Btrfs: fix ordered extent leak when failing to start a transaction
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include "compat.h"
43 #include "ctree.h"
44 #include "disk-io.h"
45 #include "transaction.h"
46 #include "btrfs_inode.h"
47 #include "ioctl.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "volumes.h"
53 #include "compression.h"
54 #include "locking.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
57
58 struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61 };
62
63 static const struct inode_operations btrfs_dir_inode_operations;
64 static const struct inode_operations btrfs_symlink_inode_operations;
65 static const struct inode_operations btrfs_dir_ro_inode_operations;
66 static const struct inode_operations btrfs_special_inode_operations;
67 static const struct inode_operations btrfs_file_inode_operations;
68 static const struct address_space_operations btrfs_aops;
69 static const struct address_space_operations btrfs_symlink_aops;
70 static const struct file_operations btrfs_dir_file_operations;
71 static struct extent_io_ops btrfs_extent_io_ops;
72
73 static struct kmem_cache *btrfs_inode_cachep;
74 struct kmem_cache *btrfs_trans_handle_cachep;
75 struct kmem_cache *btrfs_transaction_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
78
79 #define S_SHIFT 12
80 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
81 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
82 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
83 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
84 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
85 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
86 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
87 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
88 };
89
90 static int btrfs_setsize(struct inode *inode, loff_t newsize);
91 static int btrfs_truncate(struct inode *inode);
92 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
93 static noinline int cow_file_range(struct inode *inode,
94 struct page *locked_page,
95 u64 start, u64 end, int *page_started,
96 unsigned long *nr_written, int unlock);
97 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode);
99
100 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
101 struct inode *inode, struct inode *dir,
102 const struct qstr *qstr)
103 {
104 int err;
105
106 err = btrfs_init_acl(trans, inode, dir);
107 if (!err)
108 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
109 return err;
110 }
111
112 /*
113 * this does all the hard work for inserting an inline extent into
114 * the btree. The caller should have done a btrfs_drop_extents so that
115 * no overlapping inline items exist in the btree
116 */
117 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
118 struct btrfs_root *root, struct inode *inode,
119 u64 start, size_t size, size_t compressed_size,
120 int compress_type,
121 struct page **compressed_pages)
122 {
123 struct btrfs_key key;
124 struct btrfs_path *path;
125 struct extent_buffer *leaf;
126 struct page *page = NULL;
127 char *kaddr;
128 unsigned long ptr;
129 struct btrfs_file_extent_item *ei;
130 int err = 0;
131 int ret;
132 size_t cur_size = size;
133 size_t datasize;
134 unsigned long offset;
135
136 if (compressed_size && compressed_pages)
137 cur_size = compressed_size;
138
139 path = btrfs_alloc_path();
140 if (!path)
141 return -ENOMEM;
142
143 path->leave_spinning = 1;
144
145 key.objectid = btrfs_ino(inode);
146 key.offset = start;
147 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
148 datasize = btrfs_file_extent_calc_inline_size(cur_size);
149
150 inode_add_bytes(inode, size);
151 ret = btrfs_insert_empty_item(trans, root, path, &key,
152 datasize);
153 if (ret) {
154 err = ret;
155 goto fail;
156 }
157 leaf = path->nodes[0];
158 ei = btrfs_item_ptr(leaf, path->slots[0],
159 struct btrfs_file_extent_item);
160 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
161 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
162 btrfs_set_file_extent_encryption(leaf, ei, 0);
163 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
164 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
165 ptr = btrfs_file_extent_inline_start(ei);
166
167 if (compress_type != BTRFS_COMPRESS_NONE) {
168 struct page *cpage;
169 int i = 0;
170 while (compressed_size > 0) {
171 cpage = compressed_pages[i];
172 cur_size = min_t(unsigned long, compressed_size,
173 PAGE_CACHE_SIZE);
174
175 kaddr = kmap_atomic(cpage);
176 write_extent_buffer(leaf, kaddr, ptr, cur_size);
177 kunmap_atomic(kaddr);
178
179 i++;
180 ptr += cur_size;
181 compressed_size -= cur_size;
182 }
183 btrfs_set_file_extent_compression(leaf, ei,
184 compress_type);
185 } else {
186 page = find_get_page(inode->i_mapping,
187 start >> PAGE_CACHE_SHIFT);
188 btrfs_set_file_extent_compression(leaf, ei, 0);
189 kaddr = kmap_atomic(page);
190 offset = start & (PAGE_CACHE_SIZE - 1);
191 write_extent_buffer(leaf, kaddr + offset, ptr, size);
192 kunmap_atomic(kaddr);
193 page_cache_release(page);
194 }
195 btrfs_mark_buffer_dirty(leaf);
196 btrfs_free_path(path);
197
198 /*
199 * we're an inline extent, so nobody can
200 * extend the file past i_size without locking
201 * a page we already have locked.
202 *
203 * We must do any isize and inode updates
204 * before we unlock the pages. Otherwise we
205 * could end up racing with unlink.
206 */
207 BTRFS_I(inode)->disk_i_size = inode->i_size;
208 ret = btrfs_update_inode(trans, root, inode);
209
210 return ret;
211 fail:
212 btrfs_free_path(path);
213 return err;
214 }
215
216
217 /*
218 * conditionally insert an inline extent into the file. This
219 * does the checks required to make sure the data is small enough
220 * to fit as an inline extent.
221 */
222 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
223 struct btrfs_root *root,
224 struct inode *inode, u64 start, u64 end,
225 size_t compressed_size, int compress_type,
226 struct page **compressed_pages)
227 {
228 u64 isize = i_size_read(inode);
229 u64 actual_end = min(end + 1, isize);
230 u64 inline_len = actual_end - start;
231 u64 aligned_end = (end + root->sectorsize - 1) &
232 ~((u64)root->sectorsize - 1);
233 u64 hint_byte;
234 u64 data_len = inline_len;
235 int ret;
236
237 if (compressed_size)
238 data_len = compressed_size;
239
240 if (start > 0 ||
241 actual_end >= PAGE_CACHE_SIZE ||
242 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
243 (!compressed_size &&
244 (actual_end & (root->sectorsize - 1)) == 0) ||
245 end + 1 < isize ||
246 data_len > root->fs_info->max_inline) {
247 return 1;
248 }
249
250 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
251 &hint_byte, 1);
252 if (ret)
253 return ret;
254
255 if (isize > actual_end)
256 inline_len = min_t(u64, isize, actual_end);
257 ret = insert_inline_extent(trans, root, inode, start,
258 inline_len, compressed_size,
259 compress_type, compressed_pages);
260 if (ret && ret != -ENOSPC) {
261 btrfs_abort_transaction(trans, root, ret);
262 return ret;
263 } else if (ret == -ENOSPC) {
264 return 1;
265 }
266
267 btrfs_delalloc_release_metadata(inode, end + 1 - start);
268 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
269 return 0;
270 }
271
272 struct async_extent {
273 u64 start;
274 u64 ram_size;
275 u64 compressed_size;
276 struct page **pages;
277 unsigned long nr_pages;
278 int compress_type;
279 struct list_head list;
280 };
281
282 struct async_cow {
283 struct inode *inode;
284 struct btrfs_root *root;
285 struct page *locked_page;
286 u64 start;
287 u64 end;
288 struct list_head extents;
289 struct btrfs_work work;
290 };
291
292 static noinline int add_async_extent(struct async_cow *cow,
293 u64 start, u64 ram_size,
294 u64 compressed_size,
295 struct page **pages,
296 unsigned long nr_pages,
297 int compress_type)
298 {
299 struct async_extent *async_extent;
300
301 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
302 BUG_ON(!async_extent); /* -ENOMEM */
303 async_extent->start = start;
304 async_extent->ram_size = ram_size;
305 async_extent->compressed_size = compressed_size;
306 async_extent->pages = pages;
307 async_extent->nr_pages = nr_pages;
308 async_extent->compress_type = compress_type;
309 list_add_tail(&async_extent->list, &cow->extents);
310 return 0;
311 }
312
313 /*
314 * we create compressed extents in two phases. The first
315 * phase compresses a range of pages that have already been
316 * locked (both pages and state bits are locked).
317 *
318 * This is done inside an ordered work queue, and the compression
319 * is spread across many cpus. The actual IO submission is step
320 * two, and the ordered work queue takes care of making sure that
321 * happens in the same order things were put onto the queue by
322 * writepages and friends.
323 *
324 * If this code finds it can't get good compression, it puts an
325 * entry onto the work queue to write the uncompressed bytes. This
326 * makes sure that both compressed inodes and uncompressed inodes
327 * are written in the same order that pdflush sent them down.
328 */
329 static noinline int compress_file_range(struct inode *inode,
330 struct page *locked_page,
331 u64 start, u64 end,
332 struct async_cow *async_cow,
333 int *num_added)
334 {
335 struct btrfs_root *root = BTRFS_I(inode)->root;
336 struct btrfs_trans_handle *trans;
337 u64 num_bytes;
338 u64 blocksize = root->sectorsize;
339 u64 actual_end;
340 u64 isize = i_size_read(inode);
341 int ret = 0;
342 struct page **pages = NULL;
343 unsigned long nr_pages;
344 unsigned long nr_pages_ret = 0;
345 unsigned long total_compressed = 0;
346 unsigned long total_in = 0;
347 unsigned long max_compressed = 128 * 1024;
348 unsigned long max_uncompressed = 128 * 1024;
349 int i;
350 int will_compress;
351 int compress_type = root->fs_info->compress_type;
352
353 /* if this is a small write inside eof, kick off a defrag */
354 if ((end - start + 1) < 16 * 1024 &&
355 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
356 btrfs_add_inode_defrag(NULL, inode);
357
358 actual_end = min_t(u64, isize, end + 1);
359 again:
360 will_compress = 0;
361 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
362 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
363
364 /*
365 * we don't want to send crud past the end of i_size through
366 * compression, that's just a waste of CPU time. So, if the
367 * end of the file is before the start of our current
368 * requested range of bytes, we bail out to the uncompressed
369 * cleanup code that can deal with all of this.
370 *
371 * It isn't really the fastest way to fix things, but this is a
372 * very uncommon corner.
373 */
374 if (actual_end <= start)
375 goto cleanup_and_bail_uncompressed;
376
377 total_compressed = actual_end - start;
378
379 /* we want to make sure that amount of ram required to uncompress
380 * an extent is reasonable, so we limit the total size in ram
381 * of a compressed extent to 128k. This is a crucial number
382 * because it also controls how easily we can spread reads across
383 * cpus for decompression.
384 *
385 * We also want to make sure the amount of IO required to do
386 * a random read is reasonably small, so we limit the size of
387 * a compressed extent to 128k.
388 */
389 total_compressed = min(total_compressed, max_uncompressed);
390 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
391 num_bytes = max(blocksize, num_bytes);
392 total_in = 0;
393 ret = 0;
394
395 /*
396 * we do compression for mount -o compress and when the
397 * inode has not been flagged as nocompress. This flag can
398 * change at any time if we discover bad compression ratios.
399 */
400 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
401 (btrfs_test_opt(root, COMPRESS) ||
402 (BTRFS_I(inode)->force_compress) ||
403 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
404 WARN_ON(pages);
405 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
406 if (!pages) {
407 /* just bail out to the uncompressed code */
408 goto cont;
409 }
410
411 if (BTRFS_I(inode)->force_compress)
412 compress_type = BTRFS_I(inode)->force_compress;
413
414 ret = btrfs_compress_pages(compress_type,
415 inode->i_mapping, start,
416 total_compressed, pages,
417 nr_pages, &nr_pages_ret,
418 &total_in,
419 &total_compressed,
420 max_compressed);
421
422 if (!ret) {
423 unsigned long offset = total_compressed &
424 (PAGE_CACHE_SIZE - 1);
425 struct page *page = pages[nr_pages_ret - 1];
426 char *kaddr;
427
428 /* zero the tail end of the last page, we might be
429 * sending it down to disk
430 */
431 if (offset) {
432 kaddr = kmap_atomic(page);
433 memset(kaddr + offset, 0,
434 PAGE_CACHE_SIZE - offset);
435 kunmap_atomic(kaddr);
436 }
437 will_compress = 1;
438 }
439 }
440 cont:
441 if (start == 0) {
442 trans = btrfs_join_transaction(root);
443 if (IS_ERR(trans)) {
444 ret = PTR_ERR(trans);
445 trans = NULL;
446 goto cleanup_and_out;
447 }
448 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
449
450 /* lets try to make an inline extent */
451 if (ret || total_in < (actual_end - start)) {
452 /* we didn't compress the entire range, try
453 * to make an uncompressed inline extent.
454 */
455 ret = cow_file_range_inline(trans, root, inode,
456 start, end, 0, 0, NULL);
457 } else {
458 /* try making a compressed inline extent */
459 ret = cow_file_range_inline(trans, root, inode,
460 start, end,
461 total_compressed,
462 compress_type, pages);
463 }
464 if (ret <= 0) {
465 /*
466 * inline extent creation worked or returned error,
467 * we don't need to create any more async work items.
468 * Unlock and free up our temp pages.
469 */
470 extent_clear_unlock_delalloc(inode,
471 &BTRFS_I(inode)->io_tree,
472 start, end, NULL,
473 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
474 EXTENT_CLEAR_DELALLOC |
475 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
476
477 btrfs_end_transaction(trans, root);
478 goto free_pages_out;
479 }
480 btrfs_end_transaction(trans, root);
481 }
482
483 if (will_compress) {
484 /*
485 * we aren't doing an inline extent round the compressed size
486 * up to a block size boundary so the allocator does sane
487 * things
488 */
489 total_compressed = (total_compressed + blocksize - 1) &
490 ~(blocksize - 1);
491
492 /*
493 * one last check to make sure the compression is really a
494 * win, compare the page count read with the blocks on disk
495 */
496 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
497 ~(PAGE_CACHE_SIZE - 1);
498 if (total_compressed >= total_in) {
499 will_compress = 0;
500 } else {
501 num_bytes = total_in;
502 }
503 }
504 if (!will_compress && pages) {
505 /*
506 * the compression code ran but failed to make things smaller,
507 * free any pages it allocated and our page pointer array
508 */
509 for (i = 0; i < nr_pages_ret; i++) {
510 WARN_ON(pages[i]->mapping);
511 page_cache_release(pages[i]);
512 }
513 kfree(pages);
514 pages = NULL;
515 total_compressed = 0;
516 nr_pages_ret = 0;
517
518 /* flag the file so we don't compress in the future */
519 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
520 !(BTRFS_I(inode)->force_compress)) {
521 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
522 }
523 }
524 if (will_compress) {
525 *num_added += 1;
526
527 /* the async work queues will take care of doing actual
528 * allocation on disk for these compressed pages,
529 * and will submit them to the elevator.
530 */
531 add_async_extent(async_cow, start, num_bytes,
532 total_compressed, pages, nr_pages_ret,
533 compress_type);
534
535 if (start + num_bytes < end) {
536 start += num_bytes;
537 pages = NULL;
538 cond_resched();
539 goto again;
540 }
541 } else {
542 cleanup_and_bail_uncompressed:
543 /*
544 * No compression, but we still need to write the pages in
545 * the file we've been given so far. redirty the locked
546 * page if it corresponds to our extent and set things up
547 * for the async work queue to run cow_file_range to do
548 * the normal delalloc dance
549 */
550 if (page_offset(locked_page) >= start &&
551 page_offset(locked_page) <= end) {
552 __set_page_dirty_nobuffers(locked_page);
553 /* unlocked later on in the async handlers */
554 }
555 add_async_extent(async_cow, start, end - start + 1,
556 0, NULL, 0, BTRFS_COMPRESS_NONE);
557 *num_added += 1;
558 }
559
560 out:
561 return ret;
562
563 free_pages_out:
564 for (i = 0; i < nr_pages_ret; i++) {
565 WARN_ON(pages[i]->mapping);
566 page_cache_release(pages[i]);
567 }
568 kfree(pages);
569
570 goto out;
571
572 cleanup_and_out:
573 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
574 start, end, NULL,
575 EXTENT_CLEAR_UNLOCK_PAGE |
576 EXTENT_CLEAR_DIRTY |
577 EXTENT_CLEAR_DELALLOC |
578 EXTENT_SET_WRITEBACK |
579 EXTENT_END_WRITEBACK);
580 if (!trans || IS_ERR(trans))
581 btrfs_error(root->fs_info, ret, "Failed to join transaction");
582 else
583 btrfs_abort_transaction(trans, root, ret);
584 goto free_pages_out;
585 }
586
587 /*
588 * phase two of compressed writeback. This is the ordered portion
589 * of the code, which only gets called in the order the work was
590 * queued. We walk all the async extents created by compress_file_range
591 * and send them down to the disk.
592 */
593 static noinline int submit_compressed_extents(struct inode *inode,
594 struct async_cow *async_cow)
595 {
596 struct async_extent *async_extent;
597 u64 alloc_hint = 0;
598 struct btrfs_trans_handle *trans;
599 struct btrfs_key ins;
600 struct extent_map *em;
601 struct btrfs_root *root = BTRFS_I(inode)->root;
602 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
603 struct extent_io_tree *io_tree;
604 int ret = 0;
605
606 if (list_empty(&async_cow->extents))
607 return 0;
608
609
610 while (!list_empty(&async_cow->extents)) {
611 async_extent = list_entry(async_cow->extents.next,
612 struct async_extent, list);
613 list_del(&async_extent->list);
614
615 io_tree = &BTRFS_I(inode)->io_tree;
616
617 retry:
618 /* did the compression code fall back to uncompressed IO? */
619 if (!async_extent->pages) {
620 int page_started = 0;
621 unsigned long nr_written = 0;
622
623 lock_extent(io_tree, async_extent->start,
624 async_extent->start +
625 async_extent->ram_size - 1);
626
627 /* allocate blocks */
628 ret = cow_file_range(inode, async_cow->locked_page,
629 async_extent->start,
630 async_extent->start +
631 async_extent->ram_size - 1,
632 &page_started, &nr_written, 0);
633
634 /* JDM XXX */
635
636 /*
637 * if page_started, cow_file_range inserted an
638 * inline extent and took care of all the unlocking
639 * and IO for us. Otherwise, we need to submit
640 * all those pages down to the drive.
641 */
642 if (!page_started && !ret)
643 extent_write_locked_range(io_tree,
644 inode, async_extent->start,
645 async_extent->start +
646 async_extent->ram_size - 1,
647 btrfs_get_extent,
648 WB_SYNC_ALL);
649 kfree(async_extent);
650 cond_resched();
651 continue;
652 }
653
654 lock_extent(io_tree, async_extent->start,
655 async_extent->start + async_extent->ram_size - 1);
656
657 trans = btrfs_join_transaction(root);
658 if (IS_ERR(trans)) {
659 ret = PTR_ERR(trans);
660 } else {
661 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
662 ret = btrfs_reserve_extent(trans, root,
663 async_extent->compressed_size,
664 async_extent->compressed_size,
665 0, alloc_hint, &ins, 1);
666 if (ret)
667 btrfs_abort_transaction(trans, root, ret);
668 btrfs_end_transaction(trans, root);
669 }
670
671 if (ret) {
672 int i;
673 for (i = 0; i < async_extent->nr_pages; i++) {
674 WARN_ON(async_extent->pages[i]->mapping);
675 page_cache_release(async_extent->pages[i]);
676 }
677 kfree(async_extent->pages);
678 async_extent->nr_pages = 0;
679 async_extent->pages = NULL;
680 unlock_extent(io_tree, async_extent->start,
681 async_extent->start +
682 async_extent->ram_size - 1);
683 if (ret == -ENOSPC)
684 goto retry;
685 goto out_free; /* JDM: Requeue? */
686 }
687
688 /*
689 * here we're doing allocation and writeback of the
690 * compressed pages
691 */
692 btrfs_drop_extent_cache(inode, async_extent->start,
693 async_extent->start +
694 async_extent->ram_size - 1, 0);
695
696 em = alloc_extent_map();
697 BUG_ON(!em); /* -ENOMEM */
698 em->start = async_extent->start;
699 em->len = async_extent->ram_size;
700 em->orig_start = em->start;
701
702 em->block_start = ins.objectid;
703 em->block_len = ins.offset;
704 em->bdev = root->fs_info->fs_devices->latest_bdev;
705 em->compress_type = async_extent->compress_type;
706 set_bit(EXTENT_FLAG_PINNED, &em->flags);
707 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
708
709 while (1) {
710 write_lock(&em_tree->lock);
711 ret = add_extent_mapping(em_tree, em);
712 write_unlock(&em_tree->lock);
713 if (ret != -EEXIST) {
714 free_extent_map(em);
715 break;
716 }
717 btrfs_drop_extent_cache(inode, async_extent->start,
718 async_extent->start +
719 async_extent->ram_size - 1, 0);
720 }
721
722 ret = btrfs_add_ordered_extent_compress(inode,
723 async_extent->start,
724 ins.objectid,
725 async_extent->ram_size,
726 ins.offset,
727 BTRFS_ORDERED_COMPRESSED,
728 async_extent->compress_type);
729 BUG_ON(ret); /* -ENOMEM */
730
731 /*
732 * clear dirty, set writeback and unlock the pages.
733 */
734 extent_clear_unlock_delalloc(inode,
735 &BTRFS_I(inode)->io_tree,
736 async_extent->start,
737 async_extent->start +
738 async_extent->ram_size - 1,
739 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
740 EXTENT_CLEAR_UNLOCK |
741 EXTENT_CLEAR_DELALLOC |
742 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
743
744 ret = btrfs_submit_compressed_write(inode,
745 async_extent->start,
746 async_extent->ram_size,
747 ins.objectid,
748 ins.offset, async_extent->pages,
749 async_extent->nr_pages);
750
751 BUG_ON(ret); /* -ENOMEM */
752 alloc_hint = ins.objectid + ins.offset;
753 kfree(async_extent);
754 cond_resched();
755 }
756 ret = 0;
757 out:
758 return ret;
759 out_free:
760 kfree(async_extent);
761 goto out;
762 }
763
764 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
765 u64 num_bytes)
766 {
767 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
768 struct extent_map *em;
769 u64 alloc_hint = 0;
770
771 read_lock(&em_tree->lock);
772 em = search_extent_mapping(em_tree, start, num_bytes);
773 if (em) {
774 /*
775 * if block start isn't an actual block number then find the
776 * first block in this inode and use that as a hint. If that
777 * block is also bogus then just don't worry about it.
778 */
779 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
780 free_extent_map(em);
781 em = search_extent_mapping(em_tree, 0, 0);
782 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
783 alloc_hint = em->block_start;
784 if (em)
785 free_extent_map(em);
786 } else {
787 alloc_hint = em->block_start;
788 free_extent_map(em);
789 }
790 }
791 read_unlock(&em_tree->lock);
792
793 return alloc_hint;
794 }
795
796 /*
797 * when extent_io.c finds a delayed allocation range in the file,
798 * the call backs end up in this code. The basic idea is to
799 * allocate extents on disk for the range, and create ordered data structs
800 * in ram to track those extents.
801 *
802 * locked_page is the page that writepage had locked already. We use
803 * it to make sure we don't do extra locks or unlocks.
804 *
805 * *page_started is set to one if we unlock locked_page and do everything
806 * required to start IO on it. It may be clean and already done with
807 * IO when we return.
808 */
809 static noinline int cow_file_range(struct inode *inode,
810 struct page *locked_page,
811 u64 start, u64 end, int *page_started,
812 unsigned long *nr_written,
813 int unlock)
814 {
815 struct btrfs_root *root = BTRFS_I(inode)->root;
816 struct btrfs_trans_handle *trans;
817 u64 alloc_hint = 0;
818 u64 num_bytes;
819 unsigned long ram_size;
820 u64 disk_num_bytes;
821 u64 cur_alloc_size;
822 u64 blocksize = root->sectorsize;
823 struct btrfs_key ins;
824 struct extent_map *em;
825 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
826 int ret = 0;
827
828 BUG_ON(btrfs_is_free_space_inode(inode));
829 trans = btrfs_join_transaction(root);
830 if (IS_ERR(trans)) {
831 extent_clear_unlock_delalloc(inode,
832 &BTRFS_I(inode)->io_tree,
833 start, end, locked_page,
834 EXTENT_CLEAR_UNLOCK_PAGE |
835 EXTENT_CLEAR_UNLOCK |
836 EXTENT_CLEAR_DELALLOC |
837 EXTENT_CLEAR_DIRTY |
838 EXTENT_SET_WRITEBACK |
839 EXTENT_END_WRITEBACK);
840 return PTR_ERR(trans);
841 }
842 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
843
844 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
845 num_bytes = max(blocksize, num_bytes);
846 disk_num_bytes = num_bytes;
847 ret = 0;
848
849 /* if this is a small write inside eof, kick off defrag */
850 if (num_bytes < 64 * 1024 &&
851 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
852 btrfs_add_inode_defrag(trans, inode);
853
854 if (start == 0) {
855 /* lets try to make an inline extent */
856 ret = cow_file_range_inline(trans, root, inode,
857 start, end, 0, 0, NULL);
858 if (ret == 0) {
859 extent_clear_unlock_delalloc(inode,
860 &BTRFS_I(inode)->io_tree,
861 start, end, NULL,
862 EXTENT_CLEAR_UNLOCK_PAGE |
863 EXTENT_CLEAR_UNLOCK |
864 EXTENT_CLEAR_DELALLOC |
865 EXTENT_CLEAR_DIRTY |
866 EXTENT_SET_WRITEBACK |
867 EXTENT_END_WRITEBACK);
868
869 *nr_written = *nr_written +
870 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
871 *page_started = 1;
872 goto out;
873 } else if (ret < 0) {
874 btrfs_abort_transaction(trans, root, ret);
875 goto out_unlock;
876 }
877 }
878
879 BUG_ON(disk_num_bytes >
880 btrfs_super_total_bytes(root->fs_info->super_copy));
881
882 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
883 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
884
885 while (disk_num_bytes > 0) {
886 unsigned long op;
887
888 cur_alloc_size = disk_num_bytes;
889 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
890 root->sectorsize, 0, alloc_hint,
891 &ins, 1);
892 if (ret < 0) {
893 btrfs_abort_transaction(trans, root, ret);
894 goto out_unlock;
895 }
896
897 em = alloc_extent_map();
898 BUG_ON(!em); /* -ENOMEM */
899 em->start = start;
900 em->orig_start = em->start;
901 ram_size = ins.offset;
902 em->len = ins.offset;
903
904 em->block_start = ins.objectid;
905 em->block_len = ins.offset;
906 em->bdev = root->fs_info->fs_devices->latest_bdev;
907 set_bit(EXTENT_FLAG_PINNED, &em->flags);
908
909 while (1) {
910 write_lock(&em_tree->lock);
911 ret = add_extent_mapping(em_tree, em);
912 write_unlock(&em_tree->lock);
913 if (ret != -EEXIST) {
914 free_extent_map(em);
915 break;
916 }
917 btrfs_drop_extent_cache(inode, start,
918 start + ram_size - 1, 0);
919 }
920
921 cur_alloc_size = ins.offset;
922 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
923 ram_size, cur_alloc_size, 0);
924 BUG_ON(ret); /* -ENOMEM */
925
926 if (root->root_key.objectid ==
927 BTRFS_DATA_RELOC_TREE_OBJECTID) {
928 ret = btrfs_reloc_clone_csums(inode, start,
929 cur_alloc_size);
930 if (ret) {
931 btrfs_abort_transaction(trans, root, ret);
932 goto out_unlock;
933 }
934 }
935
936 if (disk_num_bytes < cur_alloc_size)
937 break;
938
939 /* we're not doing compressed IO, don't unlock the first
940 * page (which the caller expects to stay locked), don't
941 * clear any dirty bits and don't set any writeback bits
942 *
943 * Do set the Private2 bit so we know this page was properly
944 * setup for writepage
945 */
946 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
947 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
948 EXTENT_SET_PRIVATE2;
949
950 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
951 start, start + ram_size - 1,
952 locked_page, op);
953 disk_num_bytes -= cur_alloc_size;
954 num_bytes -= cur_alloc_size;
955 alloc_hint = ins.objectid + ins.offset;
956 start += cur_alloc_size;
957 }
958 ret = 0;
959 out:
960 btrfs_end_transaction(trans, root);
961
962 return ret;
963 out_unlock:
964 extent_clear_unlock_delalloc(inode,
965 &BTRFS_I(inode)->io_tree,
966 start, end, locked_page,
967 EXTENT_CLEAR_UNLOCK_PAGE |
968 EXTENT_CLEAR_UNLOCK |
969 EXTENT_CLEAR_DELALLOC |
970 EXTENT_CLEAR_DIRTY |
971 EXTENT_SET_WRITEBACK |
972 EXTENT_END_WRITEBACK);
973
974 goto out;
975 }
976
977 /*
978 * work queue call back to started compression on a file and pages
979 */
980 static noinline void async_cow_start(struct btrfs_work *work)
981 {
982 struct async_cow *async_cow;
983 int num_added = 0;
984 async_cow = container_of(work, struct async_cow, work);
985
986 compress_file_range(async_cow->inode, async_cow->locked_page,
987 async_cow->start, async_cow->end, async_cow,
988 &num_added);
989 if (num_added == 0) {
990 btrfs_add_delayed_iput(async_cow->inode);
991 async_cow->inode = NULL;
992 }
993 }
994
995 /*
996 * work queue call back to submit previously compressed pages
997 */
998 static noinline void async_cow_submit(struct btrfs_work *work)
999 {
1000 struct async_cow *async_cow;
1001 struct btrfs_root *root;
1002 unsigned long nr_pages;
1003
1004 async_cow = container_of(work, struct async_cow, work);
1005
1006 root = async_cow->root;
1007 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1008 PAGE_CACHE_SHIFT;
1009
1010 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1011 5 * 1024 * 1024 &&
1012 waitqueue_active(&root->fs_info->async_submit_wait))
1013 wake_up(&root->fs_info->async_submit_wait);
1014
1015 if (async_cow->inode)
1016 submit_compressed_extents(async_cow->inode, async_cow);
1017 }
1018
1019 static noinline void async_cow_free(struct btrfs_work *work)
1020 {
1021 struct async_cow *async_cow;
1022 async_cow = container_of(work, struct async_cow, work);
1023 if (async_cow->inode)
1024 btrfs_add_delayed_iput(async_cow->inode);
1025 kfree(async_cow);
1026 }
1027
1028 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1029 u64 start, u64 end, int *page_started,
1030 unsigned long *nr_written)
1031 {
1032 struct async_cow *async_cow;
1033 struct btrfs_root *root = BTRFS_I(inode)->root;
1034 unsigned long nr_pages;
1035 u64 cur_end;
1036 int limit = 10 * 1024 * 1024;
1037
1038 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1039 1, 0, NULL, GFP_NOFS);
1040 while (start < end) {
1041 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1042 BUG_ON(!async_cow); /* -ENOMEM */
1043 async_cow->inode = igrab(inode);
1044 async_cow->root = root;
1045 async_cow->locked_page = locked_page;
1046 async_cow->start = start;
1047
1048 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1049 cur_end = end;
1050 else
1051 cur_end = min(end, start + 512 * 1024 - 1);
1052
1053 async_cow->end = cur_end;
1054 INIT_LIST_HEAD(&async_cow->extents);
1055
1056 async_cow->work.func = async_cow_start;
1057 async_cow->work.ordered_func = async_cow_submit;
1058 async_cow->work.ordered_free = async_cow_free;
1059 async_cow->work.flags = 0;
1060
1061 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1062 PAGE_CACHE_SHIFT;
1063 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1064
1065 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1066 &async_cow->work);
1067
1068 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1069 wait_event(root->fs_info->async_submit_wait,
1070 (atomic_read(&root->fs_info->async_delalloc_pages) <
1071 limit));
1072 }
1073
1074 while (atomic_read(&root->fs_info->async_submit_draining) &&
1075 atomic_read(&root->fs_info->async_delalloc_pages)) {
1076 wait_event(root->fs_info->async_submit_wait,
1077 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1078 0));
1079 }
1080
1081 *nr_written += nr_pages;
1082 start = cur_end + 1;
1083 }
1084 *page_started = 1;
1085 return 0;
1086 }
1087
1088 static noinline int csum_exist_in_range(struct btrfs_root *root,
1089 u64 bytenr, u64 num_bytes)
1090 {
1091 int ret;
1092 struct btrfs_ordered_sum *sums;
1093 LIST_HEAD(list);
1094
1095 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1096 bytenr + num_bytes - 1, &list, 0);
1097 if (ret == 0 && list_empty(&list))
1098 return 0;
1099
1100 while (!list_empty(&list)) {
1101 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1102 list_del(&sums->list);
1103 kfree(sums);
1104 }
1105 return 1;
1106 }
1107
1108 /*
1109 * when nowcow writeback call back. This checks for snapshots or COW copies
1110 * of the extents that exist in the file, and COWs the file as required.
