Merge branch 'dev/fst-followup' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63
64 struct btrfs_iget_args {
65 struct btrfs_key *location;
66 struct btrfs_root *root;
67 };
68
69 struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
74 };
75
76 static const struct inode_operations btrfs_dir_inode_operations;
77 static const struct inode_operations btrfs_symlink_inode_operations;
78 static const struct inode_operations btrfs_dir_ro_inode_operations;
79 static const struct inode_operations btrfs_special_inode_operations;
80 static const struct inode_operations btrfs_file_inode_operations;
81 static const struct address_space_operations btrfs_aops;
82 static const struct address_space_operations btrfs_symlink_aops;
83 static const struct file_operations btrfs_dir_file_operations;
84 static const struct extent_io_ops btrfs_extent_io_ops;
85
86 static struct kmem_cache *btrfs_inode_cachep;
87 struct kmem_cache *btrfs_trans_handle_cachep;
88 struct kmem_cache *btrfs_transaction_cachep;
89 struct kmem_cache *btrfs_path_cachep;
90 struct kmem_cache *btrfs_free_space_cachep;
91
92 #define S_SHIFT 12
93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101 };
102
103 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
104 static int btrfs_truncate(struct inode *inode);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
106 static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
108 u64 start, u64 end, int *page_started,
109 unsigned long *nr_written, int unlock);
110 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
111 u64 len, u64 orig_start,
112 u64 block_start, u64 block_len,
113 u64 orig_block_len, u64 ram_bytes,
114 int type);
115
116 static int btrfs_dirty_inode(struct inode *inode);
117
118 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
119 void btrfs_test_inode_set_ops(struct inode *inode)
120 {
121 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
122 }
123 #endif
124
125 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
126 struct inode *inode, struct inode *dir,
127 const struct qstr *qstr)
128 {
129 int err;
130
131 err = btrfs_init_acl(trans, inode, dir);
132 if (!err)
133 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
134 return err;
135 }
136
137 /*
138 * this does all the hard work for inserting an inline extent into
139 * the btree. The caller should have done a btrfs_drop_extents so that
140 * no overlapping inline items exist in the btree
141 */
142 static int insert_inline_extent(struct btrfs_trans_handle *trans,
143 struct btrfs_path *path, int extent_inserted,
144 struct btrfs_root *root, struct inode *inode,
145 u64 start, size_t size, size_t compressed_size,
146 int compress_type,
147 struct page **compressed_pages)
148 {
149 struct extent_buffer *leaf;
150 struct page *page = NULL;
151 char *kaddr;
152 unsigned long ptr;
153 struct btrfs_file_extent_item *ei;
154 int err = 0;
155 int ret;
156 size_t cur_size = size;
157 unsigned long offset;
158
159 if (compressed_size && compressed_pages)
160 cur_size = compressed_size;
161
162 inode_add_bytes(inode, size);
163
164 if (!extent_inserted) {
165 struct btrfs_key key;
166 size_t datasize;
167
168 key.objectid = btrfs_ino(inode);
169 key.offset = start;
170 key.type = BTRFS_EXTENT_DATA_KEY;
171
172 datasize = btrfs_file_extent_calc_inline_size(cur_size);
173 path->leave_spinning = 1;
174 ret = btrfs_insert_empty_item(trans, root, path, &key,
175 datasize);
176 if (ret) {
177 err = ret;
178 goto fail;
179 }
180 }
181 leaf = path->nodes[0];
182 ei = btrfs_item_ptr(leaf, path->slots[0],
183 struct btrfs_file_extent_item);
184 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
185 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
186 btrfs_set_file_extent_encryption(leaf, ei, 0);
187 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
188 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
189 ptr = btrfs_file_extent_inline_start(ei);
190
191 if (compress_type != BTRFS_COMPRESS_NONE) {
192 struct page *cpage;
193 int i = 0;
194 while (compressed_size > 0) {
195 cpage = compressed_pages[i];
196 cur_size = min_t(unsigned long, compressed_size,
197 PAGE_CACHE_SIZE);
198
199 kaddr = kmap_atomic(cpage);
200 write_extent_buffer(leaf, kaddr, ptr, cur_size);
201 kunmap_atomic(kaddr);
202
203 i++;
204 ptr += cur_size;
205 compressed_size -= cur_size;
206 }
207 btrfs_set_file_extent_compression(leaf, ei,
208 compress_type);
209 } else {
210 page = find_get_page(inode->i_mapping,
211 start >> PAGE_CACHE_SHIFT);
212 btrfs_set_file_extent_compression(leaf, ei, 0);
213 kaddr = kmap_atomic(page);
214 offset = start & (PAGE_CACHE_SIZE - 1);
215 write_extent_buffer(leaf, kaddr + offset, ptr, size);
216 kunmap_atomic(kaddr);
217 page_cache_release(page);
218 }
219 btrfs_mark_buffer_dirty(leaf);
220 btrfs_release_path(path);
221
222 /*
223 * we're an inline extent, so nobody can
224 * extend the file past i_size without locking
225 * a page we already have locked.
226 *
227 * We must do any isize and inode updates
228 * before we unlock the pages. Otherwise we
229 * could end up racing with unlink.
230 */
231 BTRFS_I(inode)->disk_i_size = inode->i_size;
232 ret = btrfs_update_inode(trans, root, inode);
233
234 return ret;
235 fail:
236 return err;
237 }
238
239
240 /*
241 * conditionally insert an inline extent into the file. This
242 * does the checks required to make sure the data is small enough
243 * to fit as an inline extent.
244 */
245 static noinline int cow_file_range_inline(struct btrfs_root *root,
246 struct inode *inode, u64 start,
247 u64 end, size_t compressed_size,
248 int compress_type,
249 struct page **compressed_pages)
250 {
251 struct btrfs_trans_handle *trans;
252 u64 isize = i_size_read(inode);
253 u64 actual_end = min(end + 1, isize);
254 u64 inline_len = actual_end - start;
255 u64 aligned_end = ALIGN(end, root->sectorsize);
256 u64 data_len = inline_len;
257 int ret;
258 struct btrfs_path *path;
259 int extent_inserted = 0;
260 u32 extent_item_size;
261
262 if (compressed_size)
263 data_len = compressed_size;
264
265 if (start > 0 ||
266 actual_end > PAGE_CACHE_SIZE ||
267 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
268 (!compressed_size &&
269 (actual_end & (root->sectorsize - 1)) == 0) ||
270 end + 1 < isize ||
271 data_len > root->fs_info->max_inline) {
272 return 1;
273 }
274
275 path = btrfs_alloc_path();
276 if (!path)
277 return -ENOMEM;
278
279 trans = btrfs_join_transaction(root);
280 if (IS_ERR(trans)) {
281 btrfs_free_path(path);
282 return PTR_ERR(trans);
283 }
284 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
285
286 if (compressed_size && compressed_pages)
287 extent_item_size = btrfs_file_extent_calc_inline_size(
288 compressed_size);
289 else
290 extent_item_size = btrfs_file_extent_calc_inline_size(
291 inline_len);
292
293 ret = __btrfs_drop_extents(trans, root, inode, path,
294 start, aligned_end, NULL,
295 1, 1, extent_item_size, &extent_inserted);
296 if (ret) {
297 btrfs_abort_transaction(trans, root, ret);
298 goto out;
299 }
300
301 if (isize > actual_end)
302 inline_len = min_t(u64, isize, actual_end);
303 ret = insert_inline_extent(trans, path, extent_inserted,
304 root, inode, start,
305 inline_len, compressed_size,
306 compress_type, compressed_pages);
307 if (ret && ret != -ENOSPC) {
308 btrfs_abort_transaction(trans, root, ret);
309 goto out;
310 } else if (ret == -ENOSPC) {
311 ret = 1;
312 goto out;
313 }
314
315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
316 btrfs_delalloc_release_metadata(inode, end + 1 - start);
317 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
318 out:
319 /*
320 * Don't forget to free the reserved space, as for inlined extent
321 * it won't count as data extent, free them directly here.
322 * And at reserve time, it's always aligned to page size, so
323 * just free one page here.
324 */
325 btrfs_qgroup_free_data(inode, 0, PAGE_CACHE_SIZE);
326 btrfs_free_path(path);
327 btrfs_end_transaction(trans, root);
328 return ret;
329 }
330
331 struct async_extent {
332 u64 start;
333 u64 ram_size;
334 u64 compressed_size;
335 struct page **pages;
336 unsigned long nr_pages;
337 int compress_type;
338 struct list_head list;
339 };
340
341 struct async_cow {
342 struct inode *inode;
343 struct btrfs_root *root;
344 struct page *locked_page;
345 u64 start;
346 u64 end;
347 struct list_head extents;
348 struct btrfs_work work;
349 };
350
351 static noinline int add_async_extent(struct async_cow *cow,
352 u64 start, u64 ram_size,
353 u64 compressed_size,
354 struct page **pages,
355 unsigned long nr_pages,
356 int compress_type)
357 {
358 struct async_extent *async_extent;
359
360 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
361 BUG_ON(!async_extent); /* -ENOMEM */
362 async_extent->start = start;
363 async_extent->ram_size = ram_size;
364 async_extent->compressed_size = compressed_size;
365 async_extent->pages = pages;
366 async_extent->nr_pages = nr_pages;
367 async_extent->compress_type = compress_type;
368 list_add_tail(&async_extent->list, &cow->extents);
369 return 0;
370 }
371
372 static inline int inode_need_compress(struct inode *inode)
373 {
374 struct btrfs_root *root = BTRFS_I(inode)->root;
375
376 /* force compress */
377 if (btrfs_test_opt(root, FORCE_COMPRESS))
378 return 1;
379 /* bad compression ratios */
380 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
381 return 0;
382 if (btrfs_test_opt(root, COMPRESS) ||
383 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
384 BTRFS_I(inode)->force_compress)
385 return 1;
386 return 0;
387 }
388
389 /*
390 * we create compressed extents in two phases. The first
391 * phase compresses a range of pages that have already been
392 * locked (both pages and state bits are locked).
393 *
394 * This is done inside an ordered work queue, and the compression
395 * is spread across many cpus. The actual IO submission is step
396 * two, and the ordered work queue takes care of making sure that
397 * happens in the same order things were put onto the queue by
398 * writepages and friends.
399 *
400 * If this code finds it can't get good compression, it puts an
401 * entry onto the work queue to write the uncompressed bytes. This
402 * makes sure that both compressed inodes and uncompressed inodes
403 * are written in the same order that the flusher thread sent them
404 * down.
405 */
406 static noinline void compress_file_range(struct inode *inode,
407 struct page *locked_page,
408 u64 start, u64 end,
409 struct async_cow *async_cow,
410 int *num_added)
411 {
412 struct btrfs_root *root = BTRFS_I(inode)->root;
413 u64 num_bytes;
414 u64 blocksize = root->sectorsize;
415 u64 actual_end;
416 u64 isize = i_size_read(inode);
417 int ret = 0;
418 struct page **pages = NULL;
419 unsigned long nr_pages;
420 unsigned long nr_pages_ret = 0;
421 unsigned long total_compressed = 0;
422 unsigned long total_in = 0;
423 unsigned long max_compressed = SZ_128K;
424 unsigned long max_uncompressed = SZ_128K;
425 int i;
426 int will_compress;
427 int compress_type = root->fs_info->compress_type;
428 int redirty = 0;
429
430 /* if this is a small write inside eof, kick off a defrag */
431 if ((end - start + 1) < SZ_16K &&
432 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
433 btrfs_add_inode_defrag(NULL, inode);
434
435 actual_end = min_t(u64, isize, end + 1);
436 again:
437 will_compress = 0;
438 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
439 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_CACHE_SIZE);
440
441 /*
442 * we don't want to send crud past the end of i_size through
443 * compression, that's just a waste of CPU time. So, if the
444 * end of the file is before the start of our current
445 * requested range of bytes, we bail out to the uncompressed
446 * cleanup code that can deal with all of this.
447 *
448 * It isn't really the fastest way to fix things, but this is a
449 * very uncommon corner.
450 */
451 if (actual_end <= start)
452 goto cleanup_and_bail_uncompressed;
453
454 total_compressed = actual_end - start;
455
456 /*
457 * skip compression for a small file range(<=blocksize) that
458 * isn't an inline extent, since it dosen't save disk space at all.
459 */
460 if (total_compressed <= blocksize &&
461 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
462 goto cleanup_and_bail_uncompressed;
463
464 /* we want to make sure that amount of ram required to uncompress
465 * an extent is reasonable, so we limit the total size in ram
466 * of a compressed extent to 128k. This is a crucial number
467 * because it also controls how easily we can spread reads across
468 * cpus for decompression.
469 *
470 * We also want to make sure the amount of IO required to do
471 * a random read is reasonably small, so we limit the size of
472 * a compressed extent to 128k.
473 */
474 total_compressed = min(total_compressed, max_uncompressed);
475 num_bytes = ALIGN(end - start + 1, blocksize);
476 num_bytes = max(blocksize, num_bytes);
477 total_in = 0;
478 ret = 0;
479
480 /*
481 * we do compression for mount -o compress and when the
482 * inode has not been flagged as nocompress. This flag can
483 * change at any time if we discover bad compression ratios.
