 1);
2957
2958 return eb;
2959 }
2960
2961 static void __free_extent_buffer(struct extent_buffer *eb)
2962 {
2963 #ifdef LEAK_DEBUG
2964 unsigned long flags;
2965 spin_lock_irqsave(&leak_lock, flags);
2966 list_del(&eb->leak_list);
2967 spin_unlock_irqrestore(&leak_lock, flags);
2968 #endif
2969 kmem_cache_free(extent_buffer_cache, eb);
2970 }
2971
2972 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
2973 u64 start, unsigned long len,
2974 struct page *page0,
2975 gfp_t mask)
2976 {
2977 unsigned long num_pages = num_extent_pages(start, len);
2978 unsigned long i;
2979 unsigned long index = start >> PAGE_CACHE_SHIFT;
2980 struct extent_buffer *eb;
2981 struct extent_buffer *exists = NULL;
2982 struct page *p;
2983 struct address_space *mapping = tree->mapping;
2984 int uptodate = 1;
2985
2986 spin_lock(&tree->buffer_lock);
2987 eb = buffer_search(tree, start);
2988 if (eb) {
2989 atomic_inc(&eb->refs);
2990 spin_unlock(&tree->buffer_lock);
2991 mark_page_accessed(eb->first_page);
2992 return eb;
2993 }
2994 spin_unlock(&tree->buffer_lock);
2995
2996 eb = __alloc_extent_buffer(tree, start, len, mask);
2997 if (!eb)
2998 return NULL;
2999
3000 if (page0) {
3001 eb->first_page = page0;
3002 i = 1;
3003 index++;
3004 page_cache_get(page0);
3005 mark_page_accessed(page0);
3006 set_page_extent_mapped(page0);
3007 set_page_extent_head(page0, len);
3008 uptodate = PageUptodate(page0);
3009 } else {
3010 i = 0;
3011 }
3012 for (; i < num_pages; i++, index++) {
3013 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3014 if (!p) {
3015 WARN_ON(1);
3016 goto free_eb;
3017 }
3018 set_page_extent_mapped(p);
3019 mark_page_accessed(p);
3020 if (i == 0) {
3021 eb->first_page = p;
3022 set_page_extent_head(p, len);
3023 } else {
3024 set_page_private(p, EXTENT_PAGE_PRIVATE);
3025 }
3026 if (!PageUptodate(p))
3027 uptodate = 0;
3028 unlock_page(p);
3029 }
3030 if (uptodate)
3031 eb->flags |= EXTENT_UPTODATE;
3032 eb->flags |= EXTENT_BUFFER_FILLED;
3033
3034 spin_lock(&tree->buffer_lock);
3035 exists = buffer_tree_insert(tree, start, &eb->rb_node);
3036 if (exists) {
3037 /* add one reference for the caller */
3038 atomic_inc(&exists->refs);
3039 spin_unlock(&tree->buffer_lock);
3040 goto free_eb;
3041 }
3042 spin_unlock(&tree->buffer_lock);
3043
3044 /* add one reference for the tree */
3045 atomic_inc(&eb->refs);
3046 return eb;
3047
3048 free_eb:
3049 if (!atomic_dec_and_test(&eb->refs))
3050 return exists;
3051 for (index = 1; index < i; index++)
3052 page_cache_release(extent_buffer_page(eb, index));
3053 page_cache_release(extent_buffer_page(eb, 0));
3054 __free_extent_buffer(eb);
3055 return exists;
3056 }
3057 EXPORT_SYMBOL(alloc_extent_buffer);
3058
3059 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3060 u64 start, unsigned long len,
3061 gfp_t mask)
3062 {
3063 struct extent_buffer *eb;
3064
3065 spin_lock(&tree->buffer_lock);
3066 eb = buffer_search(tree, start);
3067 if (eb)
3068 atomic_inc(&eb->refs);
3069 spin_unlock(&tree->buffer_lock);
3070
3071 if (eb)
3072 mark_page_accessed(eb->first_page);
3073
3074 return eb;
3075 }
3076 EXPORT_SYMBOL(find_extent_buffer);
3077
3078 void free_extent_buffer(struct extent_buffer *eb)
3079 {
3080 if (!eb)
3081 return;
3082
3083 if (!atomic_dec_and_test(&eb->refs))
3084 return;
3085
3086 WARN_ON(1);
3087 }
3088 EXPORT_SYMBOL(free_extent_buffer);
3089
3090 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3091 struct extent_buffer *eb)
3092 {
3093 int set;
3094 unsigned long i;
3095 unsigned long num_pages;
3096 struct page *page;
3097
3098 u64 start = eb->start;
3099 u64 end = start + eb->len - 1;
3100
3101 set = clear_extent_dirty(tree, start, end, GFP_NOFS);
3102 num_pages = num_extent_pages(eb->start, eb->len);
3103
3104 for (i = 0; i < num_pages; i++) {
