Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30 return !RB_EMPTY_NODE(&state->rb_node);
31 }
32
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36
37 static DEFINE_SPINLOCK(leak_lock);
38
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47 }
48
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57 }
58
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
70 atomic_read(&state->refs));
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 struct inode *inode;
91 u64 isize;
92
93 if (!tree->mapping)
94 return;
95
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller, btrfs_ino(inode), isize, start, end);
102 }
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
109 #endif
110
111 #define BUFFER_LRU_MAX 64
112
113 struct tree_entry {
114 u64 start;
115 u64 end;
116 struct rb_node rb_node;
117 };
118
119 struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
132 };
133
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137 {
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
144 if (!set && (state->state & bits) == 0)
145 return;
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151 }
152
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157 if (!tree->mapping)
158 return NULL;
159 return btrfs_sb(tree->mapping->host->i_sb);
160 }
161
162 int __init extent_io_init(void)
163 {
164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state), 0,
166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
167 if (!extent_state_cache)
168 return -ENOMEM;
169
170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer), 0,
172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
173 if (!extent_buffer_cache)
174 goto free_state_cache;
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
184 return 0;
185
186 free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
190 free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
194 free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
196 extent_state_cache = NULL;
197 return -ENOMEM;
198 }
199
200 void extent_io_exit(void)
201 {
202 btrfs_leak_debug_check();
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
213 }
214
215 void extent_io_tree_init(struct extent_io_tree *tree,
216 struct address_space *mapping)
217 {
218 tree->state = RB_ROOT;
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
221 spin_lock_init(&tree->lock);
222 tree->mapping = mapping;
223 }
224
225 static struct extent_state *alloc_extent_state(gfp_t mask)
226 {
227 struct extent_state *state;
228
229 state = kmem_cache_alloc(extent_state_cache, mask);
230 if (!state)
231 return state;
232 state->state = 0;
233 state->failrec = NULL;
234 RB_CLEAR_NODE(&state->rb_node);
235 btrfs_leak_debug_add(&state->leak_list, &states);
236 atomic_set(&state->refs, 1);
237 init_waitqueue_head(&state->wq);
238 trace_alloc_extent_state(state, mask, _RET_IP_);
239 return state;
240 }
241
242 void free_extent_state(struct extent_state *state)
243 {
244 if (!state)
245 return;
246 if (atomic_dec_and_test(&state->refs)) {
247 WARN_ON(extent_state_in_tree(state));
248 btrfs_leak_debug_del(&state->leak_list);
249 trace_free_extent_state(state, _RET_IP_);
250 kmem_cache_free(extent_state_cache, state);
251 }
252 }
253
254 static struct rb_node *tree_insert(struct rb_root *root,
255 struct rb_node *search_start,
256 u64 offset,
257 struct rb_node *node,
258 struct rb_node ***p_in,
259 struct rb_node **parent_in)
260 {
261 struct rb_node **p;
262 struct rb_node *parent = NULL;
263 struct tree_entry *entry;
264
265 if (p_in && parent_in) {
266 p = *p_in;
267 parent = *parent_in;
268 goto do_insert;
269 }
270
271 p = search_start ? &search_start : &root->rb_node;
272 while (*p) {
273 parent = *p;
274 entry = rb_entry(parent, struct tree_entry, rb_node);
275
276 if (offset < entry->start)
277 p = &(*p)->rb_left;
278 else if (offset > entry->end)
279 p = &(*p)->rb_right;
280 else
281 return parent;
282 }
283
284 do_insert:
285 rb_link_node(node, parent, p);
286 rb_insert_color(node, root);
287 return NULL;
288 }
289
290 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
291 struct rb_node **prev_ret,
292 struct rb_node **next_ret,
293 struct rb_node ***p_ret,
294 struct rb_node **parent_ret)
295 {
296 struct rb_root *root = &tree->state;
297 struct rb_node **n = &root->rb_node;
298 struct rb_node *prev = NULL;
299 struct rb_node *orig_prev = NULL;
300 struct tree_entry *entry;
301 struct tree_entry *prev_entry = NULL;
302
303 while (*n) {
304 prev = *n;
305 entry = rb_entry(prev, struct tree_entry, rb_node);
306 prev_entry = entry;
307
308 if (offset < entry->start)
309 n = &(*n)->rb_left;
310 else if (offset > entry->end)
311 n = &(*n)->rb_right;
312 else
313 return *n;
314 }
315
316 if (p_ret)
317 *p_ret = n;
318 if (parent_ret)
319 *parent_ret = prev;
320
321 if (prev_ret) {
322 orig_prev = prev;
323 while (prev && offset > prev_entry->end) {
324 prev = rb_next(prev);
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 }
327 *prev_ret = prev;
328 prev = orig_prev;
329 }
330
331 if (next_ret) {
332 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
333 while (prev && offset < prev_entry->start) {
334 prev = rb_prev(prev);
335 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336 }
337 *next_ret = prev;
338 }
339 return NULL;
340 }
341
342 static inline struct rb_node *
343 tree_search_for_insert(struct extent_io_tree *tree,
344 u64 offset,
345 struct rb_node ***p_ret,
346 struct rb_node **parent_ret)
347 {
348 struct rb_node *prev = NULL;
349 struct rb_node *ret;
350
351 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
352 if (!ret)
353 return prev;
354 return ret;
355 }
356
357 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358 u64 offset)
359 {
360 return tree_search_for_insert(tree, offset, NULL, NULL);
361 }
362
363 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364 struct extent_state *other)
365 {
366 if (tree->ops && tree->ops->merge_extent_hook)
367 tree->ops->merge_extent_hook(tree->mapping->host, new,
368 other);
369 }
370
371 /*
372 * utility function to look for merge candidates inside a given range.
373 * Any extents with matching state are merged together into a single
374 * extent in the tree. Extents with EXTENT_IO in their state field
375 * are not merged because the end_io handlers need to be able to do
376 * operations on them without sleeping (or doing allocations/splits).
377 *
378 * This should be called with the tree lock held.
379 */
380 static void merge_state(struct extent_io_tree *tree,
381 struct extent_state *state)
382 {
383 struct extent_state *other;
384 struct rb_node *other_node;
385
386 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
387 return;
388
389 other_node = rb_prev(&state->rb_node);
390 if (other_node) {
391 other = rb_entry(other_node, struct extent_state, rb_node);
392 if (other->end == state->start - 1 &&
393 other->state == state->state) {
394 merge_cb(tree, state, other);
395 state->start = other->start;
396 rb_erase(&other->rb_node, &tree->state);
397 RB_CLEAR_NODE(&other->rb_node);
398 free_extent_state(other);
399 }
400 }
401 other_node = rb_next(&state->rb_node);
402 if (other_node) {
403 other = rb_entry(other_node, struct extent_state, rb_node);
404 if (other->start == state->end + 1 &&
405 other->state == state->state) {
406 merge_cb(tree, state, other);
407 state->end = other->end;
408 rb_erase(&other->rb_node, &tree->state);
409 RB_CLEAR_NODE(&other->rb_node);
410 free_extent_state(other);
411 }
412 }
413 }
414
415 static void set_state_cb(struct extent_io_tree *tree,
416 struct extent_state *state, unsigned *bits)
417 {
418 if (tree->ops && tree->ops->set_bit_hook)
419 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
420 }
421
422 static void clear_state_cb(struct extent_io_tree *tree,
423 struct extent_state *state, unsigned *bits)
424 {
425 if (tree->ops && tree->ops->clear_bit_hook)
426 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
427 }
428
429 static void set_state_bits(struct extent_io_tree *tree,
430 struct extent_state *state, unsigned *bits,
431 struct extent_changeset *changeset);
432
433 /*
434 * insert an extent_state struct into the tree. 'bits' are set on the
435 * struct before it is inserted.
436 *
437 * This may return -EEXIST if the extent is already there, in which case the
438 * state struct is freed.
439 *
440 * The tree lock is not taken internally. This is a utility function and
441 * probably isn't what you want to call (see set/clear_extent_bit).
442 */
443 static int insert_state(struct extent_io_tree *tree,
444 struct extent_state *state, u64 start, u64 end,
445 struct rb_node ***p,
446 struct rb_node **parent,
447 unsigned *bits, struct extent_changeset *changeset)
448 {
449 struct rb_node *node;
450
451 if (end < start)
452 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
453 end, start);
454 state->start = start;
455 state->end = end;
456
457 set_state_bits(tree, state, bits, changeset);
458
459 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
460 if (node) {
461 struct extent_state *found;
462 found = rb_entry(node, struct extent_state, rb_node);
463 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
464 "%llu %llu\n",
465 found->start, found->end, start, end);
466 return -EEXIST;
467 }
468 merge_state(tree, state);
469 return 0;
470 }
471
472 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
473 u64 split)
474 {
475 if (tree->ops && tree->ops->split_extent_hook)
476 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
477 }
478
479 /*
480 * split a given extent state struct in two, inserting the preallocated
481 * struct 'prealloc' as the newly created second half. 'split' indicates an
482 * offset inside 'orig' where it should be split.
483 *
484 * Before calling,
485 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
486 * are two extent state structs in the tree:
487 * prealloc: [orig->start, split - 1]
488 * orig: [ split, orig->end ]
489 *
490 * The tree locks are not taken by this function. They need to be held
491 * by the caller.
492 */
493 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
494 struct extent_state *prealloc, u64 split)
495 {
496 struct rb_node *node;
497
498 split_cb(tree, orig, split);
499
500 prealloc->start = orig->start;
501 prealloc->end = split - 1;
502 prealloc->state = orig->state;
503 orig->start = split;
504
505 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
506 &prealloc->rb_node, NULL, NULL);
507 if (node) {
508 free_extent_state(prealloc);
509 return -EEXIST;
510 }
511 return 0;
512 }
513
514 static struct extent_state *next_state(struct extent_state *state)
515 {
516 struct rb_node *next = rb_next(&state->rb_node);
517 if (next)
518 return rb_entry(next, struct extent_state, rb_node);
519 else
520 return NULL;
521 }
522
523 /*
524 * utility function to clear some bits in an extent state struct.
525 * it will optionally wake up any one waiting on this state (wake == 1).
526 *
527 * If no bits are set on the state struct after clearing things, the
528 * struct is freed and removed from the tree
529 */
530 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
531 struct extent_state *state,
532 unsigned *bits, int wake,
533 struct extent_changeset *changeset)
534 {
535 struct extent_state *next;
536 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
537
538 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
539 u64 range = state->end - state->start + 1;
540 WARN_ON(range > tree->dirty_bytes);
541 tree->dirty_bytes -= range;
542 }
543 clear_state_cb(tree, state, bits);
544 add_extent_changeset(state, bits_to_clear, changeset, 0);
545 state->state &= ~bits_to_clear;
546 if (wake)
547 wake_up(&state->wq);
548 if (state->state == 0) {
549 next = next_state(state);
550 if (extent_state_in_tree(state)) {
551 rb_erase(&state->rb_node, &tree->state);
552 RB_CLEAR_NODE(&state->rb_node);
553 free_extent_state(state);
554 } else {
555 WARN_ON(1);
556 }
557 } else {
558 merge_state(tree, state);
559 next = next_state(state);
560 }
561 return next;
562 }
563
564 static struct extent_state *
565 alloc_extent_state_atomic(struct extent_state *prealloc)
566 {
567 if (!prealloc)
568 prealloc = alloc_extent_state(GFP_ATOMIC);
569
570 return prealloc;
571 }
572
573 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
574 {
575 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
576 "Extent tree was modified by another "
577 "thread while locked.");
578 }
579
580 /*
581 * clear some bits on a range in the tree. This may require splitting
582 * or inserting elements in the tree, so the gfp mask is used to
583 * indicate which allocations or sleeping are allowed.
584 *
585 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
586 * the given range from the tree regardless of state (ie for truncate).
587 *
588 * the range [start, end] is inclusive.
589 *
590 * This takes the tree lock, and returns 0 on success and < 0 on error.
591 */
592 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
593 unsigned bits, int wake, int delete,
594 struct extent_state **cached_state,
595 gfp_t mask, struct extent_changeset *changeset)
596 {
597 struct extent_state *state;
598 struct extent_state *cached;
599 struct extent_state *prealloc = NULL;
600 struct rb_node *node;
601 u64 last_end;
602 int err;
603 int clear = 0;
604
605 btrfs_debug_check_extent_io_range(tree, start, end);
606
607 if (bits & EXTENT_DELALLOC)
608 bits |= EXTENT_NORESERVE;
609
610 if (delete)
611 bits |= ~EXTENT_CTLBITS;
612 bits |= EXTENT_FIRST_DELALLOC;
613
614 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
615 clear = 1;
616 again:
617 if (!prealloc && gfpflags_allow_blocking(mask)) {
618 /*
619 * Don't care for allocation failure here because we might end
620 * up not needing the pre-allocated extent state at all, which
621 * is the case if we only have in the tree extent states that
622 * cover our input range and don't cover too any other range.
623 * If we end up needing a new extent state we allocate it later.
624 */
625 prealloc = alloc_extent_state(mask);
626 }
627
628 spin_lock(&tree->lock);
629 if (cached_state) {
630 cached = *cached_state;
631
632 if (clear) {
633 *cached_state = NULL;
634 cached_state = NULL;
635 }
636
637 if (cached && extent_state_in_tree(cached) &&
638 cached->start <= start && cached->end > start) {
639 if (clear)
640 atomic_dec(&cached->refs);
641 state = cached;
642 goto hit_next;
643 }
644 if (clear)
645 free_extent_state(cached);
646 }
647 /*
648 * this search will find the extents that end after
649 * our range starts
650 */
651 node = tree_search(tree, start);
652 if (!node)
653 goto out;
654 state = rb_entry(node, struct extent_state, rb_node);
655 hit_next:
656 if (state->start > end)
657 goto out;
658 WARN_ON(state->end < start);
659 last_end = state->end;
660
661 /* the state doesn't have the wanted bits, go ahead */
662 if (!(state->state & bits)) {
663 state = next_state(state);
664 goto next;
665 }
666
667 /*
668 * | ---- desired range ---- |
669 * | state | or
670 * | ------------- state -------------- |
671 *
672 * We need to split the extent we found, and may flip
673 * bits on second half.
674 *
675 * If the extent we found extends past our range, we
676 * just split and search again. It'll get split again
677 * the next time though.
678 *
679 * If the extent we found is inside our range, we clear
680 * the desired bit on it.
681 */
682
683 if (state->start < start) {
684 prealloc = alloc_extent_state_atomic(prealloc);
685 BUG_ON(!prealloc);
686 err = split_state(tree, state, prealloc, start);
687 if (err)
688 extent_io_tree_panic(tree, err);
689
690 prealloc = NULL;
691 if (err)
692 goto out;
693 if (state->end <= end) {
694 state = clear_state_bit(tree, state, &bits, wake,
695 changeset);
696 goto next;
697 }
698 goto search_again;
699 }
700 /*
701 * | ---- desired range ---- |
702 * | state |
703 * We need to split the extent, and clear the bit
704 * on the first half
705 */
706 if (state->start <= end && state->end > end) {
707 prealloc = alloc_extent_state_atomic(prealloc);
708 BUG_ON(!prealloc);
709 err = split_state(tree, state, prealloc, end + 1);
710 if (err)
711 extent_io_tree_panic(tree, err);
712
713 if (wake)
714 wake_up(&state->wq);
715
716 clear_state_bit(tree, prealloc, &bits, wake, changeset);
717
718 prealloc = NULL;
719 goto out;
720 }
721
722 state = clear_state_bit(tree, state, &bits, wake, changeset);
723 next:
724 if (last_end == (u64)-1)
725 goto out;
726 start = last_end + 1;
727 if (start <= end && state && !need_resched())
728 goto hit_next;
729
730 search_again:
731 if (start > end)
732 goto out;
733 spin_unlock(&tree->lock);
734 if (gfpflags_allow_blocking(mask))
735 cond_resched();
736 goto again;
737
738 out:
739 spin_unlock(&tree->lock);
740 if (prealloc)
741 free_extent_state(prealloc);
742
743 return 0;
744
745 }
746
747 static void wait_on_state(struct extent_io_tree *tree,
748 struct extent_state *state)
749 __releases(tree->lock)
750 __acquires(tree->lock)
751 {
752 DEFINE_WAIT(wait);
753 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
754 spin_unlock(&tree->lock);
755 schedule();
756 spin_lock(&tree->lock);
757 finish_wait(&state->wq, &wait);
758 }
759
760 /*
761 * waits for one or more bits to clear on a range in the state tree.
762 * The range [start, end] is inclusive.
763 * The tree lock is taken by this function
764 */
765 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
766 unsigned long bits)
767 {
768 struct extent_state *state;
769 struct rb_node *node;
770
771 btrfs_debug_check_extent_io_range(tree, start, end);
772
773 spin_lock(&tree->lock);
774 again:
775 while (1) {
776 /*
777 * this search will find all the extents that end after
778 * our range starts
779 */
780 node = tree_search(tree, start);
781 process_node:
782 if (!node)
783 break;
784
785 state = rb_entry(node, struct extent_state, rb_node);
786
787 if (state->start > end)
788 goto out;
789
790 if (state->state & bits) {
791 start = state->start;
792 atomic_inc(&state->refs);
793 wait_on_state(tree, state);
794 free_extent_state(state);
795 goto again;
796 }
797 start = state->end + 1;
798
799 if (start > end)
800 break;
801
802 if (!cond_resched_lock(&tree->lock)) {
803 node = rb_next(node);
804 goto process_node;
805 }
806 }
807 out:
808 spin_unlock(&tree->lock);
809 }
810
811 static void set_state_bits(struct extent_io_tree *tree,
812 struct extent_state *state,
813 unsigned *bits, struct extent_changeset *changeset)
814 {
815 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
816
817 set_state_cb(tree, state, bits);
818 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
819 u64 range = state->end - state->start + 1;
820 tree->dirty_bytes += range;
821 }
822 add_extent_changeset(state, bits_to_set, changeset, 1);
823 state->state |= bits_to_set;
824 }
825
826 static void cache_state_if_flags(struct extent_state *state,
827 struct extent_state **cached_ptr,
828 unsigned flags)
829 {
830 if (cached_ptr && !(*cached_ptr)) {
831 if (!flags || (state->state & flags)) {
832 *cached_ptr = state;
833 atomic_inc(&state->refs);
834 }
835 }
836 }
837
838 static void cache_state(struct extent_state *state,
839 struct extent_state **cached_ptr)
840 {
841 return cache_state_if_flags(state, cached_ptr,
842 EXTENT_IOBITS | EXTENT_BOUNDARY);
843 }
844
845 /*
846 * set some bits on a range in the tree. This may require allocations or
847 * sleeping, so the gfp mask is used to indicate what is allowed.
848 *
849 * If any of the exclusive bits are set, this will fail with -EEXIST if some
850 * part of the range already has the desired bits set. The start of the
851 * existing range is returned in failed_start in this case.
852 *
853 * [start, end] is inclusive This takes the tree lock.
854 */
855
856 static int __must_check
857 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
858 unsigned bits, unsigned exclusive_bits,
859 u64 *failed_start, struct extent_state **cached_state,
860 gfp_t mask, struct extent_changeset *changeset)
861 {
862 struct extent_state *state;
863 struct extent_state *prealloc = NULL;
864 struct rb_node *node;
865 struct rb_node **p;
866 struct rb_node *parent;
867 int err = 0;
868 u64 last_start;
869 u64 last_end;
870
871 btrfs_debug_check_extent_io_range(tree, start, end);
872
873 bits |= EXTENT_FIRST_DELALLOC;
874 again:
875 if (!prealloc && gfpflags_allow_blocking(mask)) {
876 /*
877 * Don't care for allocation failure here because we might end
878 * up not needing the pre-allocated extent state at all, which
879 * is the case if we only have in the tree extent states that
880 * cover our input range and don't cover too any other range.
881 * If we end up needing a new extent state we allocate it later.
882 */
883 prealloc = alloc_extent_state(mask);
884 }
885
886 spin_lock(&tree->lock);
887 if (cached_state && *cached_state) {
888 state = *cached_state;
889 if (state->start <= start && state->end > start &&
890 extent_state_in_tree(state)) {
891 node = &state->rb_node;
892 goto hit_next;
893 }
894 }
895 /*
896 * this search will find all the extents that end after
897 * our range starts.
