btrfs: make static code static & remove dead code
[deliverable/linux.git] / fs / btrfs / file.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include <linux/btrfs.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "tree-log.h"
40 #include "locking.h"
41 #include "compat.h"
42 #include "volumes.h"
43
44 static struct kmem_cache *btrfs_inode_defrag_cachep;
45 /*
46 * when auto defrag is enabled we
47 * queue up these defrag structs to remember which
48 * inodes need defragging passes
49 */
50 struct inode_defrag {
51 struct rb_node rb_node;
52 /* objectid */
53 u64 ino;
54 /*
55 * transid where the defrag was added, we search for
56 * extents newer than this
57 */
58 u64 transid;
59
60 /* root objectid */
61 u64 root;
62
63 /* last offset we were able to defrag */
64 u64 last_offset;
65
66 /* if we've wrapped around back to zero once already */
67 int cycled;
68 };
69
70 static int __compare_inode_defrag(struct inode_defrag *defrag1,
71 struct inode_defrag *defrag2)
72 {
73 if (defrag1->root > defrag2->root)
74 return 1;
75 else if (defrag1->root < defrag2->root)
76 return -1;
77 else if (defrag1->ino > defrag2->ino)
78 return 1;
79 else if (defrag1->ino < defrag2->ino)
80 return -1;
81 else
82 return 0;
83 }
84
85 /* pop a record for an inode into the defrag tree. The lock
86 * must be held already
87 *
88 * If you're inserting a record for an older transid than an
89 * existing record, the transid already in the tree is lowered
90 *
91 * If an existing record is found the defrag item you
92 * pass in is freed
93 */
94 static int __btrfs_add_inode_defrag(struct inode *inode,
95 struct inode_defrag *defrag)
96 {
97 struct btrfs_root *root = BTRFS_I(inode)->root;
98 struct inode_defrag *entry;
99 struct rb_node **p;
100 struct rb_node *parent = NULL;
101 int ret;
102
103 p = &root->fs_info->defrag_inodes.rb_node;
104 while (*p) {
105 parent = *p;
106 entry = rb_entry(parent, struct inode_defrag, rb_node);
107
108 ret = __compare_inode_defrag(defrag, entry);
109 if (ret < 0)
110 p = &parent->rb_left;
111 else if (ret > 0)
112 p = &parent->rb_right;
113 else {
114 /* if we're reinserting an entry for
115 * an old defrag run, make sure to
116 * lower the transid of our existing record
117 */
118 if (defrag->transid < entry->transid)
119 entry->transid = defrag->transid;
120 if (defrag->last_offset > entry->last_offset)
121 entry->last_offset = defrag->last_offset;
122 return -EEXIST;
123 }
124 }
125 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
126 rb_link_node(&defrag->rb_node, parent, p);
127 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
128 return 0;
129 }
130
131 static inline int __need_auto_defrag(struct btrfs_root *root)
132 {
133 if (!btrfs_test_opt(root, AUTO_DEFRAG))
134 return 0;
135
136 if (btrfs_fs_closing(root->fs_info))
137 return 0;
138
139 return 1;
140 }
141
142 /*
143 * insert a defrag record for this inode if auto defrag is
144 * enabled
145 */
146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
147 struct inode *inode)
148 {
149 struct btrfs_root *root = BTRFS_I(inode)->root;
150 struct inode_defrag *defrag;
151 u64 transid;
152 int ret;
153
154 if (!__need_auto_defrag(root))
155 return 0;
156
157 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
158 return 0;
159
160 if (trans)
161 transid = trans->transid;
162 else
163 transid = BTRFS_I(inode)->root->last_trans;
164
165 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
166 if (!defrag)
167 return -ENOMEM;
168
169 defrag->ino = btrfs_ino(inode);
170 defrag->transid = transid;
171 defrag->root = root->root_key.objectid;
172
173 spin_lock(&root->fs_info->defrag_inodes_lock);
174 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
175 /*
176 * If we set IN_DEFRAG flag and evict the inode from memory,
177 * and then re-read this inode, this new inode doesn't have
178 * IN_DEFRAG flag. At the case, we may find the existed defrag.
179 */
180 ret = __btrfs_add_inode_defrag(inode, defrag);
181 if (ret)
182 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
183 } else {
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 }
186 spin_unlock(&root->fs_info->defrag_inodes_lock);
187 return 0;
188 }
189
190 /*
191 * Requeue the defrag object. If there is a defrag object that points to
192 * the same inode in the tree, we will merge them together (by
193 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
194 */
195 static void btrfs_requeue_inode_defrag(struct inode *inode,
196 struct inode_defrag *defrag)
197 {
198 struct btrfs_root *root = BTRFS_I(inode)->root;
199 int ret;
200
201 if (!__need_auto_defrag(root))
202 goto out;
203
204 /*
205 * Here we don't check the IN_DEFRAG flag, because we need merge
206 * them together.
207 */
208 spin_lock(&root->fs_info->defrag_inodes_lock);
209 ret = __btrfs_add_inode_defrag(inode, defrag);
210 spin_unlock(&root->fs_info->defrag_inodes_lock);
211 if (ret)
212 goto out;
213 return;
214 out:
215 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
216 }
217
218 /*
219 * pick the defragable inode that we want, if it doesn't exist, we will get
220 * the next one.
221 */
222 static struct inode_defrag *
223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
224 {
225 struct inode_defrag *entry = NULL;
226 struct inode_defrag tmp;
227 struct rb_node *p;
228 struct rb_node *parent = NULL;
229 int ret;
230
231 tmp.ino = ino;
232 tmp.root = root;
233
234 spin_lock(&fs_info->defrag_inodes_lock);
235 p = fs_info->defrag_inodes.rb_node;
236 while (p) {
237 parent = p;
238 entry = rb_entry(parent, struct inode_defrag, rb_node);
239
240 ret = __compare_inode_defrag(&tmp, entry);
241 if (ret < 0)
242 p = parent->rb_left;
243 else if (ret > 0)
244 p = parent->rb_right;
245 else
246 goto out;
247 }
248
249 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250 parent = rb_next(parent);
251 if (parent)
252 entry = rb_entry(parent, struct inode_defrag, rb_node);
253 else
254 entry = NULL;
255 }
256 out:
257 if (entry)
258 rb_erase(parent, &fs_info->defrag_inodes);
259 spin_unlock(&fs_info->defrag_inodes_lock);
260 return entry;
261 }
262
263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
264 {
265 struct inode_defrag *defrag;
266 struct rb_node *node;
267
268 spin_lock(&fs_info->defrag_inodes_lock);
269 node = rb_first(&fs_info->defrag_inodes);
270 while (node) {
271 rb_erase(node, &fs_info->defrag_inodes);
272 defrag = rb_entry(node, struct inode_defrag, rb_node);
273 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
274
275 if (need_resched()) {
276 spin_unlock(&fs_info->defrag_inodes_lock);
277 cond_resched();
278 spin_lock(&fs_info->defrag_inodes_lock);
279 }
280
281 node = rb_first(&fs_info->defrag_inodes);
282 }
283 spin_unlock(&fs_info->defrag_inodes_lock);
284 }
285
286 #define BTRFS_DEFRAG_BATCH 1024
287
288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289 struct inode_defrag *defrag)
290 {
291 struct btrfs_root *inode_root;
292 struct inode *inode;
293 struct btrfs_key key;
294 struct btrfs_ioctl_defrag_range_args range;
295 int num_defrag;
296 int index;
297 int ret;
298
299 /* get the inode */
300 key.objectid = defrag->root;
301 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
302 key.offset = (u64)-1;
303
304 index = srcu_read_lock(&fs_info->subvol_srcu);
305
306 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
307 if (IS_ERR(inode_root)) {
308 ret = PTR_ERR(inode_root);
309 goto cleanup;
310 }
311 if (btrfs_root_refs(&inode_root->root_item) == 0) {
312 ret = -ENOENT;
313 goto cleanup;
314 }
315
316 key.objectid = defrag->ino;
317 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
318 key.offset = 0;
319 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
320 if (IS_ERR(inode)) {
321 ret = PTR_ERR(inode);
322 goto cleanup;
323 }
324 srcu_read_unlock(&fs_info->subvol_srcu, index);
325
326 /* do a chunk of defrag */
327 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
328 memset(&range, 0, sizeof(range));
329 range.len = (u64)-1;
330 range.start = defrag->last_offset;
331
332 sb_start_write(fs_info->sb);
333 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
334 BTRFS_DEFRAG_BATCH);
335 sb_end_write(fs_info->sb);
336 /*
337 * if we filled the whole defrag batch, there
338 * must be more work to do. Queue this defrag
339 * again
340 */
341 if (num_defrag == BTRFS_DEFRAG_BATCH) {
342 defrag->last_offset = range.start;
343 btrfs_requeue_inode_defrag(inode, defrag);
344 } else if (defrag->last_offset && !defrag->cycled) {
345 /*
346 * we didn't fill our defrag batch, but
347 * we didn't start at zero. Make sure we loop
348 * around to the start of the file.