1111 *
1112 * If no cow copies or snapshots exist, we write directly to the existing
1113 * blocks on disk
1114 */
1115 static noinline int run_delalloc_nocow(struct inode *inode,
1116 struct page *locked_page,
1117 u64 start, u64 end, int *page_started, int force,
1118 unsigned long *nr_written)
1119 {
1120 struct btrfs_root *root = BTRFS_I(inode)->root;
1121 struct btrfs_trans_handle *trans;
1122 struct extent_buffer *leaf;
1123 struct btrfs_path *path;
1124 struct btrfs_file_extent_item *fi;
1125 struct btrfs_key found_key;
1126 u64 cow_start;
1127 u64 cur_offset;
1128 u64 extent_end;
1129 u64 extent_offset;
1130 u64 disk_bytenr;
1131 u64 num_bytes;
1132 int extent_type;
1133 int ret, err;
1134 int type;
1135 int nocow;
1136 int check_prev = 1;
1137 bool nolock;
1138 u64 ino = btrfs_ino(inode);
1139
1140 path = btrfs_alloc_path();
1141 if (!path) {
1142 extent_clear_unlock_delalloc(inode,
1143 &BTRFS_I(inode)->io_tree,
1144 start, end, locked_page,
1145 EXTENT_CLEAR_UNLOCK_PAGE |
1146 EXTENT_CLEAR_UNLOCK |
1147 EXTENT_CLEAR_DELALLOC |
1148 EXTENT_CLEAR_DIRTY |
1149 EXTENT_SET_WRITEBACK |
1150 EXTENT_END_WRITEBACK);
1151 return -ENOMEM;
1152 }
1153
1154 nolock = btrfs_is_free_space_inode(inode);
1155
1156 if (nolock)
1157 trans = btrfs_join_transaction_nolock(root);
1158 else
1159 trans = btrfs_join_transaction(root);
1160
1161 if (IS_ERR(trans)) {
1162 extent_clear_unlock_delalloc(inode,
1163 &BTRFS_I(inode)->io_tree,
1164 start, end, locked_page,
1165 EXTENT_CLEAR_UNLOCK_PAGE |
1166 EXTENT_CLEAR_UNLOCK |
1167 EXTENT_CLEAR_DELALLOC |
1168 EXTENT_CLEAR_DIRTY |
1169 EXTENT_SET_WRITEBACK |
1170 EXTENT_END_WRITEBACK);
1171 btrfs_free_path(path);
1172 return PTR_ERR(trans);
1173 }
1174
1175 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1176
1177 cow_start = (u64)-1;
1178 cur_offset = start;
1179 while (1) {
1180 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1181 cur_offset, 0);
1182 if (ret < 0) {
1183 btrfs_abort_transaction(trans, root, ret);
1184 goto error;
1185 }
1186 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1187 leaf = path->nodes[0];
1188 btrfs_item_key_to_cpu(leaf, &found_key,
1189 path->slots[0] - 1);
1190 if (found_key.objectid == ino &&
1191 found_key.type == BTRFS_EXTENT_DATA_KEY)
1192 path->slots[0]--;
1193 }
1194 check_prev = 0;
1195 next_slot:
1196 leaf = path->nodes[0];
1197 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1198 ret = btrfs_next_leaf(root, path);
1199 if (ret < 0) {
1200 btrfs_abort_transaction(trans, root, ret);
1201 goto error;
1202 }
1203 if (ret > 0)
1204 break;
1205 leaf = path->nodes[0];
1206 }
1207
1208 nocow = 0;
1209 disk_bytenr = 0;
1210 num_bytes = 0;
1211 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1212
1213 if (found_key.objectid > ino ||
1214 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1215 found_key.offset > end)
1216 break;
1217
1218 if (found_key.offset > cur_offset) {
1219 extent_end = found_key.offset;
1220 extent_type = 0;
1221 goto out_check;
1222 }
1223
1224 fi = btrfs_item_ptr(leaf, path->slots[0],
1225 struct btrfs_file_extent_item);
1226 extent_type = btrfs_file_extent_type(leaf, fi);
1227
1228 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1229 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1230 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1231 extent_offset = btrfs_file_extent_offset(leaf, fi);
1232 extent_end = found_key.offset +
1233 btrfs_file_extent_num_bytes(leaf, fi);
1234 if (extent_end <= start) {
1235 path->slots[0]++;
1236 goto next_slot;
1237 }
1238 if (disk_bytenr == 0)
1239 goto out_check;
1240 if (btrfs_file_extent_compression(leaf, fi) ||
1241 btrfs_file_extent_encryption(leaf, fi) ||
1242 btrfs_file_extent_other_encoding(leaf, fi))
1243 goto out_check;
1244 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1245 goto out_check;
1246 if (btrfs_extent_readonly(root, disk_bytenr))
1247 goto out_check;
1248 if (btrfs_cross_ref_exist(trans, root, ino,
1249 found_key.offset -
1250 extent_offset, disk_bytenr))
1251 goto out_check;
1252 disk_bytenr += extent_offset;
1253 disk_bytenr += cur_offset - found_key.offset;
1254 num_bytes = min(end + 1, extent_end) - cur_offset;
1255 /*
1256 * force cow if csum exists in the range.
1257 * this ensure that csum for a given extent are
1258 * either valid or do not exist.
1259 */
1260 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1261 goto out_check;
1262 nocow = 1;
1263 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1264 extent_end = found_key.offset +
1265 btrfs_file_extent_inline_len(leaf, fi);
1266 extent_end = ALIGN(extent_end, root->sectorsize);
1267 } else {
1268 BUG_ON(1);
1269 }
1270 out_check:
1271 if (extent_end <= start) {
1272 path->slots[0]++;
1273 goto next_slot;
1274 }
1275 if (!nocow) {
1276 if (cow_start == (u64)-1)
1277 cow_start = cur_offset;
1278 cur_offset = extent_end;
1279 if (cur_offset > end)
1280 break;
1281 path->slots[0]++;
1282 goto next_slot;
1283 }
1284
1285 btrfs_release_path(path);
1286 if (cow_start != (u64)-1) {
1287 ret = cow_file_range(inode, locked_page, cow_start,
1288 found_key.offset - 1, page_started,
1289 nr_written, 1);
1290 if (ret) {
1291 btrfs_abort_transaction(trans, root, ret);
1292 goto error;
1293 }
1294 cow_start = (u64)-1;
1295 }
1296
1297 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1298 struct extent_map *em;
1299 struct extent_map_tree *em_tree;
1300 em_tree = &BTRFS_I(inode)->extent_tree;
1301 em = alloc_extent_map();
1302 BUG_ON(!em); /* -ENOMEM */
1303 em->start = cur_offset;
1304 em->orig_start = em->start;
1305 em->len = num_bytes;
1306 em->block_len = num_bytes;
1307 em->block_start = disk_bytenr;
1308 em->bdev = root->fs_info->fs_devices->latest_bdev;
1309 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1310 while (1) {
1311 write_lock(&em_tree->lock);
1312 ret = add_extent_mapping(em_tree, em);
1313 write_unlock(&em_tree->lock);
1314 if (ret != -EEXIST) {
1315 free_extent_map(em);
1316 break;
1317 }
1318 btrfs_drop_extent_cache(inode, em->start,
1319 em->start + em->len - 1, 0);
1320 }
1321 type = BTRFS_ORDERED_PREALLOC;
1322 } else {
1323 type = BTRFS_ORDERED_NOCOW;
1324 }
1325
1326 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1327 num_bytes, num_bytes, type);
1328 BUG_ON(ret); /* -ENOMEM */
1329
1330 if (root->root_key.objectid ==
1331 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1332 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1333 num_bytes);
1334 if (ret) {
1335 btrfs_abort_transaction(trans, root, ret);
1336 goto error;
1337 }
1338 }
1339
1340 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1341 cur_offset, cur_offset + num_bytes - 1,
1342 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1343 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1344 EXTENT_SET_PRIVATE2);
1345 cur_offset = extent_end;
1346 if (cur_offset > end)
1347 break;
1348 }
1349 btrfs_release_path(path);
1350
1351 if (cur_offset <= end && cow_start == (u64)-1) {
1352 cow_start = cur_offset;
1353 cur_offset = end;
1354 }
1355
1356 if (cow_start != (u64)-1) {
1357 ret = cow_file_range(inode, locked_page, cow_start, end,
1358 page_started, nr_written, 1);
1359 if (ret) {
1360 btrfs_abort_transaction(trans, root, ret);
1361 goto error;
1362 }
1363 }
1364
1365 error:
1366 if (nolock) {
1367 err = btrfs_end_transaction_nolock(trans, root);
1368 } else {
1369 err = btrfs_end_transaction(trans, root);
1370 }
1371 if (!ret)
1372 ret = err;
1373
1374 if (ret && cur_offset < end)
1375 extent_clear_unlock_delalloc(inode,
1376 &BTRFS_I(inode)->io_tree,
1377 cur_offset, end, locked_page,
1378 EXTENT_CLEAR_UNLOCK_PAGE |
1379 EXTENT_CLEAR_UNLOCK |
1380 EXTENT_CLEAR_DELALLOC |
1381 EXTENT_CLEAR_DIRTY |
1382 EXTENT_SET_WRITEBACK |
1383 EXTENT_END_WRITEBACK);
1384
1385 btrfs_free_path(path);
1386 return ret;
1387 }
1388
1389 /*
1390 * extent_io.c call back to do delayed allocation processing
1391 */
1392 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1393 u64 start, u64 end, int *page_started,
1394 unsigned long *nr_written)
1395 {
1396 int ret;
1397 struct btrfs_root *root = BTRFS_I(inode)->root;
1398
1399 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1400 ret = run_delalloc_nocow(inode, locked_page, start, end,
1401 page_started, 1, nr_written);
1402 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1403 ret = run_delalloc_nocow(inode, locked_page, start, end,
1404 page_started, 0, nr_written);
1405 } else if (!btrfs_test_opt(root, COMPRESS) &&
1406 !(BTRFS_I(inode)->force_compress) &&
1407 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1408 ret = cow_file_range(inode, locked_page, start, end,
1409 page_started, nr_written, 1);
1410 } else {
1411 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1412 &BTRFS_I(inode)->runtime_flags);
1413 ret = cow_file_range_async(inode, locked_page, start, end,
1414 page_started, nr_written);
1415 }
1416 return ret;
1417 }
1418
1419 static void btrfs_split_extent_hook(struct inode *inode,
1420 struct extent_state *orig, u64 split)
1421 {
1422 /* not delalloc, ignore it */
1423 if (!(orig->state & EXTENT_DELALLOC))
1424 return;
1425
1426 spin_lock(&BTRFS_I(inode)->lock);
1427 BTRFS_I(inode)->outstanding_extents++;
1428 spin_unlock(&BTRFS_I(inode)->lock);
1429 }
1430
1431 /*
1432 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1433 * extents so we can keep track of new extents that are just merged onto old
1434 * extents, such as when we are doing sequential writes, so we can properly
1435 * account for the metadata space we'll need.
1436 */
1437 static void btrfs_merge_extent_hook(struct inode *inode,
1438 struct extent_state *new,
1439 struct extent_state *other)
1440 {
1441 /* not delalloc, ignore it */
1442 if (!(other->state & EXTENT_DELALLOC))
1443 return;
1444
1445 spin_lock(&BTRFS_I(inode)->lock);
1446 BTRFS_I(inode)->outstanding_extents--;
1447 spin_unlock(&BTRFS_I(inode)->lock);
1448 }
1449
1450 /*
1451 * extent_io.c set_bit_hook, used to track delayed allocation
1452 * bytes in this file, and to maintain the list of inodes that
1453 * have pending delalloc work to be done.
1454 */
1455 static void btrfs_set_bit_hook(struct inode *inode,
1456 struct extent_state *state, int *bits)
1457 {
1458
1459 /*
1460 * set_bit and clear bit hooks normally require _irqsave/restore
1461 * but in this case, we are only testing for the DELALLOC
1462 * bit, which is only set or cleared with irqs on
1463 */
1464 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1465 struct btrfs_root *root = BTRFS_I(inode)->root;
1466 u64 len = state->end + 1 - state->start;
1467 bool do_list = !btrfs_is_free_space_inode(inode);
1468
1469 if (*bits & EXTENT_FIRST_DELALLOC) {
1470 *bits &= ~EXTENT_FIRST_DELALLOC;
1471 } else {
1472 spin_lock(&BTRFS_I(inode)->lock);
1473 BTRFS_I(inode)->outstanding_extents++;
1474 spin_unlock(&BTRFS_I(inode)->lock);
1475 }
1476
1477 spin_lock(&root->fs_info->delalloc_lock);
1478 BTRFS_I(inode)->delalloc_bytes += len;
1479 root->fs_info->delalloc_bytes += len;
1480 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1481 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1482 &root->fs_info->delalloc_inodes);
1483 }
1484 spin_unlock(&root->fs_info->delalloc_lock);
1485 }
1486 }
1487
1488 /*
1489 * extent_io.c clear_bit_hook, see set_bit_hook for why
1490 */
1491 static void btrfs_clear_bit_hook(struct inode *inode,
1492 struct extent_state *state, int *bits)
1493 {
1494 /*
1495 * set_bit and clear bit hooks normally require _irqsave/restore
1496 * but in this case, we are only testing for the DELALLOC
1497 * bit, which is only set or cleared with irqs on
1498 */
1499 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1500 struct btrfs_root *root = BTRFS_I(inode)->root;
1501 u64 len = state->end + 1 - state->start;
1502 bool do_list = !btrfs_is_free_space_inode(inode);
1503
1504 if (*bits & EXTENT_FIRST_DELALLOC) {
1505 *bits &= ~EXTENT_FIRST_DELALLOC;
1506 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1507 spin_lock(&BTRFS_I(inode)->lock);
1508 BTRFS_I(inode)->outstanding_extents--;
1509 spin_unlock(&BTRFS_I(inode)->lock);
1510 }
1511
1512 if (*bits & EXTENT_DO_ACCOUNTING)
1513 btrfs_delalloc_release_metadata(inode, len);
1514
1515 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1516 && do_list)
1517 btrfs_free_reserved_data_space(inode, len);
1518
1519 spin_lock(&root->fs_info->delalloc_lock);
1520 root->fs_info->delalloc_bytes -= len;
1521 BTRFS_I(inode)->delalloc_bytes -= len;
1522
1523 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1524 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1525 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1526 }
1527 spin_unlock(&root->fs_info->delalloc_lock);
1528 }
1529 }
1530
1531 /*
1532 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1533 * we don't create bios that span stripes or chunks
1534 */
1535 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1536 size_t size, struct bio *bio,
1537 unsigned long bio_flags)
1538 {
1539 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1540 struct btrfs_mapping_tree *map_tree;
1541 u64 logical = (u64)bio->bi_sector << 9;
1542 u64 length = 0;
1543 u64 map_length;
1544 int ret;
1545
1546 if (bio_flags & EXTENT_BIO_COMPRESSED)
1547 return 0;
1548
1549 length = bio->bi_size;
1550 map_tree = &root->fs_info->mapping_tree;
1551 map_length = length;
1552 ret = btrfs_map_block(map_tree, READ, logical,
1553 &map_length, NULL, 0);
1554 /* Will always return 0 or 1 with map_multi == NULL */
1555 BUG_ON(ret < 0);
1556 if (map_length < length + size)
1557 return 1;
1558 return 0;
1559 }
1560
1561 /*
1562 * in order to insert checksums into the metadata in large chunks,
1563 * we wait until bio submission time. All the pages in the bio are
1564 * checksummed and sums are attached onto the ordered extent record.
1565 *
1566 * At IO completion time the cums attached on the ordered extent record
1567 * are inserted into the btree
1568 */
1569 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1570 struct bio *bio, int mirror_num,
1571 unsigned long bio_flags,
1572 u64 bio_offset)
1573 {
1574 struct btrfs_root *root = BTRFS_I(inode)->root;
1575 int ret = 0;
1576
1577 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1578 BUG_ON(ret); /* -ENOMEM */
1579 return 0;
1580 }
1581
1582 /*
1583 * in order to insert checksums into the metadata in large chunks,
1584 * we wait until bio submission time. All the pages in the bio are
1585 * checksummed and sums are attached onto the ordered extent record.
1586 *
1587 * At IO completion time the cums attached on the ordered extent record
1588 * are inserted into the btree
1589 */
1590 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1591 int mirror_num, unsigned long bio_flags,
1592 u64 bio_offset)
1593 {
1594 struct btrfs_root *root = BTRFS_I(inode)->root;
1595 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1596 }
1597
1598 /*
1599 * extent_io.c submission hook. This does the right thing for csum calculation
1600 * on write, or reading the csums from the tree before a read
1601 */
1602 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1603 int mirror_num, unsigned long bio_flags,
1604 u64 bio_offset)
1605 {
1606 struct btrfs_root *root = BTRFS_I(inode)->root;
1607 int ret = 0;
1608 int skip_sum;
1609 int metadata = 0;
1610
1611 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1612
1613 if (btrfs_is_free_space_inode(inode))
1614 metadata = 2;
1615
1616 if (!(rw & REQ_WRITE)) {
1617 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1618 if (ret)
1619 return ret;
1620
1621 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1622 return btrfs_submit_compressed_read(inode, bio,
1623 mirror_num, bio_flags);
1624 } else if (!skip_sum) {
1625 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1626 if (ret)
1627 return ret;
1628 }
1629 goto mapit;
1630 } else if (!skip_sum) {
1631 /* csum items have already been cloned */
1632 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1633 goto mapit;
1634 /* we're doing a write, do the async checksumming */
1635 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1636 inode, rw, bio, mirror_num,
1637 bio_flags, bio_offset,
1638 __btrfs_submit_bio_start,
1639 __btrfs_submit_bio_done);
1640 }
1641
1642 mapit:
1643 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1644 }
1645
1646 /*
1647 * given a list of ordered sums record them in the inode. This happens
1648 * at IO completion time based on sums calculated at bio submission time.
1649 */
1650 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1651 struct inode *inode, u64 file_offset,
1652 struct list_head *list)
1653 {
1654 struct btrfs_ordered_sum *sum;
1655
1656 list_for_each_entry(sum, list, list) {
1657 btrfs_csum_file_blocks(trans,
1658 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1659 }
1660 return 0;
1661 }
1662
1663 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1664 struct extent_state **cached_state)
1665 {
1666 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1667 WARN_ON(1);
1668 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1669 cached_state, GFP_NOFS);
1670 }
1671
1672 /* see btrfs_writepage_start_hook for details on why this is required */
1673 struct btrfs_writepage_fixup {
1674 struct page *page;
1675 struct btrfs_work work;
1676 };
1677
1678 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1679 {
1680 struct btrfs_writepage_fixup *fixup;
1681 struct btrfs_ordered_extent *ordered;
1682 struct extent_state *cached_state = NULL;
1683 struct page *page;
1684 struct inode *inode;
1685 u64 page_start;
1686 u64 page_end;
1687 int ret;
1688
1689 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1690 page = fixup->page;
1691 again:
1692 lock_page(page);
1693 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1694 ClearPageChecked(page);
1695 goto out_page;
1696 }
1697
1698 inode = page->mapping->host;
1699 page_start = page_offset(page);
1700 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1701
1702 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1703 &cached_state);
1704
1705 /* already ordered? We're done */
1706 if (PagePrivate2(page))
1707 goto out;
1708
1709 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1710 if (ordered) {
1711 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1712 page_end, &cached_state, GFP_NOFS);
1713 unlock_page(page);
1714 btrfs_start_ordered_extent(inode, ordered, 1);
1715 btrfs_put_ordered_extent(ordered);
1716 goto again;
1717 }
1718
1719 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1720 if (ret) {
1721 mapping_set_error(page->mapping, ret);
1722 end_extent_writepage(page, ret, page_start, page_end);
1723 ClearPageChecked(page);
1724 goto out;
1725 }
1726
1727 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1728 ClearPageChecked(page);
1729 set_page_dirty(page);
1730 out:
1731 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1732 &cached_state, GFP_NOFS);
1733 out_page:
1734 unlock_page(page);
1735 page_cache_release(page);
1736 kfree(fixup);
1737 }
1738
1739 /*
1740 * There are a few paths in the higher layers of the kernel that directly
1741 * set the page dirty bit without asking the filesystem if it is a
1742 * good idea. This causes problems because we want to make sure COW
1743 * properly happens and the data=ordered rules are followed.
1744 *
1745 * In our case any range that doesn't have the ORDERED bit set
1746 * hasn't been properly setup for IO. We kick off an async process
1747 * to fix it up. The async helper will wait for ordered extents, set
1748 * the delalloc bit and make it safe to write the page.
1749 */
1750 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1751 {
1752 struct inode *inode = page->mapping->host;
1753 struct btrfs_writepage_fixup *fixup;
1754 struct btrfs_root *root = BTRFS_I(inode)->root;
1755
1756 /* this page is properly in the ordered list */
1757 if (TestClearPagePrivate2(page))
1758 return 0;
1759
1760 if (PageChecked(page))
1761 return -EAGAIN;
1762
1763 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1764 if (!fixup)
1765 return -EAGAIN;
1766
1767 SetPageChecked(page);
1768 page_cache_get(page);
1769 fixup->work.func = btrfs_writepage_fixup_worker;
1770 fixup->page = page;
1771 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1772 return -EBUSY;
1773 }
1774
1775 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1776 struct inode *inode, u64 file_pos,
1777 u64 disk_bytenr, u64 disk_num_bytes,
1778 u64 num_bytes, u64 ram_bytes,
1779 u8 compression, u8 encryption,
1780 u16 other_encoding, int extent_type)
1781 {
1782 struct btrfs_root *root = BTRFS_I(inode)->root;
1783 struct btrfs_file_extent_item *fi;
1784 struct btrfs_path *path;
1785 struct extent_buffer *leaf;
1786 struct btrfs_key ins;
1787 u64 hint;
1788 int ret;
1789
1790 path = btrfs_alloc_path();
1791 if (!path)
1792 return -ENOMEM;
1793
1794 path->leave_spinning = 1;
1795
1796 /*
1797 * we may be replacing one extent in the tree with another.
1798 * The new extent is pinned in the extent map, and we don't want
1799 * to drop it from the cache until it is completely in the btree.
1800 *
1801 * So, tell btrfs_drop_extents to leave this extent in the cache.
1802 * the caller is expected to unpin it and allow it to be merged
1803 * with the others.
1804 */
1805 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1806 &hint, 0);
1807 if (ret)
1808 goto out;
1809
1810 ins.objectid = btrfs_ino(inode);
1811 ins.offset = file_pos;
1812 ins.type = BTRFS_EXTENT_DATA_KEY;
1813 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1814 if (ret)
1815 goto out;
1816 leaf = path->nodes[0];
1817 fi = btrfs_item_ptr(leaf, path->slots[0],
1818 struct btrfs_file_extent_item);
1819 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1820 btrfs_set_file_extent_type(leaf, fi, extent_type);
1821 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1822 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1823 btrfs_set_file_extent_offset(leaf, fi, 0);
1824 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1825 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1826 btrfs_set_file_extent_compression(leaf, fi, compression);
1827 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1828 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1829
1830 btrfs_unlock_up_safe(path, 1);
1831 btrfs_set_lock_blocking(leaf);
1832
1833 btrfs_mark_buffer_dirty(leaf);
1834
1835 inode_add_bytes(inode, num_bytes);
1836
1837 ins.objectid = disk_bytenr;
1838 ins.offset = disk_num_bytes;
1839 ins.type = BTRFS_EXTENT_ITEM_KEY;
1840 ret = btrfs_alloc_reserved_file_extent(trans, root,
1841 root->root_key.objectid,
1842 btrfs_ino(inode), file_pos, &ins);
1843 out:
1844 btrfs_free_path(path);
1845
1846 return ret;
1847 }
1848
1849 /*
1850 * helper function for btrfs_finish_ordered_io, this
1851 * just reads in some of the csum leaves to prime them into ram
1852 * before we start the transaction. It limits the amount of btree
1853 * reads required while inside the transaction.
1854 */
1855 /* as ordered data IO finishes, this gets called so we can finish
1856 * an ordered extent if the range of bytes in the file it covers are
1857 * fully written.
