Merge tag 'powerpc-4.1-4' of git://git.kernel.org/pub/scm/linux/kernel/git/mpe/linux
[deliverable/linux.git] / fs / btrfs / free-space-cache.c
1 /*
2 * Copyright (C) 2008 Red Hat. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30 #include "volumes.h"
31
32 #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
33 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
34
35 struct btrfs_trim_range {
36 u64 start;
37 u64 bytes;
38 struct list_head list;
39 };
40
41 static int link_free_space(struct btrfs_free_space_ctl *ctl,
42 struct btrfs_free_space *info);
43 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
44 struct btrfs_free_space *info);
45
46 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
47 struct btrfs_path *path,
48 u64 offset)
49 {
50 struct btrfs_key key;
51 struct btrfs_key location;
52 struct btrfs_disk_key disk_key;
53 struct btrfs_free_space_header *header;
54 struct extent_buffer *leaf;
55 struct inode *inode = NULL;
56 int ret;
57
58 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
59 key.offset = offset;
60 key.type = 0;
61
62 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
63 if (ret < 0)
64 return ERR_PTR(ret);
65 if (ret > 0) {
66 btrfs_release_path(path);
67 return ERR_PTR(-ENOENT);
68 }
69
70 leaf = path->nodes[0];
71 header = btrfs_item_ptr(leaf, path->slots[0],
72 struct btrfs_free_space_header);
73 btrfs_free_space_key(leaf, header, &disk_key);
74 btrfs_disk_key_to_cpu(&location, &disk_key);
75 btrfs_release_path(path);
76
77 inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
78 if (!inode)
79 return ERR_PTR(-ENOENT);
80 if (IS_ERR(inode))
81 return inode;
82 if (is_bad_inode(inode)) {
83 iput(inode);
84 return ERR_PTR(-ENOENT);
85 }
86
87 mapping_set_gfp_mask(inode->i_mapping,
88 mapping_gfp_mask(inode->i_mapping) &
89 ~(__GFP_FS | __GFP_HIGHMEM));
90
91 return inode;
92 }
93
94 struct inode *lookup_free_space_inode(struct btrfs_root *root,
95 struct btrfs_block_group_cache
96 *block_group, struct btrfs_path *path)
97 {
98 struct inode *inode = NULL;
99 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
100
101 spin_lock(&block_group->lock);
102 if (block_group->inode)
103 inode = igrab(block_group->inode);
104 spin_unlock(&block_group->lock);
105 if (inode)
106 return inode;
107
108 inode = __lookup_free_space_inode(root, path,
109 block_group->key.objectid);
110 if (IS_ERR(inode))
111 return inode;
112
113 spin_lock(&block_group->lock);
114 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
115 btrfs_info(root->fs_info,
116 "Old style space inode found, converting.");
117 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
118 BTRFS_INODE_NODATACOW;
119 block_group->disk_cache_state = BTRFS_DC_CLEAR;
120 }
121
122 if (!block_group->iref) {
123 block_group->inode = igrab(inode);
124 block_group->iref = 1;
125 }
126 spin_unlock(&block_group->lock);
127
128 return inode;
129 }
130
131 static int __create_free_space_inode(struct btrfs_root *root,
132 struct btrfs_trans_handle *trans,
133 struct btrfs_path *path,
134 u64 ino, u64 offset)
135 {
136 struct btrfs_key key;
137 struct btrfs_disk_key disk_key;
138 struct btrfs_free_space_header *header;
139 struct btrfs_inode_item *inode_item;
140 struct extent_buffer *leaf;
141 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
142 int ret;
143
144 ret = btrfs_insert_empty_inode(trans, root, path, ino);
145 if (ret)
146 return ret;
147
148 /* We inline crc's for the free disk space cache */
149 if (ino != BTRFS_FREE_INO_OBJECTID)
150 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
151
152 leaf = path->nodes[0];
153 inode_item = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_inode_item);
155 btrfs_item_key(leaf, &disk_key, path->slots[0]);
156 memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
157 sizeof(*inode_item));
158 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
159 btrfs_set_inode_size(leaf, inode_item, 0);
160 btrfs_set_inode_nbytes(leaf, inode_item, 0);
161 btrfs_set_inode_uid(leaf, inode_item, 0);
162 btrfs_set_inode_gid(leaf, inode_item, 0);
163 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
164 btrfs_set_inode_flags(leaf, inode_item, flags);
165 btrfs_set_inode_nlink(leaf, inode_item, 1);
166 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
167 btrfs_set_inode_block_group(leaf, inode_item, offset);
168 btrfs_mark_buffer_dirty(leaf);
169 btrfs_release_path(path);
170
171 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
172 key.offset = offset;
173 key.type = 0;
174 ret = btrfs_insert_empty_item(trans, root, path, &key,
175 sizeof(struct btrfs_free_space_header));
176 if (ret < 0) {
177 btrfs_release_path(path);
178 return ret;
179 }
180
181 leaf = path->nodes[0];
182 header = btrfs_item_ptr(leaf, path->slots[0],
183 struct btrfs_free_space_header);
184 memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
185 btrfs_set_free_space_key(leaf, header, &disk_key);
186 btrfs_mark_buffer_dirty(leaf);
187 btrfs_release_path(path);
188
189 return 0;
190 }
191
192 int create_free_space_inode(struct btrfs_root *root,
193 struct btrfs_trans_handle *trans,
194 struct btrfs_block_group_cache *block_group,
195 struct btrfs_path *path)
196 {
197 int ret;
198 u64 ino;
199
200 ret = btrfs_find_free_objectid(root, &ino);
201 if (ret < 0)
202 return ret;
203
204 return __create_free_space_inode(root, trans, path, ino,
205 block_group->key.objectid);
206 }
207
208 int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
209 struct btrfs_block_rsv *rsv)
210 {
211 u64 needed_bytes;
212 int ret;
213
214 /* 1 for slack space, 1 for updating the inode */
215 needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
216 btrfs_calc_trans_metadata_size(root, 1);
217
218 spin_lock(&rsv->lock);
219 if (rsv->reserved < needed_bytes)
220 ret = -ENOSPC;
221 else
222 ret = 0;
223 spin_unlock(&rsv->lock);
224 return ret;
225 }
226
227 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
228 struct btrfs_trans_handle *trans,
229 struct btrfs_block_group_cache *block_group,
230 struct inode *inode)
231 {
232 int ret = 0;
233 struct btrfs_path *path = btrfs_alloc_path();
234
235 if (!path) {
236 ret = -ENOMEM;
237 goto fail;
238 }
239
240 if (block_group) {
241 mutex_lock(&trans->transaction->cache_write_mutex);
242 if (!list_empty(&block_group->io_list)) {
243 list_del_init(&block_group->io_list);
244
245 btrfs_wait_cache_io(root, trans, block_group,
246 &block_group->io_ctl, path,
247 block_group->key.objectid);
248 btrfs_put_block_group(block_group);
249 }
250
251 /*
252 * now that we've truncated the cache away, its no longer
253 * setup or written
254 */
255 spin_lock(&block_group->lock);
256 block_group->disk_cache_state = BTRFS_DC_CLEAR;
257 spin_unlock(&block_group->lock);
258 }
259 btrfs_free_path(path);
260
261 btrfs_i_size_write(inode, 0);
262 truncate_pagecache(inode, 0);
263
264 /*
265 * We don't need an orphan item because truncating the free space cache
266 * will never be split across transactions.
267 * We don't need to check for -EAGAIN because we're a free space
268 * cache inode
269 */
270 ret = btrfs_truncate_inode_items(trans, root, inode,
271 0, BTRFS_EXTENT_DATA_KEY);
272 if (ret) {
273 mutex_unlock(&trans->transaction->cache_write_mutex);
274 btrfs_abort_transaction(trans, root, ret);
275 return ret;
276 }
277
278 ret = btrfs_update_inode(trans, root, inode);
279
280 if (block_group)
281 mutex_unlock(&trans->transaction->cache_write_mutex);
282
283 fail:
284 if (ret)
285 btrfs_abort_transaction(trans, root, ret);
286
287 return ret;
288 }
289
290 static int readahead_cache(struct inode *inode)
291 {
292 struct file_ra_state *ra;
293 unsigned long last_index;
294
295 ra = kzalloc(sizeof(*ra), GFP_NOFS);
296 if (!ra)
297 return -ENOMEM;
298
299 file_ra_state_init(ra, inode->i_mapping);
300 last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
301
302 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
303
304 kfree(ra);
305
306 return 0;
307 }
308
309 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
310 struct btrfs_root *root, int write)
311 {
312 int num_pages;
313 int check_crcs = 0;
314
315 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE);
316
317 if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
318 check_crcs = 1;
319
320 /* Make sure we can fit our crcs into the first page */
321 if (write && check_crcs &&
322 (num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE)
323 return -ENOSPC;
324
325 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
326
327 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
328 if (!io_ctl->pages)
329 return -ENOMEM;
330
331 io_ctl->num_pages = num_pages;
332 io_ctl->root = root;
333 io_ctl->check_crcs = check_crcs;
334 io_ctl->inode = inode;
335
336 return 0;
337 }
338
339 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
340 {
341 kfree(io_ctl->pages);
342 io_ctl->pages = NULL;
343 }
344
345 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
346 {
347 if (io_ctl->cur) {
348 io_ctl->cur = NULL;
349 io_ctl->orig = NULL;
350 }
351 }
352
353 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
354 {
355 ASSERT(io_ctl->index < io_ctl->num_pages);
356 io_ctl->page = io_ctl->pages[io_ctl->index++];
357 io_ctl->cur = page_address(io_ctl->page);
358 io_ctl->orig = io_ctl->cur;
359 io_ctl->size = PAGE_CACHE_SIZE;
360 if (clear)
361 memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
362 }
363
364 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
365 {
366 int i;
367
368 io_ctl_unmap_page(io_ctl);
369
370 for (i = 0; i < io_ctl->num_pages; i++) {
371 if (io_ctl->pages[i]) {
372 ClearPageChecked(io_ctl->pages[i]);
373 unlock_page(io_ctl->pages[i]);
374 page_cache_release(io_ctl->pages[i]);
375 }
376 }
377 }
378
379 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
380 int uptodate)
381 {
382 struct page *page;
383 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
384 int i;
385
386 for (i = 0; i < io_ctl->num_pages; i++) {
387 page = find_or_create_page(inode->i_mapping, i, mask);
388 if (!page) {
389 io_ctl_drop_pages(io_ctl);
390 return -ENOMEM;
391 }
392 io_ctl->pages[i] = page;
393 if (uptodate && !PageUptodate(page)) {
394 btrfs_readpage(NULL, page);
395 lock_page(page);
396 if (!PageUptodate(page)) {
397 btrfs_err(BTRFS_I(inode)->root->fs_info,
398 "error reading free space cache");
399 io_ctl_drop_pages(io_ctl);
400 return -EIO;
401 }
402 }
403 }
404
405 for (i = 0; i < io_ctl->num_pages; i++) {
406 clear_page_dirty_for_io(io_ctl->pages[i]);
407 set_page_extent_mapped(io_ctl->pages[i]);
408 }
409
410 return 0;
411 }
412
413 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
414 {
415 __le64 *val;
416
417 io_ctl_map_page(io_ctl, 1);
418
419 /*
420 * Skip the csum areas. If we don't check crcs then we just have a
421 * 64bit chunk at the front of the first page.
422 */
423 if (io_ctl->check_crcs) {
424 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
425 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
426 } else {
427 io_ctl->cur += sizeof(u64);
428 io_ctl->size -= sizeof(u64) * 2;
429 }
430
431 val = io_ctl->cur;
432 *val = cpu_to_le64(generation);
433 io_ctl->cur += sizeof(u64);
434 }
435
436 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
437 {
438 __le64 *gen;
439
440 /*
441 * Skip the crc area. If we don't check crcs then we just have a 64bit
442 * chunk at the front of the first page.
443 */
444 if (io_ctl->check_crcs) {
445 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
446 io_ctl->size -= sizeof(u64) +
447 (sizeof(u32) * io_ctl->num_pages);
448 } else {
449 io_ctl->cur += sizeof(u64);
450 io_ctl->size -= sizeof(u64) * 2;
451 }
452
453 gen = io_ctl->cur;
454 if (le64_to_cpu(*gen) != generation) {
455 printk_ratelimited(KERN_ERR "BTRFS: space cache generation "
456 "(%Lu) does not match inode (%Lu)\n", *gen,
457 generation);
458 io_ctl_unmap_page(io_ctl);
459 return -EIO;
460 }
461 io_ctl->cur += sizeof(u64);
462 return 0;
463 }
464
465 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
466 {
467 u32 *tmp;
468 u32 crc = ~(u32)0;
469 unsigned offset = 0;
470
471 if (!io_ctl->check_crcs) {
472 io_ctl_unmap_page(io_ctl);
473 return;
474 }
475
476 if (index == 0)
477 offset = sizeof(u32) * io_ctl->num_pages;
478
479 crc = btrfs_csum_data(io_ctl->orig + offset, crc,
480 PAGE_CACHE_SIZE - offset);
481 btrfs_csum_final(crc, (char *)&crc);
482 io_ctl_unmap_page(io_ctl);
483 tmp = page_address(io_ctl->pages[0]);
484 tmp += index;
485 *tmp = crc;
486 }
487
488 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
489 {
490 u32 *tmp, val;
491 u32 crc = ~(u32)0;
492 unsigned offset = 0;
493
494 if (!io_ctl->check_crcs) {
495 io_ctl_map_page(io_ctl, 0);
496 return 0;
497 }
498
499 if (index == 0)
500 offset = sizeof(u32) * io_ctl->num_pages;
501
502 tmp = page_address(io_ctl->pages[0]);
503 tmp += index;
504 val = *tmp;
505
506 io_ctl_map_page(io_ctl, 0);
507 crc = btrfs_csum_data(io_ctl->orig + offset, crc,
508 PAGE_CACHE_SIZE - offset);
509 btrfs_csum_final(crc, (char *)&crc);
510 if (val != crc) {
511 printk_ratelimited(KERN_ERR "BTRFS: csum mismatch on free "
512 "space cache\n");
513 io_ctl_unmap_page(io_ctl);
514 return -EIO;
515 }
516
517 return 0;
518 }
519
520 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
521 void *bitmap)
522 {
523 struct btrfs_free_space_entry *entry;
524
525 if (!io_ctl->cur)
526 return -ENOSPC;
527
528 entry = io_ctl->cur;
529 entry->offset = cpu_to_le64(offset);
530 entry->bytes = cpu_to_le64(bytes);
531 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
532 BTRFS_FREE_SPACE_EXTENT;
533 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
534 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
535
536 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
537 return 0;
538
539 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
540
541 /* No more pages to map */
542 if (io_ctl->index >= io_ctl->num_pages)
543 return 0;
544
545 /* map the next page */
546 io_ctl_map_page(io_ctl, 1);
547 return 0;
548 }
549
550 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
551 {
552 if (!io_ctl->cur)
553 return -ENOSPC;
554
555 /*
556 * If we aren't at the start of the current page, unmap this one and
557 * map the next one if there is any left.
