Btrfs: Back port to 2.6.18-el kernels
[deliverable/linux.git] / fs / btrfs / extent_map.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/version.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include "extent_map.h"
16
17 /* temporary define until extent_map moves out of btrfs */
18 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
19 unsigned long extra_flags,
20 void (*ctor)(void *, struct kmem_cache *,
21 unsigned long));
22
23 static struct kmem_cache *extent_map_cache;
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26
27 static LIST_HEAD(buffers);
28 static LIST_HEAD(states);
29
30 static spinlock_t state_lock = SPIN_LOCK_UNLOCKED;
31 #define BUFFER_LRU_MAX 64
32
33 struct tree_entry {
34 u64 start;
35 u64 end;
36 int in_tree;
37 struct rb_node rb_node;
38 };
39
40 struct extent_page_data {
41 struct bio *bio;
42 struct extent_map_tree *tree;
43 get_extent_t *get_extent;
44 };
45
46 int __init extent_map_init(void)
47 {
48 extent_map_cache = btrfs_cache_create("extent_map",
49 sizeof(struct extent_map), 0,
50 NULL);
51 if (!extent_map_cache)
52 return -ENOMEM;
53 extent_state_cache = btrfs_cache_create("extent_state",
54 sizeof(struct extent_state), 0,
55 NULL);
56 if (!extent_state_cache)
57 goto free_map_cache;
58 extent_buffer_cache = btrfs_cache_create("extent_buffers",
59 sizeof(struct extent_buffer), 0,
60 NULL);
61 if (!extent_buffer_cache)
62 goto free_state_cache;
63 return 0;
64
65 free_state_cache:
66 kmem_cache_destroy(extent_state_cache);
67 free_map_cache:
68 kmem_cache_destroy(extent_map_cache);
69 return -ENOMEM;
70 }
71
72 void extent_map_exit(void)
73 {
74 struct extent_state *state;
75
76 while (!list_empty(&states)) {
77 state = list_entry(states.next, struct extent_state, list);
78 printk("state leak: start %Lu end %Lu state %lu in tree %d refs %d\n", state->start, state->end, state->state, state->in_tree, atomic_read(&state->refs));
79 list_del(&state->list);
80 kmem_cache_free(extent_state_cache, state);
81
82 }
83
84 if (extent_map_cache)
85 kmem_cache_destroy(extent_map_cache);
86 if (extent_state_cache)
87 kmem_cache_destroy(extent_state_cache);
88 if (extent_buffer_cache)
89 kmem_cache_destroy(extent_buffer_cache);
90 }
91
92 void extent_map_tree_init(struct extent_map_tree *tree,
93 struct address_space *mapping, gfp_t mask)
94 {
95 tree->map.rb_node = NULL;
96 tree->state.rb_node = NULL;
97 tree->ops = NULL;
98 tree->dirty_bytes = 0;
99 rwlock_init(&tree->lock);
100 spin_lock_init(&tree->lru_lock);
101 tree->mapping = mapping;
102 INIT_LIST_HEAD(&tree->buffer_lru);
103 tree->lru_size = 0;
104 }
105 EXPORT_SYMBOL(extent_map_tree_init);
106
107 void extent_map_tree_empty_lru(struct extent_map_tree *tree)
108 {
109 struct extent_buffer *eb;
110 while(!list_empty(&tree->buffer_lru)) {
111 eb = list_entry(tree->buffer_lru.next, struct extent_buffer,
112 lru);
113 list_del_init(&eb->lru);
114 free_extent_buffer(eb);
115 }
116 }
117 EXPORT_SYMBOL(extent_map_tree_empty_lru);
118
119 struct extent_map *alloc_extent_map(gfp_t mask)
120 {
121 struct extent_map *em;
122 em = kmem_cache_alloc(extent_map_cache, mask);
123 if (!em || IS_ERR(em))
124 return em;
125 em->in_tree = 0;
126 atomic_set(&em->refs, 1);
127 return em;
128 }
129 EXPORT_SYMBOL(alloc_extent_map);
130
131 void free_extent_map(struct extent_map *em)
132 {
133 if (!em)
134 return;
135 if (atomic_dec_and_test(&em->refs)) {
136 WARN_ON(em->in_tree);
137 kmem_cache_free(extent_map_cache, em);
138 }
139 }
140 EXPORT_SYMBOL(free_extent_map);
141
142
143 struct extent_state *alloc_extent_state(gfp_t mask)
144 {
145 struct extent_state *state;
146 unsigned long flags;
147
148 state = kmem_cache_alloc(extent_state_cache, mask);
149 if (!state || IS_ERR(state))
150 return state;
151 state->state = 0;
152 state->in_tree = 0;
153 state->private = 0;
154
155 spin_lock_irqsave(&state_lock, flags);
156 list_add(&state->list, &states);
157 spin_unlock_irqrestore(&state_lock, flags);
158
159 atomic_set(&state->refs, 1);
160 init_waitqueue_head(&state->wq);
161 return state;
162 }
163 EXPORT_SYMBOL(alloc_extent_state);
164
165 void free_extent_state(struct extent_state *state)
166 {
167 unsigned long flags;
168 if (!state)
169 return;
170 if (atomic_dec_and_test(&state->refs)) {
171 WARN_ON(state->in_tree);
172 spin_lock_irqsave(&state_lock, flags);
173 list_del(&state->list);
174 spin_unlock_irqrestore(&state_lock, flags);
175 kmem_cache_free(extent_state_cache, state);
176 }
177 }
178 EXPORT_SYMBOL(free_extent_state);
179
180 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
181 struct rb_node *node)
182 {
183 struct rb_node ** p = &root->rb_node;
184 struct rb_node * parent = NULL;
185 struct tree_entry *entry;
186
187 while(*p) {
188 parent = *p;
189 entry = rb_entry(parent, struct tree_entry, rb_node);
190
191 if (offset < entry->start)
192 p = &(*p)->rb_left;
193 else if (offset > entry->end)
194 p = &(*p)->rb_right;
195 else
196 return parent;
197 }
198
199 entry = rb_entry(node, struct tree_entry, rb_node);
200 entry->in_tree = 1;
201 rb_link_node(node, parent, p);
202 rb_insert_color(node, root);
203 return NULL;
204 }
205
206 static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
207 struct rb_node **prev_ret)
208 {
209 struct rb_node * n = root->rb_node;
210 struct rb_node *prev = NULL;
211 struct tree_entry *entry;
212 struct tree_entry *prev_entry = NULL;
213
214 while(n) {
215 entry = rb_entry(n, struct tree_entry, rb_node);
216 prev = n;
217 prev_entry = entry;
218
219 if (offset < entry->start)
220 n = n->rb_left;
221 else if (offset > entry->end)
222 n = n->rb_right;
223 else
224 return n;
225 }
226 if (!prev_ret)
227 return NULL;
228 while(prev && offset > prev_entry->end) {
229 prev = rb_next(prev);
230 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
231 }
232 *prev_ret = prev;
233 return NULL;
234 }
235
236 static inline struct rb_node *tree_search(struct rb_root *root, u64 offset)
237 {
238 struct rb_node *prev;
239 struct rb_node *ret;
240 ret = __tree_search(root, offset, &prev);
241 if (!ret)
242 return prev;
243 return ret;
244 }
245
246 static int tree_delete(struct rb_root *root, u64 offset)
247 {
248 struct rb_node *node;
249 struct tree_entry *entry;
250
251 node = __tree_search(root, offset, NULL);
252 if (!node)
253 return -ENOENT;
254 entry = rb_entry(node, struct tree_entry, rb_node);
255 entry->in_tree = 0;
256 rb_erase(node, root);
257 return 0;
258 }
259
260 /*
261 * add_extent_mapping tries a simple backward merge with existing
262 * mappings. The extent_map struct passed in will be inserted into
263 * the tree directly (no copies made, just a reference taken).
264 */
265 int add_extent_mapping(struct extent_map_tree *tree,
266 struct extent_map *em)
267 {
268 int ret = 0;
269 struct extent_map *prev = NULL;
270 struct rb_node *rb;
271
272 write_lock_irq(&tree->lock);
273 rb = tree_insert(&tree->map, em->end, &em->rb_node);
274 if (rb) {
275 prev = rb_entry(rb, struct extent_map, rb_node);
276 printk("found extent map %Lu %Lu on insert of %Lu %Lu\n", prev->start, prev->end, em->start, em->end);
277 ret = -EEXIST;
278 goto out;
279 }
280 atomic_inc(&em->refs);
281 if (em->start != 0) {
282 rb = rb_prev(&em->rb_node);
283 if (rb)
284 prev = rb_entry(rb, struct extent_map, rb_node);
285 if (prev && prev->end + 1 == em->start &&
286 ((em->block_start == EXTENT_MAP_HOLE &&
287 prev->block_start == EXTENT_MAP_HOLE) ||
288 (em->block_start == EXTENT_MAP_INLINE &&
289 prev->block_start == EXTENT_MAP_INLINE) ||
290 (em->block_start == EXTENT_MAP_DELALLOC &&
291 prev->block_start == EXTENT_MAP_DELALLOC) ||
292 (em->block_start < EXTENT_MAP_DELALLOC - 1 &&
293 em->block_start == prev->block_end + 1))) {
294 em->start = prev->start;
295 em->block_start = prev->block_start;
296 rb_erase(&prev->rb_node, &tree->map);
297 prev->in_tree = 0;
298 free_extent_map(prev);
299 }
300 }
301 out:
302 write_unlock_irq(&tree->lock);
303 return ret;
304 }
305 EXPORT_SYMBOL(add_extent_mapping);
306
307 /*
308 * lookup_extent_mapping returns the first extent_map struct in the
309 * tree that intersects the [start, end] (inclusive) range. There may
310 * be additional objects in the tree that intersect, so check the object
311 * returned carefully to make sure you don't need additional lookups.
312 */
313 struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
314 u64 start, u64 end)
315 {
316 struct extent_map *em;
317 struct rb_node *rb_node;
318
319 read_lock_irq(&tree->lock);
320 rb_node = tree_search(&tree->map, start);
321 if (!rb_node) {
322 em = NULL;
323 goto out;
324 }
325 if (IS_ERR(rb_node)) {
326 em = ERR_PTR(PTR_ERR(rb_node));
327 goto out;
328 }
329 em = rb_entry(rb_node, struct extent_map, rb_node);
330 if (em->end < start || em->start > end) {
331 em = NULL;
332 goto out;
333 }
334 atomic_inc(&em->refs);
335 out:
336 read_unlock_irq(&tree->lock);
337 return em;
338 }
339 EXPORT_SYMBOL(lookup_extent_mapping);
340
341 /*
342 * removes an extent_map struct from the tree. No reference counts are
343 * dropped, and no checks are done to see if the range is in use
344 */
345 int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em)
346 {
347 int ret;
348
349 write_lock_irq(&tree->lock);
350 ret = tree_delete(&tree->map, em->end);
351 write_unlock_irq(&tree->lock);
352 return ret;
353 }
354 EXPORT_SYMBOL(remove_extent_mapping);
355
356 /*
357 * utility function to look for merge candidates inside a given range.
358 * Any extents with matching state are merged together into a single
359 * extent in the tree. Extents with EXTENT_IO in their state field
360 * are not merged because the end_io handlers need to be able to do
361 * operations on them without sleeping (or doing allocations/splits).
362 *
363 * This should be called with the tree lock held.
364 */
365 static int merge_state(struct extent_map_tree *tree,
366 struct extent_state *state)
367 {
368 struct extent_state *other;
369 struct rb_node *other_node;
370
371 if (state->state & EXTENT_IOBITS)
372 return 0;
373
374 other_node = rb_prev(&state->rb_node);
375 if (other_node) {
376 other = rb_entry(other_node, struct extent_state, rb_node);
377 if (other->end == state->start - 1 &&
378 other->state == state->state) {
379 state->start = other->start;
380 other->in_tree = 0;
381 rb_erase(&other->rb_node, &tree->state);
382 free_extent_state(other);
383 }
384 }
385 other_node = rb_next(&state->rb_node);
386 if (other_node) {
387 other = rb_entry(other_node, struct extent_state, rb_node);
388 if (other->start == state->end + 1 &&
389 other->state == state->state) {
390 other->start = state->start;
391 state->in_tree = 0;
392 rb_erase(&state->rb_node, &tree->state);
393 free_extent_state(state);
394 }
395 }
396 return 0;
397 }
398
399 /*
400 * insert an extent_state struct into the tree. 'bits' are set on the
401 * struct before it is inserted.
