Btrfs: fix snapshot inconsistency after a file write followed by truncate
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62
63 struct btrfs_iget_args {
64 struct btrfs_key *location;
65 struct btrfs_root *root;
66 };
67
68 static const struct inode_operations btrfs_dir_inode_operations;
69 static const struct inode_operations btrfs_symlink_inode_operations;
70 static const struct inode_operations btrfs_dir_ro_inode_operations;
71 static const struct inode_operations btrfs_special_inode_operations;
72 static const struct inode_operations btrfs_file_inode_operations;
73 static const struct address_space_operations btrfs_aops;
74 static const struct address_space_operations btrfs_symlink_aops;
75 static const struct file_operations btrfs_dir_file_operations;
76 static struct extent_io_ops btrfs_extent_io_ops;
77
78 static struct kmem_cache *btrfs_inode_cachep;
79 static struct kmem_cache *btrfs_delalloc_work_cachep;
80 struct kmem_cache *btrfs_trans_handle_cachep;
81 struct kmem_cache *btrfs_transaction_cachep;
82 struct kmem_cache *btrfs_path_cachep;
83 struct kmem_cache *btrfs_free_space_cachep;
84
85 #define S_SHIFT 12
86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94 };
95
96 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
97 static int btrfs_truncate(struct inode *inode);
98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
99 static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
108
109 static int btrfs_dirty_inode(struct inode *inode);
110
111 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
114 {
115 int err;
116
117 err = btrfs_init_acl(trans, inode, dir);
118 if (!err)
119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
120 return err;
121 }
122
123 /*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
128 static int insert_inline_extent(struct btrfs_trans_handle *trans,
129 struct btrfs_path *path, int extent_inserted,
130 struct btrfs_root *root, struct inode *inode,
131 u64 start, size_t size, size_t compressed_size,
132 int compress_type,
133 struct page **compressed_pages)
134 {
135 struct extent_buffer *leaf;
136 struct page *page = NULL;
137 char *kaddr;
138 unsigned long ptr;
139 struct btrfs_file_extent_item *ei;
140 int err = 0;
141 int ret;
142 size_t cur_size = size;
143 unsigned long offset;
144
145 if (compressed_size && compressed_pages)
146 cur_size = compressed_size;
147
148 inode_add_bytes(inode, size);
149
150 if (!extent_inserted) {
151 struct btrfs_key key;
152 size_t datasize;
153
154 key.objectid = btrfs_ino(inode);
155 key.offset = start;
156 key.type = BTRFS_EXTENT_DATA_KEY;
157
158 datasize = btrfs_file_extent_calc_inline_size(cur_size);
159 path->leave_spinning = 1;
160 ret = btrfs_insert_empty_item(trans, root, path, &key,
161 datasize);
162 if (ret) {
163 err = ret;
164 goto fail;
165 }
166 }
167 leaf = path->nodes[0];
168 ei = btrfs_item_ptr(leaf, path->slots[0],
169 struct btrfs_file_extent_item);
170 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 btrfs_set_file_extent_encryption(leaf, ei, 0);
173 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 ptr = btrfs_file_extent_inline_start(ei);
176
177 if (compress_type != BTRFS_COMPRESS_NONE) {
178 struct page *cpage;
179 int i = 0;
180 while (compressed_size > 0) {
181 cpage = compressed_pages[i];
182 cur_size = min_t(unsigned long, compressed_size,
183 PAGE_CACHE_SIZE);
184
185 kaddr = kmap_atomic(cpage);
186 write_extent_buffer(leaf, kaddr, ptr, cur_size);
187 kunmap_atomic(kaddr);
188
189 i++;
190 ptr += cur_size;
191 compressed_size -= cur_size;
192 }
193 btrfs_set_file_extent_compression(leaf, ei,
194 compress_type);
195 } else {
196 page = find_get_page(inode->i_mapping,
197 start >> PAGE_CACHE_SHIFT);
198 btrfs_set_file_extent_compression(leaf, ei, 0);
199 kaddr = kmap_atomic(page);
200 offset = start & (PAGE_CACHE_SIZE - 1);
201 write_extent_buffer(leaf, kaddr + offset, ptr, size);
202 kunmap_atomic(kaddr);
203 page_cache_release(page);
204 }
205 btrfs_mark_buffer_dirty(leaf);
206 btrfs_release_path(path);
207
208 /*
209 * we're an inline extent, so nobody can
210 * extend the file past i_size without locking
211 * a page we already have locked.
212 *
213 * We must do any isize and inode updates
214 * before we unlock the pages. Otherwise we
215 * could end up racing with unlink.
216 */
217 BTRFS_I(inode)->disk_i_size = inode->i_size;
218 ret = btrfs_update_inode(trans, root, inode);
219
220 return ret;
221 fail:
222 return err;
223 }
224
225
226 /*
227 * conditionally insert an inline extent into the file. This
228 * does the checks required to make sure the data is small enough
229 * to fit as an inline extent.
230 */
231 static noinline int cow_file_range_inline(struct btrfs_root *root,
232 struct inode *inode, u64 start,
233 u64 end, size_t compressed_size,
234 int compress_type,
235 struct page **compressed_pages)
236 {
237 struct btrfs_trans_handle *trans;
238 u64 isize = i_size_read(inode);
239 u64 actual_end = min(end + 1, isize);
240 u64 inline_len = actual_end - start;
241 u64 aligned_end = ALIGN(end, root->sectorsize);
242 u64 data_len = inline_len;
243 int ret;
244 struct btrfs_path *path;
245 int extent_inserted = 0;
246 u32 extent_item_size;
247
248 if (compressed_size)
249 data_len = compressed_size;
250
251 if (start > 0 ||
252 actual_end > PAGE_CACHE_SIZE ||
253 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
254 (!compressed_size &&
255 (actual_end & (root->sectorsize - 1)) == 0) ||
256 end + 1 < isize ||
257 data_len > root->fs_info->max_inline) {
258 return 1;
259 }
260
261 path = btrfs_alloc_path();
262 if (!path)
263 return -ENOMEM;
264
265 trans = btrfs_join_transaction(root);
266 if (IS_ERR(trans)) {
267 btrfs_free_path(path);
268 return PTR_ERR(trans);
269 }
270 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
271
272 if (compressed_size && compressed_pages)
273 extent_item_size = btrfs_file_extent_calc_inline_size(
274 compressed_size);
275 else
276 extent_item_size = btrfs_file_extent_calc_inline_size(
277 inline_len);
278
279 ret = __btrfs_drop_extents(trans, root, inode, path,
280 start, aligned_end, NULL,
281 1, 1, extent_item_size, &extent_inserted);
282 if (ret) {
283 btrfs_abort_transaction(trans, root, ret);
284 goto out;
285 }
286
287 if (isize > actual_end)
288 inline_len = min_t(u64, isize, actual_end);
289 ret = insert_inline_extent(trans, path, extent_inserted,
290 root, inode, start,
291 inline_len, compressed_size,
292 compress_type, compressed_pages);
293 if (ret && ret != -ENOSPC) {
294 btrfs_abort_transaction(trans, root, ret);
295 goto out;
296 } else if (ret == -ENOSPC) {
297 ret = 1;
298 goto out;
299 }
300
301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
302 btrfs_delalloc_release_metadata(inode, end + 1 - start);
303 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
304 out:
305 btrfs_free_path(path);
306 btrfs_end_transaction(trans, root);
307 return ret;
308 }
309
310 struct async_extent {
311 u64 start;
312 u64 ram_size;
313 u64 compressed_size;
314 struct page **pages;
315 unsigned long nr_pages;
316 int compress_type;
317 struct list_head list;
318 };
319
320 struct async_cow {
321 struct inode *inode;
322 struct btrfs_root *root;
323 struct page *locked_page;
324 u64 start;
325 u64 end;
326 struct list_head extents;
327 struct btrfs_work work;
328 };
329
330 static noinline int add_async_extent(struct async_cow *cow,
331 u64 start, u64 ram_size,
332 u64 compressed_size,
333 struct page **pages,
334 unsigned long nr_pages,
335 int compress_type)
336 {
337 struct async_extent *async_extent;
338
339 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
340 BUG_ON(!async_extent); /* -ENOMEM */
341 async_extent->start = start;
342 async_extent->ram_size = ram_size;
343 async_extent->compressed_size = compressed_size;
344 async_extent->pages = pages;
345 async_extent->nr_pages = nr_pages;
346 async_extent->compress_type = compress_type;
347 list_add_tail(&async_extent->list, &cow->extents);
348 return 0;
349 }
350
351 static inline int inode_need_compress(struct inode *inode)
352 {
353 struct btrfs_root *root = BTRFS_I(inode)->root;
354
355 /* force compress */
356 if (btrfs_test_opt(root, FORCE_COMPRESS))
357 return 1;
358 /* bad compression ratios */
359 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
360 return 0;
361 if (btrfs_test_opt(root, COMPRESS) ||
362 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
363 BTRFS_I(inode)->force_compress)
364 return 1;
365 return 0;
366 }
367
368 /*
369 * we create compressed extents in two phases. The first
370 * phase compresses a range of pages that have already been
371 * locked (both pages and state bits are locked).
372 *
373 * This is done inside an ordered work queue, and the compression
374 * is spread across many cpus. The actual IO submission is step
375 * two, and the ordered work queue takes care of making sure that
376 * happens in the same order things were put onto the queue by
377 * writepages and friends.
378 *
379 * If this code finds it can't get good compression, it puts an
380 * entry onto the work queue to write the uncompressed bytes. This
381 * makes sure that both compressed inodes and uncompressed inodes
382 * are written in the same order that the flusher thread sent them
383 * down.
384 */
385 static noinline void compress_file_range(struct inode *inode,
386 struct page *locked_page,
387 u64 start, u64 end,
388 struct async_cow *async_cow,
389 int *num_added)
390 {
391 struct btrfs_root *root = BTRFS_I(inode)->root;
392 u64 num_bytes;
393 u64 blocksize = root->sectorsize;
394 u64 actual_end;
395 u64 isize = i_size_read(inode);
396 int ret = 0;
397 struct page **pages = NULL;
398 unsigned long nr_pages;
399 unsigned long nr_pages_ret = 0;
400 unsigned long total_compressed = 0;
401 unsigned long total_in = 0;
402 unsigned long max_compressed = 128 * 1024;
403 unsigned long max_uncompressed = 128 * 1024;
404 int i;
405 int will_compress;
406 int compress_type = root->fs_info->compress_type;
407 int redirty = 0;
408
409 /* if this is a small write inside eof, kick off a defrag */
410 if ((end - start + 1) < 16 * 1024 &&
411 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
412 btrfs_add_inode_defrag(NULL, inode);
413
414 actual_end = min_t(u64, isize, end + 1);
415 again:
416 will_compress = 0;
417 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
418 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
419
420 /*
421 * we don't want to send crud past the end of i_size through
422 * compression, that's just a waste of CPU time. So, if the
423 * end of the file is before the start of our current
424 * requested range of bytes, we bail out to the uncompressed
425 * cleanup code that can deal with all of this.
426 *
427 * It isn't really the fastest way to fix things, but this is a
428 * very uncommon corner.
429 */
430 if (actual_end <= start)
431 goto cleanup_and_bail_uncompressed;
432
433 total_compressed = actual_end - start;
434
435 /*
436 * skip compression for a small file range(<=blocksize) that
437 * isn't an inline extent, since it dosen't save disk space at all.
438 */
439 if (total_compressed <= blocksize &&
440 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
441 goto cleanup_and_bail_uncompressed;
442
443 /* we want to make sure that amount of ram required to uncompress
444 * an extent is reasonable, so we limit the total size in ram
445 * of a compressed extent to 128k. This is a crucial number
446 * because it also controls how easily we can spread reads across
447 * cpus for decompression.
448 *
449 * We also want to make sure the amount of IO required to do
450 * a random read is reasonably small, so we limit the size of
451 * a compressed extent to 128k.
452 */
453 total_compressed = min(total_compressed, max_uncompressed);
454 num_bytes = ALIGN(end - start + 1, blocksize);
455 num_bytes = max(blocksize, num_bytes);
456 total_in = 0;
457 ret = 0;
458
459 /*
460 * we do compression for mount -o compress and when the
461 * inode has not been flagged as nocompress. This flag can
462 * change at any time if we discover bad compression ratios.
463 */
464 if (inode_need_compress(inode)) {
465 WARN_ON(pages);
466 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
467 if (!pages) {
468 /* just bail out to the uncompressed code */
469 goto cont;
470 }
471
472 if (BTRFS_I(inode)->force_compress)
473 compress_type = BTRFS_I(inode)->force_compress;
474
475 /*
476 * we need to call clear_page_dirty_for_io on each
477 * page in the range. Otherwise applications with the file
478 * mmap'd can wander in and change the page contents while
479 * we are compressing them.
480 *
481 * If the compression fails for any reason, we set the pages
482 * dirty again later on.
483 */
484 extent_range_clear_dirty_for_io(inode, start, end);
485 redirty = 1;
486 ret = btrfs_compress_pages(compress_type,
487 inode->i_mapping, start,
488 total_compressed, pages,
489 nr_pages, &nr_pages_ret,
490 &total_in,
491 &total_compressed,
492 max_compressed);
493
494 if (!ret) {
495 unsigned long offset = total_compressed &
496 (PAGE_CACHE_SIZE - 1);
497 struct page *page = pages[nr_pages_ret - 1];
498 char *kaddr;
499
500 /* zero the tail end of the last page, we might be
501 * sending it down to disk
502 */
503 if (offset) {
504 kaddr = kmap_atomic(page);
505 memset(kaddr + offset, 0,
506 PAGE_CACHE_SIZE - offset);
507 kunmap_atomic(kaddr);
508 }
509 will_compress = 1;
510 }
511 }
512 cont:
513 if (start == 0) {
514 /* lets try to make an inline extent */
515 if (ret || total_in < (actual_end - start)) {
516 /* we didn't compress the entire range, try
517 * to make an uncompressed inline extent.
518 */
519 ret = cow_file_range_inline(root, inode, start, end,
520 0, 0, NULL);
521 } else {
522 /* try making a compressed inline extent */
523 ret = cow_file_range_inline(root, inode, start, end,
524 total_compressed,
525 compress_type, pages);
526 }
527 if (ret <= 0) {
528 unsigned long clear_flags = EXTENT_DELALLOC |
529 EXTENT_DEFRAG;
530 unsigned long page_error_op;
531
532 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
533 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
534
535 /*
536 * inline extent creation worked or returned error,
537 * we don't need to create any more async work items.
538 * Unlock and free up our temp pages.
539 */
540 extent_clear_unlock_delalloc(inode, start, end, NULL,
541 clear_flags, PAGE_UNLOCK |
542 PAGE_CLEAR_DIRTY |
543 PAGE_SET_WRITEBACK |
544 page_error_op |
545 PAGE_END_WRITEBACK);
546 goto free_pages_out;
547 }
548 }
549
550 if (will_compress) {
551 /*
552 * we aren't doing an inline extent round the compressed size
553 * up to a block size boundary so the allocator does sane
554 * things
555 */
556 total_compressed = ALIGN(total_compressed, blocksize);
557
558 /*
559 * one last check to make sure the compression is really a
560 * win, compare the page count read with the blocks on disk
561 */
562 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
563 if (total_compressed >= total_in) {
564 will_compress = 0;
565 } else {
566 num_bytes = total_in;
567 }
568 }
569 if (!will_compress && pages) {
570 /*
571 * the compression code ran but failed to make things smaller,
572 * free any pages it allocated and our page pointer array
573 */
574 for (i = 0; i < nr_pages_ret; i++) {
575 WARN_ON(pages[i]->mapping);
576 page_cache_release(pages[i]);
577 }
578 kfree(pages);
579 pages = NULL;
580 total_compressed = 0;
581 nr_pages_ret = 0;
582
583 /* flag the file so we don't compress in the future */
584 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
585 !(BTRFS_I(inode)->force_compress)) {
586 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
587 }
588 }
589 if (will_compress) {
590 *num_added += 1;
591
592 /* the async work queues will take care of doing actual
593 * allocation on disk for these compressed pages,
594 * and will submit them to the elevator.
595 */
596 add_async_extent(async_cow, start, num_bytes,
597 total_compressed, pages, nr_pages_ret,
598 compress_type);
599
600 if (start + num_bytes < end) {
601 start += num_bytes;
602 pages = NULL;
603 cond_resched();
604 goto again;
605 }
606 } else {
607 cleanup_and_bail_uncompressed:
608 /*
609 * No compression, but we still need to write the pages in
610 * the file we've been given so far. redirty the locked
611 * page if it corresponds to our extent and set things up
612 * for the async work queue to run cow_file_range to do
613 * the normal delalloc dance
614 */
615 if (page_offset(locked_page) >= start &&
616 page_offset(locked_page) <= end) {
617 __set_page_dirty_nobuffers(locked_page);
618 /* unlocked later on in the async handlers */
619 }
620 if (redirty)
621 extent_range_redirty_for_io(inode, start, end);
622 add_async_extent(async_cow, start, end - start + 1,
623 0, NULL, 0, BTRFS_COMPRESS_NONE);
624 *num_added += 1;
625 }
626
627 return;
628
629 free_pages_out:
630 for (i = 0; i < nr_pages_ret; i++) {
631 WARN_ON(pages[i]->mapping);
632 page_cache_release(pages[i]);
633 }
634 kfree(pages);
635 }
636
637 static void free_async_extent_pages(struct async_extent *async_extent)
638 {
639 int i;
640
641 if (!async_extent->pages)
642 return;
643
644 for (i = 0; i < async_extent->nr_pages; i++) {
645 WARN_ON(async_extent->pages[i]->mapping);
646 page_cache_release(async_extent->pages[i]);
647 }
648 kfree(async_extent->pages);
649 async_extent->nr_pages = 0;
650 async_extent->pages = NULL;
651 }
652
653 /*
654 * phase two of compressed writeback. This is the ordered portion
655 * of the code, which only gets called in the order the work was
656 * queued. We walk all the async extents created by compress_file_range
657 * and send them down to the disk.
658 */
659 static noinline void submit_compressed_extents(struct inode *inode,
660 struct async_cow *async_cow)
661 {
662 struct async_extent *async_extent;
663 u64 alloc_hint = 0;
664 struct btrfs_key ins;
665 struct extent_map *em;
666 struct btrfs_root *root = BTRFS_I(inode)->root;
667 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
668 struct extent_io_tree *io_tree;
669 int ret = 0;
670
671 again:
672 while (!list_empty(&async_cow->extents)) {
673 async_extent = list_entry(async_cow->extents.next,
674 struct async_extent, list);
675 list_del(&async_extent->list);
676
677 io_tree = &BTRFS_I(inode)->io_tree;
678
679 retry:
680 /* did the compression code fall back to uncompressed IO? */
681 if (!async_extent->pages) {
682 int page_started = 0;
683 unsigned long nr_written = 0;
684
685 lock_extent(io_tree, async_extent->start,
686 async_extent->start +
687 async_extent->ram_size - 1);
688
689 /* allocate blocks */
690 ret = cow_file_range(inode, async_cow->locked_page,
691 async_extent->start,
692 async_extent->start +
693 async_extent->ram_size - 1,
694 &page_started, &nr_written, 0);
695
696 /* JDM XXX */
697
698 /*
699 * if page_started, cow_file_range inserted an
700 * inline extent and took care of all the unlocking
701 * and IO for us. Otherwise, we need to submit
702 * all those pages down to the drive.
703 */
704 if (!page_started && !ret)
705 extent_write_locked_range(io_tree,
706 inode, async_extent->start,
707 async_extent->start +
708 async_extent->ram_size - 1,
709 btrfs_get_extent,
710 WB_SYNC_ALL);
711 else if (ret)
712 unlock_page(async_cow->locked_page);
713 kfree(async_extent);
714 cond_resched();
715 continue;
716 }
717
718 lock_extent(io_tree, async_extent->start,
719 async_extent->start + async_extent->ram_size - 1);
720
721 ret = btrfs_reserve_extent(root,
722 async_extent->compressed_size,
723 async_extent->compressed_size,
724 0, alloc_hint, &ins, 1, 1);
725 if (ret) {
726 free_async_extent_pages(async_extent);
727
728 if (ret == -ENOSPC) {
729 unlock_extent(io_tree, async_extent->start,
730 async_extent->start +
731 async_extent->ram_size - 1);
732
733 /*
734 * we need to redirty the pages if we decide to
735 * fallback to uncompressed IO, otherwise we
736 * will not submit these pages down to lower
737 * layers.
738 */
739 extent_range_redirty_for_io(inode,
740 async_extent->start,
741 async_extent->start +
742 async_extent->ram_size - 1);
743
744 goto retry;
745 }
746 goto out_free;
747 }
748
749 /*
750 * here we're doing allocation and writeback of the
751 * compressed pages
752 */
753 btrfs_drop_extent_cache(inode, async_extent->start,
754 async_extent->start +
755 async_extent->ram_size - 1, 0);
756
757 em = alloc_extent_map();
758 if (!em) {
759 ret = -ENOMEM;
760 goto out_free_reserve;
761 }
762 em->start = async_extent->start;
763 em->len = async_extent->ram_size;
764 em->orig_start = em->start;
765 em->mod_start = em->start;
766 em->mod_len = em->len;
767
768 em->block_start = ins.objectid;
769 em->block_len = ins.offset;
770 em->orig_block_len = ins.offset;
771 em->ram_bytes = async_extent->ram_size;
772 em->bdev = root->fs_info->fs_devices->latest_bdev;
773 em->compress_type = async_extent->compress_type;
774 set_bit(EXTENT_FLAG_PINNED, &em->flags);
775 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
776 em->generation = -1;
777
778 while (1) {
779 write_lock(&em_tree->lock);
780 ret = add_extent_mapping(em_tree, em, 1);
781 write_unlock(&em_tree->lock);
782 if (ret != -EEXIST) {
783 free_extent_map(em);
784 break;
785 }
786 btrfs_drop_extent_cache(inode, async_extent->start,
787 async_extent->start +
788 async_extent->ram_size - 1, 0);
789 }
790
791 if (ret)
792 goto out_free_reserve;
793
794 ret = btrfs_add_ordered_extent_compress(inode,
795 async_extent->start,
796 ins.objectid,
797 async_extent->ram_size,
798 ins.offset,
799 BTRFS_ORDERED_COMPRESSED,
800 async_extent->compress_type);
801 if (ret) {
802 btrfs_drop_extent_cache(inode, async_extent->start,
803 async_extent->start +
804 async_extent->ram_size - 1, 0);
805 goto out_free_reserve;
806 }
807
808 /*
809 * clear dirty, set writeback and unlock the pages.
810 */
811 extent_clear_unlock_delalloc(inode, async_extent->start,
812 async_extent->start +
813 async_extent->ram_size - 1,
814 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
815 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
816 PAGE_SET_WRITEBACK);
817 ret = btrfs_submit_compressed_write(inode,
818 async_extent->start,
819 async_extent->ram_size,
820 ins.objectid,
821 ins.offset, async_extent->pages,
822 async_extent->nr_pages);
823 if (ret) {
824 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
825 struct page *p = async_extent->pages[0];
826 const u64 start = async_extent->start;
827 const u64 end = start + async_extent->ram_size - 1;
828
829 p->mapping = inode->i_mapping;
830 tree->ops->writepage_end_io_hook(p, start, end,
831 NULL, 0);
832 p->mapping = NULL;
833 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
834 PAGE_END_WRITEBACK |
835 PAGE_SET_ERROR);
836 free_async_extent_pages(async_extent);
837 }
838 alloc_hint = ins.objectid + ins.offset;
839 kfree(async_extent);
840 cond_resched();
841 }
842 return;
843 out_free_reserve:
844 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
845 out_free:
846 extent_clear_unlock_delalloc(inode, async_extent->start,
847 async_extent->start +
848 async_extent->ram_size - 1,
849 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
850 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
851 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
852 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
853 PAGE_SET_ERROR);
854 free_async_extent_pages(async_extent);
855 kfree(async_extent);
856 goto again;
857 }
858
859 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
860 u64 num_bytes)
861 {
862 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
863 struct extent_map *em;
864 u64 alloc_hint = 0;
865
866 read_lock(&em_tree->lock);
867 em = search_extent_mapping(em_tree, start, num_bytes);
868 if (em) {
869 /*
870 * if block start isn't an actual block number then find the
871 * first block in this inode and use that as a hint. If that
872 * block is also bogus then just don't worry about it.
873 */
874 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
875 free_extent_map(em);
876 em = search_extent_mapping(em_tree, 0, 0);
877 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
878 alloc_hint = em->block_start;
879 if (em)
880 free_extent_map(em);
881 } else {
882 alloc_hint = em->block_start;
883 free_extent_map(em);
884 }
885 }
886 read_unlock(&em_tree->lock);
887
888 return alloc_hint;
889 }
890
891 /*
892 * when extent_io.c finds a delayed allocation range in the file,
893 * the call backs end up in this code. The basic idea is to
894 * allocate extents on disk for the range, and create ordered data structs
895 * in ram to track those extents.
896 *
897 * locked_page is the page that writepage had locked already. We use
898 * it to make sure we don't do extra locks or unlocks.
899 *
900 * *page_started is set to one if we unlock locked_page and do everything
901 * required to start IO on it. It may be clean and already done with
902 * IO when we return.
903 */
904 static noinline int cow_file_range(struct inode *inode,
905 struct page *locked_page,
906 u64 start, u64 end, int *page_started,
907 unsigned long *nr_written,
908 int unlock)
909 {
910 struct btrfs_root *root = BTRFS_I(inode)->root;
911 u64 alloc_hint = 0;
912 u64 num_bytes;
913 unsigned long ram_size;
914 u64 disk_num_bytes;
915 u64 cur_alloc_size;
916 u64 blocksize = root->sectorsize;
917 struct btrfs_key ins;
918 struct extent_map *em;
919 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
920 int ret = 0;
921
922 if (btrfs_is_free_space_inode(inode)) {
923 WARN_ON_ONCE(1);
924 ret = -EINVAL;
925 goto out_unlock;
926 }
927
928 num_bytes = ALIGN(end - start + 1, blocksize);
929 num_bytes = max(blocksize, num_bytes);
930 disk_num_bytes = num_bytes;
931
932 /* if this is a small write inside eof, kick off defrag */
933 if (num_bytes < 64 * 1024 &&
934 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
935 btrfs_add_inode_defrag(NULL, inode);
936
937 if (start == 0) {
938 /* lets try to make an inline extent */
939 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
940 NULL);
941 if (ret == 0) {
942 extent_clear_unlock_delalloc(inode, start, end, NULL,
943 EXTENT_LOCKED | EXTENT_DELALLOC |
944 EXTENT_DEFRAG, PAGE_UNLOCK |
945 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
946 PAGE_END_WRITEBACK);
947
948 *nr_written = *nr_written +
949 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
950 *page_started = 1;
951 goto out;
952 } else if (ret < 0) {
953 goto out_unlock;
954 }
955 }
956
957 BUG_ON(disk_num_bytes >
958 btrfs_super_total_bytes(root->fs_info->super_copy));
959
960 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
961 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
962
963 while (disk_num_bytes > 0) {
964 unsigned long op;
965
966 cur_alloc_size = disk_num_bytes;
967 ret = btrfs_reserve_extent(root, cur_alloc_size,
968 root->sectorsize, 0, alloc_hint,
969 &ins, 1, 1);
970 if (ret < 0)
971 goto out_unlock;
972
973 em = alloc_extent_map();
974 if (!em) {
975 ret = -ENOMEM;
976 goto out_reserve;
977 }
978 em->start = start;
979 em->orig_start = em->start;
980 ram_size = ins.offset;
981 em->len = ins.offset;
982 em->mod_start = em->start;
983 em->mod_len = em->len;
984
985 em->block_start = ins.objectid;
986 em->block_len = ins.offset;
987 em->orig_block_len = ins.offset;
988 em->ram_bytes = ram_size;
989 em->bdev = root->fs_info->fs_devices->latest_bdev;
990 set_bit(EXTENT_FLAG_PINNED, &em->flags);
991 em->generation = -1;
992
993 while (1) {
994 write_lock(&em_tree->lock);
995 ret = add_extent_mapping(em_tree, em, 1);
996 write_unlock(&em_tree->lock);
997 if (ret != -EEXIST) {
998 free_extent_map(em);
999 break;
1000 }
1001 btrfs_drop_extent_cache(inode, start,
1002 start + ram_size - 1, 0);
1003 }
1004 if (ret)
1005 goto out_reserve;
1006
1007 cur_alloc_size = ins.offset;
1008 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1009 ram_size, cur_alloc_size, 0);
1010 if (ret)
1011 goto out_drop_extent_cache;
1012
1013 if (root->root_key.objectid ==
1014 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1015 ret = btrfs_reloc_clone_csums(inode, start,
1016 cur_alloc_size);
1017 if (ret)
1018 goto out_drop_extent_cache;
1019 }
1020
1021 if (disk_num_bytes < cur_alloc_size)
1022 break;
1023
1024 /* we're not doing compressed IO, don't unlock the first
1025 * page (which the caller expects to stay locked), don't
1026 * clear any dirty bits and don't set any writeback bits
1027 *
1028 * Do set the Private2 bit so we know this page was properly
1029 * setup for writepage
1030 */
1031 op = unlock ? PAGE_UNLOCK : 0;
1032 op |= PAGE_SET_PRIVATE2;
1033
1034 extent_clear_unlock_delalloc(inode, start,
1035 start + ram_size - 1, locked_page,
1036 EXTENT_LOCKED | EXTENT_DELALLOC,
1037 op);
1038 disk_num_bytes -= cur_alloc_size;
1039 num_bytes -= cur_alloc_size;
1040 alloc_hint = ins.objectid + ins.offset;
1041 start += cur_alloc_size;
1042 }
1043 out:
1044 return ret;
1045
1046 out_drop_extent_cache:
1047 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1048 out_reserve:
1049 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1050 out_unlock:
1051 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1052 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1053 EXTENT_DELALLOC | EXTENT_DEFRAG,
1054 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1055 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1056 goto out;
1057 }
1058
1059 /*
1060 * work queue call back to started compression on a file and pages
1061 */
1062 static noinline void async_cow_start(struct btrfs_work *work)
1063 {
1064 struct async_cow *async_cow;
1065 int num_added = 0;
1066 async_cow = container_of(work, struct async_cow, work);
1067
1068 compress_file_range(async_cow->inode, async_cow->locked_page,
1069 async_cow->start, async_cow->end, async_cow,
1070 &num_added);
1071 if (num_added == 0) {
1072 btrfs_add_delayed_iput(async_cow->inode);
1073 async_cow->inode = NULL;
1074 }
1075 }
1076
1077 /*
1078 * work queue call back to submit previously compressed pages
1079 */
1080 static noinline void async_cow_submit(struct btrfs_work *work)
1081 {
1082 struct async_cow *async_cow;
1083 struct btrfs_root *root;
1084 unsigned long nr_pages;
1085
1086 async_cow = container_of(work, struct async_cow, work);
1087
1088 root = async_cow->root;
1089 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1090 PAGE_CACHE_SHIFT;
1091
1092 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1093 5 * 1024 * 1024 &&
1094 waitqueue_active(&root->fs_info->async_submit_wait))
1095 wake_up(&root->fs_info->async_submit_wait);
1096
1097 if (async_cow->inode)
1098 submit_compressed_extents(async_cow->inode, async_cow);
1099 }
1100
1101 static noinline void async_cow_free(struct btrfs_work *work)
1102 {
1103 struct async_cow *async_cow;
1104 async_cow = container_of(work, struct async_cow, work);
1105 if (async_cow->inode)
1106 btrfs_add_delayed_iput(async_cow->inode);
1107 kfree(async_cow);
1108 }
1109
1110 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1111 u64 start, u64 end, int *page_started,
1112 unsigned long *nr_written)
1113 {
1114 struct async_cow *async_cow;
1115 struct btrfs_root *root = BTRFS_I(inode)->root;
1116 unsigned long nr_pages;
1117 u64 cur_end;
1118 int limit = 10 * 1024 * 1024;
1119
1120 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1121 1, 0, NULL, GFP_NOFS);
1122 while (start < end) {
1123 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1124 BUG_ON(!async_cow); /* -ENOMEM */
1125 async_cow->inode = igrab(inode);
1126 async_cow->root = root;
1127 async_cow->locked_page = locked_page;
1128 async_cow->start = start;
1129
1130 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1131 !btrfs_test_opt(root, FORCE_COMPRESS))
1132 cur_end = end;
1133 else
1134 cur_end = min(end, start + 512 * 1024 - 1);
1135
1136 async_cow->end = cur_end;
1137 INIT_LIST_HEAD(&async_cow->extents);
1138
1139 btrfs_init_work(&async_cow->work,
1140 btrfs_delalloc_helper,
1141 async_cow_start, async_cow_submit,
1142 async_cow_free);
1143
1144 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1145 PAGE_CACHE_SHIFT;
1146 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1147
1148 btrfs_queue_work(root->fs_info->delalloc_workers,
1149 &async_cow->work);
1150
1151 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1152 wait_event(root->fs_info->async_submit_wait,
1153 (atomic_read(&root->fs_info->async_delalloc_pages) <
1154 limit));
1155 }
1156
1157 while (atomic_read(&root->fs_info->async_submit_draining) &&
1158 atomic_read(&root->fs_info->async_delalloc_pages)) {
1159 wait_event(root->fs_info->async_submit_wait,
1160 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1161 0));
1162 }
1163
1164 *nr_written += nr_pages;
1165 start = cur_end + 1;
1166 }
1167 *page_started = 1;
1168 return 0;
1169 }
1170
1171 static noinline int csum_exist_in_range(struct btrfs_root *root,
1172 u64 bytenr, u64 num_bytes)
1173 {
1174 int ret;
1175 struct btrfs_ordered_sum *sums;
1176 LIST_HEAD(list);
1177
1178 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1179 bytenr + num_bytes - 1, &list, 0);
1180 if (ret == 0 && list_empty(&list))
1181 return 0;
1182
1183 while (!list_empty(&list)) {
1184 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1185 list_del(&sums->list);
1186 kfree(sums);
1187 }
1188 return 1;
1189 }
1190
1191 /*
1192 * when nowcow writeback call back. This checks for snapshots or COW copies
1193 * of the extents that exist in the file, and COWs the file as required.
