Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[deliverable/linux.git] / fs / btrfs / file.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include <linux/btrfs.h>
34 #include <linux/uio.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43 #include "qgroup.h"
44 #include "compression.h"
45
46 static struct kmem_cache *btrfs_inode_defrag_cachep;
47 /*
48 * when auto defrag is enabled we
49 * queue up these defrag structs to remember which
50 * inodes need defragging passes
51 */
52 struct inode_defrag {
53 struct rb_node rb_node;
54 /* objectid */
55 u64 ino;
56 /*
57 * transid where the defrag was added, we search for
58 * extents newer than this
59 */
60 u64 transid;
61
62 /* root objectid */
63 u64 root;
64
65 /* last offset we were able to defrag */
66 u64 last_offset;
67
68 /* if we've wrapped around back to zero once already */
69 int cycled;
70 };
71
72 static int __compare_inode_defrag(struct inode_defrag *defrag1,
73 struct inode_defrag *defrag2)
74 {
75 if (defrag1->root > defrag2->root)
76 return 1;
77 else if (defrag1->root < defrag2->root)
78 return -1;
79 else if (defrag1->ino > defrag2->ino)
80 return 1;
81 else if (defrag1->ino < defrag2->ino)
82 return -1;
83 else
84 return 0;
85 }
86
87 /* pop a record for an inode into the defrag tree. The lock
88 * must be held already
89 *
90 * If you're inserting a record for an older transid than an
91 * existing record, the transid already in the tree is lowered
92 *
93 * If an existing record is found the defrag item you
94 * pass in is freed
95 */
96 static int __btrfs_add_inode_defrag(struct inode *inode,
97 struct inode_defrag *defrag)
98 {
99 struct btrfs_root *root = BTRFS_I(inode)->root;
100 struct inode_defrag *entry;
101 struct rb_node **p;
102 struct rb_node *parent = NULL;
103 int ret;
104
105 p = &root->fs_info->defrag_inodes.rb_node;
106 while (*p) {
107 parent = *p;
108 entry = rb_entry(parent, struct inode_defrag, rb_node);
109
110 ret = __compare_inode_defrag(defrag, entry);
111 if (ret < 0)
112 p = &parent->rb_left;
113 else if (ret > 0)
114 p = &parent->rb_right;
115 else {
116 /* if we're reinserting an entry for
117 * an old defrag run, make sure to
118 * lower the transid of our existing record
119 */
120 if (defrag->transid < entry->transid)
121 entry->transid = defrag->transid;
122 if (defrag->last_offset > entry->last_offset)
123 entry->last_offset = defrag->last_offset;
124 return -EEXIST;
125 }
126 }
127 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
128 rb_link_node(&defrag->rb_node, parent, p);
129 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
130 return 0;
131 }
132
133 static inline int __need_auto_defrag(struct btrfs_root *root)
134 {
135 if (!btrfs_test_opt(root, AUTO_DEFRAG))
136 return 0;
137
138 if (btrfs_fs_closing(root->fs_info))
139 return 0;
140
141 return 1;
142 }
143
144 /*
145 * insert a defrag record for this inode if auto defrag is
146 * enabled
147 */
148 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
149 struct inode *inode)
150 {
151 struct btrfs_root *root = BTRFS_I(inode)->root;
152 struct inode_defrag *defrag;
153 u64 transid;
154 int ret;
155
156 if (!__need_auto_defrag(root))
157 return 0;
158
159 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
160 return 0;
161
162 if (trans)
163 transid = trans->transid;
164 else
165 transid = BTRFS_I(inode)->root->last_trans;
166
167 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
168 if (!defrag)
169 return -ENOMEM;
170
171 defrag->ino = btrfs_ino(inode);
172 defrag->transid = transid;
173 defrag->root = root->root_key.objectid;
174
175 spin_lock(&root->fs_info->defrag_inodes_lock);
176 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
177 /*
178 * If we set IN_DEFRAG flag and evict the inode from memory,
179 * and then re-read this inode, this new inode doesn't have
180 * IN_DEFRAG flag. At the case, we may find the existed defrag.
181 */
182 ret = __btrfs_add_inode_defrag(inode, defrag);
183 if (ret)
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 } else {
186 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
187 }
188 spin_unlock(&root->fs_info->defrag_inodes_lock);
189 return 0;
190 }
191
192 /*
193 * Requeue the defrag object. If there is a defrag object that points to
194 * the same inode in the tree, we will merge them together (by
195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
196 */
197 static void btrfs_requeue_inode_defrag(struct inode *inode,
198 struct inode_defrag *defrag)
199 {
200 struct btrfs_root *root = BTRFS_I(inode)->root;
201 int ret;
202
203 if (!__need_auto_defrag(root))
204 goto out;
205
206 /*
207 * Here we don't check the IN_DEFRAG flag, because we need merge
208 * them together.
209 */
210 spin_lock(&root->fs_info->defrag_inodes_lock);
211 ret = __btrfs_add_inode_defrag(inode, defrag);
212 spin_unlock(&root->fs_info->defrag_inodes_lock);
213 if (ret)
214 goto out;
215 return;
216 out:
217 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
218 }
219
220 /*
221 * pick the defragable inode that we want, if it doesn't exist, we will get
222 * the next one.
223 */
224 static struct inode_defrag *
225 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
226 {
227 struct inode_defrag *entry = NULL;
228 struct inode_defrag tmp;
229 struct rb_node *p;
230 struct rb_node *parent = NULL;
231 int ret;
232
233 tmp.ino = ino;
234 tmp.root = root;
235
236 spin_lock(&fs_info->defrag_inodes_lock);
237 p = fs_info->defrag_inodes.rb_node;
238 while (p) {
239 parent = p;
240 entry = rb_entry(parent, struct inode_defrag, rb_node);
241
242 ret = __compare_inode_defrag(&tmp, entry);
243 if (ret < 0)
244 p = parent->rb_left;
245 else if (ret > 0)
246 p = parent->rb_right;
247 else
248 goto out;
249 }
250
251 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
252 parent = rb_next(parent);
253 if (parent)
254 entry = rb_entry(parent, struct inode_defrag, rb_node);
255 else
256 entry = NULL;
257 }
258 out:
259 if (entry)
260 rb_erase(parent, &fs_info->defrag_inodes);
261 spin_unlock(&fs_info->defrag_inodes_lock);
262 return entry;
263 }
264
265 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
266 {
267 struct inode_defrag *defrag;
268 struct rb_node *node;
269
270 spin_lock(&fs_info->defrag_inodes_lock);
271 node = rb_first(&fs_info->defrag_inodes);
272 while (node) {
273 rb_erase(node, &fs_info->defrag_inodes);
274 defrag = rb_entry(node, struct inode_defrag, rb_node);
275 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
276
277 cond_resched_lock(&fs_info->defrag_inodes_lock);
278
279 node = rb_first(&fs_info->defrag_inodes);
280 }
281 spin_unlock(&fs_info->defrag_inodes_lock);
282 }
283
284 #define BTRFS_DEFRAG_BATCH 1024
285
286 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
287 struct inode_defrag *defrag)
288 {
289 struct btrfs_root *inode_root;
290 struct inode *inode;
291 struct btrfs_key key;
292 struct btrfs_ioctl_defrag_range_args range;
293 int num_defrag;
294 int index;
295 int ret;
296
297 /* get the inode */
298 key.objectid = defrag->root;
299 key.type = BTRFS_ROOT_ITEM_KEY;
300 key.offset = (u64)-1;
301
302 index = srcu_read_lock(&fs_info->subvol_srcu);
303
304 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
305 if (IS_ERR(inode_root)) {
306 ret = PTR_ERR(inode_root);
307 goto cleanup;
308 }
309
310 key.objectid = defrag->ino;
311 key.type = BTRFS_INODE_ITEM_KEY;
312 key.offset = 0;
313 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
314 if (IS_ERR(inode)) {
315 ret = PTR_ERR(inode);
316 goto cleanup;
317 }
318 srcu_read_unlock(&fs_info->subvol_srcu, index);
319
320 /* do a chunk of defrag */
321 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
322 memset(&range, 0, sizeof(range));
323 range.len = (u64)-1;
324 range.start = defrag->last_offset;
325
326 sb_start_write(fs_info->sb);
327 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
328 BTRFS_DEFRAG_BATCH);
329 sb_end_write(fs_info->sb);
330 /*
331 * if we filled the whole defrag batch, there
332 * must be more work to do. Queue this defrag
333 * again
334 */
335 if (num_defrag == BTRFS_DEFRAG_BATCH) {
336 defrag->last_offset = range.start;
337 btrfs_requeue_inode_defrag(inode, defrag);
338 } else if (defrag->last_offset && !defrag->cycled) {
339 /*
340 * we didn't fill our defrag batch, but
341 * we didn't start at zero. Make sure we loop
342 * around to the start of the file.
343 */
344 defrag->last_offset = 0;
345 defrag->cycled = 1;
346 btrfs_requeue_inode_defrag(inode, defrag);
347 } else {
348 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
349 }
350
351 iput(inode);
352 return 0;
353 cleanup:
354 srcu_read_unlock(&fs_info->subvol_srcu, index);
355 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
356 return ret;
357 }
358
359 /*
360 * run through the list of inodes in the FS that need
361 * defragging
362 */
363 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
364 {
365 struct inode_defrag *defrag;
366 u64 first_ino = 0;
367 u64 root_objectid = 0;
368
369 atomic_inc(&fs_info->defrag_running);
370 while (1) {
371 /* Pause the auto defragger. */
372 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
373 &fs_info->fs_state))
374 break;
375
376 if (!__need_auto_defrag(fs_info->tree_root))
377 break;
378
379 /* find an inode to defrag */
380 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
381 first_ino);
382 if (!defrag) {
383 if (root_objectid || first_ino) {
384 root_objectid = 0;
385 first_ino = 0;
386 continue;
387 } else {
388 break;
389 }
390 }
391
392 first_ino = defrag->ino + 1;
393 root_objectid = defrag->root;
394
395 __btrfs_run_defrag_inode(fs_info, defrag);
396 }
397 atomic_dec(&fs_info->defrag_running);
398
399 /*
400 * during unmount, we use the transaction_wait queue to
401 * wait for the defragger to stop
402 */
403 wake_up(&fs_info->transaction_wait);
404 return 0;
405 }
406
407 /* simple helper to fault in pages and copy. This should go away
408 * and be replaced with calls into generic code.
409 */
410 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
411 struct page **prepared_pages,
412 struct iov_iter *i)
413 {
414 size_t copied = 0;
415 size_t total_copied = 0;
416 int pg = 0;
417 int offset = pos & (PAGE_SIZE - 1);
418
419 while (write_bytes > 0) {
420 size_t count = min_t(size_t,
421 PAGE_SIZE - offset, write_bytes);
422 struct page *page = prepared_pages[pg];
423 /*
424 * Copy data from userspace to the current page
425 */
426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
427
428 /* Flush processor's dcache for this page */
429 flush_dcache_page(page);
430
431 /*
432 * if we get a partial write, we can end up with
433 * partially up to date pages. These add
434 * a lot of complexity, so make sure they don't
435 * happen by forcing this copy to be retried.
436 *
437 * The rest of the btrfs_file_write code will fall
438 * back to page at a time copies after we return 0.