3105 page = extent_buffer_page(eb, i);
3106 if (!set && !PageDirty(page))
3107 continue;
3108
3109 lock_page(page);
3110 if (i == 0)
3111 set_page_extent_head(page, eb->len);
3112 else
3113 set_page_private(page, EXTENT_PAGE_PRIVATE);
3114
3115 /*
3116 * if we're on the last page or the first page and the
3117 * block isn't aligned on a page boundary, do extra checks
3118 * to make sure we don't clean page that is partially dirty
3119 */
3120 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3121 ((i == num_pages - 1) &&
3122 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3123 start = (u64)page->index << PAGE_CACHE_SHIFT;
3124 end = start + PAGE_CACHE_SIZE - 1;
3125 if (test_range_bit(tree, start, end,
3126 EXTENT_DIRTY, 0)) {
3127 unlock_page(page);
3128 continue;
3129 }
3130 }
3131 clear_page_dirty_for_io(page);
3132 spin_lock_irq(&page->mapping->tree_lock);
3133 if (!PageDirty(page)) {
3134 radix_tree_tag_clear(&page->mapping->page_tree,
3135 page_index(page),
3136 PAGECACHE_TAG_DIRTY);
3137 }
3138 spin_unlock_irq(&page->mapping->tree_lock);
3139 unlock_page(page);
3140 }
3141 return 0;
3142 }
3143 EXPORT_SYMBOL(clear_extent_buffer_dirty);
3144
3145 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3146 struct extent_buffer *eb)
3147 {
3148 return wait_on_extent_writeback(tree, eb->start,
3149 eb->start + eb->len - 1);
3150 }
3151 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
3152
3153 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3154 struct extent_buffer *eb)
3155 {
3156 unsigned long i;
3157 unsigned long num_pages;
3158
3159 num_pages = num_extent_pages(eb->start, eb->len);
3160 for (i = 0; i < num_pages; i++) {
3161 struct page *page = extent_buffer_page(eb, i);
3162 /* writepage may need to do something special for the
3163 * first page, we have to make sure page->private is
3164 * properly set. releasepage may drop page->private
3165 * on us if the page isn't already dirty.
3166 */
3167 lock_page(page);
3168 if (i == 0) {
3169 set_page_extent_head(page, eb->len);
3170 } else if (PagePrivate(page) &&
3171 page->private != EXTENT_PAGE_PRIVATE) {
3172 set_page_extent_mapped(page);
3173 }
3174 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3175 set_extent_dirty(tree, page_offset(page),
3176 page_offset(page) + PAGE_CACHE_SIZE -1,
3177 GFP_NOFS);
3178 unlock_page(page);
3179 }
3180 return 0;
3181 }
3182 EXPORT_SYMBOL(set_extent_buffer_dirty);
3183
3184 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3185 struct extent_buffer *eb)
3186 {
3187 unsigned long i;
3188 struct page *page;
3189 unsigned long num_pages;
3190
3191 num_pages = num_extent_pages(eb->start, eb->len);
3192 eb->flags &= ~EXTENT_UPTODATE;
3193
3194 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3195 GFP_NOFS);
3196 for (i = 0; i < num_pages; i++) {
3197 page = extent_buffer_page(eb, i);
3198 if (page)
3199 ClearPageUptodate(page);
3200 }
3201 return 0;
3202 }
3203
3204 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3205 struct extent_buffer *eb)
3206 {
3207 unsigned long i;
3208 struct page *page;
3209 unsigned long num_pages;
3210
3211 num_pages = num_extent_pages(eb->start, eb->len);
3212
3213 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3214 GFP_NOFS);
3215 for (i = 0; i < num_pages; i++) {
3216 page = extent_buffer_page(eb, i);
3217 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3218 ((i == num_pages - 1) &&
3219 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3220 check_page_uptodate(tree, page);
3221 continue;
3222 }
3223 SetPageUptodate(page);
3224 }
3225 return 0;
3226 }
3227 EXPORT_SYMBOL(set_extent_buffer_uptodate);
3228
3229 int extent_range_uptodate(struct extent_io_tree *tree,
3230 u64 start, u64 end)
3231 {
3232 struct page *page;
