Btrfs: fix the page that is beyond EOF
[deliverable/linux.git] / fs / btrfs / file.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "ioctl.h"
38 #include "print-tree.h"
39 #include "tree-log.h"
40 #include "locking.h"
41 #include "compat.h"
42 #include "volumes.h"
43
44 static struct kmem_cache *btrfs_inode_defrag_cachep;
45 /*
46 * when auto defrag is enabled we
47 * queue up these defrag structs to remember which
48 * inodes need defragging passes
49 */
50 struct inode_defrag {
51 struct rb_node rb_node;
52 /* objectid */
53 u64 ino;
54 /*
55 * transid where the defrag was added, we search for
56 * extents newer than this
57 */
58 u64 transid;
59
60 /* root objectid */
61 u64 root;
62
63 /* last offset we were able to defrag */
64 u64 last_offset;
65
66 /* if we've wrapped around back to zero once already */
67 int cycled;
68 };
69
70 static int __compare_inode_defrag(struct inode_defrag *defrag1,
71 struct inode_defrag *defrag2)
72 {
73 if (defrag1->root > defrag2->root)
74 return 1;
75 else if (defrag1->root < defrag2->root)
76 return -1;
77 else if (defrag1->ino > defrag2->ino)
78 return 1;
79 else if (defrag1->ino < defrag2->ino)
80 return -1;
81 else
82 return 0;
83 }
84
85 /* pop a record for an inode into the defrag tree. The lock
86 * must be held already
87 *
88 * If you're inserting a record for an older transid than an
89 * existing record, the transid already in the tree is lowered
90 *
91 * If an existing record is found the defrag item you
92 * pass in is freed
93 */
94 static int __btrfs_add_inode_defrag(struct inode *inode,
95 struct inode_defrag *defrag)
96 {
97 struct btrfs_root *root = BTRFS_I(inode)->root;
98 struct inode_defrag *entry;
99 struct rb_node **p;
100 struct rb_node *parent = NULL;
101 int ret;
102
103 p = &root->fs_info->defrag_inodes.rb_node;
104 while (*p) {
105 parent = *p;
106 entry = rb_entry(parent, struct inode_defrag, rb_node);
107
108 ret = __compare_inode_defrag(defrag, entry);
109 if (ret < 0)
110 p = &parent->rb_left;
111 else if (ret > 0)
112 p = &parent->rb_right;
113 else {
114 /* if we're reinserting an entry for
115 * an old defrag run, make sure to
116 * lower the transid of our existing record
117 */
118 if (defrag->transid < entry->transid)
119 entry->transid = defrag->transid;
120 if (defrag->last_offset > entry->last_offset)
121 entry->last_offset = defrag->last_offset;
122 return -EEXIST;
123 }
124 }
125 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
126 rb_link_node(&defrag->rb_node, parent, p);
127 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
128 return 0;
129 }
130
131 static inline int __need_auto_defrag(struct btrfs_root *root)
132 {
133 if (!btrfs_test_opt(root, AUTO_DEFRAG))
134 return 0;
135
136 if (btrfs_fs_closing(root->fs_info))
137 return 0;
138
139 return 1;
140 }
141
142 /*
143 * insert a defrag record for this inode if auto defrag is
144 * enabled
145 */
146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
147 struct inode *inode)
148 {
149 struct btrfs_root *root = BTRFS_I(inode)->root;
150 struct inode_defrag *defrag;
151 u64 transid;
152 int ret;
153
154 if (!__need_auto_defrag(root))
155 return 0;
156
157 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
158 return 0;
159
160 if (trans)
161 transid = trans->transid;
162 else
163 transid = BTRFS_I(inode)->root->last_trans;
164
165 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
166 if (!defrag)
167 return -ENOMEM;
168
169 defrag->ino = btrfs_ino(inode);
170 defrag->transid = transid;
171 defrag->root = root->root_key.objectid;
172
173 spin_lock(&root->fs_info->defrag_inodes_lock);
174 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
175 /*
176 * If we set IN_DEFRAG flag and evict the inode from memory,
177 * and then re-read this inode, this new inode doesn't have
178 * IN_DEFRAG flag. At the case, we may find the existed defrag.
179 */
180 ret = __btrfs_add_inode_defrag(inode, defrag);
181 if (ret)
182 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
183 } else {
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 }
186 spin_unlock(&root->fs_info->defrag_inodes_lock);
187 return 0;
188 }
189
190 /*
191 * Requeue the defrag object. If there is a defrag object that points to
192 * the same inode in the tree, we will merge them together (by
193 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
194 */
195 void btrfs_requeue_inode_defrag(struct inode *inode,
196 struct inode_defrag *defrag)
197 {
198 struct btrfs_root *root = BTRFS_I(inode)->root;
199 int ret;
200
201 if (!__need_auto_defrag(root))
202 goto out;
203
204 /*
205 * Here we don't check the IN_DEFRAG flag, because we need merge
206 * them together.
207 */
208 spin_lock(&root->fs_info->defrag_inodes_lock);
209 ret = __btrfs_add_inode_defrag(inode, defrag);
210 spin_unlock(&root->fs_info->defrag_inodes_lock);
211 if (ret)
212 goto out;
213 return;
214 out:
215 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
216 }
217
218 /*
219 * pick the defragable inode that we want, if it doesn't exist, we will get
220 * the next one.
221 */
222 static struct inode_defrag *
223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
224 {
225 struct inode_defrag *entry = NULL;
226 struct inode_defrag tmp;
227 struct rb_node *p;
228 struct rb_node *parent = NULL;
229 int ret;
230
231 tmp.ino = ino;
232 tmp.root = root;
233
234 spin_lock(&fs_info->defrag_inodes_lock);
235 p = fs_info->defrag_inodes.rb_node;
236 while (p) {
237 parent = p;
238 entry = rb_entry(parent, struct inode_defrag, rb_node);
239
240 ret = __compare_inode_defrag(&tmp, entry);
241 if (ret < 0)
242 p = parent->rb_left;
243 else if (ret > 0)
244 p = parent->rb_right;
245 else
246 goto out;
247 }
248
249 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250 parent = rb_next(parent);
251 if (parent)
252 entry = rb_entry(parent, struct inode_defrag, rb_node);
253 else
254 entry = NULL;
255 }
256 out:
257 if (entry)
258 rb_erase(parent, &fs_info->defrag_inodes);
259 spin_unlock(&fs_info->defrag_inodes_lock);
260 return entry;
261 }
262
263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
264 {
265 struct inode_defrag *defrag;
266 struct rb_node *node;
267
268 spin_lock(&fs_info->defrag_inodes_lock);
269 node = rb_first(&fs_info->defrag_inodes);
270 while (node) {
271 rb_erase(node, &fs_info->defrag_inodes);
272 defrag = rb_entry(node, struct inode_defrag, rb_node);
273 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
274
275 if (need_resched()) {
276 spin_unlock(&fs_info->defrag_inodes_lock);
277 cond_resched();
278 spin_lock(&fs_info->defrag_inodes_lock);
279 }
280
281 node = rb_first(&fs_info->defrag_inodes);
282 }
283 spin_unlock(&fs_info->defrag_inodes_lock);
284 }
285
286 #define BTRFS_DEFRAG_BATCH 1024
287
288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289 struct inode_defrag *defrag)
290 {
291 struct btrfs_root *inode_root;
292 struct inode *inode;
293 struct btrfs_key key;
294 struct btrfs_ioctl_defrag_range_args range;
295 int num_defrag;
296
297 /* get the inode */
298 key.objectid = defrag->root;
299 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
300 key.offset = (u64)-1;
301 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
302 if (IS_ERR(inode_root)) {
303 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
304 return PTR_ERR(inode_root);
305 }
306
307 key.objectid = defrag->ino;
308 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
309 key.offset = 0;
310 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
311 if (IS_ERR(inode)) {
312 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
313 return PTR_ERR(inode);
314 }
315
316 /* do a chunk of defrag */
317 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
318 memset(&range, 0, sizeof(range));
319 range.len = (u64)-1;
320 range.start = defrag->last_offset;
321
322 sb_start_write(fs_info->sb);
323 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
324 BTRFS_DEFRAG_BATCH);
325 sb_end_write(fs_info->sb);
326 /*
327 * if we filled the whole defrag batch, there
328 * must be more work to do. Queue this defrag
329 * again
330 */
331 if (num_defrag == BTRFS_DEFRAG_BATCH) {
332 defrag->last_offset = range.start;
333 btrfs_requeue_inode_defrag(inode, defrag);
334 } else if (defrag->last_offset && !defrag->cycled) {
335 /*
336 * we didn't fill our defrag batch, but
337 * we didn't start at zero. Make sure we loop
338 * around to the start of the file.