484 */
485 if (inode_need_compress(inode)) {
486 WARN_ON(pages);
487 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
488 if (!pages) {
489 /* just bail out to the uncompressed code */
490 goto cont;
491 }
492
493 if (BTRFS_I(inode)->force_compress)
494 compress_type = BTRFS_I(inode)->force_compress;
495
496 /*
497 * we need to call clear_page_dirty_for_io on each
498 * page in the range. Otherwise applications with the file
499 * mmap'd can wander in and change the page contents while
500 * we are compressing them.
501 *
502 * If the compression fails for any reason, we set the pages
503 * dirty again later on.
504 */
505 extent_range_clear_dirty_for_io(inode, start, end);
506 redirty = 1;
507 ret = btrfs_compress_pages(compress_type,
508 inode->i_mapping, start,
509 total_compressed, pages,
510 nr_pages, &nr_pages_ret,
511 &total_in,
512 &total_compressed,
513 max_compressed);
514
515 if (!ret) {
516 unsigned long offset = total_compressed &
517 (PAGE_CACHE_SIZE - 1);
518 struct page *page = pages[nr_pages_ret - 1];
519 char *kaddr;
520
521 /* zero the tail end of the last page, we might be
522 * sending it down to disk
523 */
524 if (offset) {
525 kaddr = kmap_atomic(page);
526 memset(kaddr + offset, 0,
527 PAGE_CACHE_SIZE - offset);
528 kunmap_atomic(kaddr);
529 }
530 will_compress = 1;
531 }
532 }
533 cont:
534 if (start == 0) {
535 /* lets try to make an inline extent */
536 if (ret || total_in < (actual_end - start)) {
537 /* we didn't compress the entire range, try
538 * to make an uncompressed inline extent.
539 */
540 ret = cow_file_range_inline(root, inode, start, end,
541 0, 0, NULL);
542 } else {
543 /* try making a compressed inline extent */
544 ret = cow_file_range_inline(root, inode, start, end,
545 total_compressed,
546 compress_type, pages);
547 }
548 if (ret <= 0) {
549 unsigned long clear_flags = EXTENT_DELALLOC |
550 EXTENT_DEFRAG;
551 unsigned long page_error_op;
552
553 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
554 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
555
556 /*
557 * inline extent creation worked or returned error,
558 * we don't need to create any more async work items.
559 * Unlock and free up our temp pages.
560 */
561 extent_clear_unlock_delalloc(inode, start, end, NULL,
562 clear_flags, PAGE_UNLOCK |
563 PAGE_CLEAR_DIRTY |
564 PAGE_SET_WRITEBACK |
565 page_error_op |
566 PAGE_END_WRITEBACK);
567 goto free_pages_out;
568 }
569 }
570
571 if (will_compress) {
572 /*
573 * we aren't doing an inline extent round the compressed size
574 * up to a block size boundary so the allocator does sane
575 * things
576 */
577 total_compressed = ALIGN(total_compressed, blocksize);
578
579 /*
580 * one last check to make sure the compression is really a
581 * win, compare the page count read with the blocks on disk
582 */
583 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
584 if (total_compressed >= total_in) {
585 will_compress = 0;
586 } else {
587 num_bytes = total_in;
588 }
589 }
590 if (!will_compress && pages) {
591 /*
592 * the compression code ran but failed to make things smaller,
593 * free any pages it allocated and our page pointer array
594 */
595 for (i = 0; i < nr_pages_ret; i++) {
596 WARN_ON(pages[i]->mapping);
597 page_cache_release(pages[i]);
598 }
599 kfree(pages);
600 pages = NULL;
601 total_compressed = 0;
602 nr_pages_ret = 0;
603
604 /* flag the file so we don't compress in the future */
605 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
606 !(BTRFS_I(inode)->force_compress)) {
607 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
608 }
609 }
610 if (will_compress) {
611 *num_added += 1;
612
613 /* the async work queues will take care of doing actual
614 * allocation on disk for these compressed pages,
615 * and will submit them to the elevator.
616 */
617 add_async_extent(async_cow, start, num_bytes,
618 total_compressed, pages, nr_pages_ret,
619 compress_type);
620
621 if (start + num_bytes < end) {
622 start += num_bytes;
623 pages = NULL;
624 cond_resched();
625 goto again;
626 }
627 } else {
628 cleanup_and_bail_uncompressed:
629 /*
630 * No compression, but we still need to write the pages in
631 * the file we've been given so far. redirty the locked
632 * page if it corresponds to our extent and set things up
633 * for the async work queue to run cow_file_range to do
634 * the normal delalloc dance
635 */
636 if (page_offset(locked_page) >= start &&
637 page_offset(locked_page) <= end) {
638 __set_page_dirty_nobuffers(locked_page);
639 /* unlocked later on in the async handlers */
640 }
641 if (redirty)
642 extent_range_redirty_for_io(inode, start, end);
643 add_async_extent(async_cow, start, end - start + 1,
644 0, NULL, 0, BTRFS_COMPRESS_NONE);
645 *num_added += 1;
646 }
647
648 return;
649
650 free_pages_out:
651 for (i = 0; i < nr_pages_ret; i++) {
652 WARN_ON(pages[i]->mapping);
653 page_cache_release(pages[i]);
654 }
655 kfree(pages);
656 }
657
658 static void free_async_extent_pages(struct async_extent *async_extent)
659 {
660 int i;
661
662 if (!async_extent->pages)
663 return;
664
665 for (i = 0; i < async_extent->nr_pages; i++) {
666 WARN_ON(async_extent->pages[i]->mapping);
667 page_cache_release(async_extent->pages[i]);
668 }
669 kfree(async_extent->pages);
670 async_extent->nr_pages = 0;
671 async_extent->pages = NULL;
672 }
673
674 /*
675 * phase two of compressed writeback. This is the ordered portion
676 * of the code, which only gets called in the order the work was
677 * queued. We walk all the async extents created by compress_file_range
678 * and send them down to the disk.
679 */
680 static noinline void submit_compressed_extents(struct inode *inode,
681 struct async_cow *async_cow)
682 {
683 struct async_extent *async_extent;
684 u64 alloc_hint = 0;
685 struct btrfs_key ins;
686 struct extent_map *em;
687 struct btrfs_root *root = BTRFS_I(inode)->root;
688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
689 struct extent_io_tree *io_tree;
690 int ret = 0;
691
692 again:
693 while (!list_empty(&async_cow->extents)) {
694 async_extent = list_entry(async_cow->extents.next,
695 struct async_extent, list);
696 list_del(&async_extent->list);
697
698 io_tree = &BTRFS_I(inode)->io_tree;
699
700 retry:
701 /* did the compression code fall back to uncompressed IO? */
702 if (!async_extent->pages) {
703 int page_started = 0;
704 unsigned long nr_written = 0;
705
706 lock_extent(io_tree, async_extent->start,
707 async_extent->start +
708 async_extent->ram_size - 1);
709
710 /* allocate blocks */
711 ret = cow_file_range(inode, async_cow->locked_page,
712 async_extent->start,
713 async_extent->start +
714 async_extent->ram_size - 1,
715 &page_started, &nr_written, 0);
716
717 /* JDM XXX */
718
719 /*
720 * if page_started, cow_file_range inserted an
721 * inline extent and took care of all the unlocking
722 * and IO for us. Otherwise, we need to submit
723 * all those pages down to the drive.
724 */
725 if (!page_started && !ret)
726 extent_write_locked_range(io_tree,
727 inode, async_extent->start,
728 async_extent->start +
729 async_extent->ram_size - 1,
730 btrfs_get_extent,
731 WB_SYNC_ALL);
732 else if (ret)
733 unlock_page(async_cow->locked_page);
734 kfree(async_extent);
735 cond_resched();
736 continue;
737 }
738
739 lock_extent(io_tree, async_extent->start,
740 async_extent->start + async_extent->ram_size - 1);
741
742 ret = btrfs_reserve_extent(root,
743 async_extent->compressed_size,
744 async_extent->compressed_size,
745 0, alloc_hint, &ins, 1, 1);
746 if (ret) {
747 free_async_extent_pages(async_extent);
748
749 if (ret == -ENOSPC) {
750 unlock_extent(io_tree, async_extent->start,
751 async_extent->start +
752 async_extent->ram_size - 1);
753
754 /*
755 * we need to redirty the pages if we decide to
756 * fallback to uncompressed IO, otherwise we
757 * will not submit these pages down to lower
758 * layers.
759 */
760 extent_range_redirty_for_io(inode,
761 async_extent->start,
762 async_extent->start +
763 async_extent->ram_size - 1);
764
765 goto retry;
766 }
767 goto out_free;
768 }
769 /*
770 * here we're doing allocation and writeback of the
771 * compressed pages
772 */
773 btrfs_drop_extent_cache(inode, async_extent->start,
774 async_extent->start +
775 async_extent->ram_size - 1, 0);
776
777 em = alloc_extent_map();
778 if (!em) {
779 ret = -ENOMEM;
780 goto out_free_reserve;
781 }
782 em->start = async_extent->start;
783 em->len = async_extent->ram_size;
784 em->orig_start = em->start;
785 em->mod_start = em->start;
786 em->mod_len = em->len;
787
788 em->block_start = ins.objectid;
789 em->block_len = ins.offset;
790 em->orig_block_len = ins.offset;
791 em->ram_bytes = async_extent->ram_size;
792 em->bdev = root->fs_info->fs_devices->latest_bdev;
793 em->compress_type = async_extent->compress_type;
794 set_bit(EXTENT_FLAG_PINNED, &em->flags);
795 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
796 em->generation = -1;
797
798 while (1) {
799 write_lock(&em_tree->lock);
800 ret = add_extent_mapping(em_tree, em, 1);
801 write_unlock(&em_tree->lock);
802 if (ret != -EEXIST) {
803 free_extent_map(em);
804 break;
805 }
806 btrfs_drop_extent_cache(inode, async_extent->start,
807 async_extent->start +
808 async_extent->ram_size - 1, 0);
809 }
810
811 if (ret)
812 goto out_free_reserve;
813
814 ret = btrfs_add_ordered_extent_compress(inode,
815 async_extent->start,
816 ins.objectid,
817 async_extent->ram_size,
818 ins.offset,
819 BTRFS_ORDERED_COMPRESSED,
820 async_extent->compress_type);
821 if (ret) {
822 btrfs_drop_extent_cache(inode, async_extent->start,
823 async_extent->start +
824 async_extent->ram_size - 1, 0);
825 goto out_free_reserve;
826 }
827
828 /*
829 * clear dirty, set writeback and unlock the pages.
830 */
831 extent_clear_unlock_delalloc(inode, async_extent->start,
832 async_extent->start +
833 async_extent->ram_size - 1,
834 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
835 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
836 PAGE_SET_WRITEBACK);
837 ret = btrfs_submit_compressed_write(inode,
838 async_extent->start,
839 async_extent->ram_size,
840 ins.objectid,
841 ins.offset, async_extent->pages,
842 async_extent->nr_pages);
843 if (ret) {
844 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
845 struct page *p = async_extent->pages[0];
846 const u64 start = async_extent->start;
847 const u64 end = start + async_extent->ram_size - 1;
848
849 p->mapping = inode->i_mapping;
850 tree->ops->writepage_end_io_hook(p, start, end,
851 NULL, 0);
852 p->mapping = NULL;
853 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
854 PAGE_END_WRITEBACK |
855 PAGE_SET_ERROR);
856 free_async_extent_pages(async_extent);
857 }
858 alloc_hint = ins.objectid + ins.offset;
859 kfree(async_extent);
860 cond_resched();
861 }
862 return;
863 out_free_reserve:
864 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
865 out_free:
866 extent_clear_unlock_delalloc(inode, async_extent->start,
867 async_extent->start +
868 async_extent->ram_size - 1,
869 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
870 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
871 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
872 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
873 PAGE_SET_ERROR);
874 free_async_extent_pages(async_extent);
875 kfree(async_extent);
876 goto again;
877 }
878
879 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
880 u64 num_bytes)
881 {
882 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
883 struct extent_map *em;
884 u64 alloc_hint = 0;
885
886 read_lock(&em_tree->lock);
887 em = search_extent_mapping(em_tree, start, num_bytes);
888 if (em) {
889 /*
890 * if block start isn't an actual block number then find the
891 * first block in this inode and use that as a hint. If that
892 * block is also bogus then just don't worry about it.
893 */
894 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
895 free_extent_map(em);
896 em = search_extent_mapping(em_tree, 0, 0);
897 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
898 alloc_hint = em->block_start;
899 if (em)
900 free_extent_map(em);
901 } else {
902 alloc_hint = em->block_start;
903 free_extent_map(em);
904 }
905 }
906 read_unlock(&em_tree->lock);
907
908 return alloc_hint;
909 }
910
911 /*
912 * when extent_io.c finds a delayed allocation range in the file,
913 * the call backs end up in this code. The basic idea is to
914 * allocate extents on disk for the range, and create ordered data structs
915 * in ram to track those extents.
916 *
917 * locked_page is the page that writepage had locked already. We use
918 * it to make sure we don't do extra locks or unlocks.
919 *
920 * *page_started is set to one if we unlock locked_page and do everything
921 * required to start IO on it. It may be clean and already done with
922 * IO when we return.
