Btrfs: add basic DIO read/write support
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53
54 struct btrfs_iget_args {
55 u64 ino;
56 struct btrfs_root *root;
57 };
58
59 static const struct inode_operations btrfs_dir_inode_operations;
60 static const struct inode_operations btrfs_symlink_inode_operations;
61 static const struct inode_operations btrfs_dir_ro_inode_operations;
62 static const struct inode_operations btrfs_special_inode_operations;
63 static const struct inode_operations btrfs_file_inode_operations;
64 static const struct address_space_operations btrfs_aops;
65 static const struct address_space_operations btrfs_symlink_aops;
66 static const struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
83 };
84
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88 struct page *locked_page,
89 u64 start, u64 end, int *page_started,
90 unsigned long *nr_written, int unlock);
91
92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93 struct inode *inode, struct inode *dir)
94 {
95 int err;
96
97 err = btrfs_init_acl(trans, inode, dir);
98 if (!err)
99 err = btrfs_xattr_security_init(trans, inode, dir);
100 return err;
101 }
102
103 /*
104 * this does all the hard work for inserting an inline extent into
105 * the btree. The caller should have done a btrfs_drop_extents so that
106 * no overlapping inline items exist in the btree
107 */
108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root, struct inode *inode,
110 u64 start, size_t size, size_t compressed_size,
111 struct page **compressed_pages)
112 {
113 struct btrfs_key key;
114 struct btrfs_path *path;
115 struct extent_buffer *leaf;
116 struct page *page = NULL;
117 char *kaddr;
118 unsigned long ptr;
119 struct btrfs_file_extent_item *ei;
120 int err = 0;
121 int ret;
122 size_t cur_size = size;
123 size_t datasize;
124 unsigned long offset;
125 int use_compress = 0;
126
127 if (compressed_size && compressed_pages) {
128 use_compress = 1;
129 cur_size = compressed_size;
130 }
131
132 path = btrfs_alloc_path();
133 if (!path)
134 return -ENOMEM;
135
136 path->leave_spinning = 1;
137 btrfs_set_trans_block_group(trans, inode);
138
139 key.objectid = inode->i_ino;
140 key.offset = start;
141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142 datasize = btrfs_file_extent_calc_inline_size(cur_size);
143
144 inode_add_bytes(inode, size);
145 ret = btrfs_insert_empty_item(trans, root, path, &key,
146 datasize);
147 BUG_ON(ret);
148 if (ret) {
149 err = ret;
150 goto fail;
151 }
152 leaf = path->nodes[0];
153 ei = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_file_extent_item);
155 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157 btrfs_set_file_extent_encryption(leaf, ei, 0);
158 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160 ptr = btrfs_file_extent_inline_start(ei);
161
162 if (use_compress) {
163 struct page *cpage;
164 int i = 0;
165 while (compressed_size > 0) {
166 cpage = compressed_pages[i];
167 cur_size = min_t(unsigned long, compressed_size,
168 PAGE_CACHE_SIZE);
169
170 kaddr = kmap_atomic(cpage, KM_USER0);
171 write_extent_buffer(leaf, kaddr, ptr, cur_size);
172 kunmap_atomic(kaddr, KM_USER0);
173
174 i++;
175 ptr += cur_size;
176 compressed_size -= cur_size;
177 }
178 btrfs_set_file_extent_compression(leaf, ei,
179 BTRFS_COMPRESS_ZLIB);
180 } else {
181 page = find_get_page(inode->i_mapping,
182 start >> PAGE_CACHE_SHIFT);
183 btrfs_set_file_extent_compression(leaf, ei, 0);
184 kaddr = kmap_atomic(page, KM_USER0);
185 offset = start & (PAGE_CACHE_SIZE - 1);
186 write_extent_buffer(leaf, kaddr + offset, ptr, size);
187 kunmap_atomic(kaddr, KM_USER0);
188 page_cache_release(page);
189 }
190 btrfs_mark_buffer_dirty(leaf);
191 btrfs_free_path(path);
192
193 /*
194 * we're an inline extent, so nobody can
195 * extend the file past i_size without locking
196 * a page we already have locked.
197 *
198 * We must do any isize and inode updates
199 * before we unlock the pages. Otherwise we
200 * could end up racing with unlink.
201 */
202 BTRFS_I(inode)->disk_i_size = inode->i_size;
203 btrfs_update_inode(trans, root, inode);
204
205 return 0;
206 fail:
207 btrfs_free_path(path);
208 return err;
209 }
210
211
212 /*
213 * conditionally insert an inline extent into the file. This
214 * does the checks required to make sure the data is small enough
215 * to fit as an inline extent.
216 */
217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
218 struct btrfs_root *root,
219 struct inode *inode, u64 start, u64 end,
220 size_t compressed_size,
221 struct page **compressed_pages)
222 {
223 u64 isize = i_size_read(inode);
224 u64 actual_end = min(end + 1, isize);
225 u64 inline_len = actual_end - start;
226 u64 aligned_end = (end + root->sectorsize - 1) &
227 ~((u64)root->sectorsize - 1);
228 u64 hint_byte;
229 u64 data_len = inline_len;
230 int ret;
231
232 if (compressed_size)
233 data_len = compressed_size;
234
235 if (start > 0 ||
236 actual_end >= PAGE_CACHE_SIZE ||
237 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238 (!compressed_size &&
239 (actual_end & (root->sectorsize - 1)) == 0) ||
240 end + 1 < isize ||
241 data_len > root->fs_info->max_inline) {
242 return 1;
243 }
244
245 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
246 &hint_byte, 1);
247 BUG_ON(ret);
248
249 if (isize > actual_end)
250 inline_len = min_t(u64, isize, actual_end);
251 ret = insert_inline_extent(trans, root, inode, start,
252 inline_len, compressed_size,
253 compressed_pages);
254 BUG_ON(ret);
255 btrfs_delalloc_release_metadata(inode, end + 1 - start);
256 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
257 return 0;
258 }
259
260 struct async_extent {
261 u64 start;
262 u64 ram_size;
263 u64 compressed_size;
264 struct page **pages;
265 unsigned long nr_pages;
266 struct list_head list;
267 };
268
269 struct async_cow {
270 struct inode *inode;
271 struct btrfs_root *root;
272 struct page *locked_page;
273 u64 start;
274 u64 end;
275 struct list_head extents;
276 struct btrfs_work work;
277 };
278
279 static noinline int add_async_extent(struct async_cow *cow,
280 u64 start, u64 ram_size,
281 u64 compressed_size,
282 struct page **pages,
283 unsigned long nr_pages)
284 {
285 struct async_extent *async_extent;
286
287 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
288 async_extent->start = start;
289 async_extent->ram_size = ram_size;
290 async_extent->compressed_size = compressed_size;
291 async_extent->pages = pages;
292 async_extent->nr_pages = nr_pages;
293 list_add_tail(&async_extent->list, &cow->extents);
294 return 0;
295 }
296
297 /*
298 * we create compressed extents in two phases. The first
299 * phase compresses a range of pages that have already been
300 * locked (both pages and state bits are locked).
301 *
302 * This is done inside an ordered work queue, and the compression
303 * is spread across many cpus. The actual IO submission is step
304 * two, and the ordered work queue takes care of making sure that
305 * happens in the same order things were put onto the queue by
306 * writepages and friends.
307 *
308 * If this code finds it can't get good compression, it puts an
309 * entry onto the work queue to write the uncompressed bytes. This
310 * makes sure that both compressed inodes and uncompressed inodes
311 * are written in the same order that pdflush sent them down.
312 */
313 static noinline int compress_file_range(struct inode *inode,
314 struct page *locked_page,
315 u64 start, u64 end,
316 struct async_cow *async_cow,
317 int *num_added)
318 {
319 struct btrfs_root *root = BTRFS_I(inode)->root;
320 struct btrfs_trans_handle *trans;
321 u64 num_bytes;
322 u64 orig_start;
323 u64 disk_num_bytes;
324 u64 blocksize = root->sectorsize;
325 u64 actual_end;
326 u64 isize = i_size_read(inode);
327 int ret = 0;
328 struct page **pages = NULL;
329 unsigned long nr_pages;
330 unsigned long nr_pages_ret = 0;
331 unsigned long total_compressed = 0;
332 unsigned long total_in = 0;
333 unsigned long max_compressed = 128 * 1024;
334 unsigned long max_uncompressed = 128 * 1024;
335 int i;
336 int will_compress;
337
338 orig_start = start;
339
340 actual_end = min_t(u64, isize, end + 1);
341 again:
342 will_compress = 0;
343 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
344 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
345
346 /*
347 * we don't want to send crud past the end of i_size through
348 * compression, that's just a waste of CPU time. So, if the
349 * end of the file is before the start of our current
350 * requested range of bytes, we bail out to the uncompressed
351 * cleanup code that can deal with all of this.
352 *
353 * It isn't really the fastest way to fix things, but this is a
354 * very uncommon corner.
355 */
356 if (actual_end <= start)
357 goto cleanup_and_bail_uncompressed;
358
359 total_compressed = actual_end - start;
360
361 /* we want to make sure that amount of ram required to uncompress
362 * an extent is reasonable, so we limit the total size in ram
363 * of a compressed extent to 128k. This is a crucial number
364 * because it also controls how easily we can spread reads across
365 * cpus for decompression.
366 *
367 * We also want to make sure the amount of IO required to do
368 * a random read is reasonably small, so we limit the size of
369 * a compressed extent to 128k.
370 */
371 total_compressed = min(total_compressed, max_uncompressed);
372 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
373 num_bytes = max(blocksize, num_bytes);
374 disk_num_bytes = num_bytes;
375 total_in = 0;
376 ret = 0;
377
378 /*
379 * we do compression for mount -o compress and when the
380 * inode has not been flagged as nocompress. This flag can
381 * change at any time if we discover bad compression ratios.
382 */
383 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
384 (btrfs_test_opt(root, COMPRESS) ||
385 (BTRFS_I(inode)->force_compress))) {
386 WARN_ON(pages);
387 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
388
389 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
390 total_compressed, pages,
391 nr_pages, &nr_pages_ret,
392 &total_in,
393 &total_compressed,
394 max_compressed);
395
396 if (!ret) {
397 unsigned long offset = total_compressed &
398 (PAGE_CACHE_SIZE - 1);
399 struct page *page = pages[nr_pages_ret - 1];
400 char *kaddr;
401
402 /* zero the tail end of the last page, we might be
403 * sending it down to disk
404 */
405 if (offset) {
406 kaddr = kmap_atomic(page, KM_USER0);
407 memset(kaddr + offset, 0,
408 PAGE_CACHE_SIZE - offset);
409 kunmap_atomic(kaddr, KM_USER0);
410 }
411 will_compress = 1;
412 }
413 }
414 if (start == 0) {
415 trans = btrfs_join_transaction(root, 1);
416 BUG_ON(!trans);
417 btrfs_set_trans_block_group(trans, inode);
418 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
419
420 /* lets try to make an inline extent */
421 if (ret || total_in < (actual_end - start)) {
422 /* we didn't compress the entire range, try
423 * to make an uncompressed inline extent.
424 */
425 ret = cow_file_range_inline(trans, root, inode,
426 start, end, 0, NULL);
427 } else {
428 /* try making a compressed inline extent */
429 ret = cow_file_range_inline(trans, root, inode,
430 start, end,
431 total_compressed, pages);
432 }
433 if (ret == 0) {
434 /*
435 * inline extent creation worked, we don't need
436 * to create any more async work items. Unlock
437 * and free up our temp pages.
438 */
439 extent_clear_unlock_delalloc(inode,
440 &BTRFS_I(inode)->io_tree,
441 start, end, NULL,
442 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
443 EXTENT_CLEAR_DELALLOC |
444 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
445
446 btrfs_end_transaction(trans, root);
447 goto free_pages_out;
448 }
449 btrfs_end_transaction(trans, root);
450 }
451
452 if (will_compress) {
453 /*
454 * we aren't doing an inline extent round the compressed size
455 * up to a block size boundary so the allocator does sane
456 * things
457 */
458 total_compressed = (total_compressed + blocksize - 1) &
459 ~(blocksize - 1);
460
461 /*
462 * one last check to make sure the compression is really a
463 * win, compare the page count read with the blocks on disk
464 */
465 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
466 ~(PAGE_CACHE_SIZE - 1);
467 if (total_compressed >= total_in) {
468 will_compress = 0;
469 } else {
470 disk_num_bytes = total_compressed;
471 num_bytes = total_in;
472 }
473 }
474 if (!will_compress && pages) {
475 /*
476 * the compression code ran but failed to make things smaller,
477 * free any pages it allocated and our page pointer array
478 */
479 for (i = 0; i < nr_pages_ret; i++) {
480 WARN_ON(pages[i]->mapping);
481 page_cache_release(pages[i]);
482 }
483 kfree(pages);
484 pages = NULL;
485 total_compressed = 0;
486 nr_pages_ret = 0;
487
488 /* flag the file so we don't compress in the future */
489 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
490 !(BTRFS_I(inode)->force_compress)) {
491 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
492 }
493 }
494 if (will_compress) {
495 *num_added += 1;
496
497 /* the async work queues will take care of doing actual
498 * allocation on disk for these compressed pages,
499 * and will submit them to the elevator.
500 */
501 add_async_extent(async_cow, start, num_bytes,
502 total_compressed, pages, nr_pages_ret);
503
504 if (start + num_bytes < end && start + num_bytes < actual_end) {
505 start += num_bytes;
506 pages = NULL;
507 cond_resched();
508 goto again;
509 }
510 } else {
511 cleanup_and_bail_uncompressed:
512 /*
513 * No compression, but we still need to write the pages in
514 * the file we've been given so far. redirty the locked
515 * page if it corresponds to our extent and set things up
516 * for the async work queue to run cow_file_range to do
517 * the normal delalloc dance
518 */
519 if (page_offset(locked_page) >= start &&
520 page_offset(locked_page) <= end) {
521 __set_page_dirty_nobuffers(locked_page);
522 /* unlocked later on in the async handlers */
523 }
524 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
525 *num_added += 1;
526 }
527
528 out:
529 return 0;
530
531 free_pages_out:
532 for (i = 0; i < nr_pages_ret; i++) {
533 WARN_ON(pages[i]->mapping);
534 page_cache_release(pages[i]);
535 }
536 kfree(pages);
537
538 goto out;
539 }
540
541 /*
542 * phase two of compressed writeback. This is the ordered portion
543 * of the code, which only gets called in the order the work was
544 * queued. We walk all the async extents created by compress_file_range
545 * and send them down to the disk.
546 */
547 static noinline int submit_compressed_extents(struct inode *inode,
548 struct async_cow *async_cow)
549 {
550 struct async_extent *async_extent;
551 u64 alloc_hint = 0;
552 struct btrfs_trans_handle *trans;
553 struct btrfs_key ins;
554 struct extent_map *em;
555 struct btrfs_root *root = BTRFS_I(inode)->root;
556 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
557 struct extent_io_tree *io_tree;
558 int ret = 0;
559
560 if (list_empty(&async_cow->extents))
561 return 0;
562
563
564 while (!list_empty(&async_cow->extents)) {
565 async_extent = list_entry(async_cow->extents.next,
566 struct async_extent, list);
567 list_del(&async_extent->list);
568
569 io_tree = &BTRFS_I(inode)->io_tree;
570
571 retry:
572 /* did the compression code fall back to uncompressed IO? */
573 if (!async_extent->pages) {
574 int page_started = 0;
575 unsigned long nr_written = 0;
576
577 lock_extent(io_tree, async_extent->start,
578 async_extent->start +
579 async_extent->ram_size - 1, GFP_NOFS);
580
581 /* allocate blocks */
582 ret = cow_file_range(inode, async_cow->locked_page,
583 async_extent->start,
584 async_extent->start +
585 async_extent->ram_size - 1,
586 &page_started, &nr_written, 0);
587
588 /*
589 * if page_started, cow_file_range inserted an
590 * inline extent and took care of all the unlocking
591 * and IO for us. Otherwise, we need to submit
592 * all those pages down to the drive.
593 */
594 if (!page_started && !ret)
595 extent_write_locked_range(io_tree,
596 inode, async_extent->start,
597 async_extent->start +
598 async_extent->ram_size - 1,
599 btrfs_get_extent,
600 WB_SYNC_ALL);
601 kfree(async_extent);
602 cond_resched();
603 continue;
604 }
605
606 lock_extent(io_tree, async_extent->start,
607 async_extent->start + async_extent->ram_size - 1,
608 GFP_NOFS);
609
610 trans = btrfs_join_transaction(root, 1);
611 ret = btrfs_reserve_extent(trans, root,
612 async_extent->compressed_size,
613 async_extent->compressed_size,
614 0, alloc_hint,
615 (u64)-1, &ins, 1);
616 btrfs_end_transaction(trans, root);
617
618 if (ret) {
619 int i;
620 for (i = 0; i < async_extent->nr_pages; i++) {
621 WARN_ON(async_extent->pages[i]->mapping);
622 page_cache_release(async_extent->pages[i]);
623 }
624 kfree(async_extent->pages);
625 async_extent->nr_pages = 0;
626 async_extent->pages = NULL;
627 unlock_extent(io_tree, async_extent->start,
628 async_extent->start +
629 async_extent->ram_size - 1, GFP_NOFS);
630 goto retry;
631 }
632
633 /*
634 * here we're doing allocation and writeback of the
635 * compressed pages
636 */
637 btrfs_drop_extent_cache(inode, async_extent->start,
638 async_extent->start +
639 async_extent->ram_size - 1, 0);
640
641 em = alloc_extent_map(GFP_NOFS);
642 em->start = async_extent->start;
643 em->len = async_extent->ram_size;
644 em->orig_start = em->start;
645
646 em->block_start = ins.objectid;
647 em->block_len = ins.offset;
648 em->bdev = root->fs_info->fs_devices->latest_bdev;
649 set_bit(EXTENT_FLAG_PINNED, &em->flags);
650 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
651
652 while (1) {
653 write_lock(&em_tree->lock);
654 ret = add_extent_mapping(em_tree, em);
655 write_unlock(&em_tree->lock);
656 if (ret != -EEXIST) {
657 free_extent_map(em);
658 break;
659 }
660 btrfs_drop_extent_cache(inode, async_extent->start,
661 async_extent->start +
662 async_extent->ram_size - 1, 0);
663 }
664
665 ret = btrfs_add_ordered_extent(inode, async_extent->start,
666 ins.objectid,
667 async_extent->ram_size,
668 ins.offset,
669 BTRFS_ORDERED_COMPRESSED);
670 BUG_ON(ret);
671
672 /*
673 * clear dirty, set writeback and unlock the pages.
674 */
675 extent_clear_unlock_delalloc(inode,
676 &BTRFS_I(inode)->io_tree,
677 async_extent->start,
678 async_extent->start +
679 async_extent->ram_size - 1,
680 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
681 EXTENT_CLEAR_UNLOCK |
682 EXTENT_CLEAR_DELALLOC |
683 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
684
685 ret = btrfs_submit_compressed_write(inode,
686 async_extent->start,
687 async_extent->ram_size,
688 ins.objectid,
689 ins.offset, async_extent->pages,
690 async_extent->nr_pages);
691
692 BUG_ON(ret);
693 alloc_hint = ins.objectid + ins.offset;
694 kfree(async_extent);
695 cond_resched();
696 }
697
698 return 0;
699 }
700
701 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
702 u64 num_bytes)
703 {
704 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
705 struct extent_map *em;
706 u64 alloc_hint = 0;
707
708 read_lock(&em_tree->lock);
709 em = search_extent_mapping(em_tree, start, num_bytes);
710 if (em) {
711 /*
712 * if block start isn't an actual block number then find the
713 * first block in this inode and use that as a hint. If that
714 * block is also bogus then just don't worry about it.
715 */
716 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
717 free_extent_map(em);
718 em = search_extent_mapping(em_tree, 0, 0);
719 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
720 alloc_hint = em->block_start;
721 if (em)
722 free_extent_map(em);
723 } else {
724 alloc_hint = em->block_start;
725 free_extent_map(em);
726 }
727 }
728 read_unlock(&em_tree->lock);
729
730 return alloc_hint;
731 }
732
733 /*
734 * when extent_io.c finds a delayed allocation range in the file,
735 * the call backs end up in this code. The basic idea is to
736 * allocate extents on disk for the range, and create ordered data structs
737 * in ram to track those extents.
738 *
739 * locked_page is the page that writepage had locked already. We use
740 * it to make sure we don't do extra locks or unlocks.
741 *
742 * *page_started is set to one if we unlock locked_page and do everything
743 * required to start IO on it. It may be clean and already done with
744 * IO when we return.
745 */
746 static noinline int cow_file_range(struct inode *inode,
747 struct page *locked_page,
748 u64 start, u64 end, int *page_started,
749 unsigned long *nr_written,
750 int unlock)
751 {
752 struct btrfs_root *root = BTRFS_I(inode)->root;
753 struct btrfs_trans_handle *trans;
754 u64 alloc_hint = 0;
755 u64 num_bytes;
756 unsigned long ram_size;
757 u64 disk_num_bytes;
758 u64 cur_alloc_size;
759 u64 blocksize = root->sectorsize;
760 u64 actual_end;
761 u64 isize = i_size_read(inode);
762 struct btrfs_key ins;
763 struct extent_map *em;
764 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
765 int ret = 0;
766
767 trans = btrfs_join_transaction(root, 1);
768 BUG_ON(!trans);
769 btrfs_set_trans_block_group(trans, inode);
770 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771
772 actual_end = min_t(u64, isize, end + 1);
773
774 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
775 num_bytes = max(blocksize, num_bytes);
776 disk_num_bytes = num_bytes;
777 ret = 0;
778
779 if (start == 0) {
780 /* lets try to make an inline extent */
781 ret = cow_file_range_inline(trans, root, inode,
782 start, end, 0, NULL);
783 if (ret == 0) {
784 extent_clear_unlock_delalloc(inode,
785 &BTRFS_I(inode)->io_tree,
786 start, end, NULL,
787 EXTENT_CLEAR_UNLOCK_PAGE |
788 EXTENT_CLEAR_UNLOCK |
789 EXTENT_CLEAR_DELALLOC |
790 EXTENT_CLEAR_DIRTY |
791 EXTENT_SET_WRITEBACK |
792 EXTENT_END_WRITEBACK);
793
794 *nr_written = *nr_written +
795 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
796 *page_started = 1;
797 ret = 0;
798 goto out;
799 }
800 }
801
802 BUG_ON(disk_num_bytes >
803 btrfs_super_total_bytes(&root->fs_info->super_copy));
804
805 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
806 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
807
808 while (disk_num_bytes > 0) {
809 unsigned long op;
810
811 cur_alloc_size = disk_num_bytes;
812 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
813 root->sectorsize, 0, alloc_hint,
814 (u64)-1, &ins, 1);
815 BUG_ON(ret);
816
817 em = alloc_extent_map(GFP_NOFS);
818 em->start = start;
819 em->orig_start = em->start;
820 ram_size = ins.offset;
821 em->len = ins.offset;
822
823 em->block_start = ins.objectid;
824 em->block_len = ins.offset;
825 em->bdev = root->fs_info->fs_devices->latest_bdev;
826 set_bit(EXTENT_FLAG_PINNED, &em->flags);
827
828 while (1) {
829 write_lock(&em_tree->lock);
830 ret = add_extent_mapping(em_tree, em);
831 write_unlock(&em_tree->lock);
832 if (ret != -EEXIST) {
833 free_extent_map(em);
834 break;
835 }
836 btrfs_drop_extent_cache(inode, start,
837 start + ram_size - 1, 0);
838 }
839
840 cur_alloc_size = ins.offset;
841 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
842 ram_size, cur_alloc_size, 0);
843 BUG_ON(ret);
844
845 if (root->root_key.objectid ==
846 BTRFS_DATA_RELOC_TREE_OBJECTID) {
847 ret = btrfs_reloc_clone_csums(inode, start,
848 cur_alloc_size);
849 BUG_ON(ret);
850 }
851
852 if (disk_num_bytes < cur_alloc_size)
853 break;
854
855 /* we're not doing compressed IO, don't unlock the first
856 * page (which the caller expects to stay locked), don't
857 * clear any dirty bits and don't set any writeback bits
858 *
859 * Do set the Private2 bit so we know this page was properly
860 * setup for writepage
861 */
862 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
863 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
864 EXTENT_SET_PRIVATE2;
865
866 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
867 start, start + ram_size - 1,
868 locked_page, op);
869 disk_num_bytes -= cur_alloc_size;
870 num_bytes -= cur_alloc_size;
871 alloc_hint = ins.objectid + ins.offset;
872 start += cur_alloc_size;
873 }
874 out:
875 ret = 0;
876 btrfs_end_transaction(trans, root);
877
878 return ret;
879 }
880
881 /*
882 * work queue call back to started compression on a file and pages
883 */
884 static noinline void async_cow_start(struct btrfs_work *work)
885 {
886 struct async_cow *async_cow;
887 int num_added = 0;
888 async_cow = container_of(work, struct async_cow, work);
889
890 compress_file_range(async_cow->inode, async_cow->locked_page,
891 async_cow->start, async_cow->end, async_cow,
892 &num_added);
893 if (num_added == 0)
894 async_cow->inode = NULL;
895 }
896
897 /*
898 * work queue call back to submit previously compressed pages
899 */
900 static noinline void async_cow_submit(struct btrfs_work *work)
901 {
902 struct async_cow *async_cow;
903 struct btrfs_root *root;
904 unsigned long nr_pages;
905
906 async_cow = container_of(work, struct async_cow, work);
907
908 root = async_cow->root;
909 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
910 PAGE_CACHE_SHIFT;
911
912 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
913
914 if (atomic_read(&root->fs_info->async_delalloc_pages) <
915 5 * 1042 * 1024 &&
916 waitqueue_active(&root->fs_info->async_submit_wait))
917 wake_up(&root->fs_info->async_submit_wait);
918
919 if (async_cow->inode)
920 submit_compressed_extents(async_cow->inode, async_cow);
921 }
922
923 static noinline void async_cow_free(struct btrfs_work *work)
924 {
925 struct async_cow *async_cow;
926 async_cow = container_of(work, struct async_cow, work);
927 kfree(async_cow);
928 }
929
930 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
931 u64 start, u64 end, int *page_started,
932 unsigned long *nr_written)
933 {
934 struct async_cow *async_cow;
935 struct btrfs_root *root = BTRFS_I(inode)->root;
936 unsigned long nr_pages;
937 u64 cur_end;
938 int limit = 10 * 1024 * 1042;
939
940 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
941 1, 0, NULL, GFP_NOFS);
942 while (start < end) {
943 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
944 async_cow->inode = inode;
945 async_cow->root = root;
946 async_cow->locked_page = locked_page;
947 async_cow->start = start;
948
949 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
950 cur_end = end;
951 else
952 cur_end = min(end, start + 512 * 1024 - 1);
953
954 async_cow->end = cur_end;
955 INIT_LIST_HEAD(&async_cow->extents);
956
957 async_cow->work.func = async_cow_start;
958 async_cow->work.ordered_func = async_cow_submit;
959 async_cow->work.ordered_free = async_cow_free;
960 async_cow->work.flags = 0;
961
962 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
963 PAGE_CACHE_SHIFT;
964 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
965
966 btrfs_queue_worker(&root->fs_info->delalloc_workers,
967 &async_cow->work);
968
969 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
970 wait_event(root->fs_info->async_submit_wait,
971 (atomic_read(&root->fs_info->async_delalloc_pages) <
972 limit));
973 }
974
975 while (atomic_read(&root->fs_info->async_submit_draining) &&
976 atomic_read(&root->fs_info->async_delalloc_pages)) {
977 wait_event(root->fs_info->async_submit_wait,
978 (atomic_read(&root->fs_info->async_delalloc_pages) ==
979 0));
980 }
981
982 *nr_written += nr_pages;
983 start = cur_end + 1;
984 }
985 *page_started = 1;
986 return 0;
987 }
988
989 static noinline int csum_exist_in_range(struct btrfs_root *root,
990 u64 bytenr, u64 num_bytes)
991 {
992 int ret;
993 struct btrfs_ordered_sum *sums;
994 LIST_HEAD(list);
995
996 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
997 bytenr + num_bytes - 1, &list);
998 if (ret == 0 && list_empty(&list))
999 return 0;
1000
1001 while (!list_empty(&list)) {
1002 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1003 list_del(&sums->list);
1004 kfree(sums);
1005 }
1006 return 1;
1007 }
1008
1009 /*
1010 * when nowcow writeback call back. This checks for snapshots or COW copies
1011 * of the extents that exist in the file, and COWs the file as required.