349 */
350 defrag->last_offset = 0;
351 defrag->cycled = 1;
352 btrfs_requeue_inode_defrag(inode, defrag);
353 } else {
354 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
355 }
356
357 iput(inode);
358 return 0;
359 cleanup:
360 srcu_read_unlock(&fs_info->subvol_srcu, index);
361 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
362 return ret;
363 }
364
365 /*
366 * run through the list of inodes in the FS that need
367 * defragging
368 */
369 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
370 {
371 struct inode_defrag *defrag;
372 u64 first_ino = 0;
373 u64 root_objectid = 0;
374
375 atomic_inc(&fs_info->defrag_running);
376 while(1) {
377 /* Pause the auto defragger. */
378 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
379 &fs_info->fs_state))
380 break;
381
382 if (!__need_auto_defrag(fs_info->tree_root))
383 break;
384
385 /* find an inode to defrag */
386 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
387 first_ino);
388 if (!defrag) {
389 if (root_objectid || first_ino) {
390 root_objectid = 0;
391 first_ino = 0;
392 continue;
393 } else {
394 break;
395 }
396 }
397
398 first_ino = defrag->ino + 1;
399 root_objectid = defrag->root;
400
401 __btrfs_run_defrag_inode(fs_info, defrag);
402 }
403 atomic_dec(&fs_info->defrag_running);
404
405 /*
406 * during unmount, we use the transaction_wait queue to
407 * wait for the defragger to stop
408 */
409 wake_up(&fs_info->transaction_wait);
410 return 0;
411 }
412
413 /* simple helper to fault in pages and copy. This should go away
414 * and be replaced with calls into generic code.
415 */
416 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
417 size_t write_bytes,
418 struct page **prepared_pages,
419 struct iov_iter *i)
420 {
421 size_t copied = 0;
422 size_t total_copied = 0;
423 int pg = 0;
424 int offset = pos & (PAGE_CACHE_SIZE - 1);
425
426 while (write_bytes > 0) {
427 size_t count = min_t(size_t,
428 PAGE_CACHE_SIZE - offset, write_bytes);
429 struct page *page = prepared_pages[pg];
430 /*
431 * Copy data from userspace to the current page
432 *
433 * Disable pagefault to avoid recursive lock since
434 * the pages are already locked
435 */
436 pagefault_disable();
437 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
438 pagefault_enable();
439
440 /* Flush processor's dcache for this page */
441 flush_dcache_page(page);
442
443 /*
444 * if we get a partial write, we can end up with
445 * partially up to date pages. These add
446 * a lot of complexity, so make sure they don't
447 * happen by forcing this copy to be retried.
448 *
449 * The rest of the btrfs_file_write code will fall
450 * back to page at a time copies after we return 0.
451 */
452 if (!PageUptodate(page) && copied < count)
453 copied = 0;
454
455 iov_iter_advance(i, copied);
456 write_bytes -= copied;
457 total_copied += copied;
458
459 /* Return to btrfs_file_aio_write to fault page */
460 if (unlikely(copied == 0))
461 break;
462
463 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
464 offset += copied;
465 } else {
466 pg++;
467 offset = 0;
468 }
469 }
470 return total_copied;
471 }
472
473 /*
474 * unlocks pages after btrfs_file_write is done with them
475 */
476 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
477 {
478 size_t i;
479 for (i = 0; i < num_pages; i++) {
480 /* page checked is some magic around finding pages that
481 * have been modified without going through btrfs_set_page_dirty
482 * clear it here
483 */
484 ClearPageChecked(pages[i]);
485 unlock_page(pages[i]);
486 mark_page_accessed(pages[i]);
487 page_cache_release(pages[i]);
488 }
489 }
490
491 /*
492 * after copy_from_user, pages need to be dirtied and we need to make
493 * sure holes are created between the current EOF and the start of
494 * any next extents (if required).
495 *
496 * this also makes the decision about creating an inline extent vs
497 * doing real data extents, marking pages dirty and delalloc as required.
498 */
499 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
500 struct page **pages, size_t num_pages,
501 loff_t pos, size_t write_bytes,
502 struct extent_state **cached)
503 {
504 int err = 0;
505 int i;
506 u64 num_bytes;
507 u64 start_pos;
508 u64 end_of_last_block;
509 u64 end_pos = pos + write_bytes;
510 loff_t isize = i_size_read(inode);
511
512 start_pos = pos & ~((u64)root->sectorsize - 1);
513 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
514
515 end_of_last_block = start_pos + num_bytes - 1;
516 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
517 cached);
518 if (err)
519 return err;
520
521 for (i = 0; i < num_pages; i++) {
522 struct page *p = pages[i];
523 SetPageUptodate(p);
524 ClearPageChecked(p);
525 set_page_dirty(p);
526 }
527
528 /*
529 * we've only changed i_size in ram, and we haven't updated
530 * the disk i_size. There is no need to log the inode
531 * at this time.
532 */
533 if (end_pos > isize)
534 i_size_write(inode, end_pos);
535 return 0;
536 }
537
538 /*
539 * this drops all the extents in the cache that intersect the range
540 * [start, end]. Existing extents are split as required.
541 */
542 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
543 int skip_pinned)
544 {
545 struct extent_map *em;
546 struct extent_map *split = NULL;
547 struct extent_map *split2 = NULL;
548 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
549 u64 len = end - start + 1;
550 u64 gen;
551 int ret;
552 int testend = 1;
553 unsigned long flags;
554 int compressed = 0;
555 bool modified;
556
557 WARN_ON(end < start);
558 if (end == (u64)-1) {
559 len = (u64)-1;
560 testend = 0;
561 }
562 while (1) {
563 int no_splits = 0;
564
565 modified = false;
566 if (!split)
567 split = alloc_extent_map();
568 if (!split2)
569 split2 = alloc_extent_map();
570 if (!split || !split2)
571 no_splits = 1;
572
573 write_lock(&em_tree->lock);
574 em = lookup_extent_mapping(em_tree, start, len);
575 if (!em) {
576 write_unlock(&em_tree->lock);
577 break;
578 }
579 flags = em->flags;
580 gen = em->generation;
581 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
582 if (testend && em->start + em->len >= start + len) {
583 free_extent_map(em);
584 write_unlock(&em_tree->lock);
585 break;
586 }
587 start = em->start + em->len;
588 if (testend)
589 len = start + len - (em->start + em->len);
590 free_extent_map(em);
591 write_unlock(&em_tree->lock);
592 continue;
593 }
594 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
595 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
596 clear_bit(EXTENT_FLAG_LOGGING, &flags);
597 modified = !list_empty(&em->list);
598 remove_extent_mapping(em_tree, em);
599 if (no_splits)
600 goto next;
601
602 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
603 em->start < start) {
604 split->start = em->start;
605 split->len = start - em->start;
606 split->orig_start = em->orig_start;
607 split->block_start = em->block_start;
608
609 if (compressed)
610 split->block_len = em->block_len;
611 else
612 split->block_len = split->len;
613 split->ram_bytes = em->ram_bytes;
614 split->orig_block_len = max(split->block_len,
615 em->orig_block_len);
616 split->generation = gen;
617 split->bdev = em->bdev;
618 split->flags = flags;
619 split->compress_type = em->compress_type;
620 ret = add_extent_mapping(em_tree, split, modified);
621 BUG_ON(ret); /* Logic error */
622 free_extent_map(split);
623 split = split2;
624 split2 = NULL;
625 }
626 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
627 testend && em->start + em->len > start + len) {
628 u64 diff = start + len - em->start;
629
630 split->start = start + len;
631 split->len = em->start + em->len - (start + len);
632 split->bdev = em->bdev;
633 split->flags = flags;
634 split->compress_type = em->compress_type;
635 split->generation = gen;
636 split->orig_block_len = max(em->block_len,
637 em->orig_block_len);
638 split->ram_bytes = em->ram_bytes;
639
640 if (compressed) {
641 split->block_len = em->block_len;
642 split->block_start = em->block_start;
643 split->orig_start = em->orig_start;
644 } else {
645 split->block_len = split->len;
646 split->block_start = em->block_start + diff;
647 split->orig_start = em->orig_start;
648 }
649
650 ret = add_extent_mapping(em_tree, split, modified);
651 BUG_ON(ret); /* Logic error */
652 free_extent_map(split);
653 split = NULL;
654 }
655 next:
656 write_unlock(&em_tree->lock);
657
658 /* once for us */
659 free_extent_map(em);
660 /* once for the tree*/
661 free_extent_map(em);
662 }
663 if (split)
664 free_extent_map(split);
665 if (split2)
666 free_extent_map(split2);
667 }
668
669 /*
670 * this is very complex, but the basic idea is to drop all extents
671 * in the range start - end. hint_block is filled in with a block number
672 * that would be a good hint to the block allocator for this file.
673 *
674 * If an extent intersects the range but is not entirely inside the range
675 * it is either truncated or split. Anything entirely inside the range
676 * is deleted from the tree.