439 */
440 if (!PageUptodate(page) && copied < count)
441 copied = 0;
442
443 iov_iter_advance(i, copied);
444 write_bytes -= copied;
445 total_copied += copied;
446
447 /* Return to btrfs_file_write_iter to fault page */
448 if (unlikely(copied == 0))
449 break;
450
451 if (copied < PAGE_SIZE - offset) {
452 offset += copied;
453 } else {
454 pg++;
455 offset = 0;
456 }
457 }
458 return total_copied;
459 }
460
461 /*
462 * unlocks pages after btrfs_file_write is done with them
463 */
464 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
465 {
466 size_t i;
467 for (i = 0; i < num_pages; i++) {
468 /* page checked is some magic around finding pages that
469 * have been modified without going through btrfs_set_page_dirty
470 * clear it here. There should be no need to mark the pages
471 * accessed as prepare_pages should have marked them accessed
472 * in prepare_pages via find_or_create_page()
473 */
474 ClearPageChecked(pages[i]);
475 unlock_page(pages[i]);
476 put_page(pages[i]);
477 }
478 }
479
480 /*
481 * after copy_from_user, pages need to be dirtied and we need to make
482 * sure holes are created between the current EOF and the start of
483 * any next extents (if required).
484 *
485 * this also makes the decision about creating an inline extent vs
486 * doing real data extents, marking pages dirty and delalloc as required.
487 */
488 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
489 struct page **pages, size_t num_pages,
490 loff_t pos, size_t write_bytes,
491 struct extent_state **cached)
492 {
493 int err = 0;
494 int i;
495 u64 num_bytes;
496 u64 start_pos;
497 u64 end_of_last_block;
498 u64 end_pos = pos + write_bytes;
499 loff_t isize = i_size_read(inode);
500
501 start_pos = pos & ~((u64)root->sectorsize - 1);
502 num_bytes = round_up(write_bytes + pos - start_pos, root->sectorsize);
503
504 end_of_last_block = start_pos + num_bytes - 1;
505 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
506 cached);
507 if (err)
508 return err;
509
510 for (i = 0; i < num_pages; i++) {
511 struct page *p = pages[i];
512 SetPageUptodate(p);
513 ClearPageChecked(p);
514 set_page_dirty(p);
515 }
516
517 /*
518 * we've only changed i_size in ram, and we haven't updated
519 * the disk i_size. There is no need to log the inode
520 * at this time.
521 */
522 if (end_pos > isize)
523 i_size_write(inode, end_pos);
524 return 0;
525 }
526
527 /*
528 * this drops all the extents in the cache that intersect the range
529 * [start, end]. Existing extents are split as required.
530 */
531 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
532 int skip_pinned)
533 {
534 struct extent_map *em;
535 struct extent_map *split = NULL;
536 struct extent_map *split2 = NULL;
537 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538 u64 len = end - start + 1;
539 u64 gen;
540 int ret;
541 int testend = 1;
542 unsigned long flags;
543 int compressed = 0;
544 bool modified;
545
546 WARN_ON(end < start);
547 if (end == (u64)-1) {
548 len = (u64)-1;
549 testend = 0;
550 }
551 while (1) {
552 int no_splits = 0;
553
554 modified = false;
555 if (!split)
556 split = alloc_extent_map();
557 if (!split2)
558 split2 = alloc_extent_map();
559 if (!split || !split2)
560 no_splits = 1;
561
562 write_lock(&em_tree->lock);
563 em = lookup_extent_mapping(em_tree, start, len);
564 if (!em) {
565 write_unlock(&em_tree->lock);
566 break;
567 }
568 flags = em->flags;
569 gen = em->generation;
570 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
571 if (testend && em->start + em->len >= start + len) {
572 free_extent_map(em);
573 write_unlock(&em_tree->lock);
574 break;
575 }
576 start = em->start + em->len;
577 if (testend)
578 len = start + len - (em->start + em->len);
579 free_extent_map(em);
580 write_unlock(&em_tree->lock);
581 continue;
582 }
583 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
584 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
585 clear_bit(EXTENT_FLAG_LOGGING, &flags);
586 modified = !list_empty(&em->list);
587 if (no_splits)
588 goto next;
589
590 if (em->start < start) {
591 split->start = em->start;
592 split->len = start - em->start;
593
594 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
595 split->orig_start = em->orig_start;
596 split->block_start = em->block_start;
597
598 if (compressed)
599 split->block_len = em->block_len;
600 else
601 split->block_len = split->len;
602 split->orig_block_len = max(split->block_len,
603 em->orig_block_len);
604 split->ram_bytes = em->ram_bytes;
605 } else {
606 split->orig_start = split->start;
607 split->block_len = 0;
608 split->block_start = em->block_start;
609 split->orig_block_len = 0;
610 split->ram_bytes = split->len;
611 }
612
613 split->generation = gen;
614 split->bdev = em->bdev;
615 split->flags = flags;
616 split->compress_type = em->compress_type;
617 replace_extent_mapping(em_tree, em, split, modified);
618 free_extent_map(split);
619 split = split2;
620 split2 = NULL;
621 }
622 if (testend && em->start + em->len > start + len) {
623 u64 diff = start + len - em->start;
624
625 split->start = start + len;
626 split->len = em->start + em->len - (start + len);
627 split->bdev = em->bdev;
628 split->flags = flags;
629 split->compress_type = em->compress_type;
630 split->generation = gen;
631
632 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
633 split->orig_block_len = max(em->block_len,
634 em->orig_block_len);
635
636 split->ram_bytes = em->ram_bytes;
637 if (compressed) {
638 split->block_len = em->block_len;
639 split->block_start = em->block_start;
640 split->orig_start = em->orig_start;
641 } else {
642 split->block_len = split->len;
643 split->block_start = em->block_start
644 + diff;
645 split->orig_start = em->orig_start;
646 }
647 } else {
648 split->ram_bytes = split->len;
649 split->orig_start = split->start;
650 split->block_len = 0;
651 split->block_start = em->block_start;
652 split->orig_block_len = 0;
653 }
654
655 if (extent_map_in_tree(em)) {
656 replace_extent_mapping(em_tree, em, split,
657 modified);
658 } else {
659 ret = add_extent_mapping(em_tree, split,
660 modified);
661 ASSERT(ret == 0); /* Logic error */
662 }
663 free_extent_map(split);
664 split = NULL;
665 }
666 next:
667 if (extent_map_in_tree(em))
668 remove_extent_mapping(em_tree, em);
669 write_unlock(&em_tree->lock);
670
671 /* once for us */
672 free_extent_map(em);
673 /* once for the tree*/
674 free_extent_map(em);
675 }
676 if (split)
677 free_extent_map(split);
678 if (split2)
679 free_extent_map(split2);
680 }
681
682 /*
683 * this is very complex, but the basic idea is to drop all extents
684 * in the range start - end. hint_block is filled in with a block number
685 * that would be a good hint to the block allocator for this file.
686 *
687 * If an extent intersects the range but is not entirely inside the range
688 * it is either truncated or split. Anything entirely inside the range
689 * is deleted from the tree.
690 */
691 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
692 struct btrfs_root *root, struct inode *inode,
693 struct btrfs_path *path, u64 start, u64 end,
694 u64 *drop_end, int drop_cache,
695 int replace_extent,
696 u32 extent_item_size,
697 int *key_inserted)
698 {
699 struct extent_buffer *leaf;
700 struct btrfs_file_extent_item *fi;
701 struct btrfs_key key;
702 struct btrfs_key new_key;
703 u64 ino = btrfs_ino(inode);
704 u64 search_start = start;
705 u64 disk_bytenr = 0;
706 u64 num_bytes = 0;
707 u64 extent_offset = 0;
708 u64 extent_end = 0;
709 int del_nr = 0;
710 int del_slot = 0;
711 int extent_type;
712 int recow;
713 int ret;
714 int modify_tree = -1;
715 int update_refs;
716 int found = 0;
717 int leafs_visited = 0;
718
719 if (drop_cache)
720 btrfs_drop_extent_cache(inode, start, end - 1, 0);
721
722 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
723 modify_tree = 0;
724
725 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
726 root == root->fs_info->tree_root);
727 while (1) {
728 recow = 0;
729 ret = btrfs_lookup_file_extent(trans, root, path, ino,
730 search_start, modify_tree);
731 if (ret < 0)
732 break;
733 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
734 leaf = path->nodes[0];
735 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
736 if (key.objectid == ino &&
737 key.type == BTRFS_EXTENT_DATA_KEY)
738 path->slots[0]--;
739 }
740 ret = 0;
741 leafs_visited++;
742 next_slot:
743 leaf = path->nodes[0];
744 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
745 BUG_ON(del_nr > 0);
746 ret = btrfs_next_leaf(root, path);
747 if (ret < 0)
748 break;
749 if (ret > 0) {
750 ret = 0;
751 break;
752 }
753 leafs_visited++;
754 leaf = path->nodes[0];
755 recow = 1;
756 }
757
758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
759
760 if (key.objectid > ino)
761 break;
762 if (WARN_ON_ONCE(key.objectid < ino) ||
763 key.type < BTRFS_EXTENT_DATA_KEY) {
764 ASSERT(del_nr == 0);
765 path->slots[0]++;
766 goto next_slot;
767 }
768 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
769 break;
770
771 fi = btrfs_item_ptr(leaf, path->slots[0],
772 struct btrfs_file_extent_item);
773 extent_type = btrfs_file_extent_type(leaf, fi);
774
775 if (extent_type == BTRFS_FILE_EXTENT_REG ||
776 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
777 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
778 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
779 extent_offset = btrfs_file_extent_offset(leaf, fi);
780 extent_end = key.offset +
781 btrfs_file_extent_num_bytes(leaf, fi);
782 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
783 extent_end = key.offset +
784 btrfs_file_extent_inline_len(leaf,
785 path->slots[0], fi);
786 } else {
787 /* can't happen */
788 BUG();
789 }
790
791 /*
792 * Don't skip extent items representing 0 byte lengths. They
793 * used to be created (bug) if while punching holes we hit
794 * -ENOSPC condition. So if we find one here, just ensure we
795 * delete it, otherwise we would insert a new file extent item
796 * with the same key (offset) as that 0 bytes length file
797 * extent item in the call to setup_items_for_insert() later
798 * in this function.
