38cda78de5e43be336b1028a09c636599d174b68
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include "compat.h"
43 #include "ctree.h"
44 #include "disk-io.h"
45 #include "transaction.h"
46 #include "btrfs_inode.h"
47 #include "ioctl.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "volumes.h"
53 #include "compression.h"
54 #include "locking.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
57
58 struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61 };
62
63 static const struct inode_operations btrfs_dir_inode_operations;
64 static const struct inode_operations btrfs_symlink_inode_operations;
65 static const struct inode_operations btrfs_dir_ro_inode_operations;
66 static const struct inode_operations btrfs_special_inode_operations;
67 static const struct inode_operations btrfs_file_inode_operations;
68 static const struct address_space_operations btrfs_aops;
69 static const struct address_space_operations btrfs_symlink_aops;
70 static const struct file_operations btrfs_dir_file_operations;
71 static struct extent_io_ops btrfs_extent_io_ops;
72
73 static struct kmem_cache *btrfs_inode_cachep;
74 struct kmem_cache *btrfs_trans_handle_cachep;
75 struct kmem_cache *btrfs_transaction_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
78
79 #define S_SHIFT 12
80 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
81 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
82 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
83 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
84 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
85 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
86 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
87 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
88 };
89
90 static int btrfs_setsize(struct inode *inode, loff_t newsize);
91 static int btrfs_truncate(struct inode *inode);
92 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
93 static noinline int cow_file_range(struct inode *inode,
94 struct page *locked_page,
95 u64 start, u64 end, int *page_started,
96 unsigned long *nr_written, int unlock);
97 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode);
99
100 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
101 struct inode *inode, struct inode *dir,
102 const struct qstr *qstr)
103 {
104 int err;
105
106 err = btrfs_init_acl(trans, inode, dir);
107 if (!err)
108 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
109 return err;
110 }
111
112 /*
113 * this does all the hard work for inserting an inline extent into
114 * the btree. The caller should have done a btrfs_drop_extents so that
115 * no overlapping inline items exist in the btree
116 */
117 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
118 struct btrfs_root *root, struct inode *inode,
119 u64 start, size_t size, size_t compressed_size,
120 int compress_type,
121 struct page **compressed_pages)
122 {
123 struct btrfs_key key;
124 struct btrfs_path *path;
125 struct extent_buffer *leaf;
126 struct page *page = NULL;
127 char *kaddr;
128 unsigned long ptr;
129 struct btrfs_file_extent_item *ei;
130 int err = 0;
131 int ret;
132 size_t cur_size = size;
133 size_t datasize;
134 unsigned long offset;
135
136 if (compressed_size && compressed_pages)
137 cur_size = compressed_size;
138
139 path = btrfs_alloc_path();
140 if (!path)
141 return -ENOMEM;
142
143 path->leave_spinning = 1;
144
145 key.objectid = btrfs_ino(inode);
146 key.offset = start;
147 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
148 datasize = btrfs_file_extent_calc_inline_size(cur_size);
149
150 inode_add_bytes(inode, size);
151 ret = btrfs_insert_empty_item(trans, root, path, &key,
152 datasize);
153 if (ret) {
154 err = ret;
155 goto fail;
156 }
157 leaf = path->nodes[0];
158 ei = btrfs_item_ptr(leaf, path->slots[0],
159 struct btrfs_file_extent_item);
160 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
161 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
162 btrfs_set_file_extent_encryption(leaf, ei, 0);
163 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
164 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
165 ptr = btrfs_file_extent_inline_start(ei);
166
167 if (compress_type != BTRFS_COMPRESS_NONE) {
168 struct page *cpage;
169 int i = 0;
170 while (compressed_size > 0) {
171 cpage = compressed_pages[i];
172 cur_size = min_t(unsigned long, compressed_size,
173 PAGE_CACHE_SIZE);
174
175 kaddr = kmap_atomic(cpage);
176 write_extent_buffer(leaf, kaddr, ptr, cur_size);
177 kunmap_atomic(kaddr);
178
179 i++;
180 ptr += cur_size;
181 compressed_size -= cur_size;
182 }
183 btrfs_set_file_extent_compression(leaf, ei,
184 compress_type);
185 } else {
186 page = find_get_page(inode->i_mapping,
187 start >> PAGE_CACHE_SHIFT);
188 btrfs_set_file_extent_compression(leaf, ei, 0);
189 kaddr = kmap_atomic(page);
190 offset = start & (PAGE_CACHE_SIZE - 1);
191 write_extent_buffer(leaf, kaddr + offset, ptr, size);
192 kunmap_atomic(kaddr);
193 page_cache_release(page);
194 }
195 btrfs_mark_buffer_dirty(leaf);
196 btrfs_free_path(path);
197
198 /*
199 * we're an inline extent, so nobody can
200 * extend the file past i_size without locking
201 * a page we already have locked.
202 *
203 * We must do any isize and inode updates
204 * before we unlock the pages. Otherwise we
205 * could end up racing with unlink.
206 */
207 BTRFS_I(inode)->disk_i_size = inode->i_size;
208 ret = btrfs_update_inode(trans, root, inode);
209
210 return ret;
211 fail:
212 btrfs_free_path(path);
213 return err;
214 }
215
216
217 /*
218 * conditionally insert an inline extent into the file. This
219 * does the checks required to make sure the data is small enough
220 * to fit as an inline extent.
221 */
222 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
223 struct btrfs_root *root,
224 struct inode *inode, u64 start, u64 end,
225 size_t compressed_size, int compress_type,
226 struct page **compressed_pages)
227 {
228 u64 isize = i_size_read(inode);
229 u64 actual_end = min(end + 1, isize);
230 u64 inline_len = actual_end - start;
231 u64 aligned_end = (end + root->sectorsize - 1) &
232 ~((u64)root->sectorsize - 1);
233 u64 hint_byte;
234 u64 data_len = inline_len;
235 int ret;
236
237 if (compressed_size)
238 data_len = compressed_size;
239
240 if (start > 0 ||
241 actual_end >= PAGE_CACHE_SIZE ||
242 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
243 (!compressed_size &&
244 (actual_end & (root->sectorsize - 1)) == 0) ||
245 end + 1 < isize ||
246 data_len > root->fs_info->max_inline) {
247 return 1;
248 }
249
250 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
251 &hint_byte, 1);
252 if (ret)
253 return ret;
254
255 if (isize > actual_end)
256 inline_len = min_t(u64, isize, actual_end);
257 ret = insert_inline_extent(trans, root, inode, start,
258 inline_len, compressed_size,
259 compress_type, compressed_pages);
260 if (ret && ret != -ENOSPC) {
261 btrfs_abort_transaction(trans, root, ret);
262 return ret;
263 } else if (ret == -ENOSPC) {
264 return 1;
265 }
266
267 btrfs_delalloc_release_metadata(inode, end + 1 - start);
268 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
269 return 0;
270 }
271
272 struct async_extent {
273 u64 start;
274 u64 ram_size;
275 u64 compressed_size;
276 struct page **pages;
277 unsigned long nr_pages;
278 int compress_type;
279 struct list_head list;
280 };
281
282 struct async_cow {
283 struct inode *inode;
284 struct btrfs_root *root;
285 struct page *locked_page;
286 u64 start;
287 u64 end;
288 struct list_head extents;
289 struct btrfs_work work;
290 };
291
292 static noinline int add_async_extent(struct async_cow *cow,
293 u64 start, u64 ram_size,
294 u64 compressed_size,
295 struct page **pages,
296 unsigned long nr_pages,
297 int compress_type)
298 {
299 struct async_extent *async_extent;
300
301 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
302 BUG_ON(!async_extent); /* -ENOMEM */
303 async_extent->start = start;
304 async_extent->ram_size = ram_size;
305 async_extent->compressed_size = compressed_size;
306 async_extent->pages = pages;
307 async_extent->nr_pages = nr_pages;
308 async_extent->compress_type = compress_type;
309 list_add_tail(&async_extent->list, &cow->extents);
310 return 0;
311 }
312
313 /*
314 * we create compressed extents in two phases. The first
315 * phase compresses a range of pages that have already been
316 * locked (both pages and state bits are locked).
317 *
318 * This is done inside an ordered work queue, and the compression
319 * is spread across many cpus. The actual IO submission is step
320 * two, and the ordered work queue takes care of making sure that
321 * happens in the same order things were put onto the queue by
322 * writepages and friends.
323 *
324 * If this code finds it can't get good compression, it puts an
325 * entry onto the work queue to write the uncompressed bytes. This
326 * makes sure that both compressed inodes and uncompressed inodes
327 * are written in the same order that pdflush sent them down.
328 */
329 static noinline int compress_file_range(struct inode *inode,
330 struct page *locked_page,
331 u64 start, u64 end,
332 struct async_cow *async_cow,
333 int *num_added)
334 {
335 struct btrfs_root *root = BTRFS_I(inode)->root;
336 struct btrfs_trans_handle *trans;
337 u64 num_bytes;
338 u64 blocksize = root->sectorsize;
339 u64 actual_end;
340 u64 isize = i_size_read(inode);
341 int ret = 0;
342 struct page **pages = NULL;
343 unsigned long nr_pages;
344 unsigned long nr_pages_ret = 0;
345 unsigned long total_compressed = 0;
346 unsigned long total_in = 0;
347 unsigned long max_compressed = 128 * 1024;
348 unsigned long max_uncompressed = 128 * 1024;
349 int i;
350 int will_compress;
351 int compress_type = root->fs_info->compress_type;
352
353 /* if this is a small write inside eof, kick off a defrag */
354 if ((end - start + 1) < 16 * 1024 &&
355 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
356 btrfs_add_inode_defrag(NULL, inode);
357
358 actual_end = min_t(u64, isize, end + 1);
359 again:
360 will_compress = 0;
361 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
362 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
363
364 /*
365 * we don't want to send crud past the end of i_size through
366 * compression, that's just a waste of CPU time. So, if the
367 * end of the file is before the start of our current
368 * requested range of bytes, we bail out to the uncompressed
369 * cleanup code that can deal with all of this.
370 *
371 * It isn't really the fastest way to fix things, but this is a
372 * very uncommon corner.
373 */
374 if (actual_end <= start)
375 goto cleanup_and_bail_uncompressed;
376
377 total_compressed = actual_end - start;
378
379 /* we want to make sure that amount of ram required to uncompress
380 * an extent is reasonable, so we limit the total size in ram
381 * of a compressed extent to 128k. This is a crucial number
382 * because it also controls how easily we can spread reads across
383 * cpus for decompression.
384 *
385 * We also want to make sure the amount of IO required to do
386 * a random read is reasonably small, so we limit the size of
387 * a compressed extent to 128k.
388 */
389 total_compressed = min(total_compressed, max_uncompressed);
390 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
391 num_bytes = max(blocksize, num_bytes);
392 total_in = 0;
393 ret = 0;
394
395 /*
396 * we do compression for mount -o compress and when the
397 * inode has not been flagged as nocompress. This flag can
398 * change at any time if we discover bad compression ratios.
399 */
400 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
401 (btrfs_test_opt(root, COMPRESS) ||
402 (BTRFS_I(inode)->force_compress) ||
403 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
404 WARN_ON(pages);
405 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
406 if (!pages) {
407 /* just bail out to the uncompressed code */
408 goto cont;
409 }
410
411 if (BTRFS_I(inode)->force_compress)
412 compress_type = BTRFS_I(inode)->force_compress;
413
414 ret = btrfs_compress_pages(compress_type,
415 inode->i_mapping, start,
416 total_compressed, pages,
417 nr_pages, &nr_pages_ret,
418 &total_in,
419 &total_compressed,
420 max_compressed);
421
422 if (!ret) {
423 unsigned long offset = total_compressed &
424 (PAGE_CACHE_SIZE - 1);
425 struct page *page = pages[nr_pages_ret - 1];
426 char *kaddr;
427
428 /* zero the tail end of the last page, we might be
429 * sending it down to disk
430 */
431 if (offset) {
432 kaddr = kmap_atomic(page);
433 memset(kaddr + offset, 0,
434 PAGE_CACHE_SIZE - offset);
435 kunmap_atomic(kaddr);
436 }
437 will_compress = 1;
438 }
439 }
440 cont:
441 if (start == 0) {
442 trans = btrfs_join_transaction(root);
443 if (IS_ERR(trans)) {
444 ret = PTR_ERR(trans);
445 trans = NULL;
446 goto cleanup_and_out;
447 }
448 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
449
450 /* lets try to make an inline extent */
451 if (ret || total_in < (actual_end - start)) {
452 /* we didn't compress the entire range, try
453 * to make an uncompressed inline extent.
454 */
455 ret = cow_file_range_inline(trans, root, inode,
456 start, end, 0, 0, NULL);
457 } else {
458 /* try making a compressed inline extent */
459 ret = cow_file_range_inline(trans, root, inode,
460 start, end,
461 total_compressed,
462 compress_type, pages);
463 }
464 if (ret <= 0) {
465 /*
466 * inline extent creation worked or returned error,
467 * we don't need to create any more async work items.
468 * Unlock and free up our temp pages.
469 */
470 extent_clear_unlock_delalloc(inode,
471 &BTRFS_I(inode)->io_tree,
472 start, end, NULL,
473 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
474 EXTENT_CLEAR_DELALLOC |
475 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
476
477 btrfs_end_transaction(trans, root);
478 goto free_pages_out;
479 }
480 btrfs_end_transaction(trans, root);
481 }
482
483 if (will_compress) {
484 /*
485 * we aren't doing an inline extent round the compressed size
486 * up to a block size boundary so the allocator does sane
487 * things
488 */
489 total_compressed = (total_compressed + blocksize - 1) &
490 ~(blocksize - 1);
491
492 /*
493 * one last check to make sure the compression is really a
494 * win, compare the page count read with the blocks on disk
495 */
496 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
497 ~(PAGE_CACHE_SIZE - 1);
498 if (total_compressed >= total_in) {
499 will_compress = 0;
500 } else {
501 num_bytes = total_in;
502 }
503 }
504 if (!will_compress && pages) {
505 /*
506 * the compression code ran but failed to make things smaller,
507 * free any pages it allocated and our page pointer array
508 */
509 for (i = 0; i < nr_pages_ret; i++) {
510 WARN_ON(pages[i]->mapping);
511 page_cache_release(pages[i]);
512 }
513 kfree(pages);
514 pages = NULL;
515 total_compressed = 0;
516 nr_pages_ret = 0;
517
518 /* flag the file so we don't compress in the future */
519 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
520 !(BTRFS_I(inode)->force_compress)) {
521 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
522 }
523 }
524 if (will_compress) {
525 *num_added += 1;
526
527 /* the async work queues will take care of doing actual
528 * allocation on disk for these compressed pages,
529 * and will submit them to the elevator.
530 */
531 add_async_extent(async_cow, start, num_bytes,
532 total_compressed, pages, nr_pages_ret,
533 compress_type);
534
535 if (start + num_bytes < end) {
536 start += num_bytes;
537 pages = NULL;
538 cond_resched();
539 goto again;
540 }
541 } else {
542 cleanup_and_bail_uncompressed:
543 /*
544 * No compression, but we still need to write the pages in
545 * the file we've been given so far. redirty the locked
546 * page if it corresponds to our extent and set things up
547 * for the async work queue to run cow_file_range to do
548 * the normal delalloc dance
549 */
550 if (page_offset(locked_page) >= start &&
551 page_offset(locked_page) <= end) {
552 __set_page_dirty_nobuffers(locked_page);
553 /* unlocked later on in the async handlers */
554 }
555 add_async_extent(async_cow, start, end - start + 1,
556 0, NULL, 0, BTRFS_COMPRESS_NONE);
557 *num_added += 1;
558 }
559
560 out:
561 return ret;
562
563 free_pages_out:
564 for (i = 0; i < nr_pages_ret; i++) {
565 WARN_ON(pages[i]->mapping);
566 page_cache_release(pages[i]);
567 }
568 kfree(pages);
569
570 goto out;
571
572 cleanup_and_out:
573 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
574 start, end, NULL,
575 EXTENT_CLEAR_UNLOCK_PAGE |
576 EXTENT_CLEAR_DIRTY |
577 EXTENT_CLEAR_DELALLOC |
578 EXTENT_SET_WRITEBACK |
579 EXTENT_END_WRITEBACK);
580 if (!trans || IS_ERR(trans))
581 btrfs_error(root->fs_info, ret, "Failed to join transaction");
582 else
583 btrfs_abort_transaction(trans, root, ret);
584 goto free_pages_out;
585 }
586
587 /*
588 * phase two of compressed writeback. This is the ordered portion
589 * of the code, which only gets called in the order the work was
590 * queued. We walk all the async extents created by compress_file_range
591 * and send them down to the disk.
592 */
593 static noinline int submit_compressed_extents(struct inode *inode,
594 struct async_cow *async_cow)
595 {
596 struct async_extent *async_extent;
597 u64 alloc_hint = 0;
598 struct btrfs_trans_handle *trans;
599 struct btrfs_key ins;
600 struct extent_map *em;
601 struct btrfs_root *root = BTRFS_I(inode)->root;
602 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
603 struct extent_io_tree *io_tree;
604 int ret = 0;
605
606 if (list_empty(&async_cow->extents))
607 return 0;
608
609
610 while (!list_empty(&async_cow->extents)) {
611 async_extent = list_entry(async_cow->extents.next,
612 struct async_extent, list);
613 list_del(&async_extent->list);
614
615 io_tree = &BTRFS_I(inode)->io_tree;
616
617 retry:
618 /* did the compression code fall back to uncompressed IO? */
619 if (!async_extent->pages) {
620 int page_started = 0;
621 unsigned long nr_written = 0;
622
623 lock_extent(io_tree, async_extent->start,
624 async_extent->start +
625 async_extent->ram_size - 1);
626
627 /* allocate blocks */
628 ret = cow_file_range(inode, async_cow->locked_page,
629 async_extent->start,
630 async_extent->start +
631 async_extent->ram_size - 1,
632 &page_started, &nr_written, 0);
633
634 /* JDM XXX */
635
636 /*
637 * if page_started, cow_file_range inserted an
638 * inline extent and took care of all the unlocking
639 * and IO for us. Otherwise, we need to submit
640 * all those pages down to the drive.
641 */
642 if (!page_started && !ret)
643 extent_write_locked_range(io_tree,
644 inode, async_extent->start,
645 async_extent->start +
646 async_extent->ram_size - 1,
647 btrfs_get_extent,
648 WB_SYNC_ALL);
649 kfree(async_extent);
650 cond_resched();
651 continue;
652 }
653
654 lock_extent(io_tree, async_extent->start,
655 async_extent->start + async_extent->ram_size - 1);
656
657 trans = btrfs_join_transaction(root);
658 if (IS_ERR(trans)) {
659 ret = PTR_ERR(trans);
660 } else {
661 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
662 ret = btrfs_reserve_extent(trans, root,
663 async_extent->compressed_size,
664 async_extent->compressed_size,
665 0, alloc_hint, &ins, 1);
666 if (ret)
667 btrfs_abort_transaction(trans, root, ret);
668 btrfs_end_transaction(trans, root);
669 }
670
671 if (ret) {
672 int i;
673 for (i = 0; i < async_extent->nr_pages; i++) {
674 WARN_ON(async_extent->pages[i]->mapping);
675 page_cache_release(async_extent->pages[i]);
676 }
677 kfree(async_extent->pages);
678 async_extent->nr_pages = 0;
679 async_extent->pages = NULL;
680 unlock_extent(io_tree, async_extent->start,
681 async_extent->start +
682 async_extent->ram_size - 1);
683 if (ret == -ENOSPC)
684 goto retry;
685 goto out_free; /* JDM: Requeue? */
686 }
687
688 /*
689 * here we're doing allocation and writeback of the
690 * compressed pages
691 */
692 btrfs_drop_extent_cache(inode, async_extent->start,
693 async_extent->start +
694 async_extent->ram_size - 1, 0);
695
696 em = alloc_extent_map();
697 BUG_ON(!em); /* -ENOMEM */
698 em->start = async_extent->start;
699 em->len = async_extent->ram_size;
700 em->orig_start = em->start;
701
702 em->block_start = ins.objectid;
703 em->block_len = ins.offset;
704 em->bdev = root->fs_info->fs_devices->latest_bdev;
705 em->compress_type = async_extent->compress_type;
706 set_bit(EXTENT_FLAG_PINNED, &em->flags);
707 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
708
709 while (1) {
710 write_lock(&em_tree->lock);
711 ret = add_extent_mapping(em_tree, em);
712 write_unlock(&em_tree->lock);
713 if (ret != -EEXIST) {
714 free_extent_map(em);
715 break;
716 }
717 btrfs_drop_extent_cache(inode, async_extent->start,
718 async_extent->start +
719 async_extent->ram_size - 1, 0);
720 }
721
722 ret = btrfs_add_ordered_extent_compress(inode,
723 async_extent->start,
724 ins.objectid,
725 async_extent->ram_size,
726 ins.offset,
727 BTRFS_ORDERED_COMPRESSED,
728 async_extent->compress_type);
729 BUG_ON(ret); /* -ENOMEM */
730
731 /*
732 * clear dirty, set writeback and unlock the pages.
733 */
734 extent_clear_unlock_delalloc(inode,
735 &BTRFS_I(inode)->io_tree,
736 async_extent->start,
737 async_extent->start +
738 async_extent->ram_size - 1,
739 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
740 EXTENT_CLEAR_UNLOCK |
741 EXTENT_CLEAR_DELALLOC |
742 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
743
744 ret = btrfs_submit_compressed_write(inode,
745 async_extent->start,
746 async_extent->ram_size,
747 ins.objectid,
748 ins.offset, async_extent->pages,
749 async_extent->nr_pages);
750
751 BUG_ON(ret); /* -ENOMEM */
752 alloc_hint = ins.objectid + ins.offset;
753 kfree(async_extent);
754 cond_resched();
755 }
756 ret = 0;
757 out:
758 return ret;
759 out_free:
760 kfree(async_extent);
761 goto out;
762 }
763
764 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
765 u64 num_bytes)
766 {
767 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
768 struct extent_map *em;
769 u64 alloc_hint = 0;
770
771 read_lock(&em_tree->lock);
772 em = search_extent_mapping(em_tree, start, num_bytes);
773 if (em) {
774 /*
775 * if block start isn't an actual block number then find the
776 * first block in this inode and use that as a hint. If that
777 * block is also bogus then just don't worry about it.
778 */
779 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
780 free_extent_map(em);
781 em = search_extent_mapping(em_tree, 0, 0);
782 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
783 alloc_hint = em->block_start;
784 if (em)
785 free_extent_map(em);
786 } else {
787 alloc_hint = em->block_start;
788 free_extent_map(em);
789 }
790 }
791 read_unlock(&em_tree->lock);
792
793 return alloc_hint;
794 }
795
796 /*
797 * when extent_io.c finds a delayed allocation range in the file,
798 * the call backs end up in this code. The basic idea is to
799 * allocate extents on disk for the range, and create ordered data structs
800 * in ram to track those extents.
801 *
802 * locked_page is the page that writepage had locked already. We use
803 * it to make sure we don't do extra locks or unlocks.
804 *
805 * *page_started is set to one if we unlock locked_page and do everything
806 * required to start IO on it. It may be clean and already done with
807 * IO when we return.
808 */
809 static noinline int cow_file_range(struct inode *inode,
810 struct page *locked_page,
811 u64 start, u64 end, int *page_started,
812 unsigned long *nr_written,
813 int unlock)
814 {
815 struct btrfs_root *root = BTRFS_I(inode)->root;
816 struct btrfs_trans_handle *trans;
817 u64 alloc_hint = 0;
818 u64 num_bytes;
819 unsigned long ram_size;
820 u64 disk_num_bytes;
821 u64 cur_alloc_size;
822 u64 blocksize = root->sectorsize;
823 struct btrfs_key ins;
824 struct extent_map *em;
825 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
826 int ret = 0;
827
828 BUG_ON(btrfs_is_free_space_inode(inode));
829 trans = btrfs_join_transaction(root);
830 if (IS_ERR(trans)) {
831 extent_clear_unlock_delalloc(inode,
832 &BTRFS_I(inode)->io_tree,
833 start, end, locked_page,
834 EXTENT_CLEAR_UNLOCK_PAGE |
835 EXTENT_CLEAR_UNLOCK |
836 EXTENT_CLEAR_DELALLOC |
837 EXTENT_CLEAR_DIRTY |
838 EXTENT_SET_WRITEBACK |
839 EXTENT_END_WRITEBACK);
840 return PTR_ERR(trans);
841 }
842 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
843
844 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
845 num_bytes = max(blocksize, num_bytes);
846 disk_num_bytes = num_bytes;
847 ret = 0;
848
849 /* if this is a small write inside eof, kick off defrag */
850 if (num_bytes < 64 * 1024 &&
851 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
852 btrfs_add_inode_defrag(trans, inode);
853
854 if (start == 0) {
855 /* lets try to make an inline extent */
856 ret = cow_file_range_inline(trans, root, inode,
857 start, end, 0, 0, NULL);
858 if (ret == 0) {
859 extent_clear_unlock_delalloc(inode,
860 &BTRFS_I(inode)->io_tree,
861 start, end, NULL,
862 EXTENT_CLEAR_UNLOCK_PAGE |
863 EXTENT_CLEAR_UNLOCK |
864 EXTENT_CLEAR_DELALLOC |
865 EXTENT_CLEAR_DIRTY |
866 EXTENT_SET_WRITEBACK |
867 EXTENT_END_WRITEBACK);
868
869 *nr_written = *nr_written +
870 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
871 *page_started = 1;
872 goto out;
873 } else if (ret < 0) {
874 btrfs_abort_transaction(trans, root, ret);
875 goto out_unlock;
876 }
877 }
878
879 BUG_ON(disk_num_bytes >
880 btrfs_super_total_bytes(root->fs_info->super_copy));
881
882 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
883 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
884
885 while (disk_num_bytes > 0) {
886 unsigned long op;
887
888 cur_alloc_size = disk_num_bytes;
889 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
890 root->sectorsize, 0, alloc_hint,
891 &ins, 1);
892 if (ret < 0) {
893 btrfs_abort_transaction(trans, root, ret);
894 goto out_unlock;
895 }
896
897 em = alloc_extent_map();
898 BUG_ON(!em); /* -ENOMEM */
899 em->start = start;
900 em->orig_start = em->start;
901 ram_size = ins.offset;
902 em->len = ins.offset;
903
904 em->block_start = ins.objectid;
905 em->block_len = ins.offset;
906 em->bdev = root->fs_info->fs_devices->latest_bdev;
907 set_bit(EXTENT_FLAG_PINNED, &em->flags);
908
909 while (1) {
910 write_lock(&em_tree->lock);
911 ret = add_extent_mapping(em_tree, em);
912 write_unlock(&em_tree->lock);
913 if (ret != -EEXIST) {
914 free_extent_map(em);
915 break;
916 }
917 btrfs_drop_extent_cache(inode, start,
918 start + ram_size - 1, 0);
919 }
920
921 cur_alloc_size = ins.offset;
922 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
923 ram_size, cur_alloc_size, 0);
924 BUG_ON(ret); /* -ENOMEM */
925
926 if (root->root_key.objectid ==
927 BTRFS_DATA_RELOC_TREE_OBJECTID) {
928 ret = btrfs_reloc_clone_csums(inode, start,
929 cur_alloc_size);
930 if (ret) {
931 btrfs_abort_transaction(trans, root, ret);
932 goto out_unlock;
933 }
934 }
935
936 if (disk_num_bytes < cur_alloc_size)
937 break;
938
939 /* we're not doing compressed IO, don't unlock the first
940 * page (which the caller expects to stay locked), don't
941 * clear any dirty bits and don't set any writeback bits
942 *
943 * Do set the Private2 bit so we know this page was properly
944 * setup for writepage
945 */
946 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
947 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
948 EXTENT_SET_PRIVATE2;
949
950 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
951 start, start + ram_size - 1,
952 locked_page, op);
953 disk_num_bytes -= cur_alloc_size;
954 num_bytes -= cur_alloc_size;
955 alloc_hint = ins.objectid + ins.offset;
956 start += cur_alloc_size;
957 }
958 ret = 0;
959 out:
960 btrfs_end_transaction(trans, root);
961
962 return ret;
963 out_unlock:
964 extent_clear_unlock_delalloc(inode,
965 &BTRFS_I(inode)->io_tree,
966 start, end, locked_page,
967 EXTENT_CLEAR_UNLOCK_PAGE |
968 EXTENT_CLEAR_UNLOCK |
969 EXTENT_CLEAR_DELALLOC |
970 EXTENT_CLEAR_DIRTY |
971 EXTENT_SET_WRITEBACK |
972 EXTENT_END_WRITEBACK);
973
974 goto out;
975 }
976
977 /*
978 * work queue call back to started compression on a file and pages
979 */
980 static noinline void async_cow_start(struct btrfs_work *work)
981 {
982 struct async_cow *async_cow;
983 int num_added = 0;
984 async_cow = container_of(work, struct async_cow, work);
985
986 compress_file_range(async_cow->inode, async_cow->locked_page,
987 async_cow->start, async_cow->end, async_cow,
988 &num_added);
989 if (num_added == 0) {
990 btrfs_add_delayed_iput(async_cow->inode);
991 async_cow->inode = NULL;
992 }
993 }
994
995 /*
996 * work queue call back to submit previously compressed pages
997 */
998 static noinline void async_cow_submit(struct btrfs_work *work)
999 {
1000 struct async_cow *async_cow;
1001 struct btrfs_root *root;
1002 unsigned long nr_pages;
1003
1004 async_cow = container_of(work, struct async_cow, work);
1005
1006 root = async_cow->root;
1007 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1008 PAGE_CACHE_SHIFT;
1009
1010 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1011 5 * 1024 * 1024 &&
1012 waitqueue_active(&root->fs_info->async_submit_wait))
1013 wake_up(&root->fs_info->async_submit_wait);
1014
1015 if (async_cow->inode)
1016 submit_compressed_extents(async_cow->inode, async_cow);
1017 }
1018
1019 static noinline void async_cow_free(struct btrfs_work *work)
1020 {
1021 struct async_cow *async_cow;
1022 async_cow = container_of(work, struct async_cow, work);
1023 if (async_cow->inode)
1024 btrfs_add_delayed_iput(async_cow->inode);
1025 kfree(async_cow);
1026 }
1027
1028 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1029 u64 start, u64 end, int *page_started,
1030 unsigned long *nr_written)
1031 {
1032 struct async_cow *async_cow;
1033 struct btrfs_root *root = BTRFS_I(inode)->root;
1034 unsigned long nr_pages;
1035 u64 cur_end;
1036 int limit = 10 * 1024 * 1024;
1037
1038 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1039 1, 0, NULL, GFP_NOFS);
1040 while (start < end) {
1041 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1042 BUG_ON(!async_cow); /* -ENOMEM */
1043 async_cow->inode = igrab(inode);
1044 async_cow->root = root;
1045 async_cow->locked_page = locked_page;
1046 async_cow->start = start;
1047
1048 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1049 cur_end = end;
1050 else
1051 cur_end = min(end, start + 512 * 1024 - 1);
1052
1053 async_cow->end = cur_end;
1054 INIT_LIST_HEAD(&async_cow->extents);
1055
1056 async_cow->work.func = async_cow_start;
1057 async_cow->work.ordered_func = async_cow_submit;
1058 async_cow->work.ordered_free = async_cow_free;
1059 async_cow->work.flags = 0;
1060
1061 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1062 PAGE_CACHE_SHIFT;
1063 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1064
1065 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1066 &async_cow->work);
1067
1068 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1069 wait_event(root->fs_info->async_submit_wait,
1070 (atomic_read(&root->fs_info->async_delalloc_pages) <
1071 limit));
1072 }
1073
1074 while (atomic_read(&root->fs_info->async_submit_draining) &&
1075 atomic_read(&root->fs_info->async_delalloc_pages)) {
1076 wait_event(root->fs_info->async_submit_wait,
1077 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1078 0));
1079 }
1080
1081 *nr_written += nr_pages;
1082 start = cur_end + 1;
1083 }
1084 *page_started = 1;
1085 return 0;
1086 }
1087
1088 static noinline int csum_exist_in_range(struct btrfs_root *root,
1089 u64 bytenr, u64 num_bytes)
1090 {
1091 int ret;
1092 struct btrfs_ordered_sum *sums;
1093 LIST_HEAD(list);
1094
1095 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1096 bytenr + num_bytes - 1, &list, 0);
1097 if (ret == 0 && list_empty(&list))
1098 return 0;
1099
1100 while (!list_empty(&list)) {
1101 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1102 list_del(&sums->list);
1103 kfree(sums);
1104 }
1105 return 1;
1106 }
1107
1108 /*
1109 * when nowcow writeback call back. This checks for snapshots or COW copies
1110 * of the extents that exist in the file, and COWs the file as required.