677 */
678 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
679 struct btrfs_root *root, struct inode *inode,
680 struct btrfs_path *path, u64 start, u64 end,
681 u64 *drop_end, int drop_cache)
682 {
683 struct extent_buffer *leaf;
684 struct btrfs_file_extent_item *fi;
685 struct btrfs_key key;
686 struct btrfs_key new_key;
687 u64 ino = btrfs_ino(inode);
688 u64 search_start = start;
689 u64 disk_bytenr = 0;
690 u64 num_bytes = 0;
691 u64 extent_offset = 0;
692 u64 extent_end = 0;
693 int del_nr = 0;
694 int del_slot = 0;
695 int extent_type;
696 int recow;
697 int ret;
698 int modify_tree = -1;
699 int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
700 int found = 0;
701
702 if (drop_cache)
703 btrfs_drop_extent_cache(inode, start, end - 1, 0);
704
705 if (start >= BTRFS_I(inode)->disk_i_size)
706 modify_tree = 0;
707
708 while (1) {
709 recow = 0;
710 ret = btrfs_lookup_file_extent(trans, root, path, ino,
711 search_start, modify_tree);
712 if (ret < 0)
713 break;
714 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
715 leaf = path->nodes[0];
716 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
717 if (key.objectid == ino &&
718 key.type == BTRFS_EXTENT_DATA_KEY)
719 path->slots[0]--;
720 }
721 ret = 0;
722 next_slot:
723 leaf = path->nodes[0];
724 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
725 BUG_ON(del_nr > 0);
726 ret = btrfs_next_leaf(root, path);
727 if (ret < 0)
728 break;
729 if (ret > 0) {
730 ret = 0;
731 break;
732 }
733 leaf = path->nodes[0];
734 recow = 1;
735 }
736
737 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
738 if (key.objectid > ino ||
739 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
740 break;
741
742 fi = btrfs_item_ptr(leaf, path->slots[0],
743 struct btrfs_file_extent_item);
744 extent_type = btrfs_file_extent_type(leaf, fi);
745
746 if (extent_type == BTRFS_FILE_EXTENT_REG ||
747 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
748 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
749 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
750 extent_offset = btrfs_file_extent_offset(leaf, fi);
751 extent_end = key.offset +
752 btrfs_file_extent_num_bytes(leaf, fi);
753 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
754 extent_end = key.offset +
755 btrfs_file_extent_inline_len(leaf, fi);
756 } else {
757 WARN_ON(1);
758 extent_end = search_start;
759 }
760
761 if (extent_end <= search_start) {
762 path->slots[0]++;
763 goto next_slot;
764 }
765
766 found = 1;
767 search_start = max(key.offset, start);
768 if (recow || !modify_tree) {
769 modify_tree = -1;
770 btrfs_release_path(path);
771 continue;
772 }
773
774 /*
775 * | - range to drop - |
776 * | -------- extent -------- |
777 */
778 if (start > key.offset && end < extent_end) {
779 BUG_ON(del_nr > 0);
780 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
781
782 memcpy(&new_key, &key, sizeof(new_key));
783 new_key.offset = start;
784 ret = btrfs_duplicate_item(trans, root, path,
785 &new_key);
786 if (ret == -EAGAIN) {
787 btrfs_release_path(path);
788 continue;
789 }
790 if (ret < 0)
791 break;
792
793 leaf = path->nodes[0];
794 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
795 struct btrfs_file_extent_item);
796 btrfs_set_file_extent_num_bytes(leaf, fi,
797 start - key.offset);
798
799 fi = btrfs_item_ptr(leaf, path->slots[0],
800 struct btrfs_file_extent_item);
801
802 extent_offset += start - key.offset;
803 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
804 btrfs_set_file_extent_num_bytes(leaf, fi,
805 extent_end - start);
806 btrfs_mark_buffer_dirty(leaf);
807
808 if (update_refs && disk_bytenr > 0) {
809 ret = btrfs_inc_extent_ref(trans, root,
810 disk_bytenr, num_bytes, 0,
811 root->root_key.objectid,
812 new_key.objectid,
813 start - extent_offset, 0);
814 BUG_ON(ret); /* -ENOMEM */
815 }
816 key.offset = start;
817 }
818 /*
819 * | ---- range to drop ----- |
820 * | -------- extent -------- |
821 */
822 if (start <= key.offset && end < extent_end) {
823 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
824
825 memcpy(&new_key, &key, sizeof(new_key));
826 new_key.offset = end;
827 btrfs_set_item_key_safe(root, path, &new_key);
828
829 extent_offset += end - key.offset;
830 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
831 btrfs_set_file_extent_num_bytes(leaf, fi,
832 extent_end - end);
833 btrfs_mark_buffer_dirty(leaf);
834 if (update_refs && disk_bytenr > 0)
835 inode_sub_bytes(inode, end - key.offset);
836 break;
837 }
838
839 search_start = extent_end;
840 /*
841 * | ---- range to drop ----- |
842 * | -------- extent -------- |
843 */
844 if (start > key.offset && end >= extent_end) {
845 BUG_ON(del_nr > 0);
846 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
847
848 btrfs_set_file_extent_num_bytes(leaf, fi,
849 start - key.offset);
850 btrfs_mark_buffer_dirty(leaf);
851 if (update_refs && disk_bytenr > 0)
852 inode_sub_bytes(inode, extent_end - start);
853 if (end == extent_end)
854 break;
855
856 path->slots[0]++;
857 goto next_slot;
858 }
859
860 /*
861 * | ---- range to drop ----- |
862 * | ------ extent ------ |
863 */
864 if (start <= key.offset && end >= extent_end) {
865 if (del_nr == 0) {
866 del_slot = path->slots[0];
867 del_nr = 1;
868 } else {
869 BUG_ON(del_slot + del_nr != path->slots[0]);
870 del_nr++;
871 }
872
873 if (update_refs &&
874 extent_type == BTRFS_FILE_EXTENT_INLINE) {
875 inode_sub_bytes(inode,
876 extent_end - key.offset);
877 extent_end = ALIGN(extent_end,
878 root->sectorsize);
879 } else if (update_refs && disk_bytenr > 0) {
880 ret = btrfs_free_extent(trans, root,
881 disk_bytenr, num_bytes, 0,
882 root->root_key.objectid,
883 key.objectid, key.offset -
884 extent_offset, 0);
885 BUG_ON(ret); /* -ENOMEM */
886 inode_sub_bytes(inode,
887 extent_end - key.offset);
888 }
889
890 if (end == extent_end)
891 break;
892
893 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
894 path->slots[0]++;
895 goto next_slot;
896 }
897
898 ret = btrfs_del_items(trans, root, path, del_slot,
899 del_nr);
900 if (ret) {
901 btrfs_abort_transaction(trans, root, ret);
902 break;
903 }
904
905 del_nr = 0;
906 del_slot = 0;
907
908 btrfs_release_path(path);
909 continue;
910 }
911
912 BUG_ON(1);
913 }
914
915 if (!ret && del_nr > 0) {
916 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
917 if (ret)
918 btrfs_abort_transaction(trans, root, ret);
919 }
920
921 if (drop_end)
922 *drop_end = found ? min(end, extent_end) : end;
923 btrfs_release_path(path);
924 return ret;
925 }
926
927 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
928 struct btrfs_root *root, struct inode *inode, u64 start,
929 u64 end, int drop_cache)
930 {
931 struct btrfs_path *path;
932 int ret;
933
934 path = btrfs_alloc_path();
935 if (!path)
936 return -ENOMEM;
937 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
938 drop_cache);
939 btrfs_free_path(path);
940 return ret;
941 }
942
943 static int extent_mergeable(struct extent_buffer *leaf, int slot,
944 u64 objectid, u64 bytenr, u64 orig_offset,
945 u64 *start, u64 *end)
946 {
947 struct btrfs_file_extent_item *fi;
948 struct btrfs_key key;
949 u64 extent_end;
950
951 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
952 return 0;
953
954 btrfs_item_key_to_cpu(leaf, &key, slot);
955 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
956 return 0;
957
958 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
959 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
960 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
961 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
962 btrfs_file_extent_compression(leaf, fi) ||
963 btrfs_file_extent_encryption(leaf, fi) ||
964 btrfs_file_extent_other_encoding(leaf, fi))
965 return 0;
966
967 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
968 if ((*start && *start != key.offset) || (*end && *end != extent_end))
969 return 0;
970
971 *start = key.offset;
972 *end = extent_end;
973 return 1;
974 }
975
976 /*
977 * Mark extent in the range start - end as written.
978 *
979 * This changes extent type from 'pre-allocated' to 'regular'. If only
980 * part of extent is marked as written, the extent will be split into
981 * two or three.