402 *
403 * This may return -EEXIST if the extent is already there, in which case the
404 * state struct is freed.
405 *
406 * The tree lock is not taken internally. This is a utility function and
407 * probably isn't what you want to call (see set/clear_extent_bit).
408 */
409 static int insert_state(struct extent_map_tree *tree,
410 struct extent_state *state, u64 start, u64 end,
411 int bits)
412 {
413 struct rb_node *node;
414
415 if (end < start) {
416 printk("end < start %Lu %Lu\n", end, start);
417 WARN_ON(1);
418 }
419 if (bits & EXTENT_DIRTY)
420 tree->dirty_bytes += end - start + 1;
421 state->state |= bits;
422 state->start = start;
423 state->end = end;
424 node = tree_insert(&tree->state, end, &state->rb_node);
425 if (node) {
426 struct extent_state *found;
427 found = rb_entry(node, struct extent_state, rb_node);
428 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
429 free_extent_state(state);
430 return -EEXIST;
431 }
432 merge_state(tree, state);
433 return 0;
434 }
435
436 /*
437 * split a given extent state struct in two, inserting the preallocated
438 * struct 'prealloc' as the newly created second half. 'split' indicates an
439 * offset inside 'orig' where it should be split.
440 *
441 * Before calling,
442 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
443 * are two extent state structs in the tree:
444 * prealloc: [orig->start, split - 1]
445 * orig: [ split, orig->end ]
446 *
447 * The tree locks are not taken by this function. They need to be held
448 * by the caller.
449 */
450 static int split_state(struct extent_map_tree *tree, struct extent_state *orig,
451 struct extent_state *prealloc, u64 split)
452 {
453 struct rb_node *node;
454 prealloc->start = orig->start;
455 prealloc->end = split - 1;
456 prealloc->state = orig->state;
457 orig->start = split;
458
459 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
460 if (node) {
461 struct extent_state *found;
462 found = rb_entry(node, struct extent_state, rb_node);
463 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
464 free_extent_state(prealloc);
465 return -EEXIST;
466 }
467 return 0;
468 }
469
470 /*
471 * utility function to clear some bits in an extent state struct.
472 * it will optionally wake up any one waiting on this state (wake == 1), or
473 * forcibly remove the state from the tree (delete == 1).
474 *
475 * If no bits are set on the state struct after clearing things, the
476 * struct is freed and removed from the tree
477 */
478 static int clear_state_bit(struct extent_map_tree *tree,
479 struct extent_state *state, int bits, int wake,
480 int delete)
481 {
482 int ret = state->state & bits;
483
484 if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
485 u64 range = state->end - state->start + 1;
486 WARN_ON(range > tree->dirty_bytes);
487 tree->dirty_bytes -= range;
488 }
489 state->state &= ~bits;
490 if (wake)
491 wake_up(&state->wq);
492 if (delete || state->state == 0) {
493 if (state->in_tree) {
494 rb_erase(&state->rb_node, &tree->state);
495 state->in_tree = 0;
496 free_extent_state(state);
497 } else {
498 WARN_ON(1);
499 }
500 } else {
501 merge_state(tree, state);
502 }
503 return ret;
504 }
505
506 /*
507 * clear some bits on a range in the tree. This may require splitting
508 * or inserting elements in the tree, so the gfp mask is used to
509 * indicate which allocations or sleeping are allowed.
510 *
511 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
512 * the given range from the tree regardless of state (ie for truncate).
513 *
514 * the range [start, end] is inclusive.
515 *
516 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
517 * bits were already set, or zero if none of the bits were already set.
518 */
519 int clear_extent_bit(struct extent_map_tree *tree, u64 start, u64 end,
520 int bits, int wake, int delete, gfp_t mask)
521 {
522 struct extent_state *state;
523 struct extent_state *prealloc = NULL;
524 struct rb_node *node;
525 unsigned long flags;
526 int err;
527 int set = 0;
528
529 again:
530 if (!prealloc && (mask & __GFP_WAIT)) {
531 prealloc = alloc_extent_state(mask);
532 if (!prealloc)
533 return -ENOMEM;
534 }
535
536 write_lock_irqsave(&tree->lock, flags);
537 /*
538 * this search will find the extents that end after
539 * our range starts
540 */
541 node = tree_search(&tree->state, start);
542 if (!node)
543 goto out;
544 state = rb_entry(node, struct extent_state, rb_node);
545 if (state->start > end)
546 goto out;
547 WARN_ON(state->end < start);
548
549 /*
550 * | ---- desired range ---- |
551 * | state | or
552 * | ------------- state -------------- |
553 *
554 * We need to split the extent we found, and may flip
555 * bits on second half.
556 *
557 * If the extent we found extends past our range, we
558 * just split and search again. It'll get split again
559 * the next time though.
560 *
561 * If the extent we found is inside our range, we clear
562 * the desired bit on it.
563 */
564
565 if (state->start < start) {
566 err = split_state(tree, state, prealloc, start);
567 BUG_ON(err == -EEXIST);
568 prealloc = NULL;
569 if (err)
570 goto out;
571 if (state->end <= end) {
572 start = state->end + 1;
573 set |= clear_state_bit(tree, state, bits,
574 wake, delete);
575 } else {
576 start = state->start;
577 }
578 goto search_again;
579 }
580 /*
581 * | ---- desired range ---- |
582 * | state |
583 * We need to split the extent, and clear the bit
584 * on the first half
585 */
586 if (state->start <= end && state->end > end) {
587 err = split_state(tree, state, prealloc, end + 1);
588 BUG_ON(err == -EEXIST);
589
590 if (wake)
591 wake_up(&state->wq);
592 set |= clear_state_bit(tree, prealloc, bits,
593 wake, delete);
594 prealloc = NULL;
595 goto out;
596 }
597
598 start = state->end + 1;
599 set |= clear_state_bit(tree, state, bits, wake, delete);
600 goto search_again;
601
602 out:
603 write_unlock_irqrestore(&tree->lock, flags);
604 if (prealloc)
605 free_extent_state(prealloc);
606
607 return set;
608
609 search_again:
610 if (start > end)
611 goto out;
612 write_unlock_irqrestore(&tree->lock, flags);
613 if (mask & __GFP_WAIT)
614 cond_resched();
615 goto again;
616 }
617 EXPORT_SYMBOL(clear_extent_bit);
618
619 static int wait_on_state(struct extent_map_tree *tree,
620 struct extent_state *state)
621 {
622 DEFINE_WAIT(wait);
623 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
624 read_unlock_irq(&tree->lock);
625 schedule();
626 read_lock_irq(&tree->lock);
627 finish_wait(&state->wq, &wait);
628 return 0;
629 }
630
631 /*
632 * waits for one or more bits to clear on a range in the state tree.
633 * The range [start, end] is inclusive.
634 * The tree lock is taken by this function
635 */
636 int wait_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits)
637 {
638 struct extent_state *state;
639 struct rb_node *node;
640
641 read_lock_irq(&tree->lock);
642 again:
643 while (1) {
644 /*
645 * this search will find all the extents that end after
646 * our range starts
647 */
648 node = tree_search(&tree->state, start);
649 if (!node)
650 break;
651
652 state = rb_entry(node, struct extent_state, rb_node);
653
654 if (state->start > end)
655 goto out;
656
657 if (state->state & bits) {
658 start = state->start;
659 atomic_inc(&state->refs);
660 wait_on_state(tree, state);
661 free_extent_state(state);
662 goto again;
663 }
664 start = state->end + 1;
665
666 if (start > end)
667 break;
668
669 if (need_resched()) {
670 read_unlock_irq(&tree->lock);
671 cond_resched();
672 read_lock_irq(&tree->lock);
673 }
674 }
675 out:
676 read_unlock_irq(&tree->lock);
677 return 0;
678 }
679 EXPORT_SYMBOL(wait_extent_bit);
680
681 static void set_state_bits(struct extent_map_tree *tree,
682 struct extent_state *state,
683 int bits)
684 {
685 if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
686 u64 range = state->end - state->start + 1;
687 tree->dirty_bytes += range;
688 }
689 state->state |= bits;
690 }
691
692 /*
693 * set some bits on a range in the tree. This may require allocations
694 * or sleeping, so the gfp mask is used to indicate what is allowed.
695 *
696 * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
697 * range already has the desired bits set. The start of the existing
698 * range is returned in failed_start in this case.
699 *
700 * [start, end] is inclusive
701 * This takes the tree lock.
702 */
703 int set_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits,
704 int exclusive, u64 *failed_start, gfp_t mask)
705 {
706 struct extent_state *state;
707 struct extent_state *prealloc = NULL;
708 struct rb_node *node;
709 unsigned long flags;
710 int err = 0;
711 int set;
712 u64 last_start;
713 u64 last_end;
714 again:
715 if (!prealloc && (mask & __GFP_WAIT)) {
716 prealloc = alloc_extent_state(mask);
717 if (!prealloc)
718 return -ENOMEM;
719 }
720
721 write_lock_irqsave(&tree->lock, flags);
722 /*
723 * this search will find all the extents that end after
724 * our range starts.
725 */
726 node = tree_search(&tree->state, start);
727 if (!node) {
728 err = insert_state(tree, prealloc, start, end, bits);
729 prealloc = NULL;
730 BUG_ON(err == -EEXIST);
731 goto out;
732 }
733
734 state = rb_entry(node, struct extent_state, rb_node);
735 last_start = state->start;
736 last_end = state->end;
737
738 /*
739 * | ---- desired range ---- |
740 * | state |
741 *
742 * Just lock what we found and keep going
743 */
744 if (state->start == start && state->end <= end) {
745 set = state->state & bits;
746 if (set && exclusive) {
747 *failed_start = state->start;
748 err = -EEXIST;
749 goto out;
750 }
751 set_state_bits(tree, state, bits);
752 start = state->end + 1;
753 merge_state(tree, state);
754 goto search_again;
755 }
756
757 /*
758 * | ---- desired range ---- |
759 * | state |
760 * or
761 * | ------------- state -------------- |
762 *
763 * We need to split the extent we found, and may flip bits on
764 * second half.
765 *
766 * If the extent we found extends past our
767 * range, we just split and search again. It'll get split
768 * again the next time though.
769 *
770 * If the extent we found is inside our range, we set the
771 * desired bit on it.
772 */
773 if (state->start < start) {
774 set = state->state & bits;
775 if (exclusive && set) {
776 *failed_start = start;
777 err = -EEXIST;
778 goto out;
779 }
780 err = split_state(tree, state, prealloc, start);
781 BUG_ON(err == -EEXIST);
782 prealloc = NULL;
783 if (err)
784 goto out;
785 if (state->end <= end) {
786 set_state_bits(tree, state, bits);
787 start = state->end + 1;
788 merge_state(tree, state);
789 } else {
790 start = state->start;
791 }
792 goto search_again;
793 }
794 /*
795 * | ---- desired range ---- |
796 * | state | or | state |
797 *
798 * There's a hole, we need to insert something in it and
799 * ignore the extent we found.