339 */
340 defrag->last_offset = 0;
341 defrag->cycled = 1;
342 btrfs_requeue_inode_defrag(inode, defrag);
343 } else {
344 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
345 }
346
347 iput(inode);
348 return 0;
349 }
350
351 /*
352 * run through the list of inodes in the FS that need
353 * defragging
354 */
355 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
356 {
357 struct inode_defrag *defrag;
358 u64 first_ino = 0;
359 u64 root_objectid = 0;
360
361 atomic_inc(&fs_info->defrag_running);
362 while(1) {
363 if (!__need_auto_defrag(fs_info->tree_root))
364 break;
365
366 /* find an inode to defrag */
367 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
368 first_ino);
369 if (!defrag) {
370 if (root_objectid || first_ino) {
371 root_objectid = 0;
372 first_ino = 0;
373 continue;
374 } else {
375 break;
376 }
377 }
378
379 first_ino = defrag->ino + 1;
380 root_objectid = defrag->root;
381
382 __btrfs_run_defrag_inode(fs_info, defrag);
383 }
384 atomic_dec(&fs_info->defrag_running);
385
386 /*
387 * during unmount, we use the transaction_wait queue to
388 * wait for the defragger to stop
389 */
390 wake_up(&fs_info->transaction_wait);
391 return 0;
392 }
393
394 /* simple helper to fault in pages and copy. This should go away
395 * and be replaced with calls into generic code.
396 */
397 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
398 size_t write_bytes,
399 struct page **prepared_pages,
400 struct iov_iter *i)
401 {
402 size_t copied = 0;
403 size_t total_copied = 0;
404 int pg = 0;
405 int offset = pos & (PAGE_CACHE_SIZE - 1);
406
407 while (write_bytes > 0) {
408 size_t count = min_t(size_t,
409 PAGE_CACHE_SIZE - offset, write_bytes);
410 struct page *page = prepared_pages[pg];
411 /*
412 * Copy data from userspace to the current page
413 *
414 * Disable pagefault to avoid recursive lock since
415 * the pages are already locked
416 */
417 pagefault_disable();
418 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
419 pagefault_enable();
420
421 /* Flush processor's dcache for this page */
422 flush_dcache_page(page);
423
424 /*
425 * if we get a partial write, we can end up with
426 * partially up to date pages. These add
427 * a lot of complexity, so make sure they don't
428 * happen by forcing this copy to be retried.
429 *
430 * The rest of the btrfs_file_write code will fall
431 * back to page at a time copies after we return 0.
432 */
433 if (!PageUptodate(page) && copied < count)
434 copied = 0;
435
436 iov_iter_advance(i, copied);
437 write_bytes -= copied;
438 total_copied += copied;
439
440 /* Return to btrfs_file_aio_write to fault page */
441 if (unlikely(copied == 0))
442 break;
443
444 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
445 offset += copied;
446 } else {
447 pg++;
448 offset = 0;
449 }
450 }
451 return total_copied;
452 }
453
454 /*
455 * unlocks pages after btrfs_file_write is done with them
456 */
457 void btrfs_drop_pages(struct page **pages, size_t num_pages)
458 {
459 size_t i;
460 for (i = 0; i < num_pages; i++) {
461 /* page checked is some magic around finding pages that
462 * have been modified without going through btrfs_set_page_dirty
463 * clear it here
464 */
465 ClearPageChecked(pages[i]);
466 unlock_page(pages[i]);
467 mark_page_accessed(pages[i]);
468 page_cache_release(pages[i]);
469 }
470 }
471
472 /*
473 * after copy_from_user, pages need to be dirtied and we need to make
474 * sure holes are created between the current EOF and the start of
475 * any next extents (if required).
476 *
477 * this also makes the decision about creating an inline extent vs
478 * doing real data extents, marking pages dirty and delalloc as required.
479 */
480 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
481 struct page **pages, size_t num_pages,
482 loff_t pos, size_t write_bytes,
483 struct extent_state **cached)
484 {
485 int err = 0;
486 int i;
487 u64 num_bytes;
488 u64 start_pos;
489 u64 end_of_last_block;
490 u64 end_pos = pos + write_bytes;
491 loff_t isize = i_size_read(inode);
492
493 start_pos = pos & ~((u64)root->sectorsize - 1);
494 num_bytes = (write_bytes + pos - start_pos +
495 root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
496
497 end_of_last_block = start_pos + num_bytes - 1;
498 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
499 cached);
500 if (err)
501 return err;
502
503 for (i = 0; i < num_pages; i++) {
504 struct page *p = pages[i];
505 SetPageUptodate(p);
506 ClearPageChecked(p);
507 set_page_dirty(p);
508 }
509
510 /*
511 * we've only changed i_size in ram, and we haven't updated
512 * the disk i_size. There is no need to log the inode
513 * at this time.
514 */
515 if (end_pos > isize)
516 i_size_write(inode, end_pos);
517 return 0;
518 }
519
520 /*
521 * this drops all the extents in the cache that intersect the range
522 * [start, end]. Existing extents are split as required.
523 */
524 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
525 int skip_pinned)
526 {
527 struct extent_map *em;
528 struct extent_map *split = NULL;
529 struct extent_map *split2 = NULL;
530 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
531 u64 len = end - start + 1;
532 u64 gen;
533 int ret;
534 int testend = 1;
535 unsigned long flags;
536 int compressed = 0;
537
538 WARN_ON(end < start);
539 if (end == (u64)-1) {
540 len = (u64)-1;
541 testend = 0;
542 }
543 while (1) {
544 int no_splits = 0;
545
546 if (!split)
547 split = alloc_extent_map();
548 if (!split2)
549 split2 = alloc_extent_map();
550 if (!split || !split2)
551 no_splits = 1;
552
553 write_lock(&em_tree->lock);
554 em = lookup_extent_mapping(em_tree, start, len);
555 if (!em) {
556 write_unlock(&em_tree->lock);
557 break;
558 }
559 flags = em->flags;
560 gen = em->generation;
561 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
562 if (testend && em->start + em->len >= start + len) {
563 free_extent_map(em);
564 write_unlock(&em_tree->lock);
565 break;
566 }
567 start = em->start + em->len;
568 if (testend)
569 len = start + len - (em->start + em->len);
570 free_extent_map(em);
571 write_unlock(&em_tree->lock);
572 continue;
573 }
574 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
575 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
576 remove_extent_mapping(em_tree, em);
577 if (no_splits)
578 goto next;
579
580 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
581 em->start < start) {
582 split->start = em->start;
583 split->len = start - em->start;
584 split->orig_start = em->orig_start;
585 split->block_start = em->block_start;
586
587 if (compressed)
588 split->block_len = em->block_len;
589 else
590 split->block_len = split->len;
591 split->generation = gen;
592 split->bdev = em->bdev;
593 split->flags = flags;
594 split->compress_type = em->compress_type;
595 ret = add_extent_mapping(em_tree, split);
596 BUG_ON(ret); /* Logic error */
597 list_move(&split->list, &em_tree->modified_extents);
598 free_extent_map(split);
599 split = split2;
600 split2 = NULL;
601 }
602 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
603 testend && em->start + em->len > start + len) {
604 u64 diff = start + len - em->start;
605
606 split->start = start + len;
607 split->len = em->start + em->len - (start + len);
608 split->bdev = em->bdev;
609 split->flags = flags;
610 split->compress_type = em->compress_type;
611 split->generation = gen;
612
613 if (compressed) {
614 split->block_len = em->block_len;
615 split->block_start = em->block_start;
616 split->orig_start = em->orig_start;
617 } else {
618 split->block_len = split->len;
619 split->block_start = em->block_start + diff;
620 split->orig_start = split->start;
621 }
622
623 ret = add_extent_mapping(em_tree, split);
624 BUG_ON(ret); /* Logic error */
625 list_move(&split->list, &em_tree->modified_extents);
626 free_extent_map(split);
627 split = NULL;
628 }
629 next:
630 write_unlock(&em_tree->lock);
631
632 /* once for us */
633 free_extent_map(em);
634 /* once for the tree*/
635 free_extent_map(em);
636 }
637 if (split)
638 free_extent_map(split);
639 if (split2)
640 free_extent_map(split2);
641 }
642
643 /*
644 * this is very complex, but the basic idea is to drop all extents
645 * in the range start - end. hint_block is filled in with a block number
646 * that would be a good hint to the block allocator for this file.
647 *
648 * If an extent intersects the range but is not entirely inside the range
649 * it is either truncated or split. Anything entirely inside the range
650 * is deleted from the tree.