1012 *
1013 * If no cow copies or snapshots exist, we write directly to the existing
1014 * blocks on disk
1015 */
1016 static noinline int run_delalloc_nocow(struct inode *inode,
1017 struct page *locked_page,
1018 u64 start, u64 end, int *page_started, int force,
1019 unsigned long *nr_written)
1020 {
1021 struct btrfs_root *root = BTRFS_I(inode)->root;
1022 struct btrfs_trans_handle *trans;
1023 struct extent_buffer *leaf;
1024 struct btrfs_path *path;
1025 struct btrfs_file_extent_item *fi;
1026 struct btrfs_key found_key;
1027 u64 cow_start;
1028 u64 cur_offset;
1029 u64 extent_end;
1030 u64 extent_offset;
1031 u64 disk_bytenr;
1032 u64 num_bytes;
1033 int extent_type;
1034 int ret;
1035 int type;
1036 int nocow;
1037 int check_prev = 1;
1038
1039 path = btrfs_alloc_path();
1040 BUG_ON(!path);
1041 trans = btrfs_join_transaction(root, 1);
1042 BUG_ON(!trans);
1043
1044 cow_start = (u64)-1;
1045 cur_offset = start;
1046 while (1) {
1047 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1048 cur_offset, 0);
1049 BUG_ON(ret < 0);
1050 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1051 leaf = path->nodes[0];
1052 btrfs_item_key_to_cpu(leaf, &found_key,
1053 path->slots[0] - 1);
1054 if (found_key.objectid == inode->i_ino &&
1055 found_key.type == BTRFS_EXTENT_DATA_KEY)
1056 path->slots[0]--;
1057 }
1058 check_prev = 0;
1059 next_slot:
1060 leaf = path->nodes[0];
1061 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1062 ret = btrfs_next_leaf(root, path);
1063 if (ret < 0)
1064 BUG_ON(1);
1065 if (ret > 0)
1066 break;
1067 leaf = path->nodes[0];
1068 }
1069
1070 nocow = 0;
1071 disk_bytenr = 0;
1072 num_bytes = 0;
1073 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1074
1075 if (found_key.objectid > inode->i_ino ||
1076 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1077 found_key.offset > end)
1078 break;
1079
1080 if (found_key.offset > cur_offset) {
1081 extent_end = found_key.offset;
1082 extent_type = 0;
1083 goto out_check;
1084 }
1085
1086 fi = btrfs_item_ptr(leaf, path->slots[0],
1087 struct btrfs_file_extent_item);
1088 extent_type = btrfs_file_extent_type(leaf, fi);
1089
1090 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1091 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1092 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1093 extent_offset = btrfs_file_extent_offset(leaf, fi);
1094 extent_end = found_key.offset +
1095 btrfs_file_extent_num_bytes(leaf, fi);
1096 if (extent_end <= start) {
1097 path->slots[0]++;
1098 goto next_slot;
1099 }
1100 if (disk_bytenr == 0)
1101 goto out_check;
1102 if (btrfs_file_extent_compression(leaf, fi) ||
1103 btrfs_file_extent_encryption(leaf, fi) ||
1104 btrfs_file_extent_other_encoding(leaf, fi))
1105 goto out_check;
1106 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1107 goto out_check;
1108 if (btrfs_extent_readonly(root, disk_bytenr))
1109 goto out_check;
1110 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1111 found_key.offset -
1112 extent_offset, disk_bytenr))
1113 goto out_check;
1114 disk_bytenr += extent_offset;
1115 disk_bytenr += cur_offset - found_key.offset;
1116 num_bytes = min(end + 1, extent_end) - cur_offset;
1117 /*
1118 * force cow if csum exists in the range.
1119 * this ensure that csum for a given extent are
1120 * either valid or do not exist.
1121 */
1122 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1123 goto out_check;
1124 nocow = 1;
1125 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1126 extent_end = found_key.offset +
1127 btrfs_file_extent_inline_len(leaf, fi);
1128 extent_end = ALIGN(extent_end, root->sectorsize);
1129 } else {
1130 BUG_ON(1);
1131 }
1132 out_check:
1133 if (extent_end <= start) {
1134 path->slots[0]++;
1135 goto next_slot;
1136 }
1137 if (!nocow) {
1138 if (cow_start == (u64)-1)
1139 cow_start = cur_offset;
1140 cur_offset = extent_end;
1141 if (cur_offset > end)
1142 break;
1143 path->slots[0]++;
1144 goto next_slot;
1145 }
1146
1147 btrfs_release_path(root, path);
1148 if (cow_start != (u64)-1) {
1149 ret = cow_file_range(inode, locked_page, cow_start,
1150 found_key.offset - 1, page_started,
1151 nr_written, 1);
1152 BUG_ON(ret);
1153 cow_start = (u64)-1;
1154 }
1155
1156 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1157 struct extent_map *em;
1158 struct extent_map_tree *em_tree;
1159 em_tree = &BTRFS_I(inode)->extent_tree;
1160 em = alloc_extent_map(GFP_NOFS);
1161 em->start = cur_offset;
1162 em->orig_start = em->start;
1163 em->len = num_bytes;
1164 em->block_len = num_bytes;
1165 em->block_start = disk_bytenr;
1166 em->bdev = root->fs_info->fs_devices->latest_bdev;
1167 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1168 while (1) {
1169 write_lock(&em_tree->lock);
1170 ret = add_extent_mapping(em_tree, em);
1171 write_unlock(&em_tree->lock);
1172 if (ret != -EEXIST) {
1173 free_extent_map(em);
1174 break;
1175 }
1176 btrfs_drop_extent_cache(inode, em->start,
1177 em->start + em->len - 1, 0);
1178 }
1179 type = BTRFS_ORDERED_PREALLOC;
1180 } else {
1181 type = BTRFS_ORDERED_NOCOW;
1182 }
1183
1184 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1185 num_bytes, num_bytes, type);
1186 BUG_ON(ret);
1187
1188 if (root->root_key.objectid ==
1189 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1190 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1191 num_bytes);
1192 BUG_ON(ret);
1193 }
1194
1195 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1196 cur_offset, cur_offset + num_bytes - 1,
1197 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1198 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1199 EXTENT_SET_PRIVATE2);
1200 cur_offset = extent_end;
1201 if (cur_offset > end)
1202 break;
1203 }
1204 btrfs_release_path(root, path);
1205
1206 if (cur_offset <= end && cow_start == (u64)-1)
1207 cow_start = cur_offset;
1208 if (cow_start != (u64)-1) {
1209 ret = cow_file_range(inode, locked_page, cow_start, end,
1210 page_started, nr_written, 1);
1211 BUG_ON(ret);
1212 }
1213
1214 ret = btrfs_end_transaction(trans, root);
1215 BUG_ON(ret);
1216 btrfs_free_path(path);
1217 return 0;
1218 }
1219
1220 /*
1221 * extent_io.c call back to do delayed allocation processing
1222 */
1223 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1224 u64 start, u64 end, int *page_started,
1225 unsigned long *nr_written)
1226 {
1227 int ret;
1228 struct btrfs_root *root = BTRFS_I(inode)->root;
1229
1230 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1231 ret = run_delalloc_nocow(inode, locked_page, start, end,
1232 page_started, 1, nr_written);
1233 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1234 ret = run_delalloc_nocow(inode, locked_page, start, end,
1235 page_started, 0, nr_written);
1236 else if (!btrfs_test_opt(root, COMPRESS) &&
1237 !(BTRFS_I(inode)->force_compress))
1238 ret = cow_file_range(inode, locked_page, start, end,
1239 page_started, nr_written, 1);
1240 else
1241 ret = cow_file_range_async(inode, locked_page, start, end,
1242 page_started, nr_written);
1243 return ret;
1244 }
1245
1246 static int btrfs_split_extent_hook(struct inode *inode,
1247 struct extent_state *orig, u64 split)
1248 {
1249 /* not delalloc, ignore it */
1250 if (!(orig->state & EXTENT_DELALLOC))
1251 return 0;
1252
1253 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1254 return 0;
1255 }
1256
1257 /*
1258 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1259 * extents so we can keep track of new extents that are just merged onto old
1260 * extents, such as when we are doing sequential writes, so we can properly
1261 * account for the metadata space we'll need.
1262 */
1263 static int btrfs_merge_extent_hook(struct inode *inode,
1264 struct extent_state *new,
1265 struct extent_state *other)
1266 {
1267 /* not delalloc, ignore it */
1268 if (!(other->state & EXTENT_DELALLOC))
1269 return 0;
1270
1271 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1272 return 0;
1273 }
1274
1275 /*
1276 * extent_io.c set_bit_hook, used to track delayed allocation
1277 * bytes in this file, and to maintain the list of inodes that
1278 * have pending delalloc work to be done.
1279 */
1280 static int btrfs_set_bit_hook(struct inode *inode,
1281 struct extent_state *state, int *bits)
1282 {
1283
1284 /*
1285 * set_bit and clear bit hooks normally require _irqsave/restore
1286 * but in this case, we are only testeing for the DELALLOC
1287 * bit, which is only set or cleared with irqs on
1288 */
1289 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1290 struct btrfs_root *root = BTRFS_I(inode)->root;
1291 u64 len = state->end + 1 - state->start;
1292
1293 if (*bits & EXTENT_FIRST_DELALLOC)
1294 *bits &= ~EXTENT_FIRST_DELALLOC;
1295 else
1296 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1297
1298 spin_lock(&root->fs_info->delalloc_lock);
1299 BTRFS_I(inode)->delalloc_bytes += len;
1300 root->fs_info->delalloc_bytes += len;
1301 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1302 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1303 &root->fs_info->delalloc_inodes);
1304 }
1305 spin_unlock(&root->fs_info->delalloc_lock);
1306 }
1307 return 0;
1308 }
1309
1310 /*
1311 * extent_io.c clear_bit_hook, see set_bit_hook for why
1312 */
1313 static int btrfs_clear_bit_hook(struct inode *inode,
1314 struct extent_state *state, int *bits)
1315 {
1316 /*
1317 * set_bit and clear bit hooks normally require _irqsave/restore
1318 * but in this case, we are only testeing for the DELALLOC
1319 * bit, which is only set or cleared with irqs on
1320 */
1321 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1322 struct btrfs_root *root = BTRFS_I(inode)->root;
1323 u64 len = state->end + 1 - state->start;
1324
1325 if (*bits & EXTENT_FIRST_DELALLOC)
1326 *bits &= ~EXTENT_FIRST_DELALLOC;
1327 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1328 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1329
1330 if (*bits & EXTENT_DO_ACCOUNTING)
1331 btrfs_delalloc_release_metadata(inode, len);
1332
1333 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1334 btrfs_free_reserved_data_space(inode, len);
1335
1336 spin_lock(&root->fs_info->delalloc_lock);
1337 root->fs_info->delalloc_bytes -= len;
1338 BTRFS_I(inode)->delalloc_bytes -= len;
1339
1340 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1341 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1342 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1343 }
1344 spin_unlock(&root->fs_info->delalloc_lock);
1345 }
1346 return 0;
1347 }
1348
1349 /*
1350 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1351 * we don't create bios that span stripes or chunks
1352 */
1353 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1354 size_t size, struct bio *bio,
1355 unsigned long bio_flags)
1356 {
1357 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1358 struct btrfs_mapping_tree *map_tree;
1359 u64 logical = (u64)bio->bi_sector << 9;
1360 u64 length = 0;
1361 u64 map_length;
1362 int ret;
1363
1364 if (bio_flags & EXTENT_BIO_COMPRESSED)
1365 return 0;
1366
1367 length = bio->bi_size;
1368 map_tree = &root->fs_info->mapping_tree;
1369 map_length = length;
1370 ret = btrfs_map_block(map_tree, READ, logical,
1371 &map_length, NULL, 0);
1372
1373 if (map_length < length + size)
1374 return 1;
1375 return 0;
1376 }
1377
1378 /*
1379 * in order to insert checksums into the metadata in large chunks,
1380 * we wait until bio submission time. All the pages in the bio are
1381 * checksummed and sums are attached onto the ordered extent record.
1382 *
1383 * At IO completion time the cums attached on the ordered extent record
1384 * are inserted into the btree
1385 */
1386 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1387 struct bio *bio, int mirror_num,
1388 unsigned long bio_flags)
1389 {
1390 struct btrfs_root *root = BTRFS_I(inode)->root;
1391 int ret = 0;
1392
1393 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1394 BUG_ON(ret);
1395 return 0;
1396 }
1397
1398 /*
1399 * in order to insert checksums into the metadata in large chunks,
1400 * we wait until bio submission time. All the pages in the bio are
1401 * checksummed and sums are attached onto the ordered extent record.
1402 *
1403 * At IO completion time the cums attached on the ordered extent record
1404 * are inserted into the btree
1405 */
1406 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1407 int mirror_num, unsigned long bio_flags)
1408 {
1409 struct btrfs_root *root = BTRFS_I(inode)->root;
1410 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1411 }
1412
1413 /*
1414 * extent_io.c submission hook. This does the right thing for csum calculation
1415 * on write, or reading the csums from the tree before a read
1416 */
1417 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1418 int mirror_num, unsigned long bio_flags)
1419 {
1420 struct btrfs_root *root = BTRFS_I(inode)->root;
1421 int ret = 0;
1422 int skip_sum;
1423
1424 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1425
1426 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1427 BUG_ON(ret);
1428
1429 if (!(rw & (1 << BIO_RW))) {
1430 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1431 return btrfs_submit_compressed_read(inode, bio,
1432 mirror_num, bio_flags);
1433 } else if (!skip_sum)
1434 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1435 goto mapit;
1436 } else if (!skip_sum) {
1437 /* csum items have already been cloned */
1438 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1439 goto mapit;
1440 /* we're doing a write, do the async checksumming */
1441 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1442 inode, rw, bio, mirror_num,
1443 bio_flags, __btrfs_submit_bio_start,
1444 __btrfs_submit_bio_done);
1445 }
1446
1447 mapit:
1448 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1449 }
1450
1451 /*
1452 * given a list of ordered sums record them in the inode. This happens
1453 * at IO completion time based on sums calculated at bio submission time.
1454 */
1455 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1456 struct inode *inode, u64 file_offset,
1457 struct list_head *list)
1458 {
1459 struct btrfs_ordered_sum *sum;
1460
1461 btrfs_set_trans_block_group(trans, inode);
1462
1463 list_for_each_entry(sum, list, list) {
1464 btrfs_csum_file_blocks(trans,
1465 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1466 }
1467 return 0;
1468 }
1469
1470 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1471 struct extent_state **cached_state)
1472 {
1473 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1474 WARN_ON(1);
1475 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1476 cached_state, GFP_NOFS);
1477 }
1478
1479 /* see btrfs_writepage_start_hook for details on why this is required */
1480 struct btrfs_writepage_fixup {
1481 struct page *page;
1482 struct btrfs_work work;
1483 };
1484
1485 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1486 {
1487 struct btrfs_writepage_fixup *fixup;
1488 struct btrfs_ordered_extent *ordered;
1489 struct extent_state *cached_state = NULL;
1490 struct page *page;
1491 struct inode *inode;
1492 u64 page_start;
1493 u64 page_end;
1494
1495 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1496 page = fixup->page;
1497 again:
1498 lock_page(page);
1499 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1500 ClearPageChecked(page);
1501 goto out_page;
1502 }
1503
1504 inode = page->mapping->host;
1505 page_start = page_offset(page);
1506 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1507
1508 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1509 &cached_state, GFP_NOFS);
1510
1511 /* already ordered? We're done */
1512 if (PagePrivate2(page))
1513 goto out;
1514
1515 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1516 if (ordered) {
1517 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1518 page_end, &cached_state, GFP_NOFS);
1519 unlock_page(page);
1520 btrfs_start_ordered_extent(inode, ordered, 1);
1521 goto again;
1522 }
1523
1524 BUG();
1525 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1526 ClearPageChecked(page);
1527 out:
1528 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1529 &cached_state, GFP_NOFS);
1530 out_page:
1531 unlock_page(page);
1532 page_cache_release(page);
1533 }
1534
1535 /*
1536 * There are a few paths in the higher layers of the kernel that directly
1537 * set the page dirty bit without asking the filesystem if it is a
1538 * good idea. This causes problems because we want to make sure COW
1539 * properly happens and the data=ordered rules are followed.
1540 *
1541 * In our case any range that doesn't have the ORDERED bit set
1542 * hasn't been properly setup for IO. We kick off an async process
1543 * to fix it up. The async helper will wait for ordered extents, set
1544 * the delalloc bit and make it safe to write the page.
1545 */
1546 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1547 {
1548 struct inode *inode = page->mapping->host;
1549 struct btrfs_writepage_fixup *fixup;
1550 struct btrfs_root *root = BTRFS_I(inode)->root;
1551
1552 /* this page is properly in the ordered list */
1553 if (TestClearPagePrivate2(page))
1554 return 0;
1555
1556 if (PageChecked(page))
1557 return -EAGAIN;
1558
1559 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1560 if (!fixup)
1561 return -EAGAIN;
1562
1563 SetPageChecked(page);
1564 page_cache_get(page);
1565 fixup->work.func = btrfs_writepage_fixup_worker;
1566 fixup->page = page;
1567 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1568 return -EAGAIN;
1569 }
1570
1571 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1572 struct inode *inode, u64 file_pos,
1573 u64 disk_bytenr, u64 disk_num_bytes,
1574 u64 num_bytes, u64 ram_bytes,
1575 u8 compression, u8 encryption,
1576 u16 other_encoding, int extent_type)
1577 {
1578 struct btrfs_root *root = BTRFS_I(inode)->root;
1579 struct btrfs_file_extent_item *fi;
1580 struct btrfs_path *path;
1581 struct extent_buffer *leaf;
1582 struct btrfs_key ins;
1583 u64 hint;
1584 int ret;
1585
1586 path = btrfs_alloc_path();
1587 BUG_ON(!path);
1588
1589 path->leave_spinning = 1;
1590
1591 /*
1592 * we may be replacing one extent in the tree with another.
1593 * The new extent is pinned in the extent map, and we don't want
1594 * to drop it from the cache until it is completely in the btree.
1595 *
1596 * So, tell btrfs_drop_extents to leave this extent in the cache.
1597 * the caller is expected to unpin it and allow it to be merged
1598 * with the others.
1599 */
1600 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1601 &hint, 0);
1602 BUG_ON(ret);
1603
1604 ins.objectid = inode->i_ino;
1605 ins.offset = file_pos;
1606 ins.type = BTRFS_EXTENT_DATA_KEY;
1607 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1608 BUG_ON(ret);
1609 leaf = path->nodes[0];
1610 fi = btrfs_item_ptr(leaf, path->slots[0],
1611 struct btrfs_file_extent_item);
1612 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1613 btrfs_set_file_extent_type(leaf, fi, extent_type);
1614 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1615 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1616 btrfs_set_file_extent_offset(leaf, fi, 0);
1617 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1618 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1619 btrfs_set_file_extent_compression(leaf, fi, compression);
1620 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1621 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1622
1623 btrfs_unlock_up_safe(path, 1);
1624 btrfs_set_lock_blocking(leaf);
1625
1626 btrfs_mark_buffer_dirty(leaf);
1627
1628 inode_add_bytes(inode, num_bytes);
1629
1630 ins.objectid = disk_bytenr;
1631 ins.offset = disk_num_bytes;
1632 ins.type = BTRFS_EXTENT_ITEM_KEY;
1633 ret = btrfs_alloc_reserved_file_extent(trans, root,
1634 root->root_key.objectid,
1635 inode->i_ino, file_pos, &ins);
1636 BUG_ON(ret);
1637 btrfs_free_path(path);
1638
1639 return 0;
1640 }
1641
1642 /*
1643 * helper function for btrfs_finish_ordered_io, this
1644 * just reads in some of the csum leaves to prime them into ram
1645 * before we start the transaction. It limits the amount of btree
1646 * reads required while inside the transaction.
1647 */
1648 /* as ordered data IO finishes, this gets called so we can finish
1649 * an ordered extent if the range of bytes in the file it covers are
1650 * fully written.
1651 */
1652 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1653 {
1654 struct btrfs_root *root = BTRFS_I(inode)->root;
1655 struct btrfs_trans_handle *trans = NULL;
1656 struct btrfs_ordered_extent *ordered_extent = NULL;
1657 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1658 struct extent_state *cached_state = NULL;
1659 int compressed = 0;
1660 int ret;
1661
1662 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1663 end - start + 1);
1664 if (!ret)
1665 return 0;
1666 BUG_ON(!ordered_extent);
1667
1668 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1669 BUG_ON(!list_empty(&ordered_extent->list));
1670 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1671 if (!ret) {
1672 trans = btrfs_join_transaction(root, 1);
1673 btrfs_set_trans_block_group(trans, inode);
1674 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1675 ret = btrfs_update_inode(trans, root, inode);
1676 BUG_ON(ret);
1677 }
1678 goto out;
1679 }
1680
1681 lock_extent_bits(io_tree, ordered_extent->file_offset,
1682 ordered_extent->file_offset + ordered_extent->len - 1,
1683 0, &cached_state, GFP_NOFS);
1684
1685 trans = btrfs_join_transaction(root, 1);
1686 btrfs_set_trans_block_group(trans, inode);
1687 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1688
1689 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1690 compressed = 1;
1691 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1692 BUG_ON(compressed);
1693 ret = btrfs_mark_extent_written(trans, inode,
1694 ordered_extent->file_offset,
1695 ordered_extent->file_offset +
1696 ordered_extent->len);
1697 BUG_ON(ret);
1698 } else {
1699 ret = insert_reserved_file_extent(trans, inode,
1700 ordered_extent->file_offset,
1701 ordered_extent->start,
1702 ordered_extent->disk_len,
1703 ordered_extent->len,
1704 ordered_extent->len,
1705 compressed, 0, 0,
1706 BTRFS_FILE_EXTENT_REG);
1707 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1708 ordered_extent->file_offset,
1709 ordered_extent->len);
1710 BUG_ON(ret);
1711 }
1712 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1713 ordered_extent->file_offset +
1714 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1715
1716 add_pending_csums(trans, inode, ordered_extent->file_offset,
1717 &ordered_extent->list);
1718
1719 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1720 ret = btrfs_update_inode(trans, root, inode);
1721 BUG_ON(ret);
1722 out:
1723 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1724 if (trans)
1725 btrfs_end_transaction(trans, root);
1726 /* once for us */
1727 btrfs_put_ordered_extent(ordered_extent);
1728 /* once for the tree */
1729 btrfs_put_ordered_extent(ordered_extent);
1730
1731 return 0;
1732 }
1733
1734 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1735 struct extent_state *state, int uptodate)
1736 {
1737 ClearPagePrivate2(page);
1738 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1739 }
1740
1741 /*
1742 * When IO fails, either with EIO or csum verification fails, we
1743 * try other mirrors that might have a good copy of the data. This
1744 * io_failure_record is used to record state as we go through all the
1745 * mirrors. If another mirror has good data, the page is set up to date
1746 * and things continue. If a good mirror can't be found, the original
1747 * bio end_io callback is called to indicate things have failed.