1111 *
1112 * If no cow copies or snapshots exist, we write directly to the existing
1113 * blocks on disk
1114 */
1115 static noinline int run_delalloc_nocow(struct inode *inode,
1116 struct page *locked_page,
1117 u64 start, u64 end, int *page_started, int force,
1118 unsigned long *nr_written)
1119 {
1120 struct btrfs_root *root = BTRFS_I(inode)->root;
1121 struct btrfs_trans_handle *trans;
1122 struct extent_buffer *leaf;
1123 struct btrfs_path *path;
1124 struct btrfs_file_extent_item *fi;
1125 struct btrfs_key found_key;
1126 u64 cow_start;
1127 u64 cur_offset;
1128 u64 extent_end;
1129 u64 extent_offset;
1130 u64 disk_bytenr;
1131 u64 num_bytes;
1132 int extent_type;
1133 int ret, err;
1134 int type;
1135 int nocow;
1136 int check_prev = 1;
1137 bool nolock;
1138 u64 ino = btrfs_ino(inode);
1139
1140 path = btrfs_alloc_path();
1141 if (!path) {
1142 extent_clear_unlock_delalloc(inode,
1143 &BTRFS_I(inode)->io_tree,
1144 start, end, locked_page,
1145 EXTENT_CLEAR_UNLOCK_PAGE |
1146 EXTENT_CLEAR_UNLOCK |
1147 EXTENT_CLEAR_DELALLOC |
1148 EXTENT_CLEAR_DIRTY |
1149 EXTENT_SET_WRITEBACK |
1150 EXTENT_END_WRITEBACK);
1151 return -ENOMEM;
1152 }
1153
1154 nolock = btrfs_is_free_space_inode(inode);
1155
1156 if (nolock)
1157 trans = btrfs_join_transaction_nolock(root);
1158 else
1159 trans = btrfs_join_transaction(root);
1160
1161 if (IS_ERR(trans)) {
1162 extent_clear_unlock_delalloc(inode,
1163 &BTRFS_I(inode)->io_tree,
1164 start, end, locked_page,
1165 EXTENT_CLEAR_UNLOCK_PAGE |
1166 EXTENT_CLEAR_UNLOCK |
1167 EXTENT_CLEAR_DELALLOC |
1168 EXTENT_CLEAR_DIRTY |
1169 EXTENT_SET_WRITEBACK |
1170 EXTENT_END_WRITEBACK);
1171 btrfs_free_path(path);
1172 return PTR_ERR(trans);
1173 }
1174
1175 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1176
1177 cow_start = (u64)-1;
1178 cur_offset = start;
1179 while (1) {
1180 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1181 cur_offset, 0);
1182 if (ret < 0) {
1183 btrfs_abort_transaction(trans, root, ret);
1184 goto error;
1185 }
1186 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1187 leaf = path->nodes[0];
1188 btrfs_item_key_to_cpu(leaf, &found_key,
1189 path->slots[0] - 1);
1190 if (found_key.objectid == ino &&
1191 found_key.type == BTRFS_EXTENT_DATA_KEY)
1192 path->slots[0]--;
1193 }
1194 check_prev = 0;
1195 next_slot:
1196 leaf = path->nodes[0];
1197 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1198 ret = btrfs_next_leaf(root, path);
1199 if (ret < 0) {
1200 btrfs_abort_transaction(trans, root, ret);
1201 goto error;
1202 }
1203 if (ret > 0)
1204 break;
1205 leaf = path->nodes[0];
1206 }
1207
1208 nocow = 0;
1209 disk_bytenr = 0;
1210 num_bytes = 0;
1211 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1212
1213 if (found_key.objectid > ino ||
1214 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1215 found_key.offset > end)
1216 break;
1217
1218 if (found_key.offset > cur_offset) {
1219 extent_end = found_key.offset;
1220 extent_type = 0;
1221 goto out_check;
1222 }
1223
1224 fi = btrfs_item_ptr(leaf, path->slots[0],
1225 struct btrfs_file_extent_item);
1226 extent_type = btrfs_file_extent_type(leaf, fi);
1227
1228 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1229 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1230 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1231 extent_offset = btrfs_file_extent_offset(leaf, fi);
1232 extent_end = found_key.offset +
1233 btrfs_file_extent_num_bytes(leaf, fi);
1234 if (extent_end <= start) {
1235 path->slots[0]++;
1236 goto next_slot;
1237 }
1238 if (disk_bytenr == 0)
1239 goto out_check;
1240 if (btrfs_file_extent_compression(leaf, fi) ||
1241 btrfs_file_extent_encryption(leaf, fi) ||
1242 btrfs_file_extent_other_encoding(leaf, fi))
1243 goto out_check;
1244 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1245 goto out_check;
1246 if (btrfs_extent_readonly(root, disk_bytenr))
1247 goto out_check;
1248 if (btrfs_cross_ref_exist(trans, root, ino,
1249 found_key.offset -
1250 extent_offset, disk_bytenr))
1251 goto out_check;
1252 disk_bytenr += extent_offset;
1253 disk_bytenr += cur_offset - found_key.offset;
1254 num_bytes = min(end + 1, extent_end) - cur_offset;
1255 /*
1256 * force cow if csum exists in the range.
1257 * this ensure that csum for a given extent are
1258 * either valid or do not exist.
1259 */
1260 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1261 goto out_check;
1262 nocow = 1;
1263 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1264 extent_end = found_key.offset +
1265 btrfs_file_extent_inline_len(leaf, fi);
1266 extent_end = ALIGN(extent_end, root->sectorsize);
1267 } else {
1268 BUG_ON(1);
1269 }
1270 out_check:
1271 if (extent_end <= start) {
1272 path->slots[0]++;
1273 goto next_slot;
1274 }
1275 if (!nocow) {
1276 if (cow_start == (u64)-1)
1277 cow_start = cur_offset;
1278 cur_offset = extent_end;
1279 if (cur_offset > end)
1280 break;
1281 path->slots[0]++;
1282 goto next_slot;
1283 }
1284
1285 btrfs_release_path(path);
1286 if (cow_start != (u64)-1) {
1287 ret = cow_file_range(inode, locked_page, cow_start,
1288 found_key.offset - 1, page_started,
1289 nr_written, 1);
1290 if (ret) {
1291 btrfs_abort_transaction(trans, root, ret);
1292 goto error;
1293 }
1294 cow_start = (u64)-1;
1295 }
1296
1297 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1298 struct extent_map *em;
1299 struct extent_map_tree *em_tree;
1300 em_tree = &BTRFS_I(inode)->extent_tree;
1301 em = alloc_extent_map();
1302 BUG_ON(!em); /* -ENOMEM */
1303 em->start = cur_offset;
1304 em->orig_start = em->start;
1305 em->len = num_bytes;
1306 em->block_len = num_bytes;
1307 em->block_start = disk_bytenr;
1308 em->bdev = root->fs_info->fs_devices->latest_bdev;
1309 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1310 while (1) {
1311 write_lock(&em_tree->lock);
1312 ret = add_extent_mapping(em_tree, em);
1313 write_unlock(&em_tree->lock);
1314 if (ret != -EEXIST) {
1315 free_extent_map(em);
1316 break;
1317 }
1318 btrfs_drop_extent_cache(inode, em->start,
1319 em->start + em->len - 1, 0);
1320 }
1321 type = BTRFS_ORDERED_PREALLOC;
1322 } else {
1323 type = BTRFS_ORDERED_NOCOW;
1324 }
1325
1326 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1327 num_bytes, num_bytes, type);
1328 BUG_ON(ret); /* -ENOMEM */
1329
1330 if (root->root_key.objectid ==
1331 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1332 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1333 num_bytes);
1334 if (ret) {
1335 btrfs_abort_transaction(trans, root, ret);
1336 goto error;
1337 }
1338 }
1339
1340 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1341 cur_offset, cur_offset + num_bytes - 1,
1342 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1343 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1344 EXTENT_SET_PRIVATE2);
1345 cur_offset = extent_end;
1346 if (cur_offset > end)
1347 break;
1348 }
1349 btrfs_release_path(path);
1350
1351 if (cur_offset <= end && cow_start == (u64)-1) {
1352 cow_start = cur_offset;
1353 cur_offset = end;
1354 }
1355
1356 if (cow_start != (u64)-1) {
1357 ret = cow_file_range(inode, locked_page, cow_start, end,
1358 page_started, nr_written, 1);
1359 if (ret) {
1360 btrfs_abort_transaction(trans, root, ret);
1361 goto error;
1362 }
1363 }
1364
1365 error:
1366 if (nolock) {
1367 err = btrfs_end_transaction_nolock(trans, root);
1368 } else {
1369 err = btrfs_end_transaction(trans, root);
1370 }
1371 if (!ret)
1372 ret = err;
1373
1374 if (ret && cur_offset < end)
1375 extent_clear_unlock_delalloc(inode,
1376 &BTRFS_I(inode)->io_tree,
1377 cur_offset, end, locked_page,
1378 EXTENT_CLEAR_UNLOCK_PAGE |
1379 EXTENT_CLEAR_UNLOCK |
1380 EXTENT_CLEAR_DELALLOC |
1381 EXTENT_CLEAR_DIRTY |
1382 EXTENT_SET_WRITEBACK |
1383 EXTENT_END_WRITEBACK);
1384
1385 btrfs_free_path(path);
1386 return ret;
1387 }
1388
1389 /*
1390 * extent_io.c call back to do delayed allocation processing
1391 */
1392 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1393 u64 start, u64 end, int *page_started,
1394 unsigned long *nr_written)
1395 {
1396 int ret;
1397 struct btrfs_root *root = BTRFS_I(inode)->root;
1398
1399 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1400 ret = run_delalloc_nocow(inode, locked_page, start, end,
1401 page_started, 1, nr_written);
1402 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1403 ret = run_delalloc_nocow(inode, locked_page, start, end,
1404 page_started, 0, nr_written);
1405 } else if (!btrfs_test_opt(root, COMPRESS) &&
1406 !(BTRFS_I(inode)->force_compress) &&
1407 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1408 ret = cow_file_range(inode, locked_page, start, end,
1409 page_started, nr_written, 1);
1410 } else {
1411 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1412 &BTRFS_I(inode)->runtime_flags);
1413 ret = cow_file_range_async(inode, locked_page, start, end,
1414 page_started, nr_written);
1415 }
1416 return ret;
1417 }
1418
1419 static void btrfs_split_extent_hook(struct inode *inode,
1420 struct extent_state *orig, u64 split)
1421 {
1422 /* not delalloc, ignore it */
1423 if (!(orig->state & EXTENT_DELALLOC))
1424 return;
1425
1426 spin_lock(&BTRFS_I(inode)->lock);
1427 BTRFS_I(inode)->outstanding_extents++;
1428 spin_unlock(&BTRFS_I(inode)->lock);
1429 }
1430
1431 /*
1432 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1433 * extents so we can keep track of new extents that are just merged onto old
1434 * extents, such as when we are doing sequential writes, so we can properly
1435 * account for the metadata space we'll need.
1436 */
1437 static void btrfs_merge_extent_hook(struct inode *inode,
1438 struct extent_state *new,
1439 struct extent_state *other)
1440 {
1441 /* not delalloc, ignore it */
1442 if (!(other->state & EXTENT_DELALLOC))
1443 return;
1444
1445 spin_lock(&BTRFS_I(inode)->lock);
1446 BTRFS_I(inode)->outstanding_extents--;
1447 spin_unlock(&BTRFS_I(inode)->lock);
1448 }
1449
1450 /*
1451 * extent_io.c set_bit_hook, used to track delayed allocation
1452 * bytes in this file, and to maintain the list of inodes that
1453 * have pending delalloc work to be done.
1454 */
1455 static void btrfs_set_bit_hook(struct inode *inode,
1456 struct extent_state *state, int *bits)
1457 {
1458
1459 /*
1460 * set_bit and clear bit hooks normally require _irqsave/restore
1461 * but in this case, we are only testing for the DELALLOC
1462 * bit, which is only set or cleared with irqs on
1463 */
1464 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1465 struct btrfs_root *root = BTRFS_I(inode)->root;
1466 u64 len = state->end + 1 - state->start;
1467 bool do_list = !btrfs_is_free_space_inode(inode);
1468
1469 if (*bits & EXTENT_FIRST_DELALLOC) {
1470 *bits &= ~EXTENT_FIRST_DELALLOC;
1471 } else {
1472 spin_lock(&BTRFS_I(inode)->lock);
1473 BTRFS_I(inode)->outstanding_extents++;
1474 spin_unlock(&BTRFS_I(inode)->lock);
1475 }
1476
1477 spin_lock(&root->fs_info->delalloc_lock);
1478 BTRFS_I(inode)->delalloc_bytes += len;
1479 root->fs_info->delalloc_bytes += len;
1480 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1481 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1482 &root->fs_info->delalloc_inodes);
1483 }
1484 spin_unlock(&root->fs_info->delalloc_lock);
1485 }
1486 }
1487
1488 /*
1489 * extent_io.c clear_bit_hook, see set_bit_hook for why
1490 */
1491 static void btrfs_clear_bit_hook(struct inode *inode,
1492 struct extent_state *state, int *bits)
1493 {
1494 /*
1495 * set_bit and clear bit hooks normally require _irqsave/restore
1496 * but in this case, we are only testing for the DELALLOC
1497 * bit, which is only set or cleared with irqs on
1498 */
1499 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1500 struct btrfs_root *root = BTRFS_I(inode)->root;
1501 u64 len = state->end + 1 - state->start;
1502 bool do_list = !btrfs_is_free_space_inode(inode);
1503
1504 if (*bits & EXTENT_FIRST_DELALLOC) {
1505 *bits &= ~EXTENT_FIRST_DELALLOC;
1506 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1507 spin_lock(&BTRFS_I(inode)->lock);
1508 BTRFS_I(inode)->outstanding_extents--;
1509 spin_unlock(&BTRFS_I(inode)->lock);
1510 }
1511
1512 if (*bits & EXTENT_DO_ACCOUNTING)
1513 btrfs_delalloc_release_metadata(inode, len);
1514
1515 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1516 && do_list)
1517 btrfs_free_reserved_data_space(inode, len);
1518
1519 spin_lock(&root->fs_info->delalloc_lock);
1520 root->fs_info->delalloc_bytes -= len;
1521 BTRFS_I(inode)->delalloc_bytes -= len;
1522
1523 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1524 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1525 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1526 }
1527 spin_unlock(&root->fs_info->delalloc_lock);
1528 }
1529 }
1530
1531 /*
1532 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1533 * we don't create bios that span stripes or chunks
1534 */
1535 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1536 size_t size, struct bio *bio,
1537 unsigned long bio_flags)
1538 {
1539 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1540 struct btrfs_mapping_tree *map_tree;
1541 u64 logical = (u64)bio->bi_sector << 9;
1542 u64 length = 0;
1543 u64 map_length;
1544 int ret;
1545
1546 if (bio_flags & EXTENT_BIO_COMPRESSED)
1547 return 0;
1548
1549 length = bio->bi_size;
1550 map_tree = &root->fs_info->mapping_tree;
1551 map_length = length;
1552 ret = btrfs_map_block(map_tree, READ, logical,
1553 &map_length, NULL, 0);
1554 /* Will always return 0 or 1 with map_multi == NULL */
1555 BUG_ON(ret < 0);
1556 if (map_length < length + size)
1557 return 1;
1558 return 0;
1559 }
1560
1561 /*
1562 * in order to insert checksums into the metadata in large chunks,
1563 * we wait until bio submission time. All the pages in the bio are
1564 * checksummed and sums are attached onto the ordered extent record.
1565 *
1566 * At IO completion time the cums attached on the ordered extent record
1567 * are inserted into the btree
1568 */
1569 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1570 struct bio *bio, int mirror_num,
1571 unsigned long bio_flags,
1572 u64 bio_offset)
1573 {
1574 struct btrfs_root *root = BTRFS_I(inode)->root;
1575 int ret = 0;
1576
1577 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1578 BUG_ON(ret); /* -ENOMEM */
1579 return 0;
1580 }
1581
1582 /*
1583 * in order to insert checksums into the metadata in large chunks,
1584 * we wait until bio submission time. All the pages in the bio are
1585 * checksummed and sums are attached onto the ordered extent record.
1586 *
1587 * At IO completion time the cums attached on the ordered extent record
1588 * are inserted into the btree
1589 */
1590 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1591 int mirror_num, unsigned long bio_flags,
1592 u64 bio_offset)
1593 {
1594 struct btrfs_root *root = BTRFS_I(inode)->root;
1595 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1596 }
1597
1598 /*
1599 * extent_io.c submission hook. This does the right thing for csum calculation
1600 * on write, or reading the csums from the tree before a read
1601 */
1602 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1603 int mirror_num, unsigned long bio_flags,
1604 u64 bio_offset)
1605 {
1606 struct btrfs_root *root = BTRFS_I(inode)->root;
1607 int ret = 0;
1608 int skip_sum;
1609 int metadata = 0;
1610
1611 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1612
1613 if (btrfs_is_free_space_inode(inode))
1614 metadata = 2;
1615
1616 if (!(rw & REQ_WRITE)) {
1617 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1618 if (ret)
1619 return ret;
1620
1621 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1622 return btrfs_submit_compressed_read(inode, bio,
1623 mirror_num, bio_flags);
1624 } else if (!skip_sum) {
1625 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1626 if (ret)
1627 return ret;
1628 }
1629 goto mapit;
1630 } else if (!skip_sum) {
1631 /* csum items have already been cloned */
1632 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1633 goto mapit;
1634 /* we're doing a write, do the async checksumming */
1635 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1636 inode, rw, bio, mirror_num,
1637 bio_flags, bio_offset,
1638 __btrfs_submit_bio_start,
1639 __btrfs_submit_bio_done);
1640 }
1641
1642 mapit:
1643 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1644 }
1645
1646 /*
1647 * given a list of ordered sums record them in the inode. This happens
1648 * at IO completion time based on sums calculated at bio submission time.
1649 */
1650 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1651 struct inode *inode, u64 file_offset,
1652 struct list_head *list)
1653 {
1654 struct btrfs_ordered_sum *sum;
1655
1656 list_for_each_entry(sum, list, list) {
1657 btrfs_csum_file_blocks(trans,
1658 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1659 }
1660 return 0;
1661 }
1662
1663 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1664 struct extent_state **cached_state)
1665 {
1666 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1667 WARN_ON(1);
1668 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1669 cached_state, GFP_NOFS);
1670 }
1671
1672 /* see btrfs_writepage_start_hook for details on why this is required */
1673 struct btrfs_writepage_fixup {
1674 struct page *page;
1675 struct btrfs_work work;
1676 };
1677
1678 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1679 {
1680 struct btrfs_writepage_fixup *fixup;
1681 struct btrfs_ordered_extent *ordered;
1682 struct extent_state *cached_state = NULL;
1683 struct page *page;
1684 struct inode *inode;
1685 u64 page_start;
1686 u64 page_end;
1687 int ret;
1688
1689 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1690 page = fixup->page;
1691 again:
1692 lock_page(page);
1693 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1694 ClearPageChecked(page);
1695 goto out_page;
1696 }
1697
1698 inode = page->mapping->host;
1699 page_start = page_offset(page);
1700 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1701
1702 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1703 &cached_state);
1704
1705 /* already ordered? We're done */
1706 if (PagePrivate2(page))
1707 goto out;
1708
1709 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1710 if (ordered) {
1711 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1712 page_end, &cached_state, GFP_NOFS);
1713 unlock_page(page);
1714 btrfs_start_ordered_extent(inode, ordered, 1);
1715 btrfs_put_ordered_extent(ordered);
1716 goto again;
1717 }
1718
1719 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1720 if (ret) {
1721 mapping_set_error(page->mapping, ret);
1722 end_extent_writepage(page, ret, page_start, page_end);
1723 ClearPageChecked(page);
1724 goto out;
1725 }
1726
1727 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1728 ClearPageChecked(page);
1729 set_page_dirty(page);
1730 out:
1731 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1732 &cached_state, GFP_NOFS);
1733 out_page:
1734 unlock_page(page);
1735 page_cache_release(page);
1736 kfree(fixup);
1737 }
1738
1739 /*
1740 * There are a few paths in the higher layers of the kernel that directly
1741 * set the page dirty bit without asking the filesystem if it is a
1742 * good idea. This causes problems because we want to make sure COW
1743 * properly happens and the data=ordered rules are followed.
1744 *
1745 * In our case any range that doesn't have the ORDERED bit set
1746 * hasn't been properly setup for IO. We kick off an async process
1747 * to fix it up. The async helper will wait for ordered extents, set
1748 * the delalloc bit and make it safe to write the page.
1749 */
1750 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1751 {
1752 struct inode *inode = page->mapping->host;
1753 struct btrfs_writepage_fixup *fixup;
1754 struct btrfs_root *root = BTRFS_I(inode)->root;
1755
1756 /* this page is properly in the ordered list */
1757 if (TestClearPagePrivate2(page))
1758 return 0;
1759
1760 if (PageChecked(page))
1761 return -EAGAIN;
1762
1763 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1764 if (!fixup)
1765 return -EAGAIN;
1766
1767 SetPageChecked(page);
1768 page_cache_get(page);
1769 fixup->work.func = btrfs_writepage_fixup_worker;
1770 fixup->page = page;
1771 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1772 return -EBUSY;
1773 }
1774
1775 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1776 struct inode *inode, u64 file_pos,
1777 u64 disk_bytenr, u64 disk_num_bytes,
1778 u64 num_bytes, u64 ram_bytes,
1779 u8 compression, u8 encryption,
1780 u16 other_encoding, int extent_type)
1781 {
1782 struct btrfs_root *root = BTRFS_I(inode)->root;
1783 struct btrfs_file_extent_item *fi;
1784 struct btrfs_path *path;
1785 struct extent_buffer *leaf;
1786 struct btrfs_key ins;
1787 u64 hint;
1788 int ret;
1789
1790 path = btrfs_alloc_path();
1791 if (!path)
1792 return -ENOMEM;
1793
1794 path->leave_spinning = 1;
1795
1796 /*
1797 * we may be replacing one extent in the tree with another.
1798 * The new extent is pinned in the extent map, and we don't want
1799 * to drop it from the cache until it is completely in the btree.
1800 *
1801 * So, tell btrfs_drop_extents to leave this extent in the cache.
1802 * the caller is expected to unpin it and allow it to be merged
1803 * with the others.
1804 */
1805 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1806 &hint, 0);
1807 if (ret)
1808 goto out;
1809
1810 ins.objectid = btrfs_ino(inode);
1811 ins.offset = file_pos;
1812 ins.type = BTRFS_EXTENT_DATA_KEY;
1813 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1814 if (ret)
1815 goto out;
1816 leaf = path->nodes[0];
1817 fi = btrfs_item_ptr(leaf, path->slots[0],
1818 struct btrfs_file_extent_item);
1819 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1820 btrfs_set_file_extent_type(leaf, fi, extent_type);
1821 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1822 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1823 btrfs_set_file_extent_offset(leaf, fi, 0);
1824 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1825 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1826 btrfs_set_file_extent_compression(leaf, fi, compression);
1827 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1828 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1829
1830 btrfs_unlock_up_safe(path, 1);
1831 btrfs_set_lock_blocking(leaf);
1832
1833 btrfs_mark_buffer_dirty(leaf);
1834
1835 inode_add_bytes(inode, num_bytes);
1836
1837 ins.objectid = disk_bytenr;
1838 ins.offset = disk_num_bytes;
1839 ins.type = BTRFS_EXTENT_ITEM_KEY;
1840 ret = btrfs_alloc_reserved_file_extent(trans, root,
1841 root->root_key.objectid,
1842 btrfs_ino(inode), file_pos, &ins);
1843 out:
1844 btrfs_free_path(path);
1845
1846 return ret;
1847 }
1848
1849 /*
1850 * helper function for btrfs_finish_ordered_io, this
1851 * just reads in some of the csum leaves to prime them into ram
1852 * before we start the transaction. It limits the amount of btree
1853 * reads required while inside the transaction.
1854 */
1855 /* as ordered data IO finishes, this gets called so we can finish
1856 * an ordered extent if the range of bytes in the file it covers are
1857 * fully written.