651 */
652 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
653 struct btrfs_root *root, struct inode *inode,
654 struct btrfs_path *path, u64 start, u64 end,
655 u64 *drop_end, int drop_cache)
656 {
657 struct extent_buffer *leaf;
658 struct btrfs_file_extent_item *fi;
659 struct btrfs_key key;
660 struct btrfs_key new_key;
661 u64 ino = btrfs_ino(inode);
662 u64 search_start = start;
663 u64 disk_bytenr = 0;
664 u64 num_bytes = 0;
665 u64 extent_offset = 0;
666 u64 extent_end = 0;
667 int del_nr = 0;
668 int del_slot = 0;
669 int extent_type;
670 int recow;
671 int ret;
672 int modify_tree = -1;
673 int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
674 int found = 0;
675
676 if (drop_cache)
677 btrfs_drop_extent_cache(inode, start, end - 1, 0);
678
679 if (start >= BTRFS_I(inode)->disk_i_size)
680 modify_tree = 0;
681
682 while (1) {
683 recow = 0;
684 ret = btrfs_lookup_file_extent(trans, root, path, ino,
685 search_start, modify_tree);
686 if (ret < 0)
687 break;
688 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
689 leaf = path->nodes[0];
690 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
691 if (key.objectid == ino &&
692 key.type == BTRFS_EXTENT_DATA_KEY)
693 path->slots[0]--;
694 }
695 ret = 0;
696 next_slot:
697 leaf = path->nodes[0];
698 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
699 BUG_ON(del_nr > 0);
700 ret = btrfs_next_leaf(root, path);
701 if (ret < 0)
702 break;
703 if (ret > 0) {
704 ret = 0;
705 break;
706 }
707 leaf = path->nodes[0];
708 recow = 1;
709 }
710
711 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
712 if (key.objectid > ino ||
713 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
714 break;
715
716 fi = btrfs_item_ptr(leaf, path->slots[0],
717 struct btrfs_file_extent_item);
718 extent_type = btrfs_file_extent_type(leaf, fi);
719
720 if (extent_type == BTRFS_FILE_EXTENT_REG ||
721 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
722 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
723 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
724 extent_offset = btrfs_file_extent_offset(leaf, fi);
725 extent_end = key.offset +
726 btrfs_file_extent_num_bytes(leaf, fi);
727 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
728 extent_end = key.offset +
729 btrfs_file_extent_inline_len(leaf, fi);
730 } else {
731 WARN_ON(1);
732 extent_end = search_start;
733 }
734
735 if (extent_end <= search_start) {
736 path->slots[0]++;
737 goto next_slot;
738 }
739
740 found = 1;
741 search_start = max(key.offset, start);
742 if (recow || !modify_tree) {
743 modify_tree = -1;
744 btrfs_release_path(path);
745 continue;
746 }
747
748 /*
749 * | - range to drop - |
750 * | -------- extent -------- |
751 */
752 if (start > key.offset && end < extent_end) {
753 BUG_ON(del_nr > 0);
754 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
755
756 memcpy(&new_key, &key, sizeof(new_key));
757 new_key.offset = start;
758 ret = btrfs_duplicate_item(trans, root, path,
759 &new_key);
760 if (ret == -EAGAIN) {
761 btrfs_release_path(path);
762 continue;
763 }
764 if (ret < 0)
765 break;
766
767 leaf = path->nodes[0];
768 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
769 struct btrfs_file_extent_item);
770 btrfs_set_file_extent_num_bytes(leaf, fi,
771 start - key.offset);
772
773 fi = btrfs_item_ptr(leaf, path->slots[0],
774 struct btrfs_file_extent_item);
775
776 extent_offset += start - key.offset;
777 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
778 btrfs_set_file_extent_num_bytes(leaf, fi,
779 extent_end - start);
780 btrfs_mark_buffer_dirty(leaf);
781
782 if (update_refs && disk_bytenr > 0) {
783 ret = btrfs_inc_extent_ref(trans, root,
784 disk_bytenr, num_bytes, 0,
785 root->root_key.objectid,
786 new_key.objectid,
787 start - extent_offset, 0);
788 BUG_ON(ret); /* -ENOMEM */
789 }
790 key.offset = start;
791 }
792 /*
793 * | ---- range to drop ----- |
794 * | -------- extent -------- |
795 */
796 if (start <= key.offset && end < extent_end) {
797 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
798
799 memcpy(&new_key, &key, sizeof(new_key));
800 new_key.offset = end;
801 btrfs_set_item_key_safe(trans, root, path, &new_key);
802
803 extent_offset += end - key.offset;
804 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
805 btrfs_set_file_extent_num_bytes(leaf, fi,
806 extent_end - end);
807 btrfs_mark_buffer_dirty(leaf);
808 if (update_refs && disk_bytenr > 0)
809 inode_sub_bytes(inode, end - key.offset);
810 break;
811 }
812
813 search_start = extent_end;
814 /*
815 * | ---- range to drop ----- |
816 * | -------- extent -------- |
817 */
818 if (start > key.offset && end >= extent_end) {
819 BUG_ON(del_nr > 0);
820 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
821
822 btrfs_set_file_extent_num_bytes(leaf, fi,
823 start - key.offset);
824 btrfs_mark_buffer_dirty(leaf);
825 if (update_refs && disk_bytenr > 0)
826 inode_sub_bytes(inode, extent_end - start);
827 if (end == extent_end)
828 break;
829
830 path->slots[0]++;
831 goto next_slot;
832 }
833
834 /*
835 * | ---- range to drop ----- |
836 * | ------ extent ------ |
837 */
838 if (start <= key.offset && end >= extent_end) {
839 if (del_nr == 0) {
840 del_slot = path->slots[0];
841 del_nr = 1;
842 } else {
843 BUG_ON(del_slot + del_nr != path->slots[0]);
844 del_nr++;
845 }
846
847 if (update_refs &&
848 extent_type == BTRFS_FILE_EXTENT_INLINE) {
849 inode_sub_bytes(inode,
850 extent_end - key.offset);
851 extent_end = ALIGN(extent_end,
852 root->sectorsize);
853 } else if (update_refs && disk_bytenr > 0) {
854 ret = btrfs_free_extent(trans, root,
855 disk_bytenr, num_bytes, 0,
856 root->root_key.objectid,
857 key.objectid, key.offset -
858 extent_offset, 0);
859 BUG_ON(ret); /* -ENOMEM */
860 inode_sub_bytes(inode,
861 extent_end - key.offset);
862 }
863
864 if (end == extent_end)
865 break;
866
867 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
868 path->slots[0]++;
869 goto next_slot;
870 }
871
872 ret = btrfs_del_items(trans, root, path, del_slot,
873 del_nr);
874 if (ret) {
875 btrfs_abort_transaction(trans, root, ret);
876 break;
877 }
878
879 del_nr = 0;
880 del_slot = 0;
881
882 btrfs_release_path(path);
883 continue;
884 }
885
886 BUG_ON(1);
887 }
888
889 if (!ret && del_nr > 0) {
890 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
891 if (ret)
892 btrfs_abort_transaction(trans, root, ret);
893 }
894
895 if (drop_end)
896 *drop_end = found ? min(end, extent_end) : end;
897 btrfs_release_path(path);
898 return ret;
899 }
900
901 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
902 struct btrfs_root *root, struct inode *inode, u64 start,
903 u64 end, int drop_cache)
904 {
905 struct btrfs_path *path;
906 int ret;
907
908 path = btrfs_alloc_path();
909 if (!path)
910 return -ENOMEM;
911 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
912 drop_cache);
913 btrfs_free_path(path);
914 return ret;
915 }
916
917 static int extent_mergeable(struct extent_buffer *leaf, int slot,
918 u64 objectid, u64 bytenr, u64 orig_offset,
919 u64 *start, u64 *end)
920 {
921 struct btrfs_file_extent_item *fi;
922 struct btrfs_key key;
923 u64 extent_end;
924
925 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
926 return 0;
927
928 btrfs_item_key_to_cpu(leaf, &key, slot);
929 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
930 return 0;
931
932 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
933 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
934 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
935 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
936 btrfs_file_extent_compression(leaf, fi) ||
937 btrfs_file_extent_encryption(leaf, fi) ||
938 btrfs_file_extent_other_encoding(leaf, fi))
939 return 0;
940
941 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
942 if ((*start && *start != key.offset) || (*end && *end != extent_end))
943 return 0;
944
945 *start = key.offset;
946 *end = extent_end;
947 return 1;
948 }
949
950 /*
951 * Mark extent in the range start - end as written.
952 *
953 * This changes extent type from 'pre-allocated' to 'regular'. If only
954 * part of extent is marked as written, the extent will be split into
955 * two or three.
