Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / fs / btrfs / free-space-cache.c
1 /*
2 * Copyright (C) 2008 Red Hat. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/math64.h>
22 #include "ctree.h"
23 #include "free-space-cache.h"
24 #include "transaction.h"
25
26 #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
27 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
28
29 static inline unsigned long offset_to_bit(u64 bitmap_start, u64 sectorsize,
30 u64 offset)
31 {
32 BUG_ON(offset < bitmap_start);
33 offset -= bitmap_start;
34 return (unsigned long)(div64_u64(offset, sectorsize));
35 }
36
37 static inline unsigned long bytes_to_bits(u64 bytes, u64 sectorsize)
38 {
39 return (unsigned long)(div64_u64(bytes, sectorsize));
40 }
41
42 static inline u64 offset_to_bitmap(struct btrfs_block_group_cache *block_group,
43 u64 offset)
44 {
45 u64 bitmap_start;
46 u64 bytes_per_bitmap;
47
48 bytes_per_bitmap = BITS_PER_BITMAP * block_group->sectorsize;
49 bitmap_start = offset - block_group->key.objectid;
50 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
51 bitmap_start *= bytes_per_bitmap;
52 bitmap_start += block_group->key.objectid;
53
54 return bitmap_start;
55 }
56
57 static int tree_insert_offset(struct rb_root *root, u64 offset,
58 struct rb_node *node, int bitmap)
59 {
60 struct rb_node **p = &root->rb_node;
61 struct rb_node *parent = NULL;
62 struct btrfs_free_space *info;
63
64 while (*p) {
65 parent = *p;
66 info = rb_entry(parent, struct btrfs_free_space, offset_index);
67
68 if (offset < info->offset) {
69 p = &(*p)->rb_left;
70 } else if (offset > info->offset) {
71 p = &(*p)->rb_right;
72 } else {
73 /*
74 * we could have a bitmap entry and an extent entry
75 * share the same offset. If this is the case, we want
76 * the extent entry to always be found first if we do a
77 * linear search through the tree, since we want to have
78 * the quickest allocation time, and allocating from an
79 * extent is faster than allocating from a bitmap. So
80 * if we're inserting a bitmap and we find an entry at
81 * this offset, we want to go right, or after this entry
82 * logically. If we are inserting an extent and we've
83 * found a bitmap, we want to go left, or before
84 * logically.
85 */
86 if (bitmap) {
87 WARN_ON(info->bitmap);
88 p = &(*p)->rb_right;
89 } else {
90 WARN_ON(!info->bitmap);
91 p = &(*p)->rb_left;
92 }
93 }
94 }
95
96 rb_link_node(node, parent, p);
97 rb_insert_color(node, root);
98
99 return 0;
100 }
101
102 /*
103 * searches the tree for the given offset.
104 *
105 * fuzzy - If this is set, then we are trying to make an allocation, and we just
106 * want a section that has at least bytes size and comes at or after the given
107 * offset.
108 */
109 static struct btrfs_free_space *
110 tree_search_offset(struct btrfs_block_group_cache *block_group,
111 u64 offset, int bitmap_only, int fuzzy)
112 {
113 struct rb_node *n = block_group->free_space_offset.rb_node;
114 struct btrfs_free_space *entry, *prev = NULL;
115
116 /* find entry that is closest to the 'offset' */
117 while (1) {
118 if (!n) {
119 entry = NULL;
120 break;
121 }
122
123 entry = rb_entry(n, struct btrfs_free_space, offset_index);
124 prev = entry;
125
126 if (offset < entry->offset)
127 n = n->rb_left;
128 else if (offset > entry->offset)
129 n = n->rb_right;
130 else
131 break;
132 }
133
134 if (bitmap_only) {
135 if (!entry)
136 return NULL;
137 if (entry->bitmap)
138 return entry;
139
140 /*
141 * bitmap entry and extent entry may share same offset,
142 * in that case, bitmap entry comes after extent entry.