1858 */
1859 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
1860 {
1861 struct inode *inode = ordered_extent->inode;
1862 struct btrfs_root *root = BTRFS_I(inode)->root;
1863 struct btrfs_trans_handle *trans = NULL;
1864 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1865 struct extent_state *cached_state = NULL;
1866 int compress_type = 0;
1867 int ret;
1868 bool nolock;
1869
1870 nolock = btrfs_is_free_space_inode(inode);
1871
1872 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
1873 ret = -EIO;
1874 goto out;
1875 }
1876
1877 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1878 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
1879 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1880 if (!ret) {
1881 if (nolock)
1882 trans = btrfs_join_transaction_nolock(root);
1883 else
1884 trans = btrfs_join_transaction(root);
1885 if (IS_ERR(trans)) {
1886 ret = PTR_ERR(trans);
1887 trans = NULL;
1888 goto out;
1889 }
1890 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1891 ret = btrfs_update_inode_fallback(trans, root, inode);
1892 if (ret) /* -ENOMEM or corruption */
1893 btrfs_abort_transaction(trans, root, ret);
1894 }
1895 goto out;
1896 }
1897
1898 lock_extent_bits(io_tree, ordered_extent->file_offset,
1899 ordered_extent->file_offset + ordered_extent->len - 1,
1900 0, &cached_state);
1901
1902 if (nolock)
1903 trans = btrfs_join_transaction_nolock(root);
1904 else
1905 trans = btrfs_join_transaction(root);
1906 if (IS_ERR(trans)) {
1907 ret = PTR_ERR(trans);
1908 trans = NULL;
1909 goto out_unlock;
1910 }
1911 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1912
1913 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1914 compress_type = ordered_extent->compress_type;
1915 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1916 BUG_ON(compress_type);
1917 ret = btrfs_mark_extent_written(trans, inode,
1918 ordered_extent->file_offset,
1919 ordered_extent->file_offset +
1920 ordered_extent->len);
1921 } else {
1922 BUG_ON(root == root->fs_info->tree_root);
1923 ret = insert_reserved_file_extent(trans, inode,
1924 ordered_extent->file_offset,
1925 ordered_extent->start,
1926 ordered_extent->disk_len,
1927 ordered_extent->len,
1928 ordered_extent->len,
1929 compress_type, 0, 0,
1930 BTRFS_FILE_EXTENT_REG);
1931 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1932 ordered_extent->file_offset,
1933 ordered_extent->len);
1934 }
1935
1936 if (ret < 0) {
1937 btrfs_abort_transaction(trans, root, ret);
1938 goto out_unlock;
1939 }
1940
1941 add_pending_csums(trans, inode, ordered_extent->file_offset,
1942 &ordered_extent->list);
1943
1944 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1945 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1946 ret = btrfs_update_inode_fallback(trans, root, inode);
1947 if (ret) { /* -ENOMEM or corruption */
1948 btrfs_abort_transaction(trans, root, ret);
1949 goto out_unlock;
1950 }
1951 }
1952 ret = 0;
1953 out_unlock:
1954 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1955 ordered_extent->file_offset +
1956 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1957 out:
1958 if (root != root->fs_info->tree_root)
1959 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1960 if (trans) {
1961 if (nolock)
1962 btrfs_end_transaction_nolock(trans, root);
1963 else
1964 btrfs_end_transaction(trans, root);
1965 }
1966
1967 if (ret)
1968 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
1969 ordered_extent->file_offset +
1970 ordered_extent->len - 1, NULL, GFP_NOFS);
1971
1972 /*
1973 * This needs to be dont to make sure anybody waiting knows we are done
1974 * upating everything for this ordered extent.
1975 */
1976 btrfs_remove_ordered_extent(inode, ordered_extent);
1977
1978 /* once for us */
1979 btrfs_put_ordered_extent(ordered_extent);
1980 /* once for the tree */
1981 btrfs_put_ordered_extent(ordered_extent);
1982
1983 return ret;
1984 }
1985
1986 static void finish_ordered_fn(struct btrfs_work *work)
1987 {
1988 struct btrfs_ordered_extent *ordered_extent;
1989 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
1990 btrfs_finish_ordered_io(ordered_extent);
1991 }
1992
1993 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1994 struct extent_state *state, int uptodate)
1995 {
1996 struct inode *inode = page->mapping->host;
1997 struct btrfs_root *root = BTRFS_I(inode)->root;
1998 struct btrfs_ordered_extent *ordered_extent = NULL;
1999 struct btrfs_workers *workers;
2000
2001 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2002
2003 ClearPagePrivate2(page);
2004 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2005 end - start + 1, uptodate))
2006 return 0;
2007
2008 ordered_extent->work.func = finish_ordered_fn;
2009 ordered_extent->work.flags = 0;
2010
2011 if (btrfs_is_free_space_inode(inode))
2012 workers = &root->fs_info->endio_freespace_worker;
2013 else
2014 workers = &root->fs_info->endio_write_workers;
2015 btrfs_queue_worker(workers, &ordered_extent->work);
2016
2017 return 0;
2018 }
2019
2020 /*
2021 * when reads are done, we need to check csums to verify the data is correct
2022 * if there's a match, we allow the bio to finish. If not, the code in
2023 * extent_io.c will try to find good copies for us.
2024 */
2025 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
2026 struct extent_state *state, int mirror)
2027 {
2028 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
2029 struct inode *inode = page->mapping->host;
2030 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2031 char *kaddr;
2032 u64 private = ~(u32)0;
2033 int ret;
2034 struct btrfs_root *root = BTRFS_I(inode)->root;
2035 u32 csum = ~(u32)0;
2036
2037 if (PageChecked(page)) {
2038 ClearPageChecked(page);
2039 goto good;
2040 }
2041
2042 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2043 goto good;
2044
2045 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2046 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2047 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2048 GFP_NOFS);
2049 return 0;
2050 }
2051
2052 if (state && state->start == start) {
2053 private = state->private;
2054 ret = 0;
2055 } else {
2056 ret = get_state_private(io_tree, start, &private);
2057 }
2058 kaddr = kmap_atomic(page);
2059 if (ret)
2060 goto zeroit;
2061
2062 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2063 btrfs_csum_final(csum, (char *)&csum);
2064 if (csum != private)
2065 goto zeroit;
2066
2067 kunmap_atomic(kaddr);
2068 good:
2069 return 0;
2070
2071 zeroit:
2072 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2073 "private %llu\n",
2074 (unsigned long long)btrfs_ino(page->mapping->host),
2075 (unsigned long long)start, csum,
2076 (unsigned long long)private);
2077 memset(kaddr + offset, 1, end - start + 1);
2078 flush_dcache_page(page);
2079 kunmap_atomic(kaddr);
2080 if (private == 0)
2081 return 0;
2082 return -EIO;
2083 }
2084
2085 struct delayed_iput {
2086 struct list_head list;
2087 struct inode *inode;
2088 };
2089
2090 /* JDM: If this is fs-wide, why can't we add a pointer to
2091 * btrfs_inode instead and avoid the allocation? */
2092 void btrfs_add_delayed_iput(struct inode *inode)
2093 {
2094 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2095 struct delayed_iput *delayed;
2096
2097 if (atomic_add_unless(&inode->i_count, -1, 1))
2098 return;
2099
2100 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2101 delayed->inode = inode;
2102
2103 spin_lock(&fs_info->delayed_iput_lock);
2104 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2105 spin_unlock(&fs_info->delayed_iput_lock);
2106 }
2107
2108 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2109 {
2110 LIST_HEAD(list);
2111 struct btrfs_fs_info *fs_info = root->fs_info;
2112 struct delayed_iput *delayed;
2113 int empty;
2114
2115 spin_lock(&fs_info->delayed_iput_lock);
2116 empty = list_empty(&fs_info->delayed_iputs);
2117 spin_unlock(&fs_info->delayed_iput_lock);
2118 if (empty)
2119 return;
2120
2121 down_read(&root->fs_info->cleanup_work_sem);
2122 spin_lock(&fs_info->delayed_iput_lock);
2123 list_splice_init(&fs_info->delayed_iputs, &list);
2124 spin_unlock(&fs_info->delayed_iput_lock);
2125
2126 while (!list_empty(&list)) {
2127 delayed = list_entry(list.next, struct delayed_iput, list);
2128 list_del(&delayed->list);
2129 iput(delayed->inode);
2130 kfree(delayed);
2131 }
2132 up_read(&root->fs_info->cleanup_work_sem);
2133 }
2134
2135 enum btrfs_orphan_cleanup_state {
2136 ORPHAN_CLEANUP_STARTED = 1,
2137 ORPHAN_CLEANUP_DONE = 2,
2138 };
2139
2140 /*
2141 * This is called in transaction commit time. If there are no orphan
2142 * files in the subvolume, it removes orphan item and frees block_rsv
2143 * structure.
2144 */
2145 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2146 struct btrfs_root *root)
2147 {
2148 struct btrfs_block_rsv *block_rsv;
2149 int ret;
2150
2151 if (atomic_read(&root->orphan_inodes) ||
2152 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2153 return;
2154
2155 spin_lock(&root->orphan_lock);
2156 if (atomic_read(&root->orphan_inodes)) {
2157 spin_unlock(&root->orphan_lock);
2158 return;
2159 }
2160
2161 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2162 spin_unlock(&root->orphan_lock);
2163 return;
2164 }
2165
2166 block_rsv = root->orphan_block_rsv;
2167 root->orphan_block_rsv = NULL;
2168 spin_unlock(&root->orphan_lock);
2169
2170 if (root->orphan_item_inserted &&
2171 btrfs_root_refs(&root->root_item) > 0) {
2172 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2173 root->root_key.objectid);
2174 BUG_ON(ret);
2175 root->orphan_item_inserted = 0;
2176 }
2177
2178 if (block_rsv) {
2179 WARN_ON(block_rsv->size > 0);
2180 btrfs_free_block_rsv(root, block_rsv);
2181 }
2182 }
2183
2184 /*
2185 * This creates an orphan entry for the given inode in case something goes
2186 * wrong in the middle of an unlink/truncate.
2187 *
2188 * NOTE: caller of this function should reserve 5 units of metadata for
2189 * this function.
2190 */
2191 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2192 {
2193 struct btrfs_root *root = BTRFS_I(inode)->root;
2194 struct btrfs_block_rsv *block_rsv = NULL;
2195 int reserve = 0;
2196 int insert = 0;
2197 int ret;
2198
2199 if (!root->orphan_block_rsv) {
2200 block_rsv = btrfs_alloc_block_rsv(root);
2201 if (!block_rsv)
2202 return -ENOMEM;
2203 }
2204
2205 spin_lock(&root->orphan_lock);
2206 if (!root->orphan_block_rsv) {
2207 root->orphan_block_rsv = block_rsv;
2208 } else if (block_rsv) {
2209 btrfs_free_block_rsv(root, block_rsv);
2210 block_rsv = NULL;
2211 }
2212
2213 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2214 &BTRFS_I(inode)->runtime_flags)) {
2215 #if 0
2216 /*
2217 * For proper ENOSPC handling, we should do orphan
2218 * cleanup when mounting. But this introduces backward
2219 * compatibility issue.
2220 */
2221 if (!xchg(&root->orphan_item_inserted, 1))
2222 insert = 2;
2223 else
2224 insert = 1;
2225 #endif
2226 insert = 1;
2227 atomic_dec(&root->orphan_inodes);
2228 }
2229
2230 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2231 &BTRFS_I(inode)->runtime_flags))
2232 reserve = 1;
2233 spin_unlock(&root->orphan_lock);
2234
2235 /* grab metadata reservation from transaction handle */
2236 if (reserve) {
2237 ret = btrfs_orphan_reserve_metadata(trans, inode);
2238 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2239 }
2240
2241 /* insert an orphan item to track this unlinked/truncated file */
2242 if (insert >= 1) {
2243 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2244 if (ret && ret != -EEXIST) {
2245 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2246 &BTRFS_I(inode)->runtime_flags);
2247 btrfs_abort_transaction(trans, root, ret);
2248 return ret;
2249 }
2250 ret = 0;
2251 }
2252
2253 /* insert an orphan item to track subvolume contains orphan files */
2254 if (insert >= 2) {
2255 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2256 root->root_key.objectid);
2257 if (ret && ret != -EEXIST) {
2258 btrfs_abort_transaction(trans, root, ret);
2259 return ret;
2260 }
2261 }
2262 return 0;
2263 }
2264
2265 /*
2266 * We have done the truncate/delete so we can go ahead and remove the orphan
2267 * item for this particular inode.
2268 */
2269 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2270 {
2271 struct btrfs_root *root = BTRFS_I(inode)->root;
2272 int delete_item = 0;
2273 int release_rsv = 0;
2274 int ret = 0;
2275
2276 spin_lock(&root->orphan_lock);
2277 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2278 &BTRFS_I(inode)->runtime_flags))
2279 delete_item = 1;
2280
2281 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2282 &BTRFS_I(inode)->runtime_flags))
2283 release_rsv = 1;
2284 spin_unlock(&root->orphan_lock);
2285
2286 if (trans && delete_item) {
2287 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2288 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2289 }
2290
2291 if (release_rsv) {
2292 btrfs_orphan_release_metadata(inode);
2293 atomic_dec(&root->orphan_inodes);
2294 }
2295
2296 return 0;
2297 }
2298
2299 /*
2300 * this cleans up any orphans that may be left on the list from the last use
2301 * of this root.
2302 */
2303 int btrfs_orphan_cleanup(struct btrfs_root *root)
2304 {
2305 struct btrfs_path *path;
2306 struct extent_buffer *leaf;
2307 struct btrfs_key key, found_key;
2308 struct btrfs_trans_handle *trans;
2309 struct inode *inode;
2310 u64 last_objectid = 0;
2311 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2312
2313 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2314 return 0;
2315
2316 path = btrfs_alloc_path();
2317 if (!path) {
2318 ret = -ENOMEM;
2319 goto out;
2320 }
2321 path->reada = -1;
2322
2323 key.objectid = BTRFS_ORPHAN_OBJECTID;
2324 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2325 key.offset = (u64)-1;
2326
2327 while (1) {
2328 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2329 if (ret < 0)
2330 goto out;
2331
2332 /*
2333 * if ret == 0 means we found what we were searching for, which
2334 * is weird, but possible, so only screw with path if we didn't
2335 * find the key and see if we have stuff that matches
2336 */
2337 if (ret > 0) {
2338 ret = 0;
2339 if (path->slots[0] == 0)
2340 break;
2341 path->slots[0]--;
2342 }
2343
2344 /* pull out the item */
2345 leaf = path->nodes[0];
2346 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2347
2348 /* make sure the item matches what we want */
2349 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2350 break;
2351 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2352 break;
2353
2354 /* release the path since we're done with it */
2355 btrfs_release_path(path);
2356
2357 /*
2358 * this is where we are basically btrfs_lookup, without the
2359 * crossing root thing. we store the inode number in the
2360 * offset of the orphan item.
2361 */
2362
2363 if (found_key.offset == last_objectid) {
2364 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2365 "stopping orphan cleanup\n");
2366 ret = -EINVAL;
2367 goto out;
2368 }
2369
2370 last_objectid = found_key.offset;
2371
2372 found_key.objectid = found_key.offset;
2373 found_key.type = BTRFS_INODE_ITEM_KEY;
2374 found_key.offset = 0;
2375 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2376 ret = PTR_RET(inode);
2377 if (ret && ret != -ESTALE)
2378 goto out;
2379
2380 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2381 struct btrfs_root *dead_root;
2382 struct btrfs_fs_info *fs_info = root->fs_info;
2383 int is_dead_root = 0;
2384
2385 /*
2386 * this is an orphan in the tree root. Currently these
2387 * could come from 2 sources:
2388 * a) a snapshot deletion in progress
2389 * b) a free space cache inode
2390 * We need to distinguish those two, as the snapshot
2391 * orphan must not get deleted.
2392 * find_dead_roots already ran before us, so if this
2393 * is a snapshot deletion, we should find the root
2394 * in the dead_roots list
2395 */
2396 spin_lock(&fs_info->trans_lock);
2397 list_for_each_entry(dead_root, &fs_info->dead_roots,
2398 root_list) {
2399 if (dead_root->root_key.objectid ==
2400 found_key.objectid) {
2401 is_dead_root = 1;
2402 break;
2403 }
2404 }
2405 spin_unlock(&fs_info->trans_lock);
2406 if (is_dead_root) {
2407 /* prevent this orphan from being found again */
2408 key.offset = found_key.objectid - 1;
2409 continue;
2410 }
2411 }
2412 /*
2413 * Inode is already gone but the orphan item is still there,
2414 * kill the orphan item.
2415 */
2416 if (ret == -ESTALE) {
2417 trans = btrfs_start_transaction(root, 1);
2418 if (IS_ERR(trans)) {
2419 ret = PTR_ERR(trans);
2420 goto out;
2421 }
2422 printk(KERN_ERR "auto deleting %Lu\n",
2423 found_key.objectid);
2424 ret = btrfs_del_orphan_item(trans, root,
2425 found_key.objectid);
2426 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2427 btrfs_end_transaction(trans, root);
2428 continue;
2429 }
2430
2431 /*
2432 * add this inode to the orphan list so btrfs_orphan_del does
2433 * the proper thing when we hit it
2434 */
2435 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2436 &BTRFS_I(inode)->runtime_flags);
2437
2438 /* if we have links, this was a truncate, lets do that */
2439 if (inode->i_nlink) {
2440 if (!S_ISREG(inode->i_mode)) {
2441 WARN_ON(1);
2442 iput(inode);
2443 continue;
2444 }
2445 nr_truncate++;
2446 ret = btrfs_truncate(inode);
2447 } else {
2448 nr_unlink++;
2449 }
2450
2451 /* this will do delete_inode and everything for us */
2452 iput(inode);
2453 if (ret)
2454 goto out;
2455 }
2456 /* release the path since we're done with it */
2457 btrfs_release_path(path);
2458
2459 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2460
2461 if (root->orphan_block_rsv)
2462 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2463 (u64)-1);
2464
2465 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2466 trans = btrfs_join_transaction(root);
2467 if (!IS_ERR(trans))
2468 btrfs_end_transaction(trans, root);
2469 }
2470
2471 if (nr_unlink)
2472 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2473 if (nr_truncate)
2474 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2475
2476 out:
2477 if (ret)
2478 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2479 btrfs_free_path(path);
2480 return ret;
2481 }
2482
2483 /*
2484 * very simple check to peek ahead in the leaf looking for xattrs. If we
2485 * don't find any xattrs, we know there can't be any acls.
2486 *
2487 * slot is the slot the inode is in, objectid is the objectid of the inode
2488 */
2489 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2490 int slot, u64 objectid)
2491 {
2492 u32 nritems = btrfs_header_nritems(leaf);
2493 struct btrfs_key found_key;
2494 int scanned = 0;
2495
2496 slot++;
2497 while (slot < nritems) {
2498 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2499
2500 /* we found a different objectid, there must not be acls */
2501 if (found_key.objectid != objectid)
2502 return 0;
2503
2504 /* we found an xattr, assume we've got an acl */
2505 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2506 return 1;
2507
2508 /*
2509 * we found a key greater than an xattr key, there can't
2510 * be any acls later on
2511 */
2512 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2513 return 0;
2514
2515 slot++;
2516 scanned++;
2517
2518 /*
2519 * it goes inode, inode backrefs, xattrs, extents,
2520 * so if there are a ton of hard links to an inode there can
2521 * be a lot of backrefs. Don't waste time searching too hard,
2522 * this is just an optimization
2523 */
2524 if (scanned >= 8)
2525 break;
2526 }
2527 /* we hit the end of the leaf before we found an xattr or
2528 * something larger than an xattr. We have to assume the inode
2529 * has acls
2530 */
2531 return 1;
2532 }
2533
2534 /*
2535 * read an inode from the btree into the in-memory inode
2536 */
2537 static void btrfs_read_locked_inode(struct inode *inode)
2538 {
2539 struct btrfs_path *path;
2540 struct extent_buffer *leaf;
2541 struct btrfs_inode_item *inode_item;
2542 struct btrfs_timespec *tspec;
2543 struct btrfs_root *root = BTRFS_I(inode)->root;
2544 struct btrfs_key location;
2545 int maybe_acls;
2546 u32 rdev;
2547 int ret;
2548 bool filled = false;
2549
2550 ret = btrfs_fill_inode(inode, &rdev);
2551 if (!ret)
2552 filled = true;
2553
2554 path = btrfs_alloc_path();
2555 if (!path)
2556 goto make_bad;
2557
2558 path->leave_spinning = 1;
2559 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2560
2561 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2562 if (ret)
2563 goto make_bad;
2564
2565 leaf = path->nodes[0];
2566
2567 if (filled)
2568 goto cache_acl;
2569
2570 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2571 struct btrfs_inode_item);
2572 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2573 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2574 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2575 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2576 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2577
2578 tspec = btrfs_inode_atime(inode_item);
2579 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2580 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2581
2582 tspec = btrfs_inode_mtime(inode_item);
2583 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2584 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2585
2586 tspec = btrfs_inode_ctime(inode_item);
2587 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2588 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2589
2590 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2591 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2592 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
2593 inode->i_generation = BTRFS_I(inode)->generation;
2594 inode->i_rdev = 0;
2595 rdev = btrfs_inode_rdev(leaf, inode_item);
2596
2597 BTRFS_I(inode)->index_cnt = (u64)-1;
2598 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2599 cache_acl:
2600 /*
2601 * try to precache a NULL acl entry for files that don't have
2602 * any xattrs or acls
2603 */
2604 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2605 btrfs_ino(inode));
2606 if (!maybe_acls)
2607 cache_no_acl(inode);
2608
2609 btrfs_free_path(path);
2610
2611 switch (inode->i_mode & S_IFMT) {
2612 case S_IFREG:
2613 inode->i_mapping->a_ops = &btrfs_aops;
2614 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2615 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2616 inode->i_fop = &btrfs_file_operations;
2617 inode->i_op = &btrfs_file_inode_operations;
2618 break;
2619 case S_IFDIR:
2620 inode->i_fop = &btrfs_dir_file_operations;
2621 if (root == root->fs_info->tree_root)
2622 inode->i_op = &btrfs_dir_ro_inode_operations;
2623 else
2624 inode->i_op = &btrfs_dir_inode_operations;
2625 break;
2626 case S_IFLNK:
2627 inode->i_op = &btrfs_symlink_inode_operations;
2628 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2629 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2630 break;
2631 default:
2632 inode->i_op = &btrfs_special_inode_operations;
2633 init_special_inode(inode, inode->i_mode, rdev);
2634 break;
2635 }
2636
2637 btrfs_update_iflags(inode);
2638 return;
2639
2640 make_bad:
2641 btrfs_free_path(path);
2642 make_bad_inode(inode);
2643 }
2644
2645 /*
2646 * given a leaf and an inode, copy the inode fields into the leaf
2647 */
2648 static void fill_inode_item(struct btrfs_trans_handle *trans,
2649 struct extent_buffer *leaf,
2650 struct btrfs_inode_item *item,
2651 struct inode *inode)
2652 {
2653 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2654 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2655 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2656 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2657 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2658
2659 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2660 inode->i_atime.tv_sec);
2661 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2662 inode->i_atime.tv_nsec);
2663
2664 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2665 inode->i_mtime.tv_sec);
2666 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2667 inode->i_mtime.tv_nsec);
2668
2669 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2670 inode->i_ctime.tv_sec);
2671 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2672 inode->i_ctime.tv_nsec);
2673
2674 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2675 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2676 btrfs_set_inode_sequence(leaf, item, inode->i_version);
2677 btrfs_set_inode_transid(leaf, item, trans->transid);
2678 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2679 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2680 btrfs_set_inode_block_group(leaf, item, 0);
2681 }
2682
2683 /*
2684 * copy everything in the in-memory inode into the btree.
2685 */
2686 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
2687 struct btrfs_root *root, struct inode *inode)
2688 {
2689 struct btrfs_inode_item *inode_item;
2690 struct btrfs_path *path;
2691 struct extent_buffer *leaf;
2692 int ret;
2693
2694 path = btrfs_alloc_path();
2695 if (!path)
2696 return -ENOMEM;
2697
2698 path->leave_spinning = 1;
2699 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2700 1);
2701 if (ret) {
2702 if (ret > 0)
2703 ret = -ENOENT;
2704 goto failed;
2705 }
2706
2707 btrfs_unlock_up_safe(path, 1);
2708 leaf = path->nodes[0];
2709 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2710 struct btrfs_inode_item);
2711
2712 fill_inode_item(trans, leaf, inode_item, inode);
2713 btrfs_mark_buffer_dirty(leaf);
2714 btrfs_set_inode_last_trans(trans, inode);
2715 ret = 0;
2716 failed:
2717 btrfs_free_path(path);
2718 return ret;
2719 }
2720
2721 /*
2722 * copy everything in the in-memory inode into the btree.
2723 */
2724 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2725 struct btrfs_root *root, struct inode *inode)
2726 {
2727 int ret;
2728
2729 /*
2730 * If the inode is a free space inode, we can deadlock during commit
2731 * if we put it into the delayed code.
2732 *
2733 * The data relocation inode should also be directly updated
2734 * without delay
2735 */
2736 if (!btrfs_is_free_space_inode(inode)
2737 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2738 btrfs_update_root_times(trans, root);
2739
2740 ret = btrfs_delayed_update_inode(trans, root, inode);
2741 if (!ret)
2742 btrfs_set_inode_last_trans(trans, inode);
2743 return ret;
2744 }
2745
2746 return btrfs_update_inode_item(trans, root, inode);
2747 }
2748
2749 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2750 struct btrfs_root *root, struct inode *inode)
2751 {
2752 int ret;
2753
2754 ret = btrfs_update_inode(trans, root, inode);
2755 if (ret == -ENOSPC)
2756 return btrfs_update_inode_item(trans, root, inode);
2757 return ret;
2758 }
2759
2760 /*
2761 * unlink helper that gets used here in inode.c and in the tree logging
2762 * recovery code. It remove a link in a directory with a given name, and
2763 * also drops the back refs in the inode to the directory
2764 */
2765 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2766 struct btrfs_root *root,
2767 struct inode *dir, struct inode *inode,
2768 const char *name, int name_len)
2769 {
2770 struct btrfs_path *path;
2771 int ret = 0;
2772 struct extent_buffer *leaf;
2773 struct btrfs_dir_item *di;
2774 struct btrfs_key key;
2775 u64 index;
2776 u64 ino = btrfs_ino(inode);
2777 u64 dir_ino = btrfs_ino(dir);
2778
2779 path = btrfs_alloc_path();
2780 if (!path) {
2781 ret = -ENOMEM;
2782 goto out;
2783 }
2784
2785 path->leave_spinning = 1;
2786 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2787 name, name_len, -1);
2788 if (IS_ERR(di)) {
2789 ret = PTR_ERR(di);
2790 goto err;
2791 }
2792 if (!di) {
2793 ret = -ENOENT;
2794 goto err;
2795 }
2796 leaf = path->nodes[0];
2797 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2798 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2799 if (ret)
2800 goto err;
2801 btrfs_release_path(path);
2802
2803 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2804 dir_ino, &index);
2805 if (ret) {
2806 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2807 "inode %llu parent %llu\n", name_len, name,
2808 (unsigned long long)ino, (unsigned long long)dir_ino);
2809 btrfs_abort_transaction(trans, root, ret);
2810 goto err;
2811 }
2812
2813 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2814 if (ret) {
2815 btrfs_abort_transaction(trans, root, ret);
2816 goto err;
2817 }
2818
2819 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2820 inode, dir_ino);
2821 if (ret != 0 && ret != -ENOENT) {
2822 btrfs_abort_transaction(trans, root, ret);
2823 goto err;
2824 }
2825
2826 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2827 dir, index);
2828 if (ret == -ENOENT)
2829 ret = 0;
2830 err:
2831 btrfs_free_path(path);
2832 if (ret)
2833 goto out;
2834
2835 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2836 inode_inc_iversion(inode);
2837 inode_inc_iversion(dir);
2838 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2839 ret = btrfs_update_inode(trans, root, dir);
2840 out:
2841 return ret;
2842 }
2843
2844 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2845 struct btrfs_root *root,
2846 struct inode *dir, struct inode *inode,
2847 const char *name, int name_len)
2848 {
2849 int ret;
2850 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2851 if (!ret) {
2852 btrfs_drop_nlink(inode);
2853 ret = btrfs_update_inode(trans, root, inode);
2854 }
2855 return ret;
2856 }
2857
2858
2859 /* helper to check if there is any shared block in the path */
2860 static int check_path_shared(struct btrfs_root *root,
2861 struct btrfs_path *path)
2862 {
2863 struct extent_buffer *eb;
2864 int level;
2865 u64 refs = 1;
2866
2867 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2868 int ret;
2869
2870 if (!path->nodes[level])
2871 break;
2872 eb = path->nodes[level];
2873 if (!btrfs_block_can_be_shared(root, eb))
2874 continue;
2875 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2876 &refs, NULL);
2877 if (refs > 1)
2878 return 1;
2879 }
2880 return 0;
2881 }
2882
2883 /*
2884 * helper to start transaction for unlink and rmdir.
2885 *
2886 * unlink and rmdir are special in btrfs, they do not always free space.
2887 * so in enospc case, we should make sure they will free space before
2888 * allowing them to use the global metadata reservation.