1748 */
1749 struct io_failure_record {
1750 struct page *page;
1751 u64 start;
1752 u64 len;
1753 u64 logical;
1754 unsigned long bio_flags;
1755 int last_mirror;
1756 };
1757
1758 static int btrfs_io_failed_hook(struct bio *failed_bio,
1759 struct page *page, u64 start, u64 end,
1760 struct extent_state *state)
1761 {
1762 struct io_failure_record *failrec = NULL;
1763 u64 private;
1764 struct extent_map *em;
1765 struct inode *inode = page->mapping->host;
1766 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1767 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1768 struct bio *bio;
1769 int num_copies;
1770 int ret;
1771 int rw;
1772 u64 logical;
1773
1774 ret = get_state_private(failure_tree, start, &private);
1775 if (ret) {
1776 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1777 if (!failrec)
1778 return -ENOMEM;
1779 failrec->start = start;
1780 failrec->len = end - start + 1;
1781 failrec->last_mirror = 0;
1782 failrec->bio_flags = 0;
1783
1784 read_lock(&em_tree->lock);
1785 em = lookup_extent_mapping(em_tree, start, failrec->len);
1786 if (em->start > start || em->start + em->len < start) {
1787 free_extent_map(em);
1788 em = NULL;
1789 }
1790 read_unlock(&em_tree->lock);
1791
1792 if (!em || IS_ERR(em)) {
1793 kfree(failrec);
1794 return -EIO;
1795 }
1796 logical = start - em->start;
1797 logical = em->block_start + logical;
1798 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1799 logical = em->block_start;
1800 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1801 }
1802 failrec->logical = logical;
1803 free_extent_map(em);
1804 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1805 EXTENT_DIRTY, GFP_NOFS);
1806 set_state_private(failure_tree, start,
1807 (u64)(unsigned long)failrec);
1808 } else {
1809 failrec = (struct io_failure_record *)(unsigned long)private;
1810 }
1811 num_copies = btrfs_num_copies(
1812 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1813 failrec->logical, failrec->len);
1814 failrec->last_mirror++;
1815 if (!state) {
1816 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1817 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1818 failrec->start,
1819 EXTENT_LOCKED);
1820 if (state && state->start != failrec->start)
1821 state = NULL;
1822 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1823 }
1824 if (!state || failrec->last_mirror > num_copies) {
1825 set_state_private(failure_tree, failrec->start, 0);
1826 clear_extent_bits(failure_tree, failrec->start,
1827 failrec->start + failrec->len - 1,
1828 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1829 kfree(failrec);
1830 return -EIO;
1831 }
1832 bio = bio_alloc(GFP_NOFS, 1);
1833 bio->bi_private = state;
1834 bio->bi_end_io = failed_bio->bi_end_io;
1835 bio->bi_sector = failrec->logical >> 9;
1836 bio->bi_bdev = failed_bio->bi_bdev;
1837 bio->bi_size = 0;
1838
1839 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1840 if (failed_bio->bi_rw & (1 << BIO_RW))
1841 rw = WRITE;
1842 else
1843 rw = READ;
1844
1845 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1846 failrec->last_mirror,
1847 failrec->bio_flags);
1848 return 0;
1849 }
1850
1851 /*
1852 * each time an IO finishes, we do a fast check in the IO failure tree
1853 * to see if we need to process or clean up an io_failure_record
1854 */
1855 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1856 {
1857 u64 private;
1858 u64 private_failure;
1859 struct io_failure_record *failure;
1860 int ret;
1861
1862 private = 0;
1863 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1864 (u64)-1, 1, EXTENT_DIRTY)) {
1865 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1866 start, &private_failure);
1867 if (ret == 0) {
1868 failure = (struct io_failure_record *)(unsigned long)
1869 private_failure;
1870 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1871 failure->start, 0);
1872 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1873 failure->start,
1874 failure->start + failure->len - 1,
1875 EXTENT_DIRTY | EXTENT_LOCKED,
1876 GFP_NOFS);
1877 kfree(failure);
1878 }
1879 }
1880 return 0;
1881 }
1882
1883 /*
1884 * when reads are done, we need to check csums to verify the data is correct
1885 * if there's a match, we allow the bio to finish. If not, we go through
1886 * the io_failure_record routines to find good copies
1887 */
1888 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1889 struct extent_state *state)
1890 {
1891 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1892 struct inode *inode = page->mapping->host;
1893 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1894 char *kaddr;
1895 u64 private = ~(u32)0;
1896 int ret;
1897 struct btrfs_root *root = BTRFS_I(inode)->root;
1898 u32 csum = ~(u32)0;
1899
1900 if (PageChecked(page)) {
1901 ClearPageChecked(page);
1902 goto good;
1903 }
1904
1905 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1906 return 0;
1907
1908 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1909 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1910 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1911 GFP_NOFS);
1912 return 0;
1913 }
1914
1915 if (state && state->start == start) {
1916 private = state->private;
1917 ret = 0;
1918 } else {
1919 ret = get_state_private(io_tree, start, &private);
1920 }
1921 kaddr = kmap_atomic(page, KM_USER0);
1922 if (ret)
1923 goto zeroit;
1924
1925 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1926 btrfs_csum_final(csum, (char *)&csum);
1927 if (csum != private)
1928 goto zeroit;
1929
1930 kunmap_atomic(kaddr, KM_USER0);
1931 good:
1932 /* if the io failure tree for this inode is non-empty,
1933 * check to see if we've recovered from a failed IO
1934 */
1935 btrfs_clean_io_failures(inode, start);
1936 return 0;
1937
1938 zeroit:
1939 if (printk_ratelimit()) {
1940 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1941 "private %llu\n", page->mapping->host->i_ino,
1942 (unsigned long long)start, csum,
1943 (unsigned long long)private);
1944 }
1945 memset(kaddr + offset, 1, end - start + 1);
1946 flush_dcache_page(page);
1947 kunmap_atomic(kaddr, KM_USER0);
1948 if (private == 0)
1949 return 0;
1950 return -EIO;
1951 }
1952
1953 struct delayed_iput {
1954 struct list_head list;
1955 struct inode *inode;
1956 };
1957
1958 void btrfs_add_delayed_iput(struct inode *inode)
1959 {
1960 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1961 struct delayed_iput *delayed;
1962
1963 if (atomic_add_unless(&inode->i_count, -1, 1))
1964 return;
1965
1966 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1967 delayed->inode = inode;
1968
1969 spin_lock(&fs_info->delayed_iput_lock);
1970 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
1971 spin_unlock(&fs_info->delayed_iput_lock);
1972 }
1973
1974 void btrfs_run_delayed_iputs(struct btrfs_root *root)
1975 {
1976 LIST_HEAD(list);
1977 struct btrfs_fs_info *fs_info = root->fs_info;
1978 struct delayed_iput *delayed;
1979 int empty;
1980
1981 spin_lock(&fs_info->delayed_iput_lock);
1982 empty = list_empty(&fs_info->delayed_iputs);
1983 spin_unlock(&fs_info->delayed_iput_lock);
1984 if (empty)
1985 return;
1986
1987 down_read(&root->fs_info->cleanup_work_sem);
1988 spin_lock(&fs_info->delayed_iput_lock);
1989 list_splice_init(&fs_info->delayed_iputs, &list);
1990 spin_unlock(&fs_info->delayed_iput_lock);
1991
1992 while (!list_empty(&list)) {
1993 delayed = list_entry(list.next, struct delayed_iput, list);
1994 list_del(&delayed->list);
1995 iput(delayed->inode);
1996 kfree(delayed);
1997 }
1998 up_read(&root->fs_info->cleanup_work_sem);
1999 }
2000
2001 /*
2002 * calculate extra metadata reservation when snapshotting a subvolume
2003 * contains orphan files.
2004 */
2005 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2006 struct btrfs_pending_snapshot *pending,
2007 u64 *bytes_to_reserve)
2008 {
2009 struct btrfs_root *root;
2010 struct btrfs_block_rsv *block_rsv;
2011 u64 num_bytes;
2012 int index;
2013
2014 root = pending->root;
2015 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2016 return;
2017
2018 block_rsv = root->orphan_block_rsv;
2019
2020 /* orphan block reservation for the snapshot */
2021 num_bytes = block_rsv->size;
2022
2023 /*
2024 * after the snapshot is created, COWing tree blocks may use more
2025 * space than it frees. So we should make sure there is enough
2026 * reserved space.
2027 */
2028 index = trans->transid & 0x1;
2029 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2030 num_bytes += block_rsv->size -
2031 (block_rsv->reserved + block_rsv->freed[index]);
2032 }
2033
2034 *bytes_to_reserve += num_bytes;
2035 }
2036
2037 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2038 struct btrfs_pending_snapshot *pending)
2039 {
2040 struct btrfs_root *root = pending->root;
2041 struct btrfs_root *snap = pending->snap;
2042 struct btrfs_block_rsv *block_rsv;
2043 u64 num_bytes;
2044 int index;
2045 int ret;
2046
2047 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2048 return;
2049
2050 /* refill source subvolume's orphan block reservation */
2051 block_rsv = root->orphan_block_rsv;
2052 index = trans->transid & 0x1;
2053 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2054 num_bytes = block_rsv->size -
2055 (block_rsv->reserved + block_rsv->freed[index]);
2056 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2057 root->orphan_block_rsv,
2058 num_bytes);
2059 BUG_ON(ret);
2060 }
2061
2062 /* setup orphan block reservation for the snapshot */
2063 block_rsv = btrfs_alloc_block_rsv(snap);
2064 BUG_ON(!block_rsv);
2065
2066 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2067 snap->orphan_block_rsv = block_rsv;
2068
2069 num_bytes = root->orphan_block_rsv->size;
2070 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2071 block_rsv, num_bytes);
2072 BUG_ON(ret);
2073
2074 #if 0
2075 /* insert orphan item for the snapshot */
2076 WARN_ON(!root->orphan_item_inserted);
2077 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2078 snap->root_key.objectid);
2079 BUG_ON(ret);
2080 snap->orphan_item_inserted = 1;
2081 #endif
2082 }
2083
2084 enum btrfs_orphan_cleanup_state {
2085 ORPHAN_CLEANUP_STARTED = 1,
2086 ORPHAN_CLEANUP_DONE = 2,
2087 };
2088
2089 /*
2090 * This is called in transaction commmit time. If there are no orphan
2091 * files in the subvolume, it removes orphan item and frees block_rsv
2092 * structure.
2093 */
2094 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2095 struct btrfs_root *root)
2096 {
2097 int ret;
2098
2099 if (!list_empty(&root->orphan_list) ||
2100 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2101 return;
2102
2103 if (root->orphan_item_inserted &&
2104 btrfs_root_refs(&root->root_item) > 0) {
2105 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2106 root->root_key.objectid);
2107 BUG_ON(ret);
2108 root->orphan_item_inserted = 0;
2109 }
2110
2111 if (root->orphan_block_rsv) {
2112 WARN_ON(root->orphan_block_rsv->size > 0);
2113 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2114 root->orphan_block_rsv = NULL;
2115 }
2116 }
2117
2118 /*
2119 * This creates an orphan entry for the given inode in case something goes
2120 * wrong in the middle of an unlink/truncate.
2121 *
2122 * NOTE: caller of this function should reserve 5 units of metadata for
2123 * this function.
2124 */
2125 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2126 {
2127 struct btrfs_root *root = BTRFS_I(inode)->root;
2128 struct btrfs_block_rsv *block_rsv = NULL;
2129 int reserve = 0;
2130 int insert = 0;
2131 int ret;
2132
2133 if (!root->orphan_block_rsv) {
2134 block_rsv = btrfs_alloc_block_rsv(root);
2135 BUG_ON(!block_rsv);
2136 }
2137
2138 spin_lock(&root->orphan_lock);
2139 if (!root->orphan_block_rsv) {
2140 root->orphan_block_rsv = block_rsv;
2141 } else if (block_rsv) {
2142 btrfs_free_block_rsv(root, block_rsv);
2143 block_rsv = NULL;
2144 }
2145
2146 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2147 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2148 #if 0
2149 /*
2150 * For proper ENOSPC handling, we should do orphan
2151 * cleanup when mounting. But this introduces backward
2152 * compatibility issue.
2153 */
2154 if (!xchg(&root->orphan_item_inserted, 1))
2155 insert = 2;
2156 else
2157 insert = 1;
2158 #endif
2159 insert = 1;
2160 } else {
2161 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2162 }
2163
2164 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2165 BTRFS_I(inode)->orphan_meta_reserved = 1;
2166 reserve = 1;
2167 }
2168 spin_unlock(&root->orphan_lock);
2169
2170 if (block_rsv)
2171 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2172
2173 /* grab metadata reservation from transaction handle */
2174 if (reserve) {
2175 ret = btrfs_orphan_reserve_metadata(trans, inode);
2176 BUG_ON(ret);
2177 }
2178
2179 /* insert an orphan item to track this unlinked/truncated file */
2180 if (insert >= 1) {
2181 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2182 BUG_ON(ret);
2183 }
2184
2185 /* insert an orphan item to track subvolume contains orphan files */
2186 if (insert >= 2) {
2187 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2188 root->root_key.objectid);
2189 BUG_ON(ret);
2190 }
2191 return 0;
2192 }
2193
2194 /*
2195 * We have done the truncate/delete so we can go ahead and remove the orphan
2196 * item for this particular inode.
2197 */
2198 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2199 {
2200 struct btrfs_root *root = BTRFS_I(inode)->root;
2201 int delete_item = 0;
2202 int release_rsv = 0;
2203 int ret = 0;
2204
2205 spin_lock(&root->orphan_lock);
2206 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2207 list_del_init(&BTRFS_I(inode)->i_orphan);
2208 delete_item = 1;
2209 }
2210
2211 if (BTRFS_I(inode)->orphan_meta_reserved) {
2212 BTRFS_I(inode)->orphan_meta_reserved = 0;
2213 release_rsv = 1;
2214 }
2215 spin_unlock(&root->orphan_lock);
2216
2217 if (trans && delete_item) {
2218 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2219 BUG_ON(ret);
2220 }
2221
2222 if (release_rsv)
2223 btrfs_orphan_release_metadata(inode);
2224
2225 return 0;
2226 }
2227
2228 /*
2229 * this cleans up any orphans that may be left on the list from the last use
2230 * of this root.
2231 */
2232 void btrfs_orphan_cleanup(struct btrfs_root *root)
2233 {
2234 struct btrfs_path *path;
2235 struct extent_buffer *leaf;
2236 struct btrfs_item *item;
2237 struct btrfs_key key, found_key;
2238 struct btrfs_trans_handle *trans;
2239 struct inode *inode;
2240 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2241
2242 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2243 return;
2244
2245 path = btrfs_alloc_path();
2246 BUG_ON(!path);
2247 path->reada = -1;
2248
2249 key.objectid = BTRFS_ORPHAN_OBJECTID;
2250 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2251 key.offset = (u64)-1;
2252
2253 while (1) {
2254 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2255 if (ret < 0) {
2256 printk(KERN_ERR "Error searching slot for orphan: %d"
2257 "\n", ret);
2258 break;
2259 }
2260
2261 /*
2262 * if ret == 0 means we found what we were searching for, which
2263 * is weird, but possible, so only screw with path if we didnt
2264 * find the key and see if we have stuff that matches
2265 */
2266 if (ret > 0) {
2267 if (path->slots[0] == 0)
2268 break;
2269 path->slots[0]--;
2270 }
2271
2272 /* pull out the item */
2273 leaf = path->nodes[0];
2274 item = btrfs_item_nr(leaf, path->slots[0]);
2275 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2276
2277 /* make sure the item matches what we want */
2278 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2279 break;
2280 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2281 break;
2282
2283 /* release the path since we're done with it */
2284 btrfs_release_path(root, path);
2285
2286 /*
2287 * this is where we are basically btrfs_lookup, without the
2288 * crossing root thing. we store the inode number in the
2289 * offset of the orphan item.
2290 */
2291 found_key.objectid = found_key.offset;
2292 found_key.type = BTRFS_INODE_ITEM_KEY;
2293 found_key.offset = 0;
2294 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2295 BUG_ON(IS_ERR(inode));
2296
2297 /*
2298 * add this inode to the orphan list so btrfs_orphan_del does
2299 * the proper thing when we hit it
2300 */
2301 spin_lock(&root->orphan_lock);
2302 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2303 spin_unlock(&root->orphan_lock);
2304
2305 /*
2306 * if this is a bad inode, means we actually succeeded in
2307 * removing the inode, but not the orphan record, which means
2308 * we need to manually delete the orphan since iput will just
2309 * do a destroy_inode
2310 */
2311 if (is_bad_inode(inode)) {
2312 trans = btrfs_start_transaction(root, 0);
2313 btrfs_orphan_del(trans, inode);
2314 btrfs_end_transaction(trans, root);
2315 iput(inode);
2316 continue;
2317 }
2318
2319 /* if we have links, this was a truncate, lets do that */
2320 if (inode->i_nlink) {
2321 nr_truncate++;
2322 btrfs_truncate(inode);
2323 } else {
2324 nr_unlink++;
2325 }
2326
2327 /* this will do delete_inode and everything for us */
2328 iput(inode);
2329 }
2330 btrfs_free_path(path);
2331
2332 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2333
2334 if (root->orphan_block_rsv)
2335 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2336 (u64)-1);
2337
2338 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2339 trans = btrfs_join_transaction(root, 1);
2340 btrfs_end_transaction(trans, root);
2341 }
2342
2343 if (nr_unlink)
2344 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2345 if (nr_truncate)
2346 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2347 }
2348
2349 /*
2350 * very simple check to peek ahead in the leaf looking for xattrs. If we
2351 * don't find any xattrs, we know there can't be any acls.
2352 *
2353 * slot is the slot the inode is in, objectid is the objectid of the inode
2354 */
2355 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2356 int slot, u64 objectid)
2357 {
2358 u32 nritems = btrfs_header_nritems(leaf);
2359 struct btrfs_key found_key;
2360 int scanned = 0;
2361
2362 slot++;
2363 while (slot < nritems) {
2364 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2365
2366 /* we found a different objectid, there must not be acls */
2367 if (found_key.objectid != objectid)
2368 return 0;
2369
2370 /* we found an xattr, assume we've got an acl */
2371 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2372 return 1;
2373
2374 /*
2375 * we found a key greater than an xattr key, there can't
2376 * be any acls later on
2377 */
2378 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2379 return 0;
2380
2381 slot++;
2382 scanned++;
2383
2384 /*
2385 * it goes inode, inode backrefs, xattrs, extents,
2386 * so if there are a ton of hard links to an inode there can
2387 * be a lot of backrefs. Don't waste time searching too hard,
2388 * this is just an optimization
2389 */
2390 if (scanned >= 8)
2391 break;
2392 }
2393 /* we hit the end of the leaf before we found an xattr or
2394 * something larger than an xattr. We have to assume the inode
2395 * has acls
2396 */
2397 return 1;
2398 }
2399
2400 /*
2401 * read an inode from the btree into the in-memory inode
2402 */
2403 static void btrfs_read_locked_inode(struct inode *inode)
2404 {
2405 struct btrfs_path *path;
2406 struct extent_buffer *leaf;
2407 struct btrfs_inode_item *inode_item;
2408 struct btrfs_timespec *tspec;
2409 struct btrfs_root *root = BTRFS_I(inode)->root;
2410 struct btrfs_key location;
2411 int maybe_acls;
2412 u64 alloc_group_block;
2413 u32 rdev;
2414 int ret;
2415
2416 path = btrfs_alloc_path();
2417 BUG_ON(!path);
2418 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2419
2420 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2421 if (ret)
2422 goto make_bad;
2423
2424 leaf = path->nodes[0];
2425 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2426 struct btrfs_inode_item);
2427
2428 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2429 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2430 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2431 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2432 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2433
2434 tspec = btrfs_inode_atime(inode_item);
2435 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2436 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2437
2438 tspec = btrfs_inode_mtime(inode_item);
2439 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2440 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2441
2442 tspec = btrfs_inode_ctime(inode_item);
2443 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2444 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2445
2446 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2447 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2448 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2449 inode->i_generation = BTRFS_I(inode)->generation;
2450 inode->i_rdev = 0;
2451 rdev = btrfs_inode_rdev(leaf, inode_item);
2452
2453 BTRFS_I(inode)->index_cnt = (u64)-1;
2454 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2455
2456 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2457
2458 /*
2459 * try to precache a NULL acl entry for files that don't have
2460 * any xattrs or acls
2461 */
2462 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2463 if (!maybe_acls)
2464 cache_no_acl(inode);
2465
2466 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2467 alloc_group_block, 0);
2468 btrfs_free_path(path);
2469 inode_item = NULL;
2470
2471 switch (inode->i_mode & S_IFMT) {
2472 case S_IFREG:
2473 inode->i_mapping->a_ops = &btrfs_aops;
2474 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2475 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2476 inode->i_fop = &btrfs_file_operations;
2477 inode->i_op = &btrfs_file_inode_operations;
2478 break;
2479 case S_IFDIR:
2480 inode->i_fop = &btrfs_dir_file_operations;
2481 if (root == root->fs_info->tree_root)
2482 inode->i_op = &btrfs_dir_ro_inode_operations;
2483 else
2484 inode->i_op = &btrfs_dir_inode_operations;
2485 break;
2486 case S_IFLNK:
2487 inode->i_op = &btrfs_symlink_inode_operations;
2488 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2489 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2490 break;
2491 default:
2492 inode->i_op = &btrfs_special_inode_operations;
2493 init_special_inode(inode, inode->i_mode, rdev);
2494 break;
2495 }
2496
2497 btrfs_update_iflags(inode);
2498 return;
2499
2500 make_bad:
2501 btrfs_free_path(path);
2502 make_bad_inode(inode);
2503 }
2504
2505 /*
2506 * given a leaf and an inode, copy the inode fields into the leaf
2507 */
2508 static void fill_inode_item(struct btrfs_trans_handle *trans,
2509 struct extent_buffer *leaf,
2510 struct btrfs_inode_item *item,
2511 struct inode *inode)
2512 {
2513 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2514 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2515 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2516 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2517 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2518
2519 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2520 inode->i_atime.tv_sec);
2521 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2522 inode->i_atime.tv_nsec);
2523
2524 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2525 inode->i_mtime.tv_sec);
2526 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2527 inode->i_mtime.tv_nsec);
2528
2529 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2530 inode->i_ctime.tv_sec);
2531 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2532 inode->i_ctime.tv_nsec);
2533
2534 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2535 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2536 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2537 btrfs_set_inode_transid(leaf, item, trans->transid);
2538 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2539 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2540 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2541 }
2542
2543 /*
2544 * copy everything in the in-memory inode into the btree.
2545 */
2546 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2547 struct btrfs_root *root, struct inode *inode)
2548 {
2549 struct btrfs_inode_item *inode_item;
2550 struct btrfs_path *path;
2551 struct extent_buffer *leaf;
2552 int ret;
2553
2554 path = btrfs_alloc_path();
2555 BUG_ON(!path);
2556 path->leave_spinning = 1;
2557 ret = btrfs_lookup_inode(trans, root, path,
2558 &BTRFS_I(inode)->location, 1);
2559 if (ret) {
2560 if (ret > 0)
2561 ret = -ENOENT;
2562 goto failed;
2563 }
2564
2565 btrfs_unlock_up_safe(path, 1);
2566 leaf = path->nodes[0];
2567 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2568 struct btrfs_inode_item);
2569
2570 fill_inode_item(trans, leaf, inode_item, inode);
2571 btrfs_mark_buffer_dirty(leaf);
2572 btrfs_set_inode_last_trans(trans, inode);
2573 ret = 0;
2574 failed:
2575 btrfs_free_path(path);
2576 return ret;
2577 }
2578
2579
2580 /*
2581 * unlink helper that gets used here in inode.c and in the tree logging
2582 * recovery code. It remove a link in a directory with a given name, and
2583 * also drops the back refs in the inode to the directory
2584 */
2585 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2586 struct btrfs_root *root,
2587 struct inode *dir, struct inode *inode,
2588 const char *name, int name_len)
2589 {
2590 struct btrfs_path *path;
2591 int ret = 0;
2592 struct extent_buffer *leaf;
2593 struct btrfs_dir_item *di;
2594 struct btrfs_key key;
2595 u64 index;
2596
2597 path = btrfs_alloc_path();
2598 if (!path) {
2599 ret = -ENOMEM;
2600 goto err;
2601 }
2602
2603 path->leave_spinning = 1;
2604 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2605 name, name_len, -1);
2606 if (IS_ERR(di)) {
2607 ret = PTR_ERR(di);
2608 goto err;
2609 }
2610 if (!di) {
2611 ret = -ENOENT;
2612 goto err;
2613 }
2614 leaf = path->nodes[0];
2615 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2616 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2617 if (ret)
2618 goto err;
2619 btrfs_release_path(root, path);
2620
2621 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2622 inode->i_ino,
2623 dir->i_ino, &index);
2624 if (ret) {
2625 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2626 "inode %lu parent %lu\n", name_len, name,
2627 inode->i_ino, dir->i_ino);
2628 goto err;
2629 }
2630
2631 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2632 index, name, name_len, -1);
2633 if (IS_ERR(di)) {
2634 ret = PTR_ERR(di);
2635 goto err;
2636 }
2637 if (!di) {
2638 ret = -ENOENT;
2639 goto err;
2640 }
2641 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2642 btrfs_release_path(root, path);
2643
2644 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2645 inode, dir->i_ino);
2646 BUG_ON(ret != 0 && ret != -ENOENT);
2647
2648 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2649 dir, index);
2650 BUG_ON(ret);
2651 err:
2652 btrfs_free_path(path);
2653 if (ret)
2654 goto out;
2655
2656 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2657 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2658 btrfs_update_inode(trans, root, dir);
2659 btrfs_drop_nlink(inode);
2660 ret = btrfs_update_inode(trans, root, inode);
2661 out:
2662 return ret;
2663 }
2664
2665 /* helper to check if there is any shared block in the path */
2666 static int check_path_shared(struct btrfs_root *root,
2667 struct btrfs_path *path)
2668 {
2669 struct extent_buffer *eb;
2670 int level;
2671 int ret;
2672 u64 refs;
2673
2674 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2675 if (!path->nodes[level])
2676 break;
2677 eb = path->nodes[level];
2678 if (!btrfs_block_can_be_shared(root, eb))
2679 continue;
2680 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2681 &refs, NULL);
2682 if (refs > 1)
2683 return 1;
2684 }
2685 return 0;
2686 }
2687
2688 /*
2689 * helper to start transaction for unlink and rmdir.
