cf26778085e08185a7c7c03e0fd6f7a34bc7c7e4
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include "compat.h"
44 #include "ctree.h"
45 #include "disk-io.h"
46 #include "transaction.h"
47 #include "btrfs_inode.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "volumes.h"
53 #include "compression.h"
54 #include "locking.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
57
58 struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61 };
62
63 static const struct inode_operations btrfs_dir_inode_operations;
64 static const struct inode_operations btrfs_symlink_inode_operations;
65 static const struct inode_operations btrfs_dir_ro_inode_operations;
66 static const struct inode_operations btrfs_special_inode_operations;
67 static const struct inode_operations btrfs_file_inode_operations;
68 static const struct address_space_operations btrfs_aops;
69 static const struct address_space_operations btrfs_symlink_aops;
70 static const struct file_operations btrfs_dir_file_operations;
71 static struct extent_io_ops btrfs_extent_io_ops;
72
73 static struct kmem_cache *btrfs_inode_cachep;
74 static struct kmem_cache *btrfs_delalloc_work_cachep;
75 struct kmem_cache *btrfs_trans_handle_cachep;
76 struct kmem_cache *btrfs_transaction_cachep;
77 struct kmem_cache *btrfs_path_cachep;
78 struct kmem_cache *btrfs_free_space_cachep;
79
80 #define S_SHIFT 12
81 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
82 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
83 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
84 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
85 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
86 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
87 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
88 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
89 };
90
91 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
92 static int btrfs_truncate(struct inode *inode);
93 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
94 static noinline int cow_file_range(struct inode *inode,
95 struct page *locked_page,
96 u64 start, u64 end, int *page_started,
97 unsigned long *nr_written, int unlock);
98 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
99 u64 len, u64 orig_start,
100 u64 block_start, u64 block_len,
101 u64 orig_block_len, int type);
102
103 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
104 struct inode *inode, struct inode *dir,
105 const struct qstr *qstr)
106 {
107 int err;
108
109 err = btrfs_init_acl(trans, inode, dir);
110 if (!err)
111 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
112 return err;
113 }
114
115 /*
116 * this does all the hard work for inserting an inline extent into
117 * the btree. The caller should have done a btrfs_drop_extents so that
118 * no overlapping inline items exist in the btree
119 */
120 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
121 struct btrfs_root *root, struct inode *inode,
122 u64 start, size_t size, size_t compressed_size,
123 int compress_type,
124 struct page **compressed_pages)
125 {
126 struct btrfs_key key;
127 struct btrfs_path *path;
128 struct extent_buffer *leaf;
129 struct page *page = NULL;
130 char *kaddr;
131 unsigned long ptr;
132 struct btrfs_file_extent_item *ei;
133 int err = 0;
134 int ret;
135 size_t cur_size = size;
136 size_t datasize;
137 unsigned long offset;
138
139 if (compressed_size && compressed_pages)
140 cur_size = compressed_size;
141
142 path = btrfs_alloc_path();
143 if (!path)
144 return -ENOMEM;
145
146 path->leave_spinning = 1;
147
148 key.objectid = btrfs_ino(inode);
149 key.offset = start;
150 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
151 datasize = btrfs_file_extent_calc_inline_size(cur_size);
152
153 inode_add_bytes(inode, size);
154 ret = btrfs_insert_empty_item(trans, root, path, &key,
155 datasize);
156 if (ret) {
157 err = ret;
158 goto fail;
159 }
160 leaf = path->nodes[0];
161 ei = btrfs_item_ptr(leaf, path->slots[0],
162 struct btrfs_file_extent_item);
163 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
164 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
165 btrfs_set_file_extent_encryption(leaf, ei, 0);
166 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
167 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
168 ptr = btrfs_file_extent_inline_start(ei);
169
170 if (compress_type != BTRFS_COMPRESS_NONE) {
171 struct page *cpage;
172 int i = 0;
173 while (compressed_size > 0) {
174 cpage = compressed_pages[i];
175 cur_size = min_t(unsigned long, compressed_size,
176 PAGE_CACHE_SIZE);
177
178 kaddr = kmap_atomic(cpage);
179 write_extent_buffer(leaf, kaddr, ptr, cur_size);
180 kunmap_atomic(kaddr);
181
182 i++;
183 ptr += cur_size;
184 compressed_size -= cur_size;
185 }
186 btrfs_set_file_extent_compression(leaf, ei,
187 compress_type);
188 } else {
189 page = find_get_page(inode->i_mapping,
190 start >> PAGE_CACHE_SHIFT);
191 btrfs_set_file_extent_compression(leaf, ei, 0);
192 kaddr = kmap_atomic(page);
193 offset = start & (PAGE_CACHE_SIZE - 1);
194 write_extent_buffer(leaf, kaddr + offset, ptr, size);
195 kunmap_atomic(kaddr);
196 page_cache_release(page);
197 }
198 btrfs_mark_buffer_dirty(leaf);
199 btrfs_free_path(path);
200
201 /*
202 * we're an inline extent, so nobody can
203 * extend the file past i_size without locking
204 * a page we already have locked.
205 *
206 * We must do any isize and inode updates
207 * before we unlock the pages. Otherwise we
208 * could end up racing with unlink.
209 */
210 BTRFS_I(inode)->disk_i_size = inode->i_size;
211 ret = btrfs_update_inode(trans, root, inode);
212
213 return ret;
214 fail:
215 btrfs_free_path(path);
216 return err;
217 }
218
219
220 /*
221 * conditionally insert an inline extent into the file. This
222 * does the checks required to make sure the data is small enough
223 * to fit as an inline extent.
224 */
225 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
226 struct btrfs_root *root,
227 struct inode *inode, u64 start, u64 end,
228 size_t compressed_size, int compress_type,
229 struct page **compressed_pages)
230 {
231 u64 isize = i_size_read(inode);
232 u64 actual_end = min(end + 1, isize);
233 u64 inline_len = actual_end - start;
234 u64 aligned_end = (end + root->sectorsize - 1) &
235 ~((u64)root->sectorsize - 1);
236 u64 data_len = inline_len;
237 int ret;
238
239 if (compressed_size)
240 data_len = compressed_size;
241
242 if (start > 0 ||
243 actual_end >= PAGE_CACHE_SIZE ||
244 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
245 (!compressed_size &&
246 (actual_end & (root->sectorsize - 1)) == 0) ||
247 end + 1 < isize ||
248 data_len > root->fs_info->max_inline) {
249 return 1;
250 }
251
252 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
253 if (ret)
254 return ret;
255
256 if (isize > actual_end)
257 inline_len = min_t(u64, isize, actual_end);
258 ret = insert_inline_extent(trans, root, inode, start,
259 inline_len, compressed_size,
260 compress_type, compressed_pages);
261 if (ret && ret != -ENOSPC) {
262 btrfs_abort_transaction(trans, root, ret);
263 return ret;
264 } else if (ret == -ENOSPC) {
265 return 1;
266 }
267
268 btrfs_delalloc_release_metadata(inode, end + 1 - start);
269 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
270 return 0;
271 }
272
273 struct async_extent {
274 u64 start;
275 u64 ram_size;
276 u64 compressed_size;
277 struct page **pages;
278 unsigned long nr_pages;
279 int compress_type;
280 struct list_head list;
281 };
282
283 struct async_cow {
284 struct inode *inode;
285 struct btrfs_root *root;
286 struct page *locked_page;
287 u64 start;
288 u64 end;
289 struct list_head extents;
290 struct btrfs_work work;
291 };
292
293 static noinline int add_async_extent(struct async_cow *cow,
294 u64 start, u64 ram_size,
295 u64 compressed_size,
296 struct page **pages,
297 unsigned long nr_pages,
298 int compress_type)
299 {
300 struct async_extent *async_extent;
301
302 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
303 BUG_ON(!async_extent); /* -ENOMEM */
304 async_extent->start = start;
305 async_extent->ram_size = ram_size;
306 async_extent->compressed_size = compressed_size;
307 async_extent->pages = pages;
308 async_extent->nr_pages = nr_pages;
309 async_extent->compress_type = compress_type;
310 list_add_tail(&async_extent->list, &cow->extents);
311 return 0;
312 }
313
314 /*
315 * we create compressed extents in two phases. The first
316 * phase compresses a range of pages that have already been
317 * locked (both pages and state bits are locked).
318 *
319 * This is done inside an ordered work queue, and the compression
320 * is spread across many cpus. The actual IO submission is step
321 * two, and the ordered work queue takes care of making sure that
322 * happens in the same order things were put onto the queue by
323 * writepages and friends.
324 *
325 * If this code finds it can't get good compression, it puts an
326 * entry onto the work queue to write the uncompressed bytes. This
327 * makes sure that both compressed inodes and uncompressed inodes
328 * are written in the same order that the flusher thread sent them
329 * down.
330 */
331 static noinline int compress_file_range(struct inode *inode,
332 struct page *locked_page,
333 u64 start, u64 end,
334 struct async_cow *async_cow,
335 int *num_added)
336 {
337 struct btrfs_root *root = BTRFS_I(inode)->root;
338 struct btrfs_trans_handle *trans;
339 u64 num_bytes;
340 u64 blocksize = root->sectorsize;
341 u64 actual_end;
342 u64 isize = i_size_read(inode);
343 int ret = 0;
344 struct page **pages = NULL;
345 unsigned long nr_pages;
346 unsigned long nr_pages_ret = 0;
347 unsigned long total_compressed = 0;
348 unsigned long total_in = 0;
349 unsigned long max_compressed = 128 * 1024;
350 unsigned long max_uncompressed = 128 * 1024;
351 int i;
352 int will_compress;
353 int compress_type = root->fs_info->compress_type;
354
355 /* if this is a small write inside eof, kick off a defrag */
356 if ((end - start + 1) < 16 * 1024 &&
357 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
358 btrfs_add_inode_defrag(NULL, inode);
359
360 actual_end = min_t(u64, isize, end + 1);
361 again:
362 will_compress = 0;
363 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
364 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
365
366 /*
367 * we don't want to send crud past the end of i_size through
368 * compression, that's just a waste of CPU time. So, if the
369 * end of the file is before the start of our current
370 * requested range of bytes, we bail out to the uncompressed
371 * cleanup code that can deal with all of this.
372 *
373 * It isn't really the fastest way to fix things, but this is a
374 * very uncommon corner.
375 */
376 if (actual_end <= start)
377 goto cleanup_and_bail_uncompressed;
378
379 total_compressed = actual_end - start;
380
381 /* we want to make sure that amount of ram required to uncompress
382 * an extent is reasonable, so we limit the total size in ram
383 * of a compressed extent to 128k. This is a crucial number
384 * because it also controls how easily we can spread reads across
385 * cpus for decompression.
386 *
387 * We also want to make sure the amount of IO required to do
388 * a random read is reasonably small, so we limit the size of
389 * a compressed extent to 128k.
390 */
391 total_compressed = min(total_compressed, max_uncompressed);
392 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
393 num_bytes = max(blocksize, num_bytes);
394 total_in = 0;
395 ret = 0;
396
397 /*
398 * we do compression for mount -o compress and when the
399 * inode has not been flagged as nocompress. This flag can
400 * change at any time if we discover bad compression ratios.
401 */
402 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
403 (btrfs_test_opt(root, COMPRESS) ||
404 (BTRFS_I(inode)->force_compress) ||
405 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
406 WARN_ON(pages);
407 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
408 if (!pages) {
409 /* just bail out to the uncompressed code */
410 goto cont;
411 }
412
413 if (BTRFS_I(inode)->force_compress)
414 compress_type = BTRFS_I(inode)->force_compress;
415
416 ret = btrfs_compress_pages(compress_type,
417 inode->i_mapping, start,
418 total_compressed, pages,
419 nr_pages, &nr_pages_ret,
420 &total_in,
421 &total_compressed,
422 max_compressed);
423
424 if (!ret) {
425 unsigned long offset = total_compressed &
426 (PAGE_CACHE_SIZE - 1);
427 struct page *page = pages[nr_pages_ret - 1];
428 char *kaddr;
429
430 /* zero the tail end of the last page, we might be
431 * sending it down to disk
432 */
433 if (offset) {
434 kaddr = kmap_atomic(page);
435 memset(kaddr + offset, 0,
436 PAGE_CACHE_SIZE - offset);
437 kunmap_atomic(kaddr);
438 }
439 will_compress = 1;
440 }
441 }
442 cont:
443 if (start == 0) {
444 trans = btrfs_join_transaction(root);
445 if (IS_ERR(trans)) {
446 ret = PTR_ERR(trans);
447 trans = NULL;
448 goto cleanup_and_out;
449 }
450 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
451
452 /* lets try to make an inline extent */
453 if (ret || total_in < (actual_end - start)) {
454 /* we didn't compress the entire range, try
455 * to make an uncompressed inline extent.
456 */
457 ret = cow_file_range_inline(trans, root, inode,
458 start, end, 0, 0, NULL);
459 } else {
460 /* try making a compressed inline extent */
461 ret = cow_file_range_inline(trans, root, inode,
462 start, end,
463 total_compressed,
464 compress_type, pages);
465 }
466 if (ret <= 0) {
467 /*
468 * inline extent creation worked or returned error,
469 * we don't need to create any more async work items.
470 * Unlock and free up our temp pages.
471 */
472 extent_clear_unlock_delalloc(inode,
473 &BTRFS_I(inode)->io_tree,
474 start, end, NULL,
475 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
476 EXTENT_CLEAR_DELALLOC |
477 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
478
479 btrfs_end_transaction(trans, root);
480 goto free_pages_out;
481 }
482 btrfs_end_transaction(trans, root);
483 }
484
485 if (will_compress) {
486 /*
487 * we aren't doing an inline extent round the compressed size
488 * up to a block size boundary so the allocator does sane
489 * things
490 */
491 total_compressed = (total_compressed + blocksize - 1) &
492 ~(blocksize - 1);
493
494 /*
495 * one last check to make sure the compression is really a
496 * win, compare the page count read with the blocks on disk
497 */
498 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
499 ~(PAGE_CACHE_SIZE - 1);
500 if (total_compressed >= total_in) {
501 will_compress = 0;
502 } else {
503 num_bytes = total_in;
504 }
505 }
506 if (!will_compress && pages) {
507 /*
508 * the compression code ran but failed to make things smaller,
509 * free any pages it allocated and our page pointer array
510 */
511 for (i = 0; i < nr_pages_ret; i++) {
512 WARN_ON(pages[i]->mapping);
513 page_cache_release(pages[i]);
514 }
515 kfree(pages);
516 pages = NULL;
517 total_compressed = 0;
518 nr_pages_ret = 0;
519
520 /* flag the file so we don't compress in the future */
521 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
522 !(BTRFS_I(inode)->force_compress)) {
523 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
524 }
525 }
526 if (will_compress) {
527 *num_added += 1;
528
529 /* the async work queues will take care of doing actual
530 * allocation on disk for these compressed pages,
531 * and will submit them to the elevator.
532 */
533 add_async_extent(async_cow, start, num_bytes,
534 total_compressed, pages, nr_pages_ret,
535 compress_type);
536
537 if (start + num_bytes < end) {
538 start += num_bytes;
539 pages = NULL;
540 cond_resched();
541 goto again;
542 }
543 } else {
544 cleanup_and_bail_uncompressed:
545 /*
546 * No compression, but we still need to write the pages in
547 * the file we've been given so far. redirty the locked
548 * page if it corresponds to our extent and set things up
549 * for the async work queue to run cow_file_range to do
550 * the normal delalloc dance
551 */
552 if (page_offset(locked_page) >= start &&
553 page_offset(locked_page) <= end) {
554 __set_page_dirty_nobuffers(locked_page);
555 /* unlocked later on in the async handlers */
556 }
557 add_async_extent(async_cow, start, end - start + 1,
558 0, NULL, 0, BTRFS_COMPRESS_NONE);
559 *num_added += 1;
560 }
561
562 out:
563 return ret;
564
565 free_pages_out:
566 for (i = 0; i < nr_pages_ret; i++) {
567 WARN_ON(pages[i]->mapping);
568 page_cache_release(pages[i]);
569 }
570 kfree(pages);
571
572 goto out;
573
574 cleanup_and_out:
575 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
576 start, end, NULL,
577 EXTENT_CLEAR_UNLOCK_PAGE |
578 EXTENT_CLEAR_DIRTY |
579 EXTENT_CLEAR_DELALLOC |
580 EXTENT_SET_WRITEBACK |
581 EXTENT_END_WRITEBACK);
582 if (!trans || IS_ERR(trans))
583 btrfs_error(root->fs_info, ret, "Failed to join transaction");
584 else
585 btrfs_abort_transaction(trans, root, ret);
586 goto free_pages_out;
587 }
588
589 /*
590 * phase two of compressed writeback. This is the ordered portion
591 * of the code, which only gets called in the order the work was
592 * queued. We walk all the async extents created by compress_file_range
593 * and send them down to the disk.
594 */
595 static noinline int submit_compressed_extents(struct inode *inode,
596 struct async_cow *async_cow)
597 {
598 struct async_extent *async_extent;
599 u64 alloc_hint = 0;
600 struct btrfs_trans_handle *trans;
601 struct btrfs_key ins;
602 struct extent_map *em;
603 struct btrfs_root *root = BTRFS_I(inode)->root;
604 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
605 struct extent_io_tree *io_tree;
606 int ret = 0;
607
608 if (list_empty(&async_cow->extents))
609 return 0;
610
611 again:
612 while (!list_empty(&async_cow->extents)) {
613 async_extent = list_entry(async_cow->extents.next,
614 struct async_extent, list);
615 list_del(&async_extent->list);
616
617 io_tree = &BTRFS_I(inode)->io_tree;
618
619 retry:
620 /* did the compression code fall back to uncompressed IO? */
621 if (!async_extent->pages) {
622 int page_started = 0;
623 unsigned long nr_written = 0;
624
625 lock_extent(io_tree, async_extent->start,
626 async_extent->start +
627 async_extent->ram_size - 1);
628
629 /* allocate blocks */
630 ret = cow_file_range(inode, async_cow->locked_page,
631 async_extent->start,
632 async_extent->start +
633 async_extent->ram_size - 1,
634 &page_started, &nr_written, 0);
635
636 /* JDM XXX */
637
638 /*
639 * if page_started, cow_file_range inserted an
640 * inline extent and took care of all the unlocking
641 * and IO for us. Otherwise, we need to submit
642 * all those pages down to the drive.
643 */
644 if (!page_started && !ret)
645 extent_write_locked_range(io_tree,
646 inode, async_extent->start,
647 async_extent->start +
648 async_extent->ram_size - 1,
649 btrfs_get_extent,
650 WB_SYNC_ALL);
651 else if (ret)
652 unlock_page(async_cow->locked_page);
653 kfree(async_extent);
654 cond_resched();
655 continue;
656 }
657
658 lock_extent(io_tree, async_extent->start,
659 async_extent->start + async_extent->ram_size - 1);
660
661 trans = btrfs_join_transaction(root);
662 if (IS_ERR(trans)) {
663 ret = PTR_ERR(trans);
664 } else {
665 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
666 ret = btrfs_reserve_extent(trans, root,
667 async_extent->compressed_size,
668 async_extent->compressed_size,
669 0, alloc_hint, &ins, 1);
670 if (ret && ret != -ENOSPC)
671 btrfs_abort_transaction(trans, root, ret);
672 btrfs_end_transaction(trans, root);
673 }
674
675 if (ret) {
676 int i;
677
678 for (i = 0; i < async_extent->nr_pages; i++) {
679 WARN_ON(async_extent->pages[i]->mapping);
680 page_cache_release(async_extent->pages[i]);
681 }
682 kfree(async_extent->pages);
683 async_extent->nr_pages = 0;
684 async_extent->pages = NULL;
685
686 if (ret == -ENOSPC)
687 goto retry;
688 goto out_free;
689 }
690
691 /*
692 * here we're doing allocation and writeback of the
693 * compressed pages
694 */
695 btrfs_drop_extent_cache(inode, async_extent->start,
696 async_extent->start +
697 async_extent->ram_size - 1, 0);
698
699 em = alloc_extent_map();
700 if (!em)
701 goto out_free_reserve;
702 em->start = async_extent->start;
703 em->len = async_extent->ram_size;
704 em->orig_start = em->start;
705 em->mod_start = em->start;
706 em->mod_len = em->len;
707
708 em->block_start = ins.objectid;
709 em->block_len = ins.offset;
710 em->orig_block_len = ins.offset;
711 em->bdev = root->fs_info->fs_devices->latest_bdev;
712 em->compress_type = async_extent->compress_type;
713 set_bit(EXTENT_FLAG_PINNED, &em->flags);
714 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
715 em->generation = -1;
716
717 while (1) {
718 write_lock(&em_tree->lock);
719 ret = add_extent_mapping(em_tree, em);
720 if (!ret)
721 list_move(&em->list,
722 &em_tree->modified_extents);
723 write_unlock(&em_tree->lock);
724 if (ret != -EEXIST) {
725 free_extent_map(em);
726 break;
727 }
728 btrfs_drop_extent_cache(inode, async_extent->start,
729 async_extent->start +
730 async_extent->ram_size - 1, 0);
731 }
732
733 if (ret)
734 goto out_free_reserve;
735
736 ret = btrfs_add_ordered_extent_compress(inode,
737 async_extent->start,
738 ins.objectid,
739 async_extent->ram_size,
740 ins.offset,
741 BTRFS_ORDERED_COMPRESSED,
742 async_extent->compress_type);
743 if (ret)
744 goto out_free_reserve;
745
746 /*
747 * clear dirty, set writeback and unlock the pages.
748 */
749 extent_clear_unlock_delalloc(inode,
750 &BTRFS_I(inode)->io_tree,
751 async_extent->start,
752 async_extent->start +
753 async_extent->ram_size - 1,
754 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
755 EXTENT_CLEAR_UNLOCK |
756 EXTENT_CLEAR_DELALLOC |
757 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
758
759 ret = btrfs_submit_compressed_write(inode,
760 async_extent->start,
761 async_extent->ram_size,
762 ins.objectid,
763 ins.offset, async_extent->pages,
764 async_extent->nr_pages);
765 alloc_hint = ins.objectid + ins.offset;
766 kfree(async_extent);
767 if (ret)
768 goto out;
769 cond_resched();
770 }
771 ret = 0;
772 out:
773 return ret;
774 out_free_reserve:
775 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
776 out_free:
777 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
778 async_extent->start,
779 async_extent->start +
780 async_extent->ram_size - 1,
781 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
782 EXTENT_CLEAR_UNLOCK |
783 EXTENT_CLEAR_DELALLOC |
784 EXTENT_CLEAR_DIRTY |
785 EXTENT_SET_WRITEBACK |
786 EXTENT_END_WRITEBACK);
787 kfree(async_extent);
788 goto again;
789 }
790
791 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
792 u64 num_bytes)
793 {
794 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
795 struct extent_map *em;
796 u64 alloc_hint = 0;
797
798 read_lock(&em_tree->lock);
799 em = search_extent_mapping(em_tree, start, num_bytes);
800 if (em) {
801 /*
802 * if block start isn't an actual block number then find the
803 * first block in this inode and use that as a hint. If that
804 * block is also bogus then just don't worry about it.
805 */
806 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
807 free_extent_map(em);
808 em = search_extent_mapping(em_tree, 0, 0);
809 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
810 alloc_hint = em->block_start;
811 if (em)
812 free_extent_map(em);
813 } else {
814 alloc_hint = em->block_start;
815 free_extent_map(em);
816 }
817 }
818 read_unlock(&em_tree->lock);
819
820 return alloc_hint;
821 }
822
823 /*
824 * when extent_io.c finds a delayed allocation range in the file,
825 * the call backs end up in this code. The basic idea is to
826 * allocate extents on disk for the range, and create ordered data structs
827 * in ram to track those extents.
828 *
829 * locked_page is the page that writepage had locked already. We use
830 * it to make sure we don't do extra locks or unlocks.
831 *
832 * *page_started is set to one if we unlock locked_page and do everything
833 * required to start IO on it. It may be clean and already done with
834 * IO when we return.
835 */
836 static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
837 struct inode *inode,
838 struct btrfs_root *root,
839 struct page *locked_page,
840 u64 start, u64 end, int *page_started,
841 unsigned long *nr_written,
842 int unlock)
843 {
844 u64 alloc_hint = 0;
845 u64 num_bytes;
846 unsigned long ram_size;
847 u64 disk_num_bytes;
848 u64 cur_alloc_size;
849 u64 blocksize = root->sectorsize;
850 struct btrfs_key ins;
851 struct extent_map *em;
852 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
853 int ret = 0;
854
855 BUG_ON(btrfs_is_free_space_inode(inode));
856
857 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
858 num_bytes = max(blocksize, num_bytes);
859 disk_num_bytes = num_bytes;
860
861 /* if this is a small write inside eof, kick off defrag */
862 if (num_bytes < 64 * 1024 &&
863 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
864 btrfs_add_inode_defrag(trans, inode);
865
866 if (start == 0) {
867 /* lets try to make an inline extent */
868 ret = cow_file_range_inline(trans, root, inode,
869 start, end, 0, 0, NULL);
870 if (ret == 0) {
871 extent_clear_unlock_delalloc(inode,
872 &BTRFS_I(inode)->io_tree,
873 start, end, NULL,
874 EXTENT_CLEAR_UNLOCK_PAGE |
875 EXTENT_CLEAR_UNLOCK |
876 EXTENT_CLEAR_DELALLOC |
877 EXTENT_CLEAR_DIRTY |
878 EXTENT_SET_WRITEBACK |
879 EXTENT_END_WRITEBACK);
880
881 *nr_written = *nr_written +
882 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
883 *page_started = 1;
884 goto out;
885 } else if (ret < 0) {
886 btrfs_abort_transaction(trans, root, ret);
887 goto out_unlock;
888 }
889 }
890
891 BUG_ON(disk_num_bytes >
892 btrfs_super_total_bytes(root->fs_info->super_copy));
893
894 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
895 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
896
897 while (disk_num_bytes > 0) {
898 unsigned long op;
899
900 cur_alloc_size = disk_num_bytes;
901 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
902 root->sectorsize, 0, alloc_hint,
903 &ins, 1);
904 if (ret < 0) {
905 btrfs_abort_transaction(trans, root, ret);
906 goto out_unlock;
907 }
908
909 em = alloc_extent_map();
910 BUG_ON(!em); /* -ENOMEM */
911 em->start = start;
912 em->orig_start = em->start;
913 ram_size = ins.offset;
914 em->len = ins.offset;
915 em->mod_start = em->start;
916 em->mod_len = em->len;
917
918 em->block_start = ins.objectid;
919 em->block_len = ins.offset;
920 em->orig_block_len = ins.offset;
921 em->bdev = root->fs_info->fs_devices->latest_bdev;
922 set_bit(EXTENT_FLAG_PINNED, &em->flags);
923 em->generation = -1;
924
925 while (1) {
926 write_lock(&em_tree->lock);
927 ret = add_extent_mapping(em_tree, em);
928 if (!ret)
929 list_move(&em->list,
930 &em_tree->modified_extents);
931 write_unlock(&em_tree->lock);
932 if (ret != -EEXIST) {
933 free_extent_map(em);
934 break;
935 }
936 btrfs_drop_extent_cache(inode, start,
937 start + ram_size - 1, 0);
938 }
939
940 cur_alloc_size = ins.offset;
941 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
942 ram_size, cur_alloc_size, 0);
943 BUG_ON(ret); /* -ENOMEM */
944
945 if (root->root_key.objectid ==
946 BTRFS_DATA_RELOC_TREE_OBJECTID) {
947 ret = btrfs_reloc_clone_csums(inode, start,
948 cur_alloc_size);
949 if (ret) {
950 btrfs_abort_transaction(trans, root, ret);
951 goto out_unlock;
952 }
953 }
954
955 if (disk_num_bytes < cur_alloc_size)
956 break;
957
958 /* we're not doing compressed IO, don't unlock the first
959 * page (which the caller expects to stay locked), don't
960 * clear any dirty bits and don't set any writeback bits
961 *
962 * Do set the Private2 bit so we know this page was properly
963 * setup for writepage
964 */
965 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
966 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
967 EXTENT_SET_PRIVATE2;
968
969 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
970 start, start + ram_size - 1,
971 locked_page, op);
972 disk_num_bytes -= cur_alloc_size;
973 num_bytes -= cur_alloc_size;
974 alloc_hint = ins.objectid + ins.offset;
975 start += cur_alloc_size;
976 }
977 out:
978 return ret;
979
980 out_unlock:
981 extent_clear_unlock_delalloc(inode,
982 &BTRFS_I(inode)->io_tree,
983 start, end, locked_page,
984 EXTENT_CLEAR_UNLOCK_PAGE |
985 EXTENT_CLEAR_UNLOCK |
986 EXTENT_CLEAR_DELALLOC |
987 EXTENT_CLEAR_DIRTY |
988 EXTENT_SET_WRITEBACK |
989 EXTENT_END_WRITEBACK);
990
991 goto out;
992 }
993
994 static noinline int cow_file_range(struct inode *inode,
995 struct page *locked_page,
996 u64 start, u64 end, int *page_started,
997 unsigned long *nr_written,
998 int unlock)
999 {
1000 struct btrfs_trans_handle *trans;
1001 struct btrfs_root *root = BTRFS_I(inode)->root;
1002 int ret;
1003
1004 trans = btrfs_join_transaction(root);
1005 if (IS_ERR(trans)) {
1006 extent_clear_unlock_delalloc(inode,
1007 &BTRFS_I(inode)->io_tree,
1008 start, end, locked_page,
1009 EXTENT_CLEAR_UNLOCK_PAGE |
1010 EXTENT_CLEAR_UNLOCK |
1011 EXTENT_CLEAR_DELALLOC |
1012 EXTENT_CLEAR_DIRTY |
1013 EXTENT_SET_WRITEBACK |
1014 EXTENT_END_WRITEBACK);
1015 return PTR_ERR(trans);
1016 }
1017 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1018
1019 ret = __cow_file_range(trans, inode, root, locked_page, start, end,
1020 page_started, nr_written, unlock);
1021
1022 btrfs_end_transaction(trans, root);
1023
1024 return ret;
1025 }
1026
1027 /*
1028 * work queue call back to started compression on a file and pages
1029 */
1030 static noinline void async_cow_start(struct btrfs_work *work)
1031 {
1032 struct async_cow *async_cow;
1033 int num_added = 0;
1034 async_cow = container_of(work, struct async_cow, work);
1035
1036 compress_file_range(async_cow->inode, async_cow->locked_page,
1037 async_cow->start, async_cow->end, async_cow,
1038 &num_added);
1039 if (num_added == 0) {
1040 btrfs_add_delayed_iput(async_cow->inode);
1041 async_cow->inode = NULL;
1042 }
1043 }
1044
1045 /*
1046 * work queue call back to submit previously compressed pages
1047 */
1048 static noinline void async_cow_submit(struct btrfs_work *work)
1049 {
1050 struct async_cow *async_cow;
1051 struct btrfs_root *root;
1052 unsigned long nr_pages;
1053
1054 async_cow = container_of(work, struct async_cow, work);
1055
1056 root = async_cow->root;
1057 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1058 PAGE_CACHE_SHIFT;
1059
1060 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1061 5 * 1024 * 1024 &&
1062 waitqueue_active(&root->fs_info->async_submit_wait))
1063 wake_up(&root->fs_info->async_submit_wait);
1064
1065 if (async_cow->inode)
1066 submit_compressed_extents(async_cow->inode, async_cow);
1067 }
1068
1069 static noinline void async_cow_free(struct btrfs_work *work)
1070 {
1071 struct async_cow *async_cow;
1072 async_cow = container_of(work, struct async_cow, work);
1073 if (async_cow->inode)
1074 btrfs_add_delayed_iput(async_cow->inode);
1075 kfree(async_cow);
1076 }
1077
1078 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1079 u64 start, u64 end, int *page_started,
1080 unsigned long *nr_written)
1081 {
1082 struct async_cow *async_cow;
1083 struct btrfs_root *root = BTRFS_I(inode)->root;
1084 unsigned long nr_pages;
1085 u64 cur_end;
1086 int limit = 10 * 1024 * 1024;
1087
1088 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1089 1, 0, NULL, GFP_NOFS);
1090 while (start < end) {
1091 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1092 BUG_ON(!async_cow); /* -ENOMEM */
1093 async_cow->inode = igrab(inode);
1094 async_cow->root = root;
1095 async_cow->locked_page = locked_page;
1096 async_cow->start = start;
1097
1098 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1099 cur_end = end;
1100 else
1101 cur_end = min(end, start + 512 * 1024 - 1);
1102
1103 async_cow->end = cur_end;
1104 INIT_LIST_HEAD(&async_cow->extents);
1105
1106 async_cow->work.func = async_cow_start;
1107 async_cow->work.ordered_func = async_cow_submit;
1108 async_cow->work.ordered_free = async_cow_free;
1109 async_cow->work.flags = 0;
1110
1111 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1112 PAGE_CACHE_SHIFT;
1113 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1114
1115 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1116 &async_cow->work);
1117
1118 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1119 wait_event(root->fs_info->async_submit_wait,
1120 (atomic_read(&root->fs_info->async_delalloc_pages) <
1121 limit));
1122 }
1123
1124 while (atomic_read(&root->fs_info->async_submit_draining) &&
1125 atomic_read(&root->fs_info->async_delalloc_pages)) {
1126 wait_event(root->fs_info->async_submit_wait,
1127 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1128 0));
1129 }
1130
1131 *nr_written += nr_pages;
1132 start = cur_end + 1;
1133 }
1134 *page_started = 1;
1135 return 0;
1136 }
1137
1138 static noinline int csum_exist_in_range(struct btrfs_root *root,
1139 u64 bytenr, u64 num_bytes)
1140 {
1141 int ret;
1142 struct btrfs_ordered_sum *sums;
1143 LIST_HEAD(list);
1144
1145 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1146 bytenr + num_bytes - 1, &list, 0);
1147 if (ret == 0 && list_empty(&list))
1148 return 0;
1149
1150 while (!list_empty(&list)) {
1151 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1152 list_del(&sums->list);
1153 kfree(sums);
1154 }
1155 return 1;
1156 }
1157
1158 /*
1159 * when nowcow writeback call back. This checks for snapshots or COW copies
1160 * of the extents that exist in the file, and COWs the file as required.