898 */
899 node = tree_search_for_insert(tree, start, &p, &parent);
900 if (!node) {
901 prealloc = alloc_extent_state_atomic(prealloc);
902 BUG_ON(!prealloc);
903 err = insert_state(tree, prealloc, start, end,
904 &p, &parent, &bits, changeset);
905 if (err)
906 extent_io_tree_panic(tree, err);
907
908 cache_state(prealloc, cached_state);
909 prealloc = NULL;
910 goto out;
911 }
912 state = rb_entry(node, struct extent_state, rb_node);
913 hit_next:
914 last_start = state->start;
915 last_end = state->end;
916
917 /*
918 * | ---- desired range ---- |
919 * | state |
920 *
921 * Just lock what we found and keep going
922 */
923 if (state->start == start && state->end <= end) {
924 if (state->state & exclusive_bits) {
925 *failed_start = state->start;
926 err = -EEXIST;
927 goto out;
928 }
929
930 set_state_bits(tree, state, &bits, changeset);
931 cache_state(state, cached_state);
932 merge_state(tree, state);
933 if (last_end == (u64)-1)
934 goto out;
935 start = last_end + 1;
936 state = next_state(state);
937 if (start < end && state && state->start == start &&
938 !need_resched())
939 goto hit_next;
940 goto search_again;
941 }
942
943 /*
944 * | ---- desired range ---- |
945 * | state |
946 * or
947 * | ------------- state -------------- |
948 *
949 * We need to split the extent we found, and may flip bits on
950 * second half.
951 *
952 * If the extent we found extends past our
953 * range, we just split and search again. It'll get split
954 * again the next time though.
955 *
956 * If the extent we found is inside our range, we set the
957 * desired bit on it.
958 */
959 if (state->start < start) {
960 if (state->state & exclusive_bits) {
961 *failed_start = start;
962 err = -EEXIST;
963 goto out;
964 }
965
966 prealloc = alloc_extent_state_atomic(prealloc);
967 BUG_ON(!prealloc);
968 err = split_state(tree, state, prealloc, start);
969 if (err)
970 extent_io_tree_panic(tree, err);
971
972 prealloc = NULL;
973 if (err)
974 goto out;
975 if (state->end <= end) {
976 set_state_bits(tree, state, &bits, changeset);
977 cache_state(state, cached_state);
978 merge_state(tree, state);
979 if (last_end == (u64)-1)
980 goto out;
981 start = last_end + 1;
982 state = next_state(state);
983 if (start < end && state && state->start == start &&
984 !need_resched())
985 goto hit_next;
986 }
987 goto search_again;
988 }
989 /*
990 * | ---- desired range ---- |
991 * | state | or | state |
992 *
993 * There's a hole, we need to insert something in it and
994 * ignore the extent we found.
995 */
996 if (state->start > start) {
997 u64 this_end;
998 if (end < last_start)
999 this_end = end;
1000 else
1001 this_end = last_start - 1;
1002
1003 prealloc = alloc_extent_state_atomic(prealloc);
1004 BUG_ON(!prealloc);
1005
1006 /*
1007 * Avoid to free 'prealloc' if it can be merged with
1008 * the later extent.
1009 */
1010 err = insert_state(tree, prealloc, start, this_end,
1011 NULL, NULL, &bits, changeset);
1012 if (err)
1013 extent_io_tree_panic(tree, err);
1014
1015 cache_state(prealloc, cached_state);
1016 prealloc = NULL;
1017 start = this_end + 1;
1018 goto search_again;
1019 }
1020 /*
1021 * | ---- desired range ---- |
1022 * | state |
1023 * We need to split the extent, and set the bit
1024 * on the first half
1025 */
1026 if (state->start <= end && state->end > end) {
1027 if (state->state & exclusive_bits) {
1028 *failed_start = start;
1029 err = -EEXIST;
1030 goto out;
1031 }
1032
1033 prealloc = alloc_extent_state_atomic(prealloc);
1034 BUG_ON(!prealloc);
1035 err = split_state(tree, state, prealloc, end + 1);
1036 if (err)
1037 extent_io_tree_panic(tree, err);
1038
1039 set_state_bits(tree, prealloc, &bits, changeset);
1040 cache_state(prealloc, cached_state);
1041 merge_state(tree, prealloc);
1042 prealloc = NULL;
1043 goto out;
1044 }
1045
1046 search_again:
1047 if (start > end)
1048 goto out;
1049 spin_unlock(&tree->lock);
1050 if (gfpflags_allow_blocking(mask))
1051 cond_resched();
1052 goto again;
1053
1054 out:
1055 spin_unlock(&tree->lock);
1056 if (prealloc)
1057 free_extent_state(prealloc);
1058
1059 return err;
1060
1061 }
1062
1063 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1064 unsigned bits, u64 * failed_start,
1065 struct extent_state **cached_state, gfp_t mask)
1066 {
1067 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1068 cached_state, mask, NULL);
1069 }
1070
1071
1072 /**
1073 * convert_extent_bit - convert all bits in a given range from one bit to
1074 * another
1075 * @tree: the io tree to search
1076 * @start: the start offset in bytes
1077 * @end: the end offset in bytes (inclusive)
1078 * @bits: the bits to set in this range
1079 * @clear_bits: the bits to clear in this range
1080 * @cached_state: state that we're going to cache
1081 *
1082 * This will go through and set bits for the given range. If any states exist
1083 * already in this range they are set with the given bit and cleared of the
1084 * clear_bits. This is only meant to be used by things that are mergeable, ie
1085 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1086 * boundary bits like LOCK.
1087 *
1088 * All allocations are done with GFP_NOFS.
1089 */
1090 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1091 unsigned bits, unsigned clear_bits,
1092 struct extent_state **cached_state)
1093 {
1094 struct extent_state *state;
1095 struct extent_state *prealloc = NULL;
1096 struct rb_node *node;
1097 struct rb_node **p;
1098 struct rb_node *parent;
1099 int err = 0;
1100 u64 last_start;
1101 u64 last_end;
1102 bool first_iteration = true;
1103
1104 btrfs_debug_check_extent_io_range(tree, start, end);
1105
1106 again:
1107 if (!prealloc) {
1108 /*
1109 * Best effort, don't worry if extent state allocation fails
1110 * here for the first iteration. We might have a cached state
1111 * that matches exactly the target range, in which case no
1112 * extent state allocations are needed. We'll only know this
1113 * after locking the tree.
1114 */
1115 prealloc = alloc_extent_state(GFP_NOFS);
1116 if (!prealloc && !first_iteration)
1117 return -ENOMEM;
1118 }
1119
1120 spin_lock(&tree->lock);
1121 if (cached_state && *cached_state) {
1122 state = *cached_state;
1123 if (state->start <= start && state->end > start &&
1124 extent_state_in_tree(state)) {
1125 node = &state->rb_node;
1126 goto hit_next;
1127 }
1128 }
1129
1130 /*
1131 * this search will find all the extents that end after
1132 * our range starts.
1133 */
1134 node = tree_search_for_insert(tree, start, &p, &parent);
1135 if (!node) {
1136 prealloc = alloc_extent_state_atomic(prealloc);
1137 if (!prealloc) {
1138 err = -ENOMEM;
1139 goto out;
1140 }
1141 err = insert_state(tree, prealloc, start, end,
1142 &p, &parent, &bits, NULL);
1143 if (err)
1144 extent_io_tree_panic(tree, err);
1145 cache_state(prealloc, cached_state);
1146 prealloc = NULL;
1147 goto out;
1148 }
1149 state = rb_entry(node, struct extent_state, rb_node);
1150 hit_next:
1151 last_start = state->start;
1152 last_end = state->end;
1153
1154 /*
1155 * | ---- desired range ---- |
1156 * | state |
1157 *
1158 * Just lock what we found and keep going
1159 */
1160 if (state->start == start && state->end <= end) {
1161 set_state_bits(tree, state, &bits, NULL);
1162 cache_state(state, cached_state);
1163 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1164 if (last_end == (u64)-1)
1165 goto out;
1166 start = last_end + 1;
1167 if (start < end && state && state->start == start &&
1168 !need_resched())
1169 goto hit_next;
1170 goto search_again;
1171 }
1172
1173 /*
1174 * | ---- desired range ---- |
1175 * | state |
1176 * or
1177 * | ------------- state -------------- |
1178 *
1179 * We need to split the extent we found, and may flip bits on
1180 * second half.
1181 *
1182 * If the extent we found extends past our
1183 * range, we just split and search again. It'll get split
1184 * again the next time though.
1185 *
1186 * If the extent we found is inside our range, we set the
1187 * desired bit on it.
1188 */
1189 if (state->start < start) {
1190 prealloc = alloc_extent_state_atomic(prealloc);
1191 if (!prealloc) {
1192 err = -ENOMEM;
1193 goto out;
1194 }
1195 err = split_state(tree, state, prealloc, start);
1196 if (err)
1197 extent_io_tree_panic(tree, err);
1198 prealloc = NULL;
1199 if (err)
1200 goto out;
1201 if (state->end <= end) {
1202 set_state_bits(tree, state, &bits, NULL);
1203 cache_state(state, cached_state);
1204 state = clear_state_bit(tree, state, &clear_bits, 0,
1205 NULL);
1206 if (last_end == (u64)-1)
1207 goto out;
1208 start = last_end + 1;
1209 if (start < end && state && state->start == start &&
1210 !need_resched())
1211 goto hit_next;
1212 }
1213 goto search_again;
1214 }
1215 /*
1216 * | ---- desired range ---- |
1217 * | state | or | state |
1218 *
1219 * There's a hole, we need to insert something in it and
1220 * ignore the extent we found.
1221 */
1222 if (state->start > start) {
1223 u64 this_end;
1224 if (end < last_start)
1225 this_end = end;
1226 else
1227 this_end = last_start - 1;
1228
1229 prealloc = alloc_extent_state_atomic(prealloc);
1230 if (!prealloc) {
1231 err = -ENOMEM;
1232 goto out;
1233 }
1234
1235 /*
1236 * Avoid to free 'prealloc' if it can be merged with
1237 * the later extent.
1238 */
1239 err = insert_state(tree, prealloc, start, this_end,
1240 NULL, NULL, &bits, NULL);
1241 if (err)
1242 extent_io_tree_panic(tree, err);
1243 cache_state(prealloc, cached_state);
1244 prealloc = NULL;
1245 start = this_end + 1;
1246 goto search_again;
1247 }
1248 /*
1249 * | ---- desired range ---- |
1250 * | state |
1251 * We need to split the extent, and set the bit
1252 * on the first half
1253 */
1254 if (state->start <= end && state->end > end) {
1255 prealloc = alloc_extent_state_atomic(prealloc);
1256 if (!prealloc) {
1257 err = -ENOMEM;
1258 goto out;
1259 }
1260
1261 err = split_state(tree, state, prealloc, end + 1);
1262 if (err)
1263 extent_io_tree_panic(tree, err);
1264
1265 set_state_bits(tree, prealloc, &bits, NULL);
1266 cache_state(prealloc, cached_state);
1267 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1268 prealloc = NULL;
1269 goto out;
1270 }
1271
1272 search_again:
1273 if (start > end)
1274 goto out;
1275 spin_unlock(&tree->lock);
1276 cond_resched();
1277 first_iteration = false;
1278 goto again;
1279
1280 out:
1281 spin_unlock(&tree->lock);
1282 if (prealloc)
1283 free_extent_state(prealloc);
1284
1285 return err;
1286 }
1287
1288 /* wrappers around set/clear extent bit */
1289 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1290 unsigned bits, struct extent_changeset *changeset)
1291 {
1292 /*
1293 * We don't support EXTENT_LOCKED yet, as current changeset will
1294 * record any bits changed, so for EXTENT_LOCKED case, it will
1295 * either fail with -EEXIST or changeset will record the whole
1296 * range.
1297 */
1298 BUG_ON(bits & EXTENT_LOCKED);
1299
1300 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1301 changeset);
1302 }
1303
1304 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1305 unsigned bits, int wake, int delete,
1306 struct extent_state **cached, gfp_t mask)
1307 {
1308 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1309 cached, mask, NULL);
1310 }
1311
1312 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1313 unsigned bits, struct extent_changeset *changeset)
1314 {
1315 /*
1316 * Don't support EXTENT_LOCKED case, same reason as
1317 * set_record_extent_bits().
1318 */
1319 BUG_ON(bits & EXTENT_LOCKED);
1320
1321 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1322 changeset);
1323 }
1324
1325 /*
1326 * either insert or lock state struct between start and end use mask to tell
1327 * us if waiting is desired.
1328 */
1329 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1330 struct extent_state **cached_state)
1331 {
1332 int err;
1333 u64 failed_start;
1334
1335 while (1) {
1336 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1337 EXTENT_LOCKED, &failed_start,
1338 cached_state, GFP_NOFS, NULL);
1339 if (err == -EEXIST) {
1340 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1341 start = failed_start;
1342 } else
1343 break;
1344 WARN_ON(start > end);
1345 }
1346 return err;
1347 }
1348
1349 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1350 {
1351 int err;
1352 u64 failed_start;
1353
1354 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1355 &failed_start, NULL, GFP_NOFS, NULL);
1356 if (err == -EEXIST) {
1357 if (failed_start > start)
1358 clear_extent_bit(tree, start, failed_start - 1,
1359 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1360 return 0;
1361 }
1362 return 1;
1363 }
1364
1365 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1366 {
1367 unsigned long index = start >> PAGE_SHIFT;
1368 unsigned long end_index = end >> PAGE_SHIFT;
1369 struct page *page;
1370
1371 while (index <= end_index) {
1372 page = find_get_page(inode->i_mapping, index);
1373 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1374 clear_page_dirty_for_io(page);
1375 put_page(page);
1376 index++;
1377 }
1378 }
1379
1380 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1381 {
1382 unsigned long index = start >> PAGE_SHIFT;
1383 unsigned long end_index = end >> PAGE_SHIFT;
1384 struct page *page;
1385
1386 while (index <= end_index) {
1387 page = find_get_page(inode->i_mapping, index);
1388 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1389 __set_page_dirty_nobuffers(page);
1390 account_page_redirty(page);
1391 put_page(page);
1392 index++;
1393 }
1394 }
1395
1396 /*
1397 * helper function to set both pages and extents in the tree writeback
1398 */
1399 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1400 {
1401 unsigned long index = start >> PAGE_SHIFT;
1402 unsigned long end_index = end >> PAGE_SHIFT;
1403 struct page *page;
1404
1405 while (index <= end_index) {
1406 page = find_get_page(tree->mapping, index);
1407 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1408 set_page_writeback(page);
1409 put_page(page);
1410 index++;
1411 }
1412 }
1413
1414 /* find the first state struct with 'bits' set after 'start', and
1415 * return it. tree->lock must be held. NULL will returned if
1416 * nothing was found after 'start'
1417 */
1418 static struct extent_state *
1419 find_first_extent_bit_state(struct extent_io_tree *tree,
1420 u64 start, unsigned bits)
1421 {
1422 struct rb_node *node;
1423 struct extent_state *state;
1424
1425 /*
1426 * this search will find all the extents that end after
1427 * our range starts.
1428 */
1429 node = tree_search(tree, start);
1430 if (!node)
1431 goto out;
1432
1433 while (1) {
1434 state = rb_entry(node, struct extent_state, rb_node);
1435 if (state->end >= start && (state->state & bits))
1436 return state;
1437
1438 node = rb_next(node);
1439 if (!node)
1440 break;
1441 }
1442 out:
1443 return NULL;
1444 }
1445
1446 /*
1447 * find the first offset in the io tree with 'bits' set. zero is
1448 * returned if we find something, and *start_ret and *end_ret are
1449 * set to reflect the state struct that was found.
1450 *
1451 * If nothing was found, 1 is returned. If found something, return 0.
1452 */
1453 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1454 u64 *start_ret, u64 *end_ret, unsigned bits,
1455 struct extent_state **cached_state)
1456 {
1457 struct extent_state *state;
1458 struct rb_node *n;
1459 int ret = 1;
1460
1461 spin_lock(&tree->lock);
1462 if (cached_state && *cached_state) {
1463 state = *cached_state;
1464 if (state->end == start - 1 && extent_state_in_tree(state)) {
1465 n = rb_next(&state->rb_node);
1466 while (n) {
1467 state = rb_entry(n, struct extent_state,
1468 rb_node);
1469 if (state->state & bits)
1470 goto got_it;
1471 n = rb_next(n);
1472 }
1473 free_extent_state(*cached_state);
1474 *cached_state = NULL;
1475 goto out;
1476 }
1477 free_extent_state(*cached_state);
1478 *cached_state = NULL;
1479 }
1480
1481 state = find_first_extent_bit_state(tree, start, bits);
1482 got_it:
1483 if (state) {
1484 cache_state_if_flags(state, cached_state, 0);
1485 *start_ret = state->start;
1486 *end_ret = state->end;
1487 ret = 0;
1488 }
1489 out:
1490 spin_unlock(&tree->lock);
1491 return ret;
1492 }
1493
1494 /*
1495 * find a contiguous range of bytes in the file marked as delalloc, not
1496 * more than 'max_bytes'. start and end are used to return the range,
1497 *
1498 * 1 is returned if we find something, 0 if nothing was in the tree
1499 */
1500 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1501 u64 *start, u64 *end, u64 max_bytes,
1502 struct extent_state **cached_state)
1503 {
1504 struct rb_node *node;
1505 struct extent_state *state;
1506 u64 cur_start = *start;
1507 u64 found = 0;
1508 u64 total_bytes = 0;
1509
1510 spin_lock(&tree->lock);
1511
1512 /*
1513 * this search will find all the extents that end after
1514 * our range starts.