143 */
144 n = rb_next(n);
145 if (!n)
146 return NULL;
147 entry = rb_entry(n, struct btrfs_free_space, offset_index);
148 if (entry->offset != offset)
149 return NULL;
150
151 WARN_ON(!entry->bitmap);
152 return entry;
153 } else if (entry) {
154 if (entry->bitmap) {
155 /*
156 * if previous extent entry covers the offset,
157 * we should return it instead of the bitmap entry
158 */
159 n = &entry->offset_index;
160 while (1) {
161 n = rb_prev(n);
162 if (!n)
163 break;
164 prev = rb_entry(n, struct btrfs_free_space,
165 offset_index);
166 if (!prev->bitmap) {
167 if (prev->offset + prev->bytes > offset)
168 entry = prev;
169 break;
170 }
171 }
172 }
173 return entry;
174 }
175
176 if (!prev)
177 return NULL;
178
179 /* find last entry before the 'offset' */
180 entry = prev;
181 if (entry->offset > offset) {
182 n = rb_prev(&entry->offset_index);
183 if (n) {
184 entry = rb_entry(n, struct btrfs_free_space,
185 offset_index);
186 BUG_ON(entry->offset > offset);
187 } else {
188 if (fuzzy)
189 return entry;
190 else
191 return NULL;
192 }
193 }
194
195 if (entry->bitmap) {
196 n = &entry->offset_index;
197 while (1) {
198 n = rb_prev(n);
199 if (!n)
200 break;
201 prev = rb_entry(n, struct btrfs_free_space,
202 offset_index);
203 if (!prev->bitmap) {
204 if (prev->offset + prev->bytes > offset)
205 return prev;
206 break;
207 }
208 }
209 if (entry->offset + BITS_PER_BITMAP *
210 block_group->sectorsize > offset)
211 return entry;
212 } else if (entry->offset + entry->bytes > offset)
213 return entry;
214
215 if (!fuzzy)
216 return NULL;
217
218 while (1) {
219 if (entry->bitmap) {
220 if (entry->offset + BITS_PER_BITMAP *
221 block_group->sectorsize > offset)
222 break;
223 } else {
224 if (entry->offset + entry->bytes > offset)
225 break;
226 }
227
228 n = rb_next(&entry->offset_index);
229 if (!n)
230 return NULL;
231 entry = rb_entry(n, struct btrfs_free_space, offset_index);
232 }
233 return entry;
234 }
235
236 static void unlink_free_space(struct btrfs_block_group_cache *block_group,
237 struct btrfs_free_space *info)
238 {
239 rb_erase(&info->offset_index, &block_group->free_space_offset);
240 block_group->free_extents--;
241 block_group->free_space -= info->bytes;
242 }
243
244 static int link_free_space(struct btrfs_block_group_cache *block_group,
245 struct btrfs_free_space *info)
246 {
247 int ret = 0;
248
249 BUG_ON(!info->bitmap && !info->bytes);
250 ret = tree_insert_offset(&block_group->free_space_offset, info->offset,
251 &info->offset_index, (info->bitmap != NULL));
252 if (ret)
253 return ret;
254
255 block_group->free_space += info->bytes;
256 block_group->free_extents++;
257 return ret;
258 }
259
260 static void recalculate_thresholds(struct btrfs_block_group_cache *block_group)
261 {
262 u64 max_bytes, possible_bytes;
263
264 /*
265 * The goal is to keep the total amount of memory used per 1gb of space
266 * at or below 32k, so we need to adjust how much memory we allow to be
267 * used by extent based free space tracking
268 */
269 max_bytes = MAX_CACHE_BYTES_PER_GIG *
270 (div64_u64(block_group->key.offset, 1024 * 1024 * 1024));
271
272 possible_bytes = (block_group->total_bitmaps * PAGE_CACHE_SIZE) +
273 (sizeof(struct btrfs_free_space) *
274 block_group->extents_thresh);
275
276 if (possible_bytes > max_bytes) {
277 int extent_bytes = max_bytes -
278 (block_group->total_bitmaps * PAGE_CACHE_SIZE);
279
280 if (extent_bytes <= 0) {
281 block_group->extents_thresh = 0;
282 return;
283 }
284
285 block_group->extents_thresh = extent_bytes /
286 (sizeof(struct btrfs_free_space));
287 }
288 }
289
290 static void bitmap_clear_bits(struct btrfs_block_group_cache *block_group,
291 struct btrfs_free_space *info, u64 offset,
292 u64 bytes)
293 {
294 unsigned long start, end;
295 unsigned long i;
296
297 start = offset_to_bit(info->offset, block_group->sectorsize, offset);
298 end = start + bytes_to_bits(bytes, block_group->sectorsize);
299 BUG_ON(end > BITS_PER_BITMAP);
300
301 for (i = start; i < end; i++)
302 clear_bit(i, info->bitmap);
303
304 info->bytes -= bytes;
305 block_group->free_space -= bytes;
306 }
307
308 static void bitmap_set_bits(struct btrfs_block_group_cache *block_group,
309 struct btrfs_free_space *info, u64 offset,
310 u64 bytes)
311 {
312 unsigned long start, end;
313 unsigned long i;
314
315 start = offset_to_bit(info->offset, block_group->sectorsize, offset);
316 end = start + bytes_to_bits(bytes, block_group->sectorsize);