923 */
924 static noinline int cow_file_range(struct inode *inode,
925 struct page *locked_page,
926 u64 start, u64 end, int *page_started,
927 unsigned long *nr_written,
928 int unlock)
929 {
930 struct btrfs_root *root = BTRFS_I(inode)->root;
931 u64 alloc_hint = 0;
932 u64 num_bytes;
933 unsigned long ram_size;
934 u64 disk_num_bytes;
935 u64 cur_alloc_size;
936 u64 blocksize = root->sectorsize;
937 struct btrfs_key ins;
938 struct extent_map *em;
939 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
940 int ret = 0;
941
942 if (btrfs_is_free_space_inode(inode)) {
943 WARN_ON_ONCE(1);
944 ret = -EINVAL;
945 goto out_unlock;
946 }
947
948 num_bytes = ALIGN(end - start + 1, blocksize);
949 num_bytes = max(blocksize, num_bytes);
950 disk_num_bytes = num_bytes;
951
952 /* if this is a small write inside eof, kick off defrag */
953 if (num_bytes < SZ_64K &&
954 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
955 btrfs_add_inode_defrag(NULL, inode);
956
957 if (start == 0) {
958 /* lets try to make an inline extent */
959 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
960 NULL);
961 if (ret == 0) {
962 extent_clear_unlock_delalloc(inode, start, end, NULL,
963 EXTENT_LOCKED | EXTENT_DELALLOC |
964 EXTENT_DEFRAG, PAGE_UNLOCK |
965 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
966 PAGE_END_WRITEBACK);
967
968 *nr_written = *nr_written +
969 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
970 *page_started = 1;
971 goto out;
972 } else if (ret < 0) {
973 goto out_unlock;
974 }
975 }
976
977 BUG_ON(disk_num_bytes >
978 btrfs_super_total_bytes(root->fs_info->super_copy));
979
980 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
981 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
982
983 while (disk_num_bytes > 0) {
984 unsigned long op;
985
986 cur_alloc_size = disk_num_bytes;
987 ret = btrfs_reserve_extent(root, cur_alloc_size,
988 root->sectorsize, 0, alloc_hint,
989 &ins, 1, 1);
990 if (ret < 0)
991 goto out_unlock;
992
993 em = alloc_extent_map();
994 if (!em) {
995 ret = -ENOMEM;
996 goto out_reserve;
997 }
998 em->start = start;
999 em->orig_start = em->start;
1000 ram_size = ins.offset;
1001 em->len = ins.offset;
1002 em->mod_start = em->start;
1003 em->mod_len = em->len;
1004
1005 em->block_start = ins.objectid;
1006 em->block_len = ins.offset;
1007 em->orig_block_len = ins.offset;
1008 em->ram_bytes = ram_size;
1009 em->bdev = root->fs_info->fs_devices->latest_bdev;
1010 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1011 em->generation = -1;
1012
1013 while (1) {
1014 write_lock(&em_tree->lock);
1015 ret = add_extent_mapping(em_tree, em, 1);
1016 write_unlock(&em_tree->lock);
1017 if (ret != -EEXIST) {
1018 free_extent_map(em);
1019 break;
1020 }
1021 btrfs_drop_extent_cache(inode, start,
1022 start + ram_size - 1, 0);
1023 }
1024 if (ret)
1025 goto out_reserve;
1026
1027 cur_alloc_size = ins.offset;
1028 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1029 ram_size, cur_alloc_size, 0);
1030 if (ret)
1031 goto out_drop_extent_cache;
1032
1033 if (root->root_key.objectid ==
1034 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1035 ret = btrfs_reloc_clone_csums(inode, start,
1036 cur_alloc_size);
1037 if (ret)
1038 goto out_drop_extent_cache;
1039 }
1040
1041 if (disk_num_bytes < cur_alloc_size)
1042 break;
1043
1044 /* we're not doing compressed IO, don't unlock the first
1045 * page (which the caller expects to stay locked), don't
1046 * clear any dirty bits and don't set any writeback bits
1047 *
1048 * Do set the Private2 bit so we know this page was properly
1049 * setup for writepage
1050 */
1051 op = unlock ? PAGE_UNLOCK : 0;
1052 op |= PAGE_SET_PRIVATE2;
1053
1054 extent_clear_unlock_delalloc(inode, start,
1055 start + ram_size - 1, locked_page,
1056 EXTENT_LOCKED | EXTENT_DELALLOC,
1057 op);
1058 disk_num_bytes -= cur_alloc_size;
1059 num_bytes -= cur_alloc_size;
1060 alloc_hint = ins.objectid + ins.offset;
1061 start += cur_alloc_size;
1062 }
1063 out:
1064 return ret;
1065
1066 out_drop_extent_cache:
1067 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1068 out_reserve:
1069 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1070 out_unlock:
1071 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1072 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1073 EXTENT_DELALLOC | EXTENT_DEFRAG,
1074 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1075 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1076 goto out;
1077 }
1078
1079 /*
1080 * work queue call back to started compression on a file and pages
1081 */
1082 static noinline void async_cow_start(struct btrfs_work *work)
1083 {
1084 struct async_cow *async_cow;
1085 int num_added = 0;
1086 async_cow = container_of(work, struct async_cow, work);
1087
1088 compress_file_range(async_cow->inode, async_cow->locked_page,
1089 async_cow->start, async_cow->end, async_cow,
1090 &num_added);
1091 if (num_added == 0) {
1092 btrfs_add_delayed_iput(async_cow->inode);
1093 async_cow->inode = NULL;
1094 }
1095 }
1096
1097 /*
1098 * work queue call back to submit previously compressed pages
1099 */
1100 static noinline void async_cow_submit(struct btrfs_work *work)
1101 {
1102 struct async_cow *async_cow;
1103 struct btrfs_root *root;
1104 unsigned long nr_pages;
1105
1106 async_cow = container_of(work, struct async_cow, work);
1107
1108 root = async_cow->root;
1109 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1110 PAGE_CACHE_SHIFT;
1111
1112 /*
1113 * atomic_sub_return implies a barrier for waitqueue_active
1114 */
1115 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1116 5 * SZ_1M &&
1117 waitqueue_active(&root->fs_info->async_submit_wait))
1118 wake_up(&root->fs_info->async_submit_wait);
1119
1120 if (async_cow->inode)
1121 submit_compressed_extents(async_cow->inode, async_cow);
1122 }
1123
1124 static noinline void async_cow_free(struct btrfs_work *work)
1125 {
1126 struct async_cow *async_cow;
1127 async_cow = container_of(work, struct async_cow, work);
1128 if (async_cow->inode)
1129 btrfs_add_delayed_iput(async_cow->inode);
1130 kfree(async_cow);
1131 }
1132
1133 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1134 u64 start, u64 end, int *page_started,
1135 unsigned long *nr_written)
1136 {
1137 struct async_cow *async_cow;
1138 struct btrfs_root *root = BTRFS_I(inode)->root;
1139 unsigned long nr_pages;
1140 u64 cur_end;
1141 int limit = 10 * SZ_1M;
1142
1143 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1144 1, 0, NULL, GFP_NOFS);
1145 while (start < end) {
1146 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1147 BUG_ON(!async_cow); /* -ENOMEM */
1148 async_cow->inode = igrab(inode);
1149 async_cow->root = root;
1150 async_cow->locked_page = locked_page;
1151 async_cow->start = start;
1152
1153 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1154 !btrfs_test_opt(root, FORCE_COMPRESS))
1155 cur_end = end;
1156 else
1157 cur_end = min(end, start + SZ_512K - 1);
1158
1159 async_cow->end = cur_end;
1160 INIT_LIST_HEAD(&async_cow->extents);
1161
1162 btrfs_init_work(&async_cow->work,
1163 btrfs_delalloc_helper,
1164 async_cow_start, async_cow_submit,
1165 async_cow_free);
1166
1167 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1168 PAGE_CACHE_SHIFT;
1169 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1170
1171 btrfs_queue_work(root->fs_info->delalloc_workers,
1172 &async_cow->work);
1173
1174 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1175 wait_event(root->fs_info->async_submit_wait,
1176 (atomic_read(&root->fs_info->async_delalloc_pages) <
1177 limit));
1178 }
1179
1180 while (atomic_read(&root->fs_info->async_submit_draining) &&
1181 atomic_read(&root->fs_info->async_delalloc_pages)) {
1182 wait_event(root->fs_info->async_submit_wait,
1183 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1184 0));
1185 }
1186
1187 *nr_written += nr_pages;
1188 start = cur_end + 1;
1189 }
1190 *page_started = 1;
1191 return 0;
1192 }
1193
1194 static noinline int csum_exist_in_range(struct btrfs_root *root,
1195 u64 bytenr, u64 num_bytes)
1196 {
1197 int ret;
1198 struct btrfs_ordered_sum *sums;
1199 LIST_HEAD(list);
1200
1201 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1202 bytenr + num_bytes - 1, &list, 0);
1203 if (ret == 0 && list_empty(&list))
1204 return 0;
1205
1206 while (!list_empty(&list)) {
1207 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1208 list_del(&sums->list);
1209 kfree(sums);
1210 }
1211 return 1;
1212 }
1213
1214 /*
1215 * when nowcow writeback call back. This checks for snapshots or COW copies
1216 * of the extents that exist in the file, and COWs the file as required.
1217 *
1218 * If no cow copies or snapshots exist, we write directly to the existing
1219 * blocks on disk
1220 */
1221 static noinline int run_delalloc_nocow(struct inode *inode,
1222 struct page *locked_page,
1223 u64 start, u64 end, int *page_started, int force,
1224 unsigned long *nr_written)
1225 {
1226 struct btrfs_root *root = BTRFS_I(inode)->root;
1227 struct btrfs_trans_handle *trans;
1228 struct extent_buffer *leaf;
1229 struct btrfs_path *path;
1230 struct btrfs_file_extent_item *fi;
1231 struct btrfs_key found_key;
1232 u64 cow_start;
1233 u64 cur_offset;
1234 u64 extent_end;
1235 u64 extent_offset;
1236 u64 disk_bytenr;
1237 u64 num_bytes;
1238 u64 disk_num_bytes;
1239 u64 ram_bytes;
1240 int extent_type;
1241 int ret, err;
1242 int type;
1243 int nocow;
1244 int check_prev = 1;
1245 bool nolock;
1246 u64 ino = btrfs_ino(inode);
1247
1248 path = btrfs_alloc_path();
1249 if (!path) {
1250 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1251 EXTENT_LOCKED | EXTENT_DELALLOC |
1252 EXTENT_DO_ACCOUNTING |
1253 EXTENT_DEFRAG, PAGE_UNLOCK |
1254 PAGE_CLEAR_DIRTY |
1255 PAGE_SET_WRITEBACK |
1256 PAGE_END_WRITEBACK);
1257 return -ENOMEM;
1258 }
1259
1260 nolock = btrfs_is_free_space_inode(inode);
1261
1262 if (nolock)
1263 trans = btrfs_join_transaction_nolock(root);
1264 else
1265 trans = btrfs_join_transaction(root);
1266
1267 if (IS_ERR(trans)) {
1268 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1269 EXTENT_LOCKED | EXTENT_DELALLOC |
1270 EXTENT_DO_ACCOUNTING |
1271 EXTENT_DEFRAG, PAGE_UNLOCK |
1272 PAGE_CLEAR_DIRTY |
1273 PAGE_SET_WRITEBACK |
1274 PAGE_END_WRITEBACK);
1275 btrfs_free_path(path);
1276 return PTR_ERR(trans);
1277 }
1278
1279 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1280
1281 cow_start = (u64)-1;
1282 cur_offset = start;
1283 while (1) {
1284 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1285 cur_offset, 0);
1286 if (ret < 0)
1287 goto error;
1288 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1289 leaf = path->nodes[0];
1290 btrfs_item_key_to_cpu(leaf, &found_key,
1291 path->slots[0] - 1);
1292 if (found_key.objectid == ino &&
1293 found_key.type == BTRFS_EXTENT_DATA_KEY)
1294 path->slots[0]--;
1295 }
1296 check_prev = 0;
1297 next_slot:
1298 leaf = path->nodes[0];
1299 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1300 ret = btrfs_next_leaf(root, path);
1301 if (ret < 0)
1302 goto error;
1303 if (ret > 0)
1304 break;
1305 leaf = path->nodes[0];
1306 }
1307
1308 nocow = 0;
1309 disk_bytenr = 0;
1310 num_bytes = 0;
1311 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1312
1313 if (found_key.objectid > ino)
1314 break;
1315 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1316 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1317 path->slots[0]++;
1318 goto next_slot;
1319 }
1320 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1321 found_key.offset > end)
1322 break;
1323
1324 if (found_key.offset > cur_offset) {
1325 extent_end = found_key.offset;
1326 extent_type = 0;
1327 goto out_check;
1328 }
1329
1330 fi = btrfs_item_ptr(leaf, path->slots[0],
1331 struct btrfs_file_extent_item);
1332 extent_type = btrfs_file_extent_type(leaf, fi);
1333
1334 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1335 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1336 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1337 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1338 extent_offset = btrfs_file_extent_offset(leaf, fi);
1339 extent_end = found_key.offset +
1340 btrfs_file_extent_num_bytes(leaf, fi);
1341 disk_num_bytes =
1342 btrfs_file_extent_disk_num_bytes(leaf, fi);
1343 if (extent_end <= start) {
1344 path->slots[0]++;
1345 goto next_slot;
1346 }
1347 if (disk_bytenr == 0)
1348 goto out_check;
1349 if (btrfs_file_extent_compression(leaf, fi) ||
1350 btrfs_file_extent_encryption(leaf, fi) ||
1351 btrfs_file_extent_other_encoding(leaf, fi))
1352 goto out_check;
1353 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1354 goto out_check;
1355 if (btrfs_extent_readonly(root, disk_bytenr))
1356 goto out_check;
1357 if (btrfs_cross_ref_exist(trans, root, ino,
1358 found_key.offset -
1359 extent_offset, disk_bytenr))
1360 goto out_check;
1361 disk_bytenr += extent_offset;
1362 disk_bytenr += cur_offset - found_key.offset;
1363 num_bytes = min(end + 1, extent_end) - cur_offset;
1364 /*
1365 * if there are pending snapshots for this root,
1366 * we fall into common COW way.