1515 */
1516 node = tree_search(tree, cur_start);
1517 if (!node) {
1518 if (!found)
1519 *end = (u64)-1;
1520 goto out;
1521 }
1522
1523 while (1) {
1524 state = rb_entry(node, struct extent_state, rb_node);
1525 if (found && (state->start != cur_start ||
1526 (state->state & EXTENT_BOUNDARY))) {
1527 goto out;
1528 }
1529 if (!(state->state & EXTENT_DELALLOC)) {
1530 if (!found)
1531 *end = state->end;
1532 goto out;
1533 }
1534 if (!found) {
1535 *start = state->start;
1536 *cached_state = state;
1537 atomic_inc(&state->refs);
1538 }
1539 found++;
1540 *end = state->end;
1541 cur_start = state->end + 1;
1542 node = rb_next(node);
1543 total_bytes += state->end - state->start + 1;
1544 if (total_bytes >= max_bytes)
1545 break;
1546 if (!node)
1547 break;
1548 }
1549 out:
1550 spin_unlock(&tree->lock);
1551 return found;
1552 }
1553
1554 static noinline void __unlock_for_delalloc(struct inode *inode,
1555 struct page *locked_page,
1556 u64 start, u64 end)
1557 {
1558 int ret;
1559 struct page *pages[16];
1560 unsigned long index = start >> PAGE_SHIFT;
1561 unsigned long end_index = end >> PAGE_SHIFT;
1562 unsigned long nr_pages = end_index - index + 1;
1563 int i;
1564
1565 if (index == locked_page->index && end_index == index)
1566 return;
1567
1568 while (nr_pages > 0) {
1569 ret = find_get_pages_contig(inode->i_mapping, index,
1570 min_t(unsigned long, nr_pages,
1571 ARRAY_SIZE(pages)), pages);
1572 for (i = 0; i < ret; i++) {
1573 if (pages[i] != locked_page)
1574 unlock_page(pages[i]);
1575 put_page(pages[i]);
1576 }
1577 nr_pages -= ret;
1578 index += ret;
1579 cond_resched();
1580 }
1581 }
1582
1583 static noinline int lock_delalloc_pages(struct inode *inode,
1584 struct page *locked_page,
1585 u64 delalloc_start,
1586 u64 delalloc_end)
1587 {
1588 unsigned long index = delalloc_start >> PAGE_SHIFT;
1589 unsigned long start_index = index;
1590 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1591 unsigned long pages_locked = 0;
1592 struct page *pages[16];
1593 unsigned long nrpages;
1594 int ret;
1595 int i;
1596
1597 /* the caller is responsible for locking the start index */
1598 if (index == locked_page->index && index == end_index)
1599 return 0;
1600
1601 /* skip the page at the start index */
1602 nrpages = end_index - index + 1;
1603 while (nrpages > 0) {
1604 ret = find_get_pages_contig(inode->i_mapping, index,
1605 min_t(unsigned long,
1606 nrpages, ARRAY_SIZE(pages)), pages);
1607 if (ret == 0) {
1608 ret = -EAGAIN;
1609 goto done;
1610 }
1611 /* now we have an array of pages, lock them all */
1612 for (i = 0; i < ret; i++) {
1613 /*
1614 * the caller is taking responsibility for
1615 * locked_page
1616 */
1617 if (pages[i] != locked_page) {
1618 lock_page(pages[i]);
1619 if (!PageDirty(pages[i]) ||
1620 pages[i]->mapping != inode->i_mapping) {
1621 ret = -EAGAIN;
1622 unlock_page(pages[i]);
1623 put_page(pages[i]);
1624 goto done;
1625 }
1626 }
1627 put_page(pages[i]);
1628 pages_locked++;
1629 }
1630 nrpages -= ret;
1631 index += ret;
1632 cond_resched();
1633 }
1634 ret = 0;
1635 done:
1636 if (ret && pages_locked) {
1637 __unlock_for_delalloc(inode, locked_page,
1638 delalloc_start,
1639 ((u64)(start_index + pages_locked - 1)) <<
1640 PAGE_SHIFT);
1641 }
1642 return ret;
1643 }
1644
1645 /*
1646 * find a contiguous range of bytes in the file marked as delalloc, not
1647 * more than 'max_bytes'. start and end are used to return the range,
1648 *
1649 * 1 is returned if we find something, 0 if nothing was in the tree
1650 */
1651 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1652 struct extent_io_tree *tree,
1653 struct page *locked_page, u64 *start,
1654 u64 *end, u64 max_bytes)
1655 {
1656 u64 delalloc_start;
1657 u64 delalloc_end;
1658 u64 found;
1659 struct extent_state *cached_state = NULL;
1660 int ret;
1661 int loops = 0;
1662
1663 again:
1664 /* step one, find a bunch of delalloc bytes starting at start */
1665 delalloc_start = *start;
1666 delalloc_end = 0;
1667 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1668 max_bytes, &cached_state);
1669 if (!found || delalloc_end <= *start) {
1670 *start = delalloc_start;
1671 *end = delalloc_end;
1672 free_extent_state(cached_state);
1673 return 0;
1674 }
1675
1676 /*
1677 * start comes from the offset of locked_page. We have to lock
1678 * pages in order, so we can't process delalloc bytes before
1679 * locked_page
1680 */
1681 if (delalloc_start < *start)
1682 delalloc_start = *start;
1683
1684 /*
1685 * make sure to limit the number of pages we try to lock down
1686 */
1687 if (delalloc_end + 1 - delalloc_start > max_bytes)
1688 delalloc_end = delalloc_start + max_bytes - 1;
1689
1690 /* step two, lock all the pages after the page that has start */
1691 ret = lock_delalloc_pages(inode, locked_page,
1692 delalloc_start, delalloc_end);
1693 if (ret == -EAGAIN) {
1694 /* some of the pages are gone, lets avoid looping by
1695 * shortening the size of the delalloc range we're searching
1696 */
1697 free_extent_state(cached_state);
1698 cached_state = NULL;
1699 if (!loops) {
1700 max_bytes = PAGE_SIZE;
1701 loops = 1;
1702 goto again;
1703 } else {
1704 found = 0;
1705 goto out_failed;
1706 }
1707 }
1708 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1709
1710 /* step three, lock the state bits for the whole range */
1711 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1712
1713 /* then test to make sure it is all still delalloc */
1714 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1715 EXTENT_DELALLOC, 1, cached_state);
1716 if (!ret) {
1717 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1718 &cached_state, GFP_NOFS);
1719 __unlock_for_delalloc(inode, locked_page,
1720 delalloc_start, delalloc_end);
1721 cond_resched();
1722 goto again;
1723 }
1724 free_extent_state(cached_state);
1725 *start = delalloc_start;
1726 *end = delalloc_end;
1727 out_failed:
1728 return found;
1729 }
1730
1731 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1732 struct page *locked_page,
1733 unsigned clear_bits,
1734 unsigned long page_ops)
1735 {
1736 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1737 int ret;
1738 struct page *pages[16];
1739 unsigned long index = start >> PAGE_SHIFT;
1740 unsigned long end_index = end >> PAGE_SHIFT;
1741 unsigned long nr_pages = end_index - index + 1;
1742 int i;
1743
1744 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1745 if (page_ops == 0)
1746 return;
1747
1748 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1749 mapping_set_error(inode->i_mapping, -EIO);
1750
1751 while (nr_pages > 0) {
1752 ret = find_get_pages_contig(inode->i_mapping, index,
1753 min_t(unsigned long,
1754 nr_pages, ARRAY_SIZE(pages)), pages);
1755 for (i = 0; i < ret; i++) {
1756
1757 if (page_ops & PAGE_SET_PRIVATE2)
1758 SetPagePrivate2(pages[i]);
1759
1760 if (pages[i] == locked_page) {
1761 put_page(pages[i]);
1762 continue;
1763 }
1764 if (page_ops & PAGE_CLEAR_DIRTY)
1765 clear_page_dirty_for_io(pages[i]);
1766 if (page_ops & PAGE_SET_WRITEBACK)
1767 set_page_writeback(pages[i]);
1768 if (page_ops & PAGE_SET_ERROR)
1769 SetPageError(pages[i]);
1770 if (page_ops & PAGE_END_WRITEBACK)
1771 end_page_writeback(pages[i]);
1772 if (page_ops & PAGE_UNLOCK)
1773 unlock_page(pages[i]);
1774 put_page(pages[i]);
1775 }
1776 nr_pages -= ret;
1777 index += ret;
1778 cond_resched();
1779 }
1780 }
1781
1782 /*
1783 * count the number of bytes in the tree that have a given bit(s)
1784 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1785 * cached. The total number found is returned.
1786 */
1787 u64 count_range_bits(struct extent_io_tree *tree,
1788 u64 *start, u64 search_end, u64 max_bytes,
1789 unsigned bits, int contig)
1790 {
1791 struct rb_node *node;
1792 struct extent_state *state;
1793 u64 cur_start = *start;
1794 u64 total_bytes = 0;
1795 u64 last = 0;
1796 int found = 0;
1797
1798 if (WARN_ON(search_end <= cur_start))
1799 return 0;
1800
1801 spin_lock(&tree->lock);
1802 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1803 total_bytes = tree->dirty_bytes;
1804 goto out;
1805 }
1806 /*
1807 * this search will find all the extents that end after
1808 * our range starts.
1809 */
1810 node = tree_search(tree, cur_start);
1811 if (!node)
1812 goto out;
1813
1814 while (1) {
1815 state = rb_entry(node, struct extent_state, rb_node);
1816 if (state->start > search_end)
1817 break;
1818 if (contig && found && state->start > last + 1)
1819 break;
1820 if (state->end >= cur_start && (state->state & bits) == bits) {
1821 total_bytes += min(search_end, state->end) + 1 -
1822 max(cur_start, state->start);
1823 if (total_bytes >= max_bytes)
1824 break;
1825 if (!found) {
1826 *start = max(cur_start, state->start);
1827 found = 1;
1828 }
1829 last = state->end;
1830 } else if (contig && found) {
1831 break;
1832 }
1833 node = rb_next(node);
1834 if (!node)
1835 break;
1836 }
1837 out:
1838 spin_unlock(&tree->lock);
1839 return total_bytes;
1840 }
1841
1842 /*
1843 * set the private field for a given byte offset in the tree. If there isn't
1844 * an extent_state there already, this does nothing.
1845 */
1846 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1847 struct io_failure_record *failrec)
1848 {
1849 struct rb_node *node;
1850 struct extent_state *state;
1851 int ret = 0;
1852
1853 spin_lock(&tree->lock);
1854 /*
1855 * this search will find all the extents that end after
1856 * our range starts.
1857 */
1858 node = tree_search(tree, start);
1859 if (!node) {
1860 ret = -ENOENT;
1861 goto out;
1862 }
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1865 ret = -ENOENT;
1866 goto out;
1867 }
1868 state->failrec = failrec;
1869 out:
1870 spin_unlock(&tree->lock);
1871 return ret;
1872 }
1873
1874 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1875 struct io_failure_record **failrec)
1876 {
1877 struct rb_node *node;
1878 struct extent_state *state;
1879 int ret = 0;
1880
1881 spin_lock(&tree->lock);
1882 /*
1883 * this search will find all the extents that end after
1884 * our range starts.
1885 */
1886 node = tree_search(tree, start);
1887 if (!node) {
1888 ret = -ENOENT;
1889 goto out;
1890 }
1891 state = rb_entry(node, struct extent_state, rb_node);
1892 if (state->start != start) {
1893 ret = -ENOENT;
1894 goto out;
1895 }
1896 *failrec = state->failrec;
1897 out:
1898 spin_unlock(&tree->lock);
1899 return ret;
1900 }
1901
1902 /*
1903 * searches a range in the state tree for a given mask.
1904 * If 'filled' == 1, this returns 1 only if every extent in the tree
1905 * has the bits set. Otherwise, 1 is returned if any bit in the
1906 * range is found set.
1907 */
1908 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1909 unsigned bits, int filled, struct extent_state *cached)
1910 {
1911 struct extent_state *state = NULL;
1912 struct rb_node *node;
1913 int bitset = 0;
1914
1915 spin_lock(&tree->lock);
1916 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1917 cached->end > start)
1918 node = &cached->rb_node;
1919 else
1920 node = tree_search(tree, start);
1921 while (node && start <= end) {
1922 state = rb_entry(node, struct extent_state, rb_node);
1923
1924 if (filled && state->start > start) {
1925 bitset = 0;
1926 break;
1927 }
1928
1929 if (state->start > end)
1930 break;
1931
1932 if (state->state & bits) {
1933 bitset = 1;
1934 if (!filled)
1935 break;
1936 } else if (filled) {
1937 bitset = 0;
1938 break;
1939 }
1940
1941 if (state->end == (u64)-1)
1942 break;
1943
1944 start = state->end + 1;
1945 if (start > end)
1946 break;
1947 node = rb_next(node);
1948 if (!node) {
1949 if (filled)
1950 bitset = 0;
1951 break;
1952 }
1953 }
1954 spin_unlock(&tree->lock);
1955 return bitset;
1956 }
1957
1958 /*
1959 * helper function to set a given page up to date if all the
1960 * extents in the tree for that page are up to date
1961 */
1962 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1963 {
1964 u64 start = page_offset(page);
1965 u64 end = start + PAGE_SIZE - 1;
1966 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1967 SetPageUptodate(page);
1968 }
1969
1970 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1971 {
1972 int ret;
1973 int err = 0;
1974 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1975
1976 set_state_failrec(failure_tree, rec->start, NULL);
1977 ret = clear_extent_bits(failure_tree, rec->start,
1978 rec->start + rec->len - 1,
1979 EXTENT_LOCKED | EXTENT_DIRTY);
1980 if (ret)
1981 err = ret;
1982
1983 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1984 rec->start + rec->len - 1,
1985 EXTENT_DAMAGED);
1986 if (ret && !err)
1987 err = ret;
1988
1989 kfree(rec);
1990 return err;
1991 }
1992
1993 /*
1994 * this bypasses the standard btrfs submit functions deliberately, as
1995 * the standard behavior is to write all copies in a raid setup. here we only
1996 * want to write the one bad copy. so we do the mapping for ourselves and issue
1997 * submit_bio directly.
1998 * to avoid any synchronization issues, wait for the data after writing, which
1999 * actually prevents the read that triggered the error from finishing.
2000 * currently, there can be no more than two copies of every data bit. thus,
2001 * exactly one rewrite is required.
2002 */
2003 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2004 struct page *page, unsigned int pg_offset, int mirror_num)
2005 {
2006 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2007 struct bio *bio;
2008 struct btrfs_device *dev;
2009 u64 map_length = 0;
2010 u64 sector;
2011 struct btrfs_bio *bbio = NULL;
2012 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2013 int ret;
2014
2015 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2016 BUG_ON(!mirror_num);
2017
2018 /* we can't repair anything in raid56 yet */
2019 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2020 return 0;
2021
2022 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2023 if (!bio)
2024 return -EIO;
2025 bio->bi_iter.bi_size = 0;
2026 map_length = length;
2027
2028 ret = btrfs_map_block(fs_info, WRITE, logical,
2029 &map_length, &bbio, mirror_num);
2030 if (ret) {
2031 bio_put(bio);
2032 return -EIO;
2033 }
2034 BUG_ON(mirror_num != bbio->mirror_num);
2035 sector = bbio->stripes[mirror_num-1].physical >> 9;
2036 bio->bi_iter.bi_sector = sector;
2037 dev = bbio->stripes[mirror_num-1].dev;
2038 btrfs_put_bbio(bbio);
2039 if (!dev || !dev->bdev || !dev->writeable) {
2040 bio_put(bio);
2041 return -EIO;
2042 }
2043 bio->bi_bdev = dev->bdev;
2044 bio_add_page(bio, page, length, pg_offset);
2045
2046 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2047 /* try to remap that extent elsewhere? */
2048 bio_put(bio);
2049 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2050 return -EIO;
2051 }
2052
2053 btrfs_info_rl_in_rcu(fs_info,
2054 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2055 btrfs_ino(inode), start,
2056 rcu_str_deref(dev->name), sector);
2057 bio_put(bio);
2058 return 0;
2059 }
2060
2061 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2062 int mirror_num)
2063 {
2064 u64 start = eb->start;
2065 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2066 int ret = 0;
2067
2068 if (root->fs_info->sb->s_flags & MS_RDONLY)
2069 return -EROFS;
2070
2071 for (i = 0; i < num_pages; i++) {
2072 struct page *p = eb->pages[i];
2073
2074 ret = repair_io_failure(root->fs_info->btree_inode, start,
2075 PAGE_SIZE, start, p,
2076 start - page_offset(p), mirror_num);
2077 if (ret)
2078 break;
2079 start += PAGE_SIZE;
2080 }
2081
2082 return ret;
2083 }
2084
2085 /*
2086 * each time an IO finishes, we do a fast check in the IO failure tree
2087 * to see if we need to process or clean up an io_failure_record
2088 */
2089 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2090 unsigned int pg_offset)
2091 {
2092 u64 private;
2093 struct io_failure_record *failrec;
2094 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2095 struct extent_state *state;
2096 int num_copies;
2097 int ret;
2098
2099 private = 0;
2100 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2101 (u64)-1, 1, EXTENT_DIRTY, 0);
2102 if (!ret)
2103 return 0;
2104
2105 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2106 &failrec);
2107 if (ret)
2108 return 0;
2109
2110 BUG_ON(!failrec->this_mirror);
2111
2112 if (failrec->in_validation) {
2113 /* there was no real error, just free the record */
2114 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2115 failrec->start);
2116 goto out;
2117 }
2118 if (fs_info->sb->s_flags & MS_RDONLY)
2119 goto out;
2120
2121 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2122 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2123 failrec->start,
2124 EXTENT_LOCKED);
2125 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2126
2127 if (state && state->start <= failrec->start &&
2128 state->end >= failrec->start + failrec->len - 1) {
2129 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2130 failrec->len);
2131 if (num_copies > 1) {
2132 repair_io_failure(inode, start, failrec->len,
2133 failrec->logical, page,
2134 pg_offset, failrec->failed_mirror);
2135 }
2136 }
2137
2138 out:
2139 free_io_failure(inode, failrec);
2140
2141 return 0;
2142 }
2143
2144 /*
2145 * Can be called when
2146 * - hold extent lock
2147 * - under ordered extent
2148 * - the inode is freeing
2149 */
2150 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2151 {
2152 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2153 struct io_failure_record *failrec;
2154 struct extent_state *state, *next;
2155
2156 if (RB_EMPTY_ROOT(&failure_tree->state))
2157 return;
2158
2159 spin_lock(&failure_tree->lock);
2160 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2161 while (state) {
2162 if (state->start > end)
2163 break;
2164
2165 ASSERT(state->end <= end);
2166
2167 next = next_state(state);
2168
2169 failrec = state->failrec;
2170 free_extent_state(state);
2171 kfree(failrec);
2172
2173 state = next;
2174 }
2175 spin_unlock(&failure_tree->lock);
2176 }
2177
2178 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2179 struct io_failure_record **failrec_ret)
2180 {
2181 struct io_failure_record *failrec;
2182 struct extent_map *em;
2183 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2184 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2185 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2186 int ret;
2187 u64 logical;
2188
2189 ret = get_state_failrec(failure_tree, start, &failrec);
2190 if (ret) {
2191 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2192 if (!failrec)
2193 return -ENOMEM;
2194
2195 failrec->start = start;
2196 failrec->len = end - start + 1;
2197 failrec->this_mirror = 0;
2198 failrec->bio_flags = 0;
2199 failrec->in_validation = 0;
2200
2201 read_lock(&em_tree->lock);
2202 em = lookup_extent_mapping(em_tree, start, failrec->len);
2203 if (!em) {
2204 read_unlock(&em_tree->lock);
2205 kfree(failrec);
2206 return -EIO;
2207 }
2208
2209 if (em->start > start || em->start + em->len <= start) {
2210 free_extent_map(em);
2211 em = NULL;
2212 }
2213 read_unlock(&em_tree->lock);
2214 if (!em) {
2215 kfree(failrec);
2216 return -EIO;
2217 }
2218
2219 logical = start - em->start;
2220 logical = em->block_start + logical;
2221 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2222 logical = em->block_start;
2223 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2224 extent_set_compress_type(&failrec->bio_flags,
2225 em->compress_type);
2226 }
2227
2228 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2229 logical, start, failrec->len);
2230
2231 failrec->logical = logical;
2232 free_extent_map(em);
2233
2234 /* set the bits in the private failure tree */
2235 ret = set_extent_bits(failure_tree, start, end,
2236 EXTENT_LOCKED | EXTENT_DIRTY);
2237 if (ret >= 0)
2238 ret = set_state_failrec(failure_tree, start, failrec);
2239 /* set the bits in the inode's tree */
2240 if (ret >= 0)
2241 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2242 if (ret < 0) {
2243 kfree(failrec);
2244 return ret;
2245 }
2246 } else {
2247 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2248 failrec->logical, failrec->start, failrec->len,
2249 failrec->in_validation);
2250 /*
2251 * when data can be on disk more than twice, add to failrec here
2252 * (e.g. with a list for failed_mirror) to make
2253 * clean_io_failure() clean all those errors at once.
2254 */
2255 }
2256
2257 *failrec_ret = failrec;
2258
2259 return 0;
2260 }
2261
2262 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2263 struct io_failure_record *failrec, int failed_mirror)
2264 {
2265 int num_copies;
2266
2267 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2268 failrec->logical, failrec->len);
2269 if (num_copies == 1) {
2270 /*
2271 * we only have a single copy of the data, so don't bother with
2272 * all the retry and error correction code that follows. no
2273 * matter what the error is, it is very likely to persist.
2274 */
2275 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2276 num_copies, failrec->this_mirror, failed_mirror);
2277 return 0;
2278 }
2279
2280 /*
2281 * there are two premises:
2282 * a) deliver good data to the caller
2283 * b) correct the bad sectors on disk
2284 */
2285 if (failed_bio->bi_vcnt > 1) {
2286 /*
2287 * to fulfill b), we need to know the exact failing sectors, as
2288 * we don't want to rewrite any more than the failed ones. thus,
2289 * we need separate read requests for the failed bio
2290 *
2291 * if the following BUG_ON triggers, our validation request got
2292 * merged. we need separate requests for our algorithm to work.
2293 */
2294 BUG_ON(failrec->in_validation);
2295 failrec->in_validation = 1;
2296 failrec->this_mirror = failed_mirror;
2297 } else {
2298 /*
2299 * we're ready to fulfill a) and b) alongside. get a good copy
2300 * of the failed sector and if we succeed, we have setup
2301 * everything for repair_io_failure to do the rest for us.
