Btrfs: fix wrong return value of btrfs_truncate_page()
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include "compat.h"
43 #include "ctree.h"
44 #include "disk-io.h"
45 #include "transaction.h"
46 #include "btrfs_inode.h"
47 #include "ioctl.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "volumes.h"
53 #include "compression.h"
54 #include "locking.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
57
58 struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61 };
62
63 static const struct inode_operations btrfs_dir_inode_operations;
64 static const struct inode_operations btrfs_symlink_inode_operations;
65 static const struct inode_operations btrfs_dir_ro_inode_operations;
66 static const struct inode_operations btrfs_special_inode_operations;
67 static const struct inode_operations btrfs_file_inode_operations;
68 static const struct address_space_operations btrfs_aops;
69 static const struct address_space_operations btrfs_symlink_aops;
70 static const struct file_operations btrfs_dir_file_operations;
71 static struct extent_io_ops btrfs_extent_io_ops;
72
73 static struct kmem_cache *btrfs_inode_cachep;
74 static struct kmem_cache *btrfs_delalloc_work_cachep;
75 struct kmem_cache *btrfs_trans_handle_cachep;
76 struct kmem_cache *btrfs_transaction_cachep;
77 struct kmem_cache *btrfs_path_cachep;
78 struct kmem_cache *btrfs_free_space_cachep;
79
80 #define S_SHIFT 12
81 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
82 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
83 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
84 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
85 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
86 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
87 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
88 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
89 };
90
91 static int btrfs_setsize(struct inode *inode, loff_t newsize);
92 static int btrfs_truncate(struct inode *inode);
93 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
94 static noinline int cow_file_range(struct inode *inode,
95 struct page *locked_page,
96 u64 start, u64 end, int *page_started,
97 unsigned long *nr_written, int unlock);
98
99 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
100 struct inode *inode, struct inode *dir,
101 const struct qstr *qstr)
102 {
103 int err;
104
105 err = btrfs_init_acl(trans, inode, dir);
106 if (!err)
107 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
108 return err;
109 }
110
111 /*
112 * this does all the hard work for inserting an inline extent into
113 * the btree. The caller should have done a btrfs_drop_extents so that
114 * no overlapping inline items exist in the btree
115 */
116 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
117 struct btrfs_root *root, struct inode *inode,
118 u64 start, size_t size, size_t compressed_size,
119 int compress_type,
120 struct page **compressed_pages)
121 {
122 struct btrfs_key key;
123 struct btrfs_path *path;
124 struct extent_buffer *leaf;
125 struct page *page = NULL;
126 char *kaddr;
127 unsigned long ptr;
128 struct btrfs_file_extent_item *ei;
129 int err = 0;
130 int ret;
131 size_t cur_size = size;
132 size_t datasize;
133 unsigned long offset;
134
135 if (compressed_size && compressed_pages)
136 cur_size = compressed_size;
137
138 path = btrfs_alloc_path();
139 if (!path)
140 return -ENOMEM;
141
142 path->leave_spinning = 1;
143
144 key.objectid = btrfs_ino(inode);
145 key.offset = start;
146 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
147 datasize = btrfs_file_extent_calc_inline_size(cur_size);
148
149 inode_add_bytes(inode, size);
150 ret = btrfs_insert_empty_item(trans, root, path, &key,
151 datasize);
152 if (ret) {
153 err = ret;
154 goto fail;
155 }
156 leaf = path->nodes[0];
157 ei = btrfs_item_ptr(leaf, path->slots[0],
158 struct btrfs_file_extent_item);
159 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
160 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
161 btrfs_set_file_extent_encryption(leaf, ei, 0);
162 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
163 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
164 ptr = btrfs_file_extent_inline_start(ei);
165
166 if (compress_type != BTRFS_COMPRESS_NONE) {
167 struct page *cpage;
168 int i = 0;
169 while (compressed_size > 0) {
170 cpage = compressed_pages[i];
171 cur_size = min_t(unsigned long, compressed_size,
172 PAGE_CACHE_SIZE);
173
174 kaddr = kmap_atomic(cpage);
175 write_extent_buffer(leaf, kaddr, ptr, cur_size);
176 kunmap_atomic(kaddr);
177
178 i++;
179 ptr += cur_size;
180 compressed_size -= cur_size;
181 }
182 btrfs_set_file_extent_compression(leaf, ei,
183 compress_type);
184 } else {
185 page = find_get_page(inode->i_mapping,
186 start >> PAGE_CACHE_SHIFT);
187 btrfs_set_file_extent_compression(leaf, ei, 0);
188 kaddr = kmap_atomic(page);
189 offset = start & (PAGE_CACHE_SIZE - 1);
190 write_extent_buffer(leaf, kaddr + offset, ptr, size);
191 kunmap_atomic(kaddr);
192 page_cache_release(page);
193 }
194 btrfs_mark_buffer_dirty(leaf);
195 btrfs_free_path(path);
196
197 /*
198 * we're an inline extent, so nobody can
199 * extend the file past i_size without locking
200 * a page we already have locked.
201 *
202 * We must do any isize and inode updates
203 * before we unlock the pages. Otherwise we
204 * could end up racing with unlink.
205 */
206 BTRFS_I(inode)->disk_i_size = inode->i_size;
207 ret = btrfs_update_inode(trans, root, inode);
208
209 return ret;
210 fail:
211 btrfs_free_path(path);
212 return err;
213 }
214
215
216 /*
217 * conditionally insert an inline extent into the file. This
218 * does the checks required to make sure the data is small enough
219 * to fit as an inline extent.
220 */
221 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
222 struct btrfs_root *root,
223 struct inode *inode, u64 start, u64 end,
224 size_t compressed_size, int compress_type,
225 struct page **compressed_pages)
226 {
227 u64 isize = i_size_read(inode);
228 u64 actual_end = min(end + 1, isize);
229 u64 inline_len = actual_end - start;
230 u64 aligned_end = (end + root->sectorsize - 1) &
231 ~((u64)root->sectorsize - 1);
232 u64 data_len = inline_len;
233 int ret;
234
235 if (compressed_size)
236 data_len = compressed_size;
237
238 if (start > 0 ||
239 actual_end >= PAGE_CACHE_SIZE ||
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 (!compressed_size &&
242 (actual_end & (root->sectorsize - 1)) == 0) ||
243 end + 1 < isize ||
244 data_len > root->fs_info->max_inline) {
245 return 1;
246 }
247
248 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
249 if (ret)
250 return ret;
251
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
256 compress_type, compressed_pages);
257 if (ret && ret != -ENOSPC) {
258 btrfs_abort_transaction(trans, root, ret);
259 return ret;
260 } else if (ret == -ENOSPC) {
261 return 1;
262 }
263
264 btrfs_delalloc_release_metadata(inode, end + 1 - start);
265 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
266 return 0;
267 }
268
269 struct async_extent {
270 u64 start;
271 u64 ram_size;
272 u64 compressed_size;
273 struct page **pages;
274 unsigned long nr_pages;
275 int compress_type;
276 struct list_head list;
277 };
278
279 struct async_cow {
280 struct inode *inode;
281 struct btrfs_root *root;
282 struct page *locked_page;
283 u64 start;
284 u64 end;
285 struct list_head extents;
286 struct btrfs_work work;
287 };
288
289 static noinline int add_async_extent(struct async_cow *cow,
290 u64 start, u64 ram_size,
291 u64 compressed_size,
292 struct page **pages,
293 unsigned long nr_pages,
294 int compress_type)
295 {
296 struct async_extent *async_extent;
297
298 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
299 BUG_ON(!async_extent); /* -ENOMEM */
300 async_extent->start = start;
301 async_extent->ram_size = ram_size;
302 async_extent->compressed_size = compressed_size;
303 async_extent->pages = pages;
304 async_extent->nr_pages = nr_pages;
305 async_extent->compress_type = compress_type;
306 list_add_tail(&async_extent->list, &cow->extents);
307 return 0;
308 }
309
310 /*
311 * we create compressed extents in two phases. The first
312 * phase compresses a range of pages that have already been
313 * locked (both pages and state bits are locked).
314 *
315 * This is done inside an ordered work queue, and the compression
316 * is spread across many cpus. The actual IO submission is step
317 * two, and the ordered work queue takes care of making sure that
318 * happens in the same order things were put onto the queue by
319 * writepages and friends.
320 *
321 * If this code finds it can't get good compression, it puts an
322 * entry onto the work queue to write the uncompressed bytes. This
323 * makes sure that both compressed inodes and uncompressed inodes
324 * are written in the same order that the flusher thread sent them
325 * down.
326 */
327 static noinline int compress_file_range(struct inode *inode,
328 struct page *locked_page,
329 u64 start, u64 end,
330 struct async_cow *async_cow,
331 int *num_added)
332 {
333 struct btrfs_root *root = BTRFS_I(inode)->root;
334 struct btrfs_trans_handle *trans;
335 u64 num_bytes;
336 u64 blocksize = root->sectorsize;
337 u64 actual_end;
338 u64 isize = i_size_read(inode);
339 int ret = 0;
340 struct page **pages = NULL;
341 unsigned long nr_pages;
342 unsigned long nr_pages_ret = 0;
343 unsigned long total_compressed = 0;
344 unsigned long total_in = 0;
345 unsigned long max_compressed = 128 * 1024;
346 unsigned long max_uncompressed = 128 * 1024;
347 int i;
348 int will_compress;
349 int compress_type = root->fs_info->compress_type;
350
351 /* if this is a small write inside eof, kick off a defrag */
352 if ((end - start + 1) < 16 * 1024 &&
353 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
354 btrfs_add_inode_defrag(NULL, inode);
355
356 actual_end = min_t(u64, isize, end + 1);
357 again:
358 will_compress = 0;
359 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
360 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
361
362 /*
363 * we don't want to send crud past the end of i_size through
364 * compression, that's just a waste of CPU time. So, if the
365 * end of the file is before the start of our current
366 * requested range of bytes, we bail out to the uncompressed
367 * cleanup code that can deal with all of this.
368 *
369 * It isn't really the fastest way to fix things, but this is a
370 * very uncommon corner.
371 */
372 if (actual_end <= start)
373 goto cleanup_and_bail_uncompressed;
374
375 total_compressed = actual_end - start;
376
377 /* we want to make sure that amount of ram required to uncompress
378 * an extent is reasonable, so we limit the total size in ram
379 * of a compressed extent to 128k. This is a crucial number
380 * because it also controls how easily we can spread reads across
381 * cpus for decompression.
382 *
383 * We also want to make sure the amount of IO required to do
384 * a random read is reasonably small, so we limit the size of
385 * a compressed extent to 128k.
386 */
387 total_compressed = min(total_compressed, max_uncompressed);
388 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
389 num_bytes = max(blocksize, num_bytes);
390 total_in = 0;
391 ret = 0;
392
393 /*
394 * we do compression for mount -o compress and when the
395 * inode has not been flagged as nocompress. This flag can
396 * change at any time if we discover bad compression ratios.
397 */
398 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
399 (btrfs_test_opt(root, COMPRESS) ||
400 (BTRFS_I(inode)->force_compress) ||
401 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
402 WARN_ON(pages);
403 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
404 if (!pages) {
405 /* just bail out to the uncompressed code */
406 goto cont;
407 }
408
409 if (BTRFS_I(inode)->force_compress)
410 compress_type = BTRFS_I(inode)->force_compress;
411
412 ret = btrfs_compress_pages(compress_type,
413 inode->i_mapping, start,
414 total_compressed, pages,
415 nr_pages, &nr_pages_ret,
416 &total_in,
417 &total_compressed,
418 max_compressed);
419
420 if (!ret) {
421 unsigned long offset = total_compressed &
422 (PAGE_CACHE_SIZE - 1);
423 struct page *page = pages[nr_pages_ret - 1];
424 char *kaddr;
425
426 /* zero the tail end of the last page, we might be
427 * sending it down to disk
428 */
429 if (offset) {
430 kaddr = kmap_atomic(page);
431 memset(kaddr + offset, 0,
432 PAGE_CACHE_SIZE - offset);
433 kunmap_atomic(kaddr);
434 }
435 will_compress = 1;
436 }
437 }
438 cont:
439 if (start == 0) {
440 trans = btrfs_join_transaction(root);
441 if (IS_ERR(trans)) {
442 ret = PTR_ERR(trans);
443 trans = NULL;
444 goto cleanup_and_out;
445 }
446 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
447
448 /* lets try to make an inline extent */
449 if (ret || total_in < (actual_end - start)) {
450 /* we didn't compress the entire range, try
451 * to make an uncompressed inline extent.
452 */
453 ret = cow_file_range_inline(trans, root, inode,
454 start, end, 0, 0, NULL);
455 } else {
456 /* try making a compressed inline extent */
457 ret = cow_file_range_inline(trans, root, inode,
458 start, end,
459 total_compressed,
460 compress_type, pages);
461 }
462 if (ret <= 0) {
463 /*
464 * inline extent creation worked or returned error,
465 * we don't need to create any more async work items.
466 * Unlock and free up our temp pages.
467 */
468 extent_clear_unlock_delalloc(inode,
469 &BTRFS_I(inode)->io_tree,
470 start, end, NULL,
471 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
472 EXTENT_CLEAR_DELALLOC |
473 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
474
475 btrfs_end_transaction(trans, root);
476 goto free_pages_out;
477 }
478 btrfs_end_transaction(trans, root);
479 }
480
481 if (will_compress) {
482 /*
483 * we aren't doing an inline extent round the compressed size
484 * up to a block size boundary so the allocator does sane
485 * things
486 */
487 total_compressed = (total_compressed + blocksize - 1) &
488 ~(blocksize - 1);
489
490 /*
491 * one last check to make sure the compression is really a
492 * win, compare the page count read with the blocks on disk
493 */
494 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
495 ~(PAGE_CACHE_SIZE - 1);
496 if (total_compressed >= total_in) {
497 will_compress = 0;
498 } else {
499 num_bytes = total_in;
500 }
501 }
502 if (!will_compress && pages) {
503 /*
504 * the compression code ran but failed to make things smaller,
505 * free any pages it allocated and our page pointer array
506 */
507 for (i = 0; i < nr_pages_ret; i++) {
508 WARN_ON(pages[i]->mapping);
509 page_cache_release(pages[i]);
510 }
511 kfree(pages);
512 pages = NULL;
513 total_compressed = 0;
514 nr_pages_ret = 0;
515
516 /* flag the file so we don't compress in the future */
517 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
518 !(BTRFS_I(inode)->force_compress)) {
519 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
520 }
521 }
522 if (will_compress) {
523 *num_added += 1;
524
525 /* the async work queues will take care of doing actual
526 * allocation on disk for these compressed pages,
527 * and will submit them to the elevator.
528 */
529 add_async_extent(async_cow, start, num_bytes,
530 total_compressed, pages, nr_pages_ret,
531 compress_type);
532
533 if (start + num_bytes < end) {
534 start += num_bytes;
535 pages = NULL;
536 cond_resched();
537 goto again;
538 }
539 } else {
540 cleanup_and_bail_uncompressed:
541 /*
542 * No compression, but we still need to write the pages in
543 * the file we've been given so far. redirty the locked
544 * page if it corresponds to our extent and set things up
545 * for the async work queue to run cow_file_range to do
546 * the normal delalloc dance
547 */
548 if (page_offset(locked_page) >= start &&
549 page_offset(locked_page) <= end) {
550 __set_page_dirty_nobuffers(locked_page);
551 /* unlocked later on in the async handlers */
552 }
553 add_async_extent(async_cow, start, end - start + 1,
554 0, NULL, 0, BTRFS_COMPRESS_NONE);
555 *num_added += 1;
556 }
557
558 out:
559 return ret;
560
561 free_pages_out:
562 for (i = 0; i < nr_pages_ret; i++) {
563 WARN_ON(pages[i]->mapping);
564 page_cache_release(pages[i]);
565 }
566 kfree(pages);
567
568 goto out;
569
570 cleanup_and_out:
571 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
572 start, end, NULL,
573 EXTENT_CLEAR_UNLOCK_PAGE |
574 EXTENT_CLEAR_DIRTY |
575 EXTENT_CLEAR_DELALLOC |
576 EXTENT_SET_WRITEBACK |
577 EXTENT_END_WRITEBACK);
578 if (!trans || IS_ERR(trans))
579 btrfs_error(root->fs_info, ret, "Failed to join transaction");
580 else
581 btrfs_abort_transaction(trans, root, ret);
582 goto free_pages_out;
583 }
584
585 /*
586 * phase two of compressed writeback. This is the ordered portion
587 * of the code, which only gets called in the order the work was
588 * queued. We walk all the async extents created by compress_file_range
589 * and send them down to the disk.
590 */
591 static noinline int submit_compressed_extents(struct inode *inode,
592 struct async_cow *async_cow)
593 {
594 struct async_extent *async_extent;
595 u64 alloc_hint = 0;
596 struct btrfs_trans_handle *trans;
597 struct btrfs_key ins;
598 struct extent_map *em;
599 struct btrfs_root *root = BTRFS_I(inode)->root;
600 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
601 struct extent_io_tree *io_tree;
602 int ret = 0;
603
604 if (list_empty(&async_cow->extents))
605 return 0;
606
607
608 while (!list_empty(&async_cow->extents)) {
609 async_extent = list_entry(async_cow->extents.next,
610 struct async_extent, list);
611 list_del(&async_extent->list);
612
613 io_tree = &BTRFS_I(inode)->io_tree;
614
615 retry:
616 /* did the compression code fall back to uncompressed IO? */
617 if (!async_extent->pages) {
618 int page_started = 0;
619 unsigned long nr_written = 0;
620
621 lock_extent(io_tree, async_extent->start,
622 async_extent->start +
623 async_extent->ram_size - 1);
624
625 /* allocate blocks */
626 ret = cow_file_range(inode, async_cow->locked_page,
627 async_extent->start,
628 async_extent->start +
629 async_extent->ram_size - 1,
630 &page_started, &nr_written, 0);
631
632 /* JDM XXX */
633
634 /*
635 * if page_started, cow_file_range inserted an
636 * inline extent and took care of all the unlocking
637 * and IO for us. Otherwise, we need to submit
638 * all those pages down to the drive.
639 */
640 if (!page_started && !ret)
641 extent_write_locked_range(io_tree,
642 inode, async_extent->start,
643 async_extent->start +
644 async_extent->ram_size - 1,
645 btrfs_get_extent,
646 WB_SYNC_ALL);
647 kfree(async_extent);
648 cond_resched();
649 continue;
650 }
651
652 lock_extent(io_tree, async_extent->start,
653 async_extent->start + async_extent->ram_size - 1);
654
655 trans = btrfs_join_transaction(root);
656 if (IS_ERR(trans)) {
657 ret = PTR_ERR(trans);
658 } else {
659 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
660 ret = btrfs_reserve_extent(trans, root,
661 async_extent->compressed_size,
662 async_extent->compressed_size,
663 0, alloc_hint, &ins, 1);
664 if (ret && ret != -ENOSPC)
665 btrfs_abort_transaction(trans, root, ret);
666 btrfs_end_transaction(trans, root);
667 }
668
669 if (ret) {
670 int i;
671 for (i = 0; i < async_extent->nr_pages; i++) {
672 WARN_ON(async_extent->pages[i]->mapping);
673 page_cache_release(async_extent->pages[i]);
674 }
675 kfree(async_extent->pages);
676 async_extent->nr_pages = 0;
677 async_extent->pages = NULL;
678 unlock_extent(io_tree, async_extent->start,
679 async_extent->start +
680 async_extent->ram_size - 1);
681 if (ret == -ENOSPC)
682 goto retry;
683 goto out_free; /* JDM: Requeue? */
684 }
685
686 /*
687 * here we're doing allocation and writeback of the
688 * compressed pages
689 */
690 btrfs_drop_extent_cache(inode, async_extent->start,
691 async_extent->start +
692 async_extent->ram_size - 1, 0);
693
694 em = alloc_extent_map();
695 BUG_ON(!em); /* -ENOMEM */
696 em->start = async_extent->start;
697 em->len = async_extent->ram_size;
698 em->orig_start = em->start;
699
700 em->block_start = ins.objectid;
701 em->block_len = ins.offset;
702 em->bdev = root->fs_info->fs_devices->latest_bdev;
703 em->compress_type = async_extent->compress_type;
704 set_bit(EXTENT_FLAG_PINNED, &em->flags);
705 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
706
707 while (1) {
708 write_lock(&em_tree->lock);
709 ret = add_extent_mapping(em_tree, em);
710 write_unlock(&em_tree->lock);
711 if (ret != -EEXIST) {
712 free_extent_map(em);
713 break;
714 }
715 btrfs_drop_extent_cache(inode, async_extent->start,
716 async_extent->start +
717 async_extent->ram_size - 1, 0);
718 }
719
720 ret = btrfs_add_ordered_extent_compress(inode,
721 async_extent->start,
722 ins.objectid,
723 async_extent->ram_size,
724 ins.offset,
725 BTRFS_ORDERED_COMPRESSED,
726 async_extent->compress_type);
727 BUG_ON(ret); /* -ENOMEM */
728
729 /*
730 * clear dirty, set writeback and unlock the pages.
731 */
732 extent_clear_unlock_delalloc(inode,
733 &BTRFS_I(inode)->io_tree,
734 async_extent->start,
735 async_extent->start +
736 async_extent->ram_size - 1,
737 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
738 EXTENT_CLEAR_UNLOCK |
739 EXTENT_CLEAR_DELALLOC |
740 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
741
742 ret = btrfs_submit_compressed_write(inode,
743 async_extent->start,
744 async_extent->ram_size,
745 ins.objectid,
746 ins.offset, async_extent->pages,
747 async_extent->nr_pages);
748
749 BUG_ON(ret); /* -ENOMEM */
750 alloc_hint = ins.objectid + ins.offset;
751 kfree(async_extent);
752 cond_resched();
753 }
754 ret = 0;
755 out:
756 return ret;
757 out_free:
758 kfree(async_extent);
759 goto out;
760 }
761
762 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
763 u64 num_bytes)
764 {
765 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
766 struct extent_map *em;
767 u64 alloc_hint = 0;
768
769 read_lock(&em_tree->lock);
770 em = search_extent_mapping(em_tree, start, num_bytes);
771 if (em) {
772 /*
773 * if block start isn't an actual block number then find the
774 * first block in this inode and use that as a hint. If that
775 * block is also bogus then just don't worry about it.
776 */
777 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
778 free_extent_map(em);
779 em = search_extent_mapping(em_tree, 0, 0);
780 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
781 alloc_hint = em->block_start;
782 if (em)
783 free_extent_map(em);
784 } else {
785 alloc_hint = em->block_start;
786 free_extent_map(em);
787 }
788 }
789 read_unlock(&em_tree->lock);
790
791 return alloc_hint;
792 }
793
794 /*
795 * when extent_io.c finds a delayed allocation range in the file,
796 * the call backs end up in this code. The basic idea is to
797 * allocate extents on disk for the range, and create ordered data structs
798 * in ram to track those extents.
799 *
800 * locked_page is the page that writepage had locked already. We use
801 * it to make sure we don't do extra locks or unlocks.
802 *
803 * *page_started is set to one if we unlock locked_page and do everything
804 * required to start IO on it. It may be clean and already done with
805 * IO when we return.
806 */
807 static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
808 struct inode *inode,
809 struct btrfs_root *root,
810 struct page *locked_page,
811 u64 start, u64 end, int *page_started,
812 unsigned long *nr_written,
813 int unlock)
814 {
815 u64 alloc_hint = 0;
816 u64 num_bytes;
817 unsigned long ram_size;
818 u64 disk_num_bytes;
819 u64 cur_alloc_size;
820 u64 blocksize = root->sectorsize;
821 struct btrfs_key ins;
822 struct extent_map *em;
823 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
824 int ret = 0;
825
826 BUG_ON(btrfs_is_free_space_inode(inode));
827
828 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
829 num_bytes = max(blocksize, num_bytes);
830 disk_num_bytes = num_bytes;
831
832 /* if this is a small write inside eof, kick off defrag */
833 if (num_bytes < 64 * 1024 &&
834 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
835 btrfs_add_inode_defrag(trans, inode);
836
837 if (start == 0) {
838 /* lets try to make an inline extent */
839 ret = cow_file_range_inline(trans, root, inode,
840 start, end, 0, 0, NULL);
841 if (ret == 0) {
842 extent_clear_unlock_delalloc(inode,
843 &BTRFS_I(inode)->io_tree,
844 start, end, NULL,
845 EXTENT_CLEAR_UNLOCK_PAGE |
846 EXTENT_CLEAR_UNLOCK |
847 EXTENT_CLEAR_DELALLOC |
848 EXTENT_CLEAR_DIRTY |
849 EXTENT_SET_WRITEBACK |
850 EXTENT_END_WRITEBACK);
851
852 *nr_written = *nr_written +
853 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
854 *page_started = 1;
855 goto out;
856 } else if (ret < 0) {
857 btrfs_abort_transaction(trans, root, ret);
858 goto out_unlock;
859 }
860 }
861
862 BUG_ON(disk_num_bytes >
863 btrfs_super_total_bytes(root->fs_info->super_copy));
864
865 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
866 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
867
868 while (disk_num_bytes > 0) {
869 unsigned long op;
870
871 cur_alloc_size = disk_num_bytes;
872 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
873 root->sectorsize, 0, alloc_hint,
874 &ins, 1);
875 if (ret < 0) {
876 btrfs_abort_transaction(trans, root, ret);
877 goto out_unlock;
878 }
879
880 em = alloc_extent_map();
881 BUG_ON(!em); /* -ENOMEM */
882 em->start = start;
883 em->orig_start = em->start;
884 ram_size = ins.offset;
885 em->len = ins.offset;
886
887 em->block_start = ins.objectid;
888 em->block_len = ins.offset;
889 em->bdev = root->fs_info->fs_devices->latest_bdev;
890 set_bit(EXTENT_FLAG_PINNED, &em->flags);
891
892 while (1) {
893 write_lock(&em_tree->lock);
894 ret = add_extent_mapping(em_tree, em);
895 write_unlock(&em_tree->lock);
896 if (ret != -EEXIST) {
897 free_extent_map(em);
898 break;
899 }
900 btrfs_drop_extent_cache(inode, start,
901 start + ram_size - 1, 0);
902 }
903
904 cur_alloc_size = ins.offset;
905 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
906 ram_size, cur_alloc_size, 0);
907 BUG_ON(ret); /* -ENOMEM */
908
909 if (root->root_key.objectid ==
910 BTRFS_DATA_RELOC_TREE_OBJECTID) {
911 ret = btrfs_reloc_clone_csums(inode, start,
912 cur_alloc_size);
913 if (ret) {
914 btrfs_abort_transaction(trans, root, ret);
915 goto out_unlock;
916 }
917 }
918
919 if (disk_num_bytes < cur_alloc_size)
920 break;
921
922 /* we're not doing compressed IO, don't unlock the first
923 * page (which the caller expects to stay locked), don't
924 * clear any dirty bits and don't set any writeback bits
925 *
926 * Do set the Private2 bit so we know this page was properly
927 * setup for writepage
928 */
929 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
930 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
931 EXTENT_SET_PRIVATE2;
932
933 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
934 start, start + ram_size - 1,
935 locked_page, op);
936 disk_num_bytes -= cur_alloc_size;
937 num_bytes -= cur_alloc_size;
938 alloc_hint = ins.objectid + ins.offset;
939 start += cur_alloc_size;
940 }
941 out:
942 return ret;
943
944 out_unlock:
945 extent_clear_unlock_delalloc(inode,
946 &BTRFS_I(inode)->io_tree,
947 start, end, locked_page,
948 EXTENT_CLEAR_UNLOCK_PAGE |
949 EXTENT_CLEAR_UNLOCK |
950 EXTENT_CLEAR_DELALLOC |
951 EXTENT_CLEAR_DIRTY |
952 EXTENT_SET_WRITEBACK |
953 EXTENT_END_WRITEBACK);
954
955 goto out;
956 }
957
958 static noinline int cow_file_range(struct inode *inode,
959 struct page *locked_page,
960 u64 start, u64 end, int *page_started,
961 unsigned long *nr_written,
962 int unlock)
963 {
964 struct btrfs_trans_handle *trans;
965 struct btrfs_root *root = BTRFS_I(inode)->root;
966 int ret;
967
968 trans = btrfs_join_transaction(root);
969 if (IS_ERR(trans)) {
970 extent_clear_unlock_delalloc(inode,
971 &BTRFS_I(inode)->io_tree,
972 start, end, locked_page,
973 EXTENT_CLEAR_UNLOCK_PAGE |
974 EXTENT_CLEAR_UNLOCK |
975 EXTENT_CLEAR_DELALLOC |
976 EXTENT_CLEAR_DIRTY |
977 EXTENT_SET_WRITEBACK |
978 EXTENT_END_WRITEBACK);
979 return PTR_ERR(trans);
980 }
981 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
982
983 ret = __cow_file_range(trans, inode, root, locked_page, start, end,
984 page_started, nr_written, unlock);
985
986 btrfs_end_transaction(trans, root);
987
988 return ret;
989 }
990
991 /*
992 * work queue call back to started compression on a file and pages
993 */
994 static noinline void async_cow_start(struct btrfs_work *work)
995 {
996 struct async_cow *async_cow;
997 int num_added = 0;
998 async_cow = container_of(work, struct async_cow, work);
999
1000 compress_file_range(async_cow->inode, async_cow->locked_page,
1001 async_cow->start, async_cow->end, async_cow,
1002 &num_added);
1003 if (num_added == 0) {
1004 btrfs_add_delayed_iput(async_cow->inode);
1005 async_cow->inode = NULL;
1006 }
1007 }
1008
1009 /*
1010 * work queue call back to submit previously compressed pages
1011 */
1012 static noinline void async_cow_submit(struct btrfs_work *work)
1013 {
1014 struct async_cow *async_cow;
1015 struct btrfs_root *root;
1016 unsigned long nr_pages;
1017
1018 async_cow = container_of(work, struct async_cow, work);
1019
1020 root = async_cow->root;
1021 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1022 PAGE_CACHE_SHIFT;
1023
1024 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1025 5 * 1024 * 1024 &&
1026 waitqueue_active(&root->fs_info->async_submit_wait))
1027 wake_up(&root->fs_info->async_submit_wait);
1028
1029 if (async_cow->inode)
1030 submit_compressed_extents(async_cow->inode, async_cow);
1031 }
1032
1033 static noinline void async_cow_free(struct btrfs_work *work)
1034 {
1035 struct async_cow *async_cow;
1036 async_cow = container_of(work, struct async_cow, work);
1037 if (async_cow->inode)
1038 btrfs_add_delayed_iput(async_cow->inode);
1039 kfree(async_cow);
1040 }
1041
1042 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1043 u64 start, u64 end, int *page_started,
1044 unsigned long *nr_written)
1045 {
1046 struct async_cow *async_cow;
1047 struct btrfs_root *root = BTRFS_I(inode)->root;
1048 unsigned long nr_pages;
1049 u64 cur_end;
1050 int limit = 10 * 1024 * 1024;
1051
1052 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1053 1, 0, NULL, GFP_NOFS);
1054 while (start < end) {
1055 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1056 BUG_ON(!async_cow); /* -ENOMEM */
1057 async_cow->inode = igrab(inode);
1058 async_cow->root = root;
1059 async_cow->locked_page = locked_page;
1060 async_cow->start = start;
1061
1062 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1063 cur_end = end;
1064 else
1065 cur_end = min(end, start + 512 * 1024 - 1);
1066
1067 async_cow->end = cur_end;
1068 INIT_LIST_HEAD(&async_cow->extents);
1069
1070 async_cow->work.func = async_cow_start;
1071 async_cow->work.ordered_func = async_cow_submit;
1072 async_cow->work.ordered_free = async_cow_free;
1073 async_cow->work.flags = 0;
1074
1075 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1076 PAGE_CACHE_SHIFT;
1077 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1078
1079 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1080 &async_cow->work);
1081
1082 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1083 wait_event(root->fs_info->async_submit_wait,
1084 (atomic_read(&root->fs_info->async_delalloc_pages) <
1085 limit));
1086 }
1087
1088 while (atomic_read(&root->fs_info->async_submit_draining) &&
1089 atomic_read(&root->fs_info->async_delalloc_pages)) {
1090 wait_event(root->fs_info->async_submit_wait,
1091 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1092 0));
1093 }
1094
1095 *nr_written += nr_pages;
1096 start = cur_end + 1;
1097 }
1098 *page_started = 1;
1099 return 0;
1100 }
1101
1102 static noinline int csum_exist_in_range(struct btrfs_root *root,
1103 u64 bytenr, u64 num_bytes)
1104 {
1105 int ret;
1106 struct btrfs_ordered_sum *sums;
1107 LIST_HEAD(list);
1108
1109 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1110 bytenr + num_bytes - 1, &list, 0);
1111 if (ret == 0 && list_empty(&list))
1112 return 0;
1113
1114 while (!list_empty(&list)) {
1115 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1116 list_del(&sums->list);
1117 kfree(sums);
1118 }
1119 return 1;
1120 }
1121
1122 /*
1123 * when nowcow writeback call back. This checks for snapshots or COW copies
1124 * of the extents that exist in the file, and COWs the file as required.