800 */
801 if (state->start > start) {
802 u64 this_end;
803 if (end < last_start)
804 this_end = end;
805 else
806 this_end = last_start -1;
807 err = insert_state(tree, prealloc, start, this_end,
808 bits);
809 prealloc = NULL;
810 BUG_ON(err == -EEXIST);
811 if (err)
812 goto out;
813 start = this_end + 1;
814 goto search_again;
815 }
816 /*
817 * | ---- desired range ---- |
818 * | state |
819 * We need to split the extent, and set the bit
820 * on the first half
821 */
822 if (state->start <= end && state->end > end) {
823 set = state->state & bits;
824 if (exclusive && set) {
825 *failed_start = start;
826 err = -EEXIST;
827 goto out;
828 }
829 err = split_state(tree, state, prealloc, end + 1);
830 BUG_ON(err == -EEXIST);
831
832 set_state_bits(tree, prealloc, bits);
833 merge_state(tree, prealloc);
834 prealloc = NULL;
835 goto out;
836 }
837
838 goto search_again;
839
840 out:
841 write_unlock_irqrestore(&tree->lock, flags);
842 if (prealloc)
843 free_extent_state(prealloc);
844
845 return err;
846
847 search_again:
848 if (start > end)
849 goto out;
850 write_unlock_irqrestore(&tree->lock, flags);
851 if (mask & __GFP_WAIT)
852 cond_resched();
853 goto again;
854 }
855 EXPORT_SYMBOL(set_extent_bit);
856
857 /* wrappers around set/clear extent bit */
858 int set_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
859 gfp_t mask)
860 {
861 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
862 mask);
863 }
864 EXPORT_SYMBOL(set_extent_dirty);
865
866 int set_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
867 int bits, gfp_t mask)
868 {
869 return set_extent_bit(tree, start, end, bits, 0, NULL,
870 mask);
871 }
872 EXPORT_SYMBOL(set_extent_bits);
873
874 int clear_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
875 int bits, gfp_t mask)
876 {
877 return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
878 }
879 EXPORT_SYMBOL(clear_extent_bits);
880
881 int set_extent_delalloc(struct extent_map_tree *tree, u64 start, u64 end,
882 gfp_t mask)
883 {
884 return set_extent_bit(tree, start, end,
885 EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
886 mask);
887 }
888 EXPORT_SYMBOL(set_extent_delalloc);
889
890 int clear_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
891 gfp_t mask)
892 {
893 return clear_extent_bit(tree, start, end,
894 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
895 }
896 EXPORT_SYMBOL(clear_extent_dirty);
897
898 int set_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
899 gfp_t mask)
900 {
901 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
902 mask);
903 }
904 EXPORT_SYMBOL(set_extent_new);
905
906 int clear_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
907 gfp_t mask)
908 {
909 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
910 }
911 EXPORT_SYMBOL(clear_extent_new);
912
913 int set_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
914 gfp_t mask)
915 {
916 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
917 mask);
918 }
919 EXPORT_SYMBOL(set_extent_uptodate);
920
921 int clear_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
922 gfp_t mask)
923 {
924 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
925 }
926 EXPORT_SYMBOL(clear_extent_uptodate);
927
928 int set_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
929 gfp_t mask)
930 {
931 return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
932 0, NULL, mask);
933 }
934 EXPORT_SYMBOL(set_extent_writeback);
935
936 int clear_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
937 gfp_t mask)
938 {
939 return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
940 }
941 EXPORT_SYMBOL(clear_extent_writeback);
942
943 int wait_on_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end)
944 {
945 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
946 }
947 EXPORT_SYMBOL(wait_on_extent_writeback);
948
949 /*
950 * locks a range in ascending order, waiting for any locked regions
951 * it hits on the way. [start,end] are inclusive, and this will sleep.
952 */
953 int lock_extent(struct extent_map_tree *tree, u64 start, u64 end, gfp_t mask)
954 {
955 int err;
956 u64 failed_start;
957 while (1) {
958 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
959 &failed_start, mask);
960 if (err == -EEXIST && (mask & __GFP_WAIT)) {
961 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
962 start = failed_start;
963 } else {
964 break;
965 }
966 WARN_ON(start > end);
967 }
968 return err;
969 }
970 EXPORT_SYMBOL(lock_extent);
971
972 int unlock_extent(struct extent_map_tree *tree, u64 start, u64 end,
973 gfp_t mask)
974 {
975 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
976 }
977 EXPORT_SYMBOL(unlock_extent);
978
979 /*
980 * helper function to set pages and extents in the tree dirty
981 */
982 int set_range_dirty(struct extent_map_tree *tree, u64 start, u64 end)
983 {
984 unsigned long index = start >> PAGE_CACHE_SHIFT;
985 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
986 struct page *page;
987
988 while (index <= end_index) {
989 page = find_get_page(tree->mapping, index);
990 BUG_ON(!page);
991 __set_page_dirty_nobuffers(page);
992 page_cache_release(page);
993 index++;
994 }
995 set_extent_dirty(tree, start, end, GFP_NOFS);
996 return 0;
997 }
998 EXPORT_SYMBOL(set_range_dirty);
999
1000 /*
1001 * helper function to set both pages and extents in the tree writeback
1002 */
1003 int set_range_writeback(struct extent_map_tree *tree, u64 start, u64 end)
1004 {
1005 unsigned long index = start >> PAGE_CACHE_SHIFT;
1006 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1007 struct page *page;
1008
1009 while (index <= end_index) {
1010 page = find_get_page(tree->mapping, index);
1011 BUG_ON(!page);
1012 set_page_writeback(page);
1013 page_cache_release(page);
1014 index++;
1015 }
1016 set_extent_writeback(tree, start, end, GFP_NOFS);
1017 return 0;
1018 }
1019 EXPORT_SYMBOL(set_range_writeback);
1020
1021 int find_first_extent_bit(struct extent_map_tree *tree, u64 start,
1022 u64 *start_ret, u64 *end_ret, int bits)
1023 {
1024 struct rb_node *node;
1025 struct extent_state *state;
1026 int ret = 1;
1027
1028 read_lock_irq(&tree->lock);
1029 /*
1030 * this search will find all the extents that end after
1031 * our range starts.
1032 */
1033 node = tree_search(&tree->state, start);
1034 if (!node || IS_ERR(node)) {
1035 goto out;
1036 }
1037
1038 while(1) {
1039 state = rb_entry(node, struct extent_state, rb_node);
1040 if (state->end >= start && (state->state & bits)) {
1041 *start_ret = state->start;
1042 *end_ret = state->end;
1043 ret = 0;
1044 break;
1045 }
1046 node = rb_next(node);
1047 if (!node)
1048 break;
1049 }
1050 out:
1051 read_unlock_irq(&tree->lock);
1052 return ret;
1053 }
1054 EXPORT_SYMBOL(find_first_extent_bit);
1055
1056 u64 find_lock_delalloc_range(struct extent_map_tree *tree,
1057 u64 *start, u64 *end, u64 max_bytes)
1058 {
1059 struct rb_node *node;
1060 struct extent_state *state;
1061 u64 cur_start = *start;
1062 u64 found = 0;
1063 u64 total_bytes = 0;
1064
1065 write_lock_irq(&tree->lock);
1066 /*
1067 * this search will find all the extents that end after
1068 * our range starts.
1069 */
1070 search_again:
1071 node = tree_search(&tree->state, cur_start);
1072 if (!node || IS_ERR(node)) {
1073 goto out;
1074 }
1075
1076 while(1) {
1077 state = rb_entry(node, struct extent_state, rb_node);
1078 if (found && state->start != cur_start) {
1079 goto out;
1080 }
1081 if (!(state->state & EXTENT_DELALLOC)) {
1082 goto out;
1083 }
1084 if (!found) {
1085 struct extent_state *prev_state;
1086 struct rb_node *prev_node = node;
1087 while(1) {
1088 prev_node = rb_prev(prev_node);
1089 if (!prev_node)
1090 break;
1091 prev_state = rb_entry(prev_node,
1092 struct extent_state,
1093 rb_node);
1094 if (!(prev_state->state & EXTENT_DELALLOC))
1095 break;
1096 state = prev_state;
1097 node = prev_node;
1098 }
1099 }
1100 if (state->state & EXTENT_LOCKED) {
1101 DEFINE_WAIT(wait);
1102 atomic_inc(&state->refs);
1103 prepare_to_wait(&state->wq, &wait,
1104 TASK_UNINTERRUPTIBLE);
1105 write_unlock_irq(&tree->lock);
1106 schedule();
1107 write_lock_irq(&tree->lock);
1108 finish_wait(&state->wq, &wait);
1109 free_extent_state(state);
1110 goto search_again;
1111 }
1112 state->state |= EXTENT_LOCKED;
1113 if (!found)
1114 *start = state->start;
1115 found++;
1116 *end = state->end;
1117 cur_start = state->end + 1;
1118 node = rb_next(node);
1119 if (!node)
1120 break;
1121 total_bytes += state->end - state->start + 1;
1122 if (total_bytes >= max_bytes)
1123 break;
1124 }
1125 out:
1126 write_unlock_irq(&tree->lock);
1127 return found;
1128 }
1129
1130 u64 count_range_bits(struct extent_map_tree *tree,
1131 u64 *start, u64 max_bytes, unsigned long bits)
1132 {
1133 struct rb_node *node;
1134 struct extent_state *state;
1135 u64 cur_start = *start;
1136 u64 total_bytes = 0;
1137 int found = 0;
1138
1139 write_lock_irq(&tree->lock);
1140 if (bits == EXTENT_DIRTY) {
1141 *start = 0;
1142 total_bytes = tree->dirty_bytes;
1143 goto out;
1144 }
1145 /*
1146 * this search will find all the extents that end after
1147 * our range starts.
1148 */
1149 node = tree_search(&tree->state, cur_start);
1150 if (!node || IS_ERR(node)) {
1151 goto out;
1152 }
1153
1154 while(1) {
1155 state = rb_entry(node, struct extent_state, rb_node);
1156 if ((state->state & bits)) {
1157 total_bytes += state->end - state->start + 1;
1158 if (total_bytes >= max_bytes)
1159 break;
1160 if (!found) {
1161 *start = state->start;
1162 found = 1;
1163 }
1164 }
1165 node = rb_next(node);
1166 if (!node)
1167 break;
1168 }
1169 out:
1170 write_unlock_irq(&tree->lock);
1171 return total_bytes;
1172 }
1173
1174 /*
1175 * helper function to lock both pages and extents in the tree.
1176 * pages must be locked first.
1177 */
1178 int lock_range(struct extent_map_tree *tree, u64 start, u64 end)
1179 {
1180 unsigned long index = start >> PAGE_CACHE_SHIFT;
1181 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1182 struct page *page;
1183 int err;
1184
1185 while (index <= end_index) {
1186 page = grab_cache_page(tree->mapping, index);
1187 if (!page) {
1188 err = -ENOMEM;
1189 goto failed;
1190 }
1191 if (IS_ERR(page)) {
1192 err = PTR_ERR(page);
1193 goto failed;
1194 }
1195 index++;
1196 }
1197 lock_extent(tree, start, end, GFP_NOFS);
1198 return 0;
1199
1200 failed:
1201 /*
1202 * we failed above in getting the page at 'index', so we undo here
1203 * up to but not including the page at 'index'
1204 */
1205 end_index = index;
1206 index = start >> PAGE_CACHE_SHIFT;
1207 while (index < end_index) {
1208 page = find_get_page(tree->mapping, index);
1209 unlock_page(page);
1210 page_cache_release(page);
1211 index++;
1212 }
1213 return err;
1214 }
1215 EXPORT_SYMBOL(lock_range);
1216
1217 /*
1218 * helper function to unlock both pages and extents in the tree.
1219 */
1220 int unlock_range(struct extent_map_tree *tree, u64 start, u64 end)
1221 {
1222 unsigned long index = start >> PAGE_CACHE_SHIFT;
1223 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1224 struct page *page;
1225
1226 while (index <= end_index) {
1227 page = find_get_page(tree->mapping, index);
1228 unlock_page(page);
1229 page_cache_release(page);
1230 index++;
1231 }
1232 unlock_extent(tree, start, end, GFP_NOFS);
1233 return 0;
1234 }
1235 EXPORT_SYMBOL(unlock_range);
1236
1237 int set_state_private(struct extent_map_tree *tree, u64 start, u64 private)
1238 {
1239 struct rb_node *node;
1240 struct extent_state *state;
1241 int ret = 0;
1242
1243 write_lock_irq(&tree->lock);
1244 /*
1245 * this search will find all the extents that end after
1246 * our range starts.