317 BUG_ON(end > BITS_PER_BITMAP);
318
319 for (i = start; i < end; i++)
320 set_bit(i, info->bitmap);
321
322 info->bytes += bytes;
323 block_group->free_space += bytes;
324 }
325
326 static int search_bitmap(struct btrfs_block_group_cache *block_group,
327 struct btrfs_free_space *bitmap_info, u64 *offset,
328 u64 *bytes)
329 {
330 unsigned long found_bits = 0;
331 unsigned long bits, i;
332 unsigned long next_zero;
333
334 i = offset_to_bit(bitmap_info->offset, block_group->sectorsize,
335 max_t(u64, *offset, bitmap_info->offset));
336 bits = bytes_to_bits(*bytes, block_group->sectorsize);
337
338 for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
339 i < BITS_PER_BITMAP;
340 i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
341 next_zero = find_next_zero_bit(bitmap_info->bitmap,
342 BITS_PER_BITMAP, i);
343 if ((next_zero - i) >= bits) {
344 found_bits = next_zero - i;
345 break;
346 }
347 i = next_zero;
348 }
349
350 if (found_bits) {
351 *offset = (u64)(i * block_group->sectorsize) +
352 bitmap_info->offset;
353 *bytes = (u64)(found_bits) * block_group->sectorsize;
354 return 0;
355 }
356
357 return -1;
358 }
359
360 static struct btrfs_free_space *find_free_space(struct btrfs_block_group_cache
361 *block_group, u64 *offset,
362 u64 *bytes, int debug)
363 {
364 struct btrfs_free_space *entry;
365 struct rb_node *node;
366 int ret;
367
368 if (!block_group->free_space_offset.rb_node)
369 return NULL;
370
371 entry = tree_search_offset(block_group,
372 offset_to_bitmap(block_group, *offset),
373 0, 1);
374 if (!entry)
375 return NULL;
376
377 for (node = &entry->offset_index; node; node = rb_next(node)) {
378 entry = rb_entry(node, struct btrfs_free_space, offset_index);
379 if (entry->bytes < *bytes)
380 continue;
381
382 if (entry->bitmap) {
383 ret = search_bitmap(block_group, entry, offset, bytes);
384 if (!ret)
385 return entry;
386 continue;
387 }
388
389 *offset = entry->offset;
390 *bytes = entry->bytes;
391 return entry;
392 }
393
394 return NULL;
395 }
396
397 static void add_new_bitmap(struct btrfs_block_group_cache *block_group,
398 struct btrfs_free_space *info, u64 offset)
399 {
400 u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
401 int max_bitmaps = (int)div64_u64(block_group->key.offset +
402 bytes_per_bg - 1, bytes_per_bg);
403 BUG_ON(block_group->total_bitmaps >= max_bitmaps);
404
405 info->offset = offset_to_bitmap(block_group, offset);
406 link_free_space(block_group, info);
407 block_group->total_bitmaps++;
408
409 recalculate_thresholds(block_group);
410 }
411
412 static noinline int remove_from_bitmap(struct btrfs_block_group_cache *block_group,
413 struct btrfs_free_space *bitmap_info,
414 u64 *offset, u64 *bytes)
415 {
416 u64 end;
417
418 again:
419 end = bitmap_info->offset +
420 (u64)(BITS_PER_BITMAP * block_group->sectorsize) - 1;
421
422 if (*offset > bitmap_info->offset && *offset + *bytes > end) {
423 bitmap_clear_bits(block_group, bitmap_info, *offset,
424 end - *offset + 1);
425 *bytes -= end - *offset + 1;
426 *offset = end + 1;
427 } else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
428 bitmap_clear_bits(block_group, bitmap_info, *offset, *bytes);
429 *bytes = 0;
430 }
431
432 if (*bytes) {
433 if (!bitmap_info->bytes) {
434 unlink_free_space(block_group, bitmap_info);
435 kfree(bitmap_info->bitmap);
436 kfree(bitmap_info);
437 block_group->total_bitmaps--;
438 recalculate_thresholds(block_group);
439 }
440
441 bitmap_info = tree_search_offset(block_group,
442 offset_to_bitmap(block_group,
443 *offset),
444 1, 0);
445 if (!bitmap_info)
446 return -EINVAL;
447
448 if (!bitmap_info->bitmap)
449 return -EAGAIN;
450
451 goto again;
452 } else if (!bitmap_info->bytes) {
453 unlink_free_space(block_group, bitmap_info);
454 kfree(bitmap_info->bitmap);
455 kfree(bitmap_info);
456 block_group->total_bitmaps--;
457 recalculate_thresholds(block_group);
458 }
459
460 return 0;
461 }
462
463 static int insert_into_bitmap(struct btrfs_block_group_cache *block_group,
464 struct btrfs_free_space *info)
465 {
466 struct btrfs_free_space *bitmap_info;
467 int added = 0;
468 u64 bytes, offset, end;
469 int ret;
470
471 /*
472 * If we are below the extents threshold then we can add this as an
473 * extent, and don't have to deal with the bitmap
474 */
475 if (block_group->free_extents < block_group->extents_thresh &&
476 info->bytes > block_group->sectorsize * 4)
477 return 0;
478
479 /*