1858 */
1859 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
1860 {
1861 struct inode *inode = ordered_extent->inode;
1862 struct btrfs_root *root = BTRFS_I(inode)->root;
1863 struct btrfs_trans_handle *trans = NULL;
1864 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1865 struct extent_state *cached_state = NULL;
1866 int compress_type = 0;
1867 int ret;
1868 bool nolock;
1869
1870 nolock = btrfs_is_free_space_inode(inode);
1871
1872 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
1873 ret = -EIO;
1874 goto out;
1875 }
1876
1877 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1878 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
1879 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1880 if (!ret) {
1881 if (nolock)
1882 trans = btrfs_join_transaction_nolock(root);
1883 else
1884 trans = btrfs_join_transaction(root);
1885 if (IS_ERR(trans))
1886 return PTR_ERR(trans);
1887 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1888 ret = btrfs_update_inode_fallback(trans, root, inode);
1889 if (ret) /* -ENOMEM or corruption */
1890 btrfs_abort_transaction(trans, root, ret);
1891 }
1892 goto out;
1893 }
1894
1895 lock_extent_bits(io_tree, ordered_extent->file_offset,
1896 ordered_extent->file_offset + ordered_extent->len - 1,
1897 0, &cached_state);
1898
1899 if (nolock)
1900 trans = btrfs_join_transaction_nolock(root);
1901 else
1902 trans = btrfs_join_transaction(root);
1903 if (IS_ERR(trans)) {
1904 ret = PTR_ERR(trans);
1905 trans = NULL;
1906 goto out_unlock;
1907 }
1908 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1909
1910 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1911 compress_type = ordered_extent->compress_type;
1912 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1913 BUG_ON(compress_type);
1914 ret = btrfs_mark_extent_written(trans, inode,
1915 ordered_extent->file_offset,
1916 ordered_extent->file_offset +
1917 ordered_extent->len);
1918 } else {
1919 BUG_ON(root == root->fs_info->tree_root);
1920 ret = insert_reserved_file_extent(trans, inode,
1921 ordered_extent->file_offset,
1922 ordered_extent->start,
1923 ordered_extent->disk_len,
1924 ordered_extent->len,
1925 ordered_extent->len,
1926 compress_type, 0, 0,
1927 BTRFS_FILE_EXTENT_REG);
1928 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1929 ordered_extent->file_offset,
1930 ordered_extent->len);
1931 }
1932
1933 if (ret < 0) {
1934 btrfs_abort_transaction(trans, root, ret);
1935 goto out_unlock;
1936 }
1937
1938 add_pending_csums(trans, inode, ordered_extent->file_offset,
1939 &ordered_extent->list);
1940
1941 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1942 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1943 ret = btrfs_update_inode_fallback(trans, root, inode);
1944 if (ret) { /* -ENOMEM or corruption */
1945 btrfs_abort_transaction(trans, root, ret);
1946 goto out_unlock;
1947 }
1948 }
1949 ret = 0;
1950 out_unlock:
1951 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1952 ordered_extent->file_offset +
1953 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1954 out:
1955 if (root != root->fs_info->tree_root)
1956 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1957 if (trans) {
1958 if (nolock)
1959 btrfs_end_transaction_nolock(trans, root);
1960 else
1961 btrfs_end_transaction(trans, root);
1962 }
1963
1964 if (ret)
1965 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
1966 ordered_extent->file_offset +
1967 ordered_extent->len - 1, NULL, GFP_NOFS);
1968
1969 /*
1970 * This needs to be dont to make sure anybody waiting knows we are done
1971 * upating everything for this ordered extent.
1972 */
1973 btrfs_remove_ordered_extent(inode, ordered_extent);
1974
1975 /* once for us */
1976 btrfs_put_ordered_extent(ordered_extent);
1977 /* once for the tree */
1978 btrfs_put_ordered_extent(ordered_extent);
1979
1980 return ret;
1981 }
1982
1983 static void finish_ordered_fn(struct btrfs_work *work)
1984 {
1985 struct btrfs_ordered_extent *ordered_extent;
1986 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
1987 btrfs_finish_ordered_io(ordered_extent);
1988 }
1989
1990 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1991 struct extent_state *state, int uptodate)
1992 {
1993 struct inode *inode = page->mapping->host;
1994 struct btrfs_root *root = BTRFS_I(inode)->root;
1995 struct btrfs_ordered_extent *ordered_extent = NULL;
1996 struct btrfs_workers *workers;
1997
1998 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1999
2000 ClearPagePrivate2(page);
2001 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2002 end - start + 1, uptodate))
2003 return 0;
2004
2005 ordered_extent->work.func = finish_ordered_fn;
2006 ordered_extent->work.flags = 0;
2007
2008 if (btrfs_is_free_space_inode(inode))
2009 workers = &root->fs_info->endio_freespace_worker;
2010 else
2011 workers = &root->fs_info->endio_write_workers;
2012 btrfs_queue_worker(workers, &ordered_extent->work);
2013
2014 return 0;
2015 }
2016
2017 /*
2018 * when reads are done, we need to check csums to verify the data is correct
2019 * if there's a match, we allow the bio to finish. If not, the code in
2020 * extent_io.c will try to find good copies for us.
2021 */
2022 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
2023 struct extent_state *state, int mirror)
2024 {
2025 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
2026 struct inode *inode = page->mapping->host;
2027 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2028 char *kaddr;
2029 u64 private = ~(u32)0;
2030 int ret;
2031 struct btrfs_root *root = BTRFS_I(inode)->root;
2032 u32 csum = ~(u32)0;
2033
2034 if (PageChecked(page)) {
2035 ClearPageChecked(page);
2036 goto good;
2037 }
2038
2039 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2040 goto good;
2041
2042 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2043 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2044 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2045 GFP_NOFS);
2046 return 0;
2047 }
2048
2049 if (state && state->start == start) {
2050 private = state->private;
2051 ret = 0;
2052 } else {
2053 ret = get_state_private(io_tree, start, &private);
2054 }
2055 kaddr = kmap_atomic(page);
2056 if (ret)
2057 goto zeroit;
2058
2059 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2060 btrfs_csum_final(csum, (char *)&csum);
2061 if (csum != private)
2062 goto zeroit;
2063
2064 kunmap_atomic(kaddr);
2065 good:
2066 return 0;
2067
2068 zeroit:
2069 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2070 "private %llu\n",
2071 (unsigned long long)btrfs_ino(page->mapping->host),
2072 (unsigned long long)start, csum,
2073 (unsigned long long)private);
2074 memset(kaddr + offset, 1, end - start + 1);
2075 flush_dcache_page(page);
2076 kunmap_atomic(kaddr);
2077 if (private == 0)
2078 return 0;
2079 return -EIO;
2080 }
2081
2082 struct delayed_iput {
2083 struct list_head list;
2084 struct inode *inode;
2085 };
2086
2087 /* JDM: If this is fs-wide, why can't we add a pointer to
2088 * btrfs_inode instead and avoid the allocation? */
2089 void btrfs_add_delayed_iput(struct inode *inode)
2090 {
2091 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2092 struct delayed_iput *delayed;
2093
2094 if (atomic_add_unless(&inode->i_count, -1, 1))
2095 return;
2096
2097 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2098 delayed->inode = inode;
2099
2100 spin_lock(&fs_info->delayed_iput_lock);
2101 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2102 spin_unlock(&fs_info->delayed_iput_lock);
2103 }
2104
2105 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2106 {
2107 LIST_HEAD(list);
2108 struct btrfs_fs_info *fs_info = root->fs_info;
2109 struct delayed_iput *delayed;
2110 int empty;
2111
2112 spin_lock(&fs_info->delayed_iput_lock);
2113 empty = list_empty(&fs_info->delayed_iputs);
2114 spin_unlock(&fs_info->delayed_iput_lock);
2115 if (empty)
2116 return;
2117
2118 down_read(&root->fs_info->cleanup_work_sem);
2119 spin_lock(&fs_info->delayed_iput_lock);
2120 list_splice_init(&fs_info->delayed_iputs, &list);
2121 spin_unlock(&fs_info->delayed_iput_lock);
2122
2123 while (!list_empty(&list)) {
2124 delayed = list_entry(list.next, struct delayed_iput, list);
2125 list_del(&delayed->list);
2126 iput(delayed->inode);
2127 kfree(delayed);
2128 }
2129 up_read(&root->fs_info->cleanup_work_sem);
2130 }
2131
2132 enum btrfs_orphan_cleanup_state {
2133 ORPHAN_CLEANUP_STARTED = 1,
2134 ORPHAN_CLEANUP_DONE = 2,
2135 };
2136
2137 /*
2138 * This is called in transaction commit time. If there are no orphan
2139 * files in the subvolume, it removes orphan item and frees block_rsv
2140 * structure.
2141 */
2142 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2143 struct btrfs_root *root)
2144 {
2145 struct btrfs_block_rsv *block_rsv;
2146 int ret;
2147
2148 if (atomic_read(&root->orphan_inodes) ||
2149 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2150 return;
2151
2152 spin_lock(&root->orphan_lock);
2153 if (atomic_read(&root->orphan_inodes)) {
2154 spin_unlock(&root->orphan_lock);
2155 return;
2156 }
2157
2158 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2159 spin_unlock(&root->orphan_lock);
2160 return;
2161 }
2162
2163 block_rsv = root->orphan_block_rsv;
2164 root->orphan_block_rsv = NULL;
2165 spin_unlock(&root->orphan_lock);
2166
2167 if (root->orphan_item_inserted &&
2168 btrfs_root_refs(&root->root_item) > 0) {
2169 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2170 root->root_key.objectid);
2171 BUG_ON(ret);
2172 root->orphan_item_inserted = 0;
2173 }
2174
2175 if (block_rsv) {
2176 WARN_ON(block_rsv->size > 0);
2177 btrfs_free_block_rsv(root, block_rsv);
2178 }
2179 }
2180
2181 /*
2182 * This creates an orphan entry for the given inode in case something goes
2183 * wrong in the middle of an unlink/truncate.
2184 *
2185 * NOTE: caller of this function should reserve 5 units of metadata for
2186 * this function.
2187 */
2188 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2189 {
2190 struct btrfs_root *root = BTRFS_I(inode)->root;
2191 struct btrfs_block_rsv *block_rsv = NULL;
2192 int reserve = 0;
2193 int insert = 0;
2194 int ret;
2195
2196 if (!root->orphan_block_rsv) {
2197 block_rsv = btrfs_alloc_block_rsv(root);
2198 if (!block_rsv)
2199 return -ENOMEM;
2200 }
2201
2202 spin_lock(&root->orphan_lock);
2203 if (!root->orphan_block_rsv) {
2204 root->orphan_block_rsv = block_rsv;
2205 } else if (block_rsv) {
2206 btrfs_free_block_rsv(root, block_rsv);
2207 block_rsv = NULL;
2208 }
2209
2210 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2211 &BTRFS_I(inode)->runtime_flags)) {
2212 #if 0
2213 /*
2214 * For proper ENOSPC handling, we should do orphan
2215 * cleanup when mounting. But this introduces backward
2216 * compatibility issue.
2217 */
2218 if (!xchg(&root->orphan_item_inserted, 1))
2219 insert = 2;
2220 else
2221 insert = 1;
2222 #endif
2223 insert = 1;
2224 atomic_dec(&root->orphan_inodes);
2225 }
2226
2227 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2228 &BTRFS_I(inode)->runtime_flags))
2229 reserve = 1;
2230 spin_unlock(&root->orphan_lock);
2231
2232 /* grab metadata reservation from transaction handle */
2233 if (reserve) {
2234 ret = btrfs_orphan_reserve_metadata(trans, inode);
2235 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2236 }
2237
2238 /* insert an orphan item to track this unlinked/truncated file */
2239 if (insert >= 1) {
2240 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2241 if (ret && ret != -EEXIST) {
2242 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2243 &BTRFS_I(inode)->runtime_flags);
2244 btrfs_abort_transaction(trans, root, ret);
2245 return ret;
2246 }
2247 ret = 0;
2248 }
2249
2250 /* insert an orphan item to track subvolume contains orphan files */
2251 if (insert >= 2) {
2252 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2253 root->root_key.objectid);
2254 if (ret && ret != -EEXIST) {
2255 btrfs_abort_transaction(trans, root, ret);
2256 return ret;
2257 }
2258 }
2259 return 0;
2260 }
2261
2262 /*
2263 * We have done the truncate/delete so we can go ahead and remove the orphan
2264 * item for this particular inode.
2265 */
2266 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2267 {
2268 struct btrfs_root *root = BTRFS_I(inode)->root;
2269 int delete_item = 0;
2270 int release_rsv = 0;
2271 int ret = 0;
2272
2273 spin_lock(&root->orphan_lock);
2274 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2275 &BTRFS_I(inode)->runtime_flags))
2276 delete_item = 1;
2277
2278 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2279 &BTRFS_I(inode)->runtime_flags))
2280 release_rsv = 1;
2281 spin_unlock(&root->orphan_lock);
2282
2283 if (trans && delete_item) {
2284 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2285 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2286 }
2287
2288 if (release_rsv) {
2289 btrfs_orphan_release_metadata(inode);
2290 atomic_dec(&root->orphan_inodes);
2291 }
2292
2293 return 0;
2294 }
2295
2296 /*
2297 * this cleans up any orphans that may be left on the list from the last use
2298 * of this root.
2299 */
2300 int btrfs_orphan_cleanup(struct btrfs_root *root)
2301 {
2302 struct btrfs_path *path;
2303 struct extent_buffer *leaf;
2304 struct btrfs_key key, found_key;
2305 struct btrfs_trans_handle *trans;
2306 struct inode *inode;
2307 u64 last_objectid = 0;
2308 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2309
2310 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2311 return 0;
2312
2313 path = btrfs_alloc_path();
2314 if (!path) {
2315 ret = -ENOMEM;
2316 goto out;
2317 }
2318 path->reada = -1;
2319
2320 key.objectid = BTRFS_ORPHAN_OBJECTID;
2321 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2322 key.offset = (u64)-1;
2323
2324 while (1) {
2325 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2326 if (ret < 0)
2327 goto out;
2328
2329 /*
2330 * if ret == 0 means we found what we were searching for, which
2331 * is weird, but possible, so only screw with path if we didn't
2332 * find the key and see if we have stuff that matches
2333 */
2334 if (ret > 0) {
2335 ret = 0;
2336 if (path->slots[0] == 0)
2337 break;
2338 path->slots[0]--;
2339 }
2340
2341 /* pull out the item */
2342 leaf = path->nodes[0];
2343 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2344
2345 /* make sure the item matches what we want */
2346 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2347 break;
2348 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2349 break;
2350
2351 /* release the path since we're done with it */
2352 btrfs_release_path(path);
2353
2354 /*
2355 * this is where we are basically btrfs_lookup, without the
2356 * crossing root thing. we store the inode number in the
2357 * offset of the orphan item.
2358 */
2359
2360 if (found_key.offset == last_objectid) {
2361 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2362 "stopping orphan cleanup\n");
2363 ret = -EINVAL;
2364 goto out;
2365 }
2366
2367 last_objectid = found_key.offset;
2368
2369 found_key.objectid = found_key.offset;
2370 found_key.type = BTRFS_INODE_ITEM_KEY;
2371 found_key.offset = 0;
2372 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2373 ret = PTR_RET(inode);
2374 if (ret && ret != -ESTALE)
2375 goto out;
2376
2377 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2378 struct btrfs_root *dead_root;
2379 struct btrfs_fs_info *fs_info = root->fs_info;
2380 int is_dead_root = 0;
2381
2382 /*
2383 * this is an orphan in the tree root. Currently these
2384 * could come from 2 sources:
2385 * a) a snapshot deletion in progress
2386 * b) a free space cache inode
2387 * We need to distinguish those two, as the snapshot
2388 * orphan must not get deleted.
2389 * find_dead_roots already ran before us, so if this
2390 * is a snapshot deletion, we should find the root
2391 * in the dead_roots list
2392 */
2393 spin_lock(&fs_info->trans_lock);
2394 list_for_each_entry(dead_root, &fs_info->dead_roots,
2395 root_list) {
2396 if (dead_root->root_key.objectid ==
2397 found_key.objectid) {
2398 is_dead_root = 1;
2399 break;
2400 }
2401 }
2402 spin_unlock(&fs_info->trans_lock);
2403 if (is_dead_root) {
2404 /* prevent this orphan from being found again */
2405 key.offset = found_key.objectid - 1;
2406 continue;
2407 }
2408 }
2409 /*
2410 * Inode is already gone but the orphan item is still there,
2411 * kill the orphan item.
2412 */
2413 if (ret == -ESTALE) {
2414 trans = btrfs_start_transaction(root, 1);
2415 if (IS_ERR(trans)) {
2416 ret = PTR_ERR(trans);
2417 goto out;
2418 }
2419 printk(KERN_ERR "auto deleting %Lu\n",
2420 found_key.objectid);
2421 ret = btrfs_del_orphan_item(trans, root,
2422 found_key.objectid);
2423 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2424 btrfs_end_transaction(trans, root);
2425 continue;
2426 }
2427
2428 /*
2429 * add this inode to the orphan list so btrfs_orphan_del does
2430 * the proper thing when we hit it
2431 */
2432 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2433 &BTRFS_I(inode)->runtime_flags);
2434
2435 /* if we have links, this was a truncate, lets do that */
2436 if (inode->i_nlink) {
2437 if (!S_ISREG(inode->i_mode)) {
2438 WARN_ON(1);
2439 iput(inode);
2440 continue;
2441 }
2442 nr_truncate++;
2443 ret = btrfs_truncate(inode);
2444 } else {
2445 nr_unlink++;
2446 }
2447
2448 /* this will do delete_inode and everything for us */
2449 iput(inode);
2450 if (ret)
2451 goto out;
2452 }
2453 /* release the path since we're done with it */
2454 btrfs_release_path(path);
2455
2456 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2457
2458 if (root->orphan_block_rsv)
2459 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2460 (u64)-1);
2461
2462 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2463 trans = btrfs_join_transaction(root);
2464 if (!IS_ERR(trans))
2465 btrfs_end_transaction(trans, root);
2466 }
2467
2468 if (nr_unlink)
2469 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2470 if (nr_truncate)
2471 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2472
2473 out:
2474 if (ret)
2475 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2476 btrfs_free_path(path);
2477 return ret;
2478 }
2479
2480 /*
2481 * very simple check to peek ahead in the leaf looking for xattrs. If we
2482 * don't find any xattrs, we know there can't be any acls.
2483 *
2484 * slot is the slot the inode is in, objectid is the objectid of the inode
2485 */
2486 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2487 int slot, u64 objectid)
2488 {
2489 u32 nritems = btrfs_header_nritems(leaf);
2490 struct btrfs_key found_key;
2491 int scanned = 0;
2492
2493 slot++;
2494 while (slot < nritems) {
2495 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2496
2497 /* we found a different objectid, there must not be acls */
2498 if (found_key.objectid != objectid)
2499 return 0;
2500
2501 /* we found an xattr, assume we've got an acl */
2502 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2503 return 1;
2504
2505 /*
2506 * we found a key greater than an xattr key, there can't
2507 * be any acls later on
2508 */
2509 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2510 return 0;
2511
2512 slot++;
2513 scanned++;
2514
2515 /*
2516 * it goes inode, inode backrefs, xattrs, extents,
2517 * so if there are a ton of hard links to an inode there can
2518 * be a lot of backrefs. Don't waste time searching too hard,
2519 * this is just an optimization
2520 */
2521 if (scanned >= 8)
2522 break;
2523 }
2524 /* we hit the end of the leaf before we found an xattr or
2525 * something larger than an xattr. We have to assume the inode
2526 * has acls
2527 */
2528 return 1;
2529 }
2530
2531 /*
2532 * read an inode from the btree into the in-memory inode
2533 */
2534 static void btrfs_read_locked_inode(struct inode *inode)
2535 {
2536 struct btrfs_path *path;
2537 struct extent_buffer *leaf;
2538 struct btrfs_inode_item *inode_item;
2539 struct btrfs_timespec *tspec;
2540 struct btrfs_root *root = BTRFS_I(inode)->root;
2541 struct btrfs_key location;
2542 int maybe_acls;
2543 u32 rdev;
2544 int ret;
2545 bool filled = false;
2546
2547 ret = btrfs_fill_inode(inode, &rdev);
2548 if (!ret)
2549 filled = true;
2550
2551 path = btrfs_alloc_path();
2552 if (!path)
2553 goto make_bad;
2554
2555 path->leave_spinning = 1;
2556 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2557
2558 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2559 if (ret)
2560 goto make_bad;
2561
2562 leaf = path->nodes[0];
2563
2564 if (filled)
2565 goto cache_acl;
2566
2567 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2568 struct btrfs_inode_item);
2569 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2570 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2571 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2572 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2573 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2574
2575 tspec = btrfs_inode_atime(inode_item);
2576 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2577 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2578
2579 tspec = btrfs_inode_mtime(inode_item);
2580 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2581 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2582
2583 tspec = btrfs_inode_ctime(inode_item);
2584 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2585 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2586
2587 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2588 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2589 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
2590 inode->i_generation = BTRFS_I(inode)->generation;
2591 inode->i_rdev = 0;
2592 rdev = btrfs_inode_rdev(leaf, inode_item);
2593
2594 BTRFS_I(inode)->index_cnt = (u64)-1;
2595 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2596 cache_acl:
2597 /*
2598 * try to precache a NULL acl entry for files that don't have
2599 * any xattrs or acls
2600 */
2601 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2602 btrfs_ino(inode));
2603 if (!maybe_acls)
2604 cache_no_acl(inode);
2605
2606 btrfs_free_path(path);
2607
2608 switch (inode->i_mode & S_IFMT) {
2609 case S_IFREG:
2610 inode->i_mapping->a_ops = &btrfs_aops;
2611 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2612 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2613 inode->i_fop = &btrfs_file_operations;
2614 inode->i_op = &btrfs_file_inode_operations;
2615 break;
2616 case S_IFDIR:
2617 inode->i_fop = &btrfs_dir_file_operations;
2618 if (root == root->fs_info->tree_root)
2619 inode->i_op = &btrfs_dir_ro_inode_operations;
2620 else
2621 inode->i_op = &btrfs_dir_inode_operations;
2622 break;
2623 case S_IFLNK:
2624 inode->i_op = &btrfs_symlink_inode_operations;
2625 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2626 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2627 break;
2628 default:
2629 inode->i_op = &btrfs_special_inode_operations;
2630 init_special_inode(inode, inode->i_mode, rdev);
2631 break;
2632 }
2633
2634 btrfs_update_iflags(inode);
2635 return;
2636
2637 make_bad:
2638 btrfs_free_path(path);
2639 make_bad_inode(inode);
2640 }
2641
2642 /*
2643 * given a leaf and an inode, copy the inode fields into the leaf
2644 */
2645 static void fill_inode_item(struct btrfs_trans_handle *trans,
2646 struct extent_buffer *leaf,
2647 struct btrfs_inode_item *item,
2648 struct inode *inode)
2649 {
2650 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2651 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2652 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2653 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2654 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2655
2656 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2657 inode->i_atime.tv_sec);
2658 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2659 inode->i_atime.tv_nsec);
2660
2661 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2662 inode->i_mtime.tv_sec);
2663 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2664 inode->i_mtime.tv_nsec);
2665
2666 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2667 inode->i_ctime.tv_sec);
2668 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2669 inode->i_ctime.tv_nsec);
2670
2671 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2672 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2673 btrfs_set_inode_sequence(leaf, item, inode->i_version);
2674 btrfs_set_inode_transid(leaf, item, trans->transid);
2675 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2676 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2677 btrfs_set_inode_block_group(leaf, item, 0);
2678 }
2679
2680 /*
2681 * copy everything in the in-memory inode into the btree.
2682 */
2683 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
2684 struct btrfs_root *root, struct inode *inode)
2685 {
2686 struct btrfs_inode_item *inode_item;
2687 struct btrfs_path *path;
2688 struct extent_buffer *leaf;
2689 int ret;
2690
2691 path = btrfs_alloc_path();
2692 if (!path)
2693 return -ENOMEM;
2694
2695 path->leave_spinning = 1;
2696 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2697 1);
2698 if (ret) {
2699 if (ret > 0)
2700 ret = -ENOENT;
2701 goto failed;
2702 }
2703
2704 btrfs_unlock_up_safe(path, 1);
2705 leaf = path->nodes[0];
2706 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2707 struct btrfs_inode_item);
2708
2709 fill_inode_item(trans, leaf, inode_item, inode);
2710 btrfs_mark_buffer_dirty(leaf);
2711 btrfs_set_inode_last_trans(trans, inode);
2712 ret = 0;
2713 failed:
2714 btrfs_free_path(path);
2715 return ret;
2716 }
2717
2718 /*
2719 * copy everything in the in-memory inode into the btree.
2720 */
2721 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2722 struct btrfs_root *root, struct inode *inode)
2723 {
2724 int ret;
2725
2726 /*
2727 * If the inode is a free space inode, we can deadlock during commit
2728 * if we put it into the delayed code.
2729 *
2730 * The data relocation inode should also be directly updated
2731 * without delay
2732 */
2733 if (!btrfs_is_free_space_inode(inode)
2734 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2735 btrfs_update_root_times(trans, root);
2736
2737 ret = btrfs_delayed_update_inode(trans, root, inode);
2738 if (!ret)
2739 btrfs_set_inode_last_trans(trans, inode);
2740 return ret;
2741 }
2742
2743 return btrfs_update_inode_item(trans, root, inode);
2744 }
2745
2746 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2747 struct btrfs_root *root, struct inode *inode)
2748 {
2749 int ret;
2750
2751 ret = btrfs_update_inode(trans, root, inode);
2752 if (ret == -ENOSPC)
2753 return btrfs_update_inode_item(trans, root, inode);
2754 return ret;
2755 }
2756
2757 /*
2758 * unlink helper that gets used here in inode.c and in the tree logging
2759 * recovery code. It remove a link in a directory with a given name, and
2760 * also drops the back refs in the inode to the directory
2761 */
2762 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2763 struct btrfs_root *root,
2764 struct inode *dir, struct inode *inode,
2765 const char *name, int name_len)
2766 {
2767 struct btrfs_path *path;
2768 int ret = 0;
2769 struct extent_buffer *leaf;
2770 struct btrfs_dir_item *di;
2771 struct btrfs_key key;
2772 u64 index;
2773 u64 ino = btrfs_ino(inode);
2774 u64 dir_ino = btrfs_ino(dir);
2775
2776 path = btrfs_alloc_path();
2777 if (!path) {
2778 ret = -ENOMEM;
2779 goto out;
2780 }
2781
2782 path->leave_spinning = 1;
2783 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2784 name, name_len, -1);
2785 if (IS_ERR(di)) {
2786 ret = PTR_ERR(di);
2787 goto err;
2788 }
2789 if (!di) {
2790 ret = -ENOENT;
2791 goto err;
2792 }
2793 leaf = path->nodes[0];
2794 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2795 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2796 if (ret)
2797 goto err;
2798 btrfs_release_path(path);
2799
2800 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2801 dir_ino, &index);
2802 if (ret) {
2803 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2804 "inode %llu parent %llu\n", name_len, name,
2805 (unsigned long long)ino, (unsigned long long)dir_ino);
2806 btrfs_abort_transaction(trans, root, ret);
2807 goto err;
2808 }
2809
2810 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2811 if (ret) {
2812 btrfs_abort_transaction(trans, root, ret);
2813 goto err;
2814 }
2815
2816 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2817 inode, dir_ino);
2818 if (ret != 0 && ret != -ENOENT) {
2819 btrfs_abort_transaction(trans, root, ret);
2820 goto err;
2821 }
2822
2823 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2824 dir, index);
2825 if (ret == -ENOENT)
2826 ret = 0;
2827 err:
2828 btrfs_free_path(path);
2829 if (ret)
2830 goto out;
2831
2832 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2833 inode_inc_iversion(inode);
2834 inode_inc_iversion(dir);
2835 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2836 ret = btrfs_update_inode(trans, root, dir);
2837 out:
2838 return ret;
2839 }
2840
2841 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2842 struct btrfs_root *root,
2843 struct inode *dir, struct inode *inode,
2844 const char *name, int name_len)
2845 {
2846 int ret;
2847 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2848 if (!ret) {
2849 btrfs_drop_nlink(inode);
2850 ret = btrfs_update_inode(trans, root, inode);
2851 }
2852 return ret;
2853 }
2854
2855
2856 /* helper to check if there is any shared block in the path */
2857 static int check_path_shared(struct btrfs_root *root,
2858 struct btrfs_path *path)
2859 {
2860 struct extent_buffer *eb;
2861 int level;
2862 u64 refs = 1;
2863
2864 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2865 int ret;
2866
2867 if (!path->nodes[level])
2868 break;
2869 eb = path->nodes[level];
2870 if (!btrfs_block_can_be_shared(root, eb))
2871 continue;
2872 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2873 &refs, NULL);
2874 if (refs > 1)
2875 return 1;
2876 }
2877 return 0;
2878 }
2879
2880 /*
2881 * helper to start transaction for unlink and rmdir.
2882 *
2883 * unlink and rmdir are special in btrfs, they do not always free space.
2884 * so in enospc case, we should make sure they will free space before
2885 * allowing them to use the global metadata reservation.