1247 */
1248 node = tree_search(&tree->state, start);
1249 if (!node || IS_ERR(node)) {
1250 ret = -ENOENT;
1251 goto out;
1252 }
1253 state = rb_entry(node, struct extent_state, rb_node);
1254 if (state->start != start) {
1255 ret = -ENOENT;
1256 goto out;
1257 }
1258 state->private = private;
1259 out:
1260 write_unlock_irq(&tree->lock);
1261 return ret;
1262 }
1263
1264 int get_state_private(struct extent_map_tree *tree, u64 start, u64 *private)
1265 {
1266 struct rb_node *node;
1267 struct extent_state *state;
1268 int ret = 0;
1269
1270 read_lock_irq(&tree->lock);
1271 /*
1272 * this search will find all the extents that end after
1273 * our range starts.
1274 */
1275 node = tree_search(&tree->state, start);
1276 if (!node || IS_ERR(node)) {
1277 ret = -ENOENT;
1278 goto out;
1279 }
1280 state = rb_entry(node, struct extent_state, rb_node);
1281 if (state->start != start) {
1282 ret = -ENOENT;
1283 goto out;
1284 }
1285 *private = state->private;
1286 out:
1287 read_unlock_irq(&tree->lock);
1288 return ret;
1289 }
1290
1291 /*
1292 * searches a range in the state tree for a given mask.
1293 * If 'filled' == 1, this returns 1 only if ever extent in the tree
1294 * has the bits set. Otherwise, 1 is returned if any bit in the
1295 * range is found set.
1296 */
1297 int test_range_bit(struct extent_map_tree *tree, u64 start, u64 end,
1298 int bits, int filled)
1299 {
1300 struct extent_state *state = NULL;
1301 struct rb_node *node;
1302 int bitset = 0;
1303
1304 read_lock_irq(&tree->lock);
1305 node = tree_search(&tree->state, start);
1306 while (node && start <= end) {
1307 state = rb_entry(node, struct extent_state, rb_node);
1308
1309 if (filled && state->start > start) {
1310 bitset = 0;
1311 break;
1312 }
1313
1314 if (state->start > end)
1315 break;
1316
1317 if (state->state & bits) {
1318 bitset = 1;
1319 if (!filled)
1320 break;
1321 } else if (filled) {
1322 bitset = 0;
1323 break;
1324 }
1325 start = state->end + 1;
1326 if (start > end)
1327 break;
1328 node = rb_next(node);
1329 }
1330 read_unlock_irq(&tree->lock);
1331 return bitset;
1332 }
1333 EXPORT_SYMBOL(test_range_bit);
1334
1335 /*
1336 * helper function to set a given page up to date if all the
1337 * extents in the tree for that page are up to date
1338 */
1339 static int check_page_uptodate(struct extent_map_tree *tree,
1340 struct page *page)
1341 {
1342 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1343 u64 end = start + PAGE_CACHE_SIZE - 1;
1344 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1345 SetPageUptodate(page);
1346 return 0;
1347 }
1348
1349 /*
1350 * helper function to unlock a page if all the extents in the tree
1351 * for that page are unlocked
1352 */
1353 static int check_page_locked(struct extent_map_tree *tree,
1354 struct page *page)
1355 {
1356 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1357 u64 end = start + PAGE_CACHE_SIZE - 1;
1358 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1359 unlock_page(page);
1360 return 0;
1361 }
1362
1363 /*
1364 * helper function to end page writeback if all the extents
1365 * in the tree for that page are done with writeback
1366 */
1367 static int check_page_writeback(struct extent_map_tree *tree,
1368 struct page *page)
1369 {
1370 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1371 u64 end = start + PAGE_CACHE_SIZE - 1;
1372 if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1373 end_page_writeback(page);
1374 return 0;
1375 }
1376
1377 /* lots and lots of room for performance fixes in the end_bio funcs */
1378
1379 /*
1380 * after a writepage IO is done, we need to:
1381 * clear the uptodate bits on error
1382 * clear the writeback bits in the extent tree for this IO
1383 * end_page_writeback if the page has no more pending IO
1384 *
1385 * Scheduling is not allowed, so the extent state tree is expected
1386 * to have one and only one object corresponding to this IO.
1387 */
1388 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1389 static void end_bio_extent_writepage(struct bio *bio, int err)
1390 #else
1391 static int end_bio_extent_writepage(struct bio *bio,
1392 unsigned int bytes_done, int err)
1393 #endif
1394 {
1395 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1396 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1397 struct extent_map_tree *tree = bio->bi_private;
1398 u64 start;
1399 u64 end;
1400 int whole_page;
1401
1402 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1403 if (bio->bi_size)
1404 return 1;
1405 #endif
1406
1407 do {
1408 struct page *page = bvec->bv_page;
1409 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1410 bvec->bv_offset;
1411 end = start + bvec->bv_len - 1;
1412
1413 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1414 whole_page = 1;
1415 else
1416 whole_page = 0;
1417
1418 if (--bvec >= bio->bi_io_vec)
1419 prefetchw(&bvec->bv_page->flags);
1420
1421 if (!uptodate) {
1422 clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1423 ClearPageUptodate(page);
1424 SetPageError(page);
1425 }
1426 clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1427
1428 if (whole_page)
1429 end_page_writeback(page);
1430 else
1431 check_page_writeback(tree, page);
1432 if (tree->ops && tree->ops->writepage_end_io_hook)
1433 tree->ops->writepage_end_io_hook(page, start, end);
1434 } while (bvec >= bio->bi_io_vec);
1435
1436 bio_put(bio);
1437 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1438 return 0;
1439 #endif
1440 }
1441
1442 /*
1443 * after a readpage IO is done, we need to:
1444 * clear the uptodate bits on error
1445 * set the uptodate bits if things worked
1446 * set the page up to date if all extents in the tree are uptodate
1447 * clear the lock bit in the extent tree
1448 * unlock the page if there are no other extents locked for it
1449 *
1450 * Scheduling is not allowed, so the extent state tree is expected
1451 * to have one and only one object corresponding to this IO.
1452 */
1453 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1454 static void end_bio_extent_readpage(struct bio *bio, int err)
1455 #else
1456 static int end_bio_extent_readpage(struct bio *bio,
1457 unsigned int bytes_done, int err)
1458 #endif
1459 {
1460 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1461 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1462 struct extent_map_tree *tree = bio->bi_private;
1463 u64 start;
1464 u64 end;
1465 int whole_page;
1466 int ret;
1467
1468 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1469 if (bio->bi_size)
1470 return 1;
1471 #endif
1472
1473 do {
1474 struct page *page = bvec->bv_page;
1475 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1476 bvec->bv_offset;
1477 end = start + bvec->bv_len - 1;
1478
1479 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1480 whole_page = 1;
1481 else
1482 whole_page = 0;
1483
1484 if (--bvec >= bio->bi_io_vec)
1485 prefetchw(&bvec->bv_page->flags);
1486
1487 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1488 ret = tree->ops->readpage_end_io_hook(page, start, end);
1489 if (ret)
1490 uptodate = 0;
1491 }
1492 if (uptodate) {
1493 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1494 if (whole_page)
1495 SetPageUptodate(page);
1496 else
1497 check_page_uptodate(tree, page);
1498 } else {
1499 ClearPageUptodate(page);
1500 SetPageError(page);
1501 }
1502
1503 unlock_extent(tree, start, end, GFP_ATOMIC);
1504
1505 if (whole_page)
1506 unlock_page(page);
1507 else
1508 check_page_locked(tree, page);
1509 } while (bvec >= bio->bi_io_vec);
1510
1511 bio_put(bio);
1512 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1513 return 0;
1514 #endif
1515 }
1516
1517 /*
1518 * IO done from prepare_write is pretty simple, we just unlock
1519 * the structs in the extent tree when done, and set the uptodate bits
1520 * as appropriate.
1521 */
1522 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1523 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1524 #else
1525 static int end_bio_extent_preparewrite(struct bio *bio,
1526 unsigned int bytes_done, int err)
1527 #endif
1528 {
1529 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1530 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1531 struct extent_map_tree *tree = bio->bi_private;
1532 u64 start;
1533 u64 end;
1534
1535 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1536 if (bio->bi_size)
1537 return 1;
1538 #endif
1539
1540 do {
1541 struct page *page = bvec->bv_page;
1542 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1543 bvec->bv_offset;
1544 end = start + bvec->bv_len - 1;
1545
1546 if (--bvec >= bio->bi_io_vec)
1547 prefetchw(&bvec->bv_page->flags);
1548
1549 if (uptodate) {
1550 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1551 } else {
1552 ClearPageUptodate(page);
1553 SetPageError(page);
1554 }
1555
1556 unlock_extent(tree, start, end, GFP_ATOMIC);
1557
1558 } while (bvec >= bio->bi_io_vec);
1559
1560 bio_put(bio);
1561 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1562 return 0;
1563 #endif
1564 }
1565
1566 static struct bio *
1567 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1568 gfp_t gfp_flags)
1569 {
1570 struct bio *bio;
1571
1572 bio = bio_alloc(gfp_flags, nr_vecs);
1573
1574 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1575 while (!bio && (nr_vecs /= 2))
1576 bio = bio_alloc(gfp_flags, nr_vecs);
1577 }
1578
1579 if (bio) {
1580 bio->bi_bdev = bdev;
1581 bio->bi_sector = first_sector;
1582 }
1583 return bio;
1584 }
1585
1586 static int submit_one_bio(int rw, struct bio *bio)
1587 {
1588 u64 maxsector;
1589 int ret = 0;
1590
1591 bio_get(bio);
1592
1593 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1594 if (maxsector < bio->bi_sector) {
1595 printk("sector too large max %Lu got %llu\n", maxsector,
1596 (unsigned long long)bio->bi_sector);
1597 WARN_ON(1);
1598 }
1599
1600 submit_bio(rw, bio);
1601 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1602 ret = -EOPNOTSUPP;
1603 bio_put(bio);
1604 return ret;
1605 }
1606
1607 static int submit_extent_page(int rw, struct extent_map_tree *tree,
1608 struct page *page, sector_t sector,
1609 size_t size, unsigned long offset,
1610 struct block_device *bdev,
1611 struct bio **bio_ret,
1612 unsigned long max_pages,
1613 bio_end_io_t end_io_func)
1614 {
1615 int ret = 0;
1616 struct bio *bio;
1617 int nr;
1618
1619 if (bio_ret && *bio_ret) {
1620 bio = *bio_ret;