799 */
800 if (extent_end == key.offset && extent_end >= search_start)
801 goto delete_extent_item;
802
803 if (extent_end <= search_start) {
804 path->slots[0]++;
805 goto next_slot;
806 }
807
808 found = 1;
809 search_start = max(key.offset, start);
810 if (recow || !modify_tree) {
811 modify_tree = -1;
812 btrfs_release_path(path);
813 continue;
814 }
815
816 /*
817 * | - range to drop - |
818 * | -------- extent -------- |
819 */
820 if (start > key.offset && end < extent_end) {
821 BUG_ON(del_nr > 0);
822 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
823 ret = -EOPNOTSUPP;
824 break;
825 }
826
827 memcpy(&new_key, &key, sizeof(new_key));
828 new_key.offset = start;
829 ret = btrfs_duplicate_item(trans, root, path,
830 &new_key);
831 if (ret == -EAGAIN) {
832 btrfs_release_path(path);
833 continue;
834 }
835 if (ret < 0)
836 break;
837
838 leaf = path->nodes[0];
839 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
840 struct btrfs_file_extent_item);
841 btrfs_set_file_extent_num_bytes(leaf, fi,
842 start - key.offset);
843
844 fi = btrfs_item_ptr(leaf, path->slots[0],
845 struct btrfs_file_extent_item);
846
847 extent_offset += start - key.offset;
848 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
849 btrfs_set_file_extent_num_bytes(leaf, fi,
850 extent_end - start);
851 btrfs_mark_buffer_dirty(leaf);
852
853 if (update_refs && disk_bytenr > 0) {
854 ret = btrfs_inc_extent_ref(trans, root,
855 disk_bytenr, num_bytes, 0,
856 root->root_key.objectid,
857 new_key.objectid,
858 start - extent_offset);
859 BUG_ON(ret); /* -ENOMEM */
860 }
861 key.offset = start;
862 }
863 /*
864 * | ---- range to drop ----- |
865 * | -------- extent -------- |
866 */
867 if (start <= key.offset && end < extent_end) {
868 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
869 ret = -EOPNOTSUPP;
870 break;
871 }
872
873 memcpy(&new_key, &key, sizeof(new_key));
874 new_key.offset = end;
875 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
876
877 extent_offset += end - key.offset;
878 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
879 btrfs_set_file_extent_num_bytes(leaf, fi,
880 extent_end - end);
881 btrfs_mark_buffer_dirty(leaf);
882 if (update_refs && disk_bytenr > 0)
883 inode_sub_bytes(inode, end - key.offset);
884 break;
885 }
886
887 search_start = extent_end;
888 /*
889 * | ---- range to drop ----- |
890 * | -------- extent -------- |
891 */
892 if (start > key.offset && end >= extent_end) {
893 BUG_ON(del_nr > 0);
894 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
895 ret = -EOPNOTSUPP;
896 break;
897 }
898
899 btrfs_set_file_extent_num_bytes(leaf, fi,
900 start - key.offset);
901 btrfs_mark_buffer_dirty(leaf);
902 if (update_refs && disk_bytenr > 0)
903 inode_sub_bytes(inode, extent_end - start);
904 if (end == extent_end)
905 break;
906
907 path->slots[0]++;
908 goto next_slot;
909 }
910
911 /*
912 * | ---- range to drop ----- |
913 * | ------ extent ------ |
914 */
915 if (start <= key.offset && end >= extent_end) {
916 delete_extent_item:
917 if (del_nr == 0) {
918 del_slot = path->slots[0];
919 del_nr = 1;
920 } else {
921 BUG_ON(del_slot + del_nr != path->slots[0]);
922 del_nr++;
923 }
924
925 if (update_refs &&
926 extent_type == BTRFS_FILE_EXTENT_INLINE) {
927 inode_sub_bytes(inode,
928 extent_end - key.offset);
929 extent_end = ALIGN(extent_end,
930 root->sectorsize);
931 } else if (update_refs && disk_bytenr > 0) {
932 ret = btrfs_free_extent(trans, root,
933 disk_bytenr, num_bytes, 0,
934 root->root_key.objectid,
935 key.objectid, key.offset -
936 extent_offset);
937 BUG_ON(ret); /* -ENOMEM */
938 inode_sub_bytes(inode,
939 extent_end - key.offset);
940 }
941
942 if (end == extent_end)
943 break;
944
945 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
946 path->slots[0]++;
947 goto next_slot;
948 }
949
950 ret = btrfs_del_items(trans, root, path, del_slot,
951 del_nr);
952 if (ret) {
953 btrfs_abort_transaction(trans, root, ret);
954 break;
955 }
956
957 del_nr = 0;
958 del_slot = 0;
959
960 btrfs_release_path(path);
961 continue;
962 }
963
964 BUG_ON(1);
965 }
966
967 if (!ret && del_nr > 0) {
968 /*
969 * Set path->slots[0] to first slot, so that after the delete
970 * if items are move off from our leaf to its immediate left or
971 * right neighbor leafs, we end up with a correct and adjusted
972 * path->slots[0] for our insertion (if replace_extent != 0).
973 */
974 path->slots[0] = del_slot;
975 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
976 if (ret)
977 btrfs_abort_transaction(trans, root, ret);
978 }
979
980 leaf = path->nodes[0];
981 /*
982 * If btrfs_del_items() was called, it might have deleted a leaf, in
983 * which case it unlocked our path, so check path->locks[0] matches a
984 * write lock.
985 */
986 if (!ret && replace_extent && leafs_visited == 1 &&
987 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
988 path->locks[0] == BTRFS_WRITE_LOCK) &&
989 btrfs_leaf_free_space(root, leaf) >=
990 sizeof(struct btrfs_item) + extent_item_size) {
991
992 key.objectid = ino;
993 key.type = BTRFS_EXTENT_DATA_KEY;
994 key.offset = start;
995 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
996 struct btrfs_key slot_key;
997
998 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
999 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1000 path->slots[0]++;
1001 }
1002 setup_items_for_insert(root, path, &key,
1003 &extent_item_size,
1004 extent_item_size,
1005 sizeof(struct btrfs_item) +
1006 extent_item_size, 1);
1007 *key_inserted = 1;
1008 }
1009
1010 if (!replace_extent || !(*key_inserted))
1011 btrfs_release_path(path);
1012 if (drop_end)
1013 *drop_end = found ? min(end, extent_end) : end;
1014 return ret;
1015 }
1016
1017 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1018 struct btrfs_root *root, struct inode *inode, u64 start,
1019 u64 end, int drop_cache)
1020 {
1021 struct btrfs_path *path;
1022 int ret;
1023
1024 path = btrfs_alloc_path();
1025 if (!path)
1026 return -ENOMEM;
1027 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1028 drop_cache, 0, 0, NULL);
1029 btrfs_free_path(path);
1030 return ret;
1031 }
1032
1033 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1034 u64 objectid, u64 bytenr, u64 orig_offset,
1035 u64 *start, u64 *end)
1036 {
1037 struct btrfs_file_extent_item *fi;
1038 struct btrfs_key key;
1039 u64 extent_end;
1040
1041 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1042 return 0;
1043
1044 btrfs_item_key_to_cpu(leaf, &key, slot);
1045 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1046 return 0;
1047
1048 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1049 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1050 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1051 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1052 btrfs_file_extent_compression(leaf, fi) ||
1053 btrfs_file_extent_encryption(leaf, fi) ||
1054 btrfs_file_extent_other_encoding(leaf, fi))
1055 return 0;
1056
1057 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1058 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1059 return 0;
1060
1061 *start = key.offset;
1062 *end = extent_end;
1063 return 1;
1064 }
1065
1066 /*
1067 * Mark extent in the range start - end as written.
1068 *
1069 * This changes extent type from 'pre-allocated' to 'regular'. If only
1070 * part of extent is marked as written, the extent will be split into
1071 * two or three.
1072 */
1073 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1074 struct inode *inode, u64 start, u64 end)
1075 {
1076 struct btrfs_root *root = BTRFS_I(inode)->root;
1077 struct extent_buffer *leaf;
1078 struct btrfs_path *path;
1079 struct btrfs_file_extent_item *fi;
1080 struct btrfs_key key;
1081 struct btrfs_key new_key;
1082 u64 bytenr;
1083 u64 num_bytes;
1084 u64 extent_end;
1085 u64 orig_offset;
1086 u64 other_start;
1087 u64 other_end;
1088 u64 split;
1089 int del_nr = 0;
1090 int del_slot = 0;
1091 int recow;
1092 int ret;
1093 u64 ino = btrfs_ino(inode);
1094
1095 path = btrfs_alloc_path();
1096 if (!path)
1097 return -ENOMEM;
1098 again:
1099 recow = 0;
1100 split = start;
1101 key.objectid = ino;
1102 key.type = BTRFS_EXTENT_DATA_KEY;
1103 key.offset = split;
1104
1105 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1106 if (ret < 0)
1107 goto out;
1108 if (ret > 0 && path->slots[0] > 0)
1109 path->slots[0]--;
1110
1111 leaf = path->nodes[0];
1112 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1113 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1114 fi = btrfs_item_ptr(leaf, path->slots[0],
1115 struct btrfs_file_extent_item);
1116 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1117 BTRFS_FILE_EXTENT_PREALLOC);
1118 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1119 BUG_ON(key.offset > start || extent_end < end);
1120
1121 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1122 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1123 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1124 memcpy(&new_key, &key, sizeof(new_key));
1125
1126 if (start == key.offset && end < extent_end) {
1127 other_start = 0;
1128 other_end = start;
1129 if (extent_mergeable(leaf, path->slots[0] - 1,
1130 ino, bytenr, orig_offset,
1131 &other_start, &other_end)) {
1132 new_key.offset = end;
1133 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1134 fi = btrfs_item_ptr(leaf, path->slots[0],
1135 struct btrfs_file_extent_item);
1136 btrfs_set_file_extent_generation(leaf, fi,
1137 trans->transid);
1138 btrfs_set_file_extent_num_bytes(leaf, fi,
1139 extent_end - end);
1140 btrfs_set_file_extent_offset(leaf, fi,
1141 end - orig_offset);
1142 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1143 struct btrfs_file_extent_item);
1144 btrfs_set_file_extent_generation(leaf, fi,
1145 trans->transid);
1146 btrfs_set_file_extent_num_bytes(leaf, fi,
1147 end - other_start);
1148 btrfs_mark_buffer_dirty(leaf);
1149 goto out;
1150 }
1151 }
1152
1153 if (start > key.offset && end == extent_end) {
1154 other_start = end;
1155 other_end = 0;
1156 if (extent_mergeable(leaf, path->slots[0] + 1,
1157 ino, bytenr, orig_offset,
1158 &other_start, &other_end)) {
1159 fi = btrfs_item_ptr(leaf, path->slots[0],
1160 struct btrfs_file_extent_item);
1161 btrfs_set_file_extent_num_bytes(leaf, fi,
1162 start - key.offset);
1163 btrfs_set_file_extent_generation(leaf, fi,
1164 trans->transid);
1165 path->slots[0]++;
1166 new_key.offset = start;
1167 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1168
1169 fi = btrfs_item_ptr(leaf, path->slots[0],
1170 struct btrfs_file_extent_item);
1171 btrfs_set_file_extent_generation(leaf, fi,
1172 trans->transid);
1173 btrfs_set_file_extent_num_bytes(leaf, fi,
1174 other_end - start);
1175 btrfs_set_file_extent_offset(leaf, fi,
1176 start - orig_offset);
1177 btrfs_mark_buffer_dirty(leaf);
1178 goto out;
1179 }
1180 }
1181
1182 while (start > key.offset || end < extent_end) {
1183 if (key.offset == start)
1184 split = end;
1185
1186 new_key.offset = split;
1187 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1188 if (ret == -EAGAIN) {
1189 btrfs_release_path(path);
1190 goto again;
1191 }
1192 if (ret < 0) {
1193 btrfs_abort_transaction(trans, root, ret);
1194 goto out;
1195 }
1196
1197 leaf = path->nodes[0];
1198 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1199 struct btrfs_file_extent_item);
1200 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1201 btrfs_set_file_extent_num_bytes(leaf, fi,
1202 split - key.offset);
1203
1204 fi = btrfs_item_ptr(leaf, path->slots[0],
1205 struct btrfs_file_extent_item);
1206
1207 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1208 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1209 btrfs_set_file_extent_num_bytes(leaf, fi,
1210 extent_end - split);
1211 btrfs_mark_buffer_dirty(leaf);
1212
1213 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1214 root->root_key.objectid,
1215 ino, orig_offset);
1216 BUG_ON(ret); /* -ENOMEM */
1217
1218 if (split == start) {
1219 key.offset = start;
1220 } else {
1221 BUG_ON(start != key.offset);
1222 path->slots[0]--;
1223 extent_end = end;
1224 }
1225 recow = 1;
1226 }
1227
1228 other_start = end;
1229 other_end = 0;
1230 if (extent_mergeable(leaf, path->slots[0] + 1,
1231 ino, bytenr, orig_offset,
1232 &other_start, &other_end)) {
1233 if (recow) {
1234 btrfs_release_path(path);
1235 goto again;
1236 }
1237 extent_end = other_end;
1238 del_slot = path->slots[0] + 1;
1239 del_nr++;
1240 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1241 0, root->root_key.objectid,
1242 ino, orig_offset);
1243 BUG_ON(ret); /* -ENOMEM */
1244 }
1245 other_start = 0;
1246 other_end = start;
1247 if (extent_mergeable(leaf, path->slots[0] - 1,
1248 ino, bytenr, orig_offset,
1249 &other_start, &other_end)) {
1250 if (recow) {
1251 btrfs_release_path(path);
1252 goto again;
1253 }
1254 key.offset = other_start;
1255 del_slot = path->slots[0];
1256 del_nr++;
1257 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1258 0, root->root_key.objectid,
1259 ino, orig_offset);
1260 BUG_ON(ret); /* -ENOMEM */
1261 }
1262 if (del_nr == 0) {
1263 fi = btrfs_item_ptr(leaf, path->slots[0],
1264 struct btrfs_file_extent_item);
1265 btrfs_set_file_extent_type(leaf, fi,
1266 BTRFS_FILE_EXTENT_REG);
1267 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1268 btrfs_mark_buffer_dirty(leaf);
1269 } else {
1270 fi = btrfs_item_ptr(leaf, del_slot - 1,
1271 struct btrfs_file_extent_item);
1272 btrfs_set_file_extent_type(leaf, fi,
1273 BTRFS_FILE_EXTENT_REG);
1274 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1275 btrfs_set_file_extent_num_bytes(leaf, fi,
1276 extent_end - key.offset);
1277 btrfs_mark_buffer_dirty(leaf);
1278
1279 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1280 if (ret < 0) {
1281 btrfs_abort_transaction(trans, root, ret);
1282 goto out;
1283 }
1284 }
1285 out:
1286 btrfs_free_path(path);
1287 return 0;
1288 }
1289
1290 /*
1291 * on error we return an unlocked page and the error value
1292 * on success we return a locked page and 0
1293 */
1294 static int prepare_uptodate_page(struct inode *inode,
1295 struct page *page, u64 pos,
1296 bool force_uptodate)
1297 {
1298 int ret = 0;
1299
1300 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1301 !PageUptodate(page)) {
1302 ret = btrfs_readpage(NULL, page);
1303 if (ret)
1304 return ret;
1305 lock_page(page);
1306 if (!PageUptodate(page)) {
1307 unlock_page(page);
1308 return -EIO;
1309 }
1310 if (page->mapping != inode->i_mapping) {
1311 unlock_page(page);
1312 return -EAGAIN;
1313 }
1314 }
1315 return 0;
1316 }
1317
1318 /*
1319 * this just gets pages into the page cache and locks them down.