2886 */
2887 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2888 struct dentry *dentry)
2889 {
2890 struct btrfs_trans_handle *trans;
2891 struct btrfs_root *root = BTRFS_I(dir)->root;
2892 struct btrfs_path *path;
2893 struct btrfs_inode_ref *ref;
2894 struct btrfs_dir_item *di;
2895 struct inode *inode = dentry->d_inode;
2896 u64 index;
2897 int check_link = 1;
2898 int err = -ENOSPC;
2899 int ret;
2900 u64 ino = btrfs_ino(inode);
2901 u64 dir_ino = btrfs_ino(dir);
2902
2903 /*
2904 * 1 for the possible orphan item
2905 * 1 for the dir item
2906 * 1 for the dir index
2907 * 1 for the inode ref
2908 * 1 for the inode ref in the tree log
2909 * 2 for the dir entries in the log
2910 * 1 for the inode
2911 */
2912 trans = btrfs_start_transaction(root, 8);
2913 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2914 return trans;
2915
2916 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2917 return ERR_PTR(-ENOSPC);
2918
2919 /* check if there is someone else holds reference */
2920 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2921 return ERR_PTR(-ENOSPC);
2922
2923 if (atomic_read(&inode->i_count) > 2)
2924 return ERR_PTR(-ENOSPC);
2925
2926 if (xchg(&root->fs_info->enospc_unlink, 1))
2927 return ERR_PTR(-ENOSPC);
2928
2929 path = btrfs_alloc_path();
2930 if (!path) {
2931 root->fs_info->enospc_unlink = 0;
2932 return ERR_PTR(-ENOMEM);
2933 }
2934
2935 /* 1 for the orphan item */
2936 trans = btrfs_start_transaction(root, 1);
2937 if (IS_ERR(trans)) {
2938 btrfs_free_path(path);
2939 root->fs_info->enospc_unlink = 0;
2940 return trans;
2941 }
2942
2943 path->skip_locking = 1;
2944 path->search_commit_root = 1;
2945
2946 ret = btrfs_lookup_inode(trans, root, path,
2947 &BTRFS_I(dir)->location, 0);
2948 if (ret < 0) {
2949 err = ret;
2950 goto out;
2951 }
2952 if (ret == 0) {
2953 if (check_path_shared(root, path))
2954 goto out;
2955 } else {
2956 check_link = 0;
2957 }
2958 btrfs_release_path(path);
2959
2960 ret = btrfs_lookup_inode(trans, root, path,
2961 &BTRFS_I(inode)->location, 0);
2962 if (ret < 0) {
2963 err = ret;
2964 goto out;
2965 }
2966 if (ret == 0) {
2967 if (check_path_shared(root, path))
2968 goto out;
2969 } else {
2970 check_link = 0;
2971 }
2972 btrfs_release_path(path);
2973
2974 if (ret == 0 && S_ISREG(inode->i_mode)) {
2975 ret = btrfs_lookup_file_extent(trans, root, path,
2976 ino, (u64)-1, 0);
2977 if (ret < 0) {
2978 err = ret;
2979 goto out;
2980 }
2981 BUG_ON(ret == 0); /* Corruption */
2982 if (check_path_shared(root, path))
2983 goto out;
2984 btrfs_release_path(path);
2985 }
2986
2987 if (!check_link) {
2988 err = 0;
2989 goto out;
2990 }
2991
2992 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2993 dentry->d_name.name, dentry->d_name.len, 0);
2994 if (IS_ERR(di)) {
2995 err = PTR_ERR(di);
2996 goto out;
2997 }
2998 if (di) {
2999 if (check_path_shared(root, path))
3000 goto out;
3001 } else {
3002 err = 0;
3003 goto out;
3004 }
3005 btrfs_release_path(path);
3006
3007 ref = btrfs_lookup_inode_ref(trans, root, path,
3008 dentry->d_name.name, dentry->d_name.len,
3009 ino, dir_ino, 0);
3010 if (IS_ERR(ref)) {
3011 err = PTR_ERR(ref);
3012 goto out;
3013 }
3014 BUG_ON(!ref); /* Logic error */
3015 if (check_path_shared(root, path))
3016 goto out;
3017 index = btrfs_inode_ref_index(path->nodes[0], ref);
3018 btrfs_release_path(path);
3019
3020 /*
3021 * This is a commit root search, if we can lookup inode item and other
3022 * relative items in the commit root, it means the transaction of
3023 * dir/file creation has been committed, and the dir index item that we
3024 * delay to insert has also been inserted into the commit root. So
3025 * we needn't worry about the delayed insertion of the dir index item
3026 * here.
3027 */
3028 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
3029 dentry->d_name.name, dentry->d_name.len, 0);
3030 if (IS_ERR(di)) {
3031 err = PTR_ERR(di);
3032 goto out;
3033 }
3034 BUG_ON(ret == -ENOENT);
3035 if (check_path_shared(root, path))
3036 goto out;
3037
3038 err = 0;
3039 out:
3040 btrfs_free_path(path);
3041 /* Migrate the orphan reservation over */
3042 if (!err)
3043 err = btrfs_block_rsv_migrate(trans->block_rsv,
3044 &root->fs_info->global_block_rsv,
3045 trans->bytes_reserved);
3046
3047 if (err) {
3048 btrfs_end_transaction(trans, root);
3049 root->fs_info->enospc_unlink = 0;
3050 return ERR_PTR(err);
3051 }
3052
3053 trans->block_rsv = &root->fs_info->global_block_rsv;
3054 return trans;
3055 }
3056
3057 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3058 struct btrfs_root *root)
3059 {
3060 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
3061 btrfs_block_rsv_release(root, trans->block_rsv,
3062 trans->bytes_reserved);
3063 trans->block_rsv = &root->fs_info->trans_block_rsv;
3064 BUG_ON(!root->fs_info->enospc_unlink);
3065 root->fs_info->enospc_unlink = 0;
3066 }
3067 btrfs_end_transaction(trans, root);
3068 }
3069
3070 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3071 {
3072 struct btrfs_root *root = BTRFS_I(dir)->root;
3073 struct btrfs_trans_handle *trans;
3074 struct inode *inode = dentry->d_inode;
3075 int ret;
3076 unsigned long nr = 0;
3077
3078 trans = __unlink_start_trans(dir, dentry);
3079 if (IS_ERR(trans))
3080 return PTR_ERR(trans);
3081
3082 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3083
3084 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3085 dentry->d_name.name, dentry->d_name.len);
3086 if (ret)
3087 goto out;
3088
3089 if (inode->i_nlink == 0) {
3090 ret = btrfs_orphan_add(trans, inode);
3091 if (ret)
3092 goto out;
3093 }
3094
3095 out:
3096 nr = trans->blocks_used;
3097 __unlink_end_trans(trans, root);
3098 btrfs_btree_balance_dirty(root, nr);
3099 return ret;
3100 }
3101
3102 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3103 struct btrfs_root *root,
3104 struct inode *dir, u64 objectid,
3105 const char *name, int name_len)
3106 {
3107 struct btrfs_path *path;
3108 struct extent_buffer *leaf;
3109 struct btrfs_dir_item *di;
3110 struct btrfs_key key;
3111 u64 index;
3112 int ret;
3113 u64 dir_ino = btrfs_ino(dir);
3114
3115 path = btrfs_alloc_path();
3116 if (!path)
3117 return -ENOMEM;
3118
3119 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3120 name, name_len, -1);
3121 if (IS_ERR_OR_NULL(di)) {
3122 if (!di)
3123 ret = -ENOENT;
3124 else
3125 ret = PTR_ERR(di);
3126 goto out;
3127 }
3128
3129 leaf = path->nodes[0];
3130 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3131 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3132 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3133 if (ret) {
3134 btrfs_abort_transaction(trans, root, ret);
3135 goto out;
3136 }
3137 btrfs_release_path(path);
3138
3139 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3140 objectid, root->root_key.objectid,
3141 dir_ino, &index, name, name_len);
3142 if (ret < 0) {
3143 if (ret != -ENOENT) {
3144 btrfs_abort_transaction(trans, root, ret);
3145 goto out;
3146 }
3147 di = btrfs_search_dir_index_item(root, path, dir_ino,
3148 name, name_len);
3149 if (IS_ERR_OR_NULL(di)) {
3150 if (!di)
3151 ret = -ENOENT;
3152 else
3153 ret = PTR_ERR(di);
3154 btrfs_abort_transaction(trans, root, ret);
3155 goto out;
3156 }
3157
3158 leaf = path->nodes[0];
3159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3160 btrfs_release_path(path);
3161 index = key.offset;
3162 }
3163 btrfs_release_path(path);
3164
3165 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3166 if (ret) {
3167 btrfs_abort_transaction(trans, root, ret);
3168 goto out;
3169 }
3170
3171 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3172 inode_inc_iversion(dir);
3173 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3174 ret = btrfs_update_inode_fallback(trans, root, dir);
3175 if (ret)
3176 btrfs_abort_transaction(trans, root, ret);
3177 out:
3178 btrfs_free_path(path);
3179 return ret;
3180 }
3181
3182 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3183 {
3184 struct inode *inode = dentry->d_inode;
3185 int err = 0;
3186 struct btrfs_root *root = BTRFS_I(dir)->root;
3187 struct btrfs_trans_handle *trans;
3188 unsigned long nr = 0;
3189
3190 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3191 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3192 return -ENOTEMPTY;
3193
3194 trans = __unlink_start_trans(dir, dentry);
3195 if (IS_ERR(trans))
3196 return PTR_ERR(trans);
3197
3198 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3199 err = btrfs_unlink_subvol(trans, root, dir,
3200 BTRFS_I(inode)->location.objectid,
3201 dentry->d_name.name,
3202 dentry->d_name.len);
3203 goto out;
3204 }
3205
3206 err = btrfs_orphan_add(trans, inode);
3207 if (err)
3208 goto out;
3209
3210 /* now the directory is empty */
3211 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3212 dentry->d_name.name, dentry->d_name.len);
3213 if (!err)
3214 btrfs_i_size_write(inode, 0);
3215 out:
3216 nr = trans->blocks_used;
3217 __unlink_end_trans(trans, root);
3218 btrfs_btree_balance_dirty(root, nr);
3219
3220 return err;
3221 }
3222
3223 /*
3224 * this can truncate away extent items, csum items and directory items.
3225 * It starts at a high offset and removes keys until it can't find
3226 * any higher than new_size
3227 *
3228 * csum items that cross the new i_size are truncated to the new size
3229 * as well.
3230 *
3231 * min_type is the minimum key type to truncate down to. If set to 0, this
3232 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3233 */
3234 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3235 struct btrfs_root *root,
3236 struct inode *inode,
3237 u64 new_size, u32 min_type)
3238 {
3239 struct btrfs_path *path;
3240 struct extent_buffer *leaf;
3241 struct btrfs_file_extent_item *fi;
3242 struct btrfs_key key;
3243 struct btrfs_key found_key;
3244 u64 extent_start = 0;
3245 u64 extent_num_bytes = 0;
3246 u64 extent_offset = 0;
3247 u64 item_end = 0;
3248 u64 mask = root->sectorsize - 1;
3249 u32 found_type = (u8)-1;
3250 int found_extent;
3251 int del_item;
3252 int pending_del_nr = 0;
3253 int pending_del_slot = 0;
3254 int extent_type = -1;
3255 int ret;
3256 int err = 0;
3257 u64 ino = btrfs_ino(inode);
3258
3259 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3260
3261 path = btrfs_alloc_path();
3262 if (!path)
3263 return -ENOMEM;
3264 path->reada = -1;
3265
3266 if (root->ref_cows || root == root->fs_info->tree_root)
3267 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3268
3269 /*
3270 * This function is also used to drop the items in the log tree before
3271 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3272 * it is used to drop the loged items. So we shouldn't kill the delayed
3273 * items.
3274 */
3275 if (min_type == 0 && root == BTRFS_I(inode)->root)
3276 btrfs_kill_delayed_inode_items(inode);
3277
3278 key.objectid = ino;
3279 key.offset = (u64)-1;
3280 key.type = (u8)-1;
3281
3282 search_again:
3283 path->leave_spinning = 1;
3284 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3285 if (ret < 0) {
3286 err = ret;
3287 goto out;
3288 }
3289
3290 if (ret > 0) {
3291 /* there are no items in the tree for us to truncate, we're
3292 * done
3293 */
3294 if (path->slots[0] == 0)
3295 goto out;
3296 path->slots[0]--;
3297 }
3298
3299 while (1) {
3300 fi = NULL;
3301 leaf = path->nodes[0];
3302 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3303 found_type = btrfs_key_type(&found_key);
3304
3305 if (found_key.objectid != ino)
3306 break;
3307
3308 if (found_type < min_type)
3309 break;
3310
3311 item_end = found_key.offset;
3312 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3313 fi = btrfs_item_ptr(leaf, path->slots[0],
3314 struct btrfs_file_extent_item);
3315 extent_type = btrfs_file_extent_type(leaf, fi);
3316 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3317 item_end +=
3318 btrfs_file_extent_num_bytes(leaf, fi);
3319 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3320 item_end += btrfs_file_extent_inline_len(leaf,
3321 fi);
3322 }
3323 item_end--;
3324 }
3325 if (found_type > min_type) {
3326 del_item = 1;
3327 } else {
3328 if (item_end < new_size)
3329 break;
3330 if (found_key.offset >= new_size)
3331 del_item = 1;
3332 else
3333 del_item = 0;
3334 }
3335 found_extent = 0;
3336 /* FIXME, shrink the extent if the ref count is only 1 */
3337 if (found_type != BTRFS_EXTENT_DATA_KEY)
3338 goto delete;
3339
3340 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3341 u64 num_dec;
3342 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3343 if (!del_item) {
3344 u64 orig_num_bytes =
3345 btrfs_file_extent_num_bytes(leaf, fi);
3346 extent_num_bytes = new_size -
3347 found_key.offset + root->sectorsize - 1;
3348 extent_num_bytes = extent_num_bytes &
3349 ~((u64)root->sectorsize - 1);
3350 btrfs_set_file_extent_num_bytes(leaf, fi,
3351 extent_num_bytes);
3352 num_dec = (orig_num_bytes -
3353 extent_num_bytes);
3354 if (root->ref_cows && extent_start != 0)
3355 inode_sub_bytes(inode, num_dec);
3356 btrfs_mark_buffer_dirty(leaf);
3357 } else {
3358 extent_num_bytes =
3359 btrfs_file_extent_disk_num_bytes(leaf,
3360 fi);
3361 extent_offset = found_key.offset -
3362 btrfs_file_extent_offset(leaf, fi);
3363
3364 /* FIXME blocksize != 4096 */
3365 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3366 if (extent_start != 0) {
3367 found_extent = 1;
3368 if (root->ref_cows)
3369 inode_sub_bytes(inode, num_dec);
3370 }
3371 }
3372 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3373 /*
3374 * we can't truncate inline items that have had
3375 * special encodings
3376 */
3377 if (!del_item &&
3378 btrfs_file_extent_compression(leaf, fi) == 0 &&
3379 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3380 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3381 u32 size = new_size - found_key.offset;
3382
3383 if (root->ref_cows) {
3384 inode_sub_bytes(inode, item_end + 1 -
3385 new_size);
3386 }
3387 size =
3388 btrfs_file_extent_calc_inline_size(size);
3389 btrfs_truncate_item(trans, root, path,
3390 size, 1);
3391 } else if (root->ref_cows) {
3392 inode_sub_bytes(inode, item_end + 1 -
3393 found_key.offset);
3394 }
3395 }
3396 delete:
3397 if (del_item) {
3398 if (!pending_del_nr) {
3399 /* no pending yet, add ourselves */
3400 pending_del_slot = path->slots[0];
3401 pending_del_nr = 1;
3402 } else if (pending_del_nr &&
3403 path->slots[0] + 1 == pending_del_slot) {
3404 /* hop on the pending chunk */
3405 pending_del_nr++;
3406 pending_del_slot = path->slots[0];
3407 } else {
3408 BUG();
3409 }
3410 } else {
3411 break;
3412 }
3413 if (found_extent && (root->ref_cows ||
3414 root == root->fs_info->tree_root)) {
3415 btrfs_set_path_blocking(path);
3416 ret = btrfs_free_extent(trans, root, extent_start,
3417 extent_num_bytes, 0,
3418 btrfs_header_owner(leaf),
3419 ino, extent_offset, 0);
3420 BUG_ON(ret);
3421 }
3422
3423 if (found_type == BTRFS_INODE_ITEM_KEY)
3424 break;
3425
3426 if (path->slots[0] == 0 ||
3427 path->slots[0] != pending_del_slot) {
3428 if (root->ref_cows &&
3429 BTRFS_I(inode)->location.objectid !=
3430 BTRFS_FREE_INO_OBJECTID) {
3431 err = -EAGAIN;
3432 goto out;
3433 }
3434 if (pending_del_nr) {
3435 ret = btrfs_del_items(trans, root, path,
3436 pending_del_slot,
3437 pending_del_nr);
3438 if (ret) {
3439 btrfs_abort_transaction(trans,
3440 root, ret);
3441 goto error;
3442 }
3443 pending_del_nr = 0;
3444 }
3445 btrfs_release_path(path);
3446 goto search_again;
3447 } else {
3448 path->slots[0]--;
3449 }
3450 }
3451 out:
3452 if (pending_del_nr) {
3453 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3454 pending_del_nr);
3455 if (ret)
3456 btrfs_abort_transaction(trans, root, ret);
3457 }
3458 error:
3459 btrfs_free_path(path);
3460 return err;
3461 }
3462
3463 /*
3464 * taken from block_truncate_page, but does cow as it zeros out
3465 * any bytes left in the last page in the file.
3466 */
3467 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3468 {
3469 struct inode *inode = mapping->host;
3470 struct btrfs_root *root = BTRFS_I(inode)->root;
3471 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3472 struct btrfs_ordered_extent *ordered;
3473 struct extent_state *cached_state = NULL;
3474 char *kaddr;
3475 u32 blocksize = root->sectorsize;
3476 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3477 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3478 struct page *page;
3479 gfp_t mask = btrfs_alloc_write_mask(mapping);
3480 int ret = 0;
3481 u64 page_start;
3482 u64 page_end;
3483
3484 if ((offset & (blocksize - 1)) == 0)
3485 goto out;
3486 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3487 if (ret)
3488 goto out;
3489
3490 ret = -ENOMEM;
3491 again:
3492 page = find_or_create_page(mapping, index, mask);
3493 if (!page) {
3494 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3495 goto out;
3496 }
3497
3498 page_start = page_offset(page);
3499 page_end = page_start + PAGE_CACHE_SIZE - 1;
3500
3501 if (!PageUptodate(page)) {
3502 ret = btrfs_readpage(NULL, page);
3503 lock_page(page);
3504 if (page->mapping != mapping) {
3505 unlock_page(page);
3506 page_cache_release(page);
3507 goto again;
3508 }
3509 if (!PageUptodate(page)) {
3510 ret = -EIO;
3511 goto out_unlock;
3512 }
3513 }
3514 wait_on_page_writeback(page);
3515
3516 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
3517 set_page_extent_mapped(page);
3518
3519 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3520 if (ordered) {
3521 unlock_extent_cached(io_tree, page_start, page_end,
3522 &cached_state, GFP_NOFS);
3523 unlock_page(page);
3524 page_cache_release(page);
3525 btrfs_start_ordered_extent(inode, ordered, 1);
3526 btrfs_put_ordered_extent(ordered);
3527 goto again;
3528 }
3529
3530 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3531 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3532 0, 0, &cached_state, GFP_NOFS);
3533
3534 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3535 &cached_state);
3536 if (ret) {
3537 unlock_extent_cached(io_tree, page_start, page_end,
3538 &cached_state, GFP_NOFS);
3539 goto out_unlock;
3540 }
3541
3542 ret = 0;
3543 if (offset != PAGE_CACHE_SIZE) {
3544 kaddr = kmap(page);
3545 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3546 flush_dcache_page(page);
3547 kunmap(page);
3548 }
3549 ClearPageChecked(page);
3550 set_page_dirty(page);
3551 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3552 GFP_NOFS);
3553
3554 out_unlock:
3555 if (ret)
3556 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3557 unlock_page(page);
3558 page_cache_release(page);
3559 out:
3560 return ret;
3561 }
3562
3563 /*
3564 * This function puts in dummy file extents for the area we're creating a hole
3565 * for. So if we are truncating this file to a larger size we need to insert
3566 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3567 * the range between oldsize and size
3568 */
3569 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3570 {
3571 struct btrfs_trans_handle *trans;
3572 struct btrfs_root *root = BTRFS_I(inode)->root;
3573 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3574 struct extent_map *em = NULL;
3575 struct extent_state *cached_state = NULL;
3576 u64 mask = root->sectorsize - 1;
3577 u64 hole_start = (oldsize + mask) & ~mask;
3578 u64 block_end = (size + mask) & ~mask;
3579 u64 last_byte;
3580 u64 cur_offset;
3581 u64 hole_size;
3582 int err = 0;
3583
3584 if (size <= hole_start)
3585 return 0;
3586
3587 while (1) {
3588 struct btrfs_ordered_extent *ordered;
3589 btrfs_wait_ordered_range(inode, hole_start,
3590 block_end - hole_start);
3591 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3592 &cached_state);
3593 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3594 if (!ordered)
3595 break;
3596 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3597 &cached_state, GFP_NOFS);
3598 btrfs_put_ordered_extent(ordered);
3599 }
3600
3601 cur_offset = hole_start;
3602 while (1) {
3603 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3604 block_end - cur_offset, 0);
3605 if (IS_ERR(em)) {
3606 err = PTR_ERR(em);
3607 break;
3608 }
3609 last_byte = min(extent_map_end(em), block_end);
3610 last_byte = (last_byte + mask) & ~mask;
3611 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3612 u64 hint_byte = 0;
3613 hole_size = last_byte - cur_offset;
3614
3615 trans = btrfs_start_transaction(root, 3);
3616 if (IS_ERR(trans)) {
3617 err = PTR_ERR(trans);
3618 break;
3619 }
3620
3621 err = btrfs_drop_extents(trans, inode, cur_offset,
3622 cur_offset + hole_size,
3623 &hint_byte, 1);
3624 if (err) {
3625 btrfs_abort_transaction(trans, root, err);
3626 btrfs_end_transaction(trans, root);
3627 break;
3628 }
3629
3630 err = btrfs_insert_file_extent(trans, root,
3631 btrfs_ino(inode), cur_offset, 0,
3632 0, hole_size, 0, hole_size,
3633 0, 0, 0);
3634 if (err) {
3635 btrfs_abort_transaction(trans, root, err);
3636 btrfs_end_transaction(trans, root);
3637 break;
3638 }
3639
3640 btrfs_drop_extent_cache(inode, hole_start,
3641 last_byte - 1, 0);
3642
3643 btrfs_update_inode(trans, root, inode);
3644 btrfs_end_transaction(trans, root);
3645 }
3646 free_extent_map(em);
3647 em = NULL;
3648 cur_offset = last_byte;
3649 if (cur_offset >= block_end)
3650 break;
3651 }
3652
3653 free_extent_map(em);
3654 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3655 GFP_NOFS);
3656 return err;
3657 }
3658
3659 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3660 {
3661 struct btrfs_root *root = BTRFS_I(inode)->root;
3662 struct btrfs_trans_handle *trans;
3663 loff_t oldsize = i_size_read(inode);
3664 int ret;
3665
3666 if (newsize == oldsize)
3667 return 0;
3668
3669 if (newsize > oldsize) {
3670 truncate_pagecache(inode, oldsize, newsize);
3671 ret = btrfs_cont_expand(inode, oldsize, newsize);
3672 if (ret)
3673 return ret;
3674
3675 trans = btrfs_start_transaction(root, 1);
3676 if (IS_ERR(trans))
3677 return PTR_ERR(trans);
3678
3679 i_size_write(inode, newsize);
3680 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3681 ret = btrfs_update_inode(trans, root, inode);
3682 btrfs_end_transaction(trans, root);
3683 } else {
3684
3685 /*
3686 * We're truncating a file that used to have good data down to
3687 * zero. Make sure it gets into the ordered flush list so that
3688 * any new writes get down to disk quickly.
3689 */
3690 if (newsize == 0)
3691 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
3692 &BTRFS_I(inode)->runtime_flags);
3693
3694 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3695 truncate_setsize(inode, newsize);
3696 ret = btrfs_truncate(inode);
3697 }
3698
3699 return ret;
3700 }
3701
3702 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3703 {
3704 struct inode *inode = dentry->d_inode;
3705 struct btrfs_root *root = BTRFS_I(inode)->root;
3706 int err;
3707
3708 if (btrfs_root_readonly(root))
3709 return -EROFS;
3710
3711 err = inode_change_ok(inode, attr);
3712 if (err)
3713 return err;
3714
3715 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3716 err = btrfs_setsize(inode, attr->ia_size);
3717 if (err)
3718 return err;
3719 }
3720
3721 if (attr->ia_valid) {
3722 setattr_copy(inode, attr);
3723 inode_inc_iversion(inode);
3724 err = btrfs_dirty_inode(inode);
3725
3726 if (!err && attr->ia_valid & ATTR_MODE)
3727 err = btrfs_acl_chmod(inode);
3728 }
3729
3730 return err;
3731 }
3732
3733 void btrfs_evict_inode(struct inode *inode)
3734 {
3735 struct btrfs_trans_handle *trans;
3736 struct btrfs_root *root = BTRFS_I(inode)->root;
3737 struct btrfs_block_rsv *rsv, *global_rsv;
3738 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
3739 unsigned long nr;
3740 int ret;
3741
3742 trace_btrfs_inode_evict(inode);
3743
3744 truncate_inode_pages(&inode->i_data, 0);
3745 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3746 btrfs_is_free_space_inode(inode)))
3747 goto no_delete;
3748
3749 if (is_bad_inode(inode)) {
3750 btrfs_orphan_del(NULL, inode);
3751 goto no_delete;
3752 }
3753 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3754 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3755
3756 if (root->fs_info->log_root_recovering) {
3757 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3758 &BTRFS_I(inode)->runtime_flags));
3759 goto no_delete;
3760 }
3761
3762 if (inode->i_nlink > 0) {
3763 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3764 goto no_delete;
3765 }
3766
3767 rsv = btrfs_alloc_block_rsv(root);
3768 if (!rsv) {
3769 btrfs_orphan_del(NULL, inode);
3770 goto no_delete;
3771 }
3772 rsv->size = min_size;
3773 global_rsv = &root->fs_info->global_block_rsv;
3774
3775 btrfs_i_size_write(inode, 0);
3776
3777 /*
3778 * This is a bit simpler than btrfs_truncate since
3779 *
3780 * 1) We've already reserved our space for our orphan item in the
3781 * unlink.
3782 * 2) We're going to delete the inode item, so we don't need to update
3783 * it at all.
3784 *
3785 * So we just need to reserve some slack space in case we add bytes when
3786 * doing the truncate.
3787 */
3788 while (1) {
3789 ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
3790
3791 /*
3792 * Try and steal from the global reserve since we will
3793 * likely not use this space anyway, we want to try as
3794 * hard as possible to get this to work.
3795 */
3796 if (ret)
3797 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3798
3799 if (ret) {
3800 printk(KERN_WARNING "Could not get space for a "
3801 "delete, will truncate on mount %d\n", ret);
3802 btrfs_orphan_del(NULL, inode);
3803 btrfs_free_block_rsv(root, rsv);
3804 goto no_delete;
3805 }
3806
3807 trans = btrfs_start_transaction(root, 0);
3808 if (IS_ERR(trans)) {
3809 btrfs_orphan_del(NULL, inode);
3810 btrfs_free_block_rsv(root, rsv);
3811 goto no_delete;
3812 }
3813
3814 trans->block_rsv = rsv;
3815
3816 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3817 if (ret != -EAGAIN)
3818 break;
3819
3820 nr = trans->blocks_used;
3821 btrfs_end_transaction(trans, root);
3822 trans = NULL;
3823 btrfs_btree_balance_dirty(root, nr);
3824 }
3825
3826 btrfs_free_block_rsv(root, rsv);
3827
3828 if (ret == 0) {
3829 trans->block_rsv = root->orphan_block_rsv;
3830 ret = btrfs_orphan_del(trans, inode);
3831 BUG_ON(ret);
3832 }
3833
3834 trans->block_rsv = &root->fs_info->trans_block_rsv;
3835 if (!(root == root->fs_info->tree_root ||
3836 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3837 btrfs_return_ino(root, btrfs_ino(inode));
3838
3839 nr = trans->blocks_used;
3840 btrfs_end_transaction(trans, root);
3841 btrfs_btree_balance_dirty(root, nr);
3842 no_delete:
3843 clear_inode(inode);
3844 return;
3845 }
3846
3847 /*
3848 * this returns the key found in the dir entry in the location pointer.
3849 * If no dir entries were found, location->objectid is 0.
3850 */
3851 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3852 struct btrfs_key *location)
3853 {
3854 const char *name = dentry->d_name.name;
3855 int namelen = dentry->d_name.len;
3856 struct btrfs_dir_item *di;
3857 struct btrfs_path *path;
3858 struct btrfs_root *root = BTRFS_I(dir)->root;
3859 int ret = 0;
3860
3861 path = btrfs_alloc_path();
3862 if (!path)
3863 return -ENOMEM;
3864
3865 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3866 namelen, 0);
3867 if (IS_ERR(di))
3868 ret = PTR_ERR(di);
3869
3870 if (IS_ERR_OR_NULL(di))
3871 goto out_err;
3872
3873 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3874 out:
3875 btrfs_free_path(path);
3876 return ret;
3877 out_err:
3878 location->objectid = 0;
3879 goto out;
3880 }
3881
3882 /*
3883 * when we hit a tree root in a directory, the btrfs part of the inode
3884 * needs to be changed to reflect the root directory of the tree root. This
3885 * is kind of like crossing a mount point.
