btrfs: remove unused variables from extent_io.c
[deliverable/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
31
32 static DEFINE_SPINLOCK(leak_lock);
33
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36 {
37 unsigned long flags;
38
39 spin_lock_irqsave(&leak_lock, flags);
40 list_add(new, head);
41 spin_unlock_irqrestore(&leak_lock, flags);
42 }
43
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
46 {
47 unsigned long flags;
48
49 spin_lock_irqsave(&leak_lock, flags);
50 list_del(entry);
51 spin_unlock_irqrestore(&leak_lock, flags);
52 }
53
54 static inline
55 void btrfs_leak_debug_check(void)
56 {
57 struct extent_state *state;
58 struct extent_buffer *eb;
59
60 while (!list_empty(&states)) {
61 state = list_entry(states.next, struct extent_state, leak_list);
62 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63 "state %lu in tree %p refs %d\n",
64 state->start, state->end, state->state, state->tree,
65 atomic_read(&state->refs));
66 list_del(&state->leak_list);
67 kmem_cache_free(extent_state_cache, state);
68 }
69
70 while (!list_empty(&buffers)) {
71 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
73 "refs %d\n",
74 eb->start, eb->len, atomic_read(&eb->refs));
75 list_del(&eb->leak_list);
76 kmem_cache_free(extent_buffer_cache, eb);
77 }
78 }
79
80 #define btrfs_debug_check_extent_io_range(inode, start, end) \
81 __btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end))
82 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
83 struct inode *inode, u64 start, u64 end)
84 {
85 u64 isize = i_size_read(inode);
86
87 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
88 printk_ratelimited(KERN_DEBUG
89 "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
90 caller, btrfs_ino(inode), isize, start, end);
91 }
92 }
93 #else
94 #define btrfs_leak_debug_add(new, head) do {} while (0)
95 #define btrfs_leak_debug_del(entry) do {} while (0)
96 #define btrfs_leak_debug_check() do {} while (0)
97 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
98 #endif
99
100 #define BUFFER_LRU_MAX 64
101
102 struct tree_entry {
103 u64 start;
104 u64 end;
105 struct rb_node rb_node;
106 };
107
108 struct extent_page_data {
109 struct bio *bio;
110 struct extent_io_tree *tree;
111 get_extent_t *get_extent;
112 unsigned long bio_flags;
113
114 /* tells writepage not to lock the state bits for this range
115 * it still does the unlocking
116 */
117 unsigned int extent_locked:1;
118
119 /* tells the submit_bio code to use a WRITE_SYNC */
120 unsigned int sync_io:1;
121 };
122
123 static noinline void flush_write_bio(void *data);
124 static inline struct btrfs_fs_info *
125 tree_fs_info(struct extent_io_tree *tree)
126 {
127 return btrfs_sb(tree->mapping->host->i_sb);
128 }
129
130 int __init extent_io_init(void)
131 {
132 extent_state_cache = kmem_cache_create("btrfs_extent_state",
133 sizeof(struct extent_state), 0,
134 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
135 if (!extent_state_cache)
136 return -ENOMEM;
137
138 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
139 sizeof(struct extent_buffer), 0,
140 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
141 if (!extent_buffer_cache)
142 goto free_state_cache;
143
144 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
145 offsetof(struct btrfs_io_bio, bio));
146 if (!btrfs_bioset)
147 goto free_buffer_cache;
148
149 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
150 goto free_bioset;
151
152 return 0;
153
154 free_bioset:
155 bioset_free(btrfs_bioset);
156 btrfs_bioset = NULL;
157
158 free_buffer_cache:
159 kmem_cache_destroy(extent_buffer_cache);
160 extent_buffer_cache = NULL;
161
162 free_state_cache:
163 kmem_cache_destroy(extent_state_cache);
164 extent_state_cache = NULL;
165 return -ENOMEM;
166 }
167
168 void extent_io_exit(void)
169 {
170 btrfs_leak_debug_check();
171
172 /*
173 * Make sure all delayed rcu free are flushed before we
174 * destroy caches.
175 */
176 rcu_barrier();
177 if (extent_state_cache)
178 kmem_cache_destroy(extent_state_cache);
179 if (extent_buffer_cache)
180 kmem_cache_destroy(extent_buffer_cache);
181 if (btrfs_bioset)
182 bioset_free(btrfs_bioset);
183 }
184
185 void extent_io_tree_init(struct extent_io_tree *tree,
186 struct address_space *mapping)
187 {
188 tree->state = RB_ROOT;
189 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
190 tree->ops = NULL;
191 tree->dirty_bytes = 0;
192 spin_lock_init(&tree->lock);
193 spin_lock_init(&tree->buffer_lock);
194 tree->mapping = mapping;
195 }
196
197 static struct extent_state *alloc_extent_state(gfp_t mask)
198 {
199 struct extent_state *state;
200
201 state = kmem_cache_alloc(extent_state_cache, mask);
202 if (!state)
203 return state;
204 state->state = 0;
205 state->private = 0;
206 state->tree = NULL;
207 btrfs_leak_debug_add(&state->leak_list, &states);
208 atomic_set(&state->refs, 1);
209 init_waitqueue_head(&state->wq);
210 trace_alloc_extent_state(state, mask, _RET_IP_);
211 return state;
212 }
213
214 void free_extent_state(struct extent_state *state)
215 {
216 if (!state)
217 return;
218 if (atomic_dec_and_test(&state->refs)) {
219 WARN_ON(state->tree);
220 btrfs_leak_debug_del(&state->leak_list);
221 trace_free_extent_state(state, _RET_IP_);
222 kmem_cache_free(extent_state_cache, state);
223 }
224 }
225
226 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
227 struct rb_node *node)
228 {
229 struct rb_node **p = &root->rb_node;
230 struct rb_node *parent = NULL;
231 struct tree_entry *entry;
232
233 while (*p) {
234 parent = *p;
235 entry = rb_entry(parent, struct tree_entry, rb_node);
236
237 if (offset < entry->start)
238 p = &(*p)->rb_left;
239 else if (offset > entry->end)
240 p = &(*p)->rb_right;
241 else
242 return parent;
243 }
244
245 rb_link_node(node, parent, p);
246 rb_insert_color(node, root);
247 return NULL;
248 }
249
250 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
251 struct rb_node **prev_ret,
252 struct rb_node **next_ret)
253 {
254 struct rb_root *root = &tree->state;
255 struct rb_node *n = root->rb_node;
256 struct rb_node *prev = NULL;
257 struct rb_node *orig_prev = NULL;
258 struct tree_entry *entry;
259 struct tree_entry *prev_entry = NULL;
260
261 while (n) {
262 entry = rb_entry(n, struct tree_entry, rb_node);
263 prev = n;
264 prev_entry = entry;
265
266 if (offset < entry->start)
267 n = n->rb_left;
268 else if (offset > entry->end)
269 n = n->rb_right;
270 else
271 return n;
272 }
273
274 if (prev_ret) {
275 orig_prev = prev;
276 while (prev && offset > prev_entry->end) {
277 prev = rb_next(prev);
278 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
279 }
280 *prev_ret = prev;
281 prev = orig_prev;
282 }
283
284 if (next_ret) {
285 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
286 while (prev && offset < prev_entry->start) {
287 prev = rb_prev(prev);
288 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
289 }
290 *next_ret = prev;
291 }
292 return NULL;
293 }
294
295 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
296 u64 offset)
297 {
298 struct rb_node *prev = NULL;
299 struct rb_node *ret;
300
301 ret = __etree_search(tree, offset, &prev, NULL);
302 if (!ret)
303 return prev;
304 return ret;
305 }
306
307 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
308 struct extent_state *other)
309 {
310 if (tree->ops && tree->ops->merge_extent_hook)
311 tree->ops->merge_extent_hook(tree->mapping->host, new,
312 other);
313 }
314
315 /*
316 * utility function to look for merge candidates inside a given range.
317 * Any extents with matching state are merged together into a single
318 * extent in the tree. Extents with EXTENT_IO in their state field
319 * are not merged because the end_io handlers need to be able to do
320 * operations on them without sleeping (or doing allocations/splits).
321 *
322 * This should be called with the tree lock held.
323 */
324 static void merge_state(struct extent_io_tree *tree,
325 struct extent_state *state)
326 {
327 struct extent_state *other;
328 struct rb_node *other_node;
329
330 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
331 return;
332
333 other_node = rb_prev(&state->rb_node);
334 if (other_node) {
335 other = rb_entry(other_node, struct extent_state, rb_node);
336 if (other->end == state->start - 1 &&
337 other->state == state->state) {
338 merge_cb(tree, state, other);
339 state->start = other->start;
340 other->tree = NULL;
341 rb_erase(&other->rb_node, &tree->state);
342 free_extent_state(other);
343 }
344 }
345 other_node = rb_next(&state->rb_node);
346 if (other_node) {
347 other = rb_entry(other_node, struct extent_state, rb_node);
348 if (other->start == state->end + 1 &&
349 other->state == state->state) {
350 merge_cb(tree, state, other);
351 state->end = other->end;
352 other->tree = NULL;
353 rb_erase(&other->rb_node, &tree->state);
354 free_extent_state(other);
355 }
356 }
357 }
358
359 static void set_state_cb(struct extent_io_tree *tree,
360 struct extent_state *state, unsigned long *bits)
361 {
362 if (tree->ops && tree->ops->set_bit_hook)
363 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
364 }
365
366 static void clear_state_cb(struct extent_io_tree *tree,
367 struct extent_state *state, unsigned long *bits)
368 {
369 if (tree->ops && tree->ops->clear_bit_hook)
370 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
371 }
372
373 static void set_state_bits(struct extent_io_tree *tree,
374 struct extent_state *state, unsigned long *bits);
375
376 /*
377 * insert an extent_state struct into the tree. 'bits' are set on the
378 * struct before it is inserted.
379 *
380 * This may return -EEXIST if the extent is already there, in which case the
381 * state struct is freed.
382 *
383 * The tree lock is not taken internally. This is a utility function and
384 * probably isn't what you want to call (see set/clear_extent_bit).
385 */
386 static int insert_state(struct extent_io_tree *tree,
387 struct extent_state *state, u64 start, u64 end,
388 unsigned long *bits)
389 {
390 struct rb_node *node;
391
392 if (end < start)
393 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
394 end, start);
395 state->start = start;
396 state->end = end;
397
398 set_state_bits(tree, state, bits);
399
400 node = tree_insert(&tree->state, end, &state->rb_node);
401 if (node) {
402 struct extent_state *found;
403 found = rb_entry(node, struct extent_state, rb_node);
404 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
405 "%llu %llu\n",
406 found->start, found->end, start, end);
407 return -EEXIST;
408 }
409 state->tree = tree;
410 merge_state(tree, state);
411 return 0;
412 }
413
414 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
415 u64 split)
416 {
417 if (tree->ops && tree->ops->split_extent_hook)
418 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
419 }
420
421 /*
422 * split a given extent state struct in two, inserting the preallocated
423 * struct 'prealloc' as the newly created second half. 'split' indicates an
424 * offset inside 'orig' where it should be split.
425 *
426 * Before calling,
427 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
428 * are two extent state structs in the tree:
429 * prealloc: [orig->start, split - 1]
430 * orig: [ split, orig->end ]
431 *
432 * The tree locks are not taken by this function. They need to be held
433 * by the caller.
434 */
435 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
436 struct extent_state *prealloc, u64 split)
437 {
438 struct rb_node *node;
439
440 split_cb(tree, orig, split);
441
442 prealloc->start = orig->start;
443 prealloc->end = split - 1;
444 prealloc->state = orig->state;
445 orig->start = split;
446
447 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
448 if (node) {
449 free_extent_state(prealloc);
450 return -EEXIST;
451 }
452 prealloc->tree = tree;
453 return 0;
454 }
455
456 static struct extent_state *next_state(struct extent_state *state)
457 {
458 struct rb_node *next = rb_next(&state->rb_node);
459 if (next)
460 return rb_entry(next, struct extent_state, rb_node);
461 else
462 return NULL;
463 }
464
465 /*
466 * utility function to clear some bits in an extent state struct.
467 * it will optionally wake up any one waiting on this state (wake == 1).
468 *
469 * If no bits are set on the state struct after clearing things, the
470 * struct is freed and removed from the tree
471 */
472 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
473 struct extent_state *state,
474 unsigned long *bits, int wake)
475 {
476 struct extent_state *next;
477 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
478
479 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
480 u64 range = state->end - state->start + 1;
481 WARN_ON(range > tree->dirty_bytes);
482 tree->dirty_bytes -= range;
483 }
484 clear_state_cb(tree, state, bits);
485 state->state &= ~bits_to_clear;
486 if (wake)
487 wake_up(&state->wq);
488 if (state->state == 0) {
489 next = next_state(state);
490 if (state->tree) {
491 rb_erase(&state->rb_node, &tree->state);
492 state->tree = NULL;
493 free_extent_state(state);
494 } else {
495 WARN_ON(1);
496 }
497 } else {
498 merge_state(tree, state);
499 next = next_state(state);
500 }
501 return next;
502 }
503
504 static struct extent_state *
505 alloc_extent_state_atomic(struct extent_state *prealloc)
506 {
507 if (!prealloc)
508 prealloc = alloc_extent_state(GFP_ATOMIC);
509
510 return prealloc;
511 }
512
513 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
514 {
515 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
516 "Extent tree was modified by another "
517 "thread while locked.");
518 }
519
520 /*
521 * clear some bits on a range in the tree. This may require splitting
522 * or inserting elements in the tree, so the gfp mask is used to
523 * indicate which allocations or sleeping are allowed.
524 *
525 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
526 * the given range from the tree regardless of state (ie for truncate).
527 *
528 * the range [start, end] is inclusive.
529 *
530 * This takes the tree lock, and returns 0 on success and < 0 on error.
531 */
532 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
533 unsigned long bits, int wake, int delete,
534 struct extent_state **cached_state,
535 gfp_t mask)
536 {
537 struct extent_state *state;
538 struct extent_state *cached;
539 struct extent_state *prealloc = NULL;
540 struct rb_node *node;
541 u64 last_end;
542 int err;
543 int clear = 0;
544
545 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
546
547 if (bits & EXTENT_DELALLOC)
548 bits |= EXTENT_NORESERVE;
549
550 if (delete)
551 bits |= ~EXTENT_CTLBITS;
552 bits |= EXTENT_FIRST_DELALLOC;
553
554 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
555 clear = 1;
556 again:
557 if (!prealloc && (mask & __GFP_WAIT)) {
558 prealloc = alloc_extent_state(mask);
559 if (!prealloc)
560 return -ENOMEM;
561 }
562
563 spin_lock(&tree->lock);
564 if (cached_state) {
565 cached = *cached_state;
566
567 if (clear) {
568 *cached_state = NULL;
569 cached_state = NULL;
570 }
571
572 if (cached && cached->tree && cached->start <= start &&
573 cached->end > start) {
574 if (clear)
575 atomic_dec(&cached->refs);
576 state = cached;
577 goto hit_next;
578 }
579 if (clear)
580 free_extent_state(cached);
581 }
582 /*
583 * this search will find the extents that end after
584 * our range starts
585 */
586 node = tree_search(tree, start);
587 if (!node)
588 goto out;
589 state = rb_entry(node, struct extent_state, rb_node);
590 hit_next:
591 if (state->start > end)
592 goto out;
593 WARN_ON(state->end < start);
594 last_end = state->end;
595
596 /* the state doesn't have the wanted bits, go ahead */
597 if (!(state->state & bits)) {
598 state = next_state(state);
599 goto next;
600 }
601
602 /*
603 * | ---- desired range ---- |
604 * | state | or
605 * | ------------- state -------------- |
606 *
607 * We need to split the extent we found, and may flip
608 * bits on second half.
609 *
610 * If the extent we found extends past our range, we
611 * just split and search again. It'll get split again
612 * the next time though.
613 *
614 * If the extent we found is inside our range, we clear
615 * the desired bit on it.
616 */
617
618 if (state->start < start) {
619 prealloc = alloc_extent_state_atomic(prealloc);
620 BUG_ON(!prealloc);
621 err = split_state(tree, state, prealloc, start);
622 if (err)
623 extent_io_tree_panic(tree, err);
624
625 prealloc = NULL;
626 if (err)
627 goto out;
628 if (state->end <= end) {
629 state = clear_state_bit(tree, state, &bits, wake);
630 goto next;
631 }
632 goto search_again;
633 }
634 /*
635 * | ---- desired range ---- |
636 * | state |
637 * We need to split the extent, and clear the bit
638 * on the first half
639 */
640 if (state->start <= end && state->end > end) {
641 prealloc = alloc_extent_state_atomic(prealloc);
642 BUG_ON(!prealloc);
643 err = split_state(tree, state, prealloc, end + 1);
644 if (err)
645 extent_io_tree_panic(tree, err);
646
647 if (wake)
648 wake_up(&state->wq);
649
650 clear_state_bit(tree, prealloc, &bits, wake);
651
652 prealloc = NULL;
653 goto out;
654 }
655
656 state = clear_state_bit(tree, state, &bits, wake);
657 next:
658 if (last_end == (u64)-1)
659 goto out;
660 start = last_end + 1;
661 if (start <= end && state && !need_resched())
662 goto hit_next;
663 goto search_again;
664
665 out:
666 spin_unlock(&tree->lock);
667 if (prealloc)
668 free_extent_state(prealloc);
669
670 return 0;
671
672 search_again:
673 if (start > end)
674 goto out;
675 spin_unlock(&tree->lock);
676 if (mask & __GFP_WAIT)
677 cond_resched();
678 goto again;
679 }
680
681 static void wait_on_state(struct extent_io_tree *tree,
682 struct extent_state *state)
683 __releases(tree->lock)
684 __acquires(tree->lock)
685 {
686 DEFINE_WAIT(wait);
687 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
688 spin_unlock(&tree->lock);
689 schedule();
690 spin_lock(&tree->lock);
691 finish_wait(&state->wq, &wait);
692 }
693
694 /*
695 * waits for one or more bits to clear on a range in the state tree.
696 * The range [start, end] is inclusive.