1125 *
1126 * If no cow copies or snapshots exist, we write directly to the existing
1127 * blocks on disk
1128 */
1129 static noinline int run_delalloc_nocow(struct inode *inode,
1130 struct page *locked_page,
1131 u64 start, u64 end, int *page_started, int force,
1132 unsigned long *nr_written)
1133 {
1134 struct btrfs_root *root = BTRFS_I(inode)->root;
1135 struct btrfs_trans_handle *trans;
1136 struct extent_buffer *leaf;
1137 struct btrfs_path *path;
1138 struct btrfs_file_extent_item *fi;
1139 struct btrfs_key found_key;
1140 u64 cow_start;
1141 u64 cur_offset;
1142 u64 extent_end;
1143 u64 extent_offset;
1144 u64 disk_bytenr;
1145 u64 num_bytes;
1146 int extent_type;
1147 int ret, err;
1148 int type;
1149 int nocow;
1150 int check_prev = 1;
1151 bool nolock;
1152 u64 ino = btrfs_ino(inode);
1153
1154 path = btrfs_alloc_path();
1155 if (!path) {
1156 extent_clear_unlock_delalloc(inode,
1157 &BTRFS_I(inode)->io_tree,
1158 start, end, locked_page,
1159 EXTENT_CLEAR_UNLOCK_PAGE |
1160 EXTENT_CLEAR_UNLOCK |
1161 EXTENT_CLEAR_DELALLOC |
1162 EXTENT_CLEAR_DIRTY |
1163 EXTENT_SET_WRITEBACK |
1164 EXTENT_END_WRITEBACK);
1165 return -ENOMEM;
1166 }
1167
1168 nolock = btrfs_is_free_space_inode(inode);
1169
1170 if (nolock)
1171 trans = btrfs_join_transaction_nolock(root);
1172 else
1173 trans = btrfs_join_transaction(root);
1174
1175 if (IS_ERR(trans)) {
1176 extent_clear_unlock_delalloc(inode,
1177 &BTRFS_I(inode)->io_tree,
1178 start, end, locked_page,
1179 EXTENT_CLEAR_UNLOCK_PAGE |
1180 EXTENT_CLEAR_UNLOCK |
1181 EXTENT_CLEAR_DELALLOC |
1182 EXTENT_CLEAR_DIRTY |
1183 EXTENT_SET_WRITEBACK |
1184 EXTENT_END_WRITEBACK);
1185 btrfs_free_path(path);
1186 return PTR_ERR(trans);
1187 }
1188
1189 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1190
1191 cow_start = (u64)-1;
1192 cur_offset = start;
1193 while (1) {
1194 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1195 cur_offset, 0);
1196 if (ret < 0) {
1197 btrfs_abort_transaction(trans, root, ret);
1198 goto error;
1199 }
1200 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1201 leaf = path->nodes[0];
1202 btrfs_item_key_to_cpu(leaf, &found_key,
1203 path->slots[0] - 1);
1204 if (found_key.objectid == ino &&
1205 found_key.type == BTRFS_EXTENT_DATA_KEY)
1206 path->slots[0]--;
1207 }
1208 check_prev = 0;
1209 next_slot:
1210 leaf = path->nodes[0];
1211 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1212 ret = btrfs_next_leaf(root, path);
1213 if (ret < 0) {
1214 btrfs_abort_transaction(trans, root, ret);
1215 goto error;
1216 }
1217 if (ret > 0)
1218 break;
1219 leaf = path->nodes[0];
1220 }
1221
1222 nocow = 0;
1223 disk_bytenr = 0;
1224 num_bytes = 0;
1225 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1226
1227 if (found_key.objectid > ino ||
1228 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1229 found_key.offset > end)
1230 break;
1231
1232 if (found_key.offset > cur_offset) {
1233 extent_end = found_key.offset;
1234 extent_type = 0;
1235 goto out_check;
1236 }
1237
1238 fi = btrfs_item_ptr(leaf, path->slots[0],
1239 struct btrfs_file_extent_item);
1240 extent_type = btrfs_file_extent_type(leaf, fi);
1241
1242 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1243 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1244 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1245 extent_offset = btrfs_file_extent_offset(leaf, fi);
1246 extent_end = found_key.offset +
1247 btrfs_file_extent_num_bytes(leaf, fi);
1248 if (extent_end <= start) {
1249 path->slots[0]++;
1250 goto next_slot;
1251 }
1252 if (disk_bytenr == 0)
1253 goto out_check;
1254 if (btrfs_file_extent_compression(leaf, fi) ||
1255 btrfs_file_extent_encryption(leaf, fi) ||
1256 btrfs_file_extent_other_encoding(leaf, fi))
1257 goto out_check;
1258 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1259 goto out_check;
1260 if (btrfs_extent_readonly(root, disk_bytenr))
1261 goto out_check;
1262 if (btrfs_cross_ref_exist(trans, root, ino,
1263 found_key.offset -
1264 extent_offset, disk_bytenr))
1265 goto out_check;
1266 disk_bytenr += extent_offset;
1267 disk_bytenr += cur_offset - found_key.offset;
1268 num_bytes = min(end + 1, extent_end) - cur_offset;
1269 /*
1270 * force cow if csum exists in the range.
1271 * this ensure that csum for a given extent are
1272 * either valid or do not exist.
1273 */
1274 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1275 goto out_check;
1276 nocow = 1;
1277 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1278 extent_end = found_key.offset +
1279 btrfs_file_extent_inline_len(leaf, fi);
1280 extent_end = ALIGN(extent_end, root->sectorsize);
1281 } else {
1282 BUG_ON(1);
1283 }
1284 out_check:
1285 if (extent_end <= start) {
1286 path->slots[0]++;
1287 goto next_slot;
1288 }
1289 if (!nocow) {
1290 if (cow_start == (u64)-1)
1291 cow_start = cur_offset;
1292 cur_offset = extent_end;
1293 if (cur_offset > end)
1294 break;
1295 path->slots[0]++;
1296 goto next_slot;
1297 }
1298
1299 btrfs_release_path(path);
1300 if (cow_start != (u64)-1) {
1301 ret = __cow_file_range(trans, inode, root, locked_page,
1302 cow_start, found_key.offset - 1,
1303 page_started, nr_written, 1);
1304 if (ret) {
1305 btrfs_abort_transaction(trans, root, ret);
1306 goto error;
1307 }
1308 cow_start = (u64)-1;
1309 }
1310
1311 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1312 struct extent_map *em;
1313 struct extent_map_tree *em_tree;
1314 em_tree = &BTRFS_I(inode)->extent_tree;
1315 em = alloc_extent_map();
1316 BUG_ON(!em); /* -ENOMEM */
1317 em->start = cur_offset;
1318 em->orig_start = em->start;
1319 em->len = num_bytes;
1320 em->block_len = num_bytes;
1321 em->block_start = disk_bytenr;
1322 em->bdev = root->fs_info->fs_devices->latest_bdev;
1323 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1324 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1325 while (1) {
1326 write_lock(&em_tree->lock);
1327 ret = add_extent_mapping(em_tree, em);
1328 write_unlock(&em_tree->lock);
1329 if (ret != -EEXIST) {
1330 free_extent_map(em);
1331 break;
1332 }
1333 btrfs_drop_extent_cache(inode, em->start,
1334 em->start + em->len - 1, 0);
1335 }
1336 type = BTRFS_ORDERED_PREALLOC;
1337 } else {
1338 type = BTRFS_ORDERED_NOCOW;
1339 }
1340
1341 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1342 num_bytes, num_bytes, type);
1343 BUG_ON(ret); /* -ENOMEM */
1344
1345 if (root->root_key.objectid ==
1346 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1347 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1348 num_bytes);
1349 if (ret) {
1350 btrfs_abort_transaction(trans, root, ret);
1351 goto error;
1352 }
1353 }
1354
1355 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1356 cur_offset, cur_offset + num_bytes - 1,
1357 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1358 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1359 EXTENT_SET_PRIVATE2);
1360 cur_offset = extent_end;
1361 if (cur_offset > end)
1362 break;
1363 }
1364 btrfs_release_path(path);
1365
1366 if (cur_offset <= end && cow_start == (u64)-1) {
1367 cow_start = cur_offset;
1368 cur_offset = end;
1369 }
1370
1371 if (cow_start != (u64)-1) {
1372 ret = __cow_file_range(trans, inode, root, locked_page,
1373 cow_start, end,
1374 page_started, nr_written, 1);
1375 if (ret) {
1376 btrfs_abort_transaction(trans, root, ret);
1377 goto error;
1378 }
1379 }
1380
1381 error:
1382 err = btrfs_end_transaction(trans, root);
1383 if (!ret)
1384 ret = err;
1385
1386 if (ret && cur_offset < end)
1387 extent_clear_unlock_delalloc(inode,
1388 &BTRFS_I(inode)->io_tree,
1389 cur_offset, end, locked_page,
1390 EXTENT_CLEAR_UNLOCK_PAGE |
1391 EXTENT_CLEAR_UNLOCK |
1392 EXTENT_CLEAR_DELALLOC |
1393 EXTENT_CLEAR_DIRTY |
1394 EXTENT_SET_WRITEBACK |
1395 EXTENT_END_WRITEBACK);
1396
1397 btrfs_free_path(path);
1398 return ret;
1399 }
1400
1401 /*
1402 * extent_io.c call back to do delayed allocation processing
1403 */
1404 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1405 u64 start, u64 end, int *page_started,
1406 unsigned long *nr_written)
1407 {
1408 int ret;
1409 struct btrfs_root *root = BTRFS_I(inode)->root;
1410
1411 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1412 ret = run_delalloc_nocow(inode, locked_page, start, end,
1413 page_started, 1, nr_written);
1414 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1415 ret = run_delalloc_nocow(inode, locked_page, start, end,
1416 page_started, 0, nr_written);
1417 } else if (!btrfs_test_opt(root, COMPRESS) &&
1418 !(BTRFS_I(inode)->force_compress) &&
1419 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1420 ret = cow_file_range(inode, locked_page, start, end,
1421 page_started, nr_written, 1);
1422 } else {
1423 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1424 &BTRFS_I(inode)->runtime_flags);
1425 ret = cow_file_range_async(inode, locked_page, start, end,
1426 page_started, nr_written);
1427 }
1428 return ret;
1429 }
1430
1431 static void btrfs_split_extent_hook(struct inode *inode,
1432 struct extent_state *orig, u64 split)
1433 {
1434 /* not delalloc, ignore it */
1435 if (!(orig->state & EXTENT_DELALLOC))
1436 return;
1437
1438 spin_lock(&BTRFS_I(inode)->lock);
1439 BTRFS_I(inode)->outstanding_extents++;
1440 spin_unlock(&BTRFS_I(inode)->lock);
1441 }
1442
1443 /*
1444 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1445 * extents so we can keep track of new extents that are just merged onto old
1446 * extents, such as when we are doing sequential writes, so we can properly
1447 * account for the metadata space we'll need.
1448 */
1449 static void btrfs_merge_extent_hook(struct inode *inode,
1450 struct extent_state *new,
1451 struct extent_state *other)
1452 {
1453 /* not delalloc, ignore it */
1454 if (!(other->state & EXTENT_DELALLOC))
1455 return;
1456
1457 spin_lock(&BTRFS_I(inode)->lock);
1458 BTRFS_I(inode)->outstanding_extents--;
1459 spin_unlock(&BTRFS_I(inode)->lock);
1460 }
1461
1462 /*
1463 * extent_io.c set_bit_hook, used to track delayed allocation
1464 * bytes in this file, and to maintain the list of inodes that
1465 * have pending delalloc work to be done.
1466 */
1467 static void btrfs_set_bit_hook(struct inode *inode,
1468 struct extent_state *state, int *bits)
1469 {
1470
1471 /*
1472 * set_bit and clear bit hooks normally require _irqsave/restore
1473 * but in this case, we are only testing for the DELALLOC
1474 * bit, which is only set or cleared with irqs on
1475 */
1476 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1477 struct btrfs_root *root = BTRFS_I(inode)->root;
1478 u64 len = state->end + 1 - state->start;
1479 bool do_list = !btrfs_is_free_space_inode(inode);
1480
1481 if (*bits & EXTENT_FIRST_DELALLOC) {
1482 *bits &= ~EXTENT_FIRST_DELALLOC;
1483 } else {
1484 spin_lock(&BTRFS_I(inode)->lock);
1485 BTRFS_I(inode)->outstanding_extents++;
1486 spin_unlock(&BTRFS_I(inode)->lock);
1487 }
1488
1489 spin_lock(&root->fs_info->delalloc_lock);
1490 BTRFS_I(inode)->delalloc_bytes += len;
1491 root->fs_info->delalloc_bytes += len;
1492 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1493 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1494 &root->fs_info->delalloc_inodes);
1495 }
1496 spin_unlock(&root->fs_info->delalloc_lock);
1497 }
1498 }
1499
1500 /*
1501 * extent_io.c clear_bit_hook, see set_bit_hook for why
1502 */
1503 static void btrfs_clear_bit_hook(struct inode *inode,
1504 struct extent_state *state, int *bits)
1505 {
1506 /*
1507 * set_bit and clear bit hooks normally require _irqsave/restore
1508 * but in this case, we are only testing for the DELALLOC
1509 * bit, which is only set or cleared with irqs on
1510 */
1511 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1512 struct btrfs_root *root = BTRFS_I(inode)->root;
1513 u64 len = state->end + 1 - state->start;
1514 bool do_list = !btrfs_is_free_space_inode(inode);
1515
1516 if (*bits & EXTENT_FIRST_DELALLOC) {
1517 *bits &= ~EXTENT_FIRST_DELALLOC;
1518 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1519 spin_lock(&BTRFS_I(inode)->lock);
1520 BTRFS_I(inode)->outstanding_extents--;
1521 spin_unlock(&BTRFS_I(inode)->lock);
1522 }
1523
1524 if (*bits & EXTENT_DO_ACCOUNTING)
1525 btrfs_delalloc_release_metadata(inode, len);
1526
1527 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1528 && do_list)
1529 btrfs_free_reserved_data_space(inode, len);
1530
1531 spin_lock(&root->fs_info->delalloc_lock);
1532 root->fs_info->delalloc_bytes -= len;
1533 BTRFS_I(inode)->delalloc_bytes -= len;
1534
1535 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1536 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1537 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1538 }
1539 spin_unlock(&root->fs_info->delalloc_lock);
1540 }
1541 }
1542
1543 /*
1544 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1545 * we don't create bios that span stripes or chunks
1546 */
1547 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1548 size_t size, struct bio *bio,
1549 unsigned long bio_flags)
1550 {
1551 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1552 u64 logical = (u64)bio->bi_sector << 9;
1553 u64 length = 0;
1554 u64 map_length;
1555 int ret;
1556
1557 if (bio_flags & EXTENT_BIO_COMPRESSED)
1558 return 0;
1559
1560 length = bio->bi_size;
1561 map_length = length;
1562 ret = btrfs_map_block(root->fs_info, READ, logical,
1563 &map_length, NULL, 0);
1564 /* Will always return 0 with map_multi == NULL */
1565 BUG_ON(ret < 0);
1566 if (map_length < length + size)
1567 return 1;
1568 return 0;
1569 }
1570
1571 /*
1572 * in order to insert checksums into the metadata in large chunks,
1573 * we wait until bio submission time. All the pages in the bio are
1574 * checksummed and sums are attached onto the ordered extent record.
1575 *
1576 * At IO completion time the cums attached on the ordered extent record
1577 * are inserted into the btree
1578 */
1579 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1580 struct bio *bio, int mirror_num,
1581 unsigned long bio_flags,
1582 u64 bio_offset)
1583 {
1584 struct btrfs_root *root = BTRFS_I(inode)->root;
1585 int ret = 0;
1586
1587 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1588 BUG_ON(ret); /* -ENOMEM */
1589 return 0;
1590 }
1591
1592 /*
1593 * in order to insert checksums into the metadata in large chunks,
1594 * we wait until bio submission time. All the pages in the bio are
1595 * checksummed and sums are attached onto the ordered extent record.
1596 *
1597 * At IO completion time the cums attached on the ordered extent record
1598 * are inserted into the btree
1599 */
1600 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1601 int mirror_num, unsigned long bio_flags,
1602 u64 bio_offset)
1603 {
1604 struct btrfs_root *root = BTRFS_I(inode)->root;
1605 int ret;
1606
1607 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1608 if (ret)
1609 bio_endio(bio, ret);
1610 return ret;
1611 }
1612
1613 /*
1614 * extent_io.c submission hook. This does the right thing for csum calculation
1615 * on write, or reading the csums from the tree before a read
1616 */
1617 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1618 int mirror_num, unsigned long bio_flags,
1619 u64 bio_offset)
1620 {
1621 struct btrfs_root *root = BTRFS_I(inode)->root;
1622 int ret = 0;
1623 int skip_sum;
1624 int metadata = 0;
1625
1626 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1627
1628 if (btrfs_is_free_space_inode(inode))
1629 metadata = 2;
1630
1631 if (!(rw & REQ_WRITE)) {
1632 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1633 if (ret)
1634 goto out;
1635
1636 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1637 ret = btrfs_submit_compressed_read(inode, bio,
1638 mirror_num,
1639 bio_flags);
1640 goto out;
1641 } else if (!skip_sum) {
1642 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1643 if (ret)
1644 goto out;
1645 }
1646 goto mapit;
1647 } else if (!skip_sum) {
1648 /* csum items have already been cloned */
1649 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1650 goto mapit;
1651 /* we're doing a write, do the async checksumming */
1652 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1653 inode, rw, bio, mirror_num,
1654 bio_flags, bio_offset,
1655 __btrfs_submit_bio_start,
1656 __btrfs_submit_bio_done);
1657 goto out;
1658 }
1659
1660 mapit:
1661 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1662
1663 out:
1664 if (ret < 0)
1665 bio_endio(bio, ret);
1666 return ret;
1667 }
1668
1669 /*
1670 * given a list of ordered sums record them in the inode. This happens
1671 * at IO completion time based on sums calculated at bio submission time.
1672 */
1673 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1674 struct inode *inode, u64 file_offset,
1675 struct list_head *list)
1676 {
1677 struct btrfs_ordered_sum *sum;
1678
1679 list_for_each_entry(sum, list, list) {
1680 btrfs_csum_file_blocks(trans,
1681 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1682 }
1683 return 0;
1684 }
1685
1686 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1687 struct extent_state **cached_state)
1688 {
1689 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1690 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1691 cached_state, GFP_NOFS);
1692 }
1693
1694 /* see btrfs_writepage_start_hook for details on why this is required */
1695 struct btrfs_writepage_fixup {
1696 struct page *page;
1697 struct btrfs_work work;
1698 };
1699
1700 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1701 {
1702 struct btrfs_writepage_fixup *fixup;
1703 struct btrfs_ordered_extent *ordered;
1704 struct extent_state *cached_state = NULL;
1705 struct page *page;
1706 struct inode *inode;
1707 u64 page_start;
1708 u64 page_end;
1709 int ret;
1710
1711 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1712 page = fixup->page;
1713 again:
1714 lock_page(page);
1715 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1716 ClearPageChecked(page);
1717 goto out_page;
1718 }
1719
1720 inode = page->mapping->host;
1721 page_start = page_offset(page);
1722 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1723
1724 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1725 &cached_state);
1726
1727 /* already ordered? We're done */
1728 if (PagePrivate2(page))
1729 goto out;
1730
1731 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1732 if (ordered) {
1733 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1734 page_end, &cached_state, GFP_NOFS);
1735 unlock_page(page);
1736 btrfs_start_ordered_extent(inode, ordered, 1);
1737 btrfs_put_ordered_extent(ordered);
1738 goto again;
1739 }
1740
1741 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1742 if (ret) {
1743 mapping_set_error(page->mapping, ret);
1744 end_extent_writepage(page, ret, page_start, page_end);
1745 ClearPageChecked(page);
1746 goto out;
1747 }
1748
1749 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1750 ClearPageChecked(page);
1751 set_page_dirty(page);
1752 out:
1753 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1754 &cached_state, GFP_NOFS);
1755 out_page:
1756 unlock_page(page);
1757 page_cache_release(page);
1758 kfree(fixup);
1759 }
1760
1761 /*
1762 * There are a few paths in the higher layers of the kernel that directly
1763 * set the page dirty bit without asking the filesystem if it is a
1764 * good idea. This causes problems because we want to make sure COW
1765 * properly happens and the data=ordered rules are followed.
1766 *
1767 * In our case any range that doesn't have the ORDERED bit set
1768 * hasn't been properly setup for IO. We kick off an async process
1769 * to fix it up. The async helper will wait for ordered extents, set
1770 * the delalloc bit and make it safe to write the page.
1771 */
1772 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1773 {
1774 struct inode *inode = page->mapping->host;
1775 struct btrfs_writepage_fixup *fixup;
1776 struct btrfs_root *root = BTRFS_I(inode)->root;
1777
1778 /* this page is properly in the ordered list */
1779 if (TestClearPagePrivate2(page))
1780 return 0;
1781
1782 if (PageChecked(page))
1783 return -EAGAIN;
1784
1785 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1786 if (!fixup)
1787 return -EAGAIN;
1788
1789 SetPageChecked(page);
1790 page_cache_get(page);
1791 fixup->work.func = btrfs_writepage_fixup_worker;
1792 fixup->page = page;
1793 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1794 return -EBUSY;
1795 }
1796
1797 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1798 struct inode *inode, u64 file_pos,
1799 u64 disk_bytenr, u64 disk_num_bytes,
1800 u64 num_bytes, u64 ram_bytes,
1801 u8 compression, u8 encryption,
1802 u16 other_encoding, int extent_type)
1803 {
1804 struct btrfs_root *root = BTRFS_I(inode)->root;
1805 struct btrfs_file_extent_item *fi;
1806 struct btrfs_path *path;
1807 struct extent_buffer *leaf;
1808 struct btrfs_key ins;
1809 int ret;
1810
1811 path = btrfs_alloc_path();
1812 if (!path)
1813 return -ENOMEM;
1814
1815 path->leave_spinning = 1;
1816
1817 /*
1818 * we may be replacing one extent in the tree with another.
1819 * The new extent is pinned in the extent map, and we don't want
1820 * to drop it from the cache until it is completely in the btree.
1821 *
1822 * So, tell btrfs_drop_extents to leave this extent in the cache.
1823 * the caller is expected to unpin it and allow it to be merged
1824 * with the others.
1825 */
1826 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1827 file_pos + num_bytes, 0);
1828 if (ret)
1829 goto out;
1830
1831 ins.objectid = btrfs_ino(inode);
1832 ins.offset = file_pos;
1833 ins.type = BTRFS_EXTENT_DATA_KEY;
1834 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1835 if (ret)
1836 goto out;
1837 leaf = path->nodes[0];
1838 fi = btrfs_item_ptr(leaf, path->slots[0],
1839 struct btrfs_file_extent_item);
1840 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1841 btrfs_set_file_extent_type(leaf, fi, extent_type);
1842 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1843 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1844 btrfs_set_file_extent_offset(leaf, fi, 0);
1845 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1846 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1847 btrfs_set_file_extent_compression(leaf, fi, compression);
1848 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1849 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1850
1851 btrfs_mark_buffer_dirty(leaf);
1852 btrfs_release_path(path);
1853
1854 inode_add_bytes(inode, num_bytes);
1855
1856 ins.objectid = disk_bytenr;
1857 ins.offset = disk_num_bytes;
1858 ins.type = BTRFS_EXTENT_ITEM_KEY;
1859 ret = btrfs_alloc_reserved_file_extent(trans, root,
1860 root->root_key.objectid,
1861 btrfs_ino(inode), file_pos, &ins);
1862 out:
1863 btrfs_free_path(path);
1864
1865 return ret;
1866 }
1867
1868 /*
1869 * helper function for btrfs_finish_ordered_io, this
1870 * just reads in some of the csum leaves to prime them into ram
1871 * before we start the transaction. It limits the amount of btree
1872 * reads required while inside the transaction.
1873 */
1874 /* as ordered data IO finishes, this gets called so we can finish
1875 * an ordered extent if the range of bytes in the file it covers are
1876 * fully written.
1877 */
1878 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
1879 {
1880 struct inode *inode = ordered_extent->inode;
1881 struct btrfs_root *root = BTRFS_I(inode)->root;
1882 struct btrfs_trans_handle *trans = NULL;
1883 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1884 struct extent_state *cached_state = NULL;
1885 int compress_type = 0;
1886 int ret;
1887 bool nolock;
1888
1889 nolock = btrfs_is_free_space_inode(inode);
1890
1891 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
1892 ret = -EIO;
1893 goto out;
1894 }
1895
1896 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1897 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
1898 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1899 if (!ret) {
1900 if (nolock)
1901 trans = btrfs_join_transaction_nolock(root);
1902 else
1903 trans = btrfs_join_transaction(root);
1904 if (IS_ERR(trans)) {
1905 ret = PTR_ERR(trans);
1906 trans = NULL;
1907 goto out;
1908 }
1909 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1910 ret = btrfs_update_inode_fallback(trans, root, inode);
1911 if (ret) /* -ENOMEM or corruption */
1912 btrfs_abort_transaction(trans, root, ret);
1913 }
1914 goto out;
1915 }
1916
1917 lock_extent_bits(io_tree, ordered_extent->file_offset,
1918 ordered_extent->file_offset + ordered_extent->len - 1,
1919 0, &cached_state);
1920
1921 if (nolock)
1922 trans = btrfs_join_transaction_nolock(root);
1923 else
1924 trans = btrfs_join_transaction(root);
1925 if (IS_ERR(trans)) {
1926 ret = PTR_ERR(trans);
1927 trans = NULL;
1928 goto out_unlock;
1929 }
1930 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1931
1932 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1933 compress_type = ordered_extent->compress_type;
1934 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1935 BUG_ON(compress_type);
1936 ret = btrfs_mark_extent_written(trans, inode,
1937 ordered_extent->file_offset,
1938 ordered_extent->file_offset +
1939 ordered_extent->len);
1940 } else {
1941 BUG_ON(root == root->fs_info->tree_root);
1942 ret = insert_reserved_file_extent(trans, inode,
1943 ordered_extent->file_offset,
1944 ordered_extent->start,
1945 ordered_extent->disk_len,
1946 ordered_extent->len,
1947 ordered_extent->len,
1948 compress_type, 0, 0,
1949 BTRFS_FILE_EXTENT_REG);
1950 }
1951 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1952 ordered_extent->file_offset, ordered_extent->len,
1953 trans->transid);
1954 if (ret < 0) {
1955 btrfs_abort_transaction(trans, root, ret);
1956 goto out_unlock;
1957 }
1958
1959 add_pending_csums(trans, inode, ordered_extent->file_offset,
1960 &ordered_extent->list);
1961
1962 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1963 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1964 ret = btrfs_update_inode_fallback(trans, root, inode);
1965 if (ret) { /* -ENOMEM or corruption */
1966 btrfs_abort_transaction(trans, root, ret);
1967 goto out_unlock;
1968 }
1969 } else {
1970 btrfs_set_inode_last_trans(trans, inode);
1971 }
1972 ret = 0;
1973 out_unlock:
1974 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1975 ordered_extent->file_offset +
1976 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1977 out:
1978 if (root != root->fs_info->tree_root)
1979 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1980 if (trans)
1981 btrfs_end_transaction(trans, root);
1982
1983 if (ret)
1984 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
1985 ordered_extent->file_offset +
1986 ordered_extent->len - 1, NULL, GFP_NOFS);
1987
1988 /*
1989 * This needs to be done to make sure anybody waiting knows we are done
1990 * updating everything for this ordered extent.