1161 *
1162 * If no cow copies or snapshots exist, we write directly to the existing
1163 * blocks on disk
1164 */
1165 static noinline int run_delalloc_nocow(struct inode *inode,
1166 struct page *locked_page,
1167 u64 start, u64 end, int *page_started, int force,
1168 unsigned long *nr_written)
1169 {
1170 struct btrfs_root *root = BTRFS_I(inode)->root;
1171 struct btrfs_trans_handle *trans;
1172 struct extent_buffer *leaf;
1173 struct btrfs_path *path;
1174 struct btrfs_file_extent_item *fi;
1175 struct btrfs_key found_key;
1176 u64 cow_start;
1177 u64 cur_offset;
1178 u64 extent_end;
1179 u64 extent_offset;
1180 u64 disk_bytenr;
1181 u64 num_bytes;
1182 u64 disk_num_bytes;
1183 int extent_type;
1184 int ret, err;
1185 int type;
1186 int nocow;
1187 int check_prev = 1;
1188 bool nolock;
1189 u64 ino = btrfs_ino(inode);
1190
1191 path = btrfs_alloc_path();
1192 if (!path) {
1193 extent_clear_unlock_delalloc(inode,
1194 &BTRFS_I(inode)->io_tree,
1195 start, end, locked_page,
1196 EXTENT_CLEAR_UNLOCK_PAGE |
1197 EXTENT_CLEAR_UNLOCK |
1198 EXTENT_CLEAR_DELALLOC |
1199 EXTENT_CLEAR_DIRTY |
1200 EXTENT_SET_WRITEBACK |
1201 EXTENT_END_WRITEBACK);
1202 return -ENOMEM;
1203 }
1204
1205 nolock = btrfs_is_free_space_inode(inode);
1206
1207 if (nolock)
1208 trans = btrfs_join_transaction_nolock(root);
1209 else
1210 trans = btrfs_join_transaction(root);
1211
1212 if (IS_ERR(trans)) {
1213 extent_clear_unlock_delalloc(inode,
1214 &BTRFS_I(inode)->io_tree,
1215 start, end, locked_page,
1216 EXTENT_CLEAR_UNLOCK_PAGE |
1217 EXTENT_CLEAR_UNLOCK |
1218 EXTENT_CLEAR_DELALLOC |
1219 EXTENT_CLEAR_DIRTY |
1220 EXTENT_SET_WRITEBACK |
1221 EXTENT_END_WRITEBACK);
1222 btrfs_free_path(path);
1223 return PTR_ERR(trans);
1224 }
1225
1226 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1227
1228 cow_start = (u64)-1;
1229 cur_offset = start;
1230 while (1) {
1231 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1232 cur_offset, 0);
1233 if (ret < 0) {
1234 btrfs_abort_transaction(trans, root, ret);
1235 goto error;
1236 }
1237 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1238 leaf = path->nodes[0];
1239 btrfs_item_key_to_cpu(leaf, &found_key,
1240 path->slots[0] - 1);
1241 if (found_key.objectid == ino &&
1242 found_key.type == BTRFS_EXTENT_DATA_KEY)
1243 path->slots[0]--;
1244 }
1245 check_prev = 0;
1246 next_slot:
1247 leaf = path->nodes[0];
1248 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1249 ret = btrfs_next_leaf(root, path);
1250 if (ret < 0) {
1251 btrfs_abort_transaction(trans, root, ret);
1252 goto error;
1253 }
1254 if (ret > 0)
1255 break;
1256 leaf = path->nodes[0];
1257 }
1258
1259 nocow = 0;
1260 disk_bytenr = 0;
1261 num_bytes = 0;
1262 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1263
1264 if (found_key.objectid > ino ||
1265 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1266 found_key.offset > end)
1267 break;
1268
1269 if (found_key.offset > cur_offset) {
1270 extent_end = found_key.offset;
1271 extent_type = 0;
1272 goto out_check;
1273 }
1274
1275 fi = btrfs_item_ptr(leaf, path->slots[0],
1276 struct btrfs_file_extent_item);
1277 extent_type = btrfs_file_extent_type(leaf, fi);
1278
1279 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1280 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1281 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1282 extent_offset = btrfs_file_extent_offset(leaf, fi);
1283 extent_end = found_key.offset +
1284 btrfs_file_extent_num_bytes(leaf, fi);
1285 disk_num_bytes =
1286 btrfs_file_extent_disk_num_bytes(leaf, fi);
1287 if (extent_end <= start) {
1288 path->slots[0]++;
1289 goto next_slot;
1290 }
1291 if (disk_bytenr == 0)
1292 goto out_check;
1293 if (btrfs_file_extent_compression(leaf, fi) ||
1294 btrfs_file_extent_encryption(leaf, fi) ||
1295 btrfs_file_extent_other_encoding(leaf, fi))
1296 goto out_check;
1297 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1298 goto out_check;
1299 if (btrfs_extent_readonly(root, disk_bytenr))
1300 goto out_check;
1301 if (btrfs_cross_ref_exist(trans, root, ino,
1302 found_key.offset -
1303 extent_offset, disk_bytenr))
1304 goto out_check;
1305 disk_bytenr += extent_offset;
1306 disk_bytenr += cur_offset - found_key.offset;
1307 num_bytes = min(end + 1, extent_end) - cur_offset;
1308 /*
1309 * force cow if csum exists in the range.
1310 * this ensure that csum for a given extent are
1311 * either valid or do not exist.
1312 */
1313 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1314 goto out_check;
1315 nocow = 1;
1316 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1317 extent_end = found_key.offset +
1318 btrfs_file_extent_inline_len(leaf, fi);
1319 extent_end = ALIGN(extent_end, root->sectorsize);
1320 } else {
1321 BUG_ON(1);
1322 }
1323 out_check:
1324 if (extent_end <= start) {
1325 path->slots[0]++;
1326 goto next_slot;
1327 }
1328 if (!nocow) {
1329 if (cow_start == (u64)-1)
1330 cow_start = cur_offset;
1331 cur_offset = extent_end;
1332 if (cur_offset > end)
1333 break;
1334 path->slots[0]++;
1335 goto next_slot;
1336 }
1337
1338 btrfs_release_path(path);
1339 if (cow_start != (u64)-1) {
1340 ret = __cow_file_range(trans, inode, root, locked_page,
1341 cow_start, found_key.offset - 1,
1342 page_started, nr_written, 1);
1343 if (ret) {
1344 btrfs_abort_transaction(trans, root, ret);
1345 goto error;
1346 }
1347 cow_start = (u64)-1;
1348 }
1349
1350 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1351 struct extent_map *em;
1352 struct extent_map_tree *em_tree;
1353 em_tree = &BTRFS_I(inode)->extent_tree;
1354 em = alloc_extent_map();
1355 BUG_ON(!em); /* -ENOMEM */
1356 em->start = cur_offset;
1357 em->orig_start = found_key.offset - extent_offset;
1358 em->len = num_bytes;
1359 em->block_len = num_bytes;
1360 em->block_start = disk_bytenr;
1361 em->orig_block_len = disk_num_bytes;
1362 em->bdev = root->fs_info->fs_devices->latest_bdev;
1363 em->mod_start = em->start;
1364 em->mod_len = em->len;
1365 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1366 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1367 em->generation = -1;
1368 while (1) {
1369 write_lock(&em_tree->lock);
1370 ret = add_extent_mapping(em_tree, em);
1371 if (!ret)
1372 list_move(&em->list,
1373 &em_tree->modified_extents);
1374 write_unlock(&em_tree->lock);
1375 if (ret != -EEXIST) {
1376 free_extent_map(em);
1377 break;
1378 }
1379 btrfs_drop_extent_cache(inode, em->start,
1380 em->start + em->len - 1, 0);
1381 }
1382 type = BTRFS_ORDERED_PREALLOC;
1383 } else {
1384 type = BTRFS_ORDERED_NOCOW;
1385 }
1386
1387 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1388 num_bytes, num_bytes, type);
1389 BUG_ON(ret); /* -ENOMEM */
1390
1391 if (root->root_key.objectid ==
1392 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1393 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1394 num_bytes);
1395 if (ret) {
1396 btrfs_abort_transaction(trans, root, ret);
1397 goto error;
1398 }
1399 }
1400
1401 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1402 cur_offset, cur_offset + num_bytes - 1,
1403 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1404 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1405 EXTENT_SET_PRIVATE2);
1406 cur_offset = extent_end;
1407 if (cur_offset > end)
1408 break;
1409 }
1410 btrfs_release_path(path);
1411
1412 if (cur_offset <= end && cow_start == (u64)-1) {
1413 cow_start = cur_offset;
1414 cur_offset = end;
1415 }
1416
1417 if (cow_start != (u64)-1) {
1418 ret = __cow_file_range(trans, inode, root, locked_page,
1419 cow_start, end,
1420 page_started, nr_written, 1);
1421 if (ret) {
1422 btrfs_abort_transaction(trans, root, ret);
1423 goto error;
1424 }
1425 }
1426
1427 error:
1428 err = btrfs_end_transaction(trans, root);
1429 if (!ret)
1430 ret = err;
1431
1432 if (ret && cur_offset < end)
1433 extent_clear_unlock_delalloc(inode,
1434 &BTRFS_I(inode)->io_tree,
1435 cur_offset, end, locked_page,
1436 EXTENT_CLEAR_UNLOCK_PAGE |
1437 EXTENT_CLEAR_UNLOCK |
1438 EXTENT_CLEAR_DELALLOC |
1439 EXTENT_CLEAR_DIRTY |
1440 EXTENT_SET_WRITEBACK |
1441 EXTENT_END_WRITEBACK);
1442
1443 btrfs_free_path(path);
1444 return ret;
1445 }
1446
1447 /*
1448 * extent_io.c call back to do delayed allocation processing
1449 */
1450 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1451 u64 start, u64 end, int *page_started,
1452 unsigned long *nr_written)
1453 {
1454 int ret;
1455 struct btrfs_root *root = BTRFS_I(inode)->root;
1456
1457 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1458 ret = run_delalloc_nocow(inode, locked_page, start, end,
1459 page_started, 1, nr_written);
1460 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1461 ret = run_delalloc_nocow(inode, locked_page, start, end,
1462 page_started, 0, nr_written);
1463 } else if (!btrfs_test_opt(root, COMPRESS) &&
1464 !(BTRFS_I(inode)->force_compress) &&
1465 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1466 ret = cow_file_range(inode, locked_page, start, end,
1467 page_started, nr_written, 1);
1468 } else {
1469 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1470 &BTRFS_I(inode)->runtime_flags);
1471 ret = cow_file_range_async(inode, locked_page, start, end,
1472 page_started, nr_written);
1473 }
1474 return ret;
1475 }
1476
1477 static void btrfs_split_extent_hook(struct inode *inode,
1478 struct extent_state *orig, u64 split)
1479 {
1480 /* not delalloc, ignore it */
1481 if (!(orig->state & EXTENT_DELALLOC))
1482 return;
1483
1484 spin_lock(&BTRFS_I(inode)->lock);
1485 BTRFS_I(inode)->outstanding_extents++;
1486 spin_unlock(&BTRFS_I(inode)->lock);
1487 }
1488
1489 /*
1490 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1491 * extents so we can keep track of new extents that are just merged onto old
1492 * extents, such as when we are doing sequential writes, so we can properly
1493 * account for the metadata space we'll need.
1494 */
1495 static void btrfs_merge_extent_hook(struct inode *inode,
1496 struct extent_state *new,
1497 struct extent_state *other)
1498 {
1499 /* not delalloc, ignore it */
1500 if (!(other->state & EXTENT_DELALLOC))
1501 return;
1502
1503 spin_lock(&BTRFS_I(inode)->lock);
1504 BTRFS_I(inode)->outstanding_extents--;
1505 spin_unlock(&BTRFS_I(inode)->lock);
1506 }
1507
1508 /*
1509 * extent_io.c set_bit_hook, used to track delayed allocation
1510 * bytes in this file, and to maintain the list of inodes that
1511 * have pending delalloc work to be done.
1512 */
1513 static void btrfs_set_bit_hook(struct inode *inode,
1514 struct extent_state *state, int *bits)
1515 {
1516
1517 /*
1518 * set_bit and clear bit hooks normally require _irqsave/restore
1519 * but in this case, we are only testing for the DELALLOC
1520 * bit, which is only set or cleared with irqs on
1521 */
1522 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1523 struct btrfs_root *root = BTRFS_I(inode)->root;
1524 u64 len = state->end + 1 - state->start;
1525 bool do_list = !btrfs_is_free_space_inode(inode);
1526
1527 if (*bits & EXTENT_FIRST_DELALLOC) {
1528 *bits &= ~EXTENT_FIRST_DELALLOC;
1529 } else {
1530 spin_lock(&BTRFS_I(inode)->lock);
1531 BTRFS_I(inode)->outstanding_extents++;
1532 spin_unlock(&BTRFS_I(inode)->lock);
1533 }
1534
1535 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1536 root->fs_info->delalloc_batch);
1537 spin_lock(&BTRFS_I(inode)->lock);
1538 BTRFS_I(inode)->delalloc_bytes += len;
1539 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1540 &BTRFS_I(inode)->runtime_flags)) {
1541 spin_lock(&root->fs_info->delalloc_lock);
1542 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1543 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1544 &root->fs_info->delalloc_inodes);
1545 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1546 &BTRFS_I(inode)->runtime_flags);
1547 }
1548 spin_unlock(&root->fs_info->delalloc_lock);
1549 }
1550 spin_unlock(&BTRFS_I(inode)->lock);
1551 }
1552 }
1553
1554 /*
1555 * extent_io.c clear_bit_hook, see set_bit_hook for why
1556 */
1557 static void btrfs_clear_bit_hook(struct inode *inode,
1558 struct extent_state *state, int *bits)
1559 {
1560 /*
1561 * set_bit and clear bit hooks normally require _irqsave/restore
1562 * but in this case, we are only testing for the DELALLOC
1563 * bit, which is only set or cleared with irqs on
1564 */
1565 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1566 struct btrfs_root *root = BTRFS_I(inode)->root;
1567 u64 len = state->end + 1 - state->start;
1568 bool do_list = !btrfs_is_free_space_inode(inode);
1569
1570 if (*bits & EXTENT_FIRST_DELALLOC) {
1571 *bits &= ~EXTENT_FIRST_DELALLOC;
1572 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1573 spin_lock(&BTRFS_I(inode)->lock);
1574 BTRFS_I(inode)->outstanding_extents--;
1575 spin_unlock(&BTRFS_I(inode)->lock);
1576 }
1577
1578 if (*bits & EXTENT_DO_ACCOUNTING)
1579 btrfs_delalloc_release_metadata(inode, len);
1580
1581 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1582 && do_list)
1583 btrfs_free_reserved_data_space(inode, len);
1584
1585 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1586 root->fs_info->delalloc_batch);
1587 spin_lock(&BTRFS_I(inode)->lock);
1588 BTRFS_I(inode)->delalloc_bytes -= len;
1589 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1590 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1591 &BTRFS_I(inode)->runtime_flags)) {
1592 spin_lock(&root->fs_info->delalloc_lock);
1593 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1594 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1595 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1596 &BTRFS_I(inode)->runtime_flags);
1597 }
1598 spin_unlock(&root->fs_info->delalloc_lock);
1599 }
1600 spin_unlock(&BTRFS_I(inode)->lock);
1601 }
1602 }
1603
1604 /*
1605 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1606 * we don't create bios that span stripes or chunks
1607 */
1608 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1609 size_t size, struct bio *bio,
1610 unsigned long bio_flags)
1611 {
1612 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1613 u64 logical = (u64)bio->bi_sector << 9;
1614 u64 length = 0;
1615 u64 map_length;
1616 int ret;
1617
1618 if (bio_flags & EXTENT_BIO_COMPRESSED)
1619 return 0;
1620
1621 length = bio->bi_size;
1622 map_length = length;
1623 ret = btrfs_map_block(root->fs_info, READ, logical,
1624 &map_length, NULL, 0);
1625 /* Will always return 0 with map_multi == NULL */
1626 BUG_ON(ret < 0);
1627 if (map_length < length + size)
1628 return 1;
1629 return 0;
1630 }
1631
1632 /*
1633 * in order to insert checksums into the metadata in large chunks,
1634 * we wait until bio submission time. All the pages in the bio are
1635 * checksummed and sums are attached onto the ordered extent record.
1636 *
1637 * At IO completion time the cums attached on the ordered extent record
1638 * are inserted into the btree
1639 */
1640 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1641 struct bio *bio, int mirror_num,
1642 unsigned long bio_flags,
1643 u64 bio_offset)
1644 {
1645 struct btrfs_root *root = BTRFS_I(inode)->root;
1646 int ret = 0;
1647
1648 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1649 BUG_ON(ret); /* -ENOMEM */
1650 return 0;
1651 }
1652
1653 /*
1654 * in order to insert checksums into the metadata in large chunks,
1655 * we wait until bio submission time. All the pages in the bio are
1656 * checksummed and sums are attached onto the ordered extent record.
1657 *
1658 * At IO completion time the cums attached on the ordered extent record
1659 * are inserted into the btree
1660 */
1661 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1662 int mirror_num, unsigned long bio_flags,
1663 u64 bio_offset)
1664 {
1665 struct btrfs_root *root = BTRFS_I(inode)->root;
1666 int ret;
1667
1668 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1669 if (ret)
1670 bio_endio(bio, ret);
1671 return ret;
1672 }
1673
1674 /*
1675 * extent_io.c submission hook. This does the right thing for csum calculation
1676 * on write, or reading the csums from the tree before a read
1677 */
1678 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1679 int mirror_num, unsigned long bio_flags,
1680 u64 bio_offset)
1681 {
1682 struct btrfs_root *root = BTRFS_I(inode)->root;
1683 int ret = 0;
1684 int skip_sum;
1685 int metadata = 0;
1686 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1687
1688 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1689
1690 if (btrfs_is_free_space_inode(inode))
1691 metadata = 2;
1692
1693 if (!(rw & REQ_WRITE)) {
1694 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1695 if (ret)
1696 goto out;
1697
1698 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1699 ret = btrfs_submit_compressed_read(inode, bio,
1700 mirror_num,
1701 bio_flags);
1702 goto out;
1703 } else if (!skip_sum) {
1704 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1705 if (ret)
1706 goto out;
1707 }
1708 goto mapit;
1709 } else if (async && !skip_sum) {
1710 /* csum items have already been cloned */
1711 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1712 goto mapit;
1713 /* we're doing a write, do the async checksumming */
1714 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1715 inode, rw, bio, mirror_num,
1716 bio_flags, bio_offset,
1717 __btrfs_submit_bio_start,
1718 __btrfs_submit_bio_done);
1719 goto out;
1720 } else if (!skip_sum) {
1721 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1722 if (ret)
1723 goto out;
1724 }
1725
1726 mapit:
1727 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1728
1729 out:
1730 if (ret < 0)
1731 bio_endio(bio, ret);
1732 return ret;
1733 }
1734
1735 /*
1736 * given a list of ordered sums record them in the inode. This happens
1737 * at IO completion time based on sums calculated at bio submission time.
1738 */
1739 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1740 struct inode *inode, u64 file_offset,
1741 struct list_head *list)
1742 {
1743 struct btrfs_ordered_sum *sum;
1744
1745 list_for_each_entry(sum, list, list) {
1746 btrfs_csum_file_blocks(trans,
1747 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1748 }
1749 return 0;
1750 }
1751
1752 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1753 struct extent_state **cached_state)
1754 {
1755 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1756 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1757 cached_state, GFP_NOFS);
1758 }
1759
1760 /* see btrfs_writepage_start_hook for details on why this is required */
1761 struct btrfs_writepage_fixup {
1762 struct page *page;
1763 struct btrfs_work work;
1764 };
1765
1766 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1767 {
1768 struct btrfs_writepage_fixup *fixup;
1769 struct btrfs_ordered_extent *ordered;
1770 struct extent_state *cached_state = NULL;
1771 struct page *page;
1772 struct inode *inode;
1773 u64 page_start;
1774 u64 page_end;
1775 int ret;
1776
1777 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1778 page = fixup->page;
1779 again:
1780 lock_page(page);
1781 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1782 ClearPageChecked(page);
1783 goto out_page;
1784 }
1785
1786 inode = page->mapping->host;
1787 page_start = page_offset(page);
1788 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1789
1790 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1791 &cached_state);
1792
1793 /* already ordered? We're done */
1794 if (PagePrivate2(page))
1795 goto out;
1796
1797 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1798 if (ordered) {
1799 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1800 page_end, &cached_state, GFP_NOFS);
1801 unlock_page(page);
1802 btrfs_start_ordered_extent(inode, ordered, 1);
1803 btrfs_put_ordered_extent(ordered);
1804 goto again;
1805 }
1806
1807 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1808 if (ret) {
1809 mapping_set_error(page->mapping, ret);
1810 end_extent_writepage(page, ret, page_start, page_end);
1811 ClearPageChecked(page);
1812 goto out;
1813 }
1814
1815 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1816 ClearPageChecked(page);
1817 set_page_dirty(page);
1818 out:
1819 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1820 &cached_state, GFP_NOFS);
1821 out_page:
1822 unlock_page(page);
1823 page_cache_release(page);
1824 kfree(fixup);
1825 }
1826
1827 /*
1828 * There are a few paths in the higher layers of the kernel that directly
1829 * set the page dirty bit without asking the filesystem if it is a
1830 * good idea. This causes problems because we want to make sure COW
1831 * properly happens and the data=ordered rules are followed.
1832 *
1833 * In our case any range that doesn't have the ORDERED bit set
1834 * hasn't been properly setup for IO. We kick off an async process
1835 * to fix it up. The async helper will wait for ordered extents, set
1836 * the delalloc bit and make it safe to write the page.
1837 */
1838 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1839 {
1840 struct inode *inode = page->mapping->host;
1841 struct btrfs_writepage_fixup *fixup;
1842 struct btrfs_root *root = BTRFS_I(inode)->root;
1843
1844 /* this page is properly in the ordered list */
1845 if (TestClearPagePrivate2(page))
1846 return 0;
1847
1848 if (PageChecked(page))
1849 return -EAGAIN;
1850
1851 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1852 if (!fixup)
1853 return -EAGAIN;
1854
1855 SetPageChecked(page);
1856 page_cache_get(page);
1857 fixup->work.func = btrfs_writepage_fixup_worker;
1858 fixup->page = page;
1859 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1860 return -EBUSY;
1861 }
1862
1863 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1864 struct inode *inode, u64 file_pos,
1865 u64 disk_bytenr, u64 disk_num_bytes,
1866 u64 num_bytes, u64 ram_bytes,
1867 u8 compression, u8 encryption,
1868 u16 other_encoding, int extent_type)
1869 {
1870 struct btrfs_root *root = BTRFS_I(inode)->root;
1871 struct btrfs_file_extent_item *fi;
1872 struct btrfs_path *path;
1873 struct extent_buffer *leaf;
1874 struct btrfs_key ins;
1875 int ret;
1876
1877 path = btrfs_alloc_path();
1878 if (!path)
1879 return -ENOMEM;
1880
1881 path->leave_spinning = 1;
1882
1883 /*
1884 * we may be replacing one extent in the tree with another.
1885 * The new extent is pinned in the extent map, and we don't want
1886 * to drop it from the cache until it is completely in the btree.
1887 *
1888 * So, tell btrfs_drop_extents to leave this extent in the cache.
1889 * the caller is expected to unpin it and allow it to be merged
1890 * with the others.
1891 */
1892 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1893 file_pos + num_bytes, 0);
1894 if (ret)
1895 goto out;
1896
1897 ins.objectid = btrfs_ino(inode);
1898 ins.offset = file_pos;
1899 ins.type = BTRFS_EXTENT_DATA_KEY;
1900 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1901 if (ret)
1902 goto out;
1903 leaf = path->nodes[0];
1904 fi = btrfs_item_ptr(leaf, path->slots[0],
1905 struct btrfs_file_extent_item);
1906 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1907 btrfs_set_file_extent_type(leaf, fi, extent_type);
1908 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1909 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1910 btrfs_set_file_extent_offset(leaf, fi, 0);
1911 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1912 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1913 btrfs_set_file_extent_compression(leaf, fi, compression);
1914 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1915 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1916
1917 btrfs_mark_buffer_dirty(leaf);
1918 btrfs_release_path(path);
1919
1920 inode_add_bytes(inode, num_bytes);
1921
1922 ins.objectid = disk_bytenr;
1923 ins.offset = disk_num_bytes;
1924 ins.type = BTRFS_EXTENT_ITEM_KEY;
1925 ret = btrfs_alloc_reserved_file_extent(trans, root,
1926 root->root_key.objectid,
1927 btrfs_ino(inode), file_pos, &ins);
1928 out:
1929 btrfs_free_path(path);
1930
1931 return ret;
1932 }
1933
1934 /*
1935 * helper function for btrfs_finish_ordered_io, this
1936 * just reads in some of the csum leaves to prime them into ram
1937 * before we start the transaction. It limits the amount of btree
1938 * reads required while inside the transaction.
1939 */
1940 /* as ordered data IO finishes, this gets called so we can finish
1941 * an ordered extent if the range of bytes in the file it covers are
1942 * fully written.
1943 */
1944 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
1945 {
1946 struct inode *inode = ordered_extent->inode;
1947 struct btrfs_root *root = BTRFS_I(inode)->root;
1948 struct btrfs_trans_handle *trans = NULL;
1949 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1950 struct extent_state *cached_state = NULL;
1951 int compress_type = 0;
1952 int ret;
1953 bool nolock;
1954
1955 nolock = btrfs_is_free_space_inode(inode);
1956
1957 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
1958 ret = -EIO;
1959 goto out;
1960 }
1961
1962 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1963 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
1964 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1965 if (nolock)
1966 trans = btrfs_join_transaction_nolock(root);
1967 else
1968 trans = btrfs_join_transaction(root);
1969 if (IS_ERR(trans)) {
1970 ret = PTR_ERR(trans);
1971 trans = NULL;
1972 goto out;
1973 }
1974 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1975 ret = btrfs_update_inode_fallback(trans, root, inode);
1976 if (ret) /* -ENOMEM or corruption */
1977 btrfs_abort_transaction(trans, root, ret);
1978 goto out;
1979 }
1980
1981 lock_extent_bits(io_tree, ordered_extent->file_offset,
1982 ordered_extent->file_offset + ordered_extent->len - 1,
1983 0, &cached_state);
1984
1985 if (nolock)
1986 trans = btrfs_join_transaction_nolock(root);
1987 else
1988 trans = btrfs_join_transaction(root);
1989 if (IS_ERR(trans)) {
1990 ret = PTR_ERR(trans);
1991 trans = NULL;
1992 goto out_unlock;
1993 }
1994 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1995
1996 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1997 compress_type = ordered_extent->compress_type;
1998 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1999 BUG_ON(compress_type);
2000 ret = btrfs_mark_extent_written(trans, inode,
2001 ordered_extent->file_offset,
2002 ordered_extent->file_offset +
2003 ordered_extent->len);
2004 } else {
2005 BUG_ON(root == root->fs_info->tree_root);
2006 ret = insert_reserved_file_extent(trans, inode,
2007 ordered_extent->file_offset,
2008 ordered_extent->start,
2009 ordered_extent->disk_len,
2010 ordered_extent->len,
2011 ordered_extent->len,
2012 compress_type, 0, 0,
2013 BTRFS_FILE_EXTENT_REG);
2014 }
2015 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2016 ordered_extent->file_offset, ordered_extent->len,
2017 trans->transid);
2018 if (ret < 0) {
2019 btrfs_abort_transaction(trans, root, ret);
2020 goto out_unlock;
2021 }
2022
2023 add_pending_csums(trans, inode, ordered_extent->file_offset,
2024 &ordered_extent->list);
2025
2026 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2027 ret = btrfs_update_inode_fallback(trans, root, inode);
2028 if (ret) { /* -ENOMEM or corruption */
2029 btrfs_abort_transaction(trans, root, ret);
2030 goto out_unlock;
2031 }
2032 ret = 0;
2033 out_unlock:
2034 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2035 ordered_extent->file_offset +
2036 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2037 out:
2038 if (root != root->fs_info->tree_root)
2039 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2040 if (trans)
2041 btrfs_end_transaction(trans, root);
2042
2043 if (ret) {
2044 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
2045 ordered_extent->file_offset +
2046 ordered_extent->len - 1, NULL, GFP_NOFS);
2047
2048 /*
2049 * If the ordered extent had an IOERR or something else went
2050 * wrong we need to return the space for this ordered extent
2051 * back to the allocator.