2690 *
2691 * unlink and rmdir are special in btrfs, they do not always free space.
2692 * so in enospc case, we should make sure they will free space before
2693 * allowing them to use the global metadata reservation.
2694 */
2695 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2696 struct dentry *dentry)
2697 {
2698 struct btrfs_trans_handle *trans;
2699 struct btrfs_root *root = BTRFS_I(dir)->root;
2700 struct btrfs_path *path;
2701 struct btrfs_inode_ref *ref;
2702 struct btrfs_dir_item *di;
2703 struct inode *inode = dentry->d_inode;
2704 u64 index;
2705 int check_link = 1;
2706 int err = -ENOSPC;
2707 int ret;
2708
2709 trans = btrfs_start_transaction(root, 10);
2710 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2711 return trans;
2712
2713 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2714 return ERR_PTR(-ENOSPC);
2715
2716 /* check if there is someone else holds reference */
2717 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2718 return ERR_PTR(-ENOSPC);
2719
2720 if (atomic_read(&inode->i_count) > 2)
2721 return ERR_PTR(-ENOSPC);
2722
2723 if (xchg(&root->fs_info->enospc_unlink, 1))
2724 return ERR_PTR(-ENOSPC);
2725
2726 path = btrfs_alloc_path();
2727 if (!path) {
2728 root->fs_info->enospc_unlink = 0;
2729 return ERR_PTR(-ENOMEM);
2730 }
2731
2732 trans = btrfs_start_transaction(root, 0);
2733 if (IS_ERR(trans)) {
2734 btrfs_free_path(path);
2735 root->fs_info->enospc_unlink = 0;
2736 return trans;
2737 }
2738
2739 path->skip_locking = 1;
2740 path->search_commit_root = 1;
2741
2742 ret = btrfs_lookup_inode(trans, root, path,
2743 &BTRFS_I(dir)->location, 0);
2744 if (ret < 0) {
2745 err = ret;
2746 goto out;
2747 }
2748 if (ret == 0) {
2749 if (check_path_shared(root, path))
2750 goto out;
2751 } else {
2752 check_link = 0;
2753 }
2754 btrfs_release_path(root, path);
2755
2756 ret = btrfs_lookup_inode(trans, root, path,
2757 &BTRFS_I(inode)->location, 0);
2758 if (ret < 0) {
2759 err = ret;
2760 goto out;
2761 }
2762 if (ret == 0) {
2763 if (check_path_shared(root, path))
2764 goto out;
2765 } else {
2766 check_link = 0;
2767 }
2768 btrfs_release_path(root, path);
2769
2770 if (ret == 0 && S_ISREG(inode->i_mode)) {
2771 ret = btrfs_lookup_file_extent(trans, root, path,
2772 inode->i_ino, (u64)-1, 0);
2773 if (ret < 0) {
2774 err = ret;
2775 goto out;
2776 }
2777 BUG_ON(ret == 0);
2778 if (check_path_shared(root, path))
2779 goto out;
2780 btrfs_release_path(root, path);
2781 }
2782
2783 if (!check_link) {
2784 err = 0;
2785 goto out;
2786 }
2787
2788 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2789 dentry->d_name.name, dentry->d_name.len, 0);
2790 if (IS_ERR(di)) {
2791 err = PTR_ERR(di);
2792 goto out;
2793 }
2794 if (di) {
2795 if (check_path_shared(root, path))
2796 goto out;
2797 } else {
2798 err = 0;
2799 goto out;
2800 }
2801 btrfs_release_path(root, path);
2802
2803 ref = btrfs_lookup_inode_ref(trans, root, path,
2804 dentry->d_name.name, dentry->d_name.len,
2805 inode->i_ino, dir->i_ino, 0);
2806 if (IS_ERR(ref)) {
2807 err = PTR_ERR(ref);
2808 goto out;
2809 }
2810 BUG_ON(!ref);
2811 if (check_path_shared(root, path))
2812 goto out;
2813 index = btrfs_inode_ref_index(path->nodes[0], ref);
2814 btrfs_release_path(root, path);
2815
2816 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2817 dentry->d_name.name, dentry->d_name.len, 0);
2818 if (IS_ERR(di)) {
2819 err = PTR_ERR(di);
2820 goto out;
2821 }
2822 BUG_ON(ret == -ENOENT);
2823 if (check_path_shared(root, path))
2824 goto out;
2825
2826 err = 0;
2827 out:
2828 btrfs_free_path(path);
2829 if (err) {
2830 btrfs_end_transaction(trans, root);
2831 root->fs_info->enospc_unlink = 0;
2832 return ERR_PTR(err);
2833 }
2834
2835 trans->block_rsv = &root->fs_info->global_block_rsv;
2836 return trans;
2837 }
2838
2839 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2840 struct btrfs_root *root)
2841 {
2842 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2843 BUG_ON(!root->fs_info->enospc_unlink);
2844 root->fs_info->enospc_unlink = 0;
2845 }
2846 btrfs_end_transaction_throttle(trans, root);
2847 }
2848
2849 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2850 {
2851 struct btrfs_root *root = BTRFS_I(dir)->root;
2852 struct btrfs_trans_handle *trans;
2853 struct inode *inode = dentry->d_inode;
2854 int ret;
2855 unsigned long nr = 0;
2856
2857 trans = __unlink_start_trans(dir, dentry);
2858 if (IS_ERR(trans))
2859 return PTR_ERR(trans);
2860
2861 btrfs_set_trans_block_group(trans, dir);
2862
2863 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2864
2865 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2866 dentry->d_name.name, dentry->d_name.len);
2867 BUG_ON(ret);
2868
2869 if (inode->i_nlink == 0) {
2870 ret = btrfs_orphan_add(trans, inode);
2871 BUG_ON(ret);
2872 }
2873
2874 nr = trans->blocks_used;
2875 __unlink_end_trans(trans, root);
2876 btrfs_btree_balance_dirty(root, nr);
2877 return ret;
2878 }
2879
2880 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2881 struct btrfs_root *root,
2882 struct inode *dir, u64 objectid,
2883 const char *name, int name_len)
2884 {
2885 struct btrfs_path *path;
2886 struct extent_buffer *leaf;
2887 struct btrfs_dir_item *di;
2888 struct btrfs_key key;
2889 u64 index;
2890 int ret;
2891
2892 path = btrfs_alloc_path();
2893 if (!path)
2894 return -ENOMEM;
2895
2896 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2897 name, name_len, -1);
2898 BUG_ON(!di || IS_ERR(di));
2899
2900 leaf = path->nodes[0];
2901 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2902 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2903 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2904 BUG_ON(ret);
2905 btrfs_release_path(root, path);
2906
2907 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2908 objectid, root->root_key.objectid,
2909 dir->i_ino, &index, name, name_len);
2910 if (ret < 0) {
2911 BUG_ON(ret != -ENOENT);
2912 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2913 name, name_len);
2914 BUG_ON(!di || IS_ERR(di));
2915
2916 leaf = path->nodes[0];
2917 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2918 btrfs_release_path(root, path);
2919 index = key.offset;
2920 }
2921
2922 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2923 index, name, name_len, -1);
2924 BUG_ON(!di || IS_ERR(di));
2925
2926 leaf = path->nodes[0];
2927 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2928 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2929 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2930 BUG_ON(ret);
2931 btrfs_release_path(root, path);
2932
2933 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2934 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2935 ret = btrfs_update_inode(trans, root, dir);
2936 BUG_ON(ret);
2937 dir->i_sb->s_dirt = 1;
2938
2939 btrfs_free_path(path);
2940 return 0;
2941 }
2942
2943 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2944 {
2945 struct inode *inode = dentry->d_inode;
2946 int err = 0;
2947 struct btrfs_root *root = BTRFS_I(dir)->root;
2948 struct btrfs_trans_handle *trans;
2949 unsigned long nr = 0;
2950
2951 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2952 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2953 return -ENOTEMPTY;
2954
2955 trans = __unlink_start_trans(dir, dentry);
2956 if (IS_ERR(trans))
2957 return PTR_ERR(trans);
2958
2959 btrfs_set_trans_block_group(trans, dir);
2960
2961 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2962 err = btrfs_unlink_subvol(trans, root, dir,
2963 BTRFS_I(inode)->location.objectid,
2964 dentry->d_name.name,
2965 dentry->d_name.len);
2966 goto out;
2967 }
2968
2969 err = btrfs_orphan_add(trans, inode);
2970 if (err)
2971 goto out;
2972
2973 /* now the directory is empty */
2974 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2975 dentry->d_name.name, dentry->d_name.len);
2976 if (!err)
2977 btrfs_i_size_write(inode, 0);
2978 out:
2979 nr = trans->blocks_used;
2980 __unlink_end_trans(trans, root);
2981 btrfs_btree_balance_dirty(root, nr);
2982
2983 return err;
2984 }
2985
2986 #if 0
2987 /*
2988 * when truncating bytes in a file, it is possible to avoid reading
2989 * the leaves that contain only checksum items. This can be the
2990 * majority of the IO required to delete a large file, but it must
2991 * be done carefully.
2992 *
2993 * The keys in the level just above the leaves are checked to make sure
2994 * the lowest key in a given leaf is a csum key, and starts at an offset
2995 * after the new size.
2996 *
2997 * Then the key for the next leaf is checked to make sure it also has
2998 * a checksum item for the same file. If it does, we know our target leaf
2999 * contains only checksum items, and it can be safely freed without reading
3000 * it.
3001 *
3002 * This is just an optimization targeted at large files. It may do
3003 * nothing. It will return 0 unless things went badly.
3004 */
3005 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3006 struct btrfs_root *root,
3007 struct btrfs_path *path,
3008 struct inode *inode, u64 new_size)
3009 {
3010 struct btrfs_key key;
3011 int ret;
3012 int nritems;
3013 struct btrfs_key found_key;
3014 struct btrfs_key other_key;
3015 struct btrfs_leaf_ref *ref;
3016 u64 leaf_gen;
3017 u64 leaf_start;
3018
3019 path->lowest_level = 1;
3020 key.objectid = inode->i_ino;
3021 key.type = BTRFS_CSUM_ITEM_KEY;
3022 key.offset = new_size;
3023 again:
3024 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3025 if (ret < 0)
3026 goto out;
3027
3028 if (path->nodes[1] == NULL) {
3029 ret = 0;
3030 goto out;
3031 }
3032 ret = 0;
3033 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3034 nritems = btrfs_header_nritems(path->nodes[1]);
3035
3036 if (!nritems)
3037 goto out;
3038
3039 if (path->slots[1] >= nritems)
3040 goto next_node;
3041
3042 /* did we find a key greater than anything we want to delete? */
3043 if (found_key.objectid > inode->i_ino ||
3044 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3045 goto out;
3046
3047 /* we check the next key in the node to make sure the leave contains
3048 * only checksum items. This comparison doesn't work if our
3049 * leaf is the last one in the node
3050 */
3051 if (path->slots[1] + 1 >= nritems) {
3052 next_node:
3053 /* search forward from the last key in the node, this
3054 * will bring us into the next node in the tree
3055 */
3056 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3057
3058 /* unlikely, but we inc below, so check to be safe */
3059 if (found_key.offset == (u64)-1)
3060 goto out;
3061
3062 /* search_forward needs a path with locks held, do the
3063 * search again for the original key. It is possible
3064 * this will race with a balance and return a path that
3065 * we could modify, but this drop is just an optimization
3066 * and is allowed to miss some leaves.
3067 */
3068 btrfs_release_path(root, path);
3069 found_key.offset++;
3070
3071 /* setup a max key for search_forward */
3072 other_key.offset = (u64)-1;
3073 other_key.type = key.type;
3074 other_key.objectid = key.objectid;
3075
3076 path->keep_locks = 1;
3077 ret = btrfs_search_forward(root, &found_key, &other_key,
3078 path, 0, 0);
3079 path->keep_locks = 0;
3080 if (ret || found_key.objectid != key.objectid ||
3081 found_key.type != key.type) {
3082 ret = 0;
3083 goto out;
3084 }
3085
3086 key.offset = found_key.offset;
3087 btrfs_release_path(root, path);
3088 cond_resched();
3089 goto again;
3090 }
3091
3092 /* we know there's one more slot after us in the tree,
3093 * read that key so we can verify it is also a checksum item
3094 */
3095 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3096
3097 if (found_key.objectid < inode->i_ino)
3098 goto next_key;
3099
3100 if (found_key.type != key.type || found_key.offset < new_size)
3101 goto next_key;
3102
3103 /*
3104 * if the key for the next leaf isn't a csum key from this objectid,
3105 * we can't be sure there aren't good items inside this leaf.
3106 * Bail out
3107 */
3108 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3109 goto out;
3110
3111 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3112 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3113 /*
3114 * it is safe to delete this leaf, it contains only
3115 * csum items from this inode at an offset >= new_size
3116 */
3117 ret = btrfs_del_leaf(trans, root, path, leaf_start);
3118 BUG_ON(ret);
3119
3120 if (root->ref_cows && leaf_gen < trans->transid) {
3121 ref = btrfs_alloc_leaf_ref(root, 0);
3122 if (ref) {
3123 ref->root_gen = root->root_key.offset;
3124 ref->bytenr = leaf_start;
3125 ref->owner = 0;
3126 ref->generation = leaf_gen;
3127 ref->nritems = 0;
3128
3129 btrfs_sort_leaf_ref(ref);
3130
3131 ret = btrfs_add_leaf_ref(root, ref, 0);
3132 WARN_ON(ret);
3133 btrfs_free_leaf_ref(root, ref);
3134 } else {
3135 WARN_ON(1);
3136 }
3137 }
3138 next_key:
3139 btrfs_release_path(root, path);
3140
3141 if (other_key.objectid == inode->i_ino &&
3142 other_key.type == key.type && other_key.offset > key.offset) {
3143 key.offset = other_key.offset;
3144 cond_resched();
3145 goto again;
3146 }
3147 ret = 0;
3148 out:
3149 /* fixup any changes we've made to the path */
3150 path->lowest_level = 0;
3151 path->keep_locks = 0;
3152 btrfs_release_path(root, path);
3153 return ret;
3154 }
3155
3156 #endif
3157
3158 /*
3159 * this can truncate away extent items, csum items and directory items.
3160 * It starts at a high offset and removes keys until it can't find
3161 * any higher than new_size
3162 *
3163 * csum items that cross the new i_size are truncated to the new size
3164 * as well.
3165 *
3166 * min_type is the minimum key type to truncate down to. If set to 0, this
3167 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3168 */
3169 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3170 struct btrfs_root *root,
3171 struct inode *inode,
3172 u64 new_size, u32 min_type)
3173 {
3174 struct btrfs_path *path;
3175 struct extent_buffer *leaf;
3176 struct btrfs_file_extent_item *fi;
3177 struct btrfs_key key;
3178 struct btrfs_key found_key;
3179 u64 extent_start = 0;
3180 u64 extent_num_bytes = 0;
3181 u64 extent_offset = 0;
3182 u64 item_end = 0;
3183 u64 mask = root->sectorsize - 1;
3184 u32 found_type = (u8)-1;
3185 int found_extent;
3186 int del_item;
3187 int pending_del_nr = 0;
3188 int pending_del_slot = 0;
3189 int extent_type = -1;
3190 int encoding;
3191 int ret;
3192 int err = 0;
3193
3194 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3195
3196 if (root->ref_cows)
3197 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3198
3199 path = btrfs_alloc_path();
3200 BUG_ON(!path);
3201 path->reada = -1;
3202
3203 key.objectid = inode->i_ino;
3204 key.offset = (u64)-1;
3205 key.type = (u8)-1;
3206
3207 search_again:
3208 path->leave_spinning = 1;
3209 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3210 if (ret < 0) {
3211 err = ret;
3212 goto out;
3213 }
3214
3215 if (ret > 0) {
3216 /* there are no items in the tree for us to truncate, we're
3217 * done
3218 */
3219 if (path->slots[0] == 0)
3220 goto out;
3221 path->slots[0]--;
3222 }
3223
3224 while (1) {
3225 fi = NULL;
3226 leaf = path->nodes[0];
3227 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3228 found_type = btrfs_key_type(&found_key);
3229 encoding = 0;
3230
3231 if (found_key.objectid != inode->i_ino)
3232 break;
3233
3234 if (found_type < min_type)
3235 break;
3236
3237 item_end = found_key.offset;
3238 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3239 fi = btrfs_item_ptr(leaf, path->slots[0],
3240 struct btrfs_file_extent_item);
3241 extent_type = btrfs_file_extent_type(leaf, fi);
3242 encoding = btrfs_file_extent_compression(leaf, fi);
3243 encoding |= btrfs_file_extent_encryption(leaf, fi);
3244 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3245
3246 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3247 item_end +=
3248 btrfs_file_extent_num_bytes(leaf, fi);
3249 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3250 item_end += btrfs_file_extent_inline_len(leaf,
3251 fi);
3252 }
3253 item_end--;
3254 }
3255 if (found_type > min_type) {
3256 del_item = 1;
3257 } else {
3258 if (item_end < new_size)
3259 break;
3260 if (found_key.offset >= new_size)
3261 del_item = 1;
3262 else
3263 del_item = 0;
3264 }
3265 found_extent = 0;
3266 /* FIXME, shrink the extent if the ref count is only 1 */
3267 if (found_type != BTRFS_EXTENT_DATA_KEY)
3268 goto delete;
3269
3270 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3271 u64 num_dec;
3272 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3273 if (!del_item && !encoding) {
3274 u64 orig_num_bytes =
3275 btrfs_file_extent_num_bytes(leaf, fi);
3276 extent_num_bytes = new_size -
3277 found_key.offset + root->sectorsize - 1;
3278 extent_num_bytes = extent_num_bytes &
3279 ~((u64)root->sectorsize - 1);
3280 btrfs_set_file_extent_num_bytes(leaf, fi,
3281 extent_num_bytes);
3282 num_dec = (orig_num_bytes -
3283 extent_num_bytes);
3284 if (root->ref_cows && extent_start != 0)
3285 inode_sub_bytes(inode, num_dec);
3286 btrfs_mark_buffer_dirty(leaf);
3287 } else {
3288 extent_num_bytes =
3289 btrfs_file_extent_disk_num_bytes(leaf,
3290 fi);
3291 extent_offset = found_key.offset -
3292 btrfs_file_extent_offset(leaf, fi);
3293
3294 /* FIXME blocksize != 4096 */
3295 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3296 if (extent_start != 0) {
3297 found_extent = 1;
3298 if (root->ref_cows)
3299 inode_sub_bytes(inode, num_dec);
3300 }
3301 }
3302 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3303 /*
3304 * we can't truncate inline items that have had
3305 * special encodings
3306 */
3307 if (!del_item &&
3308 btrfs_file_extent_compression(leaf, fi) == 0 &&
3309 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3310 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3311 u32 size = new_size - found_key.offset;
3312
3313 if (root->ref_cows) {
3314 inode_sub_bytes(inode, item_end + 1 -
3315 new_size);
3316 }
3317 size =
3318 btrfs_file_extent_calc_inline_size(size);
3319 ret = btrfs_truncate_item(trans, root, path,
3320 size, 1);
3321 BUG_ON(ret);
3322 } else if (root->ref_cows) {
3323 inode_sub_bytes(inode, item_end + 1 -
3324 found_key.offset);
3325 }
3326 }
3327 delete:
3328 if (del_item) {
3329 if (!pending_del_nr) {
3330 /* no pending yet, add ourselves */
3331 pending_del_slot = path->slots[0];
3332 pending_del_nr = 1;
3333 } else if (pending_del_nr &&
3334 path->slots[0] + 1 == pending_del_slot) {
3335 /* hop on the pending chunk */
3336 pending_del_nr++;
3337 pending_del_slot = path->slots[0];
3338 } else {
3339 BUG();
3340 }
3341 } else {
3342 break;
3343 }
3344 if (found_extent && root->ref_cows) {
3345 btrfs_set_path_blocking(path);
3346 ret = btrfs_free_extent(trans, root, extent_start,
3347 extent_num_bytes, 0,
3348 btrfs_header_owner(leaf),
3349 inode->i_ino, extent_offset);
3350 BUG_ON(ret);
3351 }
3352
3353 if (found_type == BTRFS_INODE_ITEM_KEY)
3354 break;
3355
3356 if (path->slots[0] == 0 ||
3357 path->slots[0] != pending_del_slot) {
3358 if (root->ref_cows) {
3359 err = -EAGAIN;
3360 goto out;
3361 }
3362 if (pending_del_nr) {
3363 ret = btrfs_del_items(trans, root, path,
3364 pending_del_slot,
3365 pending_del_nr);
3366 BUG_ON(ret);
3367 pending_del_nr = 0;
3368 }
3369 btrfs_release_path(root, path);
3370 goto search_again;
3371 } else {
3372 path->slots[0]--;
3373 }
3374 }
3375 out:
3376 if (pending_del_nr) {
3377 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3378 pending_del_nr);
3379 BUG_ON(ret);
3380 }
3381 btrfs_free_path(path);
3382 return err;
3383 }
3384
3385 /*
3386 * taken from block_truncate_page, but does cow as it zeros out
3387 * any bytes left in the last page in the file.
3388 */
3389 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3390 {
3391 struct inode *inode = mapping->host;
3392 struct btrfs_root *root = BTRFS_I(inode)->root;
3393 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3394 struct btrfs_ordered_extent *ordered;
3395 struct extent_state *cached_state = NULL;
3396 char *kaddr;
3397 u32 blocksize = root->sectorsize;
3398 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3399 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3400 struct page *page;
3401 int ret = 0;
3402 u64 page_start;
3403 u64 page_end;
3404
3405 if ((offset & (blocksize - 1)) == 0)
3406 goto out;
3407 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3408 if (ret)
3409 goto out;
3410
3411 ret = -ENOMEM;
3412 again:
3413 page = grab_cache_page(mapping, index);
3414 if (!page) {
3415 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3416 goto out;
3417 }
3418
3419 page_start = page_offset(page);
3420 page_end = page_start + PAGE_CACHE_SIZE - 1;
3421
3422 if (!PageUptodate(page)) {
3423 ret = btrfs_readpage(NULL, page);
3424 lock_page(page);
3425 if (page->mapping != mapping) {
3426 unlock_page(page);
3427 page_cache_release(page);
3428 goto again;
3429 }
3430 if (!PageUptodate(page)) {
3431 ret = -EIO;
3432 goto out_unlock;
3433 }
3434 }
3435 wait_on_page_writeback(page);
3436
3437 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3438 GFP_NOFS);
3439 set_page_extent_mapped(page);
3440
3441 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3442 if (ordered) {
3443 unlock_extent_cached(io_tree, page_start, page_end,
3444 &cached_state, GFP_NOFS);
3445 unlock_page(page);
3446 page_cache_release(page);
3447 btrfs_start_ordered_extent(inode, ordered, 1);
3448 btrfs_put_ordered_extent(ordered);
3449 goto again;
3450 }
3451
3452 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3453 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3454 0, 0, &cached_state, GFP_NOFS);
3455
3456 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3457 &cached_state);
3458 if (ret) {
3459 unlock_extent_cached(io_tree, page_start, page_end,
3460 &cached_state, GFP_NOFS);
3461 goto out_unlock;
3462 }
3463
3464 ret = 0;
3465 if (offset != PAGE_CACHE_SIZE) {
3466 kaddr = kmap(page);
3467 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3468 flush_dcache_page(page);
3469 kunmap(page);
3470 }
3471 ClearPageChecked(page);
3472 set_page_dirty(page);
3473 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3474 GFP_NOFS);
3475
3476 out_unlock:
3477 if (ret)
3478 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3479 unlock_page(page);
3480 page_cache_release(page);
3481 out:
3482 return ret;
3483 }
3484
3485 int btrfs_cont_expand(struct inode *inode, loff_t size)
3486 {
3487 struct btrfs_trans_handle *trans;
3488 struct btrfs_root *root = BTRFS_I(inode)->root;
3489 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3490 struct extent_map *em = NULL;
3491 struct extent_state *cached_state = NULL;
3492 u64 mask = root->sectorsize - 1;
3493 u64 hole_start = (inode->i_size + mask) & ~mask;
3494 u64 block_end = (size + mask) & ~mask;
3495 u64 last_byte;
3496 u64 cur_offset;
3497 u64 hole_size;
3498 int err = 0;
3499
3500 if (size <= hole_start)
3501 return 0;
3502
3503 while (1) {
3504 struct btrfs_ordered_extent *ordered;
3505 btrfs_wait_ordered_range(inode, hole_start,
3506 block_end - hole_start);
3507 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3508 &cached_state, GFP_NOFS);
3509 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3510 if (!ordered)
3511 break;
3512 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3513 &cached_state, GFP_NOFS);
3514 btrfs_put_ordered_extent(ordered);
3515 }
3516
3517 cur_offset = hole_start;
3518 while (1) {
3519 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3520 block_end - cur_offset, 0);
3521 BUG_ON(IS_ERR(em) || !em);
3522 last_byte = min(extent_map_end(em), block_end);
3523 last_byte = (last_byte + mask) & ~mask;
3524 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3525 u64 hint_byte = 0;
3526 hole_size = last_byte - cur_offset;
3527
3528 trans = btrfs_start_transaction(root, 2);
3529 if (IS_ERR(trans)) {
3530 err = PTR_ERR(trans);
3531 break;
3532 }
3533 btrfs_set_trans_block_group(trans, inode);
3534
3535 err = btrfs_drop_extents(trans, inode, cur_offset,
3536 cur_offset + hole_size,
3537 &hint_byte, 1);
3538 BUG_ON(err);
3539
3540 err = btrfs_insert_file_extent(trans, root,
3541 inode->i_ino, cur_offset, 0,
3542 0, hole_size, 0, hole_size,
3543 0, 0, 0);
3544 BUG_ON(err);
3545
3546 btrfs_drop_extent_cache(inode, hole_start,
3547 last_byte - 1, 0);
3548
3549 btrfs_end_transaction(trans, root);
3550 }
3551 free_extent_map(em);
3552 em = NULL;
3553 cur_offset = last_byte;
3554 if (cur_offset >= block_end)
3555 break;
3556 }
3557
3558 free_extent_map(em);
3559 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3560 GFP_NOFS);
3561 return err;
3562 }
3563
3564 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3565 {
3566 struct btrfs_root *root = BTRFS_I(inode)->root;
3567 struct btrfs_trans_handle *trans;
3568 unsigned long nr;
3569 int ret;
3570
3571 if (attr->ia_size == inode->i_size)
3572 return 0;
3573
3574 if (attr->ia_size > inode->i_size) {
3575 unsigned long limit;
3576 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3577 if (attr->ia_size > inode->i_sb->s_maxbytes)
3578 return -EFBIG;
3579 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3580 send_sig(SIGXFSZ, current, 0);
3581 return -EFBIG;
3582 }
3583 }
3584
3585 trans = btrfs_start_transaction(root, 5);
3586 if (IS_ERR(trans))
3587 return PTR_ERR(trans);
3588
3589 btrfs_set_trans_block_group(trans, inode);
3590
3591 ret = btrfs_orphan_add(trans, inode);
3592 BUG_ON(ret);
3593
3594 nr = trans->blocks_used;
3595 btrfs_end_transaction(trans, root);
3596 btrfs_btree_balance_dirty(root, nr);
3597
3598 if (attr->ia_size > inode->i_size) {
3599 ret = btrfs_cont_expand(inode, attr->ia_size);
3600 if (ret) {
3601 btrfs_truncate(inode);
3602 return ret;
3603 }
3604
3605 i_size_write(inode, attr->ia_size);
3606 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3607
3608 trans = btrfs_start_transaction(root, 0);
3609 BUG_ON(IS_ERR(trans));
3610 btrfs_set_trans_block_group(trans, inode);
3611 trans->block_rsv = root->orphan_block_rsv;
3612 BUG_ON(!trans->block_rsv);
3613
3614 ret = btrfs_update_inode(trans, root, inode);
3615 BUG_ON(ret);
3616 if (inode->i_nlink > 0) {
3617 ret = btrfs_orphan_del(trans, inode);
3618 BUG_ON(ret);
3619 }
3620 nr = trans->blocks_used;
3621 btrfs_end_transaction(trans, root);
3622 btrfs_btree_balance_dirty(root, nr);
3623 return 0;
3624 }
3625
3626 /*
3627 * We're truncating a file that used to have good data down to
3628 * zero. Make sure it gets into the ordered flush list so that
3629 * any new writes get down to disk quickly.