956 */
957 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
958 struct inode *inode, u64 start, u64 end)
959 {
960 struct btrfs_root *root = BTRFS_I(inode)->root;
961 struct extent_buffer *leaf;
962 struct btrfs_path *path;
963 struct btrfs_file_extent_item *fi;
964 struct btrfs_key key;
965 struct btrfs_key new_key;
966 u64 bytenr;
967 u64 num_bytes;
968 u64 extent_end;
969 u64 orig_offset;
970 u64 other_start;
971 u64 other_end;
972 u64 split;
973 int del_nr = 0;
974 int del_slot = 0;
975 int recow;
976 int ret;
977 u64 ino = btrfs_ino(inode);
978
979 path = btrfs_alloc_path();
980 if (!path)
981 return -ENOMEM;
982 again:
983 recow = 0;
984 split = start;
985 key.objectid = ino;
986 key.type = BTRFS_EXTENT_DATA_KEY;
987 key.offset = split;
988
989 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
990 if (ret < 0)
991 goto out;
992 if (ret > 0 && path->slots[0] > 0)
993 path->slots[0]--;
994
995 leaf = path->nodes[0];
996 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
997 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
998 fi = btrfs_item_ptr(leaf, path->slots[0],
999 struct btrfs_file_extent_item);
1000 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1001 BTRFS_FILE_EXTENT_PREALLOC);
1002 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1003 BUG_ON(key.offset > start || extent_end < end);
1004
1005 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1006 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1007 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1008 memcpy(&new_key, &key, sizeof(new_key));
1009
1010 if (start == key.offset && end < extent_end) {
1011 other_start = 0;
1012 other_end = start;
1013 if (extent_mergeable(leaf, path->slots[0] - 1,
1014 ino, bytenr, orig_offset,
1015 &other_start, &other_end)) {
1016 new_key.offset = end;
1017 btrfs_set_item_key_safe(trans, root, path, &new_key);
1018 fi = btrfs_item_ptr(leaf, path->slots[0],
1019 struct btrfs_file_extent_item);
1020 btrfs_set_file_extent_generation(leaf, fi,
1021 trans->transid);
1022 btrfs_set_file_extent_num_bytes(leaf, fi,
1023 extent_end - end);
1024 btrfs_set_file_extent_offset(leaf, fi,
1025 end - orig_offset);
1026 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1027 struct btrfs_file_extent_item);
1028 btrfs_set_file_extent_generation(leaf, fi,
1029 trans->transid);
1030 btrfs_set_file_extent_num_bytes(leaf, fi,
1031 end - other_start);
1032 btrfs_mark_buffer_dirty(leaf);
1033 goto out;
1034 }
1035 }
1036
1037 if (start > key.offset && end == extent_end) {
1038 other_start = end;
1039 other_end = 0;
1040 if (extent_mergeable(leaf, path->slots[0] + 1,
1041 ino, bytenr, orig_offset,
1042 &other_start, &other_end)) {
1043 fi = btrfs_item_ptr(leaf, path->slots[0],
1044 struct btrfs_file_extent_item);
1045 btrfs_set_file_extent_num_bytes(leaf, fi,
1046 start - key.offset);
1047 btrfs_set_file_extent_generation(leaf, fi,
1048 trans->transid);
1049 path->slots[0]++;
1050 new_key.offset = start;
1051 btrfs_set_item_key_safe(trans, root, path, &new_key);
1052
1053 fi = btrfs_item_ptr(leaf, path->slots[0],
1054 struct btrfs_file_extent_item);
1055 btrfs_set_file_extent_generation(leaf, fi,
1056 trans->transid);
1057 btrfs_set_file_extent_num_bytes(leaf, fi,
1058 other_end - start);
1059 btrfs_set_file_extent_offset(leaf, fi,
1060 start - orig_offset);
1061 btrfs_mark_buffer_dirty(leaf);
1062 goto out;
1063 }
1064 }
1065
1066 while (start > key.offset || end < extent_end) {
1067 if (key.offset == start)
1068 split = end;
1069
1070 new_key.offset = split;
1071 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1072 if (ret == -EAGAIN) {
1073 btrfs_release_path(path);
1074 goto again;
1075 }
1076 if (ret < 0) {
1077 btrfs_abort_transaction(trans, root, ret);
1078 goto out;
1079 }
1080
1081 leaf = path->nodes[0];
1082 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1083 struct btrfs_file_extent_item);
1084 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1085 btrfs_set_file_extent_num_bytes(leaf, fi,
1086 split - key.offset);
1087
1088 fi = btrfs_item_ptr(leaf, path->slots[0],
1089 struct btrfs_file_extent_item);
1090
1091 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1092 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1093 btrfs_set_file_extent_num_bytes(leaf, fi,
1094 extent_end - split);
1095 btrfs_mark_buffer_dirty(leaf);
1096
1097 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1098 root->root_key.objectid,
1099 ino, orig_offset, 0);
1100 BUG_ON(ret); /* -ENOMEM */
1101
1102 if (split == start) {
1103 key.offset = start;
1104 } else {
1105 BUG_ON(start != key.offset);
1106 path->slots[0]--;
1107 extent_end = end;
1108 }
1109 recow = 1;
1110 }
1111
1112 other_start = end;
1113 other_end = 0;
1114 if (extent_mergeable(leaf, path->slots[0] + 1,
1115 ino, bytenr, orig_offset,
1116 &other_start, &other_end)) {
1117 if (recow) {
1118 btrfs_release_path(path);
1119 goto again;
1120 }
1121 extent_end = other_end;
1122 del_slot = path->slots[0] + 1;
1123 del_nr++;
1124 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1125 0, root->root_key.objectid,
1126 ino, orig_offset, 0);
1127 BUG_ON(ret); /* -ENOMEM */
1128 }
1129 other_start = 0;
1130 other_end = start;
1131 if (extent_mergeable(leaf, path->slots[0] - 1,
1132 ino, bytenr, orig_offset,
1133 &other_start, &other_end)) {
1134 if (recow) {
1135 btrfs_release_path(path);
1136 goto again;
1137 }
1138 key.offset = other_start;
1139 del_slot = path->slots[0];
1140 del_nr++;
1141 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1142 0, root->root_key.objectid,
1143 ino, orig_offset, 0);
1144 BUG_ON(ret); /* -ENOMEM */
1145 }
1146 if (del_nr == 0) {
1147 fi = btrfs_item_ptr(leaf, path->slots[0],
1148 struct btrfs_file_extent_item);
1149 btrfs_set_file_extent_type(leaf, fi,
1150 BTRFS_FILE_EXTENT_REG);
1151 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1152 btrfs_mark_buffer_dirty(leaf);
1153 } else {
1154 fi = btrfs_item_ptr(leaf, del_slot - 1,
1155 struct btrfs_file_extent_item);
1156 btrfs_set_file_extent_type(leaf, fi,
1157 BTRFS_FILE_EXTENT_REG);
1158 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1159 btrfs_set_file_extent_num_bytes(leaf, fi,
1160 extent_end - key.offset);
1161 btrfs_mark_buffer_dirty(leaf);
1162
1163 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1164 if (ret < 0) {
1165 btrfs_abort_transaction(trans, root, ret);
1166 goto out;
1167 }
1168 }
1169 out:
1170 btrfs_free_path(path);
1171 return 0;
1172 }
1173
1174 /*
1175 * on error we return an unlocked page and the error value
1176 * on success we return a locked page and 0
1177 */
1178 static int prepare_uptodate_page(struct page *page, u64 pos,
1179 bool force_uptodate)
1180 {
1181 int ret = 0;
1182
1183 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1184 !PageUptodate(page)) {
1185 ret = btrfs_readpage(NULL, page);
1186 if (ret)
1187 return ret;
1188 lock_page(page);
1189 if (!PageUptodate(page)) {
1190 unlock_page(page);
1191 return -EIO;
1192 }
1193 }
1194 return 0;
1195 }
1196
1197 /*
1198 * this gets pages into the page cache and locks them down, it also properly
1199 * waits for data=ordered extents to finish before allowing the pages to be
1200 * modified.