2052 */
2053 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2054 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2055 btrfs_free_reserved_extent(root, ordered_extent->start,
2056 ordered_extent->disk_len);
2057 }
2058
2059
2060 /*
2061 * This needs to be done to make sure anybody waiting knows we are done
2062 * updating everything for this ordered extent.
2063 */
2064 btrfs_remove_ordered_extent(inode, ordered_extent);
2065
2066 /* once for us */
2067 btrfs_put_ordered_extent(ordered_extent);
2068 /* once for the tree */
2069 btrfs_put_ordered_extent(ordered_extent);
2070
2071 return ret;
2072 }
2073
2074 static void finish_ordered_fn(struct btrfs_work *work)
2075 {
2076 struct btrfs_ordered_extent *ordered_extent;
2077 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2078 btrfs_finish_ordered_io(ordered_extent);
2079 }
2080
2081 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2082 struct extent_state *state, int uptodate)
2083 {
2084 struct inode *inode = page->mapping->host;
2085 struct btrfs_root *root = BTRFS_I(inode)->root;
2086 struct btrfs_ordered_extent *ordered_extent = NULL;
2087 struct btrfs_workers *workers;
2088
2089 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2090
2091 ClearPagePrivate2(page);
2092 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2093 end - start + 1, uptodate))
2094 return 0;
2095
2096 ordered_extent->work.func = finish_ordered_fn;
2097 ordered_extent->work.flags = 0;
2098
2099 if (btrfs_is_free_space_inode(inode))
2100 workers = &root->fs_info->endio_freespace_worker;
2101 else
2102 workers = &root->fs_info->endio_write_workers;
2103 btrfs_queue_worker(workers, &ordered_extent->work);
2104
2105 return 0;
2106 }
2107
2108 /*
2109 * when reads are done, we need to check csums to verify the data is correct
2110 * if there's a match, we allow the bio to finish. If not, the code in
2111 * extent_io.c will try to find good copies for us.
2112 */
2113 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
2114 struct extent_state *state, int mirror)
2115 {
2116 size_t offset = start - page_offset(page);
2117 struct inode *inode = page->mapping->host;
2118 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2119 char *kaddr;
2120 u64 private = ~(u32)0;
2121 int ret;
2122 struct btrfs_root *root = BTRFS_I(inode)->root;
2123 u32 csum = ~(u32)0;
2124
2125 if (PageChecked(page)) {
2126 ClearPageChecked(page);
2127 goto good;
2128 }
2129
2130 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2131 goto good;
2132
2133 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2134 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2135 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2136 GFP_NOFS);
2137 return 0;
2138 }
2139
2140 if (state && state->start == start) {
2141 private = state->private;
2142 ret = 0;
2143 } else {
2144 ret = get_state_private(io_tree, start, &private);
2145 }
2146 kaddr = kmap_atomic(page);
2147 if (ret)
2148 goto zeroit;
2149
2150 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2151 btrfs_csum_final(csum, (char *)&csum);
2152 if (csum != private)
2153 goto zeroit;
2154
2155 kunmap_atomic(kaddr);
2156 good:
2157 return 0;
2158
2159 zeroit:
2160 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2161 "private %llu\n",
2162 (unsigned long long)btrfs_ino(page->mapping->host),
2163 (unsigned long long)start, csum,
2164 (unsigned long long)private);
2165 memset(kaddr + offset, 1, end - start + 1);
2166 flush_dcache_page(page);
2167 kunmap_atomic(kaddr);
2168 if (private == 0)
2169 return 0;
2170 return -EIO;
2171 }
2172
2173 struct delayed_iput {
2174 struct list_head list;
2175 struct inode *inode;
2176 };
2177
2178 /* JDM: If this is fs-wide, why can't we add a pointer to
2179 * btrfs_inode instead and avoid the allocation? */
2180 void btrfs_add_delayed_iput(struct inode *inode)
2181 {
2182 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2183 struct delayed_iput *delayed;
2184
2185 if (atomic_add_unless(&inode->i_count, -1, 1))
2186 return;
2187
2188 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2189 delayed->inode = inode;
2190
2191 spin_lock(&fs_info->delayed_iput_lock);
2192 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2193 spin_unlock(&fs_info->delayed_iput_lock);
2194 }
2195
2196 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2197 {
2198 LIST_HEAD(list);
2199 struct btrfs_fs_info *fs_info = root->fs_info;
2200 struct delayed_iput *delayed;
2201 int empty;
2202
2203 spin_lock(&fs_info->delayed_iput_lock);
2204 empty = list_empty(&fs_info->delayed_iputs);
2205 spin_unlock(&fs_info->delayed_iput_lock);
2206 if (empty)
2207 return;
2208
2209 spin_lock(&fs_info->delayed_iput_lock);
2210 list_splice_init(&fs_info->delayed_iputs, &list);
2211 spin_unlock(&fs_info->delayed_iput_lock);
2212
2213 while (!list_empty(&list)) {
2214 delayed = list_entry(list.next, struct delayed_iput, list);
2215 list_del(&delayed->list);
2216 iput(delayed->inode);
2217 kfree(delayed);
2218 }
2219 }
2220
2221 /*
2222 * This is called in transaction commit time. If there are no orphan
2223 * files in the subvolume, it removes orphan item and frees block_rsv
2224 * structure.
2225 */
2226 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2227 struct btrfs_root *root)
2228 {
2229 struct btrfs_block_rsv *block_rsv;
2230 int ret;
2231
2232 if (atomic_read(&root->orphan_inodes) ||
2233 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2234 return;
2235
2236 spin_lock(&root->orphan_lock);
2237 if (atomic_read(&root->orphan_inodes)) {
2238 spin_unlock(&root->orphan_lock);
2239 return;
2240 }
2241
2242 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2243 spin_unlock(&root->orphan_lock);
2244 return;
2245 }
2246
2247 block_rsv = root->orphan_block_rsv;
2248 root->orphan_block_rsv = NULL;
2249 spin_unlock(&root->orphan_lock);
2250
2251 if (root->orphan_item_inserted &&
2252 btrfs_root_refs(&root->root_item) > 0) {
2253 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2254 root->root_key.objectid);
2255 BUG_ON(ret);
2256 root->orphan_item_inserted = 0;
2257 }
2258
2259 if (block_rsv) {
2260 WARN_ON(block_rsv->size > 0);
2261 btrfs_free_block_rsv(root, block_rsv);
2262 }
2263 }
2264
2265 /*
2266 * This creates an orphan entry for the given inode in case something goes
2267 * wrong in the middle of an unlink/truncate.
2268 *
2269 * NOTE: caller of this function should reserve 5 units of metadata for
2270 * this function.
2271 */
2272 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2273 {
2274 struct btrfs_root *root = BTRFS_I(inode)->root;
2275 struct btrfs_block_rsv *block_rsv = NULL;
2276 int reserve = 0;
2277 int insert = 0;
2278 int ret;
2279
2280 if (!root->orphan_block_rsv) {
2281 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2282 if (!block_rsv)
2283 return -ENOMEM;
2284 }
2285
2286 spin_lock(&root->orphan_lock);
2287 if (!root->orphan_block_rsv) {
2288 root->orphan_block_rsv = block_rsv;
2289 } else if (block_rsv) {
2290 btrfs_free_block_rsv(root, block_rsv);
2291 block_rsv = NULL;
2292 }
2293
2294 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2295 &BTRFS_I(inode)->runtime_flags)) {
2296 #if 0
2297 /*
2298 * For proper ENOSPC handling, we should do orphan
2299 * cleanup when mounting. But this introduces backward
2300 * compatibility issue.
2301 */
2302 if (!xchg(&root->orphan_item_inserted, 1))
2303 insert = 2;
2304 else
2305 insert = 1;
2306 #endif
2307 insert = 1;
2308 atomic_inc(&root->orphan_inodes);
2309 }
2310
2311 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2312 &BTRFS_I(inode)->runtime_flags))
2313 reserve = 1;
2314 spin_unlock(&root->orphan_lock);
2315
2316 /* grab metadata reservation from transaction handle */
2317 if (reserve) {
2318 ret = btrfs_orphan_reserve_metadata(trans, inode);
2319 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2320 }
2321
2322 /* insert an orphan item to track this unlinked/truncated file */
2323 if (insert >= 1) {
2324 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2325 if (ret && ret != -EEXIST) {
2326 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2327 &BTRFS_I(inode)->runtime_flags);
2328 btrfs_abort_transaction(trans, root, ret);
2329 return ret;
2330 }
2331 ret = 0;
2332 }
2333
2334 /* insert an orphan item to track subvolume contains orphan files */
2335 if (insert >= 2) {
2336 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2337 root->root_key.objectid);
2338 if (ret && ret != -EEXIST) {
2339 btrfs_abort_transaction(trans, root, ret);
2340 return ret;
2341 }
2342 }
2343 return 0;
2344 }
2345
2346 /*
2347 * We have done the truncate/delete so we can go ahead and remove the orphan
2348 * item for this particular inode.
2349 */
2350 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2351 {
2352 struct btrfs_root *root = BTRFS_I(inode)->root;
2353 int delete_item = 0;
2354 int release_rsv = 0;
2355 int ret = 0;
2356
2357 spin_lock(&root->orphan_lock);
2358 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2359 &BTRFS_I(inode)->runtime_flags))
2360 delete_item = 1;
2361
2362 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2363 &BTRFS_I(inode)->runtime_flags))
2364 release_rsv = 1;
2365 spin_unlock(&root->orphan_lock);
2366
2367 if (trans && delete_item) {
2368 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2369 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2370 }
2371
2372 if (release_rsv) {
2373 btrfs_orphan_release_metadata(inode);
2374 atomic_dec(&root->orphan_inodes);
2375 }
2376
2377 return 0;
2378 }
2379
2380 /*
2381 * this cleans up any orphans that may be left on the list from the last use
2382 * of this root.
2383 */
2384 int btrfs_orphan_cleanup(struct btrfs_root *root)
2385 {
2386 struct btrfs_path *path;
2387 struct extent_buffer *leaf;
2388 struct btrfs_key key, found_key;
2389 struct btrfs_trans_handle *trans;
2390 struct inode *inode;
2391 u64 last_objectid = 0;
2392 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2393
2394 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2395 return 0;
2396
2397 path = btrfs_alloc_path();
2398 if (!path) {
2399 ret = -ENOMEM;
2400 goto out;
2401 }
2402 path->reada = -1;
2403
2404 key.objectid = BTRFS_ORPHAN_OBJECTID;
2405 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2406 key.offset = (u64)-1;
2407
2408 while (1) {
2409 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2410 if (ret < 0)
2411 goto out;
2412
2413 /*
2414 * if ret == 0 means we found what we were searching for, which
2415 * is weird, but possible, so only screw with path if we didn't
2416 * find the key and see if we have stuff that matches
2417 */
2418 if (ret > 0) {
2419 ret = 0;
2420 if (path->slots[0] == 0)
2421 break;
2422 path->slots[0]--;
2423 }
2424
2425 /* pull out the item */
2426 leaf = path->nodes[0];
2427 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2428
2429 /* make sure the item matches what we want */
2430 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2431 break;
2432 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2433 break;
2434
2435 /* release the path since we're done with it */
2436 btrfs_release_path(path);
2437
2438 /*
2439 * this is where we are basically btrfs_lookup, without the
2440 * crossing root thing. we store the inode number in the
2441 * offset of the orphan item.
2442 */
2443
2444 if (found_key.offset == last_objectid) {
2445 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2446 "stopping orphan cleanup\n");
2447 ret = -EINVAL;
2448 goto out;
2449 }
2450
2451 last_objectid = found_key.offset;
2452
2453 found_key.objectid = found_key.offset;
2454 found_key.type = BTRFS_INODE_ITEM_KEY;
2455 found_key.offset = 0;
2456 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2457 ret = PTR_RET(inode);
2458 if (ret && ret != -ESTALE)
2459 goto out;
2460
2461 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2462 struct btrfs_root *dead_root;
2463 struct btrfs_fs_info *fs_info = root->fs_info;
2464 int is_dead_root = 0;
2465
2466 /*
2467 * this is an orphan in the tree root. Currently these
2468 * could come from 2 sources:
2469 * a) a snapshot deletion in progress
2470 * b) a free space cache inode
2471 * We need to distinguish those two, as the snapshot
2472 * orphan must not get deleted.
2473 * find_dead_roots already ran before us, so if this
2474 * is a snapshot deletion, we should find the root
2475 * in the dead_roots list
2476 */
2477 spin_lock(&fs_info->trans_lock);
2478 list_for_each_entry(dead_root, &fs_info->dead_roots,
2479 root_list) {
2480 if (dead_root->root_key.objectid ==
2481 found_key.objectid) {
2482 is_dead_root = 1;
2483 break;
2484 }
2485 }
2486 spin_unlock(&fs_info->trans_lock);
2487 if (is_dead_root) {
2488 /* prevent this orphan from being found again */
2489 key.offset = found_key.objectid - 1;
2490 continue;
2491 }
2492 }
2493 /*
2494 * Inode is already gone but the orphan item is still there,
2495 * kill the orphan item.
2496 */
2497 if (ret == -ESTALE) {
2498 trans = btrfs_start_transaction(root, 1);
2499 if (IS_ERR(trans)) {
2500 ret = PTR_ERR(trans);
2501 goto out;
2502 }
2503 printk(KERN_ERR "auto deleting %Lu\n",
2504 found_key.objectid);
2505 ret = btrfs_del_orphan_item(trans, root,
2506 found_key.objectid);
2507 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2508 btrfs_end_transaction(trans, root);
2509 continue;
2510 }
2511
2512 /*
2513 * add this inode to the orphan list so btrfs_orphan_del does
2514 * the proper thing when we hit it
2515 */
2516 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2517 &BTRFS_I(inode)->runtime_flags);
2518 atomic_inc(&root->orphan_inodes);
2519
2520 /* if we have links, this was a truncate, lets do that */
2521 if (inode->i_nlink) {
2522 if (!S_ISREG(inode->i_mode)) {
2523 WARN_ON(1);
2524 iput(inode);
2525 continue;
2526 }
2527 nr_truncate++;
2528
2529 /* 1 for the orphan item deletion. */
2530 trans = btrfs_start_transaction(root, 1);
2531 if (IS_ERR(trans)) {
2532 ret = PTR_ERR(trans);
2533 goto out;
2534 }
2535 ret = btrfs_orphan_add(trans, inode);
2536 btrfs_end_transaction(trans, root);
2537 if (ret)
2538 goto out;
2539
2540 ret = btrfs_truncate(inode);
2541 } else {
2542 nr_unlink++;
2543 }
2544
2545 /* this will do delete_inode and everything for us */
2546 iput(inode);
2547 if (ret)
2548 goto out;
2549 }
2550 /* release the path since we're done with it */
2551 btrfs_release_path(path);
2552
2553 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2554
2555 if (root->orphan_block_rsv)
2556 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2557 (u64)-1);
2558
2559 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2560 trans = btrfs_join_transaction(root);
2561 if (!IS_ERR(trans))
2562 btrfs_end_transaction(trans, root);
2563 }
2564
2565 if (nr_unlink)
2566 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2567 if (nr_truncate)
2568 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2569
2570 out:
2571 if (ret)
2572 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2573 btrfs_free_path(path);
2574 return ret;
2575 }
2576
2577 /*
2578 * very simple check to peek ahead in the leaf looking for xattrs. If we
2579 * don't find any xattrs, we know there can't be any acls.
2580 *
2581 * slot is the slot the inode is in, objectid is the objectid of the inode
2582 */
2583 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2584 int slot, u64 objectid)
2585 {
2586 u32 nritems = btrfs_header_nritems(leaf);
2587 struct btrfs_key found_key;
2588 int scanned = 0;
2589
2590 slot++;
2591 while (slot < nritems) {
2592 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2593
2594 /* we found a different objectid, there must not be acls */
2595 if (found_key.objectid != objectid)
2596 return 0;
2597
2598 /* we found an xattr, assume we've got an acl */
2599 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2600 return 1;
2601
2602 /*
2603 * we found a key greater than an xattr key, there can't
2604 * be any acls later on
2605 */
2606 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2607 return 0;
2608
2609 slot++;
2610 scanned++;
2611
2612 /*
2613 * it goes inode, inode backrefs, xattrs, extents,
2614 * so if there are a ton of hard links to an inode there can
2615 * be a lot of backrefs. Don't waste time searching too hard,
2616 * this is just an optimization
2617 */
2618 if (scanned >= 8)
2619 break;
2620 }
2621 /* we hit the end of the leaf before we found an xattr or
2622 * something larger than an xattr. We have to assume the inode
2623 * has acls
2624 */
2625 return 1;
2626 }
2627
2628 /*
2629 * read an inode from the btree into the in-memory inode
2630 */
2631 static void btrfs_read_locked_inode(struct inode *inode)
2632 {
2633 struct btrfs_path *path;
2634 struct extent_buffer *leaf;
2635 struct btrfs_inode_item *inode_item;
2636 struct btrfs_timespec *tspec;
2637 struct btrfs_root *root = BTRFS_I(inode)->root;
2638 struct btrfs_key location;
2639 int maybe_acls;
2640 u32 rdev;
2641 int ret;
2642 bool filled = false;
2643
2644 ret = btrfs_fill_inode(inode, &rdev);
2645 if (!ret)
2646 filled = true;
2647
2648 path = btrfs_alloc_path();
2649 if (!path)
2650 goto make_bad;
2651
2652 path->leave_spinning = 1;
2653 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2654
2655 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2656 if (ret)
2657 goto make_bad;
2658
2659 leaf = path->nodes[0];
2660
2661 if (filled)
2662 goto cache_acl;
2663
2664 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2665 struct btrfs_inode_item);
2666 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2667 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2668 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
2669 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
2670 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2671
2672 tspec = btrfs_inode_atime(inode_item);
2673 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2674 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2675
2676 tspec = btrfs_inode_mtime(inode_item);
2677 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2678 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2679
2680 tspec = btrfs_inode_ctime(inode_item);
2681 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2682 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2683
2684 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2685 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2686 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
2687
2688 /*
2689 * If we were modified in the current generation and evicted from memory
2690 * and then re-read we need to do a full sync since we don't have any
2691 * idea about which extents were modified before we were evicted from
2692 * cache.
2693 */
2694 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
2695 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2696 &BTRFS_I(inode)->runtime_flags);
2697
2698 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
2699 inode->i_generation = BTRFS_I(inode)->generation;
2700 inode->i_rdev = 0;
2701 rdev = btrfs_inode_rdev(leaf, inode_item);
2702
2703 BTRFS_I(inode)->index_cnt = (u64)-1;
2704 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2705 cache_acl:
2706 /*
2707 * try to precache a NULL acl entry for files that don't have
2708 * any xattrs or acls
2709 */
2710 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2711 btrfs_ino(inode));
2712 if (!maybe_acls)
2713 cache_no_acl(inode);
2714
2715 btrfs_free_path(path);
2716
2717 switch (inode->i_mode & S_IFMT) {
2718 case S_IFREG:
2719 inode->i_mapping->a_ops = &btrfs_aops;
2720 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2721 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2722 inode->i_fop = &btrfs_file_operations;
2723 inode->i_op = &btrfs_file_inode_operations;
2724 break;
2725 case S_IFDIR:
2726 inode->i_fop = &btrfs_dir_file_operations;
2727 if (root == root->fs_info->tree_root)
2728 inode->i_op = &btrfs_dir_ro_inode_operations;
2729 else
2730 inode->i_op = &btrfs_dir_inode_operations;
2731 break;
2732 case S_IFLNK:
2733 inode->i_op = &btrfs_symlink_inode_operations;
2734 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2735 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2736 break;
2737 default:
2738 inode->i_op = &btrfs_special_inode_operations;
2739 init_special_inode(inode, inode->i_mode, rdev);
2740 break;
2741 }
2742
2743 btrfs_update_iflags(inode);
2744 return;
2745
2746 make_bad:
2747 btrfs_free_path(path);
2748 make_bad_inode(inode);
2749 }
2750
2751 /*
2752 * given a leaf and an inode, copy the inode fields into the leaf
2753 */
2754 static void fill_inode_item(struct btrfs_trans_handle *trans,
2755 struct extent_buffer *leaf,
2756 struct btrfs_inode_item *item,
2757 struct inode *inode)
2758 {
2759 struct btrfs_map_token token;
2760
2761 btrfs_init_map_token(&token);
2762
2763 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
2764 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
2765 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
2766 &token);
2767 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
2768 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
2769
2770 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
2771 inode->i_atime.tv_sec, &token);
2772 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
2773 inode->i_atime.tv_nsec, &token);
2774
2775 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
2776 inode->i_mtime.tv_sec, &token);
2777 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
2778 inode->i_mtime.tv_nsec, &token);
2779
2780 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
2781 inode->i_ctime.tv_sec, &token);
2782 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
2783 inode->i_ctime.tv_nsec, &token);
2784
2785 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
2786 &token);
2787 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
2788 &token);
2789 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
2790 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
2791 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
2792 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
2793 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
2794 }
2795
2796 /*
2797 * copy everything in the in-memory inode into the btree.
2798 */
2799 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
2800 struct btrfs_root *root, struct inode *inode)
2801 {
2802 struct btrfs_inode_item *inode_item;
2803 struct btrfs_path *path;
2804 struct extent_buffer *leaf;
2805 int ret;
2806
2807 path = btrfs_alloc_path();
2808 if (!path)
2809 return -ENOMEM;
2810
2811 path->leave_spinning = 1;
2812 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2813 1);
2814 if (ret) {
2815 if (ret > 0)
2816 ret = -ENOENT;
2817 goto failed;
2818 }
2819
2820 btrfs_unlock_up_safe(path, 1);
2821 leaf = path->nodes[0];
2822 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2823 struct btrfs_inode_item);
2824
2825 fill_inode_item(trans, leaf, inode_item, inode);
2826 btrfs_mark_buffer_dirty(leaf);
2827 btrfs_set_inode_last_trans(trans, inode);
2828 ret = 0;
2829 failed:
2830 btrfs_free_path(path);
2831 return ret;
2832 }
2833
2834 /*
2835 * copy everything in the in-memory inode into the btree.
2836 */
2837 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2838 struct btrfs_root *root, struct inode *inode)
2839 {
2840 int ret;
2841
2842 /*
2843 * If the inode is a free space inode, we can deadlock during commit
2844 * if we put it into the delayed code.
2845 *
2846 * The data relocation inode should also be directly updated
2847 * without delay
2848 */
2849 if (!btrfs_is_free_space_inode(inode)
2850 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2851 btrfs_update_root_times(trans, root);
2852
2853 ret = btrfs_delayed_update_inode(trans, root, inode);
2854 if (!ret)
2855 btrfs_set_inode_last_trans(trans, inode);
2856 return ret;
2857 }
2858
2859 return btrfs_update_inode_item(trans, root, inode);
2860 }
2861
2862 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2863 struct btrfs_root *root,
2864 struct inode *inode)
2865 {
2866 int ret;
2867
2868 ret = btrfs_update_inode(trans, root, inode);
2869 if (ret == -ENOSPC)
2870 return btrfs_update_inode_item(trans, root, inode);
2871 return ret;
2872 }
2873
2874 /*
2875 * unlink helper that gets used here in inode.c and in the tree logging
2876 * recovery code. It remove a link in a directory with a given name, and
2877 * also drops the back refs in the inode to the directory
2878 */
2879 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2880 struct btrfs_root *root,
2881 struct inode *dir, struct inode *inode,
2882 const char *name, int name_len)
2883 {
2884 struct btrfs_path *path;
2885 int ret = 0;
2886 struct extent_buffer *leaf;
2887 struct btrfs_dir_item *di;
2888 struct btrfs_key key;
2889 u64 index;
2890 u64 ino = btrfs_ino(inode);
2891 u64 dir_ino = btrfs_ino(dir);
2892
2893 path = btrfs_alloc_path();
2894 if (!path) {
2895 ret = -ENOMEM;
2896 goto out;
2897 }
2898
2899 path->leave_spinning = 1;
2900 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2901 name, name_len, -1);
2902 if (IS_ERR(di)) {
2903 ret = PTR_ERR(di);
2904 goto err;
2905 }
2906 if (!di) {
2907 ret = -ENOENT;
2908 goto err;
2909 }
2910 leaf = path->nodes[0];
2911 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2912 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2913 if (ret)
2914 goto err;
2915 btrfs_release_path(path);
2916
2917 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2918 dir_ino, &index);
2919 if (ret) {
2920 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2921 "inode %llu parent %llu\n", name_len, name,
2922 (unsigned long long)ino, (unsigned long long)dir_ino);
2923 btrfs_abort_transaction(trans, root, ret);
2924 goto err;
2925 }
2926
2927 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2928 if (ret) {
2929 btrfs_abort_transaction(trans, root, ret);
2930 goto err;
2931 }
2932
2933 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2934 inode, dir_ino);
2935 if (ret != 0 && ret != -ENOENT) {
2936 btrfs_abort_transaction(trans, root, ret);
2937 goto err;
2938 }
2939
2940 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2941 dir, index);
2942 if (ret == -ENOENT)
2943 ret = 0;
2944 err:
2945 btrfs_free_path(path);
2946 if (ret)
2947 goto out;
2948
2949 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2950 inode_inc_iversion(inode);
2951 inode_inc_iversion(dir);
2952 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2953 ret = btrfs_update_inode(trans, root, dir);
2954 out:
2955 return ret;
2956 }
2957
2958 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2959 struct btrfs_root *root,
2960 struct inode *dir, struct inode *inode,
2961 const char *name, int name_len)
2962 {
2963 int ret;
2964 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2965 if (!ret) {
2966 btrfs_drop_nlink(inode);
2967 ret = btrfs_update_inode(trans, root, inode);
2968 }
2969 return ret;
2970 }
2971
2972
2973 /* helper to check if there is any shared block in the path */
2974 static int check_path_shared(struct btrfs_root *root,
2975 struct btrfs_path *path)
2976 {
2977 struct extent_buffer *eb;
2978 int level;
2979 u64 refs = 1;
2980
2981 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2982 int ret;
2983
2984 if (!path->nodes[level])
2985 break;
2986 eb = path->nodes[level];
2987 if (!btrfs_block_can_be_shared(root, eb))
2988 continue;
2989 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2990 &refs, NULL);
2991 if (refs > 1)
2992 return 1;
2993 }
2994 return 0;
2995 }
2996
2997 /*
2998 * helper to start transaction for unlink and rmdir.
2999 *
3000 * unlink and rmdir are special in btrfs, they do not always free space.
3001 * so in enospc case, we should make sure they will free space before
3002 * allowing them to use the global metadata reservation.
3003 */
3004 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
3005 struct dentry *dentry)
3006 {
3007 struct btrfs_trans_handle *trans;
3008 struct btrfs_root *root = BTRFS_I(dir)->root;
3009 struct btrfs_path *path;
3010 struct btrfs_dir_item *di;
3011 struct inode *inode = dentry->d_inode;
3012 u64 index;
3013 int check_link = 1;
3014 int err = -ENOSPC;
3015 int ret;
3016 u64 ino = btrfs_ino(inode);
3017 u64 dir_ino = btrfs_ino(dir);
3018
3019 /*
3020 * 1 for the possible orphan item
3021 * 1 for the dir item
3022 * 1 for the dir index
3023 * 1 for the inode ref
3024 * 1 for the inode ref in the tree log
3025 * 2 for the dir entries in the log
3026 * 1 for the inode
3027 */
3028 trans = btrfs_start_transaction(root, 8);
3029 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3030 return trans;
3031
3032 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
3033 return ERR_PTR(-ENOSPC);
3034
3035 /* check if there is someone else holds reference */
3036 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
3037 return ERR_PTR(-ENOSPC);
3038
3039 if (atomic_read(&inode->i_count) > 2)
3040 return ERR_PTR(-ENOSPC);
3041
3042 if (xchg(&root->fs_info->enospc_unlink, 1))
3043 return ERR_PTR(-ENOSPC);
3044
3045 path = btrfs_alloc_path();
3046 if (!path) {
3047 root->fs_info->enospc_unlink = 0;
3048 return ERR_PTR(-ENOMEM);
3049 }
3050
3051 /* 1 for the orphan item */
3052 trans = btrfs_start_transaction(root, 1);
3053 if (IS_ERR(trans)) {
3054 btrfs_free_path(path);
3055 root->fs_info->enospc_unlink = 0;
3056 return trans;
3057 }
3058
3059 path->skip_locking = 1;
3060 path->search_commit_root = 1;
3061
3062 ret = btrfs_lookup_inode(trans, root, path,
3063 &BTRFS_I(dir)->location, 0);
3064 if (ret < 0) {
3065 err = ret;
3066 goto out;
3067 }
3068 if (ret == 0) {
3069 if (check_path_shared(root, path))
3070 goto out;
3071 } else {
3072 check_link = 0;
3073 }
3074 btrfs_release_path(path);
3075
3076 ret = btrfs_lookup_inode(trans, root, path,
3077 &BTRFS_I(inode)->location, 0);
3078 if (ret < 0) {
3079 err = ret;
3080 goto out;
3081 }
3082 if (ret == 0) {
3083 if (check_path_shared(root, path))
3084 goto out;
3085 } else {
3086 check_link = 0;
3087 }
3088 btrfs_release_path(path);
3089
3090 if (ret == 0 && S_ISREG(inode->i_mode)) {
3091 ret = btrfs_lookup_file_extent(trans, root, path,
3092 ino, (u64)-1, 0);
3093 if (ret < 0) {
3094 err = ret;
3095 goto out;
3096 }
3097 BUG_ON(ret == 0); /* Corruption */
3098 if (check_path_shared(root, path))
3099 goto out;
3100 btrfs_release_path(path);
3101 }
3102
3103 if (!check_link) {
3104 err = 0;
3105 goto out;
3106 }
3107
3108 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3109 dentry->d_name.name, dentry->d_name.len, 0);
3110 if (IS_ERR(di)) {
3111 err = PTR_ERR(di);
3112 goto out;
3113 }
3114 if (di) {
3115 if (check_path_shared(root, path))
3116 goto out;
3117 } else {
3118 err = 0;
3119 goto out;
3120 }
3121 btrfs_release_path(path);
3122
3123 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name,
3124 dentry->d_name.len, ino, dir_ino, 0,
3125 &index);
3126 if (ret) {
3127 err = ret;
3128 goto out;
3129 }
3130
3131 if (check_path_shared(root, path))
3132 goto out;
3133
3134 btrfs_release_path(path);
3135
3136 /*
3137 * This is a commit root search, if we can lookup inode item and other
3138 * relative items in the commit root, it means the transaction of
3139 * dir/file creation has been committed, and the dir index item that we
3140 * delay to insert has also been inserted into the commit root. So
3141 * we needn't worry about the delayed insertion of the dir index item
3142 * here.