558 */
559 if (io_ctl->cur != io_ctl->orig) {
560 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
561 if (io_ctl->index >= io_ctl->num_pages)
562 return -ENOSPC;
563 io_ctl_map_page(io_ctl, 0);
564 }
565
566 memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
567 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
568 if (io_ctl->index < io_ctl->num_pages)
569 io_ctl_map_page(io_ctl, 0);
570 return 0;
571 }
572
573 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
574 {
575 /*
576 * If we're not on the boundary we know we've modified the page and we
577 * need to crc the page.
578 */
579 if (io_ctl->cur != io_ctl->orig)
580 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
581 else
582 io_ctl_unmap_page(io_ctl);
583
584 while (io_ctl->index < io_ctl->num_pages) {
585 io_ctl_map_page(io_ctl, 1);
586 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
587 }
588 }
589
590 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
591 struct btrfs_free_space *entry, u8 *type)
592 {
593 struct btrfs_free_space_entry *e;
594 int ret;
595
596 if (!io_ctl->cur) {
597 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
598 if (ret)
599 return ret;
600 }
601
602 e = io_ctl->cur;
603 entry->offset = le64_to_cpu(e->offset);
604 entry->bytes = le64_to_cpu(e->bytes);
605 *type = e->type;
606 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
607 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
608
609 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
610 return 0;
611
612 io_ctl_unmap_page(io_ctl);
613
614 return 0;
615 }
616
617 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
618 struct btrfs_free_space *entry)
619 {
620 int ret;
621
622 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
623 if (ret)
624 return ret;
625
626 memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
627 io_ctl_unmap_page(io_ctl);
628
629 return 0;
630 }
631
632 /*
633 * Since we attach pinned extents after the fact we can have contiguous sections
634 * of free space that are split up in entries. This poses a problem with the
635 * tree logging stuff since it could have allocated across what appears to be 2
636 * entries since we would have merged the entries when adding the pinned extents
637 * back to the free space cache. So run through the space cache that we just
638 * loaded and merge contiguous entries. This will make the log replay stuff not
639 * blow up and it will make for nicer allocator behavior.
640 */
641 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
642 {
643 struct btrfs_free_space *e, *prev = NULL;
644 struct rb_node *n;
645
646 again:
647 spin_lock(&ctl->tree_lock);
648 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
649 e = rb_entry(n, struct btrfs_free_space, offset_index);
650 if (!prev)
651 goto next;
652 if (e->bitmap || prev->bitmap)
653 goto next;
654 if (prev->offset + prev->bytes == e->offset) {
655 unlink_free_space(ctl, prev);
656 unlink_free_space(ctl, e);
657 prev->bytes += e->bytes;
658 kmem_cache_free(btrfs_free_space_cachep, e);
659 link_free_space(ctl, prev);
660 prev = NULL;
661 spin_unlock(&ctl->tree_lock);
662 goto again;
663 }
664 next:
665 prev = e;
666 }
667 spin_unlock(&ctl->tree_lock);
668 }
669
670 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
671 struct btrfs_free_space_ctl *ctl,
672 struct btrfs_path *path, u64 offset)
673 {
674 struct btrfs_free_space_header *header;
675 struct extent_buffer *leaf;
676 struct btrfs_io_ctl io_ctl;
677 struct btrfs_key key;
678 struct btrfs_free_space *e, *n;
679 LIST_HEAD(bitmaps);
680 u64 num_entries;
681 u64 num_bitmaps;
682 u64 generation;
683 u8 type;
684 int ret = 0;
685
686 /* Nothing in the space cache, goodbye */
687 if (!i_size_read(inode))
688 return 0;
689
690 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
691 key.offset = offset;
692 key.type = 0;
693
694 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
695 if (ret < 0)
696 return 0;
697 else if (ret > 0) {
698 btrfs_release_path(path);
699 return 0;
700 }
701
702 ret = -1;
703
704 leaf = path->nodes[0];
705 header = btrfs_item_ptr(leaf, path->slots[0],
706 struct btrfs_free_space_header);
707 num_entries = btrfs_free_space_entries(leaf, header);
708 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
709 generation = btrfs_free_space_generation(leaf, header);
710 btrfs_release_path(path);
711
712 if (!BTRFS_I(inode)->generation) {
713 btrfs_info(root->fs_info,
714 "The free space cache file (%llu) is invalid. skip it\n",
715 offset);
716 return 0;
717 }
718
719 if (BTRFS_I(inode)->generation != generation) {
720 btrfs_err(root->fs_info,
721 "free space inode generation (%llu) "
722 "did not match free space cache generation (%llu)",
723 BTRFS_I(inode)->generation, generation);
724 return 0;
725 }
726
727 if (!num_entries)
728 return 0;
729
730 ret = io_ctl_init(&io_ctl, inode, root, 0);
731 if (ret)
732 return ret;
733
734 ret = readahead_cache(inode);
735 if (ret)
736 goto out;
737
738 ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
739 if (ret)
740 goto out;
741
742 ret = io_ctl_check_crc(&io_ctl, 0);
743 if (ret)
744 goto free_cache;
745
746 ret = io_ctl_check_generation(&io_ctl, generation);
747 if (ret)
748 goto free_cache;
749
750 while (num_entries) {
751 e = kmem_cache_zalloc(btrfs_free_space_cachep,
752 GFP_NOFS);
753 if (!e)
754 goto free_cache;
755
756 ret = io_ctl_read_entry(&io_ctl, e, &type);
757 if (ret) {
758 kmem_cache_free(btrfs_free_space_cachep, e);
759 goto free_cache;
760 }
761
762 if (!e->bytes) {
763 kmem_cache_free(btrfs_free_space_cachep, e);
764 goto free_cache;
765 }
766
767 if (type == BTRFS_FREE_SPACE_EXTENT) {
768 spin_lock(&ctl->tree_lock);
769 ret = link_free_space(ctl, e);
770 spin_unlock(&ctl->tree_lock);
771 if (ret) {
772 btrfs_err(root->fs_info,
773 "Duplicate entries in free space cache, dumping");
774 kmem_cache_free(btrfs_free_space_cachep, e);
775 goto free_cache;
776 }
777 } else {
778 ASSERT(num_bitmaps);
779 num_bitmaps--;
780 e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
781 if (!e->bitmap) {
782 kmem_cache_free(
783 btrfs_free_space_cachep, e);
784 goto free_cache;
785 }
786 spin_lock(&ctl->tree_lock);
787 ret = link_free_space(ctl, e);
788 ctl->total_bitmaps++;
789 ctl->op->recalc_thresholds(ctl);
790 spin_unlock(&ctl->tree_lock);
791 if (ret) {
792 btrfs_err(root->fs_info,
793 "Duplicate entries in free space cache, dumping");
794 kmem_cache_free(btrfs_free_space_cachep, e);
795 goto free_cache;
796 }
797 list_add_tail(&e->list, &bitmaps);
798 }
799
800 num_entries--;
801 }
802
803 io_ctl_unmap_page(&io_ctl);
804
805 /*
806 * We add the bitmaps at the end of the entries in order that
807 * the bitmap entries are added to the cache.
808 */
809 list_for_each_entry_safe(e, n, &bitmaps, list) {
810 list_del_init(&e->list);
811 ret = io_ctl_read_bitmap(&io_ctl, e);
812 if (ret)
813 goto free_cache;
814 }
815
816 io_ctl_drop_pages(&io_ctl);
817 merge_space_tree(ctl);
818 ret = 1;
819 out:
820 io_ctl_free(&io_ctl);
821 return ret;
822 free_cache:
823 io_ctl_drop_pages(&io_ctl);
824 __btrfs_remove_free_space_cache(ctl);
825 goto out;
826 }
827
828 int load_free_space_cache(struct btrfs_fs_info *fs_info,
829 struct btrfs_block_group_cache *block_group)
830 {
831 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
832 struct btrfs_root *root = fs_info->tree_root;
833 struct inode *inode;
834 struct btrfs_path *path;
835 int ret = 0;
836 bool matched;
837 u64 used = btrfs_block_group_used(&block_group->item);
838
839 /*
840 * If this block group has been marked to be cleared for one reason or
841 * another then we can't trust the on disk cache, so just return.
842 */
843 spin_lock(&block_group->lock);
844 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
845 spin_unlock(&block_group->lock);
846 return 0;
847 }
848 spin_unlock(&block_group->lock);
849
850 path = btrfs_alloc_path();
851 if (!path)
852 return 0;
853 path->search_commit_root = 1;
854 path->skip_locking = 1;
855
856 inode = lookup_free_space_inode(root, block_group, path);
857 if (IS_ERR(inode)) {
858 btrfs_free_path(path);
859 return 0;
860 }
861
862 /* We may have converted the inode and made the cache invalid. */
863 spin_lock(&block_group->lock);
864 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
865 spin_unlock(&block_group->lock);
866 btrfs_free_path(path);
867 goto out;
868 }
869 spin_unlock(&block_group->lock);
870
871 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
872 path, block_group->key.objectid);
873 btrfs_free_path(path);
874 if (ret <= 0)
875 goto out;
876
877 spin_lock(&ctl->tree_lock);
878 matched = (ctl->free_space == (block_group->key.offset - used -
879 block_group->bytes_super));
880 spin_unlock(&ctl->tree_lock);
881
882 if (!matched) {
883 __btrfs_remove_free_space_cache(ctl);
884 btrfs_warn(fs_info, "block group %llu has wrong amount of free space",
885 block_group->key.objectid);
886 ret = -1;
887 }
888 out:
889 if (ret < 0) {
890 /* This cache is bogus, make sure it gets cleared */
891 spin_lock(&block_group->lock);
892 block_group->disk_cache_state = BTRFS_DC_CLEAR;
893 spin_unlock(&block_group->lock);
894 ret = 0;
895
896 btrfs_warn(fs_info, "failed to load free space cache for block group %llu, rebuild it now",
897 block_group->key.objectid);
898 }
899
900 iput(inode);
901 return ret;
902 }
903
904 static noinline_for_stack
905 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
906 struct btrfs_free_space_ctl *ctl,
907 struct btrfs_block_group_cache *block_group,
908 int *entries, int *bitmaps,
909 struct list_head *bitmap_list)
910 {
911 int ret;
912 struct btrfs_free_cluster *cluster = NULL;
913 struct btrfs_free_cluster *cluster_locked = NULL;
914 struct rb_node *node = rb_first(&ctl->free_space_offset);
915 struct btrfs_trim_range *trim_entry;
916
917 /* Get the cluster for this block_group if it exists */
918 if (block_group && !list_empty(&block_group->cluster_list)) {
919 cluster = list_entry(block_group->cluster_list.next,
920 struct btrfs_free_cluster,
921 block_group_list);
922 }
923
924 if (!node && cluster) {
925 cluster_locked = cluster;
926 spin_lock(&cluster_locked->lock);
927 node = rb_first(&cluster->root);
928 cluster = NULL;
929 }
930
931 /* Write out the extent entries */
932 while (node) {
933 struct btrfs_free_space *e;
934
935 e = rb_entry(node, struct btrfs_free_space, offset_index);
936 *entries += 1;
937
938 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
939 e->bitmap);
940 if (ret)
941 goto fail;
942
943 if (e->bitmap) {
944 list_add_tail(&e->list, bitmap_list);
945 *bitmaps += 1;
946 }
947 node = rb_next(node);
948 if (!node && cluster) {
949 node = rb_first(&cluster->root);
950 cluster_locked = cluster;
951 spin_lock(&cluster_locked->lock);
952 cluster = NULL;
953 }
954 }
955 if (cluster_locked) {
956 spin_unlock(&cluster_locked->lock);
957 cluster_locked = NULL;
958 }
959
960 /*
961 * Make sure we don't miss any range that was removed from our rbtree
962 * because trimming is running. Otherwise after a umount+mount (or crash
963 * after committing the transaction) we would leak free space and get
964 * an inconsistent free space cache report from fsck.