1991 */
1992 btrfs_remove_ordered_extent(inode, ordered_extent);
1993
1994 /* once for us */
1995 btrfs_put_ordered_extent(ordered_extent);
1996 /* once for the tree */
1997 btrfs_put_ordered_extent(ordered_extent);
1998
1999 return ret;
2000 }
2001
2002 static void finish_ordered_fn(struct btrfs_work *work)
2003 {
2004 struct btrfs_ordered_extent *ordered_extent;
2005 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2006 btrfs_finish_ordered_io(ordered_extent);
2007 }
2008
2009 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2010 struct extent_state *state, int uptodate)
2011 {
2012 struct inode *inode = page->mapping->host;
2013 struct btrfs_root *root = BTRFS_I(inode)->root;
2014 struct btrfs_ordered_extent *ordered_extent = NULL;
2015 struct btrfs_workers *workers;
2016
2017 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2018
2019 ClearPagePrivate2(page);
2020 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2021 end - start + 1, uptodate))
2022 return 0;
2023
2024 ordered_extent->work.func = finish_ordered_fn;
2025 ordered_extent->work.flags = 0;
2026
2027 if (btrfs_is_free_space_inode(inode))
2028 workers = &root->fs_info->endio_freespace_worker;
2029 else
2030 workers = &root->fs_info->endio_write_workers;
2031 btrfs_queue_worker(workers, &ordered_extent->work);
2032
2033 return 0;
2034 }
2035
2036 /*
2037 * when reads are done, we need to check csums to verify the data is correct
2038 * if there's a match, we allow the bio to finish. If not, the code in
2039 * extent_io.c will try to find good copies for us.
2040 */
2041 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
2042 struct extent_state *state, int mirror)
2043 {
2044 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
2045 struct inode *inode = page->mapping->host;
2046 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2047 char *kaddr;
2048 u64 private = ~(u32)0;
2049 int ret;
2050 struct btrfs_root *root = BTRFS_I(inode)->root;
2051 u32 csum = ~(u32)0;
2052
2053 if (PageChecked(page)) {
2054 ClearPageChecked(page);
2055 goto good;
2056 }
2057
2058 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2059 goto good;
2060
2061 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2062 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2063 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2064 GFP_NOFS);
2065 return 0;
2066 }
2067
2068 if (state && state->start == start) {
2069 private = state->private;
2070 ret = 0;
2071 } else {
2072 ret = get_state_private(io_tree, start, &private);
2073 }
2074 kaddr = kmap_atomic(page);
2075 if (ret)
2076 goto zeroit;
2077
2078 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2079 btrfs_csum_final(csum, (char *)&csum);
2080 if (csum != private)
2081 goto zeroit;
2082
2083 kunmap_atomic(kaddr);
2084 good:
2085 return 0;
2086
2087 zeroit:
2088 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2089 "private %llu\n",
2090 (unsigned long long)btrfs_ino(page->mapping->host),
2091 (unsigned long long)start, csum,
2092 (unsigned long long)private);
2093 memset(kaddr + offset, 1, end - start + 1);
2094 flush_dcache_page(page);
2095 kunmap_atomic(kaddr);
2096 if (private == 0)
2097 return 0;
2098 return -EIO;
2099 }
2100
2101 struct delayed_iput {
2102 struct list_head list;
2103 struct inode *inode;
2104 };
2105
2106 /* JDM: If this is fs-wide, why can't we add a pointer to
2107 * btrfs_inode instead and avoid the allocation? */
2108 void btrfs_add_delayed_iput(struct inode *inode)
2109 {
2110 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2111 struct delayed_iput *delayed;
2112
2113 if (atomic_add_unless(&inode->i_count, -1, 1))
2114 return;
2115
2116 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2117 delayed->inode = inode;
2118
2119 spin_lock(&fs_info->delayed_iput_lock);
2120 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2121 spin_unlock(&fs_info->delayed_iput_lock);
2122 }
2123
2124 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2125 {
2126 LIST_HEAD(list);
2127 struct btrfs_fs_info *fs_info = root->fs_info;
2128 struct delayed_iput *delayed;
2129 int empty;
2130
2131 spin_lock(&fs_info->delayed_iput_lock);
2132 empty = list_empty(&fs_info->delayed_iputs);
2133 spin_unlock(&fs_info->delayed_iput_lock);
2134 if (empty)
2135 return;
2136
2137 spin_lock(&fs_info->delayed_iput_lock);
2138 list_splice_init(&fs_info->delayed_iputs, &list);
2139 spin_unlock(&fs_info->delayed_iput_lock);
2140
2141 while (!list_empty(&list)) {
2142 delayed = list_entry(list.next, struct delayed_iput, list);
2143 list_del(&delayed->list);
2144 iput(delayed->inode);
2145 kfree(delayed);
2146 }
2147 }
2148
2149 enum btrfs_orphan_cleanup_state {
2150 ORPHAN_CLEANUP_STARTED = 1,
2151 ORPHAN_CLEANUP_DONE = 2,
2152 };
2153
2154 /*
2155 * This is called in transaction commit time. If there are no orphan
2156 * files in the subvolume, it removes orphan item and frees block_rsv
2157 * structure.
2158 */
2159 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2160 struct btrfs_root *root)
2161 {
2162 struct btrfs_block_rsv *block_rsv;
2163 int ret;
2164
2165 if (atomic_read(&root->orphan_inodes) ||
2166 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2167 return;
2168
2169 spin_lock(&root->orphan_lock);
2170 if (atomic_read(&root->orphan_inodes)) {
2171 spin_unlock(&root->orphan_lock);
2172 return;
2173 }
2174
2175 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2176 spin_unlock(&root->orphan_lock);
2177 return;
2178 }
2179
2180 block_rsv = root->orphan_block_rsv;
2181 root->orphan_block_rsv = NULL;
2182 spin_unlock(&root->orphan_lock);
2183
2184 if (root->orphan_item_inserted &&
2185 btrfs_root_refs(&root->root_item) > 0) {
2186 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2187 root->root_key.objectid);
2188 BUG_ON(ret);
2189 root->orphan_item_inserted = 0;
2190 }
2191
2192 if (block_rsv) {
2193 WARN_ON(block_rsv->size > 0);
2194 btrfs_free_block_rsv(root, block_rsv);
2195 }
2196 }
2197
2198 /*
2199 * This creates an orphan entry for the given inode in case something goes
2200 * wrong in the middle of an unlink/truncate.
2201 *
2202 * NOTE: caller of this function should reserve 5 units of metadata for
2203 * this function.
2204 */
2205 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2206 {
2207 struct btrfs_root *root = BTRFS_I(inode)->root;
2208 struct btrfs_block_rsv *block_rsv = NULL;
2209 int reserve = 0;
2210 int insert = 0;
2211 int ret;
2212
2213 if (!root->orphan_block_rsv) {
2214 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2215 if (!block_rsv)
2216 return -ENOMEM;
2217 }
2218
2219 spin_lock(&root->orphan_lock);
2220 if (!root->orphan_block_rsv) {
2221 root->orphan_block_rsv = block_rsv;
2222 } else if (block_rsv) {
2223 btrfs_free_block_rsv(root, block_rsv);
2224 block_rsv = NULL;
2225 }
2226
2227 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2228 &BTRFS_I(inode)->runtime_flags)) {
2229 #if 0
2230 /*
2231 * For proper ENOSPC handling, we should do orphan
2232 * cleanup when mounting. But this introduces backward
2233 * compatibility issue.
2234 */
2235 if (!xchg(&root->orphan_item_inserted, 1))
2236 insert = 2;
2237 else
2238 insert = 1;
2239 #endif
2240 insert = 1;
2241 atomic_inc(&root->orphan_inodes);
2242 }
2243
2244 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2245 &BTRFS_I(inode)->runtime_flags))
2246 reserve = 1;
2247 spin_unlock(&root->orphan_lock);
2248
2249 /* grab metadata reservation from transaction handle */
2250 if (reserve) {
2251 ret = btrfs_orphan_reserve_metadata(trans, inode);
2252 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2253 }
2254
2255 /* insert an orphan item to track this unlinked/truncated file */
2256 if (insert >= 1) {
2257 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2258 if (ret && ret != -EEXIST) {
2259 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2260 &BTRFS_I(inode)->runtime_flags);
2261 btrfs_abort_transaction(trans, root, ret);
2262 return ret;
2263 }
2264 ret = 0;
2265 }
2266
2267 /* insert an orphan item to track subvolume contains orphan files */
2268 if (insert >= 2) {
2269 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2270 root->root_key.objectid);
2271 if (ret && ret != -EEXIST) {
2272 btrfs_abort_transaction(trans, root, ret);
2273 return ret;
2274 }
2275 }
2276 return 0;
2277 }
2278
2279 /*
2280 * We have done the truncate/delete so we can go ahead and remove the orphan
2281 * item for this particular inode.
2282 */
2283 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2284 {
2285 struct btrfs_root *root = BTRFS_I(inode)->root;
2286 int delete_item = 0;
2287 int release_rsv = 0;
2288 int ret = 0;
2289
2290 spin_lock(&root->orphan_lock);
2291 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2292 &BTRFS_I(inode)->runtime_flags))
2293 delete_item = 1;
2294
2295 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2296 &BTRFS_I(inode)->runtime_flags))
2297 release_rsv = 1;
2298 spin_unlock(&root->orphan_lock);
2299
2300 if (trans && delete_item) {
2301 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2302 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2303 }
2304
2305 if (release_rsv) {
2306 btrfs_orphan_release_metadata(inode);
2307 atomic_dec(&root->orphan_inodes);
2308 }
2309
2310 return 0;
2311 }
2312
2313 /*
2314 * this cleans up any orphans that may be left on the list from the last use
2315 * of this root.
2316 */
2317 int btrfs_orphan_cleanup(struct btrfs_root *root)
2318 {
2319 struct btrfs_path *path;
2320 struct extent_buffer *leaf;
2321 struct btrfs_key key, found_key;
2322 struct btrfs_trans_handle *trans;
2323 struct inode *inode;
2324 u64 last_objectid = 0;
2325 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2326
2327 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2328 return 0;
2329
2330 path = btrfs_alloc_path();
2331 if (!path) {
2332 ret = -ENOMEM;
2333 goto out;
2334 }
2335 path->reada = -1;
2336
2337 key.objectid = BTRFS_ORPHAN_OBJECTID;
2338 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2339 key.offset = (u64)-1;
2340
2341 while (1) {
2342 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2343 if (ret < 0)
2344 goto out;
2345
2346 /*
2347 * if ret == 0 means we found what we were searching for, which
2348 * is weird, but possible, so only screw with path if we didn't
2349 * find the key and see if we have stuff that matches
2350 */
2351 if (ret > 0) {
2352 ret = 0;
2353 if (path->slots[0] == 0)
2354 break;
2355 path->slots[0]--;
2356 }
2357
2358 /* pull out the item */
2359 leaf = path->nodes[0];
2360 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2361
2362 /* make sure the item matches what we want */
2363 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2364 break;
2365 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2366 break;
2367
2368 /* release the path since we're done with it */
2369 btrfs_release_path(path);
2370
2371 /*
2372 * this is where we are basically btrfs_lookup, without the
2373 * crossing root thing. we store the inode number in the
2374 * offset of the orphan item.
2375 */
2376
2377 if (found_key.offset == last_objectid) {
2378 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2379 "stopping orphan cleanup\n");
2380 ret = -EINVAL;
2381 goto out;
2382 }
2383
2384 last_objectid = found_key.offset;
2385
2386 found_key.objectid = found_key.offset;
2387 found_key.type = BTRFS_INODE_ITEM_KEY;
2388 found_key.offset = 0;
2389 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2390 ret = PTR_RET(inode);
2391 if (ret && ret != -ESTALE)
2392 goto out;
2393
2394 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2395 struct btrfs_root *dead_root;
2396 struct btrfs_fs_info *fs_info = root->fs_info;
2397 int is_dead_root = 0;
2398
2399 /*
2400 * this is an orphan in the tree root. Currently these
2401 * could come from 2 sources:
2402 * a) a snapshot deletion in progress
2403 * b) a free space cache inode
2404 * We need to distinguish those two, as the snapshot
2405 * orphan must not get deleted.
2406 * find_dead_roots already ran before us, so if this
2407 * is a snapshot deletion, we should find the root
2408 * in the dead_roots list
2409 */
2410 spin_lock(&fs_info->trans_lock);
2411 list_for_each_entry(dead_root, &fs_info->dead_roots,
2412 root_list) {
2413 if (dead_root->root_key.objectid ==
2414 found_key.objectid) {
2415 is_dead_root = 1;
2416 break;
2417 }
2418 }
2419 spin_unlock(&fs_info->trans_lock);
2420 if (is_dead_root) {
2421 /* prevent this orphan from being found again */
2422 key.offset = found_key.objectid - 1;
2423 continue;
2424 }
2425 }
2426 /*
2427 * Inode is already gone but the orphan item is still there,
2428 * kill the orphan item.
2429 */
2430 if (ret == -ESTALE) {
2431 trans = btrfs_start_transaction(root, 1);
2432 if (IS_ERR(trans)) {
2433 ret = PTR_ERR(trans);
2434 goto out;
2435 }
2436 printk(KERN_ERR "auto deleting %Lu\n",
2437 found_key.objectid);
2438 ret = btrfs_del_orphan_item(trans, root,
2439 found_key.objectid);
2440 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2441 btrfs_end_transaction(trans, root);
2442 continue;
2443 }
2444
2445 /*
2446 * add this inode to the orphan list so btrfs_orphan_del does
2447 * the proper thing when we hit it
2448 */
2449 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2450 &BTRFS_I(inode)->runtime_flags);
2451
2452 /* if we have links, this was a truncate, lets do that */
2453 if (inode->i_nlink) {
2454 if (!S_ISREG(inode->i_mode)) {
2455 WARN_ON(1);
2456 iput(inode);
2457 continue;
2458 }
2459 nr_truncate++;
2460 ret = btrfs_truncate(inode);
2461 } else {
2462 nr_unlink++;
2463 }
2464
2465 /* this will do delete_inode and everything for us */
2466 iput(inode);
2467 if (ret)
2468 goto out;
2469 }
2470 /* release the path since we're done with it */
2471 btrfs_release_path(path);
2472
2473 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2474
2475 if (root->orphan_block_rsv)
2476 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2477 (u64)-1);
2478
2479 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2480 trans = btrfs_join_transaction(root);
2481 if (!IS_ERR(trans))
2482 btrfs_end_transaction(trans, root);
2483 }
2484
2485 if (nr_unlink)
2486 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2487 if (nr_truncate)
2488 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2489
2490 out:
2491 if (ret)
2492 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2493 btrfs_free_path(path);
2494 return ret;
2495 }
2496
2497 /*
2498 * very simple check to peek ahead in the leaf looking for xattrs. If we
2499 * don't find any xattrs, we know there can't be any acls.
2500 *
2501 * slot is the slot the inode is in, objectid is the objectid of the inode
2502 */
2503 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2504 int slot, u64 objectid)
2505 {
2506 u32 nritems = btrfs_header_nritems(leaf);
2507 struct btrfs_key found_key;
2508 int scanned = 0;
2509
2510 slot++;
2511 while (slot < nritems) {
2512 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2513
2514 /* we found a different objectid, there must not be acls */
2515 if (found_key.objectid != objectid)
2516 return 0;
2517
2518 /* we found an xattr, assume we've got an acl */
2519 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2520 return 1;
2521
2522 /*
2523 * we found a key greater than an xattr key, there can't
2524 * be any acls later on
2525 */
2526 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2527 return 0;
2528
2529 slot++;
2530 scanned++;
2531
2532 /*
2533 * it goes inode, inode backrefs, xattrs, extents,
2534 * so if there are a ton of hard links to an inode there can
2535 * be a lot of backrefs. Don't waste time searching too hard,
2536 * this is just an optimization
2537 */
2538 if (scanned >= 8)
2539 break;
2540 }
2541 /* we hit the end of the leaf before we found an xattr or
2542 * something larger than an xattr. We have to assume the inode
2543 * has acls
2544 */
2545 return 1;
2546 }
2547
2548 /*
2549 * read an inode from the btree into the in-memory inode
2550 */
2551 static void btrfs_read_locked_inode(struct inode *inode)
2552 {
2553 struct btrfs_path *path;
2554 struct extent_buffer *leaf;
2555 struct btrfs_inode_item *inode_item;
2556 struct btrfs_timespec *tspec;
2557 struct btrfs_root *root = BTRFS_I(inode)->root;
2558 struct btrfs_key location;
2559 int maybe_acls;
2560 u32 rdev;
2561 int ret;
2562 bool filled = false;
2563
2564 ret = btrfs_fill_inode(inode, &rdev);
2565 if (!ret)
2566 filled = true;
2567
2568 path = btrfs_alloc_path();
2569 if (!path)
2570 goto make_bad;
2571
2572 path->leave_spinning = 1;
2573 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2574
2575 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2576 if (ret)
2577 goto make_bad;
2578
2579 leaf = path->nodes[0];
2580
2581 if (filled)
2582 goto cache_acl;
2583
2584 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2585 struct btrfs_inode_item);
2586 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2587 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2588 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
2589 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
2590 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2591
2592 tspec = btrfs_inode_atime(inode_item);
2593 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2594 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2595
2596 tspec = btrfs_inode_mtime(inode_item);
2597 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2598 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2599
2600 tspec = btrfs_inode_ctime(inode_item);
2601 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2602 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2603
2604 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2605 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2606 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
2607
2608 /*
2609 * If we were modified in the current generation and evicted from memory
2610 * and then re-read we need to do a full sync since we don't have any
2611 * idea about which extents were modified before we were evicted from
2612 * cache.
2613 */
2614 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
2615 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2616 &BTRFS_I(inode)->runtime_flags);
2617
2618 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
2619 inode->i_generation = BTRFS_I(inode)->generation;
2620 inode->i_rdev = 0;
2621 rdev = btrfs_inode_rdev(leaf, inode_item);
2622
2623 BTRFS_I(inode)->index_cnt = (u64)-1;
2624 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2625 cache_acl:
2626 /*
2627 * try to precache a NULL acl entry for files that don't have
2628 * any xattrs or acls
2629 */
2630 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2631 btrfs_ino(inode));
2632 if (!maybe_acls)
2633 cache_no_acl(inode);
2634
2635 btrfs_free_path(path);
2636
2637 switch (inode->i_mode & S_IFMT) {
2638 case S_IFREG:
2639 inode->i_mapping->a_ops = &btrfs_aops;
2640 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2641 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2642 inode->i_fop = &btrfs_file_operations;
2643 inode->i_op = &btrfs_file_inode_operations;
2644 break;
2645 case S_IFDIR:
2646 inode->i_fop = &btrfs_dir_file_operations;
2647 if (root == root->fs_info->tree_root)
2648 inode->i_op = &btrfs_dir_ro_inode_operations;
2649 else
2650 inode->i_op = &btrfs_dir_inode_operations;
2651 break;
2652 case S_IFLNK:
2653 inode->i_op = &btrfs_symlink_inode_operations;
2654 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2655 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2656 break;
2657 default:
2658 inode->i_op = &btrfs_special_inode_operations;
2659 init_special_inode(inode, inode->i_mode, rdev);
2660 break;
2661 }
2662
2663 btrfs_update_iflags(inode);
2664 return;
2665
2666 make_bad:
2667 btrfs_free_path(path);
2668 make_bad_inode(inode);
2669 }
2670
2671 /*
2672 * given a leaf and an inode, copy the inode fields into the leaf
2673 */
2674 static void fill_inode_item(struct btrfs_trans_handle *trans,
2675 struct extent_buffer *leaf,
2676 struct btrfs_inode_item *item,
2677 struct inode *inode)
2678 {
2679 btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
2680 btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
2681 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2682 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2683 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2684
2685 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2686 inode->i_atime.tv_sec);
2687 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2688 inode->i_atime.tv_nsec);
2689
2690 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2691 inode->i_mtime.tv_sec);
2692 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2693 inode->i_mtime.tv_nsec);
2694
2695 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2696 inode->i_ctime.tv_sec);
2697 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2698 inode->i_ctime.tv_nsec);
2699
2700 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2701 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2702 btrfs_set_inode_sequence(leaf, item, inode->i_version);
2703 btrfs_set_inode_transid(leaf, item, trans->transid);
2704 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2705 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2706 btrfs_set_inode_block_group(leaf, item, 0);
2707 }
2708
2709 /*
2710 * copy everything in the in-memory inode into the btree.
2711 */
2712 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
2713 struct btrfs_root *root, struct inode *inode)
2714 {
2715 struct btrfs_inode_item *inode_item;
2716 struct btrfs_path *path;
2717 struct extent_buffer *leaf;
2718 int ret;
2719
2720 path = btrfs_alloc_path();
2721 if (!path)
2722 return -ENOMEM;
2723
2724 path->leave_spinning = 1;
2725 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2726 1);
2727 if (ret) {
2728 if (ret > 0)
2729 ret = -ENOENT;
2730 goto failed;
2731 }
2732
2733 btrfs_unlock_up_safe(path, 1);
2734 leaf = path->nodes[0];
2735 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2736 struct btrfs_inode_item);
2737
2738 fill_inode_item(trans, leaf, inode_item, inode);
2739 btrfs_mark_buffer_dirty(leaf);
2740 btrfs_set_inode_last_trans(trans, inode);
2741 ret = 0;
2742 failed:
2743 btrfs_free_path(path);
2744 return ret;
2745 }
2746
2747 /*
2748 * copy everything in the in-memory inode into the btree.
2749 */
2750 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2751 struct btrfs_root *root, struct inode *inode)
2752 {
2753 int ret;
2754
2755 /*
2756 * If the inode is a free space inode, we can deadlock during commit
2757 * if we put it into the delayed code.
2758 *
2759 * The data relocation inode should also be directly updated
2760 * without delay
2761 */
2762 if (!btrfs_is_free_space_inode(inode)
2763 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2764 btrfs_update_root_times(trans, root);
2765
2766 ret = btrfs_delayed_update_inode(trans, root, inode);
2767 if (!ret)
2768 btrfs_set_inode_last_trans(trans, inode);
2769 return ret;
2770 }
2771
2772 return btrfs_update_inode_item(trans, root, inode);
2773 }
2774
2775 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2776 struct btrfs_root *root,
2777 struct inode *inode)
2778 {
2779 int ret;
2780
2781 ret = btrfs_update_inode(trans, root, inode);
2782 if (ret == -ENOSPC)
2783 return btrfs_update_inode_item(trans, root, inode);
2784 return ret;
2785 }
2786
2787 /*
2788 * unlink helper that gets used here in inode.c and in the tree logging
2789 * recovery code. It remove a link in a directory with a given name, and
2790 * also drops the back refs in the inode to the directory
2791 */
2792 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2793 struct btrfs_root *root,
2794 struct inode *dir, struct inode *inode,
2795 const char *name, int name_len)
2796 {
2797 struct btrfs_path *path;
2798 int ret = 0;
2799 struct extent_buffer *leaf;
2800 struct btrfs_dir_item *di;
2801 struct btrfs_key key;
2802 u64 index;
2803 u64 ino = btrfs_ino(inode);
2804 u64 dir_ino = btrfs_ino(dir);
2805
2806 path = btrfs_alloc_path();
2807 if (!path) {
2808 ret = -ENOMEM;
2809 goto out;
2810 }
2811
2812 path->leave_spinning = 1;
2813 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2814 name, name_len, -1);
2815 if (IS_ERR(di)) {
2816 ret = PTR_ERR(di);
2817 goto err;
2818 }
2819 if (!di) {
2820 ret = -ENOENT;
2821 goto err;
2822 }
2823 leaf = path->nodes[0];
2824 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2825 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2826 if (ret)
2827 goto err;
2828 btrfs_release_path(path);
2829
2830 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2831 dir_ino, &index);
2832 if (ret) {
2833 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2834 "inode %llu parent %llu\n", name_len, name,
2835 (unsigned long long)ino, (unsigned long long)dir_ino);
2836 btrfs_abort_transaction(trans, root, ret);
2837 goto err;
2838 }
2839
2840 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2841 if (ret) {
2842 btrfs_abort_transaction(trans, root, ret);
2843 goto err;
2844 }
2845
2846 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2847 inode, dir_ino);
2848 if (ret != 0 && ret != -ENOENT) {
2849 btrfs_abort_transaction(trans, root, ret);
2850 goto err;
2851 }
2852
2853 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2854 dir, index);
2855 if (ret == -ENOENT)
2856 ret = 0;
2857 err:
2858 btrfs_free_path(path);
2859 if (ret)
2860 goto out;
2861
2862 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2863 inode_inc_iversion(inode);
2864 inode_inc_iversion(dir);
2865 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2866 ret = btrfs_update_inode(trans, root, dir);
2867 out:
2868 return ret;
2869 }
2870
2871 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2872 struct btrfs_root *root,
2873 struct inode *dir, struct inode *inode,
2874 const char *name, int name_len)
2875 {
2876 int ret;
2877 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2878 if (!ret) {
2879 btrfs_drop_nlink(inode);
2880 ret = btrfs_update_inode(trans, root, inode);
2881 }
2882 return ret;
2883 }
2884
2885
2886 /* helper to check if there is any shared block in the path */
2887 static int check_path_shared(struct btrfs_root *root,
2888 struct btrfs_path *path)
2889 {
2890 struct extent_buffer *eb;
2891 int level;
2892 u64 refs = 1;
2893
2894 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2895 int ret;
2896
2897 if (!path->nodes[level])
2898 break;
2899 eb = path->nodes[level];
2900 if (!btrfs_block_can_be_shared(root, eb))
2901 continue;
2902 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2903 &refs, NULL);
2904 if (refs > 1)
2905 return 1;
2906 }
2907 return 0;
2908 }
2909
2910 /*
2911 * helper to start transaction for unlink and rmdir.
2912 *
2913 * unlink and rmdir are special in btrfs, they do not always free space.
2914 * so in enospc case, we should make sure they will free space before
2915 * allowing them to use the global metadata reservation.
2916 */
2917 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2918 struct dentry *dentry)
2919 {
2920 struct btrfs_trans_handle *trans;
2921 struct btrfs_root *root = BTRFS_I(dir)->root;
2922 struct btrfs_path *path;
2923 struct btrfs_dir_item *di;
2924 struct inode *inode = dentry->d_inode;
2925 u64 index;
2926 int check_link = 1;
2927 int err = -ENOSPC;
2928 int ret;
2929 u64 ino = btrfs_ino(inode);
2930 u64 dir_ino = btrfs_ino(dir);
2931
2932 /*
2933 * 1 for the possible orphan item
2934 * 1 for the dir item
2935 * 1 for the dir index
2936 * 1 for the inode ref
2937 * 1 for the inode ref in the tree log
2938 * 2 for the dir entries in the log
2939 * 1 for the inode
2940 */
2941 trans = btrfs_start_transaction(root, 8);
2942 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2943 return trans;
2944
2945 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2946 return ERR_PTR(-ENOSPC);
2947
2948 /* check if there is someone else holds reference */
2949 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2950 return ERR_PTR(-ENOSPC);
2951
2952 if (atomic_read(&inode->i_count) > 2)
2953 return ERR_PTR(-ENOSPC);
2954
2955 if (xchg(&root->fs_info->enospc_unlink, 1))
2956 return ERR_PTR(-ENOSPC);
2957
2958 path = btrfs_alloc_path();
2959 if (!path) {
2960 root->fs_info->enospc_unlink = 0;
2961 return ERR_PTR(-ENOMEM);
2962 }
2963
2964 /* 1 for the orphan item */
2965 trans = btrfs_start_transaction(root, 1);
2966 if (IS_ERR(trans)) {
2967 btrfs_free_path(path);
2968 root->fs_info->enospc_unlink = 0;
2969 return trans;
2970 }
2971
2972 path->skip_locking = 1;
2973 path->search_commit_root = 1;
2974
2975 ret = btrfs_lookup_inode(trans, root, path,
2976 &BTRFS_I(dir)->location, 0);
2977 if (ret < 0) {
2978 err = ret;
2979 goto out;
2980 }
2981 if (ret == 0) {
2982 if (check_path_shared(root, path))
2983 goto out;
2984 } else {
2985 check_link = 0;
2986 }
2987 btrfs_release_path(path);
2988
2989 ret = btrfs_lookup_inode(trans, root, path,
2990 &BTRFS_I(inode)->location, 0);
2991 if (ret < 0) {
2992 err = ret;
2993 goto out;
2994 }
2995 if (ret == 0) {
2996 if (check_path_shared(root, path))
2997 goto out;
2998 } else {
2999 check_link = 0;
3000 }
3001 btrfs_release_path(path);
3002
3003 if (ret == 0 && S_ISREG(inode->i_mode)) {
3004 ret = btrfs_lookup_file_extent(trans, root, path,
3005 ino, (u64)-1, 0);
3006 if (ret < 0) {
3007 err = ret;
3008 goto out;
3009 }
3010 BUG_ON(ret == 0); /* Corruption */
3011 if (check_path_shared(root, path))
3012 goto out;
3013 btrfs_release_path(path);
3014 }
3015
3016 if (!check_link) {
3017 err = 0;
3018 goto out;
3019 }
3020
3021 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3022 dentry->d_name.name, dentry->d_name.len, 0);
3023 if (IS_ERR(di)) {
3024 err = PTR_ERR(di);
3025 goto out;
3026 }
3027 if (di) {
3028 if (check_path_shared(root, path))
3029 goto out;
3030 } else {
3031 err = 0;
3032 goto out;
3033 }
3034 btrfs_release_path(path);
3035
3036 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name,
3037 dentry->d_name.len, ino, dir_ino, 0,
3038 &index);
3039 if (ret) {
3040 err = ret;
3041 goto out;
3042 }
3043
3044 if (check_path_shared(root, path))
3045 goto out;
3046
3047 btrfs_release_path(path);
3048
3049 /*
3050 * This is a commit root search, if we can lookup inode item and other
3051 * relative items in the commit root, it means the transaction of
3052 * dir/file creation has been committed, and the dir index item that we
3053 * delay to insert has also been inserted into the commit root. So
3054 * we needn't worry about the delayed insertion of the dir index item
3055 * here.