2889 */
2890 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2891 struct dentry *dentry)
2892 {
2893 struct btrfs_trans_handle *trans;
2894 struct btrfs_root *root = BTRFS_I(dir)->root;
2895 struct btrfs_path *path;
2896 struct btrfs_inode_ref *ref;
2897 struct btrfs_dir_item *di;
2898 struct inode *inode = dentry->d_inode;
2899 u64 index;
2900 int check_link = 1;
2901 int err = -ENOSPC;
2902 int ret;
2903 u64 ino = btrfs_ino(inode);
2904 u64 dir_ino = btrfs_ino(dir);
2905
2906 /*
2907 * 1 for the possible orphan item
2908 * 1 for the dir item
2909 * 1 for the dir index
2910 * 1 for the inode ref
2911 * 1 for the inode ref in the tree log
2912 * 2 for the dir entries in the log
2913 * 1 for the inode
2914 */
2915 trans = btrfs_start_transaction(root, 8);
2916 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2917 return trans;
2918
2919 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2920 return ERR_PTR(-ENOSPC);
2921
2922 /* check if there is someone else holds reference */
2923 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2924 return ERR_PTR(-ENOSPC);
2925
2926 if (atomic_read(&inode->i_count) > 2)
2927 return ERR_PTR(-ENOSPC);
2928
2929 if (xchg(&root->fs_info->enospc_unlink, 1))
2930 return ERR_PTR(-ENOSPC);
2931
2932 path = btrfs_alloc_path();
2933 if (!path) {
2934 root->fs_info->enospc_unlink = 0;
2935 return ERR_PTR(-ENOMEM);
2936 }
2937
2938 /* 1 for the orphan item */
2939 trans = btrfs_start_transaction(root, 1);
2940 if (IS_ERR(trans)) {
2941 btrfs_free_path(path);
2942 root->fs_info->enospc_unlink = 0;
2943 return trans;
2944 }
2945
2946 path->skip_locking = 1;
2947 path->search_commit_root = 1;
2948
2949 ret = btrfs_lookup_inode(trans, root, path,
2950 &BTRFS_I(dir)->location, 0);
2951 if (ret < 0) {
2952 err = ret;
2953 goto out;
2954 }
2955 if (ret == 0) {
2956 if (check_path_shared(root, path))
2957 goto out;
2958 } else {
2959 check_link = 0;
2960 }
2961 btrfs_release_path(path);
2962
2963 ret = btrfs_lookup_inode(trans, root, path,
2964 &BTRFS_I(inode)->location, 0);
2965 if (ret < 0) {
2966 err = ret;
2967 goto out;
2968 }
2969 if (ret == 0) {
2970 if (check_path_shared(root, path))
2971 goto out;
2972 } else {
2973 check_link = 0;
2974 }
2975 btrfs_release_path(path);
2976
2977 if (ret == 0 && S_ISREG(inode->i_mode)) {
2978 ret = btrfs_lookup_file_extent(trans, root, path,
2979 ino, (u64)-1, 0);
2980 if (ret < 0) {
2981 err = ret;
2982 goto out;
2983 }
2984 BUG_ON(ret == 0); /* Corruption */
2985 if (check_path_shared(root, path))
2986 goto out;
2987 btrfs_release_path(path);
2988 }
2989
2990 if (!check_link) {
2991 err = 0;
2992 goto out;
2993 }
2994
2995 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2996 dentry->d_name.name, dentry->d_name.len, 0);
2997 if (IS_ERR(di)) {
2998 err = PTR_ERR(di);
2999 goto out;
3000 }
3001 if (di) {
3002 if (check_path_shared(root, path))
3003 goto out;
3004 } else {
3005 err = 0;
3006 goto out;
3007 }
3008 btrfs_release_path(path);
3009
3010 ref = btrfs_lookup_inode_ref(trans, root, path,
3011 dentry->d_name.name, dentry->d_name.len,
3012 ino, dir_ino, 0);
3013 if (IS_ERR(ref)) {
3014 err = PTR_ERR(ref);
3015 goto out;
3016 }
3017 BUG_ON(!ref); /* Logic error */
3018 if (check_path_shared(root, path))
3019 goto out;
3020 index = btrfs_inode_ref_index(path->nodes[0], ref);
3021 btrfs_release_path(path);
3022
3023 /*
3024 * This is a commit root search, if we can lookup inode item and other
3025 * relative items in the commit root, it means the transaction of
3026 * dir/file creation has been committed, and the dir index item that we
3027 * delay to insert has also been inserted into the commit root. So
3028 * we needn't worry about the delayed insertion of the dir index item
3029 * here.
3030 */
3031 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
3032 dentry->d_name.name, dentry->d_name.len, 0);
3033 if (IS_ERR(di)) {
3034 err = PTR_ERR(di);
3035 goto out;
3036 }
3037 BUG_ON(ret == -ENOENT);
3038 if (check_path_shared(root, path))
3039 goto out;
3040
3041 err = 0;
3042 out:
3043 btrfs_free_path(path);
3044 /* Migrate the orphan reservation over */
3045 if (!err)
3046 err = btrfs_block_rsv_migrate(trans->block_rsv,
3047 &root->fs_info->global_block_rsv,
3048 trans->bytes_reserved);
3049
3050 if (err) {
3051 btrfs_end_transaction(trans, root);
3052 root->fs_info->enospc_unlink = 0;
3053 return ERR_PTR(err);
3054 }
3055
3056 trans->block_rsv = &root->fs_info->global_block_rsv;
3057 return trans;
3058 }
3059
3060 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3061 struct btrfs_root *root)
3062 {
3063 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
3064 btrfs_block_rsv_release(root, trans->block_rsv,
3065 trans->bytes_reserved);
3066 trans->block_rsv = &root->fs_info->trans_block_rsv;
3067 BUG_ON(!root->fs_info->enospc_unlink);
3068 root->fs_info->enospc_unlink = 0;
3069 }
3070 btrfs_end_transaction(trans, root);
3071 }
3072
3073 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3074 {
3075 struct btrfs_root *root = BTRFS_I(dir)->root;
3076 struct btrfs_trans_handle *trans;
3077 struct inode *inode = dentry->d_inode;
3078 int ret;
3079 unsigned long nr = 0;
3080
3081 trans = __unlink_start_trans(dir, dentry);
3082 if (IS_ERR(trans))
3083 return PTR_ERR(trans);
3084
3085 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3086
3087 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3088 dentry->d_name.name, dentry->d_name.len);
3089 if (ret)
3090 goto out;
3091
3092 if (inode->i_nlink == 0) {
3093 ret = btrfs_orphan_add(trans, inode);
3094 if (ret)
3095 goto out;
3096 }
3097
3098 out:
3099 nr = trans->blocks_used;
3100 __unlink_end_trans(trans, root);
3101 btrfs_btree_balance_dirty(root, nr);
3102 return ret;
3103 }
3104
3105 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3106 struct btrfs_root *root,
3107 struct inode *dir, u64 objectid,
3108 const char *name, int name_len)
3109 {
3110 struct btrfs_path *path;
3111 struct extent_buffer *leaf;
3112 struct btrfs_dir_item *di;
3113 struct btrfs_key key;
3114 u64 index;
3115 int ret;
3116 u64 dir_ino = btrfs_ino(dir);
3117
3118 path = btrfs_alloc_path();
3119 if (!path)
3120 return -ENOMEM;
3121
3122 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3123 name, name_len, -1);
3124 if (IS_ERR_OR_NULL(di)) {
3125 if (!di)
3126 ret = -ENOENT;
3127 else
3128 ret = PTR_ERR(di);
3129 goto out;
3130 }
3131
3132 leaf = path->nodes[0];
3133 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3134 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3135 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3136 if (ret) {
3137 btrfs_abort_transaction(trans, root, ret);
3138 goto out;
3139 }
3140 btrfs_release_path(path);
3141
3142 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3143 objectid, root->root_key.objectid,
3144 dir_ino, &index, name, name_len);
3145 if (ret < 0) {
3146 if (ret != -ENOENT) {
3147 btrfs_abort_transaction(trans, root, ret);
3148 goto out;
3149 }
3150 di = btrfs_search_dir_index_item(root, path, dir_ino,
3151 name, name_len);
3152 if (IS_ERR_OR_NULL(di)) {
3153 if (!di)
3154 ret = -ENOENT;
3155 else
3156 ret = PTR_ERR(di);
3157 btrfs_abort_transaction(trans, root, ret);
3158 goto out;
3159 }
3160
3161 leaf = path->nodes[0];
3162 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3163 btrfs_release_path(path);
3164 index = key.offset;
3165 }
3166 btrfs_release_path(path);
3167
3168 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3169 if (ret) {
3170 btrfs_abort_transaction(trans, root, ret);
3171 goto out;
3172 }
3173
3174 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3175 inode_inc_iversion(dir);
3176 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3177 ret = btrfs_update_inode_fallback(trans, root, dir);
3178 if (ret)
3179 btrfs_abort_transaction(trans, root, ret);
3180 out:
3181 btrfs_free_path(path);
3182 return ret;
3183 }
3184
3185 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3186 {
3187 struct inode *inode = dentry->d_inode;
3188 int err = 0;
3189 struct btrfs_root *root = BTRFS_I(dir)->root;
3190 struct btrfs_trans_handle *trans;
3191 unsigned long nr = 0;
3192
3193 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3194 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3195 return -ENOTEMPTY;
3196
3197 trans = __unlink_start_trans(dir, dentry);
3198 if (IS_ERR(trans))
3199 return PTR_ERR(trans);
3200
3201 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3202 err = btrfs_unlink_subvol(trans, root, dir,
3203 BTRFS_I(inode)->location.objectid,
3204 dentry->d_name.name,
3205 dentry->d_name.len);
3206 goto out;
3207 }
3208
3209 err = btrfs_orphan_add(trans, inode);
3210 if (err)
3211 goto out;
3212
3213 /* now the directory is empty */
3214 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3215 dentry->d_name.name, dentry->d_name.len);
3216 if (!err)
3217 btrfs_i_size_write(inode, 0);
3218 out:
3219 nr = trans->blocks_used;
3220 __unlink_end_trans(trans, root);
3221 btrfs_btree_balance_dirty(root, nr);
3222
3223 return err;
3224 }
3225
3226 /*
3227 * this can truncate away extent items, csum items and directory items.
3228 * It starts at a high offset and removes keys until it can't find
3229 * any higher than new_size
3230 *
3231 * csum items that cross the new i_size are truncated to the new size
3232 * as well.
3233 *
3234 * min_type is the minimum key type to truncate down to. If set to 0, this
3235 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3236 */
3237 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3238 struct btrfs_root *root,
3239 struct inode *inode,
3240 u64 new_size, u32 min_type)
3241 {
3242 struct btrfs_path *path;
3243 struct extent_buffer *leaf;
3244 struct btrfs_file_extent_item *fi;
3245 struct btrfs_key key;
3246 struct btrfs_key found_key;
3247 u64 extent_start = 0;
3248 u64 extent_num_bytes = 0;
3249 u64 extent_offset = 0;
3250 u64 item_end = 0;
3251 u64 mask = root->sectorsize - 1;
3252 u32 found_type = (u8)-1;
3253 int found_extent;
3254 int del_item;
3255 int pending_del_nr = 0;
3256 int pending_del_slot = 0;
3257 int extent_type = -1;
3258 int ret;
3259 int err = 0;
3260 u64 ino = btrfs_ino(inode);
3261
3262 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3263
3264 path = btrfs_alloc_path();
3265 if (!path)
3266 return -ENOMEM;
3267 path->reada = -1;
3268
3269 if (root->ref_cows || root == root->fs_info->tree_root)
3270 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3271
3272 /*
3273 * This function is also used to drop the items in the log tree before
3274 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3275 * it is used to drop the loged items. So we shouldn't kill the delayed
3276 * items.
3277 */
3278 if (min_type == 0 && root == BTRFS_I(inode)->root)
3279 btrfs_kill_delayed_inode_items(inode);
3280
3281 key.objectid = ino;
3282 key.offset = (u64)-1;
3283 key.type = (u8)-1;
3284
3285 search_again:
3286 path->leave_spinning = 1;
3287 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3288 if (ret < 0) {
3289 err = ret;
3290 goto out;
3291 }
3292
3293 if (ret > 0) {
3294 /* there are no items in the tree for us to truncate, we're
3295 * done
3296 */
3297 if (path->slots[0] == 0)
3298 goto out;
3299 path->slots[0]--;
3300 }
3301
3302 while (1) {
3303 fi = NULL;
3304 leaf = path->nodes[0];
3305 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3306 found_type = btrfs_key_type(&found_key);
3307
3308 if (found_key.objectid != ino)
3309 break;
3310
3311 if (found_type < min_type)
3312 break;
3313
3314 item_end = found_key.offset;
3315 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3316 fi = btrfs_item_ptr(leaf, path->slots[0],
3317 struct btrfs_file_extent_item);
3318 extent_type = btrfs_file_extent_type(leaf, fi);
3319 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3320 item_end +=
3321 btrfs_file_extent_num_bytes(leaf, fi);
3322 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3323 item_end += btrfs_file_extent_inline_len(leaf,
3324 fi);
3325 }
3326 item_end--;
3327 }
3328 if (found_type > min_type) {
3329 del_item = 1;
3330 } else {
3331 if (item_end < new_size)
3332 break;
3333 if (found_key.offset >= new_size)
3334 del_item = 1;
3335 else
3336 del_item = 0;
3337 }
3338 found_extent = 0;
3339 /* FIXME, shrink the extent if the ref count is only 1 */
3340 if (found_type != BTRFS_EXTENT_DATA_KEY)
3341 goto delete;
3342
3343 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3344 u64 num_dec;
3345 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3346 if (!del_item) {
3347 u64 orig_num_bytes =
3348 btrfs_file_extent_num_bytes(leaf, fi);
3349 extent_num_bytes = new_size -
3350 found_key.offset + root->sectorsize - 1;
3351 extent_num_bytes = extent_num_bytes &
3352 ~((u64)root->sectorsize - 1);
3353 btrfs_set_file_extent_num_bytes(leaf, fi,
3354 extent_num_bytes);
3355 num_dec = (orig_num_bytes -
3356 extent_num_bytes);
3357 if (root->ref_cows && extent_start != 0)
3358 inode_sub_bytes(inode, num_dec);
3359 btrfs_mark_buffer_dirty(leaf);
3360 } else {
3361 extent_num_bytes =
3362 btrfs_file_extent_disk_num_bytes(leaf,
3363 fi);
3364 extent_offset = found_key.offset -
3365 btrfs_file_extent_offset(leaf, fi);
3366
3367 /* FIXME blocksize != 4096 */
3368 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3369 if (extent_start != 0) {
3370 found_extent = 1;
3371 if (root->ref_cows)
3372 inode_sub_bytes(inode, num_dec);
3373 }
3374 }
3375 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3376 /*
3377 * we can't truncate inline items that have had
3378 * special encodings
3379 */
3380 if (!del_item &&
3381 btrfs_file_extent_compression(leaf, fi) == 0 &&
3382 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3383 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3384 u32 size = new_size - found_key.offset;
3385
3386 if (root->ref_cows) {
3387 inode_sub_bytes(inode, item_end + 1 -
3388 new_size);
3389 }
3390 size =
3391 btrfs_file_extent_calc_inline_size(size);
3392 btrfs_truncate_item(trans, root, path,
3393 size, 1);
3394 } else if (root->ref_cows) {
3395 inode_sub_bytes(inode, item_end + 1 -
3396 found_key.offset);
3397 }
3398 }
3399 delete:
3400 if (del_item) {
3401 if (!pending_del_nr) {
3402 /* no pending yet, add ourselves */
3403 pending_del_slot = path->slots[0];
3404 pending_del_nr = 1;
3405 } else if (pending_del_nr &&
3406 path->slots[0] + 1 == pending_del_slot) {
3407 /* hop on the pending chunk */
3408 pending_del_nr++;
3409 pending_del_slot = path->slots[0];
3410 } else {
3411 BUG();
3412 }
3413 } else {
3414 break;
3415 }
3416 if (found_extent && (root->ref_cows ||
3417 root == root->fs_info->tree_root)) {
3418 btrfs_set_path_blocking(path);
3419 ret = btrfs_free_extent(trans, root, extent_start,
3420 extent_num_bytes, 0,
3421 btrfs_header_owner(leaf),
3422 ino, extent_offset, 0);
3423 BUG_ON(ret);
3424 }
3425
3426 if (found_type == BTRFS_INODE_ITEM_KEY)
3427 break;
3428
3429 if (path->slots[0] == 0 ||
3430 path->slots[0] != pending_del_slot) {
3431 if (root->ref_cows &&
3432 BTRFS_I(inode)->location.objectid !=
3433 BTRFS_FREE_INO_OBJECTID) {
3434 err = -EAGAIN;
3435 goto out;
3436 }
3437 if (pending_del_nr) {
3438 ret = btrfs_del_items(trans, root, path,
3439 pending_del_slot,
3440 pending_del_nr);
3441 if (ret) {
3442 btrfs_abort_transaction(trans,
3443 root, ret);
3444 goto error;
3445 }
3446 pending_del_nr = 0;
3447 }
3448 btrfs_release_path(path);
3449 goto search_again;
3450 } else {
3451 path->slots[0]--;
3452 }
3453 }
3454 out:
3455 if (pending_del_nr) {
3456 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3457 pending_del_nr);
3458 if (ret)
3459 btrfs_abort_transaction(trans, root, ret);
3460 }
3461 error:
3462 btrfs_free_path(path);
3463 return err;
3464 }
3465
3466 /*
3467 * taken from block_truncate_page, but does cow as it zeros out
3468 * any bytes left in the last page in the file.
3469 */
3470 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3471 {
3472 struct inode *inode = mapping->host;
3473 struct btrfs_root *root = BTRFS_I(inode)->root;
3474 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3475 struct btrfs_ordered_extent *ordered;
3476 struct extent_state *cached_state = NULL;
3477 char *kaddr;
3478 u32 blocksize = root->sectorsize;
3479 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3480 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3481 struct page *page;
3482 gfp_t mask = btrfs_alloc_write_mask(mapping);
3483 int ret = 0;
3484 u64 page_start;
3485 u64 page_end;
3486
3487 if ((offset & (blocksize - 1)) == 0)
3488 goto out;
3489 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3490 if (ret)
3491 goto out;
3492
3493 ret = -ENOMEM;
3494 again:
3495 page = find_or_create_page(mapping, index, mask);
3496 if (!page) {
3497 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3498 goto out;
3499 }
3500
3501 page_start = page_offset(page);
3502 page_end = page_start + PAGE_CACHE_SIZE - 1;
3503
3504 if (!PageUptodate(page)) {
3505 ret = btrfs_readpage(NULL, page);
3506 lock_page(page);
3507 if (page->mapping != mapping) {
3508 unlock_page(page);
3509 page_cache_release(page);
3510 goto again;
3511 }
3512 if (!PageUptodate(page)) {
3513 ret = -EIO;
3514 goto out_unlock;
3515 }
3516 }
3517 wait_on_page_writeback(page);
3518
3519 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
3520 set_page_extent_mapped(page);
3521
3522 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3523 if (ordered) {
3524 unlock_extent_cached(io_tree, page_start, page_end,
3525 &cached_state, GFP_NOFS);
3526 unlock_page(page);
3527 page_cache_release(page);
3528 btrfs_start_ordered_extent(inode, ordered, 1);
3529 btrfs_put_ordered_extent(ordered);
3530 goto again;
3531 }
3532
3533 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3534 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3535 0, 0, &cached_state, GFP_NOFS);
3536
3537 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3538 &cached_state);
3539 if (ret) {
3540 unlock_extent_cached(io_tree, page_start, page_end,
3541 &cached_state, GFP_NOFS);
3542 goto out_unlock;
3543 }
3544
3545 ret = 0;
3546 if (offset != PAGE_CACHE_SIZE) {
3547 kaddr = kmap(page);
3548 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3549 flush_dcache_page(page);
3550 kunmap(page);
3551 }
3552 ClearPageChecked(page);
3553 set_page_dirty(page);
3554 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3555 GFP_NOFS);
3556
3557 out_unlock:
3558 if (ret)
3559 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3560 unlock_page(page);
3561 page_cache_release(page);
3562 out:
3563 return ret;
3564 }
3565
3566 /*
3567 * This function puts in dummy file extents for the area we're creating a hole
3568 * for. So if we are truncating this file to a larger size we need to insert
3569 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3570 * the range between oldsize and size
3571 */
3572 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3573 {
3574 struct btrfs_trans_handle *trans;
3575 struct btrfs_root *root = BTRFS_I(inode)->root;
3576 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3577 struct extent_map *em = NULL;
3578 struct extent_state *cached_state = NULL;
3579 u64 mask = root->sectorsize - 1;
3580 u64 hole_start = (oldsize + mask) & ~mask;
3581 u64 block_end = (size + mask) & ~mask;
3582 u64 last_byte;
3583 u64 cur_offset;
3584 u64 hole_size;
3585 int err = 0;
3586
3587 if (size <= hole_start)
3588 return 0;
3589
3590 while (1) {
3591 struct btrfs_ordered_extent *ordered;
3592 btrfs_wait_ordered_range(inode, hole_start,
3593 block_end - hole_start);
3594 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3595 &cached_state);
3596 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3597 if (!ordered)
3598 break;
3599 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3600 &cached_state, GFP_NOFS);
3601 btrfs_put_ordered_extent(ordered);
3602 }
3603
3604 cur_offset = hole_start;
3605 while (1) {
3606 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3607 block_end - cur_offset, 0);
3608 if (IS_ERR(em)) {
3609 err = PTR_ERR(em);
3610 break;
3611 }
3612 last_byte = min(extent_map_end(em), block_end);
3613 last_byte = (last_byte + mask) & ~mask;
3614 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3615 u64 hint_byte = 0;
3616 hole_size = last_byte - cur_offset;
3617
3618 trans = btrfs_start_transaction(root, 3);
3619 if (IS_ERR(trans)) {
3620 err = PTR_ERR(trans);
3621 break;
3622 }
3623
3624 err = btrfs_drop_extents(trans, inode, cur_offset,
3625 cur_offset + hole_size,
3626 &hint_byte, 1);
3627 if (err) {
3628 btrfs_abort_transaction(trans, root, err);
3629 btrfs_end_transaction(trans, root);
3630 break;
3631 }
3632
3633 err = btrfs_insert_file_extent(trans, root,
3634 btrfs_ino(inode), cur_offset, 0,
3635 0, hole_size, 0, hole_size,
3636 0, 0, 0);
3637 if (err) {
3638 btrfs_abort_transaction(trans, root, err);
3639 btrfs_end_transaction(trans, root);
3640 break;
3641 }
3642
3643 btrfs_drop_extent_cache(inode, hole_start,
3644 last_byte - 1, 0);
3645
3646 btrfs_update_inode(trans, root, inode);
3647 btrfs_end_transaction(trans, root);
3648 }
3649 free_extent_map(em);
3650 em = NULL;
3651 cur_offset = last_byte;
3652 if (cur_offset >= block_end)
3653 break;
3654 }
3655
3656 free_extent_map(em);
3657 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3658 GFP_NOFS);
3659 return err;
3660 }
3661
3662 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3663 {
3664 struct btrfs_root *root = BTRFS_I(inode)->root;
3665 struct btrfs_trans_handle *trans;
3666 loff_t oldsize = i_size_read(inode);
3667 int ret;
3668
3669 if (newsize == oldsize)
3670 return 0;
3671
3672 if (newsize > oldsize) {
3673 truncate_pagecache(inode, oldsize, newsize);
3674 ret = btrfs_cont_expand(inode, oldsize, newsize);
3675 if (ret)
3676 return ret;
3677
3678 trans = btrfs_start_transaction(root, 1);
3679 if (IS_ERR(trans))
3680 return PTR_ERR(trans);
3681
3682 i_size_write(inode, newsize);
3683 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3684 ret = btrfs_update_inode(trans, root, inode);
3685 btrfs_end_transaction(trans, root);
3686 } else {
3687
3688 /*
3689 * We're truncating a file that used to have good data down to
3690 * zero. Make sure it gets into the ordered flush list so that
3691 * any new writes get down to disk quickly.
3692 */
3693 if (newsize == 0)
3694 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
3695 &BTRFS_I(inode)->runtime_flags);
3696
3697 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3698 truncate_setsize(inode, newsize);
3699 ret = btrfs_truncate(inode);
3700 }
3701
3702 return ret;
3703 }
3704
3705 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3706 {
3707 struct inode *inode = dentry->d_inode;
3708 struct btrfs_root *root = BTRFS_I(inode)->root;
3709 int err;
3710
3711 if (btrfs_root_readonly(root))
3712 return -EROFS;
3713
3714 err = inode_change_ok(inode, attr);
3715 if (err)
3716 return err;
3717
3718 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3719 err = btrfs_setsize(inode, attr->ia_size);
3720 if (err)
3721 return err;
3722 }
3723
3724 if (attr->ia_valid) {
3725 setattr_copy(inode, attr);
3726 inode_inc_iversion(inode);
3727 err = btrfs_dirty_inode(inode);
3728
3729 if (!err && attr->ia_valid & ATTR_MODE)
3730 err = btrfs_acl_chmod(inode);
3731 }
3732
3733 return err;
3734 }
3735
3736 void btrfs_evict_inode(struct inode *inode)
3737 {
3738 struct btrfs_trans_handle *trans;
3739 struct btrfs_root *root = BTRFS_I(inode)->root;
3740 struct btrfs_block_rsv *rsv, *global_rsv;
3741 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
3742 unsigned long nr;
3743 int ret;
3744
3745 trace_btrfs_inode_evict(inode);
3746
3747 truncate_inode_pages(&inode->i_data, 0);
3748 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3749 btrfs_is_free_space_inode(inode)))
3750 goto no_delete;
3751
3752 if (is_bad_inode(inode)) {
3753 btrfs_orphan_del(NULL, inode);
3754 goto no_delete;
3755 }
3756 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3757 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3758
3759 if (root->fs_info->log_root_recovering) {
3760 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3761 &BTRFS_I(inode)->runtime_flags));
3762 goto no_delete;
3763 }
3764
3765 if (inode->i_nlink > 0) {
3766 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3767 goto no_delete;
3768 }
3769
3770 rsv = btrfs_alloc_block_rsv(root);
3771 if (!rsv) {
3772 btrfs_orphan_del(NULL, inode);
3773 goto no_delete;
3774 }
3775 rsv->size = min_size;
3776 global_rsv = &root->fs_info->global_block_rsv;
3777
3778 btrfs_i_size_write(inode, 0);
3779
3780 /*
3781 * This is a bit simpler than btrfs_truncate since
3782 *
3783 * 1) We've already reserved our space for our orphan item in the
3784 * unlink.
3785 * 2) We're going to delete the inode item, so we don't need to update
3786 * it at all.
3787 *
3788 * So we just need to reserve some slack space in case we add bytes when
3789 * doing the truncate.
3790 */
3791 while (1) {
3792 ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
3793
3794 /*
3795 * Try and steal from the global reserve since we will
3796 * likely not use this space anyway, we want to try as
3797 * hard as possible to get this to work.
3798 */
3799 if (ret)
3800 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3801
3802 if (ret) {
3803 printk(KERN_WARNING "Could not get space for a "
3804 "delete, will truncate on mount %d\n", ret);
3805 btrfs_orphan_del(NULL, inode);
3806 btrfs_free_block_rsv(root, rsv);
3807 goto no_delete;
3808 }
3809
3810 trans = btrfs_start_transaction(root, 0);
3811 if (IS_ERR(trans)) {
3812 btrfs_orphan_del(NULL, inode);
3813 btrfs_free_block_rsv(root, rsv);
3814 goto no_delete;
3815 }
3816
3817 trans->block_rsv = rsv;
3818
3819 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3820 if (ret != -EAGAIN)
3821 break;
3822
3823 nr = trans->blocks_used;
3824 btrfs_end_transaction(trans, root);
3825 trans = NULL;
3826 btrfs_btree_balance_dirty(root, nr);
3827 }
3828
3829 btrfs_free_block_rsv(root, rsv);
3830
3831 if (ret == 0) {
3832 trans->block_rsv = root->orphan_block_rsv;
3833 ret = btrfs_orphan_del(trans, inode);
3834 BUG_ON(ret);
3835 }
3836
3837 trans->block_rsv = &root->fs_info->trans_block_rsv;
3838 if (!(root == root->fs_info->tree_root ||
3839 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3840 btrfs_return_ino(root, btrfs_ino(inode));
3841
3842 nr = trans->blocks_used;
3843 btrfs_end_transaction(trans, root);
3844 btrfs_btree_balance_dirty(root, nr);
3845 no_delete:
3846 clear_inode(inode);
3847 return;
3848 }
3849
3850 /*
3851 * this returns the key found in the dir entry in the location pointer.
3852 * If no dir entries were found, location->objectid is 0.
3853 */
3854 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3855 struct btrfs_key *location)
3856 {
3857 const char *name = dentry->d_name.name;
3858 int namelen = dentry->d_name.len;
3859 struct btrfs_dir_item *di;
3860 struct btrfs_path *path;
3861 struct btrfs_root *root = BTRFS_I(dir)->root;
3862 int ret = 0;
3863
3864 path = btrfs_alloc_path();
3865 if (!path)
3866 return -ENOMEM;
3867
3868 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3869 namelen, 0);
3870 if (IS_ERR(di))
3871 ret = PTR_ERR(di);
3872
3873 if (IS_ERR_OR_NULL(di))
3874 goto out_err;
3875
3876 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3877 out:
3878 btrfs_free_path(path);
3879 return ret;
3880 out_err:
3881 location->objectid = 0;
3882 goto out;
3883 }
3884
3885 /*
3886 * when we hit a tree root in a directory, the btrfs part of the inode
3887 * needs to be changed to reflect the root directory of the tree root. This
3888 * is kind of like crossing a mount point.