3630 */
3631 if (attr->ia_size == 0)
3632 BTRFS_I(inode)->ordered_data_close = 1;
3633
3634 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3635 ret = vmtruncate(inode, attr->ia_size);
3636 BUG_ON(ret);
3637
3638 return 0;
3639 }
3640
3641 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3642 {
3643 struct inode *inode = dentry->d_inode;
3644 int err;
3645
3646 err = inode_change_ok(inode, attr);
3647 if (err)
3648 return err;
3649
3650 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3651 err = btrfs_setattr_size(inode, attr);
3652 if (err)
3653 return err;
3654 }
3655 attr->ia_valid &= ~ATTR_SIZE;
3656
3657 if (attr->ia_valid)
3658 err = inode_setattr(inode, attr);
3659
3660 if (!err && ((attr->ia_valid & ATTR_MODE)))
3661 err = btrfs_acl_chmod(inode);
3662 return err;
3663 }
3664
3665 void btrfs_delete_inode(struct inode *inode)
3666 {
3667 struct btrfs_trans_handle *trans;
3668 struct btrfs_root *root = BTRFS_I(inode)->root;
3669 unsigned long nr;
3670 int ret;
3671
3672 truncate_inode_pages(&inode->i_data, 0);
3673 if (is_bad_inode(inode)) {
3674 btrfs_orphan_del(NULL, inode);
3675 goto no_delete;
3676 }
3677 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3678
3679 if (root->fs_info->log_root_recovering) {
3680 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3681 goto no_delete;
3682 }
3683
3684 if (inode->i_nlink > 0) {
3685 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3686 goto no_delete;
3687 }
3688
3689 btrfs_i_size_write(inode, 0);
3690
3691 while (1) {
3692 trans = btrfs_start_transaction(root, 0);
3693 BUG_ON(IS_ERR(trans));
3694 btrfs_set_trans_block_group(trans, inode);
3695 trans->block_rsv = root->orphan_block_rsv;
3696
3697 ret = btrfs_block_rsv_check(trans, root,
3698 root->orphan_block_rsv, 0, 5);
3699 if (ret) {
3700 BUG_ON(ret != -EAGAIN);
3701 ret = btrfs_commit_transaction(trans, root);
3702 BUG_ON(ret);
3703 continue;
3704 }
3705
3706 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3707 if (ret != -EAGAIN)
3708 break;
3709
3710 nr = trans->blocks_used;
3711 btrfs_end_transaction(trans, root);
3712 trans = NULL;
3713 btrfs_btree_balance_dirty(root, nr);
3714
3715 }
3716
3717 if (ret == 0) {
3718 ret = btrfs_orphan_del(trans, inode);
3719 BUG_ON(ret);
3720 }
3721
3722 nr = trans->blocks_used;
3723 btrfs_end_transaction(trans, root);
3724 btrfs_btree_balance_dirty(root, nr);
3725 no_delete:
3726 clear_inode(inode);
3727 return;
3728 }
3729
3730 /*
3731 * this returns the key found in the dir entry in the location pointer.
3732 * If no dir entries were found, location->objectid is 0.
3733 */
3734 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3735 struct btrfs_key *location)
3736 {
3737 const char *name = dentry->d_name.name;
3738 int namelen = dentry->d_name.len;
3739 struct btrfs_dir_item *di;
3740 struct btrfs_path *path;
3741 struct btrfs_root *root = BTRFS_I(dir)->root;
3742 int ret = 0;
3743
3744 path = btrfs_alloc_path();
3745 BUG_ON(!path);
3746
3747 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3748 namelen, 0);
3749 if (IS_ERR(di))
3750 ret = PTR_ERR(di);
3751
3752 if (!di || IS_ERR(di))
3753 goto out_err;
3754
3755 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3756 out:
3757 btrfs_free_path(path);
3758 return ret;
3759 out_err:
3760 location->objectid = 0;
3761 goto out;
3762 }
3763
3764 /*
3765 * when we hit a tree root in a directory, the btrfs part of the inode
3766 * needs to be changed to reflect the root directory of the tree root. This
3767 * is kind of like crossing a mount point.
3768 */
3769 static int fixup_tree_root_location(struct btrfs_root *root,
3770 struct inode *dir,
3771 struct dentry *dentry,
3772 struct btrfs_key *location,
3773 struct btrfs_root **sub_root)
3774 {
3775 struct btrfs_path *path;
3776 struct btrfs_root *new_root;
3777 struct btrfs_root_ref *ref;
3778 struct extent_buffer *leaf;
3779 int ret;
3780 int err = 0;
3781
3782 path = btrfs_alloc_path();
3783 if (!path) {
3784 err = -ENOMEM;
3785 goto out;
3786 }
3787
3788 err = -ENOENT;
3789 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3790 BTRFS_I(dir)->root->root_key.objectid,
3791 location->objectid);
3792 if (ret) {
3793 if (ret < 0)
3794 err = ret;
3795 goto out;
3796 }
3797
3798 leaf = path->nodes[0];
3799 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3800 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3801 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3802 goto out;
3803
3804 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3805 (unsigned long)(ref + 1),
3806 dentry->d_name.len);
3807 if (ret)
3808 goto out;
3809
3810 btrfs_release_path(root->fs_info->tree_root, path);
3811
3812 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3813 if (IS_ERR(new_root)) {
3814 err = PTR_ERR(new_root);
3815 goto out;
3816 }
3817
3818 if (btrfs_root_refs(&new_root->root_item) == 0) {
3819 err = -ENOENT;
3820 goto out;
3821 }
3822
3823 *sub_root = new_root;
3824 location->objectid = btrfs_root_dirid(&new_root->root_item);
3825 location->type = BTRFS_INODE_ITEM_KEY;
3826 location->offset = 0;
3827 err = 0;
3828 out:
3829 btrfs_free_path(path);
3830 return err;
3831 }
3832
3833 static void inode_tree_add(struct inode *inode)
3834 {
3835 struct btrfs_root *root = BTRFS_I(inode)->root;
3836 struct btrfs_inode *entry;
3837 struct rb_node **p;
3838 struct rb_node *parent;
3839 again:
3840 p = &root->inode_tree.rb_node;
3841 parent = NULL;
3842
3843 if (hlist_unhashed(&inode->i_hash))
3844 return;
3845
3846 spin_lock(&root->inode_lock);
3847 while (*p) {
3848 parent = *p;
3849 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3850
3851 if (inode->i_ino < entry->vfs_inode.i_ino)
3852 p = &parent->rb_left;
3853 else if (inode->i_ino > entry->vfs_inode.i_ino)
3854 p = &parent->rb_right;
3855 else {
3856 WARN_ON(!(entry->vfs_inode.i_state &
3857 (I_WILL_FREE | I_FREEING | I_CLEAR)));
3858 rb_erase(parent, &root->inode_tree);
3859 RB_CLEAR_NODE(parent);
3860 spin_unlock(&root->inode_lock);
3861 goto again;
3862 }
3863 }
3864 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3865 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3866 spin_unlock(&root->inode_lock);
3867 }
3868
3869 static void inode_tree_del(struct inode *inode)
3870 {
3871 struct btrfs_root *root = BTRFS_I(inode)->root;
3872 int empty = 0;
3873
3874 spin_lock(&root->inode_lock);
3875 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3876 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3877 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3878 empty = RB_EMPTY_ROOT(&root->inode_tree);
3879 }
3880 spin_unlock(&root->inode_lock);
3881
3882 if (empty && btrfs_root_refs(&root->root_item) == 0) {
3883 synchronize_srcu(&root->fs_info->subvol_srcu);
3884 spin_lock(&root->inode_lock);
3885 empty = RB_EMPTY_ROOT(&root->inode_tree);
3886 spin_unlock(&root->inode_lock);
3887 if (empty)
3888 btrfs_add_dead_root(root);
3889 }
3890 }
3891
3892 int btrfs_invalidate_inodes(struct btrfs_root *root)
3893 {
3894 struct rb_node *node;
3895 struct rb_node *prev;
3896 struct btrfs_inode *entry;
3897 struct inode *inode;
3898 u64 objectid = 0;
3899
3900 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3901
3902 spin_lock(&root->inode_lock);
3903 again:
3904 node = root->inode_tree.rb_node;
3905 prev = NULL;
3906 while (node) {
3907 prev = node;
3908 entry = rb_entry(node, struct btrfs_inode, rb_node);
3909
3910 if (objectid < entry->vfs_inode.i_ino)
3911 node = node->rb_left;
3912 else if (objectid > entry->vfs_inode.i_ino)
3913 node = node->rb_right;
3914 else
3915 break;
3916 }
3917 if (!node) {
3918 while (prev) {
3919 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3920 if (objectid <= entry->vfs_inode.i_ino) {
3921 node = prev;
3922 break;
3923 }
3924 prev = rb_next(prev);
3925 }
3926 }
3927 while (node) {
3928 entry = rb_entry(node, struct btrfs_inode, rb_node);
3929 objectid = entry->vfs_inode.i_ino + 1;
3930 inode = igrab(&entry->vfs_inode);
3931 if (inode) {
3932 spin_unlock(&root->inode_lock);
3933 if (atomic_read(&inode->i_count) > 1)
3934 d_prune_aliases(inode);
3935 /*
3936 * btrfs_drop_inode will remove it from
3937 * the inode cache when its usage count
3938 * hits zero.
3939 */
3940 iput(inode);
3941 cond_resched();
3942 spin_lock(&root->inode_lock);
3943 goto again;
3944 }
3945
3946 if (cond_resched_lock(&root->inode_lock))
3947 goto again;
3948
3949 node = rb_next(node);
3950 }
3951 spin_unlock(&root->inode_lock);
3952 return 0;
3953 }
3954
3955 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3956 {
3957 struct btrfs_iget_args *args = p;
3958 inode->i_ino = args->ino;
3959 BTRFS_I(inode)->root = args->root;
3960 btrfs_set_inode_space_info(args->root, inode);
3961 return 0;
3962 }
3963
3964 static int btrfs_find_actor(struct inode *inode, void *opaque)
3965 {
3966 struct btrfs_iget_args *args = opaque;
3967 return args->ino == inode->i_ino &&
3968 args->root == BTRFS_I(inode)->root;
3969 }
3970
3971 static struct inode *btrfs_iget_locked(struct super_block *s,
3972 u64 objectid,
3973 struct btrfs_root *root)
3974 {
3975 struct inode *inode;
3976 struct btrfs_iget_args args;
3977 args.ino = objectid;
3978 args.root = root;
3979
3980 inode = iget5_locked(s, objectid, btrfs_find_actor,
3981 btrfs_init_locked_inode,
3982 (void *)&args);
3983 return inode;
3984 }
3985
3986 /* Get an inode object given its location and corresponding root.
3987 * Returns in *is_new if the inode was read from disk
3988 */
3989 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3990 struct btrfs_root *root, int *new)
3991 {
3992 struct inode *inode;
3993
3994 inode = btrfs_iget_locked(s, location->objectid, root);
3995 if (!inode)
3996 return ERR_PTR(-ENOMEM);
3997
3998 if (inode->i_state & I_NEW) {
3999 BTRFS_I(inode)->root = root;
4000 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4001 btrfs_read_locked_inode(inode);
4002
4003 inode_tree_add(inode);
4004 unlock_new_inode(inode);
4005 if (new)
4006 *new = 1;
4007 }
4008
4009 return inode;
4010 }
4011
4012 static struct inode *new_simple_dir(struct super_block *s,
4013 struct btrfs_key *key,
4014 struct btrfs_root *root)
4015 {
4016 struct inode *inode = new_inode(s);
4017
4018 if (!inode)
4019 return ERR_PTR(-ENOMEM);
4020
4021 BTRFS_I(inode)->root = root;
4022 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4023 BTRFS_I(inode)->dummy_inode = 1;
4024
4025 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4026 inode->i_op = &simple_dir_inode_operations;
4027 inode->i_fop = &simple_dir_operations;
4028 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4029 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4030
4031 return inode;
4032 }
4033
4034 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4035 {
4036 struct inode *inode;
4037 struct btrfs_root *root = BTRFS_I(dir)->root;
4038 struct btrfs_root *sub_root = root;
4039 struct btrfs_key location;
4040 int index;
4041 int ret;
4042
4043 dentry->d_op = &btrfs_dentry_operations;
4044
4045 if (dentry->d_name.len > BTRFS_NAME_LEN)
4046 return ERR_PTR(-ENAMETOOLONG);
4047
4048 ret = btrfs_inode_by_name(dir, dentry, &location);
4049
4050 if (ret < 0)
4051 return ERR_PTR(ret);
4052
4053 if (location.objectid == 0)
4054 return NULL;
4055
4056 if (location.type == BTRFS_INODE_ITEM_KEY) {
4057 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4058 return inode;
4059 }
4060
4061 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4062
4063 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4064 ret = fixup_tree_root_location(root, dir, dentry,
4065 &location, &sub_root);
4066 if (ret < 0) {
4067 if (ret != -ENOENT)
4068 inode = ERR_PTR(ret);
4069 else
4070 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4071 } else {
4072 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4073 }
4074 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4075
4076 if (root != sub_root) {
4077 down_read(&root->fs_info->cleanup_work_sem);
4078 if (!(inode->i_sb->s_flags & MS_RDONLY))
4079 btrfs_orphan_cleanup(sub_root);
4080 up_read(&root->fs_info->cleanup_work_sem);
4081 }
4082
4083 return inode;
4084 }
4085
4086 static int btrfs_dentry_delete(struct dentry *dentry)
4087 {
4088 struct btrfs_root *root;
4089
4090 if (!dentry->d_inode && !IS_ROOT(dentry))
4091 dentry = dentry->d_parent;
4092
4093 if (dentry->d_inode) {
4094 root = BTRFS_I(dentry->d_inode)->root;
4095 if (btrfs_root_refs(&root->root_item) == 0)
4096 return 1;
4097 }
4098 return 0;
4099 }
4100
4101 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4102 struct nameidata *nd)
4103 {
4104 struct inode *inode;
4105
4106 inode = btrfs_lookup_dentry(dir, dentry);
4107 if (IS_ERR(inode))
4108 return ERR_CAST(inode);
4109
4110 return d_splice_alias(inode, dentry);
4111 }
4112
4113 static unsigned char btrfs_filetype_table[] = {
4114 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4115 };
4116
4117 static int btrfs_real_readdir(struct file *filp, void *dirent,
4118 filldir_t filldir)
4119 {
4120 struct inode *inode = filp->f_dentry->d_inode;
4121 struct btrfs_root *root = BTRFS_I(inode)->root;
4122 struct btrfs_item *item;
4123 struct btrfs_dir_item *di;
4124 struct btrfs_key key;
4125 struct btrfs_key found_key;
4126 struct btrfs_path *path;
4127 int ret;
4128 u32 nritems;
4129 struct extent_buffer *leaf;
4130 int slot;
4131 int advance;
4132 unsigned char d_type;
4133 int over = 0;
4134 u32 di_cur;
4135 u32 di_total;
4136 u32 di_len;
4137 int key_type = BTRFS_DIR_INDEX_KEY;
4138 char tmp_name[32];
4139 char *name_ptr;
4140 int name_len;
4141
4142 /* FIXME, use a real flag for deciding about the key type */
4143 if (root->fs_info->tree_root == root)
4144 key_type = BTRFS_DIR_ITEM_KEY;
4145
4146 /* special case for "." */
4147 if (filp->f_pos == 0) {
4148 over = filldir(dirent, ".", 1,
4149 1, inode->i_ino,
4150 DT_DIR);
4151 if (over)
4152 return 0;
4153 filp->f_pos = 1;
4154 }
4155 /* special case for .., just use the back ref */
4156 if (filp->f_pos == 1) {
4157 u64 pino = parent_ino(filp->f_path.dentry);
4158 over = filldir(dirent, "..", 2,
4159 2, pino, DT_DIR);
4160 if (over)
4161 return 0;
4162 filp->f_pos = 2;
4163 }
4164 path = btrfs_alloc_path();
4165 path->reada = 2;
4166
4167 btrfs_set_key_type(&key, key_type);
4168 key.offset = filp->f_pos;
4169 key.objectid = inode->i_ino;
4170
4171 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4172 if (ret < 0)
4173 goto err;
4174 advance = 0;
4175
4176 while (1) {
4177 leaf = path->nodes[0];
4178 nritems = btrfs_header_nritems(leaf);
4179 slot = path->slots[0];
4180 if (advance || slot >= nritems) {
4181 if (slot >= nritems - 1) {
4182 ret = btrfs_next_leaf(root, path);
4183 if (ret)
4184 break;
4185 leaf = path->nodes[0];
4186 nritems = btrfs_header_nritems(leaf);
4187 slot = path->slots[0];
4188 } else {
4189 slot++;
4190 path->slots[0]++;
4191 }
4192 }
4193
4194 advance = 1;
4195 item = btrfs_item_nr(leaf, slot);
4196 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4197
4198 if (found_key.objectid != key.objectid)
4199 break;
4200 if (btrfs_key_type(&found_key) != key_type)
4201 break;
4202 if (found_key.offset < filp->f_pos)
4203 continue;
4204
4205 filp->f_pos = found_key.offset;
4206
4207 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4208 di_cur = 0;
4209 di_total = btrfs_item_size(leaf, item);
4210
4211 while (di_cur < di_total) {
4212 struct btrfs_key location;
4213
4214 name_len = btrfs_dir_name_len(leaf, di);
4215 if (name_len <= sizeof(tmp_name)) {
4216 name_ptr = tmp_name;
4217 } else {
4218 name_ptr = kmalloc(name_len, GFP_NOFS);
4219 if (!name_ptr) {
4220 ret = -ENOMEM;
4221 goto err;
4222 }
4223 }
4224 read_extent_buffer(leaf, name_ptr,
4225 (unsigned long)(di + 1), name_len);
4226
4227 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4228 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4229
4230 /* is this a reference to our own snapshot? If so
4231 * skip it
4232 */
4233 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4234 location.objectid == root->root_key.objectid) {
4235 over = 0;
4236 goto skip;
4237 }
4238 over = filldir(dirent, name_ptr, name_len,
4239 found_key.offset, location.objectid,
4240 d_type);
4241
4242 skip:
4243 if (name_ptr != tmp_name)
4244 kfree(name_ptr);
4245
4246 if (over)
4247 goto nopos;
4248 di_len = btrfs_dir_name_len(leaf, di) +
4249 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4250 di_cur += di_len;
4251 di = (struct btrfs_dir_item *)((char *)di + di_len);
4252 }
4253 }
4254
4255 /* Reached end of directory/root. Bump pos past the last item. */
4256 if (key_type == BTRFS_DIR_INDEX_KEY)
4257 /*
4258 * 32-bit glibc will use getdents64, but then strtol -
4259 * so the last number we can serve is this.
4260 */
4261 filp->f_pos = 0x7fffffff;
4262 else
4263 filp->f_pos++;
4264 nopos:
4265 ret = 0;
4266 err:
4267 btrfs_free_path(path);
4268 return ret;
4269 }
4270
4271 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4272 {
4273 struct btrfs_root *root = BTRFS_I(inode)->root;
4274 struct btrfs_trans_handle *trans;
4275 int ret = 0;
4276
4277 if (BTRFS_I(inode)->dummy_inode)
4278 return 0;
4279
4280 if (wbc->sync_mode == WB_SYNC_ALL) {
4281 trans = btrfs_join_transaction(root, 1);
4282 btrfs_set_trans_block_group(trans, inode);
4283 ret = btrfs_commit_transaction(trans, root);
4284 }
4285 return ret;
4286 }
4287
4288 /*
4289 * This is somewhat expensive, updating the tree every time the
4290 * inode changes. But, it is most likely to find the inode in cache.
4291 * FIXME, needs more benchmarking...there are no reasons other than performance
4292 * to keep or drop this code.