982 */
983 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
984 struct inode *inode, u64 start, u64 end)
985 {
986 struct btrfs_root *root = BTRFS_I(inode)->root;
987 struct extent_buffer *leaf;
988 struct btrfs_path *path;
989 struct btrfs_file_extent_item *fi;
990 struct btrfs_key key;
991 struct btrfs_key new_key;
992 u64 bytenr;
993 u64 num_bytes;
994 u64 extent_end;
995 u64 orig_offset;
996 u64 other_start;
997 u64 other_end;
998 u64 split;
999 int del_nr = 0;
1000 int del_slot = 0;
1001 int recow;
1002 int ret;
1003 u64 ino = btrfs_ino(inode);
1004
1005 path = btrfs_alloc_path();
1006 if (!path)
1007 return -ENOMEM;
1008 again:
1009 recow = 0;
1010 split = start;
1011 key.objectid = ino;
1012 key.type = BTRFS_EXTENT_DATA_KEY;
1013 key.offset = split;
1014
1015 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1016 if (ret < 0)
1017 goto out;
1018 if (ret > 0 && path->slots[0] > 0)
1019 path->slots[0]--;
1020
1021 leaf = path->nodes[0];
1022 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1023 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1024 fi = btrfs_item_ptr(leaf, path->slots[0],
1025 struct btrfs_file_extent_item);
1026 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1027 BTRFS_FILE_EXTENT_PREALLOC);
1028 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1029 BUG_ON(key.offset > start || extent_end < end);
1030
1031 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1032 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1033 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1034 memcpy(&new_key, &key, sizeof(new_key));
1035
1036 if (start == key.offset && end < extent_end) {
1037 other_start = 0;
1038 other_end = start;
1039 if (extent_mergeable(leaf, path->slots[0] - 1,
1040 ino, bytenr, orig_offset,
1041 &other_start, &other_end)) {
1042 new_key.offset = end;
1043 btrfs_set_item_key_safe(root, path, &new_key);
1044 fi = btrfs_item_ptr(leaf, path->slots[0],
1045 struct btrfs_file_extent_item);
1046 btrfs_set_file_extent_generation(leaf, fi,
1047 trans->transid);
1048 btrfs_set_file_extent_num_bytes(leaf, fi,
1049 extent_end - end);
1050 btrfs_set_file_extent_offset(leaf, fi,
1051 end - orig_offset);
1052 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1053 struct btrfs_file_extent_item);
1054 btrfs_set_file_extent_generation(leaf, fi,
1055 trans->transid);
1056 btrfs_set_file_extent_num_bytes(leaf, fi,
1057 end - other_start);
1058 btrfs_mark_buffer_dirty(leaf);
1059 goto out;
1060 }
1061 }
1062
1063 if (start > key.offset && end == extent_end) {
1064 other_start = end;
1065 other_end = 0;
1066 if (extent_mergeable(leaf, path->slots[0] + 1,
1067 ino, bytenr, orig_offset,
1068 &other_start, &other_end)) {
1069 fi = btrfs_item_ptr(leaf, path->slots[0],
1070 struct btrfs_file_extent_item);
1071 btrfs_set_file_extent_num_bytes(leaf, fi,
1072 start - key.offset);
1073 btrfs_set_file_extent_generation(leaf, fi,
1074 trans->transid);
1075 path->slots[0]++;
1076 new_key.offset = start;
1077 btrfs_set_item_key_safe(root, path, &new_key);
1078
1079 fi = btrfs_item_ptr(leaf, path->slots[0],
1080 struct btrfs_file_extent_item);
1081 btrfs_set_file_extent_generation(leaf, fi,
1082 trans->transid);
1083 btrfs_set_file_extent_num_bytes(leaf, fi,
1084 other_end - start);
1085 btrfs_set_file_extent_offset(leaf, fi,
1086 start - orig_offset);
1087 btrfs_mark_buffer_dirty(leaf);
1088 goto out;
1089 }
1090 }
1091
1092 while (start > key.offset || end < extent_end) {
1093 if (key.offset == start)
1094 split = end;
1095
1096 new_key.offset = split;
1097 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1098 if (ret == -EAGAIN) {
1099 btrfs_release_path(path);
1100 goto again;
1101 }
1102 if (ret < 0) {
1103 btrfs_abort_transaction(trans, root, ret);
1104 goto out;
1105 }
1106
1107 leaf = path->nodes[0];
1108 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1109 struct btrfs_file_extent_item);
1110 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1111 btrfs_set_file_extent_num_bytes(leaf, fi,
1112 split - key.offset);
1113
1114 fi = btrfs_item_ptr(leaf, path->slots[0],
1115 struct btrfs_file_extent_item);
1116
1117 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1118 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1119 btrfs_set_file_extent_num_bytes(leaf, fi,
1120 extent_end - split);
1121 btrfs_mark_buffer_dirty(leaf);
1122
1123 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1124 root->root_key.objectid,
1125 ino, orig_offset, 0);
1126 BUG_ON(ret); /* -ENOMEM */
1127
1128 if (split == start) {
1129 key.offset = start;
1130 } else {
1131 BUG_ON(start != key.offset);
1132 path->slots[0]--;
1133 extent_end = end;
1134 }
1135 recow = 1;
1136 }
1137
1138 other_start = end;
1139 other_end = 0;
1140 if (extent_mergeable(leaf, path->slots[0] + 1,
1141 ino, bytenr, orig_offset,
1142 &other_start, &other_end)) {
1143 if (recow) {
1144 btrfs_release_path(path);
1145 goto again;
1146 }
1147 extent_end = other_end;
1148 del_slot = path->slots[0] + 1;
1149 del_nr++;
1150 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1151 0, root->root_key.objectid,
1152 ino, orig_offset, 0);
1153 BUG_ON(ret); /* -ENOMEM */
1154 }
1155 other_start = 0;
1156 other_end = start;
1157 if (extent_mergeable(leaf, path->slots[0] - 1,
1158 ino, bytenr, orig_offset,
1159 &other_start, &other_end)) {
1160 if (recow) {
1161 btrfs_release_path(path);
1162 goto again;
1163 }
1164 key.offset = other_start;
1165 del_slot = path->slots[0];
1166 del_nr++;
1167 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1168 0, root->root_key.objectid,
1169 ino, orig_offset, 0);
1170 BUG_ON(ret); /* -ENOMEM */
1171 }
1172 if (del_nr == 0) {
1173 fi = btrfs_item_ptr(leaf, path->slots[0],
1174 struct btrfs_file_extent_item);
1175 btrfs_set_file_extent_type(leaf, fi,
1176 BTRFS_FILE_EXTENT_REG);
1177 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1178 btrfs_mark_buffer_dirty(leaf);
1179 } else {
1180 fi = btrfs_item_ptr(leaf, del_slot - 1,
1181 struct btrfs_file_extent_item);
1182 btrfs_set_file_extent_type(leaf, fi,
1183 BTRFS_FILE_EXTENT_REG);
1184 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1185 btrfs_set_file_extent_num_bytes(leaf, fi,
1186 extent_end - key.offset);
1187 btrfs_mark_buffer_dirty(leaf);
1188
1189 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1190 if (ret < 0) {
1191 btrfs_abort_transaction(trans, root, ret);
1192 goto out;
1193 }
1194 }
1195 out:
1196 btrfs_free_path(path);
1197 return 0;
1198 }
1199
1200 /*
1201 * on error we return an unlocked page and the error value
1202 * on success we return a locked page and 0
1203 */
1204 static int prepare_uptodate_page(struct page *page, u64 pos,
1205 bool force_uptodate)
1206 {
1207 int ret = 0;
1208
1209 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1210 !PageUptodate(page)) {
1211 ret = btrfs_readpage(NULL, page);
1212 if (ret)
1213 return ret;
1214 lock_page(page);
1215 if (!PageUptodate(page)) {
1216 unlock_page(page);
1217 return -EIO;
1218 }
1219 }
1220 return 0;
1221 }
1222
1223 /*
1224 * this gets pages into the page cache and locks them down, it also properly
1225 * waits for data=ordered extents to finish before allowing the pages to be
1226 * modified.