480 * some block groups are so tiny they can't be enveloped by a bitmap, so
481 * don't even bother to create a bitmap for this
482 */
483 if (BITS_PER_BITMAP * block_group->sectorsize >
484 block_group->key.offset)
485 return 0;
486
487 bytes = info->bytes;
488 offset = info->offset;
489
490 again:
491 bitmap_info = tree_search_offset(block_group,
492 offset_to_bitmap(block_group, offset),
493 1, 0);
494 if (!bitmap_info) {
495 BUG_ON(added);
496 goto new_bitmap;
497 }
498
499 end = bitmap_info->offset +
500 (u64)(BITS_PER_BITMAP * block_group->sectorsize);
501
502 if (offset >= bitmap_info->offset && offset + bytes > end) {
503 bitmap_set_bits(block_group, bitmap_info, offset,
504 end - offset);
505 bytes -= end - offset;
506 offset = end;
507 added = 0;
508 } else if (offset >= bitmap_info->offset && offset + bytes <= end) {
509 bitmap_set_bits(block_group, bitmap_info, offset, bytes);
510 bytes = 0;
511 } else {
512 BUG();
513 }
514
515 if (!bytes) {
516 ret = 1;
517 goto out;
518 } else
519 goto again;
520
521 new_bitmap:
522 if (info && info->bitmap) {
523 add_new_bitmap(block_group, info, offset);
524 added = 1;
525 info = NULL;
526 goto again;
527 } else {
528 spin_unlock(&block_group->tree_lock);
529
530 /* no pre-allocated info, allocate a new one */
531 if (!info) {
532 info = kzalloc(sizeof(struct btrfs_free_space),
533 GFP_NOFS);
534 if (!info) {
535 spin_lock(&block_group->tree_lock);
536 ret = -ENOMEM;
537 goto out;
538 }
539 }
540
541 /* allocate the bitmap */
542 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
543 spin_lock(&block_group->tree_lock);
544 if (!info->bitmap) {
545 ret = -ENOMEM;
546 goto out;
547 }
548 goto again;
549 }
550
551 out:
552 if (info) {
553 if (info->bitmap)
554 kfree(info->bitmap);
555 kfree(info);
556 }
557
558 return ret;
559 }
560
561 int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
562 u64 offset, u64 bytes)
563 {
564 struct btrfs_free_space *right_info = NULL;
565 struct btrfs_free_space *left_info = NULL;
566 struct btrfs_free_space *info = NULL;
567 int ret = 0;
568
569 info = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS);
570 if (!info)
571 return -ENOMEM;
572
573 info->offset = offset;
574 info->bytes = bytes;
575
576 spin_lock(&block_group->tree_lock);
577
578 /*
579 * first we want to see if there is free space adjacent to the range we
580 * are adding, if there is remove that struct and add a new one to
581 * cover the entire range
582 */
583 right_info = tree_search_offset(block_group, offset + bytes, 0, 0);
584 if (right_info && rb_prev(&right_info->offset_index))
585 left_info = rb_entry(rb_prev(&right_info->offset_index),
586 struct btrfs_free_space, offset_index);
587 else
588 left_info = tree_search_offset(block_group, offset - 1, 0, 0);
589
590 /*
591 * If there was no extent directly to the left or right of this new
592 * extent then we know we're going to have to allocate a new extent, so
593 * before we do that see if we need to drop this into a bitmap
594 */
595 if ((!left_info || left_info->bitmap) &&
596 (!right_info || right_info->bitmap)) {
597 ret = insert_into_bitmap(block_group, info);
598
599 if (ret < 0) {
600 goto out;
601 } else if (ret) {
602 ret = 0;
603 goto out;
604 }
605 }
606
607 if (right_info && !right_info->bitmap) {
608 unlink_free_space(block_group, right_info);
609 info->bytes += right_info->bytes;
610 kfree(right_info);
611 }
612
613 if (left_info && !left_info->bitmap &&
614 left_info->offset + left_info->bytes == offset) {
615 unlink_free_space(block_group, left_info);
616 info->offset = left_info->offset;
617 info->bytes += left_info->bytes;
618 kfree(left_info);
619 }
620
621 ret = link_free_space(block_group, info);
622 if (ret)
623 kfree(info);
624 out:
625 spin_unlock(&block_group->tree_lock);
626
627 if (ret) {
628 printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
629 BUG_ON(ret == -EEXIST);
630 }
631
632 return ret;
633 }
634
635 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
636 u64 offset, u64 bytes)
637 {
638 struct btrfs_free_space *info;
639 struct btrfs_free_space *next_info = NULL;
640 int ret = 0;
641
642 spin_lock(&block_group->tree_lock);
643
644 again:
645 info = tree_search_offset(block_group, offset, 0, 0);
646 if (!info) {
647 WARN_ON(1);
648 goto out_lock;
649 }
650
651 if (info->bytes < bytes && rb_next(&info->offset_index)) {
652 u64 end;
653 next_info = rb_entry(rb_next(&info->offset_index),
654 struct btrfs_free_space,