1201 */
1202 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1203 struct page **pages, size_t num_pages,
1204 loff_t pos, unsigned long first_index,
1205 size_t write_bytes, bool force_uptodate)
1206 {
1207 struct extent_state *cached_state = NULL;
1208 int i;
1209 unsigned long index = pos >> PAGE_CACHE_SHIFT;
1210 struct inode *inode = fdentry(file)->d_inode;
1211 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1212 int err = 0;
1213 int faili = 0;
1214 u64 start_pos;
1215 u64 last_pos;
1216
1217 start_pos = pos & ~((u64)root->sectorsize - 1);
1218 last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1219
1220 again:
1221 for (i = 0; i < num_pages; i++) {
1222 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1223 mask | __GFP_WRITE);
1224 if (!pages[i]) {
1225 faili = i - 1;
1226 err = -ENOMEM;
1227 goto fail;
1228 }
1229
1230 if (i == 0)
1231 err = prepare_uptodate_page(pages[i], pos,
1232 force_uptodate);
1233 if (i == num_pages - 1)
1234 err = prepare_uptodate_page(pages[i],
1235 pos + write_bytes, false);
1236 if (err) {
1237 page_cache_release(pages[i]);
1238 faili = i - 1;
1239 goto fail;
1240 }
1241 wait_on_page_writeback(pages[i]);
1242 }
1243 err = 0;
1244 if (start_pos < inode->i_size) {
1245 struct btrfs_ordered_extent *ordered;
1246 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1247 start_pos, last_pos - 1, 0, &cached_state);
1248 ordered = btrfs_lookup_first_ordered_extent(inode,
1249 last_pos - 1);
1250 if (ordered &&
1251 ordered->file_offset + ordered->len > start_pos &&
1252 ordered->file_offset < last_pos) {
1253 btrfs_put_ordered_extent(ordered);
1254 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1255 start_pos, last_pos - 1,
1256 &cached_state, GFP_NOFS);
1257 for (i = 0; i < num_pages; i++) {
1258 unlock_page(pages[i]);
1259 page_cache_release(pages[i]);
1260 }
1261 btrfs_wait_ordered_range(inode, start_pos,
1262 last_pos - start_pos);
1263 goto again;
1264 }
1265 if (ordered)
1266 btrfs_put_ordered_extent(ordered);
1267
1268 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1269 last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1270 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1271 0, 0, &cached_state, GFP_NOFS);
1272 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1273 start_pos, last_pos - 1, &cached_state,
1274 GFP_NOFS);
1275 }
1276 for (i = 0; i < num_pages; i++) {
1277 if (clear_page_dirty_for_io(pages[i]))
1278 account_page_redirty(pages[i]);
1279 set_page_extent_mapped(pages[i]);
1280 WARN_ON(!PageLocked(pages[i]));
1281 }
1282 return 0;
1283 fail:
1284 while (faili >= 0) {
1285 unlock_page(pages[faili]);
1286 page_cache_release(pages[faili]);
1287 faili--;
1288 }
1289 return err;
1290
1291 }
1292
1293 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1294 struct iov_iter *i,
1295 loff_t pos)
1296 {
1297 struct inode *inode = fdentry(file)->d_inode;
1298 struct btrfs_root *root = BTRFS_I(inode)->root;
1299 struct page **pages = NULL;
1300 unsigned long first_index;
1301 size_t num_written = 0;
1302 int nrptrs;
1303 int ret = 0;
1304 bool force_page_uptodate = false;
1305
1306 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1307 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1308 (sizeof(struct page *)));
1309 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1310 nrptrs = max(nrptrs, 8);
1311 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1312 if (!pages)
1313 return -ENOMEM;
1314
1315 first_index = pos >> PAGE_CACHE_SHIFT;
1316
1317 while (iov_iter_count(i) > 0) {
1318 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1319 size_t write_bytes = min(iov_iter_count(i),
1320 nrptrs * (size_t)PAGE_CACHE_SIZE -
1321 offset);
1322 size_t num_pages = (write_bytes + offset +
1323 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1324 size_t dirty_pages;
1325 size_t copied;
1326
1327 WARN_ON(num_pages > nrptrs);
1328
1329 /*
1330 * Fault pages before locking them in prepare_pages
1331 * to avoid recursive lock
1332 */
1333 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1334 ret = -EFAULT;
1335 break;
1336 }
1337
1338 ret = btrfs_delalloc_reserve_space(inode,
1339 num_pages << PAGE_CACHE_SHIFT);
1340 if (ret)
1341 break;
1342
1343 /*
1344 * This is going to setup the pages array with the number of
1345 * pages we want, so we don't really need to worry about the
1346 * contents of pages from loop to loop
1347 */
1348 ret = prepare_pages(root, file, pages, num_pages,
1349 pos, first_index, write_bytes,
1350 force_page_uptodate);
1351 if (ret) {
1352 btrfs_delalloc_release_space(inode,
1353 num_pages << PAGE_CACHE_SHIFT);
1354 break;
1355 }
1356
1357 copied = btrfs_copy_from_user(pos, num_pages,
1358 write_bytes, pages, i);
1359
1360 /*
1361 * if we have trouble faulting in the pages, fall
1362 * back to one page at a time
1363 */
1364 if (copied < write_bytes)
1365 nrptrs = 1;
1366
1367 if (copied == 0) {
1368 force_page_uptodate = true;
1369 dirty_pages = 0;
1370 } else {
1371 force_page_uptodate = false;
1372 dirty_pages = (copied + offset +
1373 PAGE_CACHE_SIZE - 1) >>
1374 PAGE_CACHE_SHIFT;
1375 }
1376
1377 /*
1378 * If we had a short copy we need to release the excess delaloc
1379 * bytes we reserved. We need to increment outstanding_extents
1380 * because btrfs_delalloc_release_space will decrement it, but
1381 * we still have an outstanding extent for the chunk we actually
1382 * managed to copy.
1383 */
1384 if (num_pages > dirty_pages) {
1385 if (copied > 0) {
1386 spin_lock(&BTRFS_I(inode)->lock);
1387 BTRFS_I(inode)->outstanding_extents++;
1388 spin_unlock(&BTRFS_I(inode)->lock);
1389 }
1390 btrfs_delalloc_release_space(inode,
1391 (num_pages - dirty_pages) <<
1392 PAGE_CACHE_SHIFT);
1393 }
1394
1395 if (copied > 0) {
1396 ret = btrfs_dirty_pages(root, inode, pages,
1397 dirty_pages, pos, copied,
1398 NULL);
1399 if (ret) {
1400 btrfs_delalloc_release_space(inode,
1401 dirty_pages << PAGE_CACHE_SHIFT);
1402 btrfs_drop_pages(pages, num_pages);
1403 break;
1404 }
1405 }
1406
1407 btrfs_drop_pages(pages, num_pages);
1408
1409 cond_resched();
1410
1411 balance_dirty_pages_ratelimited_nr(inode->i_mapping,
1412 dirty_pages);
1413 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1414 btrfs_btree_balance_dirty(root);
1415
1416 pos += copied;
1417 num_written += copied;
1418 }
1419
1420 kfree(pages);
1421
1422 return num_written ? num_written : ret;
1423 }
1424
1425 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1426 const struct iovec *iov,
1427 unsigned long nr_segs, loff_t pos,
1428 loff_t *ppos, size_t count, size_t ocount)
1429 {
1430 struct file *file = iocb->ki_filp;
1431 struct iov_iter i;
1432 ssize_t written;
1433 ssize_t written_buffered;
1434 loff_t endbyte;
1435 int err;
1436
1437 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1438 count, ocount);
1439
1440 if (written < 0 || written == count)
1441 return written;
1442
1443 pos += written;
1444 count -= written;
1445 iov_iter_init(&i, iov, nr_segs, count, written);
1446 written_buffered = __btrfs_buffered_write(file, &i, pos);
1447 if (written_buffered < 0) {
1448 err = written_buffered;
1449 goto out;
1450 }
1451 endbyte = pos + written_buffered - 1;
1452 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1453 if (err)
1454 goto out;
1455 written += written_buffered;
1456 *ppos = pos + written_buffered;
1457 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1458 endbyte >> PAGE_CACHE_SHIFT);
1459 out:
1460 return written ? written : err;
1461 }
1462
1463 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1464 const struct iovec *iov,
1465 unsigned long nr_segs, loff_t pos)
1466 {
1467 struct file *file = iocb->ki_filp;
1468 struct inode *inode = fdentry(file)->d_inode;
1469 struct btrfs_root *root = BTRFS_I(inode)->root;
1470 loff_t *ppos = &iocb->ki_pos;
1471 u64 start_pos;
1472 ssize_t num_written = 0;
1473 ssize_t err = 0;
1474 size_t count, ocount;
1475
1476 sb_start_write(inode->i_sb);
1477
1478 mutex_lock(&inode->i_mutex);
1479
1480 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1481 if (err) {
1482 mutex_unlock(&inode->i_mutex);
1483 goto out;
1484 }
1485 count = ocount;
1486
1487 current->backing_dev_info = inode->i_mapping->backing_dev_info;
1488 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1489 if (err) {
1490 mutex_unlock(&inode->i_mutex);
1491 goto out;
1492 }
1493
1494 if (count == 0) {
1495 mutex_unlock(&inode->i_mutex);
1496 goto out;
1497 }
1498
1499 err = file_remove_suid(file);
1500 if (err) {
1501 mutex_unlock(&inode->i_mutex);
1502 goto out;
1503 }
1504
1505 /*
1506 * If BTRFS flips readonly due to some impossible error
1507 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1508 * although we have opened a file as writable, we have
1509 * to stop this write operation to ensure FS consistency.