1320 */
1321 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1322 size_t num_pages, loff_t pos,
1323 size_t write_bytes, bool force_uptodate)
1324 {
1325 int i;
1326 unsigned long index = pos >> PAGE_SHIFT;
1327 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1328 int err = 0;
1329 int faili;
1330
1331 for (i = 0; i < num_pages; i++) {
1332 again:
1333 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1334 mask | __GFP_WRITE);
1335 if (!pages[i]) {
1336 faili = i - 1;
1337 err = -ENOMEM;
1338 goto fail;
1339 }
1340
1341 if (i == 0)
1342 err = prepare_uptodate_page(inode, pages[i], pos,
1343 force_uptodate);
1344 if (!err && i == num_pages - 1)
1345 err = prepare_uptodate_page(inode, pages[i],
1346 pos + write_bytes, false);
1347 if (err) {
1348 put_page(pages[i]);
1349 if (err == -EAGAIN) {
1350 err = 0;
1351 goto again;
1352 }
1353 faili = i - 1;
1354 goto fail;
1355 }
1356 wait_on_page_writeback(pages[i]);
1357 }
1358
1359 return 0;
1360 fail:
1361 while (faili >= 0) {
1362 unlock_page(pages[faili]);
1363 put_page(pages[faili]);
1364 faili--;
1365 }
1366 return err;
1367
1368 }
1369
1370 /*
1371 * This function locks the extent and properly waits for data=ordered extents
1372 * to finish before allowing the pages to be modified if need.
1373 *
1374 * The return value:
1375 * 1 - the extent is locked
1376 * 0 - the extent is not locked, and everything is OK
1377 * -EAGAIN - need re-prepare the pages
1378 * the other < 0 number - Something wrong happens
1379 */
1380 static noinline int
1381 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1382 size_t num_pages, loff_t pos,
1383 size_t write_bytes,
1384 u64 *lockstart, u64 *lockend,
1385 struct extent_state **cached_state)
1386 {
1387 struct btrfs_root *root = BTRFS_I(inode)->root;
1388 u64 start_pos;
1389 u64 last_pos;
1390 int i;
1391 int ret = 0;
1392
1393 start_pos = round_down(pos, root->sectorsize);
1394 last_pos = start_pos
1395 + round_up(pos + write_bytes - start_pos, root->sectorsize) - 1;
1396
1397 if (start_pos < inode->i_size) {
1398 struct btrfs_ordered_extent *ordered;
1399 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1400 start_pos, last_pos, cached_state);
1401 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1402 last_pos - start_pos + 1);
1403 if (ordered &&
1404 ordered->file_offset + ordered->len > start_pos &&
1405 ordered->file_offset <= last_pos) {
1406 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1407 start_pos, last_pos,
1408 cached_state, GFP_NOFS);
1409 for (i = 0; i < num_pages; i++) {
1410 unlock_page(pages[i]);
1411 put_page(pages[i]);
1412 }
1413 btrfs_start_ordered_extent(inode, ordered, 1);
1414 btrfs_put_ordered_extent(ordered);
1415 return -EAGAIN;
1416 }
1417 if (ordered)
1418 btrfs_put_ordered_extent(ordered);
1419
1420 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1421 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1422 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1423 0, 0, cached_state, GFP_NOFS);
1424 *lockstart = start_pos;
1425 *lockend = last_pos;
1426 ret = 1;
1427 }
1428
1429 for (i = 0; i < num_pages; i++) {
1430 if (clear_page_dirty_for_io(pages[i]))
1431 account_page_redirty(pages[i]);
1432 set_page_extent_mapped(pages[i]);
1433 WARN_ON(!PageLocked(pages[i]));
1434 }
1435
1436 return ret;
1437 }
1438
1439 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1440 size_t *write_bytes)
1441 {
1442 struct btrfs_root *root = BTRFS_I(inode)->root;
1443 struct btrfs_ordered_extent *ordered;
1444 u64 lockstart, lockend;
1445 u64 num_bytes;
1446 int ret;
1447
1448 ret = btrfs_start_write_no_snapshoting(root);
1449 if (!ret)
1450 return -ENOSPC;
1451
1452 lockstart = round_down(pos, root->sectorsize);
1453 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1454
1455 while (1) {
1456 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1457 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1458 lockend - lockstart + 1);
1459 if (!ordered) {
1460 break;
1461 }
1462 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1463 btrfs_start_ordered_extent(inode, ordered, 1);
1464 btrfs_put_ordered_extent(ordered);
1465 }
1466
1467 num_bytes = lockend - lockstart + 1;
1468 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1469 if (ret <= 0) {
1470 ret = 0;
1471 btrfs_end_write_no_snapshoting(root);
1472 } else {
1473 *write_bytes = min_t(size_t, *write_bytes ,
1474 num_bytes - pos + lockstart);
1475 }
1476
1477 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1478
1479 return ret;
1480 }
1481
1482 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1483 struct iov_iter *i,
1484 loff_t pos)
1485 {
1486 struct inode *inode = file_inode(file);
1487 struct btrfs_root *root = BTRFS_I(inode)->root;
1488 struct page **pages = NULL;
1489 struct extent_state *cached_state = NULL;
1490 u64 release_bytes = 0;
1491 u64 lockstart;
1492 u64 lockend;
1493 size_t num_written = 0;
1494 int nrptrs;
1495 int ret = 0;
1496 bool only_release_metadata = false;
1497 bool force_page_uptodate = false;
1498 bool need_unlock;
1499
1500 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1501 PAGE_SIZE / (sizeof(struct page *)));
1502 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1503 nrptrs = max(nrptrs, 8);
1504 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1505 if (!pages)
1506 return -ENOMEM;
1507
1508 while (iov_iter_count(i) > 0) {
1509 size_t offset = pos & (PAGE_SIZE - 1);
1510 size_t sector_offset;
1511 size_t write_bytes = min(iov_iter_count(i),
1512 nrptrs * (size_t)PAGE_SIZE -
1513 offset);
1514 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1515 PAGE_SIZE);
1516 size_t reserve_bytes;
1517 size_t dirty_pages;
1518 size_t copied;
1519 size_t dirty_sectors;
1520 size_t num_sectors;
1521
1522 WARN_ON(num_pages > nrptrs);
1523
1524 /*
1525 * Fault pages before locking them in prepare_pages
1526 * to avoid recursive lock
1527 */
1528 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1529 ret = -EFAULT;
1530 break;
1531 }
1532
1533 sector_offset = pos & (root->sectorsize - 1);
1534 reserve_bytes = round_up(write_bytes + sector_offset,
1535 root->sectorsize);
1536
1537 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1538 BTRFS_INODE_PREALLOC)) &&
1539 check_can_nocow(inode, pos, &write_bytes) > 0) {
1540 /*
1541 * For nodata cow case, no need to reserve
1542 * data space.
1543 */
1544 only_release_metadata = true;
1545 /*
1546 * our prealloc extent may be smaller than
1547 * write_bytes, so scale down.
1548 */
1549 num_pages = DIV_ROUND_UP(write_bytes + offset,
1550 PAGE_SIZE);
1551 reserve_bytes = round_up(write_bytes + sector_offset,
1552 root->sectorsize);
1553 goto reserve_metadata;
1554 }
1555
1556 ret = btrfs_check_data_free_space(inode, pos, write_bytes);
1557 if (ret < 0)
1558 break;
1559
1560 reserve_metadata:
1561 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1562 if (ret) {
1563 if (!only_release_metadata)
1564 btrfs_free_reserved_data_space(inode, pos,
1565 write_bytes);
1566 else
1567 btrfs_end_write_no_snapshoting(root);
1568 break;
1569 }
1570
1571 release_bytes = reserve_bytes;
1572 need_unlock = false;
1573 again:
1574 /*
1575 * This is going to setup the pages array with the number of
1576 * pages we want, so we don't really need to worry about the
1577 * contents of pages from loop to loop
1578 */
1579 ret = prepare_pages(inode, pages, num_pages,
1580 pos, write_bytes,
1581 force_page_uptodate);
1582 if (ret)
1583 break;
1584
1585 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1586 pos, write_bytes, &lockstart,
1587 &lockend, &cached_state);
1588 if (ret < 0) {
1589 if (ret == -EAGAIN)
1590 goto again;
1591 break;
1592 } else if (ret > 0) {
1593 need_unlock = true;
1594 ret = 0;
1595 }
1596
1597 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1598
1599 /*
1600 * if we have trouble faulting in the pages, fall
1601 * back to one page at a time
1602 */
1603 if (copied < write_bytes)
1604 nrptrs = 1;
1605
1606 if (copied == 0) {
1607 force_page_uptodate = true;
1608 dirty_pages = 0;
1609 } else {
1610 force_page_uptodate = false;
1611 dirty_pages = DIV_ROUND_UP(copied + offset,
1612 PAGE_SIZE);
1613 }
1614
1615 /*
1616 * If we had a short copy we need to release the excess delaloc
1617 * bytes we reserved. We need to increment outstanding_extents
1618 * because btrfs_delalloc_release_space will decrement it, but
1619 * we still have an outstanding extent for the chunk we actually
1620 * managed to copy.