1621 if (bio->bi_sector + (bio->bi_size >> 9) != sector ||
1622 bio_add_page(bio, page, size, offset) < size) {
1623 ret = submit_one_bio(rw, bio);
1624 bio = NULL;
1625 } else {
1626 return 0;
1627 }
1628 }
1629 nr = min_t(int, max_pages, bio_get_nr_vecs(bdev));
1630 bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1631 if (!bio) {
1632 printk("failed to allocate bio nr %d\n", nr);
1633 }
1634 bio_add_page(bio, page, size, offset);
1635 bio->bi_end_io = end_io_func;
1636 bio->bi_private = tree;
1637 if (bio_ret) {
1638 *bio_ret = bio;
1639 } else {
1640 ret = submit_one_bio(rw, bio);
1641 }
1642
1643 return ret;
1644 }
1645
1646 void set_page_extent_mapped(struct page *page)
1647 {
1648 if (!PagePrivate(page)) {
1649 SetPagePrivate(page);
1650 WARN_ON(!page->mapping->a_ops->invalidatepage);
1651 set_page_private(page, EXTENT_PAGE_PRIVATE);
1652 page_cache_get(page);
1653 }
1654 }
1655
1656 /*
1657 * basic readpage implementation. Locked extent state structs are inserted
1658 * into the tree that are removed when the IO is done (by the end_io
1659 * handlers)
1660 */
1661 static int __extent_read_full_page(struct extent_map_tree *tree,
1662 struct page *page,
1663 get_extent_t *get_extent,
1664 struct bio **bio)
1665 {
1666 struct inode *inode = page->mapping->host;
1667 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1668 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1669 u64 end;
1670 u64 cur = start;
1671 u64 extent_offset;
1672 u64 last_byte = i_size_read(inode);
1673 u64 block_start;
1674 u64 cur_end;
1675 sector_t sector;
1676 struct extent_map *em;
1677 struct block_device *bdev;
1678 int ret;
1679 int nr = 0;
1680 size_t page_offset = 0;
1681 size_t iosize;
1682 size_t blocksize = inode->i_sb->s_blocksize;
1683
1684 set_page_extent_mapped(page);
1685
1686 end = page_end;
1687 lock_extent(tree, start, end, GFP_NOFS);
1688
1689 while (cur <= end) {
1690 if (cur >= last_byte) {
1691 char *userpage;
1692 iosize = PAGE_CACHE_SIZE - page_offset;
1693 userpage = kmap_atomic(page, KM_USER0);
1694 memset(userpage + page_offset, 0, iosize);
1695 flush_dcache_page(page);
1696 kunmap_atomic(userpage, KM_USER0);
1697 set_extent_uptodate(tree, cur, cur + iosize - 1,
1698 GFP_NOFS);
1699 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1700 break;
1701 }
1702 em = get_extent(inode, page, page_offset, cur, end, 0);
1703 if (IS_ERR(em) || !em) {
1704 SetPageError(page);
1705 unlock_extent(tree, cur, end, GFP_NOFS);
1706 break;
1707 }
1708
1709 extent_offset = cur - em->start;
1710 BUG_ON(em->end < cur);
1711 BUG_ON(end < cur);
1712
1713 iosize = min(em->end - cur, end - cur) + 1;
1714 cur_end = min(em->end, end);
1715 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1716 sector = (em->block_start + extent_offset) >> 9;
1717 bdev = em->bdev;
1718 block_start = em->block_start;
1719 free_extent_map(em);
1720 em = NULL;
1721
1722 /* we've found a hole, just zero and go on */
1723 if (block_start == EXTENT_MAP_HOLE) {
1724 char *userpage;
1725 userpage = kmap_atomic(page, KM_USER0);
1726 memset(userpage + page_offset, 0, iosize);
1727 flush_dcache_page(page);
1728 kunmap_atomic(userpage, KM_USER0);
1729
1730 set_extent_uptodate(tree, cur, cur + iosize - 1,
1731 GFP_NOFS);
1732 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1733 cur = cur + iosize;
1734 page_offset += iosize;
1735 continue;
1736 }
1737 /* the get_extent function already copied into the page */
1738 if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1739 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1740 cur = cur + iosize;
1741 page_offset += iosize;
1742 continue;
1743 }
1744
1745 ret = 0;
1746 if (tree->ops && tree->ops->readpage_io_hook) {
1747 ret = tree->ops->readpage_io_hook(page, cur,
1748 cur + iosize - 1);
1749 }
1750 if (!ret) {
1751 unsigned long nr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
1752 nr -= page->index;
1753 ret = submit_extent_page(READ, tree, page,
1754 sector, iosize, page_offset,
1755 bdev, bio, nr,
1756 end_bio_extent_readpage);
1757 }
1758 if (ret)
1759 SetPageError(page);
1760 cur = cur + iosize;
1761 page_offset += iosize;
1762 nr++;
1763 }
1764 if (!nr) {
1765 if (!PageError(page))
1766 SetPageUptodate(page);
1767 unlock_page(page);
1768 }
1769 return 0;
1770 }
1771
1772 int extent_read_full_page(struct extent_map_tree *tree, struct page *page,
1773 get_extent_t *get_extent)
1774 {
1775 struct bio *bio = NULL;
1776 int ret;
1777
1778 ret = __extent_read_full_page(tree, page, get_extent, &bio);
1779 if (bio)
1780 submit_one_bio(READ, bio);
1781 return ret;
1782 }
1783 EXPORT_SYMBOL(extent_read_full_page);
1784
1785 /*
1786 * the writepage semantics are similar to regular writepage. extent
1787 * records are inserted to lock ranges in the tree, and as dirty areas
1788 * are found, they are marked writeback. Then the lock bits are removed
1789 * and the end_io handler clears the writeback ranges
1790 */
1791 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
1792 void *data)
1793 {
1794 struct inode *inode = page->mapping->host;
1795 struct extent_page_data *epd = data;
1796 struct extent_map_tree *tree = epd->tree;
1797 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1798 u64 delalloc_start;
1799 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1800 u64 end;
1801 u64 cur = start;
1802 u64 extent_offset;
1803 u64 last_byte = i_size_read(inode);
1804 u64 block_start;
1805 u64 iosize;
1806 sector_t sector;
1807 struct extent_map *em;
1808 struct block_device *bdev;
1809 int ret;
1810 int nr = 0;
1811 size_t page_offset = 0;
1812 size_t blocksize;
1813 loff_t i_size = i_size_read(inode);
1814 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1815 u64 nr_delalloc;
1816 u64 delalloc_end;
1817
1818 WARN_ON(!PageLocked(page));
1819 if (page->index > end_index) {
1820 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1821 unlock_page(page);
1822 return 0;
1823 }
1824
1825 if (page->index == end_index) {
1826 char *userpage;
1827
1828 size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1829
1830 userpage = kmap_atomic(page, KM_USER0);
1831 memset(userpage + offset, 0, PAGE_CACHE_SIZE - offset);
1832 flush_dcache_page(page);
1833 kunmap_atomic(userpage, KM_USER0);
1834 }
1835
1836 set_page_extent_mapped(page);
1837
1838 delalloc_start = start;
1839 delalloc_end = 0;
1840 while(delalloc_end < page_end) {
1841 nr_delalloc = find_lock_delalloc_range(tree, &delalloc_start,
1842 &delalloc_end,
1843 128 * 1024 * 1024);
1844 if (nr_delalloc <= 0)
1845 break;
1846 tree->ops->fill_delalloc(inode, delalloc_start,
1847 delalloc_end);
1848 clear_extent_bit(tree, delalloc_start,
1849 delalloc_end,
1850 EXTENT_LOCKED | EXTENT_DELALLOC,
1851 1, 0, GFP_NOFS);
1852 delalloc_start = delalloc_end + 1;
1853 }
1854 lock_extent(tree, start, page_end, GFP_NOFS);
1855
1856 end = page_end;
1857 if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1858 printk("found delalloc bits after lock_extent\n");
1859 }
1860
1861 if (last_byte <= start) {
1862 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1863 goto done;
1864 }
1865
1866 set_extent_uptodate(tree, start, page_end, GFP_NOFS);
1867 blocksize = inode->i_sb->s_blocksize;
1868
1869 while (cur <= end) {
1870 if (cur >= last_byte) {
1871 clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
1872 break;
1873 }
1874 em = epd->get_extent(inode, page, page_offset, cur, end, 1);
1875 if (IS_ERR(em) || !em) {
1876 SetPageError(page);
1877 break;
1878 }
1879
1880 extent_offset = cur - em->start;
1881 BUG_ON(em->end < cur);
1882 BUG_ON(end < cur);
1883 iosize = min(em->end - cur, end - cur) + 1;
1884 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1885 sector = (em->block_start + extent_offset) >> 9;
1886 bdev = em->bdev;
1887 block_start = em->block_start;
1888 free_extent_map(em);
1889 em = NULL;
1890
1891 if (block_start == EXTENT_MAP_HOLE ||
1892 block_start == EXTENT_MAP_INLINE) {
1893 clear_extent_dirty(tree, cur,
1894 cur + iosize - 1, GFP_NOFS);
1895 cur = cur + iosize;
1896 page_offset += iosize;
1897 continue;
1898 }
1899
1900 /* leave this out until we have a page_mkwrite call */
1901 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
1902 EXTENT_DIRTY, 0)) {
1903 cur = cur + iosize;
1904 page_offset += iosize;
1905 continue;
1906 }
1907 clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
1908 if (tree->ops && tree->ops->writepage_io_hook) {
1909 ret = tree->ops->writepage_io_hook(page, cur,
1910 cur + iosize - 1);
1911 } else {
1912 ret = 0;
1913 }
1914 if (ret)
1915 SetPageError(page);
1916 else {
1917 unsigned long max_nr = end_index + 1;
1918 set_range_writeback(tree, cur, cur + iosize - 1);
1919 if (!PageWriteback(page)) {
1920 printk("warning page %lu not writeback, "
1921 "cur %llu end %llu\n", page->index,
1922 (unsigned long long)cur,
1923 (unsigned long long)end);
1924 }
1925
1926 ret = submit_extent_page(WRITE, tree, page, sector,
1927 iosize, page_offset, bdev,
1928 &epd->bio, max_nr,
1929 end_bio_extent_writepage);
1930 if (ret)
1931 SetPageError(page);
1932 }
1933 cur = cur + iosize;
1934 page_offset += iosize;
1935 nr++;
1936 }
1937 done:
1938 if (nr == 0) {
1939 /* make sure the mapping tag for page dirty gets cleared */
1940 set_page_writeback(page);
1941 end_page_writeback(page);
1942 }
1943 unlock_extent(tree, start, page_end, GFP_NOFS);
1944 unlock_page(page);
1945 return 0;
1946 }
1947
1948 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1949
1950 /* Taken directly from 2.6.23 for 2.6.18 back port */
1951 typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc,
1952 void *data);
1953
1954 /**
1955 * write_cache_pages - walk the list of dirty pages of the given address space
1956 * and write all of them.
1957 * @mapping: address space structure to write
1958 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1959 * @writepage: function called for each page
1960 * @data: data passed to writepage function
1961 *
1962 * If a page is already under I/O, write_cache_pages() skips it, even
1963 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1964 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1965 * and msync() need to guarantee that all the data which was dirty at the time
1966 * the call was made get new I/O started against them. If wbc->sync_mode is
1967 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1968 * existing IO to complete.