3143 */
3144 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
3145 dentry->d_name.name, dentry->d_name.len, 0);
3146 if (IS_ERR(di)) {
3147 err = PTR_ERR(di);
3148 goto out;
3149 }
3150 BUG_ON(ret == -ENOENT);
3151 if (check_path_shared(root, path))
3152 goto out;
3153
3154 err = 0;
3155 out:
3156 btrfs_free_path(path);
3157 /* Migrate the orphan reservation over */
3158 if (!err)
3159 err = btrfs_block_rsv_migrate(trans->block_rsv,
3160 &root->fs_info->global_block_rsv,
3161 trans->bytes_reserved);
3162
3163 if (err) {
3164 btrfs_end_transaction(trans, root);
3165 root->fs_info->enospc_unlink = 0;
3166 return ERR_PTR(err);
3167 }
3168
3169 trans->block_rsv = &root->fs_info->global_block_rsv;
3170 return trans;
3171 }
3172
3173 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3174 struct btrfs_root *root)
3175 {
3176 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) {
3177 btrfs_block_rsv_release(root, trans->block_rsv,
3178 trans->bytes_reserved);
3179 trans->block_rsv = &root->fs_info->trans_block_rsv;
3180 BUG_ON(!root->fs_info->enospc_unlink);
3181 root->fs_info->enospc_unlink = 0;
3182 }
3183 btrfs_end_transaction(trans, root);
3184 }
3185
3186 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3187 {
3188 struct btrfs_root *root = BTRFS_I(dir)->root;
3189 struct btrfs_trans_handle *trans;
3190 struct inode *inode = dentry->d_inode;
3191 int ret;
3192
3193 trans = __unlink_start_trans(dir, dentry);
3194 if (IS_ERR(trans))
3195 return PTR_ERR(trans);
3196
3197 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3198
3199 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3200 dentry->d_name.name, dentry->d_name.len);
3201 if (ret)
3202 goto out;
3203
3204 if (inode->i_nlink == 0) {
3205 ret = btrfs_orphan_add(trans, inode);
3206 if (ret)
3207 goto out;
3208 }
3209
3210 out:
3211 __unlink_end_trans(trans, root);
3212 btrfs_btree_balance_dirty(root);
3213 return ret;
3214 }
3215
3216 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3217 struct btrfs_root *root,
3218 struct inode *dir, u64 objectid,
3219 const char *name, int name_len)
3220 {
3221 struct btrfs_path *path;
3222 struct extent_buffer *leaf;
3223 struct btrfs_dir_item *di;
3224 struct btrfs_key key;
3225 u64 index;
3226 int ret;
3227 u64 dir_ino = btrfs_ino(dir);
3228
3229 path = btrfs_alloc_path();
3230 if (!path)
3231 return -ENOMEM;
3232
3233 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3234 name, name_len, -1);
3235 if (IS_ERR_OR_NULL(di)) {
3236 if (!di)
3237 ret = -ENOENT;
3238 else
3239 ret = PTR_ERR(di);
3240 goto out;
3241 }
3242
3243 leaf = path->nodes[0];
3244 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3245 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3246 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3247 if (ret) {
3248 btrfs_abort_transaction(trans, root, ret);
3249 goto out;
3250 }
3251 btrfs_release_path(path);
3252
3253 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3254 objectid, root->root_key.objectid,
3255 dir_ino, &index, name, name_len);
3256 if (ret < 0) {
3257 if (ret != -ENOENT) {
3258 btrfs_abort_transaction(trans, root, ret);
3259 goto out;
3260 }
3261 di = btrfs_search_dir_index_item(root, path, dir_ino,
3262 name, name_len);
3263 if (IS_ERR_OR_NULL(di)) {
3264 if (!di)
3265 ret = -ENOENT;
3266 else
3267 ret = PTR_ERR(di);
3268 btrfs_abort_transaction(trans, root, ret);
3269 goto out;
3270 }
3271
3272 leaf = path->nodes[0];
3273 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3274 btrfs_release_path(path);
3275 index = key.offset;
3276 }
3277 btrfs_release_path(path);
3278
3279 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3280 if (ret) {
3281 btrfs_abort_transaction(trans, root, ret);
3282 goto out;
3283 }
3284
3285 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3286 inode_inc_iversion(dir);
3287 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3288 ret = btrfs_update_inode_fallback(trans, root, dir);
3289 if (ret)
3290 btrfs_abort_transaction(trans, root, ret);
3291 out:
3292 btrfs_free_path(path);
3293 return ret;
3294 }
3295
3296 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3297 {
3298 struct inode *inode = dentry->d_inode;
3299 int err = 0;
3300 struct btrfs_root *root = BTRFS_I(dir)->root;
3301 struct btrfs_trans_handle *trans;
3302
3303 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3304 return -ENOTEMPTY;
3305 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3306 return -EPERM;
3307
3308 trans = __unlink_start_trans(dir, dentry);
3309 if (IS_ERR(trans))
3310 return PTR_ERR(trans);
3311
3312 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3313 err = btrfs_unlink_subvol(trans, root, dir,
3314 BTRFS_I(inode)->location.objectid,
3315 dentry->d_name.name,
3316 dentry->d_name.len);
3317 goto out;
3318 }
3319
3320 err = btrfs_orphan_add(trans, inode);
3321 if (err)
3322 goto out;
3323
3324 /* now the directory is empty */
3325 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3326 dentry->d_name.name, dentry->d_name.len);
3327 if (!err)
3328 btrfs_i_size_write(inode, 0);
3329 out:
3330 __unlink_end_trans(trans, root);
3331 btrfs_btree_balance_dirty(root);
3332
3333 return err;
3334 }
3335
3336 /*
3337 * this can truncate away extent items, csum items and directory items.
3338 * It starts at a high offset and removes keys until it can't find
3339 * any higher than new_size
3340 *
3341 * csum items that cross the new i_size are truncated to the new size
3342 * as well.
3343 *
3344 * min_type is the minimum key type to truncate down to. If set to 0, this
3345 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3346 */
3347 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3348 struct btrfs_root *root,
3349 struct inode *inode,
3350 u64 new_size, u32 min_type)
3351 {
3352 struct btrfs_path *path;
3353 struct extent_buffer *leaf;
3354 struct btrfs_file_extent_item *fi;
3355 struct btrfs_key key;
3356 struct btrfs_key found_key;
3357 u64 extent_start = 0;
3358 u64 extent_num_bytes = 0;
3359 u64 extent_offset = 0;
3360 u64 item_end = 0;
3361 u64 mask = root->sectorsize - 1;
3362 u32 found_type = (u8)-1;
3363 int found_extent;
3364 int del_item;
3365 int pending_del_nr = 0;
3366 int pending_del_slot = 0;
3367 int extent_type = -1;
3368 int ret;
3369 int err = 0;
3370 u64 ino = btrfs_ino(inode);
3371
3372 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3373
3374 path = btrfs_alloc_path();
3375 if (!path)
3376 return -ENOMEM;
3377 path->reada = -1;
3378
3379 /*
3380 * We want to drop from the next block forward in case this new size is
3381 * not block aligned since we will be keeping the last block of the
3382 * extent just the way it is.
3383 */
3384 if (root->ref_cows || root == root->fs_info->tree_root)
3385 btrfs_drop_extent_cache(inode, (new_size + mask) & (~mask), (u64)-1, 0);
3386
3387 /*
3388 * This function is also used to drop the items in the log tree before
3389 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3390 * it is used to drop the loged items. So we shouldn't kill the delayed
3391 * items.
3392 */
3393 if (min_type == 0 && root == BTRFS_I(inode)->root)
3394 btrfs_kill_delayed_inode_items(inode);
3395
3396 key.objectid = ino;
3397 key.offset = (u64)-1;
3398 key.type = (u8)-1;
3399
3400 search_again:
3401 path->leave_spinning = 1;
3402 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3403 if (ret < 0) {
3404 err = ret;
3405 goto out;
3406 }
3407
3408 if (ret > 0) {
3409 /* there are no items in the tree for us to truncate, we're
3410 * done
3411 */
3412 if (path->slots[0] == 0)
3413 goto out;
3414 path->slots[0]--;
3415 }
3416
3417 while (1) {
3418 fi = NULL;
3419 leaf = path->nodes[0];
3420 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3421 found_type = btrfs_key_type(&found_key);
3422
3423 if (found_key.objectid != ino)
3424 break;
3425
3426 if (found_type < min_type)
3427 break;
3428
3429 item_end = found_key.offset;
3430 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3431 fi = btrfs_item_ptr(leaf, path->slots[0],
3432 struct btrfs_file_extent_item);
3433 extent_type = btrfs_file_extent_type(leaf, fi);
3434 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3435 item_end +=
3436 btrfs_file_extent_num_bytes(leaf, fi);
3437 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3438 item_end += btrfs_file_extent_inline_len(leaf,
3439 fi);
3440 }
3441 item_end--;
3442 }
3443 if (found_type > min_type) {
3444 del_item = 1;
3445 } else {
3446 if (item_end < new_size)
3447 break;
3448 if (found_key.offset >= new_size)
3449 del_item = 1;
3450 else
3451 del_item = 0;
3452 }
3453 found_extent = 0;
3454 /* FIXME, shrink the extent if the ref count is only 1 */
3455 if (found_type != BTRFS_EXTENT_DATA_KEY)
3456 goto delete;
3457
3458 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3459 u64 num_dec;
3460 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3461 if (!del_item) {
3462 u64 orig_num_bytes =
3463 btrfs_file_extent_num_bytes(leaf, fi);
3464 extent_num_bytes = new_size -
3465 found_key.offset + root->sectorsize - 1;
3466 extent_num_bytes = extent_num_bytes &
3467 ~((u64)root->sectorsize - 1);
3468 btrfs_set_file_extent_num_bytes(leaf, fi,
3469 extent_num_bytes);
3470 num_dec = (orig_num_bytes -
3471 extent_num_bytes);
3472 if (root->ref_cows && extent_start != 0)
3473 inode_sub_bytes(inode, num_dec);
3474 btrfs_mark_buffer_dirty(leaf);
3475 } else {
3476 extent_num_bytes =
3477 btrfs_file_extent_disk_num_bytes(leaf,
3478 fi);
3479 extent_offset = found_key.offset -
3480 btrfs_file_extent_offset(leaf, fi);
3481
3482 /* FIXME blocksize != 4096 */
3483 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3484 if (extent_start != 0) {
3485 found_extent = 1;
3486 if (root->ref_cows)
3487 inode_sub_bytes(inode, num_dec);
3488 }
3489 }
3490 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3491 /*
3492 * we can't truncate inline items that have had
3493 * special encodings
3494 */
3495 if (!del_item &&
3496 btrfs_file_extent_compression(leaf, fi) == 0 &&
3497 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3498 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3499 u32 size = new_size - found_key.offset;
3500
3501 if (root->ref_cows) {
3502 inode_sub_bytes(inode, item_end + 1 -
3503 new_size);
3504 }
3505 size =
3506 btrfs_file_extent_calc_inline_size(size);
3507 btrfs_truncate_item(trans, root, path,
3508 size, 1);
3509 } else if (root->ref_cows) {
3510 inode_sub_bytes(inode, item_end + 1 -
3511 found_key.offset);
3512 }
3513 }
3514 delete:
3515 if (del_item) {
3516 if (!pending_del_nr) {
3517 /* no pending yet, add ourselves */
3518 pending_del_slot = path->slots[0];
3519 pending_del_nr = 1;
3520 } else if (pending_del_nr &&
3521 path->slots[0] + 1 == pending_del_slot) {
3522 /* hop on the pending chunk */
3523 pending_del_nr++;
3524 pending_del_slot = path->slots[0];
3525 } else {
3526 BUG();
3527 }
3528 } else {
3529 break;
3530 }
3531 if (found_extent && (root->ref_cows ||
3532 root == root->fs_info->tree_root)) {
3533 btrfs_set_path_blocking(path);
3534 ret = btrfs_free_extent(trans, root, extent_start,
3535 extent_num_bytes, 0,
3536 btrfs_header_owner(leaf),
3537 ino, extent_offset, 0);
3538 BUG_ON(ret);
3539 }
3540
3541 if (found_type == BTRFS_INODE_ITEM_KEY)
3542 break;
3543
3544 if (path->slots[0] == 0 ||
3545 path->slots[0] != pending_del_slot) {
3546 if (pending_del_nr) {
3547 ret = btrfs_del_items(trans, root, path,
3548 pending_del_slot,
3549 pending_del_nr);
3550 if (ret) {
3551 btrfs_abort_transaction(trans,
3552 root, ret);
3553 goto error;
3554 }
3555 pending_del_nr = 0;
3556 }
3557 btrfs_release_path(path);
3558 goto search_again;
3559 } else {
3560 path->slots[0]--;
3561 }
3562 }
3563 out:
3564 if (pending_del_nr) {
3565 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3566 pending_del_nr);
3567 if (ret)
3568 btrfs_abort_transaction(trans, root, ret);
3569 }
3570 error:
3571 btrfs_free_path(path);
3572 return err;
3573 }
3574
3575 /*
3576 * btrfs_truncate_page - read, zero a chunk and write a page
3577 * @inode - inode that we're zeroing
3578 * @from - the offset to start zeroing
3579 * @len - the length to zero, 0 to zero the entire range respective to the
3580 * offset
3581 * @front - zero up to the offset instead of from the offset on
3582 *
3583 * This will find the page for the "from" offset and cow the page and zero the
3584 * part we want to zero. This is used with truncate and hole punching.
3585 */
3586 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3587 int front)
3588 {
3589 struct address_space *mapping = inode->i_mapping;
3590 struct btrfs_root *root = BTRFS_I(inode)->root;
3591 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3592 struct btrfs_ordered_extent *ordered;
3593 struct extent_state *cached_state = NULL;
3594 char *kaddr;
3595 u32 blocksize = root->sectorsize;
3596 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3597 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3598 struct page *page;
3599 gfp_t mask = btrfs_alloc_write_mask(mapping);
3600 int ret = 0;
3601 u64 page_start;
3602 u64 page_end;
3603
3604 if ((offset & (blocksize - 1)) == 0 &&
3605 (!len || ((len & (blocksize - 1)) == 0)))
3606 goto out;
3607 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3608 if (ret)
3609 goto out;
3610
3611 again:
3612 page = find_or_create_page(mapping, index, mask);
3613 if (!page) {
3614 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3615 ret = -ENOMEM;
3616 goto out;
3617 }
3618
3619 page_start = page_offset(page);
3620 page_end = page_start + PAGE_CACHE_SIZE - 1;
3621
3622 if (!PageUptodate(page)) {
3623 ret = btrfs_readpage(NULL, page);
3624 lock_page(page);
3625 if (page->mapping != mapping) {
3626 unlock_page(page);
3627 page_cache_release(page);
3628 goto again;
3629 }
3630 if (!PageUptodate(page)) {
3631 ret = -EIO;
3632 goto out_unlock;
3633 }
3634 }
3635 wait_on_page_writeback(page);
3636
3637 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
3638 set_page_extent_mapped(page);
3639
3640 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3641 if (ordered) {
3642 unlock_extent_cached(io_tree, page_start, page_end,
3643 &cached_state, GFP_NOFS);
3644 unlock_page(page);
3645 page_cache_release(page);
3646 btrfs_start_ordered_extent(inode, ordered, 1);
3647 btrfs_put_ordered_extent(ordered);
3648 goto again;
3649 }
3650
3651 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3652 EXTENT_DIRTY | EXTENT_DELALLOC |
3653 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
3654 0, 0, &cached_state, GFP_NOFS);
3655
3656 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3657 &cached_state);
3658 if (ret) {
3659 unlock_extent_cached(io_tree, page_start, page_end,
3660 &cached_state, GFP_NOFS);
3661 goto out_unlock;
3662 }
3663
3664 if (offset != PAGE_CACHE_SIZE) {
3665 if (!len)
3666 len = PAGE_CACHE_SIZE - offset;
3667 kaddr = kmap(page);
3668 if (front)
3669 memset(kaddr, 0, offset);
3670 else
3671 memset(kaddr + offset, 0, len);
3672 flush_dcache_page(page);
3673 kunmap(page);
3674 }
3675 ClearPageChecked(page);
3676 set_page_dirty(page);
3677 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3678 GFP_NOFS);
3679
3680 out_unlock:
3681 if (ret)
3682 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3683 unlock_page(page);
3684 page_cache_release(page);
3685 out:
3686 return ret;
3687 }
3688
3689 /*
3690 * This function puts in dummy file extents for the area we're creating a hole
3691 * for. So if we are truncating this file to a larger size we need to insert
3692 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3693 * the range between oldsize and size
3694 */
3695 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3696 {
3697 struct btrfs_trans_handle *trans;
3698 struct btrfs_root *root = BTRFS_I(inode)->root;
3699 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3700 struct extent_map *em = NULL;
3701 struct extent_state *cached_state = NULL;
3702 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3703 u64 mask = root->sectorsize - 1;
3704 u64 hole_start = (oldsize + mask) & ~mask;
3705 u64 block_end = (size + mask) & ~mask;
3706 u64 last_byte;
3707 u64 cur_offset;
3708 u64 hole_size;
3709 int err = 0;
3710
3711 if (size <= hole_start)
3712 return 0;
3713
3714 while (1) {
3715 struct btrfs_ordered_extent *ordered;
3716 btrfs_wait_ordered_range(inode, hole_start,
3717 block_end - hole_start);
3718 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3719 &cached_state);
3720 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3721 if (!ordered)
3722 break;
3723 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3724 &cached_state, GFP_NOFS);
3725 btrfs_put_ordered_extent(ordered);
3726 }
3727
3728 cur_offset = hole_start;
3729 while (1) {
3730 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3731 block_end - cur_offset, 0);
3732 if (IS_ERR(em)) {
3733 err = PTR_ERR(em);
3734 em = NULL;
3735 break;
3736 }
3737 last_byte = min(extent_map_end(em), block_end);
3738 last_byte = (last_byte + mask) & ~mask;
3739 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3740 struct extent_map *hole_em;
3741 hole_size = last_byte - cur_offset;
3742
3743 trans = btrfs_start_transaction(root, 3);
3744 if (IS_ERR(trans)) {
3745 err = PTR_ERR(trans);
3746 break;
3747 }
3748
3749 err = btrfs_drop_extents(trans, root, inode,
3750 cur_offset,
3751 cur_offset + hole_size, 1);
3752 if (err) {
3753 btrfs_abort_transaction(trans, root, err);
3754 btrfs_end_transaction(trans, root);
3755 break;
3756 }
3757
3758 err = btrfs_insert_file_extent(trans, root,
3759 btrfs_ino(inode), cur_offset, 0,
3760 0, hole_size, 0, hole_size,
3761 0, 0, 0);
3762 if (err) {
3763 btrfs_abort_transaction(trans, root, err);
3764 btrfs_end_transaction(trans, root);
3765 break;
3766 }
3767
3768 btrfs_drop_extent_cache(inode, cur_offset,
3769 cur_offset + hole_size - 1, 0);
3770 hole_em = alloc_extent_map();
3771 if (!hole_em) {
3772 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3773 &BTRFS_I(inode)->runtime_flags);
3774 goto next;
3775 }
3776 hole_em->start = cur_offset;
3777 hole_em->len = hole_size;
3778 hole_em->orig_start = cur_offset;
3779
3780 hole_em->block_start = EXTENT_MAP_HOLE;
3781 hole_em->block_len = 0;
3782 hole_em->orig_block_len = 0;
3783 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
3784 hole_em->compress_type = BTRFS_COMPRESS_NONE;
3785 hole_em->generation = trans->transid;
3786
3787 while (1) {
3788 write_lock(&em_tree->lock);
3789 err = add_extent_mapping(em_tree, hole_em);
3790 if (!err)
3791 list_move(&hole_em->list,
3792 &em_tree->modified_extents);
3793 write_unlock(&em_tree->lock);
3794 if (err != -EEXIST)
3795 break;
3796 btrfs_drop_extent_cache(inode, cur_offset,
3797 cur_offset +
3798 hole_size - 1, 0);
3799 }
3800 free_extent_map(hole_em);
3801 next:
3802 btrfs_update_inode(trans, root, inode);
3803 btrfs_end_transaction(trans, root);
3804 }
3805 free_extent_map(em);
3806 em = NULL;
3807 cur_offset = last_byte;
3808 if (cur_offset >= block_end)
3809 break;
3810 }
3811
3812 free_extent_map(em);
3813 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3814 GFP_NOFS);
3815 return err;
3816 }
3817
3818 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
3819 {
3820 struct btrfs_root *root = BTRFS_I(inode)->root;
3821 struct btrfs_trans_handle *trans;
3822 loff_t oldsize = i_size_read(inode);
3823 loff_t newsize = attr->ia_size;
3824 int mask = attr->ia_valid;
3825 int ret;
3826
3827 if (newsize == oldsize)
3828 return 0;
3829
3830 /*
3831 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
3832 * special case where we need to update the times despite not having
3833 * these flags set. For all other operations the VFS set these flags
3834 * explicitly if it wants a timestamp update.
3835 */
3836 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
3837 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
3838
3839 if (newsize > oldsize) {
3840 truncate_pagecache(inode, oldsize, newsize);
3841 ret = btrfs_cont_expand(inode, oldsize, newsize);
3842 if (ret)
3843 return ret;
3844
3845 trans = btrfs_start_transaction(root, 1);
3846 if (IS_ERR(trans))
3847 return PTR_ERR(trans);
3848
3849 i_size_write(inode, newsize);
3850 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3851 ret = btrfs_update_inode(trans, root, inode);
3852 btrfs_end_transaction(trans, root);
3853 } else {
3854
3855 /*
3856 * We're truncating a file that used to have good data down to
3857 * zero. Make sure it gets into the ordered flush list so that
3858 * any new writes get down to disk quickly.
3859 */
3860 if (newsize == 0)
3861 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
3862 &BTRFS_I(inode)->runtime_flags);
3863
3864 /*
3865 * 1 for the orphan item we're going to add
3866 * 1 for the orphan item deletion.
3867 */
3868 trans = btrfs_start_transaction(root, 2);
3869 if (IS_ERR(trans))
3870 return PTR_ERR(trans);
3871
3872 /*
3873 * We need to do this in case we fail at _any_ point during the
3874 * actual truncate. Once we do the truncate_setsize we could
3875 * invalidate pages which forces any outstanding ordered io to
3876 * be instantly completed which will give us extents that need
3877 * to be truncated. If we fail to get an orphan inode down we
3878 * could have left over extents that were never meant to live,
3879 * so we need to garuntee from this point on that everything
3880 * will be consistent.
3881 */
3882 ret = btrfs_orphan_add(trans, inode);
3883 btrfs_end_transaction(trans, root);
3884 if (ret)
3885 return ret;
3886
3887 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3888 truncate_setsize(inode, newsize);
3889 ret = btrfs_truncate(inode);
3890 if (ret && inode->i_nlink)
3891 btrfs_orphan_del(NULL, inode);
3892 }
3893
3894 return ret;
3895 }
3896
3897 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3898 {
3899 struct inode *inode = dentry->d_inode;
3900 struct btrfs_root *root = BTRFS_I(inode)->root;
3901 int err;
3902
3903 if (btrfs_root_readonly(root))
3904 return -EROFS;
3905
3906 err = inode_change_ok(inode, attr);
3907 if (err)
3908 return err;
3909
3910 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3911 err = btrfs_setsize(inode, attr);
3912 if (err)
3913 return err;
3914 }
3915
3916 if (attr->ia_valid) {
3917 setattr_copy(inode, attr);
3918 inode_inc_iversion(inode);
3919 err = btrfs_dirty_inode(inode);
3920
3921 if (!err && attr->ia_valid & ATTR_MODE)
3922 err = btrfs_acl_chmod(inode);
3923 }
3924
3925 return err;
3926 }
3927
3928 void btrfs_evict_inode(struct inode *inode)
3929 {
3930 struct btrfs_trans_handle *trans;
3931 struct btrfs_root *root = BTRFS_I(inode)->root;
3932 struct btrfs_block_rsv *rsv, *global_rsv;
3933 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
3934 int ret;
3935
3936 trace_btrfs_inode_evict(inode);
3937
3938 truncate_inode_pages(&inode->i_data, 0);
3939 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3940 btrfs_is_free_space_inode(inode)))
3941 goto no_delete;
3942
3943 if (is_bad_inode(inode)) {
3944 btrfs_orphan_del(NULL, inode);
3945 goto no_delete;
3946 }
3947 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3948 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3949
3950 if (root->fs_info->log_root_recovering) {
3951 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3952 &BTRFS_I(inode)->runtime_flags));
3953 goto no_delete;
3954 }
3955
3956 if (inode->i_nlink > 0) {
3957 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3958 goto no_delete;
3959 }
3960
3961 ret = btrfs_commit_inode_delayed_inode(inode);
3962 if (ret) {
3963 btrfs_orphan_del(NULL, inode);
3964 goto no_delete;
3965 }
3966
3967 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3968 if (!rsv) {
3969 btrfs_orphan_del(NULL, inode);
3970 goto no_delete;
3971 }
3972 rsv->size = min_size;
3973 rsv->failfast = 1;
3974 global_rsv = &root->fs_info->global_block_rsv;
3975
3976 btrfs_i_size_write(inode, 0);
3977
3978 /*
3979 * This is a bit simpler than btrfs_truncate since we've already
3980 * reserved our space for our orphan item in the unlink, so we just
3981 * need to reserve some slack space in case we add bytes and update
3982 * inode item when doing the truncate.
3983 */
3984 while (1) {
3985 ret = btrfs_block_rsv_refill(root, rsv, min_size,
3986 BTRFS_RESERVE_FLUSH_LIMIT);
3987
3988 /*
3989 * Try and steal from the global reserve since we will
3990 * likely not use this space anyway, we want to try as
3991 * hard as possible to get this to work.
3992 */
3993 if (ret)
3994 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3995
3996 if (ret) {
3997 printk(KERN_WARNING "Could not get space for a "
3998 "delete, will truncate on mount %d\n", ret);
3999 btrfs_orphan_del(NULL, inode);
4000 btrfs_free_block_rsv(root, rsv);
4001 goto no_delete;
4002 }
4003
4004 trans = btrfs_join_transaction(root);
4005 if (IS_ERR(trans)) {
4006 btrfs_orphan_del(NULL, inode);
4007 btrfs_free_block_rsv(root, rsv);
4008 goto no_delete;
4009 }
4010
4011 trans->block_rsv = rsv;
4012
4013 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4014 if (ret != -ENOSPC)
4015 break;
4016
4017 trans->block_rsv = &root->fs_info->trans_block_rsv;
4018 btrfs_end_transaction(trans, root);
4019 trans = NULL;
4020 btrfs_btree_balance_dirty(root);
4021 }
4022
4023 btrfs_free_block_rsv(root, rsv);
4024
4025 if (ret == 0) {
4026 trans->block_rsv = root->orphan_block_rsv;
4027 ret = btrfs_orphan_del(trans, inode);
4028 BUG_ON(ret);
4029 }
4030
4031 trans->block_rsv = &root->fs_info->trans_block_rsv;
4032 if (!(root == root->fs_info->tree_root ||
4033 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4034 btrfs_return_ino(root, btrfs_ino(inode));
4035
4036 btrfs_end_transaction(trans, root);
4037 btrfs_btree_balance_dirty(root);
4038 no_delete:
4039 clear_inode(inode);
4040 return;
4041 }
4042
4043 /*
4044 * this returns the key found in the dir entry in the location pointer.
4045 * If no dir entries were found, location->objectid is 0.
4046 */
4047 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4048 struct btrfs_key *location)
4049 {
4050 const char *name = dentry->d_name.name;
4051 int namelen = dentry->d_name.len;
4052 struct btrfs_dir_item *di;
4053 struct btrfs_path *path;
4054 struct btrfs_root *root = BTRFS_I(dir)->root;
4055 int ret = 0;
4056
4057 path = btrfs_alloc_path();
4058 if (!path)
4059 return -ENOMEM;
4060
4061 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4062 namelen, 0);
4063 if (IS_ERR(di))
4064 ret = PTR_ERR(di);
4065
4066 if (IS_ERR_OR_NULL(di))
4067 goto out_err;
4068
4069 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4070 out:
4071 btrfs_free_path(path);
4072 return ret;
4073 out_err:
4074 location->objectid = 0;
4075 goto out;
4076 }
4077
4078 /*
4079 * when we hit a tree root in a directory, the btrfs part of the inode
4080 * needs to be changed to reflect the root directory of the tree root. This
4081 * is kind of like crossing a mount point.