1621 */
1622 num_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1623 reserve_bytes);
1624 dirty_sectors = round_up(copied + sector_offset,
1625 root->sectorsize);
1626 dirty_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1627 dirty_sectors);
1628
1629 if (num_sectors > dirty_sectors) {
1630 release_bytes = (write_bytes - copied)
1631 & ~((u64)root->sectorsize - 1);
1632 if (copied > 0) {
1633 spin_lock(&BTRFS_I(inode)->lock);
1634 BTRFS_I(inode)->outstanding_extents++;
1635 spin_unlock(&BTRFS_I(inode)->lock);
1636 }
1637 if (only_release_metadata) {
1638 btrfs_delalloc_release_metadata(inode,
1639 release_bytes);
1640 } else {
1641 u64 __pos;
1642
1643 __pos = round_down(pos, root->sectorsize) +
1644 (dirty_pages << PAGE_SHIFT);
1645 btrfs_delalloc_release_space(inode, __pos,
1646 release_bytes);
1647 }
1648 }
1649
1650 release_bytes = round_up(copied + sector_offset,
1651 root->sectorsize);
1652
1653 if (copied > 0)
1654 ret = btrfs_dirty_pages(root, inode, pages,
1655 dirty_pages, pos, copied,
1656 NULL);
1657 if (need_unlock)
1658 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1659 lockstart, lockend, &cached_state,
1660 GFP_NOFS);
1661 if (ret) {
1662 btrfs_drop_pages(pages, num_pages);
1663 break;
1664 }
1665
1666 release_bytes = 0;
1667 if (only_release_metadata)
1668 btrfs_end_write_no_snapshoting(root);
1669
1670 if (only_release_metadata && copied > 0) {
1671 lockstart = round_down(pos, root->sectorsize);
1672 lockend = round_up(pos + copied, root->sectorsize) - 1;
1673
1674 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1675 lockend, EXTENT_NORESERVE, NULL,
1676 NULL, GFP_NOFS);
1677 only_release_metadata = false;
1678 }
1679
1680 btrfs_drop_pages(pages, num_pages);
1681
1682 cond_resched();
1683
1684 balance_dirty_pages_ratelimited(inode->i_mapping);
1685 if (dirty_pages < (root->nodesize >> PAGE_SHIFT) + 1)
1686 btrfs_btree_balance_dirty(root);
1687
1688 pos += copied;
1689 num_written += copied;
1690 }
1691
1692 kfree(pages);
1693
1694 if (release_bytes) {
1695 if (only_release_metadata) {
1696 btrfs_end_write_no_snapshoting(root);
1697 btrfs_delalloc_release_metadata(inode, release_bytes);
1698 } else {
1699 btrfs_delalloc_release_space(inode, pos, release_bytes);
1700 }
1701 }
1702
1703 return num_written ? num_written : ret;
1704 }
1705
1706 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1707 {
1708 struct file *file = iocb->ki_filp;
1709 struct inode *inode = file_inode(file);
1710 loff_t pos = iocb->ki_pos;
1711 ssize_t written;
1712 ssize_t written_buffered;
1713 loff_t endbyte;
1714 int err;
1715
1716 written = generic_file_direct_write(iocb, from);
1717
1718 if (written < 0 || !iov_iter_count(from))
1719 return written;
1720
1721 pos += written;
1722 written_buffered = __btrfs_buffered_write(file, from, pos);
1723 if (written_buffered < 0) {
1724 err = written_buffered;
1725 goto out;
1726 }
1727 /*
1728 * Ensure all data is persisted. We want the next direct IO read to be
1729 * able to read what was just written.
1730 */
1731 endbyte = pos + written_buffered - 1;
1732 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1733 if (err)
1734 goto out;
1735 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1736 if (err)
1737 goto out;
1738 written += written_buffered;
1739 iocb->ki_pos = pos + written_buffered;
1740 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1741 endbyte >> PAGE_SHIFT);
1742 out:
1743 return written ? written : err;
1744 }
1745
1746 static void update_time_for_write(struct inode *inode)
1747 {
1748 struct timespec now;
1749
1750 if (IS_NOCMTIME(inode))
1751 return;
1752
1753 now = current_fs_time(inode->i_sb);
1754 if (!timespec_equal(&inode->i_mtime, &now))
1755 inode->i_mtime = now;
1756
1757 if (!timespec_equal(&inode->i_ctime, &now))
1758 inode->i_ctime = now;
1759
1760 if (IS_I_VERSION(inode))
1761 inode_inc_iversion(inode);
1762 }
1763
1764 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1765 struct iov_iter *from)
1766 {
1767 struct file *file = iocb->ki_filp;
1768 struct inode *inode = file_inode(file);
1769 struct btrfs_root *root = BTRFS_I(inode)->root;
1770 u64 start_pos;
1771 u64 end_pos;
1772 ssize_t num_written = 0;
1773 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1774 ssize_t err;
1775 loff_t pos;
1776 size_t count;
1777 loff_t oldsize;
1778 int clean_page = 0;
1779
1780 inode_lock(inode);
1781 err = generic_write_checks(iocb, from);
1782 if (err <= 0) {
1783 inode_unlock(inode);
1784 return err;
1785 }
1786
1787 current->backing_dev_info = inode_to_bdi(inode);
1788 err = file_remove_privs(file);
1789 if (err) {
1790 inode_unlock(inode);
1791 goto out;
1792 }
1793
1794 /*
1795 * If BTRFS flips readonly due to some impossible error
1796 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1797 * although we have opened a file as writable, we have
1798 * to stop this write operation to ensure FS consistency.
1799 */
1800 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1801 inode_unlock(inode);
1802 err = -EROFS;
1803 goto out;
1804 }
1805
1806 /*
1807 * We reserve space for updating the inode when we reserve space for the
1808 * extent we are going to write, so we will enospc out there. We don't
1809 * need to start yet another transaction to update the inode as we will
1810 * update the inode when we finish writing whatever data we write.
1811 */
1812 update_time_for_write(inode);
1813
1814 pos = iocb->ki_pos;
1815 count = iov_iter_count(from);
1816 start_pos = round_down(pos, root->sectorsize);
1817 oldsize = i_size_read(inode);
1818 if (start_pos > oldsize) {
1819 /* Expand hole size to cover write data, preventing empty gap */
1820 end_pos = round_up(pos + count, root->sectorsize);
1821 err = btrfs_cont_expand(inode, oldsize, end_pos);
1822 if (err) {
1823 inode_unlock(inode);
1824 goto out;
1825 }
1826 if (start_pos > round_up(oldsize, root->sectorsize))
1827 clean_page = 1;
1828 }
1829
1830 if (sync)
1831 atomic_inc(&BTRFS_I(inode)->sync_writers);
1832
1833 if (iocb->ki_flags & IOCB_DIRECT) {
1834 num_written = __btrfs_direct_write(iocb, from);
1835 } else {
1836 num_written = __btrfs_buffered_write(file, from, pos);
1837 if (num_written > 0)
1838 iocb->ki_pos = pos + num_written;
1839 if (clean_page)
1840 pagecache_isize_extended(inode, oldsize,
1841 i_size_read(inode));
1842 }
1843
1844 inode_unlock(inode);
1845
1846 /*
1847 * We also have to set last_sub_trans to the current log transid,
1848 * otherwise subsequent syncs to a file that's been synced in this
1849 * transaction will appear to have already occurred.
1850 */
1851 spin_lock(&BTRFS_I(inode)->lock);
1852 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1853 spin_unlock(&BTRFS_I(inode)->lock);
1854 if (num_written > 0)
1855 num_written = generic_write_sync(iocb, num_written);
1856
1857 if (sync)
1858 atomic_dec(&BTRFS_I(inode)->sync_writers);
1859 out:
1860 current->backing_dev_info = NULL;
1861 return num_written ? num_written : err;
1862 }
1863
1864 int btrfs_release_file(struct inode *inode, struct file *filp)
1865 {
1866 if (filp->private_data)
1867 btrfs_ioctl_trans_end(filp);
1868 /*
1869 * ordered_data_close is set by settattr when we are about to truncate
1870 * a file from a non-zero size to a zero size. This tries to
1871 * flush down new bytes that may have been written if the
1872 * application were using truncate to replace a file in place.
1873 */
1874 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1875 &BTRFS_I(inode)->runtime_flags))
1876 filemap_flush(inode->i_mapping);
1877 return 0;
1878 }
1879
1880 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1881 {
1882 int ret;
1883
1884 atomic_inc(&BTRFS_I(inode)->sync_writers);
1885 ret = btrfs_fdatawrite_range(inode, start, end);
1886 atomic_dec(&BTRFS_I(inode)->sync_writers);
1887
1888 return ret;
1889 }
1890
1891 /*
1892 * fsync call for both files and directories. This logs the inode into
1893 * the tree log instead of forcing full commits whenever possible.
1894 *
1895 * It needs to call filemap_fdatawait so that all ordered extent updates are
1896 * in the metadata btree are up to date for copying to the log.
1897 *
1898 * It drops the inode mutex before doing the tree log commit. This is an
1899 * important optimization for directories because holding the mutex prevents
1900 * new operations on the dir while we write to disk.
1901 */
1902 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1903 {
1904 struct dentry *dentry = file_dentry(file);
1905 struct inode *inode = d_inode(dentry);
1906 struct btrfs_root *root = BTRFS_I(inode)->root;
1907 struct btrfs_trans_handle *trans;
1908 struct btrfs_log_ctx ctx;
1909 int ret = 0;
1910 bool full_sync = 0;
1911 u64 len;
1912
1913 /*
1914 * The range length can be represented by u64, we have to do the typecasts
1915 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
1916 */
1917 len = (u64)end - (u64)start + 1;
1918 trace_btrfs_sync_file(file, datasync);
1919
1920 /*
1921 * We write the dirty pages in the range and wait until they complete
1922 * out of the ->i_mutex. If so, we can flush the dirty pages by
1923 * multi-task, and make the performance up. See
1924 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1925 */
1926 ret = start_ordered_ops(inode, start, end);
1927 if (ret)
1928 return ret;
1929
1930 inode_lock(inode);
1931 atomic_inc(&root->log_batch);
1932 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1933 &BTRFS_I(inode)->runtime_flags);
1934 /*
1935 * We might have have had more pages made dirty after calling
1936 * start_ordered_ops and before acquiring the inode's i_mutex.
1937 */
1938 if (full_sync) {
1939 /*
1940 * For a full sync, we need to make sure any ordered operations
1941 * start and finish before we start logging the inode, so that
1942 * all extents are persisted and the respective file extent
1943 * items are in the fs/subvol btree.
1944 */
1945 ret = btrfs_wait_ordered_range(inode, start, len);
1946 } else {
1947 /*
1948 * Start any new ordered operations before starting to log the
1949 * inode. We will wait for them to finish in btrfs_sync_log().