965 */
966 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
967 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
968 trim_entry->bytes, NULL);
969 if (ret)
970 goto fail;
971 *entries += 1;
972 }
973
974 return 0;
975 fail:
976 if (cluster_locked)
977 spin_unlock(&cluster_locked->lock);
978 return -ENOSPC;
979 }
980
981 static noinline_for_stack int
982 update_cache_item(struct btrfs_trans_handle *trans,
983 struct btrfs_root *root,
984 struct inode *inode,
985 struct btrfs_path *path, u64 offset,
986 int entries, int bitmaps)
987 {
988 struct btrfs_key key;
989 struct btrfs_free_space_header *header;
990 struct extent_buffer *leaf;
991 int ret;
992
993 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
994 key.offset = offset;
995 key.type = 0;
996
997 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
998 if (ret < 0) {
999 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1000 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1001 GFP_NOFS);
1002 goto fail;
1003 }
1004 leaf = path->nodes[0];
1005 if (ret > 0) {
1006 struct btrfs_key found_key;
1007 ASSERT(path->slots[0]);
1008 path->slots[0]--;
1009 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1010 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1011 found_key.offset != offset) {
1012 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1013 inode->i_size - 1,
1014 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1015 NULL, GFP_NOFS);
1016 btrfs_release_path(path);
1017 goto fail;
1018 }
1019 }
1020
1021 BTRFS_I(inode)->generation = trans->transid;
1022 header = btrfs_item_ptr(leaf, path->slots[0],
1023 struct btrfs_free_space_header);
1024 btrfs_set_free_space_entries(leaf, header, entries);
1025 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1026 btrfs_set_free_space_generation(leaf, header, trans->transid);
1027 btrfs_mark_buffer_dirty(leaf);
1028 btrfs_release_path(path);
1029
1030 return 0;
1031
1032 fail:
1033 return -1;
1034 }
1035
1036 static noinline_for_stack int
1037 write_pinned_extent_entries(struct btrfs_root *root,
1038 struct btrfs_block_group_cache *block_group,
1039 struct btrfs_io_ctl *io_ctl,
1040 int *entries)
1041 {
1042 u64 start, extent_start, extent_end, len;
1043 struct extent_io_tree *unpin = NULL;
1044 int ret;
1045
1046 if (!block_group)
1047 return 0;
1048
1049 /*
1050 * We want to add any pinned extents to our free space cache
1051 * so we don't leak the space
1052 *
1053 * We shouldn't have switched the pinned extents yet so this is the
1054 * right one
1055 */
1056 unpin = root->fs_info->pinned_extents;
1057
1058 start = block_group->key.objectid;
1059
1060 while (start < block_group->key.objectid + block_group->key.offset) {
1061 ret = find_first_extent_bit(unpin, start,
1062 &extent_start, &extent_end,
1063 EXTENT_DIRTY, NULL);
1064 if (ret)
1065 return 0;
1066
1067 /* This pinned extent is out of our range */
1068 if (extent_start >= block_group->key.objectid +
1069 block_group->key.offset)
1070 return 0;
1071
1072 extent_start = max(extent_start, start);
1073 extent_end = min(block_group->key.objectid +
1074 block_group->key.offset, extent_end + 1);
1075 len = extent_end - extent_start;
1076
1077 *entries += 1;
1078 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1079 if (ret)
1080 return -ENOSPC;
1081
1082 start = extent_end;
1083 }
1084
1085 return 0;
1086 }
1087
1088 static noinline_for_stack int
1089 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1090 {
1091 struct list_head *pos, *n;
1092 int ret;
1093
1094 /* Write out the bitmaps */
1095 list_for_each_safe(pos, n, bitmap_list) {
1096 struct btrfs_free_space *entry =
1097 list_entry(pos, struct btrfs_free_space, list);
1098
1099 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1100 if (ret)
1101 return -ENOSPC;
1102 list_del_init(&entry->list);
1103 }
1104
1105 return 0;
1106 }
1107
1108 static int flush_dirty_cache(struct inode *inode)
1109 {
1110 int ret;
1111
1112 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1113 if (ret)
1114 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1115 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1116 GFP_NOFS);
1117
1118 return ret;
1119 }
1120
1121 static void noinline_for_stack
1122 cleanup_bitmap_list(struct list_head *bitmap_list)
1123 {
1124 struct list_head *pos, *n;
1125
1126 list_for_each_safe(pos, n, bitmap_list) {
1127 struct btrfs_free_space *entry =
1128 list_entry(pos, struct btrfs_free_space, list);
1129 list_del_init(&entry->list);
1130 }
1131 }
1132
1133 static void noinline_for_stack
1134 cleanup_write_cache_enospc(struct inode *inode,
1135 struct btrfs_io_ctl *io_ctl,
1136 struct extent_state **cached_state,
1137 struct list_head *bitmap_list)
1138 {
1139 io_ctl_drop_pages(io_ctl);
1140 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1141 i_size_read(inode) - 1, cached_state,
1142 GFP_NOFS);
1143 }
1144
1145 int btrfs_wait_cache_io(struct btrfs_root *root,
1146 struct btrfs_trans_handle *trans,
1147 struct btrfs_block_group_cache *block_group,
1148 struct btrfs_io_ctl *io_ctl,
1149 struct btrfs_path *path, u64 offset)
1150 {
1151 int ret;
1152 struct inode *inode = io_ctl->inode;
1153
1154 if (!inode)
1155 return 0;
1156
1157 if (block_group)
1158 root = root->fs_info->tree_root;
1159
1160 /* Flush the dirty pages in the cache file. */
1161 ret = flush_dirty_cache(inode);
1162 if (ret)
1163 goto out;
1164
1165 /* Update the cache item to tell everyone this cache file is valid. */
1166 ret = update_cache_item(trans, root, inode, path, offset,
1167 io_ctl->entries, io_ctl->bitmaps);
1168 out:
1169 io_ctl_free(io_ctl);
1170 if (ret) {
1171 invalidate_inode_pages2(inode->i_mapping);
1172 BTRFS_I(inode)->generation = 0;
1173 if (block_group) {
1174 #ifdef DEBUG
1175 btrfs_err(root->fs_info,
1176 "failed to write free space cache for block group %llu",
1177 block_group->key.objectid);
1178 #endif
1179 }
1180 }
1181 btrfs_update_inode(trans, root, inode);
1182
1183 if (block_group) {
1184 /* the dirty list is protected by the dirty_bgs_lock */
1185 spin_lock(&trans->transaction->dirty_bgs_lock);
1186
1187 /* the disk_cache_state is protected by the block group lock */
1188 spin_lock(&block_group->lock);
1189
1190 /*
1191 * only mark this as written if we didn't get put back on
1192 * the dirty list while waiting for IO. Otherwise our
1193 * cache state won't be right, and we won't get written again
1194 */
1195 if (!ret && list_empty(&block_group->dirty_list))
1196 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1197 else if (ret)
1198 block_group->disk_cache_state = BTRFS_DC_ERROR;
1199
1200 spin_unlock(&block_group->lock);
1201 spin_unlock(&trans->transaction->dirty_bgs_lock);
1202 io_ctl->inode = NULL;
1203 iput(inode);
1204 }
1205
1206 return ret;
1207
1208 }
1209
1210 /**
1211 * __btrfs_write_out_cache - write out cached info to an inode
1212 * @root - the root the inode belongs to
1213 * @ctl - the free space cache we are going to write out
1214 * @block_group - the block_group for this cache if it belongs to a block_group
1215 * @trans - the trans handle
1216 * @path - the path to use
1217 * @offset - the offset for the key we'll insert
1218 *
1219 * This function writes out a free space cache struct to disk for quick recovery
1220 * on mount. This will return 0 if it was successfull in writing the cache out,
1221 * or an errno if it was not.
1222 */
1223 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1224 struct btrfs_free_space_ctl *ctl,
1225 struct btrfs_block_group_cache *block_group,
1226 struct btrfs_io_ctl *io_ctl,
1227 struct btrfs_trans_handle *trans,
1228 struct btrfs_path *path, u64 offset)
1229 {
1230 struct extent_state *cached_state = NULL;
1231 LIST_HEAD(bitmap_list);
1232 int entries = 0;
1233 int bitmaps = 0;
1234 int ret;
1235 int must_iput = 0;
1236
1237 if (!i_size_read(inode))
1238 return -EIO;
1239
1240 WARN_ON(io_ctl->pages);
1241 ret = io_ctl_init(io_ctl, inode, root, 1);
1242 if (ret)
1243 return ret;
1244
1245 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1246 down_write(&block_group->data_rwsem);
1247 spin_lock(&block_group->lock);
1248 if (block_group->delalloc_bytes) {
1249 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1250 spin_unlock(&block_group->lock);
1251 up_write(&block_group->data_rwsem);
1252 BTRFS_I(inode)->generation = 0;
1253 ret = 0;
1254 must_iput = 1;
1255 goto out;
1256 }
1257 spin_unlock(&block_group->lock);
1258 }
1259
1260 /* Lock all pages first so we can lock the extent safely. */
1261 ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1262 if (ret)
1263 goto out;
1264
1265 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1266 0, &cached_state);
1267
1268 io_ctl_set_generation(io_ctl, trans->transid);
1269
1270 mutex_lock(&ctl->cache_writeout_mutex);
1271 /* Write out the extent entries in the free space cache */
1272 spin_lock(&ctl->tree_lock);
1273 ret = write_cache_extent_entries(io_ctl, ctl,
1274 block_group, &entries, &bitmaps,
1275 &bitmap_list);
1276 if (ret)
1277 goto out_nospc_locked;
1278
1279 /*
1280 * Some spaces that are freed in the current transaction are pinned,
1281 * they will be added into free space cache after the transaction is
1282 * committed, we shouldn't lose them.
1283 *
1284 * If this changes while we are working we'll get added back to
1285 * the dirty list and redo it. No locking needed
1286 */
1287 ret = write_pinned_extent_entries(root, block_group, io_ctl, &entries);
1288 if (ret)
1289 goto out_nospc_locked;
1290
1291 /*
1292 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1293 * locked while doing it because a concurrent trim can be manipulating
1294 * or freeing the bitmap.
1295 */
1296 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1297 spin_unlock(&ctl->tree_lock);
1298 mutex_unlock(&ctl->cache_writeout_mutex);
1299 if (ret)
1300 goto out_nospc;
1301
1302 /* Zero out the rest of the pages just to make sure */
1303 io_ctl_zero_remaining_pages(io_ctl);
1304
1305 /* Everything is written out, now we dirty the pages in the file. */
1306 ret = btrfs_dirty_pages(root, inode, io_ctl->pages, io_ctl->num_pages,
1307 0, i_size_read(inode), &cached_state);
1308 if (ret)
1309 goto out_nospc;
1310
1311 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1312 up_write(&block_group->data_rwsem);
1313 /*
1314 * Release the pages and unlock the extent, we will flush
1315 * them out later
1316 */
1317 io_ctl_drop_pages(io_ctl);
1318
1319 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1320 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1321
1322 /*
1323 * at this point the pages are under IO and we're happy,
1324 * The caller is responsible for waiting on them and updating the
1325 * the cache and the inode
1326 */
1327 io_ctl->entries = entries;
1328 io_ctl->bitmaps = bitmaps;
1329
1330 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1331 if (ret)
1332 goto out;
1333
1334 return 0;
1335
1336 out:
1337 io_ctl->inode = NULL;
1338 io_ctl_free(io_ctl);
1339 if (ret) {
1340 invalidate_inode_pages2(inode->i_mapping);
1341 BTRFS_I(inode)->generation = 0;
1342 }
1343 btrfs_update_inode(trans, root, inode);
1344 if (must_iput)
1345 iput(inode);
1346 return ret;
1347
1348 out_nospc_locked:
1349 cleanup_bitmap_list(&bitmap_list);
1350 spin_unlock(&ctl->tree_lock);
1351 mutex_unlock(&ctl->cache_writeout_mutex);
1352
1353 out_nospc:
1354 cleanup_write_cache_enospc(inode, io_ctl, &cached_state, &bitmap_list);
1355
1356 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1357 up_write(&block_group->data_rwsem);
1358
1359 goto out;
1360 }
1361
1362 int btrfs_write_out_cache(struct btrfs_root *root,
1363 struct btrfs_trans_handle *trans,
1364 struct btrfs_block_group_cache *block_group,
1365 struct btrfs_path *path)
1366 {
1367 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1368 struct inode *inode;
1369 int ret = 0;
1370
1371 root = root->fs_info->tree_root;
1372
1373 spin_lock(&block_group->lock);
1374 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1375 spin_unlock(&block_group->lock);
1376 return 0;
1377 }
1378 spin_unlock(&block_group->lock);
1379
1380 inode = lookup_free_space_inode(root, block_group, path);
1381 if (IS_ERR(inode))
1382 return 0;
1383
1384 ret = __btrfs_write_out_cache(root, inode, ctl, block_group,
1385 &block_group->io_ctl, trans,
1386 path, block_group->key.objectid);
1387 if (ret) {
1388 #ifdef DEBUG
1389 btrfs_err(root->fs_info,
1390 "failed to write free space cache for block group %llu",
1391 block_group->key.objectid);
1392 #endif
1393 spin_lock(&block_group->lock);
1394 block_group->disk_cache_state = BTRFS_DC_ERROR;
1395 spin_unlock(&block_group->lock);
1396
1397 block_group->io_ctl.inode = NULL;
1398 iput(inode);
1399 }
1400
1401 /*
1402 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1403 * to wait for IO and put the inode
1404 */
1405
1406 return ret;
1407 }
1408
1409 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1410 u64 offset)
1411 {
1412 ASSERT(offset >= bitmap_start);
1413 offset -= bitmap_start;
1414 return (unsigned long)(div_u64(offset, unit));
1415 }
1416
1417 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1418 {
1419 return (unsigned long)(div_u64(bytes, unit));
1420 }
1421
1422 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1423 u64 offset)
1424 {
1425 u64 bitmap_start;
1426 u32 bytes_per_bitmap;
1427
1428 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1429 bitmap_start = offset - ctl->start;
1430 bitmap_start = div_u64(bitmap_start, bytes_per_bitmap);
1431 bitmap_start *= bytes_per_bitmap;
1432 bitmap_start += ctl->start;
1433
1434 return bitmap_start;
1435 }
1436
1437 static int tree_insert_offset(struct rb_root *root, u64 offset,
1438 struct rb_node *node, int bitmap)
1439 {
1440 struct rb_node **p = &root->rb_node;
1441 struct rb_node *parent = NULL;
1442 struct btrfs_free_space *info;
1443
1444 while (*p) {
1445 parent = *p;
1446 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1447
1448 if (offset < info->offset) {
1449 p = &(*p)->rb_left;
1450 } else if (offset > info->offset) {
1451 p = &(*p)->rb_right;
1452 } else {
1453 /*
1454 * we could have a bitmap entry and an extent entry
1455 * share the same offset. If this is the case, we want
1456 * the extent entry to always be found first if we do a
1457 * linear search through the tree, since we want to have
1458 * the quickest allocation time, and allocating from an
1459 * extent is faster than allocating from a bitmap. So
1460 * if we're inserting a bitmap and we find an entry at
1461 * this offset, we want to go right, or after this entry
1462 * logically. If we are inserting an extent and we've
1463 * found a bitmap, we want to go left, or before
1464 * logically.