655 offset_index);
656
657 if (next_info->bitmap)
658 end = next_info->offset + BITS_PER_BITMAP *
659 block_group->sectorsize - 1;
660 else
661 end = next_info->offset + next_info->bytes;
662
663 if (next_info->bytes < bytes ||
664 next_info->offset > offset || offset > end) {
665 printk(KERN_CRIT "Found free space at %llu, size %llu,"
666 " trying to use %llu\n",
667 (unsigned long long)info->offset,
668 (unsigned long long)info->bytes,
669 (unsigned long long)bytes);
670 WARN_ON(1);
671 ret = -EINVAL;
672 goto out_lock;
673 }
674
675 info = next_info;
676 }
677
678 if (info->bytes == bytes) {
679 unlink_free_space(block_group, info);
680 if (info->bitmap) {
681 kfree(info->bitmap);
682 block_group->total_bitmaps--;
683 }
684 kfree(info);
685 goto out_lock;
686 }
687
688 if (!info->bitmap && info->offset == offset) {
689 unlink_free_space(block_group, info);
690 info->offset += bytes;
691 info->bytes -= bytes;
692 link_free_space(block_group, info);
693 goto out_lock;
694 }
695
696 if (!info->bitmap && info->offset <= offset &&
697 info->offset + info->bytes >= offset + bytes) {
698 u64 old_start = info->offset;
699 /*
700 * we're freeing space in the middle of the info,
701 * this can happen during tree log replay
702 *
703 * first unlink the old info and then
704 * insert it again after the hole we're creating
705 */
706 unlink_free_space(block_group, info);
707 if (offset + bytes < info->offset + info->bytes) {
708 u64 old_end = info->offset + info->bytes;
709
710 info->offset = offset + bytes;
711 info->bytes = old_end - info->offset;
712 ret = link_free_space(block_group, info);
713 WARN_ON(ret);
714 if (ret)
715 goto out_lock;
716 } else {
717 /* the hole we're creating ends at the end
718 * of the info struct, just free the info
719 */
720 kfree(info);
721 }
722 spin_unlock(&block_group->tree_lock);
723
724 /* step two, insert a new info struct to cover
725 * anything before the hole
726 */
727 ret = btrfs_add_free_space(block_group, old_start,
728 offset - old_start);
729 WARN_ON(ret);
730 goto out;
731 }
732
733 ret = remove_from_bitmap(block_group, info, &offset, &bytes);
734 if (ret == -EAGAIN)
735 goto again;
736 BUG_ON(ret);
737 out_lock:
738 spin_unlock(&block_group->tree_lock);
739 out:
740 return ret;
741 }
742
743 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
744 u64 bytes)
745 {
746 struct btrfs_free_space *info;
747 struct rb_node *n;
748 int count = 0;
749
750 for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) {
751 info = rb_entry(n, struct btrfs_free_space, offset_index);
752 if (info->bytes >= bytes)
753 count++;
754 printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
755 (unsigned long long)info->offset,
756 (unsigned long long)info->bytes,
757 (info->bitmap) ? "yes" : "no");
758 }
759 printk(KERN_INFO "block group has cluster?: %s\n",
760 list_empty(&block_group->cluster_list) ? "no" : "yes");
761 printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
762 "\n", count);
763 }
764
765 u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group)
766 {
767 struct btrfs_free_space *info;
768 struct rb_node *n;
769 u64 ret = 0;
770
771 for (n = rb_first(&block_group->free_space_offset); n;
772 n = rb_next(n)) {
773 info = rb_entry(n, struct btrfs_free_space, offset_index);
774 ret += info->bytes;
775 }
776
777 return ret;
778 }
779
780 /*
781 * for a given cluster, put all of its extents back into the free
782 * space cache. If the block group passed doesn't match the block group
783 * pointed to by the cluster, someone else raced in and freed the
784 * cluster already. In that case, we just return without changing anything
785 */
786 static int
787 __btrfs_return_cluster_to_free_space(
788 struct btrfs_block_group_cache *block_group,
789 struct btrfs_free_cluster *cluster)
790 {
791 struct btrfs_free_space *entry;
792 struct rb_node *node;
793 bool bitmap;
794
795 spin_lock(&cluster->lock);
796 if (cluster->block_group != block_group)
797 goto out;
798
799 bitmap = cluster->points_to_bitmap;
800 cluster->block_group = NULL;
801 cluster->window_start = 0;
802 list_del_init(&cluster->block_group_list);
803 cluster->points_to_bitmap = false;
804
805 if (bitmap)
806 goto out;
807
808 node = rb_first(&cluster->root);
809 while (node) {
810 entry = rb_entry(node, struct btrfs_free_space, offset_index);
811 node = rb_next(&entry->offset_index);
812 rb_erase(&entry->offset_index, &cluster->root);