697 * The tree lock is taken by this function
698 */
699 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
700 unsigned long bits)
701 {
702 struct extent_state *state;
703 struct rb_node *node;
704
705 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
706
707 spin_lock(&tree->lock);
708 again:
709 while (1) {
710 /*
711 * this search will find all the extents that end after
712 * our range starts
713 */
714 node = tree_search(tree, start);
715 if (!node)
716 break;
717
718 state = rb_entry(node, struct extent_state, rb_node);
719
720 if (state->start > end)
721 goto out;
722
723 if (state->state & bits) {
724 start = state->start;
725 atomic_inc(&state->refs);
726 wait_on_state(tree, state);
727 free_extent_state(state);
728 goto again;
729 }
730 start = state->end + 1;
731
732 if (start > end)
733 break;
734
735 cond_resched_lock(&tree->lock);
736 }
737 out:
738 spin_unlock(&tree->lock);
739 }
740
741 static void set_state_bits(struct extent_io_tree *tree,
742 struct extent_state *state,
743 unsigned long *bits)
744 {
745 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
746
747 set_state_cb(tree, state, bits);
748 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
749 u64 range = state->end - state->start + 1;
750 tree->dirty_bytes += range;
751 }
752 state->state |= bits_to_set;
753 }
754
755 static void cache_state(struct extent_state *state,
756 struct extent_state **cached_ptr)
757 {
758 if (cached_ptr && !(*cached_ptr)) {
759 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
760 *cached_ptr = state;
761 atomic_inc(&state->refs);
762 }
763 }
764 }
765
766 /*
767 * set some bits on a range in the tree. This may require allocations or
768 * sleeping, so the gfp mask is used to indicate what is allowed.
769 *
770 * If any of the exclusive bits are set, this will fail with -EEXIST if some
771 * part of the range already has the desired bits set. The start of the
772 * existing range is returned in failed_start in this case.
773 *
774 * [start, end] is inclusive This takes the tree lock.
775 */
776
777 static int __must_check
778 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
779 unsigned long bits, unsigned long exclusive_bits,
780 u64 *failed_start, struct extent_state **cached_state,
781 gfp_t mask)
782 {
783 struct extent_state *state;
784 struct extent_state *prealloc = NULL;
785 struct rb_node *node;
786 int err = 0;
787 u64 last_start;
788 u64 last_end;
789
790 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
791
792 bits |= EXTENT_FIRST_DELALLOC;
793 again:
794 if (!prealloc && (mask & __GFP_WAIT)) {
795 prealloc = alloc_extent_state(mask);
796 BUG_ON(!prealloc);
797 }
798
799 spin_lock(&tree->lock);
800 if (cached_state && *cached_state) {
801 state = *cached_state;
802 if (state->start <= start && state->end > start &&
803 state->tree) {
804 node = &state->rb_node;
805 goto hit_next;
806 }
807 }
808 /*
809 * this search will find all the extents that end after
810 * our range starts.
811 */
812 node = tree_search(tree, start);
813 if (!node) {
814 prealloc = alloc_extent_state_atomic(prealloc);
815 BUG_ON(!prealloc);
816 err = insert_state(tree, prealloc, start, end, &bits);
817 if (err)
818 extent_io_tree_panic(tree, err);
819
820 prealloc = NULL;
821 goto out;
822 }
823 state = rb_entry(node, struct extent_state, rb_node);
824 hit_next:
825 last_start = state->start;
826 last_end = state->end;
827
828 /*
829 * | ---- desired range ---- |
830 * | state |
831 *
832 * Just lock what we found and keep going
833 */
834 if (state->start == start && state->end <= end) {
835 if (state->state & exclusive_bits) {
836 *failed_start = state->start;
837 err = -EEXIST;
838 goto out;
839 }
840
841 set_state_bits(tree, state, &bits);
842 cache_state(state, cached_state);
843 merge_state(tree, state);
844 if (last_end == (u64)-1)
845 goto out;
846 start = last_end + 1;
847 state = next_state(state);
848 if (start < end && state && state->start == start &&
849 !need_resched())
850 goto hit_next;
851 goto search_again;
852 }
853
854 /*
855 * | ---- desired range ---- |
856 * | state |
857 * or
858 * | ------------- state -------------- |
859 *
860 * We need to split the extent we found, and may flip bits on
861 * second half.
862 *
863 * If the extent we found extends past our
864 * range, we just split and search again. It'll get split
865 * again the next time though.
866 *
867 * If the extent we found is inside our range, we set the
868 * desired bit on it.
869 */
870 if (state->start < start) {
871 if (state->state & exclusive_bits) {
872 *failed_start = start;
873 err = -EEXIST;
874 goto out;
875 }
876
877 prealloc = alloc_extent_state_atomic(prealloc);
878 BUG_ON(!prealloc);
879 err = split_state(tree, state, prealloc, start);
880 if (err)
881 extent_io_tree_panic(tree, err);
882
883 prealloc = NULL;
884 if (err)
885 goto out;
886 if (state->end <= end) {
887 set_state_bits(tree, state, &bits);
888 cache_state(state, cached_state);
889 merge_state(tree, state);
890 if (last_end == (u64)-1)
891 goto out;
892 start = last_end + 1;
893 state = next_state(state);
894 if (start < end && state && state->start == start &&
895 !need_resched())
896 goto hit_next;
897 }
898 goto search_again;
899 }
900 /*
901 * | ---- desired range ---- |
902 * | state | or | state |
903 *
904 * There's a hole, we need to insert something in it and
905 * ignore the extent we found.
906 */
907 if (state->start > start) {
908 u64 this_end;
909 if (end < last_start)
910 this_end = end;
911 else
912 this_end = last_start - 1;
913
914 prealloc = alloc_extent_state_atomic(prealloc);
915 BUG_ON(!prealloc);
916
917 /*
918 * Avoid to free 'prealloc' if it can be merged with
919 * the later extent.
920 */
921 err = insert_state(tree, prealloc, start, this_end,
922 &bits);
923 if (err)
924 extent_io_tree_panic(tree, err);
925
926 cache_state(prealloc, cached_state);
927 prealloc = NULL;
928 start = this_end + 1;
929 goto search_again;
930 }
931 /*
932 * | ---- desired range ---- |
933 * | state |
934 * We need to split the extent, and set the bit
935 * on the first half
936 */
937 if (state->start <= end && state->end > end) {
938 if (state->state & exclusive_bits) {
939 *failed_start = start;
940 err = -EEXIST;
941 goto out;
942 }
943
944 prealloc = alloc_extent_state_atomic(prealloc);
945 BUG_ON(!prealloc);
946 err = split_state(tree, state, prealloc, end + 1);
947 if (err)
948 extent_io_tree_panic(tree, err);
949
950 set_state_bits(tree, prealloc, &bits);
951 cache_state(prealloc, cached_state);
952 merge_state(tree, prealloc);
953 prealloc = NULL;
954 goto out;
955 }
956
957 goto search_again;
958
959 out:
960 spin_unlock(&tree->lock);
961 if (prealloc)
962 free_extent_state(prealloc);
963
964 return err;
965
966 search_again:
967 if (start > end)
968 goto out;
969 spin_unlock(&tree->lock);
970 if (mask & __GFP_WAIT)
971 cond_resched();
972 goto again;
973 }
974
975 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
976 unsigned long bits, u64 * failed_start,
977 struct extent_state **cached_state, gfp_t mask)
978 {
979 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
980 cached_state, mask);
981 }
982
983
984 /**
985 * convert_extent_bit - convert all bits in a given range from one bit to
986 * another
987 * @tree: the io tree to search
988 * @start: the start offset in bytes
989 * @end: the end offset in bytes (inclusive)
990 * @bits: the bits to set in this range
991 * @clear_bits: the bits to clear in this range
992 * @cached_state: state that we're going to cache
993 * @mask: the allocation mask
994 *
995 * This will go through and set bits for the given range. If any states exist
996 * already in this range they are set with the given bit and cleared of the
997 * clear_bits. This is only meant to be used by things that are mergeable, ie
998 * converting from say DELALLOC to DIRTY. This is not meant to be used with
999 * boundary bits like LOCK.
1000 */
1001 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1002 unsigned long bits, unsigned long clear_bits,
1003 struct extent_state **cached_state, gfp_t mask)
1004 {
1005 struct extent_state *state;
1006 struct extent_state *prealloc = NULL;
1007 struct rb_node *node;
1008 int err = 0;
1009 u64 last_start;
1010 u64 last_end;
1011
1012 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
1013
1014 again:
1015 if (!prealloc && (mask & __GFP_WAIT)) {
1016 prealloc = alloc_extent_state(mask);
1017 if (!prealloc)
1018 return -ENOMEM;
1019 }
1020
1021 spin_lock(&tree->lock);
1022 if (cached_state && *cached_state) {
1023 state = *cached_state;
1024 if (state->start <= start && state->end > start &&
1025 state->tree) {
1026 node = &state->rb_node;
1027 goto hit_next;
1028 }
1029 }
1030
1031 /*
1032 * this search will find all the extents that end after
1033 * our range starts.
1034 */
1035 node = tree_search(tree, start);
1036 if (!node) {
1037 prealloc = alloc_extent_state_atomic(prealloc);
1038 if (!prealloc) {
1039 err = -ENOMEM;
1040 goto out;
1041 }
1042 err = insert_state(tree, prealloc, start, end, &bits);
1043 prealloc = NULL;
1044 if (err)
1045 extent_io_tree_panic(tree, err);
1046 goto out;
1047 }
1048 state = rb_entry(node, struct extent_state, rb_node);
1049 hit_next:
1050 last_start = state->start;
1051 last_end = state->end;
1052
1053 /*
1054 * | ---- desired range ---- |
1055 * | state |
1056 *
1057 * Just lock what we found and keep going
1058 */
1059 if (state->start == start && state->end <= end) {
1060 set_state_bits(tree, state, &bits);
1061 cache_state(state, cached_state);
1062 state = clear_state_bit(tree, state, &clear_bits, 0);
1063 if (last_end == (u64)-1)
1064 goto out;
1065 start = last_end + 1;
1066 if (start < end && state && state->start == start &&
1067 !need_resched())
1068 goto hit_next;
1069 goto search_again;
1070 }
1071
1072 /*
1073 * | ---- desired range ---- |
1074 * | state |
1075 * or
1076 * | ------------- state -------------- |
1077 *
1078 * We need to split the extent we found, and may flip bits on
1079 * second half.
1080 *
1081 * If the extent we found extends past our
1082 * range, we just split and search again. It'll get split
1083 * again the next time though.
1084 *
1085 * If the extent we found is inside our range, we set the
1086 * desired bit on it.
1087 */
1088 if (state->start < start) {
1089 prealloc = alloc_extent_state_atomic(prealloc);
1090 if (!prealloc) {
1091 err = -ENOMEM;
1092 goto out;
1093 }
1094 err = split_state(tree, state, prealloc, start);
1095 if (err)
1096 extent_io_tree_panic(tree, err);
1097 prealloc = NULL;
1098 if (err)
1099 goto out;
1100 if (state->end <= end) {
1101 set_state_bits(tree, state, &bits);
1102 cache_state(state, cached_state);
1103 state = clear_state_bit(tree, state, &clear_bits, 0);
1104 if (last_end == (u64)-1)
1105 goto out;
1106 start = last_end + 1;
1107 if (start < end && state && state->start == start &&
1108 !need_resched())
1109 goto hit_next;
1110 }
1111 goto search_again;
1112 }
1113 /*
1114 * | ---- desired range ---- |
1115 * | state | or | state |
1116 *
1117 * There's a hole, we need to insert something in it and
1118 * ignore the extent we found.
1119 */
1120 if (state->start > start) {
1121 u64 this_end;
1122 if (end < last_start)
1123 this_end = end;
1124 else
1125 this_end = last_start - 1;
1126
1127 prealloc = alloc_extent_state_atomic(prealloc);
1128 if (!prealloc) {
1129 err = -ENOMEM;
1130 goto out;
1131 }
1132
1133 /*
1134 * Avoid to free 'prealloc' if it can be merged with
1135 * the later extent.
1136 */
1137 err = insert_state(tree, prealloc, start, this_end,
1138 &bits);
1139 if (err)
1140 extent_io_tree_panic(tree, err);
1141 cache_state(prealloc, cached_state);
1142 prealloc = NULL;
1143 start = this_end + 1;
1144 goto search_again;
1145 }
1146 /*
1147 * | ---- desired range ---- |
1148 * | state |
1149 * We need to split the extent, and set the bit
1150 * on the first half
1151 */
1152 if (state->start <= end && state->end > end) {
1153 prealloc = alloc_extent_state_atomic(prealloc);
1154 if (!prealloc) {
1155 err = -ENOMEM;
1156 goto out;
1157 }
1158
1159 err = split_state(tree, state, prealloc, end + 1);
1160 if (err)
1161 extent_io_tree_panic(tree, err);
1162
1163 set_state_bits(tree, prealloc, &bits);
1164 cache_state(prealloc, cached_state);
1165 clear_state_bit(tree, prealloc, &clear_bits, 0);
1166 prealloc = NULL;
1167 goto out;
1168 }
1169
1170 goto search_again;
1171
1172 out:
1173 spin_unlock(&tree->lock);
1174 if (prealloc)
1175 free_extent_state(prealloc);
1176
1177 return err;
1178
1179 search_again:
1180 if (start > end)
1181 goto out;
1182 spin_unlock(&tree->lock);
1183 if (mask & __GFP_WAIT)
1184 cond_resched();
1185 goto again;
1186 }
1187
1188 /* wrappers around set/clear extent bit */
1189 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1190 gfp_t mask)
1191 {
1192 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1193 NULL, mask);
1194 }
1195
1196 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1197 unsigned long bits, gfp_t mask)
1198 {
1199 return set_extent_bit(tree, start, end, bits, NULL,
1200 NULL, mask);
1201 }
1202
1203 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1204 unsigned long bits, gfp_t mask)
1205 {
1206 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1207 }
1208
1209 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1210 struct extent_state **cached_state, gfp_t mask)
1211 {
1212 return set_extent_bit(tree, start, end,
1213 EXTENT_DELALLOC | EXTENT_UPTODATE,
1214 NULL, cached_state, mask);
1215 }
1216
1217 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1218 struct extent_state **cached_state, gfp_t mask)
1219 {
1220 return set_extent_bit(tree, start, end,
1221 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1222 NULL, cached_state, mask);
1223 }
1224
1225 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1226 gfp_t mask)
1227 {
1228 return clear_extent_bit(tree, start, end,
1229 EXTENT_DIRTY | EXTENT_DELALLOC |
1230 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1231 }
1232
1233 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1234 gfp_t mask)
1235 {
1236 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1237 NULL, mask);
1238 }
1239
1240 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1241 struct extent_state **cached_state, gfp_t mask)
1242 {
1243 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1244 cached_state, mask);
1245 }
1246
1247 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1248 struct extent_state **cached_state, gfp_t mask)
1249 {
1250 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1251 cached_state, mask);
1252 }
1253
1254 /*
1255 * either insert or lock state struct between start and end use mask to tell
1256 * us if waiting is desired.
1257 */
1258 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1259 unsigned long bits, struct extent_state **cached_state)
1260 {
1261 int err;
1262 u64 failed_start;
1263 while (1) {
1264 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1265 EXTENT_LOCKED, &failed_start,
1266 cached_state, GFP_NOFS);
1267 if (err == -EEXIST) {
1268 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1269 start = failed_start;
1270 } else
1271 break;
1272 WARN_ON(start > end);
1273 }
1274 return err;
1275 }
1276
1277 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1278 {
1279 return lock_extent_bits(tree, start, end, 0, NULL);
1280 }
1281
1282 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1283 {
1284 int err;
1285 u64 failed_start;
1286
1287 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1288 &failed_start, NULL, GFP_NOFS);
1289 if (err == -EEXIST) {
1290 if (failed_start > start)
1291 clear_extent_bit(tree, start, failed_start - 1,
1292 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1293 return 0;
1294 }
1295 return 1;
1296 }
1297
1298 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1299 struct extent_state **cached, gfp_t mask)
1300 {
1301 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1302 mask);
1303 }
1304
1305 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1306 {
1307 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1308 GFP_NOFS);
1309 }
1310
1311 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1312 {
1313 unsigned long index = start >> PAGE_CACHE_SHIFT;
1314 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1315 struct page *page;
1316
1317 while (index <= end_index) {
1318 page = find_get_page(inode->i_mapping, index);
1319 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1320 clear_page_dirty_for_io(page);
1321 page_cache_release(page);
1322 index++;
1323 }
1324 return 0;
1325 }
1326
1327 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1328 {
1329 unsigned long index = start >> PAGE_CACHE_SHIFT;
1330 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1331 struct page *page;
1332
1333 while (index <= end_index) {
1334 page = find_get_page(inode->i_mapping, index);
1335 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1336 account_page_redirty(page);
1337 __set_page_dirty_nobuffers(page);
1338 page_cache_release(page);
1339 index++;
1340 }
1341 return 0;
1342 }
1343
1344 /*
1345 * helper function to set both pages and extents in the tree writeback
1346 */
1347 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1348 {
1349 unsigned long index = start >> PAGE_CACHE_SHIFT;
1350 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1351 struct page *page;
1352
1353 while (index <= end_index) {
1354 page = find_get_page(tree->mapping, index);
1355 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1356 set_page_writeback(page);
1357 page_cache_release(page);
1358 index++;
1359 }
1360 return 0;
1361 }
1362
1363 /* find the first state struct with 'bits' set after 'start', and
1364 * return it. tree->lock must be held. NULL will returned if
1365 * nothing was found after 'start'
1366 */
1367 static struct extent_state *
1368 find_first_extent_bit_state(struct extent_io_tree *tree,
1369 u64 start, unsigned long bits)
1370 {
1371 struct rb_node *node;
1372 struct extent_state *state;
1373
1374 /*
1375 * this search will find all the extents that end after
1376 * our range starts.
1377 */
1378 node = tree_search(tree, start);
1379 if (!node)
1380 goto out;
1381
1382 while (1) {
1383 state = rb_entry(node, struct extent_state, rb_node);
1384 if (state->end >= start && (state->state & bits))
1385 return state;
1386
1387 node = rb_next(node);
1388 if (!node)
1389 break;
1390 }
1391 out:
1392 return NULL;
1393 }
1394
1395 /*
1396 * find the first offset in the io tree with 'bits' set. zero is
1397 * returned if we find something, and *start_ret and *end_ret are
1398 * set to reflect the state struct that was found.
1399 *
1400 * If nothing was found, 1 is returned. If found something, return 0.