1465 */
1466 if (bitmap) {
1467 if (info->bitmap) {
1468 WARN_ON_ONCE(1);
1469 return -EEXIST;
1470 }
1471 p = &(*p)->rb_right;
1472 } else {
1473 if (!info->bitmap) {
1474 WARN_ON_ONCE(1);
1475 return -EEXIST;
1476 }
1477 p = &(*p)->rb_left;
1478 }
1479 }
1480 }
1481
1482 rb_link_node(node, parent, p);
1483 rb_insert_color(node, root);
1484
1485 return 0;
1486 }
1487
1488 /*
1489 * searches the tree for the given offset.
1490 *
1491 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1492 * want a section that has at least bytes size and comes at or after the given
1493 * offset.
1494 */
1495 static struct btrfs_free_space *
1496 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1497 u64 offset, int bitmap_only, int fuzzy)
1498 {
1499 struct rb_node *n = ctl->free_space_offset.rb_node;
1500 struct btrfs_free_space *entry, *prev = NULL;
1501
1502 /* find entry that is closest to the 'offset' */
1503 while (1) {
1504 if (!n) {
1505 entry = NULL;
1506 break;
1507 }
1508
1509 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1510 prev = entry;
1511
1512 if (offset < entry->offset)
1513 n = n->rb_left;
1514 else if (offset > entry->offset)
1515 n = n->rb_right;
1516 else
1517 break;
1518 }
1519
1520 if (bitmap_only) {
1521 if (!entry)
1522 return NULL;
1523 if (entry->bitmap)
1524 return entry;
1525
1526 /*
1527 * bitmap entry and extent entry may share same offset,
1528 * in that case, bitmap entry comes after extent entry.
1529 */
1530 n = rb_next(n);
1531 if (!n)
1532 return NULL;
1533 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1534 if (entry->offset != offset)
1535 return NULL;
1536
1537 WARN_ON(!entry->bitmap);
1538 return entry;
1539 } else if (entry) {
1540 if (entry->bitmap) {
1541 /*
1542 * if previous extent entry covers the offset,
1543 * we should return it instead of the bitmap entry
1544 */
1545 n = rb_prev(&entry->offset_index);
1546 if (n) {
1547 prev = rb_entry(n, struct btrfs_free_space,
1548 offset_index);
1549 if (!prev->bitmap &&
1550 prev->offset + prev->bytes > offset)
1551 entry = prev;
1552 }
1553 }
1554 return entry;
1555 }
1556
1557 if (!prev)
1558 return NULL;
1559
1560 /* find last entry before the 'offset' */
1561 entry = prev;
1562 if (entry->offset > offset) {
1563 n = rb_prev(&entry->offset_index);
1564 if (n) {
1565 entry = rb_entry(n, struct btrfs_free_space,
1566 offset_index);
1567 ASSERT(entry->offset <= offset);
1568 } else {
1569 if (fuzzy)
1570 return entry;
1571 else
1572 return NULL;
1573 }
1574 }
1575
1576 if (entry->bitmap) {
1577 n = rb_prev(&entry->offset_index);
1578 if (n) {
1579 prev = rb_entry(n, struct btrfs_free_space,
1580 offset_index);
1581 if (!prev->bitmap &&
1582 prev->offset + prev->bytes > offset)
1583 return prev;
1584 }
1585 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1586 return entry;
1587 } else if (entry->offset + entry->bytes > offset)
1588 return entry;
1589
1590 if (!fuzzy)
1591 return NULL;
1592
1593 while (1) {
1594 if (entry->bitmap) {
1595 if (entry->offset + BITS_PER_BITMAP *
1596 ctl->unit > offset)
1597 break;
1598 } else {
1599 if (entry->offset + entry->bytes > offset)
1600 break;
1601 }
1602
1603 n = rb_next(&entry->offset_index);
1604 if (!n)
1605 return NULL;
1606 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1607 }
1608 return entry;
1609 }
1610
1611 static inline void
1612 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1613 struct btrfs_free_space *info)
1614 {
1615 rb_erase(&info->offset_index, &ctl->free_space_offset);
1616 ctl->free_extents--;
1617 }
1618
1619 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1620 struct btrfs_free_space *info)
1621 {
1622 __unlink_free_space(ctl, info);
1623 ctl->free_space -= info->bytes;
1624 }
1625
1626 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1627 struct btrfs_free_space *info)
1628 {
1629 int ret = 0;
1630
1631 ASSERT(info->bytes || info->bitmap);
1632 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1633 &info->offset_index, (info->bitmap != NULL));
1634 if (ret)
1635 return ret;
1636
1637 ctl->free_space += info->bytes;
1638 ctl->free_extents++;
1639 return ret;
1640 }
1641
1642 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1643 {
1644 struct btrfs_block_group_cache *block_group = ctl->private;
1645 u64 max_bytes;
1646 u64 bitmap_bytes;
1647 u64 extent_bytes;
1648 u64 size = block_group->key.offset;
1649 u32 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1650 u32 max_bitmaps = div_u64(size + bytes_per_bg - 1, bytes_per_bg);
1651
1652 max_bitmaps = max_t(u32, max_bitmaps, 1);
1653
1654 ASSERT(ctl->total_bitmaps <= max_bitmaps);
1655
1656 /*
1657 * The goal is to keep the total amount of memory used per 1gb of space
1658 * at or below 32k, so we need to adjust how much memory we allow to be
1659 * used by extent based free space tracking
1660 */
1661 if (size < 1024 * 1024 * 1024)
1662 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1663 else
1664 max_bytes = MAX_CACHE_BYTES_PER_GIG *
1665 div_u64(size, 1024 * 1024 * 1024);
1666
1667 /*
1668 * we want to account for 1 more bitmap than what we have so we can make
1669 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1670 * we add more bitmaps.
1671 */
1672 bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1673
1674 if (bitmap_bytes >= max_bytes) {
1675 ctl->extents_thresh = 0;
1676 return;
1677 }
1678
1679 /*
1680 * we want the extent entry threshold to always be at most 1/2 the max
1681 * bytes we can have, or whatever is less than that.
1682 */
1683 extent_bytes = max_bytes - bitmap_bytes;
1684 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1685
1686 ctl->extents_thresh =
1687 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1688 }
1689
1690 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1691 struct btrfs_free_space *info,
1692 u64 offset, u64 bytes)
1693 {
1694 unsigned long start, count;
1695
1696 start = offset_to_bit(info->offset, ctl->unit, offset);
1697 count = bytes_to_bits(bytes, ctl->unit);
1698 ASSERT(start + count <= BITS_PER_BITMAP);
1699
1700 bitmap_clear(info->bitmap, start, count);
1701
1702 info->bytes -= bytes;
1703 }
1704
1705 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1706 struct btrfs_free_space *info, u64 offset,
1707 u64 bytes)
1708 {
1709 __bitmap_clear_bits(ctl, info, offset, bytes);
1710 ctl->free_space -= bytes;
1711 }
1712
1713 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1714 struct btrfs_free_space *info, u64 offset,
1715 u64 bytes)
1716 {
1717 unsigned long start, count;
1718
1719 start = offset_to_bit(info->offset, ctl->unit, offset);
1720 count = bytes_to_bits(bytes, ctl->unit);
1721 ASSERT(start + count <= BITS_PER_BITMAP);
1722
1723 bitmap_set(info->bitmap, start, count);
1724
1725 info->bytes += bytes;
1726 ctl->free_space += bytes;
1727 }
1728
1729 /*
1730 * If we can not find suitable extent, we will use bytes to record
1731 * the size of the max extent.
1732 */
1733 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1734 struct btrfs_free_space *bitmap_info, u64 *offset,
1735 u64 *bytes)
1736 {
1737 unsigned long found_bits = 0;
1738 unsigned long max_bits = 0;
1739 unsigned long bits, i;
1740 unsigned long next_zero;
1741 unsigned long extent_bits;
1742
1743 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1744 max_t(u64, *offset, bitmap_info->offset));
1745 bits = bytes_to_bits(*bytes, ctl->unit);
1746
1747 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1748 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1749 BITS_PER_BITMAP, i);
1750 extent_bits = next_zero - i;
1751 if (extent_bits >= bits) {
1752 found_bits = extent_bits;
1753 break;
1754 } else if (extent_bits > max_bits) {
1755 max_bits = extent_bits;
1756 }
1757 i = next_zero;
1758 }
1759
1760 if (found_bits) {
1761 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1762 *bytes = (u64)(found_bits) * ctl->unit;
1763 return 0;
1764 }
1765
1766 *bytes = (u64)(max_bits) * ctl->unit;
1767 return -1;
1768 }
1769
1770 /* Cache the size of the max extent in bytes */
1771 static struct btrfs_free_space *
1772 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1773 unsigned long align, u64 *max_extent_size)
1774 {
1775 struct btrfs_free_space *entry;
1776 struct rb_node *node;
1777 u64 tmp;
1778 u64 align_off;
1779 int ret;
1780
1781 if (!ctl->free_space_offset.rb_node)
1782 goto out;
1783
1784 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1785 if (!entry)
1786 goto out;
1787
1788 for (node = &entry->offset_index; node; node = rb_next(node)) {
1789 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1790 if (entry->bytes < *bytes) {
1791 if (entry->bytes > *max_extent_size)
1792 *max_extent_size = entry->bytes;
1793 continue;
1794 }
1795
1796 /* make sure the space returned is big enough
1797 * to match our requested alignment
1798 */
1799 if (*bytes >= align) {
1800 tmp = entry->offset - ctl->start + align - 1;
1801 tmp = div64_u64(tmp, align);
1802 tmp = tmp * align + ctl->start;
1803 align_off = tmp - entry->offset;
1804 } else {
1805 align_off = 0;
1806 tmp = entry->offset;
1807 }
1808
1809 if (entry->bytes < *bytes + align_off) {
1810 if (entry->bytes > *max_extent_size)
1811 *max_extent_size = entry->bytes;
1812 continue;
1813 }
1814
1815 if (entry->bitmap) {
1816 u64 size = *bytes;
1817
1818 ret = search_bitmap(ctl, entry, &tmp, &size);
1819 if (!ret) {
1820 *offset = tmp;
1821 *bytes = size;
1822 return entry;
1823 } else if (size > *max_extent_size) {
1824 *max_extent_size = size;
1825 }
1826 continue;
1827 }
1828
1829 *offset = tmp;
1830 *bytes = entry->bytes - align_off;
1831 return entry;
1832 }
1833 out:
1834 return NULL;
1835 }
1836
1837 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1838 struct btrfs_free_space *info, u64 offset)
1839 {
1840 info->offset = offset_to_bitmap(ctl, offset);
1841 info->bytes = 0;
1842 INIT_LIST_HEAD(&info->list);
1843 link_free_space(ctl, info);
1844 ctl->total_bitmaps++;
1845
1846 ctl->op->recalc_thresholds(ctl);
1847 }
1848
1849 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1850 struct btrfs_free_space *bitmap_info)
1851 {
1852 unlink_free_space(ctl, bitmap_info);
1853 kfree(bitmap_info->bitmap);
1854 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1855 ctl->total_bitmaps--;
1856 ctl->op->recalc_thresholds(ctl);
1857 }
1858
1859 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1860 struct btrfs_free_space *bitmap_info,
1861 u64 *offset, u64 *bytes)
1862 {
1863 u64 end;
1864 u64 search_start, search_bytes;
1865 int ret;
1866
1867 again:
1868 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1869
1870 /*
1871 * We need to search for bits in this bitmap. We could only cover some
1872 * of the extent in this bitmap thanks to how we add space, so we need
1873 * to search for as much as it as we can and clear that amount, and then
1874 * go searching for the next bit.