1969 */
1970 static int write_cache_pages(struct address_space *mapping,
1971 struct writeback_control *wbc, writepage_t writepage,
1972 void *data)
1973 {
1974 struct backing_dev_info *bdi = mapping->backing_dev_info;
1975 int ret = 0;
1976 int done = 0;
1977 struct pagevec pvec;
1978 int nr_pages;
1979 pgoff_t index;
1980 pgoff_t end; /* Inclusive */
1981 int scanned = 0;
1982 int range_whole = 0;
1983
1984 if (wbc->nonblocking && bdi_write_congested(bdi)) {
1985 wbc->encountered_congestion = 1;
1986 return 0;
1987 }
1988
1989 pagevec_init(&pvec, 0);
1990 if (wbc->range_cyclic) {
1991 index = mapping->writeback_index; /* Start from prev offset */
1992 end = -1;
1993 } else {
1994 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1995 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1996 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1997 range_whole = 1;
1998 scanned = 1;
1999 }
2000 retry:
2001 while (!done && (index <= end) &&
2002 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2003 PAGECACHE_TAG_DIRTY,
2004 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2005 unsigned i;
2006
2007 scanned = 1;
2008 for (i = 0; i < nr_pages; i++) {
2009 struct page *page = pvec.pages[i];
2010
2011 /*
2012 * At this point we hold neither mapping->tree_lock nor
2013 * lock on the page itself: the page may be truncated or
2014 * invalidated (changing page->mapping to NULL), or even
2015 * swizzled back from swapper_space to tmpfs file
2016 * mapping
2017 */
2018 lock_page(page);
2019
2020 if (unlikely(page->mapping != mapping)) {
2021 unlock_page(page);
2022 continue;
2023 }
2024
2025 if (!wbc->range_cyclic && page->index > end) {
2026 done = 1;
2027 unlock_page(page);
2028 continue;
2029 }
2030
2031 if (wbc->sync_mode != WB_SYNC_NONE)
2032 wait_on_page_writeback(page);
2033
2034 if (PageWriteback(page) ||
2035 !clear_page_dirty_for_io(page)) {
2036 unlock_page(page);
2037 continue;
2038 }
2039
2040 ret = (*writepage)(page, wbc, data);
2041
2042 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2043 unlock_page(page);
2044 ret = 0;
2045 }
2046 if (ret || (--(wbc->nr_to_write) <= 0))
2047 done = 1;
2048 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2049 wbc->encountered_congestion = 1;
2050 done = 1;
2051 }
2052 }
2053 pagevec_release(&pvec);
2054 cond_resched();
2055 }
2056 if (!scanned && !done) {
2057 /*
2058 * We hit the last page and there is more work to be done: wrap
2059 * back to the start of the file
2060 */
2061 scanned = 1;
2062 index = 0;
2063 goto retry;
2064 }
2065 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2066 mapping->writeback_index = index;
2067 return ret;
2068 }
2069 #endif
2070
2071 int extent_write_full_page(struct extent_map_tree *tree, struct page *page,
2072 get_extent_t *get_extent,
2073 struct writeback_control *wbc)
2074 {
2075 int ret;
2076 struct address_space *mapping = page->mapping;
2077 struct extent_page_data epd = {
2078 .bio = NULL,
2079 .tree = tree,
2080 .get_extent = get_extent,
2081 };
2082 struct writeback_control wbc_writepages = {
2083 .bdi = wbc->bdi,
2084 .sync_mode = WB_SYNC_NONE,
2085 .older_than_this = NULL,
2086 .nr_to_write = 64,
2087 .range_start = page_offset(page) + PAGE_CACHE_SIZE,
2088 .range_end = (loff_t)-1,
2089 };
2090
2091
2092 ret = __extent_writepage(page, wbc, &epd);
2093
2094 write_cache_pages(mapping, &wbc_writepages, __extent_writepage, &epd);
2095 if (epd.bio) {
2096 submit_one_bio(WRITE, epd.bio);
2097 }
2098 return ret;
2099 }
2100 EXPORT_SYMBOL(extent_write_full_page);
2101
2102
2103 int extent_writepages(struct extent_map_tree *tree,
2104 struct address_space *mapping,
2105 get_extent_t *get_extent,
2106 struct writeback_control *wbc)
2107 {
2108 int ret = 0;
2109 struct extent_page_data epd = {
2110 .bio = NULL,
2111 .tree = tree,
2112 .get_extent = get_extent,
2113 };
2114
2115 ret = write_cache_pages(mapping, wbc, __extent_writepage, &epd);
2116 if (epd.bio) {
2117 submit_one_bio(WRITE, epd.bio);
2118 }
2119 return ret;
2120 }
2121 EXPORT_SYMBOL(extent_writepages);
2122
2123 int extent_readpages(struct extent_map_tree *tree,
2124 struct address_space *mapping,
2125 struct list_head *pages, unsigned nr_pages,
2126 get_extent_t get_extent)
2127 {
2128 struct bio *bio = NULL;
2129 unsigned page_idx;
2130 struct pagevec pvec;
2131
2132 pagevec_init(&pvec, 0);
2133 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2134 struct page *page = list_entry(pages->prev, struct page, lru);
2135
2136 prefetchw(&page->flags);
2137 list_del(&page->lru);
2138 /*
2139 * what we want to do here is call add_to_page_cache_lru,
2140 * but that isn't exported, so we reproduce it here
2141 */
2142 if (!add_to_page_cache(page, mapping,
2143 page->index, GFP_KERNEL)) {
2144
2145 /* open coding of lru_cache_add, also not exported */
2146 page_cache_get(page);
2147 if (!pagevec_add(&pvec, page))
2148 __pagevec_lru_add(&pvec);
2149 __extent_read_full_page(tree, page, get_extent, &bio);
2150 }
2151 page_cache_release(page);
2152 }
2153 if (pagevec_count(&pvec))
2154 __pagevec_lru_add(&pvec);
2155 BUG_ON(!list_empty(pages));
2156 if (bio)
2157 submit_one_bio(READ, bio);
2158 return 0;
2159 }
2160 EXPORT_SYMBOL(extent_readpages);
2161
2162 /*
2163 * basic invalidatepage code, this waits on any locked or writeback
2164 * ranges corresponding to the page, and then deletes any extent state
2165 * records from the tree
2166 */
2167 int extent_invalidatepage(struct extent_map_tree *tree,
2168 struct page *page, unsigned long offset)
2169 {
2170 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2171 u64 end = start + PAGE_CACHE_SIZE - 1;
2172 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2173
2174 start += (offset + blocksize -1) & ~(blocksize - 1);
2175 if (start > end)
2176 return 0;
2177
2178 lock_extent(tree, start, end, GFP_NOFS);
2179 wait_on_extent_writeback(tree, start, end);
2180 clear_extent_bit(tree, start, end,
2181 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2182 1, 1, GFP_NOFS);
2183 return 0;
2184 }
2185 EXPORT_SYMBOL(extent_invalidatepage);
2186
2187 /*
2188 * simple commit_write call, set_range_dirty is used to mark both
2189 * the pages and the extent records as dirty
2190 */
2191 int extent_commit_write(struct extent_map_tree *tree,
2192 struct inode *inode, struct page *page,
2193 unsigned from, unsigned to)
2194 {
2195 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2196
2197 set_page_extent_mapped(page);
2198 set_page_dirty(page);
2199
2200 if (pos > inode->i_size) {
2201 i_size_write(inode, pos);
2202 mark_inode_dirty(inode);
2203 }
2204 return 0;
2205 }
2206 EXPORT_SYMBOL(extent_commit_write);
2207
2208 int extent_prepare_write(struct extent_map_tree *tree,
2209 struct inode *inode, struct page *page,
2210 unsigned from, unsigned to, get_extent_t *get_extent)
2211 {
2212 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2213 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2214 u64 block_start;
2215 u64 orig_block_start;
2216 u64 block_end;
2217 u64 cur_end;
2218 struct extent_map *em;
2219 unsigned blocksize = 1 << inode->i_blkbits;
2220 size_t page_offset = 0;
2221 size_t block_off_start;
2222 size_t block_off_end;
2223 int err = 0;
2224 int iocount = 0;
2225 int ret = 0;
2226 int isnew;
2227
2228 set_page_extent_mapped(page);
2229
2230 block_start = (page_start + from) & ~((u64)blocksize - 1);
2231 block_end = (page_start + to - 1) | (blocksize - 1);
2232 orig_block_start = block_start;
2233
2234 lock_extent(tree, page_start, page_end, GFP_NOFS);
2235 while(block_start <= block_end) {
2236 em = get_extent(inode, page, page_offset, block_start,
2237 block_end, 1);
2238 if (IS_ERR(em) || !em) {
2239 goto err;
2240 }
2241 cur_end = min(block_end, em->end);
2242 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2243 block_off_end = block_off_start + blocksize;
2244 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2245
2246 if (!PageUptodate(page) && isnew &&
2247 (block_off_end > to || block_off_start < from)) {
2248 void *kaddr;
2249
2250 kaddr = kmap_atomic(page, KM_USER0);
2251 if (block_off_end > to)
2252 memset(kaddr + to, 0, block_off_end - to);
2253 if (block_off_start < from)
2254 memset(kaddr + block_off_start, 0,
2255 from - block_off_start);
2256 flush_dcache_page(page);
2257 kunmap_atomic(kaddr, KM_USER0);
2258 }
2259 if ((em->block_start != EXTENT_MAP_HOLE &&
2260 em->block_start != EXTENT_MAP_INLINE) &&
2261 !isnew && !PageUptodate(page) &&
2262 (block_off_end > to || block_off_start < from) &&
2263 !test_range_bit(tree, block_start, cur_end,
2264 EXTENT_UPTODATE, 1)) {
2265 u64 sector;
2266 u64 extent_offset = block_start - em->start;
2267 size_t iosize;
2268 sector = (em->block_start + extent_offset) >> 9;
2269 iosize = (cur_end - block_start + blocksize - 1) &
2270 ~((u64)blocksize - 1);
2271 /*
2272 * we've already got the extent locked, but we
2273 * need to split the state such that our end_bio
2274 * handler can clear the lock.
2275 */
2276 set_extent_bit(tree, block_start,
2277 block_start + iosize - 1,
2278 EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2279 ret = submit_extent_page(READ, tree, page,
2280 sector, iosize, page_offset, em->bdev,
2281 NULL, 1,
2282 end_bio_extent_preparewrite);
2283 iocount++;
2284 block_start = block_start + iosize;
2285 } else {
2286 set_extent_uptodate(tree, block_start, cur_end,
2287 GFP_NOFS);
2288 unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2289 block_start = cur_end + 1;
2290 }
2291 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2292 free_extent_map(em);
2293 }
2294 if (iocount) {
2295 wait_extent_bit(tree, orig_block_start,
2296 block_end, EXTENT_LOCKED);
2297 }
2298 check_page_uptodate(tree, page);
2299 err:
2300 /* FIXME, zero out newly allocated blocks on error */
2301 return err;
2302 }
2303 EXPORT_SYMBOL(extent_prepare_write);
2304
2305 /*
2306 * a helper for releasepage. As long as there are no locked extents
2307 * in the range corresponding to the page, both state records and extent
2308 * map records are removed
2309 */
2310 int try_release_extent_mapping(struct extent_map_tree *tree, struct page *page)
2311 {
2312 struct extent_map *em;
2313 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2314 u64 end = start + PAGE_CACHE_SIZE - 1;