813 BUG_ON(entry->bitmap);
814 tree_insert_offset(&block_group->free_space_offset,
815 entry->offset, &entry->offset_index, 0);
816 }
817 cluster->root.rb_node = NULL;
818
819 out:
820 spin_unlock(&cluster->lock);
821 btrfs_put_block_group(block_group);
822 return 0;
823 }
824
825 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
826 {
827 struct btrfs_free_space *info;
828 struct rb_node *node;
829 struct btrfs_free_cluster *cluster;
830 struct list_head *head;
831
832 spin_lock(&block_group->tree_lock);
833 while ((head = block_group->cluster_list.next) !=
834 &block_group->cluster_list) {
835 cluster = list_entry(head, struct btrfs_free_cluster,
836 block_group_list);
837
838 WARN_ON(cluster->block_group != block_group);
839 __btrfs_return_cluster_to_free_space(block_group, cluster);
840 if (need_resched()) {
841 spin_unlock(&block_group->tree_lock);
842 cond_resched();
843 spin_lock(&block_group->tree_lock);
844 }
845 }
846
847 while ((node = rb_last(&block_group->free_space_offset)) != NULL) {
848 info = rb_entry(node, struct btrfs_free_space, offset_index);
849 unlink_free_space(block_group, info);
850 if (info->bitmap)
851 kfree(info->bitmap);
852 kfree(info);
853 if (need_resched()) {
854 spin_unlock(&block_group->tree_lock);
855 cond_resched();
856 spin_lock(&block_group->tree_lock);
857 }
858 }
859
860 spin_unlock(&block_group->tree_lock);
861 }
862
863 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
864 u64 offset, u64 bytes, u64 empty_size)
865 {
866 struct btrfs_free_space *entry = NULL;
867 u64 bytes_search = bytes + empty_size;
868 u64 ret = 0;
869
870 spin_lock(&block_group->tree_lock);
871 entry = find_free_space(block_group, &offset, &bytes_search, 0);
872 if (!entry)
873 goto out;
874
875 ret = offset;
876 if (entry->bitmap) {
877 bitmap_clear_bits(block_group, entry, offset, bytes);
878 if (!entry->bytes) {
879 unlink_free_space(block_group, entry);
880 kfree(entry->bitmap);
881 kfree(entry);
882 block_group->total_bitmaps--;
883 recalculate_thresholds(block_group);
884 }
885 } else {
886 unlink_free_space(block_group, entry);
887 entry->offset += bytes;
888 entry->bytes -= bytes;
889 if (!entry->bytes)
890 kfree(entry);
891 else
892 link_free_space(block_group, entry);
893 }
894
895 out:
896 spin_unlock(&block_group->tree_lock);
897
898 return ret;
899 }
900
901 /*
902 * given a cluster, put all of its extents back into the free space
903 * cache. If a block group is passed, this function will only free
904 * a cluster that belongs to the passed block group.
905 *
906 * Otherwise, it'll get a reference on the block group pointed to by the
907 * cluster and remove the cluster from it.
908 */
909 int btrfs_return_cluster_to_free_space(
910 struct btrfs_block_group_cache *block_group,
911 struct btrfs_free_cluster *cluster)
912 {
913 int ret;
914
915 /* first, get a safe pointer to the block group */
916 spin_lock(&cluster->lock);
917 if (!block_group) {
918 block_group = cluster->block_group;
919 if (!block_group) {
920 spin_unlock(&cluster->lock);
921 return 0;
922 }
923 } else if (cluster->block_group != block_group) {
924 /* someone else has already freed it don't redo their work */
925 spin_unlock(&cluster->lock);
926 return 0;
927 }
928 atomic_inc(&block_group->count);
929 spin_unlock(&cluster->lock);
930
931 /* now return any extents the cluster had on it */
932 spin_lock(&block_group->tree_lock);
933 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
934 spin_unlock(&block_group->tree_lock);
935
936 /* finally drop our ref */
937 btrfs_put_block_group(block_group);
938 return ret;
939 }
940
941 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
942 struct btrfs_free_cluster *cluster,
943 u64 bytes, u64 min_start)
944 {
945 struct btrfs_free_space *entry;
946 int err;
947 u64 search_start = cluster->window_start;
948 u64 search_bytes = bytes;
949 u64 ret = 0;
950
951 spin_lock(&block_group->tree_lock);
952 spin_lock(&cluster->lock);
953
954 if (!cluster->points_to_bitmap)
955 goto out;
956
957 if (cluster->block_group != block_group)
958 goto out;
959
960 entry = tree_search_offset(block_group, search_start, 0, 0);
961
962 if (!entry || !entry->bitmap)
963 goto out;
964
965 search_start = min_start;
966 search_bytes = bytes;
967
968 err = search_bitmap(block_group, entry, &search_start,
969 &search_bytes);
970 if (err)
971 goto out;
972
973 ret = search_start;
974 bitmap_clear_bits(block_group, entry, ret, bytes);
975 out:
976 spin_unlock(&cluster->lock);
977 spin_unlock(&block_group->tree_lock);
978
979 return ret;
980 }
981
982 /*
983 * given a cluster, try to allocate 'bytes' from it, returns 0
984 * if it couldn't find anything suitably large, or a logical disk offset
985 * if things worked out
986 */
987 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
988 struct btrfs_free_cluster *cluster, u64 bytes,
989 u64 min_start)
990 {
991 struct btrfs_free_space *entry = NULL;
992 struct rb_node *node;
993 u64 ret = 0;
994
995 if (cluster->points_to_bitmap)
996 return btrfs_alloc_from_bitmap(block_group, cluster, bytes,
997 min_start);
998
999 spin_lock(&cluster->lock);
1000 if (bytes > cluster->max_size)
1001 goto out;
1002
1003 if (cluster->block_group != block_group)
1004 goto out;
1005
1006 node = rb_first(&cluster->root);
1007 if (!node)
1008 goto out;
1009
1010 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1011
1012 while(1) {
1013 if (entry->bytes < bytes || entry->offset < min_start) {
1014 struct rb_node *node;
1015
1016 node = rb_next(&entry->offset_index);
1017 if (!node)
1018 break;
1019 entry = rb_entry(node, struct btrfs_free_space,
1020 offset_index);
1021 continue;
1022 }
1023 ret = entry->offset;
1024
1025 entry->offset += bytes;
1026 entry->bytes -= bytes;
1027
1028 if (entry->bytes == 0) {
1029 rb_erase(&entry->offset_index, &cluster->root);
1030 kfree(entry);
1031 }
1032 break;
1033 }
1034 out:
1035 spin_unlock(&cluster->lock);
1036
1037 return ret;
1038 }
1039
1040 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
1041 struct btrfs_free_space *entry,
1042 struct btrfs_free_cluster *cluster,
1043 u64 offset, u64 bytes, u64 min_bytes)
1044 {
1045 unsigned long next_zero;
1046 unsigned long i;
1047 unsigned long search_bits;
1048 unsigned long total_bits;
1049 unsigned long found_bits;
1050 unsigned long start = 0;
1051 unsigned long total_found = 0;
1052 bool found = false;
1053
1054 i = offset_to_bit(entry->offset, block_group->sectorsize,
1055 max_t(u64, offset, entry->offset));
1056 search_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
1057 total_bits = bytes_to_bits(bytes, block_group->sectorsize);
1058
1059 again:
1060 found_bits = 0;
1061 for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
1062 i < BITS_PER_BITMAP;
1063 i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
1064 next_zero = find_next_zero_bit(entry->bitmap,
1065 BITS_PER_BITMAP, i);
1066 if (next_zero - i >= search_bits) {
1067 found_bits = next_zero - i;
1068 break;
1069 }
1070 i = next_zero;
1071 }
1072
1073 if (!found_bits)
1074 return -1;
1075
1076 if (!found) {
1077 start = i;
1078 found = true;
1079 }
1080
1081 total_found += found_bits;
1082
1083 if (cluster->max_size < found_bits * block_group->sectorsize)
1084 cluster->max_size = found_bits * block_group->sectorsize;
1085
1086 if (total_found < total_bits) {
1087 i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero);
1088 if (i - start > total_bits * 2) {
1089 total_found = 0;
1090 cluster->max_size = 0;
1091 found = false;
1092 }
1093 goto again;
1094 }
1095
1096 cluster->window_start = start * block_group->sectorsize +
1097 entry->offset;
1098 cluster->points_to_bitmap = true;
1099
1100 return 0;
1101 }
1102
1103 /*
1104 * here we try to find a cluster of blocks in a block group. The goal
1105 * is to find at least bytes free and up to empty_size + bytes free.
1106 * We might not find them all in one contiguous area.
1107 *
1108 * returns zero and sets up cluster if things worked out, otherwise
1109 * it returns -enospc
1110 */
1111 int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
1112 struct btrfs_root *root,
1113 struct btrfs_block_group_cache *block_group,
1114 struct btrfs_free_cluster *cluster,
1115 u64 offset, u64 bytes, u64 empty_size)
1116 {
1117 struct btrfs_free_space *entry = NULL;
1118 struct rb_node *node;
1119 struct btrfs_free_space *next;
1120 struct btrfs_free_space *last = NULL;
1121 u64 min_bytes;
1122 u64 window_start;
1123 u64 window_free;
1124 u64 max_extent = 0;
1125 bool found_bitmap = false;
1126 int ret;
1127
1128 /* for metadata, allow allocates with more holes */
1129 if (btrfs_test_opt(root, SSD_SPREAD)) {
1130 min_bytes = bytes + empty_size;
1131 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
1132 /*
1133 * we want to do larger allocations when we are
1134 * flushing out the delayed refs, it helps prevent
1135 * making more work as we go along.