1875 */
1876 search_start = *offset;
1877 search_bytes = ctl->unit;
1878 search_bytes = min(search_bytes, end - search_start + 1);
1879 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1880 if (ret < 0 || search_start != *offset)
1881 return -EINVAL;
1882
1883 /* We may have found more bits than what we need */
1884 search_bytes = min(search_bytes, *bytes);
1885
1886 /* Cannot clear past the end of the bitmap */
1887 search_bytes = min(search_bytes, end - search_start + 1);
1888
1889 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1890 *offset += search_bytes;
1891 *bytes -= search_bytes;
1892
1893 if (*bytes) {
1894 struct rb_node *next = rb_next(&bitmap_info->offset_index);
1895 if (!bitmap_info->bytes)
1896 free_bitmap(ctl, bitmap_info);
1897
1898 /*
1899 * no entry after this bitmap, but we still have bytes to
1900 * remove, so something has gone wrong.
1901 */
1902 if (!next)
1903 return -EINVAL;
1904
1905 bitmap_info = rb_entry(next, struct btrfs_free_space,
1906 offset_index);
1907
1908 /*
1909 * if the next entry isn't a bitmap we need to return to let the
1910 * extent stuff do its work.
1911 */
1912 if (!bitmap_info->bitmap)
1913 return -EAGAIN;
1914
1915 /*
1916 * Ok the next item is a bitmap, but it may not actually hold
1917 * the information for the rest of this free space stuff, so
1918 * look for it, and if we don't find it return so we can try
1919 * everything over again.
1920 */
1921 search_start = *offset;
1922 search_bytes = ctl->unit;
1923 ret = search_bitmap(ctl, bitmap_info, &search_start,
1924 &search_bytes);
1925 if (ret < 0 || search_start != *offset)
1926 return -EAGAIN;
1927
1928 goto again;
1929 } else if (!bitmap_info->bytes)
1930 free_bitmap(ctl, bitmap_info);
1931
1932 return 0;
1933 }
1934
1935 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1936 struct btrfs_free_space *info, u64 offset,
1937 u64 bytes)
1938 {
1939 u64 bytes_to_set = 0;
1940 u64 end;
1941
1942 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1943
1944 bytes_to_set = min(end - offset, bytes);
1945
1946 bitmap_set_bits(ctl, info, offset, bytes_to_set);
1947
1948 return bytes_to_set;
1949
1950 }
1951
1952 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1953 struct btrfs_free_space *info)
1954 {
1955 struct btrfs_block_group_cache *block_group = ctl->private;
1956
1957 /*
1958 * If we are below the extents threshold then we can add this as an
1959 * extent, and don't have to deal with the bitmap
1960 */
1961 if (ctl->free_extents < ctl->extents_thresh) {
1962 /*
1963 * If this block group has some small extents we don't want to
1964 * use up all of our free slots in the cache with them, we want
1965 * to reserve them to larger extents, however if we have plent
1966 * of cache left then go ahead an dadd them, no sense in adding
1967 * the overhead of a bitmap if we don't have to.
1968 */
1969 if (info->bytes <= block_group->sectorsize * 4) {
1970 if (ctl->free_extents * 2 <= ctl->extents_thresh)
1971 return false;
1972 } else {
1973 return false;
1974 }
1975 }
1976
1977 /*
1978 * The original block groups from mkfs can be really small, like 8
1979 * megabytes, so don't bother with a bitmap for those entries. However
1980 * some block groups can be smaller than what a bitmap would cover but
1981 * are still large enough that they could overflow the 32k memory limit,
1982 * so allow those block groups to still be allowed to have a bitmap
1983 * entry.
1984 */
1985 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
1986 return false;
1987
1988 return true;
1989 }
1990
1991 static struct btrfs_free_space_op free_space_op = {
1992 .recalc_thresholds = recalculate_thresholds,
1993 .use_bitmap = use_bitmap,
1994 };
1995
1996 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1997 struct btrfs_free_space *info)
1998 {
1999 struct btrfs_free_space *bitmap_info;
2000 struct btrfs_block_group_cache *block_group = NULL;
2001 int added = 0;
2002 u64 bytes, offset, bytes_added;
2003 int ret;
2004
2005 bytes = info->bytes;
2006 offset = info->offset;
2007
2008 if (!ctl->op->use_bitmap(ctl, info))
2009 return 0;
2010
2011 if (ctl->op == &free_space_op)
2012 block_group = ctl->private;
2013 again:
2014 /*
2015 * Since we link bitmaps right into the cluster we need to see if we
2016 * have a cluster here, and if so and it has our bitmap we need to add
2017 * the free space to that bitmap.
2018 */
2019 if (block_group && !list_empty(&block_group->cluster_list)) {
2020 struct btrfs_free_cluster *cluster;
2021 struct rb_node *node;
2022 struct btrfs_free_space *entry;
2023
2024 cluster = list_entry(block_group->cluster_list.next,
2025 struct btrfs_free_cluster,
2026 block_group_list);
2027 spin_lock(&cluster->lock);
2028 node = rb_first(&cluster->root);
2029 if (!node) {
2030 spin_unlock(&cluster->lock);
2031 goto no_cluster_bitmap;
2032 }
2033
2034 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2035 if (!entry->bitmap) {
2036 spin_unlock(&cluster->lock);
2037 goto no_cluster_bitmap;
2038 }
2039
2040 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2041 bytes_added = add_bytes_to_bitmap(ctl, entry,
2042 offset, bytes);
2043 bytes -= bytes_added;
2044 offset += bytes_added;
2045 }
2046 spin_unlock(&cluster->lock);
2047 if (!bytes) {
2048 ret = 1;
2049 goto out;
2050 }
2051 }
2052
2053 no_cluster_bitmap:
2054 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2055 1, 0);
2056 if (!bitmap_info) {
2057 ASSERT(added == 0);
2058 goto new_bitmap;
2059 }
2060
2061 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2062 bytes -= bytes_added;
2063 offset += bytes_added;
2064 added = 0;
2065
2066 if (!bytes) {
2067 ret = 1;
2068 goto out;
2069 } else
2070 goto again;
2071
2072 new_bitmap:
2073 if (info && info->bitmap) {
2074 add_new_bitmap(ctl, info, offset);
2075 added = 1;
2076 info = NULL;
2077 goto again;
2078 } else {
2079 spin_unlock(&ctl->tree_lock);
2080
2081 /* no pre-allocated info, allocate a new one */
2082 if (!info) {
2083 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2084 GFP_NOFS);
2085 if (!info) {
2086 spin_lock(&ctl->tree_lock);
2087 ret = -ENOMEM;
2088 goto out;
2089 }
2090 }
2091
2092 /* allocate the bitmap */
2093 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
2094 spin_lock(&ctl->tree_lock);
2095 if (!info->bitmap) {
2096 ret = -ENOMEM;
2097 goto out;
2098 }
2099 goto again;
2100 }
2101
2102 out:
2103 if (info) {
2104 if (info->bitmap)
2105 kfree(info->bitmap);
2106 kmem_cache_free(btrfs_free_space_cachep, info);
2107 }
2108
2109 return ret;
2110 }
2111
2112 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2113 struct btrfs_free_space *info, bool update_stat)
2114 {
2115 struct btrfs_free_space *left_info;
2116 struct btrfs_free_space *right_info;
2117 bool merged = false;
2118 u64 offset = info->offset;
2119 u64 bytes = info->bytes;
2120
2121 /*
2122 * first we want to see if there is free space adjacent to the range we
2123 * are adding, if there is remove that struct and add a new one to
2124 * cover the entire range
2125 */
2126 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2127 if (right_info && rb_prev(&right_info->offset_index))
2128 left_info = rb_entry(rb_prev(&right_info->offset_index),
2129 struct btrfs_free_space, offset_index);
2130 else
2131 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2132
2133 if (right_info && !right_info->bitmap) {
2134 if (update_stat)
2135 unlink_free_space(ctl, right_info);
2136 else
2137 __unlink_free_space(ctl, right_info);
2138 info->bytes += right_info->bytes;
2139 kmem_cache_free(btrfs_free_space_cachep, right_info);
2140 merged = true;
2141 }
2142
2143 if (left_info && !left_info->bitmap &&
2144 left_info->offset + left_info->bytes == offset) {
2145 if (update_stat)
2146 unlink_free_space(ctl, left_info);
2147 else
2148 __unlink_free_space(ctl, left_info);
2149 info->offset = left_info->offset;
2150 info->bytes += left_info->bytes;
2151 kmem_cache_free(btrfs_free_space_cachep, left_info);
2152 merged = true;
2153 }
2154
2155 return merged;
2156 }
2157
2158 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2159 struct btrfs_free_space *info,
2160 bool update_stat)
2161 {
2162 struct btrfs_free_space *bitmap;
2163 unsigned long i;
2164 unsigned long j;
2165 const u64 end = info->offset + info->bytes;
2166 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2167 u64 bytes;
2168
2169 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2170 if (!bitmap)
2171 return false;
2172
2173 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2174 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2175 if (j == i)
2176 return false;
2177 bytes = (j - i) * ctl->unit;
2178 info->bytes += bytes;
2179
2180 if (update_stat)
2181 bitmap_clear_bits(ctl, bitmap, end, bytes);
2182 else
2183 __bitmap_clear_bits(ctl, bitmap, end, bytes);
2184
2185 if (!bitmap->bytes)
2186 free_bitmap(ctl, bitmap);
2187
2188 return true;
2189 }
2190
2191 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2192 struct btrfs_free_space *info,
2193 bool update_stat)
2194 {
2195 struct btrfs_free_space *bitmap;
2196 u64 bitmap_offset;
2197 unsigned long i;
2198 unsigned long j;
2199 unsigned long prev_j;
2200 u64 bytes;
2201
2202 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2203 /* If we're on a boundary, try the previous logical bitmap. */
2204 if (bitmap_offset == info->offset) {
2205 if (info->offset == 0)
2206 return false;
2207 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2208 }
2209
2210 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2211 if (!bitmap)
2212 return false;
2213
2214 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2215 j = 0;
2216 prev_j = (unsigned long)-1;
2217 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2218 if (j > i)
2219 break;
2220 prev_j = j;
2221 }
2222 if (prev_j == i)
2223 return false;
2224
2225 if (prev_j == (unsigned long)-1)
2226 bytes = (i + 1) * ctl->unit;
2227 else
2228 bytes = (i - prev_j) * ctl->unit;
2229
2230 info->offset -= bytes;
2231 info->bytes += bytes;
2232
2233 if (update_stat)
2234 bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2235 else
2236 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2237
2238 if (!bitmap->bytes)
2239 free_bitmap(ctl, bitmap);
2240
2241 return true;
2242 }
2243
2244 /*
2245 * We prefer always to allocate from extent entries, both for clustered and
2246 * non-clustered allocation requests. So when attempting to add a new extent
2247 * entry, try to see if there's adjacent free space in bitmap entries, and if
2248 * there is, migrate that space from the bitmaps to the extent.
2249 * Like this we get better chances of satisfying space allocation requests
2250 * because we attempt to satisfy them based on a single cache entry, and never
2251 * on 2 or more entries - even if the entries represent a contiguous free space
2252 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2253 * ends).
2254 */
2255 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2256 struct btrfs_free_space *info,
2257 bool update_stat)
2258 {
2259 /*
2260 * Only work with disconnected entries, as we can change their offset,
2261 * and must be extent entries.
2262 */
2263 ASSERT(!info->bitmap);
2264 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2265
2266 if (ctl->total_bitmaps > 0) {
2267 bool stole_end;
2268 bool stole_front = false;
2269
2270 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2271 if (ctl->total_bitmaps > 0)
2272 stole_front = steal_from_bitmap_to_front(ctl, info,
2273 update_stat);
2274
2275 if (stole_end || stole_front)
2276 try_merge_free_space(ctl, info, update_stat);
2277 }
2278 }
2279
2280 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
2281 u64 offset, u64 bytes)
2282 {
2283 struct btrfs_free_space *info;
2284 int ret = 0;
2285
2286 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2287 if (!info)
2288 return -ENOMEM;
2289
2290 info->offset = offset;
2291 info->bytes = bytes;
2292 RB_CLEAR_NODE(&info->offset_index);
2293
2294 spin_lock(&ctl->tree_lock);
2295
2296 if (try_merge_free_space(ctl, info, true))
2297 goto link;
2298
2299 /*
2300 * There was no extent directly to the left or right of this new
2301 * extent then we know we're going to have to allocate a new extent, so
2302 * before we do that see if we need to drop this into a bitmap
2303 */
2304 ret = insert_into_bitmap(ctl, info);
2305 if (ret < 0) {
2306 goto out;
2307 } else if (ret) {
2308 ret = 0;
2309 goto out;
2310 }
2311 link:
2312 /*
2313 * Only steal free space from adjacent bitmaps if we're sure we're not
2314 * going to add the new free space to existing bitmap entries - because
2315 * that would mean unnecessary work that would be reverted. Therefore
2316 * attempt to steal space from bitmaps if we're adding an extent entry.