1950 *
1951 * Right before acquiring the inode's mutex, we might have new
1952 * writes dirtying pages, which won't immediately start the
1953 * respective ordered operations - that is done through the
1954 * fill_delalloc callbacks invoked from the writepage and
1955 * writepages address space operations. So make sure we start
1956 * all ordered operations before starting to log our inode. Not
1957 * doing this means that while logging the inode, writeback
1958 * could start and invoke writepage/writepages, which would call
1959 * the fill_delalloc callbacks (cow_file_range,
1960 * submit_compressed_extents). These callbacks add first an
1961 * extent map to the modified list of extents and then create
1962 * the respective ordered operation, which means in
1963 * tree-log.c:btrfs_log_inode() we might capture all existing
1964 * ordered operations (with btrfs_get_logged_extents()) before
1965 * the fill_delalloc callback adds its ordered operation, and by
1966 * the time we visit the modified list of extent maps (with
1967 * btrfs_log_changed_extents()), we see and process the extent
1968 * map they created. We then use the extent map to construct a
1969 * file extent item for logging without waiting for the
1970 * respective ordered operation to finish - this file extent
1971 * item points to a disk location that might not have yet been
1972 * written to, containing random data - so after a crash a log
1973 * replay will make our inode have file extent items that point
1974 * to disk locations containing invalid data, as we returned
1975 * success to userspace without waiting for the respective
1976 * ordered operation to finish, because it wasn't captured by
1977 * btrfs_get_logged_extents().
1978 */
1979 ret = start_ordered_ops(inode, start, end);
1980 }
1981 if (ret) {
1982 inode_unlock(inode);
1983 goto out;
1984 }
1985 atomic_inc(&root->log_batch);
1986
1987 /*
1988 * If the last transaction that changed this file was before the current
1989 * transaction and we have the full sync flag set in our inode, we can
1990 * bail out now without any syncing.
1991 *
1992 * Note that we can't bail out if the full sync flag isn't set. This is
1993 * because when the full sync flag is set we start all ordered extents
1994 * and wait for them to fully complete - when they complete they update
1995 * the inode's last_trans field through:
1996 *
1997 * btrfs_finish_ordered_io() ->
1998 * btrfs_update_inode_fallback() ->
1999 * btrfs_update_inode() ->
2000 * btrfs_set_inode_last_trans()
2001 *
2002 * So we are sure that last_trans is up to date and can do this check to
2003 * bail out safely. For the fast path, when the full sync flag is not
2004 * set in our inode, we can not do it because we start only our ordered
2005 * extents and don't wait for them to complete (that is when
2006 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2007 * value might be less than or equals to fs_info->last_trans_committed,
2008 * and setting a speculative last_trans for an inode when a buffered
2009 * write is made (such as fs_info->generation + 1 for example) would not
2010 * be reliable since after setting the value and before fsync is called
2011 * any number of transactions can start and commit (transaction kthread
2012 * commits the current transaction periodically), and a transaction
2013 * commit does not start nor waits for ordered extents to complete.
2014 */
2015 smp_mb();
2016 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
2017 (full_sync && BTRFS_I(inode)->last_trans <=
2018 root->fs_info->last_trans_committed) ||
2019 (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2020 BTRFS_I(inode)->last_trans
2021 <= root->fs_info->last_trans_committed)) {
2022 /*
2023 * We'v had everything committed since the last time we were
2024 * modified so clear this flag in case it was set for whatever
2025 * reason, it's no longer relevant.
2026 */
2027 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2028 &BTRFS_I(inode)->runtime_flags);
2029 inode_unlock(inode);
2030 goto out;
2031 }
2032
2033 /*
2034 * ok we haven't committed the transaction yet, lets do a commit
2035 */
2036 if (file->private_data)
2037 btrfs_ioctl_trans_end(file);
2038
2039 /*
2040 * We use start here because we will need to wait on the IO to complete
2041 * in btrfs_sync_log, which could require joining a transaction (for
2042 * example checking cross references in the nocow path). If we use join
2043 * here we could get into a situation where we're waiting on IO to
2044 * happen that is blocked on a transaction trying to commit. With start
2045 * we inc the extwriter counter, so we wait for all extwriters to exit
2046 * before we start blocking join'ers. This comment is to keep somebody
2047 * from thinking they are super smart and changing this to
2048 * btrfs_join_transaction *cough*Josef*cough*.
2049 */
2050 trans = btrfs_start_transaction(root, 0);
2051 if (IS_ERR(trans)) {
2052 ret = PTR_ERR(trans);
2053 inode_unlock(inode);
2054 goto out;
2055 }
2056 trans->sync = true;
2057
2058 btrfs_init_log_ctx(&ctx);
2059
2060 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2061 if (ret < 0) {
2062 /* Fallthrough and commit/free transaction. */
2063 ret = 1;
2064 }
2065
2066 /* we've logged all the items and now have a consistent
2067 * version of the file in the log. It is possible that
2068 * someone will come in and modify the file, but that's
2069 * fine because the log is consistent on disk, and we
2070 * have references to all of the file's extents
2071 *
2072 * It is possible that someone will come in and log the
2073 * file again, but that will end up using the synchronization
2074 * inside btrfs_sync_log to keep things safe.
2075 */
2076 inode_unlock(inode);
2077
2078 /*
2079 * If any of the ordered extents had an error, just return it to user
2080 * space, so that the application knows some writes didn't succeed and
2081 * can take proper action (retry for e.g.). Blindly committing the
2082 * transaction in this case, would fool userspace that everything was
2083 * successful. And we also want to make sure our log doesn't contain
2084 * file extent items pointing to extents that weren't fully written to -
2085 * just like in the non fast fsync path, where we check for the ordered
2086 * operation's error flag before writing to the log tree and return -EIO
2087 * if any of them had this flag set (btrfs_wait_ordered_range) -
2088 * therefore we need to check for errors in the ordered operations,
2089 * which are indicated by ctx.io_err.
2090 */
2091 if (ctx.io_err) {
2092 btrfs_end_transaction(trans, root);
2093 ret = ctx.io_err;
2094 goto out;
2095 }
2096
2097 if (ret != BTRFS_NO_LOG_SYNC) {
2098 if (!ret) {
2099 ret = btrfs_sync_log(trans, root, &ctx);
2100 if (!ret) {
2101 ret = btrfs_end_transaction(trans, root);
2102 goto out;
2103 }
2104 }
2105 if (!full_sync) {
2106 ret = btrfs_wait_ordered_range(inode, start, len);
2107 if (ret) {
2108 btrfs_end_transaction(trans, root);
2109 goto out;
2110 }
2111 }
2112 ret = btrfs_commit_transaction(trans, root);
2113 } else {
2114 ret = btrfs_end_transaction(trans, root);
2115 }
2116 out:
2117 return ret > 0 ? -EIO : ret;
2118 }
2119
2120 static const struct vm_operations_struct btrfs_file_vm_ops = {
2121 .fault = filemap_fault,
2122 .map_pages = filemap_map_pages,
2123 .page_mkwrite = btrfs_page_mkwrite,
2124 };
2125
2126 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2127 {
2128 struct address_space *mapping = filp->f_mapping;
2129
2130 if (!mapping->a_ops->readpage)
2131 return -ENOEXEC;
2132
2133 file_accessed(filp);
2134 vma->vm_ops = &btrfs_file_vm_ops;
2135
2136 return 0;
2137 }
2138
2139 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2140 int slot, u64 start, u64 end)
2141 {
2142 struct btrfs_file_extent_item *fi;
2143 struct btrfs_key key;
2144
2145 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2146 return 0;
2147
2148 btrfs_item_key_to_cpu(leaf, &key, slot);
2149 if (key.objectid != btrfs_ino(inode) ||
2150 key.type != BTRFS_EXTENT_DATA_KEY)
2151 return 0;
2152
2153 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2154
2155 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2156 return 0;
2157
2158 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2159 return 0;
2160
2161 if (key.offset == end)
2162 return 1;
2163 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2164 return 1;
2165 return 0;
2166 }
2167
2168 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2169 struct btrfs_path *path, u64 offset, u64 end)
2170 {
2171 struct btrfs_root *root = BTRFS_I(inode)->root;
2172 struct extent_buffer *leaf;
2173 struct btrfs_file_extent_item *fi;
2174 struct extent_map *hole_em;
2175 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2176 struct btrfs_key key;
2177 int ret;
2178
2179 if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2180 goto out;
2181
2182 key.objectid = btrfs_ino(inode);
2183 key.type = BTRFS_EXTENT_DATA_KEY;
2184 key.offset = offset;
2185
2186 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2187 if (ret < 0)
2188 return ret;
2189 BUG_ON(!ret);
2190
2191 leaf = path->nodes[0];
2192 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2193 u64 num_bytes;
2194
2195 path->slots[0]--;
2196 fi = btrfs_item_ptr(leaf, path->slots[0],
2197 struct btrfs_file_extent_item);
2198 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2199 end - offset;
2200 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2201 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2202 btrfs_set_file_extent_offset(leaf, fi, 0);
2203 btrfs_mark_buffer_dirty(leaf);
2204 goto out;
2205 }
2206
2207 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2208 u64 num_bytes;
2209
2210 key.offset = offset;
2211 btrfs_set_item_key_safe(root->fs_info, path, &key);
2212 fi = btrfs_item_ptr(leaf, path->slots[0],
2213 struct btrfs_file_extent_item);
2214 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2215 offset;
2216 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2217 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2218 btrfs_set_file_extent_offset(leaf, fi, 0);
2219 btrfs_mark_buffer_dirty(leaf);
2220 goto out;
2221 }
2222 btrfs_release_path(path);
2223
2224 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2225 0, 0, end - offset, 0, end - offset,
2226 0, 0, 0);
2227 if (ret)
2228 return ret;
2229
2230 out:
2231 btrfs_release_path(path);
2232
2233 hole_em = alloc_extent_map();
2234 if (!hole_em) {
2235 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2236 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2237 &BTRFS_I(inode)->runtime_flags);
2238 } else {
2239 hole_em->start = offset;
2240 hole_em->len = end - offset;
2241 hole_em->ram_bytes = hole_em->len;
2242 hole_em->orig_start = offset;
2243
2244 hole_em->block_start = EXTENT_MAP_HOLE;
2245 hole_em->block_len = 0;
2246 hole_em->orig_block_len = 0;
2247 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2248 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2249 hole_em->generation = trans->transid;
2250
2251 do {
2252 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2253 write_lock(&em_tree->lock);
2254 ret = add_extent_mapping(em_tree, hole_em, 1);
2255 write_unlock(&em_tree->lock);
2256 } while (ret == -EEXIST);
2257 free_extent_map(hole_em);
2258 if (ret)
2259 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2260 &BTRFS_I(inode)->runtime_flags);
2261 }
2262
2263 return 0;
2264 }
2265
2266 /*
2267 * Find a hole extent on given inode and change start/len to the end of hole
2268 * extent.(hole/vacuum extent whose em->start <= start &&
2269 * em->start + em->len > start)
2270 * When a hole extent is found, return 1 and modify start/len.
2271 */
2272 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2273 {
2274 struct extent_map *em;
2275 int ret = 0;
2276
2277 em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2278 if (IS_ERR_OR_NULL(em)) {
2279 if (!em)
2280 ret = -ENOMEM;
2281 else
2282 ret = PTR_ERR(em);
2283 return ret;
2284 }
2285
2286 /* Hole or vacuum extent(only exists in no-hole mode) */
2287 if (em->block_start == EXTENT_MAP_HOLE) {
2288 ret = 1;
2289 *len = em->start + em->len > *start + *len ?