3889 */
3890 static int fixup_tree_root_location(struct btrfs_root *root,
3891 struct inode *dir,
3892 struct dentry *dentry,
3893 struct btrfs_key *location,
3894 struct btrfs_root **sub_root)
3895 {
3896 struct btrfs_path *path;
3897 struct btrfs_root *new_root;
3898 struct btrfs_root_ref *ref;
3899 struct extent_buffer *leaf;
3900 int ret;
3901 int err = 0;
3902
3903 path = btrfs_alloc_path();
3904 if (!path) {
3905 err = -ENOMEM;
3906 goto out;
3907 }
3908
3909 err = -ENOENT;
3910 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3911 BTRFS_I(dir)->root->root_key.objectid,
3912 location->objectid);
3913 if (ret) {
3914 if (ret < 0)
3915 err = ret;
3916 goto out;
3917 }
3918
3919 leaf = path->nodes[0];
3920 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3921 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3922 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3923 goto out;
3924
3925 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3926 (unsigned long)(ref + 1),
3927 dentry->d_name.len);
3928 if (ret)
3929 goto out;
3930
3931 btrfs_release_path(path);
3932
3933 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3934 if (IS_ERR(new_root)) {
3935 err = PTR_ERR(new_root);
3936 goto out;
3937 }
3938
3939 if (btrfs_root_refs(&new_root->root_item) == 0) {
3940 err = -ENOENT;
3941 goto out;
3942 }
3943
3944 *sub_root = new_root;
3945 location->objectid = btrfs_root_dirid(&new_root->root_item);
3946 location->type = BTRFS_INODE_ITEM_KEY;
3947 location->offset = 0;
3948 err = 0;
3949 out:
3950 btrfs_free_path(path);
3951 return err;
3952 }
3953
3954 static void inode_tree_add(struct inode *inode)
3955 {
3956 struct btrfs_root *root = BTRFS_I(inode)->root;
3957 struct btrfs_inode *entry;
3958 struct rb_node **p;
3959 struct rb_node *parent;
3960 u64 ino = btrfs_ino(inode);
3961 again:
3962 p = &root->inode_tree.rb_node;
3963 parent = NULL;
3964
3965 if (inode_unhashed(inode))
3966 return;
3967
3968 spin_lock(&root->inode_lock);
3969 while (*p) {
3970 parent = *p;
3971 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3972
3973 if (ino < btrfs_ino(&entry->vfs_inode))
3974 p = &parent->rb_left;
3975 else if (ino > btrfs_ino(&entry->vfs_inode))
3976 p = &parent->rb_right;
3977 else {
3978 WARN_ON(!(entry->vfs_inode.i_state &
3979 (I_WILL_FREE | I_FREEING)));
3980 rb_erase(parent, &root->inode_tree);
3981 RB_CLEAR_NODE(parent);
3982 spin_unlock(&root->inode_lock);
3983 goto again;
3984 }
3985 }
3986 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3987 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3988 spin_unlock(&root->inode_lock);
3989 }
3990
3991 static void inode_tree_del(struct inode *inode)
3992 {
3993 struct btrfs_root *root = BTRFS_I(inode)->root;
3994 int empty = 0;
3995
3996 spin_lock(&root->inode_lock);
3997 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3998 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3999 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4000 empty = RB_EMPTY_ROOT(&root->inode_tree);
4001 }
4002 spin_unlock(&root->inode_lock);
4003
4004 /*
4005 * Free space cache has inodes in the tree root, but the tree root has a
4006 * root_refs of 0, so this could end up dropping the tree root as a
4007 * snapshot, so we need the extra !root->fs_info->tree_root check to
4008 * make sure we don't drop it.
4009 */
4010 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4011 root != root->fs_info->tree_root) {
4012 synchronize_srcu(&root->fs_info->subvol_srcu);
4013 spin_lock(&root->inode_lock);
4014 empty = RB_EMPTY_ROOT(&root->inode_tree);
4015 spin_unlock(&root->inode_lock);
4016 if (empty)
4017 btrfs_add_dead_root(root);
4018 }
4019 }
4020
4021 void btrfs_invalidate_inodes(struct btrfs_root *root)
4022 {
4023 struct rb_node *node;
4024 struct rb_node *prev;
4025 struct btrfs_inode *entry;
4026 struct inode *inode;
4027 u64 objectid = 0;
4028
4029 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4030
4031 spin_lock(&root->inode_lock);
4032 again:
4033 node = root->inode_tree.rb_node;
4034 prev = NULL;
4035 while (node) {
4036 prev = node;
4037 entry = rb_entry(node, struct btrfs_inode, rb_node);
4038
4039 if (objectid < btrfs_ino(&entry->vfs_inode))
4040 node = node->rb_left;
4041 else if (objectid > btrfs_ino(&entry->vfs_inode))
4042 node = node->rb_right;
4043 else
4044 break;
4045 }
4046 if (!node) {
4047 while (prev) {
4048 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4049 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4050 node = prev;
4051 break;
4052 }
4053 prev = rb_next(prev);
4054 }
4055 }
4056 while (node) {
4057 entry = rb_entry(node, struct btrfs_inode, rb_node);
4058 objectid = btrfs_ino(&entry->vfs_inode) + 1;
4059 inode = igrab(&entry->vfs_inode);
4060 if (inode) {
4061 spin_unlock(&root->inode_lock);
4062 if (atomic_read(&inode->i_count) > 1)
4063 d_prune_aliases(inode);
4064 /*
4065 * btrfs_drop_inode will have it removed from
4066 * the inode cache when its usage count
4067 * hits zero.
4068 */
4069 iput(inode);
4070 cond_resched();
4071 spin_lock(&root->inode_lock);
4072 goto again;
4073 }
4074
4075 if (cond_resched_lock(&root->inode_lock))
4076 goto again;
4077
4078 node = rb_next(node);
4079 }
4080 spin_unlock(&root->inode_lock);
4081 }
4082
4083 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4084 {
4085 struct btrfs_iget_args *args = p;
4086 inode->i_ino = args->ino;
4087 BTRFS_I(inode)->root = args->root;
4088 return 0;
4089 }
4090
4091 static int btrfs_find_actor(struct inode *inode, void *opaque)
4092 {
4093 struct btrfs_iget_args *args = opaque;
4094 return args->ino == btrfs_ino(inode) &&
4095 args->root == BTRFS_I(inode)->root;
4096 }
4097
4098 static struct inode *btrfs_iget_locked(struct super_block *s,
4099 u64 objectid,
4100 struct btrfs_root *root)
4101 {
4102 struct inode *inode;
4103 struct btrfs_iget_args args;
4104 args.ino = objectid;
4105 args.root = root;
4106
4107 inode = iget5_locked(s, objectid, btrfs_find_actor,
4108 btrfs_init_locked_inode,
4109 (void *)&args);
4110 return inode;
4111 }
4112
4113 /* Get an inode object given its location and corresponding root.
4114 * Returns in *is_new if the inode was read from disk
4115 */
4116 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4117 struct btrfs_root *root, int *new)
4118 {
4119 struct inode *inode;
4120
4121 inode = btrfs_iget_locked(s, location->objectid, root);
4122 if (!inode)
4123 return ERR_PTR(-ENOMEM);
4124
4125 if (inode->i_state & I_NEW) {
4126 BTRFS_I(inode)->root = root;
4127 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4128 btrfs_read_locked_inode(inode);
4129 if (!is_bad_inode(inode)) {
4130 inode_tree_add(inode);
4131 unlock_new_inode(inode);
4132 if (new)
4133 *new = 1;
4134 } else {
4135 unlock_new_inode(inode);
4136 iput(inode);
4137 inode = ERR_PTR(-ESTALE);
4138 }
4139 }
4140
4141 return inode;
4142 }
4143
4144 static struct inode *new_simple_dir(struct super_block *s,
4145 struct btrfs_key *key,
4146 struct btrfs_root *root)
4147 {
4148 struct inode *inode = new_inode(s);
4149
4150 if (!inode)
4151 return ERR_PTR(-ENOMEM);
4152
4153 BTRFS_I(inode)->root = root;
4154 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4155 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4156
4157 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4158 inode->i_op = &btrfs_dir_ro_inode_operations;
4159 inode->i_fop = &simple_dir_operations;
4160 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4161 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4162
4163 return inode;
4164 }
4165
4166 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4167 {
4168 struct inode *inode;
4169 struct btrfs_root *root = BTRFS_I(dir)->root;
4170 struct btrfs_root *sub_root = root;
4171 struct btrfs_key location;
4172 int index;
4173 int ret = 0;
4174
4175 if (dentry->d_name.len > BTRFS_NAME_LEN)
4176 return ERR_PTR(-ENAMETOOLONG);
4177
4178 if (unlikely(d_need_lookup(dentry))) {
4179 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4180 kfree(dentry->d_fsdata);
4181 dentry->d_fsdata = NULL;
4182 /* This thing is hashed, drop it for now */
4183 d_drop(dentry);
4184 } else {
4185 ret = btrfs_inode_by_name(dir, dentry, &location);
4186 }
4187
4188 if (ret < 0)
4189 return ERR_PTR(ret);
4190
4191 if (location.objectid == 0)
4192 return NULL;
4193
4194 if (location.type == BTRFS_INODE_ITEM_KEY) {
4195 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4196 return inode;
4197 }
4198
4199 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4200
4201 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4202 ret = fixup_tree_root_location(root, dir, dentry,
4203 &location, &sub_root);
4204 if (ret < 0) {
4205 if (ret != -ENOENT)
4206 inode = ERR_PTR(ret);
4207 else
4208 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4209 } else {
4210 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4211 }
4212 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4213
4214 if (!IS_ERR(inode) && root != sub_root) {
4215 down_read(&root->fs_info->cleanup_work_sem);
4216 if (!(inode->i_sb->s_flags & MS_RDONLY))
4217 ret = btrfs_orphan_cleanup(sub_root);
4218 up_read(&root->fs_info->cleanup_work_sem);
4219 if (ret)
4220 inode = ERR_PTR(ret);
4221 }
4222
4223 return inode;
4224 }
4225
4226 static int btrfs_dentry_delete(const struct dentry *dentry)
4227 {
4228 struct btrfs_root *root;
4229 struct inode *inode = dentry->d_inode;
4230
4231 if (!inode && !IS_ROOT(dentry))
4232 inode = dentry->d_parent->d_inode;
4233
4234 if (inode) {
4235 root = BTRFS_I(inode)->root;
4236 if (btrfs_root_refs(&root->root_item) == 0)
4237 return 1;
4238
4239 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4240 return 1;
4241 }
4242 return 0;
4243 }
4244
4245 static void btrfs_dentry_release(struct dentry *dentry)
4246 {
4247 if (dentry->d_fsdata)
4248 kfree(dentry->d_fsdata);
4249 }
4250
4251 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4252 struct nameidata *nd)
4253 {
4254 struct dentry *ret;
4255
4256 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4257 if (unlikely(d_need_lookup(dentry))) {
4258 spin_lock(&dentry->d_lock);
4259 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4260 spin_unlock(&dentry->d_lock);
4261 }
4262 return ret;
4263 }
4264
4265 unsigned char btrfs_filetype_table[] = {
4266 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4267 };
4268
4269 static int btrfs_real_readdir(struct file *filp, void *dirent,
4270 filldir_t filldir)
4271 {
4272 struct inode *inode = filp->f_dentry->d_inode;
4273 struct btrfs_root *root = BTRFS_I(inode)->root;
4274 struct btrfs_item *item;
4275 struct btrfs_dir_item *di;
4276 struct btrfs_key key;
4277 struct btrfs_key found_key;
4278 struct btrfs_path *path;
4279 struct list_head ins_list;
4280 struct list_head del_list;
4281 int ret;
4282 struct extent_buffer *leaf;
4283 int slot;
4284 unsigned char d_type;
4285 int over = 0;
4286 u32 di_cur;
4287 u32 di_total;
4288 u32 di_len;
4289 int key_type = BTRFS_DIR_INDEX_KEY;
4290 char tmp_name[32];
4291 char *name_ptr;
4292 int name_len;
4293 int is_curr = 0; /* filp->f_pos points to the current index? */
4294
4295 /* FIXME, use a real flag for deciding about the key type */
4296 if (root->fs_info->tree_root == root)
4297 key_type = BTRFS_DIR_ITEM_KEY;
4298
4299 /* special case for "." */
4300 if (filp->f_pos == 0) {
4301 over = filldir(dirent, ".", 1,
4302 filp->f_pos, btrfs_ino(inode), DT_DIR);
4303 if (over)
4304 return 0;
4305 filp->f_pos = 1;
4306 }
4307 /* special case for .., just use the back ref */
4308 if (filp->f_pos == 1) {
4309 u64 pino = parent_ino(filp->f_path.dentry);
4310 over = filldir(dirent, "..", 2,
4311 filp->f_pos, pino, DT_DIR);
4312 if (over)
4313 return 0;
4314 filp->f_pos = 2;
4315 }
4316 path = btrfs_alloc_path();
4317 if (!path)
4318 return -ENOMEM;
4319
4320 path->reada = 1;
4321
4322 if (key_type == BTRFS_DIR_INDEX_KEY) {
4323 INIT_LIST_HEAD(&ins_list);
4324 INIT_LIST_HEAD(&del_list);
4325 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4326 }
4327
4328 btrfs_set_key_type(&key, key_type);
4329 key.offset = filp->f_pos;
4330 key.objectid = btrfs_ino(inode);
4331
4332 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4333 if (ret < 0)
4334 goto err;
4335
4336 while (1) {
4337 leaf = path->nodes[0];
4338 slot = path->slots[0];
4339 if (slot >= btrfs_header_nritems(leaf)) {
4340 ret = btrfs_next_leaf(root, path);
4341 if (ret < 0)
4342 goto err;
4343 else if (ret > 0)
4344 break;
4345 continue;
4346 }
4347
4348 item = btrfs_item_nr(leaf, slot);
4349 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4350
4351 if (found_key.objectid != key.objectid)
4352 break;
4353 if (btrfs_key_type(&found_key) != key_type)
4354 break;
4355 if (found_key.offset < filp->f_pos)
4356 goto next;
4357 if (key_type == BTRFS_DIR_INDEX_KEY &&
4358 btrfs_should_delete_dir_index(&del_list,
4359 found_key.offset))
4360 goto next;
4361
4362 filp->f_pos = found_key.offset;
4363 is_curr = 1;
4364
4365 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4366 di_cur = 0;
4367 di_total = btrfs_item_size(leaf, item);
4368
4369 while (di_cur < di_total) {
4370 struct btrfs_key location;
4371
4372 if (verify_dir_item(root, leaf, di))
4373 break;
4374
4375 name_len = btrfs_dir_name_len(leaf, di);
4376 if (name_len <= sizeof(tmp_name)) {
4377 name_ptr = tmp_name;
4378 } else {
4379 name_ptr = kmalloc(name_len, GFP_NOFS);
4380 if (!name_ptr) {
4381 ret = -ENOMEM;
4382 goto err;
4383 }
4384 }
4385 read_extent_buffer(leaf, name_ptr,
4386 (unsigned long)(di + 1), name_len);
4387
4388 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4389 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4390
4391
4392 /* is this a reference to our own snapshot? If so
4393 * skip it.
4394 *
4395 * In contrast to old kernels, we insert the snapshot's
4396 * dir item and dir index after it has been created, so
4397 * we won't find a reference to our own snapshot. We
4398 * still keep the following code for backward
4399 * compatibility.
4400 */
4401 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4402 location.objectid == root->root_key.objectid) {
4403 over = 0;
4404 goto skip;
4405 }
4406 over = filldir(dirent, name_ptr, name_len,
4407 found_key.offset, location.objectid,
4408 d_type);
4409
4410 skip:
4411 if (name_ptr != tmp_name)
4412 kfree(name_ptr);
4413
4414 if (over)
4415 goto nopos;
4416 di_len = btrfs_dir_name_len(leaf, di) +
4417 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4418 di_cur += di_len;
4419 di = (struct btrfs_dir_item *)((char *)di + di_len);
4420 }
4421 next:
4422 path->slots[0]++;
4423 }
4424
4425 if (key_type == BTRFS_DIR_INDEX_KEY) {
4426 if (is_curr)
4427 filp->f_pos++;
4428 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4429 &ins_list);
4430 if (ret)
4431 goto nopos;
4432 }
4433
4434 /* Reached end of directory/root. Bump pos past the last item. */
4435 if (key_type == BTRFS_DIR_INDEX_KEY)
4436 /*
4437 * 32-bit glibc will use getdents64, but then strtol -
4438 * so the last number we can serve is this.
4439 */
4440 filp->f_pos = 0x7fffffff;
4441 else
4442 filp->f_pos++;
4443 nopos:
4444 ret = 0;
4445 err:
4446 if (key_type == BTRFS_DIR_INDEX_KEY)
4447 btrfs_put_delayed_items(&ins_list, &del_list);
4448 btrfs_free_path(path);
4449 return ret;
4450 }
4451
4452 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4453 {
4454 struct btrfs_root *root = BTRFS_I(inode)->root;
4455 struct btrfs_trans_handle *trans;
4456 int ret = 0;
4457 bool nolock = false;
4458
4459 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4460 return 0;
4461
4462 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
4463 nolock = true;
4464
4465 if (wbc->sync_mode == WB_SYNC_ALL) {
4466 if (nolock)
4467 trans = btrfs_join_transaction_nolock(root);
4468 else
4469 trans = btrfs_join_transaction(root);
4470 if (IS_ERR(trans))
4471 return PTR_ERR(trans);
4472 if (nolock)
4473 ret = btrfs_end_transaction_nolock(trans, root);
4474 else
4475 ret = btrfs_commit_transaction(trans, root);
4476 }
4477 return ret;
4478 }
4479
4480 /*
4481 * This is somewhat expensive, updating the tree every time the
4482 * inode changes. But, it is most likely to find the inode in cache.
4483 * FIXME, needs more benchmarking...there are no reasons other than performance
4484 * to keep or drop this code.
4485 */
4486 int btrfs_dirty_inode(struct inode *inode)
4487 {
4488 struct btrfs_root *root = BTRFS_I(inode)->root;
4489 struct btrfs_trans_handle *trans;
4490 int ret;
4491
4492 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4493 return 0;
4494
4495 trans = btrfs_join_transaction(root);
4496 if (IS_ERR(trans))
4497 return PTR_ERR(trans);
4498
4499 ret = btrfs_update_inode(trans, root, inode);
4500 if (ret && ret == -ENOSPC) {
4501 /* whoops, lets try again with the full transaction */
4502 btrfs_end_transaction(trans, root);
4503 trans = btrfs_start_transaction(root, 1);
4504 if (IS_ERR(trans))
4505 return PTR_ERR(trans);
4506
4507 ret = btrfs_update_inode(trans, root, inode);
4508 }
4509 btrfs_end_transaction(trans, root);
4510 if (BTRFS_I(inode)->delayed_node)
4511 btrfs_balance_delayed_items(root);
4512
4513 return ret;
4514 }
4515
4516 /*
4517 * This is a copy of file_update_time. We need this so we can return error on
4518 * ENOSPC for updating the inode in the case of file write and mmap writes.
4519 */
4520 static int btrfs_update_time(struct inode *inode, struct timespec *now,
4521 int flags)
4522 {
4523 struct btrfs_root *root = BTRFS_I(inode)->root;
4524
4525 if (btrfs_root_readonly(root))
4526 return -EROFS;
4527
4528 if (flags & S_VERSION)
4529 inode_inc_iversion(inode);
4530 if (flags & S_CTIME)
4531 inode->i_ctime = *now;
4532 if (flags & S_MTIME)
4533 inode->i_mtime = *now;
4534 if (flags & S_ATIME)
4535 inode->i_atime = *now;
4536 return btrfs_dirty_inode(inode);
4537 }
4538
4539 /*
4540 * find the highest existing sequence number in a directory
4541 * and then set the in-memory index_cnt variable to reflect
4542 * free sequence numbers
4543 */
4544 static int btrfs_set_inode_index_count(struct inode *inode)
4545 {
4546 struct btrfs_root *root = BTRFS_I(inode)->root;
4547 struct btrfs_key key, found_key;
4548 struct btrfs_path *path;
4549 struct extent_buffer *leaf;
4550 int ret;
4551
4552 key.objectid = btrfs_ino(inode);
4553 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4554 key.offset = (u64)-1;
4555
4556 path = btrfs_alloc_path();
4557 if (!path)
4558 return -ENOMEM;
4559
4560 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4561 if (ret < 0)
4562 goto out;
4563 /* FIXME: we should be able to handle this */
4564 if (ret == 0)
4565 goto out;
4566 ret = 0;
4567
4568 /*
4569 * MAGIC NUMBER EXPLANATION:
4570 * since we search a directory based on f_pos we have to start at 2
4571 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4572 * else has to start at 2
4573 */
4574 if (path->slots[0] == 0) {
4575 BTRFS_I(inode)->index_cnt = 2;
4576 goto out;
4577 }
4578
4579 path->slots[0]--;
4580
4581 leaf = path->nodes[0];
4582 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4583
4584 if (found_key.objectid != btrfs_ino(inode) ||
4585 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4586 BTRFS_I(inode)->index_cnt = 2;
4587 goto out;
4588 }
4589
4590 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4591 out:
4592 btrfs_free_path(path);
4593 return ret;
4594 }
4595
4596 /*
4597 * helper to find a free sequence number in a given directory. This current
4598 * code is very simple, later versions will do smarter things in the btree
4599 */
4600 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4601 {
4602 int ret = 0;
4603
4604 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4605 ret = btrfs_inode_delayed_dir_index_count(dir);
4606 if (ret) {
4607 ret = btrfs_set_inode_index_count(dir);
4608 if (ret)
4609 return ret;
4610 }
4611 }
4612
4613 *index = BTRFS_I(dir)->index_cnt;
4614 BTRFS_I(dir)->index_cnt++;
4615
4616 return ret;
4617 }
4618
4619 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4620 struct btrfs_root *root,
4621 struct inode *dir,
4622 const char *name, int name_len,
4623 u64 ref_objectid, u64 objectid,
4624 umode_t mode, u64 *index)
4625 {
4626 struct inode *inode;
4627 struct btrfs_inode_item *inode_item;
4628 struct btrfs_key *location;
4629 struct btrfs_path *path;
4630 struct btrfs_inode_ref *ref;
4631 struct btrfs_key key[2];
4632 u32 sizes[2];
4633 unsigned long ptr;
4634 int ret;
4635 int owner;
4636
4637 path = btrfs_alloc_path();
4638 if (!path)
4639 return ERR_PTR(-ENOMEM);
4640
4641 inode = new_inode(root->fs_info->sb);
4642 if (!inode) {
4643 btrfs_free_path(path);
4644 return ERR_PTR(-ENOMEM);
4645 }
4646
4647 /*
4648 * we have to initialize this early, so we can reclaim the inode
4649 * number if we fail afterwards in this function.
4650 */
4651 inode->i_ino = objectid;
4652
4653 if (dir) {
4654 trace_btrfs_inode_request(dir);
4655
4656 ret = btrfs_set_inode_index(dir, index);
4657 if (ret) {
4658 btrfs_free_path(path);
4659 iput(inode);
4660 return ERR_PTR(ret);
4661 }
4662 }
4663 /*
4664 * index_cnt is ignored for everything but a dir,
4665 * btrfs_get_inode_index_count has an explanation for the magic
4666 * number
4667 */
4668 BTRFS_I(inode)->index_cnt = 2;
4669 BTRFS_I(inode)->root = root;
4670 BTRFS_I(inode)->generation = trans->transid;
4671 inode->i_generation = BTRFS_I(inode)->generation;
4672
4673 if (S_ISDIR(mode))
4674 owner = 0;
4675 else
4676 owner = 1;
4677
4678 key[0].objectid = objectid;
4679 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4680 key[0].offset = 0;
4681
4682 key[1].objectid = objectid;
4683 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4684 key[1].offset = ref_objectid;
4685
4686 sizes[0] = sizeof(struct btrfs_inode_item);
4687 sizes[1] = name_len + sizeof(*ref);
4688
4689 path->leave_spinning = 1;
4690 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4691 if (ret != 0)
4692 goto fail;
4693
4694 inode_init_owner(inode, dir, mode);
4695 inode_set_bytes(inode, 0);
4696 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4697 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4698 struct btrfs_inode_item);
4699 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
4700 sizeof(*inode_item));
4701 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4702
4703 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4704 struct btrfs_inode_ref);
4705 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4706 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4707 ptr = (unsigned long)(ref + 1);
4708 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4709
4710 btrfs_mark_buffer_dirty(path->nodes[0]);
4711 btrfs_free_path(path);
4712
4713 location = &BTRFS_I(inode)->location;
4714 location->objectid = objectid;
4715 location->offset = 0;
4716 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4717
4718 btrfs_inherit_iflags(inode, dir);
4719
4720 if (S_ISREG(mode)) {
4721 if (btrfs_test_opt(root, NODATASUM))
4722 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4723 if (btrfs_test_opt(root, NODATACOW) ||
4724 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4725 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4726 }
4727
4728 insert_inode_hash(inode);
4729 inode_tree_add(inode);
4730
4731 trace_btrfs_inode_new(inode);
4732 btrfs_set_inode_last_trans(trans, inode);
4733
4734 btrfs_update_root_times(trans, root);
4735
4736 return inode;
4737 fail:
4738 if (dir)
4739 BTRFS_I(dir)->index_cnt--;
4740 btrfs_free_path(path);
4741 iput(inode);
4742 return ERR_PTR(ret);
4743 }
4744
4745 static inline u8 btrfs_inode_type(struct inode *inode)
4746 {
4747 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4748 }
4749
4750 /*
4751 * utility function to add 'inode' into 'parent_inode' with
4752 * a give name and a given sequence number.
4753 * if 'add_backref' is true, also insert a backref from the
4754 * inode to the parent directory.
4755 */
4756 int btrfs_add_link(struct btrfs_trans_handle *trans,
4757 struct inode *parent_inode, struct inode *inode,
4758 const char *name, int name_len, int add_backref, u64 index)
4759 {
4760 int ret = 0;
4761 struct btrfs_key key;
4762 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4763 u64 ino = btrfs_ino(inode);
4764 u64 parent_ino = btrfs_ino(parent_inode);
4765
4766 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4767 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4768 } else {
4769 key.objectid = ino;
4770 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4771 key.offset = 0;
4772 }
4773
4774 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4775 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4776 key.objectid, root->root_key.objectid,
4777 parent_ino, index, name, name_len);
4778 } else if (add_backref) {
4779 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4780 parent_ino, index);
4781 }
4782
4783 /* Nothing to clean up yet */
4784 if (ret)
4785 return ret;
4786
4787 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4788 parent_inode, &key,
4789 btrfs_inode_type(inode), index);
4790 if (ret == -EEXIST)
4791 goto fail_dir_item;
4792 else if (ret) {
4793 btrfs_abort_transaction(trans, root, ret);
4794 return ret;
4795 }
4796
4797 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4798 name_len * 2);
4799 inode_inc_iversion(parent_inode);
4800 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4801 ret = btrfs_update_inode(trans, root, parent_inode);
4802 if (ret)
4803 btrfs_abort_transaction(trans, root, ret);
4804 return ret;
4805
4806 fail_dir_item:
4807 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4808 u64 local_index;
4809 int err;
4810 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4811 key.objectid, root->root_key.objectid,
4812 parent_ino, &local_index, name, name_len);
4813
4814 } else if (add_backref) {
4815 u64 local_index;
4816 int err;
4817
4818 err = btrfs_del_inode_ref(trans, root, name, name_len,
4819 ino, parent_ino, &local_index);
4820 }
4821 return ret;
4822 }
4823
4824 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4825 struct inode *dir, struct dentry *dentry,
4826 struct inode *inode, int backref, u64 index)
4827 {
4828 int err = btrfs_add_link(trans, dir, inode,
4829 dentry->d_name.name, dentry->d_name.len,
4830 backref, index);
4831 if (err > 0)
4832 err = -EEXIST;
4833 return err;
4834 }
4835
4836 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4837 umode_t mode, dev_t rdev)
4838 {
4839 struct btrfs_trans_handle *trans;
4840 struct btrfs_root *root = BTRFS_I(dir)->root;
4841 struct inode *inode = NULL;
4842 int err;
4843 int drop_inode = 0;
4844 u64 objectid;
4845 unsigned long nr = 0;
4846 u64 index = 0;
4847
4848 if (!new_valid_dev(rdev))
4849 return -EINVAL;
4850
4851 /*
4852 * 2 for inode item and ref
4853 * 2 for dir items
4854 * 1 for xattr if selinux is on
4855 */
4856 trans = btrfs_start_transaction(root, 5);
4857 if (IS_ERR(trans))
4858 return PTR_ERR(trans);
4859
4860 err = btrfs_find_free_ino(root, &objectid);
4861 if (err)
4862 goto out_unlock;
4863
4864 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4865 dentry->d_name.len, btrfs_ino(dir), objectid,
4866 mode, &index);
4867 if (IS_ERR(inode)) {
4868 err = PTR_ERR(inode);
4869 goto out_unlock;
4870 }
4871
4872 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4873 if (err) {
4874 drop_inode = 1;
4875 goto out_unlock;
4876 }
4877
4878 /*
4879 * If the active LSM wants to access the inode during
4880 * d_instantiate it needs these. Smack checks to see
4881 * if the filesystem supports xattrs by looking at the
4882 * ops vector.
4883 */
4884
4885 inode->i_op = &btrfs_special_inode_operations;
4886 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4887 if (err)
4888 drop_inode = 1;
4889 else {
4890 init_special_inode(inode, inode->i_mode, rdev);
4891 btrfs_update_inode(trans, root, inode);
4892 d_instantiate(dentry, inode);
4893 }
4894 out_unlock:
4895 nr = trans->blocks_used;
4896 btrfs_end_transaction(trans, root);
4897 btrfs_btree_balance_dirty(root, nr);
4898 if (drop_inode) {
4899 inode_dec_link_count(inode);
4900 iput(inode);
4901 }
4902 return err;
4903 }
4904
4905 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4906 umode_t mode, struct nameidata *nd)
4907 {
4908 struct btrfs_trans_handle *trans;
4909 struct btrfs_root *root = BTRFS_I(dir)->root;
4910 struct inode *inode = NULL;
4911 int drop_inode = 0;
4912 int err;
4913 unsigned long nr = 0;
4914 u64 objectid;
4915 u64 index = 0;
4916
4917 /*
4918 * 2 for inode item and ref
4919 * 2 for dir items
4920 * 1 for xattr if selinux is on
4921 */
4922 trans = btrfs_start_transaction(root, 5);
4923 if (IS_ERR(trans))
4924 return PTR_ERR(trans);
4925
4926 err = btrfs_find_free_ino(root, &objectid);
4927 if (err)
4928 goto out_unlock;
4929
4930 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4931 dentry->d_name.len, btrfs_ino(dir), objectid,
4932 mode, &index);
4933 if (IS_ERR(inode)) {
4934 err = PTR_ERR(inode);
4935 goto out_unlock;
4936 }
4937
4938 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4939 if (err) {
4940 drop_inode = 1;
4941 goto out_unlock;
4942 }
4943
4944 /*
4945 * If the active LSM wants to access the inode during
4946 * d_instantiate it needs these. Smack checks to see
4947 * if the filesystem supports xattrs by looking at the
4948 * ops vector.