2317 */
2318 steal_from_bitmap(ctl, info, true);
2319
2320 ret = link_free_space(ctl, info);
2321 if (ret)
2322 kmem_cache_free(btrfs_free_space_cachep, info);
2323 out:
2324 spin_unlock(&ctl->tree_lock);
2325
2326 if (ret) {
2327 printk(KERN_CRIT "BTRFS: unable to add free space :%d\n", ret);
2328 ASSERT(ret != -EEXIST);
2329 }
2330
2331 return ret;
2332 }
2333
2334 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2335 u64 offset, u64 bytes)
2336 {
2337 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2338 struct btrfs_free_space *info;
2339 int ret;
2340 bool re_search = false;
2341
2342 spin_lock(&ctl->tree_lock);
2343
2344 again:
2345 ret = 0;
2346 if (!bytes)
2347 goto out_lock;
2348
2349 info = tree_search_offset(ctl, offset, 0, 0);
2350 if (!info) {
2351 /*
2352 * oops didn't find an extent that matched the space we wanted
2353 * to remove, look for a bitmap instead
2354 */
2355 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2356 1, 0);
2357 if (!info) {
2358 /*
2359 * If we found a partial bit of our free space in a
2360 * bitmap but then couldn't find the other part this may
2361 * be a problem, so WARN about it.
2362 */
2363 WARN_ON(re_search);
2364 goto out_lock;
2365 }
2366 }
2367
2368 re_search = false;
2369 if (!info->bitmap) {
2370 unlink_free_space(ctl, info);
2371 if (offset == info->offset) {
2372 u64 to_free = min(bytes, info->bytes);
2373
2374 info->bytes -= to_free;
2375 info->offset += to_free;
2376 if (info->bytes) {
2377 ret = link_free_space(ctl, info);
2378 WARN_ON(ret);
2379 } else {
2380 kmem_cache_free(btrfs_free_space_cachep, info);
2381 }
2382
2383 offset += to_free;
2384 bytes -= to_free;
2385 goto again;
2386 } else {
2387 u64 old_end = info->bytes + info->offset;
2388
2389 info->bytes = offset - info->offset;
2390 ret = link_free_space(ctl, info);
2391 WARN_ON(ret);
2392 if (ret)
2393 goto out_lock;
2394
2395 /* Not enough bytes in this entry to satisfy us */
2396 if (old_end < offset + bytes) {
2397 bytes -= old_end - offset;
2398 offset = old_end;
2399 goto again;
2400 } else if (old_end == offset + bytes) {
2401 /* all done */
2402 goto out_lock;
2403 }
2404 spin_unlock(&ctl->tree_lock);
2405
2406 ret = btrfs_add_free_space(block_group, offset + bytes,
2407 old_end - (offset + bytes));
2408 WARN_ON(ret);
2409 goto out;
2410 }
2411 }
2412
2413 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2414 if (ret == -EAGAIN) {
2415 re_search = true;
2416 goto again;
2417 }
2418 out_lock:
2419 spin_unlock(&ctl->tree_lock);
2420 out:
2421 return ret;
2422 }
2423
2424 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2425 u64 bytes)
2426 {
2427 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2428 struct btrfs_free_space *info;
2429 struct rb_node *n;
2430 int count = 0;
2431
2432 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2433 info = rb_entry(n, struct btrfs_free_space, offset_index);
2434 if (info->bytes >= bytes && !block_group->ro)
2435 count++;
2436 btrfs_crit(block_group->fs_info,
2437 "entry offset %llu, bytes %llu, bitmap %s",
2438 info->offset, info->bytes,
2439 (info->bitmap) ? "yes" : "no");
2440 }
2441 btrfs_info(block_group->fs_info, "block group has cluster?: %s",
2442 list_empty(&block_group->cluster_list) ? "no" : "yes");
2443 btrfs_info(block_group->fs_info,
2444 "%d blocks of free space at or bigger than bytes is", count);
2445 }
2446
2447 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2448 {
2449 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2450
2451 spin_lock_init(&ctl->tree_lock);
2452 ctl->unit = block_group->sectorsize;
2453 ctl->start = block_group->key.objectid;
2454 ctl->private = block_group;
2455 ctl->op = &free_space_op;
2456 INIT_LIST_HEAD(&ctl->trimming_ranges);
2457 mutex_init(&ctl->cache_writeout_mutex);
2458
2459 /*
2460 * we only want to have 32k of ram per block group for keeping
2461 * track of free space, and if we pass 1/2 of that we want to
2462 * start converting things over to using bitmaps
2463 */
2464 ctl->extents_thresh = ((1024 * 32) / 2) /
2465 sizeof(struct btrfs_free_space);
2466 }
2467
2468 /*
2469 * for a given cluster, put all of its extents back into the free
2470 * space cache. If the block group passed doesn't match the block group
2471 * pointed to by the cluster, someone else raced in and freed the
2472 * cluster already. In that case, we just return without changing anything
2473 */
2474 static int
2475 __btrfs_return_cluster_to_free_space(
2476 struct btrfs_block_group_cache *block_group,
2477 struct btrfs_free_cluster *cluster)
2478 {
2479 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2480 struct btrfs_free_space *entry;
2481 struct rb_node *node;
2482
2483 spin_lock(&cluster->lock);
2484 if (cluster->block_group != block_group)
2485 goto out;
2486
2487 cluster->block_group = NULL;
2488 cluster->window_start = 0;
2489 list_del_init(&cluster->block_group_list);
2490
2491 node = rb_first(&cluster->root);
2492 while (node) {
2493 bool bitmap;
2494
2495 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2496 node = rb_next(&entry->offset_index);
2497 rb_erase(&entry->offset_index, &cluster->root);
2498 RB_CLEAR_NODE(&entry->offset_index);
2499
2500 bitmap = (entry->bitmap != NULL);
2501 if (!bitmap) {
2502 try_merge_free_space(ctl, entry, false);
2503 steal_from_bitmap(ctl, entry, false);
2504 }
2505 tree_insert_offset(&ctl->free_space_offset,
2506 entry->offset, &entry->offset_index, bitmap);
2507 }
2508 cluster->root = RB_ROOT;
2509
2510 out:
2511 spin_unlock(&cluster->lock);
2512 btrfs_put_block_group(block_group);
2513 return 0;
2514 }
2515
2516 static void __btrfs_remove_free_space_cache_locked(
2517 struct btrfs_free_space_ctl *ctl)
2518 {
2519 struct btrfs_free_space *info;
2520 struct rb_node *node;
2521
2522 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2523 info = rb_entry(node, struct btrfs_free_space, offset_index);
2524 if (!info->bitmap) {
2525 unlink_free_space(ctl, info);
2526 kmem_cache_free(btrfs_free_space_cachep, info);
2527 } else {
2528 free_bitmap(ctl, info);
2529 }
2530
2531 cond_resched_lock(&ctl->tree_lock);
2532 }
2533 }
2534
2535 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2536 {
2537 spin_lock(&ctl->tree_lock);
2538 __btrfs_remove_free_space_cache_locked(ctl);
2539 spin_unlock(&ctl->tree_lock);
2540 }
2541
2542 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2543 {
2544 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2545 struct btrfs_free_cluster *cluster;
2546 struct list_head *head;
2547
2548 spin_lock(&ctl->tree_lock);
2549 while ((head = block_group->cluster_list.next) !=
2550 &block_group->cluster_list) {
2551 cluster = list_entry(head, struct btrfs_free_cluster,
2552 block_group_list);
2553
2554 WARN_ON(cluster->block_group != block_group);
2555 __btrfs_return_cluster_to_free_space(block_group, cluster);
2556
2557 cond_resched_lock(&ctl->tree_lock);
2558 }
2559 __btrfs_remove_free_space_cache_locked(ctl);
2560 spin_unlock(&ctl->tree_lock);
2561
2562 }
2563
2564 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2565 u64 offset, u64 bytes, u64 empty_size,
2566 u64 *max_extent_size)
2567 {
2568 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2569 struct btrfs_free_space *entry = NULL;
2570 u64 bytes_search = bytes + empty_size;
2571 u64 ret = 0;
2572 u64 align_gap = 0;
2573 u64 align_gap_len = 0;
2574
2575 spin_lock(&ctl->tree_lock);
2576 entry = find_free_space(ctl, &offset, &bytes_search,
2577 block_group->full_stripe_len, max_extent_size);
2578 if (!entry)
2579 goto out;
2580
2581 ret = offset;
2582 if (entry->bitmap) {
2583 bitmap_clear_bits(ctl, entry, offset, bytes);
2584 if (!entry->bytes)
2585 free_bitmap(ctl, entry);
2586 } else {
2587 unlink_free_space(ctl, entry);
2588 align_gap_len = offset - entry->offset;
2589 align_gap = entry->offset;
2590
2591 entry->offset = offset + bytes;
2592 WARN_ON(entry->bytes < bytes + align_gap_len);
2593
2594 entry->bytes -= bytes + align_gap_len;
2595 if (!entry->bytes)
2596 kmem_cache_free(btrfs_free_space_cachep, entry);
2597 else
2598 link_free_space(ctl, entry);
2599 }
2600 out:
2601 spin_unlock(&ctl->tree_lock);
2602
2603 if (align_gap_len)
2604 __btrfs_add_free_space(ctl, align_gap, align_gap_len);
2605 return ret;
2606 }
2607
2608 /*
2609 * given a cluster, put all of its extents back into the free space
2610 * cache. If a block group is passed, this function will only free
2611 * a cluster that belongs to the passed block group.
2612 *
2613 * Otherwise, it'll get a reference on the block group pointed to by the
2614 * cluster and remove the cluster from it.
2615 */
2616 int btrfs_return_cluster_to_free_space(
2617 struct btrfs_block_group_cache *block_group,
2618 struct btrfs_free_cluster *cluster)
2619 {
2620 struct btrfs_free_space_ctl *ctl;
2621 int ret;
2622
2623 /* first, get a safe pointer to the block group */
2624 spin_lock(&cluster->lock);
2625 if (!block_group) {
2626 block_group = cluster->block_group;
2627 if (!block_group) {
2628 spin_unlock(&cluster->lock);
2629 return 0;
2630 }
2631 } else if (cluster->block_group != block_group) {
2632 /* someone else has already freed it don't redo their work */
2633 spin_unlock(&cluster->lock);
2634 return 0;
2635 }
2636 atomic_inc(&block_group->count);
2637 spin_unlock(&cluster->lock);
2638
2639 ctl = block_group->free_space_ctl;
2640
2641 /* now return any extents the cluster had on it */
2642 spin_lock(&ctl->tree_lock);
2643 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2644 spin_unlock(&ctl->tree_lock);
2645
2646 /* finally drop our ref */
2647 btrfs_put_block_group(block_group);
2648 return ret;
2649 }
2650
2651 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2652 struct btrfs_free_cluster *cluster,
2653 struct btrfs_free_space *entry,
2654 u64 bytes, u64 min_start,
2655 u64 *max_extent_size)
2656 {
2657 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2658 int err;
2659 u64 search_start = cluster->window_start;
2660 u64 search_bytes = bytes;
2661 u64 ret = 0;
2662
2663 search_start = min_start;
2664 search_bytes = bytes;
2665
2666 err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2667 if (err) {
2668 if (search_bytes > *max_extent_size)
2669 *max_extent_size = search_bytes;
2670 return 0;
2671 }
2672
2673 ret = search_start;
2674 __bitmap_clear_bits(ctl, entry, ret, bytes);
2675
2676 return ret;
2677 }
2678
2679 /*
2680 * given a cluster, try to allocate 'bytes' from it, returns 0
2681 * if it couldn't find anything suitably large, or a logical disk offset
2682 * if things worked out
2683 */
2684 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2685 struct btrfs_free_cluster *cluster, u64 bytes,
2686 u64 min_start, u64 *max_extent_size)
2687 {
2688 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2689 struct btrfs_free_space *entry = NULL;
2690 struct rb_node *node;
2691 u64 ret = 0;
2692
2693 spin_lock(&cluster->lock);
2694 if (bytes > cluster->max_size)
2695 goto out;
2696
2697 if (cluster->block_group != block_group)
2698 goto out;
2699
2700 node = rb_first(&cluster->root);
2701 if (!node)
2702 goto out;
2703
2704 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2705 while (1) {
2706 if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2707 *max_extent_size = entry->bytes;
2708
2709 if (entry->bytes < bytes ||
2710 (!entry->bitmap && entry->offset < min_start)) {
2711 node = rb_next(&entry->offset_index);
2712 if (!node)
2713 break;
2714 entry = rb_entry(node, struct btrfs_free_space,
2715 offset_index);
2716 continue;
2717 }
2718
2719 if (entry->bitmap) {
2720 ret = btrfs_alloc_from_bitmap(block_group,
2721 cluster, entry, bytes,
2722 cluster->window_start,
2723 max_extent_size);
2724 if (ret == 0) {
2725 node = rb_next(&entry->offset_index);
2726 if (!node)
2727 break;
2728 entry = rb_entry(node, struct btrfs_free_space,
2729 offset_index);
2730 continue;
2731 }
2732 cluster->window_start += bytes;
2733 } else {
2734 ret = entry->offset;
2735
2736 entry->offset += bytes;
2737 entry->bytes -= bytes;
2738 }
2739
2740 if (entry->bytes == 0)
2741 rb_erase(&entry->offset_index, &cluster->root);
2742 break;
2743 }
2744 out:
2745 spin_unlock(&cluster->lock);
2746
2747 if (!ret)
2748 return 0;
2749
2750 spin_lock(&ctl->tree_lock);
2751
2752 ctl->free_space -= bytes;
2753 if (entry->bytes == 0) {
2754 ctl->free_extents--;
2755 if (entry->bitmap) {
2756 kfree(entry->bitmap);
2757 ctl->total_bitmaps--;
2758 ctl->op->recalc_thresholds(ctl);
2759 }
2760 kmem_cache_free(btrfs_free_space_cachep, entry);
2761 }
2762
2763 spin_unlock(&ctl->tree_lock);
2764
2765 return ret;
2766 }
2767
2768 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2769 struct btrfs_free_space *entry,
2770 struct btrfs_free_cluster *cluster,
2771 u64 offset, u64 bytes,
2772 u64 cont1_bytes, u64 min_bytes)
2773 {
2774 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2775 unsigned long next_zero;
2776 unsigned long i;
2777 unsigned long want_bits;
2778 unsigned long min_bits;
2779 unsigned long found_bits;
2780 unsigned long start = 0;
2781 unsigned long total_found = 0;
2782 int ret;
2783
2784 i = offset_to_bit(entry->offset, ctl->unit,
2785 max_t(u64, offset, entry->offset));
2786 want_bits = bytes_to_bits(bytes, ctl->unit);
2787 min_bits = bytes_to_bits(min_bytes, ctl->unit);
2788
2789 again:
2790 found_bits = 0;
2791 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2792 next_zero = find_next_zero_bit(entry->bitmap,
2793 BITS_PER_BITMAP, i);
2794 if (next_zero - i >= min_bits) {
2795 found_bits = next_zero - i;
2796 break;
2797 }
2798 i = next_zero;
2799 }
2800
2801 if (!found_bits)
2802 return -ENOSPC;
2803
2804 if (!total_found) {
2805 start = i;
2806 cluster->max_size = 0;
2807 }
2808
2809 total_found += found_bits;
2810
2811 if (cluster->max_size < found_bits * ctl->unit)
2812 cluster->max_size = found_bits * ctl->unit;
2813
2814 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2815 i = next_zero + 1;
2816 goto again;
2817 }
2818
2819 cluster->window_start = start * ctl->unit + entry->offset;
2820 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2821 ret = tree_insert_offset(&cluster->root, entry->offset,
2822 &entry->offset_index, 1);
2823 ASSERT(!ret); /* -EEXIST; Logic error */
2824
2825 trace_btrfs_setup_cluster(block_group, cluster,
2826 total_found * ctl->unit, 1);
2827 return 0;
2828 }
2829
2830 /*
2831 * This searches the block group for just extents to fill the cluster with.