1401 */
1402 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1403 u64 *start_ret, u64 *end_ret, unsigned long bits,
1404 struct extent_state **cached_state)
1405 {
1406 struct extent_state *state;
1407 struct rb_node *n;
1408 int ret = 1;
1409
1410 spin_lock(&tree->lock);
1411 if (cached_state && *cached_state) {
1412 state = *cached_state;
1413 if (state->end == start - 1 && state->tree) {
1414 n = rb_next(&state->rb_node);
1415 while (n) {
1416 state = rb_entry(n, struct extent_state,
1417 rb_node);
1418 if (state->state & bits)
1419 goto got_it;
1420 n = rb_next(n);
1421 }
1422 free_extent_state(*cached_state);
1423 *cached_state = NULL;
1424 goto out;
1425 }
1426 free_extent_state(*cached_state);
1427 *cached_state = NULL;
1428 }
1429
1430 state = find_first_extent_bit_state(tree, start, bits);
1431 got_it:
1432 if (state) {
1433 cache_state(state, cached_state);
1434 *start_ret = state->start;
1435 *end_ret = state->end;
1436 ret = 0;
1437 }
1438 out:
1439 spin_unlock(&tree->lock);
1440 return ret;
1441 }
1442
1443 /*
1444 * find a contiguous range of bytes in the file marked as delalloc, not
1445 * more than 'max_bytes'. start and end are used to return the range,
1446 *
1447 * 1 is returned if we find something, 0 if nothing was in the tree
1448 */
1449 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1450 u64 *start, u64 *end, u64 max_bytes,
1451 struct extent_state **cached_state)
1452 {
1453 struct rb_node *node;
1454 struct extent_state *state;
1455 u64 cur_start = *start;
1456 u64 found = 0;
1457 u64 total_bytes = 0;
1458
1459 spin_lock(&tree->lock);
1460
1461 /*
1462 * this search will find all the extents that end after
1463 * our range starts.
1464 */
1465 node = tree_search(tree, cur_start);
1466 if (!node) {
1467 if (!found)
1468 *end = (u64)-1;
1469 goto out;
1470 }
1471
1472 while (1) {
1473 state = rb_entry(node, struct extent_state, rb_node);
1474 if (found && (state->start != cur_start ||
1475 (state->state & EXTENT_BOUNDARY))) {
1476 goto out;
1477 }
1478 if (!(state->state & EXTENT_DELALLOC)) {
1479 if (!found)
1480 *end = state->end;
1481 goto out;
1482 }
1483 if (!found) {
1484 *start = state->start;
1485 *cached_state = state;
1486 atomic_inc(&state->refs);
1487 }
1488 found++;
1489 *end = state->end;
1490 cur_start = state->end + 1;
1491 node = rb_next(node);
1492 total_bytes += state->end - state->start + 1;
1493 if (total_bytes >= max_bytes)
1494 break;
1495 if (!node)
1496 break;
1497 }
1498 out:
1499 spin_unlock(&tree->lock);
1500 return found;
1501 }
1502
1503 static noinline void __unlock_for_delalloc(struct inode *inode,
1504 struct page *locked_page,
1505 u64 start, u64 end)
1506 {
1507 int ret;
1508 struct page *pages[16];
1509 unsigned long index = start >> PAGE_CACHE_SHIFT;
1510 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1511 unsigned long nr_pages = end_index - index + 1;
1512 int i;
1513
1514 if (index == locked_page->index && end_index == index)
1515 return;
1516
1517 while (nr_pages > 0) {
1518 ret = find_get_pages_contig(inode->i_mapping, index,
1519 min_t(unsigned long, nr_pages,
1520 ARRAY_SIZE(pages)), pages);
1521 for (i = 0; i < ret; i++) {
1522 if (pages[i] != locked_page)
1523 unlock_page(pages[i]);
1524 page_cache_release(pages[i]);
1525 }
1526 nr_pages -= ret;
1527 index += ret;
1528 cond_resched();
1529 }
1530 }
1531
1532 static noinline int lock_delalloc_pages(struct inode *inode,
1533 struct page *locked_page,
1534 u64 delalloc_start,
1535 u64 delalloc_end)
1536 {
1537 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1538 unsigned long start_index = index;
1539 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1540 unsigned long pages_locked = 0;
1541 struct page *pages[16];
1542 unsigned long nrpages;
1543 int ret;
1544 int i;
1545
1546 /* the caller is responsible for locking the start index */
1547 if (index == locked_page->index && index == end_index)
1548 return 0;
1549
1550 /* skip the page at the start index */
1551 nrpages = end_index - index + 1;
1552 while (nrpages > 0) {
1553 ret = find_get_pages_contig(inode->i_mapping, index,
1554 min_t(unsigned long,
1555 nrpages, ARRAY_SIZE(pages)), pages);
1556 if (ret == 0) {
1557 ret = -EAGAIN;
1558 goto done;
1559 }
1560 /* now we have an array of pages, lock them all */
1561 for (i = 0; i < ret; i++) {
1562 /*
1563 * the caller is taking responsibility for
1564 * locked_page
1565 */
1566 if (pages[i] != locked_page) {
1567 lock_page(pages[i]);
1568 if (!PageDirty(pages[i]) ||
1569 pages[i]->mapping != inode->i_mapping) {
1570 ret = -EAGAIN;
1571 unlock_page(pages[i]);
1572 page_cache_release(pages[i]);
1573 goto done;
1574 }
1575 }
1576 page_cache_release(pages[i]);
1577 pages_locked++;
1578 }
1579 nrpages -= ret;
1580 index += ret;
1581 cond_resched();
1582 }
1583 ret = 0;
1584 done:
1585 if (ret && pages_locked) {
1586 __unlock_for_delalloc(inode, locked_page,
1587 delalloc_start,
1588 ((u64)(start_index + pages_locked - 1)) <<
1589 PAGE_CACHE_SHIFT);
1590 }
1591 return ret;
1592 }
1593
1594 /*
1595 * find a contiguous range of bytes in the file marked as delalloc, not
1596 * more than 'max_bytes'. start and end are used to return the range,
1597 *
1598 * 1 is returned if we find something, 0 if nothing was in the tree
1599 */
1600 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1601 struct extent_io_tree *tree,
1602 struct page *locked_page, u64 *start,
1603 u64 *end, u64 max_bytes)
1604 {
1605 u64 delalloc_start;
1606 u64 delalloc_end;
1607 u64 found;
1608 struct extent_state *cached_state = NULL;
1609 int ret;
1610 int loops = 0;
1611
1612 again:
1613 /* step one, find a bunch of delalloc bytes starting at start */
1614 delalloc_start = *start;
1615 delalloc_end = 0;
1616 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1617 max_bytes, &cached_state);
1618 if (!found || delalloc_end <= *start) {
1619 *start = delalloc_start;
1620 *end = delalloc_end;
1621 free_extent_state(cached_state);
1622 return 0;
1623 }
1624
1625 /*
1626 * start comes from the offset of locked_page. We have to lock
1627 * pages in order, so we can't process delalloc bytes before
1628 * locked_page
1629 */
1630 if (delalloc_start < *start)
1631 delalloc_start = *start;
1632
1633 /*
1634 * make sure to limit the number of pages we try to lock down
1635 */
1636 if (delalloc_end + 1 - delalloc_start > max_bytes)
1637 delalloc_end = delalloc_start + max_bytes - 1;
1638
1639 /* step two, lock all the pages after the page that has start */
1640 ret = lock_delalloc_pages(inode, locked_page,
1641 delalloc_start, delalloc_end);
1642 if (ret == -EAGAIN) {
1643 /* some of the pages are gone, lets avoid looping by
1644 * shortening the size of the delalloc range we're searching
1645 */
1646 free_extent_state(cached_state);
1647 if (!loops) {
1648 max_bytes = PAGE_CACHE_SIZE;
1649 loops = 1;
1650 goto again;
1651 } else {
1652 found = 0;
1653 goto out_failed;
1654 }
1655 }
1656 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1657
1658 /* step three, lock the state bits for the whole range */
1659 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1660
1661 /* then test to make sure it is all still delalloc */
1662 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1663 EXTENT_DELALLOC, 1, cached_state);
1664 if (!ret) {
1665 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1666 &cached_state, GFP_NOFS);
1667 __unlock_for_delalloc(inode, locked_page,
1668 delalloc_start, delalloc_end);
1669 cond_resched();
1670 goto again;
1671 }
1672 free_extent_state(cached_state);
1673 *start = delalloc_start;
1674 *end = delalloc_end;
1675 out_failed:
1676 return found;
1677 }
1678
1679 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1680 struct page *locked_page,
1681 unsigned long clear_bits,
1682 unsigned long page_ops)
1683 {
1684 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1685 int ret;
1686 struct page *pages[16];
1687 unsigned long index = start >> PAGE_CACHE_SHIFT;
1688 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1689 unsigned long nr_pages = end_index - index + 1;
1690 int i;
1691
1692 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1693 if (page_ops == 0)
1694 return 0;
1695
1696 while (nr_pages > 0) {
1697 ret = find_get_pages_contig(inode->i_mapping, index,
1698 min_t(unsigned long,
1699 nr_pages, ARRAY_SIZE(pages)), pages);
1700 for (i = 0; i < ret; i++) {
1701
1702 if (page_ops & PAGE_SET_PRIVATE2)
1703 SetPagePrivate2(pages[i]);
1704
1705 if (pages[i] == locked_page) {
1706 page_cache_release(pages[i]);
1707 continue;
1708 }
1709 if (page_ops & PAGE_CLEAR_DIRTY)
1710 clear_page_dirty_for_io(pages[i]);
1711 if (page_ops & PAGE_SET_WRITEBACK)
1712 set_page_writeback(pages[i]);
1713 if (page_ops & PAGE_END_WRITEBACK)
1714 end_page_writeback(pages[i]);
1715 if (page_ops & PAGE_UNLOCK)
1716 unlock_page(pages[i]);
1717 page_cache_release(pages[i]);
1718 }
1719 nr_pages -= ret;
1720 index += ret;
1721 cond_resched();
1722 }
1723 return 0;
1724 }
1725
1726 /*
1727 * count the number of bytes in the tree that have a given bit(s)
1728 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1729 * cached. The total number found is returned.
1730 */
1731 u64 count_range_bits(struct extent_io_tree *tree,
1732 u64 *start, u64 search_end, u64 max_bytes,
1733 unsigned long bits, int contig)
1734 {
1735 struct rb_node *node;
1736 struct extent_state *state;
1737 u64 cur_start = *start;
1738 u64 total_bytes = 0;
1739 u64 last = 0;
1740 int found = 0;
1741
1742 if (WARN_ON(search_end <= cur_start))
1743 return 0;
1744
1745 spin_lock(&tree->lock);
1746 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1747 total_bytes = tree->dirty_bytes;
1748 goto out;
1749 }
1750 /*
1751 * this search will find all the extents that end after
1752 * our range starts.
1753 */
1754 node = tree_search(tree, cur_start);
1755 if (!node)
1756 goto out;
1757
1758 while (1) {
1759 state = rb_entry(node, struct extent_state, rb_node);
1760 if (state->start > search_end)
1761 break;
1762 if (contig && found && state->start > last + 1)
1763 break;
1764 if (state->end >= cur_start && (state->state & bits) == bits) {
1765 total_bytes += min(search_end, state->end) + 1 -
1766 max(cur_start, state->start);
1767 if (total_bytes >= max_bytes)
1768 break;
1769 if (!found) {
1770 *start = max(cur_start, state->start);
1771 found = 1;
1772 }
1773 last = state->end;
1774 } else if (contig && found) {
1775 break;
1776 }
1777 node = rb_next(node);
1778 if (!node)
1779 break;
1780 }
1781 out:
1782 spin_unlock(&tree->lock);
1783 return total_bytes;
1784 }
1785
1786 /*
1787 * set the private field for a given byte offset in the tree. If there isn't
1788 * an extent_state there already, this does nothing.
1789 */
1790 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1791 {
1792 struct rb_node *node;
1793 struct extent_state *state;
1794 int ret = 0;
1795
1796 spin_lock(&tree->lock);
1797 /*
1798 * this search will find all the extents that end after
1799 * our range starts.
1800 */
1801 node = tree_search(tree, start);
1802 if (!node) {
1803 ret = -ENOENT;
1804 goto out;
1805 }
1806 state = rb_entry(node, struct extent_state, rb_node);
1807 if (state->start != start) {
1808 ret = -ENOENT;
1809 goto out;
1810 }
1811 state->private = private;
1812 out:
1813 spin_unlock(&tree->lock);
1814 return ret;
1815 }
1816
1817 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1818 {
1819 struct rb_node *node;
1820 struct extent_state *state;
1821 int ret = 0;
1822
1823 spin_lock(&tree->lock);
1824 /*
1825 * this search will find all the extents that end after
1826 * our range starts.
1827 */
1828 node = tree_search(tree, start);
1829 if (!node) {
1830 ret = -ENOENT;
1831 goto out;
1832 }
1833 state = rb_entry(node, struct extent_state, rb_node);
1834 if (state->start != start) {
1835 ret = -ENOENT;
1836 goto out;
1837 }
1838 *private = state->private;
1839 out:
1840 spin_unlock(&tree->lock);
1841 return ret;
1842 }
1843
1844 /*
1845 * searches a range in the state tree for a given mask.
1846 * If 'filled' == 1, this returns 1 only if every extent in the tree
1847 * has the bits set. Otherwise, 1 is returned if any bit in the
1848 * range is found set.
1849 */
1850 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1851 unsigned long bits, int filled, struct extent_state *cached)
1852 {
1853 struct extent_state *state = NULL;
1854 struct rb_node *node;
1855 int bitset = 0;
1856
1857 spin_lock(&tree->lock);
1858 if (cached && cached->tree && cached->start <= start &&
1859 cached->end > start)
1860 node = &cached->rb_node;
1861 else
1862 node = tree_search(tree, start);
1863 while (node && start <= end) {
1864 state = rb_entry(node, struct extent_state, rb_node);
1865
1866 if (filled && state->start > start) {
1867 bitset = 0;
1868 break;
1869 }
1870
1871 if (state->start > end)
1872 break;
1873
1874 if (state->state & bits) {
1875 bitset = 1;
1876 if (!filled)
1877 break;
1878 } else if (filled) {
1879 bitset = 0;
1880 break;
1881 }
1882
1883 if (state->end == (u64)-1)
1884 break;
1885
1886 start = state->end + 1;
1887 if (start > end)
1888 break;
1889 node = rb_next(node);
1890 if (!node) {
1891 if (filled)
1892 bitset = 0;
1893 break;
1894 }
1895 }
1896 spin_unlock(&tree->lock);
1897 return bitset;
1898 }
1899
1900 /*
1901 * helper function to set a given page up to date if all the
1902 * extents in the tree for that page are up to date
1903 */
1904 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1905 {
1906 u64 start = page_offset(page);
1907 u64 end = start + PAGE_CACHE_SIZE - 1;
1908 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1909 SetPageUptodate(page);
1910 }
1911
1912 /*
1913 * When IO fails, either with EIO or csum verification fails, we
1914 * try other mirrors that might have a good copy of the data. This
1915 * io_failure_record is used to record state as we go through all the
1916 * mirrors. If another mirror has good data, the page is set up to date
1917 * and things continue. If a good mirror can't be found, the original
1918 * bio end_io callback is called to indicate things have failed.
1919 */
1920 struct io_failure_record {
1921 struct page *page;
1922 u64 start;
1923 u64 len;
1924 u64 logical;
1925 unsigned long bio_flags;
1926 int this_mirror;
1927 int failed_mirror;
1928 int in_validation;
1929 };
1930
1931 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1932 int did_repair)
1933 {
1934 int ret;
1935 int err = 0;
1936 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1937
1938 set_state_private(failure_tree, rec->start, 0);
1939 ret = clear_extent_bits(failure_tree, rec->start,
1940 rec->start + rec->len - 1,
1941 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1942 if (ret)
1943 err = ret;
1944
1945 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1946 rec->start + rec->len - 1,
1947 EXTENT_DAMAGED, GFP_NOFS);
1948 if (ret && !err)
1949 err = ret;
1950
1951 kfree(rec);
1952 return err;
1953 }
1954
1955 /*
1956 * this bypasses the standard btrfs submit functions deliberately, as
1957 * the standard behavior is to write all copies in a raid setup. here we only
1958 * want to write the one bad copy. so we do the mapping for ourselves and issue
1959 * submit_bio directly.
1960 * to avoid any synchronization issues, wait for the data after writing, which
1961 * actually prevents the read that triggered the error from finishing.
1962 * currently, there can be no more than two copies of every data bit. thus,
1963 * exactly one rewrite is required.