3886 */
3887 static int fixup_tree_root_location(struct btrfs_root *root,
3888 struct inode *dir,
3889 struct dentry *dentry,
3890 struct btrfs_key *location,
3891 struct btrfs_root **sub_root)
3892 {
3893 struct btrfs_path *path;
3894 struct btrfs_root *new_root;
3895 struct btrfs_root_ref *ref;
3896 struct extent_buffer *leaf;
3897 int ret;
3898 int err = 0;
3899
3900 path = btrfs_alloc_path();
3901 if (!path) {
3902 err = -ENOMEM;
3903 goto out;
3904 }
3905
3906 err = -ENOENT;
3907 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3908 BTRFS_I(dir)->root->root_key.objectid,
3909 location->objectid);
3910 if (ret) {
3911 if (ret < 0)
3912 err = ret;
3913 goto out;
3914 }
3915
3916 leaf = path->nodes[0];
3917 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3918 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3919 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3920 goto out;
3921
3922 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3923 (unsigned long)(ref + 1),
3924 dentry->d_name.len);
3925 if (ret)
3926 goto out;
3927
3928 btrfs_release_path(path);
3929
3930 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3931 if (IS_ERR(new_root)) {
3932 err = PTR_ERR(new_root);
3933 goto out;
3934 }
3935
3936 if (btrfs_root_refs(&new_root->root_item) == 0) {
3937 err = -ENOENT;
3938 goto out;
3939 }
3940
3941 *sub_root = new_root;
3942 location->objectid = btrfs_root_dirid(&new_root->root_item);
3943 location->type = BTRFS_INODE_ITEM_KEY;
3944 location->offset = 0;
3945 err = 0;
3946 out:
3947 btrfs_free_path(path);
3948 return err;
3949 }
3950
3951 static void inode_tree_add(struct inode *inode)
3952 {
3953 struct btrfs_root *root = BTRFS_I(inode)->root;
3954 struct btrfs_inode *entry;
3955 struct rb_node **p;
3956 struct rb_node *parent;
3957 u64 ino = btrfs_ino(inode);
3958 again:
3959 p = &root->inode_tree.rb_node;
3960 parent = NULL;
3961
3962 if (inode_unhashed(inode))
3963 return;
3964
3965 spin_lock(&root->inode_lock);
3966 while (*p) {
3967 parent = *p;
3968 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3969
3970 if (ino < btrfs_ino(&entry->vfs_inode))
3971 p = &parent->rb_left;
3972 else if (ino > btrfs_ino(&entry->vfs_inode))
3973 p = &parent->rb_right;
3974 else {
3975 WARN_ON(!(entry->vfs_inode.i_state &
3976 (I_WILL_FREE | I_FREEING)));
3977 rb_erase(parent, &root->inode_tree);
3978 RB_CLEAR_NODE(parent);
3979 spin_unlock(&root->inode_lock);
3980 goto again;
3981 }
3982 }
3983 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3984 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3985 spin_unlock(&root->inode_lock);
3986 }
3987
3988 static void inode_tree_del(struct inode *inode)
3989 {
3990 struct btrfs_root *root = BTRFS_I(inode)->root;
3991 int empty = 0;
3992
3993 spin_lock(&root->inode_lock);
3994 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3995 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3996 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3997 empty = RB_EMPTY_ROOT(&root->inode_tree);
3998 }
3999 spin_unlock(&root->inode_lock);
4000
4001 /*
4002 * Free space cache has inodes in the tree root, but the tree root has a
4003 * root_refs of 0, so this could end up dropping the tree root as a
4004 * snapshot, so we need the extra !root->fs_info->tree_root check to
4005 * make sure we don't drop it.
4006 */
4007 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4008 root != root->fs_info->tree_root) {
4009 synchronize_srcu(&root->fs_info->subvol_srcu);
4010 spin_lock(&root->inode_lock);
4011 empty = RB_EMPTY_ROOT(&root->inode_tree);
4012 spin_unlock(&root->inode_lock);
4013 if (empty)
4014 btrfs_add_dead_root(root);
4015 }
4016 }
4017
4018 void btrfs_invalidate_inodes(struct btrfs_root *root)
4019 {
4020 struct rb_node *node;
4021 struct rb_node *prev;
4022 struct btrfs_inode *entry;
4023 struct inode *inode;
4024 u64 objectid = 0;
4025
4026 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4027
4028 spin_lock(&root->inode_lock);
4029 again:
4030 node = root->inode_tree.rb_node;
4031 prev = NULL;
4032 while (node) {
4033 prev = node;
4034 entry = rb_entry(node, struct btrfs_inode, rb_node);
4035
4036 if (objectid < btrfs_ino(&entry->vfs_inode))
4037 node = node->rb_left;
4038 else if (objectid > btrfs_ino(&entry->vfs_inode))
4039 node = node->rb_right;
4040 else
4041 break;
4042 }
4043 if (!node) {
4044 while (prev) {
4045 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4046 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4047 node = prev;
4048 break;
4049 }
4050 prev = rb_next(prev);
4051 }
4052 }
4053 while (node) {
4054 entry = rb_entry(node, struct btrfs_inode, rb_node);
4055 objectid = btrfs_ino(&entry->vfs_inode) + 1;
4056 inode = igrab(&entry->vfs_inode);
4057 if (inode) {
4058 spin_unlock(&root->inode_lock);
4059 if (atomic_read(&inode->i_count) > 1)
4060 d_prune_aliases(inode);
4061 /*
4062 * btrfs_drop_inode will have it removed from
4063 * the inode cache when its usage count
4064 * hits zero.
4065 */
4066 iput(inode);
4067 cond_resched();
4068 spin_lock(&root->inode_lock);
4069 goto again;
4070 }
4071
4072 if (cond_resched_lock(&root->inode_lock))
4073 goto again;
4074
4075 node = rb_next(node);
4076 }
4077 spin_unlock(&root->inode_lock);
4078 }
4079
4080 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4081 {
4082 struct btrfs_iget_args *args = p;
4083 inode->i_ino = args->ino;
4084 BTRFS_I(inode)->root = args->root;
4085 return 0;
4086 }
4087
4088 static int btrfs_find_actor(struct inode *inode, void *opaque)
4089 {
4090 struct btrfs_iget_args *args = opaque;
4091 return args->ino == btrfs_ino(inode) &&
4092 args->root == BTRFS_I(inode)->root;
4093 }
4094
4095 static struct inode *btrfs_iget_locked(struct super_block *s,
4096 u64 objectid,
4097 struct btrfs_root *root)
4098 {
4099 struct inode *inode;
4100 struct btrfs_iget_args args;
4101 args.ino = objectid;
4102 args.root = root;
4103
4104 inode = iget5_locked(s, objectid, btrfs_find_actor,
4105 btrfs_init_locked_inode,
4106 (void *)&args);
4107 return inode;
4108 }
4109
4110 /* Get an inode object given its location and corresponding root.
4111 * Returns in *is_new if the inode was read from disk
4112 */
4113 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4114 struct btrfs_root *root, int *new)
4115 {
4116 struct inode *inode;
4117
4118 inode = btrfs_iget_locked(s, location->objectid, root);
4119 if (!inode)
4120 return ERR_PTR(-ENOMEM);
4121
4122 if (inode->i_state & I_NEW) {
4123 BTRFS_I(inode)->root = root;
4124 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4125 btrfs_read_locked_inode(inode);
4126 if (!is_bad_inode(inode)) {
4127 inode_tree_add(inode);
4128 unlock_new_inode(inode);
4129 if (new)
4130 *new = 1;
4131 } else {
4132 unlock_new_inode(inode);
4133 iput(inode);
4134 inode = ERR_PTR(-ESTALE);
4135 }
4136 }
4137
4138 return inode;
4139 }
4140
4141 static struct inode *new_simple_dir(struct super_block *s,
4142 struct btrfs_key *key,
4143 struct btrfs_root *root)
4144 {
4145 struct inode *inode = new_inode(s);
4146
4147 if (!inode)
4148 return ERR_PTR(-ENOMEM);
4149
4150 BTRFS_I(inode)->root = root;
4151 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4152 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4153
4154 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4155 inode->i_op = &btrfs_dir_ro_inode_operations;
4156 inode->i_fop = &simple_dir_operations;
4157 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4158 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4159
4160 return inode;
4161 }
4162
4163 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4164 {
4165 struct inode *inode;
4166 struct btrfs_root *root = BTRFS_I(dir)->root;
4167 struct btrfs_root *sub_root = root;
4168 struct btrfs_key location;
4169 int index;
4170 int ret = 0;
4171
4172 if (dentry->d_name.len > BTRFS_NAME_LEN)
4173 return ERR_PTR(-ENAMETOOLONG);
4174
4175 if (unlikely(d_need_lookup(dentry))) {
4176 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4177 kfree(dentry->d_fsdata);
4178 dentry->d_fsdata = NULL;
4179 /* This thing is hashed, drop it for now */
4180 d_drop(dentry);
4181 } else {
4182 ret = btrfs_inode_by_name(dir, dentry, &location);
4183 }
4184
4185 if (ret < 0)
4186 return ERR_PTR(ret);
4187
4188 if (location.objectid == 0)
4189 return NULL;
4190
4191 if (location.type == BTRFS_INODE_ITEM_KEY) {
4192 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4193 return inode;
4194 }
4195
4196 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4197
4198 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4199 ret = fixup_tree_root_location(root, dir, dentry,
4200 &location, &sub_root);
4201 if (ret < 0) {
4202 if (ret != -ENOENT)
4203 inode = ERR_PTR(ret);
4204 else
4205 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4206 } else {
4207 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4208 }
4209 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4210
4211 if (!IS_ERR(inode) && root != sub_root) {
4212 down_read(&root->fs_info->cleanup_work_sem);
4213 if (!(inode->i_sb->s_flags & MS_RDONLY))
4214 ret = btrfs_orphan_cleanup(sub_root);
4215 up_read(&root->fs_info->cleanup_work_sem);
4216 if (ret)
4217 inode = ERR_PTR(ret);
4218 }
4219
4220 return inode;
4221 }
4222
4223 static int btrfs_dentry_delete(const struct dentry *dentry)
4224 {
4225 struct btrfs_root *root;
4226 struct inode *inode = dentry->d_inode;
4227
4228 if (!inode && !IS_ROOT(dentry))
4229 inode = dentry->d_parent->d_inode;
4230
4231 if (inode) {
4232 root = BTRFS_I(inode)->root;
4233 if (btrfs_root_refs(&root->root_item) == 0)
4234 return 1;
4235
4236 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4237 return 1;
4238 }
4239 return 0;
4240 }
4241
4242 static void btrfs_dentry_release(struct dentry *dentry)
4243 {
4244 if (dentry->d_fsdata)
4245 kfree(dentry->d_fsdata);
4246 }
4247
4248 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4249 struct nameidata *nd)
4250 {
4251 struct dentry *ret;
4252
4253 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4254 if (unlikely(d_need_lookup(dentry))) {
4255 spin_lock(&dentry->d_lock);
4256 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4257 spin_unlock(&dentry->d_lock);
4258 }
4259 return ret;
4260 }
4261
4262 unsigned char btrfs_filetype_table[] = {
4263 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4264 };
4265
4266 static int btrfs_real_readdir(struct file *filp, void *dirent,
4267 filldir_t filldir)
4268 {
4269 struct inode *inode = filp->f_dentry->d_inode;
4270 struct btrfs_root *root = BTRFS_I(inode)->root;
4271 struct btrfs_item *item;
4272 struct btrfs_dir_item *di;
4273 struct btrfs_key key;
4274 struct btrfs_key found_key;
4275 struct btrfs_path *path;
4276 struct list_head ins_list;
4277 struct list_head del_list;
4278 int ret;
4279 struct extent_buffer *leaf;
4280 int slot;
4281 unsigned char d_type;
4282 int over = 0;
4283 u32 di_cur;
4284 u32 di_total;
4285 u32 di_len;
4286 int key_type = BTRFS_DIR_INDEX_KEY;
4287 char tmp_name[32];
4288 char *name_ptr;
4289 int name_len;
4290 int is_curr = 0; /* filp->f_pos points to the current index? */
4291
4292 /* FIXME, use a real flag for deciding about the key type */
4293 if (root->fs_info->tree_root == root)
4294 key_type = BTRFS_DIR_ITEM_KEY;
4295
4296 /* special case for "." */
4297 if (filp->f_pos == 0) {
4298 over = filldir(dirent, ".", 1,
4299 filp->f_pos, btrfs_ino(inode), DT_DIR);
4300 if (over)
4301 return 0;
4302 filp->f_pos = 1;
4303 }
4304 /* special case for .., just use the back ref */
4305 if (filp->f_pos == 1) {
4306 u64 pino = parent_ino(filp->f_path.dentry);
4307 over = filldir(dirent, "..", 2,
4308 filp->f_pos, pino, DT_DIR);
4309 if (over)
4310 return 0;
4311 filp->f_pos = 2;
4312 }
4313 path = btrfs_alloc_path();
4314 if (!path)
4315 return -ENOMEM;
4316
4317 path->reada = 1;
4318
4319 if (key_type == BTRFS_DIR_INDEX_KEY) {
4320 INIT_LIST_HEAD(&ins_list);
4321 INIT_LIST_HEAD(&del_list);
4322 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4323 }
4324
4325 btrfs_set_key_type(&key, key_type);
4326 key.offset = filp->f_pos;
4327 key.objectid = btrfs_ino(inode);
4328
4329 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4330 if (ret < 0)
4331 goto err;
4332
4333 while (1) {
4334 leaf = path->nodes[0];
4335 slot = path->slots[0];
4336 if (slot >= btrfs_header_nritems(leaf)) {
4337 ret = btrfs_next_leaf(root, path);
4338 if (ret < 0)
4339 goto err;
4340 else if (ret > 0)
4341 break;
4342 continue;
4343 }
4344
4345 item = btrfs_item_nr(leaf, slot);
4346 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4347
4348 if (found_key.objectid != key.objectid)
4349 break;
4350 if (btrfs_key_type(&found_key) != key_type)
4351 break;
4352 if (found_key.offset < filp->f_pos)
4353 goto next;
4354 if (key_type == BTRFS_DIR_INDEX_KEY &&
4355 btrfs_should_delete_dir_index(&del_list,
4356 found_key.offset))
4357 goto next;
4358
4359 filp->f_pos = found_key.offset;
4360 is_curr = 1;
4361
4362 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4363 di_cur = 0;
4364 di_total = btrfs_item_size(leaf, item);
4365
4366 while (di_cur < di_total) {
4367 struct btrfs_key location;
4368
4369 if (verify_dir_item(root, leaf, di))
4370 break;
4371
4372 name_len = btrfs_dir_name_len(leaf, di);
4373 if (name_len <= sizeof(tmp_name)) {
4374 name_ptr = tmp_name;
4375 } else {
4376 name_ptr = kmalloc(name_len, GFP_NOFS);
4377 if (!name_ptr) {
4378 ret = -ENOMEM;
4379 goto err;
4380 }
4381 }
4382 read_extent_buffer(leaf, name_ptr,
4383 (unsigned long)(di + 1), name_len);
4384
4385 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4386 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4387
4388
4389 /* is this a reference to our own snapshot? If so
4390 * skip it.
4391 *
4392 * In contrast to old kernels, we insert the snapshot's
4393 * dir item and dir index after it has been created, so
4394 * we won't find a reference to our own snapshot. We
4395 * still keep the following code for backward
4396 * compatibility.
4397 */
4398 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4399 location.objectid == root->root_key.objectid) {
4400 over = 0;
4401 goto skip;
4402 }
4403 over = filldir(dirent, name_ptr, name_len,
4404 found_key.offset, location.objectid,
4405 d_type);
4406
4407 skip:
4408 if (name_ptr != tmp_name)
4409 kfree(name_ptr);
4410
4411 if (over)
4412 goto nopos;
4413 di_len = btrfs_dir_name_len(leaf, di) +
4414 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4415 di_cur += di_len;
4416 di = (struct btrfs_dir_item *)((char *)di + di_len);
4417 }
4418 next:
4419 path->slots[0]++;
4420 }
4421
4422 if (key_type == BTRFS_DIR_INDEX_KEY) {
4423 if (is_curr)
4424 filp->f_pos++;
4425 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4426 &ins_list);
4427 if (ret)
4428 goto nopos;
4429 }
4430
4431 /* Reached end of directory/root. Bump pos past the last item. */
4432 if (key_type == BTRFS_DIR_INDEX_KEY)
4433 /*
4434 * 32-bit glibc will use getdents64, but then strtol -
4435 * so the last number we can serve is this.
4436 */
4437 filp->f_pos = 0x7fffffff;
4438 else
4439 filp->f_pos++;
4440 nopos:
4441 ret = 0;
4442 err:
4443 if (key_type == BTRFS_DIR_INDEX_KEY)
4444 btrfs_put_delayed_items(&ins_list, &del_list);
4445 btrfs_free_path(path);
4446 return ret;
4447 }
4448
4449 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4450 {
4451 struct btrfs_root *root = BTRFS_I(inode)->root;
4452 struct btrfs_trans_handle *trans;
4453 int ret = 0;
4454 bool nolock = false;
4455
4456 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4457 return 0;
4458
4459 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
4460 nolock = true;
4461
4462 if (wbc->sync_mode == WB_SYNC_ALL) {
4463 if (nolock)
4464 trans = btrfs_join_transaction_nolock(root);
4465 else
4466 trans = btrfs_join_transaction(root);
4467 if (IS_ERR(trans))
4468 return PTR_ERR(trans);
4469 if (nolock)
4470 ret = btrfs_end_transaction_nolock(trans, root);
4471 else
4472 ret = btrfs_commit_transaction(trans, root);
4473 }
4474 return ret;
4475 }
4476
4477 /*
4478 * This is somewhat expensive, updating the tree every time the
4479 * inode changes. But, it is most likely to find the inode in cache.
4480 * FIXME, needs more benchmarking...there are no reasons other than performance
4481 * to keep or drop this code.
4482 */
4483 int btrfs_dirty_inode(struct inode *inode)
4484 {
4485 struct btrfs_root *root = BTRFS_I(inode)->root;
4486 struct btrfs_trans_handle *trans;
4487 int ret;
4488
4489 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4490 return 0;
4491
4492 trans = btrfs_join_transaction(root);
4493 if (IS_ERR(trans))
4494 return PTR_ERR(trans);
4495
4496 ret = btrfs_update_inode(trans, root, inode);
4497 if (ret && ret == -ENOSPC) {
4498 /* whoops, lets try again with the full transaction */
4499 btrfs_end_transaction(trans, root);
4500 trans = btrfs_start_transaction(root, 1);
4501 if (IS_ERR(trans))
4502 return PTR_ERR(trans);
4503
4504 ret = btrfs_update_inode(trans, root, inode);
4505 }
4506 btrfs_end_transaction(trans, root);
4507 if (BTRFS_I(inode)->delayed_node)
4508 btrfs_balance_delayed_items(root);
4509
4510 return ret;
4511 }
4512
4513 /*
4514 * This is a copy of file_update_time. We need this so we can return error on
4515 * ENOSPC for updating the inode in the case of file write and mmap writes.
4516 */
4517 static int btrfs_update_time(struct inode *inode, struct timespec *now,
4518 int flags)
4519 {
4520 struct btrfs_root *root = BTRFS_I(inode)->root;
4521
4522 if (btrfs_root_readonly(root))
4523 return -EROFS;
4524
4525 if (flags & S_VERSION)
4526 inode_inc_iversion(inode);
4527 if (flags & S_CTIME)
4528 inode->i_ctime = *now;
4529 if (flags & S_MTIME)
4530 inode->i_mtime = *now;
4531 if (flags & S_ATIME)
4532 inode->i_atime = *now;
4533 return btrfs_dirty_inode(inode);
4534 }
4535
4536 /*
4537 * find the highest existing sequence number in a directory
4538 * and then set the in-memory index_cnt variable to reflect
4539 * free sequence numbers
4540 */
4541 static int btrfs_set_inode_index_count(struct inode *inode)
4542 {
4543 struct btrfs_root *root = BTRFS_I(inode)->root;
4544 struct btrfs_key key, found_key;
4545 struct btrfs_path *path;
4546 struct extent_buffer *leaf;
4547 int ret;
4548
4549 key.objectid = btrfs_ino(inode);
4550 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4551 key.offset = (u64)-1;
4552
4553 path = btrfs_alloc_path();
4554 if (!path)
4555 return -ENOMEM;
4556
4557 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4558 if (ret < 0)
4559 goto out;
4560 /* FIXME: we should be able to handle this */
4561 if (ret == 0)
4562 goto out;
4563 ret = 0;
4564
4565 /*
4566 * MAGIC NUMBER EXPLANATION:
4567 * since we search a directory based on f_pos we have to start at 2
4568 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4569 * else has to start at 2
4570 */
4571 if (path->slots[0] == 0) {
4572 BTRFS_I(inode)->index_cnt = 2;
4573 goto out;
4574 }
4575
4576 path->slots[0]--;
4577
4578 leaf = path->nodes[0];
4579 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4580
4581 if (found_key.objectid != btrfs_ino(inode) ||
4582 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4583 BTRFS_I(inode)->index_cnt = 2;
4584 goto out;
4585 }
4586
4587 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4588 out:
4589 btrfs_free_path(path);
4590 return ret;
4591 }
4592
4593 /*
4594 * helper to find a free sequence number in a given directory. This current
4595 * code is very simple, later versions will do smarter things in the btree
4596 */
4597 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4598 {
4599 int ret = 0;
4600
4601 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4602 ret = btrfs_inode_delayed_dir_index_count(dir);
4603 if (ret) {
4604 ret = btrfs_set_inode_index_count(dir);
4605 if (ret)
4606 return ret;
4607 }
4608 }
4609
4610 *index = BTRFS_I(dir)->index_cnt;
4611 BTRFS_I(dir)->index_cnt++;
4612
4613 return ret;
4614 }
4615
4616 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4617 struct btrfs_root *root,
4618 struct inode *dir,
4619 const char *name, int name_len,
4620 u64 ref_objectid, u64 objectid,
4621 umode_t mode, u64 *index)
4622 {
4623 struct inode *inode;
4624 struct btrfs_inode_item *inode_item;
4625 struct btrfs_key *location;
4626 struct btrfs_path *path;
4627 struct btrfs_inode_ref *ref;
4628 struct btrfs_key key[2];
4629 u32 sizes[2];
4630 unsigned long ptr;
4631 int ret;
4632 int owner;
4633
4634 path = btrfs_alloc_path();
4635 if (!path)
4636 return ERR_PTR(-ENOMEM);
4637
4638 inode = new_inode(root->fs_info->sb);
4639 if (!inode) {
4640 btrfs_free_path(path);
4641 return ERR_PTR(-ENOMEM);
4642 }
4643
4644 /*
4645 * we have to initialize this early, so we can reclaim the inode
4646 * number if we fail afterwards in this function.
4647 */
4648 inode->i_ino = objectid;
4649
4650 if (dir) {
4651 trace_btrfs_inode_request(dir);
4652
4653 ret = btrfs_set_inode_index(dir, index);
4654 if (ret) {
4655 btrfs_free_path(path);
4656 iput(inode);
4657 return ERR_PTR(ret);
4658 }
4659 }
4660 /*
4661 * index_cnt is ignored for everything but a dir,
4662 * btrfs_get_inode_index_count has an explanation for the magic
4663 * number
4664 */
4665 BTRFS_I(inode)->index_cnt = 2;
4666 BTRFS_I(inode)->root = root;
4667 BTRFS_I(inode)->generation = trans->transid;
4668 inode->i_generation = BTRFS_I(inode)->generation;
4669
4670 if (S_ISDIR(mode))
4671 owner = 0;
4672 else
4673 owner = 1;
4674
4675 key[0].objectid = objectid;
4676 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4677 key[0].offset = 0;
4678
4679 key[1].objectid = objectid;
4680 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4681 key[1].offset = ref_objectid;
4682
4683 sizes[0] = sizeof(struct btrfs_inode_item);
4684 sizes[1] = name_len + sizeof(*ref);
4685
4686 path->leave_spinning = 1;
4687 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4688 if (ret != 0)
4689 goto fail;
4690
4691 inode_init_owner(inode, dir, mode);
4692 inode_set_bytes(inode, 0);
4693 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4694 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4695 struct btrfs_inode_item);
4696 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
4697 sizeof(*inode_item));
4698 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4699
4700 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4701 struct btrfs_inode_ref);
4702 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4703 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4704 ptr = (unsigned long)(ref + 1);
4705 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4706
4707 btrfs_mark_buffer_dirty(path->nodes[0]);
4708 btrfs_free_path(path);
4709
4710 location = &BTRFS_I(inode)->location;
4711 location->objectid = objectid;
4712 location->offset = 0;
4713 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4714
4715 btrfs_inherit_iflags(inode, dir);
4716
4717 if (S_ISREG(mode)) {
4718 if (btrfs_test_opt(root, NODATASUM))
4719 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4720 if (btrfs_test_opt(root, NODATACOW) ||
4721 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4722 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4723 }
4724
4725 insert_inode_hash(inode);
4726 inode_tree_add(inode);
4727
4728 trace_btrfs_inode_new(inode);
4729 btrfs_set_inode_last_trans(trans, inode);
4730
4731 btrfs_update_root_times(trans, root);
4732
4733 return inode;
4734 fail:
4735 if (dir)
4736 BTRFS_I(dir)->index_cnt--;
4737 btrfs_free_path(path);
4738 iput(inode);
4739 return ERR_PTR(ret);
4740 }
4741
4742 static inline u8 btrfs_inode_type(struct inode *inode)
4743 {
4744 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4745 }
4746
4747 /*
4748 * utility function to add 'inode' into 'parent_inode' with
4749 * a give name and a given sequence number.
4750 * if 'add_backref' is true, also insert a backref from the
4751 * inode to the parent directory.
4752 */
4753 int btrfs_add_link(struct btrfs_trans_handle *trans,
4754 struct inode *parent_inode, struct inode *inode,
4755 const char *name, int name_len, int add_backref, u64 index)
4756 {
4757 int ret = 0;
4758 struct btrfs_key key;
4759 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4760 u64 ino = btrfs_ino(inode);
4761 u64 parent_ino = btrfs_ino(parent_inode);
4762
4763 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4764 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4765 } else {
4766 key.objectid = ino;
4767 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4768 key.offset = 0;
4769 }
4770
4771 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4772 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4773 key.objectid, root->root_key.objectid,
4774 parent_ino, index, name, name_len);
4775 } else if (add_backref) {
4776 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4777 parent_ino, index);
4778 }
4779
4780 /* Nothing to clean up yet */
4781 if (ret)
4782 return ret;
4783
4784 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4785 parent_inode, &key,
4786 btrfs_inode_type(inode), index);
4787 if (ret == -EEXIST)
4788 goto fail_dir_item;
4789 else if (ret) {
4790 btrfs_abort_transaction(trans, root, ret);
4791 return ret;
4792 }
4793
4794 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4795 name_len * 2);
4796 inode_inc_iversion(parent_inode);
4797 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4798 ret = btrfs_update_inode(trans, root, parent_inode);
4799 if (ret)
4800 btrfs_abort_transaction(trans, root, ret);
4801 return ret;
4802
4803 fail_dir_item:
4804 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4805 u64 local_index;
4806 int err;
4807 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4808 key.objectid, root->root_key.objectid,
4809 parent_ino, &local_index, name, name_len);
4810
4811 } else if (add_backref) {
4812 u64 local_index;
4813 int err;
4814
4815 err = btrfs_del_inode_ref(trans, root, name, name_len,
4816 ino, parent_ino, &local_index);
4817 }
4818 return ret;
4819 }
4820
4821 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4822 struct inode *dir, struct dentry *dentry,
4823 struct inode *inode, int backref, u64 index)
4824 {
4825 int err = btrfs_add_link(trans, dir, inode,
4826 dentry->d_name.name, dentry->d_name.len,
4827 backref, index);
4828 if (err > 0)
4829 err = -EEXIST;
4830 return err;
4831 }
4832
4833 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4834 umode_t mode, dev_t rdev)
4835 {
4836 struct btrfs_trans_handle *trans;
4837 struct btrfs_root *root = BTRFS_I(dir)->root;
4838 struct inode *inode = NULL;
4839 int err;
4840 int drop_inode = 0;
4841 u64 objectid;
4842 unsigned long nr = 0;
4843 u64 index = 0;
4844
4845 if (!new_valid_dev(rdev))
4846 return -EINVAL;
4847
4848 /*
4849 * 2 for inode item and ref
4850 * 2 for dir items
4851 * 1 for xattr if selinux is on
4852 */
4853 trans = btrfs_start_transaction(root, 5);
4854 if (IS_ERR(trans))
4855 return PTR_ERR(trans);
4856
4857 err = btrfs_find_free_ino(root, &objectid);
4858 if (err)
4859 goto out_unlock;
4860
4861 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4862 dentry->d_name.len, btrfs_ino(dir), objectid,
4863 mode, &index);
4864 if (IS_ERR(inode)) {
4865 err = PTR_ERR(inode);
4866 goto out_unlock;
4867 }
4868
4869 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4870 if (err) {
4871 drop_inode = 1;
4872 goto out_unlock;
4873 }
4874
4875 /*
4876 * If the active LSM wants to access the inode during
4877 * d_instantiate it needs these. Smack checks to see
4878 * if the filesystem supports xattrs by looking at the
4879 * ops vector.
4880 */
4881
4882 inode->i_op = &btrfs_special_inode_operations;
4883 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4884 if (err)
4885 drop_inode = 1;
4886 else {
4887 init_special_inode(inode, inode->i_mode, rdev);
4888 btrfs_update_inode(trans, root, inode);
4889 d_instantiate(dentry, inode);
4890 }
4891 out_unlock:
4892 nr = trans->blocks_used;
4893 btrfs_end_transaction(trans, root);
4894 btrfs_btree_balance_dirty(root, nr);
4895 if (drop_inode) {
4896 inode_dec_link_count(inode);
4897 iput(inode);
4898 }
4899 return err;
4900 }
4901
4902 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4903 umode_t mode, struct nameidata *nd)
4904 {
4905 struct btrfs_trans_handle *trans;
4906 struct btrfs_root *root = BTRFS_I(dir)->root;
4907 struct inode *inode = NULL;
4908 int drop_inode = 0;
4909 int err;
4910 unsigned long nr = 0;
4911 u64 objectid;
4912 u64 index = 0;
4913
4914 /*
4915 * 2 for inode item and ref
4916 * 2 for dir items
4917 * 1 for xattr if selinux is on
4918 */
4919 trans = btrfs_start_transaction(root, 5);
4920 if (IS_ERR(trans))
4921 return PTR_ERR(trans);
4922
4923 err = btrfs_find_free_ino(root, &objectid);
4924 if (err)
4925 goto out_unlock;
4926
4927 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4928 dentry->d_name.len, btrfs_ino(dir), objectid,
4929 mode, &index);
4930 if (IS_ERR(inode)) {
4931 err = PTR_ERR(inode);
4932 goto out_unlock;
4933 }
4934
4935 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4936 if (err) {
4937 drop_inode = 1;
4938 goto out_unlock;
4939 }
4940
4941 /*
4942 * If the active LSM wants to access the inode during
4943 * d_instantiate it needs these. Smack checks to see
4944 * if the filesystem supports xattrs by looking at the
4945 * ops vector.