2832 * Try to find a cluster with at least bytes total bytes, at least one
2833 * extent of cont1_bytes, and other clusters of at least min_bytes.
2834 */
2835 static noinline int
2836 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2837 struct btrfs_free_cluster *cluster,
2838 struct list_head *bitmaps, u64 offset, u64 bytes,
2839 u64 cont1_bytes, u64 min_bytes)
2840 {
2841 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2842 struct btrfs_free_space *first = NULL;
2843 struct btrfs_free_space *entry = NULL;
2844 struct btrfs_free_space *last;
2845 struct rb_node *node;
2846 u64 window_free;
2847 u64 max_extent;
2848 u64 total_size = 0;
2849
2850 entry = tree_search_offset(ctl, offset, 0, 1);
2851 if (!entry)
2852 return -ENOSPC;
2853
2854 /*
2855 * We don't want bitmaps, so just move along until we find a normal
2856 * extent entry.
2857 */
2858 while (entry->bitmap || entry->bytes < min_bytes) {
2859 if (entry->bitmap && list_empty(&entry->list))
2860 list_add_tail(&entry->list, bitmaps);
2861 node = rb_next(&entry->offset_index);
2862 if (!node)
2863 return -ENOSPC;
2864 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2865 }
2866
2867 window_free = entry->bytes;
2868 max_extent = entry->bytes;
2869 first = entry;
2870 last = entry;
2871
2872 for (node = rb_next(&entry->offset_index); node;
2873 node = rb_next(&entry->offset_index)) {
2874 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2875
2876 if (entry->bitmap) {
2877 if (list_empty(&entry->list))
2878 list_add_tail(&entry->list, bitmaps);
2879 continue;
2880 }
2881
2882 if (entry->bytes < min_bytes)
2883 continue;
2884
2885 last = entry;
2886 window_free += entry->bytes;
2887 if (entry->bytes > max_extent)
2888 max_extent = entry->bytes;
2889 }
2890
2891 if (window_free < bytes || max_extent < cont1_bytes)
2892 return -ENOSPC;
2893
2894 cluster->window_start = first->offset;
2895
2896 node = &first->offset_index;
2897
2898 /*
2899 * now we've found our entries, pull them out of the free space
2900 * cache and put them into the cluster rbtree
2901 */
2902 do {
2903 int ret;
2904
2905 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2906 node = rb_next(&entry->offset_index);
2907 if (entry->bitmap || entry->bytes < min_bytes)
2908 continue;
2909
2910 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2911 ret = tree_insert_offset(&cluster->root, entry->offset,
2912 &entry->offset_index, 0);
2913 total_size += entry->bytes;
2914 ASSERT(!ret); /* -EEXIST; Logic error */
2915 } while (node && entry != last);
2916
2917 cluster->max_size = max_extent;
2918 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2919 return 0;
2920 }
2921
2922 /*
2923 * This specifically looks for bitmaps that may work in the cluster, we assume
2924 * that we have already failed to find extents that will work.
2925 */
2926 static noinline int
2927 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2928 struct btrfs_free_cluster *cluster,
2929 struct list_head *bitmaps, u64 offset, u64 bytes,
2930 u64 cont1_bytes, u64 min_bytes)
2931 {
2932 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2933 struct btrfs_free_space *entry;
2934 int ret = -ENOSPC;
2935 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2936
2937 if (ctl->total_bitmaps == 0)
2938 return -ENOSPC;
2939
2940 /*
2941 * The bitmap that covers offset won't be in the list unless offset
2942 * is just its start offset.
2943 */
2944 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2945 if (entry->offset != bitmap_offset) {
2946 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2947 if (entry && list_empty(&entry->list))
2948 list_add(&entry->list, bitmaps);
2949 }
2950
2951 list_for_each_entry(entry, bitmaps, list) {
2952 if (entry->bytes < bytes)
2953 continue;
2954 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2955 bytes, cont1_bytes, min_bytes);
2956 if (!ret)
2957 return 0;
2958 }
2959
2960 /*
2961 * The bitmaps list has all the bitmaps that record free space
2962 * starting after offset, so no more search is required.
2963 */
2964 return -ENOSPC;
2965 }
2966
2967 /*
2968 * here we try to find a cluster of blocks in a block group. The goal
2969 * is to find at least bytes+empty_size.
2970 * We might not find them all in one contiguous area.
2971 *
2972 * returns zero and sets up cluster if things worked out, otherwise
2973 * it returns -enospc
2974 */
2975 int btrfs_find_space_cluster(struct btrfs_root *root,
2976 struct btrfs_block_group_cache *block_group,
2977 struct btrfs_free_cluster *cluster,
2978 u64 offset, u64 bytes, u64 empty_size)
2979 {
2980 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2981 struct btrfs_free_space *entry, *tmp;
2982 LIST_HEAD(bitmaps);
2983 u64 min_bytes;
2984 u64 cont1_bytes;
2985 int ret;
2986
2987 /*
2988 * Choose the minimum extent size we'll require for this
2989 * cluster. For SSD_SPREAD, don't allow any fragmentation.
2990 * For metadata, allow allocates with smaller extents. For
2991 * data, keep it dense.
2992 */
2993 if (btrfs_test_opt(root, SSD_SPREAD)) {
2994 cont1_bytes = min_bytes = bytes + empty_size;
2995 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2996 cont1_bytes = bytes;
2997 min_bytes = block_group->sectorsize;
2998 } else {
2999 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3000 min_bytes = block_group->sectorsize;
3001 }
3002
3003 spin_lock(&ctl->tree_lock);
3004
3005 /*
3006 * If we know we don't have enough space to make a cluster don't even
3007 * bother doing all the work to try and find one.
3008 */
3009 if (ctl->free_space < bytes) {
3010 spin_unlock(&ctl->tree_lock);
3011 return -ENOSPC;
3012 }
3013
3014 spin_lock(&cluster->lock);
3015
3016 /* someone already found a cluster, hooray */
3017 if (cluster->block_group) {
3018 ret = 0;
3019 goto out;
3020 }
3021
3022 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3023 min_bytes);
3024
3025 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3026 bytes + empty_size,
3027 cont1_bytes, min_bytes);
3028 if (ret)
3029 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3030 offset, bytes + empty_size,
3031 cont1_bytes, min_bytes);
3032
3033 /* Clear our temporary list */
3034 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3035 list_del_init(&entry->list);
3036
3037 if (!ret) {
3038 atomic_inc(&block_group->count);
3039 list_add_tail(&cluster->block_group_list,
3040 &block_group->cluster_list);
3041 cluster->block_group = block_group;
3042 } else {
3043 trace_btrfs_failed_cluster_setup(block_group);
3044 }
3045 out:
3046 spin_unlock(&cluster->lock);
3047 spin_unlock(&ctl->tree_lock);
3048
3049 return ret;
3050 }
3051
3052 /*
3053 * simple code to zero out a cluster
3054 */
3055 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3056 {
3057 spin_lock_init(&cluster->lock);
3058 spin_lock_init(&cluster->refill_lock);
3059 cluster->root = RB_ROOT;
3060 cluster->max_size = 0;
3061 INIT_LIST_HEAD(&cluster->block_group_list);
3062 cluster->block_group = NULL;
3063 }
3064
3065 static int do_trimming(struct btrfs_block_group_cache *block_group,
3066 u64 *total_trimmed, u64 start, u64 bytes,
3067 u64 reserved_start, u64 reserved_bytes,
3068 struct btrfs_trim_range *trim_entry)
3069 {
3070 struct btrfs_space_info *space_info = block_group->space_info;
3071 struct btrfs_fs_info *fs_info = block_group->fs_info;
3072 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3073 int ret;
3074 int update = 0;
3075 u64 trimmed = 0;
3076
3077 spin_lock(&space_info->lock);
3078 spin_lock(&block_group->lock);
3079 if (!block_group->ro) {
3080 block_group->reserved += reserved_bytes;
3081 space_info->bytes_reserved += reserved_bytes;
3082 update = 1;
3083 }
3084 spin_unlock(&block_group->lock);
3085 spin_unlock(&space_info->lock);
3086
3087 ret = btrfs_discard_extent(fs_info->extent_root,
3088 start, bytes, &trimmed);
3089 if (!ret)
3090 *total_trimmed += trimmed;
3091
3092 mutex_lock(&ctl->cache_writeout_mutex);
3093 btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3094 list_del(&trim_entry->list);
3095 mutex_unlock(&ctl->cache_writeout_mutex);
3096
3097 if (update) {
3098 spin_lock(&space_info->lock);
3099 spin_lock(&block_group->lock);
3100 if (block_group->ro)
3101 space_info->bytes_readonly += reserved_bytes;
3102 block_group->reserved -= reserved_bytes;
3103 space_info->bytes_reserved -= reserved_bytes;
3104 spin_unlock(&space_info->lock);
3105 spin_unlock(&block_group->lock);
3106 }
3107
3108 return ret;
3109 }
3110
3111 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3112 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3113 {
3114 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3115 struct btrfs_free_space *entry;
3116 struct rb_node *node;
3117 int ret = 0;
3118 u64 extent_start;
3119 u64 extent_bytes;
3120 u64 bytes;
3121
3122 while (start < end) {
3123 struct btrfs_trim_range trim_entry;
3124
3125 mutex_lock(&ctl->cache_writeout_mutex);
3126 spin_lock(&ctl->tree_lock);
3127
3128 if (ctl->free_space < minlen) {
3129 spin_unlock(&ctl->tree_lock);
3130 mutex_unlock(&ctl->cache_writeout_mutex);
3131 break;
3132 }
3133
3134 entry = tree_search_offset(ctl, start, 0, 1);
3135 if (!entry) {
3136 spin_unlock(&ctl->tree_lock);
3137 mutex_unlock(&ctl->cache_writeout_mutex);
3138 break;
3139 }
3140
3141 /* skip bitmaps */
3142 while (entry->bitmap) {
3143 node = rb_next(&entry->offset_index);
3144 if (!node) {
3145 spin_unlock(&ctl->tree_lock);
3146 mutex_unlock(&ctl->cache_writeout_mutex);
3147 goto out;
3148 }
3149 entry = rb_entry(node, struct btrfs_free_space,
3150 offset_index);
3151 }
3152
3153 if (entry->offset >= end) {
3154 spin_unlock(&ctl->tree_lock);
3155 mutex_unlock(&ctl->cache_writeout_mutex);
3156 break;
3157 }
3158
3159 extent_start = entry->offset;
3160 extent_bytes = entry->bytes;
3161 start = max(start, extent_start);
3162 bytes = min(extent_start + extent_bytes, end) - start;
3163 if (bytes < minlen) {
3164 spin_unlock(&ctl->tree_lock);
3165 mutex_unlock(&ctl->cache_writeout_mutex);
3166 goto next;
3167 }
3168
3169 unlink_free_space(ctl, entry);
3170 kmem_cache_free(btrfs_free_space_cachep, entry);
3171
3172 spin_unlock(&ctl->tree_lock);
3173 trim_entry.start = extent_start;
3174 trim_entry.bytes = extent_bytes;
3175 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3176 mutex_unlock(&ctl->cache_writeout_mutex);
3177
3178 ret = do_trimming(block_group, total_trimmed, start, bytes,
3179 extent_start, extent_bytes, &trim_entry);
3180 if (ret)
3181 break;
3182 next:
3183 start += bytes;
3184
3185 if (fatal_signal_pending(current)) {
3186 ret = -ERESTARTSYS;
3187 break;
3188 }
3189
3190 cond_resched();
3191 }
3192 out:
3193 return ret;
3194 }
3195
3196 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3197 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3198 {
3199 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3200 struct btrfs_free_space *entry;
3201 int ret = 0;
3202 int ret2;
3203 u64 bytes;
3204 u64 offset = offset_to_bitmap(ctl, start);
3205
3206 while (offset < end) {
3207 bool next_bitmap = false;
3208 struct btrfs_trim_range trim_entry;
3209
3210 mutex_lock(&ctl->cache_writeout_mutex);
3211 spin_lock(&ctl->tree_lock);
3212
3213 if (ctl->free_space < minlen) {
3214 spin_unlock(&ctl->tree_lock);
3215 mutex_unlock(&ctl->cache_writeout_mutex);
3216 break;
3217 }
3218
3219 entry = tree_search_offset(ctl, offset, 1, 0);
3220 if (!entry) {
3221 spin_unlock(&ctl->tree_lock);
3222 mutex_unlock(&ctl->cache_writeout_mutex);
3223 next_bitmap = true;
3224 goto next;
3225 }
3226
3227 bytes = minlen;
3228 ret2 = search_bitmap(ctl, entry, &start, &bytes);
3229 if (ret2 || start >= end) {
3230 spin_unlock(&ctl->tree_lock);
3231 mutex_unlock(&ctl->cache_writeout_mutex);
3232 next_bitmap = true;
3233 goto next;
3234 }
3235
3236 bytes = min(bytes, end - start);
3237 if (bytes < minlen) {
3238 spin_unlock(&ctl->tree_lock);
3239 mutex_unlock(&ctl->cache_writeout_mutex);
3240 goto next;
3241 }
3242
3243 bitmap_clear_bits(ctl, entry, start, bytes);
3244 if (entry->bytes == 0)
3245 free_bitmap(ctl, entry);
3246
3247 spin_unlock(&ctl->tree_lock);
3248 trim_entry.start = start;
3249 trim_entry.bytes = bytes;
3250 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3251 mutex_unlock(&ctl->cache_writeout_mutex);
3252
3253 ret = do_trimming(block_group, total_trimmed, start, bytes,
3254 start, bytes, &trim_entry);
3255 if (ret)
3256 break;
3257 next:
3258 if (next_bitmap) {
3259 offset += BITS_PER_BITMAP * ctl->unit;
3260 } else {
3261 start += bytes;
3262 if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3263 offset += BITS_PER_BITMAP * ctl->unit;
3264 }
3265
3266 if (fatal_signal_pending(current)) {
3267 ret = -ERESTARTSYS;
3268 break;
3269 }
3270
3271 cond_resched();
3272 }
3273
3274 return ret;
3275 }
3276
3277 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3278 u64 *trimmed, u64 start, u64 end, u64 minlen)
3279 {
3280 int ret;
3281
3282 *trimmed = 0;
3283
3284 spin_lock(&block_group->lock);
3285 if (block_group->removed) {
3286 spin_unlock(&block_group->lock);
3287 return 0;
3288 }
3289 atomic_inc(&block_group->trimming);
3290 spin_unlock(&block_group->lock);
3291
3292 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3293 if (ret)
3294 goto out;
3295
3296 ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3297 out:
3298 spin_lock(&block_group->lock);
3299 if (atomic_dec_and_test(&block_group->trimming) &&
3300 block_group->removed) {
3301 struct extent_map_tree *em_tree;
3302 struct extent_map *em;
3303
3304 spin_unlock(&block_group->lock);
3305
3306 lock_chunks(block_group->fs_info->chunk_root);
3307 em_tree = &block_group->fs_info->mapping_tree.map_tree;
3308 write_lock(&em_tree->lock);
3309 em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3310 1);
3311 BUG_ON(!em); /* logic error, can't happen */
3312 /*
3313 * remove_extent_mapping() will delete us from the pinned_chunks
3314 * list, which is protected by the chunk mutex.