1510 */
1511 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
1512 mutex_unlock(&inode->i_mutex);
1513 err = -EROFS;
1514 goto out;
1515 }
1516
1517 err = file_update_time(file);
1518 if (err) {
1519 mutex_unlock(&inode->i_mutex);
1520 goto out;
1521 }
1522
1523 start_pos = round_down(pos, root->sectorsize);
1524 if (start_pos > i_size_read(inode)) {
1525 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1526 if (err) {
1527 mutex_unlock(&inode->i_mutex);
1528 goto out;
1529 }
1530 }
1531
1532 if (unlikely(file->f_flags & O_DIRECT)) {
1533 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1534 pos, ppos, count, ocount);
1535 } else {
1536 struct iov_iter i;
1537
1538 iov_iter_init(&i, iov, nr_segs, count, num_written);
1539
1540 num_written = __btrfs_buffered_write(file, &i, pos);
1541 if (num_written > 0)
1542 *ppos = pos + num_written;
1543 }
1544
1545 mutex_unlock(&inode->i_mutex);
1546
1547 /*
1548 * we want to make sure fsync finds this change
1549 * but we haven't joined a transaction running right now.
1550 *
1551 * Later on, someone is sure to update the inode and get the
1552 * real transid recorded.
1553 *
1554 * We set last_trans now to the fs_info generation + 1,
1555 * this will either be one more than the running transaction
1556 * or the generation used for the next transaction if there isn't
1557 * one running right now.
1558 */
1559 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1560 if (num_written > 0 || num_written == -EIOCBQUEUED) {
1561 err = generic_write_sync(file, pos, num_written);
1562 if (err < 0 && num_written > 0)
1563 num_written = err;
1564 }
1565 out:
1566 sb_end_write(inode->i_sb);
1567 current->backing_dev_info = NULL;
1568 return num_written ? num_written : err;
1569 }
1570
1571 int btrfs_release_file(struct inode *inode, struct file *filp)
1572 {
1573 /*
1574 * ordered_data_close is set by settattr when we are about to truncate
1575 * a file from a non-zero size to a zero size. This tries to
1576 * flush down new bytes that may have been written if the
1577 * application were using truncate to replace a file in place.
1578 */
1579 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1580 &BTRFS_I(inode)->runtime_flags)) {
1581 btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1582 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1583 filemap_flush(inode->i_mapping);
1584 }
1585 if (filp->private_data)
1586 btrfs_ioctl_trans_end(filp);
1587 return 0;
1588 }
1589
1590 /*
1591 * fsync call for both files and directories. This logs the inode into
1592 * the tree log instead of forcing full commits whenever possible.
1593 *
1594 * It needs to call filemap_fdatawait so that all ordered extent updates are
1595 * in the metadata btree are up to date for copying to the log.
1596 *
1597 * It drops the inode mutex before doing the tree log commit. This is an
1598 * important optimization for directories because holding the mutex prevents
1599 * new operations on the dir while we write to disk.
1600 */
1601 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1602 {
1603 struct dentry *dentry = file->f_path.dentry;
1604 struct inode *inode = dentry->d_inode;
1605 struct btrfs_root *root = BTRFS_I(inode)->root;
1606 int ret = 0;
1607 struct btrfs_trans_handle *trans;
1608
1609 trace_btrfs_sync_file(file, datasync);
1610
1611 /*
1612 * We write the dirty pages in the range and wait until they complete
1613 * out of the ->i_mutex. If so, we can flush the dirty pages by
1614 * multi-task, and make the performance up.
1615 */
1616 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
1617 if (ret)
1618 return ret;
1619
1620 mutex_lock(&inode->i_mutex);
1621
1622 /*
1623 * We flush the dirty pages again to avoid some dirty pages in the
1624 * range being left.
1625 */
1626 atomic_inc(&root->log_batch);
1627 btrfs_wait_ordered_range(inode, start, end - start + 1);
1628 atomic_inc(&root->log_batch);
1629
1630 /*
1631 * check the transaction that last modified this inode
1632 * and see if its already been committed
1633 */
1634 if (!BTRFS_I(inode)->last_trans) {
1635 mutex_unlock(&inode->i_mutex);
1636 goto out;
1637 }
1638
1639 /*
1640 * if the last transaction that changed this file was before
1641 * the current transaction, we can bail out now without any
1642 * syncing
1643 */
1644 smp_mb();
1645 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1646 BTRFS_I(inode)->last_trans <=
1647 root->fs_info->last_trans_committed) {
1648 BTRFS_I(inode)->last_trans = 0;
1649
1650 /*
1651 * We'v had everything committed since the last time we were
1652 * modified so clear this flag in case it was set for whatever
1653 * reason, it's no longer relevant.
1654 */
1655 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1656 &BTRFS_I(inode)->runtime_flags);
1657 mutex_unlock(&inode->i_mutex);
1658 goto out;
1659 }
1660
1661 /*
1662 * ok we haven't committed the transaction yet, lets do a commit
1663 */
1664 if (file->private_data)
1665 btrfs_ioctl_trans_end(file);
1666
1667 trans = btrfs_start_transaction(root, 0);
1668 if (IS_ERR(trans)) {
1669 ret = PTR_ERR(trans);
1670 mutex_unlock(&inode->i_mutex);
1671 goto out;
1672 }
1673
1674 ret = btrfs_log_dentry_safe(trans, root, dentry);
1675 if (ret < 0) {
1676 mutex_unlock(&inode->i_mutex);
1677 goto out;
1678 }
1679
1680 /* we've logged all the items and now have a consistent
1681 * version of the file in the log. It is possible that
1682 * someone will come in and modify the file, but that's
1683 * fine because the log is consistent on disk, and we
1684 * have references to all of the file's extents
1685 *
1686 * It is possible that someone will come in and log the
1687 * file again, but that will end up using the synchronization
1688 * inside btrfs_sync_log to keep things safe.
1689 */
1690 mutex_unlock(&inode->i_mutex);
1691
1692 if (ret != BTRFS_NO_LOG_SYNC) {
1693 if (ret > 0) {
1694 ret = btrfs_commit_transaction(trans, root);
1695 } else {
1696 ret = btrfs_sync_log(trans, root);
1697 if (ret == 0)
1698 ret = btrfs_end_transaction(trans, root);
1699 else
1700 ret = btrfs_commit_transaction(trans, root);
1701 }
1702 } else {
1703 ret = btrfs_end_transaction(trans, root);
1704 }
1705 out:
1706 return ret > 0 ? -EIO : ret;
1707 }
1708
1709 static const struct vm_operations_struct btrfs_file_vm_ops = {
1710 .fault = filemap_fault,
1711 .page_mkwrite = btrfs_page_mkwrite,
1712 .remap_pages = generic_file_remap_pages,
1713 };
1714
1715 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
1716 {
1717 struct address_space *mapping = filp->f_mapping;
1718
1719 if (!mapping->a_ops->readpage)
1720 return -ENOEXEC;
1721
1722 file_accessed(filp);
1723 vma->vm_ops = &btrfs_file_vm_ops;
1724
1725 return 0;
1726 }
1727
1728 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
1729 int slot, u64 start, u64 end)
1730 {
1731 struct btrfs_file_extent_item *fi;
1732 struct btrfs_key key;
1733
1734 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1735 return 0;
1736
1737 btrfs_item_key_to_cpu(leaf, &key, slot);
1738 if (key.objectid != btrfs_ino(inode) ||
1739 key.type != BTRFS_EXTENT_DATA_KEY)
1740 return 0;
1741
1742 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1743
1744 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1745 return 0;
1746
1747 if (btrfs_file_extent_disk_bytenr(leaf, fi))
1748 return 0;
1749
1750 if (key.offset == end)
1751 return 1;
1752 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1753 return 1;
1754 return 0;
1755 }
1756
1757 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
1758 struct btrfs_path *path, u64 offset, u64 end)
1759 {
1760 struct btrfs_root *root = BTRFS_I(inode)->root;
1761 struct extent_buffer *leaf;
1762 struct btrfs_file_extent_item *fi;
1763 struct extent_map *hole_em;
1764 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1765 struct btrfs_key key;
1766 int ret;
1767
1768 key.objectid = btrfs_ino(inode);
1769 key.type = BTRFS_EXTENT_DATA_KEY;
1770 key.offset = offset;
1771
1772
1773 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1774 if (ret < 0)
1775 return ret;
1776 BUG_ON(!ret);
1777
1778 leaf = path->nodes[0];
1779 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
1780 u64 num_bytes;
1781
1782 path->slots[0]--;
1783 fi = btrfs_item_ptr(leaf, path->slots[0],
1784 struct btrfs_file_extent_item);