1367 */
1368 if (!nolock) {
1369 err = btrfs_start_write_no_snapshoting(root);
1370 if (!err)
1371 goto out_check;
1372 }
1373 /*
1374 * force cow if csum exists in the range.
1375 * this ensure that csum for a given extent are
1376 * either valid or do not exist.
1377 */
1378 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1379 goto out_check;
1380 nocow = 1;
1381 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1382 extent_end = found_key.offset +
1383 btrfs_file_extent_inline_len(leaf,
1384 path->slots[0], fi);
1385 extent_end = ALIGN(extent_end, root->sectorsize);
1386 } else {
1387 BUG_ON(1);
1388 }
1389 out_check:
1390 if (extent_end <= start) {
1391 path->slots[0]++;
1392 if (!nolock && nocow)
1393 btrfs_end_write_no_snapshoting(root);
1394 goto next_slot;
1395 }
1396 if (!nocow) {
1397 if (cow_start == (u64)-1)
1398 cow_start = cur_offset;
1399 cur_offset = extent_end;
1400 if (cur_offset > end)
1401 break;
1402 path->slots[0]++;
1403 goto next_slot;
1404 }
1405
1406 btrfs_release_path(path);
1407 if (cow_start != (u64)-1) {
1408 ret = cow_file_range(inode, locked_page,
1409 cow_start, found_key.offset - 1,
1410 page_started, nr_written, 1);
1411 if (ret) {
1412 if (!nolock && nocow)
1413 btrfs_end_write_no_snapshoting(root);
1414 goto error;
1415 }
1416 cow_start = (u64)-1;
1417 }
1418
1419 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1420 struct extent_map *em;
1421 struct extent_map_tree *em_tree;
1422 em_tree = &BTRFS_I(inode)->extent_tree;
1423 em = alloc_extent_map();
1424 BUG_ON(!em); /* -ENOMEM */
1425 em->start = cur_offset;
1426 em->orig_start = found_key.offset - extent_offset;
1427 em->len = num_bytes;
1428 em->block_len = num_bytes;
1429 em->block_start = disk_bytenr;
1430 em->orig_block_len = disk_num_bytes;
1431 em->ram_bytes = ram_bytes;
1432 em->bdev = root->fs_info->fs_devices->latest_bdev;
1433 em->mod_start = em->start;
1434 em->mod_len = em->len;
1435 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1436 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1437 em->generation = -1;
1438 while (1) {
1439 write_lock(&em_tree->lock);
1440 ret = add_extent_mapping(em_tree, em, 1);
1441 write_unlock(&em_tree->lock);
1442 if (ret != -EEXIST) {
1443 free_extent_map(em);
1444 break;
1445 }
1446 btrfs_drop_extent_cache(inode, em->start,
1447 em->start + em->len - 1, 0);
1448 }
1449 type = BTRFS_ORDERED_PREALLOC;
1450 } else {
1451 type = BTRFS_ORDERED_NOCOW;
1452 }
1453
1454 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1455 num_bytes, num_bytes, type);
1456 BUG_ON(ret); /* -ENOMEM */
1457
1458 if (root->root_key.objectid ==
1459 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1460 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1461 num_bytes);
1462 if (ret) {
1463 if (!nolock && nocow)
1464 btrfs_end_write_no_snapshoting(root);
1465 goto error;
1466 }
1467 }
1468
1469 extent_clear_unlock_delalloc(inode, cur_offset,
1470 cur_offset + num_bytes - 1,
1471 locked_page, EXTENT_LOCKED |
1472 EXTENT_DELALLOC, PAGE_UNLOCK |
1473 PAGE_SET_PRIVATE2);
1474 if (!nolock && nocow)
1475 btrfs_end_write_no_snapshoting(root);
1476 cur_offset = extent_end;
1477 if (cur_offset > end)
1478 break;
1479 }
1480 btrfs_release_path(path);
1481
1482 if (cur_offset <= end && cow_start == (u64)-1) {
1483 cow_start = cur_offset;
1484 cur_offset = end;
1485 }
1486
1487 if (cow_start != (u64)-1) {
1488 ret = cow_file_range(inode, locked_page, cow_start, end,
1489 page_started, nr_written, 1);
1490 if (ret)
1491 goto error;
1492 }
1493
1494 error:
1495 err = btrfs_end_transaction(trans, root);
1496 if (!ret)
1497 ret = err;
1498
1499 if (ret && cur_offset < end)
1500 extent_clear_unlock_delalloc(inode, cur_offset, end,
1501 locked_page, EXTENT_LOCKED |
1502 EXTENT_DELALLOC | EXTENT_DEFRAG |
1503 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1504 PAGE_CLEAR_DIRTY |
1505 PAGE_SET_WRITEBACK |
1506 PAGE_END_WRITEBACK);
1507 btrfs_free_path(path);
1508 return ret;
1509 }
1510
1511 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1512 {
1513
1514 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1515 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1516 return 0;
1517
1518 /*
1519 * @defrag_bytes is a hint value, no spinlock held here,
1520 * if is not zero, it means the file is defragging.
1521 * Force cow if given extent needs to be defragged.
1522 */
1523 if (BTRFS_I(inode)->defrag_bytes &&
1524 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1525 EXTENT_DEFRAG, 0, NULL))
1526 return 1;
1527
1528 return 0;
1529 }
1530
1531 /*
1532 * extent_io.c call back to do delayed allocation processing
1533 */
1534 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1535 u64 start, u64 end, int *page_started,
1536 unsigned long *nr_written)
1537 {
1538 int ret;
1539 int force_cow = need_force_cow(inode, start, end);
1540
1541 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1542 ret = run_delalloc_nocow(inode, locked_page, start, end,
1543 page_started, 1, nr_written);
1544 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1545 ret = run_delalloc_nocow(inode, locked_page, start, end,
1546 page_started, 0, nr_written);
1547 } else if (!inode_need_compress(inode)) {
1548 ret = cow_file_range(inode, locked_page, start, end,
1549 page_started, nr_written, 1);
1550 } else {
1551 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1552 &BTRFS_I(inode)->runtime_flags);
1553 ret = cow_file_range_async(inode, locked_page, start, end,
1554 page_started, nr_written);
1555 }
1556 return ret;
1557 }
1558
1559 static void btrfs_split_extent_hook(struct inode *inode,
1560 struct extent_state *orig, u64 split)
1561 {
1562 u64 size;
1563
1564 /* not delalloc, ignore it */
1565 if (!(orig->state & EXTENT_DELALLOC))
1566 return;
1567
1568 size = orig->end - orig->start + 1;
1569 if (size > BTRFS_MAX_EXTENT_SIZE) {
1570 u64 num_extents;
1571 u64 new_size;
1572
1573 /*
1574 * See the explanation in btrfs_merge_extent_hook, the same
1575 * applies here, just in reverse.
1576 */
1577 new_size = orig->end - split + 1;
1578 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1579 BTRFS_MAX_EXTENT_SIZE);
1580 new_size = split - orig->start;
1581 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1582 BTRFS_MAX_EXTENT_SIZE);
1583 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1584 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1585 return;
1586 }
1587
1588 spin_lock(&BTRFS_I(inode)->lock);
1589 BTRFS_I(inode)->outstanding_extents++;
1590 spin_unlock(&BTRFS_I(inode)->lock);
1591 }
1592
1593 /*
1594 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1595 * extents so we can keep track of new extents that are just merged onto old
1596 * extents, such as when we are doing sequential writes, so we can properly
1597 * account for the metadata space we'll need.
1598 */
1599 static void btrfs_merge_extent_hook(struct inode *inode,
1600 struct extent_state *new,
1601 struct extent_state *other)
1602 {
1603 u64 new_size, old_size;
1604 u64 num_extents;
1605
1606 /* not delalloc, ignore it */
1607 if (!(other->state & EXTENT_DELALLOC))
1608 return;
1609
1610 if (new->start > other->start)
1611 new_size = new->end - other->start + 1;
1612 else
1613 new_size = other->end - new->start + 1;
1614
1615 /* we're not bigger than the max, unreserve the space and go */
1616 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1617 spin_lock(&BTRFS_I(inode)->lock);
1618 BTRFS_I(inode)->outstanding_extents--;
1619 spin_unlock(&BTRFS_I(inode)->lock);
1620 return;
1621 }
1622
1623 /*
1624 * We have to add up either side to figure out how many extents were
1625 * accounted for before we merged into one big extent. If the number of
1626 * extents we accounted for is <= the amount we need for the new range
1627 * then we can return, otherwise drop. Think of it like this
1628 *
1629 * [ 4k][MAX_SIZE]
1630 *
1631 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1632 * need 2 outstanding extents, on one side we have 1 and the other side
1633 * we have 1 so they are == and we can return. But in this case
1634 *
1635 * [MAX_SIZE+4k][MAX_SIZE+4k]
1636 *
1637 * Each range on their own accounts for 2 extents, but merged together
1638 * they are only 3 extents worth of accounting, so we need to drop in
1639 * this case.
1640 */
1641 old_size = other->end - other->start + 1;
1642 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1643 BTRFS_MAX_EXTENT_SIZE);
1644 old_size = new->end - new->start + 1;
1645 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1646 BTRFS_MAX_EXTENT_SIZE);
1647
1648 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1649 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1650 return;
1651
1652 spin_lock(&BTRFS_I(inode)->lock);
1653 BTRFS_I(inode)->outstanding_extents--;
1654 spin_unlock(&BTRFS_I(inode)->lock);
1655 }
1656
1657 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1658 struct inode *inode)
1659 {
1660 spin_lock(&root->delalloc_lock);
1661 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1662 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1663 &root->delalloc_inodes);
1664 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1665 &BTRFS_I(inode)->runtime_flags);
1666 root->nr_delalloc_inodes++;
1667 if (root->nr_delalloc_inodes == 1) {
1668 spin_lock(&root->fs_info->delalloc_root_lock);
1669 BUG_ON(!list_empty(&root->delalloc_root));
1670 list_add_tail(&root->delalloc_root,
1671 &root->fs_info->delalloc_roots);
1672 spin_unlock(&root->fs_info->delalloc_root_lock);
1673 }
1674 }
1675 spin_unlock(&root->delalloc_lock);
1676 }
1677
1678 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1679 struct inode *inode)
1680 {
1681 spin_lock(&root->delalloc_lock);
1682 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1683 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1684 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1685 &BTRFS_I(inode)->runtime_flags);
1686 root->nr_delalloc_inodes--;
1687 if (!root->nr_delalloc_inodes) {
1688 spin_lock(&root->fs_info->delalloc_root_lock);
1689 BUG_ON(list_empty(&root->delalloc_root));
1690 list_del_init(&root->delalloc_root);
1691 spin_unlock(&root->fs_info->delalloc_root_lock);
1692 }
1693 }
1694 spin_unlock(&root->delalloc_lock);
1695 }
1696
1697 /*
1698 * extent_io.c set_bit_hook, used to track delayed allocation
1699 * bytes in this file, and to maintain the list of inodes that
1700 * have pending delalloc work to be done.