4082 */
4083 static int fixup_tree_root_location(struct btrfs_root *root,
4084 struct inode *dir,
4085 struct dentry *dentry,
4086 struct btrfs_key *location,
4087 struct btrfs_root **sub_root)
4088 {
4089 struct btrfs_path *path;
4090 struct btrfs_root *new_root;
4091 struct btrfs_root_ref *ref;
4092 struct extent_buffer *leaf;
4093 int ret;
4094 int err = 0;
4095
4096 path = btrfs_alloc_path();
4097 if (!path) {
4098 err = -ENOMEM;
4099 goto out;
4100 }
4101
4102 err = -ENOENT;
4103 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4104 BTRFS_I(dir)->root->root_key.objectid,
4105 location->objectid);
4106 if (ret) {
4107 if (ret < 0)
4108 err = ret;
4109 goto out;
4110 }
4111
4112 leaf = path->nodes[0];
4113 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4114 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4115 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4116 goto out;
4117
4118 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4119 (unsigned long)(ref + 1),
4120 dentry->d_name.len);
4121 if (ret)
4122 goto out;
4123
4124 btrfs_release_path(path);
4125
4126 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4127 if (IS_ERR(new_root)) {
4128 err = PTR_ERR(new_root);
4129 goto out;
4130 }
4131
4132 if (btrfs_root_refs(&new_root->root_item) == 0) {
4133 err = -ENOENT;
4134 goto out;
4135 }
4136
4137 *sub_root = new_root;
4138 location->objectid = btrfs_root_dirid(&new_root->root_item);
4139 location->type = BTRFS_INODE_ITEM_KEY;
4140 location->offset = 0;
4141 err = 0;
4142 out:
4143 btrfs_free_path(path);
4144 return err;
4145 }
4146
4147 static void inode_tree_add(struct inode *inode)
4148 {
4149 struct btrfs_root *root = BTRFS_I(inode)->root;
4150 struct btrfs_inode *entry;
4151 struct rb_node **p;
4152 struct rb_node *parent;
4153 u64 ino = btrfs_ino(inode);
4154 again:
4155 p = &root->inode_tree.rb_node;
4156 parent = NULL;
4157
4158 if (inode_unhashed(inode))
4159 return;
4160
4161 spin_lock(&root->inode_lock);
4162 while (*p) {
4163 parent = *p;
4164 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4165
4166 if (ino < btrfs_ino(&entry->vfs_inode))
4167 p = &parent->rb_left;
4168 else if (ino > btrfs_ino(&entry->vfs_inode))
4169 p = &parent->rb_right;
4170 else {
4171 WARN_ON(!(entry->vfs_inode.i_state &
4172 (I_WILL_FREE | I_FREEING)));
4173 rb_erase(parent, &root->inode_tree);
4174 RB_CLEAR_NODE(parent);
4175 spin_unlock(&root->inode_lock);
4176 goto again;
4177 }
4178 }
4179 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4180 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4181 spin_unlock(&root->inode_lock);
4182 }
4183
4184 static void inode_tree_del(struct inode *inode)
4185 {
4186 struct btrfs_root *root = BTRFS_I(inode)->root;
4187 int empty = 0;
4188
4189 spin_lock(&root->inode_lock);
4190 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4191 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4192 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4193 empty = RB_EMPTY_ROOT(&root->inode_tree);
4194 }
4195 spin_unlock(&root->inode_lock);
4196
4197 /*
4198 * Free space cache has inodes in the tree root, but the tree root has a
4199 * root_refs of 0, so this could end up dropping the tree root as a
4200 * snapshot, so we need the extra !root->fs_info->tree_root check to
4201 * make sure we don't drop it.
4202 */
4203 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4204 root != root->fs_info->tree_root) {
4205 synchronize_srcu(&root->fs_info->subvol_srcu);
4206 spin_lock(&root->inode_lock);
4207 empty = RB_EMPTY_ROOT(&root->inode_tree);
4208 spin_unlock(&root->inode_lock);
4209 if (empty)
4210 btrfs_add_dead_root(root);
4211 }
4212 }
4213
4214 void btrfs_invalidate_inodes(struct btrfs_root *root)
4215 {
4216 struct rb_node *node;
4217 struct rb_node *prev;
4218 struct btrfs_inode *entry;
4219 struct inode *inode;
4220 u64 objectid = 0;
4221
4222 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4223
4224 spin_lock(&root->inode_lock);
4225 again:
4226 node = root->inode_tree.rb_node;
4227 prev = NULL;
4228 while (node) {
4229 prev = node;
4230 entry = rb_entry(node, struct btrfs_inode, rb_node);
4231
4232 if (objectid < btrfs_ino(&entry->vfs_inode))
4233 node = node->rb_left;
4234 else if (objectid > btrfs_ino(&entry->vfs_inode))
4235 node = node->rb_right;
4236 else
4237 break;
4238 }
4239 if (!node) {
4240 while (prev) {
4241 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4242 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4243 node = prev;
4244 break;
4245 }
4246 prev = rb_next(prev);
4247 }
4248 }
4249 while (node) {
4250 entry = rb_entry(node, struct btrfs_inode, rb_node);
4251 objectid = btrfs_ino(&entry->vfs_inode) + 1;
4252 inode = igrab(&entry->vfs_inode);
4253 if (inode) {
4254 spin_unlock(&root->inode_lock);
4255 if (atomic_read(&inode->i_count) > 1)
4256 d_prune_aliases(inode);
4257 /*
4258 * btrfs_drop_inode will have it removed from
4259 * the inode cache when its usage count
4260 * hits zero.
4261 */
4262 iput(inode);
4263 cond_resched();
4264 spin_lock(&root->inode_lock);
4265 goto again;
4266 }
4267
4268 if (cond_resched_lock(&root->inode_lock))
4269 goto again;
4270
4271 node = rb_next(node);
4272 }
4273 spin_unlock(&root->inode_lock);
4274 }
4275
4276 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4277 {
4278 struct btrfs_iget_args *args = p;
4279 inode->i_ino = args->ino;
4280 BTRFS_I(inode)->root = args->root;
4281 return 0;
4282 }
4283
4284 static int btrfs_find_actor(struct inode *inode, void *opaque)
4285 {
4286 struct btrfs_iget_args *args = opaque;
4287 return args->ino == btrfs_ino(inode) &&
4288 args->root == BTRFS_I(inode)->root;
4289 }
4290
4291 static struct inode *btrfs_iget_locked(struct super_block *s,
4292 u64 objectid,
4293 struct btrfs_root *root)
4294 {
4295 struct inode *inode;
4296 struct btrfs_iget_args args;
4297 args.ino = objectid;
4298 args.root = root;
4299
4300 inode = iget5_locked(s, objectid, btrfs_find_actor,
4301 btrfs_init_locked_inode,
4302 (void *)&args);
4303 return inode;
4304 }
4305
4306 /* Get an inode object given its location and corresponding root.
4307 * Returns in *is_new if the inode was read from disk
4308 */
4309 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4310 struct btrfs_root *root, int *new)
4311 {
4312 struct inode *inode;
4313
4314 inode = btrfs_iget_locked(s, location->objectid, root);
4315 if (!inode)
4316 return ERR_PTR(-ENOMEM);
4317
4318 if (inode->i_state & I_NEW) {
4319 BTRFS_I(inode)->root = root;
4320 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4321 btrfs_read_locked_inode(inode);
4322 if (!is_bad_inode(inode)) {
4323 inode_tree_add(inode);
4324 unlock_new_inode(inode);
4325 if (new)
4326 *new = 1;
4327 } else {
4328 unlock_new_inode(inode);
4329 iput(inode);
4330 inode = ERR_PTR(-ESTALE);
4331 }
4332 }
4333
4334 return inode;
4335 }
4336
4337 static struct inode *new_simple_dir(struct super_block *s,
4338 struct btrfs_key *key,
4339 struct btrfs_root *root)
4340 {
4341 struct inode *inode = new_inode(s);
4342
4343 if (!inode)
4344 return ERR_PTR(-ENOMEM);
4345
4346 BTRFS_I(inode)->root = root;
4347 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4348 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4349
4350 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4351 inode->i_op = &btrfs_dir_ro_inode_operations;
4352 inode->i_fop = &simple_dir_operations;
4353 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4354 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4355
4356 return inode;
4357 }
4358
4359 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4360 {
4361 struct inode *inode;
4362 struct btrfs_root *root = BTRFS_I(dir)->root;
4363 struct btrfs_root *sub_root = root;
4364 struct btrfs_key location;
4365 int index;
4366 int ret = 0;
4367
4368 if (dentry->d_name.len > BTRFS_NAME_LEN)
4369 return ERR_PTR(-ENAMETOOLONG);
4370
4371 if (unlikely(d_need_lookup(dentry))) {
4372 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4373 kfree(dentry->d_fsdata);
4374 dentry->d_fsdata = NULL;
4375 /* This thing is hashed, drop it for now */
4376 d_drop(dentry);
4377 } else {
4378 ret = btrfs_inode_by_name(dir, dentry, &location);
4379 }
4380
4381 if (ret < 0)
4382 return ERR_PTR(ret);
4383
4384 if (location.objectid == 0)
4385 return NULL;
4386
4387 if (location.type == BTRFS_INODE_ITEM_KEY) {
4388 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4389 return inode;
4390 }
4391
4392 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4393
4394 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4395 ret = fixup_tree_root_location(root, dir, dentry,
4396 &location, &sub_root);
4397 if (ret < 0) {
4398 if (ret != -ENOENT)
4399 inode = ERR_PTR(ret);
4400 else
4401 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4402 } else {
4403 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4404 }
4405 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4406
4407 if (!IS_ERR(inode) && root != sub_root) {
4408 down_read(&root->fs_info->cleanup_work_sem);
4409 if (!(inode->i_sb->s_flags & MS_RDONLY))
4410 ret = btrfs_orphan_cleanup(sub_root);
4411 up_read(&root->fs_info->cleanup_work_sem);
4412 if (ret)
4413 inode = ERR_PTR(ret);
4414 }
4415
4416 return inode;
4417 }
4418
4419 static int btrfs_dentry_delete(const struct dentry *dentry)
4420 {
4421 struct btrfs_root *root;
4422 struct inode *inode = dentry->d_inode;
4423
4424 if (!inode && !IS_ROOT(dentry))
4425 inode = dentry->d_parent->d_inode;
4426
4427 if (inode) {
4428 root = BTRFS_I(inode)->root;
4429 if (btrfs_root_refs(&root->root_item) == 0)
4430 return 1;
4431
4432 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4433 return 1;
4434 }
4435 return 0;
4436 }
4437
4438 static void btrfs_dentry_release(struct dentry *dentry)
4439 {
4440 if (dentry->d_fsdata)
4441 kfree(dentry->d_fsdata);
4442 }
4443
4444 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4445 unsigned int flags)
4446 {
4447 struct dentry *ret;
4448
4449 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4450 if (unlikely(d_need_lookup(dentry))) {
4451 spin_lock(&dentry->d_lock);
4452 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4453 spin_unlock(&dentry->d_lock);
4454 }
4455 return ret;
4456 }
4457
4458 unsigned char btrfs_filetype_table[] = {
4459 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4460 };
4461
4462 static int btrfs_real_readdir(struct file *filp, void *dirent,
4463 filldir_t filldir)
4464 {
4465 struct inode *inode = filp->f_dentry->d_inode;
4466 struct btrfs_root *root = BTRFS_I(inode)->root;
4467 struct btrfs_item *item;
4468 struct btrfs_dir_item *di;
4469 struct btrfs_key key;
4470 struct btrfs_key found_key;
4471 struct btrfs_path *path;
4472 struct list_head ins_list;
4473 struct list_head del_list;
4474 int ret;
4475 struct extent_buffer *leaf;
4476 int slot;
4477 unsigned char d_type;
4478 int over = 0;
4479 u32 di_cur;
4480 u32 di_total;
4481 u32 di_len;
4482 int key_type = BTRFS_DIR_INDEX_KEY;
4483 char tmp_name[32];
4484 char *name_ptr;
4485 int name_len;
4486 int is_curr = 0; /* filp->f_pos points to the current index? */
4487
4488 /* FIXME, use a real flag for deciding about the key type */
4489 if (root->fs_info->tree_root == root)
4490 key_type = BTRFS_DIR_ITEM_KEY;
4491
4492 /* special case for "." */
4493 if (filp->f_pos == 0) {
4494 over = filldir(dirent, ".", 1,
4495 filp->f_pos, btrfs_ino(inode), DT_DIR);
4496 if (over)
4497 return 0;
4498 filp->f_pos = 1;
4499 }
4500 /* special case for .., just use the back ref */
4501 if (filp->f_pos == 1) {
4502 u64 pino = parent_ino(filp->f_path.dentry);
4503 over = filldir(dirent, "..", 2,
4504 filp->f_pos, pino, DT_DIR);
4505 if (over)
4506 return 0;
4507 filp->f_pos = 2;
4508 }
4509 path = btrfs_alloc_path();
4510 if (!path)
4511 return -ENOMEM;
4512
4513 path->reada = 1;
4514
4515 if (key_type == BTRFS_DIR_INDEX_KEY) {
4516 INIT_LIST_HEAD(&ins_list);
4517 INIT_LIST_HEAD(&del_list);
4518 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4519 }
4520
4521 btrfs_set_key_type(&key, key_type);
4522 key.offset = filp->f_pos;
4523 key.objectid = btrfs_ino(inode);
4524
4525 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4526 if (ret < 0)
4527 goto err;
4528
4529 while (1) {
4530 leaf = path->nodes[0];
4531 slot = path->slots[0];
4532 if (slot >= btrfs_header_nritems(leaf)) {
4533 ret = btrfs_next_leaf(root, path);
4534 if (ret < 0)
4535 goto err;
4536 else if (ret > 0)
4537 break;
4538 continue;
4539 }
4540
4541 item = btrfs_item_nr(leaf, slot);
4542 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4543
4544 if (found_key.objectid != key.objectid)
4545 break;
4546 if (btrfs_key_type(&found_key) != key_type)
4547 break;
4548 if (found_key.offset < filp->f_pos)
4549 goto next;
4550 if (key_type == BTRFS_DIR_INDEX_KEY &&
4551 btrfs_should_delete_dir_index(&del_list,
4552 found_key.offset))
4553 goto next;
4554
4555 filp->f_pos = found_key.offset;
4556 is_curr = 1;
4557
4558 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4559 di_cur = 0;
4560 di_total = btrfs_item_size(leaf, item);
4561
4562 while (di_cur < di_total) {
4563 struct btrfs_key location;
4564
4565 if (verify_dir_item(root, leaf, di))
4566 break;
4567
4568 name_len = btrfs_dir_name_len(leaf, di);
4569 if (name_len <= sizeof(tmp_name)) {
4570 name_ptr = tmp_name;
4571 } else {
4572 name_ptr = kmalloc(name_len, GFP_NOFS);
4573 if (!name_ptr) {
4574 ret = -ENOMEM;
4575 goto err;
4576 }
4577 }
4578 read_extent_buffer(leaf, name_ptr,
4579 (unsigned long)(di + 1), name_len);
4580
4581 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4582 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4583
4584
4585 /* is this a reference to our own snapshot? If so
4586 * skip it.
4587 *
4588 * In contrast to old kernels, we insert the snapshot's
4589 * dir item and dir index after it has been created, so
4590 * we won't find a reference to our own snapshot. We
4591 * still keep the following code for backward
4592 * compatibility.
4593 */
4594 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4595 location.objectid == root->root_key.objectid) {
4596 over = 0;
4597 goto skip;
4598 }
4599 over = filldir(dirent, name_ptr, name_len,
4600 found_key.offset, location.objectid,
4601 d_type);
4602
4603 skip:
4604 if (name_ptr != tmp_name)
4605 kfree(name_ptr);
4606
4607 if (over)
4608 goto nopos;
4609 di_len = btrfs_dir_name_len(leaf, di) +
4610 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4611 di_cur += di_len;
4612 di = (struct btrfs_dir_item *)((char *)di + di_len);
4613 }
4614 next:
4615 path->slots[0]++;
4616 }
4617
4618 if (key_type == BTRFS_DIR_INDEX_KEY) {
4619 if (is_curr)
4620 filp->f_pos++;
4621 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4622 &ins_list);
4623 if (ret)
4624 goto nopos;
4625 }
4626
4627 /* Reached end of directory/root. Bump pos past the last item. */
4628 if (key_type == BTRFS_DIR_INDEX_KEY)
4629 /*
4630 * 32-bit glibc will use getdents64, but then strtol -
4631 * so the last number we can serve is this.
4632 */
4633 filp->f_pos = 0x7fffffff;
4634 else
4635 filp->f_pos++;
4636 nopos:
4637 ret = 0;
4638 err:
4639 if (key_type == BTRFS_DIR_INDEX_KEY)
4640 btrfs_put_delayed_items(&ins_list, &del_list);
4641 btrfs_free_path(path);
4642 return ret;
4643 }
4644
4645 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4646 {
4647 struct btrfs_root *root = BTRFS_I(inode)->root;
4648 struct btrfs_trans_handle *trans;
4649 int ret = 0;
4650 bool nolock = false;
4651
4652 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4653 return 0;
4654
4655 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
4656 nolock = true;
4657
4658 if (wbc->sync_mode == WB_SYNC_ALL) {
4659 if (nolock)
4660 trans = btrfs_join_transaction_nolock(root);
4661 else
4662 trans = btrfs_join_transaction(root);
4663 if (IS_ERR(trans))
4664 return PTR_ERR(trans);
4665 ret = btrfs_commit_transaction(trans, root);
4666 }
4667 return ret;
4668 }
4669
4670 /*
4671 * This is somewhat expensive, updating the tree every time the
4672 * inode changes. But, it is most likely to find the inode in cache.
4673 * FIXME, needs more benchmarking...there are no reasons other than performance
4674 * to keep or drop this code.
4675 */
4676 int btrfs_dirty_inode(struct inode *inode)
4677 {
4678 struct btrfs_root *root = BTRFS_I(inode)->root;
4679 struct btrfs_trans_handle *trans;
4680 int ret;
4681
4682 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4683 return 0;
4684
4685 trans = btrfs_join_transaction(root);
4686 if (IS_ERR(trans))
4687 return PTR_ERR(trans);
4688
4689 ret = btrfs_update_inode(trans, root, inode);
4690 if (ret && ret == -ENOSPC) {
4691 /* whoops, lets try again with the full transaction */
4692 btrfs_end_transaction(trans, root);
4693 trans = btrfs_start_transaction(root, 1);
4694 if (IS_ERR(trans))
4695 return PTR_ERR(trans);
4696
4697 ret = btrfs_update_inode(trans, root, inode);
4698 }
4699 btrfs_end_transaction(trans, root);
4700 if (BTRFS_I(inode)->delayed_node)
4701 btrfs_balance_delayed_items(root);
4702
4703 return ret;
4704 }
4705
4706 /*
4707 * This is a copy of file_update_time. We need this so we can return error on
4708 * ENOSPC for updating the inode in the case of file write and mmap writes.
4709 */
4710 static int btrfs_update_time(struct inode *inode, struct timespec *now,
4711 int flags)
4712 {
4713 struct btrfs_root *root = BTRFS_I(inode)->root;
4714
4715 if (btrfs_root_readonly(root))
4716 return -EROFS;
4717
4718 if (flags & S_VERSION)
4719 inode_inc_iversion(inode);
4720 if (flags & S_CTIME)
4721 inode->i_ctime = *now;
4722 if (flags & S_MTIME)
4723 inode->i_mtime = *now;
4724 if (flags & S_ATIME)
4725 inode->i_atime = *now;
4726 return btrfs_dirty_inode(inode);
4727 }
4728
4729 /*
4730 * find the highest existing sequence number in a directory
4731 * and then set the in-memory index_cnt variable to reflect
4732 * free sequence numbers
4733 */
4734 static int btrfs_set_inode_index_count(struct inode *inode)
4735 {
4736 struct btrfs_root *root = BTRFS_I(inode)->root;
4737 struct btrfs_key key, found_key;
4738 struct btrfs_path *path;
4739 struct extent_buffer *leaf;
4740 int ret;
4741
4742 key.objectid = btrfs_ino(inode);
4743 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4744 key.offset = (u64)-1;
4745
4746 path = btrfs_alloc_path();
4747 if (!path)
4748 return -ENOMEM;
4749
4750 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4751 if (ret < 0)
4752 goto out;
4753 /* FIXME: we should be able to handle this */
4754 if (ret == 0)
4755 goto out;
4756 ret = 0;
4757
4758 /*
4759 * MAGIC NUMBER EXPLANATION:
4760 * since we search a directory based on f_pos we have to start at 2
4761 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4762 * else has to start at 2
4763 */
4764 if (path->slots[0] == 0) {
4765 BTRFS_I(inode)->index_cnt = 2;
4766 goto out;
4767 }
4768
4769 path->slots[0]--;
4770
4771 leaf = path->nodes[0];
4772 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4773
4774 if (found_key.objectid != btrfs_ino(inode) ||
4775 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4776 BTRFS_I(inode)->index_cnt = 2;
4777 goto out;
4778 }
4779
4780 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4781 out:
4782 btrfs_free_path(path);
4783 return ret;
4784 }
4785
4786 /*
4787 * helper to find a free sequence number in a given directory. This current
4788 * code is very simple, later versions will do smarter things in the btree
4789 */
4790 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4791 {
4792 int ret = 0;
4793
4794 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4795 ret = btrfs_inode_delayed_dir_index_count(dir);
4796 if (ret) {
4797 ret = btrfs_set_inode_index_count(dir);
4798 if (ret)
4799 return ret;
4800 }
4801 }
4802
4803 *index = BTRFS_I(dir)->index_cnt;
4804 BTRFS_I(dir)->index_cnt++;
4805
4806 return ret;
4807 }
4808
4809 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4810 struct btrfs_root *root,
4811 struct inode *dir,
4812 const char *name, int name_len,
4813 u64 ref_objectid, u64 objectid,
4814 umode_t mode, u64 *index)
4815 {
4816 struct inode *inode;
4817 struct btrfs_inode_item *inode_item;
4818 struct btrfs_key *location;
4819 struct btrfs_path *path;
4820 struct btrfs_inode_ref *ref;
4821 struct btrfs_key key[2];
4822 u32 sizes[2];
4823 unsigned long ptr;
4824 int ret;
4825 int owner;
4826
4827 path = btrfs_alloc_path();
4828 if (!path)
4829 return ERR_PTR(-ENOMEM);
4830
4831 inode = new_inode(root->fs_info->sb);
4832 if (!inode) {
4833 btrfs_free_path(path);
4834 return ERR_PTR(-ENOMEM);
4835 }
4836
4837 /*
4838 * we have to initialize this early, so we can reclaim the inode
4839 * number if we fail afterwards in this function.
4840 */
4841 inode->i_ino = objectid;
4842
4843 if (dir) {
4844 trace_btrfs_inode_request(dir);
4845
4846 ret = btrfs_set_inode_index(dir, index);
4847 if (ret) {
4848 btrfs_free_path(path);
4849 iput(inode);
4850 return ERR_PTR(ret);
4851 }
4852 }
4853 /*
4854 * index_cnt is ignored for everything but a dir,
4855 * btrfs_get_inode_index_count has an explanation for the magic
4856 * number
4857 */
4858 BTRFS_I(inode)->index_cnt = 2;
4859 BTRFS_I(inode)->root = root;
4860 BTRFS_I(inode)->generation = trans->transid;
4861 inode->i_generation = BTRFS_I(inode)->generation;
4862
4863 /*
4864 * We could have gotten an inode number from somebody who was fsynced
4865 * and then removed in this same transaction, so let's just set full
4866 * sync since it will be a full sync anyway and this will blow away the
4867 * old info in the log.
4868 */
4869 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
4870
4871 if (S_ISDIR(mode))
4872 owner = 0;
4873 else
4874 owner = 1;
4875
4876 key[0].objectid = objectid;
4877 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4878 key[0].offset = 0;
4879
4880 /*
4881 * Start new inodes with an inode_ref. This is slightly more
4882 * efficient for small numbers of hard links since they will
4883 * be packed into one item. Extended refs will kick in if we
4884 * add more hard links than can fit in the ref item.
4885 */
4886 key[1].objectid = objectid;
4887 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4888 key[1].offset = ref_objectid;
4889
4890 sizes[0] = sizeof(struct btrfs_inode_item);
4891 sizes[1] = name_len + sizeof(*ref);
4892
4893 path->leave_spinning = 1;
4894 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4895 if (ret != 0)
4896 goto fail;
4897
4898 inode_init_owner(inode, dir, mode);
4899 inode_set_bytes(inode, 0);
4900 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4901 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4902 struct btrfs_inode_item);
4903 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
4904 sizeof(*inode_item));
4905 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4906
4907 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4908 struct btrfs_inode_ref);
4909 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4910 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4911 ptr = (unsigned long)(ref + 1);
4912 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4913
4914 btrfs_mark_buffer_dirty(path->nodes[0]);
4915 btrfs_free_path(path);
4916
4917 location = &BTRFS_I(inode)->location;
4918 location->objectid = objectid;
4919 location->offset = 0;
4920 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4921
4922 btrfs_inherit_iflags(inode, dir);
4923
4924 if (S_ISREG(mode)) {
4925 if (btrfs_test_opt(root, NODATASUM))
4926 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4927 if (btrfs_test_opt(root, NODATACOW))
4928 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4929 }
4930
4931 insert_inode_hash(inode);
4932 inode_tree_add(inode);
4933
4934 trace_btrfs_inode_new(inode);
4935 btrfs_set_inode_last_trans(trans, inode);
4936
4937 btrfs_update_root_times(trans, root);
4938
4939 return inode;
4940 fail:
4941 if (dir)
4942 BTRFS_I(dir)->index_cnt--;
4943 btrfs_free_path(path);
4944 iput(inode);
4945 return ERR_PTR(ret);
4946 }
4947
4948 static inline u8 btrfs_inode_type(struct inode *inode)
4949 {
4950 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4951 }
4952
4953 /*
4954 * utility function to add 'inode' into 'parent_inode' with
4955 * a give name and a given sequence number.
4956 * if 'add_backref' is true, also insert a backref from the
4957 * inode to the parent directory.
4958 */
4959 int btrfs_add_link(struct btrfs_trans_handle *trans,
4960 struct inode *parent_inode, struct inode *inode,
4961 const char *name, int name_len, int add_backref, u64 index)
4962 {
4963 int ret = 0;
4964 struct btrfs_key key;
4965 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4966 u64 ino = btrfs_ino(inode);
4967 u64 parent_ino = btrfs_ino(parent_inode);
4968
4969 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4970 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4971 } else {
4972 key.objectid = ino;
4973 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4974 key.offset = 0;
4975 }
4976
4977 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4978 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4979 key.objectid, root->root_key.objectid,
4980 parent_ino, index, name, name_len);
4981 } else if (add_backref) {
4982 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4983 parent_ino, index);
4984 }
4985
4986 /* Nothing to clean up yet */
4987 if (ret)
4988 return ret;
4989
4990 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4991 parent_inode, &key,
4992 btrfs_inode_type(inode), index);
4993 if (ret == -EEXIST || ret == -EOVERFLOW)
4994 goto fail_dir_item;
4995 else if (ret) {
4996 btrfs_abort_transaction(trans, root, ret);
4997 return ret;
4998 }
4999
5000 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5001 name_len * 2);
5002 inode_inc_iversion(parent_inode);
5003 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5004 ret = btrfs_update_inode(trans, root, parent_inode);
5005 if (ret)
5006 btrfs_abort_transaction(trans, root, ret);
5007 return ret;
5008
5009 fail_dir_item:
5010 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5011 u64 local_index;
5012 int err;
5013 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5014 key.objectid, root->root_key.objectid,
5015 parent_ino, &local_index, name, name_len);
5016
5017 } else if (add_backref) {
5018 u64 local_index;
5019 int err;
5020
5021 err = btrfs_del_inode_ref(trans, root, name, name_len,
5022 ino, parent_ino, &local_index);
5023 }
5024 return ret;
5025 }
5026
5027 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5028 struct inode *dir, struct dentry *dentry,
5029 struct inode *inode, int backref, u64 index)
5030 {
5031 int err = btrfs_add_link(trans, dir, inode,
5032 dentry->d_name.name, dentry->d_name.len,
5033 backref, index);
5034 if (err > 0)
5035 err = -EEXIST;
5036 return err;
5037 }
5038
5039 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5040 umode_t mode, dev_t rdev)
5041 {
5042 struct btrfs_trans_handle *trans;
5043 struct btrfs_root *root = BTRFS_I(dir)->root;
5044 struct inode *inode = NULL;
5045 int err;
5046 int drop_inode = 0;
5047 u64 objectid;
5048 u64 index = 0;
5049
5050 if (!new_valid_dev(rdev))
5051 return -EINVAL;
5052
5053 /*
5054 * 2 for inode item and ref
5055 * 2 for dir items
5056 * 1 for xattr if selinux is on
5057 */
5058 trans = btrfs_start_transaction(root, 5);
5059 if (IS_ERR(trans))
5060 return PTR_ERR(trans);
5061
5062 err = btrfs_find_free_ino(root, &objectid);
5063 if (err)
5064 goto out_unlock;
5065
5066 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5067 dentry->d_name.len, btrfs_ino(dir), objectid,
5068 mode, &index);
5069 if (IS_ERR(inode)) {
5070 err = PTR_ERR(inode);
5071 goto out_unlock;
5072 }
5073
5074 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5075 if (err) {
5076 drop_inode = 1;
5077 goto out_unlock;
5078 }
5079
5080 /*
5081 * If the active LSM wants to access the inode during
5082 * d_instantiate it needs these. Smack checks to see
5083 * if the filesystem supports xattrs by looking at the
5084 * ops vector.
5085 */
5086
5087 inode->i_op = &btrfs_special_inode_operations;
5088 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5089 if (err)
5090 drop_inode = 1;
5091 else {
5092 init_special_inode(inode, inode->i_mode, rdev);
5093 btrfs_update_inode(trans, root, inode);
5094 d_instantiate(dentry, inode);
5095 }
5096 out_unlock:
5097 btrfs_end_transaction(trans, root);
5098 btrfs_btree_balance_dirty(root);
5099 if (drop_inode) {
5100 inode_dec_link_count(inode);
5101 iput(inode);
5102 }
5103 return err;
5104 }
5105
5106 static int btrfs_create(struct inode *dir, struct dentry *dentry,
5107 umode_t mode, bool excl)
5108 {
5109 struct btrfs_trans_handle *trans;
5110 struct btrfs_root *root = BTRFS_I(dir)->root;
5111 struct inode *inode = NULL;
5112 int drop_inode_on_err = 0;
5113 int err;
5114 u64 objectid;
5115 u64 index = 0;
5116
5117 /*
5118 * 2 for inode item and ref
5119 * 2 for dir items
5120 * 1 for xattr if selinux is on
5121 */
5122 trans = btrfs_start_transaction(root, 5);
5123 if (IS_ERR(trans))
5124 return PTR_ERR(trans);
5125
5126 err = btrfs_find_free_ino(root, &objectid);
5127 if (err)
5128 goto out_unlock;
5129
5130 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5131 dentry->d_name.len, btrfs_ino(dir), objectid,
5132 mode, &index);
5133 if (IS_ERR(inode)) {
5134 err = PTR_ERR(inode);
5135 goto out_unlock;
5136 }
5137 drop_inode_on_err = 1;
5138
5139 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5140 if (err)
5141 goto out_unlock;
5142
5143 err = btrfs_update_inode(trans, root, inode);
5144 if (err)
5145 goto out_unlock;
5146
5147 /*
5148 * If the active LSM wants to access the inode during
5149 * d_instantiate it needs these. Smack checks to see
5150 * if the filesystem supports xattrs by looking at the
5151 * ops vector.