2302 */
2303 if (failrec->in_validation) {
2304 BUG_ON(failrec->this_mirror != failed_mirror);
2305 failrec->in_validation = 0;
2306 failrec->this_mirror = 0;
2307 }
2308 failrec->failed_mirror = failed_mirror;
2309 failrec->this_mirror++;
2310 if (failrec->this_mirror == failed_mirror)
2311 failrec->this_mirror++;
2312 }
2313
2314 if (failrec->this_mirror > num_copies) {
2315 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2316 num_copies, failrec->this_mirror, failed_mirror);
2317 return 0;
2318 }
2319
2320 return 1;
2321 }
2322
2323
2324 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2325 struct io_failure_record *failrec,
2326 struct page *page, int pg_offset, int icsum,
2327 bio_end_io_t *endio_func, void *data)
2328 {
2329 struct bio *bio;
2330 struct btrfs_io_bio *btrfs_failed_bio;
2331 struct btrfs_io_bio *btrfs_bio;
2332
2333 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2334 if (!bio)
2335 return NULL;
2336
2337 bio->bi_end_io = endio_func;
2338 bio->bi_iter.bi_sector = failrec->logical >> 9;
2339 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2340 bio->bi_iter.bi_size = 0;
2341 bio->bi_private = data;
2342
2343 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2344 if (btrfs_failed_bio->csum) {
2345 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2346 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2347
2348 btrfs_bio = btrfs_io_bio(bio);
2349 btrfs_bio->csum = btrfs_bio->csum_inline;
2350 icsum *= csum_size;
2351 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2352 csum_size);
2353 }
2354
2355 bio_add_page(bio, page, failrec->len, pg_offset);
2356
2357 return bio;
2358 }
2359
2360 /*
2361 * this is a generic handler for readpage errors (default
2362 * readpage_io_failed_hook). if other copies exist, read those and write back
2363 * good data to the failed position. does not investigate in remapping the
2364 * failed extent elsewhere, hoping the device will be smart enough to do this as
2365 * needed
2366 */
2367
2368 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2369 struct page *page, u64 start, u64 end,
2370 int failed_mirror)
2371 {
2372 struct io_failure_record *failrec;
2373 struct inode *inode = page->mapping->host;
2374 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2375 struct bio *bio;
2376 int read_mode;
2377 int ret;
2378
2379 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2380
2381 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2382 if (ret)
2383 return ret;
2384
2385 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2386 if (!ret) {
2387 free_io_failure(inode, failrec);
2388 return -EIO;
2389 }
2390
2391 if (failed_bio->bi_vcnt > 1)
2392 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2393 else
2394 read_mode = READ_SYNC;
2395
2396 phy_offset >>= inode->i_sb->s_blocksize_bits;
2397 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2398 start - page_offset(page),
2399 (int)phy_offset, failed_bio->bi_end_io,
2400 NULL);
2401 if (!bio) {
2402 free_io_failure(inode, failrec);
2403 return -EIO;
2404 }
2405
2406 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2407 read_mode, failrec->this_mirror, failrec->in_validation);
2408
2409 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2410 failrec->this_mirror,
2411 failrec->bio_flags, 0);
2412 if (ret) {
2413 free_io_failure(inode, failrec);
2414 bio_put(bio);
2415 }
2416
2417 return ret;
2418 }
2419
2420 /* lots and lots of room for performance fixes in the end_bio funcs */
2421
2422 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2423 {
2424 int uptodate = (err == 0);
2425 struct extent_io_tree *tree;
2426 int ret = 0;
2427
2428 tree = &BTRFS_I(page->mapping->host)->io_tree;
2429
2430 if (tree->ops && tree->ops->writepage_end_io_hook) {
2431 ret = tree->ops->writepage_end_io_hook(page, start,
2432 end, NULL, uptodate);
2433 if (ret)
2434 uptodate = 0;
2435 }
2436
2437 if (!uptodate) {
2438 ClearPageUptodate(page);
2439 SetPageError(page);
2440 ret = ret < 0 ? ret : -EIO;
2441 mapping_set_error(page->mapping, ret);
2442 }
2443 }
2444
2445 /*
2446 * after a writepage IO is done, we need to:
2447 * clear the uptodate bits on error
2448 * clear the writeback bits in the extent tree for this IO
2449 * end_page_writeback if the page has no more pending IO
2450 *
2451 * Scheduling is not allowed, so the extent state tree is expected
2452 * to have one and only one object corresponding to this IO.
2453 */
2454 static void end_bio_extent_writepage(struct bio *bio)
2455 {
2456 struct bio_vec *bvec;
2457 u64 start;
2458 u64 end;
2459 int i;
2460
2461 bio_for_each_segment_all(bvec, bio, i) {
2462 struct page *page = bvec->bv_page;
2463
2464 /* We always issue full-page reads, but if some block
2465 * in a page fails to read, blk_update_request() will
2466 * advance bv_offset and adjust bv_len to compensate.
2467 * Print a warning for nonzero offsets, and an error
2468 * if they don't add up to a full page. */
2469 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2470 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2471 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2472 "partial page write in btrfs with offset %u and length %u",
2473 bvec->bv_offset, bvec->bv_len);
2474 else
2475 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2476 "incomplete page write in btrfs with offset %u and "
2477 "length %u",
2478 bvec->bv_offset, bvec->bv_len);
2479 }
2480
2481 start = page_offset(page);
2482 end = start + bvec->bv_offset + bvec->bv_len - 1;
2483
2484 end_extent_writepage(page, bio->bi_error, start, end);
2485 end_page_writeback(page);
2486 }
2487
2488 bio_put(bio);
2489 }
2490
2491 static void
2492 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2493 int uptodate)
2494 {
2495 struct extent_state *cached = NULL;
2496 u64 end = start + len - 1;
2497
2498 if (uptodate && tree->track_uptodate)
2499 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2500 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2501 }
2502
2503 /*
2504 * after a readpage IO is done, we need to:
2505 * clear the uptodate bits on error
2506 * set the uptodate bits if things worked
2507 * set the page up to date if all extents in the tree are uptodate
2508 * clear the lock bit in the extent tree
2509 * unlock the page if there are no other extents locked for it
2510 *
2511 * Scheduling is not allowed, so the extent state tree is expected
2512 * to have one and only one object corresponding to this IO.
2513 */
2514 static void end_bio_extent_readpage(struct bio *bio)
2515 {
2516 struct bio_vec *bvec;
2517 int uptodate = !bio->bi_error;
2518 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2519 struct extent_io_tree *tree;
2520 u64 offset = 0;
2521 u64 start;
2522 u64 end;
2523 u64 len;
2524 u64 extent_start = 0;
2525 u64 extent_len = 0;
2526 int mirror;
2527 int ret;
2528 int i;
2529
2530 bio_for_each_segment_all(bvec, bio, i) {
2531 struct page *page = bvec->bv_page;
2532 struct inode *inode = page->mapping->host;
2533
2534 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2535 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2536 bio->bi_error, io_bio->mirror_num);
2537 tree = &BTRFS_I(inode)->io_tree;
2538
2539 /* We always issue full-page reads, but if some block
2540 * in a page fails to read, blk_update_request() will
2541 * advance bv_offset and adjust bv_len to compensate.
2542 * Print a warning for nonzero offsets, and an error
2543 * if they don't add up to a full page. */
2544 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2545 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2546 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2547 "partial page read in btrfs with offset %u and length %u",
2548 bvec->bv_offset, bvec->bv_len);
2549 else
2550 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2551 "incomplete page read in btrfs with offset %u and "
2552 "length %u",
2553 bvec->bv_offset, bvec->bv_len);
2554 }
2555
2556 start = page_offset(page);
2557 end = start + bvec->bv_offset + bvec->bv_len - 1;
2558 len = bvec->bv_len;
2559
2560 mirror = io_bio->mirror_num;
2561 if (likely(uptodate && tree->ops &&
2562 tree->ops->readpage_end_io_hook)) {
2563 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2564 page, start, end,
2565 mirror);
2566 if (ret)
2567 uptodate = 0;
2568 else
2569 clean_io_failure(inode, start, page, 0);
2570 }
2571
2572 if (likely(uptodate))
2573 goto readpage_ok;
2574
2575 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2576 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2577 if (!ret && !bio->bi_error)
2578 uptodate = 1;
2579 } else {
2580 /*
2581 * The generic bio_readpage_error handles errors the
2582 * following way: If possible, new read requests are
2583 * created and submitted and will end up in
2584 * end_bio_extent_readpage as well (if we're lucky, not
2585 * in the !uptodate case). In that case it returns 0 and
2586 * we just go on with the next page in our bio. If it
2587 * can't handle the error it will return -EIO and we
2588 * remain responsible for that page.
2589 */
2590 ret = bio_readpage_error(bio, offset, page, start, end,
2591 mirror);
2592 if (ret == 0) {
2593 uptodate = !bio->bi_error;
2594 offset += len;
2595 continue;
2596 }
2597 }
2598 readpage_ok:
2599 if (likely(uptodate)) {
2600 loff_t i_size = i_size_read(inode);
2601 pgoff_t end_index = i_size >> PAGE_SHIFT;
2602 unsigned off;
2603
2604 /* Zero out the end if this page straddles i_size */
2605 off = i_size & (PAGE_SIZE-1);
2606 if (page->index == end_index && off)
2607 zero_user_segment(page, off, PAGE_SIZE);
2608 SetPageUptodate(page);
2609 } else {
2610 ClearPageUptodate(page);
2611 SetPageError(page);
2612 }
2613 unlock_page(page);
2614 offset += len;
2615
2616 if (unlikely(!uptodate)) {
2617 if (extent_len) {
2618 endio_readpage_release_extent(tree,
2619 extent_start,
2620 extent_len, 1);
2621 extent_start = 0;
2622 extent_len = 0;
2623 }
2624 endio_readpage_release_extent(tree, start,
2625 end - start + 1, 0);
2626 } else if (!extent_len) {
2627 extent_start = start;
2628 extent_len = end + 1 - start;
2629 } else if (extent_start + extent_len == start) {
2630 extent_len += end + 1 - start;
2631 } else {
2632 endio_readpage_release_extent(tree, extent_start,
2633 extent_len, uptodate);
2634 extent_start = start;
2635 extent_len = end + 1 - start;
2636 }
2637 }
2638
2639 if (extent_len)
2640 endio_readpage_release_extent(tree, extent_start, extent_len,
2641 uptodate);
2642 if (io_bio->end_io)
2643 io_bio->end_io(io_bio, bio->bi_error);
2644 bio_put(bio);
2645 }
2646
2647 /*
2648 * this allocates from the btrfs_bioset. We're returning a bio right now
2649 * but you can call btrfs_io_bio for the appropriate container_of magic
2650 */
2651 struct bio *
2652 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2653 gfp_t gfp_flags)
2654 {
2655 struct btrfs_io_bio *btrfs_bio;
2656 struct bio *bio;
2657
2658 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2659
2660 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2661 while (!bio && (nr_vecs /= 2)) {
2662 bio = bio_alloc_bioset(gfp_flags,
2663 nr_vecs, btrfs_bioset);
2664 }
2665 }
2666
2667 if (bio) {
2668 bio->bi_bdev = bdev;
2669 bio->bi_iter.bi_sector = first_sector;
2670 btrfs_bio = btrfs_io_bio(bio);
2671 btrfs_bio->csum = NULL;
2672 btrfs_bio->csum_allocated = NULL;
2673 btrfs_bio->end_io = NULL;
2674 }
2675 return bio;
2676 }
2677
2678 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2679 {
2680 struct btrfs_io_bio *btrfs_bio;
2681 struct bio *new;
2682
2683 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2684 if (new) {
2685 btrfs_bio = btrfs_io_bio(new);
2686 btrfs_bio->csum = NULL;
2687 btrfs_bio->csum_allocated = NULL;
2688 btrfs_bio->end_io = NULL;
2689
2690 #ifdef CONFIG_BLK_CGROUP
2691 /* FIXME, put this into bio_clone_bioset */
2692 if (bio->bi_css)
2693 bio_associate_blkcg(new, bio->bi_css);
2694 #endif
2695 }
2696 return new;
2697 }
2698
2699 /* this also allocates from the btrfs_bioset */
2700 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2701 {
2702 struct btrfs_io_bio *btrfs_bio;
2703 struct bio *bio;
2704
2705 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2706 if (bio) {
2707 btrfs_bio = btrfs_io_bio(bio);
2708 btrfs_bio->csum = NULL;
2709 btrfs_bio->csum_allocated = NULL;
2710 btrfs_bio->end_io = NULL;
2711 }
2712 return bio;
2713 }
2714
2715
2716 static int __must_check submit_one_bio(int rw, struct bio *bio,
2717 int mirror_num, unsigned long bio_flags)
2718 {
2719 int ret = 0;
2720 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2721 struct page *page = bvec->bv_page;
2722 struct extent_io_tree *tree = bio->bi_private;
2723 u64 start;
2724
2725 start = page_offset(page) + bvec->bv_offset;
2726
2727 bio->bi_private = NULL;
2728
2729 bio_get(bio);
2730
2731 if (tree->ops && tree->ops->submit_bio_hook)
2732 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2733 mirror_num, bio_flags, start);
2734 else
2735 btrfsic_submit_bio(rw, bio);
2736
2737 bio_put(bio);
2738 return ret;
2739 }
2740
2741 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2742 unsigned long offset, size_t size, struct bio *bio,
2743 unsigned long bio_flags)
2744 {
2745 int ret = 0;
2746 if (tree->ops && tree->ops->merge_bio_hook)
2747 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2748 bio_flags);
2749 BUG_ON(ret < 0);
2750 return ret;
2751
2752 }
2753
2754 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2755 struct writeback_control *wbc,
2756 struct page *page, sector_t sector,
2757 size_t size, unsigned long offset,
2758 struct block_device *bdev,
2759 struct bio **bio_ret,
2760 unsigned long max_pages,
2761 bio_end_io_t end_io_func,
2762 int mirror_num,
2763 unsigned long prev_bio_flags,
2764 unsigned long bio_flags,
2765 bool force_bio_submit)
2766 {
2767 int ret = 0;
2768 struct bio *bio;
2769 int contig = 0;
2770 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2771 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2772
2773 if (bio_ret && *bio_ret) {
2774 bio = *bio_ret;
2775 if (old_compressed)
2776 contig = bio->bi_iter.bi_sector == sector;
2777 else
2778 contig = bio_end_sector(bio) == sector;
2779
2780 if (prev_bio_flags != bio_flags || !contig ||
2781 force_bio_submit ||
2782 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2783 bio_add_page(bio, page, page_size, offset) < page_size) {
2784 ret = submit_one_bio(rw, bio, mirror_num,
2785 prev_bio_flags);
2786 if (ret < 0) {
2787 *bio_ret = NULL;
2788 return ret;
2789 }
2790 bio = NULL;
2791 } else {
2792 if (wbc)
2793 wbc_account_io(wbc, page, page_size);
2794 return 0;
2795 }
2796 }
2797
2798 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2799 GFP_NOFS | __GFP_HIGH);
2800 if (!bio)
2801 return -ENOMEM;
2802
2803 bio_add_page(bio, page, page_size, offset);
2804 bio->bi_end_io = end_io_func;
2805 bio->bi_private = tree;
2806 if (wbc) {
2807 wbc_init_bio(wbc, bio);
2808 wbc_account_io(wbc, page, page_size);
2809 }
2810
2811 if (bio_ret)
2812 *bio_ret = bio;
2813 else
2814 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2815
2816 return ret;
2817 }
2818
2819 static void attach_extent_buffer_page(struct extent_buffer *eb,
2820 struct page *page)
2821 {
2822 if (!PagePrivate(page)) {
2823 SetPagePrivate(page);
2824 get_page(page);
2825 set_page_private(page, (unsigned long)eb);
2826 } else {
2827 WARN_ON(page->private != (unsigned long)eb);
2828 }
2829 }
2830
2831 void set_page_extent_mapped(struct page *page)
2832 {
2833 if (!PagePrivate(page)) {
2834 SetPagePrivate(page);
2835 get_page(page);
2836 set_page_private(page, EXTENT_PAGE_PRIVATE);
2837 }
2838 }
2839
2840 static struct extent_map *
2841 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2842 u64 start, u64 len, get_extent_t *get_extent,
2843 struct extent_map **em_cached)
2844 {
2845 struct extent_map *em;
2846
2847 if (em_cached && *em_cached) {
2848 em = *em_cached;
2849 if (extent_map_in_tree(em) && start >= em->start &&
2850 start < extent_map_end(em)) {
2851 atomic_inc(&em->refs);
2852 return em;
2853 }
2854
2855 free_extent_map(em);
2856 *em_cached = NULL;
2857 }
2858
2859 em = get_extent(inode, page, pg_offset, start, len, 0);
2860 if (em_cached && !IS_ERR_OR_NULL(em)) {
2861 BUG_ON(*em_cached);
2862 atomic_inc(&em->refs);
2863 *em_cached = em;
2864 }
2865 return em;
2866 }
2867 /*
2868 * basic readpage implementation. Locked extent state structs are inserted
2869 * into the tree that are removed when the IO is done (by the end_io
2870 * handlers)
2871 * XXX JDM: This needs looking at to ensure proper page locking
2872 */
2873 static int __do_readpage(struct extent_io_tree *tree,
2874 struct page *page,
2875 get_extent_t *get_extent,
2876 struct extent_map **em_cached,
2877 struct bio **bio, int mirror_num,
2878 unsigned long *bio_flags, int rw,
2879 u64 *prev_em_start)
2880 {
2881 struct inode *inode = page->mapping->host;
2882 u64 start = page_offset(page);
2883 u64 page_end = start + PAGE_SIZE - 1;
2884 u64 end;
2885 u64 cur = start;
2886 u64 extent_offset;
2887 u64 last_byte = i_size_read(inode);
2888 u64 block_start;
2889 u64 cur_end;
2890 sector_t sector;
2891 struct extent_map *em;
2892 struct block_device *bdev;
2893 int ret;
2894 int nr = 0;
2895 size_t pg_offset = 0;
2896 size_t iosize;
2897 size_t disk_io_size;
2898 size_t blocksize = inode->i_sb->s_blocksize;
2899 unsigned long this_bio_flag = 0;
2900
2901 set_page_extent_mapped(page);
2902
2903 end = page_end;
2904 if (!PageUptodate(page)) {
2905 if (cleancache_get_page(page) == 0) {
2906 BUG_ON(blocksize != PAGE_SIZE);
2907 unlock_extent(tree, start, end);
2908 goto out;
2909 }
2910 }
2911
2912 if (page->index == last_byte >> PAGE_SHIFT) {
2913 char *userpage;
2914 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2915
2916 if (zero_offset) {
2917 iosize = PAGE_SIZE - zero_offset;
2918 userpage = kmap_atomic(page);
2919 memset(userpage + zero_offset, 0, iosize);
2920 flush_dcache_page(page);
2921 kunmap_atomic(userpage);
2922 }
2923 }
2924 while (cur <= end) {
2925 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
2926 bool force_bio_submit = false;
2927
2928 if (cur >= last_byte) {
2929 char *userpage;
2930 struct extent_state *cached = NULL;
2931
2932 iosize = PAGE_SIZE - pg_offset;
2933 userpage = kmap_atomic(page);
2934 memset(userpage + pg_offset, 0, iosize);
2935 flush_dcache_page(page);
2936 kunmap_atomic(userpage);
2937 set_extent_uptodate(tree, cur, cur + iosize - 1,
2938 &cached, GFP_NOFS);
2939 unlock_extent_cached(tree, cur,
2940 cur + iosize - 1,
2941 &cached, GFP_NOFS);
2942 break;
2943 }
2944 em = __get_extent_map(inode, page, pg_offset, cur,
2945 end - cur + 1, get_extent, em_cached);
2946 if (IS_ERR_OR_NULL(em)) {
2947 SetPageError(page);
2948 unlock_extent(tree, cur, end);
2949 break;
2950 }
2951 extent_offset = cur - em->start;
2952 BUG_ON(extent_map_end(em) <= cur);
2953 BUG_ON(end < cur);
2954
2955 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2956 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2957 extent_set_compress_type(&this_bio_flag,
2958 em->compress_type);
2959 }
2960
2961 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2962 cur_end = min(extent_map_end(em) - 1, end);
2963 iosize = ALIGN(iosize, blocksize);
2964 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2965 disk_io_size = em->block_len;
2966 sector = em->block_start >> 9;
2967 } else {
2968 sector = (em->block_start + extent_offset) >> 9;
2969 disk_io_size = iosize;
2970 }
2971 bdev = em->bdev;
2972 block_start = em->block_start;
2973 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2974 block_start = EXTENT_MAP_HOLE;
2975
2976 /*
2977 * If we have a file range that points to a compressed extent
2978 * and it's followed by a consecutive file range that points to
2979 * to the same compressed extent (possibly with a different
2980 * offset and/or length, so it either points to the whole extent
2981 * or only part of it), we must make sure we do not submit a
2982 * single bio to populate the pages for the 2 ranges because
2983 * this makes the compressed extent read zero out the pages
2984 * belonging to the 2nd range. Imagine the following scenario:
2985 *
2986 * File layout
2987 * [0 - 8K] [8K - 24K]
2988 * | |
2989 * | |
2990 * points to extent X, points to extent X,
2991 * offset 4K, length of 8K offset 0, length 16K
2992 *
2993 * [extent X, compressed length = 4K uncompressed length = 16K]
2994 *
2995 * If the bio to read the compressed extent covers both ranges,
2996 * it will decompress extent X into the pages belonging to the
2997 * first range and then it will stop, zeroing out the remaining
2998 * pages that belong to the other range that points to extent X.
2999 * So here we make sure we submit 2 bios, one for the first
3000 * range and another one for the third range. Both will target
3001 * the same physical extent from disk, but we can't currently
3002 * make the compressed bio endio callback populate the pages
3003 * for both ranges because each compressed bio is tightly
3004 * coupled with a single extent map, and each range can have
3005 * an extent map with a different offset value relative to the
3006 * uncompressed data of our extent and different lengths. This
3007 * is a corner case so we prioritize correctness over
3008 * non-optimal behavior (submitting 2 bios for the same extent).