4949 */
4950 inode->i_fop = &btrfs_file_operations;
4951 inode->i_op = &btrfs_file_inode_operations;
4952
4953 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4954 if (err)
4955 drop_inode = 1;
4956 else {
4957 inode->i_mapping->a_ops = &btrfs_aops;
4958 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4959 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4960 d_instantiate(dentry, inode);
4961 }
4962 out_unlock:
4963 nr = trans->blocks_used;
4964 btrfs_end_transaction(trans, root);
4965 if (drop_inode) {
4966 inode_dec_link_count(inode);
4967 iput(inode);
4968 }
4969 btrfs_btree_balance_dirty(root, nr);
4970 return err;
4971 }
4972
4973 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4974 struct dentry *dentry)
4975 {
4976 struct btrfs_trans_handle *trans;
4977 struct btrfs_root *root = BTRFS_I(dir)->root;
4978 struct inode *inode = old_dentry->d_inode;
4979 u64 index;
4980 unsigned long nr = 0;
4981 int err;
4982 int drop_inode = 0;
4983
4984 /* do not allow sys_link's with other subvols of the same device */
4985 if (root->objectid != BTRFS_I(inode)->root->objectid)
4986 return -EXDEV;
4987
4988 if (inode->i_nlink == ~0U)
4989 return -EMLINK;
4990
4991 err = btrfs_set_inode_index(dir, &index);
4992 if (err)
4993 goto fail;
4994
4995 /*
4996 * 2 items for inode and inode ref
4997 * 2 items for dir items
4998 * 1 item for parent inode
4999 */
5000 trans = btrfs_start_transaction(root, 5);
5001 if (IS_ERR(trans)) {
5002 err = PTR_ERR(trans);
5003 goto fail;
5004 }
5005
5006 btrfs_inc_nlink(inode);
5007 inode_inc_iversion(inode);
5008 inode->i_ctime = CURRENT_TIME;
5009 ihold(inode);
5010
5011 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5012
5013 if (err) {
5014 drop_inode = 1;
5015 } else {
5016 struct dentry *parent = dentry->d_parent;
5017 err = btrfs_update_inode(trans, root, inode);
5018 if (err)
5019 goto fail;
5020 d_instantiate(dentry, inode);
5021 btrfs_log_new_name(trans, inode, NULL, parent);
5022 }
5023
5024 nr = trans->blocks_used;
5025 btrfs_end_transaction(trans, root);
5026 fail:
5027 if (drop_inode) {
5028 inode_dec_link_count(inode);
5029 iput(inode);
5030 }
5031 btrfs_btree_balance_dirty(root, nr);
5032 return err;
5033 }
5034
5035 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5036 {
5037 struct inode *inode = NULL;
5038 struct btrfs_trans_handle *trans;
5039 struct btrfs_root *root = BTRFS_I(dir)->root;
5040 int err = 0;
5041 int drop_on_err = 0;
5042 u64 objectid = 0;
5043 u64 index = 0;
5044 unsigned long nr = 1;
5045
5046 /*
5047 * 2 items for inode and ref
5048 * 2 items for dir items
5049 * 1 for xattr if selinux is on
5050 */
5051 trans = btrfs_start_transaction(root, 5);
5052 if (IS_ERR(trans))
5053 return PTR_ERR(trans);
5054
5055 err = btrfs_find_free_ino(root, &objectid);
5056 if (err)
5057 goto out_fail;
5058
5059 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5060 dentry->d_name.len, btrfs_ino(dir), objectid,
5061 S_IFDIR | mode, &index);
5062 if (IS_ERR(inode)) {
5063 err = PTR_ERR(inode);
5064 goto out_fail;
5065 }
5066
5067 drop_on_err = 1;
5068
5069 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5070 if (err)
5071 goto out_fail;
5072
5073 inode->i_op = &btrfs_dir_inode_operations;
5074 inode->i_fop = &btrfs_dir_file_operations;
5075
5076 btrfs_i_size_write(inode, 0);
5077 err = btrfs_update_inode(trans, root, inode);
5078 if (err)
5079 goto out_fail;
5080
5081 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5082 dentry->d_name.len, 0, index);
5083 if (err)
5084 goto out_fail;
5085
5086 d_instantiate(dentry, inode);
5087 drop_on_err = 0;
5088
5089 out_fail:
5090 nr = trans->blocks_used;
5091 btrfs_end_transaction(trans, root);
5092 if (drop_on_err)
5093 iput(inode);
5094 btrfs_btree_balance_dirty(root, nr);
5095 return err;
5096 }
5097
5098 /* helper for btfs_get_extent. Given an existing extent in the tree,
5099 * and an extent that you want to insert, deal with overlap and insert
5100 * the new extent into the tree.
5101 */
5102 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5103 struct extent_map *existing,
5104 struct extent_map *em,
5105 u64 map_start, u64 map_len)
5106 {
5107 u64 start_diff;
5108
5109 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5110 start_diff = map_start - em->start;
5111 em->start = map_start;
5112 em->len = map_len;
5113 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5114 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5115 em->block_start += start_diff;
5116 em->block_len -= start_diff;
5117 }
5118 return add_extent_mapping(em_tree, em);
5119 }
5120
5121 static noinline int uncompress_inline(struct btrfs_path *path,
5122 struct inode *inode, struct page *page,
5123 size_t pg_offset, u64 extent_offset,
5124 struct btrfs_file_extent_item *item)
5125 {
5126 int ret;
5127 struct extent_buffer *leaf = path->nodes[0];
5128 char *tmp;
5129 size_t max_size;
5130 unsigned long inline_size;
5131 unsigned long ptr;
5132 int compress_type;
5133
5134 WARN_ON(pg_offset != 0);
5135 compress_type = btrfs_file_extent_compression(leaf, item);
5136 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5137 inline_size = btrfs_file_extent_inline_item_len(leaf,
5138 btrfs_item_nr(leaf, path->slots[0]));
5139 tmp = kmalloc(inline_size, GFP_NOFS);
5140 if (!tmp)
5141 return -ENOMEM;
5142 ptr = btrfs_file_extent_inline_start(item);
5143
5144 read_extent_buffer(leaf, tmp, ptr, inline_size);
5145
5146 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5147 ret = btrfs_decompress(compress_type, tmp, page,
5148 extent_offset, inline_size, max_size);
5149 if (ret) {
5150 char *kaddr = kmap_atomic(page);
5151 unsigned long copy_size = min_t(u64,
5152 PAGE_CACHE_SIZE - pg_offset,
5153 max_size - extent_offset);
5154 memset(kaddr + pg_offset, 0, copy_size);
5155 kunmap_atomic(kaddr);
5156 }
5157 kfree(tmp);
5158 return 0;
5159 }
5160
5161 /*
5162 * a bit scary, this does extent mapping from logical file offset to the disk.
5163 * the ugly parts come from merging extents from the disk with the in-ram
5164 * representation. This gets more complex because of the data=ordered code,
5165 * where the in-ram extents might be locked pending data=ordered completion.
5166 *
5167 * This also copies inline extents directly into the page.
5168 */
5169
5170 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5171 size_t pg_offset, u64 start, u64 len,
5172 int create)
5173 {
5174 int ret;
5175 int err = 0;
5176 u64 bytenr;
5177 u64 extent_start = 0;
5178 u64 extent_end = 0;
5179 u64 objectid = btrfs_ino(inode);
5180 u32 found_type;
5181 struct btrfs_path *path = NULL;
5182 struct btrfs_root *root = BTRFS_I(inode)->root;
5183 struct btrfs_file_extent_item *item;
5184 struct extent_buffer *leaf;
5185 struct btrfs_key found_key;
5186 struct extent_map *em = NULL;
5187 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5188 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5189 struct btrfs_trans_handle *trans = NULL;
5190 int compress_type;
5191
5192 again:
5193 read_lock(&em_tree->lock);
5194 em = lookup_extent_mapping(em_tree, start, len);
5195 if (em)
5196 em->bdev = root->fs_info->fs_devices->latest_bdev;
5197 read_unlock(&em_tree->lock);
5198
5199 if (em) {
5200 if (em->start > start || em->start + em->len <= start)
5201 free_extent_map(em);
5202 else if (em->block_start == EXTENT_MAP_INLINE && page)
5203 free_extent_map(em);
5204 else
5205 goto out;
5206 }
5207 em = alloc_extent_map();
5208 if (!em) {
5209 err = -ENOMEM;
5210 goto out;
5211 }
5212 em->bdev = root->fs_info->fs_devices->latest_bdev;
5213 em->start = EXTENT_MAP_HOLE;
5214 em->orig_start = EXTENT_MAP_HOLE;
5215 em->len = (u64)-1;
5216 em->block_len = (u64)-1;
5217
5218 if (!path) {
5219 path = btrfs_alloc_path();
5220 if (!path) {
5221 err = -ENOMEM;
5222 goto out;
5223 }
5224 /*
5225 * Chances are we'll be called again, so go ahead and do
5226 * readahead
5227 */
5228 path->reada = 1;
5229 }
5230
5231 ret = btrfs_lookup_file_extent(trans, root, path,
5232 objectid, start, trans != NULL);
5233 if (ret < 0) {
5234 err = ret;
5235 goto out;
5236 }
5237
5238 if (ret != 0) {
5239 if (path->slots[0] == 0)
5240 goto not_found;
5241 path->slots[0]--;
5242 }
5243
5244 leaf = path->nodes[0];
5245 item = btrfs_item_ptr(leaf, path->slots[0],
5246 struct btrfs_file_extent_item);
5247 /* are we inside the extent that was found? */
5248 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5249 found_type = btrfs_key_type(&found_key);
5250 if (found_key.objectid != objectid ||
5251 found_type != BTRFS_EXTENT_DATA_KEY) {
5252 goto not_found;
5253 }
5254
5255 found_type = btrfs_file_extent_type(leaf, item);
5256 extent_start = found_key.offset;
5257 compress_type = btrfs_file_extent_compression(leaf, item);
5258 if (found_type == BTRFS_FILE_EXTENT_REG ||
5259 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5260 extent_end = extent_start +
5261 btrfs_file_extent_num_bytes(leaf, item);
5262 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5263 size_t size;
5264 size = btrfs_file_extent_inline_len(leaf, item);
5265 extent_end = (extent_start + size + root->sectorsize - 1) &
5266 ~((u64)root->sectorsize - 1);
5267 }
5268
5269 if (start >= extent_end) {
5270 path->slots[0]++;
5271 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5272 ret = btrfs_next_leaf(root, path);
5273 if (ret < 0) {
5274 err = ret;
5275 goto out;
5276 }
5277 if (ret > 0)
5278 goto not_found;
5279 leaf = path->nodes[0];
5280 }
5281 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5282 if (found_key.objectid != objectid ||
5283 found_key.type != BTRFS_EXTENT_DATA_KEY)
5284 goto not_found;
5285 if (start + len <= found_key.offset)
5286 goto not_found;
5287 em->start = start;
5288 em->len = found_key.offset - start;
5289 goto not_found_em;
5290 }
5291
5292 if (found_type == BTRFS_FILE_EXTENT_REG ||
5293 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5294 em->start = extent_start;
5295 em->len = extent_end - extent_start;
5296 em->orig_start = extent_start -
5297 btrfs_file_extent_offset(leaf, item);
5298 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5299 if (bytenr == 0) {
5300 em->block_start = EXTENT_MAP_HOLE;
5301 goto insert;
5302 }
5303 if (compress_type != BTRFS_COMPRESS_NONE) {
5304 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5305 em->compress_type = compress_type;
5306 em->block_start = bytenr;
5307 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5308 item);
5309 } else {
5310 bytenr += btrfs_file_extent_offset(leaf, item);
5311 em->block_start = bytenr;
5312 em->block_len = em->len;
5313 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5314 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5315 }
5316 goto insert;
5317 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5318 unsigned long ptr;
5319 char *map;
5320 size_t size;
5321 size_t extent_offset;
5322 size_t copy_size;
5323
5324 em->block_start = EXTENT_MAP_INLINE;
5325 if (!page || create) {
5326 em->start = extent_start;
5327 em->len = extent_end - extent_start;
5328 goto out;
5329 }
5330
5331 size = btrfs_file_extent_inline_len(leaf, item);
5332 extent_offset = page_offset(page) + pg_offset - extent_start;
5333 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5334 size - extent_offset);
5335 em->start = extent_start + extent_offset;
5336 em->len = (copy_size + root->sectorsize - 1) &
5337 ~((u64)root->sectorsize - 1);
5338 em->orig_start = EXTENT_MAP_INLINE;
5339 if (compress_type) {
5340 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5341 em->compress_type = compress_type;
5342 }
5343 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5344 if (create == 0 && !PageUptodate(page)) {
5345 if (btrfs_file_extent_compression(leaf, item) !=
5346 BTRFS_COMPRESS_NONE) {
5347 ret = uncompress_inline(path, inode, page,
5348 pg_offset,
5349 extent_offset, item);
5350 BUG_ON(ret); /* -ENOMEM */
5351 } else {
5352 map = kmap(page);
5353 read_extent_buffer(leaf, map + pg_offset, ptr,
5354 copy_size);
5355 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5356 memset(map + pg_offset + copy_size, 0,
5357 PAGE_CACHE_SIZE - pg_offset -
5358 copy_size);
5359 }
5360 kunmap(page);
5361 }
5362 flush_dcache_page(page);
5363 } else if (create && PageUptodate(page)) {
5364 BUG();
5365 if (!trans) {
5366 kunmap(page);
5367 free_extent_map(em);
5368 em = NULL;
5369
5370 btrfs_release_path(path);
5371 trans = btrfs_join_transaction(root);
5372
5373 if (IS_ERR(trans))
5374 return ERR_CAST(trans);
5375 goto again;
5376 }
5377 map = kmap(page);
5378 write_extent_buffer(leaf, map + pg_offset, ptr,
5379 copy_size);
5380 kunmap(page);
5381 btrfs_mark_buffer_dirty(leaf);
5382 }
5383 set_extent_uptodate(io_tree, em->start,
5384 extent_map_end(em) - 1, NULL, GFP_NOFS);
5385 goto insert;
5386 } else {
5387 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5388 WARN_ON(1);
5389 }
5390 not_found:
5391 em->start = start;
5392 em->len = len;
5393 not_found_em:
5394 em->block_start = EXTENT_MAP_HOLE;
5395 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5396 insert:
5397 btrfs_release_path(path);
5398 if (em->start > start || extent_map_end(em) <= start) {
5399 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5400 "[%llu %llu]\n", (unsigned long long)em->start,
5401 (unsigned long long)em->len,
5402 (unsigned long long)start,
5403 (unsigned long long)len);
5404 err = -EIO;
5405 goto out;
5406 }
5407
5408 err = 0;
5409 write_lock(&em_tree->lock);
5410 ret = add_extent_mapping(em_tree, em);
5411 /* it is possible that someone inserted the extent into the tree
5412 * while we had the lock dropped. It is also possible that
5413 * an overlapping map exists in the tree
5414 */
5415 if (ret == -EEXIST) {
5416 struct extent_map *existing;
5417
5418 ret = 0;
5419
5420 existing = lookup_extent_mapping(em_tree, start, len);
5421 if (existing && (existing->start > start ||
5422 existing->start + existing->len <= start)) {
5423 free_extent_map(existing);
5424 existing = NULL;
5425 }
5426 if (!existing) {
5427 existing = lookup_extent_mapping(em_tree, em->start,
5428 em->len);
5429 if (existing) {
5430 err = merge_extent_mapping(em_tree, existing,
5431 em, start,
5432 root->sectorsize);
5433 free_extent_map(existing);
5434 if (err) {
5435 free_extent_map(em);
5436 em = NULL;
5437 }
5438 } else {
5439 err = -EIO;
5440 free_extent_map(em);
5441 em = NULL;
5442 }
5443 } else {
5444 free_extent_map(em);
5445 em = existing;
5446 err = 0;
5447 }
5448 }
5449 write_unlock(&em_tree->lock);
5450 out:
5451
5452 trace_btrfs_get_extent(root, em);
5453
5454 if (path)
5455 btrfs_free_path(path);
5456 if (trans) {
5457 ret = btrfs_end_transaction(trans, root);
5458 if (!err)
5459 err = ret;
5460 }
5461 if (err) {
5462 free_extent_map(em);
5463 return ERR_PTR(err);
5464 }
5465 BUG_ON(!em); /* Error is always set */
5466 return em;
5467 }
5468
5469 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5470 size_t pg_offset, u64 start, u64 len,
5471 int create)
5472 {
5473 struct extent_map *em;
5474 struct extent_map *hole_em = NULL;
5475 u64 range_start = start;
5476 u64 end;
5477 u64 found;
5478 u64 found_end;
5479 int err = 0;
5480
5481 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5482 if (IS_ERR(em))
5483 return em;
5484 if (em) {
5485 /*
5486 * if our em maps to a hole, there might
5487 * actually be delalloc bytes behind it
5488 */
5489 if (em->block_start != EXTENT_MAP_HOLE)
5490 return em;
5491 else
5492 hole_em = em;
5493 }
5494
5495 /* check to see if we've wrapped (len == -1 or similar) */
5496 end = start + len;
5497 if (end < start)
5498 end = (u64)-1;
5499 else
5500 end -= 1;
5501
5502 em = NULL;
5503
5504 /* ok, we didn't find anything, lets look for delalloc */
5505 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5506 end, len, EXTENT_DELALLOC, 1);
5507 found_end = range_start + found;
5508 if (found_end < range_start)
5509 found_end = (u64)-1;
5510
5511 /*
5512 * we didn't find anything useful, return
5513 * the original results from get_extent()
5514 */
5515 if (range_start > end || found_end <= start) {
5516 em = hole_em;
5517 hole_em = NULL;
5518 goto out;
5519 }
5520
5521 /* adjust the range_start to make sure it doesn't
5522 * go backwards from the start they passed in
5523 */
5524 range_start = max(start,range_start);
5525 found = found_end - range_start;
5526
5527 if (found > 0) {
5528 u64 hole_start = start;
5529 u64 hole_len = len;
5530
5531 em = alloc_extent_map();
5532 if (!em) {
5533 err = -ENOMEM;
5534 goto out;
5535 }
5536 /*
5537 * when btrfs_get_extent can't find anything it
5538 * returns one huge hole
5539 *
5540 * make sure what it found really fits our range, and
5541 * adjust to make sure it is based on the start from
5542 * the caller
5543 */
5544 if (hole_em) {
5545 u64 calc_end = extent_map_end(hole_em);
5546
5547 if (calc_end <= start || (hole_em->start > end)) {
5548 free_extent_map(hole_em);
5549 hole_em = NULL;
5550 } else {
5551 hole_start = max(hole_em->start, start);
5552 hole_len = calc_end - hole_start;
5553 }
5554 }
5555 em->bdev = NULL;
5556 if (hole_em && range_start > hole_start) {
5557 /* our hole starts before our delalloc, so we
5558 * have to return just the parts of the hole
5559 * that go until the delalloc starts
5560 */
5561 em->len = min(hole_len,
5562 range_start - hole_start);
5563 em->start = hole_start;
5564 em->orig_start = hole_start;
5565 /*
5566 * don't adjust block start at all,
5567 * it is fixed at EXTENT_MAP_HOLE
5568 */
5569 em->block_start = hole_em->block_start;
5570 em->block_len = hole_len;
5571 } else {
5572 em->start = range_start;
5573 em->len = found;
5574 em->orig_start = range_start;
5575 em->block_start = EXTENT_MAP_DELALLOC;
5576 em->block_len = found;
5577 }
5578 } else if (hole_em) {
5579 return hole_em;
5580 }
5581 out:
5582
5583 free_extent_map(hole_em);
5584 if (err) {
5585 free_extent_map(em);
5586 return ERR_PTR(err);
5587 }
5588 return em;
5589 }
5590
5591 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5592 struct extent_map *em,
5593 u64 start, u64 len)
5594 {
5595 struct btrfs_root *root = BTRFS_I(inode)->root;
5596 struct btrfs_trans_handle *trans;
5597 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5598 struct btrfs_key ins;
5599 u64 alloc_hint;
5600 int ret;
5601 bool insert = false;
5602
5603 /*
5604 * Ok if the extent map we looked up is a hole and is for the exact
5605 * range we want, there is no reason to allocate a new one, however if
5606 * it is not right then we need to free this one and drop the cache for
5607 * our range.
5608 */
5609 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5610 em->len != len) {
5611 free_extent_map(em);
5612 em = NULL;
5613 insert = true;
5614 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5615 }
5616
5617 trans = btrfs_join_transaction(root);
5618 if (IS_ERR(trans))
5619 return ERR_CAST(trans);
5620
5621 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5622 btrfs_add_inode_defrag(trans, inode);
5623
5624 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5625
5626 alloc_hint = get_extent_allocation_hint(inode, start, len);
5627 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5628 alloc_hint, &ins, 1);
5629 if (ret) {
5630 em = ERR_PTR(ret);
5631 goto out;
5632 }
5633
5634 if (!em) {
5635 em = alloc_extent_map();
5636 if (!em) {
5637 em = ERR_PTR(-ENOMEM);
5638 goto out;
5639 }
5640 }
5641
5642 em->start = start;
5643 em->orig_start = em->start;
5644 em->len = ins.offset;
5645
5646 em->block_start = ins.objectid;
5647 em->block_len = ins.offset;
5648 em->bdev = root->fs_info->fs_devices->latest_bdev;
5649
5650 /*
5651 * We need to do this because if we're using the original em we searched
5652 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5653 */
5654 em->flags = 0;
5655 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5656
5657 while (insert) {
5658 write_lock(&em_tree->lock);
5659 ret = add_extent_mapping(em_tree, em);
5660 write_unlock(&em_tree->lock);
5661 if (ret != -EEXIST)
5662 break;
5663 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5664 }
5665
5666 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5667 ins.offset, ins.offset, 0);
5668 if (ret) {
5669 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5670 em = ERR_PTR(ret);
5671 }
5672 out:
5673 btrfs_end_transaction(trans, root);
5674 return em;
5675 }
5676
5677 /*
5678 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5679 * block must be cow'd
5680 */
5681 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5682 struct inode *inode, u64 offset, u64 len)
5683 {
5684 struct btrfs_path *path;
5685 int ret;
5686 struct extent_buffer *leaf;
5687 struct btrfs_root *root = BTRFS_I(inode)->root;
5688 struct btrfs_file_extent_item *fi;
5689 struct btrfs_key key;
5690 u64 disk_bytenr;
5691 u64 backref_offset;
5692 u64 extent_end;
5693 u64 num_bytes;
5694 int slot;
5695 int found_type;
5696
5697 path = btrfs_alloc_path();
5698 if (!path)
5699 return -ENOMEM;
5700
5701 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5702 offset, 0);
5703 if (ret < 0)
5704 goto out;
5705
5706 slot = path->slots[0];
5707 if (ret == 1) {
5708 if (slot == 0) {
5709 /* can't find the item, must cow */
5710 ret = 0;
5711 goto out;
5712 }
5713 slot--;
5714 }
5715 ret = 0;
5716 leaf = path->nodes[0];
5717 btrfs_item_key_to_cpu(leaf, &key, slot);
5718 if (key.objectid != btrfs_ino(inode) ||
5719 key.type != BTRFS_EXTENT_DATA_KEY) {
5720 /* not our file or wrong item type, must cow */
5721 goto out;
5722 }
5723
5724 if (key.offset > offset) {
5725 /* Wrong offset, must cow */
5726 goto out;
5727 }
5728
5729 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5730 found_type = btrfs_file_extent_type(leaf, fi);
5731 if (found_type != BTRFS_FILE_EXTENT_REG &&
5732 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5733 /* not a regular extent, must cow */
5734 goto out;
5735 }
5736 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5737 backref_offset = btrfs_file_extent_offset(leaf, fi);
5738
5739 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5740 if (extent_end < offset + len) {
5741 /* extent doesn't include our full range, must cow */
5742 goto out;
5743 }
5744
5745 if (btrfs_extent_readonly(root, disk_bytenr))
5746 goto out;
5747
5748 /*
5749 * look for other files referencing this extent, if we
5750 * find any we must cow
5751 */
5752 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5753 key.offset - backref_offset, disk_bytenr))
5754 goto out;
5755
5756 /*
5757 * adjust disk_bytenr and num_bytes to cover just the bytes
5758 * in this extent we are about to write. If there
5759 * are any csums in that range we have to cow in order
5760 * to keep the csums correct
5761 */
5762 disk_bytenr += backref_offset;
5763 disk_bytenr += offset - key.offset;
5764 num_bytes = min(offset + len, extent_end) - offset;
5765 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5766 goto out;
5767 /*
5768 * all of the above have passed, it is safe to overwrite this extent
5769 * without cow
5770 */
5771 ret = 1;
5772 out:
5773 btrfs_free_path(path);
5774 return ret;
5775 }
5776
5777 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
5778 struct extent_state **cached_state, int writing)
5779 {
5780 struct btrfs_ordered_extent *ordered;
5781 int ret = 0;
5782
5783 while (1) {
5784 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5785 0, cached_state);
5786 /*
5787 * We're concerned with the entire range that we're going to be
5788 * doing DIO to, so we need to make sure theres no ordered
5789 * extents in this range.
5790 */
5791 ordered = btrfs_lookup_ordered_range(inode, lockstart,
5792 lockend - lockstart + 1);
5793
5794 /*
5795 * We need to make sure there are no buffered pages in this
5796 * range either, we could have raced between the invalidate in
5797 * generic_file_direct_write and locking the extent. The
5798 * invalidate needs to happen so that reads after a write do not
5799 * get stale data.
5800 */
5801 if (!ordered && (!writing ||
5802 !test_range_bit(&BTRFS_I(inode)->io_tree,
5803 lockstart, lockend, EXTENT_UPTODATE, 0,
5804 *cached_state)))
5805 break;
5806
5807 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5808 cached_state, GFP_NOFS);
5809
5810 if (ordered) {
5811 btrfs_start_ordered_extent(inode, ordered, 1);
5812 btrfs_put_ordered_extent(ordered);
5813 } else {
5814 /* Screw you mmap */
5815 ret = filemap_write_and_wait_range(inode->i_mapping,
5816 lockstart,
5817 lockend);
5818 if (ret)
5819 break;
5820
5821 /*
5822 * If we found a page that couldn't be invalidated just
5823 * fall back to buffered.
5824 */
5825 ret = invalidate_inode_pages2_range(inode->i_mapping,
5826 lockstart >> PAGE_CACHE_SHIFT,
5827 lockend >> PAGE_CACHE_SHIFT);
5828 if (ret)
5829 break;
5830 }
5831
5832 cond_resched();
5833 }
5834
5835 return ret;
5836 }
5837
5838 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5839 struct buffer_head *bh_result, int create)
5840 {
5841 struct extent_map *em;
5842 struct btrfs_root *root = BTRFS_I(inode)->root;
5843 struct extent_state *cached_state = NULL;
5844 u64 start = iblock << inode->i_blkbits;
5845 u64 lockstart, lockend;
5846 u64 len = bh_result->b_size;
5847 struct btrfs_trans_handle *trans;
5848 int unlock_bits = EXTENT_LOCKED;
5849 int ret;
5850
5851 if (create) {
5852 ret = btrfs_delalloc_reserve_space(inode, len);
5853 if (ret)
5854 return ret;
5855 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
5856 } else {
5857 len = min_t(u64, len, root->sectorsize);
5858 }
5859
5860 lockstart = start;
5861 lockend = start + len - 1;
5862
5863 /*
5864 * If this errors out it's because we couldn't invalidate pagecache for
5865 * this range and we need to fallback to buffered.
5866 */
5867 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
5868 return -ENOTBLK;
5869
5870 if (create) {
5871 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
5872 lockend, EXTENT_DELALLOC, NULL,
5873 &cached_state, GFP_NOFS);
5874 if (ret)
5875 goto unlock_err;
5876 }
5877
5878 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5879 if (IS_ERR(em)) {
5880 ret = PTR_ERR(em);
5881 goto unlock_err;
5882 }
5883
5884 /*
5885 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5886 * io. INLINE is special, and we could probably kludge it in here, but
5887 * it's still buffered so for safety lets just fall back to the generic
5888 * buffered path.
5889 *
5890 * For COMPRESSED we _have_ to read the entire extent in so we can
5891 * decompress it, so there will be buffering required no matter what we
5892 * do, so go ahead and fallback to buffered.
5893 *
5894 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5895 * to buffered IO. Don't blame me, this is the price we pay for using
5896 * the generic code.