2315 u64 orig_start = start;
2316 int ret = 1;
2317
2318 while (start <= end) {
2319 em = lookup_extent_mapping(tree, start, end);
2320 if (!em || IS_ERR(em))
2321 break;
2322 if (!test_range_bit(tree, em->start, em->end,
2323 EXTENT_LOCKED, 0)) {
2324 remove_extent_mapping(tree, em);
2325 /* once for the rb tree */
2326 free_extent_map(em);
2327 }
2328 start = em->end + 1;
2329 /* once for us */
2330 free_extent_map(em);
2331 }
2332 if (test_range_bit(tree, orig_start, end, EXTENT_LOCKED, 0))
2333 ret = 0;
2334 else
2335 clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
2336 1, 1, GFP_NOFS);
2337 return ret;
2338 }
2339 EXPORT_SYMBOL(try_release_extent_mapping);
2340
2341 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2342 get_extent_t *get_extent)
2343 {
2344 struct inode *inode = mapping->host;
2345 u64 start = iblock << inode->i_blkbits;
2346 u64 end = start + (1 << inode->i_blkbits) - 1;
2347 sector_t sector = 0;
2348 struct extent_map *em;
2349
2350 em = get_extent(inode, NULL, 0, start, end, 0);
2351 if (!em || IS_ERR(em))
2352 return 0;
2353
2354 if (em->block_start == EXTENT_MAP_INLINE ||
2355 em->block_start == EXTENT_MAP_HOLE)
2356 goto out;
2357
2358 sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2359 out:
2360 free_extent_map(em);
2361 return sector;
2362 }
2363
2364 static int add_lru(struct extent_map_tree *tree, struct extent_buffer *eb)
2365 {
2366 if (list_empty(&eb->lru)) {
2367 extent_buffer_get(eb);
2368 list_add(&eb->lru, &tree->buffer_lru);
2369 tree->lru_size++;
2370 if (tree->lru_size >= BUFFER_LRU_MAX) {
2371 struct extent_buffer *rm;
2372 rm = list_entry(tree->buffer_lru.prev,
2373 struct extent_buffer, lru);
2374 tree->lru_size--;
2375 list_del_init(&rm->lru);
2376 free_extent_buffer(rm);
2377 }
2378 } else
2379 list_move(&eb->lru, &tree->buffer_lru);
2380 return 0;
2381 }
2382 static struct extent_buffer *find_lru(struct extent_map_tree *tree,
2383 u64 start, unsigned long len)
2384 {
2385 struct list_head *lru = &tree->buffer_lru;
2386 struct list_head *cur = lru->next;
2387 struct extent_buffer *eb;
2388
2389 if (list_empty(lru))
2390 return NULL;
2391
2392 do {
2393 eb = list_entry(cur, struct extent_buffer, lru);
2394 if (eb->start == start && eb->len == len) {
2395 extent_buffer_get(eb);
2396 return eb;
2397 }
2398 cur = cur->next;
2399 } while (cur != lru);
2400 return NULL;
2401 }
2402
2403 static inline unsigned long num_extent_pages(u64 start, u64 len)
2404 {
2405 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2406 (start >> PAGE_CACHE_SHIFT);
2407 }
2408
2409 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2410 unsigned long i)
2411 {
2412 struct page *p;
2413 struct address_space *mapping;
2414
2415 if (i == 0)
2416 return eb->first_page;
2417 i += eb->start >> PAGE_CACHE_SHIFT;
2418 mapping = eb->first_page->mapping;
2419 read_lock_irq(&mapping->tree_lock);
2420 p = radix_tree_lookup(&mapping->page_tree, i);
2421 read_unlock_irq(&mapping->tree_lock);
2422 return p;
2423 }
2424
2425 static struct extent_buffer *__alloc_extent_buffer(struct extent_map_tree *tree,
2426 u64 start,
2427 unsigned long len,
2428 gfp_t mask)
2429 {
2430 struct extent_buffer *eb = NULL;
2431
2432 spin_lock(&tree->lru_lock);
2433 eb = find_lru(tree, start, len);
2434 spin_unlock(&tree->lru_lock);
2435 if (eb) {
2436 return eb;
2437 }
2438
2439 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2440 INIT_LIST_HEAD(&eb->lru);
2441 eb->start = start;
2442 eb->len = len;
2443 atomic_set(&eb->refs, 1);
2444
2445 return eb;
2446 }
2447
2448 static void __free_extent_buffer(struct extent_buffer *eb)
2449 {
2450 kmem_cache_free(extent_buffer_cache, eb);
2451 }
2452
2453 struct extent_buffer *alloc_extent_buffer(struct extent_map_tree *tree,
2454 u64 start, unsigned long len,
2455 struct page *page0,
2456 gfp_t mask)
2457 {
2458 unsigned long num_pages = num_extent_pages(start, len);
2459 unsigned long i;
2460 unsigned long index = start >> PAGE_CACHE_SHIFT;
2461 struct extent_buffer *eb;
2462 struct page *p;
2463 struct address_space *mapping = tree->mapping;
2464 int uptodate = 1;
2465
2466 eb = __alloc_extent_buffer(tree, start, len, mask);
2467 if (!eb || IS_ERR(eb))
2468 return NULL;
2469
2470 if (eb->flags & EXTENT_BUFFER_FILLED)
2471 goto lru_add;
2472
2473 if (page0) {
2474 eb->first_page = page0;
2475 i = 1;
2476 index++;
2477 page_cache_get(page0);
2478 mark_page_accessed(page0);
2479 set_page_extent_mapped(page0);
2480 WARN_ON(!PageUptodate(page0));
2481 set_page_private(page0, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2482 len << 2);
2483 } else {
2484 i = 0;
2485 }
2486 for (; i < num_pages; i++, index++) {
2487 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
2488 if (!p) {
2489 WARN_ON(1);
2490 goto fail;
2491 }
2492 set_page_extent_mapped(p);
2493 mark_page_accessed(p);
2494 if (i == 0) {
2495 eb->first_page = p;
2496 set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2497 len << 2);
2498 } else {
2499 set_page_private(p, EXTENT_PAGE_PRIVATE);
2500 }
2501 if (!PageUptodate(p))
2502 uptodate = 0;
2503 unlock_page(p);
2504 }
2505 if (uptodate)
2506 eb->flags |= EXTENT_UPTODATE;
2507 eb->flags |= EXTENT_BUFFER_FILLED;
2508
2509 lru_add:
2510 spin_lock(&tree->lru_lock);
2511 add_lru(tree, eb);
2512 spin_unlock(&tree->lru_lock);
2513 return eb;
2514
2515 fail:
2516 spin_lock(&tree->lru_lock);
2517 list_del_init(&eb->lru);
2518 spin_unlock(&tree->lru_lock);
2519 if (!atomic_dec_and_test(&eb->refs))
2520 return NULL;
2521 for (index = 1; index < i; index++) {
2522 page_cache_release(extent_buffer_page(eb, index));
2523 }
2524 if (i > 0)
2525 page_cache_release(extent_buffer_page(eb, 0));
2526 __free_extent_buffer(eb);
2527 return NULL;
2528 }
2529 EXPORT_SYMBOL(alloc_extent_buffer);
2530
2531 struct extent_buffer *find_extent_buffer(struct extent_map_tree *tree,
2532 u64 start, unsigned long len,
2533 gfp_t mask)
2534 {
2535 unsigned long num_pages = num_extent_pages(start, len);
2536 unsigned long i;
2537 unsigned long index = start >> PAGE_CACHE_SHIFT;
2538 struct extent_buffer *eb;
2539 struct page *p;
2540 struct address_space *mapping = tree->mapping;
2541 int uptodate = 1;
2542
2543 eb = __alloc_extent_buffer(tree, start, len, mask);
2544 if (!eb || IS_ERR(eb))
2545 return NULL;
2546
2547 if (eb->flags & EXTENT_BUFFER_FILLED)
2548 goto lru_add;
2549
2550 for (i = 0; i < num_pages; i++, index++) {
2551 p = find_lock_page(mapping, index);
2552 if (!p) {
2553 goto fail;
2554 }
2555 set_page_extent_mapped(p);
2556 mark_page_accessed(p);
2557
2558 if (i == 0) {
2559 eb->first_page = p;
2560 set_page_private(p, EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2561 len << 2);
2562 } else {
2563 set_page_private(p, EXTENT_PAGE_PRIVATE);
2564 }
2565
2566 if (!PageUptodate(p))
2567 uptodate = 0;
2568 unlock_page(p);
2569 }
2570 if (uptodate)
2571 eb->flags |= EXTENT_UPTODATE;
2572 eb->flags |= EXTENT_BUFFER_FILLED;
2573
2574 lru_add:
2575 spin_lock(&tree->lru_lock);
2576 add_lru(tree, eb);
2577 spin_unlock(&tree->lru_lock);
2578 return eb;
2579 fail:
2580 spin_lock(&tree->lru_lock);
2581 list_del_init(&eb->lru);
2582 spin_unlock(&tree->lru_lock);
2583 if (!atomic_dec_and_test(&eb->refs))
2584 return NULL;
2585 for (index = 1; index < i; index++) {
2586 page_cache_release(extent_buffer_page(eb, index));
2587 }
2588 if (i > 0)
2589 page_cache_release(extent_buffer_page(eb, 0));
2590 __free_extent_buffer(eb);
2591 return NULL;
2592 }
2593 EXPORT_SYMBOL(find_extent_buffer);
2594
2595 void free_extent_buffer(struct extent_buffer *eb)
2596 {
2597 unsigned long i;
2598 unsigned long num_pages;
2599
2600 if (!eb)
2601 return;
2602
2603 if (!atomic_dec_and_test(&eb->refs))
2604 return;
2605
2606 WARN_ON(!list_empty(&eb->lru));
2607 num_pages = num_extent_pages(eb->start, eb->len);
2608
2609 for (i = 1; i < num_pages; i++) {
2610 page_cache_release(extent_buffer_page(eb, i));
2611 }
2612 page_cache_release(extent_buffer_page(eb, 0));
2613 __free_extent_buffer(eb);
2614 }
2615 EXPORT_SYMBOL(free_extent_buffer);
2616
2617 int clear_extent_buffer_dirty(struct extent_map_tree *tree,
2618 struct extent_buffer *eb)
2619 {
2620 int set;
2621 unsigned long i;
2622 unsigned long num_pages;
2623 struct page *page;
2624
2625 u64 start = eb->start;
2626 u64 end = start + eb->len - 1;
2627
2628 set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2629 num_pages = num_extent_pages(eb->start, eb->len);
2630
2631 for (i = 0; i < num_pages; i++) {
2632 page = extent_buffer_page(eb, i);
2633 lock_page(page);
2634 /*
2635 * if we're on the last page or the first page and the
2636 * block isn't aligned on a page boundary, do extra checks
2637 * to make sure we don't clean page that is partially dirty
2638 */
2639 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2640 ((i == num_pages - 1) &&
2641 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2642 start = (u64)page->index << PAGE_CACHE_SHIFT;
2643 end = start + PAGE_CACHE_SIZE - 1;
2644 if (test_range_bit(tree, start, end,
2645 EXTENT_DIRTY, 0)) {
2646 unlock_page(page);
2647 continue;
2648 }
2649 }
2650 clear_page_dirty_for_io(page);
2651 write_lock_irq(&page->mapping->tree_lock);
2652 if (!PageDirty(page)) {
2653 radix_tree_tag_clear(&page->mapping->page_tree,
2654 page_index(page),
2655 PAGECACHE_TAG_DIRTY);
2656 }
2657 write_unlock_irq(&page->mapping->tree_lock);
2658 unlock_page(page);
2659 }
2660 return 0;
2661 }
2662 EXPORT_SYMBOL(clear_extent_buffer_dirty);
2663
2664 int wait_on_extent_buffer_writeback(struct extent_map_tree *tree,
2665 struct extent_buffer *eb)
2666 {
2667 return wait_on_extent_writeback(tree, eb->start,
2668 eb->start + eb->len - 1);
2669 }
2670 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2671
2672 int set_extent_buffer_dirty(struct extent_map_tree *tree,
2673 struct extent_buffer *eb)
2674 {
2675 unsigned long i;
2676 unsigned long num_pages;
2677
2678 num_pages = num_extent_pages(eb->start, eb->len);
2679 for (i = 0; i < num_pages; i++) {
2680 struct page *page = extent_buffer_page(eb, i);
2681 /* writepage may need to do something special for the
2682 * first page, we have to make sure page->private is
2683 * properly set. releasepage may drop page->private
2684 * on us if the page isn't already dirty.