3009 */
3010 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3011 prev_em_start && *prev_em_start != (u64)-1 &&
3012 *prev_em_start != em->orig_start)
3013 force_bio_submit = true;
3014
3015 if (prev_em_start)
3016 *prev_em_start = em->orig_start;
3017
3018 free_extent_map(em);
3019 em = NULL;
3020
3021 /* we've found a hole, just zero and go on */
3022 if (block_start == EXTENT_MAP_HOLE) {
3023 char *userpage;
3024 struct extent_state *cached = NULL;
3025
3026 userpage = kmap_atomic(page);
3027 memset(userpage + pg_offset, 0, iosize);
3028 flush_dcache_page(page);
3029 kunmap_atomic(userpage);
3030
3031 set_extent_uptodate(tree, cur, cur + iosize - 1,
3032 &cached, GFP_NOFS);
3033 unlock_extent_cached(tree, cur,
3034 cur + iosize - 1,
3035 &cached, GFP_NOFS);
3036 cur = cur + iosize;
3037 pg_offset += iosize;
3038 continue;
3039 }
3040 /* the get_extent function already copied into the page */
3041 if (test_range_bit(tree, cur, cur_end,
3042 EXTENT_UPTODATE, 1, NULL)) {
3043 check_page_uptodate(tree, page);
3044 unlock_extent(tree, cur, cur + iosize - 1);
3045 cur = cur + iosize;
3046 pg_offset += iosize;
3047 continue;
3048 }
3049 /* we have an inline extent but it didn't get marked up
3050 * to date. Error out
3051 */
3052 if (block_start == EXTENT_MAP_INLINE) {
3053 SetPageError(page);
3054 unlock_extent(tree, cur, cur + iosize - 1);
3055 cur = cur + iosize;
3056 pg_offset += iosize;
3057 continue;
3058 }
3059
3060 pnr -= page->index;
3061 ret = submit_extent_page(rw, tree, NULL, page,
3062 sector, disk_io_size, pg_offset,
3063 bdev, bio, pnr,
3064 end_bio_extent_readpage, mirror_num,
3065 *bio_flags,
3066 this_bio_flag,
3067 force_bio_submit);
3068 if (!ret) {
3069 nr++;
3070 *bio_flags = this_bio_flag;
3071 } else {
3072 SetPageError(page);
3073 unlock_extent(tree, cur, cur + iosize - 1);
3074 }
3075 cur = cur + iosize;
3076 pg_offset += iosize;
3077 }
3078 out:
3079 if (!nr) {
3080 if (!PageError(page))
3081 SetPageUptodate(page);
3082 unlock_page(page);
3083 }
3084 return 0;
3085 }
3086
3087 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3088 struct page *pages[], int nr_pages,
3089 u64 start, u64 end,
3090 get_extent_t *get_extent,
3091 struct extent_map **em_cached,
3092 struct bio **bio, int mirror_num,
3093 unsigned long *bio_flags, int rw,
3094 u64 *prev_em_start)
3095 {
3096 struct inode *inode;
3097 struct btrfs_ordered_extent *ordered;
3098 int index;
3099
3100 inode = pages[0]->mapping->host;
3101 while (1) {
3102 lock_extent(tree, start, end);
3103 ordered = btrfs_lookup_ordered_range(inode, start,
3104 end - start + 1);
3105 if (!ordered)
3106 break;
3107 unlock_extent(tree, start, end);
3108 btrfs_start_ordered_extent(inode, ordered, 1);
3109 btrfs_put_ordered_extent(ordered);
3110 }
3111
3112 for (index = 0; index < nr_pages; index++) {
3113 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3114 mirror_num, bio_flags, rw, prev_em_start);
3115 put_page(pages[index]);
3116 }
3117 }
3118
3119 static void __extent_readpages(struct extent_io_tree *tree,
3120 struct page *pages[],
3121 int nr_pages, get_extent_t *get_extent,
3122 struct extent_map **em_cached,
3123 struct bio **bio, int mirror_num,
3124 unsigned long *bio_flags, int rw,
3125 u64 *prev_em_start)
3126 {
3127 u64 start = 0;
3128 u64 end = 0;
3129 u64 page_start;
3130 int index;
3131 int first_index = 0;
3132
3133 for (index = 0; index < nr_pages; index++) {
3134 page_start = page_offset(pages[index]);
3135 if (!end) {
3136 start = page_start;
3137 end = start + PAGE_SIZE - 1;
3138 first_index = index;
3139 } else if (end + 1 == page_start) {
3140 end += PAGE_SIZE;
3141 } else {
3142 __do_contiguous_readpages(tree, &pages[first_index],
3143 index - first_index, start,
3144 end, get_extent, em_cached,
3145 bio, mirror_num, bio_flags,
3146 rw, prev_em_start);
3147 start = page_start;
3148 end = start + PAGE_SIZE - 1;
3149 first_index = index;
3150 }
3151 }
3152
3153 if (end)
3154 __do_contiguous_readpages(tree, &pages[first_index],
3155 index - first_index, start,
3156 end, get_extent, em_cached, bio,
3157 mirror_num, bio_flags, rw,
3158 prev_em_start);
3159 }
3160
3161 static int __extent_read_full_page(struct extent_io_tree *tree,
3162 struct page *page,
3163 get_extent_t *get_extent,
3164 struct bio **bio, int mirror_num,
3165 unsigned long *bio_flags, int rw)
3166 {
3167 struct inode *inode = page->mapping->host;
3168 struct btrfs_ordered_extent *ordered;
3169 u64 start = page_offset(page);
3170 u64 end = start + PAGE_SIZE - 1;
3171 int ret;
3172
3173 while (1) {
3174 lock_extent(tree, start, end);
3175 ordered = btrfs_lookup_ordered_range(inode, start,
3176 PAGE_SIZE);
3177 if (!ordered)
3178 break;
3179 unlock_extent(tree, start, end);
3180 btrfs_start_ordered_extent(inode, ordered, 1);
3181 btrfs_put_ordered_extent(ordered);
3182 }
3183
3184 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3185 bio_flags, rw, NULL);
3186 return ret;
3187 }
3188
3189 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3190 get_extent_t *get_extent, int mirror_num)
3191 {
3192 struct bio *bio = NULL;
3193 unsigned long bio_flags = 0;
3194 int ret;
3195
3196 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3197 &bio_flags, READ);
3198 if (bio)
3199 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3200 return ret;
3201 }
3202
3203 static void update_nr_written(struct page *page, struct writeback_control *wbc,
3204 unsigned long nr_written)
3205 {
3206 wbc->nr_to_write -= nr_written;
3207 }
3208
3209 /*
3210 * helper for __extent_writepage, doing all of the delayed allocation setup.
3211 *
3212 * This returns 1 if our fill_delalloc function did all the work required
3213 * to write the page (copy into inline extent). In this case the IO has
3214 * been started and the page is already unlocked.
3215 *
3216 * This returns 0 if all went well (page still locked)
3217 * This returns < 0 if there were errors (page still locked)
3218 */
3219 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3220 struct page *page, struct writeback_control *wbc,
3221 struct extent_page_data *epd,
3222 u64 delalloc_start,
3223 unsigned long *nr_written)
3224 {
3225 struct extent_io_tree *tree = epd->tree;
3226 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3227 u64 nr_delalloc;
3228 u64 delalloc_to_write = 0;
3229 u64 delalloc_end = 0;
3230 int ret;
3231 int page_started = 0;
3232
3233 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3234 return 0;
3235
3236 while (delalloc_end < page_end) {
3237 nr_delalloc = find_lock_delalloc_range(inode, tree,
3238 page,
3239 &delalloc_start,
3240 &delalloc_end,
3241 BTRFS_MAX_EXTENT_SIZE);
3242 if (nr_delalloc == 0) {
3243 delalloc_start = delalloc_end + 1;
3244 continue;
3245 }
3246 ret = tree->ops->fill_delalloc(inode, page,
3247 delalloc_start,
3248 delalloc_end,
3249 &page_started,
3250 nr_written);
3251 /* File system has been set read-only */
3252 if (ret) {
3253 SetPageError(page);
3254 /* fill_delalloc should be return < 0 for error
3255 * but just in case, we use > 0 here meaning the
3256 * IO is started, so we don't want to return > 0
3257 * unless things are going well.
3258 */
3259 ret = ret < 0 ? ret : -EIO;
3260 goto done;
3261 }
3262 /*
3263 * delalloc_end is already one less than the total length, so
3264 * we don't subtract one from PAGE_SIZE
3265 */
3266 delalloc_to_write += (delalloc_end - delalloc_start +
3267 PAGE_SIZE) >> PAGE_SHIFT;
3268 delalloc_start = delalloc_end + 1;
3269 }
3270 if (wbc->nr_to_write < delalloc_to_write) {
3271 int thresh = 8192;
3272
3273 if (delalloc_to_write < thresh * 2)
3274 thresh = delalloc_to_write;
3275 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3276 thresh);
3277 }
3278
3279 /* did the fill delalloc function already unlock and start
3280 * the IO?
3281 */
3282 if (page_started) {
3283 /*
3284 * we've unlocked the page, so we can't update
3285 * the mapping's writeback index, just update
3286 * nr_to_write.
3287 */
3288 wbc->nr_to_write -= *nr_written;
3289 return 1;
3290 }
3291
3292 ret = 0;
3293
3294 done:
3295 return ret;
3296 }
3297
3298 /*
3299 * helper for __extent_writepage. This calls the writepage start hooks,
3300 * and does the loop to map the page into extents and bios.
3301 *
3302 * We return 1 if the IO is started and the page is unlocked,
3303 * 0 if all went well (page still locked)
3304 * < 0 if there were errors (page still locked)
3305 */
3306 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3307 struct page *page,
3308 struct writeback_control *wbc,
3309 struct extent_page_data *epd,
3310 loff_t i_size,
3311 unsigned long nr_written,
3312 int write_flags, int *nr_ret)
3313 {
3314 struct extent_io_tree *tree = epd->tree;
3315 u64 start = page_offset(page);
3316 u64 page_end = start + PAGE_SIZE - 1;
3317 u64 end;
3318 u64 cur = start;
3319 u64 extent_offset;
3320 u64 block_start;
3321 u64 iosize;
3322 sector_t sector;
3323 struct extent_state *cached_state = NULL;
3324 struct extent_map *em;
3325 struct block_device *bdev;
3326 size_t pg_offset = 0;
3327 size_t blocksize;
3328 int ret = 0;
3329 int nr = 0;
3330 bool compressed;
3331
3332 if (tree->ops && tree->ops->writepage_start_hook) {
3333 ret = tree->ops->writepage_start_hook(page, start,
3334 page_end);
3335 if (ret) {
3336 /* Fixup worker will requeue */
3337 if (ret == -EBUSY)
3338 wbc->pages_skipped++;
3339 else
3340 redirty_page_for_writepage(wbc, page);
3341
3342 update_nr_written(page, wbc, nr_written);
3343 unlock_page(page);
3344 ret = 1;
3345 goto done_unlocked;
3346 }
3347 }
3348
3349 /*
3350 * we don't want to touch the inode after unlocking the page,
3351 * so we update the mapping writeback index now
3352 */
3353 update_nr_written(page, wbc, nr_written + 1);
3354
3355 end = page_end;
3356 if (i_size <= start) {
3357 if (tree->ops && tree->ops->writepage_end_io_hook)
3358 tree->ops->writepage_end_io_hook(page, start,
3359 page_end, NULL, 1);
3360 goto done;
3361 }
3362
3363 blocksize = inode->i_sb->s_blocksize;
3364
3365 while (cur <= end) {
3366 u64 em_end;
3367 unsigned long max_nr;
3368
3369 if (cur >= i_size) {
3370 if (tree->ops && tree->ops->writepage_end_io_hook)
3371 tree->ops->writepage_end_io_hook(page, cur,
3372 page_end, NULL, 1);
3373 break;
3374 }
3375 em = epd->get_extent(inode, page, pg_offset, cur,
3376 end - cur + 1, 1);
3377 if (IS_ERR_OR_NULL(em)) {
3378 SetPageError(page);
3379 ret = PTR_ERR_OR_ZERO(em);
3380 break;
3381 }
3382
3383 extent_offset = cur - em->start;
3384 em_end = extent_map_end(em);
3385 BUG_ON(em_end <= cur);
3386 BUG_ON(end < cur);
3387 iosize = min(em_end - cur, end - cur + 1);
3388 iosize = ALIGN(iosize, blocksize);
3389 sector = (em->block_start + extent_offset) >> 9;
3390 bdev = em->bdev;
3391 block_start = em->block_start;
3392 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3393 free_extent_map(em);
3394 em = NULL;
3395
3396 /*
3397 * compressed and inline extents are written through other
3398 * paths in the FS
3399 */
3400 if (compressed || block_start == EXTENT_MAP_HOLE ||
3401 block_start == EXTENT_MAP_INLINE) {
3402 /*
3403 * end_io notification does not happen here for
3404 * compressed extents
3405 */
3406 if (!compressed && tree->ops &&
3407 tree->ops->writepage_end_io_hook)
3408 tree->ops->writepage_end_io_hook(page, cur,
3409 cur + iosize - 1,
3410 NULL, 1);
3411 else if (compressed) {
3412 /* we don't want to end_page_writeback on
3413 * a compressed extent. this happens
3414 * elsewhere
3415 */
3416 nr++;
3417 }
3418
3419 cur += iosize;
3420 pg_offset += iosize;
3421 continue;
3422 }
3423
3424 max_nr = (i_size >> PAGE_SHIFT) + 1;
3425
3426 set_range_writeback(tree, cur, cur + iosize - 1);
3427 if (!PageWriteback(page)) {
3428 btrfs_err(BTRFS_I(inode)->root->fs_info,
3429 "page %lu not writeback, cur %llu end %llu",
3430 page->index, cur, end);
3431 }
3432
3433 ret = submit_extent_page(write_flags, tree, wbc, page,
3434 sector, iosize, pg_offset,
3435 bdev, &epd->bio, max_nr,
3436 end_bio_extent_writepage,
3437 0, 0, 0, false);
3438 if (ret)
3439 SetPageError(page);
3440
3441 cur = cur + iosize;
3442 pg_offset += iosize;
3443 nr++;
3444 }
3445 done:
3446 *nr_ret = nr;
3447
3448 done_unlocked:
3449
3450 /* drop our reference on any cached states */
3451 free_extent_state(cached_state);
3452 return ret;
3453 }
3454
3455 /*
3456 * the writepage semantics are similar to regular writepage. extent
3457 * records are inserted to lock ranges in the tree, and as dirty areas
3458 * are found, they are marked writeback. Then the lock bits are removed
3459 * and the end_io handler clears the writeback ranges
3460 */
3461 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3462 void *data)
3463 {
3464 struct inode *inode = page->mapping->host;
3465 struct extent_page_data *epd = data;
3466 u64 start = page_offset(page);
3467 u64 page_end = start + PAGE_SIZE - 1;
3468 int ret;
3469 int nr = 0;
3470 size_t pg_offset = 0;
3471 loff_t i_size = i_size_read(inode);
3472 unsigned long end_index = i_size >> PAGE_SHIFT;
3473 int write_flags;
3474 unsigned long nr_written = 0;
3475
3476 if (wbc->sync_mode == WB_SYNC_ALL)
3477 write_flags = WRITE_SYNC;
3478 else
3479 write_flags = WRITE;
3480
3481 trace___extent_writepage(page, inode, wbc);
3482
3483 WARN_ON(!PageLocked(page));
3484
3485 ClearPageError(page);
3486
3487 pg_offset = i_size & (PAGE_SIZE - 1);
3488 if (page->index > end_index ||
3489 (page->index == end_index && !pg_offset)) {
3490 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3491 unlock_page(page);
3492 return 0;
3493 }
3494
3495 if (page->index == end_index) {
3496 char *userpage;
3497
3498 userpage = kmap_atomic(page);
3499 memset(userpage + pg_offset, 0,
3500 PAGE_SIZE - pg_offset);
3501 kunmap_atomic(userpage);
3502 flush_dcache_page(page);
3503 }
3504
3505 pg_offset = 0;
3506
3507 set_page_extent_mapped(page);
3508
3509 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3510 if (ret == 1)
3511 goto done_unlocked;
3512 if (ret)
3513 goto done;
3514
3515 ret = __extent_writepage_io(inode, page, wbc, epd,
3516 i_size, nr_written, write_flags, &nr);
3517 if (ret == 1)
3518 goto done_unlocked;
3519
3520 done:
3521 if (nr == 0) {
3522 /* make sure the mapping tag for page dirty gets cleared */
3523 set_page_writeback(page);
3524 end_page_writeback(page);
3525 }
3526 if (PageError(page)) {
3527 ret = ret < 0 ? ret : -EIO;
3528 end_extent_writepage(page, ret, start, page_end);
3529 }
3530 unlock_page(page);
3531 return ret;
3532
3533 done_unlocked:
3534 return 0;
3535 }
3536
3537 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3538 {
3539 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3540 TASK_UNINTERRUPTIBLE);
3541 }
3542
3543 static noinline_for_stack int
3544 lock_extent_buffer_for_io(struct extent_buffer *eb,
3545 struct btrfs_fs_info *fs_info,
3546 struct extent_page_data *epd)
3547 {
3548 unsigned long i, num_pages;
3549 int flush = 0;
3550 int ret = 0;
3551
3552 if (!btrfs_try_tree_write_lock(eb)) {
3553 flush = 1;
3554 flush_write_bio(epd);
3555 btrfs_tree_lock(eb);
3556 }
3557
3558 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3559 btrfs_tree_unlock(eb);
3560 if (!epd->sync_io)
3561 return 0;
3562 if (!flush) {
3563 flush_write_bio(epd);
3564 flush = 1;
3565 }
3566 while (1) {
3567 wait_on_extent_buffer_writeback(eb);
3568 btrfs_tree_lock(eb);
3569 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3570 break;
3571 btrfs_tree_unlock(eb);
3572 }
3573 }
3574
3575 /*
3576 * We need to do this to prevent races in people who check if the eb is
3577 * under IO since we can end up having no IO bits set for a short period
3578 * of time.
3579 */
3580 spin_lock(&eb->refs_lock);
3581 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3582 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3583 spin_unlock(&eb->refs_lock);
3584 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3585 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3586 -eb->len,
3587 fs_info->dirty_metadata_batch);
3588 ret = 1;
3589 } else {
3590 spin_unlock(&eb->refs_lock);
3591 }
3592
3593 btrfs_tree_unlock(eb);
3594
3595 if (!ret)
3596 return ret;
3597
3598 num_pages = num_extent_pages(eb->start, eb->len);
3599 for (i = 0; i < num_pages; i++) {
3600 struct page *p = eb->pages[i];
3601
3602 if (!trylock_page(p)) {
3603 if (!flush) {
3604 flush_write_bio(epd);
3605 flush = 1;
3606 }
3607 lock_page(p);
3608 }
3609 }
3610
3611 return ret;
3612 }
3613
3614 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3615 {
3616 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3617 smp_mb__after_atomic();
3618 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3619 }
3620
3621 static void set_btree_ioerr(struct page *page)
3622 {
3623 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3624 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3625
3626 SetPageError(page);
3627 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3628 return;
3629
3630 /*
3631 * If writeback for a btree extent that doesn't belong to a log tree
3632 * failed, increment the counter transaction->eb_write_errors.
3633 * We do this because while the transaction is running and before it's
3634 * committing (when we call filemap_fdata[write|wait]_range against
3635 * the btree inode), we might have
3636 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3637 * returns an error or an error happens during writeback, when we're
3638 * committing the transaction we wouldn't know about it, since the pages
3639 * can be no longer dirty nor marked anymore for writeback (if a
3640 * subsequent modification to the extent buffer didn't happen before the
3641 * transaction commit), which makes filemap_fdata[write|wait]_range not
3642 * able to find the pages tagged with SetPageError at transaction
3643 * commit time. So if this happens we must abort the transaction,
3644 * otherwise we commit a super block with btree roots that point to
3645 * btree nodes/leafs whose content on disk is invalid - either garbage
3646 * or the content of some node/leaf from a past generation that got
3647 * cowed or deleted and is no longer valid.
3648 *
3649 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3650 * not be enough - we need to distinguish between log tree extents vs
3651 * non-log tree extents, and the next filemap_fdatawait_range() call
3652 * will catch and clear such errors in the mapping - and that call might
3653 * be from a log sync and not from a transaction commit. Also, checking
3654 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3655 * not done and would not be reliable - the eb might have been released
3656 * from memory and reading it back again means that flag would not be
3657 * set (since it's a runtime flag, not persisted on disk).
3658 *
3659 * Using the flags below in the btree inode also makes us achieve the
3660 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3661 * writeback for all dirty pages and before filemap_fdatawait_range()
3662 * is called, the writeback for all dirty pages had already finished
3663 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3664 * filemap_fdatawait_range() would return success, as it could not know
3665 * that writeback errors happened (the pages were no longer tagged for
3666 * writeback).