1964 */
1965 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
1966 u64 length, u64 logical, struct page *page,
1967 int mirror_num)
1968 {
1969 struct bio *bio;
1970 struct btrfs_device *dev;
1971 u64 map_length = 0;
1972 u64 sector;
1973 struct btrfs_bio *bbio = NULL;
1974 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
1975 int ret;
1976
1977 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
1978 BUG_ON(!mirror_num);
1979
1980 /* we can't repair anything in raid56 yet */
1981 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
1982 return 0;
1983
1984 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1985 if (!bio)
1986 return -EIO;
1987 bio->bi_size = 0;
1988 map_length = length;
1989
1990 ret = btrfs_map_block(fs_info, WRITE, logical,
1991 &map_length, &bbio, mirror_num);
1992 if (ret) {
1993 bio_put(bio);
1994 return -EIO;
1995 }
1996 BUG_ON(mirror_num != bbio->mirror_num);
1997 sector = bbio->stripes[mirror_num-1].physical >> 9;
1998 bio->bi_sector = sector;
1999 dev = bbio->stripes[mirror_num-1].dev;
2000 kfree(bbio);
2001 if (!dev || !dev->bdev || !dev->writeable) {
2002 bio_put(bio);
2003 return -EIO;
2004 }
2005 bio->bi_bdev = dev->bdev;
2006 bio_add_page(bio, page, length, start - page_offset(page));
2007
2008 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2009 /* try to remap that extent elsewhere? */
2010 bio_put(bio);
2011 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2012 return -EIO;
2013 }
2014
2015 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2016 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2017 start, rcu_str_deref(dev->name), sector);
2018
2019 bio_put(bio);
2020 return 0;
2021 }
2022
2023 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2024 int mirror_num)
2025 {
2026 u64 start = eb->start;
2027 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2028 int ret = 0;
2029
2030 if (root->fs_info->sb->s_flags & MS_RDONLY)
2031 return -EROFS;
2032
2033 for (i = 0; i < num_pages; i++) {
2034 struct page *p = extent_buffer_page(eb, i);
2035 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2036 start, p, mirror_num);
2037 if (ret)
2038 break;
2039 start += PAGE_CACHE_SIZE;
2040 }
2041
2042 return ret;
2043 }
2044
2045 /*
2046 * each time an IO finishes, we do a fast check in the IO failure tree
2047 * to see if we need to process or clean up an io_failure_record
2048 */
2049 static int clean_io_failure(u64 start, struct page *page)
2050 {
2051 u64 private;
2052 u64 private_failure;
2053 struct io_failure_record *failrec;
2054 struct inode *inode = page->mapping->host;
2055 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2056 struct extent_state *state;
2057 int num_copies;
2058 int did_repair = 0;
2059 int ret;
2060
2061 private = 0;
2062 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2063 (u64)-1, 1, EXTENT_DIRTY, 0);
2064 if (!ret)
2065 return 0;
2066
2067 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2068 &private_failure);
2069 if (ret)
2070 return 0;
2071
2072 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2073 BUG_ON(!failrec->this_mirror);
2074
2075 if (failrec->in_validation) {
2076 /* there was no real error, just free the record */
2077 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2078 failrec->start);
2079 did_repair = 1;
2080 goto out;
2081 }
2082 if (fs_info->sb->s_flags & MS_RDONLY)
2083 goto out;
2084
2085 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2086 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2087 failrec->start,
2088 EXTENT_LOCKED);
2089 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2090
2091 if (state && state->start <= failrec->start &&
2092 state->end >= failrec->start + failrec->len - 1) {
2093 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2094 failrec->len);
2095 if (num_copies > 1) {
2096 ret = repair_io_failure(fs_info, start, failrec->len,
2097 failrec->logical, page,
2098 failrec->failed_mirror);
2099 did_repair = !ret;
2100 }
2101 ret = 0;
2102 }
2103
2104 out:
2105 if (!ret)
2106 ret = free_io_failure(inode, failrec, did_repair);
2107
2108 return ret;
2109 }
2110
2111 /*
2112 * this is a generic handler for readpage errors (default
2113 * readpage_io_failed_hook). if other copies exist, read those and write back
2114 * good data to the failed position. does not investigate in remapping the
2115 * failed extent elsewhere, hoping the device will be smart enough to do this as
2116 * needed
2117 */
2118
2119 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2120 struct page *page, u64 start, u64 end,
2121 int failed_mirror)
2122 {
2123 struct io_failure_record *failrec = NULL;
2124 u64 private;
2125 struct extent_map *em;
2126 struct inode *inode = page->mapping->host;
2127 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2128 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2129 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2130 struct bio *bio;
2131 struct btrfs_io_bio *btrfs_failed_bio;
2132 struct btrfs_io_bio *btrfs_bio;
2133 int num_copies;
2134 int ret;
2135 int read_mode;
2136 u64 logical;
2137
2138 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2139
2140 ret = get_state_private(failure_tree, start, &private);
2141 if (ret) {
2142 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2143 if (!failrec)
2144 return -ENOMEM;
2145 failrec->start = start;
2146 failrec->len = end - start + 1;
2147 failrec->this_mirror = 0;
2148 failrec->bio_flags = 0;
2149 failrec->in_validation = 0;
2150
2151 read_lock(&em_tree->lock);
2152 em = lookup_extent_mapping(em_tree, start, failrec->len);
2153 if (!em) {
2154 read_unlock(&em_tree->lock);
2155 kfree(failrec);
2156 return -EIO;
2157 }
2158
2159 if (em->start > start || em->start + em->len < start) {
2160 free_extent_map(em);
2161 em = NULL;
2162 }
2163 read_unlock(&em_tree->lock);
2164
2165 if (!em) {
2166 kfree(failrec);
2167 return -EIO;
2168 }
2169 logical = start - em->start;
2170 logical = em->block_start + logical;
2171 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2172 logical = em->block_start;
2173 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2174 extent_set_compress_type(&failrec->bio_flags,
2175 em->compress_type);
2176 }
2177 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2178 "len=%llu\n", logical, start, failrec->len);
2179 failrec->logical = logical;
2180 free_extent_map(em);
2181
2182 /* set the bits in the private failure tree */
2183 ret = set_extent_bits(failure_tree, start, end,
2184 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2185 if (ret >= 0)
2186 ret = set_state_private(failure_tree, start,
2187 (u64)(unsigned long)failrec);
2188 /* set the bits in the inode's tree */
2189 if (ret >= 0)
2190 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2191 GFP_NOFS);
2192 if (ret < 0) {
2193 kfree(failrec);
2194 return ret;
2195 }
2196 } else {
2197 failrec = (struct io_failure_record *)(unsigned long)private;
2198 pr_debug("bio_readpage_error: (found) logical=%llu, "
2199 "start=%llu, len=%llu, validation=%d\n",
2200 failrec->logical, failrec->start, failrec->len,
2201 failrec->in_validation);
2202 /*
2203 * when data can be on disk more than twice, add to failrec here
2204 * (e.g. with a list for failed_mirror) to make
2205 * clean_io_failure() clean all those errors at once.
2206 */
2207 }
2208 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2209 failrec->logical, failrec->len);
2210 if (num_copies == 1) {
2211 /*
2212 * we only have a single copy of the data, so don't bother with
2213 * all the retry and error correction code that follows. no
2214 * matter what the error is, it is very likely to persist.
2215 */
2216 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2217 num_copies, failrec->this_mirror, failed_mirror);
2218 free_io_failure(inode, failrec, 0);
2219 return -EIO;
2220 }
2221
2222 /*
2223 * there are two premises:
2224 * a) deliver good data to the caller
2225 * b) correct the bad sectors on disk
2226 */
2227 if (failed_bio->bi_vcnt > 1) {
2228 /*
2229 * to fulfill b), we need to know the exact failing sectors, as
2230 * we don't want to rewrite any more than the failed ones. thus,
2231 * we need separate read requests for the failed bio
2232 *
2233 * if the following BUG_ON triggers, our validation request got
2234 * merged. we need separate requests for our algorithm to work.
2235 */
2236 BUG_ON(failrec->in_validation);
2237 failrec->in_validation = 1;
2238 failrec->this_mirror = failed_mirror;
2239 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2240 } else {
2241 /*
2242 * we're ready to fulfill a) and b) alongside. get a good copy
2243 * of the failed sector and if we succeed, we have setup
2244 * everything for repair_io_failure to do the rest for us.
2245 */
2246 if (failrec->in_validation) {
2247 BUG_ON(failrec->this_mirror != failed_mirror);
2248 failrec->in_validation = 0;
2249 failrec->this_mirror = 0;
2250 }
2251 failrec->failed_mirror = failed_mirror;
2252 failrec->this_mirror++;
2253 if (failrec->this_mirror == failed_mirror)
2254 failrec->this_mirror++;
2255 read_mode = READ_SYNC;
2256 }
2257
2258 if (failrec->this_mirror > num_copies) {
2259 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2260 num_copies, failrec->this_mirror, failed_mirror);
2261 free_io_failure(inode, failrec, 0);
2262 return -EIO;
2263 }
2264
2265 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2266 if (!bio) {
2267 free_io_failure(inode, failrec, 0);
2268 return -EIO;
2269 }
2270 bio->bi_end_io = failed_bio->bi_end_io;
2271 bio->bi_sector = failrec->logical >> 9;
2272 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2273 bio->bi_size = 0;
2274
2275 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2276 if (btrfs_failed_bio->csum) {
2277 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2278 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2279
2280 btrfs_bio = btrfs_io_bio(bio);
2281 btrfs_bio->csum = btrfs_bio->csum_inline;
2282 phy_offset >>= inode->i_sb->s_blocksize_bits;
2283 phy_offset *= csum_size;
2284 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2285 csum_size);
2286 }
2287
2288 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2289
2290 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2291 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2292 failrec->this_mirror, num_copies, failrec->in_validation);
2293
2294 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2295 failrec->this_mirror,
2296 failrec->bio_flags, 0);
2297 return ret;
2298 }
2299
2300 /* lots and lots of room for performance fixes in the end_bio funcs */
2301
2302 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2303 {
2304 int uptodate = (err == 0);
2305 struct extent_io_tree *tree;
2306 int ret;
2307
2308 tree = &BTRFS_I(page->mapping->host)->io_tree;
2309
2310 if (tree->ops && tree->ops->writepage_end_io_hook) {
2311 ret = tree->ops->writepage_end_io_hook(page, start,
2312 end, NULL, uptodate);
2313 if (ret)
2314 uptodate = 0;
2315 }
2316
2317 if (!uptodate) {
2318 ClearPageUptodate(page);
2319 SetPageError(page);
2320 }
2321 return 0;
2322 }
2323
2324 /*
2325 * after a writepage IO is done, we need to:
2326 * clear the uptodate bits on error
2327 * clear the writeback bits in the extent tree for this IO
2328 * end_page_writeback if the page has no more pending IO
2329 *
2330 * Scheduling is not allowed, so the extent state tree is expected
2331 * to have one and only one object corresponding to this IO.
2332 */
2333 static void end_bio_extent_writepage(struct bio *bio, int err)
2334 {
2335 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2336 u64 start;
2337 u64 end;
2338
2339 do {
2340 struct page *page = bvec->bv_page;
2341
2342 /* We always issue full-page reads, but if some block
2343 * in a page fails to read, blk_update_request() will
2344 * advance bv_offset and adjust bv_len to compensate.
2345 * Print a warning for nonzero offsets, and an error
2346 * if they don't add up to a full page. */
2347 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2348 printk("%s page write in btrfs with offset %u and length %u\n",
2349 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2350 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2351 bvec->bv_offset, bvec->bv_len);
2352
2353 start = page_offset(page);
2354 end = start + bvec->bv_offset + bvec->bv_len - 1;
2355
2356 if (--bvec >= bio->bi_io_vec)
2357 prefetchw(&bvec->bv_page->flags);
2358
2359 if (end_extent_writepage(page, err, start, end))
2360 continue;
2361
2362 end_page_writeback(page);
2363 } while (bvec >= bio->bi_io_vec);
2364
2365 bio_put(bio);
2366 }
2367
2368 static void
2369 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2370 int uptodate)
2371 {
2372 struct extent_state *cached = NULL;
2373 u64 end = start + len - 1;
2374
2375 if (uptodate && tree->track_uptodate)
2376 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2377 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2378 }
2379
2380 /*
2381 * after a readpage IO is done, we need to:
2382 * clear the uptodate bits on error
2383 * set the uptodate bits if things worked
2384 * set the page up to date if all extents in the tree are uptodate
2385 * clear the lock bit in the extent tree
2386 * unlock the page if there are no other extents locked for it
2387 *
2388 * Scheduling is not allowed, so the extent state tree is expected
2389 * to have one and only one object corresponding to this IO.
2390 */
2391 static void end_bio_extent_readpage(struct bio *bio, int err)
2392 {
2393 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2394 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2395 struct bio_vec *bvec = bio->bi_io_vec;
2396 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2397 struct extent_io_tree *tree;
2398 u64 offset = 0;
2399 u64 start;
2400 u64 end;
2401 u64 len;
2402 u64 extent_start = 0;
2403 u64 extent_len = 0;
2404 int mirror;
2405 int ret;
2406
2407 if (err)
2408 uptodate = 0;
2409
2410 do {
2411 struct page *page = bvec->bv_page;
2412 struct inode *inode = page->mapping->host;
2413
2414 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2415 "mirror=%lu\n", (u64)bio->bi_sector, err,
2416 io_bio->mirror_num);
2417 tree = &BTRFS_I(inode)->io_tree;
2418
2419 /* We always issue full-page reads, but if some block
2420 * in a page fails to read, blk_update_request() will
2421 * advance bv_offset and adjust bv_len to compensate.
2422 * Print a warning for nonzero offsets, and an error
2423 * if they don't add up to a full page. */
2424 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2425 printk("%s page read in btrfs with offset %u and length %u\n",
2426 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2427 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2428 bvec->bv_offset, bvec->bv_len);
2429
2430 start = page_offset(page);
2431 end = start + bvec->bv_offset + bvec->bv_len - 1;
2432 len = bvec->bv_len;
2433
2434 if (++bvec <= bvec_end)
2435 prefetchw(&bvec->bv_page->flags);
2436
2437 mirror = io_bio->mirror_num;
2438 if (likely(uptodate && tree->ops &&
2439 tree->ops->readpage_end_io_hook)) {
2440 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2441 page, start, end,
2442 mirror);
2443 if (ret)
2444 uptodate = 0;
2445 else
2446 clean_io_failure(start, page);
2447 }
2448
2449 if (likely(uptodate))
2450 goto readpage_ok;
2451
2452 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2453 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2454 if (!ret && !err &&
2455 test_bit(BIO_UPTODATE, &bio->bi_flags))
2456 uptodate = 1;
2457 } else {
2458 /*
2459 * The generic bio_readpage_error handles errors the
2460 * following way: If possible, new read requests are
2461 * created and submitted and will end up in
2462 * end_bio_extent_readpage as well (if we're lucky, not
2463 * in the !uptodate case). In that case it returns 0 and
2464 * we just go on with the next page in our bio. If it
2465 * can't handle the error it will return -EIO and we
2466 * remain responsible for that page.
2467 */
2468 ret = bio_readpage_error(bio, offset, page, start, end,
2469 mirror);
2470 if (ret == 0) {
2471 uptodate =
2472 test_bit(BIO_UPTODATE, &bio->bi_flags);
2473 if (err)
2474 uptodate = 0;
2475 continue;
2476 }
2477 }
2478 readpage_ok:
2479 if (likely(uptodate)) {
2480 loff_t i_size = i_size_read(inode);
2481 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2482 unsigned offset;
2483
2484 /* Zero out the end if this page straddles i_size */
2485 offset = i_size & (PAGE_CACHE_SIZE-1);
2486 if (page->index == end_index && offset)
2487 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2488 SetPageUptodate(page);
2489 } else {
2490 ClearPageUptodate(page);
2491 SetPageError(page);
2492 }
2493 unlock_page(page);
2494 offset += len;
2495
2496 if (unlikely(!uptodate)) {
2497 if (extent_len) {
2498 endio_readpage_release_extent(tree,
2499 extent_start,
2500 extent_len, 1);
2501 extent_start = 0;
2502 extent_len = 0;
2503 }
2504 endio_readpage_release_extent(tree, start,
2505 end - start + 1, 0);
2506 } else if (!extent_len) {
2507 extent_start = start;
2508 extent_len = end + 1 - start;
2509 } else if (extent_start + extent_len == start) {
2510 extent_len += end + 1 - start;
2511 } else {
2512 endio_readpage_release_extent(tree, extent_start,
2513 extent_len, uptodate);
2514 extent_start = start;
2515 extent_len = end + 1 - start;
2516 }
2517 } while (bvec <= bvec_end);
2518
2519 if (extent_len)
2520 endio_readpage_release_extent(tree, extent_start, extent_len,
2521 uptodate);
2522 if (io_bio->end_io)
2523 io_bio->end_io(io_bio, err);
2524 bio_put(bio);
2525 }
2526
2527 /*
2528 * this allocates from the btrfs_bioset. We're returning a bio right now
2529 * but you can call btrfs_io_bio for the appropriate container_of magic
2530 */
2531 struct bio *
2532 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2533 gfp_t gfp_flags)
2534 {
2535 struct btrfs_io_bio *btrfs_bio;
2536 struct bio *bio;
2537
2538 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2539
2540 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2541 while (!bio && (nr_vecs /= 2)) {
2542 bio = bio_alloc_bioset(gfp_flags,
2543 nr_vecs, btrfs_bioset);
2544 }
2545 }
2546
2547 if (bio) {
2548 bio->bi_size = 0;
2549 bio->bi_bdev = bdev;
2550 bio->bi_sector = first_sector;
2551 btrfs_bio = btrfs_io_bio(bio);
2552 btrfs_bio->csum = NULL;
2553 btrfs_bio->csum_allocated = NULL;
2554 btrfs_bio->end_io = NULL;
2555 }
2556 return bio;
2557 }
2558
2559 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2560 {
2561 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2562 }
2563
2564
2565 /* this also allocates from the btrfs_bioset */
2566 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2567 {
2568 struct btrfs_io_bio *btrfs_bio;
2569 struct bio *bio;
2570
2571 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2572 if (bio) {
2573 btrfs_bio = btrfs_io_bio(bio);
2574 btrfs_bio->csum = NULL;
2575 btrfs_bio->csum_allocated = NULL;
2576 btrfs_bio->end_io = NULL;
2577 }
2578 return bio;
2579 }
2580
2581
2582 static int __must_check submit_one_bio(int rw, struct bio *bio,
2583 int mirror_num, unsigned long bio_flags)
2584 {
2585 int ret = 0;
2586 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2587 struct page *page = bvec->bv_page;
2588 struct extent_io_tree *tree = bio->bi_private;
2589 u64 start;
2590
2591 start = page_offset(page) + bvec->bv_offset;
2592
2593 bio->bi_private = NULL;
2594
2595 bio_get(bio);
2596
2597 if (tree->ops && tree->ops->submit_bio_hook)
2598 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2599 mirror_num, bio_flags, start);
2600 else
2601 btrfsic_submit_bio(rw, bio);
2602
2603 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2604 ret = -EOPNOTSUPP;
2605 bio_put(bio);
2606 return ret;
2607 }
2608
2609 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2610 unsigned long offset, size_t size, struct bio *bio,
2611 unsigned long bio_flags)
2612 {
2613 int ret = 0;
2614 if (tree->ops && tree->ops->merge_bio_hook)
2615 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2616 bio_flags);
2617 BUG_ON(ret < 0);
2618 return ret;
2619
2620 }
2621
2622 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2623 struct page *page, sector_t sector,
2624 size_t size, unsigned long offset,
2625 struct block_device *bdev,
2626 struct bio **bio_ret,
2627 unsigned long max_pages,