1227 */
1228 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1229 struct page **pages, size_t num_pages,
1230 loff_t pos, unsigned long first_index,
1231 size_t write_bytes, bool force_uptodate)
1232 {
1233 struct extent_state *cached_state = NULL;
1234 int i;
1235 unsigned long index = pos >> PAGE_CACHE_SHIFT;
1236 struct inode *inode = file_inode(file);
1237 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1238 int err = 0;
1239 int faili = 0;
1240 u64 start_pos;
1241 u64 last_pos;
1242
1243 start_pos = pos & ~((u64)root->sectorsize - 1);
1244 last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1245
1246 again:
1247 for (i = 0; i < num_pages; i++) {
1248 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1249 mask | __GFP_WRITE);
1250 if (!pages[i]) {
1251 faili = i - 1;
1252 err = -ENOMEM;
1253 goto fail;
1254 }
1255
1256 if (i == 0)
1257 err = prepare_uptodate_page(pages[i], pos,
1258 force_uptodate);
1259 if (i == num_pages - 1)
1260 err = prepare_uptodate_page(pages[i],
1261 pos + write_bytes, false);
1262 if (err) {
1263 page_cache_release(pages[i]);
1264 faili = i - 1;
1265 goto fail;
1266 }
1267 wait_on_page_writeback(pages[i]);
1268 }
1269 err = 0;
1270 if (start_pos < inode->i_size) {
1271 struct btrfs_ordered_extent *ordered;
1272 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1273 start_pos, last_pos - 1, 0, &cached_state);
1274 ordered = btrfs_lookup_first_ordered_extent(inode,
1275 last_pos - 1);
1276 if (ordered &&
1277 ordered->file_offset + ordered->len > start_pos &&
1278 ordered->file_offset < last_pos) {
1279 btrfs_put_ordered_extent(ordered);
1280 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1281 start_pos, last_pos - 1,
1282 &cached_state, GFP_NOFS);
1283 for (i = 0; i < num_pages; i++) {
1284 unlock_page(pages[i]);
1285 page_cache_release(pages[i]);
1286 }
1287 btrfs_wait_ordered_range(inode, start_pos,
1288 last_pos - start_pos);
1289 goto again;
1290 }
1291 if (ordered)
1292 btrfs_put_ordered_extent(ordered);
1293
1294 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1295 last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1296 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1297 0, 0, &cached_state, GFP_NOFS);
1298 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1299 start_pos, last_pos - 1, &cached_state,
1300 GFP_NOFS);
1301 }
1302 for (i = 0; i < num_pages; i++) {
1303 if (clear_page_dirty_for_io(pages[i]))
1304 account_page_redirty(pages[i]);
1305 set_page_extent_mapped(pages[i]);
1306 WARN_ON(!PageLocked(pages[i]));
1307 }
1308 return 0;
1309 fail:
1310 while (faili >= 0) {
1311 unlock_page(pages[faili]);
1312 page_cache_release(pages[faili]);
1313 faili--;
1314 }
1315 return err;
1316
1317 }
1318
1319 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1320 struct iov_iter *i,
1321 loff_t pos)
1322 {
1323 struct inode *inode = file_inode(file);
1324 struct btrfs_root *root = BTRFS_I(inode)->root;
1325 struct page **pages = NULL;
1326 unsigned long first_index;
1327 size_t num_written = 0;
1328 int nrptrs;
1329 int ret = 0;
1330 bool force_page_uptodate = false;
1331
1332 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1333 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1334 (sizeof(struct page *)));
1335 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1336 nrptrs = max(nrptrs, 8);
1337 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1338 if (!pages)
1339 return -ENOMEM;
1340
1341 first_index = pos >> PAGE_CACHE_SHIFT;
1342
1343 while (iov_iter_count(i) > 0) {
1344 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1345 size_t write_bytes = min(iov_iter_count(i),
1346 nrptrs * (size_t)PAGE_CACHE_SIZE -
1347 offset);
1348 size_t num_pages = (write_bytes + offset +
1349 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1350 size_t dirty_pages;
1351 size_t copied;
1352
1353 WARN_ON(num_pages > nrptrs);
1354
1355 /*
1356 * Fault pages before locking them in prepare_pages
1357 * to avoid recursive lock
1358 */
1359 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1360 ret = -EFAULT;
1361 break;
1362 }
1363
1364 ret = btrfs_delalloc_reserve_space(inode,
1365 num_pages << PAGE_CACHE_SHIFT);
1366 if (ret)
1367 break;
1368
1369 /*
1370 * This is going to setup the pages array with the number of
1371 * pages we want, so we don't really need to worry about the
1372 * contents of pages from loop to loop
1373 */
1374 ret = prepare_pages(root, file, pages, num_pages,
1375 pos, first_index, write_bytes,
1376 force_page_uptodate);
1377 if (ret) {
1378 btrfs_delalloc_release_space(inode,
1379 num_pages << PAGE_CACHE_SHIFT);
1380 break;
1381 }
1382
1383 copied = btrfs_copy_from_user(pos, num_pages,
1384 write_bytes, pages, i);
1385
1386 /*
1387 * if we have trouble faulting in the pages, fall
1388 * back to one page at a time
1389 */
1390 if (copied < write_bytes)
1391 nrptrs = 1;
1392
1393 if (copied == 0) {
1394 force_page_uptodate = true;
1395 dirty_pages = 0;
1396 } else {
1397 force_page_uptodate = false;
1398 dirty_pages = (copied + offset +
1399 PAGE_CACHE_SIZE - 1) >>
1400 PAGE_CACHE_SHIFT;
1401 }
1402
1403 /*
1404 * If we had a short copy we need to release the excess delaloc
1405 * bytes we reserved. We need to increment outstanding_extents
1406 * because btrfs_delalloc_release_space will decrement it, but
1407 * we still have an outstanding extent for the chunk we actually
1408 * managed to copy.
1409 */
1410 if (num_pages > dirty_pages) {
1411 if (copied > 0) {
1412 spin_lock(&BTRFS_I(inode)->lock);
1413 BTRFS_I(inode)->outstanding_extents++;
1414 spin_unlock(&BTRFS_I(inode)->lock);
1415 }
1416 btrfs_delalloc_release_space(inode,
1417 (num_pages - dirty_pages) <<
1418 PAGE_CACHE_SHIFT);
1419 }
1420
1421 if (copied > 0) {
1422 ret = btrfs_dirty_pages(root, inode, pages,
1423 dirty_pages, pos, copied,
1424 NULL);
1425 if (ret) {
1426 btrfs_delalloc_release_space(inode,
1427 dirty_pages << PAGE_CACHE_SHIFT);
1428 btrfs_drop_pages(pages, num_pages);
1429 break;
1430 }
1431 }
1432
1433 btrfs_drop_pages(pages, num_pages);
1434
1435 cond_resched();
1436
1437 balance_dirty_pages_ratelimited(inode->i_mapping);
1438 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1439 btrfs_btree_balance_dirty(root);
1440
1441 pos += copied;
1442 num_written += copied;
1443 }
1444
1445 kfree(pages);
1446
1447 return num_written ? num_written : ret;
1448 }
1449
1450 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1451 const struct iovec *iov,
1452 unsigned long nr_segs, loff_t pos,
1453 loff_t *ppos, size_t count, size_t ocount)
1454 {
1455 struct file *file = iocb->ki_filp;
1456 struct iov_iter i;
1457 ssize_t written;
1458 ssize_t written_buffered;
1459 loff_t endbyte;
1460 int err;
1461
1462 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1463 count, ocount);
1464
1465 if (written < 0 || written == count)
1466 return written;
1467
1468 pos += written;
1469 count -= written;
1470 iov_iter_init(&i, iov, nr_segs, count, written);
1471 written_buffered = __btrfs_buffered_write(file, &i, pos);
1472 if (written_buffered < 0) {
1473 err = written_buffered;
1474 goto out;
1475 }
1476 endbyte = pos + written_buffered - 1;
1477 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1478 if (err)
1479 goto out;
1480 written += written_buffered;
1481 *ppos = pos + written_buffered;
1482 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1483 endbyte >> PAGE_CACHE_SHIFT);
1484 out:
1485 return written ? written : err;
1486 }
1487
1488 static void update_time_for_write(struct inode *inode)
1489 {
1490 struct timespec now;
1491
1492 if (IS_NOCMTIME(inode))
1493 return;
1494
1495 now = current_fs_time(inode->i_sb);
1496 if (!timespec_equal(&inode->i_mtime, &now))
1497 inode->i_mtime = now;
1498
1499 if (!timespec_equal(&inode->i_ctime, &now))
1500 inode->i_ctime = now;
1501
1502 if (IS_I_VERSION(inode))
1503 inode_inc_iversion(inode);
1504 }
1505
1506 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1507 const struct iovec *iov,
1508 unsigned long nr_segs, loff_t pos)
1509 {
1510 struct file *file = iocb->ki_filp;
1511 struct inode *inode = file_inode(file);
1512 struct btrfs_root *root = BTRFS_I(inode)->root;
1513 loff_t *ppos = &iocb->ki_pos;
1514 u64 start_pos;
1515 ssize_t num_written = 0;
1516 ssize_t err = 0;
1517 size_t count, ocount;
1518 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1519
1520 sb_start_write(inode->i_sb);
1521
1522 mutex_lock(&inode->i_mutex);
1523
1524 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1525 if (err) {
1526 mutex_unlock(&inode->i_mutex);
1527 goto out;
1528 }
1529 count = ocount;
1530
1531 current->backing_dev_info = inode->i_mapping->backing_dev_info;
1532 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1533 if (err) {
1534 mutex_unlock(&inode->i_mutex);
1535 goto out;
1536 }
1537
1538 if (count == 0) {
1539 mutex_unlock(&inode->i_mutex);
1540 goto out;
1541 }
1542
1543 err = file_remove_suid(file);
1544 if (err) {
1545 mutex_unlock(&inode->i_mutex);
1546 goto out;
1547 }
1548
1549 /*
1550 * If BTRFS flips readonly due to some impossible error
1551 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1552 * although we have opened a file as writable, we have
1553 * to stop this write operation to ensure FS consistency.
1554 */
1555 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1556 mutex_unlock(&inode->i_mutex);
1557 err = -EROFS;
1558 goto out;
1559 }
1560
1561 /*
1562 * We reserve space for updating the inode when we reserve space for the
1563 * extent we are going to write, so we will enospc out there. We don't
1564 * need to start yet another transaction to update the inode as we will
1565 * update the inode when we finish writing whatever data we write.
1566 */
1567 update_time_for_write(inode);
1568
1569 start_pos = round_down(pos, root->sectorsize);
1570 if (start_pos > i_size_read(inode)) {
1571 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1572 if (err) {
1573 mutex_unlock(&inode->i_mutex);
1574 goto out;
1575 }
1576 }
1577
1578 if (sync)
1579 atomic_inc(&BTRFS_I(inode)->sync_writers);
1580
1581 if (unlikely(file->f_flags & O_DIRECT)) {
1582 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1583 pos, ppos, count, ocount);
1584 } else {
1585 struct iov_iter i;
1586
1587 iov_iter_init(&i, iov, nr_segs, count, num_written);
1588
1589 num_written = __btrfs_buffered_write(file, &i, pos);
1590 if (num_written > 0)
1591 *ppos = pos + num_written;
1592 }
1593
1594 mutex_unlock(&inode->i_mutex);
1595
1596 /*
1597 * we want to make sure fsync finds this change
1598 * but we haven't joined a transaction running right now.