3667 */
3668 switch (eb->log_index) {
3669 case -1:
3670 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3671 break;
3672 case 0:
3673 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3674 break;
3675 case 1:
3676 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3677 break;
3678 default:
3679 BUG(); /* unexpected, logic error */
3680 }
3681 }
3682
3683 static void end_bio_extent_buffer_writepage(struct bio *bio)
3684 {
3685 struct bio_vec *bvec;
3686 struct extent_buffer *eb;
3687 int i, done;
3688
3689 bio_for_each_segment_all(bvec, bio, i) {
3690 struct page *page = bvec->bv_page;
3691
3692 eb = (struct extent_buffer *)page->private;
3693 BUG_ON(!eb);
3694 done = atomic_dec_and_test(&eb->io_pages);
3695
3696 if (bio->bi_error ||
3697 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3698 ClearPageUptodate(page);
3699 set_btree_ioerr(page);
3700 }
3701
3702 end_page_writeback(page);
3703
3704 if (!done)
3705 continue;
3706
3707 end_extent_buffer_writeback(eb);
3708 }
3709
3710 bio_put(bio);
3711 }
3712
3713 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3714 struct btrfs_fs_info *fs_info,
3715 struct writeback_control *wbc,
3716 struct extent_page_data *epd)
3717 {
3718 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3719 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3720 u64 offset = eb->start;
3721 unsigned long i, num_pages;
3722 unsigned long bio_flags = 0;
3723 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3724 int ret = 0;
3725
3726 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3727 num_pages = num_extent_pages(eb->start, eb->len);
3728 atomic_set(&eb->io_pages, num_pages);
3729 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3730 bio_flags = EXTENT_BIO_TREE_LOG;
3731
3732 for (i = 0; i < num_pages; i++) {
3733 struct page *p = eb->pages[i];
3734
3735 clear_page_dirty_for_io(p);
3736 set_page_writeback(p);
3737 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
3738 PAGE_SIZE, 0, bdev, &epd->bio,
3739 -1, end_bio_extent_buffer_writepage,
3740 0, epd->bio_flags, bio_flags, false);
3741 epd->bio_flags = bio_flags;
3742 if (ret) {
3743 set_btree_ioerr(p);
3744 end_page_writeback(p);
3745 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3746 end_extent_buffer_writeback(eb);
3747 ret = -EIO;
3748 break;
3749 }
3750 offset += PAGE_SIZE;
3751 update_nr_written(p, wbc, 1);
3752 unlock_page(p);
3753 }
3754
3755 if (unlikely(ret)) {
3756 for (; i < num_pages; i++) {
3757 struct page *p = eb->pages[i];
3758 clear_page_dirty_for_io(p);
3759 unlock_page(p);
3760 }
3761 }
3762
3763 return ret;
3764 }
3765
3766 int btree_write_cache_pages(struct address_space *mapping,
3767 struct writeback_control *wbc)
3768 {
3769 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3770 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3771 struct extent_buffer *eb, *prev_eb = NULL;
3772 struct extent_page_data epd = {
3773 .bio = NULL,
3774 .tree = tree,
3775 .extent_locked = 0,
3776 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3777 .bio_flags = 0,
3778 };
3779 int ret = 0;
3780 int done = 0;
3781 int nr_to_write_done = 0;
3782 struct pagevec pvec;
3783 int nr_pages;
3784 pgoff_t index;
3785 pgoff_t end; /* Inclusive */
3786 int scanned = 0;
3787 int tag;
3788
3789 pagevec_init(&pvec, 0);
3790 if (wbc->range_cyclic) {
3791 index = mapping->writeback_index; /* Start from prev offset */
3792 end = -1;
3793 } else {
3794 index = wbc->range_start >> PAGE_SHIFT;
3795 end = wbc->range_end >> PAGE_SHIFT;
3796 scanned = 1;
3797 }
3798 if (wbc->sync_mode == WB_SYNC_ALL)
3799 tag = PAGECACHE_TAG_TOWRITE;
3800 else
3801 tag = PAGECACHE_TAG_DIRTY;
3802 retry:
3803 if (wbc->sync_mode == WB_SYNC_ALL)
3804 tag_pages_for_writeback(mapping, index, end);
3805 while (!done && !nr_to_write_done && (index <= end) &&
3806 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3807 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3808 unsigned i;
3809
3810 scanned = 1;
3811 for (i = 0; i < nr_pages; i++) {
3812 struct page *page = pvec.pages[i];
3813
3814 if (!PagePrivate(page))
3815 continue;
3816
3817 if (!wbc->range_cyclic && page->index > end) {
3818 done = 1;
3819 break;
3820 }
3821
3822 spin_lock(&mapping->private_lock);
3823 if (!PagePrivate(page)) {
3824 spin_unlock(&mapping->private_lock);
3825 continue;
3826 }
3827
3828 eb = (struct extent_buffer *)page->private;
3829
3830 /*
3831 * Shouldn't happen and normally this would be a BUG_ON
3832 * but no sense in crashing the users box for something
3833 * we can survive anyway.
3834 */
3835 if (WARN_ON(!eb)) {
3836 spin_unlock(&mapping->private_lock);
3837 continue;
3838 }
3839
3840 if (eb == prev_eb) {
3841 spin_unlock(&mapping->private_lock);
3842 continue;
3843 }
3844
3845 ret = atomic_inc_not_zero(&eb->refs);
3846 spin_unlock(&mapping->private_lock);
3847 if (!ret)
3848 continue;
3849
3850 prev_eb = eb;
3851 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3852 if (!ret) {
3853 free_extent_buffer(eb);
3854 continue;
3855 }
3856
3857 ret = write_one_eb(eb, fs_info, wbc, &epd);
3858 if (ret) {
3859 done = 1;
3860 free_extent_buffer(eb);
3861 break;
3862 }
3863 free_extent_buffer(eb);
3864
3865 /*
3866 * the filesystem may choose to bump up nr_to_write.
3867 * We have to make sure to honor the new nr_to_write
3868 * at any time
3869 */
3870 nr_to_write_done = wbc->nr_to_write <= 0;
3871 }
3872 pagevec_release(&pvec);
3873 cond_resched();
3874 }
3875 if (!scanned && !done) {
3876 /*
3877 * We hit the last page and there is more work to be done: wrap
3878 * back to the start of the file
3879 */
3880 scanned = 1;
3881 index = 0;
3882 goto retry;
3883 }
3884 flush_write_bio(&epd);
3885 return ret;
3886 }
3887
3888 /**
3889 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3890 * @mapping: address space structure to write
3891 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3892 * @writepage: function called for each page
3893 * @data: data passed to writepage function
3894 *
3895 * If a page is already under I/O, write_cache_pages() skips it, even
3896 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3897 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3898 * and msync() need to guarantee that all the data which was dirty at the time
3899 * the call was made get new I/O started against them. If wbc->sync_mode is
3900 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3901 * existing IO to complete.
3902 */
3903 static int extent_write_cache_pages(struct extent_io_tree *tree,
3904 struct address_space *mapping,
3905 struct writeback_control *wbc,
3906 writepage_t writepage, void *data,
3907 void (*flush_fn)(void *))
3908 {
3909 struct inode *inode = mapping->host;
3910 int ret = 0;
3911 int done = 0;
3912 int nr_to_write_done = 0;
3913 struct pagevec pvec;
3914 int nr_pages;
3915 pgoff_t index;
3916 pgoff_t end; /* Inclusive */
3917 pgoff_t done_index;
3918 int range_whole = 0;
3919 int scanned = 0;
3920 int tag;
3921
3922 /*
3923 * We have to hold onto the inode so that ordered extents can do their
3924 * work when the IO finishes. The alternative to this is failing to add
3925 * an ordered extent if the igrab() fails there and that is a huge pain
3926 * to deal with, so instead just hold onto the inode throughout the
3927 * writepages operation. If it fails here we are freeing up the inode
3928 * anyway and we'd rather not waste our time writing out stuff that is
3929 * going to be truncated anyway.
3930 */
3931 if (!igrab(inode))
3932 return 0;
3933
3934 pagevec_init(&pvec, 0);
3935 if (wbc->range_cyclic) {
3936 index = mapping->writeback_index; /* Start from prev offset */
3937 end = -1;
3938 } else {
3939 index = wbc->range_start >> PAGE_SHIFT;
3940 end = wbc->range_end >> PAGE_SHIFT;
3941 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3942 range_whole = 1;
3943 scanned = 1;
3944 }
3945 if (wbc->sync_mode == WB_SYNC_ALL)
3946 tag = PAGECACHE_TAG_TOWRITE;
3947 else
3948 tag = PAGECACHE_TAG_DIRTY;
3949 retry:
3950 if (wbc->sync_mode == WB_SYNC_ALL)
3951 tag_pages_for_writeback(mapping, index, end);
3952 done_index = index;
3953 while (!done && !nr_to_write_done && (index <= end) &&
3954 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3955 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3956 unsigned i;
3957
3958 scanned = 1;
3959 for (i = 0; i < nr_pages; i++) {
3960 struct page *page = pvec.pages[i];
3961
3962 done_index = page->index;
3963 /*
3964 * At this point we hold neither mapping->tree_lock nor
3965 * lock on the page itself: the page may be truncated or
3966 * invalidated (changing page->mapping to NULL), or even
3967 * swizzled back from swapper_space to tmpfs file
3968 * mapping
3969 */
3970 if (!trylock_page(page)) {
3971 flush_fn(data);
3972 lock_page(page);
3973 }
3974
3975 if (unlikely(page->mapping != mapping)) {
3976 unlock_page(page);
3977 continue;
3978 }
3979
3980 if (!wbc->range_cyclic && page->index > end) {
3981 done = 1;
3982 unlock_page(page);
3983 continue;
3984 }
3985
3986 if (wbc->sync_mode != WB_SYNC_NONE) {
3987 if (PageWriteback(page))
3988 flush_fn(data);
3989 wait_on_page_writeback(page);
3990 }
3991
3992 if (PageWriteback(page) ||
3993 !clear_page_dirty_for_io(page)) {
3994 unlock_page(page);
3995 continue;
3996 }
3997
3998 ret = (*writepage)(page, wbc, data);
3999
4000 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4001 unlock_page(page);
4002 ret = 0;
4003 }
4004 if (ret < 0) {
4005 /*
4006 * done_index is set past this page,
4007 * so media errors will not choke
4008 * background writeout for the entire
4009 * file. This has consequences for
4010 * range_cyclic semantics (ie. it may
4011 * not be suitable for data integrity
4012 * writeout).
4013 */
4014 done_index = page->index + 1;
4015 done = 1;
4016 break;
4017 }
4018
4019 /*
4020 * the filesystem may choose to bump up nr_to_write.
4021 * We have to make sure to honor the new nr_to_write
4022 * at any time
4023 */
4024 nr_to_write_done = wbc->nr_to_write <= 0;
4025 }
4026 pagevec_release(&pvec);
4027 cond_resched();
4028 }
4029 if (!scanned && !done) {
4030 /*
4031 * We hit the last page and there is more work to be done: wrap
4032 * back to the start of the file
4033 */
4034 scanned = 1;
4035 index = 0;
4036 goto retry;
4037 }
4038
4039 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4040 mapping->writeback_index = done_index;
4041
4042 btrfs_add_delayed_iput(inode);
4043 return ret;
4044 }
4045
4046 static void flush_epd_write_bio(struct extent_page_data *epd)
4047 {
4048 if (epd->bio) {
4049 int rw = WRITE;
4050 int ret;
4051
4052 if (epd->sync_io)
4053 rw = WRITE_SYNC;
4054
4055 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4056 BUG_ON(ret < 0); /* -ENOMEM */
4057 epd->bio = NULL;
4058 }
4059 }
4060
4061 static noinline void flush_write_bio(void *data)
4062 {
4063 struct extent_page_data *epd = data;
4064 flush_epd_write_bio(epd);
4065 }
4066
4067 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4068 get_extent_t *get_extent,
4069 struct writeback_control *wbc)
4070 {
4071 int ret;
4072 struct extent_page_data epd = {
4073 .bio = NULL,
4074 .tree = tree,
4075 .get_extent = get_extent,
4076 .extent_locked = 0,
4077 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4078 .bio_flags = 0,
4079 };
4080
4081 ret = __extent_writepage(page, wbc, &epd);
4082
4083 flush_epd_write_bio(&epd);
4084 return ret;
4085 }
4086
4087 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4088 u64 start, u64 end, get_extent_t *get_extent,
4089 int mode)
4090 {
4091 int ret = 0;
4092 struct address_space *mapping = inode->i_mapping;
4093 struct page *page;
4094 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4095 PAGE_SHIFT;
4096
4097 struct extent_page_data epd = {
4098 .bio = NULL,
4099 .tree = tree,
4100 .get_extent = get_extent,
4101 .extent_locked = 1,
4102 .sync_io = mode == WB_SYNC_ALL,
4103 .bio_flags = 0,
4104 };
4105 struct writeback_control wbc_writepages = {
4106 .sync_mode = mode,
4107 .nr_to_write = nr_pages * 2,
4108 .range_start = start,
4109 .range_end = end + 1,
4110 };
4111
4112 while (start <= end) {
4113 page = find_get_page(mapping, start >> PAGE_SHIFT);
4114 if (clear_page_dirty_for_io(page))
4115 ret = __extent_writepage(page, &wbc_writepages, &epd);
4116 else {
4117 if (tree->ops && tree->ops->writepage_end_io_hook)
4118 tree->ops->writepage_end_io_hook(page, start,
4119 start + PAGE_SIZE - 1,
4120 NULL, 1);
4121 unlock_page(page);
4122 }
4123 put_page(page);
4124 start += PAGE_SIZE;
4125 }
4126
4127 flush_epd_write_bio(&epd);
4128 return ret;
4129 }
4130
4131 int extent_writepages(struct extent_io_tree *tree,
4132 struct address_space *mapping,
4133 get_extent_t *get_extent,
4134 struct writeback_control *wbc)
4135 {
4136 int ret = 0;
4137 struct extent_page_data epd = {
4138 .bio = NULL,
4139 .tree = tree,
4140 .get_extent = get_extent,
4141 .extent_locked = 0,
4142 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4143 .bio_flags = 0,
4144 };
4145
4146 ret = extent_write_cache_pages(tree, mapping, wbc,
4147 __extent_writepage, &epd,
4148 flush_write_bio);
4149 flush_epd_write_bio(&epd);
4150 return ret;
4151 }
4152
4153 int extent_readpages(struct extent_io_tree *tree,
4154 struct address_space *mapping,
4155 struct list_head *pages, unsigned nr_pages,
4156 get_extent_t get_extent)
4157 {
4158 struct bio *bio = NULL;
4159 unsigned page_idx;
4160 unsigned long bio_flags = 0;
4161 struct page *pagepool[16];
4162 struct page *page;
4163 struct extent_map *em_cached = NULL;
4164 int nr = 0;
4165 u64 prev_em_start = (u64)-1;
4166
4167 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4168 page = list_entry(pages->prev, struct page, lru);
4169
4170 prefetchw(&page->flags);
4171 list_del(&page->lru);
4172 if (add_to_page_cache_lru(page, mapping,
4173 page->index, GFP_NOFS)) {
4174 put_page(page);
4175 continue;
4176 }
4177
4178 pagepool[nr++] = page;
4179 if (nr < ARRAY_SIZE(pagepool))
4180 continue;
4181 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4182 &bio, 0, &bio_flags, READ, &prev_em_start);
4183 nr = 0;
4184 }
4185 if (nr)
4186 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4187 &bio, 0, &bio_flags, READ, &prev_em_start);
4188
4189 if (em_cached)
4190 free_extent_map(em_cached);
4191
4192 BUG_ON(!list_empty(pages));
4193 if (bio)
4194 return submit_one_bio(READ, bio, 0, bio_flags);
4195 return 0;
4196 }
4197
4198 /*
4199 * basic invalidatepage code, this waits on any locked or writeback
4200 * ranges corresponding to the page, and then deletes any extent state
4201 * records from the tree
4202 */
4203 int extent_invalidatepage(struct extent_io_tree *tree,
4204 struct page *page, unsigned long offset)
4205 {
4206 struct extent_state *cached_state = NULL;
4207 u64 start = page_offset(page);
4208 u64 end = start + PAGE_SIZE - 1;
4209 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4210
4211 start += ALIGN(offset, blocksize);
4212 if (start > end)
4213 return 0;
4214
4215 lock_extent_bits(tree, start, end, &cached_state);
4216 wait_on_page_writeback(page);
4217 clear_extent_bit(tree, start, end,
4218 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4219 EXTENT_DO_ACCOUNTING,
4220 1, 1, &cached_state, GFP_NOFS);
4221 return 0;
4222 }
4223
4224 /*
4225 * a helper for releasepage, this tests for areas of the page that
4226 * are locked or under IO and drops the related state bits if it is safe
4227 * to drop the page.
4228 */
4229 static int try_release_extent_state(struct extent_map_tree *map,
4230 struct extent_io_tree *tree,
4231 struct page *page, gfp_t mask)
4232 {
4233 u64 start = page_offset(page);
4234 u64 end = start + PAGE_SIZE - 1;
4235 int ret = 1;
4236
4237 if (test_range_bit(tree, start, end,
4238 EXTENT_IOBITS, 0, NULL))
4239 ret = 0;
4240 else {
4241 if ((mask & GFP_NOFS) == GFP_NOFS)
4242 mask = GFP_NOFS;
4243 /*
4244 * at this point we can safely clear everything except the
4245 * locked bit and the nodatasum bit
4246 */
4247 ret = clear_extent_bit(tree, start, end,
4248 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4249 0, 0, NULL, mask);
4250
4251 /* if clear_extent_bit failed for enomem reasons,
4252 * we can't allow the release to continue.
4253 */
4254 if (ret < 0)
4255 ret = 0;
4256 else
4257 ret = 1;
4258 }
4259 return ret;
4260 }
4261
4262 /*
4263 * a helper for releasepage. As long as there are no locked extents
4264 * in the range corresponding to the page, both state records and extent
4265 * map records are removed
4266 */
4267 int try_release_extent_mapping(struct extent_map_tree *map,
4268 struct extent_io_tree *tree, struct page *page,
4269 gfp_t mask)
4270 {
4271 struct extent_map *em;
4272 u64 start = page_offset(page);
4273 u64 end = start + PAGE_SIZE - 1;
4274
4275 if (gfpflags_allow_blocking(mask) &&
4276 page->mapping->host->i_size > SZ_16M) {
4277 u64 len;
4278 while (start <= end) {
4279 len = end - start + 1;
4280 write_lock(&map->lock);
4281 em = lookup_extent_mapping(map, start, len);
4282 if (!em) {
4283 write_unlock(&map->lock);
4284 break;
4285 }
4286 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4287 em->start != start) {
4288 write_unlock(&map->lock);
4289 free_extent_map(em);
4290 break;
4291 }
4292 if (!test_range_bit(tree, em->start,
4293 extent_map_end(em) - 1,
4294 EXTENT_LOCKED | EXTENT_WRITEBACK,
4295 0, NULL)) {
4296 remove_extent_mapping(map, em);
4297 /* once for the rb tree */
4298 free_extent_map(em);
4299 }
4300 start = extent_map_end(em);
4301 write_unlock(&map->lock);
4302
4303 /* once for us */
4304 free_extent_map(em);
4305 }
4306 }
4307 return try_release_extent_state(map, tree, page, mask);
4308 }
4309
4310 /*
4311 * helper function for fiemap, which doesn't want to see any holes.