3056 */
3057 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
3058 dentry->d_name.name, dentry->d_name.len, 0);
3059 if (IS_ERR(di)) {
3060 err = PTR_ERR(di);
3061 goto out;
3062 }
3063 BUG_ON(ret == -ENOENT);
3064 if (check_path_shared(root, path))
3065 goto out;
3066
3067 err = 0;
3068 out:
3069 btrfs_free_path(path);
3070 /* Migrate the orphan reservation over */
3071 if (!err)
3072 err = btrfs_block_rsv_migrate(trans->block_rsv,
3073 &root->fs_info->global_block_rsv,
3074 trans->bytes_reserved);
3075
3076 if (err) {
3077 btrfs_end_transaction(trans, root);
3078 root->fs_info->enospc_unlink = 0;
3079 return ERR_PTR(err);
3080 }
3081
3082 trans->block_rsv = &root->fs_info->global_block_rsv;
3083 return trans;
3084 }
3085
3086 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3087 struct btrfs_root *root)
3088 {
3089 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) {
3090 btrfs_block_rsv_release(root, trans->block_rsv,
3091 trans->bytes_reserved);
3092 trans->block_rsv = &root->fs_info->trans_block_rsv;
3093 BUG_ON(!root->fs_info->enospc_unlink);
3094 root->fs_info->enospc_unlink = 0;
3095 }
3096 btrfs_end_transaction(trans, root);
3097 }
3098
3099 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3100 {
3101 struct btrfs_root *root = BTRFS_I(dir)->root;
3102 struct btrfs_trans_handle *trans;
3103 struct inode *inode = dentry->d_inode;
3104 int ret;
3105
3106 trans = __unlink_start_trans(dir, dentry);
3107 if (IS_ERR(trans))
3108 return PTR_ERR(trans);
3109
3110 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3111
3112 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3113 dentry->d_name.name, dentry->d_name.len);
3114 if (ret)
3115 goto out;
3116
3117 if (inode->i_nlink == 0) {
3118 ret = btrfs_orphan_add(trans, inode);
3119 if (ret)
3120 goto out;
3121 }
3122
3123 out:
3124 __unlink_end_trans(trans, root);
3125 btrfs_btree_balance_dirty(root);
3126 return ret;
3127 }
3128
3129 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3130 struct btrfs_root *root,
3131 struct inode *dir, u64 objectid,
3132 const char *name, int name_len)
3133 {
3134 struct btrfs_path *path;
3135 struct extent_buffer *leaf;
3136 struct btrfs_dir_item *di;
3137 struct btrfs_key key;
3138 u64 index;
3139 int ret;
3140 u64 dir_ino = btrfs_ino(dir);
3141
3142 path = btrfs_alloc_path();
3143 if (!path)
3144 return -ENOMEM;
3145
3146 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3147 name, name_len, -1);
3148 if (IS_ERR_OR_NULL(di)) {
3149 if (!di)
3150 ret = -ENOENT;
3151 else
3152 ret = PTR_ERR(di);
3153 goto out;
3154 }
3155
3156 leaf = path->nodes[0];
3157 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3158 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3159 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3160 if (ret) {
3161 btrfs_abort_transaction(trans, root, ret);
3162 goto out;
3163 }
3164 btrfs_release_path(path);
3165
3166 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3167 objectid, root->root_key.objectid,
3168 dir_ino, &index, name, name_len);
3169 if (ret < 0) {
3170 if (ret != -ENOENT) {
3171 btrfs_abort_transaction(trans, root, ret);
3172 goto out;
3173 }
3174 di = btrfs_search_dir_index_item(root, path, dir_ino,
3175 name, name_len);
3176 if (IS_ERR_OR_NULL(di)) {
3177 if (!di)
3178 ret = -ENOENT;
3179 else
3180 ret = PTR_ERR(di);
3181 btrfs_abort_transaction(trans, root, ret);
3182 goto out;
3183 }
3184
3185 leaf = path->nodes[0];
3186 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3187 btrfs_release_path(path);
3188 index = key.offset;
3189 }
3190 btrfs_release_path(path);
3191
3192 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3193 if (ret) {
3194 btrfs_abort_transaction(trans, root, ret);
3195 goto out;
3196 }
3197
3198 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3199 inode_inc_iversion(dir);
3200 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3201 ret = btrfs_update_inode_fallback(trans, root, dir);
3202 if (ret)
3203 btrfs_abort_transaction(trans, root, ret);
3204 out:
3205 btrfs_free_path(path);
3206 return ret;
3207 }
3208
3209 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3210 {
3211 struct inode *inode = dentry->d_inode;
3212 int err = 0;
3213 struct btrfs_root *root = BTRFS_I(dir)->root;
3214 struct btrfs_trans_handle *trans;
3215
3216 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3217 return -ENOTEMPTY;
3218 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3219 return -EPERM;
3220
3221 trans = __unlink_start_trans(dir, dentry);
3222 if (IS_ERR(trans))
3223 return PTR_ERR(trans);
3224
3225 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3226 err = btrfs_unlink_subvol(trans, root, dir,
3227 BTRFS_I(inode)->location.objectid,
3228 dentry->d_name.name,
3229 dentry->d_name.len);
3230 goto out;
3231 }
3232
3233 err = btrfs_orphan_add(trans, inode);
3234 if (err)
3235 goto out;
3236
3237 /* now the directory is empty */
3238 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3239 dentry->d_name.name, dentry->d_name.len);
3240 if (!err)
3241 btrfs_i_size_write(inode, 0);
3242 out:
3243 __unlink_end_trans(trans, root);
3244 btrfs_btree_balance_dirty(root);
3245
3246 return err;
3247 }
3248
3249 /*
3250 * this can truncate away extent items, csum items and directory items.
3251 * It starts at a high offset and removes keys until it can't find
3252 * any higher than new_size
3253 *
3254 * csum items that cross the new i_size are truncated to the new size
3255 * as well.
3256 *
3257 * min_type is the minimum key type to truncate down to. If set to 0, this
3258 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3259 */
3260 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3261 struct btrfs_root *root,
3262 struct inode *inode,
3263 u64 new_size, u32 min_type)
3264 {
3265 struct btrfs_path *path;
3266 struct extent_buffer *leaf;
3267 struct btrfs_file_extent_item *fi;
3268 struct btrfs_key key;
3269 struct btrfs_key found_key;
3270 u64 extent_start = 0;
3271 u64 extent_num_bytes = 0;
3272 u64 extent_offset = 0;
3273 u64 item_end = 0;
3274 u64 mask = root->sectorsize - 1;
3275 u32 found_type = (u8)-1;
3276 int found_extent;
3277 int del_item;
3278 int pending_del_nr = 0;
3279 int pending_del_slot = 0;
3280 int extent_type = -1;
3281 int ret;
3282 int err = 0;
3283 u64 ino = btrfs_ino(inode);
3284
3285 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3286
3287 path = btrfs_alloc_path();
3288 if (!path)
3289 return -ENOMEM;
3290 path->reada = -1;
3291
3292 /*
3293 * We want to drop from the next block forward in case this new size is
3294 * not block aligned since we will be keeping the last block of the
3295 * extent just the way it is.
3296 */
3297 if (root->ref_cows || root == root->fs_info->tree_root)
3298 btrfs_drop_extent_cache(inode, (new_size + mask) & (~mask), (u64)-1, 0);
3299
3300 /*
3301 * This function is also used to drop the items in the log tree before
3302 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3303 * it is used to drop the loged items. So we shouldn't kill the delayed
3304 * items.
3305 */
3306 if (min_type == 0 && root == BTRFS_I(inode)->root)
3307 btrfs_kill_delayed_inode_items(inode);
3308
3309 key.objectid = ino;
3310 key.offset = (u64)-1;
3311 key.type = (u8)-1;
3312
3313 search_again:
3314 path->leave_spinning = 1;
3315 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3316 if (ret < 0) {
3317 err = ret;
3318 goto out;
3319 }
3320
3321 if (ret > 0) {
3322 /* there are no items in the tree for us to truncate, we're
3323 * done
3324 */
3325 if (path->slots[0] == 0)
3326 goto out;
3327 path->slots[0]--;
3328 }
3329
3330 while (1) {
3331 fi = NULL;
3332 leaf = path->nodes[0];
3333 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3334 found_type = btrfs_key_type(&found_key);
3335
3336 if (found_key.objectid != ino)
3337 break;
3338
3339 if (found_type < min_type)
3340 break;
3341
3342 item_end = found_key.offset;
3343 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3344 fi = btrfs_item_ptr(leaf, path->slots[0],
3345 struct btrfs_file_extent_item);
3346 extent_type = btrfs_file_extent_type(leaf, fi);
3347 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3348 item_end +=
3349 btrfs_file_extent_num_bytes(leaf, fi);
3350 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3351 item_end += btrfs_file_extent_inline_len(leaf,
3352 fi);
3353 }
3354 item_end--;
3355 }
3356 if (found_type > min_type) {
3357 del_item = 1;
3358 } else {
3359 if (item_end < new_size)
3360 break;
3361 if (found_key.offset >= new_size)
3362 del_item = 1;
3363 else
3364 del_item = 0;
3365 }
3366 found_extent = 0;
3367 /* FIXME, shrink the extent if the ref count is only 1 */
3368 if (found_type != BTRFS_EXTENT_DATA_KEY)
3369 goto delete;
3370
3371 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3372 u64 num_dec;
3373 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3374 if (!del_item) {
3375 u64 orig_num_bytes =
3376 btrfs_file_extent_num_bytes(leaf, fi);
3377 extent_num_bytes = new_size -
3378 found_key.offset + root->sectorsize - 1;
3379 extent_num_bytes = extent_num_bytes &
3380 ~((u64)root->sectorsize - 1);
3381 btrfs_set_file_extent_num_bytes(leaf, fi,
3382 extent_num_bytes);
3383 num_dec = (orig_num_bytes -
3384 extent_num_bytes);
3385 if (root->ref_cows && extent_start != 0)
3386 inode_sub_bytes(inode, num_dec);
3387 btrfs_mark_buffer_dirty(leaf);
3388 } else {
3389 extent_num_bytes =
3390 btrfs_file_extent_disk_num_bytes(leaf,
3391 fi);
3392 extent_offset = found_key.offset -
3393 btrfs_file_extent_offset(leaf, fi);
3394
3395 /* FIXME blocksize != 4096 */
3396 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3397 if (extent_start != 0) {
3398 found_extent = 1;
3399 if (root->ref_cows)
3400 inode_sub_bytes(inode, num_dec);
3401 }
3402 }
3403 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3404 /*
3405 * we can't truncate inline items that have had
3406 * special encodings
3407 */
3408 if (!del_item &&
3409 btrfs_file_extent_compression(leaf, fi) == 0 &&
3410 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3411 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3412 u32 size = new_size - found_key.offset;
3413
3414 if (root->ref_cows) {
3415 inode_sub_bytes(inode, item_end + 1 -
3416 new_size);
3417 }
3418 size =
3419 btrfs_file_extent_calc_inline_size(size);
3420 btrfs_truncate_item(trans, root, path,
3421 size, 1);
3422 } else if (root->ref_cows) {
3423 inode_sub_bytes(inode, item_end + 1 -
3424 found_key.offset);
3425 }
3426 }
3427 delete:
3428 if (del_item) {
3429 if (!pending_del_nr) {
3430 /* no pending yet, add ourselves */
3431 pending_del_slot = path->slots[0];
3432 pending_del_nr = 1;
3433 } else if (pending_del_nr &&
3434 path->slots[0] + 1 == pending_del_slot) {
3435 /* hop on the pending chunk */
3436 pending_del_nr++;
3437 pending_del_slot = path->slots[0];
3438 } else {
3439 BUG();
3440 }
3441 } else {
3442 break;
3443 }
3444 if (found_extent && (root->ref_cows ||
3445 root == root->fs_info->tree_root)) {
3446 btrfs_set_path_blocking(path);
3447 ret = btrfs_free_extent(trans, root, extent_start,
3448 extent_num_bytes, 0,
3449 btrfs_header_owner(leaf),
3450 ino, extent_offset, 0);
3451 BUG_ON(ret);
3452 }
3453
3454 if (found_type == BTRFS_INODE_ITEM_KEY)
3455 break;
3456
3457 if (path->slots[0] == 0 ||
3458 path->slots[0] != pending_del_slot) {
3459 if (pending_del_nr) {
3460 ret = btrfs_del_items(trans, root, path,
3461 pending_del_slot,
3462 pending_del_nr);
3463 if (ret) {
3464 btrfs_abort_transaction(trans,
3465 root, ret);
3466 goto error;
3467 }
3468 pending_del_nr = 0;
3469 }
3470 btrfs_release_path(path);
3471 goto search_again;
3472 } else {
3473 path->slots[0]--;
3474 }
3475 }
3476 out:
3477 if (pending_del_nr) {
3478 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3479 pending_del_nr);
3480 if (ret)
3481 btrfs_abort_transaction(trans, root, ret);
3482 }
3483 error:
3484 btrfs_free_path(path);
3485 return err;
3486 }
3487
3488 /*
3489 * btrfs_truncate_page - read, zero a chunk and write a page
3490 * @inode - inode that we're zeroing
3491 * @from - the offset to start zeroing
3492 * @len - the length to zero, 0 to zero the entire range respective to the
3493 * offset
3494 * @front - zero up to the offset instead of from the offset on
3495 *
3496 * This will find the page for the "from" offset and cow the page and zero the
3497 * part we want to zero. This is used with truncate and hole punching.
3498 */
3499 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3500 int front)
3501 {
3502 struct address_space *mapping = inode->i_mapping;
3503 struct btrfs_root *root = BTRFS_I(inode)->root;
3504 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3505 struct btrfs_ordered_extent *ordered;
3506 struct extent_state *cached_state = NULL;
3507 char *kaddr;
3508 u32 blocksize = root->sectorsize;
3509 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3510 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3511 struct page *page;
3512 gfp_t mask = btrfs_alloc_write_mask(mapping);
3513 int ret = 0;
3514 u64 page_start;
3515 u64 page_end;
3516
3517 if ((offset & (blocksize - 1)) == 0 &&
3518 (!len || ((len & (blocksize - 1)) == 0)))
3519 goto out;
3520 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3521 if (ret)
3522 goto out;
3523
3524 again:
3525 page = find_or_create_page(mapping, index, mask);
3526 if (!page) {
3527 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3528 ret = -ENOMEM;
3529 goto out;
3530 }
3531
3532 page_start = page_offset(page);
3533 page_end = page_start + PAGE_CACHE_SIZE - 1;
3534
3535 if (!PageUptodate(page)) {
3536 ret = btrfs_readpage(NULL, page);
3537 lock_page(page);
3538 if (page->mapping != mapping) {
3539 unlock_page(page);
3540 page_cache_release(page);
3541 goto again;
3542 }
3543 if (!PageUptodate(page)) {
3544 ret = -EIO;
3545 goto out_unlock;
3546 }
3547 }
3548 wait_on_page_writeback(page);
3549
3550 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
3551 set_page_extent_mapped(page);
3552
3553 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3554 if (ordered) {
3555 unlock_extent_cached(io_tree, page_start, page_end,
3556 &cached_state, GFP_NOFS);
3557 unlock_page(page);
3558 page_cache_release(page);
3559 btrfs_start_ordered_extent(inode, ordered, 1);
3560 btrfs_put_ordered_extent(ordered);
3561 goto again;
3562 }
3563
3564 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3565 EXTENT_DIRTY | EXTENT_DELALLOC |
3566 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
3567 0, 0, &cached_state, GFP_NOFS);
3568
3569 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3570 &cached_state);
3571 if (ret) {
3572 unlock_extent_cached(io_tree, page_start, page_end,
3573 &cached_state, GFP_NOFS);
3574 goto out_unlock;
3575 }
3576
3577 if (offset != PAGE_CACHE_SIZE) {
3578 if (!len)
3579 len = PAGE_CACHE_SIZE - offset;
3580 kaddr = kmap(page);
3581 if (front)
3582 memset(kaddr, 0, offset);
3583 else
3584 memset(kaddr + offset, 0, len);
3585 flush_dcache_page(page);
3586 kunmap(page);
3587 }
3588 ClearPageChecked(page);
3589 set_page_dirty(page);
3590 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3591 GFP_NOFS);
3592
3593 out_unlock:
3594 if (ret)
3595 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3596 unlock_page(page);
3597 page_cache_release(page);
3598 out:
3599 return ret;
3600 }
3601
3602 /*
3603 * This function puts in dummy file extents for the area we're creating a hole
3604 * for. So if we are truncating this file to a larger size we need to insert
3605 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3606 * the range between oldsize and size
3607 */
3608 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3609 {
3610 struct btrfs_trans_handle *trans;
3611 struct btrfs_root *root = BTRFS_I(inode)->root;
3612 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3613 struct extent_map *em = NULL;
3614 struct extent_state *cached_state = NULL;
3615 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3616 u64 mask = root->sectorsize - 1;
3617 u64 hole_start = (oldsize + mask) & ~mask;
3618 u64 block_end = (size + mask) & ~mask;
3619 u64 last_byte;
3620 u64 cur_offset;
3621 u64 hole_size;
3622 int err = 0;
3623
3624 if (size <= hole_start)
3625 return 0;
3626
3627 while (1) {
3628 struct btrfs_ordered_extent *ordered;
3629 btrfs_wait_ordered_range(inode, hole_start,
3630 block_end - hole_start);
3631 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3632 &cached_state);
3633 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3634 if (!ordered)
3635 break;
3636 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3637 &cached_state, GFP_NOFS);
3638 btrfs_put_ordered_extent(ordered);
3639 }
3640
3641 cur_offset = hole_start;
3642 while (1) {
3643 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3644 block_end - cur_offset, 0);
3645 if (IS_ERR(em)) {
3646 err = PTR_ERR(em);
3647 break;
3648 }
3649 last_byte = min(extent_map_end(em), block_end);
3650 last_byte = (last_byte + mask) & ~mask;
3651 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3652 struct extent_map *hole_em;
3653 hole_size = last_byte - cur_offset;
3654
3655 trans = btrfs_start_transaction(root, 3);
3656 if (IS_ERR(trans)) {
3657 err = PTR_ERR(trans);
3658 break;
3659 }
3660
3661 err = btrfs_drop_extents(trans, root, inode,
3662 cur_offset,
3663 cur_offset + hole_size, 1);
3664 if (err) {
3665 btrfs_abort_transaction(trans, root, err);
3666 btrfs_end_transaction(trans, root);
3667 break;
3668 }
3669
3670 err = btrfs_insert_file_extent(trans, root,
3671 btrfs_ino(inode), cur_offset, 0,
3672 0, hole_size, 0, hole_size,
3673 0, 0, 0);
3674 if (err) {
3675 btrfs_abort_transaction(trans, root, err);
3676 btrfs_end_transaction(trans, root);
3677 break;
3678 }
3679
3680 btrfs_drop_extent_cache(inode, cur_offset,
3681 cur_offset + hole_size - 1, 0);
3682 hole_em = alloc_extent_map();
3683 if (!hole_em) {
3684 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3685 &BTRFS_I(inode)->runtime_flags);
3686 goto next;
3687 }
3688 hole_em->start = cur_offset;
3689 hole_em->len = hole_size;
3690 hole_em->orig_start = cur_offset;
3691
3692 hole_em->block_start = EXTENT_MAP_HOLE;
3693 hole_em->block_len = 0;
3694 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
3695 hole_em->compress_type = BTRFS_COMPRESS_NONE;
3696 hole_em->generation = trans->transid;
3697
3698 while (1) {
3699 write_lock(&em_tree->lock);
3700 err = add_extent_mapping(em_tree, hole_em);
3701 if (!err)
3702 list_move(&hole_em->list,
3703 &em_tree->modified_extents);
3704 write_unlock(&em_tree->lock);
3705 if (err != -EEXIST)
3706 break;
3707 btrfs_drop_extent_cache(inode, cur_offset,
3708 cur_offset +
3709 hole_size - 1, 0);
3710 }
3711 free_extent_map(hole_em);
3712 next:
3713 btrfs_update_inode(trans, root, inode);
3714 btrfs_end_transaction(trans, root);
3715 }
3716 free_extent_map(em);
3717 em = NULL;
3718 cur_offset = last_byte;
3719 if (cur_offset >= block_end)
3720 break;
3721 }
3722
3723 free_extent_map(em);
3724 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3725 GFP_NOFS);
3726 return err;
3727 }
3728
3729 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3730 {
3731 struct btrfs_root *root = BTRFS_I(inode)->root;
3732 struct btrfs_trans_handle *trans;
3733 loff_t oldsize = i_size_read(inode);
3734 int ret;
3735
3736 if (newsize == oldsize)
3737 return 0;
3738
3739 if (newsize > oldsize) {
3740 truncate_pagecache(inode, oldsize, newsize);
3741 ret = btrfs_cont_expand(inode, oldsize, newsize);
3742 if (ret)
3743 return ret;
3744
3745 trans = btrfs_start_transaction(root, 1);
3746 if (IS_ERR(trans))
3747 return PTR_ERR(trans);
3748
3749 i_size_write(inode, newsize);
3750 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3751 ret = btrfs_update_inode(trans, root, inode);
3752 btrfs_end_transaction(trans, root);
3753 } else {
3754
3755 /*
3756 * We're truncating a file that used to have good data down to
3757 * zero. Make sure it gets into the ordered flush list so that
3758 * any new writes get down to disk quickly.
3759 */
3760 if (newsize == 0)
3761 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
3762 &BTRFS_I(inode)->runtime_flags);
3763
3764 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3765 truncate_setsize(inode, newsize);
3766 ret = btrfs_truncate(inode);
3767 }
3768
3769 return ret;
3770 }
3771
3772 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3773 {
3774 struct inode *inode = dentry->d_inode;
3775 struct btrfs_root *root = BTRFS_I(inode)->root;
3776 int err;
3777
3778 if (btrfs_root_readonly(root))
3779 return -EROFS;
3780
3781 err = inode_change_ok(inode, attr);
3782 if (err)
3783 return err;
3784
3785 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3786 err = btrfs_setsize(inode, attr->ia_size);
3787 if (err)
3788 return err;
3789 }
3790
3791 if (attr->ia_valid) {
3792 setattr_copy(inode, attr);
3793 inode_inc_iversion(inode);
3794 err = btrfs_dirty_inode(inode);
3795
3796 if (!err && attr->ia_valid & ATTR_MODE)
3797 err = btrfs_acl_chmod(inode);
3798 }
3799
3800 return err;
3801 }
3802
3803 void btrfs_evict_inode(struct inode *inode)
3804 {
3805 struct btrfs_trans_handle *trans;
3806 struct btrfs_root *root = BTRFS_I(inode)->root;
3807 struct btrfs_block_rsv *rsv, *global_rsv;
3808 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
3809 int ret;
3810
3811 trace_btrfs_inode_evict(inode);
3812
3813 truncate_inode_pages(&inode->i_data, 0);
3814 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3815 btrfs_is_free_space_inode(inode)))
3816 goto no_delete;
3817
3818 if (is_bad_inode(inode)) {
3819 btrfs_orphan_del(NULL, inode);
3820 goto no_delete;
3821 }
3822 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3823 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3824
3825 if (root->fs_info->log_root_recovering) {
3826 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3827 &BTRFS_I(inode)->runtime_flags));
3828 goto no_delete;
3829 }
3830
3831 if (inode->i_nlink > 0) {
3832 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3833 goto no_delete;
3834 }
3835
3836 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3837 if (!rsv) {
3838 btrfs_orphan_del(NULL, inode);
3839 goto no_delete;
3840 }
3841 rsv->size = min_size;
3842 rsv->failfast = 1;
3843 global_rsv = &root->fs_info->global_block_rsv;
3844
3845 btrfs_i_size_write(inode, 0);
3846
3847 /*
3848 * This is a bit simpler than btrfs_truncate since we've already
3849 * reserved our space for our orphan item in the unlink, so we just
3850 * need to reserve some slack space in case we add bytes and update
3851 * inode item when doing the truncate.
3852 */
3853 while (1) {
3854 ret = btrfs_block_rsv_refill(root, rsv, min_size,
3855 BTRFS_RESERVE_FLUSH_LIMIT);
3856
3857 /*
3858 * Try and steal from the global reserve since we will
3859 * likely not use this space anyway, we want to try as
3860 * hard as possible to get this to work.
3861 */
3862 if (ret)
3863 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3864
3865 if (ret) {
3866 printk(KERN_WARNING "Could not get space for a "
3867 "delete, will truncate on mount %d\n", ret);
3868 btrfs_orphan_del(NULL, inode);
3869 btrfs_free_block_rsv(root, rsv);
3870 goto no_delete;
3871 }
3872
3873 trans = btrfs_start_transaction_lflush(root, 1);
3874 if (IS_ERR(trans)) {
3875 btrfs_orphan_del(NULL, inode);
3876 btrfs_free_block_rsv(root, rsv);
3877 goto no_delete;
3878 }
3879
3880 trans->block_rsv = rsv;
3881
3882 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3883 if (ret != -ENOSPC)
3884 break;
3885
3886 trans->block_rsv = &root->fs_info->trans_block_rsv;
3887 ret = btrfs_update_inode(trans, root, inode);
3888 BUG_ON(ret);
3889
3890 btrfs_end_transaction(trans, root);
3891 trans = NULL;
3892 btrfs_btree_balance_dirty(root);
3893 }
3894
3895 btrfs_free_block_rsv(root, rsv);
3896
3897 if (ret == 0) {
3898 trans->block_rsv = root->orphan_block_rsv;
3899 ret = btrfs_orphan_del(trans, inode);
3900 BUG_ON(ret);
3901 }
3902
3903 trans->block_rsv = &root->fs_info->trans_block_rsv;
3904 if (!(root == root->fs_info->tree_root ||
3905 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3906 btrfs_return_ino(root, btrfs_ino(inode));
3907
3908 btrfs_end_transaction(trans, root);
3909 btrfs_btree_balance_dirty(root);
3910 no_delete:
3911 clear_inode(inode);
3912 return;
3913 }
3914
3915 /*
3916 * this returns the key found in the dir entry in the location pointer.
3917 * If no dir entries were found, location->objectid is 0.
3918 */
3919 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3920 struct btrfs_key *location)
3921 {
3922 const char *name = dentry->d_name.name;
3923 int namelen = dentry->d_name.len;
3924 struct btrfs_dir_item *di;
3925 struct btrfs_path *path;
3926 struct btrfs_root *root = BTRFS_I(dir)->root;
3927 int ret = 0;
3928
3929 path = btrfs_alloc_path();
3930 if (!path)
3931 return -ENOMEM;
3932
3933 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3934 namelen, 0);
3935 if (IS_ERR(di))
3936 ret = PTR_ERR(di);
3937
3938 if (IS_ERR_OR_NULL(di))
3939 goto out_err;
3940
3941 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3942 out:
3943 btrfs_free_path(path);
3944 return ret;
3945 out_err:
3946 location->objectid = 0;
3947 goto out;
3948 }
3949
3950 /*
3951 * when we hit a tree root in a directory, the btrfs part of the inode
3952 * needs to be changed to reflect the root directory of the tree root. This
3953 * is kind of like crossing a mount point.
3954 */
3955 static int fixup_tree_root_location(struct btrfs_root *root,
3956 struct inode *dir,
3957 struct dentry *dentry,
3958 struct btrfs_key *location,
3959 struct btrfs_root **sub_root)
3960 {
3961 struct btrfs_path *path;
3962 struct btrfs_root *new_root;
3963 struct btrfs_root_ref *ref;
3964 struct extent_buffer *leaf;
3965 int ret;
3966 int err = 0;
3967
3968 path = btrfs_alloc_path();
3969 if (!path) {
3970 err = -ENOMEM;
3971 goto out;
3972 }
3973
3974 err = -ENOENT;
3975 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3976 BTRFS_I(dir)->root->root_key.objectid,
3977 location->objectid);
3978 if (ret) {
3979 if (ret < 0)
3980 err = ret;
3981 goto out;
3982 }
3983
3984 leaf = path->nodes[0];
3985 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3986 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3987 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3988 goto out;
3989
3990 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3991 (unsigned long)(ref + 1),
3992 dentry->d_name.len);
3993 if (ret)
3994 goto out;
3995
3996 btrfs_release_path(path);
3997
3998 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3999 if (IS_ERR(new_root)) {
4000 err = PTR_ERR(new_root);
4001 goto out;
4002 }
4003
4004 if (btrfs_root_refs(&new_root->root_item) == 0) {
4005 err = -ENOENT;
4006 goto out;
4007 }
4008
4009 *sub_root = new_root;
4010 location->objectid = btrfs_root_dirid(&new_root->root_item);
4011 location->type = BTRFS_INODE_ITEM_KEY;
4012 location->offset = 0;
4013 err = 0;
4014 out:
4015 btrfs_free_path(path);
4016 return err;
4017 }
4018
4019 static void inode_tree_add(struct inode *inode)
4020 {
4021 struct btrfs_root *root = BTRFS_I(inode)->root;
4022 struct btrfs_inode *entry;
4023 struct rb_node **p;
4024 struct rb_node *parent;
4025 u64 ino = btrfs_ino(inode);
4026 again:
4027 p = &root->inode_tree.rb_node;
4028 parent = NULL;
4029
4030 if (inode_unhashed(inode))
4031 return;
4032
4033 spin_lock(&root->inode_lock);
4034 while (*p) {
4035 parent = *p;
4036 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4037
4038 if (ino < btrfs_ino(&entry->vfs_inode))
4039 p = &parent->rb_left;
4040 else if (ino > btrfs_ino(&entry->vfs_inode))
4041 p = &parent->rb_right;
4042 else {
4043 WARN_ON(!(entry->vfs_inode.i_state &
4044 (I_WILL_FREE | I_FREEING)));
4045 rb_erase(parent, &root->inode_tree);
4046 RB_CLEAR_NODE(parent);
4047 spin_unlock(&root->inode_lock);
4048 goto again;
4049 }
4050 }
4051 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4052 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4053 spin_unlock(&root->inode_lock);
4054 }
4055
4056 static void inode_tree_del(struct inode *inode)
4057 {
4058 struct btrfs_root *root = BTRFS_I(inode)->root;
4059 int empty = 0;
4060
4061 spin_lock(&root->inode_lock);
4062 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4063 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4064 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4065 empty = RB_EMPTY_ROOT(&root->inode_tree);
4066 }
4067 spin_unlock(&root->inode_lock);
4068
4069 /*
4070 * Free space cache has inodes in the tree root, but the tree root has a
4071 * root_refs of 0, so this could end up dropping the tree root as a
4072 * snapshot, so we need the extra !root->fs_info->tree_root check to
4073 * make sure we don't drop it.