1701 */
1702 static void btrfs_set_bit_hook(struct inode *inode,
1703 struct extent_state *state, unsigned *bits)
1704 {
1705
1706 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1707 WARN_ON(1);
1708 /*
1709 * set_bit and clear bit hooks normally require _irqsave/restore
1710 * but in this case, we are only testing for the DELALLOC
1711 * bit, which is only set or cleared with irqs on
1712 */
1713 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1714 struct btrfs_root *root = BTRFS_I(inode)->root;
1715 u64 len = state->end + 1 - state->start;
1716 bool do_list = !btrfs_is_free_space_inode(inode);
1717
1718 if (*bits & EXTENT_FIRST_DELALLOC) {
1719 *bits &= ~EXTENT_FIRST_DELALLOC;
1720 } else {
1721 spin_lock(&BTRFS_I(inode)->lock);
1722 BTRFS_I(inode)->outstanding_extents++;
1723 spin_unlock(&BTRFS_I(inode)->lock);
1724 }
1725
1726 /* For sanity tests */
1727 if (btrfs_test_is_dummy_root(root))
1728 return;
1729
1730 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1731 root->fs_info->delalloc_batch);
1732 spin_lock(&BTRFS_I(inode)->lock);
1733 BTRFS_I(inode)->delalloc_bytes += len;
1734 if (*bits & EXTENT_DEFRAG)
1735 BTRFS_I(inode)->defrag_bytes += len;
1736 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1737 &BTRFS_I(inode)->runtime_flags))
1738 btrfs_add_delalloc_inodes(root, inode);
1739 spin_unlock(&BTRFS_I(inode)->lock);
1740 }
1741 }
1742
1743 /*
1744 * extent_io.c clear_bit_hook, see set_bit_hook for why
1745 */
1746 static void btrfs_clear_bit_hook(struct inode *inode,
1747 struct extent_state *state,
1748 unsigned *bits)
1749 {
1750 u64 len = state->end + 1 - state->start;
1751 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1752 BTRFS_MAX_EXTENT_SIZE);
1753
1754 spin_lock(&BTRFS_I(inode)->lock);
1755 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1756 BTRFS_I(inode)->defrag_bytes -= len;
1757 spin_unlock(&BTRFS_I(inode)->lock);
1758
1759 /*
1760 * set_bit and clear bit hooks normally require _irqsave/restore
1761 * but in this case, we are only testing for the DELALLOC
1762 * bit, which is only set or cleared with irqs on
1763 */
1764 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1765 struct btrfs_root *root = BTRFS_I(inode)->root;
1766 bool do_list = !btrfs_is_free_space_inode(inode);
1767
1768 if (*bits & EXTENT_FIRST_DELALLOC) {
1769 *bits &= ~EXTENT_FIRST_DELALLOC;
1770 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1771 spin_lock(&BTRFS_I(inode)->lock);
1772 BTRFS_I(inode)->outstanding_extents -= num_extents;
1773 spin_unlock(&BTRFS_I(inode)->lock);
1774 }
1775
1776 /*
1777 * We don't reserve metadata space for space cache inodes so we
1778 * don't need to call dellalloc_release_metadata if there is an
1779 * error.
1780 */
1781 if (*bits & EXTENT_DO_ACCOUNTING &&
1782 root != root->fs_info->tree_root)
1783 btrfs_delalloc_release_metadata(inode, len);
1784
1785 /* For sanity tests. */
1786 if (btrfs_test_is_dummy_root(root))
1787 return;
1788
1789 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1790 && do_list && !(state->state & EXTENT_NORESERVE))
1791 btrfs_free_reserved_data_space_noquota(inode,
1792 state->start, len);
1793
1794 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1795 root->fs_info->delalloc_batch);
1796 spin_lock(&BTRFS_I(inode)->lock);
1797 BTRFS_I(inode)->delalloc_bytes -= len;
1798 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1799 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1800 &BTRFS_I(inode)->runtime_flags))
1801 btrfs_del_delalloc_inode(root, inode);
1802 spin_unlock(&BTRFS_I(inode)->lock);
1803 }
1804 }
1805
1806 /*
1807 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1808 * we don't create bios that span stripes or chunks
1809 */
1810 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1811 size_t size, struct bio *bio,
1812 unsigned long bio_flags)
1813 {
1814 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1815 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1816 u64 length = 0;
1817 u64 map_length;
1818 int ret;
1819
1820 if (bio_flags & EXTENT_BIO_COMPRESSED)
1821 return 0;
1822
1823 length = bio->bi_iter.bi_size;
1824 map_length = length;
1825 ret = btrfs_map_block(root->fs_info, rw, logical,
1826 &map_length, NULL, 0);
1827 /* Will always return 0 with map_multi == NULL */
1828 BUG_ON(ret < 0);
1829 if (map_length < length + size)
1830 return 1;
1831 return 0;
1832 }
1833
1834 /*
1835 * in order to insert checksums into the metadata in large chunks,
1836 * we wait until bio submission time. All the pages in the bio are
1837 * checksummed and sums are attached onto the ordered extent record.
1838 *
1839 * At IO completion time the cums attached on the ordered extent record
1840 * are inserted into the btree
1841 */
1842 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1843 struct bio *bio, int mirror_num,
1844 unsigned long bio_flags,
1845 u64 bio_offset)
1846 {
1847 struct btrfs_root *root = BTRFS_I(inode)->root;
1848 int ret = 0;
1849
1850 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1851 BUG_ON(ret); /* -ENOMEM */
1852 return 0;
1853 }
1854
1855 /*
1856 * in order to insert checksums into the metadata in large chunks,
1857 * we wait until bio submission time. All the pages in the bio are
1858 * checksummed and sums are attached onto the ordered extent record.
1859 *
1860 * At IO completion time the cums attached on the ordered extent record
1861 * are inserted into the btree
1862 */
1863 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1864 int mirror_num, unsigned long bio_flags,
1865 u64 bio_offset)
1866 {
1867 struct btrfs_root *root = BTRFS_I(inode)->root;
1868 int ret;
1869
1870 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1871 if (ret) {
1872 bio->bi_error = ret;
1873 bio_endio(bio);
1874 }
1875 return ret;
1876 }
1877
1878 /*
1879 * extent_io.c submission hook. This does the right thing for csum calculation
1880 * on write, or reading the csums from the tree before a read
1881 */
1882 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1883 int mirror_num, unsigned long bio_flags,
1884 u64 bio_offset)
1885 {
1886 struct btrfs_root *root = BTRFS_I(inode)->root;
1887 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1888 int ret = 0;
1889 int skip_sum;
1890 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1891
1892 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1893
1894 if (btrfs_is_free_space_inode(inode))
1895 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1896
1897 if (!(rw & REQ_WRITE)) {
1898 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1899 if (ret)
1900 goto out;
1901
1902 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1903 ret = btrfs_submit_compressed_read(inode, bio,
1904 mirror_num,
1905 bio_flags);
1906 goto out;
1907 } else if (!skip_sum) {
1908 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1909 if (ret)
1910 goto out;
1911 }
1912 goto mapit;
1913 } else if (async && !skip_sum) {
1914 /* csum items have already been cloned */
1915 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1916 goto mapit;
1917 /* we're doing a write, do the async checksumming */
1918 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1919 inode, rw, bio, mirror_num,
1920 bio_flags, bio_offset,
1921 __btrfs_submit_bio_start,
1922 __btrfs_submit_bio_done);
1923 goto out;
1924 } else if (!skip_sum) {
1925 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1926 if (ret)
1927 goto out;
1928 }
1929
1930 mapit:
1931 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1932
1933 out:
1934 if (ret < 0) {
1935 bio->bi_error = ret;
1936 bio_endio(bio);
1937 }
1938 return ret;
1939 }
1940
1941 /*
1942 * given a list of ordered sums record them in the inode. This happens
1943 * at IO completion time based on sums calculated at bio submission time.
1944 */
1945 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1946 struct inode *inode, u64 file_offset,
1947 struct list_head *list)
1948 {
1949 struct btrfs_ordered_sum *sum;
1950
1951 list_for_each_entry(sum, list, list) {
1952 trans->adding_csums = 1;
1953 btrfs_csum_file_blocks(trans,
1954 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1955 trans->adding_csums = 0;
1956 }
1957 return 0;
1958 }
1959
1960 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1961 struct extent_state **cached_state)
1962 {
1963 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1964 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1965 cached_state, GFP_NOFS);
1966 }
1967
1968 /* see btrfs_writepage_start_hook for details on why this is required */
1969 struct btrfs_writepage_fixup {
1970 struct page *page;
1971 struct btrfs_work work;
1972 };
1973
1974 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1975 {
1976 struct btrfs_writepage_fixup *fixup;
1977 struct btrfs_ordered_extent *ordered;
1978 struct extent_state *cached_state = NULL;
1979 struct page *page;
1980 struct inode *inode;
1981 u64 page_start;
1982 u64 page_end;
1983 int ret;
1984
1985 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1986 page = fixup->page;
1987 again:
1988 lock_page(page);
1989 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1990 ClearPageChecked(page);
1991 goto out_page;
1992 }
1993
1994 inode = page->mapping->host;
1995 page_start = page_offset(page);
1996 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1997
1998 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
1999 &cached_state);
2000
2001 /* already ordered? We're done */
2002 if (PagePrivate2(page))
2003 goto out;
2004
2005 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2006 if (ordered) {
2007 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2008 page_end, &cached_state, GFP_NOFS);
2009 unlock_page(page);
2010 btrfs_start_ordered_extent(inode, ordered, 1);
2011 btrfs_put_ordered_extent(ordered);
2012 goto again;
2013 }
2014
2015 ret = btrfs_delalloc_reserve_space(inode, page_start,
2016 PAGE_CACHE_SIZE);
2017 if (ret) {
2018 mapping_set_error(page->mapping, ret);
2019 end_extent_writepage(page, ret, page_start, page_end);
2020 ClearPageChecked(page);
2021 goto out;
2022 }
2023
2024 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2025 ClearPageChecked(page);
2026 set_page_dirty(page);
2027 out:
2028 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2029 &cached_state, GFP_NOFS);
2030 out_page:
2031 unlock_page(page);
2032 page_cache_release(page);
2033 kfree(fixup);
2034 }
2035
2036 /*
2037 * There are a few paths in the higher layers of the kernel that directly
2038 * set the page dirty bit without asking the filesystem if it is a
2039 * good idea. This causes problems because we want to make sure COW
2040 * properly happens and the data=ordered rules are followed.
2041 *
2042 * In our case any range that doesn't have the ORDERED bit set
2043 * hasn't been properly setup for IO. We kick off an async process
2044 * to fix it up. The async helper will wait for ordered extents, set
2045 * the delalloc bit and make it safe to write the page.
2046 */
2047 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2048 {
2049 struct inode *inode = page->mapping->host;
2050 struct btrfs_writepage_fixup *fixup;
2051 struct btrfs_root *root = BTRFS_I(inode)->root;
2052
2053 /* this page is properly in the ordered list */
2054 if (TestClearPagePrivate2(page))
2055 return 0;
2056
2057 if (PageChecked(page))
2058 return -EAGAIN;
2059
2060 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2061 if (!fixup)
2062 return -EAGAIN;
2063
2064 SetPageChecked(page);
2065 page_cache_get(page);
2066 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2067 btrfs_writepage_fixup_worker, NULL, NULL);
2068 fixup->page = page;
2069 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2070 return -EBUSY;
2071 }
2072
2073 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2074 struct inode *inode, u64 file_pos,
2075 u64 disk_bytenr, u64 disk_num_bytes,
2076 u64 num_bytes, u64 ram_bytes,
2077 u8 compression, u8 encryption,
2078 u16 other_encoding, int extent_type)
2079 {
2080 struct btrfs_root *root = BTRFS_I(inode)->root;
2081 struct btrfs_file_extent_item *fi;
2082 struct btrfs_path *path;
2083 struct extent_buffer *leaf;
2084 struct btrfs_key ins;
2085 int extent_inserted = 0;
2086 int ret;
2087
2088 path = btrfs_alloc_path();
2089 if (!path)
2090 return -ENOMEM;
2091
2092 /*
2093 * we may be replacing one extent in the tree with another.
2094 * The new extent is pinned in the extent map, and we don't want
2095 * to drop it from the cache until it is completely in the btree.
2096 *
2097 * So, tell btrfs_drop_extents to leave this extent in the cache.
2098 * the caller is expected to unpin it and allow it to be merged
2099 * with the others.
2100 */
2101 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2102 file_pos + num_bytes, NULL, 0,
2103 1, sizeof(*fi), &extent_inserted);
2104 if (ret)
2105 goto out;
2106
2107 if (!extent_inserted) {
2108 ins.objectid = btrfs_ino(inode);
2109 ins.offset = file_pos;
2110 ins.type = BTRFS_EXTENT_DATA_KEY;
2111
2112 path->leave_spinning = 1;
2113 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2114 sizeof(*fi));
2115 if (ret)
2116 goto out;
2117 }
2118 leaf = path->nodes[0];
2119 fi = btrfs_item_ptr(leaf, path->slots[0],
2120 struct btrfs_file_extent_item);
2121 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2122 btrfs_set_file_extent_type(leaf, fi, extent_type);
2123 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2124 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2125 btrfs_set_file_extent_offset(leaf, fi, 0);
2126 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2127 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2128 btrfs_set_file_extent_compression(leaf, fi, compression);
2129 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2130 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2131
2132 btrfs_mark_buffer_dirty(leaf);
2133 btrfs_release_path(path);
2134
2135 inode_add_bytes(inode, num_bytes);
2136
2137 ins.objectid = disk_bytenr;
2138 ins.offset = disk_num_bytes;
2139 ins.type = BTRFS_EXTENT_ITEM_KEY;
2140 ret = btrfs_alloc_reserved_file_extent(trans, root,
2141 root->root_key.objectid,
2142 btrfs_ino(inode), file_pos,
2143 ram_bytes, &ins);
2144 /*
2145 * Release the reserved range from inode dirty range map, as it is
2146 * already moved into delayed_ref_head
2147 */
2148 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2149 out:
2150 btrfs_free_path(path);
2151
2152 return ret;
2153 }
2154
2155 /* snapshot-aware defrag */
2156 struct sa_defrag_extent_backref {
2157 struct rb_node node;
2158 struct old_sa_defrag_extent *old;
2159 u64 root_id;
2160 u64 inum;
2161 u64 file_pos;
2162 u64 extent_offset;
2163 u64 num_bytes;
2164 u64 generation;
2165 };
2166
2167 struct old_sa_defrag_extent {
2168 struct list_head list;
2169 struct new_sa_defrag_extent *new;
2170
2171 u64 extent_offset;
2172 u64 bytenr;
2173 u64 offset;
2174 u64 len;
2175 int count;
2176 };
2177
2178 struct new_sa_defrag_extent {
2179 struct rb_root root;
2180 struct list_head head;
2181 struct btrfs_path *path;
2182 struct inode *inode;
2183 u64 file_pos;
2184 u64 len;
2185 u64 bytenr;
2186 u64 disk_len;
2187 u8 compress_type;
2188 };
2189
2190 static int backref_comp(struct sa_defrag_extent_backref *b1,
2191 struct sa_defrag_extent_backref *b2)
2192 {
2193 if (b1->root_id < b2->root_id)
2194 return -1;
2195 else if (b1->root_id > b2->root_id)
2196 return 1;
2197
2198 if (b1->inum < b2->inum)
2199 return -1;
2200 else if (b1->inum > b2->inum)
2201 return 1;
2202
2203 if (b1->file_pos < b2->file_pos)
2204 return -1;
2205 else if (b1->file_pos > b2->file_pos)
2206 return 1;
2207
2208 /*
2209 * [------------------------------] ===> (a range of space)
2210 * |<--->| |<---->| =============> (fs/file tree A)
2211 * |<---------------------------->| ===> (fs/file tree B)
2212 *
2213 * A range of space can refer to two file extents in one tree while
2214 * refer to only one file extent in another tree.