3233 int ret;
3234 int pg_uptodate = 1;
3235 int uptodate;
3236 unsigned long index;
3237
3238 ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1);
3239 if (ret)
3240 return 1;
3241 while(start <= end) {
3242 index = start >> PAGE_CACHE_SHIFT;
3243 page = find_get_page(tree->mapping, index);
3244 uptodate = PageUptodate(page);
3245 page_cache_release(page);
3246 if (!uptodate) {
3247 pg_uptodate = 0;
3248 break;
3249 }
3250 start += PAGE_CACHE_SIZE;
3251 }
3252 return pg_uptodate;
3253 }
3254
3255 int extent_buffer_uptodate(struct extent_io_tree *tree,
3256 struct extent_buffer *eb)
3257 {
3258 int ret = 0;
3259 unsigned long num_pages;
3260 unsigned long i;
3261 struct page *page;
3262 int pg_uptodate = 1;
3263
3264 if (eb->flags & EXTENT_UPTODATE)
3265 return 1;
3266
3267 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3268 EXTENT_UPTODATE, 1);
3269 if (ret)
3270 return ret;
3271
3272 num_pages = num_extent_pages(eb->start, eb->len);
3273 for (i = 0; i < num_pages; i++) {
3274 page = extent_buffer_page(eb, i);
3275 if (!PageUptodate(page)) {
3276 pg_uptodate = 0;
3277 break;
3278 }
3279 }
3280 return pg_uptodate;
3281 }
3282 EXPORT_SYMBOL(extent_buffer_uptodate);
3283
3284 int read_extent_buffer_pages(struct extent_io_tree *tree,
3285 struct extent_buffer *eb,
3286 u64 start, int wait,
3287 get_extent_t *get_extent, int mirror_num)
3288 {
3289 unsigned long i;
3290 unsigned long start_i;
3291 struct page *page;
3292 int err;
3293 int ret = 0;
3294 int locked_pages = 0;
3295 int all_uptodate = 1;
3296 int inc_all_pages = 0;
3297 unsigned long num_pages;
3298 struct bio *bio = NULL;
3299 unsigned long bio_flags = 0;
3300
3301 if (eb->flags & EXTENT_UPTODATE)
3302 return 0;
3303
3304 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3305 EXTENT_UPTODATE, 1)) {
3306 return 0;
3307 }
3308
3309 if (start) {
3310 WARN_ON(start < eb->start);
3311 start_i = (start >> PAGE_CACHE_SHIFT) -
3312 (eb->start >> PAGE_CACHE_SHIFT);
3313 } else {
3314 start_i = 0;
3315 }
3316
3317 num_pages = num_extent_pages(eb->start, eb->len);
3318 for (i = start_i; i < num_pages; i++) {
3319 page = extent_buffer_page(eb, i);
3320 if (!wait) {
3321 if (!trylock_page(page))
3322 goto unlock_exit;
3323 } else {
3324 lock_page(page);
3325 }
3326 locked_pages++;
3327 if (!PageUptodate(page)) {
3328 all_uptodate = 0;
3329 }
3330 }
3331 if (all_uptodate) {
3332 if (start_i == 0)
3333 eb->flags |= EXTENT_UPTODATE;
3334 if (ret) {
3335 printk("all up to date but ret is %d\n", ret);
3336 }
3337 goto unlock_exit;
3338 }
3339
3340 for (i = start_i; i < num_pages; i++) {
3341 page = extent_buffer_page(eb, i);
3342 if (inc_all_pages)
3343 page_cache_get(page);
3344 if (!PageUptodate(page)) {
3345 if (start_i == 0)
3346 inc_all_pages = 1;
3347 ClearPageError(page);
3348 err = __extent_read_full_page(tree, page,
3349 get_extent, &bio,
3350 mirror_num, &bio_flags);
3351 if (err) {
3352 ret = err;
3353 printk("err %d from __extent_read_full_page\n", ret);
3354 }
3355 } else {
3356 unlock_page(page);
3357 }
3358 }
3359
3360 if (bio)
3361 submit_one_bio(READ, bio, mirror_num, bio_flags);
3362
3363 if (ret || !wait) {
3364 if (ret)
3365 printk("ret %d wait %d returning\n", ret, wait);
3366 return ret;
3367 }
3368 for (i = start_i; i < num_pages; i++) {
3369 page = extent_buffer_page(eb, i);
3370 wait_on_page_locked(page);
3371 if (!PageUptodate(page)) {
3372 printk("page not uptodate after wait_on_page_locked\n");
3373 ret = -EIO;
3374 }
3375 }
3376 if (!ret)
3377 eb->flags |= EXTENT_UPTODATE;
3378 return ret;
3379
3380 unlock_exit:
3381 i = start_i;
3382 while(locked_pages > 0) {
3383 page = extent_buffer_page(eb, i);
3384 i++;
3385 unlock_page(page);
3386 locked_pages--;
3387 }
3388 return ret;
3389 }
3390 EXPORT_SYMBOL(read_extent_buffer_pages);