4074 */
4075 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4076 root != root->fs_info->tree_root) {
4077 synchronize_srcu(&root->fs_info->subvol_srcu);
4078 spin_lock(&root->inode_lock);
4079 empty = RB_EMPTY_ROOT(&root->inode_tree);
4080 spin_unlock(&root->inode_lock);
4081 if (empty)
4082 btrfs_add_dead_root(root);
4083 }
4084 }
4085
4086 void btrfs_invalidate_inodes(struct btrfs_root *root)
4087 {
4088 struct rb_node *node;
4089 struct rb_node *prev;
4090 struct btrfs_inode *entry;
4091 struct inode *inode;
4092 u64 objectid = 0;
4093
4094 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4095
4096 spin_lock(&root->inode_lock);
4097 again:
4098 node = root->inode_tree.rb_node;
4099 prev = NULL;
4100 while (node) {
4101 prev = node;
4102 entry = rb_entry(node, struct btrfs_inode, rb_node);
4103
4104 if (objectid < btrfs_ino(&entry->vfs_inode))
4105 node = node->rb_left;
4106 else if (objectid > btrfs_ino(&entry->vfs_inode))
4107 node = node->rb_right;
4108 else
4109 break;
4110 }
4111 if (!node) {
4112 while (prev) {
4113 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4114 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4115 node = prev;
4116 break;
4117 }
4118 prev = rb_next(prev);
4119 }
4120 }
4121 while (node) {
4122 entry = rb_entry(node, struct btrfs_inode, rb_node);
4123 objectid = btrfs_ino(&entry->vfs_inode) + 1;
4124 inode = igrab(&entry->vfs_inode);
4125 if (inode) {
4126 spin_unlock(&root->inode_lock);
4127 if (atomic_read(&inode->i_count) > 1)
4128 d_prune_aliases(inode);
4129 /*
4130 * btrfs_drop_inode will have it removed from
4131 * the inode cache when its usage count
4132 * hits zero.
4133 */
4134 iput(inode);
4135 cond_resched();
4136 spin_lock(&root->inode_lock);
4137 goto again;
4138 }
4139
4140 if (cond_resched_lock(&root->inode_lock))
4141 goto again;
4142
4143 node = rb_next(node);
4144 }
4145 spin_unlock(&root->inode_lock);
4146 }
4147
4148 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4149 {
4150 struct btrfs_iget_args *args = p;
4151 inode->i_ino = args->ino;
4152 BTRFS_I(inode)->root = args->root;
4153 return 0;
4154 }
4155
4156 static int btrfs_find_actor(struct inode *inode, void *opaque)
4157 {
4158 struct btrfs_iget_args *args = opaque;
4159 return args->ino == btrfs_ino(inode) &&
4160 args->root == BTRFS_I(inode)->root;
4161 }
4162
4163 static struct inode *btrfs_iget_locked(struct super_block *s,
4164 u64 objectid,
4165 struct btrfs_root *root)
4166 {
4167 struct inode *inode;
4168 struct btrfs_iget_args args;
4169 args.ino = objectid;
4170 args.root = root;
4171
4172 inode = iget5_locked(s, objectid, btrfs_find_actor,
4173 btrfs_init_locked_inode,
4174 (void *)&args);
4175 return inode;
4176 }
4177
4178 /* Get an inode object given its location and corresponding root.
4179 * Returns in *is_new if the inode was read from disk
4180 */
4181 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4182 struct btrfs_root *root, int *new)
4183 {
4184 struct inode *inode;
4185
4186 inode = btrfs_iget_locked(s, location->objectid, root);
4187 if (!inode)
4188 return ERR_PTR(-ENOMEM);
4189
4190 if (inode->i_state & I_NEW) {
4191 BTRFS_I(inode)->root = root;
4192 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4193 btrfs_read_locked_inode(inode);
4194 if (!is_bad_inode(inode)) {
4195 inode_tree_add(inode);
4196 unlock_new_inode(inode);
4197 if (new)
4198 *new = 1;
4199 } else {
4200 unlock_new_inode(inode);
4201 iput(inode);
4202 inode = ERR_PTR(-ESTALE);
4203 }
4204 }
4205
4206 return inode;
4207 }
4208
4209 static struct inode *new_simple_dir(struct super_block *s,
4210 struct btrfs_key *key,
4211 struct btrfs_root *root)
4212 {
4213 struct inode *inode = new_inode(s);
4214
4215 if (!inode)
4216 return ERR_PTR(-ENOMEM);
4217
4218 BTRFS_I(inode)->root = root;
4219 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4220 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4221
4222 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4223 inode->i_op = &btrfs_dir_ro_inode_operations;
4224 inode->i_fop = &simple_dir_operations;
4225 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4226 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4227
4228 return inode;
4229 }
4230
4231 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4232 {
4233 struct inode *inode;
4234 struct btrfs_root *root = BTRFS_I(dir)->root;
4235 struct btrfs_root *sub_root = root;
4236 struct btrfs_key location;
4237 int index;
4238 int ret = 0;
4239
4240 if (dentry->d_name.len > BTRFS_NAME_LEN)
4241 return ERR_PTR(-ENAMETOOLONG);
4242
4243 if (unlikely(d_need_lookup(dentry))) {
4244 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4245 kfree(dentry->d_fsdata);
4246 dentry->d_fsdata = NULL;
4247 /* This thing is hashed, drop it for now */
4248 d_drop(dentry);
4249 } else {
4250 ret = btrfs_inode_by_name(dir, dentry, &location);
4251 }
4252
4253 if (ret < 0)
4254 return ERR_PTR(ret);
4255
4256 if (location.objectid == 0)
4257 return NULL;
4258
4259 if (location.type == BTRFS_INODE_ITEM_KEY) {
4260 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4261 return inode;
4262 }
4263
4264 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4265
4266 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4267 ret = fixup_tree_root_location(root, dir, dentry,
4268 &location, &sub_root);
4269 if (ret < 0) {
4270 if (ret != -ENOENT)
4271 inode = ERR_PTR(ret);
4272 else
4273 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4274 } else {
4275 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4276 }
4277 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4278
4279 if (!IS_ERR(inode) && root != sub_root) {
4280 down_read(&root->fs_info->cleanup_work_sem);
4281 if (!(inode->i_sb->s_flags & MS_RDONLY))
4282 ret = btrfs_orphan_cleanup(sub_root);
4283 up_read(&root->fs_info->cleanup_work_sem);
4284 if (ret)
4285 inode = ERR_PTR(ret);
4286 }
4287
4288 return inode;
4289 }
4290
4291 static int btrfs_dentry_delete(const struct dentry *dentry)
4292 {
4293 struct btrfs_root *root;
4294 struct inode *inode = dentry->d_inode;
4295
4296 if (!inode && !IS_ROOT(dentry))
4297 inode = dentry->d_parent->d_inode;
4298
4299 if (inode) {
4300 root = BTRFS_I(inode)->root;
4301 if (btrfs_root_refs(&root->root_item) == 0)
4302 return 1;
4303
4304 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4305 return 1;
4306 }
4307 return 0;
4308 }
4309
4310 static void btrfs_dentry_release(struct dentry *dentry)
4311 {
4312 if (dentry->d_fsdata)
4313 kfree(dentry->d_fsdata);
4314 }
4315
4316 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4317 unsigned int flags)
4318 {
4319 struct dentry *ret;
4320
4321 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4322 if (unlikely(d_need_lookup(dentry))) {
4323 spin_lock(&dentry->d_lock);
4324 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4325 spin_unlock(&dentry->d_lock);
4326 }
4327 return ret;
4328 }
4329
4330 unsigned char btrfs_filetype_table[] = {
4331 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4332 };
4333
4334 static int btrfs_real_readdir(struct file *filp, void *dirent,
4335 filldir_t filldir)
4336 {
4337 struct inode *inode = filp->f_dentry->d_inode;
4338 struct btrfs_root *root = BTRFS_I(inode)->root;
4339 struct btrfs_item *item;
4340 struct btrfs_dir_item *di;
4341 struct btrfs_key key;
4342 struct btrfs_key found_key;
4343 struct btrfs_path *path;
4344 struct list_head ins_list;
4345 struct list_head del_list;
4346 int ret;
4347 struct extent_buffer *leaf;
4348 int slot;
4349 unsigned char d_type;
4350 int over = 0;
4351 u32 di_cur;
4352 u32 di_total;
4353 u32 di_len;
4354 int key_type = BTRFS_DIR_INDEX_KEY;
4355 char tmp_name[32];
4356 char *name_ptr;
4357 int name_len;
4358 int is_curr = 0; /* filp->f_pos points to the current index? */
4359
4360 /* FIXME, use a real flag for deciding about the key type */
4361 if (root->fs_info->tree_root == root)
4362 key_type = BTRFS_DIR_ITEM_KEY;
4363
4364 /* special case for "." */
4365 if (filp->f_pos == 0) {
4366 over = filldir(dirent, ".", 1,
4367 filp->f_pos, btrfs_ino(inode), DT_DIR);
4368 if (over)
4369 return 0;
4370 filp->f_pos = 1;
4371 }
4372 /* special case for .., just use the back ref */
4373 if (filp->f_pos == 1) {
4374 u64 pino = parent_ino(filp->f_path.dentry);
4375 over = filldir(dirent, "..", 2,
4376 filp->f_pos, pino, DT_DIR);
4377 if (over)
4378 return 0;
4379 filp->f_pos = 2;
4380 }
4381 path = btrfs_alloc_path();
4382 if (!path)
4383 return -ENOMEM;
4384
4385 path->reada = 1;
4386
4387 if (key_type == BTRFS_DIR_INDEX_KEY) {
4388 INIT_LIST_HEAD(&ins_list);
4389 INIT_LIST_HEAD(&del_list);
4390 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4391 }
4392
4393 btrfs_set_key_type(&key, key_type);
4394 key.offset = filp->f_pos;
4395 key.objectid = btrfs_ino(inode);
4396
4397 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4398 if (ret < 0)
4399 goto err;
4400
4401 while (1) {
4402 leaf = path->nodes[0];
4403 slot = path->slots[0];
4404 if (slot >= btrfs_header_nritems(leaf)) {
4405 ret = btrfs_next_leaf(root, path);
4406 if (ret < 0)
4407 goto err;
4408 else if (ret > 0)
4409 break;
4410 continue;
4411 }
4412
4413 item = btrfs_item_nr(leaf, slot);
4414 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4415
4416 if (found_key.objectid != key.objectid)
4417 break;
4418 if (btrfs_key_type(&found_key) != key_type)
4419 break;
4420 if (found_key.offset < filp->f_pos)
4421 goto next;
4422 if (key_type == BTRFS_DIR_INDEX_KEY &&
4423 btrfs_should_delete_dir_index(&del_list,
4424 found_key.offset))
4425 goto next;
4426
4427 filp->f_pos = found_key.offset;
4428 is_curr = 1;
4429
4430 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4431 di_cur = 0;
4432 di_total = btrfs_item_size(leaf, item);
4433
4434 while (di_cur < di_total) {
4435 struct btrfs_key location;
4436
4437 if (verify_dir_item(root, leaf, di))
4438 break;
4439
4440 name_len = btrfs_dir_name_len(leaf, di);
4441 if (name_len <= sizeof(tmp_name)) {
4442 name_ptr = tmp_name;
4443 } else {
4444 name_ptr = kmalloc(name_len, GFP_NOFS);
4445 if (!name_ptr) {
4446 ret = -ENOMEM;
4447 goto err;
4448 }
4449 }
4450 read_extent_buffer(leaf, name_ptr,
4451 (unsigned long)(di + 1), name_len);
4452
4453 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4454 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4455
4456
4457 /* is this a reference to our own snapshot? If so
4458 * skip it.
4459 *
4460 * In contrast to old kernels, we insert the snapshot's
4461 * dir item and dir index after it has been created, so
4462 * we won't find a reference to our own snapshot. We
4463 * still keep the following code for backward
4464 * compatibility.
4465 */
4466 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4467 location.objectid == root->root_key.objectid) {
4468 over = 0;
4469 goto skip;
4470 }
4471 over = filldir(dirent, name_ptr, name_len,
4472 found_key.offset, location.objectid,
4473 d_type);
4474
4475 skip:
4476 if (name_ptr != tmp_name)
4477 kfree(name_ptr);
4478
4479 if (over)
4480 goto nopos;
4481 di_len = btrfs_dir_name_len(leaf, di) +
4482 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4483 di_cur += di_len;
4484 di = (struct btrfs_dir_item *)((char *)di + di_len);
4485 }
4486 next:
4487 path->slots[0]++;
4488 }
4489
4490 if (key_type == BTRFS_DIR_INDEX_KEY) {
4491 if (is_curr)
4492 filp->f_pos++;
4493 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4494 &ins_list);
4495 if (ret)
4496 goto nopos;
4497 }
4498
4499 /* Reached end of directory/root. Bump pos past the last item. */
4500 if (key_type == BTRFS_DIR_INDEX_KEY)
4501 /*
4502 * 32-bit glibc will use getdents64, but then strtol -
4503 * so the last number we can serve is this.
4504 */
4505 filp->f_pos = 0x7fffffff;
4506 else
4507 filp->f_pos++;
4508 nopos:
4509 ret = 0;
4510 err:
4511 if (key_type == BTRFS_DIR_INDEX_KEY)
4512 btrfs_put_delayed_items(&ins_list, &del_list);
4513 btrfs_free_path(path);
4514 return ret;
4515 }
4516
4517 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4518 {
4519 struct btrfs_root *root = BTRFS_I(inode)->root;
4520 struct btrfs_trans_handle *trans;
4521 int ret = 0;
4522 bool nolock = false;
4523
4524 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4525 return 0;
4526
4527 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
4528 nolock = true;
4529
4530 if (wbc->sync_mode == WB_SYNC_ALL) {
4531 if (nolock)
4532 trans = btrfs_join_transaction_nolock(root);
4533 else
4534 trans = btrfs_join_transaction(root);
4535 if (IS_ERR(trans))
4536 return PTR_ERR(trans);
4537 ret = btrfs_commit_transaction(trans, root);
4538 }
4539 return ret;
4540 }
4541
4542 /*
4543 * This is somewhat expensive, updating the tree every time the
4544 * inode changes. But, it is most likely to find the inode in cache.
4545 * FIXME, needs more benchmarking...there are no reasons other than performance
4546 * to keep or drop this code.
4547 */
4548 int btrfs_dirty_inode(struct inode *inode)
4549 {
4550 struct btrfs_root *root = BTRFS_I(inode)->root;
4551 struct btrfs_trans_handle *trans;
4552 int ret;
4553
4554 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4555 return 0;
4556
4557 trans = btrfs_join_transaction(root);
4558 if (IS_ERR(trans))
4559 return PTR_ERR(trans);
4560
4561 ret = btrfs_update_inode(trans, root, inode);
4562 if (ret && ret == -ENOSPC) {
4563 /* whoops, lets try again with the full transaction */
4564 btrfs_end_transaction(trans, root);
4565 trans = btrfs_start_transaction(root, 1);
4566 if (IS_ERR(trans))
4567 return PTR_ERR(trans);
4568
4569 ret = btrfs_update_inode(trans, root, inode);
4570 }
4571 btrfs_end_transaction(trans, root);
4572 if (BTRFS_I(inode)->delayed_node)
4573 btrfs_balance_delayed_items(root);
4574
4575 return ret;
4576 }
4577
4578 /*
4579 * This is a copy of file_update_time. We need this so we can return error on
4580 * ENOSPC for updating the inode in the case of file write and mmap writes.
4581 */
4582 static int btrfs_update_time(struct inode *inode, struct timespec *now,
4583 int flags)
4584 {
4585 struct btrfs_root *root = BTRFS_I(inode)->root;
4586
4587 if (btrfs_root_readonly(root))
4588 return -EROFS;
4589
4590 if (flags & S_VERSION)
4591 inode_inc_iversion(inode);
4592 if (flags & S_CTIME)
4593 inode->i_ctime = *now;
4594 if (flags & S_MTIME)
4595 inode->i_mtime = *now;
4596 if (flags & S_ATIME)
4597 inode->i_atime = *now;
4598 return btrfs_dirty_inode(inode);
4599 }
4600
4601 /*
4602 * find the highest existing sequence number in a directory
4603 * and then set the in-memory index_cnt variable to reflect
4604 * free sequence numbers
4605 */
4606 static int btrfs_set_inode_index_count(struct inode *inode)
4607 {
4608 struct btrfs_root *root = BTRFS_I(inode)->root;
4609 struct btrfs_key key, found_key;
4610 struct btrfs_path *path;
4611 struct extent_buffer *leaf;
4612 int ret;
4613
4614 key.objectid = btrfs_ino(inode);
4615 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4616 key.offset = (u64)-1;
4617
4618 path = btrfs_alloc_path();
4619 if (!path)
4620 return -ENOMEM;
4621
4622 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4623 if (ret < 0)
4624 goto out;
4625 /* FIXME: we should be able to handle this */
4626 if (ret == 0)
4627 goto out;
4628 ret = 0;
4629
4630 /*
4631 * MAGIC NUMBER EXPLANATION:
4632 * since we search a directory based on f_pos we have to start at 2
4633 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4634 * else has to start at 2
4635 */
4636 if (path->slots[0] == 0) {
4637 BTRFS_I(inode)->index_cnt = 2;
4638 goto out;
4639 }
4640
4641 path->slots[0]--;
4642
4643 leaf = path->nodes[0];
4644 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4645
4646 if (found_key.objectid != btrfs_ino(inode) ||
4647 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4648 BTRFS_I(inode)->index_cnt = 2;
4649 goto out;
4650 }
4651
4652 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4653 out:
4654 btrfs_free_path(path);
4655 return ret;
4656 }
4657
4658 /*
4659 * helper to find a free sequence number in a given directory. This current
4660 * code is very simple, later versions will do smarter things in the btree
4661 */
4662 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4663 {
4664 int ret = 0;
4665
4666 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4667 ret = btrfs_inode_delayed_dir_index_count(dir);
4668 if (ret) {
4669 ret = btrfs_set_inode_index_count(dir);
4670 if (ret)
4671 return ret;
4672 }
4673 }
4674
4675 *index = BTRFS_I(dir)->index_cnt;
4676 BTRFS_I(dir)->index_cnt++;
4677
4678 return ret;
4679 }
4680
4681 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4682 struct btrfs_root *root,
4683 struct inode *dir,
4684 const char *name, int name_len,
4685 u64 ref_objectid, u64 objectid,
4686 umode_t mode, u64 *index)
4687 {
4688 struct inode *inode;
4689 struct btrfs_inode_item *inode_item;
4690 struct btrfs_key *location;
4691 struct btrfs_path *path;
4692 struct btrfs_inode_ref *ref;
4693 struct btrfs_key key[2];
4694 u32 sizes[2];
4695 unsigned long ptr;
4696 int ret;
4697 int owner;
4698
4699 path = btrfs_alloc_path();
4700 if (!path)
4701 return ERR_PTR(-ENOMEM);
4702
4703 inode = new_inode(root->fs_info->sb);
4704 if (!inode) {
4705 btrfs_free_path(path);
4706 return ERR_PTR(-ENOMEM);
4707 }
4708
4709 /*
4710 * we have to initialize this early, so we can reclaim the inode
4711 * number if we fail afterwards in this function.
4712 */
4713 inode->i_ino = objectid;
4714
4715 if (dir) {
4716 trace_btrfs_inode_request(dir);
4717
4718 ret = btrfs_set_inode_index(dir, index);
4719 if (ret) {
4720 btrfs_free_path(path);
4721 iput(inode);
4722 return ERR_PTR(ret);
4723 }
4724 }
4725 /*
4726 * index_cnt is ignored for everything but a dir,
4727 * btrfs_get_inode_index_count has an explanation for the magic
4728 * number
4729 */
4730 BTRFS_I(inode)->index_cnt = 2;
4731 BTRFS_I(inode)->root = root;
4732 BTRFS_I(inode)->generation = trans->transid;
4733 inode->i_generation = BTRFS_I(inode)->generation;
4734
4735 /*
4736 * We could have gotten an inode number from somebody who was fsynced
4737 * and then removed in this same transaction, so let's just set full
4738 * sync since it will be a full sync anyway and this will blow away the
4739 * old info in the log.
4740 */
4741 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
4742
4743 if (S_ISDIR(mode))
4744 owner = 0;
4745 else
4746 owner = 1;
4747
4748 key[0].objectid = objectid;
4749 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4750 key[0].offset = 0;
4751
4752 /*
4753 * Start new inodes with an inode_ref. This is slightly more
4754 * efficient for small numbers of hard links since they will
4755 * be packed into one item. Extended refs will kick in if we
4756 * add more hard links than can fit in the ref item.
4757 */
4758 key[1].objectid = objectid;
4759 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4760 key[1].offset = ref_objectid;
4761
4762 sizes[0] = sizeof(struct btrfs_inode_item);
4763 sizes[1] = name_len + sizeof(*ref);
4764
4765 path->leave_spinning = 1;
4766 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4767 if (ret != 0)
4768 goto fail;
4769
4770 inode_init_owner(inode, dir, mode);
4771 inode_set_bytes(inode, 0);
4772 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4773 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4774 struct btrfs_inode_item);
4775 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
4776 sizeof(*inode_item));
4777 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4778
4779 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4780 struct btrfs_inode_ref);
4781 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4782 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4783 ptr = (unsigned long)(ref + 1);
4784 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4785
4786 btrfs_mark_buffer_dirty(path->nodes[0]);
4787 btrfs_free_path(path);
4788
4789 location = &BTRFS_I(inode)->location;
4790 location->objectid = objectid;
4791 location->offset = 0;
4792 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4793
4794 btrfs_inherit_iflags(inode, dir);
4795
4796 if (S_ISREG(mode)) {
4797 if (btrfs_test_opt(root, NODATASUM))
4798 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4799 if (btrfs_test_opt(root, NODATACOW) ||
4800 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4801 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4802 }
4803
4804 insert_inode_hash(inode);
4805 inode_tree_add(inode);
4806
4807 trace_btrfs_inode_new(inode);
4808 btrfs_set_inode_last_trans(trans, inode);
4809
4810 btrfs_update_root_times(trans, root);
4811
4812 return inode;
4813 fail:
4814 if (dir)
4815 BTRFS_I(dir)->index_cnt--;
4816 btrfs_free_path(path);
4817 iput(inode);
4818 return ERR_PTR(ret);
4819 }
4820
4821 static inline u8 btrfs_inode_type(struct inode *inode)
4822 {
4823 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4824 }
4825
4826 /*
4827 * utility function to add 'inode' into 'parent_inode' with
4828 * a give name and a given sequence number.
4829 * if 'add_backref' is true, also insert a backref from the
4830 * inode to the parent directory.
4831 */
4832 int btrfs_add_link(struct btrfs_trans_handle *trans,
4833 struct inode *parent_inode, struct inode *inode,
4834 const char *name, int name_len, int add_backref, u64 index)
4835 {
4836 int ret = 0;
4837 struct btrfs_key key;
4838 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4839 u64 ino = btrfs_ino(inode);
4840 u64 parent_ino = btrfs_ino(parent_inode);
4841
4842 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4843 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4844 } else {
4845 key.objectid = ino;
4846 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4847 key.offset = 0;
4848 }
4849
4850 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4851 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4852 key.objectid, root->root_key.objectid,
4853 parent_ino, index, name, name_len);
4854 } else if (add_backref) {
4855 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4856 parent_ino, index);
4857 }
4858
4859 /* Nothing to clean up yet */
4860 if (ret)
4861 return ret;
4862
4863 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4864 parent_inode, &key,
4865 btrfs_inode_type(inode), index);
4866 if (ret == -EEXIST)
4867 goto fail_dir_item;
4868 else if (ret) {
4869 btrfs_abort_transaction(trans, root, ret);
4870 return ret;
4871 }
4872
4873 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4874 name_len * 2);
4875 inode_inc_iversion(parent_inode);
4876 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4877 ret = btrfs_update_inode(trans, root, parent_inode);
4878 if (ret)
4879 btrfs_abort_transaction(trans, root, ret);
4880 return ret;
4881
4882 fail_dir_item:
4883 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4884 u64 local_index;
4885 int err;
4886 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4887 key.objectid, root->root_key.objectid,
4888 parent_ino, &local_index, name, name_len);
4889
4890 } else if (add_backref) {
4891 u64 local_index;
4892 int err;
4893
4894 err = btrfs_del_inode_ref(trans, root, name, name_len,
4895 ino, parent_ino, &local_index);
4896 }
4897 return ret;
4898 }
4899
4900 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4901 struct inode *dir, struct dentry *dentry,
4902 struct inode *inode, int backref, u64 index)
4903 {
4904 int err = btrfs_add_link(trans, dir, inode,
4905 dentry->d_name.name, dentry->d_name.len,
4906 backref, index);
4907 if (err > 0)
4908 err = -EEXIST;
4909 return err;
4910 }
4911
4912 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4913 umode_t mode, dev_t rdev)
4914 {
4915 struct btrfs_trans_handle *trans;
4916 struct btrfs_root *root = BTRFS_I(dir)->root;
4917 struct inode *inode = NULL;
4918 int err;
4919 int drop_inode = 0;
4920 u64 objectid;
4921 u64 index = 0;
4922
4923 if (!new_valid_dev(rdev))
4924 return -EINVAL;
4925
4926 /*
4927 * 2 for inode item and ref
4928 * 2 for dir items
4929 * 1 for xattr if selinux is on
4930 */
4931 trans = btrfs_start_transaction(root, 5);
4932 if (IS_ERR(trans))
4933 return PTR_ERR(trans);
4934
4935 err = btrfs_find_free_ino(root, &objectid);
4936 if (err)
4937 goto out_unlock;
4938
4939 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4940 dentry->d_name.len, btrfs_ino(dir), objectid,
4941 mode, &index);
4942 if (IS_ERR(inode)) {
4943 err = PTR_ERR(inode);
4944 goto out_unlock;
4945 }
4946
4947 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4948 if (err) {
4949 drop_inode = 1;
4950 goto out_unlock;
4951 }
4952
4953 err = btrfs_update_inode(trans, root, inode);
4954 if (err) {
4955 drop_inode = 1;
4956 goto out_unlock;
4957 }
4958
4959 /*
4960 * If the active LSM wants to access the inode during
4961 * d_instantiate it needs these. Smack checks to see
4962 * if the filesystem supports xattrs by looking at the
4963 * ops vector.
4964 */
4965
4966 inode->i_op = &btrfs_special_inode_operations;
4967 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4968 if (err)
4969 drop_inode = 1;
4970 else {
4971 init_special_inode(inode, inode->i_mode, rdev);
4972 btrfs_update_inode(trans, root, inode);
4973 d_instantiate(dentry, inode);
4974 }
4975 out_unlock:
4976 btrfs_end_transaction(trans, root);
4977 btrfs_btree_balance_dirty(root);
4978 if (drop_inode) {
4979 inode_dec_link_count(inode);
4980 iput(inode);
4981 }
4982 return err;
4983 }
4984
4985 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4986 umode_t mode, bool excl)
4987 {
4988 struct btrfs_trans_handle *trans;
4989 struct btrfs_root *root = BTRFS_I(dir)->root;
4990 struct inode *inode = NULL;
4991 int drop_inode_on_err = 0;
4992 int err;
4993 u64 objectid;
4994 u64 index = 0;
4995
4996 /*
4997 * 2 for inode item and ref
4998 * 2 for dir items
4999 * 1 for xattr if selinux is on
5000 */
5001 trans = btrfs_start_transaction(root, 5);
5002 if (IS_ERR(trans))
5003 return PTR_ERR(trans);
5004
5005 err = btrfs_find_free_ino(root, &objectid);
5006 if (err)
5007 goto out_unlock;
5008
5009 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5010 dentry->d_name.len, btrfs_ino(dir), objectid,
5011 mode, &index);
5012 if (IS_ERR(inode)) {
5013 err = PTR_ERR(inode);
5014 goto out_unlock;
5015 }
5016 drop_inode_on_err = 1;
5017
5018 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5019 if (err)
5020 goto out_unlock;
5021
5022 /*
5023 * If the active LSM wants to access the inode during
5024 * d_instantiate it needs these. Smack checks to see
5025 * if the filesystem supports xattrs by looking at the
5026 * ops vector.