5152 */
5153 inode->i_fop = &btrfs_file_operations;
5154 inode->i_op = &btrfs_file_inode_operations;
5155
5156 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5157 if (err)
5158 goto out_unlock;
5159
5160 inode->i_mapping->a_ops = &btrfs_aops;
5161 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5162 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5163 d_instantiate(dentry, inode);
5164
5165 out_unlock:
5166 btrfs_end_transaction(trans, root);
5167 if (err && drop_inode_on_err) {
5168 inode_dec_link_count(inode);
5169 iput(inode);
5170 }
5171 btrfs_btree_balance_dirty(root);
5172 return err;
5173 }
5174
5175 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5176 struct dentry *dentry)
5177 {
5178 struct btrfs_trans_handle *trans;
5179 struct btrfs_root *root = BTRFS_I(dir)->root;
5180 struct inode *inode = old_dentry->d_inode;
5181 u64 index;
5182 int err;
5183 int drop_inode = 0;
5184
5185 /* do not allow sys_link's with other subvols of the same device */
5186 if (root->objectid != BTRFS_I(inode)->root->objectid)
5187 return -EXDEV;
5188
5189 if (inode->i_nlink >= BTRFS_LINK_MAX)
5190 return -EMLINK;
5191
5192 err = btrfs_set_inode_index(dir, &index);
5193 if (err)
5194 goto fail;
5195
5196 /*
5197 * 2 items for inode and inode ref
5198 * 2 items for dir items
5199 * 1 item for parent inode
5200 */
5201 trans = btrfs_start_transaction(root, 5);
5202 if (IS_ERR(trans)) {
5203 err = PTR_ERR(trans);
5204 goto fail;
5205 }
5206
5207 btrfs_inc_nlink(inode);
5208 inode_inc_iversion(inode);
5209 inode->i_ctime = CURRENT_TIME;
5210 ihold(inode);
5211 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
5212
5213 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5214
5215 if (err) {
5216 drop_inode = 1;
5217 } else {
5218 struct dentry *parent = dentry->d_parent;
5219 err = btrfs_update_inode(trans, root, inode);
5220 if (err)
5221 goto fail;
5222 d_instantiate(dentry, inode);
5223 btrfs_log_new_name(trans, inode, NULL, parent);
5224 }
5225
5226 btrfs_end_transaction(trans, root);
5227 fail:
5228 if (drop_inode) {
5229 inode_dec_link_count(inode);
5230 iput(inode);
5231 }
5232 btrfs_btree_balance_dirty(root);
5233 return err;
5234 }
5235
5236 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5237 {
5238 struct inode *inode = NULL;
5239 struct btrfs_trans_handle *trans;
5240 struct btrfs_root *root = BTRFS_I(dir)->root;
5241 int err = 0;
5242 int drop_on_err = 0;
5243 u64 objectid = 0;
5244 u64 index = 0;
5245
5246 /*
5247 * 2 items for inode and ref
5248 * 2 items for dir items
5249 * 1 for xattr if selinux is on
5250 */
5251 trans = btrfs_start_transaction(root, 5);
5252 if (IS_ERR(trans))
5253 return PTR_ERR(trans);
5254
5255 err = btrfs_find_free_ino(root, &objectid);
5256 if (err)
5257 goto out_fail;
5258
5259 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5260 dentry->d_name.len, btrfs_ino(dir), objectid,
5261 S_IFDIR | mode, &index);
5262 if (IS_ERR(inode)) {
5263 err = PTR_ERR(inode);
5264 goto out_fail;
5265 }
5266
5267 drop_on_err = 1;
5268
5269 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5270 if (err)
5271 goto out_fail;
5272
5273 inode->i_op = &btrfs_dir_inode_operations;
5274 inode->i_fop = &btrfs_dir_file_operations;
5275
5276 btrfs_i_size_write(inode, 0);
5277 err = btrfs_update_inode(trans, root, inode);
5278 if (err)
5279 goto out_fail;
5280
5281 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5282 dentry->d_name.len, 0, index);
5283 if (err)
5284 goto out_fail;
5285
5286 d_instantiate(dentry, inode);
5287 drop_on_err = 0;
5288
5289 out_fail:
5290 btrfs_end_transaction(trans, root);
5291 if (drop_on_err)
5292 iput(inode);
5293 btrfs_btree_balance_dirty(root);
5294 return err;
5295 }
5296
5297 /* helper for btfs_get_extent. Given an existing extent in the tree,
5298 * and an extent that you want to insert, deal with overlap and insert
5299 * the new extent into the tree.
5300 */
5301 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5302 struct extent_map *existing,
5303 struct extent_map *em,
5304 u64 map_start, u64 map_len)
5305 {
5306 u64 start_diff;
5307
5308 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5309 start_diff = map_start - em->start;
5310 em->start = map_start;
5311 em->len = map_len;
5312 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5313 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5314 em->block_start += start_diff;
5315 em->block_len -= start_diff;
5316 }
5317 return add_extent_mapping(em_tree, em);
5318 }
5319
5320 static noinline int uncompress_inline(struct btrfs_path *path,
5321 struct inode *inode, struct page *page,
5322 size_t pg_offset, u64 extent_offset,
5323 struct btrfs_file_extent_item *item)
5324 {
5325 int ret;
5326 struct extent_buffer *leaf = path->nodes[0];
5327 char *tmp;
5328 size_t max_size;
5329 unsigned long inline_size;
5330 unsigned long ptr;
5331 int compress_type;
5332
5333 WARN_ON(pg_offset != 0);
5334 compress_type = btrfs_file_extent_compression(leaf, item);
5335 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5336 inline_size = btrfs_file_extent_inline_item_len(leaf,
5337 btrfs_item_nr(leaf, path->slots[0]));
5338 tmp = kmalloc(inline_size, GFP_NOFS);
5339 if (!tmp)
5340 return -ENOMEM;
5341 ptr = btrfs_file_extent_inline_start(item);
5342
5343 read_extent_buffer(leaf, tmp, ptr, inline_size);
5344
5345 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5346 ret = btrfs_decompress(compress_type, tmp, page,
5347 extent_offset, inline_size, max_size);
5348 if (ret) {
5349 char *kaddr = kmap_atomic(page);
5350 unsigned long copy_size = min_t(u64,
5351 PAGE_CACHE_SIZE - pg_offset,
5352 max_size - extent_offset);
5353 memset(kaddr + pg_offset, 0, copy_size);
5354 kunmap_atomic(kaddr);
5355 }
5356 kfree(tmp);
5357 return 0;
5358 }
5359
5360 /*
5361 * a bit scary, this does extent mapping from logical file offset to the disk.
5362 * the ugly parts come from merging extents from the disk with the in-ram
5363 * representation. This gets more complex because of the data=ordered code,
5364 * where the in-ram extents might be locked pending data=ordered completion.
5365 *
5366 * This also copies inline extents directly into the page.
5367 */
5368
5369 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5370 size_t pg_offset, u64 start, u64 len,
5371 int create)
5372 {
5373 int ret;
5374 int err = 0;
5375 u64 bytenr;
5376 u64 extent_start = 0;
5377 u64 extent_end = 0;
5378 u64 objectid = btrfs_ino(inode);
5379 u32 found_type;
5380 struct btrfs_path *path = NULL;
5381 struct btrfs_root *root = BTRFS_I(inode)->root;
5382 struct btrfs_file_extent_item *item;
5383 struct extent_buffer *leaf;
5384 struct btrfs_key found_key;
5385 struct extent_map *em = NULL;
5386 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5387 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5388 struct btrfs_trans_handle *trans = NULL;
5389 int compress_type;
5390
5391 again:
5392 read_lock(&em_tree->lock);
5393 em = lookup_extent_mapping(em_tree, start, len);
5394 if (em)
5395 em->bdev = root->fs_info->fs_devices->latest_bdev;
5396 read_unlock(&em_tree->lock);
5397
5398 if (em) {
5399 if (em->start > start || em->start + em->len <= start)
5400 free_extent_map(em);
5401 else if (em->block_start == EXTENT_MAP_INLINE && page)
5402 free_extent_map(em);
5403 else
5404 goto out;
5405 }
5406 em = alloc_extent_map();
5407 if (!em) {
5408 err = -ENOMEM;
5409 goto out;
5410 }
5411 em->bdev = root->fs_info->fs_devices->latest_bdev;
5412 em->start = EXTENT_MAP_HOLE;
5413 em->orig_start = EXTENT_MAP_HOLE;
5414 em->len = (u64)-1;
5415 em->block_len = (u64)-1;
5416
5417 if (!path) {
5418 path = btrfs_alloc_path();
5419 if (!path) {
5420 err = -ENOMEM;
5421 goto out;
5422 }
5423 /*
5424 * Chances are we'll be called again, so go ahead and do
5425 * readahead
5426 */
5427 path->reada = 1;
5428 }
5429
5430 ret = btrfs_lookup_file_extent(trans, root, path,
5431 objectid, start, trans != NULL);
5432 if (ret < 0) {
5433 err = ret;
5434 goto out;
5435 }
5436
5437 if (ret != 0) {
5438 if (path->slots[0] == 0)
5439 goto not_found;
5440 path->slots[0]--;
5441 }
5442
5443 leaf = path->nodes[0];
5444 item = btrfs_item_ptr(leaf, path->slots[0],
5445 struct btrfs_file_extent_item);
5446 /* are we inside the extent that was found? */
5447 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5448 found_type = btrfs_key_type(&found_key);
5449 if (found_key.objectid != objectid ||
5450 found_type != BTRFS_EXTENT_DATA_KEY) {
5451 goto not_found;
5452 }
5453
5454 found_type = btrfs_file_extent_type(leaf, item);
5455 extent_start = found_key.offset;
5456 compress_type = btrfs_file_extent_compression(leaf, item);
5457 if (found_type == BTRFS_FILE_EXTENT_REG ||
5458 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5459 extent_end = extent_start +
5460 btrfs_file_extent_num_bytes(leaf, item);
5461 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5462 size_t size;
5463 size = btrfs_file_extent_inline_len(leaf, item);
5464 extent_end = (extent_start + size + root->sectorsize - 1) &
5465 ~((u64)root->sectorsize - 1);
5466 }
5467
5468 if (start >= extent_end) {
5469 path->slots[0]++;
5470 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5471 ret = btrfs_next_leaf(root, path);
5472 if (ret < 0) {
5473 err = ret;
5474 goto out;
5475 }
5476 if (ret > 0)
5477 goto not_found;
5478 leaf = path->nodes[0];
5479 }
5480 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5481 if (found_key.objectid != objectid ||
5482 found_key.type != BTRFS_EXTENT_DATA_KEY)
5483 goto not_found;
5484 if (start + len <= found_key.offset)
5485 goto not_found;
5486 em->start = start;
5487 em->orig_start = start;
5488 em->len = found_key.offset - start;
5489 goto not_found_em;
5490 }
5491
5492 if (found_type == BTRFS_FILE_EXTENT_REG ||
5493 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5494 em->start = extent_start;
5495 em->len = extent_end - extent_start;
5496 em->orig_start = extent_start -
5497 btrfs_file_extent_offset(leaf, item);
5498 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
5499 item);
5500 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5501 if (bytenr == 0) {
5502 em->block_start = EXTENT_MAP_HOLE;
5503 goto insert;
5504 }
5505 if (compress_type != BTRFS_COMPRESS_NONE) {
5506 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5507 em->compress_type = compress_type;
5508 em->block_start = bytenr;
5509 em->block_len = em->orig_block_len;
5510 } else {
5511 bytenr += btrfs_file_extent_offset(leaf, item);
5512 em->block_start = bytenr;
5513 em->block_len = em->len;
5514 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5515 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5516 }
5517 goto insert;
5518 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5519 unsigned long ptr;
5520 char *map;
5521 size_t size;
5522 size_t extent_offset;
5523 size_t copy_size;
5524
5525 em->block_start = EXTENT_MAP_INLINE;
5526 if (!page || create) {
5527 em->start = extent_start;
5528 em->len = extent_end - extent_start;
5529 goto out;
5530 }
5531
5532 size = btrfs_file_extent_inline_len(leaf, item);
5533 extent_offset = page_offset(page) + pg_offset - extent_start;
5534 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5535 size - extent_offset);
5536 em->start = extent_start + extent_offset;
5537 em->len = (copy_size + root->sectorsize - 1) &
5538 ~((u64)root->sectorsize - 1);
5539 em->orig_block_len = em->len;
5540 em->orig_start = em->start;
5541 if (compress_type) {
5542 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5543 em->compress_type = compress_type;
5544 }
5545 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5546 if (create == 0 && !PageUptodate(page)) {
5547 if (btrfs_file_extent_compression(leaf, item) !=
5548 BTRFS_COMPRESS_NONE) {
5549 ret = uncompress_inline(path, inode, page,
5550 pg_offset,
5551 extent_offset, item);
5552 BUG_ON(ret); /* -ENOMEM */
5553 } else {
5554 map = kmap(page);
5555 read_extent_buffer(leaf, map + pg_offset, ptr,
5556 copy_size);
5557 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5558 memset(map + pg_offset + copy_size, 0,
5559 PAGE_CACHE_SIZE - pg_offset -
5560 copy_size);
5561 }
5562 kunmap(page);
5563 }
5564 flush_dcache_page(page);
5565 } else if (create && PageUptodate(page)) {
5566 BUG();
5567 if (!trans) {
5568 kunmap(page);
5569 free_extent_map(em);
5570 em = NULL;
5571
5572 btrfs_release_path(path);
5573 trans = btrfs_join_transaction(root);
5574
5575 if (IS_ERR(trans))
5576 return ERR_CAST(trans);
5577 goto again;
5578 }
5579 map = kmap(page);
5580 write_extent_buffer(leaf, map + pg_offset, ptr,
5581 copy_size);
5582 kunmap(page);
5583 btrfs_mark_buffer_dirty(leaf);
5584 }
5585 set_extent_uptodate(io_tree, em->start,
5586 extent_map_end(em) - 1, NULL, GFP_NOFS);
5587 goto insert;
5588 } else {
5589 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
5590 }
5591 not_found:
5592 em->start = start;
5593 em->orig_start = start;
5594 em->len = len;
5595 not_found_em:
5596 em->block_start = EXTENT_MAP_HOLE;
5597 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5598 insert:
5599 btrfs_release_path(path);
5600 if (em->start > start || extent_map_end(em) <= start) {
5601 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5602 "[%llu %llu]\n", (unsigned long long)em->start,
5603 (unsigned long long)em->len,
5604 (unsigned long long)start,
5605 (unsigned long long)len);
5606 err = -EIO;
5607 goto out;
5608 }
5609
5610 err = 0;
5611 write_lock(&em_tree->lock);
5612 ret = add_extent_mapping(em_tree, em);
5613 /* it is possible that someone inserted the extent into the tree
5614 * while we had the lock dropped. It is also possible that
5615 * an overlapping map exists in the tree
5616 */
5617 if (ret == -EEXIST) {
5618 struct extent_map *existing;
5619
5620 ret = 0;
5621
5622 existing = lookup_extent_mapping(em_tree, start, len);
5623 if (existing && (existing->start > start ||
5624 existing->start + existing->len <= start)) {
5625 free_extent_map(existing);
5626 existing = NULL;
5627 }
5628 if (!existing) {
5629 existing = lookup_extent_mapping(em_tree, em->start,
5630 em->len);
5631 if (existing) {
5632 err = merge_extent_mapping(em_tree, existing,
5633 em, start,
5634 root->sectorsize);
5635 free_extent_map(existing);
5636 if (err) {
5637 free_extent_map(em);
5638 em = NULL;
5639 }
5640 } else {
5641 err = -EIO;
5642 free_extent_map(em);
5643 em = NULL;
5644 }
5645 } else {
5646 free_extent_map(em);
5647 em = existing;
5648 err = 0;
5649 }
5650 }
5651 write_unlock(&em_tree->lock);
5652 out:
5653
5654 if (em)
5655 trace_btrfs_get_extent(root, em);
5656
5657 if (path)
5658 btrfs_free_path(path);
5659 if (trans) {
5660 ret = btrfs_end_transaction(trans, root);
5661 if (!err)
5662 err = ret;
5663 }
5664 if (err) {
5665 free_extent_map(em);
5666 return ERR_PTR(err);
5667 }
5668 BUG_ON(!em); /* Error is always set */
5669 return em;
5670 }
5671
5672 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5673 size_t pg_offset, u64 start, u64 len,
5674 int create)
5675 {
5676 struct extent_map *em;
5677 struct extent_map *hole_em = NULL;
5678 u64 range_start = start;
5679 u64 end;
5680 u64 found;
5681 u64 found_end;
5682 int err = 0;
5683
5684 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5685 if (IS_ERR(em))
5686 return em;
5687 if (em) {
5688 /*
5689 * if our em maps to
5690 * - a hole or
5691 * - a pre-alloc extent,
5692 * there might actually be delalloc bytes behind it.
5693 */
5694 if (em->block_start != EXTENT_MAP_HOLE &&
5695 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5696 return em;
5697 else
5698 hole_em = em;
5699 }
5700
5701 /* check to see if we've wrapped (len == -1 or similar) */
5702 end = start + len;
5703 if (end < start)
5704 end = (u64)-1;
5705 else
5706 end -= 1;
5707
5708 em = NULL;
5709
5710 /* ok, we didn't find anything, lets look for delalloc */
5711 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5712 end, len, EXTENT_DELALLOC, 1);
5713 found_end = range_start + found;
5714 if (found_end < range_start)
5715 found_end = (u64)-1;
5716
5717 /*
5718 * we didn't find anything useful, return
5719 * the original results from get_extent()
5720 */
5721 if (range_start > end || found_end <= start) {
5722 em = hole_em;
5723 hole_em = NULL;
5724 goto out;
5725 }
5726
5727 /* adjust the range_start to make sure it doesn't
5728 * go backwards from the start they passed in
5729 */
5730 range_start = max(start,range_start);
5731 found = found_end - range_start;
5732
5733 if (found > 0) {
5734 u64 hole_start = start;
5735 u64 hole_len = len;
5736
5737 em = alloc_extent_map();
5738 if (!em) {
5739 err = -ENOMEM;
5740 goto out;
5741 }
5742 /*
5743 * when btrfs_get_extent can't find anything it
5744 * returns one huge hole
5745 *
5746 * make sure what it found really fits our range, and
5747 * adjust to make sure it is based on the start from
5748 * the caller
5749 */
5750 if (hole_em) {
5751 u64 calc_end = extent_map_end(hole_em);
5752
5753 if (calc_end <= start || (hole_em->start > end)) {
5754 free_extent_map(hole_em);
5755 hole_em = NULL;
5756 } else {
5757 hole_start = max(hole_em->start, start);
5758 hole_len = calc_end - hole_start;
5759 }
5760 }
5761 em->bdev = NULL;
5762 if (hole_em && range_start > hole_start) {
5763 /* our hole starts before our delalloc, so we
5764 * have to return just the parts of the hole
5765 * that go until the delalloc starts
5766 */
5767 em->len = min(hole_len,
5768 range_start - hole_start);
5769 em->start = hole_start;
5770 em->orig_start = hole_start;
5771 /*
5772 * don't adjust block start at all,
5773 * it is fixed at EXTENT_MAP_HOLE
5774 */
5775 em->block_start = hole_em->block_start;
5776 em->block_len = hole_len;
5777 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
5778 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5779 } else {
5780 em->start = range_start;
5781 em->len = found;
5782 em->orig_start = range_start;
5783 em->block_start = EXTENT_MAP_DELALLOC;
5784 em->block_len = found;
5785 }
5786 } else if (hole_em) {
5787 return hole_em;
5788 }
5789 out:
5790
5791 free_extent_map(hole_em);
5792 if (err) {
5793 free_extent_map(em);
5794 return ERR_PTR(err);
5795 }
5796 return em;
5797 }
5798
5799 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5800 u64 start, u64 len)
5801 {
5802 struct btrfs_root *root = BTRFS_I(inode)->root;
5803 struct btrfs_trans_handle *trans;
5804 struct extent_map *em;
5805 struct btrfs_key ins;
5806 u64 alloc_hint;
5807 int ret;
5808
5809 trans = btrfs_join_transaction(root);
5810 if (IS_ERR(trans))
5811 return ERR_CAST(trans);
5812
5813 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5814
5815 alloc_hint = get_extent_allocation_hint(inode, start, len);
5816 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5817 alloc_hint, &ins, 1);
5818 if (ret) {
5819 em = ERR_PTR(ret);
5820 goto out;
5821 }
5822
5823 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
5824 ins.offset, ins.offset, 0);
5825 if (IS_ERR(em))
5826 goto out;
5827
5828 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5829 ins.offset, ins.offset, 0);
5830 if (ret) {
5831 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5832 em = ERR_PTR(ret);
5833 }
5834 out:
5835 btrfs_end_transaction(trans, root);
5836 return em;
5837 }
5838
5839 /*
5840 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5841 * block must be cow'd
5842 */
5843 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5844 struct inode *inode, u64 offset, u64 len)
5845 {
5846 struct btrfs_path *path;
5847 int ret;
5848 struct extent_buffer *leaf;
5849 struct btrfs_root *root = BTRFS_I(inode)->root;
5850 struct btrfs_file_extent_item *fi;
5851 struct btrfs_key key;
5852 u64 disk_bytenr;
5853 u64 backref_offset;
5854 u64 extent_end;
5855 u64 num_bytes;
5856 int slot;
5857 int found_type;
5858
5859 path = btrfs_alloc_path();
5860 if (!path)
5861 return -ENOMEM;
5862
5863 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5864 offset, 0);
5865 if (ret < 0)
5866 goto out;
5867
5868 slot = path->slots[0];
5869 if (ret == 1) {
5870 if (slot == 0) {
5871 /* can't find the item, must cow */
5872 ret = 0;
5873 goto out;
5874 }
5875 slot--;
5876 }
5877 ret = 0;
5878 leaf = path->nodes[0];
5879 btrfs_item_key_to_cpu(leaf, &key, slot);
5880 if (key.objectid != btrfs_ino(inode) ||
5881 key.type != BTRFS_EXTENT_DATA_KEY) {
5882 /* not our file or wrong item type, must cow */
5883 goto out;
5884 }
5885
5886 if (key.offset > offset) {
5887 /* Wrong offset, must cow */
5888 goto out;
5889 }
5890
5891 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5892 found_type = btrfs_file_extent_type(leaf, fi);
5893 if (found_type != BTRFS_FILE_EXTENT_REG &&
5894 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5895 /* not a regular extent, must cow */
5896 goto out;
5897 }
5898 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5899 backref_offset = btrfs_file_extent_offset(leaf, fi);
5900
5901 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5902 if (extent_end < offset + len) {
5903 /* extent doesn't include our full range, must cow */
5904 goto out;
5905 }
5906
5907 if (btrfs_extent_readonly(root, disk_bytenr))
5908 goto out;
5909
5910 /*
5911 * look for other files referencing this extent, if we
5912 * find any we must cow
5913 */
5914 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5915 key.offset - backref_offset, disk_bytenr))
5916 goto out;
5917
5918 /*
5919 * adjust disk_bytenr and num_bytes to cover just the bytes
5920 * in this extent we are about to write. If there
5921 * are any csums in that range we have to cow in order
5922 * to keep the csums correct
5923 */
5924 disk_bytenr += backref_offset;
5925 disk_bytenr += offset - key.offset;
5926 num_bytes = min(offset + len, extent_end) - offset;
5927 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5928 goto out;
5929 /*
5930 * all of the above have passed, it is safe to overwrite this extent
5931 * without cow
5932 */
5933 ret = 1;
5934 out:
5935 btrfs_free_path(path);
5936 return ret;
5937 }
5938
5939 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
5940 struct extent_state **cached_state, int writing)
5941 {
5942 struct btrfs_ordered_extent *ordered;
5943 int ret = 0;
5944
5945 while (1) {
5946 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5947 0, cached_state);
5948 /*
5949 * We're concerned with the entire range that we're going to be
5950 * doing DIO to, so we need to make sure theres no ordered
5951 * extents in this range.
5952 */
5953 ordered = btrfs_lookup_ordered_range(inode, lockstart,
5954 lockend - lockstart + 1);
5955
5956 /*
5957 * We need to make sure there are no buffered pages in this
5958 * range either, we could have raced between the invalidate in
5959 * generic_file_direct_write and locking the extent. The
5960 * invalidate needs to happen so that reads after a write do not
5961 * get stale data.
5962 */
5963 if (!ordered && (!writing ||
5964 !test_range_bit(&BTRFS_I(inode)->io_tree,
5965 lockstart, lockend, EXTENT_UPTODATE, 0,
5966 *cached_state)))
5967 break;
5968
5969 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5970 cached_state, GFP_NOFS);
5971
5972 if (ordered) {
5973 btrfs_start_ordered_extent(inode, ordered, 1);
5974 btrfs_put_ordered_extent(ordered);
5975 } else {
5976 /* Screw you mmap */
5977 ret = filemap_write_and_wait_range(inode->i_mapping,
5978 lockstart,
5979 lockend);
5980 if (ret)
5981 break;
5982
5983 /*
5984 * If we found a page that couldn't be invalidated just
5985 * fall back to buffered.
5986 */
5987 ret = invalidate_inode_pages2_range(inode->i_mapping,
5988 lockstart >> PAGE_CACHE_SHIFT,
5989 lockend >> PAGE_CACHE_SHIFT);
5990 if (ret)
5991 break;
5992 }
5993
5994 cond_resched();
5995 }
5996
5997 return ret;
5998 }
5999
6000 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6001 u64 len, u64 orig_start,
6002 u64 block_start, u64 block_len,
6003 u64 orig_block_len, int type)
6004 {
6005 struct extent_map_tree *em_tree;
6006 struct extent_map *em;
6007 struct btrfs_root *root = BTRFS_I(inode)->root;
6008 int ret;
6009
6010 em_tree = &BTRFS_I(inode)->extent_tree;
6011 em = alloc_extent_map();
6012 if (!em)
6013 return ERR_PTR(-ENOMEM);
6014
6015 em->start = start;
6016 em->orig_start = orig_start;
6017 em->mod_start = start;
6018 em->mod_len = len;
6019 em->len = len;
6020 em->block_len = block_len;
6021 em->block_start = block_start;
6022 em->bdev = root->fs_info->fs_devices->latest_bdev;
6023 em->orig_block_len = orig_block_len;
6024 em->generation = -1;
6025 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6026 if (type == BTRFS_ORDERED_PREALLOC)
6027 set_bit(EXTENT_FLAG_FILLING, &em->flags);
6028
6029 do {
6030 btrfs_drop_extent_cache(inode, em->start,
6031 em->start + em->len - 1, 0);
6032 write_lock(&em_tree->lock);
6033 ret = add_extent_mapping(em_tree, em);
6034 if (!ret)
6035 list_move(&em->list,
6036 &em_tree->modified_extents);
6037 write_unlock(&em_tree->lock);
6038 } while (ret == -EEXIST);
6039
6040 if (ret) {
6041 free_extent_map(em);
6042 return ERR_PTR(ret);
6043 }
6044
6045 return em;
6046 }
6047
6048
6049 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6050 struct buffer_head *bh_result, int create)
6051 {
6052 struct extent_map *em;
6053 struct btrfs_root *root = BTRFS_I(inode)->root;
6054 struct extent_state *cached_state = NULL;
6055 u64 start = iblock << inode->i_blkbits;
6056 u64 lockstart, lockend;
6057 u64 len = bh_result->b_size;
6058 struct btrfs_trans_handle *trans;
6059 int unlock_bits = EXTENT_LOCKED;
6060 int ret;
6061
6062 if (create) {
6063 ret = btrfs_delalloc_reserve_space(inode, len);
6064 if (ret)
6065 return ret;
6066 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
6067 } else {
6068 len = min_t(u64, len, root->sectorsize);
6069 }
6070
6071 lockstart = start;
6072 lockend = start + len - 1;
6073
6074 /*
6075 * If this errors out it's because we couldn't invalidate pagecache for
6076 * this range and we need to fallback to buffered.
6077 */
6078 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6079 return -ENOTBLK;
6080
6081 if (create) {
6082 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6083 lockend, EXTENT_DELALLOC, NULL,
6084 &cached_state, GFP_NOFS);
6085 if (ret)
6086 goto unlock_err;
6087 }
6088
6089 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
6090 if (IS_ERR(em)) {
6091 ret = PTR_ERR(em);
6092 goto unlock_err;
6093 }
6094
6095 /*
6096 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6097 * io. INLINE is special, and we could probably kludge it in here, but
6098 * it's still buffered so for safety lets just fall back to the generic
6099 * buffered path.
6100 *
6101 * For COMPRESSED we _have_ to read the entire extent in so we can
6102 * decompress it, so there will be buffering required no matter what we
6103 * do, so go ahead and fallback to buffered.
6104 *
6105 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6106 * to buffered IO. Don't blame me, this is the price we pay for using
6107 * the generic code.
6108 */
6109 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6110 em->block_start == EXTENT_MAP_INLINE) {
6111 free_extent_map(em);
6112 ret = -ENOTBLK;
6113 goto unlock_err;
6114 }
6115
6116 /* Just a good old fashioned hole, return */
6117 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6118 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6119 free_extent_map(em);
6120 ret = 0;
6121 goto unlock_err;
6122 }
6123
6124 /*
6125 * We don't allocate a new extent in the following cases
6126 *
6127 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6128 * existing extent.
6129 * 2) The extent is marked as PREALLOC. We're good to go here and can
6130 * just use the extent.
6131 *
6132 */
6133 if (!create) {
6134 len = min(len, em->len - (start - em->start));
6135 lockstart = start + len;
6136 goto unlock;
6137 }
6138
6139 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6140 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6141 em->block_start != EXTENT_MAP_HOLE)) {
6142 int type;
6143 int ret;
6144 u64 block_start;
6145
6146 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6147 type = BTRFS_ORDERED_PREALLOC;
6148 else
6149 type = BTRFS_ORDERED_NOCOW;
6150 len = min(len, em->len - (start - em->start));
6151 block_start = em->block_start + (start - em->start);
6152
6153 /*
6154 * we're not going to log anything, but we do need
6155 * to make sure the current transaction stays open
6156 * while we look for nocow cross refs
6157 */
6158 trans = btrfs_join_transaction(root);
6159 if (IS_ERR(trans))
6160 goto must_cow;
6161
6162 if (can_nocow_odirect(trans, inode, start, len) == 1) {
6163 u64 orig_start = em->orig_start;
6164 u64 orig_block_len = em->orig_block_len;
6165
6166 if (type == BTRFS_ORDERED_PREALLOC) {
6167 free_extent_map(em);
6168 em = create_pinned_em(inode, start, len,
6169 orig_start,
6170 block_start, len,
6171 orig_block_len, type);
6172 if (IS_ERR(em)) {
6173 btrfs_end_transaction(trans, root);
6174 goto unlock_err;
6175 }
6176 }
6177
6178 ret = btrfs_add_ordered_extent_dio(inode, start,
6179 block_start, len, len, type);
6180 btrfs_end_transaction(trans, root);
6181 if (ret) {
6182 free_extent_map(em);
6183 goto unlock_err;
6184 }
6185 goto unlock;
6186 }
6187 btrfs_end_transaction(trans, root);
6188 }
6189 must_cow:
6190 /*
6191 * this will cow the extent, reset the len in case we changed
6192 * it above
6193 */
6194 len = bh_result->b_size;
6195 free_extent_map(em);
6196 em = btrfs_new_extent_direct(inode, start, len);
6197 if (IS_ERR(em)) {
6198 ret = PTR_ERR(em);
6199 goto unlock_err;
6200 }
6201 len = min(len, em->len - (start - em->start));
6202 unlock:
6203 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6204 inode->i_blkbits;
6205 bh_result->b_size = len;
6206 bh_result->b_bdev = em->bdev;
6207 set_buffer_mapped(bh_result);
6208 if (create) {
6209 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6210 set_buffer_new(bh_result);
6211
6212 /*
6213 * Need to update the i_size under the extent lock so buffered
6214 * readers will get the updated i_size when we unlock.