1194 *
1195 * If no cow copies or snapshots exist, we write directly to the existing
1196 * blocks on disk
1197 */
1198 static noinline int run_delalloc_nocow(struct inode *inode,
1199 struct page *locked_page,
1200 u64 start, u64 end, int *page_started, int force,
1201 unsigned long *nr_written)
1202 {
1203 struct btrfs_root *root = BTRFS_I(inode)->root;
1204 struct btrfs_trans_handle *trans;
1205 struct extent_buffer *leaf;
1206 struct btrfs_path *path;
1207 struct btrfs_file_extent_item *fi;
1208 struct btrfs_key found_key;
1209 u64 cow_start;
1210 u64 cur_offset;
1211 u64 extent_end;
1212 u64 extent_offset;
1213 u64 disk_bytenr;
1214 u64 num_bytes;
1215 u64 disk_num_bytes;
1216 u64 ram_bytes;
1217 int extent_type;
1218 int ret, err;
1219 int type;
1220 int nocow;
1221 int check_prev = 1;
1222 bool nolock;
1223 u64 ino = btrfs_ino(inode);
1224
1225 path = btrfs_alloc_path();
1226 if (!path) {
1227 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1228 EXTENT_LOCKED | EXTENT_DELALLOC |
1229 EXTENT_DO_ACCOUNTING |
1230 EXTENT_DEFRAG, PAGE_UNLOCK |
1231 PAGE_CLEAR_DIRTY |
1232 PAGE_SET_WRITEBACK |
1233 PAGE_END_WRITEBACK);
1234 return -ENOMEM;
1235 }
1236
1237 nolock = btrfs_is_free_space_inode(inode);
1238
1239 if (nolock)
1240 trans = btrfs_join_transaction_nolock(root);
1241 else
1242 trans = btrfs_join_transaction(root);
1243
1244 if (IS_ERR(trans)) {
1245 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1246 EXTENT_LOCKED | EXTENT_DELALLOC |
1247 EXTENT_DO_ACCOUNTING |
1248 EXTENT_DEFRAG, PAGE_UNLOCK |
1249 PAGE_CLEAR_DIRTY |
1250 PAGE_SET_WRITEBACK |
1251 PAGE_END_WRITEBACK);
1252 btrfs_free_path(path);
1253 return PTR_ERR(trans);
1254 }
1255
1256 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1257
1258 cow_start = (u64)-1;
1259 cur_offset = start;
1260 while (1) {
1261 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1262 cur_offset, 0);
1263 if (ret < 0)
1264 goto error;
1265 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1266 leaf = path->nodes[0];
1267 btrfs_item_key_to_cpu(leaf, &found_key,
1268 path->slots[0] - 1);
1269 if (found_key.objectid == ino &&
1270 found_key.type == BTRFS_EXTENT_DATA_KEY)
1271 path->slots[0]--;
1272 }
1273 check_prev = 0;
1274 next_slot:
1275 leaf = path->nodes[0];
1276 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1277 ret = btrfs_next_leaf(root, path);
1278 if (ret < 0)
1279 goto error;
1280 if (ret > 0)
1281 break;
1282 leaf = path->nodes[0];
1283 }
1284
1285 nocow = 0;
1286 disk_bytenr = 0;
1287 num_bytes = 0;
1288 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1289
1290 if (found_key.objectid > ino ||
1291 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1292 found_key.offset > end)
1293 break;
1294
1295 if (found_key.offset > cur_offset) {
1296 extent_end = found_key.offset;
1297 extent_type = 0;
1298 goto out_check;
1299 }
1300
1301 fi = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_file_extent_item);
1303 extent_type = btrfs_file_extent_type(leaf, fi);
1304
1305 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1306 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1307 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1308 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1309 extent_offset = btrfs_file_extent_offset(leaf, fi);
1310 extent_end = found_key.offset +
1311 btrfs_file_extent_num_bytes(leaf, fi);
1312 disk_num_bytes =
1313 btrfs_file_extent_disk_num_bytes(leaf, fi);
1314 if (extent_end <= start) {
1315 path->slots[0]++;
1316 goto next_slot;
1317 }
1318 if (disk_bytenr == 0)
1319 goto out_check;
1320 if (btrfs_file_extent_compression(leaf, fi) ||
1321 btrfs_file_extent_encryption(leaf, fi) ||
1322 btrfs_file_extent_other_encoding(leaf, fi))
1323 goto out_check;
1324 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1325 goto out_check;
1326 if (btrfs_extent_readonly(root, disk_bytenr))
1327 goto out_check;
1328 if (btrfs_cross_ref_exist(trans, root, ino,
1329 found_key.offset -
1330 extent_offset, disk_bytenr))
1331 goto out_check;
1332 disk_bytenr += extent_offset;
1333 disk_bytenr += cur_offset - found_key.offset;
1334 num_bytes = min(end + 1, extent_end) - cur_offset;
1335 /*
1336 * if there are pending snapshots for this root,
1337 * we fall into common COW way.
1338 */
1339 if (!nolock) {
1340 err = btrfs_start_write_no_snapshoting(root);
1341 if (!err)
1342 goto out_check;
1343 }
1344 /*
1345 * force cow if csum exists in the range.
1346 * this ensure that csum for a given extent are
1347 * either valid or do not exist.
1348 */
1349 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1350 goto out_check;
1351 nocow = 1;
1352 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1353 extent_end = found_key.offset +
1354 btrfs_file_extent_inline_len(leaf,
1355 path->slots[0], fi);
1356 extent_end = ALIGN(extent_end, root->sectorsize);
1357 } else {
1358 BUG_ON(1);
1359 }
1360 out_check:
1361 if (extent_end <= start) {
1362 path->slots[0]++;
1363 if (!nolock && nocow)
1364 btrfs_end_write_no_snapshoting(root);
1365 goto next_slot;
1366 }
1367 if (!nocow) {
1368 if (cow_start == (u64)-1)
1369 cow_start = cur_offset;
1370 cur_offset = extent_end;
1371 if (cur_offset > end)
1372 break;
1373 path->slots[0]++;
1374 goto next_slot;
1375 }
1376
1377 btrfs_release_path(path);
1378 if (cow_start != (u64)-1) {
1379 ret = cow_file_range(inode, locked_page,
1380 cow_start, found_key.offset - 1,
1381 page_started, nr_written, 1);
1382 if (ret) {
1383 if (!nolock && nocow)
1384 btrfs_end_write_no_snapshoting(root);
1385 goto error;
1386 }
1387 cow_start = (u64)-1;
1388 }
1389
1390 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1391 struct extent_map *em;
1392 struct extent_map_tree *em_tree;
1393 em_tree = &BTRFS_I(inode)->extent_tree;
1394 em = alloc_extent_map();
1395 BUG_ON(!em); /* -ENOMEM */
1396 em->start = cur_offset;
1397 em->orig_start = found_key.offset - extent_offset;
1398 em->len = num_bytes;
1399 em->block_len = num_bytes;
1400 em->block_start = disk_bytenr;
1401 em->orig_block_len = disk_num_bytes;
1402 em->ram_bytes = ram_bytes;
1403 em->bdev = root->fs_info->fs_devices->latest_bdev;
1404 em->mod_start = em->start;
1405 em->mod_len = em->len;
1406 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1407 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1408 em->generation = -1;
1409 while (1) {
1410 write_lock(&em_tree->lock);
1411 ret = add_extent_mapping(em_tree, em, 1);
1412 write_unlock(&em_tree->lock);
1413 if (ret != -EEXIST) {
1414 free_extent_map(em);
1415 break;
1416 }
1417 btrfs_drop_extent_cache(inode, em->start,
1418 em->start + em->len - 1, 0);
1419 }
1420 type = BTRFS_ORDERED_PREALLOC;
1421 } else {
1422 type = BTRFS_ORDERED_NOCOW;
1423 }
1424
1425 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1426 num_bytes, num_bytes, type);
1427 BUG_ON(ret); /* -ENOMEM */
1428
1429 if (root->root_key.objectid ==
1430 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1431 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1432 num_bytes);
1433 if (ret) {
1434 if (!nolock && nocow)
1435 btrfs_end_write_no_snapshoting(root);
1436 goto error;
1437 }
1438 }
1439
1440 extent_clear_unlock_delalloc(inode, cur_offset,
1441 cur_offset + num_bytes - 1,
1442 locked_page, EXTENT_LOCKED |
1443 EXTENT_DELALLOC, PAGE_UNLOCK |
1444 PAGE_SET_PRIVATE2);
1445 if (!nolock && nocow)
1446 btrfs_end_write_no_snapshoting(root);
1447 cur_offset = extent_end;
1448 if (cur_offset > end)
1449 break;
1450 }
1451 btrfs_release_path(path);
1452
1453 if (cur_offset <= end && cow_start == (u64)-1) {
1454 cow_start = cur_offset;
1455 cur_offset = end;
1456 }
1457
1458 if (cow_start != (u64)-1) {
1459 ret = cow_file_range(inode, locked_page, cow_start, end,
1460 page_started, nr_written, 1);
1461 if (ret)
1462 goto error;
1463 }
1464
1465 error:
1466 err = btrfs_end_transaction(trans, root);
1467 if (!ret)
1468 ret = err;
1469
1470 if (ret && cur_offset < end)
1471 extent_clear_unlock_delalloc(inode, cur_offset, end,
1472 locked_page, EXTENT_LOCKED |
1473 EXTENT_DELALLOC | EXTENT_DEFRAG |
1474 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1475 PAGE_CLEAR_DIRTY |
1476 PAGE_SET_WRITEBACK |
1477 PAGE_END_WRITEBACK);
1478 btrfs_free_path(path);
1479 return ret;
1480 }
1481
1482 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1483 {
1484
1485 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1486 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1487 return 0;
1488
1489 /*
1490 * @defrag_bytes is a hint value, no spinlock held here,
1491 * if is not zero, it means the file is defragging.
1492 * Force cow if given extent needs to be defragged.
1493 */
1494 if (BTRFS_I(inode)->defrag_bytes &&
1495 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1496 EXTENT_DEFRAG, 0, NULL))
1497 return 1;
1498
1499 return 0;
1500 }
1501
1502 /*
1503 * extent_io.c call back to do delayed allocation processing
1504 */
1505 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1506 u64 start, u64 end, int *page_started,
1507 unsigned long *nr_written)
1508 {
1509 int ret;
1510 int force_cow = need_force_cow(inode, start, end);
1511
1512 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1513 ret = run_delalloc_nocow(inode, locked_page, start, end,
1514 page_started, 1, nr_written);
1515 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1516 ret = run_delalloc_nocow(inode, locked_page, start, end,
1517 page_started, 0, nr_written);
1518 } else if (!inode_need_compress(inode)) {
1519 ret = cow_file_range(inode, locked_page, start, end,
1520 page_started, nr_written, 1);
1521 } else {
1522 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1523 &BTRFS_I(inode)->runtime_flags);
1524 ret = cow_file_range_async(inode, locked_page, start, end,
1525 page_started, nr_written);
1526 }
1527 return ret;
1528 }
1529
1530 static void btrfs_split_extent_hook(struct inode *inode,
1531 struct extent_state *orig, u64 split)
1532 {
1533 /* not delalloc, ignore it */
1534 if (!(orig->state & EXTENT_DELALLOC))
1535 return;
1536
1537 spin_lock(&BTRFS_I(inode)->lock);
1538 BTRFS_I(inode)->outstanding_extents++;
1539 spin_unlock(&BTRFS_I(inode)->lock);
1540 }
1541
1542 /*
1543 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1544 * extents so we can keep track of new extents that are just merged onto old
1545 * extents, such as when we are doing sequential writes, so we can properly
1546 * account for the metadata space we'll need.
1547 */
1548 static void btrfs_merge_extent_hook(struct inode *inode,
1549 struct extent_state *new,
1550 struct extent_state *other)
1551 {
1552 /* not delalloc, ignore it */
1553 if (!(other->state & EXTENT_DELALLOC))
1554 return;
1555
1556 spin_lock(&BTRFS_I(inode)->lock);
1557 BTRFS_I(inode)->outstanding_extents--;
1558 spin_unlock(&BTRFS_I(inode)->lock);
1559 }
1560
1561 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1562 struct inode *inode)
1563 {
1564 spin_lock(&root->delalloc_lock);
1565 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1566 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1567 &root->delalloc_inodes);
1568 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1569 &BTRFS_I(inode)->runtime_flags);
1570 root->nr_delalloc_inodes++;
1571 if (root->nr_delalloc_inodes == 1) {
1572 spin_lock(&root->fs_info->delalloc_root_lock);
1573 BUG_ON(!list_empty(&root->delalloc_root));
1574 list_add_tail(&root->delalloc_root,
1575 &root->fs_info->delalloc_roots);
1576 spin_unlock(&root->fs_info->delalloc_root_lock);
1577 }
1578 }
1579 spin_unlock(&root->delalloc_lock);
1580 }
1581
1582 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1583 struct inode *inode)
1584 {
1585 spin_lock(&root->delalloc_lock);
1586 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1587 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1588 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1589 &BTRFS_I(inode)->runtime_flags);
1590 root->nr_delalloc_inodes--;
1591 if (!root->nr_delalloc_inodes) {
1592 spin_lock(&root->fs_info->delalloc_root_lock);
1593 BUG_ON(list_empty(&root->delalloc_root));
1594 list_del_init(&root->delalloc_root);
1595 spin_unlock(&root->fs_info->delalloc_root_lock);
1596 }
1597 }
1598 spin_unlock(&root->delalloc_lock);
1599 }
1600
1601 /*
1602 * extent_io.c set_bit_hook, used to track delayed allocation
1603 * bytes in this file, and to maintain the list of inodes that
1604 * have pending delalloc work to be done.
1605 */
1606 static void btrfs_set_bit_hook(struct inode *inode,
1607 struct extent_state *state, unsigned long *bits)
1608 {
1609
1610 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1611 WARN_ON(1);
1612 /*
1613 * set_bit and clear bit hooks normally require _irqsave/restore
1614 * but in this case, we are only testing for the DELALLOC
1615 * bit, which is only set or cleared with irqs on
1616 */
1617 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1618 struct btrfs_root *root = BTRFS_I(inode)->root;
1619 u64 len = state->end + 1 - state->start;
1620 bool do_list = !btrfs_is_free_space_inode(inode);
1621
1622 if (*bits & EXTENT_FIRST_DELALLOC) {
1623 *bits &= ~EXTENT_FIRST_DELALLOC;
1624 } else {
1625 spin_lock(&BTRFS_I(inode)->lock);
1626 BTRFS_I(inode)->outstanding_extents++;
1627 spin_unlock(&BTRFS_I(inode)->lock);
1628 }
1629
1630 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1631 root->fs_info->delalloc_batch);
1632 spin_lock(&BTRFS_I(inode)->lock);
1633 BTRFS_I(inode)->delalloc_bytes += len;
1634 if (*bits & EXTENT_DEFRAG)
1635 BTRFS_I(inode)->defrag_bytes += len;
1636 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1637 &BTRFS_I(inode)->runtime_flags))
1638 btrfs_add_delalloc_inodes(root, inode);
1639 spin_unlock(&BTRFS_I(inode)->lock);
1640 }
1641 }
1642
1643 /*
1644 * extent_io.c clear_bit_hook, see set_bit_hook for why
1645 */
1646 static void btrfs_clear_bit_hook(struct inode *inode,
1647 struct extent_state *state,
1648 unsigned long *bits)
1649 {
1650 u64 len = state->end + 1 - state->start;
1651
1652 spin_lock(&BTRFS_I(inode)->lock);
1653 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1654 BTRFS_I(inode)->defrag_bytes -= len;
1655 spin_unlock(&BTRFS_I(inode)->lock);
1656
1657 /*
1658 * set_bit and clear bit hooks normally require _irqsave/restore
1659 * but in this case, we are only testing for the DELALLOC
1660 * bit, which is only set or cleared with irqs on
1661 */
1662 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1663 struct btrfs_root *root = BTRFS_I(inode)->root;
1664 bool do_list = !btrfs_is_free_space_inode(inode);
1665
1666 if (*bits & EXTENT_FIRST_DELALLOC) {
1667 *bits &= ~EXTENT_FIRST_DELALLOC;
1668 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1669 spin_lock(&BTRFS_I(inode)->lock);
1670 BTRFS_I(inode)->outstanding_extents--;
1671 spin_unlock(&BTRFS_I(inode)->lock);
1672 }
1673
1674 /*
1675 * We don't reserve metadata space for space cache inodes so we
1676 * don't need to call dellalloc_release_metadata if there is an
1677 * error.
1678 */
1679 if (*bits & EXTENT_DO_ACCOUNTING &&
1680 root != root->fs_info->tree_root)
1681 btrfs_delalloc_release_metadata(inode, len);
1682
1683 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1684 && do_list && !(state->state & EXTENT_NORESERVE))
1685 btrfs_free_reserved_data_space(inode, len);
1686
1687 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1688 root->fs_info->delalloc_batch);
1689 spin_lock(&BTRFS_I(inode)->lock);
1690 BTRFS_I(inode)->delalloc_bytes -= len;
1691 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1692 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1693 &BTRFS_I(inode)->runtime_flags))
1694 btrfs_del_delalloc_inode(root, inode);
1695 spin_unlock(&BTRFS_I(inode)->lock);
1696 }
1697 }
1698
1699 /*
1700 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1701 * we don't create bios that span stripes or chunks
1702 */
1703 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1704 size_t size, struct bio *bio,
1705 unsigned long bio_flags)
1706 {
1707 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1708 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1709 u64 length = 0;
1710 u64 map_length;
1711 int ret;
1712
1713 if (bio_flags & EXTENT_BIO_COMPRESSED)
1714 return 0;
1715
1716 length = bio->bi_iter.bi_size;
1717 map_length = length;
1718 ret = btrfs_map_block(root->fs_info, rw, logical,
1719 &map_length, NULL, 0);
1720 /* Will always return 0 with map_multi == NULL */
1721 BUG_ON(ret < 0);
1722 if (map_length < length + size)
1723 return 1;
1724 return 0;
1725 }
1726
1727 /*
1728 * in order to insert checksums into the metadata in large chunks,
1729 * we wait until bio submission time. All the pages in the bio are
1730 * checksummed and sums are attached onto the ordered extent record.
1731 *
1732 * At IO completion time the cums attached on the ordered extent record
1733 * are inserted into the btree
1734 */
1735 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1736 struct bio *bio, int mirror_num,
1737 unsigned long bio_flags,
1738 u64 bio_offset)
1739 {
1740 struct btrfs_root *root = BTRFS_I(inode)->root;
1741 int ret = 0;
1742
1743 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1744 BUG_ON(ret); /* -ENOMEM */
1745 return 0;
1746 }
1747
1748 /*
1749 * in order to insert checksums into the metadata in large chunks,
1750 * we wait until bio submission time. All the pages in the bio are
1751 * checksummed and sums are attached onto the ordered extent record.
1752 *
1753 * At IO completion time the cums attached on the ordered extent record
1754 * are inserted into the btree
1755 */
1756 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1757 int mirror_num, unsigned long bio_flags,
1758 u64 bio_offset)
1759 {
1760 struct btrfs_root *root = BTRFS_I(inode)->root;
1761 int ret;
1762
1763 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1764 if (ret)
1765 bio_endio(bio, ret);
1766 return ret;
1767 }
1768
1769 /*
1770 * extent_io.c submission hook. This does the right thing for csum calculation
1771 * on write, or reading the csums from the tree before a read
1772 */
1773 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1774 int mirror_num, unsigned long bio_flags,
1775 u64 bio_offset)
1776 {
1777 struct btrfs_root *root = BTRFS_I(inode)->root;
1778 int ret = 0;
1779 int skip_sum;
1780 int metadata = 0;
1781 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1782
1783 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1784
1785 if (btrfs_is_free_space_inode(inode))
1786 metadata = 2;
1787
1788 if (!(rw & REQ_WRITE)) {
1789 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1790 if (ret)
1791 goto out;
1792
1793 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1794 ret = btrfs_submit_compressed_read(inode, bio,
1795 mirror_num,
1796 bio_flags);
1797 goto out;
1798 } else if (!skip_sum) {
1799 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1800 if (ret)
1801 goto out;
1802 }
1803 goto mapit;
1804 } else if (async && !skip_sum) {
1805 /* csum items have already been cloned */
1806 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1807 goto mapit;
1808 /* we're doing a write, do the async checksumming */
1809 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1810 inode, rw, bio, mirror_num,
1811 bio_flags, bio_offset,
1812 __btrfs_submit_bio_start,
1813 __btrfs_submit_bio_done);
1814 goto out;
1815 } else if (!skip_sum) {
1816 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1817 if (ret)
1818 goto out;
1819 }
1820
1821 mapit:
1822 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1823
1824 out:
1825 if (ret < 0)
1826 bio_endio(bio, ret);
1827 return ret;
1828 }
1829
1830 /*
1831 * given a list of ordered sums record them in the inode. This happens
1832 * at IO completion time based on sums calculated at bio submission time.
1833 */
1834 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1835 struct inode *inode, u64 file_offset,
1836 struct list_head *list)
1837 {
1838 struct btrfs_ordered_sum *sum;
1839
1840 list_for_each_entry(sum, list, list) {
1841 trans->adding_csums = 1;
1842 btrfs_csum_file_blocks(trans,
1843 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1844 trans->adding_csums = 0;
1845 }
1846 return 0;
1847 }
1848
1849 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1850 struct extent_state **cached_state)
1851 {
1852 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1853 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1854 cached_state, GFP_NOFS);
1855 }
1856
1857 /* see btrfs_writepage_start_hook for details on why this is required */
1858 struct btrfs_writepage_fixup {
1859 struct page *page;
1860 struct btrfs_work work;
1861 };
1862
1863 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1864 {
1865 struct btrfs_writepage_fixup *fixup;
1866 struct btrfs_ordered_extent *ordered;
1867 struct extent_state *cached_state = NULL;
1868 struct page *page;
1869 struct inode *inode;
1870 u64 page_start;
1871 u64 page_end;
1872 int ret;
1873
1874 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1875 page = fixup->page;
1876 again:
1877 lock_page(page);
1878 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1879 ClearPageChecked(page);
1880 goto out_page;
1881 }
1882
1883 inode = page->mapping->host;
1884 page_start = page_offset(page);
1885 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1886
1887 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1888 &cached_state);
1889
1890 /* already ordered? We're done */
1891 if (PagePrivate2(page))
1892 goto out;
1893
1894 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1895 if (ordered) {
1896 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1897 page_end, &cached_state, GFP_NOFS);
1898 unlock_page(page);
1899 btrfs_start_ordered_extent(inode, ordered, 1);
1900 btrfs_put_ordered_extent(ordered);
1901 goto again;
1902 }
1903
1904 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1905 if (ret) {
1906 mapping_set_error(page->mapping, ret);
1907 end_extent_writepage(page, ret, page_start, page_end);
1908 ClearPageChecked(page);
1909 goto out;
1910 }
1911
1912 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1913 ClearPageChecked(page);
1914 set_page_dirty(page);
1915 out:
1916 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1917 &cached_state, GFP_NOFS);
1918 out_page:
1919 unlock_page(page);
1920 page_cache_release(page);
1921 kfree(fixup);
1922 }
1923
1924 /*
1925 * There are a few paths in the higher layers of the kernel that directly
1926 * set the page dirty bit without asking the filesystem if it is a
1927 * good idea. This causes problems because we want to make sure COW
1928 * properly happens and the data=ordered rules are followed.
1929 *
1930 * In our case any range that doesn't have the ORDERED bit set
1931 * hasn't been properly setup for IO. We kick off an async process
1932 * to fix it up. The async helper will wait for ordered extents, set
1933 * the delalloc bit and make it safe to write the page.
1934 */
1935 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1936 {
1937 struct inode *inode = page->mapping->host;
1938 struct btrfs_writepage_fixup *fixup;
1939 struct btrfs_root *root = BTRFS_I(inode)->root;
1940
1941 /* this page is properly in the ordered list */
1942 if (TestClearPagePrivate2(page))
1943 return 0;
1944
1945 if (PageChecked(page))
1946 return -EAGAIN;
1947
1948 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1949 if (!fixup)
1950 return -EAGAIN;
1951
1952 SetPageChecked(page);
1953 page_cache_get(page);
1954 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
1955 btrfs_writepage_fixup_worker, NULL, NULL);
1956 fixup->page = page;
1957 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
1958 return -EBUSY;
1959 }
1960
1961 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1962 struct inode *inode, u64 file_pos,
1963 u64 disk_bytenr, u64 disk_num_bytes,
1964 u64 num_bytes, u64 ram_bytes,
1965 u8 compression, u8 encryption,
1966 u16 other_encoding, int extent_type)
1967 {
1968 struct btrfs_root *root = BTRFS_I(inode)->root;
1969 struct btrfs_file_extent_item *fi;
1970 struct btrfs_path *path;
1971 struct extent_buffer *leaf;
1972 struct btrfs_key ins;
1973 int extent_inserted = 0;
1974 int ret;
1975
1976 path = btrfs_alloc_path();
1977 if (!path)
1978 return -ENOMEM;
1979
1980 /*
1981 * we may be replacing one extent in the tree with another.
1982 * The new extent is pinned in the extent map, and we don't want
1983 * to drop it from the cache until it is completely in the btree.
1984 *
1985 * So, tell btrfs_drop_extents to leave this extent in the cache.
1986 * the caller is expected to unpin it and allow it to be merged
1987 * with the others.
1988 */
1989 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1990 file_pos + num_bytes, NULL, 0,
1991 1, sizeof(*fi), &extent_inserted);
1992 if (ret)
1993 goto out;
1994
1995 if (!extent_inserted) {
1996 ins.objectid = btrfs_ino(inode);
1997 ins.offset = file_pos;
1998 ins.type = BTRFS_EXTENT_DATA_KEY;
1999
2000 path->leave_spinning = 1;
2001 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2002 sizeof(*fi));
2003 if (ret)
2004 goto out;
2005 }
2006 leaf = path->nodes[0];
2007 fi = btrfs_item_ptr(leaf, path->slots[0],
2008 struct btrfs_file_extent_item);
2009 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2010 btrfs_set_file_extent_type(leaf, fi, extent_type);
2011 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2012 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2013 btrfs_set_file_extent_offset(leaf, fi, 0);
2014 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2015 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2016 btrfs_set_file_extent_compression(leaf, fi, compression);
2017 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2018 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2019
2020 btrfs_mark_buffer_dirty(leaf);
2021 btrfs_release_path(path);
2022
2023 inode_add_bytes(inode, num_bytes);
2024
2025 ins.objectid = disk_bytenr;
2026 ins.offset = disk_num_bytes;
2027 ins.type = BTRFS_EXTENT_ITEM_KEY;
2028 ret = btrfs_alloc_reserved_file_extent(trans, root,
2029 root->root_key.objectid,
2030 btrfs_ino(inode), file_pos, &ins);
2031 out:
2032 btrfs_free_path(path);
2033
2034 return ret;
2035 }
2036
2037 /* snapshot-aware defrag */
2038 struct sa_defrag_extent_backref {
2039 struct rb_node node;
2040 struct old_sa_defrag_extent *old;
2041 u64 root_id;
2042 u64 inum;
2043 u64 file_pos;
2044 u64 extent_offset;
2045 u64 num_bytes;
2046 u64 generation;
2047 };
2048
2049 struct old_sa_defrag_extent {
2050 struct list_head list;
2051 struct new_sa_defrag_extent *new;
2052
2053 u64 extent_offset;
2054 u64 bytenr;
2055 u64 offset;
2056 u64 len;
2057 int count;
2058 };
2059
2060 struct new_sa_defrag_extent {
2061 struct rb_root root;
2062 struct list_head head;
2063 struct btrfs_path *path;
2064 struct inode *inode;
2065 u64 file_pos;
2066 u64 len;
2067 u64 bytenr;
2068 u64 disk_len;
2069 u8 compress_type;
2070 };
2071
2072 static int backref_comp(struct sa_defrag_extent_backref *b1,
2073 struct sa_defrag_extent_backref *b2)
2074 {
2075 if (b1->root_id < b2->root_id)
2076 return -1;
2077 else if (b1->root_id > b2->root_id)
2078 return 1;
2079
2080 if (b1->inum < b2->inum)
2081 return -1;
2082 else if (b1->inum > b2->inum)
2083 return 1;
2084
2085 if (b1->file_pos < b2->file_pos)
2086 return -1;
2087 else if (b1->file_pos > b2->file_pos)
2088 return 1;
2089
2090 /*
2091 * [------------------------------] ===> (a range of space)
2092 * |<--->| |<---->| =============> (fs/file tree A)
2093 * |<---------------------------->| ===> (fs/file tree B)
2094 *
2095 * A range of space can refer to two file extents in one tree while
2096 * refer to only one file extent in another tree.
2097 *
2098 * So we may process a disk offset more than one time(two extents in A)
2099 * and locate at the same extent(one extent in B), then insert two same
2100 * backrefs(both refer to the extent in B).
2101 */
2102 return 0;
2103 }
2104
2105 static void backref_insert(struct rb_root *root,
2106 struct sa_defrag_extent_backref *backref)
2107 {
2108 struct rb_node **p = &root->rb_node;
2109 struct rb_node *parent = NULL;
2110 struct sa_defrag_extent_backref *entry;
2111 int ret;
2112
2113 while (*p) {
2114 parent = *p;
2115 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2116
2117 ret = backref_comp(backref, entry);
2118 if (ret < 0)
2119 p = &(*p)->rb_left;
2120 else
2121 p = &(*p)->rb_right;
2122 }
2123
2124 rb_link_node(&backref->node, parent, p);
2125 rb_insert_color(&backref->node, root);
2126 }
2127
2128 /*
2129 * Note the backref might has changed, and in this case we just return 0.
2130 */
2131 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2132 void *ctx)
2133 {
2134 struct btrfs_file_extent_item *extent;
2135 struct btrfs_fs_info *fs_info;
2136 struct old_sa_defrag_extent *old = ctx;
2137 struct new_sa_defrag_extent *new = old->new;
2138 struct btrfs_path *path = new->path;
2139 struct btrfs_key key;
2140 struct btrfs_root *root;
2141 struct sa_defrag_extent_backref *backref;
2142 struct extent_buffer *leaf;
2143 struct inode *inode = new->inode;
2144 int slot;
2145 int ret;
2146 u64 extent_offset;
2147 u64 num_bytes;
2148
2149 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2150 inum == btrfs_ino(inode))
2151 return 0;
2152
2153 key.objectid = root_id;
2154 key.type = BTRFS_ROOT_ITEM_KEY;
2155 key.offset = (u64)-1;
2156
2157 fs_info = BTRFS_I(inode)->root->fs_info;
2158 root = btrfs_read_fs_root_no_name(fs_info, &key);
2159 if (IS_ERR(root)) {
2160 if (PTR_ERR(root) == -ENOENT)
2161 return 0;
2162 WARN_ON(1);
2163 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2164 inum, offset, root_id);
2165 return PTR_ERR(root);
2166 }
2167
2168 key.objectid = inum;
2169 key.type = BTRFS_EXTENT_DATA_KEY;
2170 if (offset > (u64)-1 << 32)
2171 key.offset = 0;
2172 else
2173 key.offset = offset;
2174
2175 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2176 if (WARN_ON(ret < 0))
2177 return ret;
2178 ret = 0;
2179
2180 while (1) {
2181 cond_resched();
2182
2183 leaf = path->nodes[0];
2184 slot = path->slots[0];
2185
2186 if (slot >= btrfs_header_nritems(leaf)) {
2187 ret = btrfs_next_leaf(root, path);
2188 if (ret < 0) {
2189 goto out;
2190 } else if (ret > 0) {
2191 ret = 0;
2192 goto out;
2193 }
2194 continue;
2195 }
2196
2197 path->slots[0]++;
2198
2199 btrfs_item_key_to_cpu(leaf, &key, slot);
2200
2201 if (key.objectid > inum)
2202 goto out;
2203
2204 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2205 continue;
2206
2207 extent = btrfs_item_ptr(leaf, slot,
2208 struct btrfs_file_extent_item);
2209
2210 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2211 continue;
2212
2213 /*
2214 * 'offset' refers to the exact key.offset,
2215 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2216 * (key.offset - extent_offset).
2217 */
2218 if (key.offset != offset)
2219 continue;
2220
2221 extent_offset = btrfs_file_extent_offset(leaf, extent);
2222 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2223
2224 if (extent_offset >= old->extent_offset + old->offset +
2225 old->len || extent_offset + num_bytes <=
2226 old->extent_offset + old->offset)
2227 continue;
2228 break;
2229 }
2230
2231 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2232 if (!backref) {
2233 ret = -ENOENT;
2234 goto out;
2235 }
2236
2237 backref->root_id = root_id;
2238 backref->inum = inum;
2239 backref->file_pos = offset;
2240 backref->num_bytes = num_bytes;
2241 backref->extent_offset = extent_offset;
2242 backref->generation = btrfs_file_extent_generation(leaf, extent);
2243 backref->old = old;
2244 backref_insert(&new->root, backref);
2245 old->count++;
2246 out:
2247 btrfs_release_path(path);
2248 WARN_ON(ret);
2249 return ret;
2250 }
2251
2252 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2253 struct new_sa_defrag_extent *new)
2254 {
2255 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2256 struct old_sa_defrag_extent *old, *tmp;
2257 int ret;
2258
2259 new->path = path;
2260
2261 list_for_each_entry_safe(old, tmp, &new->head, list) {
2262 ret = iterate_inodes_from_logical(old->bytenr +
2263 old->extent_offset, fs_info,
2264 path, record_one_backref,
2265 old);
2266 if (ret < 0 && ret != -ENOENT)
2267 return false;
2268
2269 /* no backref to be processed for this extent */
2270 if (!old->count) {
2271 list_del(&old->list);
2272 kfree(old);
2273 }
2274 }
2275
2276 if (list_empty(&new->head))
2277 return false;
2278
2279 return true;
2280 }
2281
2282 static int relink_is_mergable(struct extent_buffer *leaf,
2283 struct btrfs_file_extent_item *fi,
2284 struct new_sa_defrag_extent *new)
2285 {
2286 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2287 return 0;
2288
2289 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2290 return 0;
2291
2292 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2293 return 0;
2294
2295 if (btrfs_file_extent_encryption(leaf, fi) ||
2296 btrfs_file_extent_other_encoding(leaf, fi))
2297 return 0;
2298
2299 return 1;
2300 }
2301
2302 /*
2303 * Note the backref might has changed, and in this case we just return 0.