1136 */
1137 if (trans->transaction->delayed_refs.flushing)
1138 min_bytes = max(bytes, (bytes + empty_size) >> 1);
1139 else
1140 min_bytes = max(bytes, (bytes + empty_size) >> 4);
1141 } else
1142 min_bytes = max(bytes, (bytes + empty_size) >> 2);
1143
1144 spin_lock(&block_group->tree_lock);
1145 spin_lock(&cluster->lock);
1146
1147 /* someone already found a cluster, hooray */
1148 if (cluster->block_group) {
1149 ret = 0;
1150 goto out;
1151 }
1152 again:
1153 entry = tree_search_offset(block_group, offset, found_bitmap, 1);
1154 if (!entry) {
1155 ret = -ENOSPC;
1156 goto out;
1157 }
1158
1159 /*
1160 * If found_bitmap is true, we exhausted our search for extent entries,
1161 * and we just want to search all of the bitmaps that we can find, and
1162 * ignore any extent entries we find.
1163 */
1164 while (entry->bitmap || found_bitmap ||
1165 (!entry->bitmap && entry->bytes < min_bytes)) {
1166 struct rb_node *node = rb_next(&entry->offset_index);
1167
1168 if (entry->bitmap && entry->bytes > bytes + empty_size) {
1169 ret = btrfs_bitmap_cluster(block_group, entry, cluster,
1170 offset, bytes + empty_size,
1171 min_bytes);
1172 if (!ret)
1173 goto got_it;
1174 }
1175
1176 if (!node) {
1177 ret = -ENOSPC;
1178 goto out;
1179 }
1180 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1181 }
1182
1183 /*
1184 * We already searched all the extent entries from the passed in offset
1185 * to the end and didn't find enough space for the cluster, and we also
1186 * didn't find any bitmaps that met our criteria, just go ahead and exit
1187 */
1188 if (found_bitmap) {
1189 ret = -ENOSPC;
1190 goto out;
1191 }
1192
1193 cluster->points_to_bitmap = false;
1194 window_start = entry->offset;
1195 window_free = entry->bytes;
1196 last = entry;
1197 max_extent = entry->bytes;
1198
1199 while (1) {
1200 /* out window is just right, lets fill it */
1201 if (window_free >= bytes + empty_size)
1202 break;
1203
1204 node = rb_next(&last->offset_index);
1205 if (!node) {
1206 if (found_bitmap)
1207 goto again;
1208 ret = -ENOSPC;
1209 goto out;
1210 }
1211 next = rb_entry(node, struct btrfs_free_space, offset_index);
1212
1213 /*
1214 * we found a bitmap, so if this search doesn't result in a
1215 * cluster, we know to go and search again for the bitmaps and
1216 * start looking for space there
1217 */
1218 if (next->bitmap) {
1219 if (!found_bitmap)
1220 offset = next->offset;
1221 found_bitmap = true;
1222 last = next;
1223 continue;
1224 }
1225
1226 /*
1227 * we haven't filled the empty size and the window is
1228 * very large. reset and try again
1229 */
1230 if (next->offset - (last->offset + last->bytes) > 128 * 1024 ||
1231 next->offset - window_start > (bytes + empty_size) * 2) {
1232 entry = next;
1233 window_start = entry->offset;
1234 window_free = entry->bytes;
1235 last = entry;
1236 max_extent = 0;
1237 } else {
1238 last = next;
1239 window_free += next->bytes;
1240 if (entry->bytes > max_extent)
1241 max_extent = entry->bytes;
1242 }
1243 }
1244
1245 cluster->window_start = entry->offset;
1246
1247 /*
1248 * now we've found our entries, pull them out of the free space
1249 * cache and put them into the cluster rbtree
1250 *
1251 * The cluster includes an rbtree, but only uses the offset index
1252 * of each free space cache entry.
1253 */
1254 while (1) {
1255 node = rb_next(&entry->offset_index);
1256 if (entry->bitmap && node) {
1257 entry = rb_entry(node, struct btrfs_free_space,
1258 offset_index);
1259 continue;
1260 } else if (entry->bitmap && !node) {
1261 break;
1262 }
1263
1264 rb_erase(&entry->offset_index, &block_group->free_space_offset);
1265 ret = tree_insert_offset(&cluster->root, entry->offset,
1266 &entry->offset_index, 0);
1267 BUG_ON(ret);
1268
1269 if (!node || entry == last)
1270 break;
1271
1272 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1273 }
1274
1275 cluster->max_size = max_extent;
1276 got_it:
1277 ret = 0;
1278 atomic_inc(&block_group->count);
1279 list_add_tail(&cluster->block_group_list, &block_group->cluster_list);
1280 cluster->block_group = block_group;
1281 out:
1282 spin_unlock(&cluster->lock);
1283 spin_unlock(&block_group->tree_lock);
1284
1285 return ret;
1286 }
1287
1288 /*
1289 * simple code to zero out a cluster
1290 */
1291 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
1292 {
1293 spin_lock_init(&cluster->lock);
1294 spin_lock_init(&cluster->refill_lock);
1295 cluster->root.rb_node = NULL;
1296 cluster->max_size = 0;
1297 cluster->points_to_bitmap = false;
1298 INIT_LIST_HEAD(&cluster->block_group_list);
1299 cluster->block_group = NULL;
1300 }
1301
This page took 0.073269 seconds and 6 git commands to generate.