2215 *
2216 * So we may process a disk offset more than one time(two extents in A)
2217 * and locate at the same extent(one extent in B), then insert two same
2218 * backrefs(both refer to the extent in B).
2219 */
2220 return 0;
2221 }
2222
2223 static void backref_insert(struct rb_root *root,
2224 struct sa_defrag_extent_backref *backref)
2225 {
2226 struct rb_node **p = &root->rb_node;
2227 struct rb_node *parent = NULL;
2228 struct sa_defrag_extent_backref *entry;
2229 int ret;
2230
2231 while (*p) {
2232 parent = *p;
2233 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2234
2235 ret = backref_comp(backref, entry);
2236 if (ret < 0)
2237 p = &(*p)->rb_left;
2238 else
2239 p = &(*p)->rb_right;
2240 }
2241
2242 rb_link_node(&backref->node, parent, p);
2243 rb_insert_color(&backref->node, root);
2244 }
2245
2246 /*
2247 * Note the backref might has changed, and in this case we just return 0.
2248 */
2249 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2250 void *ctx)
2251 {
2252 struct btrfs_file_extent_item *extent;
2253 struct btrfs_fs_info *fs_info;
2254 struct old_sa_defrag_extent *old = ctx;
2255 struct new_sa_defrag_extent *new = old->new;
2256 struct btrfs_path *path = new->path;
2257 struct btrfs_key key;
2258 struct btrfs_root *root;
2259 struct sa_defrag_extent_backref *backref;
2260 struct extent_buffer *leaf;
2261 struct inode *inode = new->inode;
2262 int slot;
2263 int ret;
2264 u64 extent_offset;
2265 u64 num_bytes;
2266
2267 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2268 inum == btrfs_ino(inode))
2269 return 0;
2270
2271 key.objectid = root_id;
2272 key.type = BTRFS_ROOT_ITEM_KEY;
2273 key.offset = (u64)-1;
2274
2275 fs_info = BTRFS_I(inode)->root->fs_info;
2276 root = btrfs_read_fs_root_no_name(fs_info, &key);
2277 if (IS_ERR(root)) {
2278 if (PTR_ERR(root) == -ENOENT)
2279 return 0;
2280 WARN_ON(1);
2281 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2282 inum, offset, root_id);
2283 return PTR_ERR(root);
2284 }
2285
2286 key.objectid = inum;
2287 key.type = BTRFS_EXTENT_DATA_KEY;
2288 if (offset > (u64)-1 << 32)
2289 key.offset = 0;
2290 else
2291 key.offset = offset;
2292
2293 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2294 if (WARN_ON(ret < 0))
2295 return ret;
2296 ret = 0;
2297
2298 while (1) {
2299 cond_resched();
2300
2301 leaf = path->nodes[0];
2302 slot = path->slots[0];
2303
2304 if (slot >= btrfs_header_nritems(leaf)) {
2305 ret = btrfs_next_leaf(root, path);
2306 if (ret < 0) {
2307 goto out;
2308 } else if (ret > 0) {
2309 ret = 0;
2310 goto out;
2311 }
2312 continue;
2313 }
2314
2315 path->slots[0]++;
2316
2317 btrfs_item_key_to_cpu(leaf, &key, slot);
2318
2319 if (key.objectid > inum)
2320 goto out;
2321
2322 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2323 continue;
2324
2325 extent = btrfs_item_ptr(leaf, slot,
2326 struct btrfs_file_extent_item);
2327
2328 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2329 continue;
2330
2331 /*
2332 * 'offset' refers to the exact key.offset,
2333 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2334 * (key.offset - extent_offset).
2335 */
2336 if (key.offset != offset)
2337 continue;
2338
2339 extent_offset = btrfs_file_extent_offset(leaf, extent);
2340 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2341
2342 if (extent_offset >= old->extent_offset + old->offset +
2343 old->len || extent_offset + num_bytes <=
2344 old->extent_offset + old->offset)
2345 continue;
2346 break;
2347 }
2348
2349 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2350 if (!backref) {
2351 ret = -ENOENT;
2352 goto out;
2353 }
2354
2355 backref->root_id = root_id;
2356 backref->inum = inum;
2357 backref->file_pos = offset;
2358 backref->num_bytes = num_bytes;
2359 backref->extent_offset = extent_offset;
2360 backref->generation = btrfs_file_extent_generation(leaf, extent);
2361 backref->old = old;
2362 backref_insert(&new->root, backref);
2363 old->count++;
2364 out:
2365 btrfs_release_path(path);
2366 WARN_ON(ret);
2367 return ret;
2368 }
2369
2370 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2371 struct new_sa_defrag_extent *new)
2372 {
2373 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2374 struct old_sa_defrag_extent *old, *tmp;
2375 int ret;
2376
2377 new->path = path;
2378
2379 list_for_each_entry_safe(old, tmp, &new->head, list) {
2380 ret = iterate_inodes_from_logical(old->bytenr +
2381 old->extent_offset, fs_info,
2382 path, record_one_backref,
2383 old);
2384 if (ret < 0 && ret != -ENOENT)
2385 return false;
2386
2387 /* no backref to be processed for this extent */
2388 if (!old->count) {
2389 list_del(&old->list);
2390 kfree(old);
2391 }
2392 }
2393
2394 if (list_empty(&new->head))
2395 return false;
2396
2397 return true;
2398 }
2399
2400 static int relink_is_mergable(struct extent_buffer *leaf,
2401 struct btrfs_file_extent_item *fi,
2402 struct new_sa_defrag_extent *new)
2403 {
2404 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2405 return 0;
2406
2407 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2408 return 0;
2409
2410 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2411 return 0;
2412
2413 if (btrfs_file_extent_encryption(leaf, fi) ||
2414 btrfs_file_extent_other_encoding(leaf, fi))
2415 return 0;
2416
2417 return 1;
2418 }
2419
2420 /*
2421 * Note the backref might has changed, and in this case we just return 0.
2422 */
2423 static noinline int relink_extent_backref(struct btrfs_path *path,
2424 struct sa_defrag_extent_backref *prev,
2425 struct sa_defrag_extent_backref *backref)
2426 {
2427 struct btrfs_file_extent_item *extent;
2428 struct btrfs_file_extent_item *item;
2429 struct btrfs_ordered_extent *ordered;
2430 struct btrfs_trans_handle *trans;
2431 struct btrfs_fs_info *fs_info;
2432 struct btrfs_root *root;
2433 struct btrfs_key key;
2434 struct extent_buffer *leaf;
2435 struct old_sa_defrag_extent *old = backref->old;
2436 struct new_sa_defrag_extent *new = old->new;
2437 struct inode *src_inode = new->inode;
2438 struct inode *inode;
2439 struct extent_state *cached = NULL;
2440 int ret = 0;
2441 u64 start;
2442 u64 len;
2443 u64 lock_start;
2444 u64 lock_end;
2445 bool merge = false;
2446 int index;
2447
2448 if (prev && prev->root_id == backref->root_id &&
2449 prev->inum == backref->inum &&
2450 prev->file_pos + prev->num_bytes == backref->file_pos)
2451 merge = true;
2452
2453 /* step 1: get root */
2454 key.objectid = backref->root_id;
2455 key.type = BTRFS_ROOT_ITEM_KEY;
2456 key.offset = (u64)-1;
2457
2458 fs_info = BTRFS_I(src_inode)->root->fs_info;
2459 index = srcu_read_lock(&fs_info->subvol_srcu);
2460
2461 root = btrfs_read_fs_root_no_name(fs_info, &key);
2462 if (IS_ERR(root)) {
2463 srcu_read_unlock(&fs_info->subvol_srcu, index);
2464 if (PTR_ERR(root) == -ENOENT)
2465 return 0;
2466 return PTR_ERR(root);
2467 }
2468
2469 if (btrfs_root_readonly(root)) {
2470 srcu_read_unlock(&fs_info->subvol_srcu, index);
2471 return 0;
2472 }
2473
2474 /* step 2: get inode */
2475 key.objectid = backref->inum;
2476 key.type = BTRFS_INODE_ITEM_KEY;
2477 key.offset = 0;
2478
2479 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2480 if (IS_ERR(inode)) {
2481 srcu_read_unlock(&fs_info->subvol_srcu, index);
2482 return 0;
2483 }
2484
2485 srcu_read_unlock(&fs_info->subvol_srcu, index);
2486
2487 /* step 3: relink backref */
2488 lock_start = backref->file_pos;
2489 lock_end = backref->file_pos + backref->num_bytes - 1;
2490 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2491 &cached);
2492
2493 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2494 if (ordered) {
2495 btrfs_put_ordered_extent(ordered);
2496 goto out_unlock;
2497 }
2498
2499 trans = btrfs_join_transaction(root);
2500 if (IS_ERR(trans)) {
2501 ret = PTR_ERR(trans);
2502 goto out_unlock;
2503 }
2504
2505 key.objectid = backref->inum;
2506 key.type = BTRFS_EXTENT_DATA_KEY;
2507 key.offset = backref->file_pos;
2508
2509 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2510 if (ret < 0) {
2511 goto out_free_path;
2512 } else if (ret > 0) {
2513 ret = 0;
2514 goto out_free_path;
2515 }
2516
2517 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2518 struct btrfs_file_extent_item);
2519
2520 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2521 backref->generation)
2522 goto out_free_path;
2523
2524 btrfs_release_path(path);
2525
2526 start = backref->file_pos;
2527 if (backref->extent_offset < old->extent_offset + old->offset)
2528 start += old->extent_offset + old->offset -
2529 backref->extent_offset;
2530
2531 len = min(backref->extent_offset + backref->num_bytes,
2532 old->extent_offset + old->offset + old->len);
2533 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2534
2535 ret = btrfs_drop_extents(trans, root, inode, start,
2536 start + len, 1);
2537 if (ret)
2538 goto out_free_path;
2539 again:
2540 key.objectid = btrfs_ino(inode);
2541 key.type = BTRFS_EXTENT_DATA_KEY;
2542 key.offset = start;
2543
2544 path->leave_spinning = 1;
2545 if (merge) {
2546 struct btrfs_file_extent_item *fi;
2547 u64 extent_len;
2548 struct btrfs_key found_key;
2549
2550 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2551 if (ret < 0)
2552 goto out_free_path;
2553
2554 path->slots[0]--;
2555 leaf = path->nodes[0];
2556 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2557
2558 fi = btrfs_item_ptr(leaf, path->slots[0],
2559 struct btrfs_file_extent_item);
2560 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2561
2562 if (extent_len + found_key.offset == start &&
2563 relink_is_mergable(leaf, fi, new)) {
2564 btrfs_set_file_extent_num_bytes(leaf, fi,
2565 extent_len + len);
2566 btrfs_mark_buffer_dirty(leaf);
2567 inode_add_bytes(inode, len);
2568
2569 ret = 1;
2570 goto out_free_path;
2571 } else {
2572 merge = false;
2573 btrfs_release_path(path);
2574 goto again;
2575 }
2576 }
2577
2578 ret = btrfs_insert_empty_item(trans, root, path, &key,
2579 sizeof(*extent));
2580 if (ret) {
2581 btrfs_abort_transaction(trans, root, ret);
2582 goto out_free_path;
2583 }
2584
2585 leaf = path->nodes[0];
2586 item = btrfs_item_ptr(leaf, path->slots[0],
2587 struct btrfs_file_extent_item);
2588 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2589 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2590 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2591 btrfs_set_file_extent_num_bytes(leaf, item, len);
2592 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2593 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2594 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2595 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2596 btrfs_set_file_extent_encryption(leaf, item, 0);
2597 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2598
2599 btrfs_mark_buffer_dirty(leaf);
2600 inode_add_bytes(inode, len);
2601 btrfs_release_path(path);
2602
2603 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2604 new->disk_len, 0,
2605 backref->root_id, backref->inum,
2606 new->file_pos); /* start - extent_offset */