2628 bio_end_io_t end_io_func,
2629 int mirror_num,
2630 unsigned long prev_bio_flags,
2631 unsigned long bio_flags)
2632 {
2633 int ret = 0;
2634 struct bio *bio;
2635 int nr;
2636 int contig = 0;
2637 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2638 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2639 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2640
2641 if (bio_ret && *bio_ret) {
2642 bio = *bio_ret;
2643 if (old_compressed)
2644 contig = bio->bi_sector == sector;
2645 else
2646 contig = bio_end_sector(bio) == sector;
2647
2648 if (prev_bio_flags != bio_flags || !contig ||
2649 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2650 bio_add_page(bio, page, page_size, offset) < page_size) {
2651 ret = submit_one_bio(rw, bio, mirror_num,
2652 prev_bio_flags);
2653 if (ret < 0)
2654 return ret;
2655 bio = NULL;
2656 } else {
2657 return 0;
2658 }
2659 }
2660 if (this_compressed)
2661 nr = BIO_MAX_PAGES;
2662 else
2663 nr = bio_get_nr_vecs(bdev);
2664
2665 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2666 if (!bio)
2667 return -ENOMEM;
2668
2669 bio_add_page(bio, page, page_size, offset);
2670 bio->bi_end_io = end_io_func;
2671 bio->bi_private = tree;
2672
2673 if (bio_ret)
2674 *bio_ret = bio;
2675 else
2676 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2677
2678 return ret;
2679 }
2680
2681 static void attach_extent_buffer_page(struct extent_buffer *eb,
2682 struct page *page)
2683 {
2684 if (!PagePrivate(page)) {
2685 SetPagePrivate(page);
2686 page_cache_get(page);
2687 set_page_private(page, (unsigned long)eb);
2688 } else {
2689 WARN_ON(page->private != (unsigned long)eb);
2690 }
2691 }
2692
2693 void set_page_extent_mapped(struct page *page)
2694 {
2695 if (!PagePrivate(page)) {
2696 SetPagePrivate(page);
2697 page_cache_get(page);
2698 set_page_private(page, EXTENT_PAGE_PRIVATE);
2699 }
2700 }
2701
2702 static struct extent_map *
2703 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2704 u64 start, u64 len, get_extent_t *get_extent,
2705 struct extent_map **em_cached)
2706 {
2707 struct extent_map *em;
2708
2709 if (em_cached && *em_cached) {
2710 em = *em_cached;
2711 if (em->in_tree && start >= em->start &&
2712 start < extent_map_end(em)) {
2713 atomic_inc(&em->refs);
2714 return em;
2715 }
2716
2717 free_extent_map(em);
2718 *em_cached = NULL;
2719 }
2720
2721 em = get_extent(inode, page, pg_offset, start, len, 0);
2722 if (em_cached && !IS_ERR_OR_NULL(em)) {
2723 BUG_ON(*em_cached);
2724 atomic_inc(&em->refs);
2725 *em_cached = em;
2726 }
2727 return em;
2728 }
2729 /*
2730 * basic readpage implementation. Locked extent state structs are inserted
2731 * into the tree that are removed when the IO is done (by the end_io
2732 * handlers)
2733 * XXX JDM: This needs looking at to ensure proper page locking
2734 */
2735 static int __do_readpage(struct extent_io_tree *tree,
2736 struct page *page,
2737 get_extent_t *get_extent,
2738 struct extent_map **em_cached,
2739 struct bio **bio, int mirror_num,
2740 unsigned long *bio_flags, int rw)
2741 {
2742 struct inode *inode = page->mapping->host;
2743 u64 start = page_offset(page);
2744 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2745 u64 end;
2746 u64 cur = start;
2747 u64 extent_offset;
2748 u64 last_byte = i_size_read(inode);
2749 u64 block_start;
2750 u64 cur_end;
2751 sector_t sector;
2752 struct extent_map *em;
2753 struct block_device *bdev;
2754 int ret;
2755 int nr = 0;
2756 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2757 size_t pg_offset = 0;
2758 size_t iosize;
2759 size_t disk_io_size;
2760 size_t blocksize = inode->i_sb->s_blocksize;
2761 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2762
2763 set_page_extent_mapped(page);
2764
2765 end = page_end;
2766 if (!PageUptodate(page)) {
2767 if (cleancache_get_page(page) == 0) {
2768 BUG_ON(blocksize != PAGE_SIZE);
2769 unlock_extent(tree, start, end);
2770 goto out;
2771 }
2772 }
2773
2774 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2775 char *userpage;
2776 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2777
2778 if (zero_offset) {
2779 iosize = PAGE_CACHE_SIZE - zero_offset;
2780 userpage = kmap_atomic(page);
2781 memset(userpage + zero_offset, 0, iosize);
2782 flush_dcache_page(page);
2783 kunmap_atomic(userpage);
2784 }
2785 }
2786 while (cur <= end) {
2787 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2788
2789 if (cur >= last_byte) {
2790 char *userpage;
2791 struct extent_state *cached = NULL;
2792
2793 iosize = PAGE_CACHE_SIZE - pg_offset;
2794 userpage = kmap_atomic(page);
2795 memset(userpage + pg_offset, 0, iosize);
2796 flush_dcache_page(page);
2797 kunmap_atomic(userpage);
2798 set_extent_uptodate(tree, cur, cur + iosize - 1,
2799 &cached, GFP_NOFS);
2800 if (!parent_locked)
2801 unlock_extent_cached(tree, cur,
2802 cur + iosize - 1,
2803 &cached, GFP_NOFS);
2804 break;
2805 }
2806 em = __get_extent_map(inode, page, pg_offset, cur,
2807 end - cur + 1, get_extent, em_cached);
2808 if (IS_ERR_OR_NULL(em)) {
2809 SetPageError(page);
2810 if (!parent_locked)
2811 unlock_extent(tree, cur, end);
2812 break;
2813 }
2814 extent_offset = cur - em->start;
2815 BUG_ON(extent_map_end(em) <= cur);
2816 BUG_ON(end < cur);
2817
2818 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2819 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2820 extent_set_compress_type(&this_bio_flag,
2821 em->compress_type);
2822 }
2823
2824 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2825 cur_end = min(extent_map_end(em) - 1, end);
2826 iosize = ALIGN(iosize, blocksize);
2827 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2828 disk_io_size = em->block_len;
2829 sector = em->block_start >> 9;
2830 } else {
2831 sector = (em->block_start + extent_offset) >> 9;
2832 disk_io_size = iosize;
2833 }
2834 bdev = em->bdev;
2835 block_start = em->block_start;
2836 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2837 block_start = EXTENT_MAP_HOLE;
2838 free_extent_map(em);
2839 em = NULL;
2840
2841 /* we've found a hole, just zero and go on */
2842 if (block_start == EXTENT_MAP_HOLE) {
2843 char *userpage;
2844 struct extent_state *cached = NULL;
2845
2846 userpage = kmap_atomic(page);
2847 memset(userpage + pg_offset, 0, iosize);
2848 flush_dcache_page(page);
2849 kunmap_atomic(userpage);
2850
2851 set_extent_uptodate(tree, cur, cur + iosize - 1,
2852 &cached, GFP_NOFS);
2853 unlock_extent_cached(tree, cur, cur + iosize - 1,
2854 &cached, GFP_NOFS);
2855 cur = cur + iosize;
2856 pg_offset += iosize;
2857 continue;
2858 }
2859 /* the get_extent function already copied into the page */
2860 if (test_range_bit(tree, cur, cur_end,
2861 EXTENT_UPTODATE, 1, NULL)) {
2862 check_page_uptodate(tree, page);
2863 if (!parent_locked)
2864 unlock_extent(tree, cur, cur + iosize - 1);
2865 cur = cur + iosize;
2866 pg_offset += iosize;
2867 continue;
2868 }
2869 /* we have an inline extent but it didn't get marked up
2870 * to date. Error out
2871 */
2872 if (block_start == EXTENT_MAP_INLINE) {
2873 SetPageError(page);
2874 if (!parent_locked)
2875 unlock_extent(tree, cur, cur + iosize - 1);
2876 cur = cur + iosize;
2877 pg_offset += iosize;
2878 continue;
2879 }
2880
2881 pnr -= page->index;
2882 ret = submit_extent_page(rw, tree, page,
2883 sector, disk_io_size, pg_offset,
2884 bdev, bio, pnr,
2885 end_bio_extent_readpage, mirror_num,
2886 *bio_flags,
2887 this_bio_flag);
2888 if (!ret) {
2889 nr++;
2890 *bio_flags = this_bio_flag;
2891 } else {
2892 SetPageError(page);
2893 if (!parent_locked)
2894 unlock_extent(tree, cur, cur + iosize - 1);
2895 }
2896 cur = cur + iosize;
2897 pg_offset += iosize;
2898 }
2899 out:
2900 if (!nr) {
2901 if (!PageError(page))
2902 SetPageUptodate(page);
2903 unlock_page(page);
2904 }
2905 return 0;
2906 }
2907
2908 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2909 struct page *pages[], int nr_pages,
2910 u64 start, u64 end,
2911 get_extent_t *get_extent,
2912 struct extent_map **em_cached,
2913 struct bio **bio, int mirror_num,
2914 unsigned long *bio_flags, int rw)
2915 {
2916 struct inode *inode;
2917 struct btrfs_ordered_extent *ordered;
2918 int index;
2919
2920 inode = pages[0]->mapping->host;
2921 while (1) {
2922 lock_extent(tree, start, end);
2923 ordered = btrfs_lookup_ordered_range(inode, start,
2924 end - start + 1);
2925 if (!ordered)
2926 break;
2927 unlock_extent(tree, start, end);
2928 btrfs_start_ordered_extent(inode, ordered, 1);
2929 btrfs_put_ordered_extent(ordered);
2930 }
2931
2932 for (index = 0; index < nr_pages; index++) {
2933 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2934 mirror_num, bio_flags, rw);
2935 page_cache_release(pages[index]);
2936 }
2937 }
2938
2939 static void __extent_readpages(struct extent_io_tree *tree,
2940 struct page *pages[],
2941 int nr_pages, get_extent_t *get_extent,
2942 struct extent_map **em_cached,
2943 struct bio **bio, int mirror_num,
2944 unsigned long *bio_flags, int rw)
2945 {
2946 u64 start = 0;
2947 u64 end = 0;
2948 u64 page_start;
2949 int index;
2950 int first_index = 0;
2951
2952 for (index = 0; index < nr_pages; index++) {
2953 page_start = page_offset(pages[index]);
2954 if (!end) {
2955 start = page_start;
2956 end = start + PAGE_CACHE_SIZE - 1;
2957 first_index = index;
2958 } else if (end + 1 == page_start) {
2959 end += PAGE_CACHE_SIZE;
2960 } else {
2961 __do_contiguous_readpages(tree, &pages[first_index],
2962 index - first_index, start,
2963 end, get_extent, em_cached,
2964 bio, mirror_num, bio_flags,
2965 rw);
2966 start = page_start;
2967 end = start + PAGE_CACHE_SIZE - 1;
2968 first_index = index;
2969 }
2970 }
2971
2972 if (end)
2973 __do_contiguous_readpages(tree, &pages[first_index],
2974 index - first_index, start,
2975 end, get_extent, em_cached, bio,
2976 mirror_num, bio_flags, rw);
2977 }
2978
2979 static int __extent_read_full_page(struct extent_io_tree *tree,
2980 struct page *page,
2981 get_extent_t *get_extent,
2982 struct bio **bio, int mirror_num,
2983 unsigned long *bio_flags, int rw)
2984 {
2985 struct inode *inode = page->mapping->host;
2986 struct btrfs_ordered_extent *ordered;
2987 u64 start = page_offset(page);
2988 u64 end = start + PAGE_CACHE_SIZE - 1;
2989 int ret;
2990
2991 while (1) {
2992 lock_extent(tree, start, end);
2993 ordered = btrfs_lookup_ordered_extent(inode, start);
2994 if (!ordered)
2995 break;
2996 unlock_extent(tree, start, end);
2997 btrfs_start_ordered_extent(inode, ordered, 1);
2998 btrfs_put_ordered_extent(ordered);
2999 }
3000
3001 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3002 bio_flags, rw);
3003 return ret;
3004 }
3005
3006 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3007 get_extent_t *get_extent, int mirror_num)
3008 {
3009 struct bio *bio = NULL;
3010 unsigned long bio_flags = 0;
3011 int ret;
3012
3013 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3014 &bio_flags, READ);
3015 if (bio)
3016 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3017 return ret;
3018 }
3019
3020 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3021 get_extent_t *get_extent, int mirror_num)
3022 {
3023 struct bio *bio = NULL;
3024 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3025 int ret;
3026
3027 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3028 &bio_flags, READ);
3029 if (bio)
3030 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3031 return ret;
3032 }
3033
3034 static noinline void update_nr_written(struct page *page,
3035 struct writeback_control *wbc,
3036 unsigned long nr_written)
3037 {
3038 wbc->nr_to_write -= nr_written;
3039 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3040 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3041 page->mapping->writeback_index = page->index + nr_written;
3042 }
3043
3044 /*
3045 * the writepage semantics are similar to regular writepage. extent
3046 * records are inserted to lock ranges in the tree, and as dirty areas
3047 * are found, they are marked writeback. Then the lock bits are removed
3048 * and the end_io handler clears the writeback ranges
3049 */
3050 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3051 void *data)
3052 {
3053 struct inode *inode = page->mapping->host;
3054 struct extent_page_data *epd = data;
3055 struct extent_io_tree *tree = epd->tree;
3056 u64 start = page_offset(page);
3057 u64 delalloc_start;
3058 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3059 u64 end;
3060 u64 cur = start;
3061 u64 extent_offset;
3062 u64 last_byte = i_size_read(inode);
3063 u64 block_start;
3064 u64 iosize;
3065 sector_t sector;
3066 struct extent_state *cached_state = NULL;
3067 struct extent_map *em;
3068 struct block_device *bdev;
3069 int ret;
3070 int nr = 0;
3071 size_t pg_offset = 0;
3072 size_t blocksize;
3073 loff_t i_size = i_size_read(inode);
3074 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3075 u64 nr_delalloc;
3076 u64 delalloc_end;
3077 int page_started;
3078 int compressed;
3079 int write_flags;
3080 unsigned long nr_written = 0;
3081 bool fill_delalloc = true;
3082
3083 if (wbc->sync_mode == WB_SYNC_ALL)
3084 write_flags = WRITE_SYNC;
3085 else
3086 write_flags = WRITE;
3087
3088 trace___extent_writepage(page, inode, wbc);
3089
3090 WARN_ON(!PageLocked(page));
3091
3092 ClearPageError(page);
3093
3094 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3095 if (page->index > end_index ||
3096 (page->index == end_index && !pg_offset)) {
3097 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3098 unlock_page(page);
3099 return 0;
3100 }
3101
3102 if (page->index == end_index) {
3103 char *userpage;
3104
3105 userpage = kmap_atomic(page);
3106 memset(userpage + pg_offset, 0,
3107 PAGE_CACHE_SIZE - pg_offset);
3108 kunmap_atomic(userpage);
3109 flush_dcache_page(page);
3110 }
3111 pg_offset = 0;
3112
3113 set_page_extent_mapped(page);
3114
3115 if (!tree->ops || !tree->ops->fill_delalloc)
3116 fill_delalloc = false;
3117
3118 delalloc_start = start;
3119 delalloc_end = 0;
3120 page_started = 0;
3121 if (!epd->extent_locked && fill_delalloc) {
3122 u64 delalloc_to_write = 0;
3123 /*
3124 * make sure the wbc mapping index is at least updated
3125 * to this page.
3126 */
3127 update_nr_written(page, wbc, 0);
3128
3129 while (delalloc_end < page_end) {
3130 nr_delalloc = find_lock_delalloc_range(inode, tree,
3131 page,
3132 &delalloc_start,
3133 &delalloc_end,
3134 128 * 1024 * 1024);
3135 if (nr_delalloc == 0) {
3136 delalloc_start = delalloc_end + 1;
3137 continue;
3138 }
3139 ret = tree->ops->fill_delalloc(inode, page,
3140 delalloc_start,
3141 delalloc_end,
3142 &page_started,
3143 &nr_written);
3144 /* File system has been set read-only */
3145 if (ret) {
3146 SetPageError(page);
3147 goto done;
3148 }
3149 /*
3150 * delalloc_end is already one less than the total
3151 * length, so we don't subtract one from
3152 * PAGE_CACHE_SIZE
3153 */
3154 delalloc_to_write += (delalloc_end - delalloc_start +
3155 PAGE_CACHE_SIZE) >>
3156 PAGE_CACHE_SHIFT;
3157 delalloc_start = delalloc_end + 1;
3158 }
3159 if (wbc->nr_to_write < delalloc_to_write) {
3160 int thresh = 8192;
3161
3162 if (delalloc_to_write < thresh * 2)
3163 thresh = delalloc_to_write;
3164 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3165 thresh);
3166 }
3167
3168 /* did the fill delalloc function already unlock and start
3169 * the IO?
3170 */
3171 if (page_started) {
3172 ret = 0;
3173 /*
3174 * we've unlocked the page, so we can't update
3175 * the mapping's writeback index, just update
3176 * nr_to_write.
3177 */
3178 wbc->nr_to_write -= nr_written;
3179 goto done_unlocked;
3180 }
3181 }
3182 if (tree->ops && tree->ops->writepage_start_hook) {
3183 ret = tree->ops->writepage_start_hook(page, start,
3184 page_end);
3185 if (ret) {
3186 /* Fixup worker will requeue */
3187 if (ret == -EBUSY)
3188 wbc->pages_skipped++;
3189 else
3190 redirty_page_for_writepage(wbc, page);
3191 update_nr_written(page, wbc, nr_written);
3192 unlock_page(page);
3193 ret = 0;
3194 goto done_unlocked;
3195 }
3196 }
3197
3198 /*
3199 * we don't want to touch the inode after unlocking the page,
3200 * so we update the mapping writeback index now
3201 */
3202 update_nr_written(page, wbc, nr_written + 1);
3203
3204 end = page_end;
3205 if (last_byte <= start) {
3206 if (tree->ops && tree->ops->writepage_end_io_hook)
3207 tree->ops->writepage_end_io_hook(page, start,
3208 page_end, NULL, 1);
3209 goto done;
3210 }
3211
3212 blocksize = inode->i_sb->s_blocksize;
3213
3214 while (cur <= end) {
3215 if (cur >= last_byte) {
3216 if (tree->ops && tree->ops->writepage_end_io_hook)
3217 tree->ops->writepage_end_io_hook(page, cur,
3218 page_end, NULL, 1);
3219 break;
3220 }
3221 em = epd->get_extent(inode, page, pg_offset, cur,
3222 end - cur + 1, 1);
3223 if (IS_ERR_OR_NULL(em)) {
3224 SetPageError(page);
3225 break;
3226 }
3227
3228 extent_offset = cur - em->start;
3229 BUG_ON(extent_map_end(em) <= cur);
3230 BUG_ON(end < cur);
3231 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3232 iosize = ALIGN(iosize, blocksize);
3233 sector = (em->block_start + extent_offset) >> 9;
3234 bdev = em->bdev;
3235 block_start = em->block_start;
3236 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3237 free_extent_map(em);
3238 em = NULL;
3239
3240 /*
3241 * compressed and inline extents are written through other
3242 * paths in the FS
3243 */
3244 if (compressed || block_start == EXTENT_MAP_HOLE ||
3245 block_start == EXTENT_MAP_INLINE) {
3246 /*
3247 * end_io notification does not happen here for
3248 * compressed extents
3249 */
3250 if (!compressed && tree->ops &&
3251 tree->ops->writepage_end_io_hook)
3252 tree->ops->writepage_end_io_hook(page, cur,
3253 cur + iosize - 1,
3254 NULL, 1);
3255 else if (compressed) {
3256 /* we don't want to end_page_writeback on
3257 * a compressed extent. this happens
3258 * elsewhere
3259 */
3260 nr++;
3261 }
3262
3263 cur += iosize;
3264 pg_offset += iosize;
3265 continue;
3266 }
3267 /* leave this out until we have a page_mkwrite call */
3268 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3269 EXTENT_DIRTY, 0, NULL)) {
3270 cur = cur + iosize;
3271 pg_offset += iosize;
3272 continue;
3273 }
3274
3275 if (tree->ops && tree->ops->writepage_io_hook) {
3276 ret = tree->ops->writepage_io_hook(page, cur,
3277 cur + iosize - 1);
3278 } else {
3279 ret = 0;
3280 }
3281 if (ret) {
3282 SetPageError(page);
3283 } else {
3284 unsigned long max_nr = end_index + 1;
3285
3286 set_range_writeback(tree, cur, cur + iosize - 1);
3287 if (!PageWriteback(page)) {
3288 printk(KERN_ERR "btrfs warning page %lu not "
3289 "writeback, cur %llu end %llu\n",
3290 page->index, cur, end);
3291 }
3292
3293 ret = submit_extent_page(write_flags, tree, page,
3294 sector, iosize, pg_offset,
3295 bdev, &epd->bio, max_nr,
3296 end_bio_extent_writepage,
3297 0, 0, 0);
3298 if (ret)
3299 SetPageError(page);
3300 }
3301 cur = cur + iosize;
3302 pg_offset += iosize;
3303 nr++;
3304 }
3305 done:
3306 if (nr == 0) {
3307 /* make sure the mapping tag for page dirty gets cleared */
3308 set_page_writeback(page);
3309 end_page_writeback(page);
3310 }
3311 unlock_page(page);
3312
3313 done_unlocked:
3314
3315 /* drop our reference on any cached states */
3316 free_extent_state(cached_state);
3317 return 0;
3318 }
3319
3320 static int eb_wait(void *word)
3321 {
3322 io_schedule();
3323 return 0;
3324 }
3325
3326 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3327 {
3328 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3329 TASK_UNINTERRUPTIBLE);
3330 }
3331
3332 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3333 struct btrfs_fs_info *fs_info,
3334 struct extent_page_data *epd)
3335 {
3336 unsigned long i, num_pages;
3337 int flush = 0;
3338 int ret = 0;
3339
3340 if (!btrfs_try_tree_write_lock(eb)) {
3341 flush = 1;
3342 flush_write_bio(epd);
3343 btrfs_tree_lock(eb);
3344 }
3345
3346 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3347 btrfs_tree_unlock(eb);
3348 if (!epd->sync_io)
3349 return 0;
3350 if (!flush) {
3351 flush_write_bio(epd);
3352 flush = 1;
3353 }
3354 while (1) {
3355 wait_on_extent_buffer_writeback(eb);
3356 btrfs_tree_lock(eb);
3357 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3358 break;
3359 btrfs_tree_unlock(eb);
3360 }
3361 }
3362
3363 /*
3364 * We need to do this to prevent races in people who check if the eb is
3365 * under IO since we can end up having no IO bits set for a short period
3366 * of time.