2304 */
2305 static noinline int relink_extent_backref(struct btrfs_path *path,
2306 struct sa_defrag_extent_backref *prev,
2307 struct sa_defrag_extent_backref *backref)
2308 {
2309 struct btrfs_file_extent_item *extent;
2310 struct btrfs_file_extent_item *item;
2311 struct btrfs_ordered_extent *ordered;
2312 struct btrfs_trans_handle *trans;
2313 struct btrfs_fs_info *fs_info;
2314 struct btrfs_root *root;
2315 struct btrfs_key key;
2316 struct extent_buffer *leaf;
2317 struct old_sa_defrag_extent *old = backref->old;
2318 struct new_sa_defrag_extent *new = old->new;
2319 struct inode *src_inode = new->inode;
2320 struct inode *inode;
2321 struct extent_state *cached = NULL;
2322 int ret = 0;
2323 u64 start;
2324 u64 len;
2325 u64 lock_start;
2326 u64 lock_end;
2327 bool merge = false;
2328 int index;
2329
2330 if (prev && prev->root_id == backref->root_id &&
2331 prev->inum == backref->inum &&
2332 prev->file_pos + prev->num_bytes == backref->file_pos)
2333 merge = true;
2334
2335 /* step 1: get root */
2336 key.objectid = backref->root_id;
2337 key.type = BTRFS_ROOT_ITEM_KEY;
2338 key.offset = (u64)-1;
2339
2340 fs_info = BTRFS_I(src_inode)->root->fs_info;
2341 index = srcu_read_lock(&fs_info->subvol_srcu);
2342
2343 root = btrfs_read_fs_root_no_name(fs_info, &key);
2344 if (IS_ERR(root)) {
2345 srcu_read_unlock(&fs_info->subvol_srcu, index);
2346 if (PTR_ERR(root) == -ENOENT)
2347 return 0;
2348 return PTR_ERR(root);
2349 }
2350
2351 if (btrfs_root_readonly(root)) {
2352 srcu_read_unlock(&fs_info->subvol_srcu, index);
2353 return 0;
2354 }
2355
2356 /* step 2: get inode */
2357 key.objectid = backref->inum;
2358 key.type = BTRFS_INODE_ITEM_KEY;
2359 key.offset = 0;
2360
2361 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2362 if (IS_ERR(inode)) {
2363 srcu_read_unlock(&fs_info->subvol_srcu, index);
2364 return 0;
2365 }
2366
2367 srcu_read_unlock(&fs_info->subvol_srcu, index);
2368
2369 /* step 3: relink backref */
2370 lock_start = backref->file_pos;
2371 lock_end = backref->file_pos + backref->num_bytes - 1;
2372 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2373 0, &cached);
2374
2375 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2376 if (ordered) {
2377 btrfs_put_ordered_extent(ordered);
2378 goto out_unlock;
2379 }
2380
2381 trans = btrfs_join_transaction(root);
2382 if (IS_ERR(trans)) {
2383 ret = PTR_ERR(trans);
2384 goto out_unlock;
2385 }
2386
2387 key.objectid = backref->inum;
2388 key.type = BTRFS_EXTENT_DATA_KEY;
2389 key.offset = backref->file_pos;
2390
2391 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2392 if (ret < 0) {
2393 goto out_free_path;
2394 } else if (ret > 0) {
2395 ret = 0;
2396 goto out_free_path;
2397 }
2398
2399 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2400 struct btrfs_file_extent_item);
2401
2402 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2403 backref->generation)
2404 goto out_free_path;
2405
2406 btrfs_release_path(path);
2407
2408 start = backref->file_pos;
2409 if (backref->extent_offset < old->extent_offset + old->offset)
2410 start += old->extent_offset + old->offset -
2411 backref->extent_offset;
2412
2413 len = min(backref->extent_offset + backref->num_bytes,
2414 old->extent_offset + old->offset + old->len);
2415 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2416
2417 ret = btrfs_drop_extents(trans, root, inode, start,
2418 start + len, 1);
2419 if (ret)
2420 goto out_free_path;
2421 again:
2422 key.objectid = btrfs_ino(inode);
2423 key.type = BTRFS_EXTENT_DATA_KEY;
2424 key.offset = start;
2425
2426 path->leave_spinning = 1;
2427 if (merge) {
2428 struct btrfs_file_extent_item *fi;
2429 u64 extent_len;
2430 struct btrfs_key found_key;
2431
2432 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2433 if (ret < 0)
2434 goto out_free_path;
2435
2436 path->slots[0]--;
2437 leaf = path->nodes[0];
2438 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2439
2440 fi = btrfs_item_ptr(leaf, path->slots[0],
2441 struct btrfs_file_extent_item);
2442 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2443
2444 if (extent_len + found_key.offset == start &&
2445 relink_is_mergable(leaf, fi, new)) {
2446 btrfs_set_file_extent_num_bytes(leaf, fi,
2447 extent_len + len);
2448 btrfs_mark_buffer_dirty(leaf);
2449 inode_add_bytes(inode, len);
2450
2451 ret = 1;
2452 goto out_free_path;
2453 } else {
2454 merge = false;
2455 btrfs_release_path(path);
2456 goto again;
2457 }
2458 }
2459
2460 ret = btrfs_insert_empty_item(trans, root, path, &key,
2461 sizeof(*extent));
2462 if (ret) {
2463 btrfs_abort_transaction(trans, root, ret);
2464 goto out_free_path;
2465 }
2466
2467 leaf = path->nodes[0];
2468 item = btrfs_item_ptr(leaf, path->slots[0],
2469 struct btrfs_file_extent_item);
2470 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2471 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2472 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2473 btrfs_set_file_extent_num_bytes(leaf, item, len);
2474 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2475 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2476 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2477 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2478 btrfs_set_file_extent_encryption(leaf, item, 0);
2479 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2480
2481 btrfs_mark_buffer_dirty(leaf);
2482 inode_add_bytes(inode, len);
2483 btrfs_release_path(path);
2484
2485 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2486 new->disk_len, 0,
2487 backref->root_id, backref->inum,
2488 new->file_pos, 0); /* start - extent_offset */
2489 if (ret) {
2490 btrfs_abort_transaction(trans, root, ret);
2491 goto out_free_path;
2492 }
2493
2494 ret = 1;
2495 out_free_path:
2496 btrfs_release_path(path);
2497 path->leave_spinning = 0;
2498 btrfs_end_transaction(trans, root);
2499 out_unlock:
2500 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2501 &cached, GFP_NOFS);
2502 iput(inode);
2503 return ret;
2504 }
2505
2506 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2507 {
2508 struct old_sa_defrag_extent *old, *tmp;
2509
2510 if (!new)
2511 return;
2512
2513 list_for_each_entry_safe(old, tmp, &new->head, list) {
2514 list_del(&old->list);
2515 kfree(old);
2516 }
2517 kfree(new);
2518 }
2519
2520 static void relink_file_extents(struct new_sa_defrag_extent *new)
2521 {
2522 struct btrfs_path *path;
2523 struct sa_defrag_extent_backref *backref;
2524 struct sa_defrag_extent_backref *prev = NULL;
2525 struct inode *inode;
2526 struct btrfs_root *root;
2527 struct rb_node *node;
2528 int ret;
2529
2530 inode = new->inode;
2531 root = BTRFS_I(inode)->root;
2532
2533 path = btrfs_alloc_path();
2534 if (!path)
2535 return;
2536
2537 if (!record_extent_backrefs(path, new)) {
2538 btrfs_free_path(path);
2539 goto out;
2540 }
2541 btrfs_release_path(path);
2542
2543 while (1) {
2544 node = rb_first(&new->root);
2545 if (!node)
2546 break;
2547 rb_erase(node, &new->root);
2548
2549 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2550
2551 ret = relink_extent_backref(path, prev, backref);
2552 WARN_ON(ret < 0);
2553
2554 kfree(prev);
2555
2556 if (ret == 1)
2557 prev = backref;
2558 else
2559 prev = NULL;
2560 cond_resched();
2561 }
2562 kfree(prev);
2563
2564 btrfs_free_path(path);
2565 out:
2566 free_sa_defrag_extent(new);
2567
2568 atomic_dec(&root->fs_info->defrag_running);
2569 wake_up(&root->fs_info->transaction_wait);
2570 }
2571
2572 static struct new_sa_defrag_extent *
2573 record_old_file_extents(struct inode *inode,
2574 struct btrfs_ordered_extent *ordered)
2575 {
2576 struct btrfs_root *root = BTRFS_I(inode)->root;
2577 struct btrfs_path *path;
2578 struct btrfs_key key;
2579 struct old_sa_defrag_extent *old;
2580 struct new_sa_defrag_extent *new;
2581 int ret;
2582
2583 new = kmalloc(sizeof(*new), GFP_NOFS);
2584 if (!new)
2585 return NULL;
2586
2587 new->inode = inode;
2588 new->file_pos = ordered->file_offset;
2589 new->len = ordered->len;
2590 new->bytenr = ordered->start;
2591 new->disk_len = ordered->disk_len;
2592 new->compress_type = ordered->compress_type;
2593 new->root = RB_ROOT;
2594 INIT_LIST_HEAD(&new->head);
2595
2596 path = btrfs_alloc_path();
2597 if (!path)
2598 goto out_kfree;
2599
2600 key.objectid = btrfs_ino(inode);
2601 key.type = BTRFS_EXTENT_DATA_KEY;
2602 key.offset = new->file_pos;
2603
2604 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2605 if (ret < 0)
2606 goto out_free_path;
2607 if (ret > 0 && path->slots[0] > 0)
2608 path->slots[0]--;
2609
2610 /* find out all the old extents for the file range */
2611 while (1) {
2612 struct btrfs_file_extent_item *extent;
2613 struct extent_buffer *l;
2614 int slot;
2615 u64 num_bytes;
2616 u64 offset;
2617 u64 end;
2618 u64 disk_bytenr;
2619 u64 extent_offset;
2620
2621 l = path->nodes[0];
2622 slot = path->slots[0];
2623
2624 if (slot >= btrfs_header_nritems(l)) {
2625 ret = btrfs_next_leaf(root, path);
2626 if (ret < 0)
2627 goto out_free_path;
2628 else if (ret > 0)
2629 break;
2630 continue;
2631 }
2632
2633 btrfs_item_key_to_cpu(l, &key, slot);
2634
2635 if (key.objectid != btrfs_ino(inode))
2636 break;
2637 if (key.type != BTRFS_EXTENT_DATA_KEY)
2638 break;
2639 if (key.offset >= new->file_pos + new->len)
2640 break;
2641
2642 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2643
2644 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2645 if (key.offset + num_bytes < new->file_pos)
2646 goto next;
2647
2648 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2649 if (!disk_bytenr)
2650 goto next;
2651
2652 extent_offset = btrfs_file_extent_offset(l, extent);
2653
2654 old = kmalloc(sizeof(*old), GFP_NOFS);
2655 if (!old)
2656 goto out_free_path;
2657
2658 offset = max(new->file_pos, key.offset);
2659 end = min(new->file_pos + new->len, key.offset + num_bytes);
2660
2661 old->bytenr = disk_bytenr;
2662 old->extent_offset = extent_offset;
2663 old->offset = offset - key.offset;
2664 old->len = end - offset;
2665 old->new = new;
2666 old->count = 0;
2667 list_add_tail(&old->list, &new->head);
2668 next:
2669 path->slots[0]++;
2670 cond_resched();
2671 }
2672
2673 btrfs_free_path(path);
2674 atomic_inc(&root->fs_info->defrag_running);
2675
2676 return new;
2677
2678 out_free_path:
2679 btrfs_free_path(path);
2680 out_kfree:
2681 free_sa_defrag_extent(new);
2682 return NULL;
2683 }
2684
2685 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2686 u64 start, u64 len)
2687 {
2688 struct btrfs_block_group_cache *cache;
2689
2690 cache = btrfs_lookup_block_group(root->fs_info, start);
2691 ASSERT(cache);
2692
2693 spin_lock(&cache->lock);
2694 cache->delalloc_bytes -= len;
2695 spin_unlock(&cache->lock);
2696
2697 btrfs_put_block_group(cache);
2698 }
2699
2700 /* as ordered data IO finishes, this gets called so we can finish
2701 * an ordered extent if the range of bytes in the file it covers are
2702 * fully written.
2703 */
2704 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2705 {
2706 struct inode *inode = ordered_extent->inode;
2707 struct btrfs_root *root = BTRFS_I(inode)->root;
2708 struct btrfs_trans_handle *trans = NULL;
2709 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2710 struct extent_state *cached_state = NULL;
2711 struct new_sa_defrag_extent *new = NULL;
2712 int compress_type = 0;
2713 int ret = 0;
2714 u64 logical_len = ordered_extent->len;
2715 bool nolock;
2716 bool truncated = false;
2717
2718 nolock = btrfs_is_free_space_inode(inode);
2719
2720 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2721 ret = -EIO;
2722 goto out;
2723 }
2724
2725 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2726 ordered_extent->file_offset +
2727 ordered_extent->len - 1);
2728
2729 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2730 truncated = true;
2731 logical_len = ordered_extent->truncated_len;
2732 /* Truncated the entire extent, don't bother adding */
2733 if (!logical_len)
2734 goto out;
2735 }
2736
2737 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2738 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2739 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2740 if (nolock)
2741 trans = btrfs_join_transaction_nolock(root);
2742 else
2743 trans = btrfs_join_transaction(root);
2744 if (IS_ERR(trans)) {
2745 ret = PTR_ERR(trans);
2746 trans = NULL;
2747 goto out;
2748 }
2749 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2750 ret = btrfs_update_inode_fallback(trans, root, inode);
2751 if (ret) /* -ENOMEM or corruption */
2752 btrfs_abort_transaction(trans, root, ret);
2753 goto out;
2754 }
2755
2756 lock_extent_bits(io_tree, ordered_extent->file_offset,
2757 ordered_extent->file_offset + ordered_extent->len - 1,
2758 0, &cached_state);
2759
2760 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2761 ordered_extent->file_offset + ordered_extent->len - 1,
2762 EXTENT_DEFRAG, 1, cached_state);
2763 if (ret) {
2764 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2765 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2766 /* the inode is shared */
2767 new = record_old_file_extents(inode, ordered_extent);
2768
2769 clear_extent_bit(io_tree, ordered_extent->file_offset,
2770 ordered_extent->file_offset + ordered_extent->len - 1,
2771 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2772 }
2773
2774 if (nolock)
2775 trans = btrfs_join_transaction_nolock(root);
2776 else
2777 trans = btrfs_join_transaction(root);
2778 if (IS_ERR(trans)) {
2779 ret = PTR_ERR(trans);
2780 trans = NULL;
2781 goto out_unlock;
2782 }
2783
2784 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2785
2786 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2787 compress_type = ordered_extent->compress_type;
2788 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2789 BUG_ON(compress_type);
2790 ret = btrfs_mark_extent_written(trans, inode,
2791 ordered_extent->file_offset,
2792 ordered_extent->file_offset +
2793 logical_len);
2794 } else {
2795 BUG_ON(root == root->fs_info->tree_root);
2796 ret = insert_reserved_file_extent(trans, inode,
2797 ordered_extent->file_offset,
2798 ordered_extent->start,
2799 ordered_extent->disk_len,
2800 logical_len, logical_len,
2801 compress_type, 0, 0,
2802 BTRFS_FILE_EXTENT_REG);
2803 if (!ret)
2804 btrfs_release_delalloc_bytes(root,
2805 ordered_extent->start,
2806 ordered_extent->disk_len);
2807 }
2808 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2809 ordered_extent->file_offset, ordered_extent->len,
2810 trans->transid);
2811 if (ret < 0) {
2812 btrfs_abort_transaction(trans, root, ret);
2813 goto out_unlock;
2814 }
2815
2816 add_pending_csums(trans, inode, ordered_extent->file_offset,
2817 &ordered_extent->list);
2818
2819 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2820 ret = btrfs_update_inode_fallback(trans, root, inode);
2821 if (ret) { /* -ENOMEM or corruption */
2822 btrfs_abort_transaction(trans, root, ret);
2823 goto out_unlock;
2824 }
2825 ret = 0;
2826 out_unlock:
2827 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2828 ordered_extent->file_offset +
2829 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2830 out:
2831 if (root != root->fs_info->tree_root)
2832 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2833 if (trans)
2834 btrfs_end_transaction(trans, root);
2835
2836 if (ret || truncated) {
2837 u64 start, end;
2838
2839 if (truncated)
2840 start = ordered_extent->file_offset + logical_len;
2841 else
2842 start = ordered_extent->file_offset;
2843 end = ordered_extent->file_offset + ordered_extent->len - 1;
2844 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2845
2846 /* Drop the cache for the part of the extent we didn't write. */
2847 btrfs_drop_extent_cache(inode, start, end, 0);
2848
2849 /*
2850 * If the ordered extent had an IOERR or something else went
2851 * wrong we need to return the space for this ordered extent
2852 * back to the allocator. We only free the extent in the
2853 * truncated case if we didn't write out the extent at all.
2854 */
2855 if ((ret || !logical_len) &&
2856 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2857 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2858 btrfs_free_reserved_extent(root, ordered_extent->start,
2859 ordered_extent->disk_len, 1);
2860 }
2861
2862
2863 /*
2864 * This needs to be done to make sure anybody waiting knows we are done
2865 * updating everything for this ordered extent.
2866 */
2867 btrfs_remove_ordered_extent(inode, ordered_extent);
2868
2869 /* for snapshot-aware defrag */
2870 if (new) {
2871 if (ret) {
2872 free_sa_defrag_extent(new);
2873 atomic_dec(&root->fs_info->defrag_running);
2874 } else {
2875 relink_file_extents(new);
2876 }
2877 }
2878
2879 /* once for us */
2880 btrfs_put_ordered_extent(ordered_extent);
2881 /* once for the tree */
2882 btrfs_put_ordered_extent(ordered_extent);
2883
2884 return ret;
2885 }
2886
2887 static void finish_ordered_fn(struct btrfs_work *work)
2888 {
2889 struct btrfs_ordered_extent *ordered_extent;
2890 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2891 btrfs_finish_ordered_io(ordered_extent);
2892 }
2893
2894 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2895 struct extent_state *state, int uptodate)
2896 {
2897 struct inode *inode = page->mapping->host;
2898 struct btrfs_root *root = BTRFS_I(inode)->root;
2899 struct btrfs_ordered_extent *ordered_extent = NULL;
2900 struct btrfs_workqueue *wq;
2901 btrfs_work_func_t func;
2902
2903 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2904
2905 ClearPagePrivate2(page);
2906 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2907 end - start + 1, uptodate))
2908 return 0;
2909
2910 if (btrfs_is_free_space_inode(inode)) {
2911 wq = root->fs_info->endio_freespace_worker;
2912 func = btrfs_freespace_write_helper;
2913 } else {
2914 wq = root->fs_info->endio_write_workers;
2915 func = btrfs_endio_write_helper;
2916 }
2917
2918 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
2919 NULL);
2920 btrfs_queue_work(wq, &ordered_extent->work);
2921
2922 return 0;
2923 }
2924
2925 static int __readpage_endio_check(struct inode *inode,
2926 struct btrfs_io_bio *io_bio,
2927 int icsum, struct page *page,
2928 int pgoff, u64 start, size_t len)
2929 {
2930 char *kaddr;
2931 u32 csum_expected;
2932 u32 csum = ~(u32)0;
2933 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2934 DEFAULT_RATELIMIT_BURST);
2935
2936 csum_expected = *(((u32 *)io_bio->csum) + icsum);
2937
2938 kaddr = kmap_atomic(page);
2939 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
2940 btrfs_csum_final(csum, (char *)&csum);
2941 if (csum != csum_expected)
2942 goto zeroit;
2943
2944 kunmap_atomic(kaddr);
2945 return 0;
2946 zeroit:
2947 if (__ratelimit(&_rs))
2948 btrfs_info(BTRFS_I(inode)->root->fs_info,
2949 "csum failed ino %llu off %llu csum %u expected csum %u",
2950 btrfs_ino(inode), start, csum, csum_expected);
2951 memset(kaddr + pgoff, 1, len);
2952 flush_dcache_page(page);
2953 kunmap_atomic(kaddr);
2954 if (csum_expected == 0)
2955 return 0;
2956 return -EIO;
2957 }
2958
2959 /*
2960 * when reads are done, we need to check csums to verify the data is correct
2961 * if there's a match, we allow the bio to finish. If not, the code in
2962 * extent_io.c will try to find good copies for us.
2963 */
2964 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2965 u64 phy_offset, struct page *page,
2966 u64 start, u64 end, int mirror)
2967 {
2968 size_t offset = start - page_offset(page);
2969 struct inode *inode = page->mapping->host;
2970 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2971 struct btrfs_root *root = BTRFS_I(inode)->root;
2972
2973 if (PageChecked(page)) {
2974 ClearPageChecked(page);
2975 return 0;
2976 }
2977
2978 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2979 return 0;
2980
2981 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2982 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2983 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2984 GFP_NOFS);
2985 return 0;
2986 }
2987
2988 phy_offset >>= inode->i_sb->s_blocksize_bits;
2989 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
2990 start, (size_t)(end - start + 1));
2991 }
2992
2993 struct delayed_iput {
2994 struct list_head list;
2995 struct inode *inode;
2996 };
2997
2998 /* JDM: If this is fs-wide, why can't we add a pointer to
2999 * btrfs_inode instead and avoid the allocation? */
3000 void btrfs_add_delayed_iput(struct inode *inode)
3001 {
3002 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3003 struct delayed_iput *delayed;
3004
3005 if (atomic_add_unless(&inode->i_count, -1, 1))
3006 return;
3007
3008 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3009 delayed->inode = inode;
3010
3011 spin_lock(&fs_info->delayed_iput_lock);
3012 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3013 spin_unlock(&fs_info->delayed_iput_lock);
3014 }
3015
3016 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3017 {
3018 LIST_HEAD(list);
3019 struct btrfs_fs_info *fs_info = root->fs_info;
3020 struct delayed_iput *delayed;
3021 int empty;
3022
3023 spin_lock(&fs_info->delayed_iput_lock);
3024 empty = list_empty(&fs_info->delayed_iputs);
3025 spin_unlock(&fs_info->delayed_iput_lock);
3026 if (empty)
3027 return;
3028
3029 spin_lock(&fs_info->delayed_iput_lock);
3030 list_splice_init(&fs_info->delayed_iputs, &list);
3031 spin_unlock(&fs_info->delayed_iput_lock);
3032
3033 while (!list_empty(&list)) {
3034 delayed = list_entry(list.next, struct delayed_iput, list);
3035 list_del(&delayed->list);
3036 iput(delayed->inode);
3037 kfree(delayed);
3038 }
3039 }
3040
3041 /*
3042 * This is called in transaction commit time. If there are no orphan
3043 * files in the subvolume, it removes orphan item and frees block_rsv
3044 * structure.
3045 */
3046 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3047 struct btrfs_root *root)
3048 {
3049 struct btrfs_block_rsv *block_rsv;
3050 int ret;
3051
3052 if (atomic_read(&root->orphan_inodes) ||
3053 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3054 return;
3055
3056 spin_lock(&root->orphan_lock);
3057 if (atomic_read(&root->orphan_inodes)) {
3058 spin_unlock(&root->orphan_lock);
3059 return;
3060 }
3061
3062 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3063 spin_unlock(&root->orphan_lock);
3064 return;
3065 }
3066
3067 block_rsv = root->orphan_block_rsv;
3068 root->orphan_block_rsv = NULL;
3069 spin_unlock(&root->orphan_lock);
3070
3071 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3072 btrfs_root_refs(&root->root_item) > 0) {
3073 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3074 root->root_key.objectid);
3075 if (ret)
3076 btrfs_abort_transaction(trans, root, ret);
3077 else
3078 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3079 &root->state);
3080 }
3081
3082 if (block_rsv) {
3083 WARN_ON(block_rsv->size > 0);
3084 btrfs_free_block_rsv(root, block_rsv);
3085 }
3086 }
3087
3088 /*
3089 * This creates an orphan entry for the given inode in case something goes
3090 * wrong in the middle of an unlink/truncate.
3091 *
3092 * NOTE: caller of this function should reserve 5 units of metadata for
3093 * this function.
3094 */
3095 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3096 {
3097 struct btrfs_root *root = BTRFS_I(inode)->root;
3098 struct btrfs_block_rsv *block_rsv = NULL;
3099 int reserve = 0;
3100 int insert = 0;
3101 int ret;
3102
3103 if (!root->orphan_block_rsv) {
3104 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3105 if (!block_rsv)
3106 return -ENOMEM;
3107 }
3108
3109 spin_lock(&root->orphan_lock);
3110 if (!root->orphan_block_rsv) {
3111 root->orphan_block_rsv = block_rsv;
3112 } else if (block_rsv) {
3113 btrfs_free_block_rsv(root, block_rsv);
3114 block_rsv = NULL;
3115 }
3116
3117 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3118 &BTRFS_I(inode)->runtime_flags)) {
3119 #if 0
3120 /*
3121 * For proper ENOSPC handling, we should do orphan
3122 * cleanup when mounting. But this introduces backward
3123 * compatibility issue.
3124 */
3125 if (!xchg(&root->orphan_item_inserted, 1))
3126 insert = 2;
3127 else
3128 insert = 1;
3129 #endif
3130 insert = 1;
3131 atomic_inc(&root->orphan_inodes);
3132 }
3133
3134 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3135 &BTRFS_I(inode)->runtime_flags))
3136 reserve = 1;
3137 spin_unlock(&root->orphan_lock);
3138
3139 /* grab metadata reservation from transaction handle */
3140 if (reserve) {
3141 ret = btrfs_orphan_reserve_metadata(trans, inode);
3142 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3143 }
3144
3145 /* insert an orphan item to track this unlinked/truncated file */
3146 if (insert >= 1) {
3147 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3148 if (ret) {
3149 atomic_dec(&root->orphan_inodes);
3150 if (reserve) {
3151 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3152 &BTRFS_I(inode)->runtime_flags);
3153 btrfs_orphan_release_metadata(inode);
3154 }
3155 if (ret != -EEXIST) {
3156 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3157 &BTRFS_I(inode)->runtime_flags);
3158 btrfs_abort_transaction(trans, root, ret);
3159 return ret;
3160 }
3161 }
3162 ret = 0;
3163 }
3164
3165 /* insert an orphan item to track subvolume contains orphan files */
3166 if (insert >= 2) {
3167 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3168 root->root_key.objectid);
3169 if (ret && ret != -EEXIST) {
3170 btrfs_abort_transaction(trans, root, ret);
3171 return ret;
3172 }
3173 }
3174 return 0;
3175 }
3176
3177 /*
3178 * We have done the truncate/delete so we can go ahead and remove the orphan
3179 * item for this particular inode.
3180 */
3181 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3182 struct inode *inode)
3183 {
3184 struct btrfs_root *root = BTRFS_I(inode)->root;
3185 int delete_item = 0;
3186 int release_rsv = 0;
3187 int ret = 0;
3188
3189 spin_lock(&root->orphan_lock);
3190 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3191 &BTRFS_I(inode)->runtime_flags))
3192 delete_item = 1;
3193
3194 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3195 &BTRFS_I(inode)->runtime_flags))
3196 release_rsv = 1;
3197 spin_unlock(&root->orphan_lock);
3198
3199 if (delete_item) {
3200 atomic_dec(&root->orphan_inodes);
3201 if (trans)
3202 ret = btrfs_del_orphan_item(trans, root,
3203 btrfs_ino(inode));
3204 }
3205
3206 if (release_rsv)
3207 btrfs_orphan_release_metadata(inode);
3208
3209 return ret;
3210 }
3211
3212 /*
3213 * this cleans up any orphans that may be left on the list from the last use
3214 * of this root.
3215 */
3216 int btrfs_orphan_cleanup(struct btrfs_root *root)
3217 {
3218 struct btrfs_path *path;
3219 struct extent_buffer *leaf;
3220 struct btrfs_key key, found_key;
3221 struct btrfs_trans_handle *trans;
3222 struct inode *inode;
3223 u64 last_objectid = 0;
3224 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3225
3226 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3227 return 0;
3228
3229 path = btrfs_alloc_path();
3230 if (!path) {
3231 ret = -ENOMEM;
3232 goto out;
3233 }
3234 path->reada = -1;
3235
3236 key.objectid = BTRFS_ORPHAN_OBJECTID;
3237 key.type = BTRFS_ORPHAN_ITEM_KEY;
3238 key.offset = (u64)-1;
3239
3240 while (1) {
3241 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3242 if (ret < 0)
3243 goto out;
3244
3245 /*
3246 * if ret == 0 means we found what we were searching for, which
3247 * is weird, but possible, so only screw with path if we didn't
3248 * find the key and see if we have stuff that matches
3249 */
3250 if (ret > 0) {
3251 ret = 0;
3252 if (path->slots[0] == 0)
3253 break;
3254 path->slots[0]--;
3255 }
3256
3257 /* pull out the item */
3258 leaf = path->nodes[0];
3259 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3260
3261 /* make sure the item matches what we want */
3262 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3263 break;
3264 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3265 break;
3266
3267 /* release the path since we're done with it */
3268 btrfs_release_path(path);
3269
3270 /*
3271 * this is where we are basically btrfs_lookup, without the
3272 * crossing root thing. we store the inode number in the
3273 * offset of the orphan item.
3274 */
3275
3276 if (found_key.offset == last_objectid) {
3277 btrfs_err(root->fs_info,
3278 "Error removing orphan entry, stopping orphan cleanup");
3279 ret = -EINVAL;
3280 goto out;
3281 }
3282
3283 last_objectid = found_key.offset;
3284
3285 found_key.objectid = found_key.offset;
3286 found_key.type = BTRFS_INODE_ITEM_KEY;
3287 found_key.offset = 0;
3288 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3289 ret = PTR_ERR_OR_ZERO(inode);
3290 if (ret && ret != -ESTALE)
3291 goto out;
3292
3293 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3294 struct btrfs_root *dead_root;
3295 struct btrfs_fs_info *fs_info = root->fs_info;
3296 int is_dead_root = 0;
3297
3298 /*
3299 * this is an orphan in the tree root. Currently these
3300 * could come from 2 sources:
3301 * a) a snapshot deletion in progress
3302 * b) a free space cache inode
3303 * We need to distinguish those two, as the snapshot
3304 * orphan must not get deleted.
3305 * find_dead_roots already ran before us, so if this
3306 * is a snapshot deletion, we should find the root
3307 * in the dead_roots list
3308 */
3309 spin_lock(&fs_info->trans_lock);
3310 list_for_each_entry(dead_root, &fs_info->dead_roots,
3311 root_list) {
3312 if (dead_root->root_key.objectid ==
3313 found_key.objectid) {
3314 is_dead_root = 1;
3315 break;
3316 }
3317 }
3318 spin_unlock(&fs_info->trans_lock);
3319 if (is_dead_root) {
3320 /* prevent this orphan from being found again */
3321 key.offset = found_key.objectid - 1;
3322 continue;
3323 }
3324 }
3325 /*
3326 * Inode is already gone but the orphan item is still there,
3327 * kill the orphan item.
3328 */
3329 if (ret == -ESTALE) {
3330 trans = btrfs_start_transaction(root, 1);
3331 if (IS_ERR(trans)) {
3332 ret = PTR_ERR(trans);
3333 goto out;
3334 }
3335 btrfs_debug(root->fs_info, "auto deleting %Lu",
3336 found_key.objectid);
3337 ret = btrfs_del_orphan_item(trans, root,
3338 found_key.objectid);
3339 btrfs_end_transaction(trans, root);
3340 if (ret)
3341 goto out;
3342 continue;
3343 }
3344
3345 /*
3346 * add this inode to the orphan list so btrfs_orphan_del does
3347 * the proper thing when we hit it
3348 */
3349 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3350 &BTRFS_I(inode)->runtime_flags);
3351 atomic_inc(&root->orphan_inodes);
3352
3353 /* if we have links, this was a truncate, lets do that */
3354 if (inode->i_nlink) {
3355 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3356 iput(inode);
3357 continue;
3358 }
3359 nr_truncate++;
3360
3361 /* 1 for the orphan item deletion. */
3362 trans = btrfs_start_transaction(root, 1);
3363 if (IS_ERR(trans)) {
3364 iput(inode);
3365 ret = PTR_ERR(trans);
3366 goto out;
3367 }
3368 ret = btrfs_orphan_add(trans, inode);
3369 btrfs_end_transaction(trans, root);
3370 if (ret) {
3371 iput(inode);
3372 goto out;
3373 }
3374
3375 ret = btrfs_truncate(inode);
3376 if (ret)
3377 btrfs_orphan_del(NULL, inode);
3378 } else {
3379 nr_unlink++;
3380 }
3381
3382 /* this will do delete_inode and everything for us */
3383 iput(inode);
3384 if (ret)
3385 goto out;
3386 }
3387 /* release the path since we're done with it */
3388 btrfs_release_path(path);
3389
3390 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3391
3392 if (root->orphan_block_rsv)
3393 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3394 (u64)-1);
3395
3396 if (root->orphan_block_rsv ||
3397 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3398 trans = btrfs_join_transaction(root);
3399 if (!IS_ERR(trans))
3400 btrfs_end_transaction(trans, root);
3401 }
3402
3403 if (nr_unlink)
3404 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3405 if (nr_truncate)
3406 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3407
3408 out:
3409 if (ret)
3410 btrfs_crit(root->fs_info,
3411 "could not do orphan cleanup %d", ret);
3412 btrfs_free_path(path);
3413 return ret;
3414 }
3415
3416 /*
3417 * very simple check to peek ahead in the leaf looking for xattrs. If we
3418 * don't find any xattrs, we know there can't be any acls.
3419 *
3420 * slot is the slot the inode is in, objectid is the objectid of the inode
3421 */
3422 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3423 int slot, u64 objectid,
3424 int *first_xattr_slot)
3425 {
3426 u32 nritems = btrfs_header_nritems(leaf);
3427 struct btrfs_key found_key;
3428 static u64 xattr_access = 0;
3429 static u64 xattr_default = 0;
3430 int scanned = 0;
3431
3432 if (!xattr_access) {
3433 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3434 strlen(POSIX_ACL_XATTR_ACCESS));
3435 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3436 strlen(POSIX_ACL_XATTR_DEFAULT));
3437 }
3438
3439 slot++;
3440 *first_xattr_slot = -1;
3441 while (slot < nritems) {
3442 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3443
3444 /* we found a different objectid, there must not be acls */
3445 if (found_key.objectid != objectid)
3446 return 0;
3447
3448 /* we found an xattr, assume we've got an acl */
3449 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3450 if (*first_xattr_slot == -1)
3451 *first_xattr_slot = slot;
3452 if (found_key.offset == xattr_access ||
3453 found_key.offset == xattr_default)
3454 return 1;
3455 }
3456
3457 /*
3458 * we found a key greater than an xattr key, there can't
3459 * be any acls later on
3460 */
3461 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3462 return 0;
3463
3464 slot++;
3465 scanned++;
3466
3467 /*
3468 * it goes inode, inode backrefs, xattrs, extents,
3469 * so if there are a ton of hard links to an inode there can
3470 * be a lot of backrefs. Don't waste time searching too hard,
3471 * this is just an optimization
3472 */
3473 if (scanned >= 8)
3474 break;
3475 }
3476 /* we hit the end of the leaf before we found an xattr or
3477 * something larger than an xattr. We have to assume the inode
3478 * has acls
3479 */
3480 if (*first_xattr_slot == -1)
3481 *first_xattr_slot = slot;
3482 return 1;
3483 }
3484
3485 /*
3486 * read an inode from the btree into the in-memory inode
3487 */
3488 static void btrfs_read_locked_inode(struct inode *inode)
3489 {
3490 struct btrfs_path *path;
3491 struct extent_buffer *leaf;
3492 struct btrfs_inode_item *inode_item;
3493 struct btrfs_timespec *tspec;
3494 struct btrfs_root *root = BTRFS_I(inode)->root;
3495 struct btrfs_key location;
3496 unsigned long ptr;
3497 int maybe_acls;
3498 u32 rdev;
3499 int ret;
3500 bool filled = false;
3501 int first_xattr_slot;
3502
3503 ret = btrfs_fill_inode(inode, &rdev);
3504 if (!ret)
3505 filled = true;
3506
3507 path = btrfs_alloc_path();
3508 if (!path)
3509 goto make_bad;
3510
3511 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3512
3513 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3514 if (ret)
3515 goto make_bad;
3516
3517 leaf = path->nodes[0];
3518
3519 if (filled)
3520 goto cache_index;
3521
3522 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3523 struct btrfs_inode_item);
3524 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3525 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3526 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3527 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3528 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3529
3530 tspec = btrfs_inode_atime(inode_item);
3531 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3532 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3533
3534 tspec = btrfs_inode_mtime(inode_item);
3535 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3536 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3537
3538 tspec = btrfs_inode_ctime(inode_item);
3539 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3540 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3541
3542 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3543 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3544 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3545
3546 /*
3547 * If we were modified in the current generation and evicted from memory
3548 * and then re-read we need to do a full sync since we don't have any
3549 * idea about which extents were modified before we were evicted from
3550 * cache.
3551 */
3552 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3553 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3554 &BTRFS_I(inode)->runtime_flags);
3555
3556 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3557 inode->i_generation = BTRFS_I(inode)->generation;
3558 inode->i_rdev = 0;
3559 rdev = btrfs_inode_rdev(leaf, inode_item);
3560
3561 BTRFS_I(inode)->index_cnt = (u64)-1;
3562 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3563
3564 cache_index:
3565 path->slots[0]++;
3566 if (inode->i_nlink != 1 ||
3567 path->slots[0] >= btrfs_header_nritems(leaf))
3568 goto cache_acl;
3569
3570 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3571 if (location.objectid != btrfs_ino(inode))
3572 goto cache_acl;
3573
3574 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3575 if (location.type == BTRFS_INODE_REF_KEY) {
3576 struct btrfs_inode_ref *ref;
3577
3578 ref = (struct btrfs_inode_ref *)ptr;
3579 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3580 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3581 struct btrfs_inode_extref *extref;
3582
3583 extref = (struct btrfs_inode_extref *)ptr;
3584 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3585 extref);
3586 }
3587 cache_acl:
3588 /*
3589 * try to precache a NULL acl entry for files that don't have
3590 * any xattrs or acls
3591 */
3592 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3593 btrfs_ino(inode), &first_xattr_slot);
3594 if (first_xattr_slot != -1) {
3595 path->slots[0] = first_xattr_slot;
3596 ret = btrfs_load_inode_props(inode, path);
3597 if (ret)
3598 btrfs_err(root->fs_info,
3599 "error loading props for ino %llu (root %llu): %d",
3600 btrfs_ino(inode),
3601 root->root_key.objectid, ret);
3602 }
3603 btrfs_free_path(path);
3604
3605 if (!maybe_acls)
3606 cache_no_acl(inode);
3607
3608 switch (inode->i_mode & S_IFMT) {
3609 case S_IFREG:
3610 inode->i_mapping->a_ops = &btrfs_aops;
3611 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3612 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3613 inode->i_fop = &btrfs_file_operations;
3614 inode->i_op = &btrfs_file_inode_operations;
3615 break;
3616 case S_IFDIR:
3617 inode->i_fop = &btrfs_dir_file_operations;
3618 if (root == root->fs_info->tree_root)
3619 inode->i_op = &btrfs_dir_ro_inode_operations;
3620 else
3621 inode->i_op = &btrfs_dir_inode_operations;
3622 break;
3623 case S_IFLNK:
3624 inode->i_op = &btrfs_symlink_inode_operations;
3625 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3626 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3627 break;
3628 default:
3629 inode->i_op = &btrfs_special_inode_operations;
3630 init_special_inode(inode, inode->i_mode, rdev);
3631 break;
3632 }
3633
3634 btrfs_update_iflags(inode);
3635 return;
3636
3637 make_bad:
3638 btrfs_free_path(path);
3639 make_bad_inode(inode);
3640 }
3641
3642 /*
3643 * given a leaf and an inode, copy the inode fields into the leaf
3644 */
3645 static void fill_inode_item(struct btrfs_trans_handle *trans,
3646 struct extent_buffer *leaf,
3647 struct btrfs_inode_item *item,
3648 struct inode *inode)
3649 {
3650 struct btrfs_map_token token;
3651
3652 btrfs_init_map_token(&token);
3653
3654 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3655 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3656 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3657 &token);
3658 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3659 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3660
3661 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3662 inode->i_atime.tv_sec, &token);
3663 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3664 inode->i_atime.tv_nsec, &token);
3665
3666 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3667 inode->i_mtime.tv_sec, &token);
3668 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3669 inode->i_mtime.tv_nsec, &token);
3670
3671 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3672 inode->i_ctime.tv_sec, &token);
3673 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3674 inode->i_ctime.tv_nsec, &token);
3675
3676 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3677 &token);
3678 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3679 &token);
3680 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3681 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3682 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3683 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3684 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3685 }
3686
3687 /*
3688 * copy everything in the in-memory inode into the btree.