4293 */
4294 void btrfs_dirty_inode(struct inode *inode)
4295 {
4296 struct btrfs_root *root = BTRFS_I(inode)->root;
4297 struct btrfs_trans_handle *trans;
4298 int ret;
4299
4300 if (BTRFS_I(inode)->dummy_inode)
4301 return;
4302
4303 trans = btrfs_join_transaction(root, 1);
4304 btrfs_set_trans_block_group(trans, inode);
4305
4306 ret = btrfs_update_inode(trans, root, inode);
4307 if (ret)
4308 printk(KERN_ERR"btrfs: fail to dirty inode %lu error %d\n",
4309 inode->i_ino, ret);
4310
4311 btrfs_end_transaction(trans, root);
4312 }
4313
4314 /*
4315 * find the highest existing sequence number in a directory
4316 * and then set the in-memory index_cnt variable to reflect
4317 * free sequence numbers
4318 */
4319 static int btrfs_set_inode_index_count(struct inode *inode)
4320 {
4321 struct btrfs_root *root = BTRFS_I(inode)->root;
4322 struct btrfs_key key, found_key;
4323 struct btrfs_path *path;
4324 struct extent_buffer *leaf;
4325 int ret;
4326
4327 key.objectid = inode->i_ino;
4328 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4329 key.offset = (u64)-1;
4330
4331 path = btrfs_alloc_path();
4332 if (!path)
4333 return -ENOMEM;
4334
4335 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4336 if (ret < 0)
4337 goto out;
4338 /* FIXME: we should be able to handle this */
4339 if (ret == 0)
4340 goto out;
4341 ret = 0;
4342
4343 /*
4344 * MAGIC NUMBER EXPLANATION:
4345 * since we search a directory based on f_pos we have to start at 2
4346 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4347 * else has to start at 2
4348 */
4349 if (path->slots[0] == 0) {
4350 BTRFS_I(inode)->index_cnt = 2;
4351 goto out;
4352 }
4353
4354 path->slots[0]--;
4355
4356 leaf = path->nodes[0];
4357 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4358
4359 if (found_key.objectid != inode->i_ino ||
4360 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4361 BTRFS_I(inode)->index_cnt = 2;
4362 goto out;
4363 }
4364
4365 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4366 out:
4367 btrfs_free_path(path);
4368 return ret;
4369 }
4370
4371 /*
4372 * helper to find a free sequence number in a given directory. This current
4373 * code is very simple, later versions will do smarter things in the btree
4374 */
4375 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4376 {
4377 int ret = 0;
4378
4379 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4380 ret = btrfs_set_inode_index_count(dir);
4381 if (ret)
4382 return ret;
4383 }
4384
4385 *index = BTRFS_I(dir)->index_cnt;
4386 BTRFS_I(dir)->index_cnt++;
4387
4388 return ret;
4389 }
4390
4391 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4392 struct btrfs_root *root,
4393 struct inode *dir,
4394 const char *name, int name_len,
4395 u64 ref_objectid, u64 objectid,
4396 u64 alloc_hint, int mode, u64 *index)
4397 {
4398 struct inode *inode;
4399 struct btrfs_inode_item *inode_item;
4400 struct btrfs_key *location;
4401 struct btrfs_path *path;
4402 struct btrfs_inode_ref *ref;
4403 struct btrfs_key key[2];
4404 u32 sizes[2];
4405 unsigned long ptr;
4406 int ret;
4407 int owner;
4408
4409 path = btrfs_alloc_path();
4410 BUG_ON(!path);
4411
4412 inode = new_inode(root->fs_info->sb);
4413 if (!inode)
4414 return ERR_PTR(-ENOMEM);
4415
4416 if (dir) {
4417 ret = btrfs_set_inode_index(dir, index);
4418 if (ret) {
4419 iput(inode);
4420 return ERR_PTR(ret);
4421 }
4422 }
4423 /*
4424 * index_cnt is ignored for everything but a dir,
4425 * btrfs_get_inode_index_count has an explanation for the magic
4426 * number
4427 */
4428 BTRFS_I(inode)->index_cnt = 2;
4429 BTRFS_I(inode)->root = root;
4430 BTRFS_I(inode)->generation = trans->transid;
4431 btrfs_set_inode_space_info(root, inode);
4432
4433 if (mode & S_IFDIR)
4434 owner = 0;
4435 else
4436 owner = 1;
4437 BTRFS_I(inode)->block_group =
4438 btrfs_find_block_group(root, 0, alloc_hint, owner);
4439
4440 key[0].objectid = objectid;
4441 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4442 key[0].offset = 0;
4443
4444 key[1].objectid = objectid;
4445 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4446 key[1].offset = ref_objectid;
4447
4448 sizes[0] = sizeof(struct btrfs_inode_item);
4449 sizes[1] = name_len + sizeof(*ref);
4450
4451 path->leave_spinning = 1;
4452 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4453 if (ret != 0)
4454 goto fail;
4455
4456 inode->i_uid = current_fsuid();
4457
4458 if (dir && (dir->i_mode & S_ISGID)) {
4459 inode->i_gid = dir->i_gid;
4460 if (S_ISDIR(mode))
4461 mode |= S_ISGID;
4462 } else
4463 inode->i_gid = current_fsgid();
4464
4465 inode->i_mode = mode;
4466 inode->i_ino = objectid;
4467 inode_set_bytes(inode, 0);
4468 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4469 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4470 struct btrfs_inode_item);
4471 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4472
4473 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4474 struct btrfs_inode_ref);
4475 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4476 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4477 ptr = (unsigned long)(ref + 1);
4478 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4479
4480 btrfs_mark_buffer_dirty(path->nodes[0]);
4481 btrfs_free_path(path);
4482
4483 location = &BTRFS_I(inode)->location;
4484 location->objectid = objectid;
4485 location->offset = 0;
4486 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4487
4488 btrfs_inherit_iflags(inode, dir);
4489
4490 if ((mode & S_IFREG)) {
4491 if (btrfs_test_opt(root, NODATASUM))
4492 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4493 if (btrfs_test_opt(root, NODATACOW))
4494 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4495 }
4496
4497 insert_inode_hash(inode);
4498 inode_tree_add(inode);
4499 return inode;
4500 fail:
4501 if (dir)
4502 BTRFS_I(dir)->index_cnt--;
4503 btrfs_free_path(path);
4504 iput(inode);
4505 return ERR_PTR(ret);
4506 }
4507
4508 static inline u8 btrfs_inode_type(struct inode *inode)
4509 {
4510 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4511 }
4512
4513 /*
4514 * utility function to add 'inode' into 'parent_inode' with
4515 * a give name and a given sequence number.
4516 * if 'add_backref' is true, also insert a backref from the
4517 * inode to the parent directory.
4518 */
4519 int btrfs_add_link(struct btrfs_trans_handle *trans,
4520 struct inode *parent_inode, struct inode *inode,
4521 const char *name, int name_len, int add_backref, u64 index)
4522 {
4523 int ret = 0;
4524 struct btrfs_key key;
4525 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4526
4527 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4528 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4529 } else {
4530 key.objectid = inode->i_ino;
4531 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4532 key.offset = 0;
4533 }
4534
4535 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4536 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4537 key.objectid, root->root_key.objectid,
4538 parent_inode->i_ino,
4539 index, name, name_len);
4540 } else if (add_backref) {
4541 ret = btrfs_insert_inode_ref(trans, root,
4542 name, name_len, inode->i_ino,
4543 parent_inode->i_ino, index);
4544 }
4545
4546 if (ret == 0) {
4547 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4548 parent_inode->i_ino, &key,
4549 btrfs_inode_type(inode), index);
4550 BUG_ON(ret);
4551
4552 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4553 name_len * 2);
4554 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4555 ret = btrfs_update_inode(trans, root, parent_inode);
4556 }
4557 return ret;
4558 }
4559
4560 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4561 struct dentry *dentry, struct inode *inode,
4562 int backref, u64 index)
4563 {
4564 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4565 inode, dentry->d_name.name,
4566 dentry->d_name.len, backref, index);
4567 if (!err) {
4568 d_instantiate(dentry, inode);
4569 return 0;
4570 }
4571 if (err > 0)
4572 err = -EEXIST;
4573 return err;
4574 }
4575
4576 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4577 int mode, dev_t rdev)
4578 {
4579 struct btrfs_trans_handle *trans;
4580 struct btrfs_root *root = BTRFS_I(dir)->root;
4581 struct inode *inode = NULL;
4582 int err;
4583 int drop_inode = 0;
4584 u64 objectid;
4585 unsigned long nr = 0;
4586 u64 index = 0;
4587
4588 if (!new_valid_dev(rdev))
4589 return -EINVAL;
4590
4591 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4592 if (err)
4593 return err;
4594
4595 /*
4596 * 2 for inode item and ref
4597 * 2 for dir items
4598 * 1 for xattr if selinux is on
4599 */
4600 trans = btrfs_start_transaction(root, 5);
4601 if (IS_ERR(trans))
4602 return PTR_ERR(trans);
4603
4604 btrfs_set_trans_block_group(trans, dir);
4605
4606 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4607 dentry->d_name.len,
4608 dentry->d_parent->d_inode->i_ino, objectid,
4609 BTRFS_I(dir)->block_group, mode, &index);
4610 err = PTR_ERR(inode);
4611 if (IS_ERR(inode))
4612 goto out_unlock;
4613
4614 err = btrfs_init_inode_security(trans, inode, dir);
4615 if (err) {
4616 drop_inode = 1;
4617 goto out_unlock;
4618 }
4619
4620 btrfs_set_trans_block_group(trans, inode);
4621 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4622 if (err)
4623 drop_inode = 1;
4624 else {
4625 inode->i_op = &btrfs_special_inode_operations;
4626 init_special_inode(inode, inode->i_mode, rdev);
4627 btrfs_update_inode(trans, root, inode);
4628 }
4629 btrfs_update_inode_block_group(trans, inode);
4630 btrfs_update_inode_block_group(trans, dir);
4631 out_unlock:
4632 nr = trans->blocks_used;
4633 btrfs_end_transaction_throttle(trans, root);
4634 btrfs_btree_balance_dirty(root, nr);
4635 if (drop_inode) {
4636 inode_dec_link_count(inode);
4637 iput(inode);
4638 }
4639 return err;
4640 }
4641
4642 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4643 int mode, struct nameidata *nd)
4644 {
4645 struct btrfs_trans_handle *trans;
4646 struct btrfs_root *root = BTRFS_I(dir)->root;
4647 struct inode *inode = NULL;
4648 int drop_inode = 0;
4649 int err;
4650 unsigned long nr = 0;
4651 u64 objectid;
4652 u64 index = 0;
4653
4654 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4655 if (err)
4656 return err;
4657 /*
4658 * 2 for inode item and ref
4659 * 2 for dir items
4660 * 1 for xattr if selinux is on
4661 */
4662 trans = btrfs_start_transaction(root, 5);
4663 if (IS_ERR(trans))
4664 return PTR_ERR(trans);
4665
4666 btrfs_set_trans_block_group(trans, dir);
4667
4668 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4669 dentry->d_name.len,
4670 dentry->d_parent->d_inode->i_ino,
4671 objectid, BTRFS_I(dir)->block_group, mode,
4672 &index);
4673 err = PTR_ERR(inode);
4674 if (IS_ERR(inode))
4675 goto out_unlock;
4676
4677 err = btrfs_init_inode_security(trans, inode, dir);
4678 if (err) {
4679 drop_inode = 1;
4680 goto out_unlock;
4681 }
4682
4683 btrfs_set_trans_block_group(trans, inode);
4684 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4685 if (err)
4686 drop_inode = 1;
4687 else {
4688 inode->i_mapping->a_ops = &btrfs_aops;
4689 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4690 inode->i_fop = &btrfs_file_operations;
4691 inode->i_op = &btrfs_file_inode_operations;
4692 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4693 }
4694 btrfs_update_inode_block_group(trans, inode);
4695 btrfs_update_inode_block_group(trans, dir);
4696 out_unlock:
4697 nr = trans->blocks_used;
4698 btrfs_end_transaction_throttle(trans, root);
4699 if (drop_inode) {
4700 inode_dec_link_count(inode);
4701 iput(inode);
4702 }
4703 btrfs_btree_balance_dirty(root, nr);
4704 return err;
4705 }
4706
4707 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4708 struct dentry *dentry)
4709 {
4710 struct btrfs_trans_handle *trans;
4711 struct btrfs_root *root = BTRFS_I(dir)->root;
4712 struct inode *inode = old_dentry->d_inode;
4713 u64 index;
4714 unsigned long nr = 0;
4715 int err;
4716 int drop_inode = 0;
4717
4718 if (inode->i_nlink == 0)
4719 return -ENOENT;
4720
4721 /* do not allow sys_link's with other subvols of the same device */
4722 if (root->objectid != BTRFS_I(inode)->root->objectid)
4723 return -EPERM;
4724
4725 btrfs_inc_nlink(inode);
4726
4727 err = btrfs_set_inode_index(dir, &index);
4728 if (err)
4729 goto fail;
4730
4731 /*
4732 * 1 item for inode ref
4733 * 2 items for dir items
4734 */
4735 trans = btrfs_start_transaction(root, 3);
4736 if (IS_ERR(trans)) {
4737 err = PTR_ERR(trans);
4738 goto fail;
4739 }
4740
4741 btrfs_set_trans_block_group(trans, dir);
4742 atomic_inc(&inode->i_count);
4743
4744 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4745
4746 if (err) {
4747 drop_inode = 1;
4748 } else {
4749 btrfs_update_inode_block_group(trans, dir);
4750 err = btrfs_update_inode(trans, root, inode);
4751 BUG_ON(err);
4752 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4753 }
4754
4755 nr = trans->blocks_used;
4756 btrfs_end_transaction_throttle(trans, root);
4757 fail:
4758 if (drop_inode) {
4759 inode_dec_link_count(inode);
4760 iput(inode);
4761 }
4762 btrfs_btree_balance_dirty(root, nr);
4763 return err;
4764 }
4765
4766 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4767 {
4768 struct inode *inode = NULL;
4769 struct btrfs_trans_handle *trans;
4770 struct btrfs_root *root = BTRFS_I(dir)->root;
4771 int err = 0;
4772 int drop_on_err = 0;
4773 u64 objectid = 0;
4774 u64 index = 0;
4775 unsigned long nr = 1;
4776
4777 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4778 if (err)
4779 return err;
4780
4781 /*
4782 * 2 items for inode and ref
4783 * 2 items for dir items
4784 * 1 for xattr if selinux is on
4785 */
4786 trans = btrfs_start_transaction(root, 5);
4787 if (IS_ERR(trans))
4788 return PTR_ERR(trans);
4789 btrfs_set_trans_block_group(trans, dir);
4790
4791 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4792 dentry->d_name.len,
4793 dentry->d_parent->d_inode->i_ino, objectid,
4794 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4795 &index);
4796 if (IS_ERR(inode)) {
4797 err = PTR_ERR(inode);
4798 goto out_fail;
4799 }
4800
4801 drop_on_err = 1;
4802
4803 err = btrfs_init_inode_security(trans, inode, dir);
4804 if (err)
4805 goto out_fail;
4806
4807 inode->i_op = &btrfs_dir_inode_operations;
4808 inode->i_fop = &btrfs_dir_file_operations;
4809 btrfs_set_trans_block_group(trans, inode);
4810
4811 btrfs_i_size_write(inode, 0);
4812 err = btrfs_update_inode(trans, root, inode);
4813 if (err)
4814 goto out_fail;
4815
4816 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4817 inode, dentry->d_name.name,
4818 dentry->d_name.len, 0, index);
4819 if (err)
4820 goto out_fail;
4821
4822 d_instantiate(dentry, inode);
4823 drop_on_err = 0;
4824 btrfs_update_inode_block_group(trans, inode);
4825 btrfs_update_inode_block_group(trans, dir);
4826
4827 out_fail:
4828 nr = trans->blocks_used;
4829 btrfs_end_transaction_throttle(trans, root);
4830 if (drop_on_err)
4831 iput(inode);
4832 btrfs_btree_balance_dirty(root, nr);
4833 return err;
4834 }
4835
4836 /* helper for btfs_get_extent. Given an existing extent in the tree,
4837 * and an extent that you want to insert, deal with overlap and insert
4838 * the new extent into the tree.
4839 */
4840 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4841 struct extent_map *existing,
4842 struct extent_map *em,
4843 u64 map_start, u64 map_len)
4844 {
4845 u64 start_diff;
4846
4847 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4848 start_diff = map_start - em->start;
4849 em->start = map_start;
4850 em->len = map_len;
4851 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4852 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4853 em->block_start += start_diff;
4854 em->block_len -= start_diff;
4855 }
4856 return add_extent_mapping(em_tree, em);
4857 }
4858
4859 static noinline int uncompress_inline(struct btrfs_path *path,
4860 struct inode *inode, struct page *page,
4861 size_t pg_offset, u64 extent_offset,
4862 struct btrfs_file_extent_item *item)
4863 {
4864 int ret;
4865 struct extent_buffer *leaf = path->nodes[0];
4866 char *tmp;
4867 size_t max_size;
4868 unsigned long inline_size;
4869 unsigned long ptr;
4870
4871 WARN_ON(pg_offset != 0);
4872 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4873 inline_size = btrfs_file_extent_inline_item_len(leaf,
4874 btrfs_item_nr(leaf, path->slots[0]));
4875 tmp = kmalloc(inline_size, GFP_NOFS);
4876 ptr = btrfs_file_extent_inline_start(item);
4877
4878 read_extent_buffer(leaf, tmp, ptr, inline_size);
4879
4880 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4881 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4882 inline_size, max_size);
4883 if (ret) {
4884 char *kaddr = kmap_atomic(page, KM_USER0);
4885 unsigned long copy_size = min_t(u64,
4886 PAGE_CACHE_SIZE - pg_offset,
4887 max_size - extent_offset);
4888 memset(kaddr + pg_offset, 0, copy_size);
4889 kunmap_atomic(kaddr, KM_USER0);
4890 }
4891 kfree(tmp);
4892 return 0;
4893 }
4894
4895 /*
4896 * a bit scary, this does extent mapping from logical file offset to the disk.
4897 * the ugly parts come from merging extents from the disk with the in-ram
4898 * representation. This gets more complex because of the data=ordered code,
4899 * where the in-ram extents might be locked pending data=ordered completion.
4900 *
4901 * This also copies inline extents directly into the page.
4902 */
4903
4904 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4905 size_t pg_offset, u64 start, u64 len,
4906 int create)
4907 {
4908 int ret;
4909 int err = 0;
4910 u64 bytenr;
4911 u64 extent_start = 0;
4912 u64 extent_end = 0;
4913 u64 objectid = inode->i_ino;
4914 u32 found_type;
4915 struct btrfs_path *path = NULL;
4916 struct btrfs_root *root = BTRFS_I(inode)->root;
4917 struct btrfs_file_extent_item *item;
4918 struct extent_buffer *leaf;
4919 struct btrfs_key found_key;
4920 struct extent_map *em = NULL;
4921 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4922 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4923 struct btrfs_trans_handle *trans = NULL;
4924 int compressed;
4925
4926 again:
4927 read_lock(&em_tree->lock);
4928 em = lookup_extent_mapping(em_tree, start, len);
4929 if (em)
4930 em->bdev = root->fs_info->fs_devices->latest_bdev;
4931 read_unlock(&em_tree->lock);
4932
4933 if (em) {
4934 if (em->start > start || em->start + em->len <= start)
4935 free_extent_map(em);
4936 else if (em->block_start == EXTENT_MAP_INLINE && page)
4937 free_extent_map(em);
4938 else
4939 goto out;
4940 }
4941 em = alloc_extent_map(GFP_NOFS);
4942 if (!em) {
4943 err = -ENOMEM;
4944 goto out;
4945 }
4946 em->bdev = root->fs_info->fs_devices->latest_bdev;
4947 em->start = EXTENT_MAP_HOLE;
4948 em->orig_start = EXTENT_MAP_HOLE;
4949 em->len = (u64)-1;
4950 em->block_len = (u64)-1;
4951
4952 if (!path) {
4953 path = btrfs_alloc_path();
4954 BUG_ON(!path);
4955 }
4956
4957 ret = btrfs_lookup_file_extent(trans, root, path,
4958 objectid, start, trans != NULL);
4959 if (ret < 0) {
4960 err = ret;
4961 goto out;
4962 }
4963
4964 if (ret != 0) {
4965 if (path->slots[0] == 0)
4966 goto not_found;
4967 path->slots[0]--;
4968 }
4969
4970 leaf = path->nodes[0];
4971 item = btrfs_item_ptr(leaf, path->slots[0],
4972 struct btrfs_file_extent_item);
4973 /* are we inside the extent that was found? */
4974 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4975 found_type = btrfs_key_type(&found_key);
4976 if (found_key.objectid != objectid ||
4977 found_type != BTRFS_EXTENT_DATA_KEY) {
4978 goto not_found;
4979 }
4980
4981 found_type = btrfs_file_extent_type(leaf, item);
4982 extent_start = found_key.offset;
4983 compressed = btrfs_file_extent_compression(leaf, item);
4984 if (found_type == BTRFS_FILE_EXTENT_REG ||
4985 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4986 extent_end = extent_start +
4987 btrfs_file_extent_num_bytes(leaf, item);
4988 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4989 size_t size;
4990 size = btrfs_file_extent_inline_len(leaf, item);
4991 extent_end = (extent_start + size + root->sectorsize - 1) &
4992 ~((u64)root->sectorsize - 1);
4993 }
4994
4995 if (start >= extent_end) {
4996 path->slots[0]++;
4997 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4998 ret = btrfs_next_leaf(root, path);
4999 if (ret < 0) {
5000 err = ret;
5001 goto out;
5002 }
5003 if (ret > 0)
5004 goto not_found;
5005 leaf = path->nodes[0];
5006 }
5007 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5008 if (found_key.objectid != objectid ||
5009 found_key.type != BTRFS_EXTENT_DATA_KEY)
5010 goto not_found;
5011 if (start + len <= found_key.offset)
5012 goto not_found;
5013 em->start = start;
5014 em->len = found_key.offset - start;
5015 goto not_found_em;
5016 }
5017
5018 if (found_type == BTRFS_FILE_EXTENT_REG ||
5019 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5020 em->start = extent_start;
5021 em->len = extent_end - extent_start;
5022 em->orig_start = extent_start -
5023 btrfs_file_extent_offset(leaf, item);
5024 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5025 if (bytenr == 0) {
5026 em->block_start = EXTENT_MAP_HOLE;
5027 goto insert;
5028 }
5029 if (compressed) {
5030 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5031 em->block_start = bytenr;
5032 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5033 item);
5034 } else {
5035 bytenr += btrfs_file_extent_offset(leaf, item);
5036 em->block_start = bytenr;
5037 em->block_len = em->len;
5038 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5039 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5040 }
5041 goto insert;
5042 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5043 unsigned long ptr;
5044 char *map;
5045 size_t size;
5046 size_t extent_offset;
5047 size_t copy_size;
5048
5049 em->block_start = EXTENT_MAP_INLINE;
5050 if (!page || create) {
5051 em->start = extent_start;
5052 em->len = extent_end - extent_start;
5053 goto out;
5054 }
5055
5056 size = btrfs_file_extent_inline_len(leaf, item);
5057 extent_offset = page_offset(page) + pg_offset - extent_start;
5058 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5059 size - extent_offset);
5060 em->start = extent_start + extent_offset;
5061 em->len = (copy_size + root->sectorsize - 1) &
5062 ~((u64)root->sectorsize - 1);
5063 em->orig_start = EXTENT_MAP_INLINE;
5064 if (compressed)
5065 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5066 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5067 if (create == 0 && !PageUptodate(page)) {
5068 if (btrfs_file_extent_compression(leaf, item) ==
5069 BTRFS_COMPRESS_ZLIB) {
5070 ret = uncompress_inline(path, inode, page,
5071 pg_offset,
5072 extent_offset, item);
5073 BUG_ON(ret);
5074 } else {
5075 map = kmap(page);
5076 read_extent_buffer(leaf, map + pg_offset, ptr,
5077 copy_size);
5078 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5079 memset(map + pg_offset + copy_size, 0,
5080 PAGE_CACHE_SIZE - pg_offset -
5081 copy_size);
5082 }
5083 kunmap(page);
5084 }
5085 flush_dcache_page(page);
5086 } else if (create && PageUptodate(page)) {
5087 WARN_ON(1);
5088 if (!trans) {
5089 kunmap(page);
5090 free_extent_map(em);
5091 em = NULL;
5092 btrfs_release_path(root, path);
5093 trans = btrfs_join_transaction(root, 1);
5094 goto again;
5095 }
5096 map = kmap(page);
5097 write_extent_buffer(leaf, map + pg_offset, ptr,
5098 copy_size);
5099 kunmap(page);
5100 btrfs_mark_buffer_dirty(leaf);
5101 }
5102 set_extent_uptodate(io_tree, em->start,
5103 extent_map_end(em) - 1, GFP_NOFS);
5104 goto insert;
5105 } else {
5106 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5107 WARN_ON(1);
5108 }
5109 not_found:
5110 em->start = start;
5111 em->len = len;
5112 not_found_em:
5113 em->block_start = EXTENT_MAP_HOLE;
5114 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5115 insert:
5116 btrfs_release_path(root, path);
5117 if (em->start > start || extent_map_end(em) <= start) {
5118 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5119 "[%llu %llu]\n", (unsigned long long)em->start,
5120 (unsigned long long)em->len,
5121 (unsigned long long)start,
5122 (unsigned long long)len);
5123 err = -EIO;
5124 goto out;
5125 }
5126
5127 err = 0;
5128 write_lock(&em_tree->lock);
5129 ret = add_extent_mapping(em_tree, em);
5130 /* it is possible that someone inserted the extent into the tree
5131 * while we had the lock dropped. It is also possible that
5132 * an overlapping map exists in the tree
5133 */
5134 if (ret == -EEXIST) {
5135 struct extent_map *existing;
5136
5137 ret = 0;
5138
5139 existing = lookup_extent_mapping(em_tree, start, len);
5140 if (existing && (existing->start > start ||
5141 existing->start + existing->len <= start)) {
5142 free_extent_map(existing);
5143 existing = NULL;
5144 }
5145 if (!existing) {
5146 existing = lookup_extent_mapping(em_tree, em->start,
5147 em->len);
5148 if (existing) {
5149 err = merge_extent_mapping(em_tree, existing,
5150 em, start,
5151 root->sectorsize);
5152 free_extent_map(existing);
5153 if (err) {
5154 free_extent_map(em);
5155 em = NULL;
5156 }
5157 } else {
5158 err = -EIO;
5159 free_extent_map(em);
5160 em = NULL;
5161 }
5162 } else {
5163 free_extent_map(em);
5164 em = existing;
5165 err = 0;
5166 }
5167 }
5168 write_unlock(&em_tree->lock);
5169 out:
5170 if (path)
5171 btrfs_free_path(path);
5172 if (trans) {
5173 ret = btrfs_end_transaction(trans, root);
5174 if (!err)
5175 err = ret;
5176 }
5177 if (err) {
5178 free_extent_map(em);
5179 return ERR_PTR(err);
5180 }
5181 return em;
5182 }
5183
5184 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5185 u64 start, u64 len)
5186 {
5187 struct btrfs_root *root = BTRFS_I(inode)->root;
5188 struct btrfs_trans_handle *trans;
5189 struct extent_map *em;
5190 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5191 struct btrfs_key ins;
5192 u64 alloc_hint;
5193 int ret;
5194
5195 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5196
5197 trans = btrfs_join_transaction(root, 0);
5198 if (!trans)
5199 return ERR_PTR(-ENOMEM);
5200
5201 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5202
5203 alloc_hint = get_extent_allocation_hint(inode, start, len);
5204 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5205 alloc_hint, (u64)-1, &ins, 1);
5206 if (ret) {
5207 em = ERR_PTR(ret);
5208 goto out;
5209 }
5210
5211 em = alloc_extent_map(GFP_NOFS);
5212 if (!em) {
5213 em = ERR_PTR(-ENOMEM);
5214 goto out;
5215 }
5216
5217 em->start = start;
5218 em->orig_start = em->start;
5219 em->len = ins.offset;
5220
5221 em->block_start = ins.objectid;
5222 em->block_len = ins.offset;
5223 em->bdev = root->fs_info->fs_devices->latest_bdev;
5224 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5225
5226 while (1) {
5227 write_lock(&em_tree->lock);
5228 ret = add_extent_mapping(em_tree, em);
5229 write_unlock(&em_tree->lock);
5230 if (ret != -EEXIST)
5231 break;
5232 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5233 }
5234
5235 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5236 ins.offset, ins.offset, 0);
5237 if (ret) {
5238 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5239 em = ERR_PTR(ret);
5240 }
5241 out:
5242 btrfs_end_transaction(trans, root);
5243 return em;
5244 }
5245
5246 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5247 struct buffer_head *bh_result, int create)
5248 {
5249 struct extent_map *em;
5250 struct btrfs_root *root = BTRFS_I(inode)->root;
5251 u64 start = iblock << inode->i_blkbits;
5252 u64 len = bh_result->b_size;
5253
5254 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5255 if (IS_ERR(em))
5256 return PTR_ERR(em);
5257
5258 /*
5259 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5260 * io. INLINE is special, and we could probably kludge it in here, but
5261 * it's still buffered so for safety lets just fall back to the generic
5262 * buffered path.