3367 */
3368 spin_lock(&eb->refs_lock);
3369 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3370 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3371 spin_unlock(&eb->refs_lock);
3372 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3373 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3374 -eb->len,
3375 fs_info->dirty_metadata_batch);
3376 ret = 1;
3377 } else {
3378 spin_unlock(&eb->refs_lock);
3379 }
3380
3381 btrfs_tree_unlock(eb);
3382
3383 if (!ret)
3384 return ret;
3385
3386 num_pages = num_extent_pages(eb->start, eb->len);
3387 for (i = 0; i < num_pages; i++) {
3388 struct page *p = extent_buffer_page(eb, i);
3389
3390 if (!trylock_page(p)) {
3391 if (!flush) {
3392 flush_write_bio(epd);
3393 flush = 1;
3394 }
3395 lock_page(p);
3396 }
3397 }
3398
3399 return ret;
3400 }
3401
3402 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3403 {
3404 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3405 smp_mb__after_clear_bit();
3406 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3407 }
3408
3409 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3410 {
3411 int uptodate = err == 0;
3412 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3413 struct extent_buffer *eb;
3414 int done;
3415
3416 do {
3417 struct page *page = bvec->bv_page;
3418
3419 bvec--;
3420 eb = (struct extent_buffer *)page->private;
3421 BUG_ON(!eb);
3422 done = atomic_dec_and_test(&eb->io_pages);
3423
3424 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3425 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3426 ClearPageUptodate(page);
3427 SetPageError(page);
3428 }
3429
3430 end_page_writeback(page);
3431
3432 if (!done)
3433 continue;
3434
3435 end_extent_buffer_writeback(eb);
3436 } while (bvec >= bio->bi_io_vec);
3437
3438 bio_put(bio);
3439
3440 }
3441
3442 static int write_one_eb(struct extent_buffer *eb,
3443 struct btrfs_fs_info *fs_info,
3444 struct writeback_control *wbc,
3445 struct extent_page_data *epd)
3446 {
3447 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3448 u64 offset = eb->start;
3449 unsigned long i, num_pages;
3450 unsigned long bio_flags = 0;
3451 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3452 int ret = 0;
3453
3454 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3455 num_pages = num_extent_pages(eb->start, eb->len);
3456 atomic_set(&eb->io_pages, num_pages);
3457 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3458 bio_flags = EXTENT_BIO_TREE_LOG;
3459
3460 for (i = 0; i < num_pages; i++) {
3461 struct page *p = extent_buffer_page(eb, i);
3462
3463 clear_page_dirty_for_io(p);
3464 set_page_writeback(p);
3465 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3466 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3467 -1, end_bio_extent_buffer_writepage,
3468 0, epd->bio_flags, bio_flags);
3469 epd->bio_flags = bio_flags;
3470 if (ret) {
3471 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3472 SetPageError(p);
3473 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3474 end_extent_buffer_writeback(eb);
3475 ret = -EIO;
3476 break;
3477 }
3478 offset += PAGE_CACHE_SIZE;
3479 update_nr_written(p, wbc, 1);
3480 unlock_page(p);
3481 }
3482
3483 if (unlikely(ret)) {
3484 for (; i < num_pages; i++) {
3485 struct page *p = extent_buffer_page(eb, i);
3486 unlock_page(p);
3487 }
3488 }
3489
3490 return ret;
3491 }
3492
3493 int btree_write_cache_pages(struct address_space *mapping,
3494 struct writeback_control *wbc)
3495 {
3496 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3497 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3498 struct extent_buffer *eb, *prev_eb = NULL;
3499 struct extent_page_data epd = {
3500 .bio = NULL,
3501 .tree = tree,
3502 .extent_locked = 0,
3503 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3504 .bio_flags = 0,
3505 };
3506 int ret = 0;
3507 int done = 0;
3508 int nr_to_write_done = 0;
3509 struct pagevec pvec;
3510 int nr_pages;
3511 pgoff_t index;
3512 pgoff_t end; /* Inclusive */
3513 int scanned = 0;
3514 int tag;
3515
3516 pagevec_init(&pvec, 0);
3517 if (wbc->range_cyclic) {
3518 index = mapping->writeback_index; /* Start from prev offset */
3519 end = -1;
3520 } else {
3521 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3522 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3523 scanned = 1;
3524 }
3525 if (wbc->sync_mode == WB_SYNC_ALL)
3526 tag = PAGECACHE_TAG_TOWRITE;
3527 else
3528 tag = PAGECACHE_TAG_DIRTY;
3529 retry:
3530 if (wbc->sync_mode == WB_SYNC_ALL)
3531 tag_pages_for_writeback(mapping, index, end);
3532 while (!done && !nr_to_write_done && (index <= end) &&
3533 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3534 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3535 unsigned i;
3536
3537 scanned = 1;
3538 for (i = 0; i < nr_pages; i++) {
3539 struct page *page = pvec.pages[i];
3540
3541 if (!PagePrivate(page))
3542 continue;
3543
3544 if (!wbc->range_cyclic && page->index > end) {
3545 done = 1;
3546 break;
3547 }
3548
3549 spin_lock(&mapping->private_lock);
3550 if (!PagePrivate(page)) {
3551 spin_unlock(&mapping->private_lock);
3552 continue;
3553 }
3554
3555 eb = (struct extent_buffer *)page->private;
3556
3557 /*
3558 * Shouldn't happen and normally this would be a BUG_ON
3559 * but no sense in crashing the users box for something
3560 * we can survive anyway.
3561 */
3562 if (WARN_ON(!eb)) {
3563 spin_unlock(&mapping->private_lock);
3564 continue;
3565 }
3566
3567 if (eb == prev_eb) {
3568 spin_unlock(&mapping->private_lock);
3569 continue;
3570 }
3571
3572 ret = atomic_inc_not_zero(&eb->refs);
3573 spin_unlock(&mapping->private_lock);
3574 if (!ret)
3575 continue;
3576
3577 prev_eb = eb;
3578 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3579 if (!ret) {
3580 free_extent_buffer(eb);
3581 continue;
3582 }
3583
3584 ret = write_one_eb(eb, fs_info, wbc, &epd);
3585 if (ret) {
3586 done = 1;
3587 free_extent_buffer(eb);
3588 break;
3589 }
3590 free_extent_buffer(eb);
3591
3592 /*
3593 * the filesystem may choose to bump up nr_to_write.
3594 * We have to make sure to honor the new nr_to_write
3595 * at any time
3596 */
3597 nr_to_write_done = wbc->nr_to_write <= 0;
3598 }
3599 pagevec_release(&pvec);
3600 cond_resched();
3601 }
3602 if (!scanned && !done) {
3603 /*
3604 * We hit the last page and there is more work to be done: wrap
3605 * back to the start of the file
3606 */
3607 scanned = 1;
3608 index = 0;
3609 goto retry;
3610 }
3611 flush_write_bio(&epd);
3612 return ret;
3613 }
3614
3615 /**
3616 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3617 * @mapping: address space structure to write
3618 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3619 * @writepage: function called for each page
3620 * @data: data passed to writepage function
3621 *
3622 * If a page is already under I/O, write_cache_pages() skips it, even
3623 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3624 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3625 * and msync() need to guarantee that all the data which was dirty at the time
3626 * the call was made get new I/O started against them. If wbc->sync_mode is
3627 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3628 * existing IO to complete.
3629 */
3630 static int extent_write_cache_pages(struct extent_io_tree *tree,
3631 struct address_space *mapping,
3632 struct writeback_control *wbc,
3633 writepage_t writepage, void *data,
3634 void (*flush_fn)(void *))
3635 {
3636 struct inode *inode = mapping->host;
3637 int ret = 0;
3638 int done = 0;
3639 int nr_to_write_done = 0;
3640 struct pagevec pvec;
3641 int nr_pages;
3642 pgoff_t index;
3643 pgoff_t end; /* Inclusive */
3644 int scanned = 0;
3645 int tag;
3646
3647 /*
3648 * We have to hold onto the inode so that ordered extents can do their
3649 * work when the IO finishes. The alternative to this is failing to add
3650 * an ordered extent if the igrab() fails there and that is a huge pain
3651 * to deal with, so instead just hold onto the inode throughout the
3652 * writepages operation. If it fails here we are freeing up the inode
3653 * anyway and we'd rather not waste our time writing out stuff that is
3654 * going to be truncated anyway.
3655 */
3656 if (!igrab(inode))
3657 return 0;
3658
3659 pagevec_init(&pvec, 0);
3660 if (wbc->range_cyclic) {
3661 index = mapping->writeback_index; /* Start from prev offset */
3662 end = -1;
3663 } else {
3664 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3665 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3666 scanned = 1;
3667 }
3668 if (wbc->sync_mode == WB_SYNC_ALL)
3669 tag = PAGECACHE_TAG_TOWRITE;
3670 else
3671 tag = PAGECACHE_TAG_DIRTY;
3672 retry:
3673 if (wbc->sync_mode == WB_SYNC_ALL)
3674 tag_pages_for_writeback(mapping, index, end);
3675 while (!done && !nr_to_write_done && (index <= end) &&
3676 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3677 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3678 unsigned i;
3679
3680 scanned = 1;
3681 for (i = 0; i < nr_pages; i++) {
3682 struct page *page = pvec.pages[i];
3683
3684 /*
3685 * At this point we hold neither mapping->tree_lock nor
3686 * lock on the page itself: the page may be truncated or
3687 * invalidated (changing page->mapping to NULL), or even
3688 * swizzled back from swapper_space to tmpfs file
3689 * mapping
3690 */
3691 if (!trylock_page(page)) {
3692 flush_fn(data);
3693 lock_page(page);
3694 }
3695
3696 if (unlikely(page->mapping != mapping)) {
3697 unlock_page(page);
3698 continue;
3699 }
3700
3701 if (!wbc->range_cyclic && page->index > end) {
3702 done = 1;
3703 unlock_page(page);
3704 continue;
3705 }
3706
3707 if (wbc->sync_mode != WB_SYNC_NONE) {
3708 if (PageWriteback(page))
3709 flush_fn(data);
3710 wait_on_page_writeback(page);
3711 }
3712
3713 if (PageWriteback(page) ||
3714 !clear_page_dirty_for_io(page)) {
3715 unlock_page(page);
3716 continue;
3717 }
3718
3719 ret = (*writepage)(page, wbc, data);
3720
3721 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3722 unlock_page(page);
3723 ret = 0;
3724 }
3725 if (ret)
3726 done = 1;
3727
3728 /*
3729 * the filesystem may choose to bump up nr_to_write.
3730 * We have to make sure to honor the new nr_to_write
3731 * at any time
3732 */
3733 nr_to_write_done = wbc->nr_to_write <= 0;
3734 }
3735 pagevec_release(&pvec);
3736 cond_resched();
3737 }
3738 if (!scanned && !done) {
3739 /*
3740 * We hit the last page and there is more work to be done: wrap
3741 * back to the start of the file
3742 */
3743 scanned = 1;
3744 index = 0;
3745 goto retry;
3746 }
3747 btrfs_add_delayed_iput(inode);
3748 return ret;
3749 }
3750
3751 static void flush_epd_write_bio(struct extent_page_data *epd)
3752 {
3753 if (epd->bio) {
3754 int rw = WRITE;
3755 int ret;
3756
3757 if (epd->sync_io)
3758 rw = WRITE_SYNC;
3759
3760 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3761 BUG_ON(ret < 0); /* -ENOMEM */
3762 epd->bio = NULL;
3763 }
3764 }
3765
3766 static noinline void flush_write_bio(void *data)
3767 {
3768 struct extent_page_data *epd = data;
3769 flush_epd_write_bio(epd);
3770 }
3771
3772 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3773 get_extent_t *get_extent,
3774 struct writeback_control *wbc)
3775 {
3776 int ret;
3777 struct extent_page_data epd = {
3778 .bio = NULL,
3779 .tree = tree,
3780 .get_extent = get_extent,
3781 .extent_locked = 0,
3782 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3783 .bio_flags = 0,
3784 };
3785
3786 ret = __extent_writepage(page, wbc, &epd);
3787
3788 flush_epd_write_bio(&epd);
3789 return ret;
3790 }
3791
3792 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3793 u64 start, u64 end, get_extent_t *get_extent,
3794 int mode)
3795 {
3796 int ret = 0;
3797 struct address_space *mapping = inode->i_mapping;
3798 struct page *page;
3799 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3800 PAGE_CACHE_SHIFT;
3801
3802 struct extent_page_data epd = {
3803 .bio = NULL,
3804 .tree = tree,
3805 .get_extent = get_extent,
3806 .extent_locked = 1,
3807 .sync_io = mode == WB_SYNC_ALL,
3808 .bio_flags = 0,
3809 };
3810 struct writeback_control wbc_writepages = {
3811 .sync_mode = mode,
3812 .nr_to_write = nr_pages * 2,
3813 .range_start = start,
3814 .range_end = end + 1,
3815 };
3816
3817 while (start <= end) {
3818 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3819 if (clear_page_dirty_for_io(page))
3820 ret = __extent_writepage(page, &wbc_writepages, &epd);
3821 else {
3822 if (tree->ops && tree->ops->writepage_end_io_hook)
3823 tree->ops->writepage_end_io_hook(page, start,
3824 start + PAGE_CACHE_SIZE - 1,
3825 NULL, 1);
3826 unlock_page(page);
3827 }
3828 page_cache_release(page);
3829 start += PAGE_CACHE_SIZE;
3830 }
3831
3832 flush_epd_write_bio(&epd);
3833 return ret;
3834 }
3835
3836 int extent_writepages(struct extent_io_tree *tree,
3837 struct address_space *mapping,
3838 get_extent_t *get_extent,
3839 struct writeback_control *wbc)
3840 {
3841 int ret = 0;
3842 struct extent_page_data epd = {
3843 .bio = NULL,
3844 .tree = tree,
3845 .get_extent = get_extent,
3846 .extent_locked = 0,
3847 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3848 .bio_flags = 0,
3849 };
3850
3851 ret = extent_write_cache_pages(tree, mapping, wbc,
3852 __extent_writepage, &epd,
3853 flush_write_bio);
3854 flush_epd_write_bio(&epd);
3855 return ret;
3856 }
3857
3858 int extent_readpages(struct extent_io_tree *tree,
3859 struct address_space *mapping,
3860 struct list_head *pages, unsigned nr_pages,
3861 get_extent_t get_extent)
3862 {
3863 struct bio *bio = NULL;
3864 unsigned page_idx;
3865 unsigned long bio_flags = 0;
3866 struct page *pagepool[16];
3867 struct page *page;
3868 struct extent_map *em_cached = NULL;
3869 int nr = 0;
3870
3871 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3872 page = list_entry(pages->prev, struct page, lru);
3873
3874 prefetchw(&page->flags);
3875 list_del(&page->lru);
3876 if (add_to_page_cache_lru(page, mapping,
3877 page->index, GFP_NOFS)) {
3878 page_cache_release(page);
3879 continue;
3880 }
3881
3882 pagepool[nr++] = page;
3883 if (nr < ARRAY_SIZE(pagepool))
3884 continue;
3885 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3886 &bio, 0, &bio_flags, READ);
3887 nr = 0;
3888 }
3889 if (nr)
3890 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3891 &bio, 0, &bio_flags, READ);
3892
3893 if (em_cached)
3894 free_extent_map(em_cached);
3895
3896 BUG_ON(!list_empty(pages));
3897 if (bio)
3898 return submit_one_bio(READ, bio, 0, bio_flags);
3899 return 0;
3900 }
3901
3902 /*
3903 * basic invalidatepage code, this waits on any locked or writeback
3904 * ranges corresponding to the page, and then deletes any extent state
3905 * records from the tree
3906 */
3907 int extent_invalidatepage(struct extent_io_tree *tree,
3908 struct page *page, unsigned long offset)
3909 {
3910 struct extent_state *cached_state = NULL;
3911 u64 start = page_offset(page);
3912 u64 end = start + PAGE_CACHE_SIZE - 1;
3913 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3914
3915 start += ALIGN(offset, blocksize);
3916 if (start > end)
3917 return 0;
3918
3919 lock_extent_bits(tree, start, end, 0, &cached_state);
3920 wait_on_page_writeback(page);
3921 clear_extent_bit(tree, start, end,
3922 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3923 EXTENT_DO_ACCOUNTING,
3924 1, 1, &cached_state, GFP_NOFS);
3925 return 0;
3926 }
3927
3928 /*
3929 * a helper for releasepage, this tests for areas of the page that
3930 * are locked or under IO and drops the related state bits if it is safe
3931 * to drop the page.