3689 */
3690 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3691 struct btrfs_root *root, struct inode *inode)
3692 {
3693 struct btrfs_inode_item *inode_item;
3694 struct btrfs_path *path;
3695 struct extent_buffer *leaf;
3696 int ret;
3697
3698 path = btrfs_alloc_path();
3699 if (!path)
3700 return -ENOMEM;
3701
3702 path->leave_spinning = 1;
3703 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3704 1);
3705 if (ret) {
3706 if (ret > 0)
3707 ret = -ENOENT;
3708 goto failed;
3709 }
3710
3711 leaf = path->nodes[0];
3712 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3713 struct btrfs_inode_item);
3714
3715 fill_inode_item(trans, leaf, inode_item, inode);
3716 btrfs_mark_buffer_dirty(leaf);
3717 btrfs_set_inode_last_trans(trans, inode);
3718 ret = 0;
3719 failed:
3720 btrfs_free_path(path);
3721 return ret;
3722 }
3723
3724 /*
3725 * copy everything in the in-memory inode into the btree.
3726 */
3727 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3728 struct btrfs_root *root, struct inode *inode)
3729 {
3730 int ret;
3731
3732 /*
3733 * If the inode is a free space inode, we can deadlock during commit
3734 * if we put it into the delayed code.
3735 *
3736 * The data relocation inode should also be directly updated
3737 * without delay
3738 */
3739 if (!btrfs_is_free_space_inode(inode)
3740 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3741 && !root->fs_info->log_root_recovering) {
3742 btrfs_update_root_times(trans, root);
3743
3744 ret = btrfs_delayed_update_inode(trans, root, inode);
3745 if (!ret)
3746 btrfs_set_inode_last_trans(trans, inode);
3747 return ret;
3748 }
3749
3750 return btrfs_update_inode_item(trans, root, inode);
3751 }
3752
3753 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3754 struct btrfs_root *root,
3755 struct inode *inode)
3756 {
3757 int ret;
3758
3759 ret = btrfs_update_inode(trans, root, inode);
3760 if (ret == -ENOSPC)
3761 return btrfs_update_inode_item(trans, root, inode);
3762 return ret;
3763 }
3764
3765 /*
3766 * unlink helper that gets used here in inode.c and in the tree logging
3767 * recovery code. It remove a link in a directory with a given name, and
3768 * also drops the back refs in the inode to the directory
3769 */
3770 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3771 struct btrfs_root *root,
3772 struct inode *dir, struct inode *inode,
3773 const char *name, int name_len)
3774 {
3775 struct btrfs_path *path;
3776 int ret = 0;
3777 struct extent_buffer *leaf;
3778 struct btrfs_dir_item *di;
3779 struct btrfs_key key;
3780 u64 index;
3781 u64 ino = btrfs_ino(inode);
3782 u64 dir_ino = btrfs_ino(dir);
3783
3784 path = btrfs_alloc_path();
3785 if (!path) {
3786 ret = -ENOMEM;
3787 goto out;
3788 }
3789
3790 path->leave_spinning = 1;
3791 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3792 name, name_len, -1);
3793 if (IS_ERR(di)) {
3794 ret = PTR_ERR(di);
3795 goto err;
3796 }
3797 if (!di) {
3798 ret = -ENOENT;
3799 goto err;
3800 }
3801 leaf = path->nodes[0];
3802 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3803 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3804 if (ret)
3805 goto err;
3806 btrfs_release_path(path);
3807
3808 /*
3809 * If we don't have dir index, we have to get it by looking up
3810 * the inode ref, since we get the inode ref, remove it directly,
3811 * it is unnecessary to do delayed deletion.
3812 *
3813 * But if we have dir index, needn't search inode ref to get it.
3814 * Since the inode ref is close to the inode item, it is better
3815 * that we delay to delete it, and just do this deletion when
3816 * we update the inode item.
3817 */
3818 if (BTRFS_I(inode)->dir_index) {
3819 ret = btrfs_delayed_delete_inode_ref(inode);
3820 if (!ret) {
3821 index = BTRFS_I(inode)->dir_index;
3822 goto skip_backref;
3823 }
3824 }
3825
3826 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3827 dir_ino, &index);
3828 if (ret) {
3829 btrfs_info(root->fs_info,
3830 "failed to delete reference to %.*s, inode %llu parent %llu",
3831 name_len, name, ino, dir_ino);
3832 btrfs_abort_transaction(trans, root, ret);
3833 goto err;
3834 }
3835 skip_backref:
3836 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3837 if (ret) {
3838 btrfs_abort_transaction(trans, root, ret);
3839 goto err;
3840 }
3841
3842 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3843 inode, dir_ino);
3844 if (ret != 0 && ret != -ENOENT) {
3845 btrfs_abort_transaction(trans, root, ret);
3846 goto err;
3847 }
3848
3849 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3850 dir, index);
3851 if (ret == -ENOENT)
3852 ret = 0;
3853 else if (ret)
3854 btrfs_abort_transaction(trans, root, ret);
3855 err:
3856 btrfs_free_path(path);
3857 if (ret)
3858 goto out;
3859
3860 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3861 inode_inc_iversion(inode);
3862 inode_inc_iversion(dir);
3863 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3864 ret = btrfs_update_inode(trans, root, dir);
3865 out:
3866 return ret;
3867 }
3868
3869 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3870 struct btrfs_root *root,
3871 struct inode *dir, struct inode *inode,
3872 const char *name, int name_len)
3873 {
3874 int ret;
3875 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3876 if (!ret) {
3877 drop_nlink(inode);
3878 ret = btrfs_update_inode(trans, root, inode);
3879 }
3880 return ret;
3881 }
3882
3883 /*
3884 * helper to start transaction for unlink and rmdir.
3885 *
3886 * unlink and rmdir are special in btrfs, they do not always free space, so
3887 * if we cannot make our reservations the normal way try and see if there is
3888 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3889 * allow the unlink to occur.
3890 */
3891 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3892 {
3893 struct btrfs_trans_handle *trans;
3894 struct btrfs_root *root = BTRFS_I(dir)->root;
3895 int ret;
3896
3897 /*
3898 * 1 for the possible orphan item
3899 * 1 for the dir item
3900 * 1 for the dir index
3901 * 1 for the inode ref
3902 * 1 for the inode
3903 */
3904 trans = btrfs_start_transaction(root, 5);
3905 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3906 return trans;
3907
3908 if (PTR_ERR(trans) == -ENOSPC) {
3909 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3910
3911 trans = btrfs_start_transaction(root, 0);
3912 if (IS_ERR(trans))
3913 return trans;
3914 ret = btrfs_cond_migrate_bytes(root->fs_info,
3915 &root->fs_info->trans_block_rsv,
3916 num_bytes, 5);
3917 if (ret) {
3918 btrfs_end_transaction(trans, root);
3919 return ERR_PTR(ret);
3920 }
3921 trans->block_rsv = &root->fs_info->trans_block_rsv;
3922 trans->bytes_reserved = num_bytes;
3923 }
3924 return trans;
3925 }
3926
3927 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3928 {
3929 struct btrfs_root *root = BTRFS_I(dir)->root;
3930 struct btrfs_trans_handle *trans;
3931 struct inode *inode = dentry->d_inode;
3932 int ret;
3933
3934 trans = __unlink_start_trans(dir);
3935 if (IS_ERR(trans))
3936 return PTR_ERR(trans);
3937
3938 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3939
3940 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3941 dentry->d_name.name, dentry->d_name.len);
3942 if (ret)
3943 goto out;
3944
3945 if (inode->i_nlink == 0) {
3946 ret = btrfs_orphan_add(trans, inode);
3947 if (ret)
3948 goto out;
3949 }
3950
3951 out:
3952 btrfs_end_transaction(trans, root);
3953 btrfs_btree_balance_dirty(root);
3954 return ret;
3955 }
3956
3957 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3958 struct btrfs_root *root,
3959 struct inode *dir, u64 objectid,
3960 const char *name, int name_len)
3961 {
3962 struct btrfs_path *path;
3963 struct extent_buffer *leaf;
3964 struct btrfs_dir_item *di;
3965 struct btrfs_key key;
3966 u64 index;
3967 int ret;
3968 u64 dir_ino = btrfs_ino(dir);
3969
3970 path = btrfs_alloc_path();
3971 if (!path)
3972 return -ENOMEM;
3973
3974 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3975 name, name_len, -1);
3976 if (IS_ERR_OR_NULL(di)) {
3977 if (!di)
3978 ret = -ENOENT;
3979 else
3980 ret = PTR_ERR(di);
3981 goto out;
3982 }
3983
3984 leaf = path->nodes[0];
3985 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3986 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3987 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3988 if (ret) {
3989 btrfs_abort_transaction(trans, root, ret);
3990 goto out;
3991 }
3992 btrfs_release_path(path);
3993
3994 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3995 objectid, root->root_key.objectid,
3996 dir_ino, &index, name, name_len);
3997 if (ret < 0) {
3998 if (ret != -ENOENT) {
3999 btrfs_abort_transaction(trans, root, ret);
4000 goto out;
4001 }
4002 di = btrfs_search_dir_index_item(root, path, dir_ino,
4003 name, name_len);
4004 if (IS_ERR_OR_NULL(di)) {
4005 if (!di)
4006 ret = -ENOENT;
4007 else
4008 ret = PTR_ERR(di);
4009 btrfs_abort_transaction(trans, root, ret);
4010 goto out;
4011 }
4012
4013 leaf = path->nodes[0];
4014 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4015 btrfs_release_path(path);
4016 index = key.offset;
4017 }
4018 btrfs_release_path(path);
4019
4020 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4021 if (ret) {
4022 btrfs_abort_transaction(trans, root, ret);
4023 goto out;
4024 }
4025
4026 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4027 inode_inc_iversion(dir);
4028 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4029 ret = btrfs_update_inode_fallback(trans, root, dir);
4030 if (ret)
4031 btrfs_abort_transaction(trans, root, ret);
4032 out:
4033 btrfs_free_path(path);
4034 return ret;
4035 }
4036
4037 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4038 {
4039 struct inode *inode = dentry->d_inode;
4040 int err = 0;
4041 struct btrfs_root *root = BTRFS_I(dir)->root;
4042 struct btrfs_trans_handle *trans;
4043
4044 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4045 return -ENOTEMPTY;
4046 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4047 return -EPERM;
4048
4049 trans = __unlink_start_trans(dir);
4050 if (IS_ERR(trans))
4051 return PTR_ERR(trans);
4052
4053 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4054 err = btrfs_unlink_subvol(trans, root, dir,
4055 BTRFS_I(inode)->location.objectid,
4056 dentry->d_name.name,
4057 dentry->d_name.len);
4058 goto out;
4059 }
4060
4061 err = btrfs_orphan_add(trans, inode);
4062 if (err)
4063 goto out;
4064
4065 /* now the directory is empty */
4066 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4067 dentry->d_name.name, dentry->d_name.len);
4068 if (!err)
4069 btrfs_i_size_write(inode, 0);
4070 out:
4071 btrfs_end_transaction(trans, root);
4072 btrfs_btree_balance_dirty(root);
4073
4074 return err;
4075 }
4076
4077 /*
4078 * this can truncate away extent items, csum items and directory items.
4079 * It starts at a high offset and removes keys until it can't find
4080 * any higher than new_size
4081 *
4082 * csum items that cross the new i_size are truncated to the new size
4083 * as well.
4084 *
4085 * min_type is the minimum key type to truncate down to. If set to 0, this
4086 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4087 */
4088 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4089 struct btrfs_root *root,
4090 struct inode *inode,
4091 u64 new_size, u32 min_type)
4092 {
4093 struct btrfs_path *path;
4094 struct extent_buffer *leaf;
4095 struct btrfs_file_extent_item *fi;
4096 struct btrfs_key key;
4097 struct btrfs_key found_key;
4098 u64 extent_start = 0;
4099 u64 extent_num_bytes = 0;
4100 u64 extent_offset = 0;
4101 u64 item_end = 0;
4102 u64 last_size = (u64)-1;
4103 u32 found_type = (u8)-1;
4104 int found_extent;
4105 int del_item;
4106 int pending_del_nr = 0;
4107 int pending_del_slot = 0;
4108 int extent_type = -1;
4109 int ret;
4110 int err = 0;
4111 u64 ino = btrfs_ino(inode);
4112
4113 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4114
4115 path = btrfs_alloc_path();
4116 if (!path)
4117 return -ENOMEM;
4118 path->reada = -1;
4119
4120 /*
4121 * We want to drop from the next block forward in case this new size is
4122 * not block aligned since we will be keeping the last block of the
4123 * extent just the way it is.
4124 */
4125 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4126 root == root->fs_info->tree_root)
4127 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4128 root->sectorsize), (u64)-1, 0);
4129
4130 /*
4131 * This function is also used to drop the items in the log tree before
4132 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4133 * it is used to drop the loged items. So we shouldn't kill the delayed
4134 * items.
4135 */
4136 if (min_type == 0 && root == BTRFS_I(inode)->root)
4137 btrfs_kill_delayed_inode_items(inode);
4138
4139 key.objectid = ino;
4140 key.offset = (u64)-1;
4141 key.type = (u8)-1;
4142
4143 search_again:
4144 path->leave_spinning = 1;
4145 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4146 if (ret < 0) {
4147 err = ret;
4148 goto out;
4149 }
4150
4151 if (ret > 0) {
4152 /* there are no items in the tree for us to truncate, we're
4153 * done
4154 */
4155 if (path->slots[0] == 0)
4156 goto out;
4157 path->slots[0]--;
4158 }
4159
4160 while (1) {
4161 fi = NULL;
4162 leaf = path->nodes[0];
4163 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4164 found_type = found_key.type;
4165
4166 if (found_key.objectid != ino)
4167 break;
4168
4169 if (found_type < min_type)
4170 break;
4171
4172 item_end = found_key.offset;
4173 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4174 fi = btrfs_item_ptr(leaf, path->slots[0],
4175 struct btrfs_file_extent_item);
4176 extent_type = btrfs_file_extent_type(leaf, fi);
4177 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4178 item_end +=
4179 btrfs_file_extent_num_bytes(leaf, fi);
4180 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4181 item_end += btrfs_file_extent_inline_len(leaf,
4182 path->slots[0], fi);
4183 }
4184 item_end--;
4185 }
4186 if (found_type > min_type) {
4187 del_item = 1;
4188 } else {
4189 if (item_end < new_size)
4190 break;
4191 if (found_key.offset >= new_size)
4192 del_item = 1;
4193 else
4194 del_item = 0;
4195 }
4196 found_extent = 0;
4197 /* FIXME, shrink the extent if the ref count is only 1 */
4198 if (found_type != BTRFS_EXTENT_DATA_KEY)
4199 goto delete;
4200
4201 if (del_item)
4202 last_size = found_key.offset;
4203 else
4204 last_size = new_size;
4205
4206 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4207 u64 num_dec;
4208 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4209 if (!del_item) {
4210 u64 orig_num_bytes =
4211 btrfs_file_extent_num_bytes(leaf, fi);
4212 extent_num_bytes = ALIGN(new_size -
4213 found_key.offset,
4214 root->sectorsize);
4215 btrfs_set_file_extent_num_bytes(leaf, fi,
4216 extent_num_bytes);
4217 num_dec = (orig_num_bytes -
4218 extent_num_bytes);
4219 if (test_bit(BTRFS_ROOT_REF_COWS,
4220 &root->state) &&
4221 extent_start != 0)
4222 inode_sub_bytes(inode, num_dec);
4223 btrfs_mark_buffer_dirty(leaf);
4224 } else {
4225 extent_num_bytes =
4226 btrfs_file_extent_disk_num_bytes(leaf,
4227 fi);
4228 extent_offset = found_key.offset -
4229 btrfs_file_extent_offset(leaf, fi);
4230
4231 /* FIXME blocksize != 4096 */
4232 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4233 if (extent_start != 0) {
4234 found_extent = 1;
4235 if (test_bit(BTRFS_ROOT_REF_COWS,
4236 &root->state))
4237 inode_sub_bytes(inode, num_dec);
4238 }
4239 }
4240 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4241 /*
4242 * we can't truncate inline items that have had
4243 * special encodings
4244 */
4245 if (!del_item &&
4246 btrfs_file_extent_compression(leaf, fi) == 0 &&
4247 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4248 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4249 u32 size = new_size - found_key.offset;
4250
4251 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4252 inode_sub_bytes(inode, item_end + 1 -
4253 new_size);
4254
4255 /*
4256 * update the ram bytes to properly reflect
4257 * the new size of our item
4258 */
4259 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4260 size =
4261 btrfs_file_extent_calc_inline_size(size);
4262 btrfs_truncate_item(root, path, size, 1);
4263 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4264 &root->state)) {
4265 inode_sub_bytes(inode, item_end + 1 -
4266 found_key.offset);
4267 }
4268 }
4269 delete:
4270 if (del_item) {
4271 if (!pending_del_nr) {
4272 /* no pending yet, add ourselves */
4273 pending_del_slot = path->slots[0];
4274 pending_del_nr = 1;
4275 } else if (pending_del_nr &&
4276 path->slots[0] + 1 == pending_del_slot) {
4277 /* hop on the pending chunk */
4278 pending_del_nr++;
4279 pending_del_slot = path->slots[0];
4280 } else {
4281 BUG();
4282 }
4283 } else {
4284 break;
4285 }
4286 if (found_extent &&
4287 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4288 root == root->fs_info->tree_root)) {
4289 btrfs_set_path_blocking(path);
4290 ret = btrfs_free_extent(trans, root, extent_start,
4291 extent_num_bytes, 0,
4292 btrfs_header_owner(leaf),
4293 ino, extent_offset, 0);
4294 BUG_ON(ret);
4295 }
4296
4297 if (found_type == BTRFS_INODE_ITEM_KEY)
4298 break;
4299
4300 if (path->slots[0] == 0 ||
4301 path->slots[0] != pending_del_slot) {
4302 if (pending_del_nr) {
4303 ret = btrfs_del_items(trans, root, path,
4304 pending_del_slot,
4305 pending_del_nr);
4306 if (ret) {
4307 btrfs_abort_transaction(trans,
4308 root, ret);
4309 goto error;
4310 }
4311 pending_del_nr = 0;
4312 }
4313 btrfs_release_path(path);
4314 goto search_again;
4315 } else {
4316 path->slots[0]--;
4317 }
4318 }
4319 out:
4320 if (pending_del_nr) {
4321 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4322 pending_del_nr);
4323 if (ret)
4324 btrfs_abort_transaction(trans, root, ret);
4325 }
4326 error:
4327 if (last_size != (u64)-1 &&
4328 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4329 btrfs_ordered_update_i_size(inode, last_size, NULL);
4330 btrfs_free_path(path);
4331 return err;
4332 }
4333
4334 /*
4335 * btrfs_truncate_page - read, zero a chunk and write a page
4336 * @inode - inode that we're zeroing
4337 * @from - the offset to start zeroing
4338 * @len - the length to zero, 0 to zero the entire range respective to the
4339 * offset
4340 * @front - zero up to the offset instead of from the offset on
4341 *
4342 * This will find the page for the "from" offset and cow the page and zero the
4343 * part we want to zero. This is used with truncate and hole punching.
4344 */
4345 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4346 int front)
4347 {
4348 struct address_space *mapping = inode->i_mapping;
4349 struct btrfs_root *root = BTRFS_I(inode)->root;
4350 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4351 struct btrfs_ordered_extent *ordered;
4352 struct extent_state *cached_state = NULL;
4353 char *kaddr;
4354 u32 blocksize = root->sectorsize;
4355 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4356 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4357 struct page *page;
4358 gfp_t mask = btrfs_alloc_write_mask(mapping);
4359 int ret = 0;
4360 u64 page_start;
4361 u64 page_end;
4362
4363 if ((offset & (blocksize - 1)) == 0 &&
4364 (!len || ((len & (blocksize - 1)) == 0)))
4365 goto out;
4366 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4367 if (ret)
4368 goto out;
4369
4370 again:
4371 page = find_or_create_page(mapping, index, mask);
4372 if (!page) {
4373 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4374 ret = -ENOMEM;
4375 goto out;
4376 }
4377
4378 page_start = page_offset(page);
4379 page_end = page_start + PAGE_CACHE_SIZE - 1;
4380
4381 if (!PageUptodate(page)) {
4382 ret = btrfs_readpage(NULL, page);
4383 lock_page(page);
4384 if (page->mapping != mapping) {
4385 unlock_page(page);
4386 page_cache_release(page);
4387 goto again;
4388 }
4389 if (!PageUptodate(page)) {
4390 ret = -EIO;
4391 goto out_unlock;
4392 }
4393 }
4394 wait_on_page_writeback(page);
4395
4396 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4397 set_page_extent_mapped(page);
4398
4399 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4400 if (ordered) {
4401 unlock_extent_cached(io_tree, page_start, page_end,
4402 &cached_state, GFP_NOFS);
4403 unlock_page(page);
4404 page_cache_release(page);
4405 btrfs_start_ordered_extent(inode, ordered, 1);
4406 btrfs_put_ordered_extent(ordered);
4407 goto again;
4408 }
4409
4410 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4411 EXTENT_DIRTY | EXTENT_DELALLOC |
4412 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4413 0, 0, &cached_state, GFP_NOFS);
4414
4415 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4416 &cached_state);
4417 if (ret) {
4418 unlock_extent_cached(io_tree, page_start, page_end,
4419 &cached_state, GFP_NOFS);
4420 goto out_unlock;
4421 }
4422
4423 if (offset != PAGE_CACHE_SIZE) {
4424 if (!len)
4425 len = PAGE_CACHE_SIZE - offset;
4426 kaddr = kmap(page);
4427 if (front)
4428 memset(kaddr, 0, offset);
4429 else
4430 memset(kaddr + offset, 0, len);
4431 flush_dcache_page(page);
4432 kunmap(page);
4433 }
4434 ClearPageChecked(page);
4435 set_page_dirty(page);
4436 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4437 GFP_NOFS);
4438
4439 out_unlock:
4440 if (ret)
4441 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4442 unlock_page(page);
4443 page_cache_release(page);
4444 out:
4445 return ret;
4446 }
4447
4448 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4449 u64 offset, u64 len)
4450 {
4451 struct btrfs_trans_handle *trans;
4452 int ret;
4453
4454 /*
4455 * Still need to make sure the inode looks like it's been updated so
4456 * that any holes get logged if we fsync.
4457 */
4458 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4459 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4460 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4461 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4462 return 0;
4463 }
4464
4465 /*
4466 * 1 - for the one we're dropping
4467 * 1 - for the one we're adding
4468 * 1 - for updating the inode.
4469 */
4470 trans = btrfs_start_transaction(root, 3);
4471 if (IS_ERR(trans))
4472 return PTR_ERR(trans);
4473
4474 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4475 if (ret) {
4476 btrfs_abort_transaction(trans, root, ret);
4477 btrfs_end_transaction(trans, root);
4478 return ret;
4479 }
4480
4481 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4482 0, 0, len, 0, len, 0, 0, 0);
4483 if (ret)
4484 btrfs_abort_transaction(trans, root, ret);
4485 else
4486 btrfs_update_inode(trans, root, inode);
4487 btrfs_end_transaction(trans, root);
4488 return ret;
4489 }
4490
4491 /*
4492 * This function puts in dummy file extents for the area we're creating a hole
4493 * for. So if we are truncating this file to a larger size we need to insert
4494 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4495 * the range between oldsize and size
4496 */
4497 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4498 {
4499 struct btrfs_root *root = BTRFS_I(inode)->root;
4500 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4501 struct extent_map *em = NULL;
4502 struct extent_state *cached_state = NULL;
4503 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4504 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4505 u64 block_end = ALIGN(size, root->sectorsize);
4506 u64 last_byte;
4507 u64 cur_offset;
4508 u64 hole_size;
4509 int err = 0;
4510
4511 /*
4512 * If our size started in the middle of a page we need to zero out the
4513 * rest of the page before we expand the i_size, otherwise we could
4514 * expose stale data.
4515 */
4516 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4517 if (err)
4518 return err;
4519
4520 if (size <= hole_start)
4521 return 0;
4522
4523 while (1) {
4524 struct btrfs_ordered_extent *ordered;
4525
4526 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4527 &cached_state);
4528 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4529 block_end - hole_start);
4530 if (!ordered)
4531 break;
4532 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4533 &cached_state, GFP_NOFS);
4534 btrfs_start_ordered_extent(inode, ordered, 1);
4535 btrfs_put_ordered_extent(ordered);
4536 }
4537
4538 cur_offset = hole_start;
4539 while (1) {
4540 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4541 block_end - cur_offset, 0);
4542 if (IS_ERR(em)) {
4543 err = PTR_ERR(em);
4544 em = NULL;
4545 break;
4546 }
4547 last_byte = min(extent_map_end(em), block_end);
4548 last_byte = ALIGN(last_byte , root->sectorsize);
4549 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4550 struct extent_map *hole_em;
4551 hole_size = last_byte - cur_offset;
4552
4553 err = maybe_insert_hole(root, inode, cur_offset,
4554 hole_size);
4555 if (err)
4556 break;
4557 btrfs_drop_extent_cache(inode, cur_offset,
4558 cur_offset + hole_size - 1, 0);
4559 hole_em = alloc_extent_map();
4560 if (!hole_em) {
4561 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4562 &BTRFS_I(inode)->runtime_flags);
4563 goto next;
4564 }
4565 hole_em->start = cur_offset;
4566 hole_em->len = hole_size;
4567 hole_em->orig_start = cur_offset;
4568
4569 hole_em->block_start = EXTENT_MAP_HOLE;
4570 hole_em->block_len = 0;
4571 hole_em->orig_block_len = 0;
4572 hole_em->ram_bytes = hole_size;
4573 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4574 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4575 hole_em->generation = root->fs_info->generation;
4576
4577 while (1) {
4578 write_lock(&em_tree->lock);
4579 err = add_extent_mapping(em_tree, hole_em, 1);
4580 write_unlock(&em_tree->lock);
4581 if (err != -EEXIST)
4582 break;
4583 btrfs_drop_extent_cache(inode, cur_offset,
4584 cur_offset +
4585 hole_size - 1, 0);
4586 }
4587 free_extent_map(hole_em);
4588 }
4589 next:
4590 free_extent_map(em);
4591 em = NULL;
4592 cur_offset = last_byte;
4593 if (cur_offset >= block_end)
4594 break;
4595 }
4596 free_extent_map(em);
4597 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4598 GFP_NOFS);
4599 return err;
4600 }
4601
4602 static int wait_snapshoting_atomic_t(atomic_t *a)
4603 {
4604 schedule();
4605 return 0;
4606 }
4607
4608 static void wait_for_snapshot_creation(struct btrfs_root *root)
4609 {
4610 while (true) {
4611 int ret;
4612
4613 ret = btrfs_start_write_no_snapshoting(root);
4614 if (ret)
4615 break;
4616 wait_on_atomic_t(&root->will_be_snapshoted,
4617 wait_snapshoting_atomic_t,
4618 TASK_UNINTERRUPTIBLE);
4619 }
4620 }
4621
4622 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4623 {
4624 struct btrfs_root *root = BTRFS_I(inode)->root;
4625 struct btrfs_trans_handle *trans;
4626 loff_t oldsize = i_size_read(inode);
4627 loff_t newsize = attr->ia_size;
4628 int mask = attr->ia_valid;
4629 int ret;
4630
4631 /*
4632 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4633 * special case where we need to update the times despite not having
4634 * these flags set. For all other operations the VFS set these flags
4635 * explicitly if it wants a timestamp update.
4636 */
4637 if (newsize != oldsize) {
4638 inode_inc_iversion(inode);
4639 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4640 inode->i_ctime = inode->i_mtime =
4641 current_fs_time(inode->i_sb);
4642 }
4643
4644 if (newsize > oldsize) {
4645 truncate_pagecache(inode, newsize);
4646 /*
4647 * Don't do an expanding truncate while snapshoting is ongoing.
4648 * This is to ensure the snapshot captures a fully consistent
4649 * state of this file - if the snapshot captures this expanding
4650 * truncation, it must capture all writes that happened before
4651 * this truncation.
4652 */
4653 wait_for_snapshot_creation(root);
4654 ret = btrfs_cont_expand(inode, oldsize, newsize);
4655 if (ret) {
4656 btrfs_end_write_no_snapshoting(root);
4657 return ret;
4658 }
4659
4660 trans = btrfs_start_transaction(root, 1);
4661 if (IS_ERR(trans)) {
4662 btrfs_end_write_no_snapshoting(root);
4663 return PTR_ERR(trans);
4664 }
4665
4666 i_size_write(inode, newsize);
4667 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4668 ret = btrfs_update_inode(trans, root, inode);
4669 btrfs_end_write_no_snapshoting(root);
4670 btrfs_end_transaction(trans, root);
4671 } else {
4672
4673 /*
4674 * We're truncating a file that used to have good data down to
4675 * zero. Make sure it gets into the ordered flush list so that
4676 * any new writes get down to disk quickly.
4677 */
4678 if (newsize == 0)
4679 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4680 &BTRFS_I(inode)->runtime_flags);
4681
4682 /*
4683 * 1 for the orphan item we're going to add
4684 * 1 for the orphan item deletion.
4685 */
4686 trans = btrfs_start_transaction(root, 2);
4687 if (IS_ERR(trans))
4688 return PTR_ERR(trans);
4689
4690 /*
4691 * We need to do this in case we fail at _any_ point during the
4692 * actual truncate. Once we do the truncate_setsize we could
4693 * invalidate pages which forces any outstanding ordered io to
4694 * be instantly completed which will give us extents that need
4695 * to be truncated. If we fail to get an orphan inode down we
4696 * could have left over extents that were never meant to live,
4697 * so we need to garuntee from this point on that everything
4698 * will be consistent.
4699 */
4700 ret = btrfs_orphan_add(trans, inode);
4701 btrfs_end_transaction(trans, root);
4702 if (ret)
4703 return ret;
4704
4705 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4706 truncate_setsize(inode, newsize);
4707
4708 /* Disable nonlocked read DIO to avoid the end less truncate */
4709 btrfs_inode_block_unlocked_dio(inode);
4710 inode_dio_wait(inode);
4711 btrfs_inode_resume_unlocked_dio(inode);
4712
4713 ret = btrfs_truncate(inode);
4714 if (ret && inode->i_nlink) {
4715 int err;
4716
4717 /*
4718 * failed to truncate, disk_i_size is only adjusted down
4719 * as we remove extents, so it should represent the true
4720 * size of the inode, so reset the in memory size and
4721 * delete our orphan entry.
4722 */
4723 trans = btrfs_join_transaction(root);
4724 if (IS_ERR(trans)) {
4725 btrfs_orphan_del(NULL, inode);
4726 return ret;
4727 }
4728 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4729 err = btrfs_orphan_del(trans, inode);
4730 if (err)
4731 btrfs_abort_transaction(trans, root, err);
4732 btrfs_end_transaction(trans, root);
4733 }
4734 }
4735
4736 return ret;
4737 }
4738
4739 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4740 {
4741 struct inode *inode = dentry->d_inode;
4742 struct btrfs_root *root = BTRFS_I(inode)->root;
4743 int err;
4744
4745 if (btrfs_root_readonly(root))
4746 return -EROFS;
4747
4748 err = inode_change_ok(inode, attr);
4749 if (err)
4750 return err;
4751
4752 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4753 err = btrfs_setsize(inode, attr);
4754 if (err)
4755 return err;
4756 }
4757
4758 if (attr->ia_valid) {
4759 setattr_copy(inode, attr);
4760 inode_inc_iversion(inode);
4761 err = btrfs_dirty_inode(inode);
4762
4763 if (!err && attr->ia_valid & ATTR_MODE)
4764 err = posix_acl_chmod(inode, inode->i_mode);
4765 }
4766
4767 return err;
4768 }
4769
4770 /*
4771 * While truncating the inode pages during eviction, we get the VFS calling
4772 * btrfs_invalidatepage() against each page of the inode. This is slow because
4773 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4774 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4775 * extent_state structures over and over, wasting lots of time.
4776 *
4777 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4778 * those expensive operations on a per page basis and do only the ordered io
4779 * finishing, while we release here the extent_map and extent_state structures,
4780 * without the excessive merging and splitting.
4781 */
4782 static void evict_inode_truncate_pages(struct inode *inode)
4783 {
4784 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4785 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4786 struct rb_node *node;
4787
4788 ASSERT(inode->i_state & I_FREEING);
4789 truncate_inode_pages_final(&inode->i_data);
4790
4791 write_lock(&map_tree->lock);
4792 while (!RB_EMPTY_ROOT(&map_tree->map)) {
4793 struct extent_map *em;
4794
4795 node = rb_first(&map_tree->map);
4796 em = rb_entry(node, struct extent_map, rb_node);
4797 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4798 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4799 remove_extent_mapping(map_tree, em);
4800 free_extent_map(em);
4801 if (need_resched()) {
4802 write_unlock(&map_tree->lock);
4803 cond_resched();
4804 write_lock(&map_tree->lock);
4805 }
4806 }
4807 write_unlock(&map_tree->lock);
4808
4809 spin_lock(&io_tree->lock);
4810 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4811 struct extent_state *state;
4812 struct extent_state *cached_state = NULL;
4813
4814 node = rb_first(&io_tree->state);
4815 state = rb_entry(node, struct extent_state, rb_node);
4816 atomic_inc(&state->refs);
4817 spin_unlock(&io_tree->lock);
4818
4819 lock_extent_bits(io_tree, state->start, state->end,
4820 0, &cached_state);
4821 clear_extent_bit(io_tree, state->start, state->end,
4822 EXTENT_LOCKED | EXTENT_DIRTY |
4823 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4824 EXTENT_DEFRAG, 1, 1,
4825 &cached_state, GFP_NOFS);
4826 free_extent_state(state);
4827
4828 cond_resched();
4829 spin_lock(&io_tree->lock);
4830 }
4831 spin_unlock(&io_tree->lock);
4832 }
4833
4834 void btrfs_evict_inode(struct inode *inode)
4835 {
4836 struct btrfs_trans_handle *trans;
4837 struct btrfs_root *root = BTRFS_I(inode)->root;
4838 struct btrfs_block_rsv *rsv, *global_rsv;
4839 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4840 int ret;
4841
4842 trace_btrfs_inode_evict(inode);
4843
4844 evict_inode_truncate_pages(inode);
4845
4846 if (inode->i_nlink &&
4847 ((btrfs_root_refs(&root->root_item) != 0 &&
4848 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4849 btrfs_is_free_space_inode(inode)))
4850 goto no_delete;
4851
4852 if (is_bad_inode(inode)) {
4853 btrfs_orphan_del(NULL, inode);
4854 goto no_delete;
4855 }
4856 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4857 btrfs_wait_ordered_range(inode, 0, (u64)-1);
4858
4859 btrfs_free_io_failure_record(inode, 0, (u64)-1);
4860
4861 if (root->fs_info->log_root_recovering) {
4862 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4863 &BTRFS_I(inode)->runtime_flags));
4864 goto no_delete;
4865 }
4866
4867 if (inode->i_nlink > 0) {
4868 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4869 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
4870 goto no_delete;
4871 }
4872
4873 ret = btrfs_commit_inode_delayed_inode(inode);
4874 if (ret) {
4875 btrfs_orphan_del(NULL, inode);
4876 goto no_delete;
4877 }
4878
4879 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4880 if (!rsv) {
4881 btrfs_orphan_del(NULL, inode);
4882 goto no_delete;
4883 }
4884 rsv->size = min_size;
4885 rsv->failfast = 1;
4886 global_rsv = &root->fs_info->global_block_rsv;
4887
4888 btrfs_i_size_write(inode, 0);
4889
4890 /*
4891 * This is a bit simpler than btrfs_truncate since we've already
4892 * reserved our space for our orphan item in the unlink, so we just
4893 * need to reserve some slack space in case we add bytes and update
4894 * inode item when doing the truncate.