5027 */
5028 inode->i_fop = &btrfs_file_operations;
5029 inode->i_op = &btrfs_file_inode_operations;
5030
5031 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5032 if (err)
5033 goto out_unlock;
5034
5035 inode->i_mapping->a_ops = &btrfs_aops;
5036 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5037 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5038 d_instantiate(dentry, inode);
5039
5040 out_unlock:
5041 btrfs_end_transaction(trans, root);
5042 if (err && drop_inode_on_err) {
5043 inode_dec_link_count(inode);
5044 iput(inode);
5045 }
5046 btrfs_btree_balance_dirty(root);
5047 return err;
5048 }
5049
5050 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5051 struct dentry *dentry)
5052 {
5053 struct btrfs_trans_handle *trans;
5054 struct btrfs_root *root = BTRFS_I(dir)->root;
5055 struct inode *inode = old_dentry->d_inode;
5056 u64 index;
5057 int err;
5058 int drop_inode = 0;
5059
5060 /* do not allow sys_link's with other subvols of the same device */
5061 if (root->objectid != BTRFS_I(inode)->root->objectid)
5062 return -EXDEV;
5063
5064 if (inode->i_nlink >= BTRFS_LINK_MAX)
5065 return -EMLINK;
5066
5067 err = btrfs_set_inode_index(dir, &index);
5068 if (err)
5069 goto fail;
5070
5071 /*
5072 * 2 items for inode and inode ref
5073 * 2 items for dir items
5074 * 1 item for parent inode
5075 */
5076 trans = btrfs_start_transaction(root, 5);
5077 if (IS_ERR(trans)) {
5078 err = PTR_ERR(trans);
5079 goto fail;
5080 }
5081
5082 btrfs_inc_nlink(inode);
5083 inode_inc_iversion(inode);
5084 inode->i_ctime = CURRENT_TIME;
5085 ihold(inode);
5086
5087 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5088
5089 if (err) {
5090 drop_inode = 1;
5091 } else {
5092 struct dentry *parent = dentry->d_parent;
5093 err = btrfs_update_inode(trans, root, inode);
5094 if (err)
5095 goto fail;
5096 d_instantiate(dentry, inode);
5097 btrfs_log_new_name(trans, inode, NULL, parent);
5098 }
5099
5100 btrfs_end_transaction(trans, root);
5101 fail:
5102 if (drop_inode) {
5103 inode_dec_link_count(inode);
5104 iput(inode);
5105 }
5106 btrfs_btree_balance_dirty(root);
5107 return err;
5108 }
5109
5110 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5111 {
5112 struct inode *inode = NULL;
5113 struct btrfs_trans_handle *trans;
5114 struct btrfs_root *root = BTRFS_I(dir)->root;
5115 int err = 0;
5116 int drop_on_err = 0;
5117 u64 objectid = 0;
5118 u64 index = 0;
5119
5120 /*
5121 * 2 items for inode and ref
5122 * 2 items for dir items
5123 * 1 for xattr if selinux is on
5124 */
5125 trans = btrfs_start_transaction(root, 5);
5126 if (IS_ERR(trans))
5127 return PTR_ERR(trans);
5128
5129 err = btrfs_find_free_ino(root, &objectid);
5130 if (err)
5131 goto out_fail;
5132
5133 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5134 dentry->d_name.len, btrfs_ino(dir), objectid,
5135 S_IFDIR | mode, &index);
5136 if (IS_ERR(inode)) {
5137 err = PTR_ERR(inode);
5138 goto out_fail;
5139 }
5140
5141 drop_on_err = 1;
5142
5143 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5144 if (err)
5145 goto out_fail;
5146
5147 inode->i_op = &btrfs_dir_inode_operations;
5148 inode->i_fop = &btrfs_dir_file_operations;
5149
5150 btrfs_i_size_write(inode, 0);
5151 err = btrfs_update_inode(trans, root, inode);
5152 if (err)
5153 goto out_fail;
5154
5155 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5156 dentry->d_name.len, 0, index);
5157 if (err)
5158 goto out_fail;
5159
5160 d_instantiate(dentry, inode);
5161 drop_on_err = 0;
5162
5163 out_fail:
5164 btrfs_end_transaction(trans, root);
5165 if (drop_on_err)
5166 iput(inode);
5167 btrfs_btree_balance_dirty(root);
5168 return err;
5169 }
5170
5171 /* helper for btfs_get_extent. Given an existing extent in the tree,
5172 * and an extent that you want to insert, deal with overlap and insert
5173 * the new extent into the tree.
5174 */
5175 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5176 struct extent_map *existing,
5177 struct extent_map *em,
5178 u64 map_start, u64 map_len)
5179 {
5180 u64 start_diff;
5181
5182 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5183 start_diff = map_start - em->start;
5184 em->start = map_start;
5185 em->len = map_len;
5186 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5187 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5188 em->block_start += start_diff;
5189 em->block_len -= start_diff;
5190 }
5191 return add_extent_mapping(em_tree, em);
5192 }
5193
5194 static noinline int uncompress_inline(struct btrfs_path *path,
5195 struct inode *inode, struct page *page,
5196 size_t pg_offset, u64 extent_offset,
5197 struct btrfs_file_extent_item *item)
5198 {
5199 int ret;
5200 struct extent_buffer *leaf = path->nodes[0];
5201 char *tmp;
5202 size_t max_size;
5203 unsigned long inline_size;
5204 unsigned long ptr;
5205 int compress_type;
5206
5207 WARN_ON(pg_offset != 0);
5208 compress_type = btrfs_file_extent_compression(leaf, item);
5209 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5210 inline_size = btrfs_file_extent_inline_item_len(leaf,
5211 btrfs_item_nr(leaf, path->slots[0]));
5212 tmp = kmalloc(inline_size, GFP_NOFS);
5213 if (!tmp)
5214 return -ENOMEM;
5215 ptr = btrfs_file_extent_inline_start(item);
5216
5217 read_extent_buffer(leaf, tmp, ptr, inline_size);
5218
5219 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5220 ret = btrfs_decompress(compress_type, tmp, page,
5221 extent_offset, inline_size, max_size);
5222 if (ret) {
5223 char *kaddr = kmap_atomic(page);
5224 unsigned long copy_size = min_t(u64,
5225 PAGE_CACHE_SIZE - pg_offset,
5226 max_size - extent_offset);
5227 memset(kaddr + pg_offset, 0, copy_size);
5228 kunmap_atomic(kaddr);
5229 }
5230 kfree(tmp);
5231 return 0;
5232 }
5233
5234 /*
5235 * a bit scary, this does extent mapping from logical file offset to the disk.
5236 * the ugly parts come from merging extents from the disk with the in-ram
5237 * representation. This gets more complex because of the data=ordered code,
5238 * where the in-ram extents might be locked pending data=ordered completion.
5239 *
5240 * This also copies inline extents directly into the page.
5241 */
5242
5243 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5244 size_t pg_offset, u64 start, u64 len,
5245 int create)
5246 {
5247 int ret;
5248 int err = 0;
5249 u64 bytenr;
5250 u64 extent_start = 0;
5251 u64 extent_end = 0;
5252 u64 objectid = btrfs_ino(inode);
5253 u32 found_type;
5254 struct btrfs_path *path = NULL;
5255 struct btrfs_root *root = BTRFS_I(inode)->root;
5256 struct btrfs_file_extent_item *item;
5257 struct extent_buffer *leaf;
5258 struct btrfs_key found_key;
5259 struct extent_map *em = NULL;
5260 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5261 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5262 struct btrfs_trans_handle *trans = NULL;
5263 int compress_type;
5264
5265 again:
5266 read_lock(&em_tree->lock);
5267 em = lookup_extent_mapping(em_tree, start, len);
5268 if (em)
5269 em->bdev = root->fs_info->fs_devices->latest_bdev;
5270 read_unlock(&em_tree->lock);
5271
5272 if (em) {
5273 if (em->start > start || em->start + em->len <= start)
5274 free_extent_map(em);
5275 else if (em->block_start == EXTENT_MAP_INLINE && page)
5276 free_extent_map(em);
5277 else
5278 goto out;
5279 }
5280 em = alloc_extent_map();
5281 if (!em) {
5282 err = -ENOMEM;
5283 goto out;
5284 }
5285 em->bdev = root->fs_info->fs_devices->latest_bdev;
5286 em->start = EXTENT_MAP_HOLE;
5287 em->orig_start = EXTENT_MAP_HOLE;
5288 em->len = (u64)-1;
5289 em->block_len = (u64)-1;
5290
5291 if (!path) {
5292 path = btrfs_alloc_path();
5293 if (!path) {
5294 err = -ENOMEM;
5295 goto out;
5296 }
5297 /*
5298 * Chances are we'll be called again, so go ahead and do
5299 * readahead
5300 */
5301 path->reada = 1;
5302 }
5303
5304 ret = btrfs_lookup_file_extent(trans, root, path,
5305 objectid, start, trans != NULL);
5306 if (ret < 0) {
5307 err = ret;
5308 goto out;
5309 }
5310
5311 if (ret != 0) {
5312 if (path->slots[0] == 0)
5313 goto not_found;
5314 path->slots[0]--;
5315 }
5316
5317 leaf = path->nodes[0];
5318 item = btrfs_item_ptr(leaf, path->slots[0],
5319 struct btrfs_file_extent_item);
5320 /* are we inside the extent that was found? */
5321 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5322 found_type = btrfs_key_type(&found_key);
5323 if (found_key.objectid != objectid ||
5324 found_type != BTRFS_EXTENT_DATA_KEY) {
5325 goto not_found;
5326 }
5327
5328 found_type = btrfs_file_extent_type(leaf, item);
5329 extent_start = found_key.offset;
5330 compress_type = btrfs_file_extent_compression(leaf, item);
5331 if (found_type == BTRFS_FILE_EXTENT_REG ||
5332 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5333 extent_end = extent_start +
5334 btrfs_file_extent_num_bytes(leaf, item);
5335 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5336 size_t size;
5337 size = btrfs_file_extent_inline_len(leaf, item);
5338 extent_end = (extent_start + size + root->sectorsize - 1) &
5339 ~((u64)root->sectorsize - 1);
5340 }
5341
5342 if (start >= extent_end) {
5343 path->slots[0]++;
5344 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5345 ret = btrfs_next_leaf(root, path);
5346 if (ret < 0) {
5347 err = ret;
5348 goto out;
5349 }
5350 if (ret > 0)
5351 goto not_found;
5352 leaf = path->nodes[0];
5353 }
5354 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5355 if (found_key.objectid != objectid ||
5356 found_key.type != BTRFS_EXTENT_DATA_KEY)
5357 goto not_found;
5358 if (start + len <= found_key.offset)
5359 goto not_found;
5360 em->start = start;
5361 em->len = found_key.offset - start;
5362 goto not_found_em;
5363 }
5364
5365 if (found_type == BTRFS_FILE_EXTENT_REG ||
5366 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5367 em->start = extent_start;
5368 em->len = extent_end - extent_start;
5369 em->orig_start = extent_start -
5370 btrfs_file_extent_offset(leaf, item);
5371 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5372 if (bytenr == 0) {
5373 em->block_start = EXTENT_MAP_HOLE;
5374 goto insert;
5375 }
5376 if (compress_type != BTRFS_COMPRESS_NONE) {
5377 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5378 em->compress_type = compress_type;
5379 em->block_start = bytenr;
5380 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5381 item);
5382 } else {
5383 bytenr += btrfs_file_extent_offset(leaf, item);
5384 em->block_start = bytenr;
5385 em->block_len = em->len;
5386 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5387 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5388 }
5389 goto insert;
5390 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5391 unsigned long ptr;
5392 char *map;
5393 size_t size;
5394 size_t extent_offset;
5395 size_t copy_size;
5396
5397 em->block_start = EXTENT_MAP_INLINE;
5398 if (!page || create) {
5399 em->start = extent_start;
5400 em->len = extent_end - extent_start;
5401 goto out;
5402 }
5403
5404 size = btrfs_file_extent_inline_len(leaf, item);
5405 extent_offset = page_offset(page) + pg_offset - extent_start;
5406 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5407 size - extent_offset);
5408 em->start = extent_start + extent_offset;
5409 em->len = (copy_size + root->sectorsize - 1) &
5410 ~((u64)root->sectorsize - 1);
5411 em->orig_start = EXTENT_MAP_INLINE;
5412 if (compress_type) {
5413 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5414 em->compress_type = compress_type;
5415 }
5416 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5417 if (create == 0 && !PageUptodate(page)) {
5418 if (btrfs_file_extent_compression(leaf, item) !=
5419 BTRFS_COMPRESS_NONE) {
5420 ret = uncompress_inline(path, inode, page,
5421 pg_offset,
5422 extent_offset, item);
5423 BUG_ON(ret); /* -ENOMEM */
5424 } else {
5425 map = kmap(page);
5426 read_extent_buffer(leaf, map + pg_offset, ptr,
5427 copy_size);
5428 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5429 memset(map + pg_offset + copy_size, 0,
5430 PAGE_CACHE_SIZE - pg_offset -
5431 copy_size);
5432 }
5433 kunmap(page);
5434 }
5435 flush_dcache_page(page);
5436 } else if (create && PageUptodate(page)) {
5437 BUG();
5438 if (!trans) {
5439 kunmap(page);
5440 free_extent_map(em);
5441 em = NULL;
5442
5443 btrfs_release_path(path);
5444 trans = btrfs_join_transaction(root);
5445
5446 if (IS_ERR(trans))
5447 return ERR_CAST(trans);
5448 goto again;
5449 }
5450 map = kmap(page);
5451 write_extent_buffer(leaf, map + pg_offset, ptr,
5452 copy_size);
5453 kunmap(page);
5454 btrfs_mark_buffer_dirty(leaf);
5455 }
5456 set_extent_uptodate(io_tree, em->start,
5457 extent_map_end(em) - 1, NULL, GFP_NOFS);
5458 goto insert;
5459 } else {
5460 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
5461 }
5462 not_found:
5463 em->start = start;
5464 em->len = len;
5465 not_found_em:
5466 em->block_start = EXTENT_MAP_HOLE;
5467 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5468 insert:
5469 btrfs_release_path(path);
5470 if (em->start > start || extent_map_end(em) <= start) {
5471 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5472 "[%llu %llu]\n", (unsigned long long)em->start,
5473 (unsigned long long)em->len,
5474 (unsigned long long)start,
5475 (unsigned long long)len);
5476 err = -EIO;
5477 goto out;
5478 }
5479
5480 err = 0;
5481 write_lock(&em_tree->lock);
5482 ret = add_extent_mapping(em_tree, em);
5483 /* it is possible that someone inserted the extent into the tree
5484 * while we had the lock dropped. It is also possible that
5485 * an overlapping map exists in the tree
5486 */
5487 if (ret == -EEXIST) {
5488 struct extent_map *existing;
5489
5490 ret = 0;
5491
5492 existing = lookup_extent_mapping(em_tree, start, len);
5493 if (existing && (existing->start > start ||
5494 existing->start + existing->len <= start)) {
5495 free_extent_map(existing);
5496 existing = NULL;
5497 }
5498 if (!existing) {
5499 existing = lookup_extent_mapping(em_tree, em->start,
5500 em->len);
5501 if (existing) {
5502 err = merge_extent_mapping(em_tree, existing,
5503 em, start,
5504 root->sectorsize);
5505 free_extent_map(existing);
5506 if (err) {
5507 free_extent_map(em);
5508 em = NULL;
5509 }
5510 } else {
5511 err = -EIO;
5512 free_extent_map(em);
5513 em = NULL;
5514 }
5515 } else {
5516 free_extent_map(em);
5517 em = existing;
5518 err = 0;
5519 }
5520 }
5521 write_unlock(&em_tree->lock);
5522 out:
5523
5524 if (em)
5525 trace_btrfs_get_extent(root, em);
5526
5527 if (path)
5528 btrfs_free_path(path);
5529 if (trans) {
5530 ret = btrfs_end_transaction(trans, root);
5531 if (!err)
5532 err = ret;
5533 }
5534 if (err) {
5535 free_extent_map(em);
5536 return ERR_PTR(err);
5537 }
5538 BUG_ON(!em); /* Error is always set */
5539 return em;
5540 }
5541
5542 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5543 size_t pg_offset, u64 start, u64 len,
5544 int create)
5545 {
5546 struct extent_map *em;
5547 struct extent_map *hole_em = NULL;
5548 u64 range_start = start;
5549 u64 end;
5550 u64 found;
5551 u64 found_end;
5552 int err = 0;
5553
5554 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5555 if (IS_ERR(em))
5556 return em;
5557 if (em) {
5558 /*
5559 * if our em maps to a hole, there might
5560 * actually be delalloc bytes behind it
5561 */
5562 if (em->block_start != EXTENT_MAP_HOLE)
5563 return em;
5564 else
5565 hole_em = em;
5566 }
5567
5568 /* check to see if we've wrapped (len == -1 or similar) */
5569 end = start + len;
5570 if (end < start)
5571 end = (u64)-1;
5572 else
5573 end -= 1;
5574
5575 em = NULL;
5576
5577 /* ok, we didn't find anything, lets look for delalloc */
5578 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5579 end, len, EXTENT_DELALLOC, 1);
5580 found_end = range_start + found;
5581 if (found_end < range_start)
5582 found_end = (u64)-1;
5583
5584 /*
5585 * we didn't find anything useful, return
5586 * the original results from get_extent()
5587 */
5588 if (range_start > end || found_end <= start) {
5589 em = hole_em;
5590 hole_em = NULL;
5591 goto out;
5592 }
5593
5594 /* adjust the range_start to make sure it doesn't
5595 * go backwards from the start they passed in
5596 */
5597 range_start = max(start,range_start);
5598 found = found_end - range_start;
5599
5600 if (found > 0) {
5601 u64 hole_start = start;
5602 u64 hole_len = len;
5603
5604 em = alloc_extent_map();
5605 if (!em) {
5606 err = -ENOMEM;
5607 goto out;
5608 }
5609 /*
5610 * when btrfs_get_extent can't find anything it
5611 * returns one huge hole
5612 *
5613 * make sure what it found really fits our range, and
5614 * adjust to make sure it is based on the start from
5615 * the caller
5616 */
5617 if (hole_em) {
5618 u64 calc_end = extent_map_end(hole_em);
5619
5620 if (calc_end <= start || (hole_em->start > end)) {
5621 free_extent_map(hole_em);
5622 hole_em = NULL;
5623 } else {
5624 hole_start = max(hole_em->start, start);
5625 hole_len = calc_end - hole_start;
5626 }
5627 }
5628 em->bdev = NULL;
5629 if (hole_em && range_start > hole_start) {
5630 /* our hole starts before our delalloc, so we
5631 * have to return just the parts of the hole
5632 * that go until the delalloc starts
5633 */
5634 em->len = min(hole_len,
5635 range_start - hole_start);
5636 em->start = hole_start;
5637 em->orig_start = hole_start;
5638 /*
5639 * don't adjust block start at all,
5640 * it is fixed at EXTENT_MAP_HOLE
5641 */
5642 em->block_start = hole_em->block_start;
5643 em->block_len = hole_len;
5644 } else {
5645 em->start = range_start;
5646 em->len = found;
5647 em->orig_start = range_start;
5648 em->block_start = EXTENT_MAP_DELALLOC;
5649 em->block_len = found;
5650 }
5651 } else if (hole_em) {
5652 return hole_em;
5653 }
5654 out:
5655
5656 free_extent_map(hole_em);
5657 if (err) {
5658 free_extent_map(em);
5659 return ERR_PTR(err);
5660 }
5661 return em;
5662 }
5663
5664 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5665 struct extent_map *em,
5666 u64 start, u64 len)
5667 {
5668 struct btrfs_root *root = BTRFS_I(inode)->root;
5669 struct btrfs_trans_handle *trans;
5670 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5671 struct btrfs_key ins;
5672 u64 alloc_hint;
5673 int ret;
5674 bool insert = false;
5675
5676 /*
5677 * Ok if the extent map we looked up is a hole and is for the exact
5678 * range we want, there is no reason to allocate a new one, however if
5679 * it is not right then we need to free this one and drop the cache for
5680 * our range.
5681 */
5682 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5683 em->len != len) {
5684 free_extent_map(em);
5685 em = NULL;
5686 insert = true;
5687 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5688 }
5689
5690 trans = btrfs_join_transaction(root);
5691 if (IS_ERR(trans))
5692 return ERR_CAST(trans);
5693
5694 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5695
5696 alloc_hint = get_extent_allocation_hint(inode, start, len);
5697 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5698 alloc_hint, &ins, 1);
5699 if (ret) {
5700 em = ERR_PTR(ret);
5701 goto out;
5702 }
5703
5704 if (!em) {
5705 em = alloc_extent_map();
5706 if (!em) {
5707 em = ERR_PTR(-ENOMEM);
5708 goto out;
5709 }
5710 }
5711
5712 em->start = start;
5713 em->orig_start = em->start;
5714 em->len = ins.offset;
5715
5716 em->block_start = ins.objectid;
5717 em->block_len = ins.offset;
5718 em->bdev = root->fs_info->fs_devices->latest_bdev;
5719
5720 /*
5721 * We need to do this because if we're using the original em we searched
5722 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5723 */
5724 em->flags = 0;
5725 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5726
5727 while (insert) {
5728 write_lock(&em_tree->lock);
5729 ret = add_extent_mapping(em_tree, em);
5730 write_unlock(&em_tree->lock);
5731 if (ret != -EEXIST)
5732 break;
5733 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5734 }
5735
5736 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5737 ins.offset, ins.offset, 0);
5738 if (ret) {
5739 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5740 em = ERR_PTR(ret);
5741 }
5742 out:
5743 btrfs_end_transaction(trans, root);
5744 return em;
5745 }
5746
5747 /*
5748 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5749 * block must be cow'd
5750 */
5751 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5752 struct inode *inode, u64 offset, u64 len)
5753 {
5754 struct btrfs_path *path;
5755 int ret;
5756 struct extent_buffer *leaf;
5757 struct btrfs_root *root = BTRFS_I(inode)->root;
5758 struct btrfs_file_extent_item *fi;
5759 struct btrfs_key key;
5760 u64 disk_bytenr;
5761 u64 backref_offset;
5762 u64 extent_end;
5763 u64 num_bytes;
5764 int slot;
5765 int found_type;
5766
5767 path = btrfs_alloc_path();
5768 if (!path)
5769 return -ENOMEM;
5770
5771 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5772 offset, 0);
5773 if (ret < 0)
5774 goto out;
5775
5776 slot = path->slots[0];
5777 if (ret == 1) {
5778 if (slot == 0) {
5779 /* can't find the item, must cow */
5780 ret = 0;
5781 goto out;
5782 }
5783 slot--;
5784 }
5785 ret = 0;
5786 leaf = path->nodes[0];
5787 btrfs_item_key_to_cpu(leaf, &key, slot);
5788 if (key.objectid != btrfs_ino(inode) ||
5789 key.type != BTRFS_EXTENT_DATA_KEY) {
5790 /* not our file or wrong item type, must cow */
5791 goto out;
5792 }
5793
5794 if (key.offset > offset) {
5795 /* Wrong offset, must cow */
5796 goto out;
5797 }
5798
5799 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5800 found_type = btrfs_file_extent_type(leaf, fi);
5801 if (found_type != BTRFS_FILE_EXTENT_REG &&
5802 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5803 /* not a regular extent, must cow */
5804 goto out;
5805 }
5806 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5807 backref_offset = btrfs_file_extent_offset(leaf, fi);
5808
5809 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5810 if (extent_end < offset + len) {
5811 /* extent doesn't include our full range, must cow */
5812 goto out;
5813 }
5814
5815 if (btrfs_extent_readonly(root, disk_bytenr))
5816 goto out;
5817
5818 /*
5819 * look for other files referencing this extent, if we
5820 * find any we must cow
5821 */
5822 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5823 key.offset - backref_offset, disk_bytenr))
5824 goto out;
5825
5826 /*
5827 * adjust disk_bytenr and num_bytes to cover just the bytes
5828 * in this extent we are about to write. If there
5829 * are any csums in that range we have to cow in order
5830 * to keep the csums correct
5831 */
5832 disk_bytenr += backref_offset;
5833 disk_bytenr += offset - key.offset;
5834 num_bytes = min(offset + len, extent_end) - offset;
5835 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5836 goto out;
5837 /*
5838 * all of the above have passed, it is safe to overwrite this extent
5839 * without cow
5840 */
5841 ret = 1;
5842 out:
5843 btrfs_free_path(path);
5844 return ret;
5845 }
5846
5847 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
5848 struct extent_state **cached_state, int writing)
5849 {
5850 struct btrfs_ordered_extent *ordered;
5851 int ret = 0;
5852
5853 while (1) {
5854 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5855 0, cached_state);
5856 /*
5857 * We're concerned with the entire range that we're going to be
5858 * doing DIO to, so we need to make sure theres no ordered
5859 * extents in this range.
5860 */
5861 ordered = btrfs_lookup_ordered_range(inode, lockstart,
5862 lockend - lockstart + 1);
5863
5864 /*
5865 * We need to make sure there are no buffered pages in this
5866 * range either, we could have raced between the invalidate in
5867 * generic_file_direct_write and locking the extent. The
5868 * invalidate needs to happen so that reads after a write do not
5869 * get stale data.
5870 */
5871 if (!ordered && (!writing ||
5872 !test_range_bit(&BTRFS_I(inode)->io_tree,
5873 lockstart, lockend, EXTENT_UPTODATE, 0,
5874 *cached_state)))
5875 break;
5876
5877 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5878 cached_state, GFP_NOFS);
5879
5880 if (ordered) {
5881 btrfs_start_ordered_extent(inode, ordered, 1);
5882 btrfs_put_ordered_extent(ordered);
5883 } else {
5884 /* Screw you mmap */
5885 ret = filemap_write_and_wait_range(inode->i_mapping,
5886 lockstart,
5887 lockend);
5888 if (ret)
5889 break;
5890
5891 /*
5892 * If we found a page that couldn't be invalidated just
5893 * fall back to buffered.
5894 */
5895 ret = invalidate_inode_pages2_range(inode->i_mapping,
5896 lockstart >> PAGE_CACHE_SHIFT,
5897 lockend >> PAGE_CACHE_SHIFT);
5898 if (ret)
5899 break;
5900 }
5901
5902 cond_resched();
5903 }
5904
5905 return ret;
5906 }
5907
5908 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
5909 u64 len, u64 orig_start,
5910 u64 block_start, u64 block_len,
5911 int type)
5912 {
5913 struct extent_map_tree *em_tree;
5914 struct extent_map *em;
5915 struct btrfs_root *root = BTRFS_I(inode)->root;
5916 int ret;
5917
5918 em_tree = &BTRFS_I(inode)->extent_tree;
5919 em = alloc_extent_map();
5920 if (!em)
5921 return ERR_PTR(-ENOMEM);
5922
5923 em->start = start;
5924 em->orig_start = orig_start;
5925 em->len = len;
5926 em->block_len = block_len;
5927 em->block_start = block_start;
5928 em->bdev = root->fs_info->fs_devices->latest_bdev;
5929 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5930 if (type == BTRFS_ORDERED_PREALLOC)
5931 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5932
5933 do {
5934 btrfs_drop_extent_cache(inode, em->start,
5935 em->start + em->len - 1, 0);
5936 write_lock(&em_tree->lock);
5937 ret = add_extent_mapping(em_tree, em);
5938 write_unlock(&em_tree->lock);
5939 } while (ret == -EEXIST);
5940
5941 if (ret) {
5942 free_extent_map(em);
5943 return ERR_PTR(ret);
5944 }
5945
5946 return em;
5947 }
5948
5949
5950 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5951 struct buffer_head *bh_result, int create)
5952 {
5953 struct extent_map *em;
5954 struct btrfs_root *root = BTRFS_I(inode)->root;
5955 struct extent_state *cached_state = NULL;
5956 u64 start = iblock << inode->i_blkbits;
5957 u64 lockstart, lockend;
5958 u64 len = bh_result->b_size;
5959 struct btrfs_trans_handle *trans;
5960 int unlock_bits = EXTENT_LOCKED;
5961 int ret;
5962
5963 if (create) {
5964 ret = btrfs_delalloc_reserve_space(inode, len);
5965 if (ret)
5966 return ret;
5967 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
5968 } else {
5969 len = min_t(u64, len, root->sectorsize);
5970 }
5971
5972 lockstart = start;
5973 lockend = start + len - 1;
5974
5975 /*
5976 * If this errors out it's because we couldn't invalidate pagecache for
5977 * this range and we need to fallback to buffered.
5978 */
5979 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
5980 return -ENOTBLK;
5981
5982 if (create) {
5983 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
5984 lockend, EXTENT_DELALLOC, NULL,
5985 &cached_state, GFP_NOFS);
5986 if (ret)
5987 goto unlock_err;
5988 }
5989
5990 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5991 if (IS_ERR(em)) {
5992 ret = PTR_ERR(em);
5993 goto unlock_err;
5994 }
5995
5996 /*
5997 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5998 * io. INLINE is special, and we could probably kludge it in here, but
5999 * it's still buffered so for safety lets just fall back to the generic
6000 * buffered path.
6001 *
6002 * For COMPRESSED we _have_ to read the entire extent in so we can
6003 * decompress it, so there will be buffering required no matter what we
6004 * do, so go ahead and fallback to buffered.
6005 *
6006 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6007 * to buffered IO. Don't blame me, this is the price we pay for using
6008 * the generic code.
6009 */
6010 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6011 em->block_start == EXTENT_MAP_INLINE) {
6012 free_extent_map(em);
6013 ret = -ENOTBLK;
6014 goto unlock_err;
6015 }
6016
6017 /* Just a good old fashioned hole, return */
6018 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6019 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6020 free_extent_map(em);
6021 ret = 0;
6022 goto unlock_err;
6023 }
6024
6025 /*
6026 * We don't allocate a new extent in the following cases
6027 *
6028 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6029 * existing extent.
6030 * 2) The extent is marked as PREALLOC. We're good to go here and can
6031 * just use the extent.
6032 *
6033 */
6034 if (!create) {
6035 len = min(len, em->len - (start - em->start));
6036 lockstart = start + len;
6037 goto unlock;
6038 }
6039
6040 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6041 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6042 em->block_start != EXTENT_MAP_HOLE)) {
6043 int type;
6044 int ret;
6045 u64 block_start;
6046
6047 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6048 type = BTRFS_ORDERED_PREALLOC;
6049 else
6050 type = BTRFS_ORDERED_NOCOW;
6051 len = min(len, em->len - (start - em->start));
6052 block_start = em->block_start + (start - em->start);
6053
6054 /*
6055 * we're not going to log anything, but we do need
6056 * to make sure the current transaction stays open
6057 * while we look for nocow cross refs
6058 */
6059 trans = btrfs_join_transaction(root);
6060 if (IS_ERR(trans))
6061 goto must_cow;
6062
6063 if (can_nocow_odirect(trans, inode, start, len) == 1) {
6064 u64 orig_start = em->start;
6065
6066 if (type == BTRFS_ORDERED_PREALLOC) {
6067 free_extent_map(em);
6068 em = create_pinned_em(inode, start, len,
6069 orig_start,
6070 block_start, len, type);
6071 if (IS_ERR(em)) {
6072 btrfs_end_transaction(trans, root);
6073 goto unlock_err;
6074 }
6075 }
6076
6077 ret = btrfs_add_ordered_extent_dio(inode, start,
6078 block_start, len, len, type);
6079 btrfs_end_transaction(trans, root);
6080 if (ret) {
6081 free_extent_map(em);
6082 goto unlock_err;
6083 }
6084 goto unlock;
6085 }
6086 btrfs_end_transaction(trans, root);
6087 }
6088 must_cow:
6089 /*
6090 * this will cow the extent, reset the len in case we changed
6091 * it above
6092 */
6093 len = bh_result->b_size;
6094 em = btrfs_new_extent_direct(inode, em, start, len);
6095 if (IS_ERR(em)) {
6096 ret = PTR_ERR(em);
6097 goto unlock_err;
6098 }
6099 len = min(len, em->len - (start - em->start));
6100 unlock:
6101 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6102 inode->i_blkbits;
6103 bh_result->b_size = len;
6104 bh_result->b_bdev = em->bdev;
6105 set_buffer_mapped(bh_result);
6106 if (create) {
6107 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6108 set_buffer_new(bh_result);
6109
6110 /*
6111 * Need to update the i_size under the extent lock so buffered
6112 * readers will get the updated i_size when we unlock.