1599 *
1600 * Later on, someone is sure to update the inode and get the
1601 * real transid recorded.
1602 *
1603 * We set last_trans now to the fs_info generation + 1,
1604 * this will either be one more than the running transaction
1605 * or the generation used for the next transaction if there isn't
1606 * one running right now.
1607 *
1608 * We also have to set last_sub_trans to the current log transid,
1609 * otherwise subsequent syncs to a file that's been synced in this
1610 * transaction will appear to have already occured.
1611 */
1612 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1613 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1614 if (num_written > 0 || num_written == -EIOCBQUEUED) {
1615 err = generic_write_sync(file, pos, num_written);
1616 if (err < 0 && num_written > 0)
1617 num_written = err;
1618 }
1619
1620 if (sync)
1621 atomic_dec(&BTRFS_I(inode)->sync_writers);
1622 out:
1623 sb_end_write(inode->i_sb);
1624 current->backing_dev_info = NULL;
1625 return num_written ? num_written : err;
1626 }
1627
1628 int btrfs_release_file(struct inode *inode, struct file *filp)
1629 {
1630 /*
1631 * ordered_data_close is set by settattr when we are about to truncate
1632 * a file from a non-zero size to a zero size. This tries to
1633 * flush down new bytes that may have been written if the
1634 * application were using truncate to replace a file in place.
1635 */
1636 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1637 &BTRFS_I(inode)->runtime_flags)) {
1638 struct btrfs_trans_handle *trans;
1639 struct btrfs_root *root = BTRFS_I(inode)->root;
1640
1641 /*
1642 * We need to block on a committing transaction to keep us from
1643 * throwing a ordered operation on to the list and causing
1644 * something like sync to deadlock trying to flush out this
1645 * inode.
1646 */
1647 trans = btrfs_start_transaction(root, 0);
1648 if (IS_ERR(trans))
1649 return PTR_ERR(trans);
1650 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1651 btrfs_end_transaction(trans, root);
1652 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1653 filemap_flush(inode->i_mapping);
1654 }
1655 if (filp->private_data)
1656 btrfs_ioctl_trans_end(filp);
1657 return 0;
1658 }
1659
1660 /*
1661 * fsync call for both files and directories. This logs the inode into
1662 * the tree log instead of forcing full commits whenever possible.
1663 *
1664 * It needs to call filemap_fdatawait so that all ordered extent updates are
1665 * in the metadata btree are up to date for copying to the log.
1666 *
1667 * It drops the inode mutex before doing the tree log commit. This is an
1668 * important optimization for directories because holding the mutex prevents
1669 * new operations on the dir while we write to disk.
1670 */
1671 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1672 {
1673 struct dentry *dentry = file->f_path.dentry;
1674 struct inode *inode = dentry->d_inode;
1675 struct btrfs_root *root = BTRFS_I(inode)->root;
1676 int ret = 0;
1677 struct btrfs_trans_handle *trans;
1678 bool full_sync = 0;
1679
1680 trace_btrfs_sync_file(file, datasync);
1681
1682 /*
1683 * We write the dirty pages in the range and wait until they complete
1684 * out of the ->i_mutex. If so, we can flush the dirty pages by
1685 * multi-task, and make the performance up. See
1686 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1687 */
1688 atomic_inc(&BTRFS_I(inode)->sync_writers);
1689 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1690 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1691 &BTRFS_I(inode)->runtime_flags))
1692 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1693 atomic_dec(&BTRFS_I(inode)->sync_writers);
1694 if (ret)
1695 return ret;
1696
1697 mutex_lock(&inode->i_mutex);
1698
1699 /*
1700 * We flush the dirty pages again to avoid some dirty pages in the
1701 * range being left.
1702 */
1703 atomic_inc(&root->log_batch);
1704 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1705 &BTRFS_I(inode)->runtime_flags);
1706 if (full_sync)
1707 btrfs_wait_ordered_range(inode, start, end - start + 1);
1708 atomic_inc(&root->log_batch);
1709
1710 /*
1711 * check the transaction that last modified this inode
1712 * and see if its already been committed
1713 */
1714 if (!BTRFS_I(inode)->last_trans) {
1715 mutex_unlock(&inode->i_mutex);
1716 goto out;
1717 }
1718
1719 /*
1720 * if the last transaction that changed this file was before
1721 * the current transaction, we can bail out now without any
1722 * syncing
1723 */
1724 smp_mb();
1725 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1726 BTRFS_I(inode)->last_trans <=
1727 root->fs_info->last_trans_committed) {
1728 BTRFS_I(inode)->last_trans = 0;
1729
1730 /*
1731 * We'v had everything committed since the last time we were
1732 * modified so clear this flag in case it was set for whatever
1733 * reason, it's no longer relevant.
1734 */
1735 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1736 &BTRFS_I(inode)->runtime_flags);
1737 mutex_unlock(&inode->i_mutex);
1738 goto out;
1739 }
1740
1741 /*
1742 * ok we haven't committed the transaction yet, lets do a commit
1743 */
1744 if (file->private_data)
1745 btrfs_ioctl_trans_end(file);
1746
1747 trans = btrfs_start_transaction(root, 0);
1748 if (IS_ERR(trans)) {
1749 ret = PTR_ERR(trans);
1750 mutex_unlock(&inode->i_mutex);
1751 goto out;
1752 }
1753
1754 ret = btrfs_log_dentry_safe(trans, root, dentry);
1755 if (ret < 0) {
1756 mutex_unlock(&inode->i_mutex);
1757 goto out;
1758 }
1759
1760 /* we've logged all the items and now have a consistent
1761 * version of the file in the log. It is possible that
1762 * someone will come in and modify the file, but that's
1763 * fine because the log is consistent on disk, and we
1764 * have references to all of the file's extents
1765 *
1766 * It is possible that someone will come in and log the
1767 * file again, but that will end up using the synchronization
1768 * inside btrfs_sync_log to keep things safe.
1769 */
1770 mutex_unlock(&inode->i_mutex);
1771
1772 if (ret != BTRFS_NO_LOG_SYNC) {
1773 if (ret > 0) {
1774 /*
1775 * If we didn't already wait for ordered extents we need
1776 * to do that now.
1777 */
1778 if (!full_sync)
1779 btrfs_wait_ordered_range(inode, start,
1780 end - start + 1);
1781 ret = btrfs_commit_transaction(trans, root);
1782 } else {
1783 ret = btrfs_sync_log(trans, root);
1784 if (ret == 0) {
1785 ret = btrfs_end_transaction(trans, root);
1786 } else {
1787 if (!full_sync)
1788 btrfs_wait_ordered_range(inode, start,
1789 end -
1790 start + 1);
1791 ret = btrfs_commit_transaction(trans, root);
1792 }
1793 }
1794 } else {
1795 ret = btrfs_end_transaction(trans, root);
1796 }
1797 out:
1798 return ret > 0 ? -EIO : ret;
1799 }
1800
1801 static const struct vm_operations_struct btrfs_file_vm_ops = {
1802 .fault = filemap_fault,
1803 .page_mkwrite = btrfs_page_mkwrite,
1804 .remap_pages = generic_file_remap_pages,
1805 };
1806
1807 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
1808 {
1809 struct address_space *mapping = filp->f_mapping;
1810
1811 if (!mapping->a_ops->readpage)
1812 return -ENOEXEC;
1813
1814 file_accessed(filp);
1815 vma->vm_ops = &btrfs_file_vm_ops;
1816
1817 return 0;
1818 }
1819
1820 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
1821 int slot, u64 start, u64 end)
1822 {
1823 struct btrfs_file_extent_item *fi;
1824 struct btrfs_key key;
1825
1826 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1827 return 0;
1828
1829 btrfs_item_key_to_cpu(leaf, &key, slot);
1830 if (key.objectid != btrfs_ino(inode) ||
1831 key.type != BTRFS_EXTENT_DATA_KEY)
1832 return 0;
1833
1834 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1835
1836 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1837 return 0;
1838
1839 if (btrfs_file_extent_disk_bytenr(leaf, fi))
1840 return 0;
1841
1842 if (key.offset == end)
1843 return 1;
1844 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1845 return 1;
1846 return 0;
1847 }
1848
1849 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
1850 struct btrfs_path *path, u64 offset, u64 end)
1851 {
1852 struct btrfs_root *root = BTRFS_I(inode)->root;
1853 struct extent_buffer *leaf;
1854 struct btrfs_file_extent_item *fi;
1855 struct extent_map *hole_em;
1856 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1857 struct btrfs_key key;
1858 int ret;
1859
1860 key.objectid = btrfs_ino(inode);
1861 key.type = BTRFS_EXTENT_DATA_KEY;
1862 key.offset = offset;
1863
1864
1865 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1866 if (ret < 0)
1867 return ret;
1868 BUG_ON(!ret);
1869
1870 leaf = path->nodes[0];
1871 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
1872 u64 num_bytes;
1873
1874 path->slots[0]--;
1875 fi = btrfs_item_ptr(leaf, path->slots[0],