4895 */
4896 while (1) {
4897 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4898 BTRFS_RESERVE_FLUSH_LIMIT);
4899
4900 /*
4901 * Try and steal from the global reserve since we will
4902 * likely not use this space anyway, we want to try as
4903 * hard as possible to get this to work.
4904 */
4905 if (ret)
4906 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4907
4908 if (ret) {
4909 btrfs_warn(root->fs_info,
4910 "Could not get space for a delete, will truncate on mount %d",
4911 ret);
4912 btrfs_orphan_del(NULL, inode);
4913 btrfs_free_block_rsv(root, rsv);
4914 goto no_delete;
4915 }
4916
4917 trans = btrfs_join_transaction(root);
4918 if (IS_ERR(trans)) {
4919 btrfs_orphan_del(NULL, inode);
4920 btrfs_free_block_rsv(root, rsv);
4921 goto no_delete;
4922 }
4923
4924 trans->block_rsv = rsv;
4925
4926 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4927 if (ret != -ENOSPC)
4928 break;
4929
4930 trans->block_rsv = &root->fs_info->trans_block_rsv;
4931 btrfs_end_transaction(trans, root);
4932 trans = NULL;
4933 btrfs_btree_balance_dirty(root);
4934 }
4935
4936 btrfs_free_block_rsv(root, rsv);
4937
4938 /*
4939 * Errors here aren't a big deal, it just means we leave orphan items
4940 * in the tree. They will be cleaned up on the next mount.
4941 */
4942 if (ret == 0) {
4943 trans->block_rsv = root->orphan_block_rsv;
4944 btrfs_orphan_del(trans, inode);
4945 } else {
4946 btrfs_orphan_del(NULL, inode);
4947 }
4948
4949 trans->block_rsv = &root->fs_info->trans_block_rsv;
4950 if (!(root == root->fs_info->tree_root ||
4951 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4952 btrfs_return_ino(root, btrfs_ino(inode));
4953
4954 btrfs_end_transaction(trans, root);
4955 btrfs_btree_balance_dirty(root);
4956 no_delete:
4957 btrfs_remove_delayed_node(inode);
4958 clear_inode(inode);
4959 return;
4960 }
4961
4962 /*
4963 * this returns the key found in the dir entry in the location pointer.
4964 * If no dir entries were found, location->objectid is 0.
4965 */
4966 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4967 struct btrfs_key *location)
4968 {
4969 const char *name = dentry->d_name.name;
4970 int namelen = dentry->d_name.len;
4971 struct btrfs_dir_item *di;
4972 struct btrfs_path *path;
4973 struct btrfs_root *root = BTRFS_I(dir)->root;
4974 int ret = 0;
4975
4976 path = btrfs_alloc_path();
4977 if (!path)
4978 return -ENOMEM;
4979
4980 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4981 namelen, 0);
4982 if (IS_ERR(di))
4983 ret = PTR_ERR(di);
4984
4985 if (IS_ERR_OR_NULL(di))
4986 goto out_err;
4987
4988 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4989 out:
4990 btrfs_free_path(path);
4991 return ret;
4992 out_err:
4993 location->objectid = 0;
4994 goto out;
4995 }
4996
4997 /*
4998 * when we hit a tree root in a directory, the btrfs part of the inode
4999 * needs to be changed to reflect the root directory of the tree root. This
5000 * is kind of like crossing a mount point.
5001 */
5002 static int fixup_tree_root_location(struct btrfs_root *root,
5003 struct inode *dir,
5004 struct dentry *dentry,
5005 struct btrfs_key *location,
5006 struct btrfs_root **sub_root)
5007 {
5008 struct btrfs_path *path;
5009 struct btrfs_root *new_root;
5010 struct btrfs_root_ref *ref;
5011 struct extent_buffer *leaf;
5012 int ret;
5013 int err = 0;
5014
5015 path = btrfs_alloc_path();
5016 if (!path) {
5017 err = -ENOMEM;
5018 goto out;
5019 }
5020
5021 err = -ENOENT;
5022 ret = btrfs_find_item(root->fs_info->tree_root, path,
5023 BTRFS_I(dir)->root->root_key.objectid,
5024 location->objectid, BTRFS_ROOT_REF_KEY, NULL);
5025 if (ret) {
5026 if (ret < 0)
5027 err = ret;
5028 goto out;
5029 }
5030
5031 leaf = path->nodes[0];
5032 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5033 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5034 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5035 goto out;
5036
5037 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5038 (unsigned long)(ref + 1),
5039 dentry->d_name.len);
5040 if (ret)
5041 goto out;
5042
5043 btrfs_release_path(path);
5044
5045 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5046 if (IS_ERR(new_root)) {
5047 err = PTR_ERR(new_root);
5048 goto out;
5049 }
5050
5051 *sub_root = new_root;
5052 location->objectid = btrfs_root_dirid(&new_root->root_item);
5053 location->type = BTRFS_INODE_ITEM_KEY;
5054 location->offset = 0;
5055 err = 0;
5056 out:
5057 btrfs_free_path(path);
5058 return err;
5059 }
5060
5061 static void inode_tree_add(struct inode *inode)
5062 {
5063 struct btrfs_root *root = BTRFS_I(inode)->root;
5064 struct btrfs_inode *entry;
5065 struct rb_node **p;
5066 struct rb_node *parent;
5067 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5068 u64 ino = btrfs_ino(inode);
5069
5070 if (inode_unhashed(inode))
5071 return;
5072 parent = NULL;
5073 spin_lock(&root->inode_lock);
5074 p = &root->inode_tree.rb_node;
5075 while (*p) {
5076 parent = *p;
5077 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5078
5079 if (ino < btrfs_ino(&entry->vfs_inode))
5080 p = &parent->rb_left;
5081 else if (ino > btrfs_ino(&entry->vfs_inode))
5082 p = &parent->rb_right;
5083 else {
5084 WARN_ON(!(entry->vfs_inode.i_state &
5085 (I_WILL_FREE | I_FREEING)));
5086 rb_replace_node(parent, new, &root->inode_tree);
5087 RB_CLEAR_NODE(parent);
5088 spin_unlock(&root->inode_lock);
5089 return;
5090 }
5091 }
5092 rb_link_node(new, parent, p);
5093 rb_insert_color(new, &root->inode_tree);
5094 spin_unlock(&root->inode_lock);
5095 }
5096
5097 static void inode_tree_del(struct inode *inode)
5098 {
5099 struct btrfs_root *root = BTRFS_I(inode)->root;
5100 int empty = 0;
5101
5102 spin_lock(&root->inode_lock);
5103 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5104 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5105 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5106 empty = RB_EMPTY_ROOT(&root->inode_tree);
5107 }
5108 spin_unlock(&root->inode_lock);
5109
5110 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5111 synchronize_srcu(&root->fs_info->subvol_srcu);
5112 spin_lock(&root->inode_lock);
5113 empty = RB_EMPTY_ROOT(&root->inode_tree);
5114 spin_unlock(&root->inode_lock);
5115 if (empty)
5116 btrfs_add_dead_root(root);
5117 }
5118 }
5119
5120 void btrfs_invalidate_inodes(struct btrfs_root *root)
5121 {
5122 struct rb_node *node;
5123 struct rb_node *prev;
5124 struct btrfs_inode *entry;
5125 struct inode *inode;
5126 u64 objectid = 0;
5127
5128 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5129 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5130
5131 spin_lock(&root->inode_lock);
5132 again:
5133 node = root->inode_tree.rb_node;
5134 prev = NULL;
5135 while (node) {
5136 prev = node;
5137 entry = rb_entry(node, struct btrfs_inode, rb_node);
5138
5139 if (objectid < btrfs_ino(&entry->vfs_inode))
5140 node = node->rb_left;
5141 else if (objectid > btrfs_ino(&entry->vfs_inode))
5142 node = node->rb_right;
5143 else
5144 break;
5145 }
5146 if (!node) {
5147 while (prev) {
5148 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5149 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5150 node = prev;
5151 break;
5152 }
5153 prev = rb_next(prev);
5154 }
5155 }
5156 while (node) {
5157 entry = rb_entry(node, struct btrfs_inode, rb_node);
5158 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5159 inode = igrab(&entry->vfs_inode);
5160 if (inode) {
5161 spin_unlock(&root->inode_lock);
5162 if (atomic_read(&inode->i_count) > 1)
5163 d_prune_aliases(inode);
5164 /*
5165 * btrfs_drop_inode will have it removed from
5166 * the inode cache when its usage count
5167 * hits zero.
5168 */
5169 iput(inode);
5170 cond_resched();
5171 spin_lock(&root->inode_lock);
5172 goto again;
5173 }
5174
5175 if (cond_resched_lock(&root->inode_lock))
5176 goto again;
5177
5178 node = rb_next(node);
5179 }
5180 spin_unlock(&root->inode_lock);
5181 }
5182
5183 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5184 {
5185 struct btrfs_iget_args *args = p;
5186 inode->i_ino = args->location->objectid;
5187 memcpy(&BTRFS_I(inode)->location, args->location,
5188 sizeof(*args->location));
5189 BTRFS_I(inode)->root = args->root;
5190 return 0;
5191 }
5192
5193 static int btrfs_find_actor(struct inode *inode, void *opaque)
5194 {
5195 struct btrfs_iget_args *args = opaque;
5196 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5197 args->root == BTRFS_I(inode)->root;
5198 }
5199
5200 static struct inode *btrfs_iget_locked(struct super_block *s,
5201 struct btrfs_key *location,
5202 struct btrfs_root *root)
5203 {
5204 struct inode *inode;
5205 struct btrfs_iget_args args;
5206 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5207
5208 args.location = location;
5209 args.root = root;
5210
5211 inode = iget5_locked(s, hashval, btrfs_find_actor,
5212 btrfs_init_locked_inode,
5213 (void *)&args);
5214 return inode;
5215 }
5216
5217 /* Get an inode object given its location and corresponding root.
5218 * Returns in *is_new if the inode was read from disk
5219 */
5220 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5221 struct btrfs_root *root, int *new)
5222 {
5223 struct inode *inode;
5224
5225 inode = btrfs_iget_locked(s, location, root);
5226 if (!inode)
5227 return ERR_PTR(-ENOMEM);
5228
5229 if (inode->i_state & I_NEW) {
5230 btrfs_read_locked_inode(inode);
5231 if (!is_bad_inode(inode)) {
5232 inode_tree_add(inode);
5233 unlock_new_inode(inode);
5234 if (new)
5235 *new = 1;
5236 } else {
5237 unlock_new_inode(inode);
5238 iput(inode);
5239 inode = ERR_PTR(-ESTALE);
5240 }
5241 }
5242
5243 return inode;
5244 }
5245
5246 static struct inode *new_simple_dir(struct super_block *s,
5247 struct btrfs_key *key,
5248 struct btrfs_root *root)
5249 {
5250 struct inode *inode = new_inode(s);
5251
5252 if (!inode)
5253 return ERR_PTR(-ENOMEM);
5254
5255 BTRFS_I(inode)->root = root;
5256 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5257 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5258
5259 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5260 inode->i_op = &btrfs_dir_ro_inode_operations;
5261 inode->i_fop = &simple_dir_operations;
5262 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5263 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5264
5265 return inode;
5266 }
5267
5268 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5269 {
5270 struct inode *inode;
5271 struct btrfs_root *root = BTRFS_I(dir)->root;
5272 struct btrfs_root *sub_root = root;
5273 struct btrfs_key location;
5274 int index;
5275 int ret = 0;
5276
5277 if (dentry->d_name.len > BTRFS_NAME_LEN)
5278 return ERR_PTR(-ENAMETOOLONG);
5279
5280 ret = btrfs_inode_by_name(dir, dentry, &location);
5281 if (ret < 0)
5282 return ERR_PTR(ret);
5283
5284 if (location.objectid == 0)
5285 return ERR_PTR(-ENOENT);
5286
5287 if (location.type == BTRFS_INODE_ITEM_KEY) {
5288 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5289 return inode;
5290 }
5291
5292 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5293
5294 index = srcu_read_lock(&root->fs_info->subvol_srcu);
5295 ret = fixup_tree_root_location(root, dir, dentry,
5296 &location, &sub_root);
5297 if (ret < 0) {
5298 if (ret != -ENOENT)
5299 inode = ERR_PTR(ret);
5300 else
5301 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5302 } else {
5303 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5304 }
5305 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5306
5307 if (!IS_ERR(inode) && root != sub_root) {
5308 down_read(&root->fs_info->cleanup_work_sem);
5309 if (!(inode->i_sb->s_flags & MS_RDONLY))
5310 ret = btrfs_orphan_cleanup(sub_root);
5311 up_read(&root->fs_info->cleanup_work_sem);
5312 if (ret) {
5313 iput(inode);
5314 inode = ERR_PTR(ret);
5315 }
5316 }
5317
5318 return inode;
5319 }
5320
5321 static int btrfs_dentry_delete(const struct dentry *dentry)
5322 {
5323 struct btrfs_root *root;
5324 struct inode *inode = dentry->d_inode;
5325
5326 if (!inode && !IS_ROOT(dentry))
5327 inode = dentry->d_parent->d_inode;
5328
5329 if (inode) {
5330 root = BTRFS_I(inode)->root;
5331 if (btrfs_root_refs(&root->root_item) == 0)
5332 return 1;
5333
5334 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5335 return 1;
5336 }
5337 return 0;
5338 }
5339
5340 static void btrfs_dentry_release(struct dentry *dentry)
5341 {
5342 kfree(dentry->d_fsdata);
5343 }
5344
5345 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5346 unsigned int flags)
5347 {
5348 struct inode *inode;
5349
5350 inode = btrfs_lookup_dentry(dir, dentry);
5351 if (IS_ERR(inode)) {
5352 if (PTR_ERR(inode) == -ENOENT)
5353 inode = NULL;
5354 else
5355 return ERR_CAST(inode);
5356 }
5357
5358 return d_materialise_unique(dentry, inode);
5359 }
5360
5361 unsigned char btrfs_filetype_table[] = {
5362 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5363 };
5364
5365 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5366 {
5367 struct inode *inode = file_inode(file);
5368 struct btrfs_root *root = BTRFS_I(inode)->root;
5369 struct btrfs_item *item;
5370 struct btrfs_dir_item *di;
5371 struct btrfs_key key;
5372 struct btrfs_key found_key;
5373 struct btrfs_path *path;
5374 struct list_head ins_list;
5375 struct list_head del_list;
5376 int ret;
5377 struct extent_buffer *leaf;
5378 int slot;
5379 unsigned char d_type;
5380 int over = 0;
5381 u32 di_cur;
5382 u32 di_total;
5383 u32 di_len;
5384 int key_type = BTRFS_DIR_INDEX_KEY;
5385 char tmp_name[32];
5386 char *name_ptr;
5387 int name_len;
5388 int is_curr = 0; /* ctx->pos points to the current index? */
5389
5390 /* FIXME, use a real flag for deciding about the key type */
5391 if (root->fs_info->tree_root == root)
5392 key_type = BTRFS_DIR_ITEM_KEY;
5393
5394 if (!dir_emit_dots(file, ctx))
5395 return 0;
5396
5397 path = btrfs_alloc_path();
5398 if (!path)
5399 return -ENOMEM;
5400
5401 path->reada = 1;
5402
5403 if (key_type == BTRFS_DIR_INDEX_KEY) {
5404 INIT_LIST_HEAD(&ins_list);
5405 INIT_LIST_HEAD(&del_list);
5406 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5407 }
5408
5409 key.type = key_type;
5410 key.offset = ctx->pos;
5411 key.objectid = btrfs_ino(inode);
5412
5413 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5414 if (ret < 0)
5415 goto err;
5416
5417 while (1) {
5418 leaf = path->nodes[0];
5419 slot = path->slots[0];
5420 if (slot >= btrfs_header_nritems(leaf)) {
5421 ret = btrfs_next_leaf(root, path);
5422 if (ret < 0)
5423 goto err;
5424 else if (ret > 0)
5425 break;
5426 continue;
5427 }
5428
5429 item = btrfs_item_nr(slot);
5430 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5431
5432 if (found_key.objectid != key.objectid)
5433 break;
5434 if (found_key.type != key_type)
5435 break;
5436 if (found_key.offset < ctx->pos)
5437 goto next;
5438 if (key_type == BTRFS_DIR_INDEX_KEY &&
5439 btrfs_should_delete_dir_index(&del_list,
5440 found_key.offset))
5441 goto next;
5442
5443 ctx->pos = found_key.offset;
5444 is_curr = 1;
5445
5446 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5447 di_cur = 0;
5448 di_total = btrfs_item_size(leaf, item);
5449
5450 while (di_cur < di_total) {
5451 struct btrfs_key location;
5452
5453 if (verify_dir_item(root, leaf, di))
5454 break;
5455
5456 name_len = btrfs_dir_name_len(leaf, di);
5457 if (name_len <= sizeof(tmp_name)) {
5458 name_ptr = tmp_name;
5459 } else {
5460 name_ptr = kmalloc(name_len, GFP_NOFS);
5461 if (!name_ptr) {
5462 ret = -ENOMEM;
5463 goto err;
5464 }
5465 }
5466 read_extent_buffer(leaf, name_ptr,
5467 (unsigned long)(di + 1), name_len);
5468
5469 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5470 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5471
5472
5473 /* is this a reference to our own snapshot? If so
5474 * skip it.
5475 *
5476 * In contrast to old kernels, we insert the snapshot's
5477 * dir item and dir index after it has been created, so
5478 * we won't find a reference to our own snapshot. We
5479 * still keep the following code for backward
5480 * compatibility.
5481 */
5482 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5483 location.objectid == root->root_key.objectid) {
5484 over = 0;
5485 goto skip;
5486 }
5487 over = !dir_emit(ctx, name_ptr, name_len,
5488 location.objectid, d_type);
5489
5490 skip:
5491 if (name_ptr != tmp_name)
5492 kfree(name_ptr);
5493
5494 if (over)
5495 goto nopos;
5496 di_len = btrfs_dir_name_len(leaf, di) +
5497 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5498 di_cur += di_len;
5499 di = (struct btrfs_dir_item *)((char *)di + di_len);
5500 }
5501 next:
5502 path->slots[0]++;
5503 }
5504
5505 if (key_type == BTRFS_DIR_INDEX_KEY) {
5506 if (is_curr)
5507 ctx->pos++;
5508 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5509 if (ret)
5510 goto nopos;
5511 }
5512
5513 /* Reached end of directory/root. Bump pos past the last item. */
5514 ctx->pos++;
5515
5516 /*
5517 * Stop new entries from being returned after we return the last
5518 * entry.
5519 *
5520 * New directory entries are assigned a strictly increasing
5521 * offset. This means that new entries created during readdir
5522 * are *guaranteed* to be seen in the future by that readdir.
5523 * This has broken buggy programs which operate on names as
5524 * they're returned by readdir. Until we re-use freed offsets
5525 * we have this hack to stop new entries from being returned
5526 * under the assumption that they'll never reach this huge
5527 * offset.
5528 *
5529 * This is being careful not to overflow 32bit loff_t unless the
5530 * last entry requires it because doing so has broken 32bit apps
5531 * in the past.
5532 */
5533 if (key_type == BTRFS_DIR_INDEX_KEY) {
5534 if (ctx->pos >= INT_MAX)
5535 ctx->pos = LLONG_MAX;
5536 else
5537 ctx->pos = INT_MAX;
5538 }
5539 nopos:
5540 ret = 0;
5541 err:
5542 if (key_type == BTRFS_DIR_INDEX_KEY)
5543 btrfs_put_delayed_items(&ins_list, &del_list);
5544 btrfs_free_path(path);
5545 return ret;
5546 }
5547
5548 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5549 {
5550 struct btrfs_root *root = BTRFS_I(inode)->root;
5551 struct btrfs_trans_handle *trans;
5552 int ret = 0;
5553 bool nolock = false;
5554
5555 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5556 return 0;
5557
5558 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5559 nolock = true;
5560
5561 if (wbc->sync_mode == WB_SYNC_ALL) {
5562 if (nolock)
5563 trans = btrfs_join_transaction_nolock(root);
5564 else
5565 trans = btrfs_join_transaction(root);
5566 if (IS_ERR(trans))
5567 return PTR_ERR(trans);
5568 ret = btrfs_commit_transaction(trans, root);
5569 }
5570 return ret;
5571 }
5572
5573 /*
5574 * This is somewhat expensive, updating the tree every time the
5575 * inode changes. But, it is most likely to find the inode in cache.
5576 * FIXME, needs more benchmarking...there are no reasons other than performance
5577 * to keep or drop this code.
5578 */
5579 static int btrfs_dirty_inode(struct inode *inode)
5580 {
5581 struct btrfs_root *root = BTRFS_I(inode)->root;
5582 struct btrfs_trans_handle *trans;
5583 int ret;
5584
5585 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5586 return 0;
5587
5588 trans = btrfs_join_transaction(root);
5589 if (IS_ERR(trans))
5590 return PTR_ERR(trans);
5591
5592 ret = btrfs_update_inode(trans, root, inode);
5593 if (ret && ret == -ENOSPC) {
5594 /* whoops, lets try again with the full transaction */
5595 btrfs_end_transaction(trans, root);
5596 trans = btrfs_start_transaction(root, 1);
5597 if (IS_ERR(trans))
5598 return PTR_ERR(trans);
5599
5600 ret = btrfs_update_inode(trans, root, inode);
5601 }
5602 btrfs_end_transaction(trans, root);
5603 if (BTRFS_I(inode)->delayed_node)
5604 btrfs_balance_delayed_items(root);
5605
5606 return ret;
5607 }
5608
5609 /*
5610 * This is a copy of file_update_time. We need this so we can return error on
5611 * ENOSPC for updating the inode in the case of file write and mmap writes.
5612 */
5613 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5614 int flags)
5615 {
5616 struct btrfs_root *root = BTRFS_I(inode)->root;
5617
5618 if (btrfs_root_readonly(root))
5619 return -EROFS;
5620
5621 if (flags & S_VERSION)
5622 inode_inc_iversion(inode);
5623 if (flags & S_CTIME)
5624 inode->i_ctime = *now;
5625 if (flags & S_MTIME)
5626 inode->i_mtime = *now;
5627 if (flags & S_ATIME)
5628 inode->i_atime = *now;
5629 return btrfs_dirty_inode(inode);
5630 }
5631
5632 /*
5633 * find the highest existing sequence number in a directory
5634 * and then set the in-memory index_cnt variable to reflect
5635 * free sequence numbers
5636 */
5637 static int btrfs_set_inode_index_count(struct inode *inode)
5638 {
5639 struct btrfs_root *root = BTRFS_I(inode)->root;
5640 struct btrfs_key key, found_key;
5641 struct btrfs_path *path;
5642 struct extent_buffer *leaf;
5643 int ret;
5644
5645 key.objectid = btrfs_ino(inode);
5646 key.type = BTRFS_DIR_INDEX_KEY;
5647 key.offset = (u64)-1;
5648
5649 path = btrfs_alloc_path();
5650 if (!path)
5651 return -ENOMEM;
5652
5653 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5654 if (ret < 0)
5655 goto out;
5656 /* FIXME: we should be able to handle this */
5657 if (ret == 0)
5658 goto out;
5659 ret = 0;
5660
5661 /*
5662 * MAGIC NUMBER EXPLANATION:
5663 * since we search a directory based on f_pos we have to start at 2
5664 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5665 * else has to start at 2
5666 */
5667 if (path->slots[0] == 0) {
5668 BTRFS_I(inode)->index_cnt = 2;
5669 goto out;
5670 }
5671
5672 path->slots[0]--;
5673
5674 leaf = path->nodes[0];
5675 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5676
5677 if (found_key.objectid != btrfs_ino(inode) ||
5678 found_key.type != BTRFS_DIR_INDEX_KEY) {
5679 BTRFS_I(inode)->index_cnt = 2;
5680 goto out;
5681 }
5682
5683 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5684 out:
5685 btrfs_free_path(path);
5686 return ret;
5687 }
5688
5689 /*
5690 * helper to find a free sequence number in a given directory. This current
5691 * code is very simple, later versions will do smarter things in the btree
5692 */
5693 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5694 {
5695 int ret = 0;
5696
5697 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5698 ret = btrfs_inode_delayed_dir_index_count(dir);
5699 if (ret) {
5700 ret = btrfs_set_inode_index_count(dir);
5701 if (ret)
5702 return ret;
5703 }
5704 }
5705
5706 *index = BTRFS_I(dir)->index_cnt;
5707 BTRFS_I(dir)->index_cnt++;
5708
5709 return ret;
5710 }
5711
5712 static int btrfs_insert_inode_locked(struct inode *inode)
5713 {
5714 struct btrfs_iget_args args;
5715 args.location = &BTRFS_I(inode)->location;
5716 args.root = BTRFS_I(inode)->root;
5717
5718 return insert_inode_locked4(inode,
5719 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5720 btrfs_find_actor, &args);
5721 }
5722
5723 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5724 struct btrfs_root *root,
5725 struct inode *dir,
5726 const char *name, int name_len,
5727 u64 ref_objectid, u64 objectid,
5728 umode_t mode, u64 *index)
5729 {
5730 struct inode *inode;
5731 struct btrfs_inode_item *inode_item;
5732 struct btrfs_key *location;
5733 struct btrfs_path *path;
5734 struct btrfs_inode_ref *ref;
5735 struct btrfs_key key[2];
5736 u32 sizes[2];
5737 int nitems = name ? 2 : 1;
5738 unsigned long ptr;
5739 int ret;
5740
5741 path = btrfs_alloc_path();
5742 if (!path)
5743 return ERR_PTR(-ENOMEM);
5744
5745 inode = new_inode(root->fs_info->sb);
5746 if (!inode) {
5747 btrfs_free_path(path);
5748 return ERR_PTR(-ENOMEM);
5749 }
5750
5751 /*
5752 * O_TMPFILE, set link count to 0, so that after this point,
5753 * we fill in an inode item with the correct link count.
5754 */
5755 if (!name)
5756 set_nlink(inode, 0);
5757
5758 /*
5759 * we have to initialize this early, so we can reclaim the inode
5760 * number if we fail afterwards in this function.
5761 */
5762 inode->i_ino = objectid;
5763
5764 if (dir && name) {
5765 trace_btrfs_inode_request(dir);
5766
5767 ret = btrfs_set_inode_index(dir, index);
5768 if (ret) {
5769 btrfs_free_path(path);
5770 iput(inode);
5771 return ERR_PTR(ret);
5772 }
5773 } else if (dir) {
5774 *index = 0;
5775 }
5776 /*
5777 * index_cnt is ignored for everything but a dir,
5778 * btrfs_get_inode_index_count has an explanation for the magic
5779 * number
5780 */
5781 BTRFS_I(inode)->index_cnt = 2;
5782 BTRFS_I(inode)->dir_index = *index;
5783 BTRFS_I(inode)->root = root;
5784 BTRFS_I(inode)->generation = trans->transid;
5785 inode->i_generation = BTRFS_I(inode)->generation;
5786
5787 /*
5788 * We could have gotten an inode number from somebody who was fsynced
5789 * and then removed in this same transaction, so let's just set full
5790 * sync since it will be a full sync anyway and this will blow away the
5791 * old info in the log.
5792 */
5793 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5794
5795 key[0].objectid = objectid;
5796 key[0].type = BTRFS_INODE_ITEM_KEY;
5797 key[0].offset = 0;
5798
5799 sizes[0] = sizeof(struct btrfs_inode_item);
5800
5801 if (name) {
5802 /*
5803 * Start new inodes with an inode_ref. This is slightly more
5804 * efficient for small numbers of hard links since they will
5805 * be packed into one item. Extended refs will kick in if we
5806 * add more hard links than can fit in the ref item.
5807 */
5808 key[1].objectid = objectid;
5809 key[1].type = BTRFS_INODE_REF_KEY;
5810 key[1].offset = ref_objectid;
5811
5812 sizes[1] = name_len + sizeof(*ref);
5813 }
5814
5815 location = &BTRFS_I(inode)->location;
5816 location->objectid = objectid;
5817 location->offset = 0;
5818 location->type = BTRFS_INODE_ITEM_KEY;
5819
5820 ret = btrfs_insert_inode_locked(inode);
5821 if (ret < 0)
5822 goto fail;
5823
5824 path->leave_spinning = 1;
5825 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
5826 if (ret != 0)
5827 goto fail_unlock;
5828
5829 inode_init_owner(inode, dir, mode);
5830 inode_set_bytes(inode, 0);
5831 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5832 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5833 struct btrfs_inode_item);
5834 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5835 sizeof(*inode_item));
5836 fill_inode_item(trans, path->nodes[0], inode_item, inode);
5837
5838 if (name) {
5839 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5840 struct btrfs_inode_ref);
5841 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5842 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5843 ptr = (unsigned long)(ref + 1);
5844 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5845 }
5846
5847 btrfs_mark_buffer_dirty(path->nodes[0]);
5848 btrfs_free_path(path);
5849
5850 btrfs_inherit_iflags(inode, dir);
5851
5852 if (S_ISREG(mode)) {
5853 if (btrfs_test_opt(root, NODATASUM))
5854 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5855 if (btrfs_test_opt(root, NODATACOW))
5856 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5857 BTRFS_INODE_NODATASUM;
5858 }
5859
5860 inode_tree_add(inode);
5861
5862 trace_btrfs_inode_new(inode);
5863 btrfs_set_inode_last_trans(trans, inode);
5864
5865 btrfs_update_root_times(trans, root);
5866
5867 ret = btrfs_inode_inherit_props(trans, inode, dir);
5868 if (ret)
5869 btrfs_err(root->fs_info,
5870 "error inheriting props for ino %llu (root %llu): %d",
5871 btrfs_ino(inode), root->root_key.objectid, ret);
5872
5873 return inode;
5874
5875 fail_unlock:
5876 unlock_new_inode(inode);
5877 fail:
5878 if (dir && name)
5879 BTRFS_I(dir)->index_cnt--;
5880 btrfs_free_path(path);
5881 iput(inode);
5882 return ERR_PTR(ret);
5883 }
5884
5885 static inline u8 btrfs_inode_type(struct inode *inode)
5886 {
5887 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5888 }
5889
5890 /*
5891 * utility function to add 'inode' into 'parent_inode' with
5892 * a give name and a given sequence number.
5893 * if 'add_backref' is true, also insert a backref from the
5894 * inode to the parent directory.
5895 */
5896 int btrfs_add_link(struct btrfs_trans_handle *trans,
5897 struct inode *parent_inode, struct inode *inode,
5898 const char *name, int name_len, int add_backref, u64 index)
5899 {
5900 int ret = 0;
5901 struct btrfs_key key;
5902 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5903 u64 ino = btrfs_ino(inode);
5904 u64 parent_ino = btrfs_ino(parent_inode);
5905
5906 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5907 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5908 } else {
5909 key.objectid = ino;
5910 key.type = BTRFS_INODE_ITEM_KEY;
5911 key.offset = 0;
5912 }
5913
5914 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5915 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5916 key.objectid, root->root_key.objectid,
5917 parent_ino, index, name, name_len);
5918 } else if (add_backref) {
5919 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5920 parent_ino, index);
5921 }
5922
5923 /* Nothing to clean up yet */
5924 if (ret)
5925 return ret;
5926
5927 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5928 parent_inode, &key,
5929 btrfs_inode_type(inode), index);
5930 if (ret == -EEXIST || ret == -EOVERFLOW)
5931 goto fail_dir_item;
5932 else if (ret) {
5933 btrfs_abort_transaction(trans, root, ret);
5934 return ret;
5935 }
5936
5937 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5938 name_len * 2);
5939 inode_inc_iversion(parent_inode);
5940 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5941 ret = btrfs_update_inode(trans, root, parent_inode);
5942 if (ret)
5943 btrfs_abort_transaction(trans, root, ret);
5944 return ret;
5945
5946 fail_dir_item:
5947 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5948 u64 local_index;
5949 int err;
5950 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5951 key.objectid, root->root_key.objectid,
5952 parent_ino, &local_index, name, name_len);
5953
5954 } else if (add_backref) {
5955 u64 local_index;
5956 int err;
5957
5958 err = btrfs_del_inode_ref(trans, root, name, name_len,
5959 ino, parent_ino, &local_index);
5960 }
5961 return ret;
5962 }
5963
5964 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5965 struct inode *dir, struct dentry *dentry,
5966 struct inode *inode, int backref, u64 index)
5967 {
5968 int err = btrfs_add_link(trans, dir, inode,
5969 dentry->d_name.name, dentry->d_name.len,
5970 backref, index);
5971 if (err > 0)
5972 err = -EEXIST;
5973 return err;
5974 }
5975
5976 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5977 umode_t mode, dev_t rdev)
5978 {
5979 struct btrfs_trans_handle *trans;
5980 struct btrfs_root *root = BTRFS_I(dir)->root;
5981 struct inode *inode = NULL;
5982 int err;
5983 int drop_inode = 0;
5984 u64 objectid;
5985 u64 index = 0;
5986
5987 if (!new_valid_dev(rdev))
5988 return -EINVAL;
5989
5990 /*
5991 * 2 for inode item and ref
5992 * 2 for dir items
5993 * 1 for xattr if selinux is on
5994 */
5995 trans = btrfs_start_transaction(root, 5);
5996 if (IS_ERR(trans))
5997 return PTR_ERR(trans);
5998
5999 err = btrfs_find_free_ino(root, &objectid);
6000 if (err)
6001 goto out_unlock;
6002
6003 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6004 dentry->d_name.len, btrfs_ino(dir), objectid,
6005 mode, &index);
6006 if (IS_ERR(inode)) {
6007 err = PTR_ERR(inode);
6008 goto out_unlock;
6009 }
6010
6011 /*
6012 * If the active LSM wants to access the inode during
6013 * d_instantiate it needs these. Smack checks to see
6014 * if the filesystem supports xattrs by looking at the
6015 * ops vector.
6016 */
6017 inode->i_op = &btrfs_special_inode_operations;
6018 init_special_inode(inode, inode->i_mode, rdev);
6019
6020 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6021 if (err)
6022 goto out_unlock_inode;
6023
6024 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6025 if (err) {
6026 goto out_unlock_inode;
6027 } else {
6028 btrfs_update_inode(trans, root, inode);
6029 unlock_new_inode(inode);
6030 d_instantiate(dentry, inode);
6031 }
6032
6033 out_unlock:
6034 btrfs_end_transaction(trans, root);
6035 btrfs_balance_delayed_items(root);
6036 btrfs_btree_balance_dirty(root);
6037 if (drop_inode) {
6038 inode_dec_link_count(inode);
6039 iput(inode);
6040 }
6041 return err;
6042
6043 out_unlock_inode:
6044 drop_inode = 1;
6045 unlock_new_inode(inode);
6046 goto out_unlock;
6047
6048 }
6049
6050 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6051 umode_t mode, bool excl)
6052 {
6053 struct btrfs_trans_handle *trans;
6054 struct btrfs_root *root = BTRFS_I(dir)->root;
6055 struct inode *inode = NULL;
6056 int drop_inode_on_err = 0;
6057 int err;
6058 u64 objectid;
6059 u64 index = 0;
6060
6061 /*
6062 * 2 for inode item and ref
6063 * 2 for dir items
6064 * 1 for xattr if selinux is on
6065 */
6066 trans = btrfs_start_transaction(root, 5);
6067 if (IS_ERR(trans))
6068 return PTR_ERR(trans);
6069
6070 err = btrfs_find_free_ino(root, &objectid);
6071 if (err)
6072 goto out_unlock;
6073
6074 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6075 dentry->d_name.len, btrfs_ino(dir), objectid,
6076 mode, &index);
6077 if (IS_ERR(inode)) {
6078 err = PTR_ERR(inode);
6079 goto out_unlock;
6080 }
6081 drop_inode_on_err = 1;
6082 /*
6083 * If the active LSM wants to access the inode during
6084 * d_instantiate it needs these. Smack checks to see
6085 * if the filesystem supports xattrs by looking at the
6086 * ops vector.