4312 * This maps until we find something past 'last'
4313 */
4314 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4315 u64 offset,
4316 u64 last,
4317 get_extent_t *get_extent)
4318 {
4319 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4320 struct extent_map *em;
4321 u64 len;
4322
4323 if (offset >= last)
4324 return NULL;
4325
4326 while (1) {
4327 len = last - offset;
4328 if (len == 0)
4329 break;
4330 len = ALIGN(len, sectorsize);
4331 em = get_extent(inode, NULL, 0, offset, len, 0);
4332 if (IS_ERR_OR_NULL(em))
4333 return em;
4334
4335 /* if this isn't a hole return it */
4336 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4337 em->block_start != EXTENT_MAP_HOLE) {
4338 return em;
4339 }
4340
4341 /* this is a hole, advance to the next extent */
4342 offset = extent_map_end(em);
4343 free_extent_map(em);
4344 if (offset >= last)
4345 break;
4346 }
4347 return NULL;
4348 }
4349
4350 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4351 __u64 start, __u64 len, get_extent_t *get_extent)
4352 {
4353 int ret = 0;
4354 u64 off = start;
4355 u64 max = start + len;
4356 u32 flags = 0;
4357 u32 found_type;
4358 u64 last;
4359 u64 last_for_get_extent = 0;
4360 u64 disko = 0;
4361 u64 isize = i_size_read(inode);
4362 struct btrfs_key found_key;
4363 struct extent_map *em = NULL;
4364 struct extent_state *cached_state = NULL;
4365 struct btrfs_path *path;
4366 struct btrfs_root *root = BTRFS_I(inode)->root;
4367 int end = 0;
4368 u64 em_start = 0;
4369 u64 em_len = 0;
4370 u64 em_end = 0;
4371
4372 if (len == 0)
4373 return -EINVAL;
4374
4375 path = btrfs_alloc_path();
4376 if (!path)
4377 return -ENOMEM;
4378 path->leave_spinning = 1;
4379
4380 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4381 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4382
4383 /*
4384 * lookup the last file extent. We're not using i_size here
4385 * because there might be preallocation past i_size
4386 */
4387 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4388 0);
4389 if (ret < 0) {
4390 btrfs_free_path(path);
4391 return ret;
4392 } else {
4393 WARN_ON(!ret);
4394 if (ret == 1)
4395 ret = 0;
4396 }
4397
4398 path->slots[0]--;
4399 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4400 found_type = found_key.type;
4401
4402 /* No extents, but there might be delalloc bits */
4403 if (found_key.objectid != btrfs_ino(inode) ||
4404 found_type != BTRFS_EXTENT_DATA_KEY) {
4405 /* have to trust i_size as the end */
4406 last = (u64)-1;
4407 last_for_get_extent = isize;
4408 } else {
4409 /*
4410 * remember the start of the last extent. There are a
4411 * bunch of different factors that go into the length of the
4412 * extent, so its much less complex to remember where it started
4413 */
4414 last = found_key.offset;
4415 last_for_get_extent = last + 1;
4416 }
4417 btrfs_release_path(path);
4418
4419 /*
4420 * we might have some extents allocated but more delalloc past those
4421 * extents. so, we trust isize unless the start of the last extent is
4422 * beyond isize
4423 */
4424 if (last < isize) {
4425 last = (u64)-1;
4426 last_for_get_extent = isize;
4427 }
4428
4429 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4430 &cached_state);
4431
4432 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4433 get_extent);
4434 if (!em)
4435 goto out;
4436 if (IS_ERR(em)) {
4437 ret = PTR_ERR(em);
4438 goto out;
4439 }
4440
4441 while (!end) {
4442 u64 offset_in_extent = 0;
4443
4444 /* break if the extent we found is outside the range */
4445 if (em->start >= max || extent_map_end(em) < off)
4446 break;
4447
4448 /*
4449 * get_extent may return an extent that starts before our
4450 * requested range. We have to make sure the ranges
4451 * we return to fiemap always move forward and don't
4452 * overlap, so adjust the offsets here
4453 */
4454 em_start = max(em->start, off);
4455
4456 /*
4457 * record the offset from the start of the extent
4458 * for adjusting the disk offset below. Only do this if the
4459 * extent isn't compressed since our in ram offset may be past
4460 * what we have actually allocated on disk.
4461 */
4462 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4463 offset_in_extent = em_start - em->start;
4464 em_end = extent_map_end(em);
4465 em_len = em_end - em_start;
4466 disko = 0;
4467 flags = 0;
4468
4469 /*
4470 * bump off for our next call to get_extent
4471 */
4472 off = extent_map_end(em);
4473 if (off >= max)
4474 end = 1;
4475
4476 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4477 end = 1;
4478 flags |= FIEMAP_EXTENT_LAST;
4479 } else if (em->block_start == EXTENT_MAP_INLINE) {
4480 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4481 FIEMAP_EXTENT_NOT_ALIGNED);
4482 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4483 flags |= (FIEMAP_EXTENT_DELALLOC |
4484 FIEMAP_EXTENT_UNKNOWN);
4485 } else if (fieinfo->fi_extents_max) {
4486 u64 bytenr = em->block_start -
4487 (em->start - em->orig_start);
4488
4489 disko = em->block_start + offset_in_extent;
4490
4491 /*
4492 * As btrfs supports shared space, this information
4493 * can be exported to userspace tools via
4494 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4495 * then we're just getting a count and we can skip the
4496 * lookup stuff.
4497 */
4498 ret = btrfs_check_shared(NULL, root->fs_info,
4499 root->objectid,
4500 btrfs_ino(inode), bytenr);
4501 if (ret < 0)
4502 goto out_free;
4503 if (ret)
4504 flags |= FIEMAP_EXTENT_SHARED;
4505 ret = 0;
4506 }
4507 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4508 flags |= FIEMAP_EXTENT_ENCODED;
4509 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4510 flags |= FIEMAP_EXTENT_UNWRITTEN;
4511
4512 free_extent_map(em);
4513 em = NULL;
4514 if ((em_start >= last) || em_len == (u64)-1 ||
4515 (last == (u64)-1 && isize <= em_end)) {
4516 flags |= FIEMAP_EXTENT_LAST;
4517 end = 1;
4518 }
4519
4520 /* now scan forward to see if this is really the last extent. */
4521 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4522 get_extent);
4523 if (IS_ERR(em)) {
4524 ret = PTR_ERR(em);
4525 goto out;
4526 }
4527 if (!em) {
4528 flags |= FIEMAP_EXTENT_LAST;
4529 end = 1;
4530 }
4531 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4532 em_len, flags);
4533 if (ret) {
4534 if (ret == 1)
4535 ret = 0;
4536 goto out_free;
4537 }
4538 }
4539 out_free:
4540 free_extent_map(em);
4541 out:
4542 btrfs_free_path(path);
4543 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4544 &cached_state, GFP_NOFS);
4545 return ret;
4546 }
4547
4548 static void __free_extent_buffer(struct extent_buffer *eb)
4549 {
4550 btrfs_leak_debug_del(&eb->leak_list);
4551 kmem_cache_free(extent_buffer_cache, eb);
4552 }
4553
4554 int extent_buffer_under_io(struct extent_buffer *eb)
4555 {
4556 return (atomic_read(&eb->io_pages) ||
4557 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4558 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4559 }
4560
4561 /*
4562 * Helper for releasing extent buffer page.
4563 */
4564 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4565 {
4566 unsigned long index;
4567 struct page *page;
4568 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4569
4570 BUG_ON(extent_buffer_under_io(eb));
4571
4572 index = num_extent_pages(eb->start, eb->len);
4573 if (index == 0)
4574 return;
4575
4576 do {
4577 index--;
4578 page = eb->pages[index];
4579 if (!page)
4580 continue;
4581 if (mapped)
4582 spin_lock(&page->mapping->private_lock);
4583 /*
4584 * We do this since we'll remove the pages after we've
4585 * removed the eb from the radix tree, so we could race
4586 * and have this page now attached to the new eb. So
4587 * only clear page_private if it's still connected to
4588 * this eb.
4589 */
4590 if (PagePrivate(page) &&
4591 page->private == (unsigned long)eb) {
4592 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4593 BUG_ON(PageDirty(page));
4594 BUG_ON(PageWriteback(page));
4595 /*
4596 * We need to make sure we haven't be attached
4597 * to a new eb.
4598 */
4599 ClearPagePrivate(page);
4600 set_page_private(page, 0);
4601 /* One for the page private */
4602 put_page(page);
4603 }
4604
4605 if (mapped)
4606 spin_unlock(&page->mapping->private_lock);
4607
4608 /* One for when we allocated the page */
4609 put_page(page);
4610 } while (index != 0);
4611 }
4612
4613 /*
4614 * Helper for releasing the extent buffer.
4615 */
4616 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4617 {
4618 btrfs_release_extent_buffer_page(eb);
4619 __free_extent_buffer(eb);
4620 }
4621
4622 static struct extent_buffer *
4623 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4624 unsigned long len)
4625 {
4626 struct extent_buffer *eb = NULL;
4627
4628 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4629 eb->start = start;
4630 eb->len = len;
4631 eb->fs_info = fs_info;
4632 eb->bflags = 0;
4633 rwlock_init(&eb->lock);
4634 atomic_set(&eb->write_locks, 0);
4635 atomic_set(&eb->read_locks, 0);
4636 atomic_set(&eb->blocking_readers, 0);
4637 atomic_set(&eb->blocking_writers, 0);
4638 atomic_set(&eb->spinning_readers, 0);
4639 atomic_set(&eb->spinning_writers, 0);
4640 eb->lock_nested = 0;
4641 init_waitqueue_head(&eb->write_lock_wq);
4642 init_waitqueue_head(&eb->read_lock_wq);
4643
4644 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4645
4646 spin_lock_init(&eb->refs_lock);
4647 atomic_set(&eb->refs, 1);
4648 atomic_set(&eb->io_pages, 0);
4649
4650 /*
4651 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4652 */
4653 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4654 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4655 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4656
4657 return eb;
4658 }
4659
4660 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4661 {
4662 unsigned long i;
4663 struct page *p;
4664 struct extent_buffer *new;
4665 unsigned long num_pages = num_extent_pages(src->start, src->len);
4666
4667 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4668 if (new == NULL)
4669 return NULL;
4670
4671 for (i = 0; i < num_pages; i++) {
4672 p = alloc_page(GFP_NOFS);
4673 if (!p) {
4674 btrfs_release_extent_buffer(new);
4675 return NULL;
4676 }
4677 attach_extent_buffer_page(new, p);
4678 WARN_ON(PageDirty(p));
4679 SetPageUptodate(p);
4680 new->pages[i] = p;
4681 }
4682
4683 copy_extent_buffer(new, src, 0, 0, src->len);
4684 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4685 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4686
4687 return new;
4688 }
4689
4690 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4691 u64 start, unsigned long len)
4692 {
4693 struct extent_buffer *eb;
4694 unsigned long num_pages;
4695 unsigned long i;
4696
4697 num_pages = num_extent_pages(start, len);
4698
4699 eb = __alloc_extent_buffer(fs_info, start, len);
4700 if (!eb)
4701 return NULL;
4702
4703 for (i = 0; i < num_pages; i++) {
4704 eb->pages[i] = alloc_page(GFP_NOFS);
4705 if (!eb->pages[i])
4706 goto err;
4707 }
4708 set_extent_buffer_uptodate(eb);
4709 btrfs_set_header_nritems(eb, 0);
4710 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4711
4712 return eb;
4713 err:
4714 for (; i > 0; i--)
4715 __free_page(eb->pages[i - 1]);
4716 __free_extent_buffer(eb);
4717 return NULL;
4718 }
4719
4720 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4721 u64 start)
4722 {
4723 unsigned long len;
4724
4725 if (!fs_info) {
4726 /*
4727 * Called only from tests that don't always have a fs_info
4728 * available, but we know that nodesize is 4096
4729 */
4730 len = 4096;
4731 } else {
4732 len = fs_info->tree_root->nodesize;
4733 }
4734
4735 return __alloc_dummy_extent_buffer(fs_info, start, len);
4736 }
4737
4738 static void check_buffer_tree_ref(struct extent_buffer *eb)
4739 {
4740 int refs;
4741 /* the ref bit is tricky. We have to make sure it is set
4742 * if we have the buffer dirty. Otherwise the
4743 * code to free a buffer can end up dropping a dirty
4744 * page
4745 *
4746 * Once the ref bit is set, it won't go away while the
4747 * buffer is dirty or in writeback, and it also won't
4748 * go away while we have the reference count on the
4749 * eb bumped.
4750 *
4751 * We can't just set the ref bit without bumping the
4752 * ref on the eb because free_extent_buffer might
4753 * see the ref bit and try to clear it. If this happens
4754 * free_extent_buffer might end up dropping our original
4755 * ref by mistake and freeing the page before we are able
4756 * to add one more ref.
4757 *
4758 * So bump the ref count first, then set the bit. If someone
4759 * beat us to it, drop the ref we added.
4760 */
4761 refs = atomic_read(&eb->refs);
4762 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4763 return;
4764
4765 spin_lock(&eb->refs_lock);
4766 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4767 atomic_inc(&eb->refs);
4768 spin_unlock(&eb->refs_lock);
4769 }
4770
4771 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4772 struct page *accessed)
4773 {
4774 unsigned long num_pages, i;
4775
4776 check_buffer_tree_ref(eb);
4777
4778 num_pages = num_extent_pages(eb->start, eb->len);
4779 for (i = 0; i < num_pages; i++) {
4780 struct page *p = eb->pages[i];
4781
4782 if (p != accessed)
4783 mark_page_accessed(p);
4784 }
4785 }
4786
4787 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4788 u64 start)
4789 {
4790 struct extent_buffer *eb;
4791
4792 rcu_read_lock();
4793 eb = radix_tree_lookup(&fs_info->buffer_radix,
4794 start >> PAGE_SHIFT);
4795 if (eb && atomic_inc_not_zero(&eb->refs)) {
4796 rcu_read_unlock();
4797 /*
4798 * Lock our eb's refs_lock to avoid races with
4799 * free_extent_buffer. When we get our eb it might be flagged
4800 * with EXTENT_BUFFER_STALE and another task running
4801 * free_extent_buffer might have seen that flag set,
4802 * eb->refs == 2, that the buffer isn't under IO (dirty and
4803 * writeback flags not set) and it's still in the tree (flag
4804 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4805 * of decrementing the extent buffer's reference count twice.
4806 * So here we could race and increment the eb's reference count,
4807 * clear its stale flag, mark it as dirty and drop our reference
4808 * before the other task finishes executing free_extent_buffer,
4809 * which would later result in an attempt to free an extent
4810 * buffer that is dirty.
4811 */
4812 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4813 spin_lock(&eb->refs_lock);
4814 spin_unlock(&eb->refs_lock);
4815 }
4816 mark_extent_buffer_accessed(eb, NULL);
4817 return eb;
4818 }
4819 rcu_read_unlock();
4820
4821 return NULL;
4822 }
4823
4824 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4825 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4826 u64 start)
4827 {
4828 struct extent_buffer *eb, *exists = NULL;
4829 int ret;
4830
4831 eb = find_extent_buffer(fs_info, start);
4832 if (eb)
4833 return eb;
4834 eb = alloc_dummy_extent_buffer(fs_info, start);
4835 if (!eb)
4836 return NULL;
4837 eb->fs_info = fs_info;
4838 again:
4839 ret = radix_tree_preload(GFP_NOFS);
4840 if (ret)
4841 goto free_eb;
4842 spin_lock(&fs_info->buffer_lock);
4843 ret = radix_tree_insert(&fs_info->buffer_radix,
4844 start >> PAGE_SHIFT, eb);
4845 spin_unlock(&fs_info->buffer_lock);
4846 radix_tree_preload_end();
4847 if (ret == -EEXIST) {
4848 exists = find_extent_buffer(fs_info, start);
4849 if (exists)
4850 goto free_eb;
4851 else
4852 goto again;
4853 }
4854 check_buffer_tree_ref(eb);
4855 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4856
4857 /*
4858 * We will free dummy extent buffer's if they come into
4859 * free_extent_buffer with a ref count of 2, but if we are using this we
4860 * want the buffers to stay in memory until we're done with them, so
4861 * bump the ref count again.
4862 */
4863 atomic_inc(&eb->refs);
4864 return eb;
4865 free_eb:
4866 btrfs_release_extent_buffer(eb);
4867 return exists;
4868 }
4869 #endif
4870
4871 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4872 u64 start)
4873 {
4874 unsigned long len = fs_info->tree_root->nodesize;
4875 unsigned long num_pages = num_extent_pages(start, len);
4876 unsigned long i;
4877 unsigned long index = start >> PAGE_SHIFT;
4878 struct extent_buffer *eb;
4879 struct extent_buffer *exists = NULL;
4880 struct page *p;
4881 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4882 int uptodate = 1;
4883 int ret;
4884
4885 eb = find_extent_buffer(fs_info, start);
4886 if (eb)
4887 return eb;
4888
4889 eb = __alloc_extent_buffer(fs_info, start, len);
4890 if (!eb)
4891 return NULL;
4892
4893 for (i = 0; i < num_pages; i++, index++) {
4894 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4895 if (!p)
4896 goto free_eb;
4897
4898 spin_lock(&mapping->private_lock);
4899 if (PagePrivate(p)) {
4900 /*
4901 * We could have already allocated an eb for this page
4902 * and attached one so lets see if we can get a ref on
4903 * the existing eb, and if we can we know it's good and
4904 * we can just return that one, else we know we can just
4905 * overwrite page->private.
4906 */
4907 exists = (struct extent_buffer *)p->private;
4908 if (atomic_inc_not_zero(&exists->refs)) {
4909 spin_unlock(&mapping->private_lock);
4910 unlock_page(p);
4911 put_page(p);
4912 mark_extent_buffer_accessed(exists, p);
4913 goto free_eb;
4914 }
4915 exists = NULL;
4916
4917 /*
4918 * Do this so attach doesn't complain and we need to
4919 * drop the ref the old guy had.
4920 */
4921 ClearPagePrivate(p);
4922 WARN_ON(PageDirty(p));
4923 put_page(p);
4924 }
4925 attach_extent_buffer_page(eb, p);
4926 spin_unlock(&mapping->private_lock);
4927 WARN_ON(PageDirty(p));
4928 eb->pages[i] = p;
4929 if (!PageUptodate(p))
4930 uptodate = 0;
4931
4932 /*
4933 * see below about how we avoid a nasty race with release page
4934 * and why we unlock later
4935 */
4936 }
4937 if (uptodate)
4938 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4939 again:
4940 ret = radix_tree_preload(GFP_NOFS);
4941 if (ret)
4942 goto free_eb;
4943
4944 spin_lock(&fs_info->buffer_lock);
4945 ret = radix_tree_insert(&fs_info->buffer_radix,
4946 start >> PAGE_SHIFT, eb);
4947 spin_unlock(&fs_info->buffer_lock);
4948 radix_tree_preload_end();
4949 if (ret == -EEXIST) {
4950 exists = find_extent_buffer(fs_info, start);
4951 if (exists)
4952 goto free_eb;
4953 else
4954 goto again;
4955 }
4956 /* add one reference for the tree */
4957 check_buffer_tree_ref(eb);
4958 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4959
4960 /*
4961 * there is a race where release page may have
4962 * tried to find this extent buffer in the radix
4963 * but failed. It will tell the VM it is safe to
4964 * reclaim the, and it will clear the page private bit.
4965 * We must make sure to set the page private bit properly
4966 * after the extent buffer is in the radix tree so
4967 * it doesn't get lost
4968 */
4969 SetPageChecked(eb->pages[0]);
4970 for (i = 1; i < num_pages; i++) {
4971 p = eb->pages[i];
4972 ClearPageChecked(p);
4973 unlock_page(p);
4974 }
4975 unlock_page(eb->pages[0]);
4976 return eb;
4977
4978 free_eb:
4979 WARN_ON(!atomic_dec_and_test(&eb->refs));
4980 for (i = 0; i < num_pages; i++) {
4981 if (eb->pages[i])
4982 unlock_page(eb->pages[i]);
4983 }
4984
4985 btrfs_release_extent_buffer(eb);
4986 return exists;
4987 }
4988
4989 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4990 {
4991 struct extent_buffer *eb =
4992 container_of(head, struct extent_buffer, rcu_head);
4993
4994 __free_extent_buffer(eb);
4995 }
4996
4997 /* Expects to have eb->eb_lock already held */
4998 static int release_extent_buffer(struct extent_buffer *eb)
4999 {
5000 WARN_ON(atomic_read(&eb->refs) == 0);
5001 if (atomic_dec_and_test(&eb->refs)) {
5002 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5003 struct btrfs_fs_info *fs_info = eb->fs_info;
5004
5005 spin_unlock(&eb->refs_lock);
5006
5007 spin_lock(&fs_info->buffer_lock);
5008 radix_tree_delete(&fs_info->buffer_radix,
5009 eb->start >> PAGE_SHIFT);
5010 spin_unlock(&fs_info->buffer_lock);
5011 } else {
5012 spin_unlock(&eb->refs_lock);
5013 }
5014
5015 /* Should be safe to release our pages at this point */
5016 btrfs_release_extent_buffer_page(eb);
5017 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5018 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5019 __free_extent_buffer(eb);
5020 return 1;
5021 }
5022 #endif
5023 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5024 return 1;
5025 }
5026 spin_unlock(&eb->refs_lock);
5027
5028 return 0;
5029 }
5030
5031 void free_extent_buffer(struct extent_buffer *eb)
5032 {
5033 int refs;
5034 int old;
5035 if (!eb)
5036 return;
5037
5038 while (1) {
5039 refs = atomic_read(&eb->refs);
5040 if (refs <= 3)
5041 break;
5042 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5043 if (old == refs)
5044 return;
5045 }
5046
5047 spin_lock(&eb->refs_lock);
5048 if (atomic_read(&eb->refs) == 2 &&
5049 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5050 atomic_dec(&eb->refs);
5051
5052 if (atomic_read(&eb->refs) == 2 &&
5053 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5054 !extent_buffer_under_io(eb) &&
5055 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5056 atomic_dec(&eb->refs);
5057
5058 /*
5059 * I know this is terrible, but it's temporary until we stop tracking
5060 * the uptodate bits and such for the extent buffers.