6215 */
6216 if (start + len > i_size_read(inode))
6217 i_size_write(inode, start + len);
6218 }
6219
6220 /*
6221 * In the case of write we need to clear and unlock the entire range,
6222 * in the case of read we need to unlock only the end area that we
6223 * aren't using if there is any left over space.
6224 */
6225 if (lockstart < lockend) {
6226 if (create && len < lockend - lockstart) {
6227 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6228 lockstart + len - 1,
6229 unlock_bits | EXTENT_DEFRAG, 1, 0,
6230 &cached_state, GFP_NOFS);
6231 /*
6232 * Beside unlock, we also need to cleanup reserved space
6233 * for the left range by attaching EXTENT_DO_ACCOUNTING.
6234 */
6235 clear_extent_bit(&BTRFS_I(inode)->io_tree,
6236 lockstart + len, lockend,
6237 unlock_bits | EXTENT_DO_ACCOUNTING |
6238 EXTENT_DEFRAG, 1, 0, NULL, GFP_NOFS);
6239 } else {
6240 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6241 lockend, unlock_bits, 1, 0,
6242 &cached_state, GFP_NOFS);
6243 }
6244 } else {
6245 free_extent_state(cached_state);
6246 }
6247
6248 free_extent_map(em);
6249
6250 return 0;
6251
6252 unlock_err:
6253 if (create)
6254 unlock_bits |= EXTENT_DO_ACCOUNTING;
6255
6256 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6257 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6258 return ret;
6259 }
6260
6261 struct btrfs_dio_private {
6262 struct inode *inode;
6263 u64 logical_offset;
6264 u64 disk_bytenr;
6265 u64 bytes;
6266 void *private;
6267
6268 /* number of bios pending for this dio */
6269 atomic_t pending_bios;
6270
6271 /* IO errors */
6272 int errors;
6273
6274 struct bio *orig_bio;
6275 };
6276
6277 static void btrfs_endio_direct_read(struct bio *bio, int err)
6278 {
6279 struct btrfs_dio_private *dip = bio->bi_private;
6280 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6281 struct bio_vec *bvec = bio->bi_io_vec;
6282 struct inode *inode = dip->inode;
6283 struct btrfs_root *root = BTRFS_I(inode)->root;
6284 u64 start;
6285
6286 start = dip->logical_offset;
6287 do {
6288 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6289 struct page *page = bvec->bv_page;
6290 char *kaddr;
6291 u32 csum = ~(u32)0;
6292 u64 private = ~(u32)0;
6293 unsigned long flags;
6294
6295 if (get_state_private(&BTRFS_I(inode)->io_tree,
6296 start, &private))
6297 goto failed;
6298 local_irq_save(flags);
6299 kaddr = kmap_atomic(page);
6300 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
6301 csum, bvec->bv_len);
6302 btrfs_csum_final(csum, (char *)&csum);
6303 kunmap_atomic(kaddr);
6304 local_irq_restore(flags);
6305
6306 flush_dcache_page(bvec->bv_page);
6307 if (csum != private) {
6308 failed:
6309 printk(KERN_ERR "btrfs csum failed ino %llu off"
6310 " %llu csum %u private %u\n",
6311 (unsigned long long)btrfs_ino(inode),
6312 (unsigned long long)start,
6313 csum, (unsigned)private);
6314 err = -EIO;
6315 }
6316 }
6317
6318 start += bvec->bv_len;
6319 bvec++;
6320 } while (bvec <= bvec_end);
6321
6322 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6323 dip->logical_offset + dip->bytes - 1);
6324 bio->bi_private = dip->private;
6325
6326 kfree(dip);
6327
6328 /* If we had a csum failure make sure to clear the uptodate flag */
6329 if (err)
6330 clear_bit(BIO_UPTODATE, &bio->bi_flags);
6331 dio_end_io(bio, err);
6332 }
6333
6334 static void btrfs_endio_direct_write(struct bio *bio, int err)
6335 {
6336 struct btrfs_dio_private *dip = bio->bi_private;
6337 struct inode *inode = dip->inode;
6338 struct btrfs_root *root = BTRFS_I(inode)->root;
6339 struct btrfs_ordered_extent *ordered = NULL;
6340 u64 ordered_offset = dip->logical_offset;
6341 u64 ordered_bytes = dip->bytes;
6342 int ret;
6343
6344 if (err)
6345 goto out_done;
6346 again:
6347 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6348 &ordered_offset,
6349 ordered_bytes, !err);
6350 if (!ret)
6351 goto out_test;
6352
6353 ordered->work.func = finish_ordered_fn;
6354 ordered->work.flags = 0;
6355 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6356 &ordered->work);
6357 out_test:
6358 /*
6359 * our bio might span multiple ordered extents. If we haven't
6360 * completed the accounting for the whole dio, go back and try again
6361 */
6362 if (ordered_offset < dip->logical_offset + dip->bytes) {
6363 ordered_bytes = dip->logical_offset + dip->bytes -
6364 ordered_offset;
6365 ordered = NULL;
6366 goto again;
6367 }
6368 out_done:
6369 bio->bi_private = dip->private;
6370
6371 kfree(dip);
6372
6373 /* If we had an error make sure to clear the uptodate flag */
6374 if (err)
6375 clear_bit(BIO_UPTODATE, &bio->bi_flags);
6376 dio_end_io(bio, err);
6377 }
6378
6379 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6380 struct bio *bio, int mirror_num,
6381 unsigned long bio_flags, u64 offset)
6382 {
6383 int ret;
6384 struct btrfs_root *root = BTRFS_I(inode)->root;
6385 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6386 BUG_ON(ret); /* -ENOMEM */
6387 return 0;
6388 }
6389
6390 static void btrfs_end_dio_bio(struct bio *bio, int err)
6391 {
6392 struct btrfs_dio_private *dip = bio->bi_private;
6393
6394 if (err) {
6395 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6396 "sector %#Lx len %u err no %d\n",
6397 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
6398 (unsigned long long)bio->bi_sector, bio->bi_size, err);
6399 dip->errors = 1;
6400
6401 /*
6402 * before atomic variable goto zero, we must make sure
6403 * dip->errors is perceived to be set.
6404 */
6405 smp_mb__before_atomic_dec();
6406 }
6407
6408 /* if there are more bios still pending for this dio, just exit */
6409 if (!atomic_dec_and_test(&dip->pending_bios))
6410 goto out;
6411
6412 if (dip->errors)
6413 bio_io_error(dip->orig_bio);
6414 else {
6415 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6416 bio_endio(dip->orig_bio, 0);
6417 }
6418 out:
6419 bio_put(bio);
6420 }
6421
6422 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6423 u64 first_sector, gfp_t gfp_flags)
6424 {
6425 int nr_vecs = bio_get_nr_vecs(bdev);
6426 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6427 }
6428
6429 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6430 int rw, u64 file_offset, int skip_sum,
6431 int async_submit)
6432 {
6433 int write = rw & REQ_WRITE;
6434 struct btrfs_root *root = BTRFS_I(inode)->root;
6435 int ret;
6436
6437 if (async_submit)
6438 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
6439
6440 bio_get(bio);
6441
6442 if (!write) {
6443 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6444 if (ret)
6445 goto err;
6446 }
6447
6448 if (skip_sum)
6449 goto map;
6450
6451 if (write && async_submit) {
6452 ret = btrfs_wq_submit_bio(root->fs_info,
6453 inode, rw, bio, 0, 0,
6454 file_offset,
6455 __btrfs_submit_bio_start_direct_io,
6456 __btrfs_submit_bio_done);
6457 goto err;
6458 } else if (write) {
6459 /*
6460 * If we aren't doing async submit, calculate the csum of the
6461 * bio now.
6462 */
6463 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6464 if (ret)
6465 goto err;
6466 } else if (!skip_sum) {
6467 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
6468 if (ret)
6469 goto err;
6470 }
6471
6472 map:
6473 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6474 err:
6475 bio_put(bio);
6476 return ret;
6477 }
6478
6479 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6480 int skip_sum)
6481 {
6482 struct inode *inode = dip->inode;
6483 struct btrfs_root *root = BTRFS_I(inode)->root;
6484 struct bio *bio;
6485 struct bio *orig_bio = dip->orig_bio;
6486 struct bio_vec *bvec = orig_bio->bi_io_vec;
6487 u64 start_sector = orig_bio->bi_sector;
6488 u64 file_offset = dip->logical_offset;
6489 u64 submit_len = 0;
6490 u64 map_length;
6491 int nr_pages = 0;
6492 int ret = 0;
6493 int async_submit = 0;
6494
6495 map_length = orig_bio->bi_size;
6496 ret = btrfs_map_block(root->fs_info, READ, start_sector << 9,
6497 &map_length, NULL, 0);
6498 if (ret) {
6499 bio_put(orig_bio);
6500 return -EIO;
6501 }
6502
6503 if (map_length >= orig_bio->bi_size) {
6504 bio = orig_bio;
6505 goto submit;
6506 }
6507
6508 async_submit = 1;
6509 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6510 if (!bio)
6511 return -ENOMEM;
6512 bio->bi_private = dip;
6513 bio->bi_end_io = btrfs_end_dio_bio;
6514 atomic_inc(&dip->pending_bios);
6515
6516 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6517 if (unlikely(map_length < submit_len + bvec->bv_len ||
6518 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6519 bvec->bv_offset) < bvec->bv_len)) {
6520 /*
6521 * inc the count before we submit the bio so
6522 * we know the end IO handler won't happen before
6523 * we inc the count. Otherwise, the dip might get freed
6524 * before we're done setting it up
6525 */
6526 atomic_inc(&dip->pending_bios);
6527 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6528 file_offset, skip_sum,
6529 async_submit);
6530 if (ret) {
6531 bio_put(bio);
6532 atomic_dec(&dip->pending_bios);
6533 goto out_err;
6534 }
6535
6536 start_sector += submit_len >> 9;
6537 file_offset += submit_len;
6538
6539 submit_len = 0;
6540 nr_pages = 0;
6541
6542 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6543 start_sector, GFP_NOFS);
6544 if (!bio)
6545 goto out_err;
6546 bio->bi_private = dip;
6547 bio->bi_end_io = btrfs_end_dio_bio;
6548
6549 map_length = orig_bio->bi_size;
6550 ret = btrfs_map_block(root->fs_info, READ,
6551 start_sector << 9,
6552 &map_length, NULL, 0);
6553 if (ret) {
6554 bio_put(bio);
6555 goto out_err;
6556 }
6557 } else {
6558 submit_len += bvec->bv_len;
6559 nr_pages ++;
6560 bvec++;
6561 }
6562 }
6563
6564 submit:
6565 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6566 async_submit);
6567 if (!ret)
6568 return 0;
6569
6570 bio_put(bio);
6571 out_err:
6572 dip->errors = 1;
6573 /*
6574 * before atomic variable goto zero, we must
6575 * make sure dip->errors is perceived to be set.
6576 */
6577 smp_mb__before_atomic_dec();
6578 if (atomic_dec_and_test(&dip->pending_bios))
6579 bio_io_error(dip->orig_bio);
6580
6581 /* bio_end_io() will handle error, so we needn't return it */
6582 return 0;
6583 }
6584
6585 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6586 loff_t file_offset)
6587 {
6588 struct btrfs_root *root = BTRFS_I(inode)->root;
6589 struct btrfs_dio_private *dip;
6590 struct bio_vec *bvec = bio->bi_io_vec;
6591 int skip_sum;
6592 int write = rw & REQ_WRITE;
6593 int ret = 0;
6594
6595 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6596
6597 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6598 if (!dip) {
6599 ret = -ENOMEM;
6600 goto free_ordered;
6601 }
6602
6603 dip->private = bio->bi_private;
6604 dip->inode = inode;
6605 dip->logical_offset = file_offset;
6606
6607 dip->bytes = 0;
6608 do {
6609 dip->bytes += bvec->bv_len;
6610 bvec++;
6611 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6612
6613 dip->disk_bytenr = (u64)bio->bi_sector << 9;
6614 bio->bi_private = dip;
6615 dip->errors = 0;
6616 dip->orig_bio = bio;
6617 atomic_set(&dip->pending_bios, 0);
6618
6619 if (write)
6620 bio->bi_end_io = btrfs_endio_direct_write;
6621 else
6622 bio->bi_end_io = btrfs_endio_direct_read;
6623
6624 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6625 if (!ret)
6626 return;
6627 free_ordered:
6628 /*
6629 * If this is a write, we need to clean up the reserved space and kill
6630 * the ordered extent.
6631 */
6632 if (write) {
6633 struct btrfs_ordered_extent *ordered;
6634 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6635 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6636 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6637 btrfs_free_reserved_extent(root, ordered->start,
6638 ordered->disk_len);
6639 btrfs_put_ordered_extent(ordered);
6640 btrfs_put_ordered_extent(ordered);
6641 }
6642 bio_endio(bio, ret);
6643 }
6644
6645 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6646 const struct iovec *iov, loff_t offset,
6647 unsigned long nr_segs)
6648 {
6649 int seg;
6650 int i;
6651 size_t size;
6652 unsigned long addr;
6653 unsigned blocksize_mask = root->sectorsize - 1;
6654 ssize_t retval = -EINVAL;
6655 loff_t end = offset;
6656
6657 if (offset & blocksize_mask)
6658 goto out;
6659
6660 /* Check the memory alignment. Blocks cannot straddle pages */
6661 for (seg = 0; seg < nr_segs; seg++) {
6662 addr = (unsigned long)iov[seg].iov_base;
6663 size = iov[seg].iov_len;
6664 end += size;
6665 if ((addr & blocksize_mask) || (size & blocksize_mask))
6666 goto out;
6667
6668 /* If this is a write we don't need to check anymore */
6669 if (rw & WRITE)
6670 continue;
6671
6672 /*
6673 * Check to make sure we don't have duplicate iov_base's in this
6674 * iovec, if so return EINVAL, otherwise we'll get csum errors
6675 * when reading back.
6676 */
6677 for (i = seg + 1; i < nr_segs; i++) {
6678 if (iov[seg].iov_base == iov[i].iov_base)
6679 goto out;
6680 }
6681 }
6682 retval = 0;
6683 out:
6684 return retval;
6685 }
6686
6687 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6688 const struct iovec *iov, loff_t offset,
6689 unsigned long nr_segs)
6690 {
6691 struct file *file = iocb->ki_filp;
6692 struct inode *inode = file->f_mapping->host;
6693
6694 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6695 offset, nr_segs))
6696 return 0;
6697
6698 return __blockdev_direct_IO(rw, iocb, inode,
6699 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6700 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6701 btrfs_submit_direct, 0);
6702 }
6703
6704 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
6705
6706 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6707 __u64 start, __u64 len)
6708 {
6709 int ret;
6710
6711 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
6712 if (ret)
6713 return ret;
6714
6715 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6716 }
6717
6718 int btrfs_readpage(struct file *file, struct page *page)
6719 {
6720 struct extent_io_tree *tree;
6721 tree = &BTRFS_I(page->mapping->host)->io_tree;
6722 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
6723 }
6724
6725 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6726 {
6727 struct extent_io_tree *tree;
6728
6729
6730 if (current->flags & PF_MEMALLOC) {
6731 redirty_page_for_writepage(wbc, page);
6732 unlock_page(page);
6733 return 0;
6734 }
6735 tree = &BTRFS_I(page->mapping->host)->io_tree;
6736 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6737 }
6738
6739 int btrfs_writepages(struct address_space *mapping,
6740 struct writeback_control *wbc)
6741 {
6742 struct extent_io_tree *tree;
6743
6744 tree = &BTRFS_I(mapping->host)->io_tree;
6745 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6746 }
6747
6748 static int
6749 btrfs_readpages(struct file *file, struct address_space *mapping,
6750 struct list_head *pages, unsigned nr_pages)
6751 {
6752 struct extent_io_tree *tree;
6753 tree = &BTRFS_I(mapping->host)->io_tree;
6754 return extent_readpages(tree, mapping, pages, nr_pages,
6755 btrfs_get_extent);
6756 }
6757 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6758 {
6759 struct extent_io_tree *tree;
6760 struct extent_map_tree *map;
6761 int ret;
6762
6763 tree = &BTRFS_I(page->mapping->host)->io_tree;
6764 map = &BTRFS_I(page->mapping->host)->extent_tree;
6765 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6766 if (ret == 1) {
6767 ClearPagePrivate(page);
6768 set_page_private(page, 0);
6769 page_cache_release(page);
6770 }
6771 return ret;
6772 }
6773
6774 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6775 {
6776 if (PageWriteback(page) || PageDirty(page))
6777 return 0;
6778 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6779 }
6780
6781 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6782 {
6783 struct inode *inode = page->mapping->host;
6784 struct extent_io_tree *tree;
6785 struct btrfs_ordered_extent *ordered;
6786 struct extent_state *cached_state = NULL;
6787 u64 page_start = page_offset(page);
6788 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6789
6790 /*
6791 * we have the page locked, so new writeback can't start,
6792 * and the dirty bit won't be cleared while we are here.
6793 *
6794 * Wait for IO on this page so that we can safely clear
6795 * the PagePrivate2 bit and do ordered accounting
6796 */
6797 wait_on_page_writeback(page);
6798
6799 tree = &BTRFS_I(inode)->io_tree;
6800 if (offset) {
6801 btrfs_releasepage(page, GFP_NOFS);
6802 return;
6803 }
6804 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6805 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
6806 if (ordered) {
6807 /*
6808 * IO on this page will never be started, so we need
6809 * to account for any ordered extents now
6810 */
6811 clear_extent_bit(tree, page_start, page_end,
6812 EXTENT_DIRTY | EXTENT_DELALLOC |
6813 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
6814 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
6815 /*
6816 * whoever cleared the private bit is responsible
6817 * for the finish_ordered_io
6818 */
6819 if (TestClearPagePrivate2(page) &&
6820 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
6821 PAGE_CACHE_SIZE, 1)) {
6822 btrfs_finish_ordered_io(ordered);
6823 }
6824 btrfs_put_ordered_extent(ordered);
6825 cached_state = NULL;
6826 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6827 }
6828 clear_extent_bit(tree, page_start, page_end,
6829 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6830 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
6831 &cached_state, GFP_NOFS);
6832 __btrfs_releasepage(page, GFP_NOFS);
6833
6834 ClearPageChecked(page);
6835 if (PagePrivate(page)) {
6836 ClearPagePrivate(page);
6837 set_page_private(page, 0);
6838 page_cache_release(page);
6839 }
6840 }
6841
6842 /*
6843 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6844 * called from a page fault handler when a page is first dirtied. Hence we must
6845 * be careful to check for EOF conditions here. We set the page up correctly
6846 * for a written page which means we get ENOSPC checking when writing into
6847 * holes and correct delalloc and unwritten extent mapping on filesystems that
6848 * support these features.
6849 *
6850 * We are not allowed to take the i_mutex here so we have to play games to
6851 * protect against truncate races as the page could now be beyond EOF. Because
6852 * vmtruncate() writes the inode size before removing pages, once we have the
6853 * page lock we can determine safely if the page is beyond EOF. If it is not
6854 * beyond EOF, then the page is guaranteed safe against truncation until we
6855 * unlock the page.
6856 */
6857 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6858 {
6859 struct page *page = vmf->page;
6860 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6861 struct btrfs_root *root = BTRFS_I(inode)->root;
6862 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6863 struct btrfs_ordered_extent *ordered;
6864 struct extent_state *cached_state = NULL;
6865 char *kaddr;
6866 unsigned long zero_start;
6867 loff_t size;
6868 int ret;
6869 int reserved = 0;
6870 u64 page_start;
6871 u64 page_end;
6872
6873 sb_start_pagefault(inode->i_sb);
6874 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6875 if (!ret) {
6876 ret = file_update_time(vma->vm_file);
6877 reserved = 1;
6878 }
6879 if (ret) {
6880 if (ret == -ENOMEM)
6881 ret = VM_FAULT_OOM;
6882 else /* -ENOSPC, -EIO, etc */
6883 ret = VM_FAULT_SIGBUS;
6884 if (reserved)
6885 goto out;
6886 goto out_noreserve;
6887 }
6888
6889 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6890 again:
6891 lock_page(page);
6892 size = i_size_read(inode);
6893 page_start = page_offset(page);
6894 page_end = page_start + PAGE_CACHE_SIZE - 1;
6895
6896 if ((page->mapping != inode->i_mapping) ||
6897 (page_start >= size)) {
6898 /* page got truncated out from underneath us */
6899 goto out_unlock;
6900 }
6901 wait_on_page_writeback(page);
6902
6903 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
6904 set_page_extent_mapped(page);
6905
6906 /*
6907 * we can't set the delalloc bits if there are pending ordered
6908 * extents. Drop our locks and wait for them to finish
6909 */
6910 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6911 if (ordered) {
6912 unlock_extent_cached(io_tree, page_start, page_end,
6913 &cached_state, GFP_NOFS);
6914 unlock_page(page);
6915 btrfs_start_ordered_extent(inode, ordered, 1);
6916 btrfs_put_ordered_extent(ordered);
6917 goto again;
6918 }
6919
6920 /*
6921 * XXX - page_mkwrite gets called every time the page is dirtied, even
6922 * if it was already dirty, so for space accounting reasons we need to
6923 * clear any delalloc bits for the range we are fixing to save. There
6924 * is probably a better way to do this, but for now keep consistent with
6925 * prepare_pages in the normal write path.
6926 */
6927 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6928 EXTENT_DIRTY | EXTENT_DELALLOC |
6929 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
6930 0, 0, &cached_state, GFP_NOFS);
6931
6932 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6933 &cached_state);
6934 if (ret) {
6935 unlock_extent_cached(io_tree, page_start, page_end,
6936 &cached_state, GFP_NOFS);
6937 ret = VM_FAULT_SIGBUS;
6938 goto out_unlock;
6939 }
6940 ret = 0;
6941
6942 /* page is wholly or partially inside EOF */
6943 if (page_start + PAGE_CACHE_SIZE > size)
6944 zero_start = size & ~PAGE_CACHE_MASK;
6945 else
6946 zero_start = PAGE_CACHE_SIZE;
6947
6948 if (zero_start != PAGE_CACHE_SIZE) {
6949 kaddr = kmap(page);
6950 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6951 flush_dcache_page(page);
6952 kunmap(page);
6953 }
6954 ClearPageChecked(page);
6955 set_page_dirty(page);
6956 SetPageUptodate(page);
6957
6958 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6959 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6960 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
6961
6962 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6963
6964 out_unlock:
6965 if (!ret) {
6966 sb_end_pagefault(inode->i_sb);
6967 return VM_FAULT_LOCKED;
6968 }
6969 unlock_page(page);
6970 out:
6971 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6972 out_noreserve:
6973 sb_end_pagefault(inode->i_sb);
6974 return ret;
6975 }
6976
6977 static int btrfs_truncate(struct inode *inode)
6978 {
6979 struct btrfs_root *root = BTRFS_I(inode)->root;
6980 struct btrfs_block_rsv *rsv;
6981 int ret;
6982 int err = 0;
6983 struct btrfs_trans_handle *trans;
6984 u64 mask = root->sectorsize - 1;
6985 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
6986
6987 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
6988 if (ret)
6989 return ret;
6990
6991 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6992 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6993
6994 /*
6995 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6996 * 3 things going on here
6997 *
6998 * 1) We need to reserve space for our orphan item and the space to
6999 * delete our orphan item. Lord knows we don't want to have a dangling
7000 * orphan item because we didn't reserve space to remove it.
7001 *
7002 * 2) We need to reserve space to update our inode.
7003 *
7004 * 3) We need to have something to cache all the space that is going to
7005 * be free'd up by the truncate operation, but also have some slack
7006 * space reserved in case it uses space during the truncate (thank you
7007 * very much snapshotting).
7008 *
7009 * And we need these to all be seperate. The fact is we can use alot of
7010 * space doing the truncate, and we have no earthly idea how much space
7011 * we will use, so we need the truncate reservation to be seperate so it
7012 * doesn't end up using space reserved for updating the inode or
7013 * removing the orphan item. We also need to be able to stop the
7014 * transaction and start a new one, which means we need to be able to
7015 * update the inode several times, and we have no idea of knowing how
7016 * many times that will be, so we can't just reserve 1 item for the
7017 * entirety of the opration, so that has to be done seperately as well.
7018 * Then there is the orphan item, which does indeed need to be held on
7019 * to for the whole operation, and we need nobody to touch this reserved
7020 * space except the orphan code.
7021 *
7022 * So that leaves us with
7023 *
7024 * 1) root->orphan_block_rsv - for the orphan deletion.
7025 * 2) rsv - for the truncate reservation, which we will steal from the
7026 * transaction reservation.
7027 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7028 * updating the inode.
7029 */
7030 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
7031 if (!rsv)
7032 return -ENOMEM;
7033 rsv->size = min_size;
7034 rsv->failfast = 1;
7035
7036 /*
7037 * 1 for the truncate slack space
7038 * 1 for updating the inode.
7039 */
7040 trans = btrfs_start_transaction(root, 2);
7041 if (IS_ERR(trans)) {
7042 err = PTR_ERR(trans);
7043 goto out;
7044 }
7045
7046 /* Migrate the slack space for the truncate to our reserve */
7047 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7048 min_size);
7049 BUG_ON(ret);
7050
7051 /*
7052 * setattr is responsible for setting the ordered_data_close flag,
7053 * but that is only tested during the last file release. That
7054 * could happen well after the next commit, leaving a great big
7055 * window where new writes may get lost if someone chooses to write
7056 * to this file after truncating to zero
7057 *
7058 * The inode doesn't have any dirty data here, and so if we commit
7059 * this is a noop. If someone immediately starts writing to the inode
7060 * it is very likely we'll catch some of their writes in this
7061 * transaction, and the commit will find this file on the ordered
7062 * data list with good things to send down.
7063 *
7064 * This is a best effort solution, there is still a window where
7065 * using truncate to replace the contents of the file will
7066 * end up with a zero length file after a crash.
7067 */
7068 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7069 &BTRFS_I(inode)->runtime_flags))
7070 btrfs_add_ordered_operation(trans, root, inode);
7071
7072 /*
7073 * So if we truncate and then write and fsync we normally would just
7074 * write the extents that changed, which is a problem if we need to
7075 * first truncate that entire inode. So set this flag so we write out
7076 * all of the extents in the inode to the sync log so we're completely
7077 * safe.
7078 */
7079 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
7080 trans->block_rsv = rsv;
7081
7082 while (1) {
7083 ret = btrfs_truncate_inode_items(trans, root, inode,
7084 inode->i_size,
7085 BTRFS_EXTENT_DATA_KEY);
7086 if (ret != -ENOSPC) {
7087 err = ret;
7088 break;
7089 }
7090
7091 trans->block_rsv = &root->fs_info->trans_block_rsv;
7092 ret = btrfs_update_inode(trans, root, inode);
7093 if (ret) {
7094 err = ret;
7095 break;
7096 }
7097
7098 btrfs_end_transaction(trans, root);
7099 btrfs_btree_balance_dirty(root);
7100
7101 trans = btrfs_start_transaction(root, 2);
7102 if (IS_ERR(trans)) {
7103 ret = err = PTR_ERR(trans);
7104 trans = NULL;
7105 break;
7106 }
7107
7108 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7109 rsv, min_size);
7110 BUG_ON(ret); /* shouldn't happen */
7111 trans->block_rsv = rsv;
7112 }
7113
7114 if (ret == 0 && inode->i_nlink > 0) {
7115 trans->block_rsv = root->orphan_block_rsv;
7116 ret = btrfs_orphan_del(trans, inode);
7117 if (ret)
7118 err = ret;
7119 }
7120
7121 if (trans) {
7122 trans->block_rsv = &root->fs_info->trans_block_rsv;
7123 ret = btrfs_update_inode(trans, root, inode);
7124 if (ret && !err)
7125 err = ret;
7126
7127 ret = btrfs_end_transaction(trans, root);
7128 btrfs_btree_balance_dirty(root);
7129 }
7130
7131 out:
7132 btrfs_free_block_rsv(root, rsv);
7133
7134 if (ret && !err)
7135 err = ret;
7136
7137 return err;
7138 }
7139
7140 /*
7141 * create a new subvolume directory/inode (helper for the ioctl).
7142 */
7143 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
7144 struct btrfs_root *new_root, u64 new_dirid)
7145 {
7146 struct inode *inode;
7147 int err;
7148 u64 index = 0;
7149
7150 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7151 new_dirid, new_dirid,
7152 S_IFDIR | (~current_umask() & S_IRWXUGO),
7153 &index);
7154 if (IS_ERR(inode))
7155 return PTR_ERR(inode);
7156 inode->i_op = &btrfs_dir_inode_operations;
7157 inode->i_fop = &btrfs_dir_file_operations;
7158
7159 set_nlink(inode, 1);
7160 btrfs_i_size_write(inode, 0);
7161
7162 err = btrfs_update_inode(trans, new_root, inode);
7163
7164 iput(inode);
7165 return err;
7166 }
7167
7168 struct inode *btrfs_alloc_inode(struct super_block *sb)
7169 {
7170 struct btrfs_inode *ei;
7171 struct inode *inode;
7172
7173 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7174 if (!ei)
7175 return NULL;
7176
7177 ei->root = NULL;
7178 ei->generation = 0;
7179 ei->last_trans = 0;
7180 ei->last_sub_trans = 0;
7181 ei->logged_trans = 0;
7182 ei->delalloc_bytes = 0;
7183 ei->disk_i_size = 0;
7184 ei->flags = 0;
7185 ei->csum_bytes = 0;
7186 ei->index_cnt = (u64)-1;
7187 ei->last_unlink_trans = 0;
7188 ei->last_log_commit = 0;
7189
7190 spin_lock_init(&ei->lock);
7191 ei->outstanding_extents = 0;
7192 ei->reserved_extents = 0;
7193
7194 ei->runtime_flags = 0;
7195 ei->force_compress = BTRFS_COMPRESS_NONE;
7196
7197 ei->delayed_node = NULL;
7198
7199 inode = &ei->vfs_inode;
7200 extent_map_tree_init(&ei->extent_tree);
7201 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7202 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
7203 ei->io_tree.track_uptodate = 1;
7204 ei->io_failure_tree.track_uptodate = 1;
7205 atomic_set(&ei->sync_writers, 0);
7206 mutex_init(&ei->log_mutex);
7207 mutex_init(&ei->delalloc_mutex);
7208 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7209 INIT_LIST_HEAD(&ei->delalloc_inodes);
7210 INIT_LIST_HEAD(&ei->ordered_operations);
7211 RB_CLEAR_NODE(&ei->rb_node);
7212
7213 return inode;
7214 }
7215
7216 static void btrfs_i_callback(struct rcu_head *head)
7217 {
7218 struct inode *inode = container_of(head, struct inode, i_rcu);
7219 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7220 }
7221
7222 void btrfs_destroy_inode(struct inode *inode)
7223 {
7224 struct btrfs_ordered_extent *ordered;
7225 struct btrfs_root *root = BTRFS_I(inode)->root;
7226
7227 WARN_ON(!hlist_empty(&inode->i_dentry));
7228 WARN_ON(inode->i_data.nrpages);
7229 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7230 WARN_ON(BTRFS_I(inode)->reserved_extents);
7231 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7232 WARN_ON(BTRFS_I(inode)->csum_bytes);
7233
7234 /*
7235 * This can happen where we create an inode, but somebody else also
7236 * created the same inode and we need to destroy the one we already
7237 * created.