3391
3392 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3393 unsigned long start,
3394 unsigned long len)
3395 {
3396 size_t cur;
3397 size_t offset;
3398 struct page *page;
3399 char *kaddr;
3400 char *dst = (char *)dstv;
3401 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3402 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3403
3404 WARN_ON(start > eb->len);
3405 WARN_ON(start + len > eb->start + eb->len);
3406
3407 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3408
3409 while(len > 0) {
3410 page = extent_buffer_page(eb, i);
3411
3412 cur = min(len, (PAGE_CACHE_SIZE - offset));
3413 kaddr = kmap_atomic(page, KM_USER1);
3414 memcpy(dst, kaddr + offset, cur);
3415 kunmap_atomic(kaddr, KM_USER1);
3416
3417 dst += cur;
3418 len -= cur;
3419 offset = 0;
3420 i++;
3421 }
3422 }
3423 EXPORT_SYMBOL(read_extent_buffer);
3424
3425 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3426 unsigned long min_len, char **token, char **map,
3427 unsigned long *map_start,
3428 unsigned long *map_len, int km)
3429 {
3430 size_t offset = start & (PAGE_CACHE_SIZE - 1);
3431 char *kaddr;
3432 struct page *p;
3433 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3434 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3435 unsigned long end_i = (start_offset + start + min_len - 1) >>
3436 PAGE_CACHE_SHIFT;
3437
3438 if (i != end_i)
3439 return -EINVAL;
3440
3441 if (i == 0) {
3442 offset = start_offset;
3443 *map_start = 0;
3444 } else {
3445 offset = 0;
3446 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3447 }
3448 if (start + min_len > eb->len) {
3449 printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
3450 WARN_ON(1);
3451 }
3452
3453 p = extent_buffer_page(eb, i);
3454 kaddr = kmap_atomic(p, km);
3455 *token = kaddr;
3456 *map = kaddr + offset;
3457 *map_len = PAGE_CACHE_SIZE - offset;
3458 return 0;
3459 }
3460 EXPORT_SYMBOL(map_private_extent_buffer);
3461
3462 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3463 unsigned long min_len,
3464 char **token, char **map,
3465 unsigned long *map_start,
3466 unsigned long *map_len, int km)
3467 {
3468 int err;
3469 int save = 0;
3470 if (eb->map_token) {
3471 unmap_extent_buffer(eb, eb->map_token, km);
3472 eb->map_token = NULL;
3473 save = 1;
3474 }
3475 err = map_private_extent_buffer(eb, start, min_len, token, map,
3476 map_start, map_len, km);
3477 if (!err && save) {
3478 eb->map_token = *token;
3479 eb->kaddr = *map;
3480 eb->map_start = *map_start;
3481 eb->map_len = *map_len;
3482 }
3483 return err;
3484 }
3485 EXPORT_SYMBOL(map_extent_buffer);
3486
3487 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3488 {
3489 kunmap_atomic(token, km);
3490 }
3491 EXPORT_SYMBOL(unmap_extent_buffer);
3492
3493 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3494 unsigned long start,
3495 unsigned long len)
3496 {
3497 size_t cur;
3498 size_t offset;
3499 struct page *page;
3500 char *kaddr;
3501 char *ptr = (char *)ptrv;
3502 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3503 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3504 int ret = 0;
3505
3506 WARN_ON(start > eb->len);
3507 WARN_ON(start + len > eb->start + eb->len);
3508
3509 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3510
3511 while(len > 0) {
3512 page = extent_buffer_page(eb, i);
3513
3514 cur = min(len, (PAGE_CACHE_SIZE - offset));
3515
3516 kaddr = kmap_atomic(page, KM_USER0);
3517 ret = memcmp(ptr, kaddr + offset, cur);
3518 kunmap_atomic(kaddr, KM_USER0);
3519 if (ret)
3520 break;
3521
3522 ptr += cur;
3523 len -= cur;
3524 offset = 0;
3525 i++;
3526 }
3527 return ret;
3528 }
3529 EXPORT_SYMBOL(memcmp_extent_buffer);
3530
3531 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3532 unsigned long start, unsigned long len)