2290 0 : *start + *len - em->start - em->len;
2291 *start = em->start + em->len;
2292 }
2293 free_extent_map(em);
2294 return ret;
2295 }
2296
2297 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2298 {
2299 struct btrfs_root *root = BTRFS_I(inode)->root;
2300 struct extent_state *cached_state = NULL;
2301 struct btrfs_path *path;
2302 struct btrfs_block_rsv *rsv;
2303 struct btrfs_trans_handle *trans;
2304 u64 lockstart;
2305 u64 lockend;
2306 u64 tail_start;
2307 u64 tail_len;
2308 u64 orig_start = offset;
2309 u64 cur_offset;
2310 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2311 u64 drop_end;
2312 int ret = 0;
2313 int err = 0;
2314 unsigned int rsv_count;
2315 bool same_block;
2316 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2317 u64 ino_size;
2318 bool truncated_block = false;
2319 bool updated_inode = false;
2320
2321 ret = btrfs_wait_ordered_range(inode, offset, len);
2322 if (ret)
2323 return ret;
2324
2325 inode_lock(inode);
2326 ino_size = round_up(inode->i_size, root->sectorsize);
2327 ret = find_first_non_hole(inode, &offset, &len);
2328 if (ret < 0)
2329 goto out_only_mutex;
2330 if (ret && !len) {
2331 /* Already in a large hole */
2332 ret = 0;
2333 goto out_only_mutex;
2334 }
2335
2336 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2337 lockend = round_down(offset + len,
2338 BTRFS_I(inode)->root->sectorsize) - 1;
2339 same_block = (BTRFS_BYTES_TO_BLKS(root->fs_info, offset))
2340 == (BTRFS_BYTES_TO_BLKS(root->fs_info, offset + len - 1));
2341 /*
2342 * We needn't truncate any block which is beyond the end of the file
2343 * because we are sure there is no data there.
2344 */
2345 /*
2346 * Only do this if we are in the same block and we aren't doing the
2347 * entire block.
2348 */
2349 if (same_block && len < root->sectorsize) {
2350 if (offset < ino_size) {
2351 truncated_block = true;
2352 ret = btrfs_truncate_block(inode, offset, len, 0);
2353 } else {
2354 ret = 0;
2355 }
2356 goto out_only_mutex;
2357 }
2358
2359 /* zero back part of the first block */
2360 if (offset < ino_size) {
2361 truncated_block = true;
2362 ret = btrfs_truncate_block(inode, offset, 0, 0);
2363 if (ret) {
2364 inode_unlock(inode);
2365 return ret;
2366 }
2367 }
2368
2369 /* Check the aligned pages after the first unaligned page,
2370 * if offset != orig_start, which means the first unaligned page
2371 * including serveral following pages are already in holes,
2372 * the extra check can be skipped */
2373 if (offset == orig_start) {
2374 /* after truncate page, check hole again */
2375 len = offset + len - lockstart;
2376 offset = lockstart;
2377 ret = find_first_non_hole(inode, &offset, &len);
2378 if (ret < 0)
2379 goto out_only_mutex;
2380 if (ret && !len) {
2381 ret = 0;
2382 goto out_only_mutex;
2383 }
2384 lockstart = offset;
2385 }
2386
2387 /* Check the tail unaligned part is in a hole */
2388 tail_start = lockend + 1;
2389 tail_len = offset + len - tail_start;
2390 if (tail_len) {
2391 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2392 if (unlikely(ret < 0))
2393 goto out_only_mutex;
2394 if (!ret) {
2395 /* zero the front end of the last page */
2396 if (tail_start + tail_len < ino_size) {
2397 truncated_block = true;
2398 ret = btrfs_truncate_block(inode,
2399 tail_start + tail_len,
2400 0, 1);
2401 if (ret)
2402 goto out_only_mutex;
2403 }
2404 }
2405 }
2406
2407 if (lockend < lockstart) {
2408 ret = 0;
2409 goto out_only_mutex;
2410 }
2411
2412 while (1) {
2413 struct btrfs_ordered_extent *ordered;
2414
2415 truncate_pagecache_range(inode, lockstart, lockend);
2416
2417 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2418 &cached_state);
2419 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2420
2421 /*
2422 * We need to make sure we have no ordered extents in this range
2423 * and nobody raced in and read a page in this range, if we did
2424 * we need to try again.
2425 */
2426 if ((!ordered ||
2427 (ordered->file_offset + ordered->len <= lockstart ||
2428 ordered->file_offset > lockend)) &&
2429 !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2430 if (ordered)
2431 btrfs_put_ordered_extent(ordered);
2432 break;
2433 }
2434 if (ordered)
2435 btrfs_put_ordered_extent(ordered);
2436 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2437 lockend, &cached_state, GFP_NOFS);
2438 ret = btrfs_wait_ordered_range(inode, lockstart,
2439 lockend - lockstart + 1);
2440 if (ret) {
2441 inode_unlock(inode);
2442 return ret;
2443 }
2444 }
2445
2446 path = btrfs_alloc_path();
2447 if (!path) {
2448 ret = -ENOMEM;
2449 goto out;
2450 }
2451
2452 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2453 if (!rsv) {
2454 ret = -ENOMEM;
2455 goto out_free;
2456 }
2457 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2458 rsv->failfast = 1;
2459
2460 /*
2461 * 1 - update the inode
2462 * 1 - removing the extents in the range
2463 * 1 - adding the hole extent if no_holes isn't set
2464 */
2465 rsv_count = no_holes ? 2 : 3;
2466 trans = btrfs_start_transaction(root, rsv_count);
2467 if (IS_ERR(trans)) {
2468 err = PTR_ERR(trans);
2469 goto out_free;
2470 }
2471
2472 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2473 min_size);
2474 BUG_ON(ret);
2475 trans->block_rsv = rsv;
2476
2477 cur_offset = lockstart;
2478 len = lockend - cur_offset;
2479 while (cur_offset < lockend) {
2480 ret = __btrfs_drop_extents(trans, root, inode, path,
2481 cur_offset, lockend + 1,
2482 &drop_end, 1, 0, 0, NULL);
2483 if (ret != -ENOSPC)
2484 break;
2485
2486 trans->block_rsv = &root->fs_info->trans_block_rsv;
2487
2488 if (cur_offset < ino_size) {
2489 ret = fill_holes(trans, inode, path, cur_offset,
2490 drop_end);
2491 if (ret) {
2492 err = ret;
2493 break;
2494 }
2495 }
2496
2497 cur_offset = drop_end;
2498
2499 ret = btrfs_update_inode(trans, root, inode);
2500 if (ret) {
2501 err = ret;
2502 break;
2503 }
2504
2505 btrfs_end_transaction(trans, root);
2506 btrfs_btree_balance_dirty(root);
2507
2508 trans = btrfs_start_transaction(root, rsv_count);
2509 if (IS_ERR(trans)) {
2510 ret = PTR_ERR(trans);
2511 trans = NULL;
2512 break;
2513 }
2514
2515 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2516 rsv, min_size);
2517 BUG_ON(ret); /* shouldn't happen */
2518 trans->block_rsv = rsv;
2519
2520 ret = find_first_non_hole(inode, &cur_offset, &len);
2521 if (unlikely(ret < 0))
2522 break;
2523 if (ret && !len) {
2524 ret = 0;
2525 break;
2526 }
2527 }
2528
2529 if (ret) {
2530 err = ret;
2531 goto out_trans;
2532 }
2533
2534 trans->block_rsv = &root->fs_info->trans_block_rsv;
2535 /*
2536 * If we are using the NO_HOLES feature we might have had already an
2537 * hole that overlaps a part of the region [lockstart, lockend] and
2538 * ends at (or beyond) lockend. Since we have no file extent items to
2539 * represent holes, drop_end can be less than lockend and so we must
2540 * make sure we have an extent map representing the existing hole (the
2541 * call to __btrfs_drop_extents() might have dropped the existing extent
2542 * map representing the existing hole), otherwise the fast fsync path
2543 * will not record the existence of the hole region
2544 * [existing_hole_start, lockend].
2545 */
2546 if (drop_end <= lockend)
2547 drop_end = lockend + 1;
2548 /*
2549 * Don't insert file hole extent item if it's for a range beyond eof
2550 * (because it's useless) or if it represents a 0 bytes range (when
2551 * cur_offset == drop_end).
2552 */
2553 if (cur_offset < ino_size && cur_offset < drop_end) {
2554 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2555 if (ret) {
2556 err = ret;
2557 goto out_trans;
2558 }
2559 }
2560
2561 out_trans:
2562 if (!trans)
2563 goto out_free;
2564
2565 inode_inc_iversion(inode);
2566 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
2567
2568 trans->block_rsv = &root->fs_info->trans_block_rsv;
2569 ret = btrfs_update_inode(trans, root, inode);
2570 updated_inode = true;
2571 btrfs_end_transaction(trans, root);
2572 btrfs_btree_balance_dirty(root);
2573 out_free:
2574 btrfs_free_path(path);
2575 btrfs_free_block_rsv(root, rsv);
2576 out:
2577 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2578 &cached_state, GFP_NOFS);
2579 out_only_mutex:
2580 if (!updated_inode && truncated_block && !ret && !err) {
2581 /*
2582 * If we only end up zeroing part of a page, we still need to
2583 * update the inode item, so that all the time fields are
2584 * updated as well as the necessary btrfs inode in memory fields
2585 * for detecting, at fsync time, if the inode isn't yet in the
2586 * log tree or it's there but not up to date.
2587 */
2588 trans = btrfs_start_transaction(root, 1);
2589 if (IS_ERR(trans)) {
2590 err = PTR_ERR(trans);
2591 } else {
2592 err = btrfs_update_inode(trans, root, inode);
2593 ret = btrfs_end_transaction(trans, root);
2594 }
2595 }
2596 inode_unlock(inode);
2597 if (ret && !err)
2598 err = ret;
2599 return err;
2600 }
2601
2602 /* Helper structure to record which range is already reserved */
2603 struct falloc_range {
2604 struct list_head list;
2605 u64 start;
2606 u64 len;
2607 };
2608
2609 /*
2610 * Helper function to add falloc range
2611 *
2612 * Caller should have locked the larger range of extent containing
2613 * [start, len)
2614 */
2615 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2616 {
2617 struct falloc_range *prev = NULL;
2618 struct falloc_range *range = NULL;
2619
2620 if (list_empty(head))
2621 goto insert;
2622
2623 /*
2624 * As fallocate iterate by bytenr order, we only need to check
2625 * the last range.