4946 */
4947 inode->i_fop = &btrfs_file_operations;
4948 inode->i_op = &btrfs_file_inode_operations;
4949
4950 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4951 if (err)
4952 drop_inode = 1;
4953 else {
4954 inode->i_mapping->a_ops = &btrfs_aops;
4955 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4956 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4957 d_instantiate(dentry, inode);
4958 }
4959 out_unlock:
4960 nr = trans->blocks_used;
4961 btrfs_end_transaction(trans, root);
4962 if (drop_inode) {
4963 inode_dec_link_count(inode);
4964 iput(inode);
4965 }
4966 btrfs_btree_balance_dirty(root, nr);
4967 return err;
4968 }
4969
4970 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4971 struct dentry *dentry)
4972 {
4973 struct btrfs_trans_handle *trans;
4974 struct btrfs_root *root = BTRFS_I(dir)->root;
4975 struct inode *inode = old_dentry->d_inode;
4976 u64 index;
4977 unsigned long nr = 0;
4978 int err;
4979 int drop_inode = 0;
4980
4981 /* do not allow sys_link's with other subvols of the same device */
4982 if (root->objectid != BTRFS_I(inode)->root->objectid)
4983 return -EXDEV;
4984
4985 if (inode->i_nlink == ~0U)
4986 return -EMLINK;
4987
4988 err = btrfs_set_inode_index(dir, &index);
4989 if (err)
4990 goto fail;
4991
4992 /*
4993 * 2 items for inode and inode ref
4994 * 2 items for dir items
4995 * 1 item for parent inode
4996 */
4997 trans = btrfs_start_transaction(root, 5);
4998 if (IS_ERR(trans)) {
4999 err = PTR_ERR(trans);
5000 goto fail;
5001 }
5002
5003 btrfs_inc_nlink(inode);
5004 inode_inc_iversion(inode);
5005 inode->i_ctime = CURRENT_TIME;
5006 ihold(inode);
5007
5008 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5009
5010 if (err) {
5011 drop_inode = 1;
5012 } else {
5013 struct dentry *parent = dentry->d_parent;
5014 err = btrfs_update_inode(trans, root, inode);
5015 if (err)
5016 goto fail;
5017 d_instantiate(dentry, inode);
5018 btrfs_log_new_name(trans, inode, NULL, parent);
5019 }
5020
5021 nr = trans->blocks_used;
5022 btrfs_end_transaction(trans, root);
5023 fail:
5024 if (drop_inode) {
5025 inode_dec_link_count(inode);
5026 iput(inode);
5027 }
5028 btrfs_btree_balance_dirty(root, nr);
5029 return err;
5030 }
5031
5032 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5033 {
5034 struct inode *inode = NULL;
5035 struct btrfs_trans_handle *trans;
5036 struct btrfs_root *root = BTRFS_I(dir)->root;
5037 int err = 0;
5038 int drop_on_err = 0;
5039 u64 objectid = 0;
5040 u64 index = 0;
5041 unsigned long nr = 1;
5042
5043 /*
5044 * 2 items for inode and ref
5045 * 2 items for dir items
5046 * 1 for xattr if selinux is on
5047 */
5048 trans = btrfs_start_transaction(root, 5);
5049 if (IS_ERR(trans))
5050 return PTR_ERR(trans);
5051
5052 err = btrfs_find_free_ino(root, &objectid);
5053 if (err)
5054 goto out_fail;
5055
5056 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5057 dentry->d_name.len, btrfs_ino(dir), objectid,
5058 S_IFDIR | mode, &index);
5059 if (IS_ERR(inode)) {
5060 err = PTR_ERR(inode);
5061 goto out_fail;
5062 }
5063
5064 drop_on_err = 1;
5065
5066 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5067 if (err)
5068 goto out_fail;
5069
5070 inode->i_op = &btrfs_dir_inode_operations;
5071 inode->i_fop = &btrfs_dir_file_operations;
5072
5073 btrfs_i_size_write(inode, 0);
5074 err = btrfs_update_inode(trans, root, inode);
5075 if (err)
5076 goto out_fail;
5077
5078 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5079 dentry->d_name.len, 0, index);
5080 if (err)
5081 goto out_fail;
5082
5083 d_instantiate(dentry, inode);
5084 drop_on_err = 0;
5085
5086 out_fail:
5087 nr = trans->blocks_used;
5088 btrfs_end_transaction(trans, root);
5089 if (drop_on_err)
5090 iput(inode);
5091 btrfs_btree_balance_dirty(root, nr);
5092 return err;
5093 }
5094
5095 /* helper for btfs_get_extent. Given an existing extent in the tree,
5096 * and an extent that you want to insert, deal with overlap and insert
5097 * the new extent into the tree.
5098 */
5099 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5100 struct extent_map *existing,
5101 struct extent_map *em,
5102 u64 map_start, u64 map_len)
5103 {
5104 u64 start_diff;
5105
5106 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5107 start_diff = map_start - em->start;
5108 em->start = map_start;
5109 em->len = map_len;
5110 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5111 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5112 em->block_start += start_diff;
5113 em->block_len -= start_diff;
5114 }
5115 return add_extent_mapping(em_tree, em);
5116 }
5117
5118 static noinline int uncompress_inline(struct btrfs_path *path,
5119 struct inode *inode, struct page *page,
5120 size_t pg_offset, u64 extent_offset,
5121 struct btrfs_file_extent_item *item)
5122 {
5123 int ret;
5124 struct extent_buffer *leaf = path->nodes[0];
5125 char *tmp;
5126 size_t max_size;
5127 unsigned long inline_size;
5128 unsigned long ptr;
5129 int compress_type;
5130
5131 WARN_ON(pg_offset != 0);
5132 compress_type = btrfs_file_extent_compression(leaf, item);
5133 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5134 inline_size = btrfs_file_extent_inline_item_len(leaf,
5135 btrfs_item_nr(leaf, path->slots[0]));
5136 tmp = kmalloc(inline_size, GFP_NOFS);
5137 if (!tmp)
5138 return -ENOMEM;
5139 ptr = btrfs_file_extent_inline_start(item);
5140
5141 read_extent_buffer(leaf, tmp, ptr, inline_size);
5142
5143 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5144 ret = btrfs_decompress(compress_type, tmp, page,
5145 extent_offset, inline_size, max_size);
5146 if (ret) {
5147 char *kaddr = kmap_atomic(page);
5148 unsigned long copy_size = min_t(u64,
5149 PAGE_CACHE_SIZE - pg_offset,
5150 max_size - extent_offset);
5151 memset(kaddr + pg_offset, 0, copy_size);
5152 kunmap_atomic(kaddr);
5153 }
5154 kfree(tmp);
5155 return 0;
5156 }
5157
5158 /*
5159 * a bit scary, this does extent mapping from logical file offset to the disk.
5160 * the ugly parts come from merging extents from the disk with the in-ram
5161 * representation. This gets more complex because of the data=ordered code,
5162 * where the in-ram extents might be locked pending data=ordered completion.
5163 *
5164 * This also copies inline extents directly into the page.
5165 */
5166
5167 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5168 size_t pg_offset, u64 start, u64 len,
5169 int create)
5170 {
5171 int ret;
5172 int err = 0;
5173 u64 bytenr;
5174 u64 extent_start = 0;
5175 u64 extent_end = 0;
5176 u64 objectid = btrfs_ino(inode);
5177 u32 found_type;
5178 struct btrfs_path *path = NULL;
5179 struct btrfs_root *root = BTRFS_I(inode)->root;
5180 struct btrfs_file_extent_item *item;
5181 struct extent_buffer *leaf;
5182 struct btrfs_key found_key;
5183 struct extent_map *em = NULL;
5184 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5185 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5186 struct btrfs_trans_handle *trans = NULL;
5187 int compress_type;
5188
5189 again:
5190 read_lock(&em_tree->lock);
5191 em = lookup_extent_mapping(em_tree, start, len);
5192 if (em)
5193 em->bdev = root->fs_info->fs_devices->latest_bdev;
5194 read_unlock(&em_tree->lock);
5195
5196 if (em) {
5197 if (em->start > start || em->start + em->len <= start)
5198 free_extent_map(em);
5199 else if (em->block_start == EXTENT_MAP_INLINE && page)
5200 free_extent_map(em);
5201 else
5202 goto out;
5203 }
5204 em = alloc_extent_map();
5205 if (!em) {
5206 err = -ENOMEM;
5207 goto out;
5208 }
5209 em->bdev = root->fs_info->fs_devices->latest_bdev;
5210 em->start = EXTENT_MAP_HOLE;
5211 em->orig_start = EXTENT_MAP_HOLE;
5212 em->len = (u64)-1;
5213 em->block_len = (u64)-1;
5214
5215 if (!path) {
5216 path = btrfs_alloc_path();
5217 if (!path) {
5218 err = -ENOMEM;
5219 goto out;
5220 }
5221 /*
5222 * Chances are we'll be called again, so go ahead and do
5223 * readahead
5224 */
5225 path->reada = 1;
5226 }
5227
5228 ret = btrfs_lookup_file_extent(trans, root, path,
5229 objectid, start, trans != NULL);
5230 if (ret < 0) {
5231 err = ret;
5232 goto out;
5233 }
5234
5235 if (ret != 0) {
5236 if (path->slots[0] == 0)
5237 goto not_found;
5238 path->slots[0]--;
5239 }
5240
5241 leaf = path->nodes[0];
5242 item = btrfs_item_ptr(leaf, path->slots[0],
5243 struct btrfs_file_extent_item);
5244 /* are we inside the extent that was found? */
5245 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5246 found_type = btrfs_key_type(&found_key);
5247 if (found_key.objectid != objectid ||
5248 found_type != BTRFS_EXTENT_DATA_KEY) {
5249 goto not_found;
5250 }
5251
5252 found_type = btrfs_file_extent_type(leaf, item);
5253 extent_start = found_key.offset;
5254 compress_type = btrfs_file_extent_compression(leaf, item);
5255 if (found_type == BTRFS_FILE_EXTENT_REG ||
5256 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5257 extent_end = extent_start +
5258 btrfs_file_extent_num_bytes(leaf, item);
5259 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5260 size_t size;
5261 size = btrfs_file_extent_inline_len(leaf, item);
5262 extent_end = (extent_start + size + root->sectorsize - 1) &
5263 ~((u64)root->sectorsize - 1);
5264 }
5265
5266 if (start >= extent_end) {
5267 path->slots[0]++;
5268 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5269 ret = btrfs_next_leaf(root, path);
5270 if (ret < 0) {
5271 err = ret;
5272 goto out;
5273 }
5274 if (ret > 0)
5275 goto not_found;
5276 leaf = path->nodes[0];
5277 }
5278 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5279 if (found_key.objectid != objectid ||
5280 found_key.type != BTRFS_EXTENT_DATA_KEY)
5281 goto not_found;
5282 if (start + len <= found_key.offset)
5283 goto not_found;
5284 em->start = start;
5285 em->len = found_key.offset - start;
5286 goto not_found_em;
5287 }
5288
5289 if (found_type == BTRFS_FILE_EXTENT_REG ||
5290 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5291 em->start = extent_start;
5292 em->len = extent_end - extent_start;
5293 em->orig_start = extent_start -
5294 btrfs_file_extent_offset(leaf, item);
5295 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5296 if (bytenr == 0) {
5297 em->block_start = EXTENT_MAP_HOLE;
5298 goto insert;
5299 }
5300 if (compress_type != BTRFS_COMPRESS_NONE) {
5301 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5302 em->compress_type = compress_type;
5303 em->block_start = bytenr;
5304 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5305 item);
5306 } else {
5307 bytenr += btrfs_file_extent_offset(leaf, item);
5308 em->block_start = bytenr;
5309 em->block_len = em->len;
5310 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5311 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5312 }
5313 goto insert;
5314 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5315 unsigned long ptr;
5316 char *map;
5317 size_t size;
5318 size_t extent_offset;
5319 size_t copy_size;
5320
5321 em->block_start = EXTENT_MAP_INLINE;
5322 if (!page || create) {
5323 em->start = extent_start;
5324 em->len = extent_end - extent_start;
5325 goto out;
5326 }
5327
5328 size = btrfs_file_extent_inline_len(leaf, item);
5329 extent_offset = page_offset(page) + pg_offset - extent_start;
5330 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5331 size - extent_offset);
5332 em->start = extent_start + extent_offset;
5333 em->len = (copy_size + root->sectorsize - 1) &
5334 ~((u64)root->sectorsize - 1);
5335 em->orig_start = EXTENT_MAP_INLINE;
5336 if (compress_type) {
5337 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5338 em->compress_type = compress_type;
5339 }
5340 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5341 if (create == 0 && !PageUptodate(page)) {
5342 if (btrfs_file_extent_compression(leaf, item) !=
5343 BTRFS_COMPRESS_NONE) {
5344 ret = uncompress_inline(path, inode, page,
5345 pg_offset,
5346 extent_offset, item);
5347 BUG_ON(ret); /* -ENOMEM */
5348 } else {
5349 map = kmap(page);
5350 read_extent_buffer(leaf, map + pg_offset, ptr,
5351 copy_size);
5352 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5353 memset(map + pg_offset + copy_size, 0,
5354 PAGE_CACHE_SIZE - pg_offset -
5355 copy_size);
5356 }
5357 kunmap(page);
5358 }
5359 flush_dcache_page(page);
5360 } else if (create && PageUptodate(page)) {
5361 BUG();
5362 if (!trans) {
5363 kunmap(page);
5364 free_extent_map(em);
5365 em = NULL;
5366
5367 btrfs_release_path(path);
5368 trans = btrfs_join_transaction(root);
5369
5370 if (IS_ERR(trans))
5371 return ERR_CAST(trans);
5372 goto again;
5373 }
5374 map = kmap(page);
5375 write_extent_buffer(leaf, map + pg_offset, ptr,
5376 copy_size);
5377 kunmap(page);
5378 btrfs_mark_buffer_dirty(leaf);
5379 }
5380 set_extent_uptodate(io_tree, em->start,
5381 extent_map_end(em) - 1, NULL, GFP_NOFS);
5382 goto insert;
5383 } else {
5384 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5385 WARN_ON(1);
5386 }
5387 not_found:
5388 em->start = start;
5389 em->len = len;
5390 not_found_em:
5391 em->block_start = EXTENT_MAP_HOLE;
5392 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5393 insert:
5394 btrfs_release_path(path);
5395 if (em->start > start || extent_map_end(em) <= start) {
5396 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5397 "[%llu %llu]\n", (unsigned long long)em->start,
5398 (unsigned long long)em->len,
5399 (unsigned long long)start,
5400 (unsigned long long)len);
5401 err = -EIO;
5402 goto out;
5403 }
5404
5405 err = 0;
5406 write_lock(&em_tree->lock);
5407 ret = add_extent_mapping(em_tree, em);
5408 /* it is possible that someone inserted the extent into the tree
5409 * while we had the lock dropped. It is also possible that
5410 * an overlapping map exists in the tree
5411 */
5412 if (ret == -EEXIST) {
5413 struct extent_map *existing;
5414
5415 ret = 0;
5416
5417 existing = lookup_extent_mapping(em_tree, start, len);
5418 if (existing && (existing->start > start ||
5419 existing->start + existing->len <= start)) {
5420 free_extent_map(existing);
5421 existing = NULL;
5422 }
5423 if (!existing) {
5424 existing = lookup_extent_mapping(em_tree, em->start,
5425 em->len);
5426 if (existing) {
5427 err = merge_extent_mapping(em_tree, existing,
5428 em, start,
5429 root->sectorsize);
5430 free_extent_map(existing);
5431 if (err) {
5432 free_extent_map(em);
5433 em = NULL;
5434 }
5435 } else {
5436 err = -EIO;
5437 free_extent_map(em);
5438 em = NULL;
5439 }
5440 } else {
5441 free_extent_map(em);
5442 em = existing;
5443 err = 0;
5444 }
5445 }
5446 write_unlock(&em_tree->lock);
5447 out:
5448
5449 trace_btrfs_get_extent(root, em);
5450
5451 if (path)
5452 btrfs_free_path(path);
5453 if (trans) {
5454 ret = btrfs_end_transaction(trans, root);
5455 if (!err)
5456 err = ret;
5457 }
5458 if (err) {
5459 free_extent_map(em);
5460 return ERR_PTR(err);
5461 }
5462 BUG_ON(!em); /* Error is always set */
5463 return em;
5464 }
5465
5466 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5467 size_t pg_offset, u64 start, u64 len,
5468 int create)
5469 {
5470 struct extent_map *em;
5471 struct extent_map *hole_em = NULL;
5472 u64 range_start = start;
5473 u64 end;
5474 u64 found;
5475 u64 found_end;
5476 int err = 0;
5477
5478 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5479 if (IS_ERR(em))
5480 return em;
5481 if (em) {
5482 /*
5483 * if our em maps to a hole, there might
5484 * actually be delalloc bytes behind it
5485 */
5486 if (em->block_start != EXTENT_MAP_HOLE)
5487 return em;
5488 else
5489 hole_em = em;
5490 }
5491
5492 /* check to see if we've wrapped (len == -1 or similar) */
5493 end = start + len;
5494 if (end < start)
5495 end = (u64)-1;
5496 else
5497 end -= 1;
5498
5499 em = NULL;
5500
5501 /* ok, we didn't find anything, lets look for delalloc */
5502 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5503 end, len, EXTENT_DELALLOC, 1);
5504 found_end = range_start + found;
5505 if (found_end < range_start)
5506 found_end = (u64)-1;
5507
5508 /*
5509 * we didn't find anything useful, return
5510 * the original results from get_extent()
5511 */
5512 if (range_start > end || found_end <= start) {
5513 em = hole_em;
5514 hole_em = NULL;
5515 goto out;
5516 }
5517
5518 /* adjust the range_start to make sure it doesn't
5519 * go backwards from the start they passed in
5520 */
5521 range_start = max(start,range_start);
5522 found = found_end - range_start;
5523
5524 if (found > 0) {
5525 u64 hole_start = start;
5526 u64 hole_len = len;
5527
5528 em = alloc_extent_map();
5529 if (!em) {
5530 err = -ENOMEM;
5531 goto out;
5532 }
5533 /*
5534 * when btrfs_get_extent can't find anything it
5535 * returns one huge hole
5536 *
5537 * make sure what it found really fits our range, and
5538 * adjust to make sure it is based on the start from
5539 * the caller
5540 */
5541 if (hole_em) {
5542 u64 calc_end = extent_map_end(hole_em);
5543
5544 if (calc_end <= start || (hole_em->start > end)) {
5545 free_extent_map(hole_em);
5546 hole_em = NULL;
5547 } else {
5548 hole_start = max(hole_em->start, start);
5549 hole_len = calc_end - hole_start;
5550 }
5551 }
5552 em->bdev = NULL;
5553 if (hole_em && range_start > hole_start) {
5554 /* our hole starts before our delalloc, so we
5555 * have to return just the parts of the hole
5556 * that go until the delalloc starts
5557 */
5558 em->len = min(hole_len,
5559 range_start - hole_start);
5560 em->start = hole_start;
5561 em->orig_start = hole_start;
5562 /*
5563 * don't adjust block start at all,
5564 * it is fixed at EXTENT_MAP_HOLE
5565 */
5566 em->block_start = hole_em->block_start;
5567 em->block_len = hole_len;
5568 } else {
5569 em->start = range_start;
5570 em->len = found;
5571 em->orig_start = range_start;
5572 em->block_start = EXTENT_MAP_DELALLOC;
5573 em->block_len = found;
5574 }
5575 } else if (hole_em) {
5576 return hole_em;
5577 }
5578 out:
5579
5580 free_extent_map(hole_em);
5581 if (err) {
5582 free_extent_map(em);
5583 return ERR_PTR(err);
5584 }
5585 return em;
5586 }
5587
5588 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5589 struct extent_map *em,
5590 u64 start, u64 len)
5591 {
5592 struct btrfs_root *root = BTRFS_I(inode)->root;
5593 struct btrfs_trans_handle *trans;
5594 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5595 struct btrfs_key ins;
5596 u64 alloc_hint;
5597 int ret;
5598 bool insert = false;
5599
5600 /*
5601 * Ok if the extent map we looked up is a hole and is for the exact
5602 * range we want, there is no reason to allocate a new one, however if
5603 * it is not right then we need to free this one and drop the cache for
5604 * our range.
5605 */
5606 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5607 em->len != len) {
5608 free_extent_map(em);
5609 em = NULL;
5610 insert = true;
5611 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5612 }
5613
5614 trans = btrfs_join_transaction(root);
5615 if (IS_ERR(trans))
5616 return ERR_CAST(trans);
5617
5618 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5619 btrfs_add_inode_defrag(trans, inode);
5620
5621 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5622
5623 alloc_hint = get_extent_allocation_hint(inode, start, len);
5624 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5625 alloc_hint, &ins, 1);
5626 if (ret) {
5627 em = ERR_PTR(ret);
5628 goto out;
5629 }
5630
5631 if (!em) {
5632 em = alloc_extent_map();
5633 if (!em) {
5634 em = ERR_PTR(-ENOMEM);
5635 goto out;
5636 }
5637 }
5638
5639 em->start = start;
5640 em->orig_start = em->start;
5641 em->len = ins.offset;
5642
5643 em->block_start = ins.objectid;
5644 em->block_len = ins.offset;
5645 em->bdev = root->fs_info->fs_devices->latest_bdev;
5646
5647 /*
5648 * We need to do this because if we're using the original em we searched
5649 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5650 */
5651 em->flags = 0;
5652 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5653
5654 while (insert) {
5655 write_lock(&em_tree->lock);
5656 ret = add_extent_mapping(em_tree, em);
5657 write_unlock(&em_tree->lock);
5658 if (ret != -EEXIST)
5659 break;
5660 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5661 }
5662
5663 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5664 ins.offset, ins.offset, 0);
5665 if (ret) {
5666 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5667 em = ERR_PTR(ret);
5668 }
5669 out:
5670 btrfs_end_transaction(trans, root);
5671 return em;
5672 }
5673
5674 /*
5675 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5676 * block must be cow'd
5677 */
5678 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5679 struct inode *inode, u64 offset, u64 len)
5680 {
5681 struct btrfs_path *path;
5682 int ret;
5683 struct extent_buffer *leaf;
5684 struct btrfs_root *root = BTRFS_I(inode)->root;
5685 struct btrfs_file_extent_item *fi;
5686 struct btrfs_key key;
5687 u64 disk_bytenr;
5688 u64 backref_offset;
5689 u64 extent_end;
5690 u64 num_bytes;
5691 int slot;
5692 int found_type;
5693
5694 path = btrfs_alloc_path();
5695 if (!path)
5696 return -ENOMEM;
5697
5698 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5699 offset, 0);
5700 if (ret < 0)
5701 goto out;
5702
5703 slot = path->slots[0];
5704 if (ret == 1) {
5705 if (slot == 0) {
5706 /* can't find the item, must cow */
5707 ret = 0;
5708 goto out;
5709 }
5710 slot--;
5711 }
5712 ret = 0;
5713 leaf = path->nodes[0];
5714 btrfs_item_key_to_cpu(leaf, &key, slot);
5715 if (key.objectid != btrfs_ino(inode) ||
5716 key.type != BTRFS_EXTENT_DATA_KEY) {
5717 /* not our file or wrong item type, must cow */
5718 goto out;
5719 }
5720
5721 if (key.offset > offset) {
5722 /* Wrong offset, must cow */
5723 goto out;
5724 }
5725
5726 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5727 found_type = btrfs_file_extent_type(leaf, fi);
5728 if (found_type != BTRFS_FILE_EXTENT_REG &&
5729 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5730 /* not a regular extent, must cow */
5731 goto out;
5732 }
5733 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5734 backref_offset = btrfs_file_extent_offset(leaf, fi);
5735
5736 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5737 if (extent_end < offset + len) {
5738 /* extent doesn't include our full range, must cow */
5739 goto out;
5740 }
5741
5742 if (btrfs_extent_readonly(root, disk_bytenr))
5743 goto out;
5744
5745 /*
5746 * look for other files referencing this extent, if we
5747 * find any we must cow
5748 */
5749 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5750 key.offset - backref_offset, disk_bytenr))
5751 goto out;
5752
5753 /*
5754 * adjust disk_bytenr and num_bytes to cover just the bytes
5755 * in this extent we are about to write. If there
5756 * are any csums in that range we have to cow in order
5757 * to keep the csums correct
5758 */
5759 disk_bytenr += backref_offset;
5760 disk_bytenr += offset - key.offset;
5761 num_bytes = min(offset + len, extent_end) - offset;
5762 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5763 goto out;
5764 /*
5765 * all of the above have passed, it is safe to overwrite this extent
5766 * without cow
5767 */
5768 ret = 1;
5769 out:
5770 btrfs_free_path(path);
5771 return ret;
5772 }
5773
5774 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
5775 struct extent_state **cached_state, int writing)
5776 {
5777 struct btrfs_ordered_extent *ordered;
5778 int ret = 0;
5779
5780 while (1) {
5781 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5782 0, cached_state);
5783 /*
5784 * We're concerned with the entire range that we're going to be
5785 * doing DIO to, so we need to make sure theres no ordered
5786 * extents in this range.
5787 */
5788 ordered = btrfs_lookup_ordered_range(inode, lockstart,
5789 lockend - lockstart + 1);
5790
5791 /*
5792 * We need to make sure there are no buffered pages in this
5793 * range either, we could have raced between the invalidate in
5794 * generic_file_direct_write and locking the extent. The
5795 * invalidate needs to happen so that reads after a write do not
5796 * get stale data.
5797 */
5798 if (!ordered && (!writing ||
5799 !test_range_bit(&BTRFS_I(inode)->io_tree,
5800 lockstart, lockend, EXTENT_UPTODATE, 0,
5801 *cached_state)))
5802 break;
5803
5804 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5805 cached_state, GFP_NOFS);
5806
5807 if (ordered) {
5808 btrfs_start_ordered_extent(inode, ordered, 1);
5809 btrfs_put_ordered_extent(ordered);
5810 } else {
5811 /* Screw you mmap */
5812 ret = filemap_write_and_wait_range(inode->i_mapping,
5813 lockstart,
5814 lockend);
5815 if (ret)
5816 break;
5817
5818 /*
5819 * If we found a page that couldn't be invalidated just
5820 * fall back to buffered.
5821 */
5822 ret = invalidate_inode_pages2_range(inode->i_mapping,
5823 lockstart >> PAGE_CACHE_SHIFT,
5824 lockend >> PAGE_CACHE_SHIFT);
5825 if (ret)
5826 break;
5827 }
5828
5829 cond_resched();
5830 }
5831
5832 return ret;
5833 }
5834
5835 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5836 struct buffer_head *bh_result, int create)
5837 {
5838 struct extent_map *em;
5839 struct btrfs_root *root = BTRFS_I(inode)->root;
5840 struct extent_state *cached_state = NULL;
5841 u64 start = iblock << inode->i_blkbits;
5842 u64 lockstart, lockend;
5843 u64 len = bh_result->b_size;
5844 struct btrfs_trans_handle *trans;
5845 int unlock_bits = EXTENT_LOCKED;
5846 int ret;
5847
5848 if (create) {
5849 ret = btrfs_delalloc_reserve_space(inode, len);
5850 if (ret)
5851 return ret;
5852 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
5853 } else {
5854 len = min_t(u64, len, root->sectorsize);
5855 }
5856
5857 lockstart = start;
5858 lockend = start + len - 1;
5859
5860 /*
5861 * If this errors out it's because we couldn't invalidate pagecache for
5862 * this range and we need to fallback to buffered.
5863 */
5864 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
5865 return -ENOTBLK;
5866
5867 if (create) {
5868 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
5869 lockend, EXTENT_DELALLOC, NULL,
5870 &cached_state, GFP_NOFS);
5871 if (ret)
5872 goto unlock_err;
5873 }
5874
5875 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5876 if (IS_ERR(em)) {
5877 ret = PTR_ERR(em);
5878 goto unlock_err;
5879 }
5880
5881 /*
5882 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5883 * io. INLINE is special, and we could probably kludge it in here, but
5884 * it's still buffered so for safety lets just fall back to the generic
5885 * buffered path.
5886 *
5887 * For COMPRESSED we _have_ to read the entire extent in so we can
5888 * decompress it, so there will be buffering required no matter what we
5889 * do, so go ahead and fallback to buffered.
5890 *
5891 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5892 * to buffered IO. Don't blame me, this is the price we pay for using
5893 * the generic code.