5897 */
5898 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5899 em->block_start == EXTENT_MAP_INLINE) {
5900 free_extent_map(em);
5901 ret = -ENOTBLK;
5902 goto unlock_err;
5903 }
5904
5905 /* Just a good old fashioned hole, return */
5906 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5907 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5908 free_extent_map(em);
5909 ret = 0;
5910 goto unlock_err;
5911 }
5912
5913 /*
5914 * We don't allocate a new extent in the following cases
5915 *
5916 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5917 * existing extent.
5918 * 2) The extent is marked as PREALLOC. We're good to go here and can
5919 * just use the extent.
5920 *
5921 */
5922 if (!create) {
5923 len = min(len, em->len - (start - em->start));
5924 lockstart = start + len;
5925 goto unlock;
5926 }
5927
5928 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5929 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5930 em->block_start != EXTENT_MAP_HOLE)) {
5931 int type;
5932 int ret;
5933 u64 block_start;
5934
5935 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5936 type = BTRFS_ORDERED_PREALLOC;
5937 else
5938 type = BTRFS_ORDERED_NOCOW;
5939 len = min(len, em->len - (start - em->start));
5940 block_start = em->block_start + (start - em->start);
5941
5942 /*
5943 * we're not going to log anything, but we do need
5944 * to make sure the current transaction stays open
5945 * while we look for nocow cross refs
5946 */
5947 trans = btrfs_join_transaction(root);
5948 if (IS_ERR(trans))
5949 goto must_cow;
5950
5951 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5952 ret = btrfs_add_ordered_extent_dio(inode, start,
5953 block_start, len, len, type);
5954 btrfs_end_transaction(trans, root);
5955 if (ret) {
5956 free_extent_map(em);
5957 goto unlock_err;
5958 }
5959 goto unlock;
5960 }
5961 btrfs_end_transaction(trans, root);
5962 }
5963 must_cow:
5964 /*
5965 * this will cow the extent, reset the len in case we changed
5966 * it above
5967 */
5968 len = bh_result->b_size;
5969 em = btrfs_new_extent_direct(inode, em, start, len);
5970 if (IS_ERR(em)) {
5971 ret = PTR_ERR(em);
5972 goto unlock_err;
5973 }
5974 len = min(len, em->len - (start - em->start));
5975 unlock:
5976 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5977 inode->i_blkbits;
5978 bh_result->b_size = len;
5979 bh_result->b_bdev = em->bdev;
5980 set_buffer_mapped(bh_result);
5981 if (create) {
5982 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5983 set_buffer_new(bh_result);
5984
5985 /*
5986 * Need to update the i_size under the extent lock so buffered
5987 * readers will get the updated i_size when we unlock.
5988 */
5989 if (start + len > i_size_read(inode))
5990 i_size_write(inode, start + len);
5991 }
5992
5993 /*
5994 * In the case of write we need to clear and unlock the entire range,
5995 * in the case of read we need to unlock only the end area that we
5996 * aren't using if there is any left over space.
5997 */
5998 if (lockstart < lockend) {
5999 if (create && len < lockend - lockstart) {
6000 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6001 lockstart + len - 1, unlock_bits, 1, 0,
6002 &cached_state, GFP_NOFS);
6003 /*
6004 * Beside unlock, we also need to cleanup reserved space
6005 * for the left range by attaching EXTENT_DO_ACCOUNTING.
6006 */
6007 clear_extent_bit(&BTRFS_I(inode)->io_tree,
6008 lockstart + len, lockend,
6009 unlock_bits | EXTENT_DO_ACCOUNTING,
6010 1, 0, NULL, GFP_NOFS);
6011 } else {
6012 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6013 lockend, unlock_bits, 1, 0,
6014 &cached_state, GFP_NOFS);
6015 }
6016 } else {
6017 free_extent_state(cached_state);
6018 }
6019
6020 free_extent_map(em);
6021
6022 return 0;
6023
6024 unlock_err:
6025 if (create)
6026 unlock_bits |= EXTENT_DO_ACCOUNTING;
6027
6028 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6029 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6030 return ret;
6031 }
6032
6033 struct btrfs_dio_private {
6034 struct inode *inode;
6035 u64 logical_offset;
6036 u64 disk_bytenr;
6037 u64 bytes;
6038 void *private;
6039
6040 /* number of bios pending for this dio */
6041 atomic_t pending_bios;
6042
6043 /* IO errors */
6044 int errors;
6045
6046 struct bio *orig_bio;
6047 };
6048
6049 static void btrfs_endio_direct_read(struct bio *bio, int err)
6050 {
6051 struct btrfs_dio_private *dip = bio->bi_private;
6052 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6053 struct bio_vec *bvec = bio->bi_io_vec;
6054 struct inode *inode = dip->inode;
6055 struct btrfs_root *root = BTRFS_I(inode)->root;
6056 u64 start;
6057
6058 start = dip->logical_offset;
6059 do {
6060 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6061 struct page *page = bvec->bv_page;
6062 char *kaddr;
6063 u32 csum = ~(u32)0;
6064 u64 private = ~(u32)0;
6065 unsigned long flags;
6066
6067 if (get_state_private(&BTRFS_I(inode)->io_tree,
6068 start, &private))
6069 goto failed;
6070 local_irq_save(flags);
6071 kaddr = kmap_atomic(page);
6072 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
6073 csum, bvec->bv_len);
6074 btrfs_csum_final(csum, (char *)&csum);
6075 kunmap_atomic(kaddr);
6076 local_irq_restore(flags);
6077
6078 flush_dcache_page(bvec->bv_page);
6079 if (csum != private) {
6080 failed:
6081 printk(KERN_ERR "btrfs csum failed ino %llu off"
6082 " %llu csum %u private %u\n",
6083 (unsigned long long)btrfs_ino(inode),
6084 (unsigned long long)start,
6085 csum, (unsigned)private);
6086 err = -EIO;
6087 }
6088 }
6089
6090 start += bvec->bv_len;
6091 bvec++;
6092 } while (bvec <= bvec_end);
6093
6094 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6095 dip->logical_offset + dip->bytes - 1);
6096 bio->bi_private = dip->private;
6097
6098 kfree(dip);
6099
6100 /* If we had a csum failure make sure to clear the uptodate flag */
6101 if (err)
6102 clear_bit(BIO_UPTODATE, &bio->bi_flags);
6103 dio_end_io(bio, err);
6104 }
6105
6106 static void btrfs_endio_direct_write(struct bio *bio, int err)
6107 {
6108 struct btrfs_dio_private *dip = bio->bi_private;
6109 struct inode *inode = dip->inode;
6110 struct btrfs_root *root = BTRFS_I(inode)->root;
6111 struct btrfs_ordered_extent *ordered = NULL;
6112 u64 ordered_offset = dip->logical_offset;
6113 u64 ordered_bytes = dip->bytes;
6114 int ret;
6115
6116 if (err)
6117 goto out_done;
6118 again:
6119 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6120 &ordered_offset,
6121 ordered_bytes, !err);
6122 if (!ret)
6123 goto out_test;
6124
6125 ordered->work.func = finish_ordered_fn;
6126 ordered->work.flags = 0;
6127 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6128 &ordered->work);
6129 out_test:
6130 /*
6131 * our bio might span multiple ordered extents. If we haven't
6132 * completed the accounting for the whole dio, go back and try again
6133 */
6134 if (ordered_offset < dip->logical_offset + dip->bytes) {
6135 ordered_bytes = dip->logical_offset + dip->bytes -
6136 ordered_offset;
6137 ordered = NULL;
6138 goto again;
6139 }
6140 out_done:
6141 bio->bi_private = dip->private;
6142
6143 kfree(dip);
6144
6145 /* If we had an error make sure to clear the uptodate flag */
6146 if (err)
6147 clear_bit(BIO_UPTODATE, &bio->bi_flags);
6148 dio_end_io(bio, err);
6149 }
6150
6151 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6152 struct bio *bio, int mirror_num,
6153 unsigned long bio_flags, u64 offset)
6154 {
6155 int ret;
6156 struct btrfs_root *root = BTRFS_I(inode)->root;
6157 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6158 BUG_ON(ret); /* -ENOMEM */
6159 return 0;
6160 }
6161
6162 static void btrfs_end_dio_bio(struct bio *bio, int err)
6163 {
6164 struct btrfs_dio_private *dip = bio->bi_private;
6165
6166 if (err) {
6167 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6168 "sector %#Lx len %u err no %d\n",
6169 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
6170 (unsigned long long)bio->bi_sector, bio->bi_size, err);
6171 dip->errors = 1;
6172
6173 /*
6174 * before atomic variable goto zero, we must make sure
6175 * dip->errors is perceived to be set.
6176 */
6177 smp_mb__before_atomic_dec();
6178 }
6179
6180 /* if there are more bios still pending for this dio, just exit */
6181 if (!atomic_dec_and_test(&dip->pending_bios))
6182 goto out;
6183
6184 if (dip->errors)
6185 bio_io_error(dip->orig_bio);
6186 else {
6187 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6188 bio_endio(dip->orig_bio, 0);
6189 }
6190 out:
6191 bio_put(bio);
6192 }
6193
6194 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6195 u64 first_sector, gfp_t gfp_flags)
6196 {
6197 int nr_vecs = bio_get_nr_vecs(bdev);
6198 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6199 }
6200
6201 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6202 int rw, u64 file_offset, int skip_sum,
6203 int async_submit)
6204 {
6205 int write = rw & REQ_WRITE;
6206 struct btrfs_root *root = BTRFS_I(inode)->root;
6207 int ret;
6208
6209 bio_get(bio);
6210
6211 if (!write) {
6212 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6213 if (ret)
6214 goto err;
6215 }
6216
6217 if (skip_sum)
6218 goto map;
6219
6220 if (write && async_submit) {
6221 ret = btrfs_wq_submit_bio(root->fs_info,
6222 inode, rw, bio, 0, 0,
6223 file_offset,
6224 __btrfs_submit_bio_start_direct_io,
6225 __btrfs_submit_bio_done);
6226 goto err;
6227 } else if (write) {
6228 /*
6229 * If we aren't doing async submit, calculate the csum of the
6230 * bio now.
6231 */
6232 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6233 if (ret)
6234 goto err;
6235 } else if (!skip_sum) {
6236 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
6237 if (ret)
6238 goto err;
6239 }
6240
6241 map:
6242 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6243 err:
6244 bio_put(bio);
6245 return ret;
6246 }
6247
6248 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6249 int skip_sum)
6250 {
6251 struct inode *inode = dip->inode;
6252 struct btrfs_root *root = BTRFS_I(inode)->root;
6253 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6254 struct bio *bio;
6255 struct bio *orig_bio = dip->orig_bio;
6256 struct bio_vec *bvec = orig_bio->bi_io_vec;
6257 u64 start_sector = orig_bio->bi_sector;
6258 u64 file_offset = dip->logical_offset;
6259 u64 submit_len = 0;
6260 u64 map_length;
6261 int nr_pages = 0;
6262 int ret = 0;
6263 int async_submit = 0;
6264
6265 map_length = orig_bio->bi_size;
6266 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6267 &map_length, NULL, 0);
6268 if (ret) {
6269 bio_put(orig_bio);
6270 return -EIO;
6271 }
6272
6273 if (map_length >= orig_bio->bi_size) {
6274 bio = orig_bio;
6275 goto submit;
6276 }
6277
6278 async_submit = 1;
6279 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6280 if (!bio)
6281 return -ENOMEM;
6282 bio->bi_private = dip;
6283 bio->bi_end_io = btrfs_end_dio_bio;
6284 atomic_inc(&dip->pending_bios);
6285
6286 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6287 if (unlikely(map_length < submit_len + bvec->bv_len ||
6288 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6289 bvec->bv_offset) < bvec->bv_len)) {
6290 /*
6291 * inc the count before we submit the bio so
6292 * we know the end IO handler won't happen before
6293 * we inc the count. Otherwise, the dip might get freed
6294 * before we're done setting it up
6295 */
6296 atomic_inc(&dip->pending_bios);
6297 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6298 file_offset, skip_sum,
6299 async_submit);
6300 if (ret) {
6301 bio_put(bio);
6302 atomic_dec(&dip->pending_bios);
6303 goto out_err;
6304 }
6305
6306 start_sector += submit_len >> 9;
6307 file_offset += submit_len;
6308
6309 submit_len = 0;
6310 nr_pages = 0;
6311
6312 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6313 start_sector, GFP_NOFS);
6314 if (!bio)
6315 goto out_err;
6316 bio->bi_private = dip;
6317 bio->bi_end_io = btrfs_end_dio_bio;
6318
6319 map_length = orig_bio->bi_size;
6320 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6321 &map_length, NULL, 0);
6322 if (ret) {
6323 bio_put(bio);
6324 goto out_err;
6325 }
6326 } else {
6327 submit_len += bvec->bv_len;
6328 nr_pages ++;
6329 bvec++;
6330 }
6331 }
6332
6333 submit:
6334 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6335 async_submit);
6336 if (!ret)
6337 return 0;
6338
6339 bio_put(bio);
6340 out_err:
6341 dip->errors = 1;
6342 /*
6343 * before atomic variable goto zero, we must
6344 * make sure dip->errors is perceived to be set.
6345 */
6346 smp_mb__before_atomic_dec();
6347 if (atomic_dec_and_test(&dip->pending_bios))
6348 bio_io_error(dip->orig_bio);
6349
6350 /* bio_end_io() will handle error, so we needn't return it */
6351 return 0;
6352 }
6353
6354 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6355 loff_t file_offset)
6356 {
6357 struct btrfs_root *root = BTRFS_I(inode)->root;
6358 struct btrfs_dio_private *dip;
6359 struct bio_vec *bvec = bio->bi_io_vec;
6360 int skip_sum;
6361 int write = rw & REQ_WRITE;
6362 int ret = 0;
6363
6364 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6365
6366 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6367 if (!dip) {
6368 ret = -ENOMEM;
6369 goto free_ordered;
6370 }
6371
6372 dip->private = bio->bi_private;
6373 dip->inode = inode;
6374 dip->logical_offset = file_offset;
6375
6376 dip->bytes = 0;
6377 do {
6378 dip->bytes += bvec->bv_len;
6379 bvec++;
6380 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6381
6382 dip->disk_bytenr = (u64)bio->bi_sector << 9;
6383 bio->bi_private = dip;
6384 dip->errors = 0;
6385 dip->orig_bio = bio;
6386 atomic_set(&dip->pending_bios, 0);
6387
6388 if (write)
6389 bio->bi_end_io = btrfs_endio_direct_write;
6390 else
6391 bio->bi_end_io = btrfs_endio_direct_read;
6392
6393 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6394 if (!ret)
6395 return;
6396 free_ordered:
6397 /*
6398 * If this is a write, we need to clean up the reserved space and kill
6399 * the ordered extent.
6400 */
6401 if (write) {
6402 struct btrfs_ordered_extent *ordered;
6403 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6404 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6405 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6406 btrfs_free_reserved_extent(root, ordered->start,
6407 ordered->disk_len);
6408 btrfs_put_ordered_extent(ordered);
6409 btrfs_put_ordered_extent(ordered);
6410 }
6411 bio_endio(bio, ret);
6412 }
6413
6414 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6415 const struct iovec *iov, loff_t offset,
6416 unsigned long nr_segs)
6417 {
6418 int seg;
6419 int i;
6420 size_t size;
6421 unsigned long addr;
6422 unsigned blocksize_mask = root->sectorsize - 1;
6423 ssize_t retval = -EINVAL;
6424 loff_t end = offset;
6425
6426 if (offset & blocksize_mask)
6427 goto out;
6428
6429 /* Check the memory alignment. Blocks cannot straddle pages */
6430 for (seg = 0; seg < nr_segs; seg++) {
6431 addr = (unsigned long)iov[seg].iov_base;
6432 size = iov[seg].iov_len;
6433 end += size;
6434 if ((addr & blocksize_mask) || (size & blocksize_mask))
6435 goto out;
6436
6437 /* If this is a write we don't need to check anymore */
6438 if (rw & WRITE)
6439 continue;
6440
6441 /*
6442 * Check to make sure we don't have duplicate iov_base's in this
6443 * iovec, if so return EINVAL, otherwise we'll get csum errors
6444 * when reading back.
6445 */
6446 for (i = seg + 1; i < nr_segs; i++) {
6447 if (iov[seg].iov_base == iov[i].iov_base)
6448 goto out;
6449 }
6450 }
6451 retval = 0;
6452 out:
6453 return retval;
6454 }
6455
6456 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6457 const struct iovec *iov, loff_t offset,
6458 unsigned long nr_segs)
6459 {
6460 struct file *file = iocb->ki_filp;
6461 struct inode *inode = file->f_mapping->host;
6462
6463 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6464 offset, nr_segs))
6465 return 0;
6466
6467 return __blockdev_direct_IO(rw, iocb, inode,
6468 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6469 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6470 btrfs_submit_direct, 0);
6471 }
6472
6473 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6474 __u64 start, __u64 len)
6475 {
6476 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6477 }
6478
6479 int btrfs_readpage(struct file *file, struct page *page)
6480 {
6481 struct extent_io_tree *tree;
6482 tree = &BTRFS_I(page->mapping->host)->io_tree;
6483 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
6484 }
6485
6486 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6487 {
6488 struct extent_io_tree *tree;
6489
6490
6491 if (current->flags & PF_MEMALLOC) {
6492 redirty_page_for_writepage(wbc, page);
6493 unlock_page(page);
6494 return 0;
6495 }
6496 tree = &BTRFS_I(page->mapping->host)->io_tree;
6497 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6498 }
6499
6500 int btrfs_writepages(struct address_space *mapping,
6501 struct writeback_control *wbc)
6502 {
6503 struct extent_io_tree *tree;
6504
6505 tree = &BTRFS_I(mapping->host)->io_tree;
6506 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6507 }
6508
6509 static int
6510 btrfs_readpages(struct file *file, struct address_space *mapping,
6511 struct list_head *pages, unsigned nr_pages)
6512 {
6513 struct extent_io_tree *tree;
6514 tree = &BTRFS_I(mapping->host)->io_tree;
6515 return extent_readpages(tree, mapping, pages, nr_pages,
6516 btrfs_get_extent);
6517 }
6518 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6519 {
6520 struct extent_io_tree *tree;
6521 struct extent_map_tree *map;
6522 int ret;
6523
6524 tree = &BTRFS_I(page->mapping->host)->io_tree;
6525 map = &BTRFS_I(page->mapping->host)->extent_tree;
6526 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6527 if (ret == 1) {
6528 ClearPagePrivate(page);
6529 set_page_private(page, 0);
6530 page_cache_release(page);
6531 }
6532 return ret;
6533 }
6534
6535 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6536 {
6537 if (PageWriteback(page) || PageDirty(page))
6538 return 0;
6539 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6540 }
6541
6542 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6543 {
6544 struct inode *inode = page->mapping->host;
6545 struct extent_io_tree *tree;
6546 struct btrfs_ordered_extent *ordered;
6547 struct extent_state *cached_state = NULL;
6548 u64 page_start = page_offset(page);
6549 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6550
6551 /*
6552 * we have the page locked, so new writeback can't start,
6553 * and the dirty bit won't be cleared while we are here.
6554 *
6555 * Wait for IO on this page so that we can safely clear
6556 * the PagePrivate2 bit and do ordered accounting
6557 */
6558 wait_on_page_writeback(page);
6559
6560 tree = &BTRFS_I(inode)->io_tree;
6561 if (offset) {
6562 btrfs_releasepage(page, GFP_NOFS);
6563 return;
6564 }
6565 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6566 ordered = btrfs_lookup_ordered_extent(inode,
6567 page_offset(page));
6568 if (ordered) {
6569 /*
6570 * IO on this page will never be started, so we need
6571 * to account for any ordered extents now
6572 */
6573 clear_extent_bit(tree, page_start, page_end,
6574 EXTENT_DIRTY | EXTENT_DELALLOC |
6575 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6576 &cached_state, GFP_NOFS);
6577 /*
6578 * whoever cleared the private bit is responsible
6579 * for the finish_ordered_io
6580 */
6581 if (TestClearPagePrivate2(page) &&
6582 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
6583 PAGE_CACHE_SIZE, 1)) {
6584 btrfs_finish_ordered_io(ordered);
6585 }
6586 btrfs_put_ordered_extent(ordered);
6587 cached_state = NULL;
6588 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6589 }
6590 clear_extent_bit(tree, page_start, page_end,
6591 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6592 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6593 __btrfs_releasepage(page, GFP_NOFS);
6594
6595 ClearPageChecked(page);
6596 if (PagePrivate(page)) {
6597 ClearPagePrivate(page);
6598 set_page_private(page, 0);
6599 page_cache_release(page);
6600 }
6601 }
6602
6603 /*
6604 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6605 * called from a page fault handler when a page is first dirtied. Hence we must
6606 * be careful to check for EOF conditions here. We set the page up correctly
6607 * for a written page which means we get ENOSPC checking when writing into
6608 * holes and correct delalloc and unwritten extent mapping on filesystems that
6609 * support these features.
6610 *
6611 * We are not allowed to take the i_mutex here so we have to play games to
6612 * protect against truncate races as the page could now be beyond EOF. Because
6613 * vmtruncate() writes the inode size before removing pages, once we have the
6614 * page lock we can determine safely if the page is beyond EOF. If it is not
6615 * beyond EOF, then the page is guaranteed safe against truncation until we
6616 * unlock the page.
6617 */
6618 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6619 {
6620 struct page *page = vmf->page;
6621 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6622 struct btrfs_root *root = BTRFS_I(inode)->root;
6623 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6624 struct btrfs_ordered_extent *ordered;
6625 struct extent_state *cached_state = NULL;
6626 char *kaddr;
6627 unsigned long zero_start;
6628 loff_t size;
6629 int ret;
6630 int reserved = 0;
6631 u64 page_start;
6632 u64 page_end;
6633
6634 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6635 if (!ret) {
6636 ret = file_update_time(vma->vm_file);
6637 reserved = 1;
6638 }
6639 if (ret) {
6640 if (ret == -ENOMEM)
6641 ret = VM_FAULT_OOM;
6642 else /* -ENOSPC, -EIO, etc */
6643 ret = VM_FAULT_SIGBUS;
6644 if (reserved)
6645 goto out;
6646 goto out_noreserve;
6647 }
6648
6649 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6650 again:
6651 lock_page(page);
6652 size = i_size_read(inode);
6653 page_start = page_offset(page);
6654 page_end = page_start + PAGE_CACHE_SIZE - 1;
6655
6656 if ((page->mapping != inode->i_mapping) ||
6657 (page_start >= size)) {
6658 /* page got truncated out from underneath us */
6659 goto out_unlock;
6660 }
6661 wait_on_page_writeback(page);
6662
6663 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
6664 set_page_extent_mapped(page);
6665
6666 /*
6667 * we can't set the delalloc bits if there are pending ordered
6668 * extents. Drop our locks and wait for them to finish
6669 */
6670 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6671 if (ordered) {
6672 unlock_extent_cached(io_tree, page_start, page_end,
6673 &cached_state, GFP_NOFS);
6674 unlock_page(page);
6675 btrfs_start_ordered_extent(inode, ordered, 1);
6676 btrfs_put_ordered_extent(ordered);
6677 goto again;
6678 }
6679
6680 /*
6681 * XXX - page_mkwrite gets called every time the page is dirtied, even
6682 * if it was already dirty, so for space accounting reasons we need to
6683 * clear any delalloc bits for the range we are fixing to save. There
6684 * is probably a better way to do this, but for now keep consistent with
6685 * prepare_pages in the normal write path.
6686 */
6687 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6688 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6689 0, 0, &cached_state, GFP_NOFS);
6690
6691 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6692 &cached_state);
6693 if (ret) {
6694 unlock_extent_cached(io_tree, page_start, page_end,
6695 &cached_state, GFP_NOFS);
6696 ret = VM_FAULT_SIGBUS;
6697 goto out_unlock;
6698 }
6699 ret = 0;
6700
6701 /* page is wholly or partially inside EOF */
6702 if (page_start + PAGE_CACHE_SIZE > size)
6703 zero_start = size & ~PAGE_CACHE_MASK;
6704 else
6705 zero_start = PAGE_CACHE_SIZE;
6706
6707 if (zero_start != PAGE_CACHE_SIZE) {
6708 kaddr = kmap(page);
6709 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6710 flush_dcache_page(page);
6711 kunmap(page);
6712 }
6713 ClearPageChecked(page);
6714 set_page_dirty(page);
6715 SetPageUptodate(page);
6716
6717 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6718 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6719
6720 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6721
6722 out_unlock:
6723 if (!ret)
6724 return VM_FAULT_LOCKED;
6725 unlock_page(page);
6726 out:
6727 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6728 out_noreserve:
6729 return ret;
6730 }
6731
6732 static int btrfs_truncate(struct inode *inode)
6733 {
6734 struct btrfs_root *root = BTRFS_I(inode)->root;
6735 struct btrfs_block_rsv *rsv;
6736 int ret;
6737 int err = 0;
6738 struct btrfs_trans_handle *trans;
6739 unsigned long nr;
6740 u64 mask = root->sectorsize - 1;
6741 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
6742
6743 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6744 if (ret)
6745 return ret;
6746
6747 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6748 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6749
6750 /*
6751 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6752 * 3 things going on here
6753 *
6754 * 1) We need to reserve space for our orphan item and the space to
6755 * delete our orphan item. Lord knows we don't want to have a dangling
6756 * orphan item because we didn't reserve space to remove it.
6757 *
6758 * 2) We need to reserve space to update our inode.
6759 *
6760 * 3) We need to have something to cache all the space that is going to
6761 * be free'd up by the truncate operation, but also have some slack
6762 * space reserved in case it uses space during the truncate (thank you
6763 * very much snapshotting).
6764 *
6765 * And we need these to all be seperate. The fact is we can use alot of
6766 * space doing the truncate, and we have no earthly idea how much space
6767 * we will use, so we need the truncate reservation to be seperate so it
6768 * doesn't end up using space reserved for updating the inode or
6769 * removing the orphan item. We also need to be able to stop the
6770 * transaction and start a new one, which means we need to be able to
6771 * update the inode several times, and we have no idea of knowing how
6772 * many times that will be, so we can't just reserve 1 item for the
6773 * entirety of the opration, so that has to be done seperately as well.
6774 * Then there is the orphan item, which does indeed need to be held on
6775 * to for the whole operation, and we need nobody to touch this reserved
6776 * space except the orphan code.
6777 *
6778 * So that leaves us with
6779 *
6780 * 1) root->orphan_block_rsv - for the orphan deletion.
6781 * 2) rsv - for the truncate reservation, which we will steal from the
6782 * transaction reservation.
6783 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6784 * updating the inode.
6785 */
6786 rsv = btrfs_alloc_block_rsv(root);
6787 if (!rsv)
6788 return -ENOMEM;
6789 rsv->size = min_size;
6790
6791 /*
6792 * 1 for the truncate slack space
6793 * 1 for the orphan item we're going to add
6794 * 1 for the orphan item deletion
6795 * 1 for updating the inode.
6796 */
6797 trans = btrfs_start_transaction(root, 4);
6798 if (IS_ERR(trans)) {
6799 err = PTR_ERR(trans);
6800 goto out;
6801 }
6802
6803 /* Migrate the slack space for the truncate to our reserve */
6804 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6805 min_size);
6806 BUG_ON(ret);
6807
6808 ret = btrfs_orphan_add(trans, inode);
6809 if (ret) {
6810 btrfs_end_transaction(trans, root);
6811 goto out;
6812 }
6813
6814 /*
6815 * setattr is responsible for setting the ordered_data_close flag,
6816 * but that is only tested during the last file release. That
6817 * could happen well after the next commit, leaving a great big
6818 * window where new writes may get lost if someone chooses to write
6819 * to this file after truncating to zero
6820 *
6821 * The inode doesn't have any dirty data here, and so if we commit
6822 * this is a noop. If someone immediately starts writing to the inode
6823 * it is very likely we'll catch some of their writes in this
6824 * transaction, and the commit will find this file on the ordered
6825 * data list with good things to send down.
6826 *
6827 * This is a best effort solution, there is still a window where
6828 * using truncate to replace the contents of the file will
6829 * end up with a zero length file after a crash.
6830 */
6831 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
6832 &BTRFS_I(inode)->runtime_flags))
6833 btrfs_add_ordered_operation(trans, root, inode);
6834
6835 while (1) {
6836 ret = btrfs_block_rsv_refill(root, rsv, min_size);
6837 if (ret) {
6838 /*
6839 * This can only happen with the original transaction we
6840 * started above, every other time we shouldn't have a
6841 * transaction started yet.
6842 */
6843 if (ret == -EAGAIN)
6844 goto end_trans;
6845 err = ret;
6846 break;
6847 }
6848
6849 if (!trans) {
6850 /* Just need the 1 for updating the inode */
6851 trans = btrfs_start_transaction(root, 1);
6852 if (IS_ERR(trans)) {
6853 ret = err = PTR_ERR(trans);
6854 trans = NULL;
6855 break;
6856 }
6857 }
6858
6859 trans->block_rsv = rsv;
6860
6861 ret = btrfs_truncate_inode_items(trans, root, inode,
6862 inode->i_size,
6863 BTRFS_EXTENT_DATA_KEY);
6864 if (ret != -EAGAIN) {
6865 err = ret;
6866 break;
6867 }
6868
6869 trans->block_rsv = &root->fs_info->trans_block_rsv;
6870 ret = btrfs_update_inode(trans, root, inode);
6871 if (ret) {
6872 err = ret;
6873 break;
6874 }
6875 end_trans:
6876 nr = trans->blocks_used;
6877 btrfs_end_transaction(trans, root);
6878 trans = NULL;
6879 btrfs_btree_balance_dirty(root, nr);
6880 }
6881
6882 if (ret == 0 && inode->i_nlink > 0) {
6883 trans->block_rsv = root->orphan_block_rsv;
6884 ret = btrfs_orphan_del(trans, inode);
6885 if (ret)
6886 err = ret;
6887 } else if (ret && inode->i_nlink > 0) {
6888 /*
6889 * Failed to do the truncate, remove us from the in memory
6890 * orphan list.