5061 */
5062 release_extent_buffer(eb);
5063 }
5064
5065 void free_extent_buffer_stale(struct extent_buffer *eb)
5066 {
5067 if (!eb)
5068 return;
5069
5070 spin_lock(&eb->refs_lock);
5071 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5072
5073 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5074 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5075 atomic_dec(&eb->refs);
5076 release_extent_buffer(eb);
5077 }
5078
5079 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5080 {
5081 unsigned long i;
5082 unsigned long num_pages;
5083 struct page *page;
5084
5085 num_pages = num_extent_pages(eb->start, eb->len);
5086
5087 for (i = 0; i < num_pages; i++) {
5088 page = eb->pages[i];
5089 if (!PageDirty(page))
5090 continue;
5091
5092 lock_page(page);
5093 WARN_ON(!PagePrivate(page));
5094
5095 clear_page_dirty_for_io(page);
5096 spin_lock_irq(&page->mapping->tree_lock);
5097 if (!PageDirty(page)) {
5098 radix_tree_tag_clear(&page->mapping->page_tree,
5099 page_index(page),
5100 PAGECACHE_TAG_DIRTY);
5101 }
5102 spin_unlock_irq(&page->mapping->tree_lock);
5103 ClearPageError(page);
5104 unlock_page(page);
5105 }
5106 WARN_ON(atomic_read(&eb->refs) == 0);
5107 }
5108
5109 int set_extent_buffer_dirty(struct extent_buffer *eb)
5110 {
5111 unsigned long i;
5112 unsigned long num_pages;
5113 int was_dirty = 0;
5114
5115 check_buffer_tree_ref(eb);
5116
5117 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5118
5119 num_pages = num_extent_pages(eb->start, eb->len);
5120 WARN_ON(atomic_read(&eb->refs) == 0);
5121 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5122
5123 for (i = 0; i < num_pages; i++)
5124 set_page_dirty(eb->pages[i]);
5125 return was_dirty;
5126 }
5127
5128 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5129 {
5130 unsigned long i;
5131 struct page *page;
5132 unsigned long num_pages;
5133
5134 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5135 num_pages = num_extent_pages(eb->start, eb->len);
5136 for (i = 0; i < num_pages; i++) {
5137 page = eb->pages[i];
5138 if (page)
5139 ClearPageUptodate(page);
5140 }
5141 }
5142
5143 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5144 {
5145 unsigned long i;
5146 struct page *page;
5147 unsigned long num_pages;
5148
5149 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5150 num_pages = num_extent_pages(eb->start, eb->len);
5151 for (i = 0; i < num_pages; i++) {
5152 page = eb->pages[i];
5153 SetPageUptodate(page);
5154 }
5155 }
5156
5157 int extent_buffer_uptodate(struct extent_buffer *eb)
5158 {
5159 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5160 }
5161
5162 int read_extent_buffer_pages(struct extent_io_tree *tree,
5163 struct extent_buffer *eb, u64 start, int wait,
5164 get_extent_t *get_extent, int mirror_num)
5165 {
5166 unsigned long i;
5167 unsigned long start_i;
5168 struct page *page;
5169 int err;
5170 int ret = 0;
5171 int locked_pages = 0;
5172 int all_uptodate = 1;
5173 unsigned long num_pages;
5174 unsigned long num_reads = 0;
5175 struct bio *bio = NULL;
5176 unsigned long bio_flags = 0;
5177
5178 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5179 return 0;
5180
5181 if (start) {
5182 WARN_ON(start < eb->start);
5183 start_i = (start >> PAGE_SHIFT) -
5184 (eb->start >> PAGE_SHIFT);
5185 } else {
5186 start_i = 0;
5187 }
5188
5189 num_pages = num_extent_pages(eb->start, eb->len);
5190 for (i = start_i; i < num_pages; i++) {
5191 page = eb->pages[i];
5192 if (wait == WAIT_NONE) {
5193 if (!trylock_page(page))
5194 goto unlock_exit;
5195 } else {
5196 lock_page(page);
5197 }
5198 locked_pages++;
5199 if (!PageUptodate(page)) {
5200 num_reads++;
5201 all_uptodate = 0;
5202 }
5203 }
5204 if (all_uptodate) {
5205 if (start_i == 0)
5206 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5207 goto unlock_exit;
5208 }
5209
5210 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5211 eb->read_mirror = 0;
5212 atomic_set(&eb->io_pages, num_reads);
5213 for (i = start_i; i < num_pages; i++) {
5214 page = eb->pages[i];
5215 if (!PageUptodate(page)) {
5216 ClearPageError(page);
5217 err = __extent_read_full_page(tree, page,
5218 get_extent, &bio,
5219 mirror_num, &bio_flags,
5220 READ | REQ_META);
5221 if (err)
5222 ret = err;
5223 } else {
5224 unlock_page(page);
5225 }
5226 }
5227
5228 if (bio) {
5229 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5230 bio_flags);
5231 if (err)
5232 return err;
5233 }
5234
5235 if (ret || wait != WAIT_COMPLETE)
5236 return ret;
5237
5238 for (i = start_i; i < num_pages; i++) {
5239 page = eb->pages[i];
5240 wait_on_page_locked(page);
5241 if (!PageUptodate(page))
5242 ret = -EIO;
5243 }
5244
5245 return ret;
5246
5247 unlock_exit:
5248 i = start_i;
5249 while (locked_pages > 0) {
5250 page = eb->pages[i];
5251 i++;
5252 unlock_page(page);
5253 locked_pages--;
5254 }
5255 return ret;
5256 }
5257
5258 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5259 unsigned long start,
5260 unsigned long len)
5261 {
5262 size_t cur;
5263 size_t offset;
5264 struct page *page;
5265 char *kaddr;
5266 char *dst = (char *)dstv;
5267 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5268 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5269
5270 WARN_ON(start > eb->len);
5271 WARN_ON(start + len > eb->start + eb->len);
5272
5273 offset = (start_offset + start) & (PAGE_SIZE - 1);
5274
5275 while (len > 0) {
5276 page = eb->pages[i];
5277
5278 cur = min(len, (PAGE_SIZE - offset));
5279 kaddr = page_address(page);
5280 memcpy(dst, kaddr + offset, cur);
5281
5282 dst += cur;
5283 len -= cur;
5284 offset = 0;
5285 i++;
5286 }
5287 }
5288
5289 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5290 unsigned long start,
5291 unsigned long len)
5292 {
5293 size_t cur;
5294 size_t offset;
5295 struct page *page;
5296 char *kaddr;
5297 char __user *dst = (char __user *)dstv;
5298 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5299 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5300 int ret = 0;
5301
5302 WARN_ON(start > eb->len);
5303 WARN_ON(start + len > eb->start + eb->len);
5304
5305 offset = (start_offset + start) & (PAGE_SIZE - 1);
5306
5307 while (len > 0) {
5308 page = eb->pages[i];
5309
5310 cur = min(len, (PAGE_SIZE - offset));
5311 kaddr = page_address(page);
5312 if (copy_to_user(dst, kaddr + offset, cur)) {
5313 ret = -EFAULT;
5314 break;
5315 }
5316
5317 dst += cur;
5318 len -= cur;
5319 offset = 0;
5320 i++;
5321 }
5322
5323 return ret;
5324 }
5325
5326 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5327 unsigned long min_len, char **map,
5328 unsigned long *map_start,
5329 unsigned long *map_len)
5330 {
5331 size_t offset = start & (PAGE_SIZE - 1);
5332 char *kaddr;
5333 struct page *p;
5334 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5335 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5336 unsigned long end_i = (start_offset + start + min_len - 1) >>
5337 PAGE_SHIFT;
5338
5339 if (i != end_i)
5340 return -EINVAL;
5341
5342 if (i == 0) {
5343 offset = start_offset;
5344 *map_start = 0;
5345 } else {
5346 offset = 0;
5347 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5348 }
5349
5350 if (start + min_len > eb->len) {
5351 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5352 "wanted %lu %lu\n",
5353 eb->start, eb->len, start, min_len);
5354 return -EINVAL;
5355 }
5356
5357 p = eb->pages[i];
5358 kaddr = page_address(p);
5359 *map = kaddr + offset;
5360 *map_len = PAGE_SIZE - offset;
5361 return 0;
5362 }
5363
5364 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5365 unsigned long start,
5366 unsigned long len)
5367 {
5368 size_t cur;
5369 size_t offset;
5370 struct page *page;
5371 char *kaddr;
5372 char *ptr = (char *)ptrv;
5373 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5374 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5375 int ret = 0;
5376
5377 WARN_ON(start > eb->len);
5378 WARN_ON(start + len > eb->start + eb->len);
5379
5380 offset = (start_offset + start) & (PAGE_SIZE - 1);
5381
5382 while (len > 0) {
5383 page = eb->pages[i];
5384
5385 cur = min(len, (PAGE_SIZE - offset));
5386
5387 kaddr = page_address(page);
5388 ret = memcmp(ptr, kaddr + offset, cur);
5389 if (ret)
5390 break;
5391
5392 ptr += cur;
5393 len -= cur;
5394 offset = 0;
5395 i++;
5396 }
5397 return ret;
5398 }
5399
5400 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5401 unsigned long start, unsigned long len)
5402 {
5403 size_t cur;
5404 size_t offset;
5405 struct page *page;
5406 char *kaddr;
5407 char *src = (char *)srcv;
5408 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5409 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5410
5411 WARN_ON(start > eb->len);
5412 WARN_ON(start + len > eb->start + eb->len);
5413
5414 offset = (start_offset + start) & (PAGE_SIZE - 1);
5415
5416 while (len > 0) {
5417 page = eb->pages[i];
5418 WARN_ON(!PageUptodate(page));
5419
5420 cur = min(len, PAGE_SIZE - offset);
5421 kaddr = page_address(page);
5422 memcpy(kaddr + offset, src, cur);
5423
5424 src += cur;
5425 len -= cur;
5426 offset = 0;
5427 i++;
5428 }
5429 }
5430
5431 void memset_extent_buffer(struct extent_buffer *eb, char c,
5432 unsigned long start, unsigned long len)
5433 {
5434 size_t cur;
5435 size_t offset;
5436 struct page *page;
5437 char *kaddr;
5438 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5439 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5440
5441 WARN_ON(start > eb->len);
5442 WARN_ON(start + len > eb->start + eb->len);
5443
5444 offset = (start_offset + start) & (PAGE_SIZE - 1);
5445
5446 while (len > 0) {
5447 page = eb->pages[i];
5448 WARN_ON(!PageUptodate(page));
5449
5450 cur = min(len, PAGE_SIZE - offset);
5451 kaddr = page_address(page);
5452 memset(kaddr + offset, c, cur);
5453
5454 len -= cur;
5455 offset = 0;
5456 i++;
5457 }
5458 }
5459
5460 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5461 unsigned long dst_offset, unsigned long src_offset,
5462 unsigned long len)
5463 {
5464 u64 dst_len = dst->len;
5465 size_t cur;
5466 size_t offset;
5467 struct page *page;
5468 char *kaddr;
5469 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5470 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5471
5472 WARN_ON(src->len != dst_len);
5473
5474 offset = (start_offset + dst_offset) &
5475 (PAGE_SIZE - 1);
5476
5477 while (len > 0) {
5478 page = dst->pages[i];
5479 WARN_ON(!PageUptodate(page));
5480
5481 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5482
5483 kaddr = page_address(page);
5484 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5485
5486 src_offset += cur;
5487 len -= cur;
5488 offset = 0;
5489 i++;
5490 }
5491 }
5492
5493 /*
5494 * The extent buffer bitmap operations are done with byte granularity because
5495 * bitmap items are not guaranteed to be aligned to a word and therefore a
5496 * single word in a bitmap may straddle two pages in the extent buffer.
5497 */
5498 #define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5499 #define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5500 #define BITMAP_FIRST_BYTE_MASK(start) \
5501 ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5502 #define BITMAP_LAST_BYTE_MASK(nbits) \
5503 (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5504
5505 /*
5506 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5507 * given bit number
5508 * @eb: the extent buffer
5509 * @start: offset of the bitmap item in the extent buffer
5510 * @nr: bit number
5511 * @page_index: return index of the page in the extent buffer that contains the
5512 * given bit number
5513 * @page_offset: return offset into the page given by page_index
5514 *
5515 * This helper hides the ugliness of finding the byte in an extent buffer which
5516 * contains a given bit.
5517 */
5518 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5519 unsigned long start, unsigned long nr,
5520 unsigned long *page_index,
5521 size_t *page_offset)
5522 {
5523 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5524 size_t byte_offset = BIT_BYTE(nr);
5525 size_t offset;
5526
5527 /*
5528 * The byte we want is the offset of the extent buffer + the offset of
5529 * the bitmap item in the extent buffer + the offset of the byte in the
5530 * bitmap item.
5531 */
5532 offset = start_offset + start + byte_offset;
5533
5534 *page_index = offset >> PAGE_SHIFT;
5535 *page_offset = offset & (PAGE_SIZE - 1);
5536 }
5537
5538 /**
5539 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5540 * @eb: the extent buffer
5541 * @start: offset of the bitmap item in the extent buffer
5542 * @nr: bit number to test
5543 */
5544 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5545 unsigned long nr)
5546 {
5547 char *kaddr;
5548 struct page *page;
5549 unsigned long i;
5550 size_t offset;
5551
5552 eb_bitmap_offset(eb, start, nr, &i, &offset);
5553 page = eb->pages[i];
5554 WARN_ON(!PageUptodate(page));
5555 kaddr = page_address(page);
5556 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5557 }
5558
5559 /**
5560 * extent_buffer_bitmap_set - set an area of a bitmap
5561 * @eb: the extent buffer
5562 * @start: offset of the bitmap item in the extent buffer
5563 * @pos: bit number of the first bit
5564 * @len: number of bits to set
5565 */
5566 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5567 unsigned long pos, unsigned long len)
5568 {
5569 char *kaddr;
5570 struct page *page;
5571 unsigned long i;
5572 size_t offset;
5573 const unsigned int size = pos + len;
5574 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5575 unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5576
5577 eb_bitmap_offset(eb, start, pos, &i, &offset);
5578 page = eb->pages[i];
5579 WARN_ON(!PageUptodate(page));
5580 kaddr = page_address(page);
5581
5582 while (len >= bits_to_set) {
5583 kaddr[offset] |= mask_to_set;
5584 len -= bits_to_set;
5585 bits_to_set = BITS_PER_BYTE;
5586 mask_to_set = ~0U;
5587 if (++offset >= PAGE_SIZE && len > 0) {
5588 offset = 0;
5589 page = eb->pages[++i];
5590 WARN_ON(!PageUptodate(page));
5591 kaddr = page_address(page);
5592 }
5593 }
5594 if (len) {
5595 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5596 kaddr[offset] |= mask_to_set;
5597 }
5598 }
5599
5600
5601 /**
5602 * extent_buffer_bitmap_clear - clear an area of a bitmap
5603 * @eb: the extent buffer
5604 * @start: offset of the bitmap item in the extent buffer
5605 * @pos: bit number of the first bit
5606 * @len: number of bits to clear
5607 */
5608 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5609 unsigned long pos, unsigned long len)
5610 {
5611 char *kaddr;
5612 struct page *page;
5613 unsigned long i;
5614 size_t offset;
5615 const unsigned int size = pos + len;
5616 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5617 unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5618
5619 eb_bitmap_offset(eb, start, pos, &i, &offset);
5620 page = eb->pages[i];
5621 WARN_ON(!PageUptodate(page));
5622 kaddr = page_address(page);
5623
5624 while (len >= bits_to_clear) {
5625 kaddr[offset] &= ~mask_to_clear;
5626 len -= bits_to_clear;
5627 bits_to_clear = BITS_PER_BYTE;
5628 mask_to_clear = ~0U;
5629 if (++offset >= PAGE_SIZE && len > 0) {
5630 offset = 0;
5631 page = eb->pages[++i];
5632 WARN_ON(!PageUptodate(page));
5633 kaddr = page_address(page);
5634 }
5635 }
5636 if (len) {
5637 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5638 kaddr[offset] &= ~mask_to_clear;
5639 }
5640 }
5641
5642 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5643 {
5644 unsigned long distance = (src > dst) ? src - dst : dst - src;
5645 return distance < len;
5646 }
5647
5648 static void copy_pages(struct page *dst_page, struct page *src_page,
5649 unsigned long dst_off, unsigned long src_off,
5650 unsigned long len)
5651 {
5652 char *dst_kaddr = page_address(dst_page);
5653 char *src_kaddr;
5654 int must_memmove = 0;
5655
5656 if (dst_page != src_page) {
5657 src_kaddr = page_address(src_page);
5658 } else {
5659 src_kaddr = dst_kaddr;
5660 if (areas_overlap(src_off, dst_off, len))
5661 must_memmove = 1;
5662 }
5663
5664 if (must_memmove)
5665 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5666 else
5667 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5668 }
5669
5670 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5671 unsigned long src_offset, unsigned long len)
5672 {
5673 size_t cur;
5674 size_t dst_off_in_page;
5675 size_t src_off_in_page;
5676 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5677 unsigned long dst_i;
5678 unsigned long src_i;
5679
5680 if (src_offset + len > dst->len) {
5681 btrfs_err(dst->fs_info,
5682 "memmove bogus src_offset %lu move "
5683 "len %lu dst len %lu", src_offset, len, dst->len);
5684 BUG_ON(1);
5685 }
5686 if (dst_offset + len > dst->len) {
5687 btrfs_err(dst->fs_info,
5688 "memmove bogus dst_offset %lu move "
5689 "len %lu dst len %lu", dst_offset, len, dst->len);
5690 BUG_ON(1);
5691 }
5692
5693 while (len > 0) {
5694 dst_off_in_page = (start_offset + dst_offset) &
5695 (PAGE_SIZE - 1);
5696 src_off_in_page = (start_offset + src_offset) &
5697 (PAGE_SIZE - 1);
5698
5699 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5700 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5701
5702 cur = min(len, (unsigned long)(PAGE_SIZE -
5703 src_off_in_page));
5704 cur = min_t(unsigned long, cur,
5705 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5706
5707 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5708 dst_off_in_page, src_off_in_page, cur);
5709
5710 src_offset += cur;
5711 dst_offset += cur;
5712 len -= cur;
5713 }
5714 }
5715
5716 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5717 unsigned long src_offset, unsigned long len)
5718 {
5719 size_t cur;
5720 size_t dst_off_in_page;
5721 size_t src_off_in_page;
5722 unsigned long dst_end = dst_offset + len - 1;
5723 unsigned long src_end = src_offset + len - 1;
5724 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5725 unsigned long dst_i;
5726 unsigned long src_i;
5727
5728 if (src_offset + len > dst->len) {
5729 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5730 "len %lu len %lu", src_offset, len, dst->len);
5731 BUG_ON(1);
5732 }
5733 if (dst_offset + len > dst->len) {
5734 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5735 "len %lu len %lu", dst_offset, len, dst->len);
5736 BUG_ON(1);
5737 }
5738 if (dst_offset < src_offset) {
5739 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5740 return;
5741 }
5742 while (len > 0) {
5743 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5744 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5745
5746 dst_off_in_page = (start_offset + dst_end) &
5747 (PAGE_SIZE - 1);
5748 src_off_in_page = (start_offset + src_end) &
5749 (PAGE_SIZE - 1);
5750
5751 cur = min_t(unsigned long, len, src_off_in_page + 1);
5752 cur = min(cur, dst_off_in_page + 1);
5753 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5754 dst_off_in_page - cur + 1,
5755 src_off_in_page - cur + 1, cur);
5756
5757 dst_end -= cur;
5758 src_end -= cur;
5759 len -= cur;
5760 }
5761 }
5762
5763 int try_release_extent_buffer(struct page *page)
5764 {
5765 struct extent_buffer *eb;
5766
5767 /*
5768 * We need to make sure nobody is attaching this page to an eb right
5769 * now.
5770 */
5771 spin_lock(&page->mapping->private_lock);
5772 if (!PagePrivate(page)) {
5773 spin_unlock(&page->mapping->private_lock);
5774 return 1;
5775 }
5776
5777 eb = (struct extent_buffer *)page->private;
5778 BUG_ON(!eb);
5779
5780 /*
5781 * This is a little awful but should be ok, we need to make sure that
5782 * the eb doesn't disappear out from under us while we're looking at
5783 * this page.
5784 */
5785 spin_lock(&eb->refs_lock);
5786 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5787 spin_unlock(&eb->refs_lock);
5788 spin_unlock(&page->mapping->private_lock);
5789 return 0;
5790 }
5791 spin_unlock(&page->mapping->private_lock);
5792
5793 /*
5794 * If tree ref isn't set then we know the ref on this eb is a real ref,
5795 * so just return, this page will likely be freed soon anyway.
5796 */
5797 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5798 spin_unlock(&eb->refs_lock);
5799 return 0;
5800 }
5801
5802 return release_extent_buffer(eb);
5803 }
This page took 0.145547 seconds and 6 git commands to generate.