2607 if (ret) {
2608 btrfs_abort_transaction(trans, root, ret);
2609 goto out_free_path;
2610 }
2611
2612 ret = 1;
2613 out_free_path:
2614 btrfs_release_path(path);
2615 path->leave_spinning = 0;
2616 btrfs_end_transaction(trans, root);
2617 out_unlock:
2618 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2619 &cached, GFP_NOFS);
2620 iput(inode);
2621 return ret;
2622 }
2623
2624 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2625 {
2626 struct old_sa_defrag_extent *old, *tmp;
2627
2628 if (!new)
2629 return;
2630
2631 list_for_each_entry_safe(old, tmp, &new->head, list) {
2632 kfree(old);
2633 }
2634 kfree(new);
2635 }
2636
2637 static void relink_file_extents(struct new_sa_defrag_extent *new)
2638 {
2639 struct btrfs_path *path;
2640 struct sa_defrag_extent_backref *backref;
2641 struct sa_defrag_extent_backref *prev = NULL;
2642 struct inode *inode;
2643 struct btrfs_root *root;
2644 struct rb_node *node;
2645 int ret;
2646
2647 inode = new->inode;
2648 root = BTRFS_I(inode)->root;
2649
2650 path = btrfs_alloc_path();
2651 if (!path)
2652 return;
2653
2654 if (!record_extent_backrefs(path, new)) {
2655 btrfs_free_path(path);
2656 goto out;
2657 }
2658 btrfs_release_path(path);
2659
2660 while (1) {
2661 node = rb_first(&new->root);
2662 if (!node)
2663 break;
2664 rb_erase(node, &new->root);
2665
2666 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2667
2668 ret = relink_extent_backref(path, prev, backref);
2669 WARN_ON(ret < 0);
2670
2671 kfree(prev);
2672
2673 if (ret == 1)
2674 prev = backref;
2675 else
2676 prev = NULL;
2677 cond_resched();
2678 }
2679 kfree(prev);
2680
2681 btrfs_free_path(path);
2682 out:
2683 free_sa_defrag_extent(new);
2684
2685 atomic_dec(&root->fs_info->defrag_running);
2686 wake_up(&root->fs_info->transaction_wait);
2687 }
2688
2689 static struct new_sa_defrag_extent *
2690 record_old_file_extents(struct inode *inode,
2691 struct btrfs_ordered_extent *ordered)
2692 {
2693 struct btrfs_root *root = BTRFS_I(inode)->root;
2694 struct btrfs_path *path;
2695 struct btrfs_key key;
2696 struct old_sa_defrag_extent *old;
2697 struct new_sa_defrag_extent *new;
2698 int ret;
2699
2700 new = kmalloc(sizeof(*new), GFP_NOFS);
2701 if (!new)
2702 return NULL;
2703
2704 new->inode = inode;
2705 new->file_pos = ordered->file_offset;
2706 new->len = ordered->len;
2707 new->bytenr = ordered->start;
2708 new->disk_len = ordered->disk_len;
2709 new->compress_type = ordered->compress_type;
2710 new->root = RB_ROOT;
2711 INIT_LIST_HEAD(&new->head);
2712
2713 path = btrfs_alloc_path();
2714 if (!path)
2715 goto out_kfree;
2716
2717 key.objectid = btrfs_ino(inode);
2718 key.type = BTRFS_EXTENT_DATA_KEY;
2719 key.offset = new->file_pos;
2720
2721 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2722 if (ret < 0)
2723 goto out_free_path;
2724 if (ret > 0 && path->slots[0] > 0)
2725 path->slots[0]--;
2726
2727 /* find out all the old extents for the file range */
2728 while (1) {
2729 struct btrfs_file_extent_item *extent;
2730 struct extent_buffer *l;
2731 int slot;
2732 u64 num_bytes;
2733 u64 offset;
2734 u64 end;
2735 u64 disk_bytenr;
2736 u64 extent_offset;
2737
2738 l = path->nodes[0];
2739 slot = path->slots[0];
2740
2741 if (slot >= btrfs_header_nritems(l)) {
2742 ret = btrfs_next_leaf(root, path);
2743 if (ret < 0)
2744 goto out_free_path;
2745 else if (ret > 0)
2746 break;
2747 continue;
2748 }
2749
2750 btrfs_item_key_to_cpu(l, &key, slot);
2751
2752 if (key.objectid != btrfs_ino(inode))
2753 break;
2754 if (key.type != BTRFS_EXTENT_DATA_KEY)
2755 break;
2756 if (key.offset >= new->file_pos + new->len)
2757 break;
2758
2759 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2760
2761 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2762 if (key.offset + num_bytes < new->file_pos)
2763 goto next;
2764
2765 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2766 if (!disk_bytenr)
2767 goto next;
2768
2769 extent_offset = btrfs_file_extent_offset(l, extent);
2770
2771 old = kmalloc(sizeof(*old), GFP_NOFS);
2772 if (!old)
2773 goto out_free_path;
2774
2775 offset = max(new->file_pos, key.offset);
2776 end = min(new->file_pos + new->len, key.offset + num_bytes);
2777
2778 old->bytenr = disk_bytenr;
2779 old->extent_offset = extent_offset;
2780 old->offset = offset - key.offset;
2781 old->len = end - offset;
2782 old->new = new;
2783 old->count = 0;
2784 list_add_tail(&old->list, &new->head);
2785 next:
2786 path->slots[0]++;
2787 cond_resched();
2788 }
2789
2790 btrfs_free_path(path);
2791 atomic_inc(&root->fs_info->defrag_running);
2792
2793 return new;
2794
2795 out_free_path:
2796 btrfs_free_path(path);
2797 out_kfree:
2798 free_sa_defrag_extent(new);
2799 return NULL;
2800 }
2801
2802 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2803 u64 start, u64 len)
2804 {
2805 struct btrfs_block_group_cache *cache;
2806
2807 cache = btrfs_lookup_block_group(root->fs_info, start);
2808 ASSERT(cache);
2809
2810 spin_lock(&cache->lock);
2811 cache->delalloc_bytes -= len;
2812 spin_unlock(&cache->lock);
2813
2814 btrfs_put_block_group(cache);
2815 }
2816
2817 /* as ordered data IO finishes, this gets called so we can finish
2818 * an ordered extent if the range of bytes in the file it covers are
2819 * fully written.
2820 */
2821 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2822 {
2823 struct inode *inode = ordered_extent->inode;
2824 struct btrfs_root *root = BTRFS_I(inode)->root;
2825 struct btrfs_trans_handle *trans = NULL;
2826 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2827 struct extent_state *cached_state = NULL;
2828 struct new_sa_defrag_extent *new = NULL;
2829 int compress_type = 0;
2830 int ret = 0;
2831 u64 logical_len = ordered_extent->len;
2832 bool nolock;
2833 bool truncated = false;
2834
2835 nolock = btrfs_is_free_space_inode(inode);
2836
2837 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2838 ret = -EIO;
2839 goto out;
2840 }
2841
2842 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2843 ordered_extent->file_offset +
2844 ordered_extent->len - 1);
2845
2846 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2847 truncated = true;
2848 logical_len = ordered_extent->truncated_len;
2849 /* Truncated the entire extent, don't bother adding */
2850 if (!logical_len)
2851 goto out;
2852 }
2853
2854 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2855 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2856
2857 /*
2858 * For mwrite(mmap + memset to write) case, we still reserve
2859 * space for NOCOW range.
2860 * As NOCOW won't cause a new delayed ref, just free the space
2861 */
2862 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2863 ordered_extent->len);
2864 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2865 if (nolock)
2866 trans = btrfs_join_transaction_nolock(root);
2867 else
2868 trans = btrfs_join_transaction(root);
2869 if (IS_ERR(trans)) {
2870 ret = PTR_ERR(trans);
2871 trans = NULL;
2872 goto out;
2873 }
2874 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2875 ret = btrfs_update_inode_fallback(trans, root, inode);
2876 if (ret) /* -ENOMEM or corruption */
2877 btrfs_abort_transaction(trans, root, ret);
2878 goto out;
2879 }
2880
2881 lock_extent_bits(io_tree, ordered_extent->file_offset,
2882 ordered_extent->file_offset + ordered_extent->len - 1,
2883 &cached_state);
2884
2885 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2886 ordered_extent->file_offset + ordered_extent->len - 1,
2887 EXTENT_DEFRAG, 1, cached_state);
2888 if (ret) {
2889 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2890 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2891 /* the inode is shared */
2892 new = record_old_file_extents(inode, ordered_extent);
2893
2894 clear_extent_bit(io_tree, ordered_extent->file_offset,
2895 ordered_extent->file_offset + ordered_extent->len - 1,
2896 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2897 }
2898
2899 if (nolock)
2900 trans = btrfs_join_transaction_nolock(root);
2901 else
2902 trans = btrfs_join_transaction(root);
2903 if (IS_ERR(trans)) {
2904 ret = PTR_ERR(trans);
2905 trans = NULL;
2906 goto out_unlock;
2907 }
2908
2909 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2910
2911 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2912 compress_type = ordered_extent->compress_type;
2913 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2914 BUG_ON(compress_type);
2915 ret = btrfs_mark_extent_written(trans, inode,
2916 ordered_extent->file_offset,
2917 ordered_extent->file_offset +
2918 logical_len);
2919 } else {
2920 BUG_ON(root == root->fs_info->tree_root);
2921 ret = insert_reserved_file_extent(trans, inode,
2922 ordered_extent->file_offset,
2923 ordered_extent->start,
2924 ordered_extent->disk_len,
2925 logical_len, logical_len,
2926 compress_type, 0, 0,
2927 BTRFS_FILE_EXTENT_REG);
2928 if (!ret)
2929 btrfs_release_delalloc_bytes(root,
2930 ordered_extent->start,
2931 ordered_extent->disk_len);
2932 }
2933 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2934 ordered_extent->file_offset, ordered_extent->len,
2935 trans->transid);
2936 if (ret < 0) {
2937 btrfs_abort_transaction(trans, root, ret);
2938 goto out_unlock;
2939 }
2940
2941 add_pending_csums(trans, inode, ordered_extent->file_offset,
2942 &ordered_extent->list);
2943
2944 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2945 ret = btrfs_update_inode_fallback(trans, root, inode);
2946 if (ret) { /* -ENOMEM or corruption */
2947 btrfs_abort_transaction(trans, root, ret);
2948 goto out_unlock;
2949 }
2950 ret = 0;
2951 out_unlock:
2952 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2953 ordered_extent->file_offset +
2954 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2955 out:
2956 if (root != root->fs_info->tree_root)
2957 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2958 if (trans)
2959 btrfs_end_transaction(trans, root);
2960
2961 if (ret || truncated) {
2962 u64 start, end;
2963
2964 if (truncated)
2965 start = ordered_extent->file_offset + logical_len;
2966 else
2967 start = ordered_extent->file_offset;
2968 end = ordered_extent->file_offset + ordered_extent->len - 1;
2969 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2970
2971 /* Drop the cache for the part of the extent we didn't write. */
2972 btrfs_drop_extent_cache(inode, start, end, 0);
2973
2974 /*
2975 * If the ordered extent had an IOERR or something else went
2976 * wrong we need to return the space for this ordered extent
2977 * back to the allocator. We only free the extent in the
2978 * truncated case if we didn't write out the extent at all.
2979 */
2980 if ((ret || !logical_len) &&
2981 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2982 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2983 btrfs_free_reserved_extent(root, ordered_extent->start,
2984 ordered_extent->disk_len, 1);
2985 }
2986
2987
2988 /*
2989 * This needs to be done to make sure anybody waiting knows we are done
2990 * updating everything for this ordered extent.