3932 */
3933 static int try_release_extent_state(struct extent_map_tree *map,
3934 struct extent_io_tree *tree,
3935 struct page *page, gfp_t mask)
3936 {
3937 u64 start = page_offset(page);
3938 u64 end = start + PAGE_CACHE_SIZE - 1;
3939 int ret = 1;
3940
3941 if (test_range_bit(tree, start, end,
3942 EXTENT_IOBITS, 0, NULL))
3943 ret = 0;
3944 else {
3945 if ((mask & GFP_NOFS) == GFP_NOFS)
3946 mask = GFP_NOFS;
3947 /*
3948 * at this point we can safely clear everything except the
3949 * locked bit and the nodatasum bit
3950 */
3951 ret = clear_extent_bit(tree, start, end,
3952 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3953 0, 0, NULL, mask);
3954
3955 /* if clear_extent_bit failed for enomem reasons,
3956 * we can't allow the release to continue.
3957 */
3958 if (ret < 0)
3959 ret = 0;
3960 else
3961 ret = 1;
3962 }
3963 return ret;
3964 }
3965
3966 /*
3967 * a helper for releasepage. As long as there are no locked extents
3968 * in the range corresponding to the page, both state records and extent
3969 * map records are removed
3970 */
3971 int try_release_extent_mapping(struct extent_map_tree *map,
3972 struct extent_io_tree *tree, struct page *page,
3973 gfp_t mask)
3974 {
3975 struct extent_map *em;
3976 u64 start = page_offset(page);
3977 u64 end = start + PAGE_CACHE_SIZE - 1;
3978
3979 if ((mask & __GFP_WAIT) &&
3980 page->mapping->host->i_size > 16 * 1024 * 1024) {
3981 u64 len;
3982 while (start <= end) {
3983 len = end - start + 1;
3984 write_lock(&map->lock);
3985 em = lookup_extent_mapping(map, start, len);
3986 if (!em) {
3987 write_unlock(&map->lock);
3988 break;
3989 }
3990 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3991 em->start != start) {
3992 write_unlock(&map->lock);
3993 free_extent_map(em);
3994 break;
3995 }
3996 if (!test_range_bit(tree, em->start,
3997 extent_map_end(em) - 1,
3998 EXTENT_LOCKED | EXTENT_WRITEBACK,
3999 0, NULL)) {
4000 remove_extent_mapping(map, em);
4001 /* once for the rb tree */
4002 free_extent_map(em);
4003 }
4004 start = extent_map_end(em);
4005 write_unlock(&map->lock);
4006
4007 /* once for us */
4008 free_extent_map(em);
4009 }
4010 }
4011 return try_release_extent_state(map, tree, page, mask);
4012 }
4013
4014 /*
4015 * helper function for fiemap, which doesn't want to see any holes.
4016 * This maps until we find something past 'last'
4017 */
4018 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4019 u64 offset,
4020 u64 last,
4021 get_extent_t *get_extent)
4022 {
4023 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4024 struct extent_map *em;
4025 u64 len;
4026
4027 if (offset >= last)
4028 return NULL;
4029
4030 while (1) {
4031 len = last - offset;
4032 if (len == 0)
4033 break;
4034 len = ALIGN(len, sectorsize);
4035 em = get_extent(inode, NULL, 0, offset, len, 0);
4036 if (IS_ERR_OR_NULL(em))
4037 return em;
4038
4039 /* if this isn't a hole return it */
4040 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4041 em->block_start != EXTENT_MAP_HOLE) {
4042 return em;
4043 }
4044
4045 /* this is a hole, advance to the next extent */
4046 offset = extent_map_end(em);
4047 free_extent_map(em);
4048 if (offset >= last)
4049 break;
4050 }
4051 return NULL;
4052 }
4053
4054 static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx)
4055 {
4056 unsigned long cnt = *((unsigned long *)ctx);
4057
4058 cnt++;
4059 *((unsigned long *)ctx) = cnt;
4060
4061 /* Now we're sure that the extent is shared. */
4062 if (cnt > 1)
4063 return 1;
4064 return 0;
4065 }
4066
4067 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4068 __u64 start, __u64 len, get_extent_t *get_extent)
4069 {
4070 int ret = 0;
4071 u64 off = start;
4072 u64 max = start + len;
4073 u32 flags = 0;
4074 u32 found_type;
4075 u64 last;
4076 u64 last_for_get_extent = 0;
4077 u64 disko = 0;
4078 u64 isize = i_size_read(inode);
4079 struct btrfs_key found_key;
4080 struct extent_map *em = NULL;
4081 struct extent_state *cached_state = NULL;
4082 struct btrfs_path *path;
4083 int end = 0;
4084 u64 em_start = 0;
4085 u64 em_len = 0;
4086 u64 em_end = 0;
4087
4088 if (len == 0)
4089 return -EINVAL;
4090
4091 path = btrfs_alloc_path();
4092 if (!path)
4093 return -ENOMEM;
4094 path->leave_spinning = 1;
4095
4096 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4097 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4098
4099 /*
4100 * lookup the last file extent. We're not using i_size here
4101 * because there might be preallocation past i_size
4102 */
4103 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4104 path, btrfs_ino(inode), -1, 0);
4105 if (ret < 0) {
4106 btrfs_free_path(path);
4107 return ret;
4108 }
4109 WARN_ON(!ret);
4110 path->slots[0]--;
4111 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4112 found_type = btrfs_key_type(&found_key);
4113
4114 /* No extents, but there might be delalloc bits */
4115 if (found_key.objectid != btrfs_ino(inode) ||
4116 found_type != BTRFS_EXTENT_DATA_KEY) {
4117 /* have to trust i_size as the end */
4118 last = (u64)-1;
4119 last_for_get_extent = isize;
4120 } else {
4121 /*
4122 * remember the start of the last extent. There are a
4123 * bunch of different factors that go into the length of the
4124 * extent, so its much less complex to remember where it started
4125 */
4126 last = found_key.offset;
4127 last_for_get_extent = last + 1;
4128 }
4129 btrfs_release_path(path);
4130
4131 /*
4132 * we might have some extents allocated but more delalloc past those
4133 * extents. so, we trust isize unless the start of the last extent is
4134 * beyond isize
4135 */
4136 if (last < isize) {
4137 last = (u64)-1;
4138 last_for_get_extent = isize;
4139 }
4140
4141 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4142 &cached_state);
4143
4144 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4145 get_extent);
4146 if (!em)
4147 goto out;
4148 if (IS_ERR(em)) {
4149 ret = PTR_ERR(em);
4150 goto out;
4151 }
4152
4153 while (!end) {
4154 u64 offset_in_extent = 0;
4155
4156 /* break if the extent we found is outside the range */
4157 if (em->start >= max || extent_map_end(em) < off)
4158 break;
4159
4160 /*
4161 * get_extent may return an extent that starts before our
4162 * requested range. We have to make sure the ranges
4163 * we return to fiemap always move forward and don't
4164 * overlap, so adjust the offsets here
4165 */
4166 em_start = max(em->start, off);
4167
4168 /*
4169 * record the offset from the start of the extent
4170 * for adjusting the disk offset below. Only do this if the
4171 * extent isn't compressed since our in ram offset may be past
4172 * what we have actually allocated on disk.
4173 */
4174 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4175 offset_in_extent = em_start - em->start;
4176 em_end = extent_map_end(em);
4177 em_len = em_end - em_start;
4178 disko = 0;
4179 flags = 0;
4180
4181 /*
4182 * bump off for our next call to get_extent
4183 */
4184 off = extent_map_end(em);
4185 if (off >= max)
4186 end = 1;
4187
4188 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4189 end = 1;
4190 flags |= FIEMAP_EXTENT_LAST;
4191 } else if (em->block_start == EXTENT_MAP_INLINE) {
4192 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4193 FIEMAP_EXTENT_NOT_ALIGNED);
4194 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4195 flags |= (FIEMAP_EXTENT_DELALLOC |
4196 FIEMAP_EXTENT_UNKNOWN);
4197 } else {
4198 unsigned long ref_cnt = 0;
4199
4200 disko = em->block_start + offset_in_extent;
4201
4202 /*
4203 * As btrfs supports shared space, this information
4204 * can be exported to userspace tools via
4205 * flag FIEMAP_EXTENT_SHARED.
4206 */
4207 ret = iterate_inodes_from_logical(
4208 em->block_start,
4209 BTRFS_I(inode)->root->fs_info,
4210 path, count_ext_ref, &ref_cnt);
4211 if (ret < 0 && ret != -ENOENT)
4212 goto out_free;
4213
4214 if (ref_cnt > 1)
4215 flags |= FIEMAP_EXTENT_SHARED;
4216 }
4217 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4218 flags |= FIEMAP_EXTENT_ENCODED;
4219
4220 free_extent_map(em);
4221 em = NULL;
4222 if ((em_start >= last) || em_len == (u64)-1 ||
4223 (last == (u64)-1 && isize <= em_end)) {
4224 flags |= FIEMAP_EXTENT_LAST;
4225 end = 1;
4226 }
4227
4228 /* now scan forward to see if this is really the last extent. */
4229 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4230 get_extent);
4231 if (IS_ERR(em)) {
4232 ret = PTR_ERR(em);
4233 goto out;
4234 }
4235 if (!em) {
4236 flags |= FIEMAP_EXTENT_LAST;
4237 end = 1;
4238 }
4239 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4240 em_len, flags);
4241 if (ret)
4242 goto out_free;
4243 }
4244 out_free:
4245 free_extent_map(em);
4246 out:
4247 btrfs_free_path(path);
4248 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4249 &cached_state, GFP_NOFS);
4250 return ret;
4251 }
4252
4253 static void __free_extent_buffer(struct extent_buffer *eb)
4254 {
4255 btrfs_leak_debug_del(&eb->leak_list);
4256 kmem_cache_free(extent_buffer_cache, eb);
4257 }
4258
4259 static int extent_buffer_under_io(struct extent_buffer *eb)
4260 {
4261 return (atomic_read(&eb->io_pages) ||
4262 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4263 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4264 }
4265
4266 /*
4267 * Helper for releasing extent buffer page.
4268 */
4269 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4270 unsigned long start_idx)
4271 {
4272 unsigned long index;
4273 unsigned long num_pages;
4274 struct page *page;
4275 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4276
4277 BUG_ON(extent_buffer_under_io(eb));
4278
4279 num_pages = num_extent_pages(eb->start, eb->len);
4280 index = start_idx + num_pages;
4281 if (start_idx >= index)
4282 return;
4283
4284 do {
4285 index--;
4286 page = extent_buffer_page(eb, index);
4287 if (page && mapped) {
4288 spin_lock(&page->mapping->private_lock);
4289 /*
4290 * We do this since we'll remove the pages after we've
4291 * removed the eb from the radix tree, so we could race
4292 * and have this page now attached to the new eb. So
4293 * only clear page_private if it's still connected to
4294 * this eb.
4295 */
4296 if (PagePrivate(page) &&
4297 page->private == (unsigned long)eb) {
4298 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4299 BUG_ON(PageDirty(page));
4300 BUG_ON(PageWriteback(page));
4301 /*
4302 * We need to make sure we haven't be attached
4303 * to a new eb.
4304 */
4305 ClearPagePrivate(page);
4306 set_page_private(page, 0);
4307 /* One for the page private */
4308 page_cache_release(page);
4309 }
4310 spin_unlock(&page->mapping->private_lock);
4311
4312 }
4313 if (page) {
4314 /* One for when we alloced the page */
4315 page_cache_release(page);
4316 }
4317 } while (index != start_idx);
4318 }
4319
4320 /*
4321 * Helper for releasing the extent buffer.
4322 */
4323 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4324 {
4325 btrfs_release_extent_buffer_page(eb, 0);
4326 __free_extent_buffer(eb);
4327 }
4328
4329 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4330 u64 start,
4331 unsigned long len,
4332 gfp_t mask)
4333 {
4334 struct extent_buffer *eb = NULL;
4335
4336 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4337 if (eb == NULL)
4338 return NULL;
4339 eb->start = start;
4340 eb->len = len;
4341 eb->tree = tree;
4342 eb->bflags = 0;
4343 rwlock_init(&eb->lock);
4344 atomic_set(&eb->write_locks, 0);
4345 atomic_set(&eb->read_locks, 0);
4346 atomic_set(&eb->blocking_readers, 0);
4347 atomic_set(&eb->blocking_writers, 0);
4348 atomic_set(&eb->spinning_readers, 0);
4349 atomic_set(&eb->spinning_writers, 0);
4350 eb->lock_nested = 0;
4351 init_waitqueue_head(&eb->write_lock_wq);
4352 init_waitqueue_head(&eb->read_lock_wq);
4353
4354 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4355
4356 spin_lock_init(&eb->refs_lock);
4357 atomic_set(&eb->refs, 1);
4358 atomic_set(&eb->io_pages, 0);
4359
4360 /*
4361 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4362 */
4363 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4364 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4365 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4366
4367 return eb;
4368 }
4369
4370 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4371 {
4372 unsigned long i;
4373 struct page *p;
4374 struct extent_buffer *new;
4375 unsigned long num_pages = num_extent_pages(src->start, src->len);
4376
4377 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4378 if (new == NULL)
4379 return NULL;
4380
4381 for (i = 0; i < num_pages; i++) {
4382 p = alloc_page(GFP_NOFS);
4383 if (!p) {
4384 btrfs_release_extent_buffer(new);
4385 return NULL;
4386 }
4387 attach_extent_buffer_page(new, p);
4388 WARN_ON(PageDirty(p));
4389 SetPageUptodate(p);
4390 new->pages[i] = p;
4391 }
4392
4393 copy_extent_buffer(new, src, 0, 0, src->len);
4394 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4395 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4396
4397 return new;
4398 }
4399
4400 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4401 {
4402 struct extent_buffer *eb;
4403 unsigned long num_pages = num_extent_pages(0, len);
4404 unsigned long i;
4405
4406 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4407 if (!eb)
4408 return NULL;
4409
4410 for (i = 0; i < num_pages; i++) {
4411 eb->pages[i] = alloc_page(GFP_NOFS);
4412 if (!eb->pages[i])
4413 goto err;
4414 }
4415 set_extent_buffer_uptodate(eb);
4416 btrfs_set_header_nritems(eb, 0);
4417 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4418
4419 return eb;
4420 err:
4421 for (; i > 0; i--)
4422 __free_page(eb->pages[i - 1]);
4423 __free_extent_buffer(eb);
4424 return NULL;
4425 }
4426
4427 static void check_buffer_tree_ref(struct extent_buffer *eb)
4428 {
4429 int refs;
4430 /* the ref bit is tricky. We have to make sure it is set
4431 * if we have the buffer dirty. Otherwise the
4432 * code to free a buffer can end up dropping a dirty
4433 * page
4434 *
4435 * Once the ref bit is set, it won't go away while the
4436 * buffer is dirty or in writeback, and it also won't
4437 * go away while we have the reference count on the
4438 * eb bumped.
4439 *
4440 * We can't just set the ref bit without bumping the
4441 * ref on the eb because free_extent_buffer might
4442 * see the ref bit and try to clear it. If this happens
4443 * free_extent_buffer might end up dropping our original
4444 * ref by mistake and freeing the page before we are able
4445 * to add one more ref.
4446 *
4447 * So bump the ref count first, then set the bit. If someone
4448 * beat us to it, drop the ref we added.
4449 */
4450 refs = atomic_read(&eb->refs);
4451 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4452 return;
4453
4454 spin_lock(&eb->refs_lock);
4455 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4456 atomic_inc(&eb->refs);
4457 spin_unlock(&eb->refs_lock);
4458 }
4459
4460 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4461 {
4462 unsigned long num_pages, i;
4463
4464 check_buffer_tree_ref(eb);
4465
4466 num_pages = num_extent_pages(eb->start, eb->len);
4467 for (i = 0; i < num_pages; i++) {
4468 struct page *p = extent_buffer_page(eb, i);
4469 mark_page_accessed(p);
4470 }
4471 }
4472
4473 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4474 u64 start)
4475 {
4476 struct extent_buffer *eb;
4477
4478 rcu_read_lock();
4479 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4480 if (eb && atomic_inc_not_zero(&eb->refs)) {
4481 rcu_read_unlock();
4482 mark_extent_buffer_accessed(eb);
4483 return eb;
4484 }
4485 rcu_read_unlock();
4486
4487 return NULL;
4488 }
4489
4490 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4491 u64 start, unsigned long len)
4492 {
4493 unsigned long num_pages = num_extent_pages(start, len);
4494 unsigned long i;
4495 unsigned long index = start >> PAGE_CACHE_SHIFT;
4496 struct extent_buffer *eb;
4497 struct extent_buffer *exists = NULL;
4498 struct page *p;
4499 struct address_space *mapping = tree->mapping;
4500 int uptodate = 1;
4501 int ret;
4502
4503
4504 eb = find_extent_buffer(tree, start);
4505 if (eb)
4506 return eb;
4507
4508 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4509 if (!eb)
4510 return NULL;
4511
4512 for (i = 0; i < num_pages; i++, index++) {
4513 p = find_or_create_page(mapping, index, GFP_NOFS);
4514 if (!p)
4515 goto free_eb;
4516
4517 spin_lock(&mapping->private_lock);
4518 if (PagePrivate(p)) {
4519 /*
4520 * We could have already allocated an eb for this page
4521 * and attached one so lets see if we can get a ref on
4522 * the existing eb, and if we can we know it's good and
4523 * we can just return that one, else we know we can just
4524 * overwrite page->private.
4525 */
4526 exists = (struct extent_buffer *)p->private;
4527 if (atomic_inc_not_zero(&exists->refs)) {
4528 spin_unlock(&mapping->private_lock);
4529 unlock_page(p);
4530 page_cache_release(p);
4531 mark_extent_buffer_accessed(exists);
4532 goto free_eb;
4533 }
4534
4535 /*
4536 * Do this so attach doesn't complain and we need to
4537 * drop the ref the old guy had.
4538 */
4539 ClearPagePrivate(p);
4540 WARN_ON(PageDirty(p));
4541 page_cache_release(p);
4542 }
4543 attach_extent_buffer_page(eb, p);
4544 spin_unlock(&mapping->private_lock);
4545 WARN_ON(PageDirty(p));
4546 mark_page_accessed(p);
4547 eb->pages[i] = p;
4548 if (!PageUptodate(p))
4549 uptodate = 0;
4550
4551 /*
4552 * see below about how we avoid a nasty race with release page
4553 * and why we unlock later
4554 */
4555 }
4556 if (uptodate)
4557 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4558 again:
4559 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4560 if (ret)
4561 goto free_eb;
4562
4563 spin_lock(&tree->buffer_lock);
4564 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4565 spin_unlock(&tree->buffer_lock);
4566 radix_tree_preload_end();
4567 if (ret == -EEXIST) {
4568 exists = find_extent_buffer(tree, start);
4569 if (exists)
4570 goto free_eb;
4571 else
4572 goto again;
4573 }
4574 /* add one reference for the tree */
4575 check_buffer_tree_ref(eb);
4576
4577 /*
4578 * there is a race where release page may have
4579 * tried to find this extent buffer in the radix
4580 * but failed. It will tell the VM it is safe to
4581 * reclaim the, and it will clear the page private bit.