2685 */
2686 if (i == 0) {
2687 lock_page(page);
2688 set_page_private(page,
2689 EXTENT_PAGE_PRIVATE_FIRST_PAGE |
2690 eb->len << 2);
2691 }
2692 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
2693 if (i == 0)
2694 unlock_page(page);
2695 }
2696 return set_extent_dirty(tree, eb->start,
2697 eb->start + eb->len - 1, GFP_NOFS);
2698 }
2699 EXPORT_SYMBOL(set_extent_buffer_dirty);
2700
2701 int set_extent_buffer_uptodate(struct extent_map_tree *tree,
2702 struct extent_buffer *eb)
2703 {
2704 unsigned long i;
2705 struct page *page;
2706 unsigned long num_pages;
2707
2708 num_pages = num_extent_pages(eb->start, eb->len);
2709
2710 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2711 GFP_NOFS);
2712 for (i = 0; i < num_pages; i++) {
2713 page = extent_buffer_page(eb, i);
2714 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2715 ((i == num_pages - 1) &&
2716 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2717 check_page_uptodate(tree, page);
2718 continue;
2719 }
2720 SetPageUptodate(page);
2721 }
2722 return 0;
2723 }
2724 EXPORT_SYMBOL(set_extent_buffer_uptodate);
2725
2726 int extent_buffer_uptodate(struct extent_map_tree *tree,
2727 struct extent_buffer *eb)
2728 {
2729 if (eb->flags & EXTENT_UPTODATE)
2730 return 1;
2731 return test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2732 EXTENT_UPTODATE, 1);
2733 }
2734 EXPORT_SYMBOL(extent_buffer_uptodate);
2735
2736 int read_extent_buffer_pages(struct extent_map_tree *tree,
2737 struct extent_buffer *eb,
2738 u64 start,
2739 int wait)
2740 {
2741 unsigned long i;
2742 unsigned long start_i;
2743 struct page *page;
2744 int err;
2745 int ret = 0;
2746 unsigned long num_pages;
2747
2748 if (eb->flags & EXTENT_UPTODATE)
2749 return 0;
2750
2751 if (0 && test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2752 EXTENT_UPTODATE, 1)) {
2753 return 0;
2754 }
2755
2756 if (start) {
2757 WARN_ON(start < eb->start);
2758 start_i = (start >> PAGE_CACHE_SHIFT) -
2759 (eb->start >> PAGE_CACHE_SHIFT);
2760 } else {
2761 start_i = 0;
2762 }
2763
2764 num_pages = num_extent_pages(eb->start, eb->len);
2765 for (i = start_i; i < num_pages; i++) {
2766 page = extent_buffer_page(eb, i);
2767 if (PageUptodate(page)) {
2768 continue;
2769 }
2770 if (!wait) {
2771 if (TestSetPageLocked(page)) {
2772 continue;
2773 }
2774 } else {
2775 lock_page(page);
2776 }
2777 if (!PageUptodate(page)) {
2778 err = page->mapping->a_ops->readpage(NULL, page);
2779 if (err) {
2780 ret = err;
2781 }
2782 } else {
2783 unlock_page(page);
2784 }
2785 }
2786
2787 if (ret || !wait) {
2788 return ret;
2789 }
2790
2791 for (i = start_i; i < num_pages; i++) {
2792 page = extent_buffer_page(eb, i);
2793 wait_on_page_locked(page);
2794 if (!PageUptodate(page)) {
2795 ret = -EIO;
2796 }
2797 }
2798 if (!ret)
2799 eb->flags |= EXTENT_UPTODATE;
2800 return ret;
2801 }
2802 EXPORT_SYMBOL(read_extent_buffer_pages);
2803
2804 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
2805 unsigned long start,
2806 unsigned long len)
2807 {
2808 size_t cur;
2809 size_t offset;
2810 struct page *page;
2811 char *kaddr;
2812 char *dst = (char *)dstv;
2813 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2814 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2815 unsigned long num_pages = num_extent_pages(eb->start, eb->len);
2816
2817 WARN_ON(start > eb->len);
2818 WARN_ON(start + len > eb->start + eb->len);
2819
2820 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2821
2822 while(len > 0) {
2823 page = extent_buffer_page(eb, i);
2824 if (!PageUptodate(page)) {
2825 printk("page %lu not up to date i %lu, total %lu, len %lu\n", page->index, i, num_pages, eb->len);
2826 WARN_ON(1);
2827 }
2828 WARN_ON(!PageUptodate(page));
2829
2830 cur = min(len, (PAGE_CACHE_SIZE - offset));
2831 kaddr = kmap_atomic(page, KM_USER1);
2832 memcpy(dst, kaddr + offset, cur);
2833 kunmap_atomic(kaddr, KM_USER1);
2834
2835 dst += cur;
2836 len -= cur;
2837 offset = 0;
2838 i++;
2839 }
2840 }
2841 EXPORT_SYMBOL(read_extent_buffer);
2842
2843 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
2844 unsigned long min_len, char **token, char **map,
2845 unsigned long *map_start,
2846 unsigned long *map_len, int km)
2847 {
2848 size_t offset = start & (PAGE_CACHE_SIZE - 1);
2849 char *kaddr;
2850 struct page *p;
2851 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2852 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2853 unsigned long end_i = (start_offset + start + min_len - 1) >>
2854 PAGE_CACHE_SHIFT;
2855
2856 if (i != end_i)
2857 return -EINVAL;
2858
2859 if (i == 0) {
2860 offset = start_offset;
2861 *map_start = 0;
2862 } else {
2863 offset = 0;
2864 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
2865 }
2866 if (start + min_len > eb->len) {
2867 printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
2868 WARN_ON(1);
2869 }
2870
2871 p = extent_buffer_page(eb, i);
2872 WARN_ON(!PageUptodate(p));
2873 kaddr = kmap_atomic(p, km);
2874 *token = kaddr;
2875 *map = kaddr + offset;
2876 *map_len = PAGE_CACHE_SIZE - offset;
2877 return 0;
2878 }
2879 EXPORT_SYMBOL(map_private_extent_buffer);
2880
2881 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
2882 unsigned long min_len,
2883 char **token, char **map,
2884 unsigned long *map_start,
2885 unsigned long *map_len, int km)
2886 {
2887 int err;
2888 int save = 0;
2889 if (eb->map_token) {
2890 unmap_extent_buffer(eb, eb->map_token, km);
2891 eb->map_token = NULL;
2892 save = 1;
2893 }
2894 err = map_private_extent_buffer(eb, start, min_len, token, map,
2895 map_start, map_len, km);
2896 if (!err && save) {
2897 eb->map_token = *token;
2898 eb->kaddr = *map;
2899 eb->map_start = *map_start;
2900 eb->map_len = *map_len;
2901 }
2902 return err;
2903 }
2904 EXPORT_SYMBOL(map_extent_buffer);
2905
2906 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
2907 {
2908 kunmap_atomic(token, km);
2909 }
2910 EXPORT_SYMBOL(unmap_extent_buffer);
2911
2912 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
2913 unsigned long start,
2914 unsigned long len)
2915 {
2916 size_t cur;
2917 size_t offset;
2918 struct page *page;
2919 char *kaddr;
2920 char *ptr = (char *)ptrv;
2921 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2922 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2923 int ret = 0;
2924
2925 WARN_ON(start > eb->len);
2926 WARN_ON(start + len > eb->start + eb->len);
2927
2928 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2929
2930 while(len > 0) {
2931 page = extent_buffer_page(eb, i);
2932 WARN_ON(!PageUptodate(page));
2933
2934 cur = min(len, (PAGE_CACHE_SIZE - offset));
2935
2936 kaddr = kmap_atomic(page, KM_USER0);
2937 ret = memcmp(ptr, kaddr + offset, cur);
2938 kunmap_atomic(kaddr, KM_USER0);
2939 if (ret)
2940 break;
2941
2942 ptr += cur;
2943 len -= cur;
2944 offset = 0;
2945 i++;
2946 }
2947 return ret;
2948 }
2949 EXPORT_SYMBOL(memcmp_extent_buffer);
2950
2951 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
2952 unsigned long start, unsigned long len)
2953 {
2954 size_t cur;
2955 size_t offset;
2956 struct page *page;
2957 char *kaddr;
2958 char *src = (char *)srcv;
2959 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2960 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2961
2962 WARN_ON(start > eb->len);
2963 WARN_ON(start + len > eb->start + eb->len);
2964
2965 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2966
2967 while(len > 0) {
2968 page = extent_buffer_page(eb, i);
2969 WARN_ON(!PageUptodate(page));
2970
2971 cur = min(len, PAGE_CACHE_SIZE - offset);
2972 kaddr = kmap_atomic(page, KM_USER1);
2973 memcpy(kaddr + offset, src, cur);
2974 kunmap_atomic(kaddr, KM_USER1);
2975
2976 src += cur;
2977 len -= cur;
2978 offset = 0;
2979 i++;
2980 }
2981 }
2982 EXPORT_SYMBOL(write_extent_buffer);
2983
2984 void memset_extent_buffer(struct extent_buffer *eb, char c,
2985 unsigned long start, unsigned long len)
2986 {
2987 size_t cur;
2988 size_t offset;
2989 struct page *page;
2990 char *kaddr;
2991 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2992 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2993
2994 WARN_ON(start > eb->len);
2995 WARN_ON(start + len > eb->start + eb->len);
2996
2997 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2998
2999 while(len > 0) {
3000 page = extent_buffer_page(eb, i);
3001 WARN_ON(!PageUptodate(page));
3002
3003 cur = min(len, PAGE_CACHE_SIZE - offset);
3004 kaddr = kmap_atomic(page, KM_USER0);
3005 memset(kaddr + offset, c, cur);
3006 kunmap_atomic(kaddr, KM_USER0);
3007
3008 len -= cur;
3009 offset = 0;
3010 i++;
3011 }
3012 }
3013 EXPORT_SYMBOL(memset_extent_buffer);
3014
3015 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3016 unsigned long dst_offset, unsigned long src_offset,
3017 unsigned long len)
3018 {
3019 u64 dst_len = dst->len;
3020 size_t cur;
3021 size_t offset;
3022 struct page *page;
3023 char *kaddr;
3024 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3025 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3026
3027 WARN_ON(src->len != dst_len);
3028
3029 offset = (start_offset + dst_offset) &
3030 ((unsigned long)PAGE_CACHE_SIZE - 1);
3031
3032 while(len > 0) {
3033 page = extent_buffer_page(dst, i);
3034 WARN_ON(!PageUptodate(page));
3035
3036 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3037
3038 kaddr = kmap_atomic(page, KM_USER0);
3039 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3040 kunmap_atomic(kaddr, KM_USER0);
3041
3042 src_offset += cur;
3043 len -= cur;
3044 offset = 0;
3045 i++;
3046 }
3047 }
3048 EXPORT_SYMBOL(copy_extent_buffer);
3049
3050 static void move_pages(struct page *dst_page, struct page *src_page,
3051 unsigned long dst_off, unsigned long src_off,
3052 unsigned long len)
3053 {
3054 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3055 if (dst_page == src_page) {
3056 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3057 } else {
3058 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3059 char *p = dst_kaddr + dst_off + len;
3060 char *s = src_kaddr + src_off + len;
3061
3062 while (len--)
3063 *--p = *--s;
3064
3065 kunmap_atomic(src_kaddr, KM_USER1);
3066 }
3067 kunmap_atomic(dst_kaddr, KM_USER0);
3068 }
3069
3070 static void copy_pages(struct page *dst_page, struct page *src_page,
3071 unsigned long dst_off, unsigned long src_off,
3072 unsigned long len)
3073 {
3074 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3075 char *src_kaddr;
3076
3077 if (dst_page != src_page)
3078 src_kaddr = kmap_atomic(src_page, KM_USER1);
3079 else
3080 src_kaddr = dst_kaddr;
3081
3082 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3083 kunmap_atomic(dst_kaddr, KM_USER0);
3084 if (dst_page != src_page)
3085 kunmap_atomic(src_kaddr, KM_USER1);
3086 }
3087
3088 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3089 unsigned long src_offset, unsigned long len)
3090 {
3091 size_t cur;
3092 size_t dst_off_in_page;
3093 size_t src_off_in_page;
3094 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3095 unsigned long dst_i;
3096 unsigned long src_i;
3097
3098 if (src_offset + len > dst->len) {
3099 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3100 src_offset, len, dst->len);
3101 BUG_ON(1);
3102 }
3103 if (dst_offset + len > dst->len) {
3104 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3105 dst_offset, len, dst->len);
3106 BUG_ON(1);
3107 }
3108
3109 while(len > 0) {
3110 dst_off_in_page = (start_offset + dst_offset) &
3111 ((unsigned long)PAGE_CACHE_SIZE - 1);
3112 src_off_in_page = (start_offset + src_offset) &
3113 ((unsigned long)PAGE_CACHE_SIZE - 1);
3114
3115 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3116 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3117
3118 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3119 src_off_in_page));
3120 cur = min_t(unsigned long, cur,
3121 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3122
3123 copy_pages(extent_buffer_page(dst, dst_i),
3124 extent_buffer_page(dst, src_i),
3125 dst_off_in_page, src_off_in_page, cur);
3126
3127 src_offset += cur;
3128 dst_offset += cur;
3129 len -= cur;
3130 }
3131 }
3132 EXPORT_SYMBOL(memcpy_extent_buffer);
3133
3134 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3135 unsigned long src_offset, unsigned long len)
3136 {
3137 size_t cur;
3138 size_t dst_off_in_page;
3139 size_t src_off_in_page;
3140 unsigned long dst_end = dst_offset + len - 1;
3141 unsigned long src_end = src_offset + len - 1;
3142 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3143 unsigned long dst_i;
3144 unsigned long src_i;
3145
3146 if (src_offset + len > dst->len) {
3147 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3148 src_offset, len, dst->len);
3149 BUG_ON(1);
3150 }
3151 if (dst_offset + len > dst->len) {
3152 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3153 dst_offset, len, dst->len);
3154 BUG_ON(1);
3155 }
3156 if (dst_offset < src_offset) {
3157 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3158 return;
3159 }
3160 while(len > 0) {
3161 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3162 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3163
3164 dst_off_in_page = (start_offset + dst_end) &
3165 ((unsigned long)PAGE_CACHE_SIZE - 1);
3166 src_off_in_page = (start_offset + src_end) &
3167 ((unsigned long)PAGE_CACHE_SIZE - 1);
3168
3169 cur = min_t(unsigned long, len, src_off_in_page + 1);
3170 cur = min(cur, dst_off_in_page + 1);
3171 move_pages(extent_buffer_page(dst, dst_i),
3172 extent_buffer_page(dst, src_i),
3173 dst_off_in_page - cur + 1,
3174 src_off_in_page - cur + 1, cur);
3175
3176 dst_end -= cur;
3177 src_end -= cur;
3178 len -= cur;
3179 }
3180 }
3181 EXPORT_SYMBOL(memmove_extent_buffer);
This page took 0.102288 seconds and 5 git commands to generate.