2626 */
2627 prev = list_entry(head->prev, struct falloc_range, list);
2628 if (prev->start + prev->len == start) {
2629 prev->len += len;
2630 return 0;
2631 }
2632 insert:
2633 range = kmalloc(sizeof(*range), GFP_KERNEL);
2634 if (!range)
2635 return -ENOMEM;
2636 range->start = start;
2637 range->len = len;
2638 list_add_tail(&range->list, head);
2639 return 0;
2640 }
2641
2642 static long btrfs_fallocate(struct file *file, int mode,
2643 loff_t offset, loff_t len)
2644 {
2645 struct inode *inode = file_inode(file);
2646 struct extent_state *cached_state = NULL;
2647 struct falloc_range *range;
2648 struct falloc_range *tmp;
2649 struct list_head reserve_list;
2650 u64 cur_offset;
2651 u64 last_byte;
2652 u64 alloc_start;
2653 u64 alloc_end;
2654 u64 alloc_hint = 0;
2655 u64 locked_end;
2656 u64 actual_end = 0;
2657 struct extent_map *em;
2658 int blocksize = BTRFS_I(inode)->root->sectorsize;
2659 int ret;
2660
2661 alloc_start = round_down(offset, blocksize);
2662 alloc_end = round_up(offset + len, blocksize);
2663
2664 /* Make sure we aren't being give some crap mode */
2665 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2666 return -EOPNOTSUPP;
2667
2668 if (mode & FALLOC_FL_PUNCH_HOLE)
2669 return btrfs_punch_hole(inode, offset, len);
2670
2671 /*
2672 * Only trigger disk allocation, don't trigger qgroup reserve
2673 *
2674 * For qgroup space, it will be checked later.
2675 */
2676 ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start);
2677 if (ret < 0)
2678 return ret;
2679
2680 inode_lock(inode);
2681
2682 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2683 ret = inode_newsize_ok(inode, offset + len);
2684 if (ret)
2685 goto out;
2686 }
2687
2688 /*
2689 * TODO: Move these two operations after we have checked
2690 * accurate reserved space, or fallocate can still fail but
2691 * with page truncated or size expanded.
2692 *
2693 * But that's a minor problem and won't do much harm BTW.
2694 */
2695 if (alloc_start > inode->i_size) {
2696 ret = btrfs_cont_expand(inode, i_size_read(inode),
2697 alloc_start);
2698 if (ret)
2699 goto out;
2700 } else if (offset + len > inode->i_size) {
2701 /*
2702 * If we are fallocating from the end of the file onward we
2703 * need to zero out the end of the block if i_size lands in the
2704 * middle of a block.
2705 */
2706 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2707 if (ret)
2708 goto out;
2709 }
2710
2711 /*
2712 * wait for ordered IO before we have any locks. We'll loop again
2713 * below with the locks held.
2714 */
2715 ret = btrfs_wait_ordered_range(inode, alloc_start,
2716 alloc_end - alloc_start);
2717 if (ret)
2718 goto out;
2719
2720 locked_end = alloc_end - 1;
2721 while (1) {
2722 struct btrfs_ordered_extent *ordered;
2723
2724 /* the extent lock is ordered inside the running
2725 * transaction
2726 */
2727 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2728 locked_end, &cached_state);
2729 ordered = btrfs_lookup_first_ordered_extent(inode,
2730 alloc_end - 1);
2731 if (ordered &&
2732 ordered->file_offset + ordered->len > alloc_start &&
2733 ordered->file_offset < alloc_end) {
2734 btrfs_put_ordered_extent(ordered);
2735 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2736 alloc_start, locked_end,
2737 &cached_state, GFP_KERNEL);
2738 /*
2739 * we can't wait on the range with the transaction
2740 * running or with the extent lock held
2741 */
2742 ret = btrfs_wait_ordered_range(inode, alloc_start,
2743 alloc_end - alloc_start);
2744 if (ret)
2745 goto out;
2746 } else {
2747 if (ordered)
2748 btrfs_put_ordered_extent(ordered);
2749 break;
2750 }
2751 }
2752
2753 /* First, check if we exceed the qgroup limit */
2754 INIT_LIST_HEAD(&reserve_list);
2755 cur_offset = alloc_start;
2756 while (1) {
2757 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2758 alloc_end - cur_offset, 0);
2759 if (IS_ERR_OR_NULL(em)) {
2760 if (!em)
2761 ret = -ENOMEM;
2762 else
2763 ret = PTR_ERR(em);
2764 break;
2765 }
2766 last_byte = min(extent_map_end(em), alloc_end);
2767 actual_end = min_t(u64, extent_map_end(em), offset + len);
2768 last_byte = ALIGN(last_byte, blocksize);
2769 if (em->block_start == EXTENT_MAP_HOLE ||
2770 (cur_offset >= inode->i_size &&
2771 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2772 ret = add_falloc_range(&reserve_list, cur_offset,
2773 last_byte - cur_offset);
2774 if (ret < 0) {
2775 free_extent_map(em);
2776 break;
2777 }
2778 ret = btrfs_qgroup_reserve_data(inode, cur_offset,
2779 last_byte - cur_offset);
2780 if (ret < 0)
2781 break;
2782 }
2783 free_extent_map(em);
2784 cur_offset = last_byte;
2785 if (cur_offset >= alloc_end)
2786 break;
2787 }
2788
2789 /*
2790 * If ret is still 0, means we're OK to fallocate.
2791 * Or just cleanup the list and exit.
2792 */
2793 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2794 if (!ret)
2795 ret = btrfs_prealloc_file_range(inode, mode,
2796 range->start,
2797 range->len, 1 << inode->i_blkbits,
2798 offset + len, &alloc_hint);
2799 list_del(&range->list);
2800 kfree(range);
2801 }
2802 if (ret < 0)
2803 goto out_unlock;
2804
2805 if (actual_end > inode->i_size &&
2806 !(mode & FALLOC_FL_KEEP_SIZE)) {
2807 struct btrfs_trans_handle *trans;
2808 struct btrfs_root *root = BTRFS_I(inode)->root;
2809
2810 /*
2811 * We didn't need to allocate any more space, but we
2812 * still extended the size of the file so we need to
2813 * update i_size and the inode item.
2814 */
2815 trans = btrfs_start_transaction(root, 1);
2816 if (IS_ERR(trans)) {
2817 ret = PTR_ERR(trans);
2818 } else {
2819 inode->i_ctime = current_fs_time(inode->i_sb);
2820 i_size_write(inode, actual_end);
2821 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2822 ret = btrfs_update_inode(trans, root, inode);
2823 if (ret)
2824 btrfs_end_transaction(trans, root);
2825 else
2826 ret = btrfs_end_transaction(trans, root);
2827 }
2828 }
2829 out_unlock:
2830 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2831 &cached_state, GFP_KERNEL);
2832 out:
2833 /*
2834 * As we waited the extent range, the data_rsv_map must be empty
2835 * in the range, as written data range will be released from it.
2836 * And for prealloacted extent, it will also be released when
2837 * its metadata is written.
2838 * So this is completely used as cleanup.
2839 */
2840 btrfs_qgroup_free_data(inode, alloc_start, alloc_end - alloc_start);
2841 inode_unlock(inode);
2842 /* Let go of our reservation. */
2843 btrfs_free_reserved_data_space(inode, alloc_start,
2844 alloc_end - alloc_start);
2845 return ret;
2846 }
2847
2848 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2849 {
2850 struct btrfs_root *root = BTRFS_I(inode)->root;
2851 struct extent_map *em = NULL;
2852 struct extent_state *cached_state = NULL;
2853 u64 lockstart;
2854 u64 lockend;
2855 u64 start;
2856 u64 len;
2857 int ret = 0;
2858
2859 if (inode->i_size == 0)
2860 return -ENXIO;
2861
2862 /*
2863 * *offset can be negative, in this case we start finding DATA/HOLE from
2864 * the very start of the file.
2865 */
2866 start = max_t(loff_t, 0, *offset);
2867
2868 lockstart = round_down(start, root->sectorsize);
2869 lockend = round_up(i_size_read(inode), root->sectorsize);
2870 if (lockend <= lockstart)
2871 lockend = lockstart + root->sectorsize;
2872 lockend--;
2873 len = lockend - lockstart + 1;
2874
2875 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2876 &cached_state);
2877
2878 while (start < inode->i_size) {
2879 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2880 if (IS_ERR(em)) {
2881 ret = PTR_ERR(em);
2882 em = NULL;
2883 break;
2884 }
2885
2886 if (whence == SEEK_HOLE &&
2887 (em->block_start == EXTENT_MAP_HOLE ||
2888 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2889 break;
2890 else if (whence == SEEK_DATA &&
2891 (em->block_start != EXTENT_MAP_HOLE &&
2892 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2893 break;
2894
2895 start = em->start + em->len;
2896 free_extent_map(em);
2897 em = NULL;
2898 cond_resched();
2899 }
2900 free_extent_map(em);
2901 if (!ret) {
2902 if (whence == SEEK_DATA && start >= inode->i_size)
2903 ret = -ENXIO;
2904 else
2905 *offset = min_t(loff_t, start, inode->i_size);
2906 }
2907 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2908 &cached_state, GFP_NOFS);
2909 return ret;
2910 }
2911
2912 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2913 {
2914 struct inode *inode = file->f_mapping->host;
2915 int ret;
2916
2917 inode_lock(inode);
2918 switch (whence) {
2919 case SEEK_END:
2920 case SEEK_CUR:
2921 offset = generic_file_llseek(file, offset, whence);
2922 goto out;
2923 case SEEK_DATA:
2924 case SEEK_HOLE:
2925 if (offset >= i_size_read(inode)) {
2926 inode_unlock(inode);
2927 return -ENXIO;
2928 }
2929
2930 ret = find_desired_extent(inode, &offset, whence);
2931 if (ret) {
2932 inode_unlock(inode);
2933 return ret;
2934 }
2935 }
2936
2937 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2938 out:
2939 inode_unlock(inode);
2940 return offset;
2941 }
2942
2943 const struct file_operations btrfs_file_operations = {
2944 .llseek = btrfs_file_llseek,
2945 .read_iter = generic_file_read_iter,
2946 .splice_read = generic_file_splice_read,
2947 .write_iter = btrfs_file_write_iter,
2948 .mmap = btrfs_file_mmap,
2949 .open = generic_file_open,
2950 .release = btrfs_release_file,
2951 .fsync = btrfs_sync_file,
2952 .fallocate = btrfs_fallocate,
2953 .unlocked_ioctl = btrfs_ioctl,
2954 #ifdef CONFIG_COMPAT
2955 .compat_ioctl = btrfs_ioctl,
2956 #endif
2957 .copy_file_range = btrfs_copy_file_range,
2958 .clone_file_range = btrfs_clone_file_range,
2959 .dedupe_file_range = btrfs_dedupe_file_range,
2960 };
2961
2962 void btrfs_auto_defrag_exit(void)
2963 {
2964 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2965 }
2966
2967 int btrfs_auto_defrag_init(void)
2968 {
2969 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2970 sizeof(struct inode_defrag), 0,
2971 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2972 NULL);
2973 if (!btrfs_inode_defrag_cachep)
2974 return -ENOMEM;
2975
2976 return 0;
2977 }
2978
2979 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
2980 {
2981 int ret;
2982
2983 /*
2984 * So with compression we will find and lock a dirty page and clear the
2985 * first one as dirty, setup an async extent, and immediately return
2986 * with the entire range locked but with nobody actually marked with
2987 * writeback. So we can't just filemap_write_and_wait_range() and
2988 * expect it to work since it will just kick off a thread to do the
2989 * actual work. So we need to call filemap_fdatawrite_range _again_
2990 * since it will wait on the page lock, which won't be unlocked until
2991 * after the pages have been marked as writeback and so we're good to go
2992 * from there. We have to do this otherwise we'll miss the ordered
2993 * extents and that results in badness. Please Josef, do not think you
2994 * know better and pull this out at some point in the future, it is
2995 * right and you are wrong.
2996 */
2997 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2998 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
2999 &BTRFS_I(inode)->runtime_flags))
3000 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3001
3002 return ret;
3003 }
This page took 0.091334 seconds and 5 git commands to generate.