1785 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
1786 end - offset;
1787 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1788 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1789 btrfs_set_file_extent_offset(leaf, fi, 0);
1790 btrfs_mark_buffer_dirty(leaf);
1791 goto out;
1792 }
1793
1794 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
1795 u64 num_bytes;
1796
1797 path->slots[0]++;
1798 key.offset = offset;
1799 btrfs_set_item_key_safe(trans, root, path, &key);
1800 fi = btrfs_item_ptr(leaf, path->slots[0],
1801 struct btrfs_file_extent_item);
1802 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
1803 offset;
1804 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1805 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1806 btrfs_set_file_extent_offset(leaf, fi, 0);
1807 btrfs_mark_buffer_dirty(leaf);
1808 goto out;
1809 }
1810 btrfs_release_path(path);
1811
1812 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
1813 0, 0, end - offset, 0, end - offset,
1814 0, 0, 0);
1815 if (ret)
1816 return ret;
1817
1818 out:
1819 btrfs_release_path(path);
1820
1821 hole_em = alloc_extent_map();
1822 if (!hole_em) {
1823 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
1824 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1825 &BTRFS_I(inode)->runtime_flags);
1826 } else {
1827 hole_em->start = offset;
1828 hole_em->len = end - offset;
1829 hole_em->orig_start = offset;
1830
1831 hole_em->block_start = EXTENT_MAP_HOLE;
1832 hole_em->block_len = 0;
1833 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
1834 hole_em->compress_type = BTRFS_COMPRESS_NONE;
1835 hole_em->generation = trans->transid;
1836
1837 do {
1838 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
1839 write_lock(&em_tree->lock);
1840 ret = add_extent_mapping(em_tree, hole_em);
1841 if (!ret)
1842 list_move(&hole_em->list,
1843 &em_tree->modified_extents);
1844 write_unlock(&em_tree->lock);
1845 } while (ret == -EEXIST);
1846 free_extent_map(hole_em);
1847 if (ret)
1848 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1849 &BTRFS_I(inode)->runtime_flags);
1850 }
1851
1852 return 0;
1853 }
1854
1855 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1856 {
1857 struct btrfs_root *root = BTRFS_I(inode)->root;
1858 struct extent_state *cached_state = NULL;
1859 struct btrfs_path *path;
1860 struct btrfs_block_rsv *rsv;
1861 struct btrfs_trans_handle *trans;
1862 u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
1863 u64 lockend = round_down(offset + len,
1864 BTRFS_I(inode)->root->sectorsize) - 1;
1865 u64 cur_offset = lockstart;
1866 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
1867 u64 drop_end;
1868 int ret = 0;
1869 int err = 0;
1870 bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
1871 ((offset + len - 1) >> PAGE_CACHE_SHIFT));
1872
1873 btrfs_wait_ordered_range(inode, offset, len);
1874
1875 mutex_lock(&inode->i_mutex);
1876 if (offset >= inode->i_size) {
1877 mutex_unlock(&inode->i_mutex);
1878 return 0;
1879 }
1880
1881 /*
1882 * Only do this if we are in the same page and we aren't doing the
1883 * entire page.
1884 */
1885 if (same_page && len < PAGE_CACHE_SIZE) {
1886 ret = btrfs_truncate_page(inode, offset, len, 0);
1887 mutex_unlock(&inode->i_mutex);
1888 return ret;
1889 }
1890
1891 /* zero back part of the first page */
1892 ret = btrfs_truncate_page(inode, offset, 0, 0);
1893 if (ret) {
1894 mutex_unlock(&inode->i_mutex);
1895 return ret;
1896 }
1897
1898 /* zero the front end of the last page */
1899 if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
1900 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
1901 if (ret) {
1902 mutex_unlock(&inode->i_mutex);
1903 return ret;
1904 }
1905 }
1906
1907 if (lockend < lockstart) {
1908 mutex_unlock(&inode->i_mutex);
1909 return 0;
1910 }
1911
1912 while (1) {
1913 struct btrfs_ordered_extent *ordered;
1914
1915 truncate_pagecache_range(inode, lockstart, lockend);
1916
1917 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1918 0, &cached_state);
1919 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
1920
1921 /*
1922 * We need to make sure we have no ordered extents in this range
1923 * and nobody raced in and read a page in this range, if we did
1924 * we need to try again.
1925 */
1926 if ((!ordered ||
1927 (ordered->file_offset + ordered->len < lockstart ||
1928 ordered->file_offset > lockend)) &&
1929 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
1930 lockend, EXTENT_UPTODATE, 0,
1931 cached_state)) {
1932 if (ordered)
1933 btrfs_put_ordered_extent(ordered);
1934 break;
1935 }
1936 if (ordered)
1937 btrfs_put_ordered_extent(ordered);
1938 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
1939 lockend, &cached_state, GFP_NOFS);
1940 btrfs_wait_ordered_range(inode, lockstart,
1941 lockend - lockstart + 1);
1942 }
1943
1944 path = btrfs_alloc_path();
1945 if (!path) {
1946 ret = -ENOMEM;
1947 goto out;
1948 }
1949
1950 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
1951 if (!rsv) {
1952 ret = -ENOMEM;
1953 goto out_free;
1954 }
1955 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
1956 rsv->failfast = 1;
1957
1958 /*
1959 * 1 - update the inode
1960 * 1 - removing the extents in the range
1961 * 1 - adding the hole extent
1962 */
1963 trans = btrfs_start_transaction(root, 3);
1964 if (IS_ERR(trans)) {
1965 err = PTR_ERR(trans);
1966 goto out_free;
1967 }
1968
1969 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
1970 min_size);
1971 BUG_ON(ret);
1972 trans->block_rsv = rsv;
1973
1974 while (cur_offset < lockend) {
1975 ret = __btrfs_drop_extents(trans, root, inode, path,
1976 cur_offset, lockend + 1,
1977 &drop_end, 1);
1978 if (ret != -ENOSPC)
1979 break;
1980
1981 trans->block_rsv = &root->fs_info->trans_block_rsv;
1982
1983 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
1984 if (ret) {
1985 err = ret;
1986 break;
1987 }
1988
1989 cur_offset = drop_end;
1990
1991 ret = btrfs_update_inode(trans, root, inode);
1992 if (ret) {
1993 err = ret;
1994 break;
1995 }
1996
1997 btrfs_end_transaction(trans, root);
1998 btrfs_btree_balance_dirty(root);
1999
2000 trans = btrfs_start_transaction(root, 3);
2001 if (IS_ERR(trans)) {
2002 ret = PTR_ERR(trans);
2003 trans = NULL;
2004 break;
2005 }
2006
2007 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2008 rsv, min_size);
2009 BUG_ON(ret); /* shouldn't happen */
2010 trans->block_rsv = rsv;
2011 }
2012
2013 if (ret) {
2014 err = ret;
2015 goto out_trans;
2016 }
2017
2018 trans->block_rsv = &root->fs_info->trans_block_rsv;
2019 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2020 if (ret) {
2021 err = ret;
2022 goto out_trans;
2023 }
2024
2025 out_trans:
2026 if (!trans)
2027 goto out_free;
2028
2029 inode_inc_iversion(inode);
2030 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2031
2032 trans->block_rsv = &root->fs_info->trans_block_rsv;
2033 ret = btrfs_update_inode(trans, root, inode);
2034 btrfs_end_transaction(trans, root);
2035 btrfs_btree_balance_dirty(root);
2036 out_free:
2037 btrfs_free_path(path);
2038 btrfs_free_block_rsv(root, rsv);
2039 out:
2040 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2041 &cached_state, GFP_NOFS);
2042 mutex_unlock(&inode->i_mutex);
2043 if (ret && !err)
2044 err = ret;
2045 return err;
2046 }
2047
2048 static long btrfs_fallocate(struct file *file, int mode,
2049 loff_t offset, loff_t len)
2050 {
2051 struct inode *inode = file->f_path.dentry->d_inode;
2052 struct extent_state *cached_state = NULL;
2053 u64 cur_offset;
2054 u64 last_byte;
2055 u64 alloc_start;
2056 u64 alloc_end;
2057 u64 alloc_hint = 0;
2058 u64 locked_end;
2059 struct extent_map *em;
2060 int blocksize = BTRFS_I(inode)->root->sectorsize;
2061 int ret;
2062
2063 alloc_start = round_down(offset, blocksize);
2064 alloc_end = round_up(offset + len, blocksize);
2065
2066 /* Make sure we aren't being give some crap mode */
2067 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2068 return -EOPNOTSUPP;
2069
2070 if (mode & FALLOC_FL_PUNCH_HOLE)
2071 return btrfs_punch_hole(inode, offset, len);
2072
2073 /*
2074 * Make sure we have enough space before we do the
2075 * allocation.
2076 */
2077 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2078 if (ret)
2079 return ret;
2080
2081 /*
2082 * wait for ordered IO before we have any locks. We'll loop again
2083 * below with the locks held.