6891 */
6892 ret = btrfs_orphan_del(NULL, inode);
6893 }
6894
6895 if (trans) {
6896 trans->block_rsv = &root->fs_info->trans_block_rsv;
6897 ret = btrfs_update_inode(trans, root, inode);
6898 if (ret && !err)
6899 err = ret;
6900
6901 nr = trans->blocks_used;
6902 ret = btrfs_end_transaction(trans, root);
6903 btrfs_btree_balance_dirty(root, nr);
6904 }
6905
6906 out:
6907 btrfs_free_block_rsv(root, rsv);
6908
6909 if (ret && !err)
6910 err = ret;
6911
6912 return err;
6913 }
6914
6915 /*
6916 * create a new subvolume directory/inode (helper for the ioctl).
6917 */
6918 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6919 struct btrfs_root *new_root, u64 new_dirid)
6920 {
6921 struct inode *inode;
6922 int err;
6923 u64 index = 0;
6924
6925 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
6926 new_dirid, new_dirid,
6927 S_IFDIR | (~current_umask() & S_IRWXUGO),
6928 &index);
6929 if (IS_ERR(inode))
6930 return PTR_ERR(inode);
6931 inode->i_op = &btrfs_dir_inode_operations;
6932 inode->i_fop = &btrfs_dir_file_operations;
6933
6934 set_nlink(inode, 1);
6935 btrfs_i_size_write(inode, 0);
6936
6937 err = btrfs_update_inode(trans, new_root, inode);
6938
6939 iput(inode);
6940 return err;
6941 }
6942
6943 struct inode *btrfs_alloc_inode(struct super_block *sb)
6944 {
6945 struct btrfs_inode *ei;
6946 struct inode *inode;
6947
6948 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6949 if (!ei)
6950 return NULL;
6951
6952 ei->root = NULL;
6953 ei->generation = 0;
6954 ei->last_trans = 0;
6955 ei->last_sub_trans = 0;
6956 ei->logged_trans = 0;
6957 ei->delalloc_bytes = 0;
6958 ei->disk_i_size = 0;
6959 ei->flags = 0;
6960 ei->csum_bytes = 0;
6961 ei->index_cnt = (u64)-1;
6962 ei->last_unlink_trans = 0;
6963
6964 spin_lock_init(&ei->lock);
6965 ei->outstanding_extents = 0;
6966 ei->reserved_extents = 0;
6967
6968 ei->runtime_flags = 0;
6969 ei->force_compress = BTRFS_COMPRESS_NONE;
6970
6971 ei->delayed_node = NULL;
6972
6973 inode = &ei->vfs_inode;
6974 extent_map_tree_init(&ei->extent_tree);
6975 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6976 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6977 ei->io_tree.track_uptodate = 1;
6978 ei->io_failure_tree.track_uptodate = 1;
6979 mutex_init(&ei->log_mutex);
6980 mutex_init(&ei->delalloc_mutex);
6981 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6982 INIT_LIST_HEAD(&ei->delalloc_inodes);
6983 INIT_LIST_HEAD(&ei->ordered_operations);
6984 RB_CLEAR_NODE(&ei->rb_node);
6985
6986 return inode;
6987 }
6988
6989 static void btrfs_i_callback(struct rcu_head *head)
6990 {
6991 struct inode *inode = container_of(head, struct inode, i_rcu);
6992 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6993 }
6994
6995 void btrfs_destroy_inode(struct inode *inode)
6996 {
6997 struct btrfs_ordered_extent *ordered;
6998 struct btrfs_root *root = BTRFS_I(inode)->root;
6999
7000 WARN_ON(!list_empty(&inode->i_dentry));
7001 WARN_ON(inode->i_data.nrpages);
7002 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7003 WARN_ON(BTRFS_I(inode)->reserved_extents);
7004 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7005 WARN_ON(BTRFS_I(inode)->csum_bytes);
7006
7007 /*
7008 * This can happen where we create an inode, but somebody else also
7009 * created the same inode and we need to destroy the one we already
7010 * created.
7011 */
7012 if (!root)
7013 goto free;
7014
7015 /*
7016 * Make sure we're properly removed from the ordered operation
7017 * lists.
7018 */
7019 smp_mb();
7020 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7021 spin_lock(&root->fs_info->ordered_extent_lock);
7022 list_del_init(&BTRFS_I(inode)->ordered_operations);
7023 spin_unlock(&root->fs_info->ordered_extent_lock);
7024 }
7025
7026 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7027 &BTRFS_I(inode)->runtime_flags)) {
7028 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7029 (unsigned long long)btrfs_ino(inode));
7030 atomic_dec(&root->orphan_inodes);
7031 }
7032
7033 while (1) {
7034 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7035 if (!ordered)
7036 break;
7037 else {
7038 printk(KERN_ERR "btrfs found ordered "
7039 "extent %llu %llu on inode cleanup\n",
7040 (unsigned long long)ordered->file_offset,
7041 (unsigned long long)ordered->len);
7042 btrfs_remove_ordered_extent(inode, ordered);
7043 btrfs_put_ordered_extent(ordered);
7044 btrfs_put_ordered_extent(ordered);
7045 }
7046 }
7047 inode_tree_del(inode);
7048 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7049 free:
7050 btrfs_remove_delayed_node(inode);
7051 call_rcu(&inode->i_rcu, btrfs_i_callback);
7052 }
7053
7054 int btrfs_drop_inode(struct inode *inode)
7055 {
7056 struct btrfs_root *root = BTRFS_I(inode)->root;
7057
7058 if (btrfs_root_refs(&root->root_item) == 0 &&
7059 !btrfs_is_free_space_inode(inode))
7060 return 1;
7061 else
7062 return generic_drop_inode(inode);
7063 }
7064
7065 static void init_once(void *foo)
7066 {
7067 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7068
7069 inode_init_once(&ei->vfs_inode);
7070 }
7071
7072 void btrfs_destroy_cachep(void)
7073 {
7074 if (btrfs_inode_cachep)
7075 kmem_cache_destroy(btrfs_inode_cachep);
7076 if (btrfs_trans_handle_cachep)
7077 kmem_cache_destroy(btrfs_trans_handle_cachep);
7078 if (btrfs_transaction_cachep)
7079 kmem_cache_destroy(btrfs_transaction_cachep);
7080 if (btrfs_path_cachep)
7081 kmem_cache_destroy(btrfs_path_cachep);
7082 if (btrfs_free_space_cachep)
7083 kmem_cache_destroy(btrfs_free_space_cachep);
7084 }
7085
7086 int btrfs_init_cachep(void)
7087 {
7088 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
7089 sizeof(struct btrfs_inode), 0,
7090 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7091 if (!btrfs_inode_cachep)
7092 goto fail;
7093
7094 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
7095 sizeof(struct btrfs_trans_handle), 0,
7096 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7097 if (!btrfs_trans_handle_cachep)
7098 goto fail;
7099
7100 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
7101 sizeof(struct btrfs_transaction), 0,
7102 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7103 if (!btrfs_transaction_cachep)
7104 goto fail;
7105
7106 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
7107 sizeof(struct btrfs_path), 0,
7108 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7109 if (!btrfs_path_cachep)
7110 goto fail;
7111
7112 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
7113 sizeof(struct btrfs_free_space), 0,
7114 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7115 if (!btrfs_free_space_cachep)
7116 goto fail;
7117
7118 return 0;
7119 fail:
7120 btrfs_destroy_cachep();
7121 return -ENOMEM;
7122 }
7123
7124 static int btrfs_getattr(struct vfsmount *mnt,
7125 struct dentry *dentry, struct kstat *stat)
7126 {
7127 struct inode *inode = dentry->d_inode;
7128 u32 blocksize = inode->i_sb->s_blocksize;
7129
7130 generic_fillattr(inode, stat);
7131 stat->dev = BTRFS_I(inode)->root->anon_dev;
7132 stat->blksize = PAGE_CACHE_SIZE;
7133 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7134 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
7135 return 0;
7136 }
7137
7138 /*
7139 * If a file is moved, it will inherit the cow and compression flags of the new
7140 * directory.
7141 */
7142 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7143 {
7144 struct btrfs_inode *b_dir = BTRFS_I(dir);
7145 struct btrfs_inode *b_inode = BTRFS_I(inode);
7146
7147 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7148 b_inode->flags |= BTRFS_INODE_NODATACOW;
7149 else
7150 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7151
7152 if (b_dir->flags & BTRFS_INODE_COMPRESS) {
7153 b_inode->flags |= BTRFS_INODE_COMPRESS;
7154 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
7155 } else {
7156 b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
7157 BTRFS_INODE_NOCOMPRESS);
7158 }
7159 }
7160
7161 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7162 struct inode *new_dir, struct dentry *new_dentry)
7163 {
7164 struct btrfs_trans_handle *trans;
7165 struct btrfs_root *root = BTRFS_I(old_dir)->root;
7166 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7167 struct inode *new_inode = new_dentry->d_inode;
7168 struct inode *old_inode = old_dentry->d_inode;
7169 struct timespec ctime = CURRENT_TIME;
7170 u64 index = 0;
7171 u64 root_objectid;
7172 int ret;
7173 u64 old_ino = btrfs_ino(old_inode);
7174
7175 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
7176 return -EPERM;
7177
7178 /* we only allow rename subvolume link between subvolumes */
7179 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
7180 return -EXDEV;
7181
7182 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7183 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
7184 return -ENOTEMPTY;
7185
7186 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7187 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7188 return -ENOTEMPTY;
7189 /*
7190 * we're using rename to replace one file with another.
7191 * and the replacement file is large. Start IO on it now so
7192 * we don't add too much work to the end of the transaction
7193 */
7194 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
7195 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7196 filemap_flush(old_inode->i_mapping);
7197
7198 /* close the racy window with snapshot create/destroy ioctl */
7199 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7200 down_read(&root->fs_info->subvol_sem);
7201 /*
7202 * We want to reserve the absolute worst case amount of items. So if
7203 * both inodes are subvols and we need to unlink them then that would
7204 * require 4 item modifications, but if they are both normal inodes it
7205 * would require 5 item modifications, so we'll assume their normal
7206 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7207 * should cover the worst case number of items we'll modify.
7208 */
7209 trans = btrfs_start_transaction(root, 20);
7210 if (IS_ERR(trans)) {
7211 ret = PTR_ERR(trans);
7212 goto out_notrans;
7213 }
7214
7215 if (dest != root)
7216 btrfs_record_root_in_trans(trans, dest);
7217
7218 ret = btrfs_set_inode_index(new_dir, &index);
7219 if (ret)
7220 goto out_fail;
7221
7222 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7223 /* force full log commit if subvolume involved. */
7224 root->fs_info->last_trans_log_full_commit = trans->transid;
7225 } else {
7226 ret = btrfs_insert_inode_ref(trans, dest,
7227 new_dentry->d_name.name,
7228 new_dentry->d_name.len,
7229 old_ino,
7230 btrfs_ino(new_dir), index);
7231 if (ret)
7232 goto out_fail;
7233 /*
7234 * this is an ugly little race, but the rename is required
7235 * to make sure that if we crash, the inode is either at the
7236 * old name or the new one. pinning the log transaction lets
7237 * us make sure we don't allow a log commit to come in after
7238 * we unlink the name but before we add the new name back in.
7239 */
7240 btrfs_pin_log_trans(root);
7241 }
7242 /*
7243 * make sure the inode gets flushed if it is replacing
7244 * something.
7245 */
7246 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7247 btrfs_add_ordered_operation(trans, root, old_inode);
7248
7249 inode_inc_iversion(old_dir);
7250 inode_inc_iversion(new_dir);
7251 inode_inc_iversion(old_inode);
7252 old_dir->i_ctime = old_dir->i_mtime = ctime;
7253 new_dir->i_ctime = new_dir->i_mtime = ctime;
7254 old_inode->i_ctime = ctime;
7255
7256 if (old_dentry->d_parent != new_dentry->d_parent)
7257 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7258
7259 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7260 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7261 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7262 old_dentry->d_name.name,
7263 old_dentry->d_name.len);
7264 } else {
7265 ret = __btrfs_unlink_inode(trans, root, old_dir,
7266 old_dentry->d_inode,
7267 old_dentry->d_name.name,
7268 old_dentry->d_name.len);
7269 if (!ret)
7270 ret = btrfs_update_inode(trans, root, old_inode);
7271 }
7272 if (ret) {
7273 btrfs_abort_transaction(trans, root, ret);
7274 goto out_fail;
7275 }
7276
7277 if (new_inode) {
7278 inode_inc_iversion(new_inode);
7279 new_inode->i_ctime = CURRENT_TIME;
7280 if (unlikely(btrfs_ino(new_inode) ==
7281 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7282 root_objectid = BTRFS_I(new_inode)->location.objectid;
7283 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7284 root_objectid,
7285 new_dentry->d_name.name,
7286 new_dentry->d_name.len);
7287 BUG_ON(new_inode->i_nlink == 0);
7288 } else {
7289 ret = btrfs_unlink_inode(trans, dest, new_dir,
7290 new_dentry->d_inode,
7291 new_dentry->d_name.name,
7292 new_dentry->d_name.len);
7293 }
7294 if (!ret && new_inode->i_nlink == 0) {
7295 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7296 BUG_ON(ret);
7297 }
7298 if (ret) {
7299 btrfs_abort_transaction(trans, root, ret);
7300 goto out_fail;
7301 }
7302 }
7303
7304 fixup_inode_flags(new_dir, old_inode);
7305
7306 ret = btrfs_add_link(trans, new_dir, old_inode,
7307 new_dentry->d_name.name,
7308 new_dentry->d_name.len, 0, index);
7309 if (ret) {
7310 btrfs_abort_transaction(trans, root, ret);
7311 goto out_fail;
7312 }
7313
7314 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7315 struct dentry *parent = new_dentry->d_parent;
7316 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7317 btrfs_end_log_trans(root);
7318 }
7319 out_fail:
7320 btrfs_end_transaction(trans, root);
7321 out_notrans:
7322 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7323 up_read(&root->fs_info->subvol_sem);
7324
7325 return ret;
7326 }
7327
7328 /*
7329 * some fairly slow code that needs optimization. This walks the list
7330 * of all the inodes with pending delalloc and forces them to disk.
7331 */
7332 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7333 {
7334 struct list_head *head = &root->fs_info->delalloc_inodes;
7335 struct btrfs_inode *binode;
7336 struct inode *inode;
7337
7338 if (root->fs_info->sb->s_flags & MS_RDONLY)
7339 return -EROFS;
7340
7341 spin_lock(&root->fs_info->delalloc_lock);
7342 while (!list_empty(head)) {
7343 binode = list_entry(head->next, struct btrfs_inode,
7344 delalloc_inodes);
7345 inode = igrab(&binode->vfs_inode);
7346 if (!inode)
7347 list_del_init(&binode->delalloc_inodes);
7348 spin_unlock(&root->fs_info->delalloc_lock);
7349 if (inode) {
7350 filemap_flush(inode->i_mapping);
7351 if (delay_iput)
7352 btrfs_add_delayed_iput(inode);
7353 else
7354 iput(inode);
7355 }
7356 cond_resched();
7357 spin_lock(&root->fs_info->delalloc_lock);
7358 }
7359 spin_unlock(&root->fs_info->delalloc_lock);
7360
7361 /* the filemap_flush will queue IO into the worker threads, but
7362 * we have to make sure the IO is actually started and that
7363 * ordered extents get created before we return
7364 */
7365 atomic_inc(&root->fs_info->async_submit_draining);
7366 while (atomic_read(&root->fs_info->nr_async_submits) ||
7367 atomic_read(&root->fs_info->async_delalloc_pages)) {
7368 wait_event(root->fs_info->async_submit_wait,
7369 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7370 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7371 }
7372 atomic_dec(&root->fs_info->async_submit_draining);
7373 return 0;
7374 }
7375
7376 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7377 const char *symname)
7378 {
7379 struct btrfs_trans_handle *trans;
7380 struct btrfs_root *root = BTRFS_I(dir)->root;
7381 struct btrfs_path *path;
7382 struct btrfs_key key;
7383 struct inode *inode = NULL;
7384 int err;
7385 int drop_inode = 0;
7386 u64 objectid;
7387 u64 index = 0 ;
7388 int name_len;
7389 int datasize;
7390 unsigned long ptr;
7391 struct btrfs_file_extent_item *ei;
7392 struct extent_buffer *leaf;
7393 unsigned long nr = 0;
7394
7395 name_len = strlen(symname) + 1;
7396 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7397 return -ENAMETOOLONG;
7398
7399 /*
7400 * 2 items for inode item and ref
7401 * 2 items for dir items
7402 * 1 item for xattr if selinux is on
7403 */
7404 trans = btrfs_start_transaction(root, 5);
7405 if (IS_ERR(trans))
7406 return PTR_ERR(trans);
7407
7408 err = btrfs_find_free_ino(root, &objectid);
7409 if (err)
7410 goto out_unlock;
7411
7412 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7413 dentry->d_name.len, btrfs_ino(dir), objectid,
7414 S_IFLNK|S_IRWXUGO, &index);
7415 if (IS_ERR(inode)) {
7416 err = PTR_ERR(inode);
7417 goto out_unlock;
7418 }
7419
7420 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7421 if (err) {
7422 drop_inode = 1;
7423 goto out_unlock;
7424 }
7425
7426 /*
7427 * If the active LSM wants to access the inode during
7428 * d_instantiate it needs these. Smack checks to see
7429 * if the filesystem supports xattrs by looking at the
7430 * ops vector.
7431 */
7432 inode->i_fop = &btrfs_file_operations;
7433 inode->i_op = &btrfs_file_inode_operations;
7434
7435 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7436 if (err)
7437 drop_inode = 1;
7438 else {
7439 inode->i_mapping->a_ops = &btrfs_aops;
7440 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7441 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7442 }
7443 if (drop_inode)
7444 goto out_unlock;
7445
7446 path = btrfs_alloc_path();
7447 if (!path) {
7448 err = -ENOMEM;
7449 drop_inode = 1;
7450 goto out_unlock;
7451 }
7452 key.objectid = btrfs_ino(inode);
7453 key.offset = 0;
7454 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7455 datasize = btrfs_file_extent_calc_inline_size(name_len);
7456 err = btrfs_insert_empty_item(trans, root, path, &key,
7457 datasize);
7458 if (err) {
7459 drop_inode = 1;
7460 btrfs_free_path(path);
7461 goto out_unlock;
7462 }
7463 leaf = path->nodes[0];
7464 ei = btrfs_item_ptr(leaf, path->slots[0],
7465 struct btrfs_file_extent_item);
7466 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7467 btrfs_set_file_extent_type(leaf, ei,
7468 BTRFS_FILE_EXTENT_INLINE);
7469 btrfs_set_file_extent_encryption(leaf, ei, 0);
7470 btrfs_set_file_extent_compression(leaf, ei, 0);
7471 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7472 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7473
7474 ptr = btrfs_file_extent_inline_start(ei);
7475 write_extent_buffer(leaf, symname, ptr, name_len);
7476 btrfs_mark_buffer_dirty(leaf);
7477 btrfs_free_path(path);
7478
7479 inode->i_op = &btrfs_symlink_inode_operations;
7480 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7481 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7482 inode_set_bytes(inode, name_len);
7483 btrfs_i_size_write(inode, name_len - 1);
7484 err = btrfs_update_inode(trans, root, inode);
7485 if (err)
7486 drop_inode = 1;
7487
7488 out_unlock:
7489 if (!err)
7490 d_instantiate(dentry, inode);
7491 nr = trans->blocks_used;
7492 btrfs_end_transaction(trans, root);
7493 if (drop_inode) {
7494 inode_dec_link_count(inode);
7495 iput(inode);
7496 }
7497 btrfs_btree_balance_dirty(root, nr);
7498 return err;
7499 }
7500
7501 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7502 u64 start, u64 num_bytes, u64 min_size,
7503 loff_t actual_len, u64 *alloc_hint,
7504 struct btrfs_trans_handle *trans)
7505 {
7506 struct btrfs_root *root = BTRFS_I(inode)->root;
7507 struct btrfs_key ins;
7508 u64 cur_offset = start;
7509 u64 i_size;
7510 int ret = 0;
7511 bool own_trans = true;
7512
7513 if (trans)
7514 own_trans = false;
7515 while (num_bytes > 0) {
7516 if (own_trans) {
7517 trans = btrfs_start_transaction(root, 3);
7518 if (IS_ERR(trans)) {
7519 ret = PTR_ERR(trans);
7520 break;
7521 }
7522 }
7523
7524 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7525 0, *alloc_hint, &ins, 1);
7526 if (ret) {
7527 if (own_trans)
7528 btrfs_end_transaction(trans, root);
7529 break;
7530 }
7531
7532 ret = insert_reserved_file_extent(trans, inode,
7533 cur_offset, ins.objectid,
7534 ins.offset, ins.offset,
7535 ins.offset, 0, 0, 0,
7536 BTRFS_FILE_EXTENT_PREALLOC);
7537 if (ret) {
7538 btrfs_abort_transaction(trans, root, ret);
7539 if (own_trans)
7540 btrfs_end_transaction(trans, root);
7541 break;
7542 }
7543 btrfs_drop_extent_cache(inode, cur_offset,
7544 cur_offset + ins.offset -1, 0);
7545
7546 num_bytes -= ins.offset;
7547 cur_offset += ins.offset;
7548 *alloc_hint = ins.objectid + ins.offset;
7549
7550 inode_inc_iversion(inode);
7551 inode->i_ctime = CURRENT_TIME;
7552 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7553 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7554 (actual_len > inode->i_size) &&
7555 (cur_offset > inode->i_size)) {
7556 if (cur_offset > actual_len)
7557 i_size = actual_len;
7558 else
7559 i_size = cur_offset;
7560 i_size_write(inode, i_size);
7561 btrfs_ordered_update_i_size(inode, i_size, NULL);
7562 }
7563
7564 ret = btrfs_update_inode(trans, root, inode);
7565
7566 if (ret) {
7567 btrfs_abort_transaction(trans, root, ret);
7568 if (own_trans)
7569 btrfs_end_transaction(trans, root);
7570 break;
7571 }
7572
7573 if (own_trans)
7574 btrfs_end_transaction(trans, root);
7575 }
7576 return ret;
7577 }
7578
7579 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7580 u64 start, u64 num_bytes, u64 min_size,
7581 loff_t actual_len, u64 *alloc_hint)
7582 {
7583 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7584 min_size, actual_len, alloc_hint,
7585 NULL);
7586 }
7587
7588 int btrfs_prealloc_file_range_trans(struct inode *inode,
7589 struct btrfs_trans_handle *trans, int mode,
7590 u64 start, u64 num_bytes, u64 min_size,
7591 loff_t actual_len, u64 *alloc_hint)
7592 {
7593 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7594 min_size, actual_len, alloc_hint, trans);
7595 }
7596
7597 static int btrfs_set_page_dirty(struct page *page)
7598 {
7599 return __set_page_dirty_nobuffers(page);
7600 }
7601
7602 static int btrfs_permission(struct inode *inode, int mask)
7603 {
7604 struct btrfs_root *root = BTRFS_I(inode)->root;
7605 umode_t mode = inode->i_mode;
7606
7607 if (mask & MAY_WRITE &&
7608 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7609 if (btrfs_root_readonly(root))
7610 return -EROFS;
7611 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7612 return -EACCES;
7613 }
7614 return generic_permission(inode, mask);
7615 }
7616
7617 static const struct inode_operations btrfs_dir_inode_operations = {
7618 .getattr = btrfs_getattr,
7619 .lookup = btrfs_lookup,
7620 .create = btrfs_create,
7621 .unlink = btrfs_unlink,
7622 .link = btrfs_link,
7623 .mkdir = btrfs_mkdir,
7624 .rmdir = btrfs_rmdir,
7625 .rename = btrfs_rename,
7626 .symlink = btrfs_symlink,
7627 .setattr = btrfs_setattr,
7628 .mknod = btrfs_mknod,
7629 .setxattr = btrfs_setxattr,
7630 .getxattr = btrfs_getxattr,
7631 .listxattr = btrfs_listxattr,
7632 .removexattr = btrfs_removexattr,
7633 .permission = btrfs_permission,
7634 .get_acl = btrfs_get_acl,
7635 };
7636 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7637 .lookup = btrfs_lookup,
7638 .permission = btrfs_permission,
7639 .get_acl = btrfs_get_acl,
7640 };
7641
7642 static const struct file_operations btrfs_dir_file_operations = {
7643 .llseek = generic_file_llseek,
7644 .read = generic_read_dir,
7645 .readdir = btrfs_real_readdir,
7646 .unlocked_ioctl = btrfs_ioctl,
7647 #ifdef CONFIG_COMPAT
7648 .compat_ioctl = btrfs_ioctl,
7649 #endif
7650 .release = btrfs_release_file,
7651 .fsync = btrfs_sync_file,
7652 };
7653
7654 static struct extent_io_ops btrfs_extent_io_ops = {
7655 .fill_delalloc = run_delalloc_range,
7656 .submit_bio_hook = btrfs_submit_bio_hook,
7657 .merge_bio_hook = btrfs_merge_bio_hook,
7658 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7659 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7660 .writepage_start_hook = btrfs_writepage_start_hook,
7661 .set_bit_hook = btrfs_set_bit_hook,
7662 .clear_bit_hook = btrfs_clear_bit_hook,
7663 .merge_extent_hook = btrfs_merge_extent_hook,
7664 .split_extent_hook = btrfs_split_extent_hook,
7665 };
7666
7667 /*
7668 * btrfs doesn't support the bmap operation because swapfiles
7669 * use bmap to make a mapping of extents in the file. They assume
7670 * these extents won't change over the life of the file and they
7671 * use the bmap result to do IO directly to the drive.
7672 *
7673 * the btrfs bmap call would return logical addresses that aren't
7674 * suitable for IO and they also will change frequently as COW
7675 * operations happen. So, swapfile + btrfs == corruption.
7676 *
7677 * For now we're avoiding this by dropping bmap.
7678 */
7679 static const struct address_space_operations btrfs_aops = {
7680 .readpage = btrfs_readpage,
7681 .writepage = btrfs_writepage,
7682 .writepages = btrfs_writepages,
7683 .readpages = btrfs_readpages,
7684 .direct_IO = btrfs_direct_IO,
7685 .invalidatepage = btrfs_invalidatepage,
7686 .releasepage = btrfs_releasepage,
7687 .set_page_dirty = btrfs_set_page_dirty,
7688 .error_remove_page = generic_error_remove_page,
7689 };
7690
7691 static const struct address_space_operations btrfs_symlink_aops = {
7692 .readpage = btrfs_readpage,
7693 .writepage = btrfs_writepage,
7694 .invalidatepage = btrfs_invalidatepage,
7695 .releasepage = btrfs_releasepage,
7696 };
7697
7698 static const struct inode_operations btrfs_file_inode_operations = {
7699 .getattr = btrfs_getattr,
7700 .setattr = btrfs_setattr,
7701 .setxattr = btrfs_setxattr,
7702 .getxattr = btrfs_getxattr,
7703 .listxattr = btrfs_listxattr,
7704 .removexattr = btrfs_removexattr,
7705 .permission = btrfs_permission,
7706 .fiemap = btrfs_fiemap,
7707 .get_acl = btrfs_get_acl,
7708 .update_time = btrfs_update_time,
7709 };
7710 static const struct inode_operations btrfs_special_inode_operations = {
7711 .getattr = btrfs_getattr,
7712 .setattr = btrfs_setattr,
7713 .permission = btrfs_permission,
7714 .setxattr = btrfs_setxattr,
7715 .getxattr = btrfs_getxattr,
7716 .listxattr = btrfs_listxattr,
7717 .removexattr = btrfs_removexattr,
7718 .get_acl = btrfs_get_acl,
7719 .update_time = btrfs_update_time,
7720 };
7721 static const struct inode_operations btrfs_symlink_inode_operations = {
7722 .readlink = generic_readlink,
7723 .follow_link = page_follow_link_light,
7724 .put_link = page_put_link,
7725 .getattr = btrfs_getattr,
7726 .setattr = btrfs_setattr,
7727 .permission = btrfs_permission,
7728 .setxattr = btrfs_setxattr,
7729 .getxattr = btrfs_getxattr,
7730 .listxattr = btrfs_listxattr,
7731 .removexattr = btrfs_removexattr,
7732 .get_acl = btrfs_get_acl,
7733 .update_time = btrfs_update_time,
7734 };
7735
7736 const struct dentry_operations btrfs_dentry_operations = {
7737 .d_delete = btrfs_dentry_delete,
7738 .d_release = btrfs_dentry_release,
7739 };
This page took 0.223466 seconds and 5 git commands to generate.