4582 * We must make sure to set the page private bit properly
4583 * after the extent buffer is in the radix tree so
4584 * it doesn't get lost
4585 */
4586 SetPageChecked(eb->pages[0]);
4587 for (i = 1; i < num_pages; i++) {
4588 p = extent_buffer_page(eb, i);
4589 ClearPageChecked(p);
4590 unlock_page(p);
4591 }
4592 unlock_page(eb->pages[0]);
4593 return eb;
4594
4595 free_eb:
4596 for (i = 0; i < num_pages; i++) {
4597 if (eb->pages[i])
4598 unlock_page(eb->pages[i]);
4599 }
4600
4601 WARN_ON(!atomic_dec_and_test(&eb->refs));
4602 btrfs_release_extent_buffer(eb);
4603 return exists;
4604 }
4605
4606 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4607 {
4608 struct extent_buffer *eb =
4609 container_of(head, struct extent_buffer, rcu_head);
4610
4611 __free_extent_buffer(eb);
4612 }
4613
4614 /* Expects to have eb->eb_lock already held */
4615 static int release_extent_buffer(struct extent_buffer *eb)
4616 {
4617 WARN_ON(atomic_read(&eb->refs) == 0);
4618 if (atomic_dec_and_test(&eb->refs)) {
4619 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4620 spin_unlock(&eb->refs_lock);
4621 } else {
4622 struct extent_io_tree *tree = eb->tree;
4623
4624 spin_unlock(&eb->refs_lock);
4625
4626 spin_lock(&tree->buffer_lock);
4627 radix_tree_delete(&tree->buffer,
4628 eb->start >> PAGE_CACHE_SHIFT);
4629 spin_unlock(&tree->buffer_lock);
4630 }
4631
4632 /* Should be safe to release our pages at this point */
4633 btrfs_release_extent_buffer_page(eb, 0);
4634 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4635 return 1;
4636 }
4637 spin_unlock(&eb->refs_lock);
4638
4639 return 0;
4640 }
4641
4642 void free_extent_buffer(struct extent_buffer *eb)
4643 {
4644 int refs;
4645 int old;
4646 if (!eb)
4647 return;
4648
4649 while (1) {
4650 refs = atomic_read(&eb->refs);
4651 if (refs <= 3)
4652 break;
4653 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4654 if (old == refs)
4655 return;
4656 }
4657
4658 spin_lock(&eb->refs_lock);
4659 if (atomic_read(&eb->refs) == 2 &&
4660 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4661 atomic_dec(&eb->refs);
4662
4663 if (atomic_read(&eb->refs) == 2 &&
4664 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4665 !extent_buffer_under_io(eb) &&
4666 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4667 atomic_dec(&eb->refs);
4668
4669 /*
4670 * I know this is terrible, but it's temporary until we stop tracking
4671 * the uptodate bits and such for the extent buffers.
4672 */
4673 release_extent_buffer(eb);
4674 }
4675
4676 void free_extent_buffer_stale(struct extent_buffer *eb)
4677 {
4678 if (!eb)
4679 return;
4680
4681 spin_lock(&eb->refs_lock);
4682 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4683
4684 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4685 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4686 atomic_dec(&eb->refs);
4687 release_extent_buffer(eb);
4688 }
4689
4690 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4691 {
4692 unsigned long i;
4693 unsigned long num_pages;
4694 struct page *page;
4695
4696 num_pages = num_extent_pages(eb->start, eb->len);
4697
4698 for (i = 0; i < num_pages; i++) {
4699 page = extent_buffer_page(eb, i);
4700 if (!PageDirty(page))
4701 continue;
4702
4703 lock_page(page);
4704 WARN_ON(!PagePrivate(page));
4705
4706 clear_page_dirty_for_io(page);
4707 spin_lock_irq(&page->mapping->tree_lock);
4708 if (!PageDirty(page)) {
4709 radix_tree_tag_clear(&page->mapping->page_tree,
4710 page_index(page),
4711 PAGECACHE_TAG_DIRTY);
4712 }
4713 spin_unlock_irq(&page->mapping->tree_lock);
4714 ClearPageError(page);
4715 unlock_page(page);
4716 }
4717 WARN_ON(atomic_read(&eb->refs) == 0);
4718 }
4719
4720 int set_extent_buffer_dirty(struct extent_buffer *eb)
4721 {
4722 unsigned long i;
4723 unsigned long num_pages;
4724 int was_dirty = 0;
4725
4726 check_buffer_tree_ref(eb);
4727
4728 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4729
4730 num_pages = num_extent_pages(eb->start, eb->len);
4731 WARN_ON(atomic_read(&eb->refs) == 0);
4732 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4733
4734 for (i = 0; i < num_pages; i++)
4735 set_page_dirty(extent_buffer_page(eb, i));
4736 return was_dirty;
4737 }
4738
4739 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4740 {
4741 unsigned long i;
4742 struct page *page;
4743 unsigned long num_pages;
4744
4745 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4746 num_pages = num_extent_pages(eb->start, eb->len);
4747 for (i = 0; i < num_pages; i++) {
4748 page = extent_buffer_page(eb, i);
4749 if (page)
4750 ClearPageUptodate(page);
4751 }
4752 return 0;
4753 }
4754
4755 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4756 {
4757 unsigned long i;
4758 struct page *page;
4759 unsigned long num_pages;
4760
4761 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4762 num_pages = num_extent_pages(eb->start, eb->len);
4763 for (i = 0; i < num_pages; i++) {
4764 page = extent_buffer_page(eb, i);
4765 SetPageUptodate(page);
4766 }
4767 return 0;
4768 }
4769
4770 int extent_buffer_uptodate(struct extent_buffer *eb)
4771 {
4772 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4773 }
4774
4775 int read_extent_buffer_pages(struct extent_io_tree *tree,
4776 struct extent_buffer *eb, u64 start, int wait,
4777 get_extent_t *get_extent, int mirror_num)
4778 {
4779 unsigned long i;
4780 unsigned long start_i;
4781 struct page *page;
4782 int err;
4783 int ret = 0;
4784 int locked_pages = 0;
4785 int all_uptodate = 1;
4786 unsigned long num_pages;
4787 unsigned long num_reads = 0;
4788 struct bio *bio = NULL;
4789 unsigned long bio_flags = 0;
4790
4791 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4792 return 0;
4793
4794 if (start) {
4795 WARN_ON(start < eb->start);
4796 start_i = (start >> PAGE_CACHE_SHIFT) -
4797 (eb->start >> PAGE_CACHE_SHIFT);
4798 } else {
4799 start_i = 0;
4800 }
4801
4802 num_pages = num_extent_pages(eb->start, eb->len);
4803 for (i = start_i; i < num_pages; i++) {
4804 page = extent_buffer_page(eb, i);
4805 if (wait == WAIT_NONE) {
4806 if (!trylock_page(page))
4807 goto unlock_exit;
4808 } else {
4809 lock_page(page);
4810 }
4811 locked_pages++;
4812 if (!PageUptodate(page)) {
4813 num_reads++;
4814 all_uptodate = 0;
4815 }
4816 }
4817 if (all_uptodate) {
4818 if (start_i == 0)
4819 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4820 goto unlock_exit;
4821 }
4822
4823 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4824 eb->read_mirror = 0;
4825 atomic_set(&eb->io_pages, num_reads);
4826 for (i = start_i; i < num_pages; i++) {
4827 page = extent_buffer_page(eb, i);
4828 if (!PageUptodate(page)) {
4829 ClearPageError(page);
4830 err = __extent_read_full_page(tree, page,
4831 get_extent, &bio,
4832 mirror_num, &bio_flags,
4833 READ | REQ_META);
4834 if (err)
4835 ret = err;
4836 } else {
4837 unlock_page(page);
4838 }
4839 }
4840
4841 if (bio) {
4842 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4843 bio_flags);
4844 if (err)
4845 return err;
4846 }
4847
4848 if (ret || wait != WAIT_COMPLETE)
4849 return ret;
4850
4851 for (i = start_i; i < num_pages; i++) {
4852 page = extent_buffer_page(eb, i);
4853 wait_on_page_locked(page);
4854 if (!PageUptodate(page))
4855 ret = -EIO;
4856 }
4857
4858 return ret;
4859
4860 unlock_exit:
4861 i = start_i;
4862 while (locked_pages > 0) {
4863 page = extent_buffer_page(eb, i);
4864 i++;
4865 unlock_page(page);
4866 locked_pages--;
4867 }
4868 return ret;
4869 }
4870
4871 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4872 unsigned long start,
4873 unsigned long len)
4874 {
4875 size_t cur;
4876 size_t offset;
4877 struct page *page;
4878 char *kaddr;
4879 char *dst = (char *)dstv;
4880 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4881 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4882
4883 WARN_ON(start > eb->len);
4884 WARN_ON(start + len > eb->start + eb->len);
4885
4886 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4887
4888 while (len > 0) {
4889 page = extent_buffer_page(eb, i);
4890
4891 cur = min(len, (PAGE_CACHE_SIZE - offset));
4892 kaddr = page_address(page);
4893 memcpy(dst, kaddr + offset, cur);
4894
4895 dst += cur;
4896 len -= cur;
4897 offset = 0;
4898 i++;
4899 }
4900 }
4901
4902 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4903 unsigned long min_len, char **map,
4904 unsigned long *map_start,
4905 unsigned long *map_len)
4906 {
4907 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4908 char *kaddr;
4909 struct page *p;
4910 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4911 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4912 unsigned long end_i = (start_offset + start + min_len - 1) >>
4913 PAGE_CACHE_SHIFT;
4914
4915 if (i != end_i)
4916 return -EINVAL;
4917
4918 if (i == 0) {
4919 offset = start_offset;
4920 *map_start = 0;
4921 } else {
4922 offset = 0;
4923 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4924 }
4925
4926 if (start + min_len > eb->len) {
4927 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4928 "wanted %lu %lu\n",
4929 eb->start, eb->len, start, min_len);
4930 return -EINVAL;
4931 }
4932
4933 p = extent_buffer_page(eb, i);
4934 kaddr = page_address(p);
4935 *map = kaddr + offset;
4936 *map_len = PAGE_CACHE_SIZE - offset;
4937 return 0;
4938 }
4939
4940 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4941 unsigned long start,
4942 unsigned long len)
4943 {
4944 size_t cur;
4945 size_t offset;
4946 struct page *page;
4947 char *kaddr;
4948 char *ptr = (char *)ptrv;
4949 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4950 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4951 int ret = 0;
4952
4953 WARN_ON(start > eb->len);
4954 WARN_ON(start + len > eb->start + eb->len);
4955
4956 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4957
4958 while (len > 0) {
4959 page = extent_buffer_page(eb, i);
4960
4961 cur = min(len, (PAGE_CACHE_SIZE - offset));
4962
4963 kaddr = page_address(page);
4964 ret = memcmp(ptr, kaddr + offset, cur);
4965 if (ret)
4966 break;
4967
4968 ptr += cur;
4969 len -= cur;
4970 offset = 0;
4971 i++;
4972 }
4973 return ret;
4974 }
4975
4976 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4977 unsigned long start, unsigned long len)
4978 {
4979 size_t cur;
4980 size_t offset;
4981 struct page *page;
4982 char *kaddr;
4983 char *src = (char *)srcv;
4984 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4985 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4986
4987 WARN_ON(start > eb->len);
4988 WARN_ON(start + len > eb->start + eb->len);
4989
4990 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4991
4992 while (len > 0) {
4993 page = extent_buffer_page(eb, i);
4994 WARN_ON(!PageUptodate(page));
4995
4996 cur = min(len, PAGE_CACHE_SIZE - offset);
4997 kaddr = page_address(page);
4998 memcpy(kaddr + offset, src, cur);
4999
5000 src += cur;
5001 len -= cur;
5002 offset = 0;
5003 i++;
5004 }
5005 }
5006
5007 void memset_extent_buffer(struct extent_buffer *eb, char c,
5008 unsigned long start, unsigned long len)
5009 {
5010 size_t cur;
5011 size_t offset;
5012 struct page *page;
5013 char *kaddr;
5014 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5015 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5016
5017 WARN_ON(start > eb->len);
5018 WARN_ON(start + len > eb->start + eb->len);
5019
5020 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5021
5022 while (len > 0) {
5023 page = extent_buffer_page(eb, i);
5024 WARN_ON(!PageUptodate(page));
5025
5026 cur = min(len, PAGE_CACHE_SIZE - offset);
5027 kaddr = page_address(page);
5028 memset(kaddr + offset, c, cur);
5029
5030 len -= cur;
5031 offset = 0;
5032 i++;
5033 }
5034 }
5035
5036 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5037 unsigned long dst_offset, unsigned long src_offset,
5038 unsigned long len)
5039 {
5040 u64 dst_len = dst->len;
5041 size_t cur;
5042 size_t offset;
5043 struct page *page;
5044 char *kaddr;
5045 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5046 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5047
5048 WARN_ON(src->len != dst_len);
5049
5050 offset = (start_offset + dst_offset) &
5051 (PAGE_CACHE_SIZE - 1);
5052
5053 while (len > 0) {
5054 page = extent_buffer_page(dst, i);
5055 WARN_ON(!PageUptodate(page));
5056
5057 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5058
5059 kaddr = page_address(page);
5060 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5061
5062 src_offset += cur;
5063 len -= cur;
5064 offset = 0;
5065 i++;
5066 }
5067 }
5068
5069 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5070 {
5071 unsigned long distance = (src > dst) ? src - dst : dst - src;
5072 return distance < len;
5073 }
5074
5075 static void copy_pages(struct page *dst_page, struct page *src_page,
5076 unsigned long dst_off, unsigned long src_off,
5077 unsigned long len)
5078 {
5079 char *dst_kaddr = page_address(dst_page);
5080 char *src_kaddr;
5081 int must_memmove = 0;
5082
5083 if (dst_page != src_page) {
5084 src_kaddr = page_address(src_page);
5085 } else {
5086 src_kaddr = dst_kaddr;
5087 if (areas_overlap(src_off, dst_off, len))
5088 must_memmove = 1;
5089 }
5090
5091 if (must_memmove)
5092 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5093 else
5094 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5095 }
5096
5097 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5098 unsigned long src_offset, unsigned long len)
5099 {
5100 size_t cur;
5101 size_t dst_off_in_page;
5102 size_t src_off_in_page;
5103 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5104 unsigned long dst_i;
5105 unsigned long src_i;
5106
5107 if (src_offset + len > dst->len) {
5108 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5109 "len %lu dst len %lu\n", src_offset, len, dst->len);
5110 BUG_ON(1);
5111 }
5112 if (dst_offset + len > dst->len) {
5113 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5114 "len %lu dst len %lu\n", dst_offset, len, dst->len);
5115 BUG_ON(1);
5116 }
5117
5118 while (len > 0) {
5119 dst_off_in_page = (start_offset + dst_offset) &
5120 (PAGE_CACHE_SIZE - 1);
5121 src_off_in_page = (start_offset + src_offset) &
5122 (PAGE_CACHE_SIZE - 1);
5123
5124 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5125 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5126
5127 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5128 src_off_in_page));
5129 cur = min_t(unsigned long, cur,
5130 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5131
5132 copy_pages(extent_buffer_page(dst, dst_i),
5133 extent_buffer_page(dst, src_i),
5134 dst_off_in_page, src_off_in_page, cur);
5135
5136 src_offset += cur;
5137 dst_offset += cur;
5138 len -= cur;
5139 }
5140 }
5141
5142 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5143 unsigned long src_offset, unsigned long len)
5144 {
5145 size_t cur;
5146 size_t dst_off_in_page;
5147 size_t src_off_in_page;
5148 unsigned long dst_end = dst_offset + len - 1;
5149 unsigned long src_end = src_offset + len - 1;
5150 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5151 unsigned long dst_i;
5152 unsigned long src_i;
5153
5154 if (src_offset + len > dst->len) {
5155 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5156 "len %lu len %lu\n", src_offset, len, dst->len);
5157 BUG_ON(1);
5158 }
5159 if (dst_offset + len > dst->len) {
5160 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5161 "len %lu len %lu\n", dst_offset, len, dst->len);
5162 BUG_ON(1);
5163 }
5164 if (dst_offset < src_offset) {
5165 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5166 return;
5167 }
5168 while (len > 0) {
5169 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5170 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5171
5172 dst_off_in_page = (start_offset + dst_end) &
5173 (PAGE_CACHE_SIZE - 1);
5174 src_off_in_page = (start_offset + src_end) &
5175 (PAGE_CACHE_SIZE - 1);
5176
5177 cur = min_t(unsigned long, len, src_off_in_page + 1);
5178 cur = min(cur, dst_off_in_page + 1);
5179 copy_pages(extent_buffer_page(dst, dst_i),
5180 extent_buffer_page(dst, src_i),
5181 dst_off_in_page - cur + 1,
5182 src_off_in_page - cur + 1, cur);
5183
5184 dst_end -= cur;
5185 src_end -= cur;
5186 len -= cur;
5187 }
5188 }
5189
5190 int try_release_extent_buffer(struct page *page)
5191 {
5192 struct extent_buffer *eb;
5193
5194 /*
5195 * We need to make sure noboody is attaching this page to an eb right
5196 * now.
5197 */
5198 spin_lock(&page->mapping->private_lock);
5199 if (!PagePrivate(page)) {
5200 spin_unlock(&page->mapping->private_lock);
5201 return 1;
5202 }
5203
5204 eb = (struct extent_buffer *)page->private;
5205 BUG_ON(!eb);
5206
5207 /*
5208 * This is a little awful but should be ok, we need to make sure that
5209 * the eb doesn't disappear out from under us while we're looking at
5210 * this page.
5211 */
5212 spin_lock(&eb->refs_lock);
5213 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5214 spin_unlock(&eb->refs_lock);
5215 spin_unlock(&page->mapping->private_lock);
5216 return 0;
5217 }
5218 spin_unlock(&page->mapping->private_lock);
5219
5220 /*
5221 * If tree ref isn't set then we know the ref on this eb is a real ref,
5222 * so just return, this page will likely be freed soon anyway.
5223 */
5224 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5225 spin_unlock(&eb->refs_lock);
5226 return 0;
5227 }
5228
5229 return release_extent_buffer(eb);
5230 }
This page took 0.211555 seconds and 6 git commands to generate.