6087 */
6088 inode->i_fop = &btrfs_file_operations;
6089 inode->i_op = &btrfs_file_inode_operations;
6090 inode->i_mapping->a_ops = &btrfs_aops;
6091 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6092
6093 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6094 if (err)
6095 goto out_unlock_inode;
6096
6097 err = btrfs_update_inode(trans, root, inode);
6098 if (err)
6099 goto out_unlock_inode;
6100
6101 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6102 if (err)
6103 goto out_unlock_inode;
6104
6105 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6106 unlock_new_inode(inode);
6107 d_instantiate(dentry, inode);
6108
6109 out_unlock:
6110 btrfs_end_transaction(trans, root);
6111 if (err && drop_inode_on_err) {
6112 inode_dec_link_count(inode);
6113 iput(inode);
6114 }
6115 btrfs_balance_delayed_items(root);
6116 btrfs_btree_balance_dirty(root);
6117 return err;
6118
6119 out_unlock_inode:
6120 unlock_new_inode(inode);
6121 goto out_unlock;
6122
6123 }
6124
6125 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6126 struct dentry *dentry)
6127 {
6128 struct btrfs_trans_handle *trans;
6129 struct btrfs_root *root = BTRFS_I(dir)->root;
6130 struct inode *inode = old_dentry->d_inode;
6131 u64 index;
6132 int err;
6133 int drop_inode = 0;
6134
6135 /* do not allow sys_link's with other subvols of the same device */
6136 if (root->objectid != BTRFS_I(inode)->root->objectid)
6137 return -EXDEV;
6138
6139 if (inode->i_nlink >= BTRFS_LINK_MAX)
6140 return -EMLINK;
6141
6142 err = btrfs_set_inode_index(dir, &index);
6143 if (err)
6144 goto fail;
6145
6146 /*
6147 * 2 items for inode and inode ref
6148 * 2 items for dir items
6149 * 1 item for parent inode
6150 */
6151 trans = btrfs_start_transaction(root, 5);
6152 if (IS_ERR(trans)) {
6153 err = PTR_ERR(trans);
6154 goto fail;
6155 }
6156
6157 /* There are several dir indexes for this inode, clear the cache. */
6158 BTRFS_I(inode)->dir_index = 0ULL;
6159 inc_nlink(inode);
6160 inode_inc_iversion(inode);
6161 inode->i_ctime = CURRENT_TIME;
6162 ihold(inode);
6163 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6164
6165 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6166
6167 if (err) {
6168 drop_inode = 1;
6169 } else {
6170 struct dentry *parent = dentry->d_parent;
6171 err = btrfs_update_inode(trans, root, inode);
6172 if (err)
6173 goto fail;
6174 if (inode->i_nlink == 1) {
6175 /*
6176 * If new hard link count is 1, it's a file created
6177 * with open(2) O_TMPFILE flag.
6178 */
6179 err = btrfs_orphan_del(trans, inode);
6180 if (err)
6181 goto fail;
6182 }
6183 d_instantiate(dentry, inode);
6184 btrfs_log_new_name(trans, inode, NULL, parent);
6185 }
6186
6187 btrfs_end_transaction(trans, root);
6188 btrfs_balance_delayed_items(root);
6189 fail:
6190 if (drop_inode) {
6191 inode_dec_link_count(inode);
6192 iput(inode);
6193 }
6194 btrfs_btree_balance_dirty(root);
6195 return err;
6196 }
6197
6198 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6199 {
6200 struct inode *inode = NULL;
6201 struct btrfs_trans_handle *trans;
6202 struct btrfs_root *root = BTRFS_I(dir)->root;
6203 int err = 0;
6204 int drop_on_err = 0;
6205 u64 objectid = 0;
6206 u64 index = 0;
6207
6208 /*
6209 * 2 items for inode and ref
6210 * 2 items for dir items
6211 * 1 for xattr if selinux is on
6212 */
6213 trans = btrfs_start_transaction(root, 5);
6214 if (IS_ERR(trans))
6215 return PTR_ERR(trans);
6216
6217 err = btrfs_find_free_ino(root, &objectid);
6218 if (err)
6219 goto out_fail;
6220
6221 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6222 dentry->d_name.len, btrfs_ino(dir), objectid,
6223 S_IFDIR | mode, &index);
6224 if (IS_ERR(inode)) {
6225 err = PTR_ERR(inode);
6226 goto out_fail;
6227 }
6228
6229 drop_on_err = 1;
6230 /* these must be set before we unlock the inode */
6231 inode->i_op = &btrfs_dir_inode_operations;
6232 inode->i_fop = &btrfs_dir_file_operations;
6233
6234 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6235 if (err)
6236 goto out_fail_inode;
6237
6238 btrfs_i_size_write(inode, 0);
6239 err = btrfs_update_inode(trans, root, inode);
6240 if (err)
6241 goto out_fail_inode;
6242
6243 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6244 dentry->d_name.len, 0, index);
6245 if (err)
6246 goto out_fail_inode;
6247
6248 d_instantiate(dentry, inode);
6249 /*
6250 * mkdir is special. We're unlocking after we call d_instantiate
6251 * to avoid a race with nfsd calling d_instantiate.
6252 */
6253 unlock_new_inode(inode);
6254 drop_on_err = 0;
6255
6256 out_fail:
6257 btrfs_end_transaction(trans, root);
6258 if (drop_on_err)
6259 iput(inode);
6260 btrfs_balance_delayed_items(root);
6261 btrfs_btree_balance_dirty(root);
6262 return err;
6263
6264 out_fail_inode:
6265 unlock_new_inode(inode);
6266 goto out_fail;
6267 }
6268
6269 /* Find next extent map of a given extent map, caller needs to ensure locks */
6270 static struct extent_map *next_extent_map(struct extent_map *em)
6271 {
6272 struct rb_node *next;
6273
6274 next = rb_next(&em->rb_node);
6275 if (!next)
6276 return NULL;
6277 return container_of(next, struct extent_map, rb_node);
6278 }
6279
6280 static struct extent_map *prev_extent_map(struct extent_map *em)
6281 {
6282 struct rb_node *prev;
6283
6284 prev = rb_prev(&em->rb_node);
6285 if (!prev)
6286 return NULL;
6287 return container_of(prev, struct extent_map, rb_node);
6288 }
6289
6290 /* helper for btfs_get_extent. Given an existing extent in the tree,
6291 * the existing extent is the nearest extent to map_start,
6292 * and an extent that you want to insert, deal with overlap and insert
6293 * the best fitted new extent into the tree.
6294 */
6295 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6296 struct extent_map *existing,
6297 struct extent_map *em,
6298 u64 map_start)
6299 {
6300 struct extent_map *prev;
6301 struct extent_map *next;
6302 u64 start;
6303 u64 end;
6304 u64 start_diff;
6305
6306 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6307
6308 if (existing->start > map_start) {
6309 next = existing;
6310 prev = prev_extent_map(next);
6311 } else {
6312 prev = existing;
6313 next = next_extent_map(prev);
6314 }
6315
6316 start = prev ? extent_map_end(prev) : em->start;
6317 start = max_t(u64, start, em->start);
6318 end = next ? next->start : extent_map_end(em);
6319 end = min_t(u64, end, extent_map_end(em));
6320 start_diff = start - em->start;
6321 em->start = start;
6322 em->len = end - start;
6323 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6324 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6325 em->block_start += start_diff;
6326 em->block_len -= start_diff;
6327 }
6328 return add_extent_mapping(em_tree, em, 0);
6329 }
6330
6331 static noinline int uncompress_inline(struct btrfs_path *path,
6332 struct inode *inode, struct page *page,
6333 size_t pg_offset, u64 extent_offset,
6334 struct btrfs_file_extent_item *item)
6335 {
6336 int ret;
6337 struct extent_buffer *leaf = path->nodes[0];
6338 char *tmp;
6339 size_t max_size;
6340 unsigned long inline_size;
6341 unsigned long ptr;
6342 int compress_type;
6343
6344 WARN_ON(pg_offset != 0);
6345 compress_type = btrfs_file_extent_compression(leaf, item);
6346 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6347 inline_size = btrfs_file_extent_inline_item_len(leaf,
6348 btrfs_item_nr(path->slots[0]));
6349 tmp = kmalloc(inline_size, GFP_NOFS);
6350 if (!tmp)
6351 return -ENOMEM;
6352 ptr = btrfs_file_extent_inline_start(item);
6353
6354 read_extent_buffer(leaf, tmp, ptr, inline_size);
6355
6356 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6357 ret = btrfs_decompress(compress_type, tmp, page,
6358 extent_offset, inline_size, max_size);
6359 kfree(tmp);
6360 return ret;
6361 }
6362
6363 /*
6364 * a bit scary, this does extent mapping from logical file offset to the disk.
6365 * the ugly parts come from merging extents from the disk with the in-ram
6366 * representation. This gets more complex because of the data=ordered code,
6367 * where the in-ram extents might be locked pending data=ordered completion.
6368 *
6369 * This also copies inline extents directly into the page.
6370 */
6371
6372 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6373 size_t pg_offset, u64 start, u64 len,
6374 int create)
6375 {
6376 int ret;
6377 int err = 0;
6378 u64 extent_start = 0;
6379 u64 extent_end = 0;
6380 u64 objectid = btrfs_ino(inode);
6381 u32 found_type;
6382 struct btrfs_path *path = NULL;
6383 struct btrfs_root *root = BTRFS_I(inode)->root;
6384 struct btrfs_file_extent_item *item;
6385 struct extent_buffer *leaf;
6386 struct btrfs_key found_key;
6387 struct extent_map *em = NULL;
6388 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6389 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6390 struct btrfs_trans_handle *trans = NULL;
6391 const bool new_inline = !page || create;
6392
6393 again:
6394 read_lock(&em_tree->lock);
6395 em = lookup_extent_mapping(em_tree, start, len);
6396 if (em)
6397 em->bdev = root->fs_info->fs_devices->latest_bdev;
6398 read_unlock(&em_tree->lock);
6399
6400 if (em) {
6401 if (em->start > start || em->start + em->len <= start)
6402 free_extent_map(em);
6403 else if (em->block_start == EXTENT_MAP_INLINE && page)
6404 free_extent_map(em);
6405 else
6406 goto out;
6407 }
6408 em = alloc_extent_map();
6409 if (!em) {
6410 err = -ENOMEM;
6411 goto out;
6412 }
6413 em->bdev = root->fs_info->fs_devices->latest_bdev;
6414 em->start = EXTENT_MAP_HOLE;
6415 em->orig_start = EXTENT_MAP_HOLE;
6416 em->len = (u64)-1;
6417 em->block_len = (u64)-1;
6418
6419 if (!path) {
6420 path = btrfs_alloc_path();
6421 if (!path) {
6422 err = -ENOMEM;
6423 goto out;
6424 }
6425 /*
6426 * Chances are we'll be called again, so go ahead and do
6427 * readahead
6428 */
6429 path->reada = 1;
6430 }
6431
6432 ret = btrfs_lookup_file_extent(trans, root, path,
6433 objectid, start, trans != NULL);
6434 if (ret < 0) {
6435 err = ret;
6436 goto out;
6437 }
6438
6439 if (ret != 0) {
6440 if (path->slots[0] == 0)
6441 goto not_found;
6442 path->slots[0]--;
6443 }
6444
6445 leaf = path->nodes[0];
6446 item = btrfs_item_ptr(leaf, path->slots[0],
6447 struct btrfs_file_extent_item);
6448 /* are we inside the extent that was found? */
6449 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6450 found_type = found_key.type;
6451 if (found_key.objectid != objectid ||
6452 found_type != BTRFS_EXTENT_DATA_KEY) {
6453 /*
6454 * If we backup past the first extent we want to move forward
6455 * and see if there is an extent in front of us, otherwise we'll
6456 * say there is a hole for our whole search range which can
6457 * cause problems.
6458 */
6459 extent_end = start;
6460 goto next;
6461 }
6462
6463 found_type = btrfs_file_extent_type(leaf, item);
6464 extent_start = found_key.offset;
6465 if (found_type == BTRFS_FILE_EXTENT_REG ||
6466 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6467 extent_end = extent_start +
6468 btrfs_file_extent_num_bytes(leaf, item);
6469 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6470 size_t size;
6471 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6472 extent_end = ALIGN(extent_start + size, root->sectorsize);
6473 }
6474 next:
6475 if (start >= extent_end) {
6476 path->slots[0]++;
6477 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6478 ret = btrfs_next_leaf(root, path);
6479 if (ret < 0) {
6480 err = ret;
6481 goto out;
6482 }
6483 if (ret > 0)
6484 goto not_found;
6485 leaf = path->nodes[0];
6486 }
6487 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6488 if (found_key.objectid != objectid ||
6489 found_key.type != BTRFS_EXTENT_DATA_KEY)
6490 goto not_found;
6491 if (start + len <= found_key.offset)
6492 goto not_found;
6493 if (start > found_key.offset)
6494 goto next;
6495 em->start = start;
6496 em->orig_start = start;
6497 em->len = found_key.offset - start;
6498 goto not_found_em;
6499 }
6500
6501 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6502
6503 if (found_type == BTRFS_FILE_EXTENT_REG ||
6504 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6505 goto insert;
6506 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6507 unsigned long ptr;
6508 char *map;
6509 size_t size;
6510 size_t extent_offset;
6511 size_t copy_size;
6512
6513 if (new_inline)
6514 goto out;
6515
6516 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6517 extent_offset = page_offset(page) + pg_offset - extent_start;
6518 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6519 size - extent_offset);
6520 em->start = extent_start + extent_offset;
6521 em->len = ALIGN(copy_size, root->sectorsize);
6522 em->orig_block_len = em->len;
6523 em->orig_start = em->start;
6524 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6525 if (create == 0 && !PageUptodate(page)) {
6526 if (btrfs_file_extent_compression(leaf, item) !=
6527 BTRFS_COMPRESS_NONE) {
6528 ret = uncompress_inline(path, inode, page,
6529 pg_offset,
6530 extent_offset, item);
6531 if (ret) {
6532 err = ret;
6533 goto out;
6534 }
6535 } else {
6536 map = kmap(page);
6537 read_extent_buffer(leaf, map + pg_offset, ptr,
6538 copy_size);
6539 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6540 memset(map + pg_offset + copy_size, 0,
6541 PAGE_CACHE_SIZE - pg_offset -
6542 copy_size);
6543 }
6544 kunmap(page);
6545 }
6546 flush_dcache_page(page);
6547 } else if (create && PageUptodate(page)) {
6548 BUG();
6549 if (!trans) {
6550 kunmap(page);
6551 free_extent_map(em);
6552 em = NULL;
6553
6554 btrfs_release_path(path);
6555 trans = btrfs_join_transaction(root);
6556
6557 if (IS_ERR(trans))
6558 return ERR_CAST(trans);
6559 goto again;
6560 }
6561 map = kmap(page);
6562 write_extent_buffer(leaf, map + pg_offset, ptr,
6563 copy_size);
6564 kunmap(page);
6565 btrfs_mark_buffer_dirty(leaf);
6566 }
6567 set_extent_uptodate(io_tree, em->start,
6568 extent_map_end(em) - 1, NULL, GFP_NOFS);
6569 goto insert;
6570 }
6571 not_found:
6572 em->start = start;
6573 em->orig_start = start;
6574 em->len = len;
6575 not_found_em:
6576 em->block_start = EXTENT_MAP_HOLE;
6577 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6578 insert:
6579 btrfs_release_path(path);
6580 if (em->start > start || extent_map_end(em) <= start) {
6581 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6582 em->start, em->len, start, len);
6583 err = -EIO;
6584 goto out;
6585 }
6586
6587 err = 0;
6588 write_lock(&em_tree->lock);
6589 ret = add_extent_mapping(em_tree, em, 0);
6590 /* it is possible that someone inserted the extent into the tree
6591 * while we had the lock dropped. It is also possible that
6592 * an overlapping map exists in the tree
6593 */
6594 if (ret == -EEXIST) {
6595 struct extent_map *existing;
6596
6597 ret = 0;
6598
6599 existing = search_extent_mapping(em_tree, start, len);
6600 /*
6601 * existing will always be non-NULL, since there must be
6602 * extent causing the -EEXIST.
6603 */
6604 if (start >= extent_map_end(existing) ||
6605 start <= existing->start) {
6606 /*
6607 * The existing extent map is the one nearest to
6608 * the [start, start + len) range which overlaps
6609 */
6610 err = merge_extent_mapping(em_tree, existing,
6611 em, start);
6612 free_extent_map(existing);
6613 if (err) {
6614 free_extent_map(em);
6615 em = NULL;
6616 }
6617 } else {
6618 free_extent_map(em);
6619 em = existing;
6620 err = 0;
6621 }
6622 }
6623 write_unlock(&em_tree->lock);
6624 out:
6625
6626 trace_btrfs_get_extent(root, em);
6627
6628 if (path)
6629 btrfs_free_path(path);
6630 if (trans) {
6631 ret = btrfs_end_transaction(trans, root);
6632 if (!err)
6633 err = ret;
6634 }
6635 if (err) {
6636 free_extent_map(em);
6637 return ERR_PTR(err);
6638 }
6639 BUG_ON(!em); /* Error is always set */
6640 return em;
6641 }
6642
6643 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6644 size_t pg_offset, u64 start, u64 len,
6645 int create)
6646 {
6647 struct extent_map *em;
6648 struct extent_map *hole_em = NULL;
6649 u64 range_start = start;
6650 u64 end;
6651 u64 found;
6652 u64 found_end;
6653 int err = 0;
6654
6655 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6656 if (IS_ERR(em))
6657 return em;
6658 if (em) {
6659 /*
6660 * if our em maps to
6661 * - a hole or
6662 * - a pre-alloc extent,
6663 * there might actually be delalloc bytes behind it.
6664 */
6665 if (em->block_start != EXTENT_MAP_HOLE &&
6666 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6667 return em;
6668 else
6669 hole_em = em;
6670 }
6671
6672 /* check to see if we've wrapped (len == -1 or similar) */
6673 end = start + len;
6674 if (end < start)
6675 end = (u64)-1;
6676 else
6677 end -= 1;
6678
6679 em = NULL;
6680
6681 /* ok, we didn't find anything, lets look for delalloc */
6682 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6683 end, len, EXTENT_DELALLOC, 1);
6684 found_end = range_start + found;
6685 if (found_end < range_start)
6686 found_end = (u64)-1;
6687
6688 /*
6689 * we didn't find anything useful, return
6690 * the original results from get_extent()
6691 */
6692 if (range_start > end || found_end <= start) {
6693 em = hole_em;
6694 hole_em = NULL;
6695 goto out;
6696 }
6697
6698 /* adjust the range_start to make sure it doesn't
6699 * go backwards from the start they passed in
6700 */
6701 range_start = max(start, range_start);
6702 found = found_end - range_start;
6703
6704 if (found > 0) {
6705 u64 hole_start = start;
6706 u64 hole_len = len;
6707
6708 em = alloc_extent_map();
6709 if (!em) {
6710 err = -ENOMEM;
6711 goto out;
6712 }
6713 /*
6714 * when btrfs_get_extent can't find anything it
6715 * returns one huge hole
6716 *
6717 * make sure what it found really fits our range, and
6718 * adjust to make sure it is based on the start from
6719 * the caller
6720 */
6721 if (hole_em) {
6722 u64 calc_end = extent_map_end(hole_em);
6723
6724 if (calc_end <= start || (hole_em->start > end)) {
6725 free_extent_map(hole_em);
6726 hole_em = NULL;
6727 } else {
6728 hole_start = max(hole_em->start, start);
6729 hole_len = calc_end - hole_start;
6730 }
6731 }
6732 em->bdev = NULL;
6733 if (hole_em && range_start > hole_start) {
6734 /* our hole starts before our delalloc, so we
6735 * have to return just the parts of the hole
6736 * that go until the delalloc starts
6737 */
6738 em->len = min(hole_len,
6739 range_start - hole_start);
6740 em->start = hole_start;
6741 em->orig_start = hole_start;
6742 /*
6743 * don't adjust block start at all,
6744 * it is fixed at EXTENT_MAP_HOLE
6745 */
6746 em->block_start = hole_em->block_start;
6747 em->block_len = hole_len;
6748 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6749 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6750 } else {
6751 em->start = range_start;
6752 em->len = found;
6753 em->orig_start = range_start;
6754 em->block_start = EXTENT_MAP_DELALLOC;
6755 em->block_len = found;
6756 }
6757 } else if (hole_em) {
6758 return hole_em;
6759 }
6760 out:
6761
6762 free_extent_map(hole_em);
6763 if (err) {
6764 free_extent_map(em);
6765 return ERR_PTR(err);
6766 }
6767 return em;
6768 }
6769
6770 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6771 u64 start, u64 len)
6772 {
6773 struct btrfs_root *root = BTRFS_I(inode)->root;
6774 struct extent_map *em;
6775 struct btrfs_key ins;
6776 u64 alloc_hint;
6777 int ret;
6778
6779 alloc_hint = get_extent_allocation_hint(inode, start, len);
6780 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
6781 alloc_hint, &ins, 1, 1);
6782 if (ret)
6783 return ERR_PTR(ret);
6784
6785 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6786 ins.offset, ins.offset, ins.offset, 0);
6787 if (IS_ERR(em)) {
6788 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6789 return em;
6790 }
6791
6792 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6793 ins.offset, ins.offset, 0);
6794 if (ret) {
6795 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6796 free_extent_map(em);
6797 return ERR_PTR(ret);
6798 }
6799
6800 return em;
6801 }
6802
6803 /*
6804 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6805 * block must be cow'd
6806 */
6807 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6808 u64 *orig_start, u64 *orig_block_len,
6809 u64 *ram_bytes)
6810 {
6811 struct btrfs_trans_handle *trans;
6812 struct btrfs_path *path;
6813 int ret;
6814 struct extent_buffer *leaf;
6815 struct btrfs_root *root = BTRFS_I(inode)->root;
6816 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6817 struct btrfs_file_extent_item *fi;
6818 struct btrfs_key key;
6819 u64 disk_bytenr;
6820 u64 backref_offset;
6821 u64 extent_end;
6822 u64 num_bytes;
6823 int slot;
6824 int found_type;
6825 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6826
6827 path = btrfs_alloc_path();
6828 if (!path)
6829 return -ENOMEM;
6830
6831 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
6832 offset, 0);
6833 if (ret < 0)
6834 goto out;
6835
6836 slot = path->slots[0];
6837 if (ret == 1) {
6838 if (slot == 0) {
6839 /* can't find the item, must cow */
6840 ret = 0;
6841 goto out;
6842 }
6843 slot--;
6844 }
6845 ret = 0;
6846 leaf = path->nodes[0];
6847 btrfs_item_key_to_cpu(leaf, &key, slot);
6848 if (key.objectid != btrfs_ino(inode) ||
6849 key.type != BTRFS_EXTENT_DATA_KEY) {
6850 /* not our file or wrong item type, must cow */
6851 goto out;
6852 }
6853
6854 if (key.offset > offset) {
6855 /* Wrong offset, must cow */
6856 goto out;
6857 }
6858
6859 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6860 found_type = btrfs_file_extent_type(leaf, fi);
6861 if (found_type != BTRFS_FILE_EXTENT_REG &&
6862 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6863 /* not a regular extent, must cow */
6864 goto out;
6865 }
6866
6867 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6868 goto out;
6869
6870 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6871 if (extent_end <= offset)
6872 goto out;
6873
6874 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6875 if (disk_bytenr == 0)
6876 goto out;
6877
6878 if (btrfs_file_extent_compression(leaf, fi) ||
6879 btrfs_file_extent_encryption(leaf, fi) ||
6880 btrfs_file_extent_other_encoding(leaf, fi))
6881 goto out;
6882
6883 backref_offset = btrfs_file_extent_offset(leaf, fi);
6884
6885 if (orig_start) {
6886 *orig_start = key.offset - backref_offset;
6887 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6888 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6889 }
6890
6891 if (btrfs_extent_readonly(root, disk_bytenr))
6892 goto out;
6893
6894 num_bytes = min(offset + *len, extent_end) - offset;
6895 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6896 u64 range_end;
6897
6898 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6899 ret = test_range_bit(io_tree, offset, range_end,
6900 EXTENT_DELALLOC, 0, NULL);
6901 if (ret) {
6902 ret = -EAGAIN;
6903 goto out;
6904 }
6905 }
6906
6907 btrfs_release_path(path);
6908
6909 /*
6910 * look for other files referencing this extent, if we
6911 * find any we must cow
6912 */
6913 trans = btrfs_join_transaction(root);
6914 if (IS_ERR(trans)) {
6915 ret = 0;
6916 goto out;
6917 }
6918
6919 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6920 key.offset - backref_offset, disk_bytenr);
6921 btrfs_end_transaction(trans, root);
6922 if (ret) {
6923 ret = 0;
6924 goto out;
6925 }
6926
6927 /*
6928 * adjust disk_bytenr and num_bytes to cover just the bytes
6929 * in this extent we are about to write. If there
6930 * are any csums in that range we have to cow in order
6931 * to keep the csums correct
6932 */
6933 disk_bytenr += backref_offset;
6934 disk_bytenr += offset - key.offset;
6935 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6936 goto out;
6937 /*
6938 * all of the above have passed, it is safe to overwrite this extent
6939 * without cow
6940 */
6941 *len = num_bytes;
6942 ret = 1;
6943 out:
6944 btrfs_free_path(path);
6945 return ret;
6946 }
6947
6948 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
6949 {
6950 struct radix_tree_root *root = &inode->i_mapping->page_tree;
6951 int found = false;
6952 void **pagep = NULL;
6953 struct page *page = NULL;
6954 int start_idx;
6955 int end_idx;
6956
6957 start_idx = start >> PAGE_CACHE_SHIFT;
6958
6959 /*
6960 * end is the last byte in the last page. end == start is legal
6961 */
6962 end_idx = end >> PAGE_CACHE_SHIFT;
6963
6964 rcu_read_lock();
6965
6966 /* Most of the code in this while loop is lifted from
6967 * find_get_page. It's been modified to begin searching from a
6968 * page and return just the first page found in that range. If the
6969 * found idx is less than or equal to the end idx then we know that
6970 * a page exists. If no pages are found or if those pages are
6971 * outside of the range then we're fine (yay!) */
6972 while (page == NULL &&
6973 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
6974 page = radix_tree_deref_slot(pagep);
6975 if (unlikely(!page))
6976 break;
6977
6978 if (radix_tree_exception(page)) {
6979 if (radix_tree_deref_retry(page)) {
6980 page = NULL;
6981 continue;
6982 }
6983 /*
6984 * Otherwise, shmem/tmpfs must be storing a swap entry
6985 * here as an exceptional entry: so return it without
6986 * attempting to raise page count.
6987 */
6988 page = NULL;
6989 break; /* TODO: Is this relevant for this use case? */
6990 }
6991
6992 if (!page_cache_get_speculative(page)) {
6993 page = NULL;
6994 continue;
6995 }
6996
6997 /*
6998 * Has the page moved?
6999 * This is part of the lockless pagecache protocol. See
7000 * include/linux/pagemap.h for details.
7001 */
7002 if (unlikely(page != *pagep)) {
7003 page_cache_release(page);
7004 page = NULL;
7005 }
7006 }
7007
7008 if (page) {
7009 if (page->index <= end_idx)
7010 found = true;
7011 page_cache_release(page);
7012 }
7013
7014 rcu_read_unlock();
7015 return found;
7016 }
7017
7018 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7019 struct extent_state **cached_state, int writing)
7020 {
7021 struct btrfs_ordered_extent *ordered;
7022 int ret = 0;
7023
7024 while (1) {
7025 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7026 0, cached_state);
7027 /*
7028 * We're concerned with the entire range that we're going to be
7029 * doing DIO to, so we need to make sure theres no ordered
7030 * extents in this range.
7031 */
7032 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7033 lockend - lockstart + 1);
7034
7035 /*
7036 * We need to make sure there are no buffered pages in this
7037 * range either, we could have raced between the invalidate in
7038 * generic_file_direct_write and locking the extent. The
7039 * invalidate needs to happen so that reads after a write do not
7040 * get stale data.
7041 */
7042 if (!ordered &&
7043 (!writing ||
7044 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7045 break;
7046
7047 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7048 cached_state, GFP_NOFS);
7049
7050 if (ordered) {
7051 btrfs_start_ordered_extent(inode, ordered, 1);
7052 btrfs_put_ordered_extent(ordered);
7053 } else {
7054 /* Screw you mmap */
7055 ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
7056 if (ret)
7057 break;
7058 ret = filemap_fdatawait_range(inode->i_mapping,
7059 lockstart,
7060 lockend);
7061 if (ret)
7062 break;
7063
7064 /*
7065 * If we found a page that couldn't be invalidated just
7066 * fall back to buffered.
7067 */
7068 ret = invalidate_inode_pages2_range(inode->i_mapping,
7069 lockstart >> PAGE_CACHE_SHIFT,
7070 lockend >> PAGE_CACHE_SHIFT);
7071 if (ret)
7072 break;
7073 }
7074
7075 cond_resched();
7076 }
7077
7078 return ret;
7079 }
7080
7081 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7082 u64 len, u64 orig_start,
7083 u64 block_start, u64 block_len,
7084 u64 orig_block_len, u64 ram_bytes,
7085 int type)
7086 {
7087 struct extent_map_tree *em_tree;
7088 struct extent_map *em;
7089 struct btrfs_root *root = BTRFS_I(inode)->root;
7090 int ret;
7091
7092 em_tree = &BTRFS_I(inode)->extent_tree;
7093 em = alloc_extent_map();
7094 if (!em)
7095 return ERR_PTR(-ENOMEM);
7096
7097 em->start = start;
7098 em->orig_start = orig_start;
7099 em->mod_start = start;
7100 em->mod_len = len;
7101 em->len = len;
7102 em->block_len = block_len;
7103 em->block_start = block_start;
7104 em->bdev = root->fs_info->fs_devices->latest_bdev;
7105 em->orig_block_len = orig_block_len;
7106 em->ram_bytes = ram_bytes;
7107 em->generation = -1;
7108 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7109 if (type == BTRFS_ORDERED_PREALLOC)
7110 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7111
7112 do {
7113 btrfs_drop_extent_cache(inode, em->start,
7114 em->start + em->len - 1, 0);
7115 write_lock(&em_tree->lock);
7116 ret = add_extent_mapping(em_tree, em, 1);
7117 write_unlock(&em_tree->lock);
7118 } while (ret == -EEXIST);
7119
7120 if (ret) {
7121 free_extent_map(em);
7122 return ERR_PTR(ret);
7123 }
7124
7125 return em;
7126 }
7127
7128
7129 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7130 struct buffer_head *bh_result, int create)
7131 {
7132 struct extent_map *em;
7133 struct btrfs_root *root = BTRFS_I(inode)->root;
7134 struct extent_state *cached_state = NULL;
7135 u64 start = iblock << inode->i_blkbits;
7136 u64 lockstart, lockend;
7137 u64 len = bh_result->b_size;
7138 int unlock_bits = EXTENT_LOCKED;
7139 int ret = 0;
7140
7141 if (create)
7142 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
7143 else
7144 len = min_t(u64, len, root->sectorsize);
7145
7146 lockstart = start;
7147 lockend = start + len - 1;
7148
7149 /*
7150 * If this errors out it's because we couldn't invalidate pagecache for
7151 * this range and we need to fallback to buffered.
7152 */
7153 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7154 return -ENOTBLK;
7155
7156 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7157 if (IS_ERR(em)) {
7158 ret = PTR_ERR(em);
7159 goto unlock_err;
7160 }
7161
7162 /*
7163 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7164 * io. INLINE is special, and we could probably kludge it in here, but
7165 * it's still buffered so for safety lets just fall back to the generic
7166 * buffered path.
7167 *
7168 * For COMPRESSED we _have_ to read the entire extent in so we can
7169 * decompress it, so there will be buffering required no matter what we
7170 * do, so go ahead and fallback to buffered.
7171 *
7172 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7173 * to buffered IO. Don't blame me, this is the price we pay for using
7174 * the generic code.
7175 */
7176 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7177 em->block_start == EXTENT_MAP_INLINE) {
7178 free_extent_map(em);
7179 ret = -ENOTBLK;
7180 goto unlock_err;
7181 }
7182
7183 /* Just a good old fashioned hole, return */
7184 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7185 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7186 free_extent_map(em);
7187 goto unlock_err;
7188 }
7189
7190 /*
7191 * We don't allocate a new extent in the following cases
7192 *
7193 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7194 * existing extent.
7195 * 2) The extent is marked as PREALLOC. We're good to go here and can
7196 * just use the extent.
7197 *
7198 */
7199 if (!create) {
7200 len = min(len, em->len - (start - em->start));
7201 lockstart = start + len;
7202 goto unlock;
7203 }
7204
7205 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7206 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7207 em->block_start != EXTENT_MAP_HOLE)) {
7208 int type;
7209 int ret;
7210 u64 block_start, orig_start, orig_block_len, ram_bytes;
7211
7212 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7213 type = BTRFS_ORDERED_PREALLOC;
7214 else
7215 type = BTRFS_ORDERED_NOCOW;
7216 len = min(len, em->len - (start - em->start));
7217 block_start = em->block_start + (start - em->start);
7218
7219 if (can_nocow_extent(inode, start, &len, &orig_start,
7220 &orig_block_len, &ram_bytes) == 1) {
7221 if (type == BTRFS_ORDERED_PREALLOC) {
7222 free_extent_map(em);
7223 em = create_pinned_em(inode, start, len,
7224 orig_start,
7225 block_start, len,
7226 orig_block_len,
7227 ram_bytes, type);
7228 if (IS_ERR(em)) {
7229 ret = PTR_ERR(em);
7230 goto unlock_err;
7231 }
7232 }
7233
7234 ret = btrfs_add_ordered_extent_dio(inode, start,
7235 block_start, len, len, type);
7236 if (ret) {
7237 free_extent_map(em);
7238 goto unlock_err;
7239 }
7240 goto unlock;
7241 }
7242 }
7243
7244 /*
7245 * this will cow the extent, reset the len in case we changed
7246 * it above
7247 */
7248 len = bh_result->b_size;
7249 free_extent_map(em);
7250 em = btrfs_new_extent_direct(inode, start, len);
7251 if (IS_ERR(em)) {
7252 ret = PTR_ERR(em);
7253 goto unlock_err;
7254 }
7255 len = min(len, em->len - (start - em->start));
7256 unlock:
7257 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7258 inode->i_blkbits;
7259 bh_result->b_size = len;
7260 bh_result->b_bdev = em->bdev;
7261 set_buffer_mapped(bh_result);
7262 if (create) {
7263 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7264 set_buffer_new(bh_result);
7265
7266 /*
7267 * Need to update the i_size under the extent lock so buffered
7268 * readers will get the updated i_size when we unlock.
7269 */
7270 if (start + len > i_size_read(inode))
7271 i_size_write(inode, start + len);
7272
7273 spin_lock(&BTRFS_I(inode)->lock);
7274 BTRFS_I(inode)->outstanding_extents++;
7275 spin_unlock(&BTRFS_I(inode)->lock);
7276
7277 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7278 lockstart + len - 1, EXTENT_DELALLOC, NULL,
7279 &cached_state, GFP_NOFS);
7280 BUG_ON(ret);
7281 }
7282
7283 /*
7284 * In the case of write we need to clear and unlock the entire range,
7285 * in the case of read we need to unlock only the end area that we
7286 * aren't using if there is any left over space.
7287 */
7288 if (lockstart < lockend) {
7289 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7290 lockend, unlock_bits, 1, 0,
7291 &cached_state, GFP_NOFS);
7292 } else {
7293 free_extent_state(cached_state);
7294 }
7295
7296 free_extent_map(em);
7297
7298 return 0;
7299
7300 unlock_err:
7301 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7302 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7303 return ret;
7304 }
7305
7306 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7307 int rw, int mirror_num)
7308 {
7309 struct btrfs_root *root = BTRFS_I(inode)->root;
7310 int ret;
7311
7312 BUG_ON(rw & REQ_WRITE);
7313
7314 bio_get(bio);
7315
7316 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7317 BTRFS_WQ_ENDIO_DIO_REPAIR);
7318 if (ret)
7319 goto err;
7320
7321 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7322 err:
7323 bio_put(bio);
7324 return ret;
7325 }
7326
7327 static int btrfs_check_dio_repairable(struct inode *inode,
7328 struct bio *failed_bio,
7329 struct io_failure_record *failrec,
7330 int failed_mirror)
7331 {
7332 int num_copies;
7333
7334 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7335 failrec->logical, failrec->len);
7336 if (num_copies == 1) {
7337 /*
7338 * we only have a single copy of the data, so don't bother with
7339 * all the retry and error correction code that follows. no
7340 * matter what the error is, it is very likely to persist.