7238 */
7239 if (!root)
7240 goto free;
7241
7242 /*
7243 * Make sure we're properly removed from the ordered operation
7244 * lists.
7245 */
7246 smp_mb();
7247 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7248 spin_lock(&root->fs_info->ordered_extent_lock);
7249 list_del_init(&BTRFS_I(inode)->ordered_operations);
7250 spin_unlock(&root->fs_info->ordered_extent_lock);
7251 }
7252
7253 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7254 &BTRFS_I(inode)->runtime_flags)) {
7255 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7256 (unsigned long long)btrfs_ino(inode));
7257 atomic_dec(&root->orphan_inodes);
7258 }
7259
7260 while (1) {
7261 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7262 if (!ordered)
7263 break;
7264 else {
7265 printk(KERN_ERR "btrfs found ordered "
7266 "extent %llu %llu on inode cleanup\n",
7267 (unsigned long long)ordered->file_offset,
7268 (unsigned long long)ordered->len);
7269 btrfs_remove_ordered_extent(inode, ordered);
7270 btrfs_put_ordered_extent(ordered);
7271 btrfs_put_ordered_extent(ordered);
7272 }
7273 }
7274 inode_tree_del(inode);
7275 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7276 free:
7277 btrfs_remove_delayed_node(inode);
7278 call_rcu(&inode->i_rcu, btrfs_i_callback);
7279 }
7280
7281 int btrfs_drop_inode(struct inode *inode)
7282 {
7283 struct btrfs_root *root = BTRFS_I(inode)->root;
7284
7285 if (btrfs_root_refs(&root->root_item) == 0 &&
7286 !btrfs_is_free_space_inode(inode))
7287 return 1;
7288 else
7289 return generic_drop_inode(inode);
7290 }
7291
7292 static void init_once(void *foo)
7293 {
7294 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7295
7296 inode_init_once(&ei->vfs_inode);
7297 }
7298
7299 void btrfs_destroy_cachep(void)
7300 {
7301 /*
7302 * Make sure all delayed rcu free inodes are flushed before we
7303 * destroy cache.
7304 */
7305 rcu_barrier();
7306 if (btrfs_inode_cachep)
7307 kmem_cache_destroy(btrfs_inode_cachep);
7308 if (btrfs_trans_handle_cachep)
7309 kmem_cache_destroy(btrfs_trans_handle_cachep);
7310 if (btrfs_transaction_cachep)
7311 kmem_cache_destroy(btrfs_transaction_cachep);
7312 if (btrfs_path_cachep)
7313 kmem_cache_destroy(btrfs_path_cachep);
7314 if (btrfs_free_space_cachep)
7315 kmem_cache_destroy(btrfs_free_space_cachep);
7316 if (btrfs_delalloc_work_cachep)
7317 kmem_cache_destroy(btrfs_delalloc_work_cachep);
7318 }
7319
7320 int btrfs_init_cachep(void)
7321 {
7322 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7323 sizeof(struct btrfs_inode), 0,
7324 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7325 if (!btrfs_inode_cachep)
7326 goto fail;
7327
7328 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
7329 sizeof(struct btrfs_trans_handle), 0,
7330 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7331 if (!btrfs_trans_handle_cachep)
7332 goto fail;
7333
7334 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
7335 sizeof(struct btrfs_transaction), 0,
7336 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7337 if (!btrfs_transaction_cachep)
7338 goto fail;
7339
7340 btrfs_path_cachep = kmem_cache_create("btrfs_path",
7341 sizeof(struct btrfs_path), 0,
7342 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7343 if (!btrfs_path_cachep)
7344 goto fail;
7345
7346 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
7347 sizeof(struct btrfs_free_space), 0,
7348 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7349 if (!btrfs_free_space_cachep)
7350 goto fail;
7351
7352 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7353 sizeof(struct btrfs_delalloc_work), 0,
7354 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7355 NULL);
7356 if (!btrfs_delalloc_work_cachep)
7357 goto fail;
7358
7359 return 0;
7360 fail:
7361 btrfs_destroy_cachep();
7362 return -ENOMEM;
7363 }
7364
7365 static int btrfs_getattr(struct vfsmount *mnt,
7366 struct dentry *dentry, struct kstat *stat)
7367 {
7368 u64 delalloc_bytes;
7369 struct inode *inode = dentry->d_inode;
7370 u32 blocksize = inode->i_sb->s_blocksize;
7371
7372 generic_fillattr(inode, stat);
7373 stat->dev = BTRFS_I(inode)->root->anon_dev;
7374 stat->blksize = PAGE_CACHE_SIZE;
7375
7376 spin_lock(&BTRFS_I(inode)->lock);
7377 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
7378 spin_unlock(&BTRFS_I(inode)->lock);
7379 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7380 ALIGN(delalloc_bytes, blocksize)) >> 9;
7381 return 0;
7382 }
7383
7384 /*
7385 * If a file is moved, it will inherit the cow and compression flags of the new
7386 * directory.
7387 */
7388 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7389 {
7390 struct btrfs_inode *b_dir = BTRFS_I(dir);
7391 struct btrfs_inode *b_inode = BTRFS_I(inode);
7392
7393 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7394 b_inode->flags |= BTRFS_INODE_NODATACOW;
7395 else
7396 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7397
7398 if (b_dir->flags & BTRFS_INODE_COMPRESS) {
7399 b_inode->flags |= BTRFS_INODE_COMPRESS;
7400 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
7401 } else {
7402 b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
7403 BTRFS_INODE_NOCOMPRESS);
7404 }
7405 }
7406
7407 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7408 struct inode *new_dir, struct dentry *new_dentry)
7409 {
7410 struct btrfs_trans_handle *trans;
7411 struct btrfs_root *root = BTRFS_I(old_dir)->root;
7412 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7413 struct inode *new_inode = new_dentry->d_inode;
7414 struct inode *old_inode = old_dentry->d_inode;
7415 struct timespec ctime = CURRENT_TIME;
7416 u64 index = 0;
7417 u64 root_objectid;
7418 int ret;
7419 u64 old_ino = btrfs_ino(old_inode);
7420
7421 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
7422 return -EPERM;
7423
7424 /* we only allow rename subvolume link between subvolumes */
7425 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
7426 return -EXDEV;
7427
7428 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7429 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
7430 return -ENOTEMPTY;
7431
7432 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7433 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7434 return -ENOTEMPTY;
7435
7436
7437 /* check for collisions, even if the name isn't there */
7438 ret = btrfs_check_dir_item_collision(root, new_dir->i_ino,
7439 new_dentry->d_name.name,
7440 new_dentry->d_name.len);
7441
7442 if (ret) {
7443 if (ret == -EEXIST) {
7444 /* we shouldn't get
7445 * eexist without a new_inode */
7446 if (!new_inode) {
7447 WARN_ON(1);
7448 return ret;
7449 }
7450 } else {
7451 /* maybe -EOVERFLOW */
7452 return ret;
7453 }
7454 }
7455 ret = 0;
7456
7457 /*
7458 * we're using rename to replace one file with another.
7459 * and the replacement file is large. Start IO on it now so
7460 * we don't add too much work to the end of the transaction
7461 */
7462 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
7463 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7464 filemap_flush(old_inode->i_mapping);
7465
7466 /* close the racy window with snapshot create/destroy ioctl */
7467 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7468 down_read(&root->fs_info->subvol_sem);
7469 /*
7470 * We want to reserve the absolute worst case amount of items. So if
7471 * both inodes are subvols and we need to unlink them then that would
7472 * require 4 item modifications, but if they are both normal inodes it
7473 * would require 5 item modifications, so we'll assume their normal
7474 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7475 * should cover the worst case number of items we'll modify.
7476 */
7477 trans = btrfs_start_transaction(root, 20);
7478 if (IS_ERR(trans)) {
7479 ret = PTR_ERR(trans);
7480 goto out_notrans;
7481 }
7482
7483 if (dest != root)
7484 btrfs_record_root_in_trans(trans, dest);
7485
7486 ret = btrfs_set_inode_index(new_dir, &index);
7487 if (ret)
7488 goto out_fail;
7489
7490 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7491 /* force full log commit if subvolume involved. */
7492 root->fs_info->last_trans_log_full_commit = trans->transid;
7493 } else {
7494 ret = btrfs_insert_inode_ref(trans, dest,
7495 new_dentry->d_name.name,
7496 new_dentry->d_name.len,
7497 old_ino,
7498 btrfs_ino(new_dir), index);
7499 if (ret)
7500 goto out_fail;
7501 /*
7502 * this is an ugly little race, but the rename is required
7503 * to make sure that if we crash, the inode is either at the
7504 * old name or the new one. pinning the log transaction lets
7505 * us make sure we don't allow a log commit to come in after
7506 * we unlink the name but before we add the new name back in.
7507 */
7508 btrfs_pin_log_trans(root);
7509 }
7510 /*
7511 * make sure the inode gets flushed if it is replacing
7512 * something.
7513 */
7514 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7515 btrfs_add_ordered_operation(trans, root, old_inode);
7516
7517 inode_inc_iversion(old_dir);
7518 inode_inc_iversion(new_dir);
7519 inode_inc_iversion(old_inode);
7520 old_dir->i_ctime = old_dir->i_mtime = ctime;
7521 new_dir->i_ctime = new_dir->i_mtime = ctime;
7522 old_inode->i_ctime = ctime;
7523
7524 if (old_dentry->d_parent != new_dentry->d_parent)
7525 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7526
7527 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7528 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7529 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7530 old_dentry->d_name.name,
7531 old_dentry->d_name.len);
7532 } else {
7533 ret = __btrfs_unlink_inode(trans, root, old_dir,
7534 old_dentry->d_inode,
7535 old_dentry->d_name.name,
7536 old_dentry->d_name.len);
7537 if (!ret)
7538 ret = btrfs_update_inode(trans, root, old_inode);
7539 }
7540 if (ret) {
7541 btrfs_abort_transaction(trans, root, ret);
7542 goto out_fail;
7543 }
7544
7545 if (new_inode) {
7546 inode_inc_iversion(new_inode);
7547 new_inode->i_ctime = CURRENT_TIME;
7548 if (unlikely(btrfs_ino(new_inode) ==
7549 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7550 root_objectid = BTRFS_I(new_inode)->location.objectid;
7551 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7552 root_objectid,
7553 new_dentry->d_name.name,
7554 new_dentry->d_name.len);
7555 BUG_ON(new_inode->i_nlink == 0);
7556 } else {
7557 ret = btrfs_unlink_inode(trans, dest, new_dir,
7558 new_dentry->d_inode,
7559 new_dentry->d_name.name,
7560 new_dentry->d_name.len);
7561 }
7562 if (!ret && new_inode->i_nlink == 0) {
7563 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7564 BUG_ON(ret);
7565 }
7566 if (ret) {
7567 btrfs_abort_transaction(trans, root, ret);
7568 goto out_fail;
7569 }
7570 }
7571
7572 fixup_inode_flags(new_dir, old_inode);
7573
7574 ret = btrfs_add_link(trans, new_dir, old_inode,
7575 new_dentry->d_name.name,
7576 new_dentry->d_name.len, 0, index);
7577 if (ret) {
7578 btrfs_abort_transaction(trans, root, ret);
7579 goto out_fail;
7580 }
7581
7582 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7583 struct dentry *parent = new_dentry->d_parent;
7584 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7585 btrfs_end_log_trans(root);
7586 }
7587 out_fail:
7588 btrfs_end_transaction(trans, root);
7589 out_notrans:
7590 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7591 up_read(&root->fs_info->subvol_sem);
7592
7593 return ret;
7594 }
7595
7596 static void btrfs_run_delalloc_work(struct btrfs_work *work)
7597 {
7598 struct btrfs_delalloc_work *delalloc_work;
7599
7600 delalloc_work = container_of(work, struct btrfs_delalloc_work,
7601 work);
7602 if (delalloc_work->wait)
7603 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
7604 else
7605 filemap_flush(delalloc_work->inode->i_mapping);
7606
7607 if (delalloc_work->delay_iput)
7608 btrfs_add_delayed_iput(delalloc_work->inode);
7609 else
7610 iput(delalloc_work->inode);
7611 complete(&delalloc_work->completion);
7612 }
7613
7614 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
7615 int wait, int delay_iput)
7616 {
7617 struct btrfs_delalloc_work *work;
7618
7619 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
7620 if (!work)
7621 return NULL;
7622
7623 init_completion(&work->completion);
7624 INIT_LIST_HEAD(&work->list);
7625 work->inode = inode;
7626 work->wait = wait;
7627 work->delay_iput = delay_iput;
7628 work->work.func = btrfs_run_delalloc_work;
7629
7630 return work;
7631 }
7632
7633 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
7634 {
7635 wait_for_completion(&work->completion);
7636 kmem_cache_free(btrfs_delalloc_work_cachep, work);
7637 }
7638
7639 /*
7640 * some fairly slow code that needs optimization. This walks the list
7641 * of all the inodes with pending delalloc and forces them to disk.
7642 */
7643 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7644 {
7645 struct btrfs_inode *binode;
7646 struct inode *inode;
7647 struct btrfs_delalloc_work *work, *next;
7648 struct list_head works;
7649 struct list_head splice;
7650 int ret = 0;
7651
7652 if (root->fs_info->sb->s_flags & MS_RDONLY)
7653 return -EROFS;
7654
7655 INIT_LIST_HEAD(&works);
7656 INIT_LIST_HEAD(&splice);
7657
7658 spin_lock(&root->fs_info->delalloc_lock);
7659 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
7660 while (!list_empty(&splice)) {
7661 binode = list_entry(splice.next, struct btrfs_inode,
7662 delalloc_inodes);
7663
7664 list_del_init(&binode->delalloc_inodes);
7665
7666 inode = igrab(&binode->vfs_inode);
7667 if (!inode) {
7668 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
7669 &binode->runtime_flags);
7670 continue;
7671 }
7672
7673 list_add_tail(&binode->delalloc_inodes,
7674 &root->fs_info->delalloc_inodes);
7675 spin_unlock(&root->fs_info->delalloc_lock);
7676
7677 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
7678 if (unlikely(!work)) {
7679 ret = -ENOMEM;
7680 goto out;
7681 }
7682 list_add_tail(&work->list, &works);
7683 btrfs_queue_worker(&root->fs_info->flush_workers,
7684 &work->work);
7685
7686 cond_resched();
7687 spin_lock(&root->fs_info->delalloc_lock);
7688 }
7689 spin_unlock(&root->fs_info->delalloc_lock);
7690
7691 list_for_each_entry_safe(work, next, &works, list) {
7692 list_del_init(&work->list);
7693 btrfs_wait_and_free_delalloc_work(work);
7694 }
7695
7696 /* the filemap_flush will queue IO into the worker threads, but
7697 * we have to make sure the IO is actually started and that
7698 * ordered extents get created before we return
7699 */
7700 atomic_inc(&root->fs_info->async_submit_draining);
7701 while (atomic_read(&root->fs_info->nr_async_submits) ||
7702 atomic_read(&root->fs_info->async_delalloc_pages)) {
7703 wait_event(root->fs_info->async_submit_wait,
7704 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7705 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7706 }
7707 atomic_dec(&root->fs_info->async_submit_draining);
7708 return 0;
7709 out:
7710 list_for_each_entry_safe(work, next, &works, list) {
7711 list_del_init(&work->list);
7712 btrfs_wait_and_free_delalloc_work(work);
7713 }
7714
7715 if (!list_empty_careful(&splice)) {
7716 spin_lock(&root->fs_info->delalloc_lock);
7717 list_splice_tail(&splice, &root->fs_info->delalloc_inodes);
7718 spin_unlock(&root->fs_info->delalloc_lock);
7719 }
7720 return ret;
7721 }
7722
7723 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7724 const char *symname)
7725 {
7726 struct btrfs_trans_handle *trans;
7727 struct btrfs_root *root = BTRFS_I(dir)->root;
7728 struct btrfs_path *path;
7729 struct btrfs_key key;
7730 struct inode *inode = NULL;
7731 int err;
7732 int drop_inode = 0;
7733 u64 objectid;
7734 u64 index = 0 ;
7735 int name_len;
7736 int datasize;
7737 unsigned long ptr;
7738 struct btrfs_file_extent_item *ei;
7739 struct extent_buffer *leaf;
7740
7741 name_len = strlen(symname) + 1;
7742 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7743 return -ENAMETOOLONG;
7744
7745 /*
7746 * 2 items for inode item and ref
7747 * 2 items for dir items
7748 * 1 item for xattr if selinux is on
7749 */
7750 trans = btrfs_start_transaction(root, 5);
7751 if (IS_ERR(trans))
7752 return PTR_ERR(trans);
7753
7754 err = btrfs_find_free_ino(root, &objectid);
7755 if (err)
7756 goto out_unlock;
7757
7758 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7759 dentry->d_name.len, btrfs_ino(dir), objectid,
7760 S_IFLNK|S_IRWXUGO, &index);
7761 if (IS_ERR(inode)) {
7762 err = PTR_ERR(inode);
7763 goto out_unlock;
7764 }
7765
7766 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7767 if (err) {
7768 drop_inode = 1;
7769 goto out_unlock;
7770 }
7771
7772 /*
7773 * If the active LSM wants to access the inode during
7774 * d_instantiate it needs these. Smack checks to see
7775 * if the filesystem supports xattrs by looking at the
7776 * ops vector.
7777 */
7778 inode->i_fop = &btrfs_file_operations;
7779 inode->i_op = &btrfs_file_inode_operations;
7780
7781 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7782 if (err)
7783 drop_inode = 1;
7784 else {
7785 inode->i_mapping->a_ops = &btrfs_aops;
7786 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7787 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7788 }
7789 if (drop_inode)
7790 goto out_unlock;
7791
7792 path = btrfs_alloc_path();
7793 if (!path) {
7794 err = -ENOMEM;
7795 drop_inode = 1;
7796 goto out_unlock;
7797 }
7798 key.objectid = btrfs_ino(inode);
7799 key.offset = 0;
7800 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7801 datasize = btrfs_file_extent_calc_inline_size(name_len);
7802 err = btrfs_insert_empty_item(trans, root, path, &key,
7803 datasize);
7804 if (err) {
7805 drop_inode = 1;
7806 btrfs_free_path(path);
7807 goto out_unlock;
7808 }
7809 leaf = path->nodes[0];
7810 ei = btrfs_item_ptr(leaf, path->slots[0],
7811 struct btrfs_file_extent_item);
7812 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7813 btrfs_set_file_extent_type(leaf, ei,
7814 BTRFS_FILE_EXTENT_INLINE);
7815 btrfs_set_file_extent_encryption(leaf, ei, 0);
7816 btrfs_set_file_extent_compression(leaf, ei, 0);
7817 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7818 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7819
7820 ptr = btrfs_file_extent_inline_start(ei);
7821 write_extent_buffer(leaf, symname, ptr, name_len);
7822 btrfs_mark_buffer_dirty(leaf);
7823 btrfs_free_path(path);
7824
7825 inode->i_op = &btrfs_symlink_inode_operations;
7826 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7827 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7828 inode_set_bytes(inode, name_len);
7829 btrfs_i_size_write(inode, name_len - 1);
7830 err = btrfs_update_inode(trans, root, inode);
7831 if (err)
7832 drop_inode = 1;
7833
7834 out_unlock:
7835 if (!err)
7836 d_instantiate(dentry, inode);
7837 btrfs_end_transaction(trans, root);
7838 if (drop_inode) {
7839 inode_dec_link_count(inode);
7840 iput(inode);
7841 }
7842 btrfs_btree_balance_dirty(root);
7843 return err;
7844 }
7845
7846 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7847 u64 start, u64 num_bytes, u64 min_size,
7848 loff_t actual_len, u64 *alloc_hint,
7849 struct btrfs_trans_handle *trans)
7850 {
7851 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7852 struct extent_map *em;
7853 struct btrfs_root *root = BTRFS_I(inode)->root;
7854 struct btrfs_key ins;
7855 u64 cur_offset = start;
7856 u64 i_size;
7857 int ret = 0;
7858 bool own_trans = true;
7859
7860 if (trans)
7861 own_trans = false;
7862 while (num_bytes > 0) {
7863 if (own_trans) {
7864 trans = btrfs_start_transaction(root, 3);
7865 if (IS_ERR(trans)) {
7866 ret = PTR_ERR(trans);
7867 break;
7868 }
7869 }
7870
7871 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7872 0, *alloc_hint, &ins, 1);
7873 if (ret) {
7874 if (own_trans)
7875 btrfs_end_transaction(trans, root);
7876 break;
7877 }
7878
7879 ret = insert_reserved_file_extent(trans, inode,
7880 cur_offset, ins.objectid,
7881 ins.offset, ins.offset,
7882 ins.offset, 0, 0, 0,
7883 BTRFS_FILE_EXTENT_PREALLOC);
7884 if (ret) {
7885 btrfs_abort_transaction(trans, root, ret);
7886 if (own_trans)
7887 btrfs_end_transaction(trans, root);
7888 break;
7889 }
7890 btrfs_drop_extent_cache(inode, cur_offset,
7891 cur_offset + ins.offset -1, 0);
7892
7893 em = alloc_extent_map();
7894 if (!em) {
7895 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
7896 &BTRFS_I(inode)->runtime_flags);
7897 goto next;
7898 }
7899
7900 em->start = cur_offset;
7901 em->orig_start = cur_offset;
7902 em->len = ins.offset;
7903 em->block_start = ins.objectid;
7904 em->block_len = ins.offset;
7905 em->orig_block_len = ins.offset;
7906 em->bdev = root->fs_info->fs_devices->latest_bdev;
7907 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7908 em->generation = trans->transid;
7909
7910 while (1) {
7911 write_lock(&em_tree->lock);
7912 ret = add_extent_mapping(em_tree, em);
7913 if (!ret)
7914 list_move(&em->list,
7915 &em_tree->modified_extents);
7916 write_unlock(&em_tree->lock);
7917 if (ret != -EEXIST)
7918 break;
7919 btrfs_drop_extent_cache(inode, cur_offset,
7920 cur_offset + ins.offset - 1,
7921 0);
7922 }
7923 free_extent_map(em);
7924 next:
7925 num_bytes -= ins.offset;
7926 cur_offset += ins.offset;
7927 *alloc_hint = ins.objectid + ins.offset;
7928
7929 inode_inc_iversion(inode);
7930 inode->i_ctime = CURRENT_TIME;
7931 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7932 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7933 (actual_len > inode->i_size) &&
7934 (cur_offset > inode->i_size)) {
7935 if (cur_offset > actual_len)
7936 i_size = actual_len;
7937 else
7938 i_size = cur_offset;
7939 i_size_write(inode, i_size);
7940 btrfs_ordered_update_i_size(inode, i_size, NULL);
7941 }
7942
7943 ret = btrfs_update_inode(trans, root, inode);
7944
7945 if (ret) {
7946 btrfs_abort_transaction(trans, root, ret);
7947 if (own_trans)
7948 btrfs_end_transaction(trans, root);
7949 break;
7950 }
7951
7952 if (own_trans)
7953 btrfs_end_transaction(trans, root);
7954 }
7955 return ret;
7956 }
7957
7958 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7959 u64 start, u64 num_bytes, u64 min_size,
7960 loff_t actual_len, u64 *alloc_hint)
7961 {
7962 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7963 min_size, actual_len, alloc_hint,
7964 NULL);
7965 }
7966
7967 int btrfs_prealloc_file_range_trans(struct inode *inode,
7968 struct btrfs_trans_handle *trans, int mode,
7969 u64 start, u64 num_bytes, u64 min_size,
7970 loff_t actual_len, u64 *alloc_hint)
7971 {
7972 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7973 min_size, actual_len, alloc_hint, trans);
7974 }
7975
7976 static int btrfs_set_page_dirty(struct page *page)
7977 {
7978 return __set_page_dirty_nobuffers(page);
7979 }
7980
7981 static int btrfs_permission(struct inode *inode, int mask)
7982 {
7983 struct btrfs_root *root = BTRFS_I(inode)->root;
7984 umode_t mode = inode->i_mode;
7985
7986 if (mask & MAY_WRITE &&
7987 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7988 if (btrfs_root_readonly(root))
7989 return -EROFS;
7990 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7991 return -EACCES;
7992 }
7993 return generic_permission(inode, mask);
7994 }
7995
7996 static const struct inode_operations btrfs_dir_inode_operations = {
7997 .getattr = btrfs_getattr,
7998 .lookup = btrfs_lookup,
7999 .create = btrfs_create,
8000 .unlink = btrfs_unlink,
8001 .link = btrfs_link,
8002 .mkdir = btrfs_mkdir,
8003 .rmdir = btrfs_rmdir,
8004 .rename = btrfs_rename,
8005 .symlink = btrfs_symlink,
8006 .setattr = btrfs_setattr,
8007 .mknod = btrfs_mknod,
8008 .setxattr = btrfs_setxattr,
8009 .getxattr = btrfs_getxattr,
8010 .listxattr = btrfs_listxattr,
8011 .removexattr = btrfs_removexattr,
8012 .permission = btrfs_permission,
8013 .get_acl = btrfs_get_acl,
8014 };
8015 static const struct inode_operations btrfs_dir_ro_inode_operations = {
8016 .lookup = btrfs_lookup,
8017 .permission = btrfs_permission,
8018 .get_acl = btrfs_get_acl,
8019 };
8020
8021 static const struct file_operations btrfs_dir_file_operations = {
8022 .llseek = generic_file_llseek,
8023 .read = generic_read_dir,
8024 .readdir = btrfs_real_readdir,
8025 .unlocked_ioctl = btrfs_ioctl,
8026 #ifdef CONFIG_COMPAT
8027 .compat_ioctl = btrfs_ioctl,
8028 #endif
8029 .release = btrfs_release_file,
8030 .fsync = btrfs_sync_file,
8031 };
8032
8033 static struct extent_io_ops btrfs_extent_io_ops = {
8034 .fill_delalloc = run_delalloc_range,
8035 .submit_bio_hook = btrfs_submit_bio_hook,
8036 .merge_bio_hook = btrfs_merge_bio_hook,
8037 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
8038 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
8039 .writepage_start_hook = btrfs_writepage_start_hook,
8040 .set_bit_hook = btrfs_set_bit_hook,
8041 .clear_bit_hook = btrfs_clear_bit_hook,
8042 .merge_extent_hook = btrfs_merge_extent_hook,
8043 .split_extent_hook = btrfs_split_extent_hook,
8044 };
8045
8046 /*
8047 * btrfs doesn't support the bmap operation because swapfiles
8048 * use bmap to make a mapping of extents in the file. They assume
8049 * these extents won't change over the life of the file and they
8050 * use the bmap result to do IO directly to the drive.
8051 *
8052 * the btrfs bmap call would return logical addresses that aren't
8053 * suitable for IO and they also will change frequently as COW
8054 * operations happen. So, swapfile + btrfs == corruption.
8055 *
8056 * For now we're avoiding this by dropping bmap.
8057 */
8058 static const struct address_space_operations btrfs_aops = {
8059 .readpage = btrfs_readpage,
8060 .writepage = btrfs_writepage,
8061 .writepages = btrfs_writepages,
8062 .readpages = btrfs_readpages,
8063 .direct_IO = btrfs_direct_IO,
8064 .invalidatepage = btrfs_invalidatepage,
8065 .releasepage = btrfs_releasepage,
8066 .set_page_dirty = btrfs_set_page_dirty,
8067 .error_remove_page = generic_error_remove_page,
8068 };
8069
8070 static const struct address_space_operations btrfs_symlink_aops = {
8071 .readpage = btrfs_readpage,
8072 .writepage = btrfs_writepage,
8073 .invalidatepage = btrfs_invalidatepage,
8074 .releasepage = btrfs_releasepage,
8075 };
8076
8077 static const struct inode_operations btrfs_file_inode_operations = {
8078 .getattr = btrfs_getattr,
8079 .setattr = btrfs_setattr,
8080 .setxattr = btrfs_setxattr,
8081 .getxattr = btrfs_getxattr,
8082 .listxattr = btrfs_listxattr,
8083 .removexattr = btrfs_removexattr,
8084 .permission = btrfs_permission,
8085 .fiemap = btrfs_fiemap,
8086 .get_acl = btrfs_get_acl,
8087 .update_time = btrfs_update_time,
8088 };
8089 static const struct inode_operations btrfs_special_inode_operations = {
8090 .getattr = btrfs_getattr,
8091 .setattr = btrfs_setattr,
8092 .permission = btrfs_permission,
8093 .setxattr = btrfs_setxattr,
8094 .getxattr = btrfs_getxattr,
8095 .listxattr = btrfs_listxattr,
8096 .removexattr = btrfs_removexattr,
8097 .get_acl = btrfs_get_acl,
8098 .update_time = btrfs_update_time,
8099 };
8100 static const struct inode_operations btrfs_symlink_inode_operations = {
8101 .readlink = generic_readlink,
8102 .follow_link = page_follow_link_light,
8103 .put_link = page_put_link,
8104 .getattr = btrfs_getattr,
8105 .setattr = btrfs_setattr,
8106 .permission = btrfs_permission,
8107 .setxattr = btrfs_setxattr,
8108 .getxattr = btrfs_getxattr,
8109 .listxattr = btrfs_listxattr,
8110 .removexattr = btrfs_removexattr,
8111 .get_acl = btrfs_get_acl,
8112 .update_time = btrfs_update_time,
8113 };
8114
8115 const struct dentry_operations btrfs_dentry_operations = {
8116 .d_delete = btrfs_dentry_delete,
8117 .d_release = btrfs_dentry_release,
8118 };
This page took 0.203131 seconds and 5 git commands to generate.