3533 {
3534 size_t cur;
3535 size_t offset;
3536 struct page *page;
3537 char *kaddr;
3538 char *src = (char *)srcv;
3539 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3540 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3541
3542 WARN_ON(start > eb->len);
3543 WARN_ON(start + len > eb->start + eb->len);
3544
3545 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3546
3547 while(len > 0) {
3548 page = extent_buffer_page(eb, i);
3549 WARN_ON(!PageUptodate(page));
3550
3551 cur = min(len, PAGE_CACHE_SIZE - offset);
3552 kaddr = kmap_atomic(page, KM_USER1);
3553 memcpy(kaddr + offset, src, cur);
3554 kunmap_atomic(kaddr, KM_USER1);
3555
3556 src += cur;
3557 len -= cur;
3558 offset = 0;
3559 i++;
3560 }
3561 }
3562 EXPORT_SYMBOL(write_extent_buffer);
3563
3564 void memset_extent_buffer(struct extent_buffer *eb, char c,
3565 unsigned long start, unsigned long len)
3566 {
3567 size_t cur;
3568 size_t offset;
3569 struct page *page;
3570 char *kaddr;
3571 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3572 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3573
3574 WARN_ON(start > eb->len);
3575 WARN_ON(start + len > eb->start + eb->len);
3576
3577 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3578
3579 while(len > 0) {
3580 page = extent_buffer_page(eb, i);
3581 WARN_ON(!PageUptodate(page));
3582
3583 cur = min(len, PAGE_CACHE_SIZE - offset);
3584 kaddr = kmap_atomic(page, KM_USER0);
3585 memset(kaddr + offset, c, cur);
3586 kunmap_atomic(kaddr, KM_USER0);
3587
3588 len -= cur;
3589 offset = 0;
3590 i++;
3591 }
3592 }
3593 EXPORT_SYMBOL(memset_extent_buffer);
3594
3595 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3596 unsigned long dst_offset, unsigned long src_offset,
3597 unsigned long len)
3598 {
3599 u64 dst_len = dst->len;
3600 size_t cur;
3601 size_t offset;
3602 struct page *page;
3603 char *kaddr;
3604 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3605 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3606
3607 WARN_ON(src->len != dst_len);
3608
3609 offset = (start_offset + dst_offset) &
3610 ((unsigned long)PAGE_CACHE_SIZE - 1);
3611
3612 while(len > 0) {
3613 page = extent_buffer_page(dst, i);
3614 WARN_ON(!PageUptodate(page));
3615
3616 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3617
3618 kaddr = kmap_atomic(page, KM_USER0);
3619 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3620 kunmap_atomic(kaddr, KM_USER0);
3621
3622 src_offset += cur;
3623 len -= cur;
3624 offset = 0;
3625 i++;
3626 }
3627 }
3628 EXPORT_SYMBOL(copy_extent_buffer);
3629
3630 static void move_pages(struct page *dst_page, struct page *src_page,
3631 unsigned long dst_off, unsigned long src_off,
3632 unsigned long len)
3633 {
3634 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3635 if (dst_page == src_page) {
3636 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3637 } else {
3638 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3639 char *p = dst_kaddr + dst_off + len;
3640 char *s = src_kaddr + src_off + len;
3641
3642 while (len--)
3643 *--p = *--s;
3644
3645 kunmap_atomic(src_kaddr, KM_USER1);
3646 }
3647 kunmap_atomic(dst_kaddr, KM_USER0);
3648 }
3649
3650 static void copy_pages(struct page *dst_page, struct page *src_page,
3651 unsigned long dst_off, unsigned long src_off,
3652 unsigned long len)
3653 {
3654 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3655 char *src_kaddr;
3656
3657 if (dst_page != src_page)
3658 src_kaddr = kmap_atomic(src_page, KM_USER1);
3659 else
3660 src_kaddr = dst_kaddr;
3661
3662 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3663 kunmap_atomic(dst_kaddr, KM_USER0);
3664 if (dst_page != src_page)
3665 kunmap_atomic(src_kaddr, KM_USER1);
3666 }
3667