3315 */
3316 remove_extent_mapping(em_tree, em);
3317 write_unlock(&em_tree->lock);
3318 unlock_chunks(block_group->fs_info->chunk_root);
3319
3320 /* once for us and once for the tree */
3321 free_extent_map(em);
3322 free_extent_map(em);
3323
3324 /*
3325 * We've left one free space entry and other tasks trimming
3326 * this block group have left 1 entry each one. Free them.
3327 */
3328 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
3329 } else {
3330 spin_unlock(&block_group->lock);
3331 }
3332
3333 return ret;
3334 }
3335
3336 /*
3337 * Find the left-most item in the cache tree, and then return the
3338 * smallest inode number in the item.
3339 *
3340 * Note: the returned inode number may not be the smallest one in
3341 * the tree, if the left-most item is a bitmap.
3342 */
3343 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3344 {
3345 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3346 struct btrfs_free_space *entry = NULL;
3347 u64 ino = 0;
3348
3349 spin_lock(&ctl->tree_lock);
3350
3351 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3352 goto out;
3353
3354 entry = rb_entry(rb_first(&ctl->free_space_offset),
3355 struct btrfs_free_space, offset_index);
3356
3357 if (!entry->bitmap) {
3358 ino = entry->offset;
3359
3360 unlink_free_space(ctl, entry);
3361 entry->offset++;
3362 entry->bytes--;
3363 if (!entry->bytes)
3364 kmem_cache_free(btrfs_free_space_cachep, entry);
3365 else
3366 link_free_space(ctl, entry);
3367 } else {
3368 u64 offset = 0;
3369 u64 count = 1;
3370 int ret;
3371
3372 ret = search_bitmap(ctl, entry, &offset, &count);
3373 /* Logic error; Should be empty if it can't find anything */
3374 ASSERT(!ret);
3375
3376 ino = offset;
3377 bitmap_clear_bits(ctl, entry, offset, 1);
3378 if (entry->bytes == 0)
3379 free_bitmap(ctl, entry);
3380 }
3381 out:
3382 spin_unlock(&ctl->tree_lock);
3383
3384 return ino;
3385 }
3386
3387 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3388 struct btrfs_path *path)
3389 {
3390 struct inode *inode = NULL;
3391
3392 spin_lock(&root->ino_cache_lock);
3393 if (root->ino_cache_inode)
3394 inode = igrab(root->ino_cache_inode);
3395 spin_unlock(&root->ino_cache_lock);
3396 if (inode)
3397 return inode;
3398
3399 inode = __lookup_free_space_inode(root, path, 0);
3400 if (IS_ERR(inode))
3401 return inode;
3402
3403 spin_lock(&root->ino_cache_lock);
3404 if (!btrfs_fs_closing(root->fs_info))
3405 root->ino_cache_inode = igrab(inode);
3406 spin_unlock(&root->ino_cache_lock);
3407
3408 return inode;
3409 }
3410
3411 int create_free_ino_inode(struct btrfs_root *root,
3412 struct btrfs_trans_handle *trans,
3413 struct btrfs_path *path)
3414 {
3415 return __create_free_space_inode(root, trans, path,
3416 BTRFS_FREE_INO_OBJECTID, 0);
3417 }
3418
3419 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3420 {
3421 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3422 struct btrfs_path *path;
3423 struct inode *inode;
3424 int ret = 0;
3425 u64 root_gen = btrfs_root_generation(&root->root_item);
3426
3427 if (!btrfs_test_opt(root, INODE_MAP_CACHE))
3428 return 0;
3429
3430 /*
3431 * If we're unmounting then just return, since this does a search on the
3432 * normal root and not the commit root and we could deadlock.
3433 */
3434 if (btrfs_fs_closing(fs_info))
3435 return 0;
3436
3437 path = btrfs_alloc_path();
3438 if (!path)
3439 return 0;
3440
3441 inode = lookup_free_ino_inode(root, path);
3442 if (IS_ERR(inode))
3443 goto out;
3444
3445 if (root_gen != BTRFS_I(inode)->generation)
3446 goto out_put;
3447
3448 ret = __load_free_space_cache(root, inode, ctl, path, 0);
3449
3450 if (ret < 0)
3451 btrfs_err(fs_info,
3452 "failed to load free ino cache for root %llu",
3453 root->root_key.objectid);
3454 out_put:
3455 iput(inode);
3456 out:
3457 btrfs_free_path(path);
3458 return ret;
3459 }
3460
3461 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3462 struct btrfs_trans_handle *trans,
3463 struct btrfs_path *path,
3464 struct inode *inode)
3465 {
3466 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3467 int ret;
3468 struct btrfs_io_ctl io_ctl;
3469 bool release_metadata = true;
3470
3471 if (!btrfs_test_opt(root, INODE_MAP_CACHE))
3472 return 0;
3473
3474 memset(&io_ctl, 0, sizeof(io_ctl));
3475 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl,
3476 trans, path, 0);
3477 if (!ret) {
3478 /*
3479 * At this point writepages() didn't error out, so our metadata
3480 * reservation is released when the writeback finishes, at
3481 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3482 * with or without an error.
3483 */
3484 release_metadata = false;
3485 ret = btrfs_wait_cache_io(root, trans, NULL, &io_ctl, path, 0);
3486 }
3487
3488 if (ret) {
3489 if (release_metadata)
3490 btrfs_delalloc_release_metadata(inode, inode->i_size);
3491 #ifdef DEBUG
3492 btrfs_err(root->fs_info,
3493 "failed to write free ino cache for root %llu",
3494 root->root_key.objectid);
3495 #endif
3496 }
3497
3498 return ret;
3499 }
3500
3501 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3502 /*
3503 * Use this if you need to make a bitmap or extent entry specifically, it
3504 * doesn't do any of the merging that add_free_space does, this acts a lot like
3505 * how the free space cache loading stuff works, so you can get really weird
3506 * configurations.
3507 */
3508 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3509 u64 offset, u64 bytes, bool bitmap)
3510 {
3511 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3512 struct btrfs_free_space *info = NULL, *bitmap_info;
3513 void *map = NULL;
3514 u64 bytes_added;
3515 int ret;
3516
3517 again:
3518 if (!info) {
3519 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3520 if (!info)
3521 return -ENOMEM;
3522 }
3523
3524 if (!bitmap) {
3525 spin_lock(&ctl->tree_lock);
3526 info->offset = offset;
3527 info->bytes = bytes;
3528 ret = link_free_space(ctl, info);
3529 spin_unlock(&ctl->tree_lock);
3530 if (ret)
3531 kmem_cache_free(btrfs_free_space_cachep, info);
3532 return ret;
3533 }
3534
3535 if (!map) {
3536 map = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
3537 if (!map) {
3538 kmem_cache_free(btrfs_free_space_cachep, info);
3539 return -ENOMEM;
3540 }
3541 }
3542
3543 spin_lock(&ctl->tree_lock);
3544 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3545 1, 0);
3546 if (!bitmap_info) {
3547 info->bitmap = map;
3548 map = NULL;
3549 add_new_bitmap(ctl, info, offset);
3550 bitmap_info = info;
3551 info = NULL;
3552 }
3553
3554 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3555 bytes -= bytes_added;
3556 offset += bytes_added;
3557 spin_unlock(&ctl->tree_lock);
3558
3559 if (bytes)
3560 goto again;
3561
3562 if (info)
3563 kmem_cache_free(btrfs_free_space_cachep, info);
3564 if (map)
3565 kfree(map);
3566 return 0;
3567 }
3568
3569 /*
3570 * Checks to see if the given range is in the free space cache. This is really
3571 * just used to check the absence of space, so if there is free space in the
3572 * range at all we will return 1.
3573 */
3574 int test_check_exists(struct btrfs_block_group_cache *cache,
3575 u64 offset, u64 bytes)
3576 {
3577 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3578 struct btrfs_free_space *info;
3579 int ret = 0;
3580
3581 spin_lock(&ctl->tree_lock);
3582 info = tree_search_offset(ctl, offset, 0, 0);
3583 if (!info) {
3584 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3585 1, 0);
3586 if (!info)
3587 goto out;
3588 }
3589
3590 have_info:
3591 if (info->bitmap) {
3592 u64 bit_off, bit_bytes;
3593 struct rb_node *n;
3594 struct btrfs_free_space *tmp;
3595
3596 bit_off = offset;
3597 bit_bytes = ctl->unit;
3598 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes);
3599 if (!ret) {
3600 if (bit_off == offset) {
3601 ret = 1;
3602 goto out;
3603 } else if (bit_off > offset &&
3604 offset + bytes > bit_off) {
3605 ret = 1;
3606 goto out;
3607 }
3608 }
3609
3610 n = rb_prev(&info->offset_index);
3611 while (n) {
3612 tmp = rb_entry(n, struct btrfs_free_space,
3613 offset_index);
3614 if (tmp->offset + tmp->bytes < offset)
3615 break;
3616 if (offset + bytes < tmp->offset) {
3617 n = rb_prev(&info->offset_index);
3618 continue;
3619 }
3620 info = tmp;
3621 goto have_info;
3622 }
3623
3624 n = rb_next(&info->offset_index);
3625 while (n) {
3626 tmp = rb_entry(n, struct btrfs_free_space,
3627 offset_index);
3628 if (offset + bytes < tmp->offset)
3629 break;
3630 if (tmp->offset + tmp->bytes < offset) {
3631 n = rb_next(&info->offset_index);
3632 continue;
3633 }
3634 info = tmp;
3635 goto have_info;
3636 }
3637
3638 ret = 0;
3639 goto out;
3640 }
3641
3642 if (info->offset == offset) {
3643 ret = 1;
3644 goto out;
3645 }
3646
3647 if (offset > info->offset && offset < info->offset + info->bytes)
3648 ret = 1;
3649 out:
3650 spin_unlock(&ctl->tree_lock);
3651 return ret;
3652 }
3653 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
This page took 0.102252 seconds and 6 git commands to generate.