6113 */
6114 if (start + len > i_size_read(inode))
6115 i_size_write(inode, start + len);
6116 }
6117
6118 /*
6119 * In the case of write we need to clear and unlock the entire range,
6120 * in the case of read we need to unlock only the end area that we
6121 * aren't using if there is any left over space.
6122 */
6123 if (lockstart < lockend) {
6124 if (create && len < lockend - lockstart) {
6125 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6126 lockstart + len - 1,
6127 unlock_bits | EXTENT_DEFRAG, 1, 0,
6128 &cached_state, GFP_NOFS);
6129 /*
6130 * Beside unlock, we also need to cleanup reserved space
6131 * for the left range by attaching EXTENT_DO_ACCOUNTING.
6132 */
6133 clear_extent_bit(&BTRFS_I(inode)->io_tree,
6134 lockstart + len, lockend,
6135 unlock_bits | EXTENT_DO_ACCOUNTING |
6136 EXTENT_DEFRAG, 1, 0, NULL, GFP_NOFS);
6137 } else {
6138 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6139 lockend, unlock_bits, 1, 0,
6140 &cached_state, GFP_NOFS);
6141 }
6142 } else {
6143 free_extent_state(cached_state);
6144 }
6145
6146 free_extent_map(em);
6147
6148 return 0;
6149
6150 unlock_err:
6151 if (create)
6152 unlock_bits |= EXTENT_DO_ACCOUNTING;
6153
6154 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6155 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6156 return ret;
6157 }
6158
6159 struct btrfs_dio_private {
6160 struct inode *inode;
6161 u64 logical_offset;
6162 u64 disk_bytenr;
6163 u64 bytes;
6164 void *private;
6165
6166 /* number of bios pending for this dio */
6167 atomic_t pending_bios;
6168
6169 /* IO errors */
6170 int errors;
6171
6172 struct bio *orig_bio;
6173 };
6174
6175 static void btrfs_endio_direct_read(struct bio *bio, int err)
6176 {
6177 struct btrfs_dio_private *dip = bio->bi_private;
6178 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6179 struct bio_vec *bvec = bio->bi_io_vec;
6180 struct inode *inode = dip->inode;
6181 struct btrfs_root *root = BTRFS_I(inode)->root;
6182 u64 start;
6183
6184 start = dip->logical_offset;
6185 do {
6186 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6187 struct page *page = bvec->bv_page;
6188 char *kaddr;
6189 u32 csum = ~(u32)0;
6190 u64 private = ~(u32)0;
6191 unsigned long flags;
6192
6193 if (get_state_private(&BTRFS_I(inode)->io_tree,
6194 start, &private))
6195 goto failed;
6196 local_irq_save(flags);
6197 kaddr = kmap_atomic(page);
6198 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
6199 csum, bvec->bv_len);
6200 btrfs_csum_final(csum, (char *)&csum);
6201 kunmap_atomic(kaddr);
6202 local_irq_restore(flags);
6203
6204 flush_dcache_page(bvec->bv_page);
6205 if (csum != private) {
6206 failed:
6207 printk(KERN_ERR "btrfs csum failed ino %llu off"
6208 " %llu csum %u private %u\n",
6209 (unsigned long long)btrfs_ino(inode),
6210 (unsigned long long)start,
6211 csum, (unsigned)private);
6212 err = -EIO;
6213 }
6214 }
6215
6216 start += bvec->bv_len;
6217 bvec++;
6218 } while (bvec <= bvec_end);
6219
6220 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6221 dip->logical_offset + dip->bytes - 1);
6222 bio->bi_private = dip->private;
6223
6224 kfree(dip);
6225
6226 /* If we had a csum failure make sure to clear the uptodate flag */
6227 if (err)
6228 clear_bit(BIO_UPTODATE, &bio->bi_flags);
6229 dio_end_io(bio, err);
6230 }
6231
6232 static void btrfs_endio_direct_write(struct bio *bio, int err)
6233 {
6234 struct btrfs_dio_private *dip = bio->bi_private;
6235 struct inode *inode = dip->inode;
6236 struct btrfs_root *root = BTRFS_I(inode)->root;
6237 struct btrfs_ordered_extent *ordered = NULL;
6238 u64 ordered_offset = dip->logical_offset;
6239 u64 ordered_bytes = dip->bytes;
6240 int ret;
6241
6242 if (err)
6243 goto out_done;
6244 again:
6245 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6246 &ordered_offset,
6247 ordered_bytes, !err);
6248 if (!ret)
6249 goto out_test;
6250
6251 ordered->work.func = finish_ordered_fn;
6252 ordered->work.flags = 0;
6253 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6254 &ordered->work);
6255 out_test:
6256 /*
6257 * our bio might span multiple ordered extents. If we haven't
6258 * completed the accounting for the whole dio, go back and try again
6259 */
6260 if (ordered_offset < dip->logical_offset + dip->bytes) {
6261 ordered_bytes = dip->logical_offset + dip->bytes -
6262 ordered_offset;
6263 ordered = NULL;
6264 goto again;
6265 }
6266 out_done:
6267 bio->bi_private = dip->private;
6268
6269 kfree(dip);
6270
6271 /* If we had an error make sure to clear the uptodate flag */
6272 if (err)
6273 clear_bit(BIO_UPTODATE, &bio->bi_flags);
6274 dio_end_io(bio, err);
6275 }
6276
6277 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6278 struct bio *bio, int mirror_num,
6279 unsigned long bio_flags, u64 offset)
6280 {
6281 int ret;
6282 struct btrfs_root *root = BTRFS_I(inode)->root;
6283 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6284 BUG_ON(ret); /* -ENOMEM */
6285 return 0;
6286 }
6287
6288 static void btrfs_end_dio_bio(struct bio *bio, int err)
6289 {
6290 struct btrfs_dio_private *dip = bio->bi_private;
6291
6292 if (err) {
6293 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6294 "sector %#Lx len %u err no %d\n",
6295 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
6296 (unsigned long long)bio->bi_sector, bio->bi_size, err);
6297 dip->errors = 1;
6298
6299 /*
6300 * before atomic variable goto zero, we must make sure
6301 * dip->errors is perceived to be set.
6302 */
6303 smp_mb__before_atomic_dec();
6304 }
6305
6306 /* if there are more bios still pending for this dio, just exit */
6307 if (!atomic_dec_and_test(&dip->pending_bios))
6308 goto out;
6309
6310 if (dip->errors)
6311 bio_io_error(dip->orig_bio);
6312 else {
6313 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6314 bio_endio(dip->orig_bio, 0);
6315 }
6316 out:
6317 bio_put(bio);
6318 }
6319
6320 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6321 u64 first_sector, gfp_t gfp_flags)
6322 {
6323 int nr_vecs = bio_get_nr_vecs(bdev);
6324 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6325 }
6326
6327 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6328 int rw, u64 file_offset, int skip_sum,
6329 int async_submit)
6330 {
6331 int write = rw & REQ_WRITE;
6332 struct btrfs_root *root = BTRFS_I(inode)->root;
6333 int ret;
6334
6335 bio_get(bio);
6336
6337 if (!write) {
6338 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6339 if (ret)
6340 goto err;
6341 }
6342
6343 if (skip_sum)
6344 goto map;
6345
6346 if (write && async_submit) {
6347 ret = btrfs_wq_submit_bio(root->fs_info,
6348 inode, rw, bio, 0, 0,
6349 file_offset,
6350 __btrfs_submit_bio_start_direct_io,
6351 __btrfs_submit_bio_done);
6352 goto err;
6353 } else if (write) {
6354 /*
6355 * If we aren't doing async submit, calculate the csum of the
6356 * bio now.
6357 */
6358 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6359 if (ret)
6360 goto err;
6361 } else if (!skip_sum) {
6362 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
6363 if (ret)
6364 goto err;
6365 }
6366
6367 map:
6368 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6369 err:
6370 bio_put(bio);
6371 return ret;
6372 }
6373
6374 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6375 int skip_sum)
6376 {
6377 struct inode *inode = dip->inode;
6378 struct btrfs_root *root = BTRFS_I(inode)->root;
6379 struct bio *bio;
6380 struct bio *orig_bio = dip->orig_bio;
6381 struct bio_vec *bvec = orig_bio->bi_io_vec;
6382 u64 start_sector = orig_bio->bi_sector;
6383 u64 file_offset = dip->logical_offset;
6384 u64 submit_len = 0;
6385 u64 map_length;
6386 int nr_pages = 0;
6387 int ret = 0;
6388 int async_submit = 0;
6389
6390 map_length = orig_bio->bi_size;
6391 ret = btrfs_map_block(root->fs_info, READ, start_sector << 9,
6392 &map_length, NULL, 0);
6393 if (ret) {
6394 bio_put(orig_bio);
6395 return -EIO;
6396 }
6397
6398 if (map_length >= orig_bio->bi_size) {
6399 bio = orig_bio;
6400 goto submit;
6401 }
6402
6403 async_submit = 1;
6404 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6405 if (!bio)
6406 return -ENOMEM;
6407 bio->bi_private = dip;
6408 bio->bi_end_io = btrfs_end_dio_bio;
6409 atomic_inc(&dip->pending_bios);
6410
6411 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6412 if (unlikely(map_length < submit_len + bvec->bv_len ||
6413 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6414 bvec->bv_offset) < bvec->bv_len)) {
6415 /*
6416 * inc the count before we submit the bio so
6417 * we know the end IO handler won't happen before
6418 * we inc the count. Otherwise, the dip might get freed
6419 * before we're done setting it up
6420 */
6421 atomic_inc(&dip->pending_bios);
6422 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6423 file_offset, skip_sum,
6424 async_submit);
6425 if (ret) {
6426 bio_put(bio);
6427 atomic_dec(&dip->pending_bios);
6428 goto out_err;
6429 }
6430
6431 start_sector += submit_len >> 9;
6432 file_offset += submit_len;
6433
6434 submit_len = 0;
6435 nr_pages = 0;
6436
6437 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6438 start_sector, GFP_NOFS);
6439 if (!bio)
6440 goto out_err;
6441 bio->bi_private = dip;
6442 bio->bi_end_io = btrfs_end_dio_bio;
6443
6444 map_length = orig_bio->bi_size;
6445 ret = btrfs_map_block(root->fs_info, READ,
6446 start_sector << 9,
6447 &map_length, NULL, 0);
6448 if (ret) {
6449 bio_put(bio);
6450 goto out_err;
6451 }
6452 } else {
6453 submit_len += bvec->bv_len;
6454 nr_pages ++;
6455 bvec++;
6456 }
6457 }
6458
6459 submit:
6460 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6461 async_submit);
6462 if (!ret)
6463 return 0;
6464
6465 bio_put(bio);
6466 out_err:
6467 dip->errors = 1;
6468 /*
6469 * before atomic variable goto zero, we must
6470 * make sure dip->errors is perceived to be set.
6471 */
6472 smp_mb__before_atomic_dec();
6473 if (atomic_dec_and_test(&dip->pending_bios))
6474 bio_io_error(dip->orig_bio);
6475
6476 /* bio_end_io() will handle error, so we needn't return it */
6477 return 0;
6478 }
6479
6480 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6481 loff_t file_offset)
6482 {
6483 struct btrfs_root *root = BTRFS_I(inode)->root;
6484 struct btrfs_dio_private *dip;
6485 struct bio_vec *bvec = bio->bi_io_vec;
6486 int skip_sum;
6487 int write = rw & REQ_WRITE;
6488 int ret = 0;
6489
6490 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6491
6492 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6493 if (!dip) {
6494 ret = -ENOMEM;
6495 goto free_ordered;
6496 }
6497
6498 dip->private = bio->bi_private;
6499 dip->inode = inode;
6500 dip->logical_offset = file_offset;
6501
6502 dip->bytes = 0;
6503 do {
6504 dip->bytes += bvec->bv_len;
6505 bvec++;
6506 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6507
6508 dip->disk_bytenr = (u64)bio->bi_sector << 9;
6509 bio->bi_private = dip;
6510 dip->errors = 0;
6511 dip->orig_bio = bio;
6512 atomic_set(&dip->pending_bios, 0);
6513
6514 if (write)
6515 bio->bi_end_io = btrfs_endio_direct_write;
6516 else
6517 bio->bi_end_io = btrfs_endio_direct_read;
6518
6519 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6520 if (!ret)
6521 return;
6522 free_ordered:
6523 /*
6524 * If this is a write, we need to clean up the reserved space and kill
6525 * the ordered extent.
6526 */
6527 if (write) {
6528 struct btrfs_ordered_extent *ordered;
6529 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6530 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6531 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6532 btrfs_free_reserved_extent(root, ordered->start,
6533 ordered->disk_len);
6534 btrfs_put_ordered_extent(ordered);
6535 btrfs_put_ordered_extent(ordered);
6536 }
6537 bio_endio(bio, ret);
6538 }
6539
6540 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6541 const struct iovec *iov, loff_t offset,
6542 unsigned long nr_segs)
6543 {
6544 int seg;
6545 int i;
6546 size_t size;
6547 unsigned long addr;
6548 unsigned blocksize_mask = root->sectorsize - 1;
6549 ssize_t retval = -EINVAL;
6550 loff_t end = offset;
6551
6552 if (offset & blocksize_mask)
6553 goto out;
6554
6555 /* Check the memory alignment. Blocks cannot straddle pages */
6556 for (seg = 0; seg < nr_segs; seg++) {
6557 addr = (unsigned long)iov[seg].iov_base;
6558 size = iov[seg].iov_len;
6559 end += size;
6560 if ((addr & blocksize_mask) || (size & blocksize_mask))
6561 goto out;
6562
6563 /* If this is a write we don't need to check anymore */
6564 if (rw & WRITE)
6565 continue;
6566
6567 /*
6568 * Check to make sure we don't have duplicate iov_base's in this
6569 * iovec, if so return EINVAL, otherwise we'll get csum errors
6570 * when reading back.
6571 */
6572 for (i = seg + 1; i < nr_segs; i++) {
6573 if (iov[seg].iov_base == iov[i].iov_base)
6574 goto out;
6575 }
6576 }
6577 retval = 0;
6578 out:
6579 return retval;
6580 }
6581
6582 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6583 const struct iovec *iov, loff_t offset,
6584 unsigned long nr_segs)
6585 {
6586 struct file *file = iocb->ki_filp;
6587 struct inode *inode = file->f_mapping->host;
6588
6589 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6590 offset, nr_segs))
6591 return 0;
6592
6593 return __blockdev_direct_IO(rw, iocb, inode,
6594 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6595 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6596 btrfs_submit_direct, 0);
6597 }
6598
6599 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
6600
6601 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6602 __u64 start, __u64 len)
6603 {
6604 int ret;
6605
6606 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
6607 if (ret)
6608 return ret;
6609
6610 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6611 }
6612
6613 int btrfs_readpage(struct file *file, struct page *page)
6614 {
6615 struct extent_io_tree *tree;
6616 tree = &BTRFS_I(page->mapping->host)->io_tree;
6617 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
6618 }
6619
6620 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6621 {
6622 struct extent_io_tree *tree;
6623
6624
6625 if (current->flags & PF_MEMALLOC) {
6626 redirty_page_for_writepage(wbc, page);
6627 unlock_page(page);
6628 return 0;
6629 }
6630 tree = &BTRFS_I(page->mapping->host)->io_tree;
6631 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6632 }
6633
6634 int btrfs_writepages(struct address_space *mapping,
6635 struct writeback_control *wbc)
6636 {
6637 struct extent_io_tree *tree;
6638
6639 tree = &BTRFS_I(mapping->host)->io_tree;
6640 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6641 }
6642
6643 static int
6644 btrfs_readpages(struct file *file, struct address_space *mapping,
6645 struct list_head *pages, unsigned nr_pages)
6646 {
6647 struct extent_io_tree *tree;
6648 tree = &BTRFS_I(mapping->host)->io_tree;
6649 return extent_readpages(tree, mapping, pages, nr_pages,
6650 btrfs_get_extent);
6651 }
6652 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6653 {
6654 struct extent_io_tree *tree;
6655 struct extent_map_tree *map;
6656 int ret;
6657
6658 tree = &BTRFS_I(page->mapping->host)->io_tree;
6659 map = &BTRFS_I(page->mapping->host)->extent_tree;
6660 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6661 if (ret == 1) {
6662 ClearPagePrivate(page);
6663 set_page_private(page, 0);
6664 page_cache_release(page);
6665 }
6666 return ret;
6667 }
6668
6669 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6670 {
6671 if (PageWriteback(page) || PageDirty(page))
6672 return 0;
6673 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6674 }
6675
6676 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6677 {
6678 struct inode *inode = page->mapping->host;
6679 struct extent_io_tree *tree;
6680 struct btrfs_ordered_extent *ordered;
6681 struct extent_state *cached_state = NULL;
6682 u64 page_start = page_offset(page);
6683 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6684
6685 /*
6686 * we have the page locked, so new writeback can't start,
6687 * and the dirty bit won't be cleared while we are here.
6688 *
6689 * Wait for IO on this page so that we can safely clear
6690 * the PagePrivate2 bit and do ordered accounting
6691 */
6692 wait_on_page_writeback(page);
6693
6694 tree = &BTRFS_I(inode)->io_tree;
6695 if (offset) {
6696 btrfs_releasepage(page, GFP_NOFS);
6697 return;
6698 }
6699 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6700 ordered = btrfs_lookup_ordered_extent(inode,
6701 page_offset(page));
6702 if (ordered) {
6703 /*
6704 * IO on this page will never be started, so we need
6705 * to account for any ordered extents now
6706 */
6707 clear_extent_bit(tree, page_start, page_end,
6708 EXTENT_DIRTY | EXTENT_DELALLOC |
6709 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
6710 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
6711 /*
6712 * whoever cleared the private bit is responsible
6713 * for the finish_ordered_io
6714 */
6715 if (TestClearPagePrivate2(page) &&
6716 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
6717 PAGE_CACHE_SIZE, 1)) {
6718 btrfs_finish_ordered_io(ordered);
6719 }
6720 btrfs_put_ordered_extent(ordered);
6721 cached_state = NULL;
6722 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6723 }
6724 clear_extent_bit(tree, page_start, page_end,
6725 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6726 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
6727 &cached_state, GFP_NOFS);
6728 __btrfs_releasepage(page, GFP_NOFS);
6729
6730 ClearPageChecked(page);
6731 if (PagePrivate(page)) {
6732 ClearPagePrivate(page);
6733 set_page_private(page, 0);
6734 page_cache_release(page);
6735 }
6736 }
6737
6738 /*
6739 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6740 * called from a page fault handler when a page is first dirtied. Hence we must
6741 * be careful to check for EOF conditions here. We set the page up correctly
6742 * for a written page which means we get ENOSPC checking when writing into
6743 * holes and correct delalloc and unwritten extent mapping on filesystems that
6744 * support these features.
6745 *
6746 * We are not allowed to take the i_mutex here so we have to play games to
6747 * protect against truncate races as the page could now be beyond EOF. Because
6748 * vmtruncate() writes the inode size before removing pages, once we have the
6749 * page lock we can determine safely if the page is beyond EOF. If it is not
6750 * beyond EOF, then the page is guaranteed safe against truncation until we
6751 * unlock the page.
6752 */
6753 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6754 {
6755 struct page *page = vmf->page;
6756 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6757 struct btrfs_root *root = BTRFS_I(inode)->root;
6758 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6759 struct btrfs_ordered_extent *ordered;
6760 struct extent_state *cached_state = NULL;
6761 char *kaddr;
6762 unsigned long zero_start;
6763 loff_t size;
6764 int ret;
6765 int reserved = 0;
6766 u64 page_start;
6767 u64 page_end;
6768
6769 sb_start_pagefault(inode->i_sb);
6770 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6771 if (!ret) {
6772 ret = file_update_time(vma->vm_file);
6773 reserved = 1;
6774 }
6775 if (ret) {
6776 if (ret == -ENOMEM)
6777 ret = VM_FAULT_OOM;
6778 else /* -ENOSPC, -EIO, etc */
6779 ret = VM_FAULT_SIGBUS;
6780 if (reserved)
6781 goto out;
6782 goto out_noreserve;
6783 }
6784
6785 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6786 again:
6787 lock_page(page);
6788 size = i_size_read(inode);
6789 page_start = page_offset(page);
6790 page_end = page_start + PAGE_CACHE_SIZE - 1;
6791
6792 if ((page->mapping != inode->i_mapping) ||
6793 (page_start >= size)) {
6794 /* page got truncated out from underneath us */
6795 goto out_unlock;
6796 }
6797 wait_on_page_writeback(page);
6798
6799 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
6800 set_page_extent_mapped(page);
6801
6802 /*
6803 * we can't set the delalloc bits if there are pending ordered
6804 * extents. Drop our locks and wait for them to finish
6805 */
6806 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6807 if (ordered) {
6808 unlock_extent_cached(io_tree, page_start, page_end,
6809 &cached_state, GFP_NOFS);
6810 unlock_page(page);
6811 btrfs_start_ordered_extent(inode, ordered, 1);
6812 btrfs_put_ordered_extent(ordered);
6813 goto again;
6814 }
6815
6816 /*
6817 * XXX - page_mkwrite gets called every time the page is dirtied, even
6818 * if it was already dirty, so for space accounting reasons we need to
6819 * clear any delalloc bits for the range we are fixing to save. There
6820 * is probably a better way to do this, but for now keep consistent with
6821 * prepare_pages in the normal write path.
6822 */
6823 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6824 EXTENT_DIRTY | EXTENT_DELALLOC |
6825 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
6826 0, 0, &cached_state, GFP_NOFS);
6827
6828 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6829 &cached_state);
6830 if (ret) {
6831 unlock_extent_cached(io_tree, page_start, page_end,
6832 &cached_state, GFP_NOFS);
6833 ret = VM_FAULT_SIGBUS;
6834 goto out_unlock;
6835 }
6836 ret = 0;
6837
6838 /* page is wholly or partially inside EOF */
6839 if (page_start + PAGE_CACHE_SIZE > size)
6840 zero_start = size & ~PAGE_CACHE_MASK;
6841 else
6842 zero_start = PAGE_CACHE_SIZE;
6843
6844 if (zero_start != PAGE_CACHE_SIZE) {
6845 kaddr = kmap(page);
6846 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6847 flush_dcache_page(page);
6848 kunmap(page);
6849 }
6850 ClearPageChecked(page);
6851 set_page_dirty(page);
6852 SetPageUptodate(page);
6853
6854 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6855 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6856 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
6857
6858 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6859
6860 out_unlock:
6861 if (!ret) {
6862 sb_end_pagefault(inode->i_sb);
6863 return VM_FAULT_LOCKED;
6864 }
6865 unlock_page(page);
6866 out:
6867 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6868 out_noreserve:
6869 sb_end_pagefault(inode->i_sb);
6870 return ret;
6871 }
6872
6873 static int btrfs_truncate(struct inode *inode)
6874 {
6875 struct btrfs_root *root = BTRFS_I(inode)->root;
6876 struct btrfs_block_rsv *rsv;
6877 int ret;
6878 int err = 0;
6879 struct btrfs_trans_handle *trans;
6880 u64 mask = root->sectorsize - 1;
6881 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
6882
6883 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
6884 if (ret)
6885 return ret;
6886
6887 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6888 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6889
6890 /*
6891 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6892 * 3 things going on here
6893 *
6894 * 1) We need to reserve space for our orphan item and the space to
6895 * delete our orphan item. Lord knows we don't want to have a dangling
6896 * orphan item because we didn't reserve space to remove it.
6897 *
6898 * 2) We need to reserve space to update our inode.
6899 *
6900 * 3) We need to have something to cache all the space that is going to
6901 * be free'd up by the truncate operation, but also have some slack
6902 * space reserved in case it uses space during the truncate (thank you
6903 * very much snapshotting).
6904 *
6905 * And we need these to all be seperate. The fact is we can use alot of
6906 * space doing the truncate, and we have no earthly idea how much space
6907 * we will use, so we need the truncate reservation to be seperate so it
6908 * doesn't end up using space reserved for updating the inode or
6909 * removing the orphan item. We also need to be able to stop the
6910 * transaction and start a new one, which means we need to be able to
6911 * update the inode several times, and we have no idea of knowing how
6912 * many times that will be, so we can't just reserve 1 item for the
6913 * entirety of the opration, so that has to be done seperately as well.
6914 * Then there is the orphan item, which does indeed need to be held on
6915 * to for the whole operation, and we need nobody to touch this reserved
6916 * space except the orphan code.
6917 *
6918 * So that leaves us with
6919 *
6920 * 1) root->orphan_block_rsv - for the orphan deletion.
6921 * 2) rsv - for the truncate reservation, which we will steal from the
6922 * transaction reservation.
6923 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6924 * updating the inode.
6925 */
6926 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
6927 if (!rsv)
6928 return -ENOMEM;
6929 rsv->size = min_size;
6930 rsv->failfast = 1;
6931
6932 /*
6933 * 1 for the truncate slack space
6934 * 1 for the orphan item we're going to add
6935 * 1 for the orphan item deletion
6936 * 1 for updating the inode.
6937 */
6938 trans = btrfs_start_transaction(root, 4);
6939 if (IS_ERR(trans)) {
6940 err = PTR_ERR(trans);
6941 goto out;
6942 }
6943
6944 /* Migrate the slack space for the truncate to our reserve */
6945 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6946 min_size);
6947 BUG_ON(ret);
6948
6949 ret = btrfs_orphan_add(trans, inode);
6950 if (ret) {
6951 btrfs_end_transaction(trans, root);
6952 goto out;
6953 }
6954
6955 /*
6956 * setattr is responsible for setting the ordered_data_close flag,
6957 * but that is only tested during the last file release. That
6958 * could happen well after the next commit, leaving a great big
6959 * window where new writes may get lost if someone chooses to write
6960 * to this file after truncating to zero
6961 *
6962 * The inode doesn't have any dirty data here, and so if we commit
6963 * this is a noop. If someone immediately starts writing to the inode
6964 * it is very likely we'll catch some of their writes in this
6965 * transaction, and the commit will find this file on the ordered
6966 * data list with good things to send down.
6967 *
6968 * This is a best effort solution, there is still a window where
6969 * using truncate to replace the contents of the file will
6970 * end up with a zero length file after a crash.
6971 */
6972 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
6973 &BTRFS_I(inode)->runtime_flags))
6974 btrfs_add_ordered_operation(trans, root, inode);
6975
6976 /*
6977 * So if we truncate and then write and fsync we normally would just
6978 * write the extents that changed, which is a problem if we need to
6979 * first truncate that entire inode. So set this flag so we write out
6980 * all of the extents in the inode to the sync log so we're completely
6981 * safe.
6982 */
6983 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6984 trans->block_rsv = rsv;
6985
6986 while (1) {
6987 ret = btrfs_truncate_inode_items(trans, root, inode,
6988 inode->i_size,
6989 BTRFS_EXTENT_DATA_KEY);
6990 if (ret != -ENOSPC) {
6991 err = ret;
6992 break;
6993 }
6994
6995 trans->block_rsv = &root->fs_info->trans_block_rsv;
6996 ret = btrfs_update_inode(trans, root, inode);
6997 if (ret) {
6998 err = ret;
6999 break;
7000 }
7001
7002 btrfs_end_transaction(trans, root);
7003 btrfs_btree_balance_dirty(root);
7004
7005 trans = btrfs_start_transaction(root, 2);
7006 if (IS_ERR(trans)) {
7007 ret = err = PTR_ERR(trans);
7008 trans = NULL;
7009 break;
7010 }
7011
7012 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7013 rsv, min_size);
7014 BUG_ON(ret); /* shouldn't happen */
7015 trans->block_rsv = rsv;
7016 }
7017
7018 if (ret == 0 && inode->i_nlink > 0) {
7019 trans->block_rsv = root->orphan_block_rsv;
7020 ret = btrfs_orphan_del(trans, inode);
7021 if (ret)
7022 err = ret;
7023 } else if (ret && inode->i_nlink > 0) {
7024 /*
7025 * Failed to do the truncate, remove us from the in memory
7026 * orphan list.
7027 */
7028 ret = btrfs_orphan_del(NULL, inode);
7029 }
7030
7031 if (trans) {
7032 trans->block_rsv = &root->fs_info->trans_block_rsv;
7033 ret = btrfs_update_inode(trans, root, inode);
7034 if (ret && !err)
7035 err = ret;
7036
7037 ret = btrfs_end_transaction(trans, root);
7038 btrfs_btree_balance_dirty(root);
7039 }
7040
7041 out:
7042 btrfs_free_block_rsv(root, rsv);
7043
7044 if (ret && !err)
7045 err = ret;
7046
7047 return err;
7048 }
7049
7050 /*
7051 * create a new subvolume directory/inode (helper for the ioctl).