5263 *
5264 * For COMPRESSED we _have_ to read the entire extent in so we can
5265 * decompress it, so there will be buffering required no matter what we
5266 * do, so go ahead and fallback to buffered.
5267 *
5268 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5269 * to buffered IO. Don't blame me, this is the price we pay for using
5270 * the generic code.
5271 */
5272 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5273 em->block_start == EXTENT_MAP_INLINE) {
5274 free_extent_map(em);
5275 return -ENOTBLK;
5276 }
5277
5278 /* Just a good old fashioned hole, return */
5279 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5280 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5281 free_extent_map(em);
5282 /* DIO will do one hole at a time, so just unlock a sector */
5283 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5284 start + root->sectorsize - 1, GFP_NOFS);
5285 return 0;
5286 }
5287
5288 /*
5289 * We don't allocate a new extent in the following cases
5290 *
5291 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5292 * existing extent.
5293 * 2) The extent is marked as PREALLOC. We're good to go here and can
5294 * just use the extent.
5295 *
5296 */
5297 if (!create)
5298 goto map;
5299
5300 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5301 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5302 em->block_start != EXTENT_MAP_HOLE)) {
5303 u64 block_start;
5304 int type;
5305 int ret;
5306
5307 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5308 type = BTRFS_ORDERED_PREALLOC;
5309 else
5310 type = BTRFS_ORDERED_NOCOW;
5311 len = min(len, em->block_len - (start - em->start));
5312 block_start = em->block_start + (start - em->start);
5313 ret = btrfs_add_ordered_extent_dio(inode, start,
5314 start, len, len, type);
5315 if (ret) {
5316 free_extent_map(em);
5317 return ret;
5318 }
5319 } else {
5320 free_extent_map(em);
5321 em = btrfs_new_extent_direct(inode, start, len);
5322 if (IS_ERR(em))
5323 return PTR_ERR(em);
5324 len = min(len, em->block_len);
5325 }
5326 unlock_extent(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5327 GFP_NOFS);
5328 map:
5329 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5330 inode->i_blkbits;
5331 bh_result->b_size = em->len - (start - em->start);
5332 bh_result->b_bdev = em->bdev;
5333 set_buffer_mapped(bh_result);
5334 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5335 set_buffer_new(bh_result);
5336
5337 free_extent_map(em);
5338
5339 return 0;
5340 }
5341
5342 struct btrfs_dio_private {
5343 struct inode *inode;
5344 u64 logical_offset;
5345 u64 disk_bytenr;
5346 u64 bytes;
5347 u32 *csums;
5348 void *private;
5349 };
5350
5351 static void btrfs_endio_direct_read(struct bio *bio, int err)
5352 {
5353 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5354 struct bio_vec *bvec = bio->bi_io_vec;
5355 struct btrfs_dio_private *dip = bio->bi_private;
5356 struct inode *inode = dip->inode;
5357 struct btrfs_root *root = BTRFS_I(inode)->root;
5358 u64 start;
5359 u32 *private = dip->csums;
5360
5361 start = dip->logical_offset;
5362 do {
5363 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5364 struct page *page = bvec->bv_page;
5365 char *kaddr;
5366 u32 csum = ~(u32)0;
5367 unsigned long flags;
5368
5369 local_irq_save(flags);
5370 kaddr = kmap_atomic(page, KM_IRQ0);
5371 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5372 csum, bvec->bv_len);
5373 btrfs_csum_final(csum, (char *)&csum);
5374 kunmap_atomic(kaddr, KM_IRQ0);
5375 local_irq_restore(flags);
5376
5377 flush_dcache_page(bvec->bv_page);
5378 if (csum != *private) {
5379 printk(KERN_ERR "btrfs csum failed ino %lu off"
5380 " %llu csum %u private %u\n",
5381 inode->i_ino, (unsigned long long)start,
5382 csum, *private);
5383 err = -EIO;
5384 }
5385 }
5386
5387 start += bvec->bv_len;
5388 private++;
5389 bvec++;
5390 } while (bvec <= bvec_end);
5391
5392 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5393 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5394 bio->bi_private = dip->private;
5395
5396 kfree(dip->csums);
5397 kfree(dip);
5398 dio_end_io(bio, err);
5399 }
5400
5401 static void btrfs_endio_direct_write(struct bio *bio, int err)
5402 {
5403 struct btrfs_dio_private *dip = bio->bi_private;
5404 struct inode *inode = dip->inode;
5405 struct btrfs_root *root = BTRFS_I(inode)->root;
5406 struct btrfs_trans_handle *trans;
5407 struct btrfs_ordered_extent *ordered = NULL;
5408 struct extent_state *cached_state = NULL;
5409 int ret;
5410
5411 if (err)
5412 goto out_done;
5413
5414 ret = btrfs_dec_test_ordered_pending(inode, &ordered,
5415 dip->logical_offset, dip->bytes);
5416 if (!ret)
5417 goto out_done;
5418
5419 BUG_ON(!ordered);
5420
5421 trans = btrfs_join_transaction(root, 1);
5422 if (!trans) {
5423 err = -ENOMEM;
5424 goto out;
5425 }
5426 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5427
5428 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5429 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5430 if (!ret)
5431 ret = btrfs_update_inode(trans, root, inode);
5432 err = ret;
5433 goto out;
5434 }
5435
5436 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5437 ordered->file_offset + ordered->len - 1, 0,
5438 &cached_state, GFP_NOFS);
5439
5440 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5441 ret = btrfs_mark_extent_written(trans, inode,
5442 ordered->file_offset,
5443 ordered->file_offset +
5444 ordered->len);
5445 if (ret) {
5446 err = ret;
5447 goto out_unlock;
5448 }
5449 } else {
5450 ret = insert_reserved_file_extent(trans, inode,
5451 ordered->file_offset,
5452 ordered->start,
5453 ordered->disk_len,
5454 ordered->len,
5455 ordered->len,
5456 0, 0, 0,
5457 BTRFS_FILE_EXTENT_REG);
5458 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5459 ordered->file_offset, ordered->len);
5460 if (ret) {
5461 err = ret;
5462 WARN_ON(1);
5463 goto out_unlock;
5464 }
5465 }
5466
5467 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5468 btrfs_ordered_update_i_size(inode, 0, ordered);
5469 btrfs_update_inode(trans, root, inode);
5470 out_unlock:
5471 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5472 ordered->file_offset + ordered->len - 1,
5473 &cached_state, GFP_NOFS);
5474 out:
5475 btrfs_delalloc_release_metadata(inode, ordered->len);
5476 btrfs_end_transaction(trans, root);
5477 btrfs_put_ordered_extent(ordered);
5478 btrfs_put_ordered_extent(ordered);
5479 out_done:
5480 bio->bi_private = dip->private;
5481
5482 kfree(dip->csums);
5483 kfree(dip);
5484 dio_end_io(bio, err);
5485 }
5486
5487 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
5488 loff_t file_offset)
5489 {
5490 struct btrfs_root *root = BTRFS_I(inode)->root;
5491 struct btrfs_dio_private *dip;
5492 struct bio_vec *bvec = bio->bi_io_vec;
5493 u64 start;
5494 int skip_sum;
5495 int write = rw & (1 << BIO_RW);
5496 int ret = 0;
5497
5498 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5499
5500 dip = kmalloc(sizeof(*dip), GFP_NOFS);
5501 if (!dip) {
5502 ret = -ENOMEM;
5503 goto free_ordered;
5504 }
5505 dip->csums = NULL;
5506
5507 if (!skip_sum) {
5508 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
5509 if (!dip->csums) {
5510 ret = -ENOMEM;
5511 goto free_ordered;
5512 }
5513 }
5514
5515 dip->private = bio->bi_private;
5516 dip->inode = inode;
5517 dip->logical_offset = file_offset;
5518
5519 start = dip->logical_offset;
5520 dip->bytes = 0;
5521 do {
5522 dip->bytes += bvec->bv_len;
5523 bvec++;
5524 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
5525
5526 dip->disk_bytenr = bio->bi_sector << 9;
5527 bio->bi_private = dip;
5528
5529 if (write)
5530 bio->bi_end_io = btrfs_endio_direct_write;
5531 else
5532 bio->bi_end_io = btrfs_endio_direct_read;
5533
5534 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5535 if (ret)
5536 goto out_err;
5537
5538 if (write && !skip_sum)
5539 btrfs_csum_one_bio(root, inode, bio, dip->logical_offset, 1);
5540 else if (!skip_sum)
5541 btrfs_lookup_bio_sums_dio(root, inode, bio,
5542 dip->logical_offset, dip->csums);
5543
5544 ret = btrfs_map_bio(root, rw, bio, 0, 0);
5545 if (ret)
5546 goto out_err;
5547 return;
5548 out_err:
5549 kfree(dip->csums);
5550 kfree(dip);
5551 free_ordered:
5552 /*
5553 * If this is a write, we need to clean up the reserved space and kill
5554 * the ordered extent.
5555 */
5556 if (write) {
5557 struct btrfs_ordered_extent *ordered;
5558 ordered = btrfs_lookup_ordered_extent(inode,
5559 dip->logical_offset);
5560 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
5561 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
5562 btrfs_free_reserved_extent(root, ordered->start,
5563 ordered->disk_len);
5564 btrfs_put_ordered_extent(ordered);
5565 btrfs_put_ordered_extent(ordered);
5566 }
5567 bio_endio(bio, ret);
5568 }
5569
5570 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
5571 const struct iovec *iov, loff_t offset,
5572 unsigned long nr_segs)
5573 {
5574 struct file *file = iocb->ki_filp;
5575 struct inode *inode = file->f_mapping->host;
5576 struct btrfs_ordered_extent *ordered;
5577 u64 lockstart, lockend;
5578 ssize_t ret;
5579
5580 lockstart = offset;
5581 lockend = offset + iov_length(iov, nr_segs) - 1;
5582 while (1) {
5583 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5584 GFP_NOFS);
5585 /*
5586 * We're concerned with the entire range that we're going to be
5587 * doing DIO to, so we need to make sure theres no ordered
5588 * extents in this range.
5589 */
5590 ordered = btrfs_lookup_ordered_range(inode, lockstart,
5591 lockend - lockstart + 1);
5592 if (!ordered)
5593 break;
5594 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5595 GFP_NOFS);
5596 btrfs_start_ordered_extent(inode, ordered, 1);
5597 btrfs_put_ordered_extent(ordered);
5598 cond_resched();
5599 }
5600
5601 ret = __blockdev_direct_IO(rw, iocb, inode, NULL, iov, offset, nr_segs,
5602 btrfs_get_blocks_direct, NULL,
5603 btrfs_submit_direct, 0);
5604
5605 if (ret < 0 && ret != -EIOCBQUEUED) {
5606 unlock_extent(&BTRFS_I(inode)->io_tree, offset,
5607 offset + iov_length(iov, nr_segs) - 1, GFP_NOFS);
5608 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
5609 /*
5610 * We're falling back to buffered, unlock the section we didn't
5611 * do IO on.
5612 */
5613 unlock_extent(&BTRFS_I(inode)->io_tree, offset + ret,
5614 offset + iov_length(iov, nr_segs) - 1, GFP_NOFS);
5615 }
5616
5617 return ret;
5618 }
5619
5620 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5621 __u64 start, __u64 len)
5622 {
5623 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
5624 }
5625
5626 int btrfs_readpage(struct file *file, struct page *page)
5627 {
5628 struct extent_io_tree *tree;
5629 tree = &BTRFS_I(page->mapping->host)->io_tree;
5630 return extent_read_full_page(tree, page, btrfs_get_extent);
5631 }
5632
5633 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
5634 {
5635 struct extent_io_tree *tree;
5636
5637
5638 if (current->flags & PF_MEMALLOC) {
5639 redirty_page_for_writepage(wbc, page);
5640 unlock_page(page);
5641 return 0;
5642 }
5643 tree = &BTRFS_I(page->mapping->host)->io_tree;
5644 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
5645 }
5646
5647 int btrfs_writepages(struct address_space *mapping,
5648 struct writeback_control *wbc)
5649 {
5650 struct extent_io_tree *tree;
5651
5652 tree = &BTRFS_I(mapping->host)->io_tree;
5653 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
5654 }
5655
5656 static int
5657 btrfs_readpages(struct file *file, struct address_space *mapping,
5658 struct list_head *pages, unsigned nr_pages)
5659 {
5660 struct extent_io_tree *tree;
5661 tree = &BTRFS_I(mapping->host)->io_tree;
5662 return extent_readpages(tree, mapping, pages, nr_pages,
5663 btrfs_get_extent);
5664 }
5665 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
5666 {
5667 struct extent_io_tree *tree;
5668 struct extent_map_tree *map;
5669 int ret;
5670
5671 tree = &BTRFS_I(page->mapping->host)->io_tree;
5672 map = &BTRFS_I(page->mapping->host)->extent_tree;
5673 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
5674 if (ret == 1) {
5675 ClearPagePrivate(page);
5676 set_page_private(page, 0);
5677 page_cache_release(page);
5678 }
5679 return ret;
5680 }
5681
5682 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
5683 {
5684 if (PageWriteback(page) || PageDirty(page))
5685 return 0;
5686 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
5687 }
5688
5689 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
5690 {
5691 struct extent_io_tree *tree;
5692 struct btrfs_ordered_extent *ordered;
5693 struct extent_state *cached_state = NULL;
5694 u64 page_start = page_offset(page);
5695 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
5696
5697
5698 /*
5699 * we have the page locked, so new writeback can't start,
5700 * and the dirty bit won't be cleared while we are here.
5701 *
5702 * Wait for IO on this page so that we can safely clear
5703 * the PagePrivate2 bit and do ordered accounting
5704 */
5705 wait_on_page_writeback(page);
5706
5707 tree = &BTRFS_I(page->mapping->host)->io_tree;
5708 if (offset) {
5709 btrfs_releasepage(page, GFP_NOFS);
5710 return;
5711 }
5712 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
5713 GFP_NOFS);
5714 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
5715 page_offset(page));
5716 if (ordered) {
5717 /*
5718 * IO on this page will never be started, so we need
5719 * to account for any ordered extents now
5720 */
5721 clear_extent_bit(tree, page_start, page_end,
5722 EXTENT_DIRTY | EXTENT_DELALLOC |
5723 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
5724 &cached_state, GFP_NOFS);
5725 /*
5726 * whoever cleared the private bit is responsible
5727 * for the finish_ordered_io
5728 */
5729 if (TestClearPagePrivate2(page)) {
5730 btrfs_finish_ordered_io(page->mapping->host,
5731 page_start, page_end);
5732 }
5733 btrfs_put_ordered_extent(ordered);
5734 cached_state = NULL;
5735 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
5736 GFP_NOFS);
5737 }
5738 clear_extent_bit(tree, page_start, page_end,
5739 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
5740 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
5741 __btrfs_releasepage(page, GFP_NOFS);
5742
5743 ClearPageChecked(page);
5744 if (PagePrivate(page)) {
5745 ClearPagePrivate(page);
5746 set_page_private(page, 0);
5747 page_cache_release(page);
5748 }
5749 }
5750
5751 /*
5752 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
5753 * called from a page fault handler when a page is first dirtied. Hence we must
5754 * be careful to check for EOF conditions here. We set the page up correctly
5755 * for a written page which means we get ENOSPC checking when writing into
5756 * holes and correct delalloc and unwritten extent mapping on filesystems that
5757 * support these features.
5758 *
5759 * We are not allowed to take the i_mutex here so we have to play games to
5760 * protect against truncate races as the page could now be beyond EOF. Because
5761 * vmtruncate() writes the inode size before removing pages, once we have the
5762 * page lock we can determine safely if the page is beyond EOF. If it is not
5763 * beyond EOF, then the page is guaranteed safe against truncation until we
5764 * unlock the page.
5765 */
5766 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5767 {
5768 struct page *page = vmf->page;
5769 struct inode *inode = fdentry(vma->vm_file)->d_inode;
5770 struct btrfs_root *root = BTRFS_I(inode)->root;
5771 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5772 struct btrfs_ordered_extent *ordered;
5773 struct extent_state *cached_state = NULL;
5774 char *kaddr;
5775 unsigned long zero_start;
5776 loff_t size;
5777 int ret;
5778 u64 page_start;
5779 u64 page_end;
5780
5781 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5782 if (ret) {
5783 if (ret == -ENOMEM)
5784 ret = VM_FAULT_OOM;
5785 else /* -ENOSPC, -EIO, etc */
5786 ret = VM_FAULT_SIGBUS;
5787 goto out;
5788 }
5789
5790 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
5791 again:
5792 lock_page(page);
5793 size = i_size_read(inode);
5794 page_start = page_offset(page);
5795 page_end = page_start + PAGE_CACHE_SIZE - 1;
5796
5797 if ((page->mapping != inode->i_mapping) ||
5798 (page_start >= size)) {
5799 /* page got truncated out from underneath us */
5800 goto out_unlock;
5801 }
5802 wait_on_page_writeback(page);
5803
5804 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
5805 GFP_NOFS);
5806 set_page_extent_mapped(page);
5807
5808 /*
5809 * we can't set the delalloc bits if there are pending ordered
5810 * extents. Drop our locks and wait for them to finish
5811 */
5812 ordered = btrfs_lookup_ordered_extent(inode, page_start);
5813 if (ordered) {
5814 unlock_extent_cached(io_tree, page_start, page_end,
5815 &cached_state, GFP_NOFS);
5816 unlock_page(page);
5817 btrfs_start_ordered_extent(inode, ordered, 1);
5818 btrfs_put_ordered_extent(ordered);
5819 goto again;
5820 }
5821
5822 /*
5823 * XXX - page_mkwrite gets called every time the page is dirtied, even
5824 * if it was already dirty, so for space accounting reasons we need to
5825 * clear any delalloc bits for the range we are fixing to save. There
5826 * is probably a better way to do this, but for now keep consistent with
5827 * prepare_pages in the normal write path.
5828 */
5829 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5830 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
5831 0, 0, &cached_state, GFP_NOFS);
5832
5833 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
5834 &cached_state);
5835 if (ret) {
5836 unlock_extent_cached(io_tree, page_start, page_end,
5837 &cached_state, GFP_NOFS);
5838 ret = VM_FAULT_SIGBUS;
5839 goto out_unlock;
5840 }
5841 ret = 0;
5842
5843 /* page is wholly or partially inside EOF */
5844 if (page_start + PAGE_CACHE_SIZE > size)
5845 zero_start = size & ~PAGE_CACHE_MASK;
5846 else
5847 zero_start = PAGE_CACHE_SIZE;
5848
5849 if (zero_start != PAGE_CACHE_SIZE) {
5850 kaddr = kmap(page);
5851 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
5852 flush_dcache_page(page);
5853 kunmap(page);
5854 }
5855 ClearPageChecked(page);
5856 set_page_dirty(page);
5857 SetPageUptodate(page);
5858
5859 BTRFS_I(inode)->last_trans = root->fs_info->generation;
5860 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5861
5862 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
5863
5864 out_unlock:
5865 if (!ret)
5866 return VM_FAULT_LOCKED;
5867 unlock_page(page);
5868 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
5869 out:
5870 return ret;
5871 }
5872
5873 static void btrfs_truncate(struct inode *inode)
5874 {
5875 struct btrfs_root *root = BTRFS_I(inode)->root;
5876 int ret;
5877 struct btrfs_trans_handle *trans;
5878 unsigned long nr;
5879 u64 mask = root->sectorsize - 1;
5880
5881 if (!S_ISREG(inode->i_mode)) {
5882 WARN_ON(1);
5883 return;
5884 }
5885
5886 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5887 if (ret)
5888 return;
5889
5890 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
5891 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
5892
5893 trans = btrfs_start_transaction(root, 0);
5894 BUG_ON(IS_ERR(trans));
5895 btrfs_set_trans_block_group(trans, inode);
5896 trans->block_rsv = root->orphan_block_rsv;
5897
5898 /*
5899 * setattr is responsible for setting the ordered_data_close flag,
5900 * but that is only tested during the last file release. That
5901 * could happen well after the next commit, leaving a great big
5902 * window where new writes may get lost if someone chooses to write
5903 * to this file after truncating to zero
5904 *
5905 * The inode doesn't have any dirty data here, and so if we commit
5906 * this is a noop. If someone immediately starts writing to the inode
5907 * it is very likely we'll catch some of their writes in this
5908 * transaction, and the commit will find this file on the ordered
5909 * data list with good things to send down.
5910 *
5911 * This is a best effort solution, there is still a window where
5912 * using truncate to replace the contents of the file will
5913 * end up with a zero length file after a crash.
5914 */
5915 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5916 btrfs_add_ordered_operation(trans, root, inode);
5917
5918 while (1) {
5919 if (!trans) {
5920 trans = btrfs_start_transaction(root, 0);
5921 BUG_ON(IS_ERR(trans));
5922 btrfs_set_trans_block_group(trans, inode);
5923 trans->block_rsv = root->orphan_block_rsv;
5924 }
5925
5926 ret = btrfs_block_rsv_check(trans, root,
5927 root->orphan_block_rsv, 0, 5);
5928 if (ret) {
5929 BUG_ON(ret != -EAGAIN);
5930 ret = btrfs_commit_transaction(trans, root);
5931 BUG_ON(ret);
5932 trans = NULL;
5933 continue;
5934 }
5935
5936 ret = btrfs_truncate_inode_items(trans, root, inode,
5937 inode->i_size,
5938 BTRFS_EXTENT_DATA_KEY);
5939 if (ret != -EAGAIN)
5940 break;
5941
5942 ret = btrfs_update_inode(trans, root, inode);
5943 BUG_ON(ret);
5944
5945 nr = trans->blocks_used;
5946 btrfs_end_transaction(trans, root);
5947 trans = NULL;
5948 btrfs_btree_balance_dirty(root, nr);
5949 }
5950
5951 if (ret == 0 && inode->i_nlink > 0) {
5952 ret = btrfs_orphan_del(trans, inode);
5953 BUG_ON(ret);
5954 }
5955
5956 ret = btrfs_update_inode(trans, root, inode);
5957 BUG_ON(ret);
5958
5959 nr = trans->blocks_used;
5960 ret = btrfs_end_transaction_throttle(trans, root);
5961 BUG_ON(ret);
5962 btrfs_btree_balance_dirty(root, nr);
5963 }
5964
5965 /*
5966 * create a new subvolume directory/inode (helper for the ioctl).
5967 */
5968 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
5969 struct btrfs_root *new_root,
5970 u64 new_dirid, u64 alloc_hint)
5971 {
5972 struct inode *inode;
5973 int err;
5974 u64 index = 0;
5975
5976 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
5977 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
5978 if (IS_ERR(inode))
5979 return PTR_ERR(inode);
5980 inode->i_op = &btrfs_dir_inode_operations;
5981 inode->i_fop = &btrfs_dir_file_operations;
5982
5983 inode->i_nlink = 1;
5984 btrfs_i_size_write(inode, 0);
5985
5986 err = btrfs_update_inode(trans, new_root, inode);
5987 BUG_ON(err);
5988
5989 iput(inode);
5990 return 0;
5991 }
5992
5993 /* helper function for file defrag and space balancing. This
5994 * forces readahead on a given range of bytes in an inode
5995 */
5996 unsigned long btrfs_force_ra(struct address_space *mapping,
5997 struct file_ra_state *ra, struct file *file,
5998 pgoff_t offset, pgoff_t last_index)
5999 {
6000 pgoff_t req_size = last_index - offset + 1;
6001
6002 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6003 return offset + req_size;
6004 }
6005
6006 struct inode *btrfs_alloc_inode(struct super_block *sb)
6007 {
6008 struct btrfs_inode *ei;
6009 struct inode *inode;
6010
6011 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6012 if (!ei)
6013 return NULL;
6014
6015 ei->root = NULL;
6016 ei->space_info = NULL;
6017 ei->generation = 0;
6018 ei->sequence = 0;
6019 ei->last_trans = 0;
6020 ei->last_sub_trans = 0;
6021 ei->logged_trans = 0;
6022 ei->delalloc_bytes = 0;
6023 ei->reserved_bytes = 0;
6024 ei->disk_i_size = 0;
6025 ei->flags = 0;
6026 ei->index_cnt = (u64)-1;
6027 ei->last_unlink_trans = 0;
6028
6029 spin_lock_init(&ei->accounting_lock);
6030 atomic_set(&ei->outstanding_extents, 0);
6031 ei->reserved_extents = 0;
6032
6033 ei->ordered_data_close = 0;
6034 ei->orphan_meta_reserved = 0;
6035 ei->dummy_inode = 0;
6036 ei->force_compress = 0;
6037
6038 inode = &ei->vfs_inode;
6039 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6040 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6041 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6042 mutex_init(&ei->log_mutex);
6043 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6044 INIT_LIST_HEAD(&ei->i_orphan);
6045 INIT_LIST_HEAD(&ei->delalloc_inodes);
6046 INIT_LIST_HEAD(&ei->ordered_operations);
6047 RB_CLEAR_NODE(&ei->rb_node);
6048
6049 return inode;
6050 }
6051
6052 void btrfs_destroy_inode(struct inode *inode)
6053 {
6054 struct btrfs_ordered_extent *ordered;
6055 struct btrfs_root *root = BTRFS_I(inode)->root;
6056
6057 WARN_ON(!list_empty(&inode->i_dentry));
6058 WARN_ON(inode->i_data.nrpages);
6059 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6060 WARN_ON(BTRFS_I(inode)->reserved_extents);
6061
6062 /*
6063 * This can happen where we create an inode, but somebody else also
6064 * created the same inode and we need to destroy the one we already
6065 * created.