5894 */
5895 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5896 em->block_start == EXTENT_MAP_INLINE) {
5897 free_extent_map(em);
5898 ret = -ENOTBLK;
5899 goto unlock_err;
5900 }
5901
5902 /* Just a good old fashioned hole, return */
5903 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5904 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5905 free_extent_map(em);
5906 ret = 0;
5907 goto unlock_err;
5908 }
5909
5910 /*
5911 * We don't allocate a new extent in the following cases
5912 *
5913 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5914 * existing extent.
5915 * 2) The extent is marked as PREALLOC. We're good to go here and can
5916 * just use the extent.
5917 *
5918 */
5919 if (!create) {
5920 len = min(len, em->len - (start - em->start));
5921 lockstart = start + len;
5922 goto unlock;
5923 }
5924
5925 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5926 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5927 em->block_start != EXTENT_MAP_HOLE)) {
5928 int type;
5929 int ret;
5930 u64 block_start;
5931
5932 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5933 type = BTRFS_ORDERED_PREALLOC;
5934 else
5935 type = BTRFS_ORDERED_NOCOW;
5936 len = min(len, em->len - (start - em->start));
5937 block_start = em->block_start + (start - em->start);
5938
5939 /*
5940 * we're not going to log anything, but we do need
5941 * to make sure the current transaction stays open
5942 * while we look for nocow cross refs
5943 */
5944 trans = btrfs_join_transaction(root);
5945 if (IS_ERR(trans))
5946 goto must_cow;
5947
5948 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5949 ret = btrfs_add_ordered_extent_dio(inode, start,
5950 block_start, len, len, type);
5951 btrfs_end_transaction(trans, root);
5952 if (ret) {
5953 free_extent_map(em);
5954 goto unlock_err;
5955 }
5956 goto unlock;
5957 }
5958 btrfs_end_transaction(trans, root);
5959 }
5960 must_cow:
5961 /*
5962 * this will cow the extent, reset the len in case we changed
5963 * it above
5964 */
5965 len = bh_result->b_size;
5966 em = btrfs_new_extent_direct(inode, em, start, len);
5967 if (IS_ERR(em)) {
5968 ret = PTR_ERR(em);
5969 goto unlock_err;
5970 }
5971 len = min(len, em->len - (start - em->start));
5972 unlock:
5973 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5974 inode->i_blkbits;
5975 bh_result->b_size = len;
5976 bh_result->b_bdev = em->bdev;
5977 set_buffer_mapped(bh_result);
5978 if (create) {
5979 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5980 set_buffer_new(bh_result);
5981
5982 /*
5983 * Need to update the i_size under the extent lock so buffered
5984 * readers will get the updated i_size when we unlock.
5985 */
5986 if (start + len > i_size_read(inode))
5987 i_size_write(inode, start + len);
5988 }
5989
5990 /*
5991 * In the case of write we need to clear and unlock the entire range,
5992 * in the case of read we need to unlock only the end area that we
5993 * aren't using if there is any left over space.
5994 */
5995 if (lockstart < lockend) {
5996 if (create && len < lockend - lockstart) {
5997 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
5998 lockstart + len - 1, unlock_bits, 1, 0,
5999 &cached_state, GFP_NOFS);
6000 /*
6001 * Beside unlock, we also need to cleanup reserved space
6002 * for the left range by attaching EXTENT_DO_ACCOUNTING.
6003 */
6004 clear_extent_bit(&BTRFS_I(inode)->io_tree,
6005 lockstart + len, lockend,
6006 unlock_bits | EXTENT_DO_ACCOUNTING,
6007 1, 0, NULL, GFP_NOFS);
6008 } else {
6009 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6010 lockend, unlock_bits, 1, 0,
6011 &cached_state, GFP_NOFS);
6012 }
6013 } else {
6014 free_extent_state(cached_state);
6015 }
6016
6017 free_extent_map(em);
6018
6019 return 0;
6020
6021 unlock_err:
6022 if (create)
6023 unlock_bits |= EXTENT_DO_ACCOUNTING;
6024
6025 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6026 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6027 return ret;
6028 }
6029
6030 struct btrfs_dio_private {
6031 struct inode *inode;
6032 u64 logical_offset;
6033 u64 disk_bytenr;
6034 u64 bytes;
6035 void *private;
6036
6037 /* number of bios pending for this dio */
6038 atomic_t pending_bios;
6039
6040 /* IO errors */
6041 int errors;
6042
6043 struct bio *orig_bio;
6044 };
6045
6046 static void btrfs_endio_direct_read(struct bio *bio, int err)
6047 {
6048 struct btrfs_dio_private *dip = bio->bi_private;
6049 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6050 struct bio_vec *bvec = bio->bi_io_vec;
6051 struct inode *inode = dip->inode;
6052 struct btrfs_root *root = BTRFS_I(inode)->root;
6053 u64 start;
6054
6055 start = dip->logical_offset;
6056 do {
6057 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6058 struct page *page = bvec->bv_page;
6059 char *kaddr;
6060 u32 csum = ~(u32)0;
6061 u64 private = ~(u32)0;
6062 unsigned long flags;
6063
6064 if (get_state_private(&BTRFS_I(inode)->io_tree,
6065 start, &private))
6066 goto failed;
6067 local_irq_save(flags);
6068 kaddr = kmap_atomic(page);
6069 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
6070 csum, bvec->bv_len);
6071 btrfs_csum_final(csum, (char *)&csum);
6072 kunmap_atomic(kaddr);
6073 local_irq_restore(flags);
6074
6075 flush_dcache_page(bvec->bv_page);
6076 if (csum != private) {
6077 failed:
6078 printk(KERN_ERR "btrfs csum failed ino %llu off"
6079 " %llu csum %u private %u\n",
6080 (unsigned long long)btrfs_ino(inode),
6081 (unsigned long long)start,
6082 csum, (unsigned)private);
6083 err = -EIO;
6084 }
6085 }
6086
6087 start += bvec->bv_len;
6088 bvec++;
6089 } while (bvec <= bvec_end);
6090
6091 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6092 dip->logical_offset + dip->bytes - 1);
6093 bio->bi_private = dip->private;
6094
6095 kfree(dip);
6096
6097 /* If we had a csum failure make sure to clear the uptodate flag */
6098 if (err)
6099 clear_bit(BIO_UPTODATE, &bio->bi_flags);
6100 dio_end_io(bio, err);
6101 }
6102
6103 static void btrfs_endio_direct_write(struct bio *bio, int err)
6104 {
6105 struct btrfs_dio_private *dip = bio->bi_private;
6106 struct inode *inode = dip->inode;
6107 struct btrfs_root *root = BTRFS_I(inode)->root;
6108 struct btrfs_ordered_extent *ordered = NULL;
6109 u64 ordered_offset = dip->logical_offset;
6110 u64 ordered_bytes = dip->bytes;
6111 int ret;
6112
6113 if (err)
6114 goto out_done;
6115 again:
6116 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6117 &ordered_offset,
6118 ordered_bytes, !err);
6119 if (!ret)
6120 goto out_test;
6121
6122 ordered->work.func = finish_ordered_fn;
6123 ordered->work.flags = 0;
6124 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6125 &ordered->work);
6126 out_test:
6127 /*
6128 * our bio might span multiple ordered extents. If we haven't
6129 * completed the accounting for the whole dio, go back and try again
6130 */
6131 if (ordered_offset < dip->logical_offset + dip->bytes) {
6132 ordered_bytes = dip->logical_offset + dip->bytes -
6133 ordered_offset;
6134 ordered = NULL;
6135 goto again;
6136 }
6137 out_done:
6138 bio->bi_private = dip->private;
6139
6140 kfree(dip);
6141
6142 /* If we had an error make sure to clear the uptodate flag */
6143 if (err)
6144 clear_bit(BIO_UPTODATE, &bio->bi_flags);
6145 dio_end_io(bio, err);
6146 }
6147
6148 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6149 struct bio *bio, int mirror_num,
6150 unsigned long bio_flags, u64 offset)
6151 {
6152 int ret;
6153 struct btrfs_root *root = BTRFS_I(inode)->root;
6154 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6155 BUG_ON(ret); /* -ENOMEM */
6156 return 0;
6157 }
6158
6159 static void btrfs_end_dio_bio(struct bio *bio, int err)
6160 {
6161 struct btrfs_dio_private *dip = bio->bi_private;
6162
6163 if (err) {
6164 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6165 "sector %#Lx len %u err no %d\n",
6166 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
6167 (unsigned long long)bio->bi_sector, bio->bi_size, err);
6168 dip->errors = 1;
6169
6170 /*
6171 * before atomic variable goto zero, we must make sure
6172 * dip->errors is perceived to be set.
6173 */
6174 smp_mb__before_atomic_dec();
6175 }
6176
6177 /* if there are more bios still pending for this dio, just exit */
6178 if (!atomic_dec_and_test(&dip->pending_bios))
6179 goto out;
6180
6181 if (dip->errors)
6182 bio_io_error(dip->orig_bio);
6183 else {
6184 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6185 bio_endio(dip->orig_bio, 0);
6186 }
6187 out:
6188 bio_put(bio);
6189 }
6190
6191 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6192 u64 first_sector, gfp_t gfp_flags)
6193 {
6194 int nr_vecs = bio_get_nr_vecs(bdev);
6195 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6196 }
6197
6198 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6199 int rw, u64 file_offset, int skip_sum,
6200 int async_submit)
6201 {
6202 int write = rw & REQ_WRITE;
6203 struct btrfs_root *root = BTRFS_I(inode)->root;
6204 int ret;
6205
6206 bio_get(bio);
6207
6208 if (!write) {
6209 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6210 if (ret)
6211 goto err;
6212 }
6213
6214 if (skip_sum)
6215 goto map;
6216
6217 if (write && async_submit) {
6218 ret = btrfs_wq_submit_bio(root->fs_info,
6219 inode, rw, bio, 0, 0,
6220 file_offset,
6221 __btrfs_submit_bio_start_direct_io,
6222 __btrfs_submit_bio_done);
6223 goto err;
6224 } else if (write) {
6225 /*
6226 * If we aren't doing async submit, calculate the csum of the
6227 * bio now.
6228 */
6229 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6230 if (ret)
6231 goto err;
6232 } else if (!skip_sum) {
6233 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
6234 if (ret)
6235 goto err;
6236 }
6237
6238 map:
6239 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6240 err:
6241 bio_put(bio);
6242 return ret;
6243 }
6244
6245 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6246 int skip_sum)
6247 {
6248 struct inode *inode = dip->inode;
6249 struct btrfs_root *root = BTRFS_I(inode)->root;
6250 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6251 struct bio *bio;
6252 struct bio *orig_bio = dip->orig_bio;
6253 struct bio_vec *bvec = orig_bio->bi_io_vec;
6254 u64 start_sector = orig_bio->bi_sector;
6255 u64 file_offset = dip->logical_offset;
6256 u64 submit_len = 0;
6257 u64 map_length;
6258 int nr_pages = 0;
6259 int ret = 0;
6260 int async_submit = 0;
6261
6262 map_length = orig_bio->bi_size;
6263 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6264 &map_length, NULL, 0);
6265 if (ret) {
6266 bio_put(orig_bio);
6267 return -EIO;
6268 }
6269
6270 if (map_length >= orig_bio->bi_size) {
6271 bio = orig_bio;
6272 goto submit;
6273 }
6274
6275 async_submit = 1;
6276 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6277 if (!bio)
6278 return -ENOMEM;
6279 bio->bi_private = dip;
6280 bio->bi_end_io = btrfs_end_dio_bio;
6281 atomic_inc(&dip->pending_bios);
6282
6283 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6284 if (unlikely(map_length < submit_len + bvec->bv_len ||
6285 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6286 bvec->bv_offset) < bvec->bv_len)) {
6287 /*
6288 * inc the count before we submit the bio so
6289 * we know the end IO handler won't happen before
6290 * we inc the count. Otherwise, the dip might get freed
6291 * before we're done setting it up
6292 */
6293 atomic_inc(&dip->pending_bios);
6294 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6295 file_offset, skip_sum,
6296 async_submit);
6297 if (ret) {
6298 bio_put(bio);
6299 atomic_dec(&dip->pending_bios);
6300 goto out_err;
6301 }
6302
6303 start_sector += submit_len >> 9;
6304 file_offset += submit_len;
6305
6306 submit_len = 0;
6307 nr_pages = 0;
6308
6309 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6310 start_sector, GFP_NOFS);
6311 if (!bio)
6312 goto out_err;
6313 bio->bi_private = dip;
6314 bio->bi_end_io = btrfs_end_dio_bio;
6315
6316 map_length = orig_bio->bi_size;
6317 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6318 &map_length, NULL, 0);
6319 if (ret) {
6320 bio_put(bio);
6321 goto out_err;
6322 }
6323 } else {
6324 submit_len += bvec->bv_len;
6325 nr_pages ++;
6326 bvec++;
6327 }
6328 }
6329
6330 submit:
6331 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6332 async_submit);
6333 if (!ret)
6334 return 0;
6335
6336 bio_put(bio);
6337 out_err:
6338 dip->errors = 1;
6339 /*
6340 * before atomic variable goto zero, we must
6341 * make sure dip->errors is perceived to be set.
6342 */
6343 smp_mb__before_atomic_dec();
6344 if (atomic_dec_and_test(&dip->pending_bios))
6345 bio_io_error(dip->orig_bio);
6346
6347 /* bio_end_io() will handle error, so we needn't return it */
6348 return 0;
6349 }
6350
6351 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6352 loff_t file_offset)
6353 {
6354 struct btrfs_root *root = BTRFS_I(inode)->root;
6355 struct btrfs_dio_private *dip;
6356 struct bio_vec *bvec = bio->bi_io_vec;
6357 int skip_sum;
6358 int write = rw & REQ_WRITE;
6359 int ret = 0;
6360
6361 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6362
6363 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6364 if (!dip) {
6365 ret = -ENOMEM;
6366 goto free_ordered;
6367 }
6368
6369 dip->private = bio->bi_private;
6370 dip->inode = inode;
6371 dip->logical_offset = file_offset;
6372
6373 dip->bytes = 0;
6374 do {
6375 dip->bytes += bvec->bv_len;
6376 bvec++;
6377 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6378
6379 dip->disk_bytenr = (u64)bio->bi_sector << 9;
6380 bio->bi_private = dip;
6381 dip->errors = 0;
6382 dip->orig_bio = bio;
6383 atomic_set(&dip->pending_bios, 0);
6384
6385 if (write)
6386 bio->bi_end_io = btrfs_endio_direct_write;
6387 else
6388 bio->bi_end_io = btrfs_endio_direct_read;
6389
6390 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6391 if (!ret)
6392 return;
6393 free_ordered:
6394 /*
6395 * If this is a write, we need to clean up the reserved space and kill
6396 * the ordered extent.
6397 */
6398 if (write) {
6399 struct btrfs_ordered_extent *ordered;
6400 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6401 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6402 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6403 btrfs_free_reserved_extent(root, ordered->start,
6404 ordered->disk_len);
6405 btrfs_put_ordered_extent(ordered);
6406 btrfs_put_ordered_extent(ordered);
6407 }
6408 bio_endio(bio, ret);
6409 }
6410
6411 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6412 const struct iovec *iov, loff_t offset,
6413 unsigned long nr_segs)
6414 {
6415 int seg;
6416 int i;
6417 size_t size;
6418 unsigned long addr;
6419 unsigned blocksize_mask = root->sectorsize - 1;
6420 ssize_t retval = -EINVAL;
6421 loff_t end = offset;
6422
6423 if (offset & blocksize_mask)
6424 goto out;
6425
6426 /* Check the memory alignment. Blocks cannot straddle pages */
6427 for (seg = 0; seg < nr_segs; seg++) {
6428 addr = (unsigned long)iov[seg].iov_base;
6429 size = iov[seg].iov_len;
6430 end += size;
6431 if ((addr & blocksize_mask) || (size & blocksize_mask))
6432 goto out;
6433
6434 /* If this is a write we don't need to check anymore */
6435 if (rw & WRITE)
6436 continue;
6437
6438 /*
6439 * Check to make sure we don't have duplicate iov_base's in this
6440 * iovec, if so return EINVAL, otherwise we'll get csum errors
6441 * when reading back.
6442 */
6443 for (i = seg + 1; i < nr_segs; i++) {
6444 if (iov[seg].iov_base == iov[i].iov_base)
6445 goto out;
6446 }
6447 }
6448 retval = 0;
6449 out:
6450 return retval;
6451 }
6452
6453 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6454 const struct iovec *iov, loff_t offset,
6455 unsigned long nr_segs)
6456 {
6457 struct file *file = iocb->ki_filp;
6458 struct inode *inode = file->f_mapping->host;
6459
6460 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6461 offset, nr_segs))
6462 return 0;
6463
6464 return __blockdev_direct_IO(rw, iocb, inode,
6465 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6466 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6467 btrfs_submit_direct, 0);
6468 }
6469
6470 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6471 __u64 start, __u64 len)
6472 {
6473 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6474 }
6475
6476 int btrfs_readpage(struct file *file, struct page *page)
6477 {
6478 struct extent_io_tree *tree;
6479 tree = &BTRFS_I(page->mapping->host)->io_tree;
6480 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
6481 }
6482
6483 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6484 {
6485 struct extent_io_tree *tree;
6486
6487
6488 if (current->flags & PF_MEMALLOC) {
6489 redirty_page_for_writepage(wbc, page);
6490 unlock_page(page);
6491 return 0;
6492 }
6493 tree = &BTRFS_I(page->mapping->host)->io_tree;
6494 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6495 }
6496
6497 int btrfs_writepages(struct address_space *mapping,
6498 struct writeback_control *wbc)
6499 {
6500 struct extent_io_tree *tree;
6501
6502 tree = &BTRFS_I(mapping->host)->io_tree;
6503 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6504 }
6505
6506 static int
6507 btrfs_readpages(struct file *file, struct address_space *mapping,
6508 struct list_head *pages, unsigned nr_pages)
6509 {
6510 struct extent_io_tree *tree;
6511 tree = &BTRFS_I(mapping->host)->io_tree;
6512 return extent_readpages(tree, mapping, pages, nr_pages,
6513 btrfs_get_extent);
6514 }
6515 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6516 {
6517 struct extent_io_tree *tree;
6518 struct extent_map_tree *map;
6519 int ret;
6520
6521 tree = &BTRFS_I(page->mapping->host)->io_tree;
6522 map = &BTRFS_I(page->mapping->host)->extent_tree;
6523 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6524 if (ret == 1) {
6525 ClearPagePrivate(page);
6526 set_page_private(page, 0);
6527 page_cache_release(page);
6528 }
6529 return ret;
6530 }
6531
6532 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6533 {
6534 if (PageWriteback(page) || PageDirty(page))
6535 return 0;
6536 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6537 }
6538
6539 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6540 {
6541 struct inode *inode = page->mapping->host;
6542 struct extent_io_tree *tree;
6543 struct btrfs_ordered_extent *ordered;
6544 struct extent_state *cached_state = NULL;
6545 u64 page_start = page_offset(page);
6546 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6547
6548 /*
6549 * we have the page locked, so new writeback can't start,
6550 * and the dirty bit won't be cleared while we are here.
6551 *
6552 * Wait for IO on this page so that we can safely clear
6553 * the PagePrivate2 bit and do ordered accounting
6554 */
6555 wait_on_page_writeback(page);
6556
6557 tree = &BTRFS_I(inode)->io_tree;
6558 if (offset) {
6559 btrfs_releasepage(page, GFP_NOFS);
6560 return;
6561 }
6562 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6563 ordered = btrfs_lookup_ordered_extent(inode,
6564 page_offset(page));
6565 if (ordered) {
6566 /*
6567 * IO on this page will never be started, so we need
6568 * to account for any ordered extents now
6569 */
6570 clear_extent_bit(tree, page_start, page_end,
6571 EXTENT_DIRTY | EXTENT_DELALLOC |
6572 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6573 &cached_state, GFP_NOFS);
6574 /*
6575 * whoever cleared the private bit is responsible
6576 * for the finish_ordered_io
6577 */
6578 if (TestClearPagePrivate2(page) &&
6579 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
6580 PAGE_CACHE_SIZE, 1)) {
6581 btrfs_finish_ordered_io(ordered);
6582 }
6583 btrfs_put_ordered_extent(ordered);
6584 cached_state = NULL;
6585 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6586 }
6587 clear_extent_bit(tree, page_start, page_end,
6588 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6589 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6590 __btrfs_releasepage(page, GFP_NOFS);
6591
6592 ClearPageChecked(page);
6593 if (PagePrivate(page)) {
6594 ClearPagePrivate(page);
6595 set_page_private(page, 0);
6596 page_cache_release(page);
6597 }
6598 }
6599
6600 /*
6601 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6602 * called from a page fault handler when a page is first dirtied. Hence we must
6603 * be careful to check for EOF conditions here. We set the page up correctly
6604 * for a written page which means we get ENOSPC checking when writing into
6605 * holes and correct delalloc and unwritten extent mapping on filesystems that
6606 * support these features.
6607 *
6608 * We are not allowed to take the i_mutex here so we have to play games to
6609 * protect against truncate races as the page could now be beyond EOF. Because
6610 * vmtruncate() writes the inode size before removing pages, once we have the
6611 * page lock we can determine safely if the page is beyond EOF. If it is not
6612 * beyond EOF, then the page is guaranteed safe against truncation until we
6613 * unlock the page.
6614 */
6615 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6616 {
6617 struct page *page = vmf->page;
6618 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6619 struct btrfs_root *root = BTRFS_I(inode)->root;
6620 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6621 struct btrfs_ordered_extent *ordered;
6622 struct extent_state *cached_state = NULL;
6623 char *kaddr;
6624 unsigned long zero_start;
6625 loff_t size;
6626 int ret;
6627 int reserved = 0;
6628 u64 page_start;
6629 u64 page_end;
6630
6631 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6632 if (!ret) {
6633 ret = file_update_time(vma->vm_file);
6634 reserved = 1;
6635 }
6636 if (ret) {
6637 if (ret == -ENOMEM)
6638 ret = VM_FAULT_OOM;
6639 else /* -ENOSPC, -EIO, etc */
6640 ret = VM_FAULT_SIGBUS;
6641 if (reserved)
6642 goto out;
6643 goto out_noreserve;
6644 }
6645
6646 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6647 again:
6648 lock_page(page);
6649 size = i_size_read(inode);
6650 page_start = page_offset(page);
6651 page_end = page_start + PAGE_CACHE_SIZE - 1;
6652
6653 if ((page->mapping != inode->i_mapping) ||
6654 (page_start >= size)) {
6655 /* page got truncated out from underneath us */
6656 goto out_unlock;
6657 }
6658 wait_on_page_writeback(page);
6659
6660 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
6661 set_page_extent_mapped(page);
6662
6663 /*
6664 * we can't set the delalloc bits if there are pending ordered
6665 * extents. Drop our locks and wait for them to finish
6666 */
6667 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6668 if (ordered) {
6669 unlock_extent_cached(io_tree, page_start, page_end,
6670 &cached_state, GFP_NOFS);
6671 unlock_page(page);
6672 btrfs_start_ordered_extent(inode, ordered, 1);
6673 btrfs_put_ordered_extent(ordered);
6674 goto again;
6675 }
6676
6677 /*
6678 * XXX - page_mkwrite gets called every time the page is dirtied, even
6679 * if it was already dirty, so for space accounting reasons we need to
6680 * clear any delalloc bits for the range we are fixing to save. There
6681 * is probably a better way to do this, but for now keep consistent with
6682 * prepare_pages in the normal write path.
6683 */
6684 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6685 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6686 0, 0, &cached_state, GFP_NOFS);
6687
6688 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6689 &cached_state);
6690 if (ret) {
6691 unlock_extent_cached(io_tree, page_start, page_end,
6692 &cached_state, GFP_NOFS);
6693 ret = VM_FAULT_SIGBUS;
6694 goto out_unlock;
6695 }
6696 ret = 0;
6697
6698 /* page is wholly or partially inside EOF */
6699 if (page_start + PAGE_CACHE_SIZE > size)
6700 zero_start = size & ~PAGE_CACHE_MASK;
6701 else
6702 zero_start = PAGE_CACHE_SIZE;
6703
6704 if (zero_start != PAGE_CACHE_SIZE) {
6705 kaddr = kmap(page);
6706 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6707 flush_dcache_page(page);
6708 kunmap(page);
6709 }
6710 ClearPageChecked(page);
6711 set_page_dirty(page);
6712 SetPageUptodate(page);
6713
6714 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6715 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6716
6717 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6718
6719 out_unlock:
6720 if (!ret)
6721 return VM_FAULT_LOCKED;
6722 unlock_page(page);
6723 out:
6724 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6725 out_noreserve:
6726 return ret;
6727 }
6728
6729 static int btrfs_truncate(struct inode *inode)
6730 {
6731 struct btrfs_root *root = BTRFS_I(inode)->root;
6732 struct btrfs_block_rsv *rsv;
6733 int ret;
6734 int err = 0;
6735 struct btrfs_trans_handle *trans;
6736 unsigned long nr;
6737 u64 mask = root->sectorsize - 1;
6738 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
6739
6740 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6741 if (ret)
6742 return ret;
6743
6744 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6745 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6746
6747 /*
6748 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6749 * 3 things going on here
6750 *
6751 * 1) We need to reserve space for our orphan item and the space to
6752 * delete our orphan item. Lord knows we don't want to have a dangling
6753 * orphan item because we didn't reserve space to remove it.
6754 *
6755 * 2) We need to reserve space to update our inode.
6756 *
6757 * 3) We need to have something to cache all the space that is going to
6758 * be free'd up by the truncate operation, but also have some slack
6759 * space reserved in case it uses space during the truncate (thank you
6760 * very much snapshotting).
6761 *
6762 * And we need these to all be seperate. The fact is we can use alot of
6763 * space doing the truncate, and we have no earthly idea how much space
6764 * we will use, so we need the truncate reservation to be seperate so it
6765 * doesn't end up using space reserved for updating the inode or
6766 * removing the orphan item. We also need to be able to stop the
6767 * transaction and start a new one, which means we need to be able to
6768 * update the inode several times, and we have no idea of knowing how
6769 * many times that will be, so we can't just reserve 1 item for the
6770 * entirety of the opration, so that has to be done seperately as well.
6771 * Then there is the orphan item, which does indeed need to be held on
6772 * to for the whole operation, and we need nobody to touch this reserved
6773 * space except the orphan code.
6774 *
6775 * So that leaves us with
6776 *
6777 * 1) root->orphan_block_rsv - for the orphan deletion.
6778 * 2) rsv - for the truncate reservation, which we will steal from the
6779 * transaction reservation.
6780 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6781 * updating the inode.
6782 */
6783 rsv = btrfs_alloc_block_rsv(root);
6784 if (!rsv)
6785 return -ENOMEM;
6786 rsv->size = min_size;
6787
6788 /*
6789 * 1 for the truncate slack space
6790 * 1 for the orphan item we're going to add
6791 * 1 for the orphan item deletion
6792 * 1 for updating the inode.
6793 */
6794 trans = btrfs_start_transaction(root, 4);
6795 if (IS_ERR(trans)) {
6796 err = PTR_ERR(trans);
6797 goto out;
6798 }
6799
6800 /* Migrate the slack space for the truncate to our reserve */
6801 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6802 min_size);
6803 BUG_ON(ret);
6804
6805 ret = btrfs_orphan_add(trans, inode);
6806 if (ret) {
6807 btrfs_end_transaction(trans, root);
6808 goto out;
6809 }
6810
6811 /*
6812 * setattr is responsible for setting the ordered_data_close flag,
6813 * but that is only tested during the last file release. That
6814 * could happen well after the next commit, leaving a great big
6815 * window where new writes may get lost if someone chooses to write
6816 * to this file after truncating to zero
6817 *
6818 * The inode doesn't have any dirty data here, and so if we commit
6819 * this is a noop. If someone immediately starts writing to the inode
6820 * it is very likely we'll catch some of their writes in this
6821 * transaction, and the commit will find this file on the ordered
6822 * data list with good things to send down.
6823 *
6824 * This is a best effort solution, there is still a window where
6825 * using truncate to replace the contents of the file will
6826 * end up with a zero length file after a crash.
6827 */
6828 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
6829 &BTRFS_I(inode)->runtime_flags))
6830 btrfs_add_ordered_operation(trans, root, inode);
6831
6832 while (1) {
6833 ret = btrfs_block_rsv_refill(root, rsv, min_size);
6834 if (ret) {
6835 /*
6836 * This can only happen with the original transaction we
6837 * started above, every other time we shouldn't have a
6838 * transaction started yet.
6839 */
6840 if (ret == -EAGAIN)
6841 goto end_trans;
6842 err = ret;
6843 break;
6844 }
6845
6846 if (!trans) {
6847 /* Just need the 1 for updating the inode */
6848 trans = btrfs_start_transaction(root, 1);
6849 if (IS_ERR(trans)) {
6850 ret = err = PTR_ERR(trans);
6851 trans = NULL;
6852 break;
6853 }
6854 }
6855
6856 trans->block_rsv = rsv;
6857
6858 ret = btrfs_truncate_inode_items(trans, root, inode,
6859 inode->i_size,
6860 BTRFS_EXTENT_DATA_KEY);
6861 if (ret != -EAGAIN) {
6862 err = ret;
6863 break;
6864 }
6865
6866 trans->block_rsv = &root->fs_info->trans_block_rsv;
6867 ret = btrfs_update_inode(trans, root, inode);
6868 if (ret) {
6869 err = ret;
6870 break;
6871 }
6872 end_trans:
6873 nr = trans->blocks_used;
6874 btrfs_end_transaction(trans, root);
6875 trans = NULL;
6876 btrfs_btree_balance_dirty(root, nr);
6877 }
6878
6879 if (ret == 0 && inode->i_nlink > 0) {
6880 trans->block_rsv = root->orphan_block_rsv;
6881 ret = btrfs_orphan_del(trans, inode);
6882 if (ret)
6883 err = ret;
6884 } else if (ret && inode->i_nlink > 0) {
6885 /*
6886 * Failed to do the truncate, remove us from the in memory
6887 * orphan list.