7341 */
7342 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7343 num_copies, failrec->this_mirror, failed_mirror);
7344 return 0;
7345 }
7346
7347 failrec->failed_mirror = failed_mirror;
7348 failrec->this_mirror++;
7349 if (failrec->this_mirror == failed_mirror)
7350 failrec->this_mirror++;
7351
7352 if (failrec->this_mirror > num_copies) {
7353 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7354 num_copies, failrec->this_mirror, failed_mirror);
7355 return 0;
7356 }
7357
7358 return 1;
7359 }
7360
7361 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7362 struct page *page, u64 start, u64 end,
7363 int failed_mirror, bio_end_io_t *repair_endio,
7364 void *repair_arg)
7365 {
7366 struct io_failure_record *failrec;
7367 struct bio *bio;
7368 int isector;
7369 int read_mode;
7370 int ret;
7371
7372 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7373
7374 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7375 if (ret)
7376 return ret;
7377
7378 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7379 failed_mirror);
7380 if (!ret) {
7381 free_io_failure(inode, failrec);
7382 return -EIO;
7383 }
7384
7385 if (failed_bio->bi_vcnt > 1)
7386 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7387 else
7388 read_mode = READ_SYNC;
7389
7390 isector = start - btrfs_io_bio(failed_bio)->logical;
7391 isector >>= inode->i_sb->s_blocksize_bits;
7392 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7393 0, isector, repair_endio, repair_arg);
7394 if (!bio) {
7395 free_io_failure(inode, failrec);
7396 return -EIO;
7397 }
7398
7399 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7400 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7401 read_mode, failrec->this_mirror, failrec->in_validation);
7402
7403 ret = submit_dio_repair_bio(inode, bio, read_mode,
7404 failrec->this_mirror);
7405 if (ret) {
7406 free_io_failure(inode, failrec);
7407 bio_put(bio);
7408 }
7409
7410 return ret;
7411 }
7412
7413 struct btrfs_retry_complete {
7414 struct completion done;
7415 struct inode *inode;
7416 u64 start;
7417 int uptodate;
7418 };
7419
7420 static void btrfs_retry_endio_nocsum(struct bio *bio, int err)
7421 {
7422 struct btrfs_retry_complete *done = bio->bi_private;
7423 struct bio_vec *bvec;
7424 int i;
7425
7426 if (err)
7427 goto end;
7428
7429 done->uptodate = 1;
7430 bio_for_each_segment_all(bvec, bio, i)
7431 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7432 end:
7433 complete(&done->done);
7434 bio_put(bio);
7435 }
7436
7437 static int __btrfs_correct_data_nocsum(struct inode *inode,
7438 struct btrfs_io_bio *io_bio)
7439 {
7440 struct bio_vec *bvec;
7441 struct btrfs_retry_complete done;
7442 u64 start;
7443 int i;
7444 int ret;
7445
7446 start = io_bio->logical;
7447 done.inode = inode;
7448
7449 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7450 try_again:
7451 done.uptodate = 0;
7452 done.start = start;
7453 init_completion(&done.done);
7454
7455 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7456 start + bvec->bv_len - 1,
7457 io_bio->mirror_num,
7458 btrfs_retry_endio_nocsum, &done);
7459 if (ret)
7460 return ret;
7461
7462 wait_for_completion(&done.done);
7463
7464 if (!done.uptodate) {
7465 /* We might have another mirror, so try again */
7466 goto try_again;
7467 }
7468
7469 start += bvec->bv_len;
7470 }
7471
7472 return 0;
7473 }
7474
7475 static void btrfs_retry_endio(struct bio *bio, int err)
7476 {
7477 struct btrfs_retry_complete *done = bio->bi_private;
7478 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7479 struct bio_vec *bvec;
7480 int uptodate;
7481 int ret;
7482 int i;
7483
7484 if (err)
7485 goto end;
7486
7487 uptodate = 1;
7488 bio_for_each_segment_all(bvec, bio, i) {
7489 ret = __readpage_endio_check(done->inode, io_bio, i,
7490 bvec->bv_page, 0,
7491 done->start, bvec->bv_len);
7492 if (!ret)
7493 clean_io_failure(done->inode, done->start,
7494 bvec->bv_page, 0);
7495 else
7496 uptodate = 0;
7497 }
7498
7499 done->uptodate = uptodate;
7500 end:
7501 complete(&done->done);
7502 bio_put(bio);
7503 }
7504
7505 static int __btrfs_subio_endio_read(struct inode *inode,
7506 struct btrfs_io_bio *io_bio, int err)
7507 {
7508 struct bio_vec *bvec;
7509 struct btrfs_retry_complete done;
7510 u64 start;
7511 u64 offset = 0;
7512 int i;
7513 int ret;
7514
7515 err = 0;
7516 start = io_bio->logical;
7517 done.inode = inode;
7518
7519 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7520 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7521 0, start, bvec->bv_len);
7522 if (likely(!ret))
7523 goto next;
7524 try_again:
7525 done.uptodate = 0;
7526 done.start = start;
7527 init_completion(&done.done);
7528
7529 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7530 start + bvec->bv_len - 1,
7531 io_bio->mirror_num,
7532 btrfs_retry_endio, &done);
7533 if (ret) {
7534 err = ret;
7535 goto next;
7536 }
7537
7538 wait_for_completion(&done.done);
7539
7540 if (!done.uptodate) {
7541 /* We might have another mirror, so try again */
7542 goto try_again;
7543 }
7544 next:
7545 offset += bvec->bv_len;
7546 start += bvec->bv_len;
7547 }
7548
7549 return err;
7550 }
7551
7552 static int btrfs_subio_endio_read(struct inode *inode,
7553 struct btrfs_io_bio *io_bio, int err)
7554 {
7555 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7556
7557 if (skip_csum) {
7558 if (unlikely(err))
7559 return __btrfs_correct_data_nocsum(inode, io_bio);
7560 else
7561 return 0;
7562 } else {
7563 return __btrfs_subio_endio_read(inode, io_bio, err);
7564 }
7565 }
7566
7567 static void btrfs_endio_direct_read(struct bio *bio, int err)
7568 {
7569 struct btrfs_dio_private *dip = bio->bi_private;
7570 struct inode *inode = dip->inode;
7571 struct bio *dio_bio;
7572 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7573
7574 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7575 err = btrfs_subio_endio_read(inode, io_bio, err);
7576
7577 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7578 dip->logical_offset + dip->bytes - 1);
7579 dio_bio = dip->dio_bio;
7580
7581 kfree(dip);
7582
7583 /* If we had a csum failure make sure to clear the uptodate flag */
7584 if (err)
7585 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7586 dio_end_io(dio_bio, err);
7587
7588 if (io_bio->end_io)
7589 io_bio->end_io(io_bio, err);
7590 bio_put(bio);
7591 }
7592
7593 static void btrfs_endio_direct_write(struct bio *bio, int err)
7594 {
7595 struct btrfs_dio_private *dip = bio->bi_private;
7596 struct inode *inode = dip->inode;
7597 struct btrfs_root *root = BTRFS_I(inode)->root;
7598 struct btrfs_ordered_extent *ordered = NULL;
7599 u64 ordered_offset = dip->logical_offset;
7600 u64 ordered_bytes = dip->bytes;
7601 struct bio *dio_bio;
7602 int ret;
7603
7604 if (err)
7605 goto out_done;
7606 again:
7607 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7608 &ordered_offset,
7609 ordered_bytes, !err);
7610 if (!ret)
7611 goto out_test;
7612
7613 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7614 finish_ordered_fn, NULL, NULL);
7615 btrfs_queue_work(root->fs_info->endio_write_workers,
7616 &ordered->work);
7617 out_test:
7618 /*
7619 * our bio might span multiple ordered extents. If we haven't
7620 * completed the accounting for the whole dio, go back and try again
7621 */
7622 if (ordered_offset < dip->logical_offset + dip->bytes) {
7623 ordered_bytes = dip->logical_offset + dip->bytes -
7624 ordered_offset;
7625 ordered = NULL;
7626 goto again;
7627 }
7628 out_done:
7629 dio_bio = dip->dio_bio;
7630
7631 kfree(dip);
7632
7633 /* If we had an error make sure to clear the uptodate flag */
7634 if (err)
7635 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7636 dio_end_io(dio_bio, err);
7637 bio_put(bio);
7638 }
7639
7640 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7641 struct bio *bio, int mirror_num,
7642 unsigned long bio_flags, u64 offset)
7643 {
7644 int ret;
7645 struct btrfs_root *root = BTRFS_I(inode)->root;
7646 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7647 BUG_ON(ret); /* -ENOMEM */
7648 return 0;
7649 }
7650
7651 static void btrfs_end_dio_bio(struct bio *bio, int err)
7652 {
7653 struct btrfs_dio_private *dip = bio->bi_private;
7654
7655 if (err)
7656 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7657 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7658 btrfs_ino(dip->inode), bio->bi_rw,
7659 (unsigned long long)bio->bi_iter.bi_sector,
7660 bio->bi_iter.bi_size, err);
7661
7662 if (dip->subio_endio)
7663 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
7664
7665 if (err) {
7666 dip->errors = 1;
7667
7668 /*
7669 * before atomic variable goto zero, we must make sure
7670 * dip->errors is perceived to be set.
7671 */
7672 smp_mb__before_atomic();
7673 }
7674
7675 /* if there are more bios still pending for this dio, just exit */
7676 if (!atomic_dec_and_test(&dip->pending_bios))
7677 goto out;
7678
7679 if (dip->errors) {
7680 bio_io_error(dip->orig_bio);
7681 } else {
7682 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
7683 bio_endio(dip->orig_bio, 0);
7684 }
7685 out:
7686 bio_put(bio);
7687 }
7688
7689 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7690 u64 first_sector, gfp_t gfp_flags)
7691 {
7692 int nr_vecs = bio_get_nr_vecs(bdev);
7693 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7694 }
7695
7696 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
7697 struct inode *inode,
7698 struct btrfs_dio_private *dip,
7699 struct bio *bio,
7700 u64 file_offset)
7701 {
7702 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7703 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
7704 int ret;
7705
7706 /*
7707 * We load all the csum data we need when we submit
7708 * the first bio to reduce the csum tree search and
7709 * contention.
7710 */
7711 if (dip->logical_offset == file_offset) {
7712 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
7713 file_offset);
7714 if (ret)
7715 return ret;
7716 }
7717
7718 if (bio == dip->orig_bio)
7719 return 0;
7720
7721 file_offset -= dip->logical_offset;
7722 file_offset >>= inode->i_sb->s_blocksize_bits;
7723 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
7724
7725 return 0;
7726 }
7727
7728 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7729 int rw, u64 file_offset, int skip_sum,
7730 int async_submit)
7731 {
7732 struct btrfs_dio_private *dip = bio->bi_private;
7733 int write = rw & REQ_WRITE;
7734 struct btrfs_root *root = BTRFS_I(inode)->root;
7735 int ret;
7736
7737 if (async_submit)
7738 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7739
7740 bio_get(bio);
7741
7742 if (!write) {
7743 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7744 BTRFS_WQ_ENDIO_DATA);
7745 if (ret)
7746 goto err;
7747 }
7748
7749 if (skip_sum)
7750 goto map;
7751
7752 if (write && async_submit) {
7753 ret = btrfs_wq_submit_bio(root->fs_info,
7754 inode, rw, bio, 0, 0,
7755 file_offset,
7756 __btrfs_submit_bio_start_direct_io,
7757 __btrfs_submit_bio_done);
7758 goto err;
7759 } else if (write) {
7760 /*
7761 * If we aren't doing async submit, calculate the csum of the
7762 * bio now.
7763 */
7764 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7765 if (ret)
7766 goto err;
7767 } else {
7768 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
7769 file_offset);
7770 if (ret)
7771 goto err;
7772 }
7773 map:
7774 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7775 err:
7776 bio_put(bio);
7777 return ret;
7778 }
7779
7780 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7781 int skip_sum)
7782 {
7783 struct inode *inode = dip->inode;
7784 struct btrfs_root *root = BTRFS_I(inode)->root;
7785 struct bio *bio;
7786 struct bio *orig_bio = dip->orig_bio;
7787 struct bio_vec *bvec = orig_bio->bi_io_vec;
7788 u64 start_sector = orig_bio->bi_iter.bi_sector;
7789 u64 file_offset = dip->logical_offset;
7790 u64 submit_len = 0;
7791 u64 map_length;
7792 int nr_pages = 0;
7793 int ret;
7794 int async_submit = 0;
7795
7796 map_length = orig_bio->bi_iter.bi_size;
7797 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7798 &map_length, NULL, 0);
7799 if (ret)
7800 return -EIO;
7801
7802 if (map_length >= orig_bio->bi_iter.bi_size) {
7803 bio = orig_bio;
7804 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
7805 goto submit;
7806 }
7807
7808 /* async crcs make it difficult to collect full stripe writes. */
7809 if (btrfs_get_alloc_profile(root, 1) &
7810 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7811 async_submit = 0;
7812 else
7813 async_submit = 1;
7814
7815 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7816 if (!bio)
7817 return -ENOMEM;
7818
7819 bio->bi_private = dip;
7820 bio->bi_end_io = btrfs_end_dio_bio;
7821 btrfs_io_bio(bio)->logical = file_offset;
7822 atomic_inc(&dip->pending_bios);
7823
7824 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7825 if (map_length < submit_len + bvec->bv_len ||
7826 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7827 bvec->bv_offset) < bvec->bv_len) {
7828 /*
7829 * inc the count before we submit the bio so
7830 * we know the end IO handler won't happen before
7831 * we inc the count. Otherwise, the dip might get freed
7832 * before we're done setting it up
7833 */
7834 atomic_inc(&dip->pending_bios);
7835 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7836 file_offset, skip_sum,
7837 async_submit);
7838 if (ret) {
7839 bio_put(bio);
7840 atomic_dec(&dip->pending_bios);
7841 goto out_err;
7842 }
7843
7844 start_sector += submit_len >> 9;
7845 file_offset += submit_len;
7846
7847 submit_len = 0;
7848 nr_pages = 0;
7849
7850 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7851 start_sector, GFP_NOFS);
7852 if (!bio)
7853 goto out_err;
7854 bio->bi_private = dip;
7855 bio->bi_end_io = btrfs_end_dio_bio;
7856 btrfs_io_bio(bio)->logical = file_offset;
7857
7858 map_length = orig_bio->bi_iter.bi_size;
7859 ret = btrfs_map_block(root->fs_info, rw,
7860 start_sector << 9,
7861 &map_length, NULL, 0);
7862 if (ret) {
7863 bio_put(bio);
7864 goto out_err;
7865 }
7866 } else {
7867 submit_len += bvec->bv_len;
7868 nr_pages++;
7869 bvec++;
7870 }
7871 }
7872
7873 submit:
7874 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7875 async_submit);
7876 if (!ret)
7877 return 0;
7878
7879 bio_put(bio);
7880 out_err:
7881 dip->errors = 1;
7882 /*
7883 * before atomic variable goto zero, we must
7884 * make sure dip->errors is perceived to be set.
7885 */
7886 smp_mb__before_atomic();
7887 if (atomic_dec_and_test(&dip->pending_bios))
7888 bio_io_error(dip->orig_bio);
7889
7890 /* bio_end_io() will handle error, so we needn't return it */
7891 return 0;
7892 }
7893
7894 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7895 struct inode *inode, loff_t file_offset)
7896 {
7897 struct btrfs_root *root = BTRFS_I(inode)->root;
7898 struct btrfs_dio_private *dip;
7899 struct bio *io_bio;
7900 struct btrfs_io_bio *btrfs_bio;
7901 int skip_sum;
7902 int write = rw & REQ_WRITE;
7903 int ret = 0;
7904
7905 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7906
7907 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7908 if (!io_bio) {
7909 ret = -ENOMEM;
7910 goto free_ordered;
7911 }
7912
7913 dip = kzalloc(sizeof(*dip), GFP_NOFS);
7914 if (!dip) {
7915 ret = -ENOMEM;
7916 goto free_io_bio;
7917 }
7918
7919 dip->private = dio_bio->bi_private;
7920 dip->inode = inode;
7921 dip->logical_offset = file_offset;
7922 dip->bytes = dio_bio->bi_iter.bi_size;
7923 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7924 io_bio->bi_private = dip;
7925 dip->orig_bio = io_bio;
7926 dip->dio_bio = dio_bio;
7927 atomic_set(&dip->pending_bios, 0);
7928 btrfs_bio = btrfs_io_bio(io_bio);
7929 btrfs_bio->logical = file_offset;
7930
7931 if (write) {
7932 io_bio->bi_end_io = btrfs_endio_direct_write;
7933 } else {
7934 io_bio->bi_end_io = btrfs_endio_direct_read;
7935 dip->subio_endio = btrfs_subio_endio_read;
7936 }
7937
7938 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7939 if (!ret)
7940 return;
7941
7942 if (btrfs_bio->end_io)
7943 btrfs_bio->end_io(btrfs_bio, ret);
7944 free_io_bio:
7945 bio_put(io_bio);
7946
7947 free_ordered:
7948 /*
7949 * If this is a write, we need to clean up the reserved space and kill
7950 * the ordered extent.
7951 */
7952 if (write) {
7953 struct btrfs_ordered_extent *ordered;
7954 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7955 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7956 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7957 btrfs_free_reserved_extent(root, ordered->start,
7958 ordered->disk_len, 1);
7959 btrfs_put_ordered_extent(ordered);
7960 btrfs_put_ordered_extent(ordered);
7961 }
7962 bio_endio(dio_bio, ret);
7963 }
7964
7965 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7966 const struct iov_iter *iter, loff_t offset)
7967 {
7968 int seg;
7969 int i;
7970 unsigned blocksize_mask = root->sectorsize - 1;
7971 ssize_t retval = -EINVAL;
7972
7973 if (offset & blocksize_mask)
7974 goto out;
7975
7976 if (iov_iter_alignment(iter) & blocksize_mask)
7977 goto out;
7978
7979 /* If this is a write we don't need to check anymore */
7980 if (rw & WRITE)
7981 return 0;
7982 /*
7983 * Check to make sure we don't have duplicate iov_base's in this
7984 * iovec, if so return EINVAL, otherwise we'll get csum errors
7985 * when reading back.
7986 */
7987 for (seg = 0; seg < iter->nr_segs; seg++) {
7988 for (i = seg + 1; i < iter->nr_segs; i++) {
7989 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7990 goto out;
7991 }
7992 }
7993 retval = 0;
7994 out:
7995 return retval;
7996 }
7997
7998 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7999 struct iov_iter *iter, loff_t offset)
8000 {
8001 struct file *file = iocb->ki_filp;
8002 struct inode *inode = file->f_mapping->host;
8003 size_t count = 0;
8004 int flags = 0;
8005 bool wakeup = true;
8006 bool relock = false;
8007 ssize_t ret;
8008
8009 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset))
8010 return 0;
8011
8012 atomic_inc(&inode->i_dio_count);
8013 smp_mb__after_atomic();
8014
8015 /*
8016 * The generic stuff only does filemap_write_and_wait_range, which
8017 * isn't enough if we've written compressed pages to this area, so
8018 * we need to flush the dirty pages again to make absolutely sure
8019 * that any outstanding dirty pages are on disk.
8020 */
8021 count = iov_iter_count(iter);
8022 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8023 &BTRFS_I(inode)->runtime_flags))
8024 filemap_fdatawrite_range(inode->i_mapping, offset,
8025 offset + count - 1);
8026
8027 if (rw & WRITE) {
8028 /*
8029 * If the write DIO is beyond the EOF, we need update
8030 * the isize, but it is protected by i_mutex. So we can
8031 * not unlock the i_mutex at this case.
8032 */
8033 if (offset + count <= inode->i_size) {
8034 mutex_unlock(&inode->i_mutex);
8035 relock = true;
8036 }
8037 ret = btrfs_delalloc_reserve_space(inode, count);
8038 if (ret)
8039 goto out;
8040 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8041 &BTRFS_I(inode)->runtime_flags)) {
8042 inode_dio_done(inode);
8043 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8044 wakeup = false;
8045 }
8046
8047 ret = __blockdev_direct_IO(rw, iocb, inode,
8048 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8049 iter, offset, btrfs_get_blocks_direct, NULL,
8050 btrfs_submit_direct, flags);
8051 if (rw & WRITE) {
8052 if (ret < 0 && ret != -EIOCBQUEUED)
8053 btrfs_delalloc_release_space(inode, count);
8054 else if (ret >= 0 && (size_t)ret < count)
8055 btrfs_delalloc_release_space(inode,
8056 count - (size_t)ret);
8057 else
8058 btrfs_delalloc_release_metadata(inode, 0);
8059 }
8060 out:
8061 if (wakeup)
8062 inode_dio_done(inode);
8063 if (relock)
8064 mutex_lock(&inode->i_mutex);
8065
8066 return ret;
8067 }
8068
8069 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8070
8071 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8072 __u64 start, __u64 len)
8073 {
8074 int ret;
8075
8076 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8077 if (ret)
8078 return ret;
8079
8080 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8081 }
8082
8083 int btrfs_readpage(struct file *file, struct page *page)
8084 {
8085 struct extent_io_tree *tree;
8086 tree = &BTRFS_I(page->mapping->host)->io_tree;
8087 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8088 }
8089
8090 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8091 {
8092 struct extent_io_tree *tree;
8093
8094
8095 if (current->flags & PF_MEMALLOC) {
8096 redirty_page_for_writepage(wbc, page);
8097 unlock_page(page);
8098 return 0;
8099 }
8100 tree = &BTRFS_I(page->mapping->host)->io_tree;
8101 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8102 }
8103
8104 static int btrfs_writepages(struct address_space *mapping,
8105 struct writeback_control *wbc)
8106 {
8107 struct extent_io_tree *tree;
8108
8109 tree = &BTRFS_I(mapping->host)->io_tree;
8110 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8111 }
8112
8113 static int
8114 btrfs_readpages(struct file *file, struct address_space *mapping,
8115 struct list_head *pages, unsigned nr_pages)
8116 {
8117 struct extent_io_tree *tree;
8118 tree = &BTRFS_I(mapping->host)->io_tree;
8119 return extent_readpages(tree, mapping, pages, nr_pages,
8120 btrfs_get_extent);
8121 }
8122 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8123 {
8124 struct extent_io_tree *tree;
8125 struct extent_map_tree *map;
8126 int ret;
8127
8128 tree = &BTRFS_I(page->mapping->host)->io_tree;
8129 map = &BTRFS_I(page->mapping->host)->extent_tree;
8130 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8131 if (ret == 1) {
8132 ClearPagePrivate(page);
8133 set_page_private(page, 0);
8134 page_cache_release(page);
8135 }
8136 return ret;
8137 }
8138
8139 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8140 {
8141 if (PageWriteback(page) || PageDirty(page))
8142 return 0;
8143 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8144 }
8145
8146 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8147 unsigned int length)
8148 {
8149 struct inode *inode = page->mapping->host;
8150 struct extent_io_tree *tree;
8151 struct btrfs_ordered_extent *ordered;
8152 struct extent_state *cached_state = NULL;
8153 u64 page_start = page_offset(page);
8154 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8155 int inode_evicting = inode->i_state & I_FREEING;
8156
8157 /*
8158 * we have the page locked, so new writeback can't start,
8159 * and the dirty bit won't be cleared while we are here.
8160 *
8161 * Wait for IO on this page so that we can safely clear
8162 * the PagePrivate2 bit and do ordered accounting
8163 */
8164 wait_on_page_writeback(page);
8165
8166 tree = &BTRFS_I(inode)->io_tree;
8167 if (offset) {
8168 btrfs_releasepage(page, GFP_NOFS);
8169 return;
8170 }
8171
8172 if (!inode_evicting)
8173 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8174 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8175 if (ordered) {
8176 /*
8177 * IO on this page will never be started, so we need
8178 * to account for any ordered extents now
8179 */
8180 if (!inode_evicting)
8181 clear_extent_bit(tree, page_start, page_end,
8182 EXTENT_DIRTY | EXTENT_DELALLOC |
8183 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8184 EXTENT_DEFRAG, 1, 0, &cached_state,
8185 GFP_NOFS);
8186 /*
8187 * whoever cleared the private bit is responsible
8188 * for the finish_ordered_io
8189 */
8190 if (TestClearPagePrivate2(page)) {
8191 struct btrfs_ordered_inode_tree *tree;
8192 u64 new_len;
8193
8194 tree = &BTRFS_I(inode)->ordered_tree;
8195
8196 spin_lock_irq(&tree->lock);
8197 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8198 new_len = page_start - ordered->file_offset;
8199 if (new_len < ordered->truncated_len)
8200 ordered->truncated_len = new_len;
8201 spin_unlock_irq(&tree->lock);
8202
8203 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8204 page_start,
8205 PAGE_CACHE_SIZE, 1))
8206 btrfs_finish_ordered_io(ordered);
8207 }
8208 btrfs_put_ordered_extent(ordered);
8209 if (!inode_evicting) {
8210 cached_state = NULL;
8211 lock_extent_bits(tree, page_start, page_end, 0,
8212 &cached_state);
8213 }
8214 }
8215
8216 if (!inode_evicting) {
8217 clear_extent_bit(tree, page_start, page_end,
8218 EXTENT_LOCKED | EXTENT_DIRTY |
8219 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8220 EXTENT_DEFRAG, 1, 1,
8221 &cached_state, GFP_NOFS);
8222
8223 __btrfs_releasepage(page, GFP_NOFS);
8224 }
8225
8226 ClearPageChecked(page);
8227 if (PagePrivate(page)) {
8228 ClearPagePrivate(page);
8229 set_page_private(page, 0);
8230 page_cache_release(page);
8231 }
8232 }
8233
8234 /*
8235 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8236 * called from a page fault handler when a page is first dirtied. Hence we must
8237 * be careful to check for EOF conditions here. We set the page up correctly
8238 * for a written page which means we get ENOSPC checking when writing into
8239 * holes and correct delalloc and unwritten extent mapping on filesystems that
8240 * support these features.
8241 *
8242 * We are not allowed to take the i_mutex here so we have to play games to
8243 * protect against truncate races as the page could now be beyond EOF. Because
8244 * vmtruncate() writes the inode size before removing pages, once we have the
8245 * page lock we can determine safely if the page is beyond EOF. If it is not
8246 * beyond EOF, then the page is guaranteed safe against truncation until we
8247 * unlock the page.
8248 */
8249 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8250 {
8251 struct page *page = vmf->page;
8252 struct inode *inode = file_inode(vma->vm_file);
8253 struct btrfs_root *root = BTRFS_I(inode)->root;
8254 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8255 struct btrfs_ordered_extent *ordered;
8256 struct extent_state *cached_state = NULL;
8257 char *kaddr;
8258 unsigned long zero_start;
8259 loff_t size;
8260 int ret;
8261 int reserved = 0;
8262 u64 page_start;
8263 u64 page_end;
8264
8265 sb_start_pagefault(inode->i_sb);
8266 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
8267 if (!ret) {
8268 ret = file_update_time(vma->vm_file);
8269 reserved = 1;
8270 }
8271 if (ret) {
8272 if (ret == -ENOMEM)
8273 ret = VM_FAULT_OOM;
8274 else /* -ENOSPC, -EIO, etc */
8275 ret = VM_FAULT_SIGBUS;
8276 if (reserved)
8277 goto out;
8278 goto out_noreserve;
8279 }
8280
8281 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8282 again:
8283 lock_page(page);
8284 size = i_size_read(inode);
8285 page_start = page_offset(page);
8286 page_end = page_start + PAGE_CACHE_SIZE - 1;
8287
8288 if ((page->mapping != inode->i_mapping) ||
8289 (page_start >= size)) {
8290 /* page got truncated out from underneath us */
8291 goto out_unlock;
8292 }
8293 wait_on_page_writeback(page);
8294
8295 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
8296 set_page_extent_mapped(page);
8297
8298 /*
8299 * we can't set the delalloc bits if there are pending ordered
8300 * extents. Drop our locks and wait for them to finish
8301 */
8302 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8303 if (ordered) {
8304 unlock_extent_cached(io_tree, page_start, page_end,
8305 &cached_state, GFP_NOFS);
8306 unlock_page(page);
8307 btrfs_start_ordered_extent(inode, ordered, 1);
8308 btrfs_put_ordered_extent(ordered);
8309 goto again;
8310 }
8311
8312 /*
8313 * XXX - page_mkwrite gets called every time the page is dirtied, even
8314 * if it was already dirty, so for space accounting reasons we need to
8315 * clear any delalloc bits for the range we are fixing to save. There
8316 * is probably a better way to do this, but for now keep consistent with
8317 * prepare_pages in the normal write path.
8318 */
8319 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8320 EXTENT_DIRTY | EXTENT_DELALLOC |
8321 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8322 0, 0, &cached_state, GFP_NOFS);
8323
8324 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8325 &cached_state);
8326 if (ret) {
8327 unlock_extent_cached(io_tree, page_start, page_end,
8328 &cached_state, GFP_NOFS);
8329 ret = VM_FAULT_SIGBUS;
8330 goto out_unlock;
8331 }
8332 ret = 0;
8333
8334 /* page is wholly or partially inside EOF */
8335 if (page_start + PAGE_CACHE_SIZE > size)
8336 zero_start = size & ~PAGE_CACHE_MASK;
8337 else
8338 zero_start = PAGE_CACHE_SIZE;
8339
8340 if (zero_start != PAGE_CACHE_SIZE) {
8341 kaddr = kmap(page);
8342 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8343 flush_dcache_page(page);
8344 kunmap(page);
8345 }
8346 ClearPageChecked(page);
8347 set_page_dirty(page);
8348 SetPageUptodate(page);
8349
8350 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8351 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8352 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8353
8354 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8355
8356 out_unlock:
8357 if (!ret) {
8358 sb_end_pagefault(inode->i_sb);
8359 return VM_FAULT_LOCKED;
8360 }
8361 unlock_page(page);
8362 out:
8363 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
8364 out_noreserve:
8365 sb_end_pagefault(inode->i_sb);
8366 return ret;
8367 }
8368
8369 static int btrfs_truncate(struct inode *inode)
8370 {
8371 struct btrfs_root *root = BTRFS_I(inode)->root;
8372 struct btrfs_block_rsv *rsv;
8373 int ret = 0;
8374 int err = 0;
8375 struct btrfs_trans_handle *trans;
8376 u64 mask = root->sectorsize - 1;
8377 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8378
8379 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8380 (u64)-1);
8381 if (ret)
8382 return ret;
8383
8384 /*
8385 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8386 * 3 things going on here
8387 *
8388 * 1) We need to reserve space for our orphan item and the space to
8389 * delete our orphan item. Lord knows we don't want to have a dangling
8390 * orphan item because we didn't reserve space to remove it.
8391 *
8392 * 2) We need to reserve space to update our inode.
8393 *
8394 * 3) We need to have something to cache all the space that is going to
8395 * be free'd up by the truncate operation, but also have some slack
8396 * space reserved in case it uses space during the truncate (thank you
8397 * very much snapshotting).
8398 *
8399 * And we need these to all be seperate. The fact is we can use alot of
8400 * space doing the truncate, and we have no earthly idea how much space
8401 * we will use, so we need the truncate reservation to be seperate so it
8402 * doesn't end up using space reserved for updating the inode or
8403 * removing the orphan item. We also need to be able to stop the
8404 * transaction and start a new one, which means we need to be able to
8405 * update the inode several times, and we have no idea of knowing how
8406 * many times that will be, so we can't just reserve 1 item for the
8407 * entirety of the opration, so that has to be done seperately as well.
8408 * Then there is the orphan item, which does indeed need to be held on
8409 * to for the whole operation, and we need nobody to touch this reserved
8410 * space except the orphan code.
8411 *
8412 * So that leaves us with
8413 *
8414 * 1) root->orphan_block_rsv - for the orphan deletion.
8415 * 2) rsv - for the truncate reservation, which we will steal from the
8416 * transaction reservation.
8417 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8418 * updating the inode.
8419 */
8420 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8421 if (!rsv)
8422 return -ENOMEM;
8423 rsv->size = min_size;
8424 rsv->failfast = 1;
8425
8426 /*
8427 * 1 for the truncate slack space
8428 * 1 for updating the inode.
8429 */
8430 trans = btrfs_start_transaction(root, 2);
8431 if (IS_ERR(trans)) {
8432 err = PTR_ERR(trans);
8433 goto out;
8434 }
8435
8436 /* Migrate the slack space for the truncate to our reserve */
8437 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8438 min_size);
8439 BUG_ON(ret);
8440
8441 /*
8442 * So if we truncate and then write and fsync we normally would just
8443 * write the extents that changed, which is a problem if we need to
8444 * first truncate that entire inode. So set this flag so we write out
8445 * all of the extents in the inode to the sync log so we're completely
8446 * safe.
8447 */
8448 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8449 trans->block_rsv = rsv;
8450
8451 while (1) {
8452 ret = btrfs_truncate_inode_items(trans, root, inode,
8453 inode->i_size,
8454 BTRFS_EXTENT_DATA_KEY);
8455 if (ret != -ENOSPC) {
8456 err = ret;
8457 break;
8458 }
8459
8460 trans->block_rsv = &root->fs_info->trans_block_rsv;
8461 ret = btrfs_update_inode(trans, root, inode);
8462 if (ret) {
8463 err = ret;
8464 break;
8465 }
8466
8467 btrfs_end_transaction(trans, root);
8468 btrfs_btree_balance_dirty(root);
8469
8470 trans = btrfs_start_transaction(root, 2);
8471 if (IS_ERR(trans)) {
8472 ret = err = PTR_ERR(trans);
8473 trans = NULL;
8474 break;
8475 }
8476
8477 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8478 rsv, min_size);
8479 BUG_ON(ret); /* shouldn't happen */
8480 trans->block_rsv = rsv;
8481 }
8482
8483 if (ret == 0 && inode->i_nlink > 0) {
8484 trans->block_rsv = root->orphan_block_rsv;
8485 ret = btrfs_orphan_del(trans, inode);
8486 if (ret)
8487 err = ret;
8488 }
8489
8490 if (trans) {
8491 trans->block_rsv = &root->fs_info->trans_block_rsv;
8492 ret = btrfs_update_inode(trans, root, inode);
8493 if (ret && !err)
8494 err = ret;
8495
8496 ret = btrfs_end_transaction(trans, root);
8497 btrfs_btree_balance_dirty(root);
8498 }
8499
8500 out:
8501 btrfs_free_block_rsv(root, rsv);
8502
8503 if (ret && !err)
8504 err = ret;
8505
8506 return err;
8507 }
8508
8509 /*
8510 * create a new subvolume directory/inode (helper for the ioctl).