6066 */
6067 if (!root)
6068 goto free;
6069
6070 /*
6071 * Make sure we're properly removed from the ordered operation
6072 * lists.
6073 */
6074 smp_mb();
6075 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6076 spin_lock(&root->fs_info->ordered_extent_lock);
6077 list_del_init(&BTRFS_I(inode)->ordered_operations);
6078 spin_unlock(&root->fs_info->ordered_extent_lock);
6079 }
6080
6081 spin_lock(&root->orphan_lock);
6082 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6083 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6084 inode->i_ino);
6085 list_del_init(&BTRFS_I(inode)->i_orphan);
6086 }
6087 spin_unlock(&root->orphan_lock);
6088
6089 while (1) {
6090 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6091 if (!ordered)
6092 break;
6093 else {
6094 printk(KERN_ERR "btrfs found ordered "
6095 "extent %llu %llu on inode cleanup\n",
6096 (unsigned long long)ordered->file_offset,
6097 (unsigned long long)ordered->len);
6098 btrfs_remove_ordered_extent(inode, ordered);
6099 btrfs_put_ordered_extent(ordered);
6100 btrfs_put_ordered_extent(ordered);
6101 }
6102 }
6103 inode_tree_del(inode);
6104 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6105 free:
6106 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6107 }
6108
6109 void btrfs_drop_inode(struct inode *inode)
6110 {
6111 struct btrfs_root *root = BTRFS_I(inode)->root;
6112 if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
6113 generic_delete_inode(inode);
6114 else
6115 generic_drop_inode(inode);
6116 }
6117
6118 static void init_once(void *foo)
6119 {
6120 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6121
6122 inode_init_once(&ei->vfs_inode);
6123 }
6124
6125 void btrfs_destroy_cachep(void)
6126 {
6127 if (btrfs_inode_cachep)
6128 kmem_cache_destroy(btrfs_inode_cachep);
6129 if (btrfs_trans_handle_cachep)
6130 kmem_cache_destroy(btrfs_trans_handle_cachep);
6131 if (btrfs_transaction_cachep)
6132 kmem_cache_destroy(btrfs_transaction_cachep);
6133 if (btrfs_path_cachep)
6134 kmem_cache_destroy(btrfs_path_cachep);
6135 }
6136
6137 int btrfs_init_cachep(void)
6138 {
6139 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6140 sizeof(struct btrfs_inode), 0,
6141 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6142 if (!btrfs_inode_cachep)
6143 goto fail;
6144
6145 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6146 sizeof(struct btrfs_trans_handle), 0,
6147 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6148 if (!btrfs_trans_handle_cachep)
6149 goto fail;
6150
6151 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6152 sizeof(struct btrfs_transaction), 0,
6153 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6154 if (!btrfs_transaction_cachep)
6155 goto fail;
6156
6157 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6158 sizeof(struct btrfs_path), 0,
6159 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6160 if (!btrfs_path_cachep)
6161 goto fail;
6162
6163 return 0;
6164 fail:
6165 btrfs_destroy_cachep();
6166 return -ENOMEM;
6167 }
6168
6169 static int btrfs_getattr(struct vfsmount *mnt,
6170 struct dentry *dentry, struct kstat *stat)
6171 {
6172 struct inode *inode = dentry->d_inode;
6173 generic_fillattr(inode, stat);
6174 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6175 stat->blksize = PAGE_CACHE_SIZE;
6176 stat->blocks = (inode_get_bytes(inode) +
6177 BTRFS_I(inode)->delalloc_bytes) >> 9;
6178 return 0;
6179 }
6180
6181 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6182 struct inode *new_dir, struct dentry *new_dentry)
6183 {
6184 struct btrfs_trans_handle *trans;
6185 struct btrfs_root *root = BTRFS_I(old_dir)->root;
6186 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6187 struct inode *new_inode = new_dentry->d_inode;
6188 struct inode *old_inode = old_dentry->d_inode;
6189 struct timespec ctime = CURRENT_TIME;
6190 u64 index = 0;
6191 u64 root_objectid;
6192 int ret;
6193
6194 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6195 return -EPERM;
6196
6197 /* we only allow rename subvolume link between subvolumes */
6198 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6199 return -EXDEV;
6200
6201 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6202 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6203 return -ENOTEMPTY;
6204
6205 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6206 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6207 return -ENOTEMPTY;
6208 /*
6209 * we're using rename to replace one file with another.
6210 * and the replacement file is large. Start IO on it now so
6211 * we don't add too much work to the end of the transaction
6212 */
6213 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6214 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6215 filemap_flush(old_inode->i_mapping);
6216
6217 /* close the racy window with snapshot create/destroy ioctl */
6218 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6219 down_read(&root->fs_info->subvol_sem);
6220 /*
6221 * We want to reserve the absolute worst case amount of items. So if
6222 * both inodes are subvols and we need to unlink them then that would
6223 * require 4 item modifications, but if they are both normal inodes it
6224 * would require 5 item modifications, so we'll assume their normal
6225 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6226 * should cover the worst case number of items we'll modify.
6227 */
6228 trans = btrfs_start_transaction(root, 20);
6229 if (IS_ERR(trans))
6230 return PTR_ERR(trans);
6231
6232 btrfs_set_trans_block_group(trans, new_dir);
6233
6234 if (dest != root)
6235 btrfs_record_root_in_trans(trans, dest);
6236
6237 ret = btrfs_set_inode_index(new_dir, &index);
6238 if (ret)
6239 goto out_fail;
6240
6241 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6242 /* force full log commit if subvolume involved. */
6243 root->fs_info->last_trans_log_full_commit = trans->transid;
6244 } else {
6245 ret = btrfs_insert_inode_ref(trans, dest,
6246 new_dentry->d_name.name,
6247 new_dentry->d_name.len,
6248 old_inode->i_ino,
6249 new_dir->i_ino, index);
6250 if (ret)
6251 goto out_fail;
6252 /*
6253 * this is an ugly little race, but the rename is required
6254 * to make sure that if we crash, the inode is either at the
6255 * old name or the new one. pinning the log transaction lets
6256 * us make sure we don't allow a log commit to come in after
6257 * we unlink the name but before we add the new name back in.
6258 */
6259 btrfs_pin_log_trans(root);
6260 }
6261 /*
6262 * make sure the inode gets flushed if it is replacing
6263 * something.
6264 */
6265 if (new_inode && new_inode->i_size &&
6266 old_inode && S_ISREG(old_inode->i_mode)) {
6267 btrfs_add_ordered_operation(trans, root, old_inode);
6268 }
6269
6270 old_dir->i_ctime = old_dir->i_mtime = ctime;
6271 new_dir->i_ctime = new_dir->i_mtime = ctime;
6272 old_inode->i_ctime = ctime;
6273
6274 if (old_dentry->d_parent != new_dentry->d_parent)
6275 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6276
6277 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6278 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6279 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6280 old_dentry->d_name.name,
6281 old_dentry->d_name.len);
6282 } else {
6283 btrfs_inc_nlink(old_dentry->d_inode);
6284 ret = btrfs_unlink_inode(trans, root, old_dir,
6285 old_dentry->d_inode,
6286 old_dentry->d_name.name,
6287 old_dentry->d_name.len);
6288 }
6289 BUG_ON(ret);
6290
6291 if (new_inode) {
6292 new_inode->i_ctime = CURRENT_TIME;
6293 if (unlikely(new_inode->i_ino ==
6294 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6295 root_objectid = BTRFS_I(new_inode)->location.objectid;
6296 ret = btrfs_unlink_subvol(trans, dest, new_dir,
6297 root_objectid,
6298 new_dentry->d_name.name,
6299 new_dentry->d_name.len);
6300 BUG_ON(new_inode->i_nlink == 0);
6301 } else {
6302 ret = btrfs_unlink_inode(trans, dest, new_dir,
6303 new_dentry->d_inode,
6304 new_dentry->d_name.name,
6305 new_dentry->d_name.len);
6306 }
6307 BUG_ON(ret);
6308 if (new_inode->i_nlink == 0) {
6309 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6310 BUG_ON(ret);
6311 }
6312 }
6313
6314 ret = btrfs_add_link(trans, new_dir, old_inode,
6315 new_dentry->d_name.name,
6316 new_dentry->d_name.len, 0, index);
6317 BUG_ON(ret);
6318
6319 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6320 btrfs_log_new_name(trans, old_inode, old_dir,
6321 new_dentry->d_parent);
6322 btrfs_end_log_trans(root);
6323 }
6324 out_fail:
6325 btrfs_end_transaction_throttle(trans, root);
6326
6327 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6328 up_read(&root->fs_info->subvol_sem);
6329
6330 return ret;
6331 }
6332
6333 /*
6334 * some fairly slow code that needs optimization. This walks the list
6335 * of all the inodes with pending delalloc and forces them to disk.
6336 */
6337 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
6338 {
6339 struct list_head *head = &root->fs_info->delalloc_inodes;
6340 struct btrfs_inode *binode;
6341 struct inode *inode;
6342
6343 if (root->fs_info->sb->s_flags & MS_RDONLY)
6344 return -EROFS;
6345
6346 spin_lock(&root->fs_info->delalloc_lock);
6347 while (!list_empty(head)) {
6348 binode = list_entry(head->next, struct btrfs_inode,
6349 delalloc_inodes);
6350 inode = igrab(&binode->vfs_inode);
6351 if (!inode)
6352 list_del_init(&binode->delalloc_inodes);
6353 spin_unlock(&root->fs_info->delalloc_lock);
6354 if (inode) {
6355 filemap_flush(inode->i_mapping);
6356 if (delay_iput)
6357 btrfs_add_delayed_iput(inode);
6358 else
6359 iput(inode);
6360 }
6361 cond_resched();
6362 spin_lock(&root->fs_info->delalloc_lock);
6363 }
6364 spin_unlock(&root->fs_info->delalloc_lock);
6365
6366 /* the filemap_flush will queue IO into the worker threads, but
6367 * we have to make sure the IO is actually started and that
6368 * ordered extents get created before we return
6369 */
6370 atomic_inc(&root->fs_info->async_submit_draining);
6371 while (atomic_read(&root->fs_info->nr_async_submits) ||
6372 atomic_read(&root->fs_info->async_delalloc_pages)) {
6373 wait_event(root->fs_info->async_submit_wait,
6374 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
6375 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
6376 }
6377 atomic_dec(&root->fs_info->async_submit_draining);
6378 return 0;
6379 }
6380
6381 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput)
6382 {
6383 struct btrfs_inode *binode;
6384 struct inode *inode = NULL;
6385
6386 spin_lock(&root->fs_info->delalloc_lock);
6387 while (!list_empty(&root->fs_info->delalloc_inodes)) {
6388 binode = list_entry(root->fs_info->delalloc_inodes.next,
6389 struct btrfs_inode, delalloc_inodes);
6390 inode = igrab(&binode->vfs_inode);
6391 if (inode) {
6392 list_move_tail(&binode->delalloc_inodes,
6393 &root->fs_info->delalloc_inodes);
6394 break;
6395 }
6396
6397 list_del_init(&binode->delalloc_inodes);
6398 cond_resched_lock(&root->fs_info->delalloc_lock);
6399 }
6400 spin_unlock(&root->fs_info->delalloc_lock);
6401
6402 if (inode) {
6403 write_inode_now(inode, 0);
6404 if (delay_iput)
6405 btrfs_add_delayed_iput(inode);
6406 else
6407 iput(inode);
6408 return 1;
6409 }
6410 return 0;
6411 }
6412
6413 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
6414 const char *symname)
6415 {
6416 struct btrfs_trans_handle *trans;
6417 struct btrfs_root *root = BTRFS_I(dir)->root;
6418 struct btrfs_path *path;
6419 struct btrfs_key key;
6420 struct inode *inode = NULL;
6421 int err;
6422 int drop_inode = 0;
6423 u64 objectid;
6424 u64 index = 0 ;
6425 int name_len;
6426 int datasize;
6427 unsigned long ptr;
6428 struct btrfs_file_extent_item *ei;
6429 struct extent_buffer *leaf;
6430 unsigned long nr = 0;
6431
6432 name_len = strlen(symname) + 1;
6433 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
6434 return -ENAMETOOLONG;
6435
6436 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
6437 if (err)
6438 return err;
6439 /*
6440 * 2 items for inode item and ref
6441 * 2 items for dir items
6442 * 1 item for xattr if selinux is on
6443 */
6444 trans = btrfs_start_transaction(root, 5);
6445 if (IS_ERR(trans))
6446 return PTR_ERR(trans);
6447
6448 btrfs_set_trans_block_group(trans, dir);
6449
6450 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6451 dentry->d_name.len,
6452 dentry->d_parent->d_inode->i_ino, objectid,
6453 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
6454 &index);
6455 err = PTR_ERR(inode);
6456 if (IS_ERR(inode))
6457 goto out_unlock;
6458
6459 err = btrfs_init_inode_security(trans, inode, dir);
6460 if (err) {
6461 drop_inode = 1;
6462 goto out_unlock;
6463 }
6464
6465 btrfs_set_trans_block_group(trans, inode);
6466 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
6467 if (err)
6468 drop_inode = 1;
6469 else {
6470 inode->i_mapping->a_ops = &btrfs_aops;
6471 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6472 inode->i_fop = &btrfs_file_operations;
6473 inode->i_op = &btrfs_file_inode_operations;
6474 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6475 }
6476 btrfs_update_inode_block_group(trans, inode);
6477 btrfs_update_inode_block_group(trans, dir);
6478 if (drop_inode)
6479 goto out_unlock;
6480
6481 path = btrfs_alloc_path();
6482 BUG_ON(!path);
6483 key.objectid = inode->i_ino;
6484 key.offset = 0;
6485 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
6486 datasize = btrfs_file_extent_calc_inline_size(name_len);
6487 err = btrfs_insert_empty_item(trans, root, path, &key,
6488 datasize);
6489 if (err) {
6490 drop_inode = 1;
6491 goto out_unlock;
6492 }
6493 leaf = path->nodes[0];
6494 ei = btrfs_item_ptr(leaf, path->slots[0],
6495 struct btrfs_file_extent_item);
6496 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
6497 btrfs_set_file_extent_type(leaf, ei,
6498 BTRFS_FILE_EXTENT_INLINE);
6499 btrfs_set_file_extent_encryption(leaf, ei, 0);
6500 btrfs_set_file_extent_compression(leaf, ei, 0);
6501 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
6502 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
6503
6504 ptr = btrfs_file_extent_inline_start(ei);
6505 write_extent_buffer(leaf, symname, ptr, name_len);
6506 btrfs_mark_buffer_dirty(leaf);
6507 btrfs_free_path(path);
6508
6509 inode->i_op = &btrfs_symlink_inode_operations;
6510 inode->i_mapping->a_ops = &btrfs_symlink_aops;
6511 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6512 inode_set_bytes(inode, name_len);
6513 btrfs_i_size_write(inode, name_len - 1);
6514 err = btrfs_update_inode(trans, root, inode);
6515 if (err)
6516 drop_inode = 1;
6517
6518 out_unlock:
6519 nr = trans->blocks_used;
6520 btrfs_end_transaction_throttle(trans, root);
6521 if (drop_inode) {
6522 inode_dec_link_count(inode);
6523 iput(inode);
6524 }
6525 btrfs_btree_balance_dirty(root, nr);
6526 return err;
6527 }
6528
6529 int btrfs_prealloc_file_range(struct inode *inode, int mode,
6530 u64 start, u64 num_bytes, u64 min_size,
6531 loff_t actual_len, u64 *alloc_hint)
6532 {
6533 struct btrfs_trans_handle *trans;
6534 struct btrfs_root *root = BTRFS_I(inode)->root;
6535 struct btrfs_key ins;
6536 u64 cur_offset = start;
6537 int ret = 0;
6538
6539 while (num_bytes > 0) {
6540 trans = btrfs_start_transaction(root, 3);
6541 if (IS_ERR(trans)) {
6542 ret = PTR_ERR(trans);
6543 break;
6544 }
6545
6546 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
6547 0, *alloc_hint, (u64)-1, &ins, 1);
6548 if (ret) {
6549 btrfs_end_transaction(trans, root);
6550 break;
6551 }
6552
6553 ret = insert_reserved_file_extent(trans, inode,
6554 cur_offset, ins.objectid,
6555 ins.offset, ins.offset,
6556 ins.offset, 0, 0, 0,
6557 BTRFS_FILE_EXTENT_PREALLOC);
6558 BUG_ON(ret);
6559 btrfs_drop_extent_cache(inode, cur_offset,
6560 cur_offset + ins.offset -1, 0);
6561
6562 num_bytes -= ins.offset;
6563 cur_offset += ins.offset;
6564 *alloc_hint = ins.objectid + ins.offset;
6565
6566 inode->i_ctime = CURRENT_TIME;
6567 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
6568 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
6569 (actual_len > inode->i_size) &&
6570 (cur_offset > inode->i_size)) {
6571 if (cur_offset > actual_len)
6572 i_size_write(inode, actual_len);
6573 else
6574 i_size_write(inode, cur_offset);
6575 i_size_write(inode, cur_offset);
6576 btrfs_ordered_update_i_size(inode, cur_offset, NULL);
6577 }
6578
6579 ret = btrfs_update_inode(trans, root, inode);
6580 BUG_ON(ret);
6581
6582 btrfs_end_transaction(trans, root);
6583 }
6584 return ret;
6585 }
6586
6587 static long btrfs_fallocate(struct inode *inode, int mode,
6588 loff_t offset, loff_t len)
6589 {
6590 struct extent_state *cached_state = NULL;
6591 u64 cur_offset;
6592 u64 last_byte;
6593 u64 alloc_start;
6594 u64 alloc_end;
6595 u64 alloc_hint = 0;
6596 u64 locked_end;
6597 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
6598 struct extent_map *em;
6599 int ret;
6600
6601 alloc_start = offset & ~mask;
6602 alloc_end = (offset + len + mask) & ~mask;
6603
6604 /*
6605 * wait for ordered IO before we have any locks. We'll loop again
6606 * below with the locks held.
6607 */
6608 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
6609
6610 mutex_lock(&inode->i_mutex);
6611 if (alloc_start > inode->i_size) {
6612 ret = btrfs_cont_expand(inode, alloc_start);
6613 if (ret)
6614 goto out;
6615 }
6616
6617 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
6618 if (ret)
6619 goto out;
6620
6621 locked_end = alloc_end - 1;
6622 while (1) {
6623 struct btrfs_ordered_extent *ordered;
6624
6625 /* the extent lock is ordered inside the running
6626 * transaction
6627 */
6628 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
6629 locked_end, 0, &cached_state, GFP_NOFS);
6630 ordered = btrfs_lookup_first_ordered_extent(inode,
6631 alloc_end - 1);
6632 if (ordered &&
6633 ordered->file_offset + ordered->len > alloc_start &&
6634 ordered->file_offset < alloc_end) {
6635 btrfs_put_ordered_extent(ordered);
6636 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
6637 alloc_start, locked_end,
6638 &cached_state, GFP_NOFS);
6639 /*
6640 * we can't wait on the range with the transaction
6641 * running or with the extent lock held
6642 */
6643 btrfs_wait_ordered_range(inode, alloc_start,
6644 alloc_end - alloc_start);
6645 } else {
6646 if (ordered)
6647 btrfs_put_ordered_extent(ordered);
6648 break;
6649 }
6650 }
6651
6652 cur_offset = alloc_start;
6653 while (1) {
6654 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
6655 alloc_end - cur_offset, 0);
6656 BUG_ON(IS_ERR(em) || !em);
6657 last_byte = min(extent_map_end(em), alloc_end);
6658 last_byte = (last_byte + mask) & ~mask;
6659 if (em->block_start == EXTENT_MAP_HOLE ||
6660 (cur_offset >= inode->i_size &&
6661 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6662 ret = btrfs_prealloc_file_range(inode, 0, cur_offset,
6663 last_byte - cur_offset,
6664 1 << inode->i_blkbits,
6665 offset + len,
6666 &alloc_hint);
6667 if (ret < 0) {
6668 free_extent_map(em);
6669 break;
6670 }
6671 }
6672 free_extent_map(em);
6673
6674 cur_offset = last_byte;
6675 if (cur_offset >= alloc_end) {
6676 ret = 0;
6677 break;
6678 }
6679 }
6680 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
6681 &cached_state, GFP_NOFS);
6682
6683 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
6684 out:
6685 mutex_unlock(&inode->i_mutex);
6686 return ret;
6687 }
6688
6689 static int btrfs_set_page_dirty(struct page *page)
6690 {
6691 return __set_page_dirty_nobuffers(page);
6692 }
6693
6694 static int btrfs_permission(struct inode *inode, int mask)
6695 {
6696 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
6697 return -EACCES;
6698 return generic_permission(inode, mask, btrfs_check_acl);
6699 }
6700
6701 static const struct inode_operations btrfs_dir_inode_operations = {
6702 .getattr = btrfs_getattr,
6703 .lookup = btrfs_lookup,
6704 .create = btrfs_create,
6705 .unlink = btrfs_unlink,
6706 .link = btrfs_link,
6707 .mkdir = btrfs_mkdir,
6708 .rmdir = btrfs_rmdir,
6709 .rename = btrfs_rename,
6710 .symlink = btrfs_symlink,
6711 .setattr = btrfs_setattr,
6712 .mknod = btrfs_mknod,
6713 .setxattr = btrfs_setxattr,
6714 .getxattr = btrfs_getxattr,
6715 .listxattr = btrfs_listxattr,
6716 .removexattr = btrfs_removexattr,
6717 .permission = btrfs_permission,
6718 };
6719 static const struct inode_operations btrfs_dir_ro_inode_operations = {
6720 .lookup = btrfs_lookup,
6721 .permission = btrfs_permission,
6722 };
6723
6724 static const struct file_operations btrfs_dir_file_operations = {
6725 .llseek = generic_file_llseek,
6726 .read = generic_read_dir,
6727 .readdir = btrfs_real_readdir,
6728 .unlocked_ioctl = btrfs_ioctl,
6729 #ifdef CONFIG_COMPAT
6730 .compat_ioctl = btrfs_ioctl,
6731 #endif
6732 .release = btrfs_release_file,
6733 .fsync = btrfs_sync_file,
6734 };
6735
6736 static struct extent_io_ops btrfs_extent_io_ops = {
6737 .fill_delalloc = run_delalloc_range,
6738 .submit_bio_hook = btrfs_submit_bio_hook,
6739 .merge_bio_hook = btrfs_merge_bio_hook,
6740 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
6741 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
6742 .writepage_start_hook = btrfs_writepage_start_hook,
6743 .readpage_io_failed_hook = btrfs_io_failed_hook,
6744 .set_bit_hook = btrfs_set_bit_hook,
6745 .clear_bit_hook = btrfs_clear_bit_hook,
6746 .merge_extent_hook = btrfs_merge_extent_hook,
6747 .split_extent_hook = btrfs_split_extent_hook,
6748 };
6749
6750 /*
6751 * btrfs doesn't support the bmap operation because swapfiles
6752 * use bmap to make a mapping of extents in the file. They assume
6753 * these extents won't change over the life of the file and they
6754 * use the bmap result to do IO directly to the drive.
6755 *
6756 * the btrfs bmap call would return logical addresses that aren't
6757 * suitable for IO and they also will change frequently as COW
6758 * operations happen. So, swapfile + btrfs == corruption.
6759 *
6760 * For now we're avoiding this by dropping bmap.
6761 */
6762 static const struct address_space_operations btrfs_aops = {
6763 .readpage = btrfs_readpage,
6764 .writepage = btrfs_writepage,
6765 .writepages = btrfs_writepages,
6766 .readpages = btrfs_readpages,
6767 .sync_page = block_sync_page,
6768 .direct_IO = btrfs_direct_IO,
6769 .invalidatepage = btrfs_invalidatepage,
6770 .releasepage = btrfs_releasepage,
6771 .set_page_dirty = btrfs_set_page_dirty,
6772 .error_remove_page = generic_error_remove_page,
6773 };
6774
6775 static const struct address_space_operations btrfs_symlink_aops = {
6776 .readpage = btrfs_readpage,
6777 .writepage = btrfs_writepage,
6778 .invalidatepage = btrfs_invalidatepage,
6779 .releasepage = btrfs_releasepage,
6780 };
6781
6782 static const struct inode_operations btrfs_file_inode_operations = {
6783 .truncate = btrfs_truncate,
6784 .getattr = btrfs_getattr,
6785 .setattr = btrfs_setattr,
6786 .setxattr = btrfs_setxattr,
6787 .getxattr = btrfs_getxattr,
6788 .listxattr = btrfs_listxattr,
6789 .removexattr = btrfs_removexattr,
6790 .permission = btrfs_permission,
6791 .fallocate = btrfs_fallocate,
6792 .fiemap = btrfs_fiemap,
6793 };
6794 static const struct inode_operations btrfs_special_inode_operations = {
6795 .getattr = btrfs_getattr,
6796 .setattr = btrfs_setattr,
6797 .permission = btrfs_permission,
6798 .setxattr = btrfs_setxattr,
6799 .getxattr = btrfs_getxattr,
6800 .listxattr = btrfs_listxattr,
6801 .removexattr = btrfs_removexattr,
6802 };
6803 static const struct inode_operations btrfs_symlink_inode_operations = {
6804 .readlink = generic_readlink,
6805 .follow_link = page_follow_link_light,
6806 .put_link = page_put_link,
6807 .permission = btrfs_permission,
6808 .setxattr = btrfs_setxattr,
6809 .getxattr = btrfs_getxattr,
6810 .listxattr = btrfs_listxattr,
6811 .removexattr = btrfs_removexattr,
6812 };
6813
6814 const struct dentry_operations btrfs_dentry_operations = {
6815 .d_delete = btrfs_dentry_delete,
6816 };
This page took 0.176614 seconds and 5 git commands to generate.