7052 */
7053 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
7054 struct btrfs_root *new_root, u64 new_dirid)
7055 {
7056 struct inode *inode;
7057 int err;
7058 u64 index = 0;
7059
7060 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7061 new_dirid, new_dirid,
7062 S_IFDIR | (~current_umask() & S_IRWXUGO),
7063 &index);
7064 if (IS_ERR(inode))
7065 return PTR_ERR(inode);
7066 inode->i_op = &btrfs_dir_inode_operations;
7067 inode->i_fop = &btrfs_dir_file_operations;
7068
7069 set_nlink(inode, 1);
7070 btrfs_i_size_write(inode, 0);
7071
7072 err = btrfs_update_inode(trans, new_root, inode);
7073
7074 iput(inode);
7075 return err;
7076 }
7077
7078 struct inode *btrfs_alloc_inode(struct super_block *sb)
7079 {
7080 struct btrfs_inode *ei;
7081 struct inode *inode;
7082
7083 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7084 if (!ei)
7085 return NULL;
7086
7087 ei->root = NULL;
7088 ei->generation = 0;
7089 ei->last_trans = 0;
7090 ei->last_sub_trans = 0;
7091 ei->logged_trans = 0;
7092 ei->delalloc_bytes = 0;
7093 ei->disk_i_size = 0;
7094 ei->flags = 0;
7095 ei->csum_bytes = 0;
7096 ei->index_cnt = (u64)-1;
7097 ei->last_unlink_trans = 0;
7098 ei->last_log_commit = 0;
7099
7100 spin_lock_init(&ei->lock);
7101 ei->outstanding_extents = 0;
7102 ei->reserved_extents = 0;
7103
7104 ei->runtime_flags = 0;
7105 ei->force_compress = BTRFS_COMPRESS_NONE;
7106
7107 ei->delayed_node = NULL;
7108
7109 inode = &ei->vfs_inode;
7110 extent_map_tree_init(&ei->extent_tree);
7111 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7112 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
7113 ei->io_tree.track_uptodate = 1;
7114 ei->io_failure_tree.track_uptodate = 1;
7115 mutex_init(&ei->log_mutex);
7116 mutex_init(&ei->delalloc_mutex);
7117 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7118 INIT_LIST_HEAD(&ei->delalloc_inodes);
7119 INIT_LIST_HEAD(&ei->ordered_operations);
7120 RB_CLEAR_NODE(&ei->rb_node);
7121
7122 return inode;
7123 }
7124
7125 static void btrfs_i_callback(struct rcu_head *head)
7126 {
7127 struct inode *inode = container_of(head, struct inode, i_rcu);
7128 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7129 }
7130
7131 void btrfs_destroy_inode(struct inode *inode)
7132 {
7133 struct btrfs_ordered_extent *ordered;
7134 struct btrfs_root *root = BTRFS_I(inode)->root;
7135
7136 WARN_ON(!hlist_empty(&inode->i_dentry));
7137 WARN_ON(inode->i_data.nrpages);
7138 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7139 WARN_ON(BTRFS_I(inode)->reserved_extents);
7140 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7141 WARN_ON(BTRFS_I(inode)->csum_bytes);
7142
7143 /*
7144 * This can happen where we create an inode, but somebody else also
7145 * created the same inode and we need to destroy the one we already
7146 * created.
7147 */
7148 if (!root)
7149 goto free;
7150
7151 /*
7152 * Make sure we're properly removed from the ordered operation
7153 * lists.
7154 */
7155 smp_mb();
7156 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7157 spin_lock(&root->fs_info->ordered_extent_lock);
7158 list_del_init(&BTRFS_I(inode)->ordered_operations);
7159 spin_unlock(&root->fs_info->ordered_extent_lock);
7160 }
7161
7162 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7163 &BTRFS_I(inode)->runtime_flags)) {
7164 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7165 (unsigned long long)btrfs_ino(inode));
7166 atomic_dec(&root->orphan_inodes);
7167 }
7168
7169 while (1) {
7170 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7171 if (!ordered)
7172 break;
7173 else {
7174 printk(KERN_ERR "btrfs found ordered "
7175 "extent %llu %llu on inode cleanup\n",
7176 (unsigned long long)ordered->file_offset,
7177 (unsigned long long)ordered->len);
7178 btrfs_remove_ordered_extent(inode, ordered);
7179 btrfs_put_ordered_extent(ordered);
7180 btrfs_put_ordered_extent(ordered);
7181 }
7182 }
7183 inode_tree_del(inode);
7184 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7185 free:
7186 btrfs_remove_delayed_node(inode);
7187 call_rcu(&inode->i_rcu, btrfs_i_callback);
7188 }
7189
7190 int btrfs_drop_inode(struct inode *inode)
7191 {
7192 struct btrfs_root *root = BTRFS_I(inode)->root;
7193
7194 if (btrfs_root_refs(&root->root_item) == 0 &&
7195 !btrfs_is_free_space_inode(inode))
7196 return 1;
7197 else
7198 return generic_drop_inode(inode);
7199 }
7200
7201 static void init_once(void *foo)
7202 {
7203 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7204
7205 inode_init_once(&ei->vfs_inode);
7206 }
7207
7208 void btrfs_destroy_cachep(void)
7209 {
7210 /*
7211 * Make sure all delayed rcu free inodes are flushed before we
7212 * destroy cache.
7213 */
7214 rcu_barrier();
7215 if (btrfs_inode_cachep)
7216 kmem_cache_destroy(btrfs_inode_cachep);
7217 if (btrfs_trans_handle_cachep)
7218 kmem_cache_destroy(btrfs_trans_handle_cachep);
7219 if (btrfs_transaction_cachep)
7220 kmem_cache_destroy(btrfs_transaction_cachep);
7221 if (btrfs_path_cachep)
7222 kmem_cache_destroy(btrfs_path_cachep);
7223 if (btrfs_free_space_cachep)
7224 kmem_cache_destroy(btrfs_free_space_cachep);
7225 if (btrfs_delalloc_work_cachep)
7226 kmem_cache_destroy(btrfs_delalloc_work_cachep);
7227 }
7228
7229 int btrfs_init_cachep(void)
7230 {
7231 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7232 sizeof(struct btrfs_inode), 0,
7233 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7234 if (!btrfs_inode_cachep)
7235 goto fail;
7236
7237 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
7238 sizeof(struct btrfs_trans_handle), 0,
7239 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7240 if (!btrfs_trans_handle_cachep)
7241 goto fail;
7242
7243 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
7244 sizeof(struct btrfs_transaction), 0,
7245 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7246 if (!btrfs_transaction_cachep)
7247 goto fail;
7248
7249 btrfs_path_cachep = kmem_cache_create("btrfs_path",
7250 sizeof(struct btrfs_path), 0,
7251 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7252 if (!btrfs_path_cachep)
7253 goto fail;
7254
7255 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
7256 sizeof(struct btrfs_free_space), 0,
7257 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7258 if (!btrfs_free_space_cachep)
7259 goto fail;
7260
7261 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7262 sizeof(struct btrfs_delalloc_work), 0,
7263 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7264 NULL);
7265 if (!btrfs_delalloc_work_cachep)
7266 goto fail;
7267
7268 return 0;
7269 fail:
7270 btrfs_destroy_cachep();
7271 return -ENOMEM;
7272 }
7273
7274 static int btrfs_getattr(struct vfsmount *mnt,
7275 struct dentry *dentry, struct kstat *stat)
7276 {
7277 struct inode *inode = dentry->d_inode;
7278 u32 blocksize = inode->i_sb->s_blocksize;
7279
7280 generic_fillattr(inode, stat);
7281 stat->dev = BTRFS_I(inode)->root->anon_dev;
7282 stat->blksize = PAGE_CACHE_SIZE;
7283 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7284 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
7285 return 0;
7286 }
7287
7288 /*
7289 * If a file is moved, it will inherit the cow and compression flags of the new
7290 * directory.
7291 */
7292 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7293 {
7294 struct btrfs_inode *b_dir = BTRFS_I(dir);
7295 struct btrfs_inode *b_inode = BTRFS_I(inode);
7296
7297 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7298 b_inode->flags |= BTRFS_INODE_NODATACOW;
7299 else
7300 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7301
7302 if (b_dir->flags & BTRFS_INODE_COMPRESS) {
7303 b_inode->flags |= BTRFS_INODE_COMPRESS;
7304 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
7305 } else {
7306 b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
7307 BTRFS_INODE_NOCOMPRESS);
7308 }
7309 }
7310
7311 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7312 struct inode *new_dir, struct dentry *new_dentry)
7313 {
7314 struct btrfs_trans_handle *trans;
7315 struct btrfs_root *root = BTRFS_I(old_dir)->root;
7316 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7317 struct inode *new_inode = new_dentry->d_inode;
7318 struct inode *old_inode = old_dentry->d_inode;
7319 struct timespec ctime = CURRENT_TIME;
7320 u64 index = 0;
7321 u64 root_objectid;
7322 int ret;
7323 u64 old_ino = btrfs_ino(old_inode);
7324
7325 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
7326 return -EPERM;
7327
7328 /* we only allow rename subvolume link between subvolumes */
7329 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
7330 return -EXDEV;
7331
7332 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7333 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
7334 return -ENOTEMPTY;
7335
7336 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7337 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7338 return -ENOTEMPTY;
7339 /*
7340 * we're using rename to replace one file with another.
7341 * and the replacement file is large. Start IO on it now so
7342 * we don't add too much work to the end of the transaction
7343 */
7344 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
7345 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7346 filemap_flush(old_inode->i_mapping);
7347
7348 /* close the racy window with snapshot create/destroy ioctl */
7349 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7350 down_read(&root->fs_info->subvol_sem);
7351 /*
7352 * We want to reserve the absolute worst case amount of items. So if
7353 * both inodes are subvols and we need to unlink them then that would
7354 * require 4 item modifications, but if they are both normal inodes it
7355 * would require 5 item modifications, so we'll assume their normal
7356 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7357 * should cover the worst case number of items we'll modify.
7358 */
7359 trans = btrfs_start_transaction(root, 20);
7360 if (IS_ERR(trans)) {
7361 ret = PTR_ERR(trans);
7362 goto out_notrans;
7363 }
7364
7365 if (dest != root)
7366 btrfs_record_root_in_trans(trans, dest);
7367
7368 ret = btrfs_set_inode_index(new_dir, &index);
7369 if (ret)
7370 goto out_fail;
7371
7372 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7373 /* force full log commit if subvolume involved. */
7374 root->fs_info->last_trans_log_full_commit = trans->transid;
7375 } else {
7376 ret = btrfs_insert_inode_ref(trans, dest,
7377 new_dentry->d_name.name,
7378 new_dentry->d_name.len,
7379 old_ino,
7380 btrfs_ino(new_dir), index);
7381 if (ret)
7382 goto out_fail;
7383 /*
7384 * this is an ugly little race, but the rename is required
7385 * to make sure that if we crash, the inode is either at the
7386 * old name or the new one. pinning the log transaction lets
7387 * us make sure we don't allow a log commit to come in after
7388 * we unlink the name but before we add the new name back in.
7389 */
7390 btrfs_pin_log_trans(root);
7391 }
7392 /*
7393 * make sure the inode gets flushed if it is replacing
7394 * something.
7395 */
7396 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7397 btrfs_add_ordered_operation(trans, root, old_inode);
7398
7399 inode_inc_iversion(old_dir);
7400 inode_inc_iversion(new_dir);
7401 inode_inc_iversion(old_inode);
7402 old_dir->i_ctime = old_dir->i_mtime = ctime;
7403 new_dir->i_ctime = new_dir->i_mtime = ctime;
7404 old_inode->i_ctime = ctime;
7405
7406 if (old_dentry->d_parent != new_dentry->d_parent)
7407 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7408
7409 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7410 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7411 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7412 old_dentry->d_name.name,
7413 old_dentry->d_name.len);
7414 } else {
7415 ret = __btrfs_unlink_inode(trans, root, old_dir,
7416 old_dentry->d_inode,
7417 old_dentry->d_name.name,
7418 old_dentry->d_name.len);
7419 if (!ret)
7420 ret = btrfs_update_inode(trans, root, old_inode);
7421 }
7422 if (ret) {
7423 btrfs_abort_transaction(trans, root, ret);
7424 goto out_fail;
7425 }
7426
7427 if (new_inode) {
7428 inode_inc_iversion(new_inode);
7429 new_inode->i_ctime = CURRENT_TIME;
7430 if (unlikely(btrfs_ino(new_inode) ==
7431 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7432 root_objectid = BTRFS_I(new_inode)->location.objectid;
7433 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7434 root_objectid,
7435 new_dentry->d_name.name,
7436 new_dentry->d_name.len);
7437 BUG_ON(new_inode->i_nlink == 0);
7438 } else {
7439 ret = btrfs_unlink_inode(trans, dest, new_dir,
7440 new_dentry->d_inode,
7441 new_dentry->d_name.name,
7442 new_dentry->d_name.len);
7443 }
7444 if (!ret && new_inode->i_nlink == 0) {
7445 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7446 BUG_ON(ret);
7447 }
7448 if (ret) {
7449 btrfs_abort_transaction(trans, root, ret);
7450 goto out_fail;
7451 }
7452 }
7453
7454 fixup_inode_flags(new_dir, old_inode);
7455
7456 ret = btrfs_add_link(trans, new_dir, old_inode,
7457 new_dentry->d_name.name,
7458 new_dentry->d_name.len, 0, index);
7459 if (ret) {
7460 btrfs_abort_transaction(trans, root, ret);
7461 goto out_fail;
7462 }
7463
7464 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7465 struct dentry *parent = new_dentry->d_parent;
7466 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7467 btrfs_end_log_trans(root);
7468 }
7469 out_fail:
7470 btrfs_end_transaction(trans, root);
7471 out_notrans:
7472 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7473 up_read(&root->fs_info->subvol_sem);
7474
7475 return ret;
7476 }
7477
7478 static void btrfs_run_delalloc_work(struct btrfs_work *work)
7479 {
7480 struct btrfs_delalloc_work *delalloc_work;
7481
7482 delalloc_work = container_of(work, struct btrfs_delalloc_work,
7483 work);
7484 if (delalloc_work->wait)
7485 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
7486 else
7487 filemap_flush(delalloc_work->inode->i_mapping);
7488
7489 if (delalloc_work->delay_iput)
7490 btrfs_add_delayed_iput(delalloc_work->inode);
7491 else
7492 iput(delalloc_work->inode);
7493 complete(&delalloc_work->completion);
7494 }
7495
7496 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
7497 int wait, int delay_iput)
7498 {
7499 struct btrfs_delalloc_work *work;
7500
7501 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
7502 if (!work)
7503 return NULL;
7504
7505 init_completion(&work->completion);
7506 INIT_LIST_HEAD(&work->list);
7507 work->inode = inode;
7508 work->wait = wait;
7509 work->delay_iput = delay_iput;
7510 work->work.func = btrfs_run_delalloc_work;
7511
7512 return work;
7513 }
7514
7515 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
7516 {
7517 wait_for_completion(&work->completion);
7518 kmem_cache_free(btrfs_delalloc_work_cachep, work);
7519 }
7520
7521 /*
7522 * some fairly slow code that needs optimization. This walks the list
7523 * of all the inodes with pending delalloc and forces them to disk.
7524 */
7525 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7526 {
7527 struct list_head *head = &root->fs_info->delalloc_inodes;
7528 struct btrfs_inode *binode;
7529 struct inode *inode;
7530 struct btrfs_delalloc_work *work, *next;
7531 struct list_head works;
7532 int ret = 0;
7533
7534 if (root->fs_info->sb->s_flags & MS_RDONLY)
7535 return -EROFS;
7536
7537 INIT_LIST_HEAD(&works);
7538
7539 spin_lock(&root->fs_info->delalloc_lock);
7540 while (!list_empty(head)) {
7541 binode = list_entry(head->next, struct btrfs_inode,
7542 delalloc_inodes);
7543 inode = igrab(&binode->vfs_inode);
7544 if (!inode)
7545 list_del_init(&binode->delalloc_inodes);
7546 spin_unlock(&root->fs_info->delalloc_lock);
7547 if (inode) {
7548 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
7549 if (!work) {
7550 ret = -ENOMEM;
7551 goto out;
7552 }
7553 list_add_tail(&work->list, &works);
7554 btrfs_queue_worker(&root->fs_info->flush_workers,
7555 &work->work);
7556 }
7557 cond_resched();
7558 spin_lock(&root->fs_info->delalloc_lock);
7559 }
7560 spin_unlock(&root->fs_info->delalloc_lock);
7561
7562 /* the filemap_flush will queue IO into the worker threads, but
7563 * we have to make sure the IO is actually started and that
7564 * ordered extents get created before we return
7565 */
7566 atomic_inc(&root->fs_info->async_submit_draining);
7567 while (atomic_read(&root->fs_info->nr_async_submits) ||
7568 atomic_read(&root->fs_info->async_delalloc_pages)) {
7569 wait_event(root->fs_info->async_submit_wait,
7570 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7571 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7572 }
7573 atomic_dec(&root->fs_info->async_submit_draining);
7574 out:
7575 list_for_each_entry_safe(work, next, &works, list) {
7576 list_del_init(&work->list);
7577 btrfs_wait_and_free_delalloc_work(work);
7578 }
7579 return ret;
7580 }
7581
7582 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7583 const char *symname)
7584 {
7585 struct btrfs_trans_handle *trans;
7586 struct btrfs_root *root = BTRFS_I(dir)->root;
7587 struct btrfs_path *path;
7588 struct btrfs_key key;
7589 struct inode *inode = NULL;
7590 int err;
7591 int drop_inode = 0;
7592 u64 objectid;
7593 u64 index = 0 ;
7594 int name_len;
7595 int datasize;
7596 unsigned long ptr;
7597 struct btrfs_file_extent_item *ei;
7598 struct extent_buffer *leaf;
7599
7600 name_len = strlen(symname) + 1;
7601 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7602 return -ENAMETOOLONG;
7603
7604 /*
7605 * 2 items for inode item and ref
7606 * 2 items for dir items
7607 * 1 item for xattr if selinux is on
7608 */
7609 trans = btrfs_start_transaction(root, 5);
7610 if (IS_ERR(trans))
7611 return PTR_ERR(trans);
7612
7613 err = btrfs_find_free_ino(root, &objectid);
7614 if (err)
7615 goto out_unlock;
7616
7617 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7618 dentry->d_name.len, btrfs_ino(dir), objectid,
7619 S_IFLNK|S_IRWXUGO, &index);
7620 if (IS_ERR(inode)) {
7621 err = PTR_ERR(inode);
7622 goto out_unlock;
7623 }
7624
7625 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7626 if (err) {
7627 drop_inode = 1;
7628 goto out_unlock;
7629 }
7630
7631 /*
7632 * If the active LSM wants to access the inode during
7633 * d_instantiate it needs these. Smack checks to see
7634 * if the filesystem supports xattrs by looking at the
7635 * ops vector.
7636 */
7637 inode->i_fop = &btrfs_file_operations;
7638 inode->i_op = &btrfs_file_inode_operations;
7639
7640 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7641 if (err)
7642 drop_inode = 1;
7643 else {
7644 inode->i_mapping->a_ops = &btrfs_aops;
7645 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7646 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7647 }
7648 if (drop_inode)
7649 goto out_unlock;
7650
7651 path = btrfs_alloc_path();
7652 if (!path) {
7653 err = -ENOMEM;
7654 drop_inode = 1;
7655 goto out_unlock;
7656 }
7657 key.objectid = btrfs_ino(inode);
7658 key.offset = 0;
7659 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7660 datasize = btrfs_file_extent_calc_inline_size(name_len);
7661 err = btrfs_insert_empty_item(trans, root, path, &key,
7662 datasize);
7663 if (err) {
7664 drop_inode = 1;
7665 btrfs_free_path(path);
7666 goto out_unlock;
7667 }
7668 leaf = path->nodes[0];
7669 ei = btrfs_item_ptr(leaf, path->slots[0],
7670 struct btrfs_file_extent_item);
7671 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7672 btrfs_set_file_extent_type(leaf, ei,
7673 BTRFS_FILE_EXTENT_INLINE);
7674 btrfs_set_file_extent_encryption(leaf, ei, 0);
7675 btrfs_set_file_extent_compression(leaf, ei, 0);
7676 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7677 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7678
7679 ptr = btrfs_file_extent_inline_start(ei);
7680 write_extent_buffer(leaf, symname, ptr, name_len);
7681 btrfs_mark_buffer_dirty(leaf);
7682 btrfs_free_path(path);
7683
7684 inode->i_op = &btrfs_symlink_inode_operations;
7685 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7686 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7687 inode_set_bytes(inode, name_len);
7688 btrfs_i_size_write(inode, name_len - 1);
7689 err = btrfs_update_inode(trans, root, inode);
7690 if (err)
7691 drop_inode = 1;
7692
7693 out_unlock:
7694 if (!err)
7695 d_instantiate(dentry, inode);
7696 btrfs_end_transaction(trans, root);
7697 if (drop_inode) {
7698 inode_dec_link_count(inode);
7699 iput(inode);
7700 }
7701 btrfs_btree_balance_dirty(root);
7702 return err;
7703 }
7704
7705 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7706 u64 start, u64 num_bytes, u64 min_size,
7707 loff_t actual_len, u64 *alloc_hint,
7708 struct btrfs_trans_handle *trans)
7709 {
7710 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7711 struct extent_map *em;
7712 struct btrfs_root *root = BTRFS_I(inode)->root;
7713 struct btrfs_key ins;
7714 u64 cur_offset = start;
7715 u64 i_size;
7716 int ret = 0;
7717 bool own_trans = true;
7718
7719 if (trans)
7720 own_trans = false;
7721 while (num_bytes > 0) {
7722 if (own_trans) {
7723 trans = btrfs_start_transaction(root, 3);
7724 if (IS_ERR(trans)) {
7725 ret = PTR_ERR(trans);
7726 break;
7727 }
7728 }
7729
7730 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7731 0, *alloc_hint, &ins, 1);
7732 if (ret) {
7733 if (own_trans)
7734 btrfs_end_transaction(trans, root);
7735 break;
7736 }
7737
7738 ret = insert_reserved_file_extent(trans, inode,
7739 cur_offset, ins.objectid,
7740 ins.offset, ins.offset,
7741 ins.offset, 0, 0, 0,
7742 BTRFS_FILE_EXTENT_PREALLOC);
7743 if (ret) {
7744 btrfs_abort_transaction(trans, root, ret);
7745 if (own_trans)
7746 btrfs_end_transaction(trans, root);
7747 break;
7748 }
7749 btrfs_drop_extent_cache(inode, cur_offset,
7750 cur_offset + ins.offset -1, 0);
7751
7752 em = alloc_extent_map();
7753 if (!em) {
7754 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
7755 &BTRFS_I(inode)->runtime_flags);
7756 goto next;
7757 }
7758
7759 em->start = cur_offset;
7760 em->orig_start = cur_offset;
7761 em->len = ins.offset;
7762 em->block_start = ins.objectid;
7763 em->block_len = ins.offset;
7764 em->bdev = root->fs_info->fs_devices->latest_bdev;
7765 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7766 em->generation = trans->transid;
7767
7768 while (1) {
7769 write_lock(&em_tree->lock);
7770 ret = add_extent_mapping(em_tree, em);
7771 if (!ret)
7772 list_move(&em->list,
7773 &em_tree->modified_extents);
7774 write_unlock(&em_tree->lock);
7775 if (ret != -EEXIST)
7776 break;
7777 btrfs_drop_extent_cache(inode, cur_offset,
7778 cur_offset + ins.offset - 1,
7779 0);
7780 }
7781 free_extent_map(em);
7782 next:
7783 num_bytes -= ins.offset;
7784 cur_offset += ins.offset;
7785 *alloc_hint = ins.objectid + ins.offset;
7786
7787 inode_inc_iversion(inode);
7788 inode->i_ctime = CURRENT_TIME;
7789 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7790 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7791 (actual_len > inode->i_size) &&
7792 (cur_offset > inode->i_size)) {
7793 if (cur_offset > actual_len)
7794 i_size = actual_len;
7795 else
7796 i_size = cur_offset;
7797 i_size_write(inode, i_size);
7798 btrfs_ordered_update_i_size(inode, i_size, NULL);
7799 }
7800
7801 ret = btrfs_update_inode(trans, root, inode);
7802
7803 if (ret) {
7804 btrfs_abort_transaction(trans, root, ret);
7805 if (own_trans)
7806 btrfs_end_transaction(trans, root);
7807 break;
7808 }
7809
7810 if (own_trans)
7811 btrfs_end_transaction(trans, root);
7812 }
7813 return ret;
7814 }
7815
7816 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7817 u64 start, u64 num_bytes, u64 min_size,
7818 loff_t actual_len, u64 *alloc_hint)
7819 {
7820 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7821 min_size, actual_len, alloc_hint,
7822 NULL);
7823 }
7824
7825 int btrfs_prealloc_file_range_trans(struct inode *inode,
7826 struct btrfs_trans_handle *trans, int mode,
7827 u64 start, u64 num_bytes, u64 min_size,
7828 loff_t actual_len, u64 *alloc_hint)
7829 {
7830 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7831 min_size, actual_len, alloc_hint, trans);
7832 }
7833
7834 static int btrfs_set_page_dirty(struct page *page)
7835 {
7836 return __set_page_dirty_nobuffers(page);
7837 }
7838
7839 static int btrfs_permission(struct inode *inode, int mask)
7840 {
7841 struct btrfs_root *root = BTRFS_I(inode)->root;
7842 umode_t mode = inode->i_mode;
7843
7844 if (mask & MAY_WRITE &&
7845 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7846 if (btrfs_root_readonly(root))
7847 return -EROFS;
7848 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7849 return -EACCES;
7850 }
7851 return generic_permission(inode, mask);
7852 }
7853
7854 static const struct inode_operations btrfs_dir_inode_operations = {
7855 .getattr = btrfs_getattr,
7856 .lookup = btrfs_lookup,
7857 .create = btrfs_create,
7858 .unlink = btrfs_unlink,
7859 .link = btrfs_link,
7860 .mkdir = btrfs_mkdir,
7861 .rmdir = btrfs_rmdir,
7862 .rename = btrfs_rename,
7863 .symlink = btrfs_symlink,
7864 .setattr = btrfs_setattr,
7865 .mknod = btrfs_mknod,
7866 .setxattr = btrfs_setxattr,
7867 .getxattr = btrfs_getxattr,
7868 .listxattr = btrfs_listxattr,
7869 .removexattr = btrfs_removexattr,
7870 .permission = btrfs_permission,
7871 .get_acl = btrfs_get_acl,
7872 };
7873 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7874 .lookup = btrfs_lookup,
7875 .permission = btrfs_permission,
7876 .get_acl = btrfs_get_acl,
7877 };
7878
7879 static const struct file_operations btrfs_dir_file_operations = {
7880 .llseek = generic_file_llseek,
7881 .read = generic_read_dir,
7882 .readdir = btrfs_real_readdir,
7883 .unlocked_ioctl = btrfs_ioctl,
7884 #ifdef CONFIG_COMPAT
7885 .compat_ioctl = btrfs_ioctl,
7886 #endif
7887 .release = btrfs_release_file,
7888 .fsync = btrfs_sync_file,
7889 };
7890
7891 static struct extent_io_ops btrfs_extent_io_ops = {
7892 .fill_delalloc = run_delalloc_range,
7893 .submit_bio_hook = btrfs_submit_bio_hook,
7894 .merge_bio_hook = btrfs_merge_bio_hook,
7895 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7896 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7897 .writepage_start_hook = btrfs_writepage_start_hook,
7898 .set_bit_hook = btrfs_set_bit_hook,
7899 .clear_bit_hook = btrfs_clear_bit_hook,
7900 .merge_extent_hook = btrfs_merge_extent_hook,
7901 .split_extent_hook = btrfs_split_extent_hook,
7902 };
7903
7904 /*
7905 * btrfs doesn't support the bmap operation because swapfiles
7906 * use bmap to make a mapping of extents in the file. They assume
7907 * these extents won't change over the life of the file and they
7908 * use the bmap result to do IO directly to the drive.
7909 *
7910 * the btrfs bmap call would return logical addresses that aren't
7911 * suitable for IO and they also will change frequently as COW
7912 * operations happen. So, swapfile + btrfs == corruption.
7913 *
7914 * For now we're avoiding this by dropping bmap.
7915 */
7916 static const struct address_space_operations btrfs_aops = {
7917 .readpage = btrfs_readpage,
7918 .writepage = btrfs_writepage,
7919 .writepages = btrfs_writepages,
7920 .readpages = btrfs_readpages,
7921 .direct_IO = btrfs_direct_IO,
7922 .invalidatepage = btrfs_invalidatepage,
7923 .releasepage = btrfs_releasepage,
7924 .set_page_dirty = btrfs_set_page_dirty,
7925 .error_remove_page = generic_error_remove_page,
7926 };
7927
7928 static const struct address_space_operations btrfs_symlink_aops = {
7929 .readpage = btrfs_readpage,
7930 .writepage = btrfs_writepage,
7931 .invalidatepage = btrfs_invalidatepage,
7932 .releasepage = btrfs_releasepage,
7933 };
7934
7935 static const struct inode_operations btrfs_file_inode_operations = {
7936 .getattr = btrfs_getattr,
7937 .setattr = btrfs_setattr,
7938 .setxattr = btrfs_setxattr,
7939 .getxattr = btrfs_getxattr,
7940 .listxattr = btrfs_listxattr,
7941 .removexattr = btrfs_removexattr,
7942 .permission = btrfs_permission,
7943 .fiemap = btrfs_fiemap,
7944 .get_acl = btrfs_get_acl,
7945 .update_time = btrfs_update_time,
7946 };
7947 static const struct inode_operations btrfs_special_inode_operations = {
7948 .getattr = btrfs_getattr,
7949 .setattr = btrfs_setattr,
7950 .permission = btrfs_permission,
7951 .setxattr = btrfs_setxattr,
7952 .getxattr = btrfs_getxattr,
7953 .listxattr = btrfs_listxattr,
7954 .removexattr = btrfs_removexattr,
7955 .get_acl = btrfs_get_acl,
7956 .update_time = btrfs_update_time,
7957 };
7958 static const struct inode_operations btrfs_symlink_inode_operations = {
7959 .readlink = generic_readlink,
7960 .follow_link = page_follow_link_light,
7961 .put_link = page_put_link,
7962 .getattr = btrfs_getattr,
7963 .setattr = btrfs_setattr,
7964 .permission = btrfs_permission,
7965 .setxattr = btrfs_setxattr,
7966 .getxattr = btrfs_getxattr,
7967 .listxattr = btrfs_listxattr,
7968 .removexattr = btrfs_removexattr,
7969 .get_acl = btrfs_get_acl,
7970 .update_time = btrfs_update_time,
7971 };
7972
7973 const struct dentry_operations btrfs_dentry_operations = {
7974 .d_delete = btrfs_dentry_delete,
7975 .d_release = btrfs_dentry_release,
7976 };
This page took 0.206854 seconds and 5 git commands to generate.