8511 */
8512 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8513 struct btrfs_root *new_root,
8514 struct btrfs_root *parent_root,
8515 u64 new_dirid)
8516 {
8517 struct inode *inode;
8518 int err;
8519 u64 index = 0;
8520
8521 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8522 new_dirid, new_dirid,
8523 S_IFDIR | (~current_umask() & S_IRWXUGO),
8524 &index);
8525 if (IS_ERR(inode))
8526 return PTR_ERR(inode);
8527 inode->i_op = &btrfs_dir_inode_operations;
8528 inode->i_fop = &btrfs_dir_file_operations;
8529
8530 set_nlink(inode, 1);
8531 btrfs_i_size_write(inode, 0);
8532 unlock_new_inode(inode);
8533
8534 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8535 if (err)
8536 btrfs_err(new_root->fs_info,
8537 "error inheriting subvolume %llu properties: %d",
8538 new_root->root_key.objectid, err);
8539
8540 err = btrfs_update_inode(trans, new_root, inode);
8541
8542 iput(inode);
8543 return err;
8544 }
8545
8546 struct inode *btrfs_alloc_inode(struct super_block *sb)
8547 {
8548 struct btrfs_inode *ei;
8549 struct inode *inode;
8550
8551 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8552 if (!ei)
8553 return NULL;
8554
8555 ei->root = NULL;
8556 ei->generation = 0;
8557 ei->last_trans = 0;
8558 ei->last_sub_trans = 0;
8559 ei->logged_trans = 0;
8560 ei->delalloc_bytes = 0;
8561 ei->defrag_bytes = 0;
8562 ei->disk_i_size = 0;
8563 ei->flags = 0;
8564 ei->csum_bytes = 0;
8565 ei->index_cnt = (u64)-1;
8566 ei->dir_index = 0;
8567 ei->last_unlink_trans = 0;
8568 ei->last_log_commit = 0;
8569
8570 spin_lock_init(&ei->lock);
8571 ei->outstanding_extents = 0;
8572 ei->reserved_extents = 0;
8573
8574 ei->runtime_flags = 0;
8575 ei->force_compress = BTRFS_COMPRESS_NONE;
8576
8577 ei->delayed_node = NULL;
8578
8579 inode = &ei->vfs_inode;
8580 extent_map_tree_init(&ei->extent_tree);
8581 extent_io_tree_init(&ei->io_tree, &inode->i_data);
8582 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8583 ei->io_tree.track_uptodate = 1;
8584 ei->io_failure_tree.track_uptodate = 1;
8585 atomic_set(&ei->sync_writers, 0);
8586 mutex_init(&ei->log_mutex);
8587 mutex_init(&ei->delalloc_mutex);
8588 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8589 INIT_LIST_HEAD(&ei->delalloc_inodes);
8590 RB_CLEAR_NODE(&ei->rb_node);
8591
8592 return inode;
8593 }
8594
8595 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8596 void btrfs_test_destroy_inode(struct inode *inode)
8597 {
8598 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8599 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8600 }
8601 #endif
8602
8603 static void btrfs_i_callback(struct rcu_head *head)
8604 {
8605 struct inode *inode = container_of(head, struct inode, i_rcu);
8606 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8607 }
8608
8609 void btrfs_destroy_inode(struct inode *inode)
8610 {
8611 struct btrfs_ordered_extent *ordered;
8612 struct btrfs_root *root = BTRFS_I(inode)->root;
8613
8614 WARN_ON(!hlist_empty(&inode->i_dentry));
8615 WARN_ON(inode->i_data.nrpages);
8616 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8617 WARN_ON(BTRFS_I(inode)->reserved_extents);
8618 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8619 WARN_ON(BTRFS_I(inode)->csum_bytes);
8620 WARN_ON(BTRFS_I(inode)->defrag_bytes);
8621
8622 /*
8623 * This can happen where we create an inode, but somebody else also
8624 * created the same inode and we need to destroy the one we already
8625 * created.
8626 */
8627 if (!root)
8628 goto free;
8629
8630 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8631 &BTRFS_I(inode)->runtime_flags)) {
8632 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8633 btrfs_ino(inode));
8634 atomic_dec(&root->orphan_inodes);
8635 }
8636
8637 while (1) {
8638 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8639 if (!ordered)
8640 break;
8641 else {
8642 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8643 ordered->file_offset, ordered->len);
8644 btrfs_remove_ordered_extent(inode, ordered);
8645 btrfs_put_ordered_extent(ordered);
8646 btrfs_put_ordered_extent(ordered);
8647 }
8648 }
8649 inode_tree_del(inode);
8650 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8651 free:
8652 call_rcu(&inode->i_rcu, btrfs_i_callback);
8653 }
8654
8655 int btrfs_drop_inode(struct inode *inode)
8656 {
8657 struct btrfs_root *root = BTRFS_I(inode)->root;
8658
8659 if (root == NULL)
8660 return 1;
8661
8662 /* the snap/subvol tree is on deleting */
8663 if (btrfs_root_refs(&root->root_item) == 0)
8664 return 1;
8665 else
8666 return generic_drop_inode(inode);
8667 }
8668
8669 static void init_once(void *foo)
8670 {
8671 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8672
8673 inode_init_once(&ei->vfs_inode);
8674 }
8675
8676 void btrfs_destroy_cachep(void)
8677 {
8678 /*
8679 * Make sure all delayed rcu free inodes are flushed before we
8680 * destroy cache.
8681 */
8682 rcu_barrier();
8683 if (btrfs_inode_cachep)
8684 kmem_cache_destroy(btrfs_inode_cachep);
8685 if (btrfs_trans_handle_cachep)
8686 kmem_cache_destroy(btrfs_trans_handle_cachep);
8687 if (btrfs_transaction_cachep)
8688 kmem_cache_destroy(btrfs_transaction_cachep);
8689 if (btrfs_path_cachep)
8690 kmem_cache_destroy(btrfs_path_cachep);
8691 if (btrfs_free_space_cachep)
8692 kmem_cache_destroy(btrfs_free_space_cachep);
8693 if (btrfs_delalloc_work_cachep)
8694 kmem_cache_destroy(btrfs_delalloc_work_cachep);
8695 }
8696
8697 int btrfs_init_cachep(void)
8698 {
8699 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8700 sizeof(struct btrfs_inode), 0,
8701 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
8702 if (!btrfs_inode_cachep)
8703 goto fail;
8704
8705 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8706 sizeof(struct btrfs_trans_handle), 0,
8707 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8708 if (!btrfs_trans_handle_cachep)
8709 goto fail;
8710
8711 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
8712 sizeof(struct btrfs_transaction), 0,
8713 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8714 if (!btrfs_transaction_cachep)
8715 goto fail;
8716
8717 btrfs_path_cachep = kmem_cache_create("btrfs_path",
8718 sizeof(struct btrfs_path), 0,
8719 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8720 if (!btrfs_path_cachep)
8721 goto fail;
8722
8723 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8724 sizeof(struct btrfs_free_space), 0,
8725 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8726 if (!btrfs_free_space_cachep)
8727 goto fail;
8728
8729 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8730 sizeof(struct btrfs_delalloc_work), 0,
8731 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8732 NULL);
8733 if (!btrfs_delalloc_work_cachep)
8734 goto fail;
8735
8736 return 0;
8737 fail:
8738 btrfs_destroy_cachep();
8739 return -ENOMEM;
8740 }
8741
8742 static int btrfs_getattr(struct vfsmount *mnt,
8743 struct dentry *dentry, struct kstat *stat)
8744 {
8745 u64 delalloc_bytes;
8746 struct inode *inode = dentry->d_inode;
8747 u32 blocksize = inode->i_sb->s_blocksize;
8748
8749 generic_fillattr(inode, stat);
8750 stat->dev = BTRFS_I(inode)->root->anon_dev;
8751 stat->blksize = PAGE_CACHE_SIZE;
8752
8753 spin_lock(&BTRFS_I(inode)->lock);
8754 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8755 spin_unlock(&BTRFS_I(inode)->lock);
8756 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8757 ALIGN(delalloc_bytes, blocksize)) >> 9;
8758 return 0;
8759 }
8760
8761 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8762 struct inode *new_dir, struct dentry *new_dentry)
8763 {
8764 struct btrfs_trans_handle *trans;
8765 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8766 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8767 struct inode *new_inode = new_dentry->d_inode;
8768 struct inode *old_inode = old_dentry->d_inode;
8769 struct timespec ctime = CURRENT_TIME;
8770 u64 index = 0;
8771 u64 root_objectid;
8772 int ret;
8773 u64 old_ino = btrfs_ino(old_inode);
8774
8775 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8776 return -EPERM;
8777
8778 /* we only allow rename subvolume link between subvolumes */
8779 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8780 return -EXDEV;
8781
8782 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8783 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8784 return -ENOTEMPTY;
8785
8786 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8787 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8788 return -ENOTEMPTY;
8789
8790
8791 /* check for collisions, even if the name isn't there */
8792 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
8793 new_dentry->d_name.name,
8794 new_dentry->d_name.len);
8795
8796 if (ret) {
8797 if (ret == -EEXIST) {
8798 /* we shouldn't get
8799 * eexist without a new_inode */
8800 if (WARN_ON(!new_inode)) {
8801 return ret;
8802 }
8803 } else {
8804 /* maybe -EOVERFLOW */
8805 return ret;
8806 }
8807 }
8808 ret = 0;
8809
8810 /*
8811 * we're using rename to replace one file with another. Start IO on it
8812 * now so we don't add too much work to the end of the transaction
8813 */
8814 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8815 filemap_flush(old_inode->i_mapping);
8816
8817 /* close the racy window with snapshot create/destroy ioctl */
8818 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8819 down_read(&root->fs_info->subvol_sem);
8820 /*
8821 * We want to reserve the absolute worst case amount of items. So if
8822 * both inodes are subvols and we need to unlink them then that would
8823 * require 4 item modifications, but if they are both normal inodes it
8824 * would require 5 item modifications, so we'll assume their normal
8825 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8826 * should cover the worst case number of items we'll modify.
8827 */
8828 trans = btrfs_start_transaction(root, 11);
8829 if (IS_ERR(trans)) {
8830 ret = PTR_ERR(trans);
8831 goto out_notrans;
8832 }
8833
8834 if (dest != root)
8835 btrfs_record_root_in_trans(trans, dest);
8836
8837 ret = btrfs_set_inode_index(new_dir, &index);
8838 if (ret)
8839 goto out_fail;
8840
8841 BTRFS_I(old_inode)->dir_index = 0ULL;
8842 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8843 /* force full log commit if subvolume involved. */
8844 btrfs_set_log_full_commit(root->fs_info, trans);
8845 } else {
8846 ret = btrfs_insert_inode_ref(trans, dest,
8847 new_dentry->d_name.name,
8848 new_dentry->d_name.len,
8849 old_ino,
8850 btrfs_ino(new_dir), index);
8851 if (ret)
8852 goto out_fail;
8853 /*
8854 * this is an ugly little race, but the rename is required
8855 * to make sure that if we crash, the inode is either at the
8856 * old name or the new one. pinning the log transaction lets
8857 * us make sure we don't allow a log commit to come in after
8858 * we unlink the name but before we add the new name back in.
8859 */
8860 btrfs_pin_log_trans(root);
8861 }
8862
8863 inode_inc_iversion(old_dir);
8864 inode_inc_iversion(new_dir);
8865 inode_inc_iversion(old_inode);
8866 old_dir->i_ctime = old_dir->i_mtime = ctime;
8867 new_dir->i_ctime = new_dir->i_mtime = ctime;
8868 old_inode->i_ctime = ctime;
8869
8870 if (old_dentry->d_parent != new_dentry->d_parent)
8871 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8872
8873 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8874 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8875 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8876 old_dentry->d_name.name,
8877 old_dentry->d_name.len);
8878 } else {
8879 ret = __btrfs_unlink_inode(trans, root, old_dir,
8880 old_dentry->d_inode,
8881 old_dentry->d_name.name,
8882 old_dentry->d_name.len);
8883 if (!ret)
8884 ret = btrfs_update_inode(trans, root, old_inode);
8885 }
8886 if (ret) {
8887 btrfs_abort_transaction(trans, root, ret);
8888 goto out_fail;
8889 }
8890
8891 if (new_inode) {
8892 inode_inc_iversion(new_inode);
8893 new_inode->i_ctime = CURRENT_TIME;
8894 if (unlikely(btrfs_ino(new_inode) ==
8895 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8896 root_objectid = BTRFS_I(new_inode)->location.objectid;
8897 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8898 root_objectid,
8899 new_dentry->d_name.name,
8900 new_dentry->d_name.len);
8901 BUG_ON(new_inode->i_nlink == 0);
8902 } else {
8903 ret = btrfs_unlink_inode(trans, dest, new_dir,
8904 new_dentry->d_inode,
8905 new_dentry->d_name.name,
8906 new_dentry->d_name.len);
8907 }
8908 if (!ret && new_inode->i_nlink == 0)
8909 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8910 if (ret) {
8911 btrfs_abort_transaction(trans, root, ret);
8912 goto out_fail;
8913 }
8914 }
8915
8916 ret = btrfs_add_link(trans, new_dir, old_inode,
8917 new_dentry->d_name.name,
8918 new_dentry->d_name.len, 0, index);
8919 if (ret) {
8920 btrfs_abort_transaction(trans, root, ret);
8921 goto out_fail;
8922 }
8923
8924 if (old_inode->i_nlink == 1)
8925 BTRFS_I(old_inode)->dir_index = index;
8926
8927 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8928 struct dentry *parent = new_dentry->d_parent;
8929 btrfs_log_new_name(trans, old_inode, old_dir, parent);
8930 btrfs_end_log_trans(root);
8931 }
8932 out_fail:
8933 btrfs_end_transaction(trans, root);
8934 out_notrans:
8935 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8936 up_read(&root->fs_info->subvol_sem);
8937
8938 return ret;
8939 }
8940
8941 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
8942 struct inode *new_dir, struct dentry *new_dentry,
8943 unsigned int flags)
8944 {
8945 if (flags & ~RENAME_NOREPLACE)
8946 return -EINVAL;
8947
8948 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
8949 }
8950
8951 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8952 {
8953 struct btrfs_delalloc_work *delalloc_work;
8954 struct inode *inode;
8955
8956 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8957 work);
8958 inode = delalloc_work->inode;
8959 if (delalloc_work->wait) {
8960 btrfs_wait_ordered_range(inode, 0, (u64)-1);
8961 } else {
8962 filemap_flush(inode->i_mapping);
8963 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8964 &BTRFS_I(inode)->runtime_flags))
8965 filemap_flush(inode->i_mapping);
8966 }
8967
8968 if (delalloc_work->delay_iput)
8969 btrfs_add_delayed_iput(inode);
8970 else
8971 iput(inode);
8972 complete(&delalloc_work->completion);
8973 }
8974
8975 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8976 int wait, int delay_iput)
8977 {
8978 struct btrfs_delalloc_work *work;
8979
8980 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8981 if (!work)
8982 return NULL;
8983
8984 init_completion(&work->completion);
8985 INIT_LIST_HEAD(&work->list);
8986 work->inode = inode;
8987 work->wait = wait;
8988 work->delay_iput = delay_iput;
8989 WARN_ON_ONCE(!inode);
8990 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
8991 btrfs_run_delalloc_work, NULL, NULL);
8992
8993 return work;
8994 }
8995
8996 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8997 {
8998 wait_for_completion(&work->completion);
8999 kmem_cache_free(btrfs_delalloc_work_cachep, work);
9000 }
9001
9002 /*
9003 * some fairly slow code that needs optimization. This walks the list
9004 * of all the inodes with pending delalloc and forces them to disk.
9005 */
9006 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9007 int nr)
9008 {
9009 struct btrfs_inode *binode;
9010 struct inode *inode;
9011 struct btrfs_delalloc_work *work, *next;
9012 struct list_head works;
9013 struct list_head splice;
9014 int ret = 0;
9015
9016 INIT_LIST_HEAD(&works);
9017 INIT_LIST_HEAD(&splice);
9018
9019 mutex_lock(&root->delalloc_mutex);
9020 spin_lock(&root->delalloc_lock);
9021 list_splice_init(&root->delalloc_inodes, &splice);
9022 while (!list_empty(&splice)) {
9023 binode = list_entry(splice.next, struct btrfs_inode,
9024 delalloc_inodes);
9025
9026 list_move_tail(&binode->delalloc_inodes,
9027 &root->delalloc_inodes);
9028 inode = igrab(&binode->vfs_inode);
9029 if (!inode) {
9030 cond_resched_lock(&root->delalloc_lock);
9031 continue;
9032 }
9033 spin_unlock(&root->delalloc_lock);
9034
9035 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
9036 if (!work) {
9037 if (delay_iput)
9038 btrfs_add_delayed_iput(inode);
9039 else
9040 iput(inode);
9041 ret = -ENOMEM;
9042 goto out;
9043 }
9044 list_add_tail(&work->list, &works);
9045 btrfs_queue_work(root->fs_info->flush_workers,
9046 &work->work);
9047 ret++;
9048 if (nr != -1 && ret >= nr)
9049 goto out;
9050 cond_resched();
9051 spin_lock(&root->delalloc_lock);
9052 }
9053 spin_unlock(&root->delalloc_lock);
9054
9055 out:
9056 list_for_each_entry_safe(work, next, &works, list) {
9057 list_del_init(&work->list);
9058 btrfs_wait_and_free_delalloc_work(work);
9059 }
9060
9061 if (!list_empty_careful(&splice)) {
9062 spin_lock(&root->delalloc_lock);
9063 list_splice_tail(&splice, &root->delalloc_inodes);
9064 spin_unlock(&root->delalloc_lock);
9065 }
9066 mutex_unlock(&root->delalloc_mutex);
9067 return ret;
9068 }
9069
9070 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9071 {
9072 int ret;
9073
9074 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9075 return -EROFS;
9076
9077 ret = __start_delalloc_inodes(root, delay_iput, -1);
9078 if (ret > 0)
9079 ret = 0;
9080 /*
9081 * the filemap_flush will queue IO into the worker threads, but
9082 * we have to make sure the IO is actually started and that
9083 * ordered extents get created before we return
9084 */
9085 atomic_inc(&root->fs_info->async_submit_draining);
9086 while (atomic_read(&root->fs_info->nr_async_submits) ||
9087 atomic_read(&root->fs_info->async_delalloc_pages)) {
9088 wait_event(root->fs_info->async_submit_wait,
9089 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9090 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9091 }
9092 atomic_dec(&root->fs_info->async_submit_draining);
9093 return ret;
9094 }
9095
9096 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9097 int nr)
9098 {
9099 struct btrfs_root *root;
9100 struct list_head splice;
9101 int ret;
9102
9103 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9104 return -EROFS;
9105
9106 INIT_LIST_HEAD(&splice);
9107
9108 mutex_lock(&fs_info->delalloc_root_mutex);
9109 spin_lock(&fs_info->delalloc_root_lock);
9110 list_splice_init(&fs_info->delalloc_roots, &splice);
9111 while (!list_empty(&splice) && nr) {
9112 root = list_first_entry(&splice, struct btrfs_root,
9113 delalloc_root);
9114 root = btrfs_grab_fs_root(root);
9115 BUG_ON(!root);
9116 list_move_tail(&root->delalloc_root,
9117 &fs_info->delalloc_roots);
9118 spin_unlock(&fs_info->delalloc_root_lock);
9119
9120 ret = __start_delalloc_inodes(root, delay_iput, nr);
9121 btrfs_put_fs_root(root);
9122 if (ret < 0)
9123 goto out;
9124
9125 if (nr != -1) {
9126 nr -= ret;
9127 WARN_ON(nr < 0);
9128 }
9129 spin_lock(&fs_info->delalloc_root_lock);
9130 }
9131 spin_unlock(&fs_info->delalloc_root_lock);
9132
9133 ret = 0;
9134 atomic_inc(&fs_info->async_submit_draining);
9135 while (atomic_read(&fs_info->nr_async_submits) ||
9136 atomic_read(&fs_info->async_delalloc_pages)) {
9137 wait_event(fs_info->async_submit_wait,
9138 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9139 atomic_read(&fs_info->async_delalloc_pages) == 0));
9140 }
9141 atomic_dec(&fs_info->async_submit_draining);
9142 out:
9143 if (!list_empty_careful(&splice)) {
9144 spin_lock(&fs_info->delalloc_root_lock);
9145 list_splice_tail(&splice, &fs_info->delalloc_roots);
9146 spin_unlock(&fs_info->delalloc_root_lock);
9147 }
9148 mutex_unlock(&fs_info->delalloc_root_mutex);
9149 return ret;
9150 }
9151
9152 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9153 const char *symname)
9154 {
9155 struct btrfs_trans_handle *trans;
9156 struct btrfs_root *root = BTRFS_I(dir)->root;
9157 struct btrfs_path *path;
9158 struct btrfs_key key;
9159 struct inode *inode = NULL;
9160 int err;
9161 int drop_inode = 0;
9162 u64 objectid;
9163 u64 index = 0;
9164 int name_len;
9165 int datasize;
9166 unsigned long ptr;
9167 struct btrfs_file_extent_item *ei;
9168 struct extent_buffer *leaf;
9169
9170 name_len = strlen(symname);
9171 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9172 return -ENAMETOOLONG;
9173
9174 /*
9175 * 2 items for inode item and ref
9176 * 2 items for dir items
9177 * 1 item for xattr if selinux is on
9178 */
9179 trans = btrfs_start_transaction(root, 5);
9180 if (IS_ERR(trans))
9181 return PTR_ERR(trans);
9182
9183 err = btrfs_find_free_ino(root, &objectid);
9184 if (err)
9185 goto out_unlock;
9186
9187 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9188 dentry->d_name.len, btrfs_ino(dir), objectid,
9189 S_IFLNK|S_IRWXUGO, &index);
9190 if (IS_ERR(inode)) {
9191 err = PTR_ERR(inode);
9192 goto out_unlock;
9193 }
9194
9195 /*
9196 * If the active LSM wants to access the inode during
9197 * d_instantiate it needs these. Smack checks to see
9198 * if the filesystem supports xattrs by looking at the
9199 * ops vector.
9200 */
9201 inode->i_fop = &btrfs_file_operations;
9202 inode->i_op = &btrfs_file_inode_operations;
9203 inode->i_mapping->a_ops = &btrfs_aops;
9204 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9205 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9206
9207 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9208 if (err)
9209 goto out_unlock_inode;
9210
9211 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9212 if (err)
9213 goto out_unlock_inode;
9214
9215 path = btrfs_alloc_path();
9216 if (!path) {
9217 err = -ENOMEM;
9218 goto out_unlock_inode;
9219 }
9220 key.objectid = btrfs_ino(inode);
9221 key.offset = 0;
9222 key.type = BTRFS_EXTENT_DATA_KEY;
9223 datasize = btrfs_file_extent_calc_inline_size(name_len);
9224 err = btrfs_insert_empty_item(trans, root, path, &key,
9225 datasize);
9226 if (err) {
9227 btrfs_free_path(path);
9228 goto out_unlock_inode;
9229 }
9230 leaf = path->nodes[0];
9231 ei = btrfs_item_ptr(leaf, path->slots[0],
9232 struct btrfs_file_extent_item);
9233 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9234 btrfs_set_file_extent_type(leaf, ei,
9235 BTRFS_FILE_EXTENT_INLINE);
9236 btrfs_set_file_extent_encryption(leaf, ei, 0);
9237 btrfs_set_file_extent_compression(leaf, ei, 0);
9238 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9239 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9240
9241 ptr = btrfs_file_extent_inline_start(ei);
9242 write_extent_buffer(leaf, symname, ptr, name_len);
9243 btrfs_mark_buffer_dirty(leaf);
9244 btrfs_free_path(path);
9245
9246 inode->i_op = &btrfs_symlink_inode_operations;
9247 inode->i_mapping->a_ops = &btrfs_symlink_aops;
9248 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9249 inode_set_bytes(inode, name_len);
9250 btrfs_i_size_write(inode, name_len);
9251 err = btrfs_update_inode(trans, root, inode);
9252 if (err) {
9253 drop_inode = 1;
9254 goto out_unlock_inode;
9255 }
9256
9257 unlock_new_inode(inode);
9258 d_instantiate(dentry, inode);
9259
9260 out_unlock:
9261 btrfs_end_transaction(trans, root);
9262 if (drop_inode) {
9263 inode_dec_link_count(inode);
9264 iput(inode);
9265 }
9266 btrfs_btree_balance_dirty(root);
9267 return err;
9268
9269 out_unlock_inode:
9270 drop_inode = 1;
9271 unlock_new_inode(inode);
9272 goto out_unlock;
9273 }
9274
9275 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9276 u64 start, u64 num_bytes, u64 min_size,
9277 loff_t actual_len, u64 *alloc_hint,
9278 struct btrfs_trans_handle *trans)
9279 {
9280 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9281 struct extent_map *em;
9282 struct btrfs_root *root = BTRFS_I(inode)->root;
9283 struct btrfs_key ins;
9284 u64 cur_offset = start;
9285 u64 i_size;
9286 u64 cur_bytes;
9287 int ret = 0;
9288 bool own_trans = true;
9289
9290 if (trans)
9291 own_trans = false;
9292 while (num_bytes > 0) {
9293 if (own_trans) {
9294 trans = btrfs_start_transaction(root, 3);
9295 if (IS_ERR(trans)) {
9296 ret = PTR_ERR(trans);
9297 break;
9298 }
9299 }
9300
9301 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9302 cur_bytes = max(cur_bytes, min_size);
9303 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9304 *alloc_hint, &ins, 1, 0);
9305 if (ret) {
9306 if (own_trans)
9307 btrfs_end_transaction(trans, root);
9308 break;
9309 }
9310
9311 ret = insert_reserved_file_extent(trans, inode,
9312 cur_offset, ins.objectid,
9313 ins.offset, ins.offset,
9314 ins.offset, 0, 0, 0,
9315 BTRFS_FILE_EXTENT_PREALLOC);
9316 if (ret) {
9317 btrfs_free_reserved_extent(root, ins.objectid,
9318 ins.offset, 0);
9319 btrfs_abort_transaction(trans, root, ret);
9320 if (own_trans)
9321 btrfs_end_transaction(trans, root);
9322 break;
9323 }
9324 btrfs_drop_extent_cache(inode, cur_offset,
9325 cur_offset + ins.offset -1, 0);
9326
9327 em = alloc_extent_map();
9328 if (!em) {
9329 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9330 &BTRFS_I(inode)->runtime_flags);
9331 goto next;
9332 }
9333
9334 em->start = cur_offset;
9335 em->orig_start = cur_offset;
9336 em->len = ins.offset;
9337 em->block_start = ins.objectid;
9338 em->block_len = ins.offset;
9339 em->orig_block_len = ins.offset;
9340 em->ram_bytes = ins.offset;
9341 em->bdev = root->fs_info->fs_devices->latest_bdev;
9342 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9343 em->generation = trans->transid;
9344
9345 while (1) {
9346 write_lock(&em_tree->lock);
9347 ret = add_extent_mapping(em_tree, em, 1);
9348 write_unlock(&em_tree->lock);
9349 if (ret != -EEXIST)
9350 break;
9351 btrfs_drop_extent_cache(inode, cur_offset,
9352 cur_offset + ins.offset - 1,
9353 0);
9354 }
9355 free_extent_map(em);
9356 next:
9357 num_bytes -= ins.offset;
9358 cur_offset += ins.offset;
9359 *alloc_hint = ins.objectid + ins.offset;
9360
9361 inode_inc_iversion(inode);
9362 inode->i_ctime = CURRENT_TIME;
9363 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9364 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9365 (actual_len > inode->i_size) &&
9366 (cur_offset > inode->i_size)) {
9367 if (cur_offset > actual_len)
9368 i_size = actual_len;
9369 else
9370 i_size = cur_offset;
9371 i_size_write(inode, i_size);
9372 btrfs_ordered_update_i_size(inode, i_size, NULL);
9373 }
9374
9375 ret = btrfs_update_inode(trans, root, inode);
9376
9377 if (ret) {
9378 btrfs_abort_transaction(trans, root, ret);
9379 if (own_trans)
9380 btrfs_end_transaction(trans, root);
9381 break;
9382 }
9383
9384 if (own_trans)
9385 btrfs_end_transaction(trans, root);
9386 }
9387 return ret;
9388 }
9389
9390 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9391 u64 start, u64 num_bytes, u64 min_size,
9392 loff_t actual_len, u64 *alloc_hint)
9393 {
9394 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9395 min_size, actual_len, alloc_hint,
9396 NULL);
9397 }
9398
9399 int btrfs_prealloc_file_range_trans(struct inode *inode,
9400 struct btrfs_trans_handle *trans, int mode,
9401 u64 start, u64 num_bytes, u64 min_size,
9402 loff_t actual_len, u64 *alloc_hint)
9403 {
9404 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9405 min_size, actual_len, alloc_hint, trans);
9406 }
9407
9408 static int btrfs_set_page_dirty(struct page *page)
9409 {
9410 return __set_page_dirty_nobuffers(page);
9411 }
9412
9413 static int btrfs_permission(struct inode *inode, int mask)
9414 {
9415 struct btrfs_root *root = BTRFS_I(inode)->root;
9416 umode_t mode = inode->i_mode;
9417
9418 if (mask & MAY_WRITE &&
9419 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9420 if (btrfs_root_readonly(root))
9421 return -EROFS;
9422 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9423 return -EACCES;
9424 }
9425 return generic_permission(inode, mask);
9426 }
9427
9428 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9429 {
9430 struct btrfs_trans_handle *trans;
9431 struct btrfs_root *root = BTRFS_I(dir)->root;
9432 struct inode *inode = NULL;
9433 u64 objectid;
9434 u64 index;
9435 int ret = 0;
9436
9437 /*
9438 * 5 units required for adding orphan entry
9439 */
9440 trans = btrfs_start_transaction(root, 5);
9441 if (IS_ERR(trans))
9442 return PTR_ERR(trans);
9443
9444 ret = btrfs_find_free_ino(root, &objectid);
9445 if (ret)
9446 goto out;
9447
9448 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9449 btrfs_ino(dir), objectid, mode, &index);
9450 if (IS_ERR(inode)) {
9451 ret = PTR_ERR(inode);
9452 inode = NULL;
9453 goto out;
9454 }
9455
9456 inode->i_fop = &btrfs_file_operations;
9457 inode->i_op = &btrfs_file_inode_operations;
9458
9459 inode->i_mapping->a_ops = &btrfs_aops;
9460 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9461 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9462
9463 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9464 if (ret)
9465 goto out_inode;
9466
9467 ret = btrfs_update_inode(trans, root, inode);
9468 if (ret)
9469 goto out_inode;
9470 ret = btrfs_orphan_add(trans, inode);
9471 if (ret)
9472 goto out_inode;
9473
9474 /*
9475 * We set number of links to 0 in btrfs_new_inode(), and here we set
9476 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9477 * through:
9478 *
9479 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9480 */
9481 set_nlink(inode, 1);
9482 unlock_new_inode(inode);
9483 d_tmpfile(dentry, inode);
9484 mark_inode_dirty(inode);
9485
9486 out:
9487 btrfs_end_transaction(trans, root);
9488 if (ret)
9489 iput(inode);
9490 btrfs_balance_delayed_items(root);
9491 btrfs_btree_balance_dirty(root);
9492 return ret;
9493
9494 out_inode:
9495 unlock_new_inode(inode);
9496 goto out;
9497
9498 }
9499
9500 /* Inspired by filemap_check_errors() */
9501 int btrfs_inode_check_errors(struct inode *inode)
9502 {
9503 int ret = 0;
9504
9505 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9506 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9507 ret = -ENOSPC;
9508 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9509 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9510 ret = -EIO;
9511
9512 return ret;
9513 }
9514
9515 static const struct inode_operations btrfs_dir_inode_operations = {
9516 .getattr = btrfs_getattr,
9517 .lookup = btrfs_lookup,
9518 .create = btrfs_create,
9519 .unlink = btrfs_unlink,
9520 .link = btrfs_link,
9521 .mkdir = btrfs_mkdir,
9522 .rmdir = btrfs_rmdir,
9523 .rename2 = btrfs_rename2,
9524 .symlink = btrfs_symlink,
9525 .setattr = btrfs_setattr,
9526 .mknod = btrfs_mknod,
9527 .setxattr = btrfs_setxattr,
9528 .getxattr = btrfs_getxattr,
9529 .listxattr = btrfs_listxattr,
9530 .removexattr = btrfs_removexattr,
9531 .permission = btrfs_permission,
9532 .get_acl = btrfs_get_acl,
9533 .set_acl = btrfs_set_acl,
9534 .update_time = btrfs_update_time,
9535 .tmpfile = btrfs_tmpfile,
9536 };
9537 static const struct inode_operations btrfs_dir_ro_inode_operations = {
9538 .lookup = btrfs_lookup,
9539 .permission = btrfs_permission,
9540 .get_acl = btrfs_get_acl,
9541 .set_acl = btrfs_set_acl,
9542 .update_time = btrfs_update_time,
9543 };
9544
9545 static const struct file_operations btrfs_dir_file_operations = {
9546 .llseek = generic_file_llseek,
9547 .read = generic_read_dir,
9548 .iterate = btrfs_real_readdir,
9549 .unlocked_ioctl = btrfs_ioctl,
9550 #ifdef CONFIG_COMPAT
9551 .compat_ioctl = btrfs_ioctl,
9552 #endif
9553 .release = btrfs_release_file,
9554 .fsync = btrfs_sync_file,
9555 };
9556
9557 static struct extent_io_ops btrfs_extent_io_ops = {
9558 .fill_delalloc = run_delalloc_range,
9559 .submit_bio_hook = btrfs_submit_bio_hook,
9560 .merge_bio_hook = btrfs_merge_bio_hook,
9561 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
9562 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
9563 .writepage_start_hook = btrfs_writepage_start_hook,
9564 .set_bit_hook = btrfs_set_bit_hook,
9565 .clear_bit_hook = btrfs_clear_bit_hook,
9566 .merge_extent_hook = btrfs_merge_extent_hook,
9567 .split_extent_hook = btrfs_split_extent_hook,
9568 };
9569
9570 /*
9571 * btrfs doesn't support the bmap operation because swapfiles
9572 * use bmap to make a mapping of extents in the file. They assume
9573 * these extents won't change over the life of the file and they
9574 * use the bmap result to do IO directly to the drive.
9575 *
9576 * the btrfs bmap call would return logical addresses that aren't
9577 * suitable for IO and they also will change frequently as COW
9578 * operations happen. So, swapfile + btrfs == corruption.
9579 *
9580 * For now we're avoiding this by dropping bmap.
9581 */
9582 static const struct address_space_operations btrfs_aops = {
9583 .readpage = btrfs_readpage,
9584 .writepage = btrfs_writepage,
9585 .writepages = btrfs_writepages,
9586 .readpages = btrfs_readpages,
9587 .direct_IO = btrfs_direct_IO,
9588 .invalidatepage = btrfs_invalidatepage,
9589 .releasepage = btrfs_releasepage,
9590 .set_page_dirty = btrfs_set_page_dirty,
9591 .error_remove_page = generic_error_remove_page,
9592 };
9593
9594 static const struct address_space_operations btrfs_symlink_aops = {
9595 .readpage = btrfs_readpage,
9596 .writepage = btrfs_writepage,
9597 .invalidatepage = btrfs_invalidatepage,
9598 .releasepage = btrfs_releasepage,
9599 };
9600
9601 static const struct inode_operations btrfs_file_inode_operations = {
9602 .getattr = btrfs_getattr,
9603 .setattr = btrfs_setattr,
9604 .setxattr = btrfs_setxattr,
9605 .getxattr = btrfs_getxattr,
9606 .listxattr = btrfs_listxattr,
9607 .removexattr = btrfs_removexattr,
9608 .permission = btrfs_permission,
9609 .fiemap = btrfs_fiemap,
9610 .get_acl = btrfs_get_acl,
9611 .set_acl = btrfs_set_acl,
9612 .update_time = btrfs_update_time,
9613 };
9614 static const struct inode_operations btrfs_special_inode_operations = {
9615 .getattr = btrfs_getattr,
9616 .setattr = btrfs_setattr,
9617 .permission = btrfs_permission,
9618 .setxattr = btrfs_setxattr,
9619 .getxattr = btrfs_getxattr,
9620 .listxattr = btrfs_listxattr,
9621 .removexattr = btrfs_removexattr,
9622 .get_acl = btrfs_get_acl,
9623 .set_acl = btrfs_set_acl,
9624 .update_time = btrfs_update_time,
9625 };
9626 static const struct inode_operations btrfs_symlink_inode_operations = {
9627 .readlink = generic_readlink,
9628 .follow_link = page_follow_link_light,
9629 .put_link = page_put_link,
9630 .getattr = btrfs_getattr,
9631 .setattr = btrfs_setattr,
9632 .permission = btrfs_permission,
9633 .setxattr = btrfs_setxattr,
9634 .getxattr = btrfs_getxattr,
9635 .listxattr = btrfs_listxattr,
9636 .removexattr = btrfs_removexattr,
9637 .update_time = btrfs_update_time,
9638 };
9639
9640 const struct dentry_operations btrfs_dentry_operations = {
9641 .d_delete = btrfs_dentry_delete,
9642 .d_release = btrfs_dentry_release,
9643 };
This page took 0.230635 seconds and 5 git commands to generate.