2084 */
2085 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
2086
2087 mutex_lock(&inode->i_mutex);
2088 ret = inode_newsize_ok(inode, alloc_end);
2089 if (ret)
2090 goto out;
2091
2092 if (alloc_start > inode->i_size) {
2093 ret = btrfs_cont_expand(inode, i_size_read(inode),
2094 alloc_start);
2095 if (ret)
2096 goto out;
2097 }
2098
2099 locked_end = alloc_end - 1;
2100 while (1) {
2101 struct btrfs_ordered_extent *ordered;
2102
2103 /* the extent lock is ordered inside the running
2104 * transaction
2105 */
2106 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2107 locked_end, 0, &cached_state);
2108 ordered = btrfs_lookup_first_ordered_extent(inode,
2109 alloc_end - 1);
2110 if (ordered &&
2111 ordered->file_offset + ordered->len > alloc_start &&
2112 ordered->file_offset < alloc_end) {
2113 btrfs_put_ordered_extent(ordered);
2114 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2115 alloc_start, locked_end,
2116 &cached_state, GFP_NOFS);
2117 /*
2118 * we can't wait on the range with the transaction
2119 * running or with the extent lock held
2120 */
2121 btrfs_wait_ordered_range(inode, alloc_start,
2122 alloc_end - alloc_start);
2123 } else {
2124 if (ordered)
2125 btrfs_put_ordered_extent(ordered);
2126 break;
2127 }
2128 }
2129
2130 cur_offset = alloc_start;
2131 while (1) {
2132 u64 actual_end;
2133
2134 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2135 alloc_end - cur_offset, 0);
2136 if (IS_ERR_OR_NULL(em)) {
2137 if (!em)
2138 ret = -ENOMEM;
2139 else
2140 ret = PTR_ERR(em);
2141 break;
2142 }
2143 last_byte = min(extent_map_end(em), alloc_end);
2144 actual_end = min_t(u64, extent_map_end(em), offset + len);
2145 last_byte = ALIGN(last_byte, blocksize);
2146
2147 if (em->block_start == EXTENT_MAP_HOLE ||
2148 (cur_offset >= inode->i_size &&
2149 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2150 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2151 last_byte - cur_offset,
2152 1 << inode->i_blkbits,
2153 offset + len,
2154 &alloc_hint);
2155
2156 if (ret < 0) {
2157 free_extent_map(em);
2158 break;
2159 }
2160 } else if (actual_end > inode->i_size &&
2161 !(mode & FALLOC_FL_KEEP_SIZE)) {
2162 /*
2163 * We didn't need to allocate any more space, but we
2164 * still extended the size of the file so we need to
2165 * update i_size.
2166 */
2167 inode->i_ctime = CURRENT_TIME;
2168 i_size_write(inode, actual_end);
2169 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2170 }
2171 free_extent_map(em);
2172
2173 cur_offset = last_byte;
2174 if (cur_offset >= alloc_end) {
2175 ret = 0;
2176 break;
2177 }
2178 }
2179 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2180 &cached_state, GFP_NOFS);
2181 out:
2182 mutex_unlock(&inode->i_mutex);
2183 /* Let go of our reservation. */
2184 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2185 return ret;
2186 }
2187
2188 static int find_desired_extent(struct inode *inode, loff_t *offset, int origin)
2189 {
2190 struct btrfs_root *root = BTRFS_I(inode)->root;
2191 struct extent_map *em;
2192 struct extent_state *cached_state = NULL;
2193 u64 lockstart = *offset;
2194 u64 lockend = i_size_read(inode);
2195 u64 start = *offset;
2196 u64 orig_start = *offset;
2197 u64 len = i_size_read(inode);
2198 u64 last_end = 0;
2199 int ret = 0;
2200
2201 lockend = max_t(u64, root->sectorsize, lockend);
2202 if (lockend <= lockstart)
2203 lockend = lockstart + root->sectorsize;
2204
2205 len = lockend - lockstart + 1;
2206
2207 len = max_t(u64, len, root->sectorsize);
2208 if (inode->i_size == 0)
2209 return -ENXIO;
2210
2211 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2212 &cached_state);
2213
2214 /*
2215 * Delalloc is such a pain. If we have a hole and we have pending
2216 * delalloc for a portion of the hole we will get back a hole that
2217 * exists for the entire range since it hasn't been actually written
2218 * yet. So to take care of this case we need to look for an extent just
2219 * before the position we want in case there is outstanding delalloc
2220 * going on here.
2221 */
2222 if (origin == SEEK_HOLE && start != 0) {
2223 if (start <= root->sectorsize)
2224 em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
2225 root->sectorsize, 0);
2226 else
2227 em = btrfs_get_extent_fiemap(inode, NULL, 0,
2228 start - root->sectorsize,
2229 root->sectorsize, 0);
2230 if (IS_ERR(em)) {
2231 ret = PTR_ERR(em);
2232 goto out;
2233 }
2234 last_end = em->start + em->len;
2235 if (em->block_start == EXTENT_MAP_DELALLOC)
2236 last_end = min_t(u64, last_end, inode->i_size);
2237 free_extent_map(em);
2238 }
2239
2240 while (1) {
2241 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2242 if (IS_ERR(em)) {
2243 ret = PTR_ERR(em);
2244 break;
2245 }
2246
2247 if (em->block_start == EXTENT_MAP_HOLE) {
2248 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2249 if (last_end <= orig_start) {
2250 free_extent_map(em);
2251 ret = -ENXIO;
2252 break;
2253 }
2254 }
2255
2256 if (origin == SEEK_HOLE) {
2257 *offset = start;
2258 free_extent_map(em);
2259 break;
2260 }
2261 } else {
2262 if (origin == SEEK_DATA) {
2263 if (em->block_start == EXTENT_MAP_DELALLOC) {
2264 if (start >= inode->i_size) {
2265 free_extent_map(em);
2266 ret = -ENXIO;
2267 break;
2268 }
2269 }
2270
2271 *offset = start;
2272 free_extent_map(em);
2273 break;
2274 }
2275 }
2276
2277 start = em->start + em->len;
2278 last_end = em->start + em->len;
2279
2280 if (em->block_start == EXTENT_MAP_DELALLOC)
2281 last_end = min_t(u64, last_end, inode->i_size);
2282
2283 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2284 free_extent_map(em);
2285 ret = -ENXIO;
2286 break;
2287 }
2288 free_extent_map(em);
2289 cond_resched();
2290 }
2291 if (!ret)
2292 *offset = min(*offset, inode->i_size);
2293 out:
2294 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2295 &cached_state, GFP_NOFS);
2296 return ret;
2297 }
2298
2299 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int origin)
2300 {
2301 struct inode *inode = file->f_mapping->host;
2302 int ret;
2303
2304 mutex_lock(&inode->i_mutex);
2305 switch (origin) {
2306 case SEEK_END:
2307 case SEEK_CUR:
2308 offset = generic_file_llseek(file, offset, origin);
2309 goto out;
2310 case SEEK_DATA:
2311 case SEEK_HOLE:
2312 if (offset >= i_size_read(inode)) {
2313 mutex_unlock(&inode->i_mutex);
2314 return -ENXIO;
2315 }
2316
2317 ret = find_desired_extent(inode, &offset, origin);
2318 if (ret) {
2319 mutex_unlock(&inode->i_mutex);
2320 return ret;
2321 }
2322 }
2323
2324 if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
2325 offset = -EINVAL;
2326 goto out;
2327 }
2328 if (offset > inode->i_sb->s_maxbytes) {
2329 offset = -EINVAL;
2330 goto out;
2331 }
2332
2333 /* Special lock needed here? */
2334 if (offset != file->f_pos) {
2335 file->f_pos = offset;
2336 file->f_version = 0;
2337 }
2338 out:
2339 mutex_unlock(&inode->i_mutex);
2340 return offset;
2341 }
2342
2343 const struct file_operations btrfs_file_operations = {
2344 .llseek = btrfs_file_llseek,
2345 .read = do_sync_read,
2346 .write = do_sync_write,
2347 .aio_read = generic_file_aio_read,
2348 .splice_read = generic_file_splice_read,
2349 .aio_write = btrfs_file_aio_write,
2350 .mmap = btrfs_file_mmap,
2351 .open = generic_file_open,
2352 .release = btrfs_release_file,
2353 .fsync = btrfs_sync_file,
2354 .fallocate = btrfs_fallocate,
2355 .unlocked_ioctl = btrfs_ioctl,
2356 #ifdef CONFIG_COMPAT
2357 .compat_ioctl = btrfs_ioctl,
2358 #endif
2359 };
2360
2361 void btrfs_auto_defrag_exit(void)
2362 {
2363 if (btrfs_inode_defrag_cachep)
2364 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2365 }
2366
2367 int btrfs_auto_defrag_init(void)
2368 {
2369 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2370 sizeof(struct inode_defrag), 0,
2371 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2372 NULL);
2373 if (!btrfs_inode_defrag_cachep)
2374 return -ENOMEM;
2375
2376 return 0;
2377 }
This page took 0.152408 seconds and 6 git commands to generate.