1876 struct btrfs_file_extent_item);
1877 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
1878 end - offset;
1879 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1880 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1881 btrfs_set_file_extent_offset(leaf, fi, 0);
1882 btrfs_mark_buffer_dirty(leaf);
1883 goto out;
1884 }
1885
1886 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
1887 u64 num_bytes;
1888
1889 path->slots[0]++;
1890 key.offset = offset;
1891 btrfs_set_item_key_safe(root, path, &key);
1892 fi = btrfs_item_ptr(leaf, path->slots[0],
1893 struct btrfs_file_extent_item);
1894 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
1895 offset;
1896 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1897 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1898 btrfs_set_file_extent_offset(leaf, fi, 0);
1899 btrfs_mark_buffer_dirty(leaf);
1900 goto out;
1901 }
1902 btrfs_release_path(path);
1903
1904 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
1905 0, 0, end - offset, 0, end - offset,
1906 0, 0, 0);
1907 if (ret)
1908 return ret;
1909
1910 out:
1911 btrfs_release_path(path);
1912
1913 hole_em = alloc_extent_map();
1914 if (!hole_em) {
1915 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
1916 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1917 &BTRFS_I(inode)->runtime_flags);
1918 } else {
1919 hole_em->start = offset;
1920 hole_em->len = end - offset;
1921 hole_em->ram_bytes = hole_em->len;
1922 hole_em->orig_start = offset;
1923
1924 hole_em->block_start = EXTENT_MAP_HOLE;
1925 hole_em->block_len = 0;
1926 hole_em->orig_block_len = 0;
1927 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
1928 hole_em->compress_type = BTRFS_COMPRESS_NONE;
1929 hole_em->generation = trans->transid;
1930
1931 do {
1932 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
1933 write_lock(&em_tree->lock);
1934 ret = add_extent_mapping(em_tree, hole_em, 1);
1935 write_unlock(&em_tree->lock);
1936 } while (ret == -EEXIST);
1937 free_extent_map(hole_em);
1938 if (ret)
1939 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1940 &BTRFS_I(inode)->runtime_flags);
1941 }
1942
1943 return 0;
1944 }
1945
1946 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1947 {
1948 struct btrfs_root *root = BTRFS_I(inode)->root;
1949 struct extent_state *cached_state = NULL;
1950 struct btrfs_path *path;
1951 struct btrfs_block_rsv *rsv;
1952 struct btrfs_trans_handle *trans;
1953 u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
1954 u64 lockend = round_down(offset + len,
1955 BTRFS_I(inode)->root->sectorsize) - 1;
1956 u64 cur_offset = lockstart;
1957 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
1958 u64 drop_end;
1959 int ret = 0;
1960 int err = 0;
1961 bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
1962 ((offset + len - 1) >> PAGE_CACHE_SHIFT));
1963
1964 btrfs_wait_ordered_range(inode, offset, len);
1965
1966 mutex_lock(&inode->i_mutex);
1967 /*
1968 * We needn't truncate any page which is beyond the end of the file
1969 * because we are sure there is no data there.
1970 */
1971 /*
1972 * Only do this if we are in the same page and we aren't doing the
1973 * entire page.
1974 */
1975 if (same_page && len < PAGE_CACHE_SIZE) {
1976 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
1977 ret = btrfs_truncate_page(inode, offset, len, 0);
1978 mutex_unlock(&inode->i_mutex);
1979 return ret;
1980 }
1981
1982 /* zero back part of the first page */
1983 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
1984 ret = btrfs_truncate_page(inode, offset, 0, 0);
1985 if (ret) {
1986 mutex_unlock(&inode->i_mutex);
1987 return ret;
1988 }
1989 }
1990
1991 /* zero the front end of the last page */
1992 if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
1993 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
1994 if (ret) {
1995 mutex_unlock(&inode->i_mutex);
1996 return ret;
1997 }
1998 }
1999
2000 if (lockend < lockstart) {
2001 mutex_unlock(&inode->i_mutex);
2002 return 0;
2003 }
2004
2005 while (1) {
2006 struct btrfs_ordered_extent *ordered;
2007
2008 truncate_pagecache_range(inode, lockstart, lockend);
2009
2010 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2011 0, &cached_state);
2012 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2013
2014 /*
2015 * We need to make sure we have no ordered extents in this range
2016 * and nobody raced in and read a page in this range, if we did
2017 * we need to try again.
2018 */
2019 if ((!ordered ||
2020 (ordered->file_offset + ordered->len < lockstart ||
2021 ordered->file_offset > lockend)) &&
2022 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2023 lockend, EXTENT_UPTODATE, 0,
2024 cached_state)) {
2025 if (ordered)
2026 btrfs_put_ordered_extent(ordered);
2027 break;
2028 }
2029 if (ordered)
2030 btrfs_put_ordered_extent(ordered);
2031 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2032 lockend, &cached_state, GFP_NOFS);
2033 btrfs_wait_ordered_range(inode, lockstart,
2034 lockend - lockstart + 1);
2035 }
2036
2037 path = btrfs_alloc_path();
2038 if (!path) {
2039 ret = -ENOMEM;
2040 goto out;
2041 }
2042
2043 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2044 if (!rsv) {
2045 ret = -ENOMEM;
2046 goto out_free;
2047 }
2048 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2049 rsv->failfast = 1;
2050
2051 /*
2052 * 1 - update the inode
2053 * 1 - removing the extents in the range
2054 * 1 - adding the hole extent
2055 */
2056 trans = btrfs_start_transaction(root, 3);
2057 if (IS_ERR(trans)) {
2058 err = PTR_ERR(trans);
2059 goto out_free;
2060 }
2061
2062 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2063 min_size);
2064 BUG_ON(ret);
2065 trans->block_rsv = rsv;
2066
2067 while (cur_offset < lockend) {
2068 ret = __btrfs_drop_extents(trans, root, inode, path,
2069 cur_offset, lockend + 1,
2070 &drop_end, 1);
2071 if (ret != -ENOSPC)
2072 break;
2073
2074 trans->block_rsv = &root->fs_info->trans_block_rsv;
2075
2076 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2077 if (ret) {
2078 err = ret;
2079 break;
2080 }
2081
2082 cur_offset = drop_end;
2083
2084 ret = btrfs_update_inode(trans, root, inode);
2085 if (ret) {
2086 err = ret;
2087 break;
2088 }
2089
2090 btrfs_end_transaction(trans, root);
2091 btrfs_btree_balance_dirty(root);
2092
2093 trans = btrfs_start_transaction(root, 3);
2094 if (IS_ERR(trans)) {
2095 ret = PTR_ERR(trans);
2096 trans = NULL;
2097 break;
2098 }
2099
2100 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2101 rsv, min_size);
2102 BUG_ON(ret); /* shouldn't happen */
2103 trans->block_rsv = rsv;
2104 }
2105
2106 if (ret) {
2107 err = ret;
2108 goto out_trans;
2109 }
2110
2111 trans->block_rsv = &root->fs_info->trans_block_rsv;
2112 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2113 if (ret) {
2114 err = ret;
2115 goto out_trans;
2116 }
2117
2118 out_trans:
2119 if (!trans)
2120 goto out_free;
2121
2122 inode_inc_iversion(inode);
2123 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2124
2125 trans->block_rsv = &root->fs_info->trans_block_rsv;
2126 ret = btrfs_update_inode(trans, root, inode);
2127 btrfs_end_transaction(trans, root);
2128 btrfs_btree_balance_dirty(root);
2129 out_free:
2130 btrfs_free_path(path);
2131 btrfs_free_block_rsv(root, rsv);
2132 out:
2133 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2134 &cached_state, GFP_NOFS);
2135 mutex_unlock(&inode->i_mutex);
2136 if (ret && !err)
2137 err = ret;
2138 return err;
2139 }
2140
2141 static long btrfs_fallocate(struct file *file, int mode,
2142 loff_t offset, loff_t len)
2143 {
2144 struct inode *inode = file_inode(file);
2145 struct extent_state *cached_state = NULL;
2146 struct btrfs_root *root = BTRFS_I(inode)->root;
2147 u64 cur_offset;
2148 u64 last_byte;
2149 u64 alloc_start;
2150 u64 alloc_end;
2151 u64 alloc_hint = 0;
2152 u64 locked_end;
2153 struct extent_map *em;
2154 int blocksize = BTRFS_I(inode)->root->sectorsize;
2155 int ret;
2156
2157 alloc_start = round_down(offset, blocksize);
2158 alloc_end = round_up(offset + len, blocksize);
2159
2160 /* Make sure we aren't being give some crap mode */
2161 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2162 return -EOPNOTSUPP;
2163
2164 if (mode & FALLOC_FL_PUNCH_HOLE)
2165 return btrfs_punch_hole(inode, offset, len);
2166
2167 /*
2168 * Make sure we have enough space before we do the
2169 * allocation.
2170 */
2171 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2172 if (ret)
2173 return ret;
2174 if (root->fs_info->quota_enabled) {
2175 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2176 if (ret)
2177 goto out_reserve_fail;
2178 }
2179
2180 /*
2181 * wait for ordered IO before we have any locks. We'll loop again
2182 * below with the locks held.