6888 */
6889 ret = btrfs_orphan_del(NULL, inode);
6890 }
6891
6892 if (trans) {
6893 trans->block_rsv = &root->fs_info->trans_block_rsv;
6894 ret = btrfs_update_inode(trans, root, inode);
6895 if (ret && !err)
6896 err = ret;
6897
6898 nr = trans->blocks_used;
6899 ret = btrfs_end_transaction(trans, root);
6900 btrfs_btree_balance_dirty(root, nr);
6901 }
6902
6903 out:
6904 btrfs_free_block_rsv(root, rsv);
6905
6906 if (ret && !err)
6907 err = ret;
6908
6909 return err;
6910 }
6911
6912 /*
6913 * create a new subvolume directory/inode (helper for the ioctl).
6914 */
6915 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6916 struct btrfs_root *new_root, u64 new_dirid)
6917 {
6918 struct inode *inode;
6919 int err;
6920 u64 index = 0;
6921
6922 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
6923 new_dirid, new_dirid,
6924 S_IFDIR | (~current_umask() & S_IRWXUGO),
6925 &index);
6926 if (IS_ERR(inode))
6927 return PTR_ERR(inode);
6928 inode->i_op = &btrfs_dir_inode_operations;
6929 inode->i_fop = &btrfs_dir_file_operations;
6930
6931 set_nlink(inode, 1);
6932 btrfs_i_size_write(inode, 0);
6933
6934 err = btrfs_update_inode(trans, new_root, inode);
6935
6936 iput(inode);
6937 return err;
6938 }
6939
6940 struct inode *btrfs_alloc_inode(struct super_block *sb)
6941 {
6942 struct btrfs_inode *ei;
6943 struct inode *inode;
6944
6945 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6946 if (!ei)
6947 return NULL;
6948
6949 ei->root = NULL;
6950 ei->generation = 0;
6951 ei->last_trans = 0;
6952 ei->last_sub_trans = 0;
6953 ei->logged_trans = 0;
6954 ei->delalloc_bytes = 0;
6955 ei->disk_i_size = 0;
6956 ei->flags = 0;
6957 ei->csum_bytes = 0;
6958 ei->index_cnt = (u64)-1;
6959 ei->last_unlink_trans = 0;
6960
6961 spin_lock_init(&ei->lock);
6962 ei->outstanding_extents = 0;
6963 ei->reserved_extents = 0;
6964
6965 ei->runtime_flags = 0;
6966 ei->force_compress = BTRFS_COMPRESS_NONE;
6967
6968 ei->delayed_node = NULL;
6969
6970 inode = &ei->vfs_inode;
6971 extent_map_tree_init(&ei->extent_tree);
6972 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6973 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6974 ei->io_tree.track_uptodate = 1;
6975 ei->io_failure_tree.track_uptodate = 1;
6976 mutex_init(&ei->log_mutex);
6977 mutex_init(&ei->delalloc_mutex);
6978 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6979 INIT_LIST_HEAD(&ei->delalloc_inodes);
6980 INIT_LIST_HEAD(&ei->ordered_operations);
6981 RB_CLEAR_NODE(&ei->rb_node);
6982
6983 return inode;
6984 }
6985
6986 static void btrfs_i_callback(struct rcu_head *head)
6987 {
6988 struct inode *inode = container_of(head, struct inode, i_rcu);
6989 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6990 }
6991
6992 void btrfs_destroy_inode(struct inode *inode)
6993 {
6994 struct btrfs_ordered_extent *ordered;
6995 struct btrfs_root *root = BTRFS_I(inode)->root;
6996
6997 WARN_ON(!list_empty(&inode->i_dentry));
6998 WARN_ON(inode->i_data.nrpages);
6999 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7000 WARN_ON(BTRFS_I(inode)->reserved_extents);
7001 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7002 WARN_ON(BTRFS_I(inode)->csum_bytes);
7003
7004 /*
7005 * This can happen where we create an inode, but somebody else also
7006 * created the same inode and we need to destroy the one we already
7007 * created.
7008 */
7009 if (!root)
7010 goto free;
7011
7012 /*
7013 * Make sure we're properly removed from the ordered operation
7014 * lists.
7015 */
7016 smp_mb();
7017 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7018 spin_lock(&root->fs_info->ordered_extent_lock);
7019 list_del_init(&BTRFS_I(inode)->ordered_operations);
7020 spin_unlock(&root->fs_info->ordered_extent_lock);
7021 }
7022
7023 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7024 &BTRFS_I(inode)->runtime_flags)) {
7025 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7026 (unsigned long long)btrfs_ino(inode));
7027 atomic_dec(&root->orphan_inodes);
7028 }
7029
7030 while (1) {
7031 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7032 if (!ordered)
7033 break;
7034 else {
7035 printk(KERN_ERR "btrfs found ordered "
7036 "extent %llu %llu on inode cleanup\n",
7037 (unsigned long long)ordered->file_offset,
7038 (unsigned long long)ordered->len);
7039 btrfs_remove_ordered_extent(inode, ordered);
7040 btrfs_put_ordered_extent(ordered);
7041 btrfs_put_ordered_extent(ordered);
7042 }
7043 }
7044 inode_tree_del(inode);
7045 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7046 free:
7047 btrfs_remove_delayed_node(inode);
7048 call_rcu(&inode->i_rcu, btrfs_i_callback);
7049 }
7050
7051 int btrfs_drop_inode(struct inode *inode)
7052 {
7053 struct btrfs_root *root = BTRFS_I(inode)->root;
7054
7055 if (btrfs_root_refs(&root->root_item) == 0 &&
7056 !btrfs_is_free_space_inode(inode))
7057 return 1;
7058 else
7059 return generic_drop_inode(inode);
7060 }
7061
7062 static void init_once(void *foo)
7063 {
7064 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7065
7066 inode_init_once(&ei->vfs_inode);
7067 }
7068
7069 void btrfs_destroy_cachep(void)
7070 {
7071 if (btrfs_inode_cachep)
7072 kmem_cache_destroy(btrfs_inode_cachep);
7073 if (btrfs_trans_handle_cachep)
7074 kmem_cache_destroy(btrfs_trans_handle_cachep);
7075 if (btrfs_transaction_cachep)
7076 kmem_cache_destroy(btrfs_transaction_cachep);
7077 if (btrfs_path_cachep)
7078 kmem_cache_destroy(btrfs_path_cachep);
7079 if (btrfs_free_space_cachep)
7080 kmem_cache_destroy(btrfs_free_space_cachep);
7081 }
7082
7083 int btrfs_init_cachep(void)
7084 {
7085 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
7086 sizeof(struct btrfs_inode), 0,
7087 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7088 if (!btrfs_inode_cachep)
7089 goto fail;
7090
7091 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
7092 sizeof(struct btrfs_trans_handle), 0,
7093 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7094 if (!btrfs_trans_handle_cachep)
7095 goto fail;
7096
7097 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
7098 sizeof(struct btrfs_transaction), 0,
7099 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7100 if (!btrfs_transaction_cachep)
7101 goto fail;
7102
7103 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
7104 sizeof(struct btrfs_path), 0,
7105 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7106 if (!btrfs_path_cachep)
7107 goto fail;
7108
7109 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
7110 sizeof(struct btrfs_free_space), 0,
7111 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7112 if (!btrfs_free_space_cachep)
7113 goto fail;
7114
7115 return 0;
7116 fail:
7117 btrfs_destroy_cachep();
7118 return -ENOMEM;
7119 }
7120
7121 static int btrfs_getattr(struct vfsmount *mnt,
7122 struct dentry *dentry, struct kstat *stat)
7123 {
7124 struct inode *inode = dentry->d_inode;
7125 u32 blocksize = inode->i_sb->s_blocksize;
7126
7127 generic_fillattr(inode, stat);
7128 stat->dev = BTRFS_I(inode)->root->anon_dev;
7129 stat->blksize = PAGE_CACHE_SIZE;
7130 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7131 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
7132 return 0;
7133 }
7134
7135 /*
7136 * If a file is moved, it will inherit the cow and compression flags of the new
7137 * directory.
7138 */
7139 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7140 {
7141 struct btrfs_inode *b_dir = BTRFS_I(dir);
7142 struct btrfs_inode *b_inode = BTRFS_I(inode);
7143
7144 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7145 b_inode->flags |= BTRFS_INODE_NODATACOW;
7146 else
7147 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7148
7149 if (b_dir->flags & BTRFS_INODE_COMPRESS) {
7150 b_inode->flags |= BTRFS_INODE_COMPRESS;
7151 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
7152 } else {
7153 b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
7154 BTRFS_INODE_NOCOMPRESS);
7155 }
7156 }
7157
7158 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7159 struct inode *new_dir, struct dentry *new_dentry)
7160 {
7161 struct btrfs_trans_handle *trans;
7162 struct btrfs_root *root = BTRFS_I(old_dir)->root;
7163 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7164 struct inode *new_inode = new_dentry->d_inode;
7165 struct inode *old_inode = old_dentry->d_inode;
7166 struct timespec ctime = CURRENT_TIME;
7167 u64 index = 0;
7168 u64 root_objectid;
7169 int ret;
7170 u64 old_ino = btrfs_ino(old_inode);
7171
7172 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
7173 return -EPERM;
7174
7175 /* we only allow rename subvolume link between subvolumes */
7176 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
7177 return -EXDEV;
7178
7179 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7180 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
7181 return -ENOTEMPTY;
7182
7183 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7184 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7185 return -ENOTEMPTY;
7186 /*
7187 * we're using rename to replace one file with another.
7188 * and the replacement file is large. Start IO on it now so
7189 * we don't add too much work to the end of the transaction
7190 */
7191 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
7192 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7193 filemap_flush(old_inode->i_mapping);
7194
7195 /* close the racy window with snapshot create/destroy ioctl */
7196 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7197 down_read(&root->fs_info->subvol_sem);
7198 /*
7199 * We want to reserve the absolute worst case amount of items. So if
7200 * both inodes are subvols and we need to unlink them then that would
7201 * require 4 item modifications, but if they are both normal inodes it
7202 * would require 5 item modifications, so we'll assume their normal
7203 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7204 * should cover the worst case number of items we'll modify.
7205 */
7206 trans = btrfs_start_transaction(root, 20);
7207 if (IS_ERR(trans)) {
7208 ret = PTR_ERR(trans);
7209 goto out_notrans;
7210 }
7211
7212 if (dest != root)
7213 btrfs_record_root_in_trans(trans, dest);
7214
7215 ret = btrfs_set_inode_index(new_dir, &index);
7216 if (ret)
7217 goto out_fail;
7218
7219 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7220 /* force full log commit if subvolume involved. */
7221 root->fs_info->last_trans_log_full_commit = trans->transid;
7222 } else {
7223 ret = btrfs_insert_inode_ref(trans, dest,
7224 new_dentry->d_name.name,
7225 new_dentry->d_name.len,
7226 old_ino,
7227 btrfs_ino(new_dir), index);
7228 if (ret)
7229 goto out_fail;
7230 /*
7231 * this is an ugly little race, but the rename is required
7232 * to make sure that if we crash, the inode is either at the
7233 * old name or the new one. pinning the log transaction lets
7234 * us make sure we don't allow a log commit to come in after
7235 * we unlink the name but before we add the new name back in.
7236 */
7237 btrfs_pin_log_trans(root);
7238 }
7239 /*
7240 * make sure the inode gets flushed if it is replacing
7241 * something.
7242 */
7243 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7244 btrfs_add_ordered_operation(trans, root, old_inode);
7245
7246 inode_inc_iversion(old_dir);
7247 inode_inc_iversion(new_dir);
7248 inode_inc_iversion(old_inode);
7249 old_dir->i_ctime = old_dir->i_mtime = ctime;
7250 new_dir->i_ctime = new_dir->i_mtime = ctime;
7251 old_inode->i_ctime = ctime;
7252
7253 if (old_dentry->d_parent != new_dentry->d_parent)
7254 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7255
7256 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7257 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7258 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7259 old_dentry->d_name.name,
7260 old_dentry->d_name.len);
7261 } else {
7262 ret = __btrfs_unlink_inode(trans, root, old_dir,
7263 old_dentry->d_inode,
7264 old_dentry->d_name.name,
7265 old_dentry->d_name.len);
7266 if (!ret)
7267 ret = btrfs_update_inode(trans, root, old_inode);
7268 }
7269 if (ret) {
7270 btrfs_abort_transaction(trans, root, ret);
7271 goto out_fail;
7272 }
7273
7274 if (new_inode) {
7275 inode_inc_iversion(new_inode);
7276 new_inode->i_ctime = CURRENT_TIME;
7277 if (unlikely(btrfs_ino(new_inode) ==
7278 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7279 root_objectid = BTRFS_I(new_inode)->location.objectid;
7280 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7281 root_objectid,
7282 new_dentry->d_name.name,
7283 new_dentry->d_name.len);
7284 BUG_ON(new_inode->i_nlink == 0);
7285 } else {
7286 ret = btrfs_unlink_inode(trans, dest, new_dir,
7287 new_dentry->d_inode,
7288 new_dentry->d_name.name,
7289 new_dentry->d_name.len);
7290 }
7291 if (!ret && new_inode->i_nlink == 0) {
7292 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7293 BUG_ON(ret);
7294 }
7295 if (ret) {
7296 btrfs_abort_transaction(trans, root, ret);
7297 goto out_fail;
7298 }
7299 }
7300
7301 fixup_inode_flags(new_dir, old_inode);
7302
7303 ret = btrfs_add_link(trans, new_dir, old_inode,
7304 new_dentry->d_name.name,
7305 new_dentry->d_name.len, 0, index);
7306 if (ret) {
7307 btrfs_abort_transaction(trans, root, ret);
7308 goto out_fail;
7309 }
7310
7311 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7312 struct dentry *parent = new_dentry->d_parent;
7313 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7314 btrfs_end_log_trans(root);
7315 }
7316 out_fail:
7317 btrfs_end_transaction(trans, root);
7318 out_notrans:
7319 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7320 up_read(&root->fs_info->subvol_sem);
7321
7322 return ret;
7323 }
7324
7325 /*
7326 * some fairly slow code that needs optimization. This walks the list
7327 * of all the inodes with pending delalloc and forces them to disk.
7328 */
7329 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7330 {
7331 struct list_head *head = &root->fs_info->delalloc_inodes;
7332 struct btrfs_inode *binode;
7333 struct inode *inode;
7334
7335 if (root->fs_info->sb->s_flags & MS_RDONLY)
7336 return -EROFS;
7337
7338 spin_lock(&root->fs_info->delalloc_lock);
7339 while (!list_empty(head)) {
7340 binode = list_entry(head->next, struct btrfs_inode,
7341 delalloc_inodes);
7342 inode = igrab(&binode->vfs_inode);
7343 if (!inode)
7344 list_del_init(&binode->delalloc_inodes);
7345 spin_unlock(&root->fs_info->delalloc_lock);
7346 if (inode) {
7347 filemap_flush(inode->i_mapping);
7348 if (delay_iput)
7349 btrfs_add_delayed_iput(inode);
7350 else
7351 iput(inode);
7352 }
7353 cond_resched();
7354 spin_lock(&root->fs_info->delalloc_lock);
7355 }
7356 spin_unlock(&root->fs_info->delalloc_lock);
7357
7358 /* the filemap_flush will queue IO into the worker threads, but
7359 * we have to make sure the IO is actually started and that
7360 * ordered extents get created before we return
7361 */
7362 atomic_inc(&root->fs_info->async_submit_draining);
7363 while (atomic_read(&root->fs_info->nr_async_submits) ||
7364 atomic_read(&root->fs_info->async_delalloc_pages)) {
7365 wait_event(root->fs_info->async_submit_wait,
7366 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7367 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7368 }
7369 atomic_dec(&root->fs_info->async_submit_draining);
7370 return 0;
7371 }
7372
7373 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7374 const char *symname)
7375 {
7376 struct btrfs_trans_handle *trans;
7377 struct btrfs_root *root = BTRFS_I(dir)->root;
7378 struct btrfs_path *path;
7379 struct btrfs_key key;
7380 struct inode *inode = NULL;
7381 int err;
7382 int drop_inode = 0;
7383 u64 objectid;
7384 u64 index = 0 ;
7385 int name_len;
7386 int datasize;
7387 unsigned long ptr;
7388 struct btrfs_file_extent_item *ei;
7389 struct extent_buffer *leaf;
7390 unsigned long nr = 0;
7391
7392 name_len = strlen(symname) + 1;
7393 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7394 return -ENAMETOOLONG;
7395
7396 /*
7397 * 2 items for inode item and ref
7398 * 2 items for dir items
7399 * 1 item for xattr if selinux is on
7400 */
7401 trans = btrfs_start_transaction(root, 5);
7402 if (IS_ERR(trans))
7403 return PTR_ERR(trans);
7404
7405 err = btrfs_find_free_ino(root, &objectid);
7406 if (err)
7407 goto out_unlock;
7408
7409 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7410 dentry->d_name.len, btrfs_ino(dir), objectid,
7411 S_IFLNK|S_IRWXUGO, &index);
7412 if (IS_ERR(inode)) {
7413 err = PTR_ERR(inode);
7414 goto out_unlock;
7415 }
7416
7417 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7418 if (err) {
7419 drop_inode = 1;
7420 goto out_unlock;
7421 }
7422
7423 /*
7424 * If the active LSM wants to access the inode during
7425 * d_instantiate it needs these. Smack checks to see
7426 * if the filesystem supports xattrs by looking at the
7427 * ops vector.
7428 */
7429 inode->i_fop = &btrfs_file_operations;
7430 inode->i_op = &btrfs_file_inode_operations;
7431
7432 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7433 if (err)
7434 drop_inode = 1;
7435 else {
7436 inode->i_mapping->a_ops = &btrfs_aops;
7437 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7438 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7439 }
7440 if (drop_inode)
7441 goto out_unlock;
7442
7443 path = btrfs_alloc_path();
7444 if (!path) {
7445 err = -ENOMEM;
7446 drop_inode = 1;
7447 goto out_unlock;
7448 }
7449 key.objectid = btrfs_ino(inode);
7450 key.offset = 0;
7451 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7452 datasize = btrfs_file_extent_calc_inline_size(name_len);
7453 err = btrfs_insert_empty_item(trans, root, path, &key,
7454 datasize);
7455 if (err) {
7456 drop_inode = 1;
7457 btrfs_free_path(path);
7458 goto out_unlock;
7459 }
7460 leaf = path->nodes[0];
7461 ei = btrfs_item_ptr(leaf, path->slots[0],
7462 struct btrfs_file_extent_item);
7463 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7464 btrfs_set_file_extent_type(leaf, ei,
7465 BTRFS_FILE_EXTENT_INLINE);
7466 btrfs_set_file_extent_encryption(leaf, ei, 0);
7467 btrfs_set_file_extent_compression(leaf, ei, 0);
7468 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7469 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7470
7471 ptr = btrfs_file_extent_inline_start(ei);
7472 write_extent_buffer(leaf, symname, ptr, name_len);
7473 btrfs_mark_buffer_dirty(leaf);
7474 btrfs_free_path(path);
7475
7476 inode->i_op = &btrfs_symlink_inode_operations;
7477 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7478 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7479 inode_set_bytes(inode, name_len);
7480 btrfs_i_size_write(inode, name_len - 1);
7481 err = btrfs_update_inode(trans, root, inode);
7482 if (err)
7483 drop_inode = 1;
7484
7485 out_unlock:
7486 if (!err)
7487 d_instantiate(dentry, inode);
7488 nr = trans->blocks_used;
7489 btrfs_end_transaction(trans, root);
7490 if (drop_inode) {
7491 inode_dec_link_count(inode);
7492 iput(inode);
7493 }
7494 btrfs_btree_balance_dirty(root, nr);
7495 return err;
7496 }
7497
7498 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7499 u64 start, u64 num_bytes, u64 min_size,
7500 loff_t actual_len, u64 *alloc_hint,
7501 struct btrfs_trans_handle *trans)
7502 {
7503 struct btrfs_root *root = BTRFS_I(inode)->root;
7504 struct btrfs_key ins;
7505 u64 cur_offset = start;
7506 u64 i_size;
7507 int ret = 0;
7508 bool own_trans = true;
7509
7510 if (trans)
7511 own_trans = false;
7512 while (num_bytes > 0) {
7513 if (own_trans) {
7514 trans = btrfs_start_transaction(root, 3);
7515 if (IS_ERR(trans)) {
7516 ret = PTR_ERR(trans);
7517 break;
7518 }
7519 }
7520
7521 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7522 0, *alloc_hint, &ins, 1);
7523 if (ret) {
7524 if (own_trans)
7525 btrfs_end_transaction(trans, root);
7526 break;
7527 }
7528
7529 ret = insert_reserved_file_extent(trans, inode,
7530 cur_offset, ins.objectid,
7531 ins.offset, ins.offset,
7532 ins.offset, 0, 0, 0,
7533 BTRFS_FILE_EXTENT_PREALLOC);
7534 if (ret) {
7535 btrfs_abort_transaction(trans, root, ret);
7536 if (own_trans)
7537 btrfs_end_transaction(trans, root);
7538 break;
7539 }
7540 btrfs_drop_extent_cache(inode, cur_offset,
7541 cur_offset + ins.offset -1, 0);
7542
7543 num_bytes -= ins.offset;
7544 cur_offset += ins.offset;
7545 *alloc_hint = ins.objectid + ins.offset;
7546
7547 inode_inc_iversion(inode);
7548 inode->i_ctime = CURRENT_TIME;
7549 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7550 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7551 (actual_len > inode->i_size) &&
7552 (cur_offset > inode->i_size)) {
7553 if (cur_offset > actual_len)
7554 i_size = actual_len;
7555 else
7556 i_size = cur_offset;
7557 i_size_write(inode, i_size);
7558 btrfs_ordered_update_i_size(inode, i_size, NULL);
7559 }
7560
7561 ret = btrfs_update_inode(trans, root, inode);
7562
7563 if (ret) {
7564 btrfs_abort_transaction(trans, root, ret);
7565 if (own_trans)
7566 btrfs_end_transaction(trans, root);
7567 break;
7568 }
7569
7570 if (own_trans)
7571 btrfs_end_transaction(trans, root);
7572 }
7573 return ret;
7574 }
7575
7576 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7577 u64 start, u64 num_bytes, u64 min_size,
7578 loff_t actual_len, u64 *alloc_hint)
7579 {
7580 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7581 min_size, actual_len, alloc_hint,
7582 NULL);
7583 }
7584
7585 int btrfs_prealloc_file_range_trans(struct inode *inode,
7586 struct btrfs_trans_handle *trans, int mode,
7587 u64 start, u64 num_bytes, u64 min_size,
7588 loff_t actual_len, u64 *alloc_hint)
7589 {
7590 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7591 min_size, actual_len, alloc_hint, trans);
7592 }
7593
7594 static int btrfs_set_page_dirty(struct page *page)
7595 {
7596 return __set_page_dirty_nobuffers(page);
7597 }
7598
7599 static int btrfs_permission(struct inode *inode, int mask)
7600 {
7601 struct btrfs_root *root = BTRFS_I(inode)->root;
7602 umode_t mode = inode->i_mode;
7603
7604 if (mask & MAY_WRITE &&
7605 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7606 if (btrfs_root_readonly(root))
7607 return -EROFS;
7608 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7609 return -EACCES;
7610 }
7611 return generic_permission(inode, mask);
7612 }
7613
7614 static const struct inode_operations btrfs_dir_inode_operations = {
7615 .getattr = btrfs_getattr,
7616 .lookup = btrfs_lookup,
7617 .create = btrfs_create,
7618 .unlink = btrfs_unlink,
7619 .link = btrfs_link,
7620 .mkdir = btrfs_mkdir,
7621 .rmdir = btrfs_rmdir,
7622 .rename = btrfs_rename,
7623 .symlink = btrfs_symlink,
7624 .setattr = btrfs_setattr,
7625 .mknod = btrfs_mknod,
7626 .setxattr = btrfs_setxattr,
7627 .getxattr = btrfs_getxattr,
7628 .listxattr = btrfs_listxattr,
7629 .removexattr = btrfs_removexattr,
7630 .permission = btrfs_permission,
7631 .get_acl = btrfs_get_acl,
7632 };
7633 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7634 .lookup = btrfs_lookup,
7635 .permission = btrfs_permission,
7636 .get_acl = btrfs_get_acl,
7637 };
7638
7639 static const struct file_operations btrfs_dir_file_operations = {
7640 .llseek = generic_file_llseek,
7641 .read = generic_read_dir,
7642 .readdir = btrfs_real_readdir,
7643 .unlocked_ioctl = btrfs_ioctl,
7644 #ifdef CONFIG_COMPAT
7645 .compat_ioctl = btrfs_ioctl,
7646 #endif
7647 .release = btrfs_release_file,
7648 .fsync = btrfs_sync_file,
7649 };
7650
7651 static struct extent_io_ops btrfs_extent_io_ops = {
7652 .fill_delalloc = run_delalloc_range,
7653 .submit_bio_hook = btrfs_submit_bio_hook,
7654 .merge_bio_hook = btrfs_merge_bio_hook,
7655 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7656 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7657 .writepage_start_hook = btrfs_writepage_start_hook,
7658 .set_bit_hook = btrfs_set_bit_hook,
7659 .clear_bit_hook = btrfs_clear_bit_hook,
7660 .merge_extent_hook = btrfs_merge_extent_hook,
7661 .split_extent_hook = btrfs_split_extent_hook,
7662 };
7663
7664 /*
7665 * btrfs doesn't support the bmap operation because swapfiles
7666 * use bmap to make a mapping of extents in the file. They assume
7667 * these extents won't change over the life of the file and they
7668 * use the bmap result to do IO directly to the drive.
7669 *
7670 * the btrfs bmap call would return logical addresses that aren't
7671 * suitable for IO and they also will change frequently as COW
7672 * operations happen. So, swapfile + btrfs == corruption.
7673 *
7674 * For now we're avoiding this by dropping bmap.
7675 */
7676 static const struct address_space_operations btrfs_aops = {
7677 .readpage = btrfs_readpage,
7678 .writepage = btrfs_writepage,
7679 .writepages = btrfs_writepages,
7680 .readpages = btrfs_readpages,
7681 .direct_IO = btrfs_direct_IO,
7682 .invalidatepage = btrfs_invalidatepage,
7683 .releasepage = btrfs_releasepage,
7684 .set_page_dirty = btrfs_set_page_dirty,
7685 .error_remove_page = generic_error_remove_page,
7686 };
7687
7688 static const struct address_space_operations btrfs_symlink_aops = {
7689 .readpage = btrfs_readpage,
7690 .writepage = btrfs_writepage,
7691 .invalidatepage = btrfs_invalidatepage,
7692 .releasepage = btrfs_releasepage,
7693 };
7694
7695 static const struct inode_operations btrfs_file_inode_operations = {
7696 .getattr = btrfs_getattr,
7697 .setattr = btrfs_setattr,
7698 .setxattr = btrfs_setxattr,
7699 .getxattr = btrfs_getxattr,
7700 .listxattr = btrfs_listxattr,
7701 .removexattr = btrfs_removexattr,
7702 .permission = btrfs_permission,
7703 .fiemap = btrfs_fiemap,
7704 .get_acl = btrfs_get_acl,
7705 .update_time = btrfs_update_time,
7706 };
7707 static const struct inode_operations btrfs_special_inode_operations = {
7708 .getattr = btrfs_getattr,
7709 .setattr = btrfs_setattr,
7710 .permission = btrfs_permission,
7711 .setxattr = btrfs_setxattr,
7712 .getxattr = btrfs_getxattr,
7713 .listxattr = btrfs_listxattr,
7714 .removexattr = btrfs_removexattr,
7715 .get_acl = btrfs_get_acl,
7716 .update_time = btrfs_update_time,
7717 };
7718 static const struct inode_operations btrfs_symlink_inode_operations = {
7719 .readlink = generic_readlink,
7720 .follow_link = page_follow_link_light,
7721 .put_link = page_put_link,
7722 .getattr = btrfs_getattr,
7723 .setattr = btrfs_setattr,
7724 .permission = btrfs_permission,
7725 .setxattr = btrfs_setxattr,
7726 .getxattr = btrfs_getxattr,
7727 .listxattr = btrfs_listxattr,
7728 .removexattr = btrfs_removexattr,
7729 .get_acl = btrfs_get_acl,
7730 .update_time = btrfs_update_time,
7731 };
7732
7733 const struct dentry_operations btrfs_dentry_operations = {
7734 .d_delete = btrfs_dentry_delete,
7735 .d_release = btrfs_dentry_release,
7736 };
This page took 0.194244 seconds and 4 git commands to generate.