3668 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3669 unsigned long src_offset, unsigned long len)
3670 {
3671 size_t cur;
3672 size_t dst_off_in_page;
3673 size_t src_off_in_page;
3674 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3675 unsigned long dst_i;
3676 unsigned long src_i;
3677
3678 if (src_offset + len > dst->len) {
3679 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3680 src_offset, len, dst->len);
3681 BUG_ON(1);
3682 }
3683 if (dst_offset + len > dst->len) {
3684 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3685 dst_offset, len, dst->len);
3686 BUG_ON(1);
3687 }
3688
3689 while(len > 0) {
3690 dst_off_in_page = (start_offset + dst_offset) &
3691 ((unsigned long)PAGE_CACHE_SIZE - 1);
3692 src_off_in_page = (start_offset + src_offset) &
3693 ((unsigned long)PAGE_CACHE_SIZE - 1);
3694
3695 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3696 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3697
3698 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3699 src_off_in_page));
3700 cur = min_t(unsigned long, cur,
3701 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3702
3703 copy_pages(extent_buffer_page(dst, dst_i),
3704 extent_buffer_page(dst, src_i),
3705 dst_off_in_page, src_off_in_page, cur);
3706
3707 src_offset += cur;
3708 dst_offset += cur;
3709 len -= cur;
3710 }
3711 }
3712 EXPORT_SYMBOL(memcpy_extent_buffer);
3713
3714 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3715 unsigned long src_offset, unsigned long len)
3716 {
3717 size_t cur;
3718 size_t dst_off_in_page;
3719 size_t src_off_in_page;
3720 unsigned long dst_end = dst_offset + len - 1;
3721 unsigned long src_end = src_offset + len - 1;
3722 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3723 unsigned long dst_i;
3724 unsigned long src_i;
3725
3726 if (src_offset + len > dst->len) {
3727 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3728 src_offset, len, dst->len);
3729 BUG_ON(1);
3730 }
3731 if (dst_offset + len > dst->len) {
3732 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3733 dst_offset, len, dst->len);
3734 BUG_ON(1);
3735 }
3736 if (dst_offset < src_offset) {
3737 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3738 return;
3739 }
3740 while(len > 0) {
3741 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3742 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3743
3744 dst_off_in_page = (start_offset + dst_end) &
3745 ((unsigned long)PAGE_CACHE_SIZE - 1);
3746 src_off_in_page = (start_offset + src_end) &
3747 ((unsigned long)PAGE_CACHE_SIZE - 1);
3748
3749 cur = min_t(unsigned long, len, src_off_in_page + 1);
3750 cur = min(cur, dst_off_in_page + 1);
3751 move_pages(extent_buffer_page(dst, dst_i),
3752 extent_buffer_page(dst, src_i),
3753 dst_off_in_page - cur + 1,
3754 src_off_in_page - cur + 1, cur);
3755
3756 dst_end -= cur;
3757 src_end -= cur;
3758 len -= cur;
3759 }
3760 }
3761 EXPORT_SYMBOL(memmove_extent_buffer);
3762
3763 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3764 {
3765 u64 start = page_offset(page);
3766 struct extent_buffer *eb;
3767 int ret = 1;
3768 unsigned long i;
3769 unsigned long num_pages;
3770
3771 spin_lock(&tree->buffer_lock);
3772 eb = buffer_search(tree, start);
3773 if (!eb)
3774 goto out;
3775
3776 if (atomic_read(&eb->refs) > 1) {
3777 ret = 0;
3778 goto out;
3779 }
3780 /* at this point we can safely release the extent buffer */
3781 num_pages = num_extent_pages(eb->start, eb->len);
3782 for (i = 0; i < num_pages; i++)
3783 page_cache_release(extent_buffer_page(eb, i));
3784 rb_erase(&eb->rb_node, &tree->buffer);
3785 __free_extent_buffer(eb);
3786 out:
3787 spin_unlock(&tree->buffer_lock);
3788 return ret;
3789 }
3790 EXPORT_SYMBOL(try_release_extent_buffer);
This page took 0.152886 seconds and 6 git commands to generate.