2183 */
2184 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
2185
2186 mutex_lock(&inode->i_mutex);
2187 ret = inode_newsize_ok(inode, alloc_end);
2188 if (ret)
2189 goto out;
2190
2191 if (alloc_start > inode->i_size) {
2192 ret = btrfs_cont_expand(inode, i_size_read(inode),
2193 alloc_start);
2194 if (ret)
2195 goto out;
2196 }
2197
2198 locked_end = alloc_end - 1;
2199 while (1) {
2200 struct btrfs_ordered_extent *ordered;
2201
2202 /* the extent lock is ordered inside the running
2203 * transaction
2204 */
2205 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2206 locked_end, 0, &cached_state);
2207 ordered = btrfs_lookup_first_ordered_extent(inode,
2208 alloc_end - 1);
2209 if (ordered &&
2210 ordered->file_offset + ordered->len > alloc_start &&
2211 ordered->file_offset < alloc_end) {
2212 btrfs_put_ordered_extent(ordered);
2213 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2214 alloc_start, locked_end,
2215 &cached_state, GFP_NOFS);
2216 /*
2217 * we can't wait on the range with the transaction
2218 * running or with the extent lock held
2219 */
2220 btrfs_wait_ordered_range(inode, alloc_start,
2221 alloc_end - alloc_start);
2222 } else {
2223 if (ordered)
2224 btrfs_put_ordered_extent(ordered);
2225 break;
2226 }
2227 }
2228
2229 cur_offset = alloc_start;
2230 while (1) {
2231 u64 actual_end;
2232
2233 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2234 alloc_end - cur_offset, 0);
2235 if (IS_ERR_OR_NULL(em)) {
2236 if (!em)
2237 ret = -ENOMEM;
2238 else
2239 ret = PTR_ERR(em);
2240 break;
2241 }
2242 last_byte = min(extent_map_end(em), alloc_end);
2243 actual_end = min_t(u64, extent_map_end(em), offset + len);
2244 last_byte = ALIGN(last_byte, blocksize);
2245
2246 if (em->block_start == EXTENT_MAP_HOLE ||
2247 (cur_offset >= inode->i_size &&
2248 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2249 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2250 last_byte - cur_offset,
2251 1 << inode->i_blkbits,
2252 offset + len,
2253 &alloc_hint);
2254
2255 if (ret < 0) {
2256 free_extent_map(em);
2257 break;
2258 }
2259 } else if (actual_end > inode->i_size &&
2260 !(mode & FALLOC_FL_KEEP_SIZE)) {
2261 /*
2262 * We didn't need to allocate any more space, but we
2263 * still extended the size of the file so we need to
2264 * update i_size.
2265 */
2266 inode->i_ctime = CURRENT_TIME;
2267 i_size_write(inode, actual_end);
2268 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2269 }
2270 free_extent_map(em);
2271
2272 cur_offset = last_byte;
2273 if (cur_offset >= alloc_end) {
2274 ret = 0;
2275 break;
2276 }
2277 }
2278 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2279 &cached_state, GFP_NOFS);
2280 out:
2281 mutex_unlock(&inode->i_mutex);
2282 if (root->fs_info->quota_enabled)
2283 btrfs_qgroup_free(root, alloc_end - alloc_start);
2284 out_reserve_fail:
2285 /* Let go of our reservation. */
2286 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2287 return ret;
2288 }
2289
2290 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2291 {
2292 struct btrfs_root *root = BTRFS_I(inode)->root;
2293 struct extent_map *em;
2294 struct extent_state *cached_state = NULL;
2295 u64 lockstart = *offset;
2296 u64 lockend = i_size_read(inode);
2297 u64 start = *offset;
2298 u64 orig_start = *offset;
2299 u64 len = i_size_read(inode);
2300 u64 last_end = 0;
2301 int ret = 0;
2302
2303 lockend = max_t(u64, root->sectorsize, lockend);
2304 if (lockend <= lockstart)
2305 lockend = lockstart + root->sectorsize;
2306
2307 lockend--;
2308 len = lockend - lockstart + 1;
2309
2310 len = max_t(u64, len, root->sectorsize);
2311 if (inode->i_size == 0)
2312 return -ENXIO;
2313
2314 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2315 &cached_state);
2316
2317 /*
2318 * Delalloc is such a pain. If we have a hole and we have pending
2319 * delalloc for a portion of the hole we will get back a hole that
2320 * exists for the entire range since it hasn't been actually written
2321 * yet. So to take care of this case we need to look for an extent just
2322 * before the position we want in case there is outstanding delalloc
2323 * going on here.
2324 */
2325 if (whence == SEEK_HOLE && start != 0) {
2326 if (start <= root->sectorsize)
2327 em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
2328 root->sectorsize, 0);
2329 else
2330 em = btrfs_get_extent_fiemap(inode, NULL, 0,
2331 start - root->sectorsize,
2332 root->sectorsize, 0);
2333 if (IS_ERR(em)) {
2334 ret = PTR_ERR(em);
2335 goto out;
2336 }
2337 last_end = em->start + em->len;
2338 if (em->block_start == EXTENT_MAP_DELALLOC)
2339 last_end = min_t(u64, last_end, inode->i_size);
2340 free_extent_map(em);
2341 }
2342
2343 while (1) {
2344 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2345 if (IS_ERR(em)) {
2346 ret = PTR_ERR(em);
2347 break;
2348 }
2349
2350 if (em->block_start == EXTENT_MAP_HOLE) {
2351 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2352 if (last_end <= orig_start) {
2353 free_extent_map(em);
2354 ret = -ENXIO;
2355 break;
2356 }
2357 }
2358
2359 if (whence == SEEK_HOLE) {
2360 *offset = start;
2361 free_extent_map(em);
2362 break;
2363 }
2364 } else {
2365 if (whence == SEEK_DATA) {
2366 if (em->block_start == EXTENT_MAP_DELALLOC) {
2367 if (start >= inode->i_size) {
2368 free_extent_map(em);
2369 ret = -ENXIO;
2370 break;
2371 }
2372 }
2373
2374 if (!test_bit(EXTENT_FLAG_PREALLOC,
2375 &em->flags)) {
2376 *offset = start;
2377 free_extent_map(em);
2378 break;
2379 }
2380 }
2381 }
2382
2383 start = em->start + em->len;
2384 last_end = em->start + em->len;
2385
2386 if (em->block_start == EXTENT_MAP_DELALLOC)
2387 last_end = min_t(u64, last_end, inode->i_size);
2388
2389 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2390 free_extent_map(em);
2391 ret = -ENXIO;
2392 break;
2393 }
2394 free_extent_map(em);
2395 cond_resched();
2396 }
2397 if (!ret)
2398 *offset = min(*offset, inode->i_size);
2399 out:
2400 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2401 &cached_state, GFP_NOFS);
2402 return ret;
2403 }
2404
2405 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2406 {
2407 struct inode *inode = file->f_mapping->host;
2408 int ret;
2409
2410 mutex_lock(&inode->i_mutex);
2411 switch (whence) {
2412 case SEEK_END:
2413 case SEEK_CUR:
2414 offset = generic_file_llseek(file, offset, whence);
2415 goto out;
2416 case SEEK_DATA:
2417 case SEEK_HOLE:
2418 if (offset >= i_size_read(inode)) {
2419 mutex_unlock(&inode->i_mutex);
2420 return -ENXIO;
2421 }
2422
2423 ret = find_desired_extent(inode, &offset, whence);
2424 if (ret) {
2425 mutex_unlock(&inode->i_mutex);
2426 return ret;
2427 }
2428 }
2429
2430 if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
2431 offset = -EINVAL;
2432 goto out;
2433 }
2434 if (offset > inode->i_sb->s_maxbytes) {
2435 offset = -EINVAL;
2436 goto out;
2437 }
2438
2439 /* Special lock needed here? */
2440 if (offset != file->f_pos) {
2441 file->f_pos = offset;
2442 file->f_version = 0;
2443 }
2444 out:
2445 mutex_unlock(&inode->i_mutex);
2446 return offset;
2447 }
2448
2449 const struct file_operations btrfs_file_operations = {
2450 .llseek = btrfs_file_llseek,
2451 .read = do_sync_read,
2452 .write = do_sync_write,
2453 .aio_read = generic_file_aio_read,
2454 .splice_read = generic_file_splice_read,
2455 .aio_write = btrfs_file_aio_write,
2456 .mmap = btrfs_file_mmap,
2457 .open = generic_file_open,
2458 .release = btrfs_release_file,
2459 .fsync = btrfs_sync_file,
2460 .fallocate = btrfs_fallocate,
2461 .unlocked_ioctl = btrfs_ioctl,
2462 #ifdef CONFIG_COMPAT
2463 .compat_ioctl = btrfs_ioctl,
2464 #endif
2465 };
2466
2467 void btrfs_auto_defrag_exit(void)
2468 {
2469 if (btrfs_inode_defrag_cachep)
2470 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2471 }
2472
2473 int btrfs_auto_defrag_init(void)
2474 {
2475 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2476 sizeof(struct inode_defrag), 0,
2477 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2478 NULL);
2479 if (!btrfs_inode_defrag_cachep)
2480 return -ENOMEM;
2481
2482 return 0;
2483 }
This page took 0.088551 seconds and 5 git commands to generate.