2991 */
2992 btrfs_remove_ordered_extent(inode, ordered_extent);
2993
2994 /* for snapshot-aware defrag */
2995 if (new) {
2996 if (ret) {
2997 free_sa_defrag_extent(new);
2998 atomic_dec(&root->fs_info->defrag_running);
2999 } else {
3000 relink_file_extents(new);
3001 }
3002 }
3003
3004 /* once for us */
3005 btrfs_put_ordered_extent(ordered_extent);
3006 /* once for the tree */
3007 btrfs_put_ordered_extent(ordered_extent);
3008
3009 return ret;
3010 }
3011
3012 static void finish_ordered_fn(struct btrfs_work *work)
3013 {
3014 struct btrfs_ordered_extent *ordered_extent;
3015 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3016 btrfs_finish_ordered_io(ordered_extent);
3017 }
3018
3019 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3020 struct extent_state *state, int uptodate)
3021 {
3022 struct inode *inode = page->mapping->host;
3023 struct btrfs_root *root = BTRFS_I(inode)->root;
3024 struct btrfs_ordered_extent *ordered_extent = NULL;
3025 struct btrfs_workqueue *wq;
3026 btrfs_work_func_t func;
3027
3028 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3029
3030 ClearPagePrivate2(page);
3031 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3032 end - start + 1, uptodate))
3033 return 0;
3034
3035 if (btrfs_is_free_space_inode(inode)) {
3036 wq = root->fs_info->endio_freespace_worker;
3037 func = btrfs_freespace_write_helper;
3038 } else {
3039 wq = root->fs_info->endio_write_workers;
3040 func = btrfs_endio_write_helper;
3041 }
3042
3043 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3044 NULL);
3045 btrfs_queue_work(wq, &ordered_extent->work);
3046
3047 return 0;
3048 }
3049
3050 static int __readpage_endio_check(struct inode *inode,
3051 struct btrfs_io_bio *io_bio,
3052 int icsum, struct page *page,
3053 int pgoff, u64 start, size_t len)
3054 {
3055 char *kaddr;
3056 u32 csum_expected;
3057 u32 csum = ~(u32)0;
3058
3059 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3060
3061 kaddr = kmap_atomic(page);
3062 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3063 btrfs_csum_final(csum, (char *)&csum);
3064 if (csum != csum_expected)
3065 goto zeroit;
3066
3067 kunmap_atomic(kaddr);
3068 return 0;
3069 zeroit:
3070 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3071 "csum failed ino %llu off %llu csum %u expected csum %u",
3072 btrfs_ino(inode), start, csum, csum_expected);
3073 memset(kaddr + pgoff, 1, len);
3074 flush_dcache_page(page);
3075 kunmap_atomic(kaddr);
3076 if (csum_expected == 0)
3077 return 0;
3078 return -EIO;
3079 }
3080
3081 /*
3082 * when reads are done, we need to check csums to verify the data is correct
3083 * if there's a match, we allow the bio to finish. If not, the code in
3084 * extent_io.c will try to find good copies for us.
3085 */
3086 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3087 u64 phy_offset, struct page *page,
3088 u64 start, u64 end, int mirror)
3089 {
3090 size_t offset = start - page_offset(page);
3091 struct inode *inode = page->mapping->host;
3092 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3093 struct btrfs_root *root = BTRFS_I(inode)->root;
3094
3095 if (PageChecked(page)) {
3096 ClearPageChecked(page);
3097 return 0;
3098 }
3099
3100 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3101 return 0;
3102
3103 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3104 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3105 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3106 GFP_NOFS);
3107 return 0;
3108 }
3109
3110 phy_offset >>= inode->i_sb->s_blocksize_bits;
3111 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3112 start, (size_t)(end - start + 1));
3113 }
3114
3115 void btrfs_add_delayed_iput(struct inode *inode)
3116 {
3117 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3118 struct btrfs_inode *binode = BTRFS_I(inode);
3119
3120 if (atomic_add_unless(&inode->i_count, -1, 1))
3121 return;
3122
3123 spin_lock(&fs_info->delayed_iput_lock);
3124 if (binode->delayed_iput_count == 0) {
3125 ASSERT(list_empty(&binode->delayed_iput));
3126 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3127 } else {
3128 binode->delayed_iput_count++;
3129 }
3130 spin_unlock(&fs_info->delayed_iput_lock);
3131 }
3132
3133 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3134 {
3135 struct btrfs_fs_info *fs_info = root->fs_info;
3136
3137 spin_lock(&fs_info->delayed_iput_lock);
3138 while (!list_empty(&fs_info->delayed_iputs)) {
3139 struct btrfs_inode *inode;
3140
3141 inode = list_first_entry(&fs_info->delayed_iputs,
3142 struct btrfs_inode, delayed_iput);
3143 if (inode->delayed_iput_count) {
3144 inode->delayed_iput_count--;
3145 list_move_tail(&inode->delayed_iput,
3146 &fs_info->delayed_iputs);
3147 } else {
3148 list_del_init(&inode->delayed_iput);
3149 }
3150 spin_unlock(&fs_info->delayed_iput_lock);
3151 iput(&inode->vfs_inode);
3152 spin_lock(&fs_info->delayed_iput_lock);
3153 }
3154 spin_unlock(&fs_info->delayed_iput_lock);
3155 }
3156
3157 /*
3158 * This is called in transaction commit time. If there are no orphan
3159 * files in the subvolume, it removes orphan item and frees block_rsv
3160 * structure.
3161 */
3162 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3163 struct btrfs_root *root)
3164 {
3165 struct btrfs_block_rsv *block_rsv;
3166 int ret;
3167
3168 if (atomic_read(&root->orphan_inodes) ||
3169 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3170 return;
3171
3172 spin_lock(&root->orphan_lock);
3173 if (atomic_read(&root->orphan_inodes)) {
3174 spin_unlock(&root->orphan_lock);
3175 return;
3176 }
3177
3178 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3179 spin_unlock(&root->orphan_lock);
3180 return;
3181 }
3182
3183 block_rsv = root->orphan_block_rsv;
3184 root->orphan_block_rsv = NULL;
3185 spin_unlock(&root->orphan_lock);
3186
3187 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3188 btrfs_root_refs(&root->root_item) > 0) {
3189 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3190 root->root_key.objectid);
3191 if (ret)
3192 btrfs_abort_transaction(trans, root, ret);
3193 else
3194 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3195 &root->state);
3196 }
3197
3198 if (block_rsv) {
3199 WARN_ON(block_rsv->size > 0);
3200 btrfs_free_block_rsv(root, block_rsv);
3201 }
3202 }
3203
3204 /*
3205 * This creates an orphan entry for the given inode in case something goes
3206 * wrong in the middle of an unlink/truncate.
3207 *
3208 * NOTE: caller of this function should reserve 5 units of metadata for
3209 * this function.
3210 */
3211 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3212 {
3213 struct btrfs_root *root = BTRFS_I(inode)->root;
3214 struct btrfs_block_rsv *block_rsv = NULL;
3215 int reserve = 0;
3216 int insert = 0;
3217 int ret;
3218
3219 if (!root->orphan_block_rsv) {
3220 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3221 if (!block_rsv)
3222 return -ENOMEM;
3223 }
3224
3225 spin_lock(&root->orphan_lock);
3226 if (!root->orphan_block_rsv) {
3227 root->orphan_block_rsv = block_rsv;
3228 } else if (block_rsv) {
3229 btrfs_free_block_rsv(root, block_rsv);
3230 block_rsv = NULL;
3231 }
3232
3233 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3234 &BTRFS_I(inode)->runtime_flags)) {
3235 #if 0
3236 /*
3237 * For proper ENOSPC handling, we should do orphan
3238 * cleanup when mounting. But this introduces backward
3239 * compatibility issue.
3240 */
3241 if (!xchg(&root->orphan_item_inserted, 1))
3242 insert = 2;
3243 else
3244 insert = 1;
3245 #endif
3246 insert = 1;
3247 atomic_inc(&root->orphan_inodes);
3248 }
3249
3250 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3251 &BTRFS_I(inode)->runtime_flags))
3252 reserve = 1;
3253 spin_unlock(&root->orphan_lock);
3254
3255 /* grab metadata reservation from transaction handle */
3256 if (reserve) {
3257 ret = btrfs_orphan_reserve_metadata(trans, inode);
3258 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3259 }
3260
3261 /* insert an orphan item to track this unlinked/truncated file */
3262 if (insert >= 1) {
3263 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3264 if (ret) {
3265 atomic_dec(&root->orphan_inodes);
3266 if (reserve) {
3267 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3268 &BTRFS_I(inode)->runtime_flags);
3269 btrfs_orphan_release_metadata(inode);
3270 }
3271 if (ret != -EEXIST) {
3272 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3273 &BTRFS_I(inode)->runtime_flags);
3274 btrfs_abort_transaction(trans, root, ret);
3275 return ret;
3276 }
3277 }
3278 ret = 0;
3279 }
3280
3281 /* insert an orphan item to track subvolume contains orphan files */
3282 if (insert >= 2) {
3283 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3284 root->root_key.objectid);
3285 if (ret && ret != -EEXIST) {
3286 btrfs_abort_transaction(trans, root, ret);
3287 return ret;
3288 }
3289 }
3290 return 0;
3291 }
3292
3293 /*
3294 * We have done the truncate/delete so we can go ahead and remove the orphan
3295 * item for this particular inode.
3296 */
3297 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3298 struct inode *inode)
3299 {
3300 struct btrfs_root *root = BTRFS_I(inode)->root;
3301 int delete_item = 0;
3302 int release_rsv = 0;
3303 int ret = 0;
3304
3305 spin_lock(&root->orphan_lock);
3306 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3307 &BTRFS_I(inode)->runtime_flags))
3308 delete_item = 1;
3309
3310 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3311 &BTRFS_I(inode)->runtime_flags))
3312 release_rsv = 1;
3313 spin_unlock(&root->orphan_lock);
3314
3315 if (delete_item) {
3316 atomic_dec(&root->orphan_inodes);
3317 if (trans)
3318 ret = btrfs_del_orphan_item(trans, root,
3319 btrfs_ino(inode));
3320 }
3321
3322 if (release_rsv)
3323 btrfs_orphan_release_metadata(inode);
3324
3325 return ret;
3326 }
3327
3328 /*
3329 * this cleans up any orphans that may be left on the list from the last use
3330 * of this root.
3331 */
3332 int btrfs_orphan_cleanup(struct btrfs_root *root)
3333 {
3334 struct btrfs_path *path;
3335 struct extent_buffer *leaf;
3336 struct btrfs_key key, found_key;
3337 struct btrfs_trans_handle *trans;
3338 struct inode *inode;
3339 u64 last_objectid = 0;
3340 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3341
3342 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3343 return 0;
3344
3345 path = btrfs_alloc_path();
3346 if (!path) {
3347 ret = -ENOMEM;
3348 goto out;
3349 }
3350 path->reada = READA_BACK;
3351
3352 key.objectid = BTRFS_ORPHAN_OBJECTID;
3353 key.type = BTRFS_ORPHAN_ITEM_KEY;
3354 key.offset = (u64)-1;
3355
3356 while (1) {
3357 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3358 if (ret < 0)
3359 goto out;
3360
3361 /*
3362 * if ret == 0 means we found what we were searching for, which
3363 * is weird, but possible, so only screw with path if we didn't
3364 * find the key and see if we have stuff that matches
3365 */
3366 if (ret > 0) {
3367 ret = 0;
3368 if (path->slots[0] == 0)
3369 break;
3370 path->slots[0]--;
3371 }
3372
3373 /* pull out the item */
3374 leaf = path->nodes[0];
3375 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3376
3377 /* make sure the item matches what we want */
3378 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3379 break;
3380 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3381 break;
3382
3383 /* release the path since we're done with it */
3384 btrfs_release_path(path);
3385
3386 /*
3387 * this is where we are basically btrfs_lookup, without the
3388 * crossing root thing. we store the inode number in the
3389 * offset of the orphan item.
3390 */
3391
3392 if (found_key.offset == last_objectid) {
3393 btrfs_err(root->fs_info,
3394 "Error removing orphan entry, stopping orphan cleanup");
3395 ret = -EINVAL;
3396 goto out;
3397 }
3398
3399 last_objectid = found_key.offset;
3400
3401 found_key.objectid = found_key.offset;
3402 found_key.type = BTRFS_INODE_ITEM_KEY;
3403 found_key.offset = 0;
3404 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3405 ret = PTR_ERR_OR_ZERO(inode);
3406 if (ret && ret != -ESTALE)
3407 goto out;
3408
3409 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3410 struct btrfs_root *dead_root;
3411 struct btrfs_fs_info *fs_info = root->fs_info;
3412 int is_dead_root = 0;
3413
3414 /*
3415 * this is an orphan in the tree root. Currently these
3416 * could come from 2 sources:
3417 * a) a snapshot deletion in progress
3418 * b) a free space cache inode
3419 * We need to distinguish those two, as the snapshot
3420 * orphan must not get deleted.
3421 * find_dead_roots already ran before us, so if this
3422 * is a snapshot deletion, we should find the root
3423 * in the dead_roots list
3424 */
3425 spin_lock(&fs_info->trans_lock);
3426 list_for_each_entry(dead_root, &fs_info->dead_roots,
3427 root_list) {
3428 if (dead_root->root_key.objectid ==
3429 found_key.objectid) {
3430 is_dead_root = 1;
3431 break;
3432 }
3433 }
3434 spin_unlock(&fs_info->trans_lock);
3435 if (is_dead_root) {
3436 /* prevent this orphan from being found again */
3437 key.offset = found_key.objectid - 1;
3438 continue;
3439 }
3440 }
3441 /*
3442 * Inode is already gone but the orphan item is still there,
3443 * kill the orphan item.
3444 */
3445 if (ret == -ESTALE) {
3446 trans = btrfs_start_transaction(root, 1);
3447 if (IS_ERR(trans)) {
3448 ret = PTR_ERR(trans);
3449 goto out;
3450 }
3451 btrfs_debug(root->fs_info, "auto deleting %Lu",
3452 found_key.objectid);
3453 ret = btrfs_del_orphan_item(trans, root,
3454 found_key.objectid);
3455 btrfs_end_transaction(trans, root);
3456 if (ret)
3457 goto out;
3458 continue;
3459 }
3460
3461 /*
3462 * add this inode to the orphan list so btrfs_orphan_del does
3463 * the proper thing when we hit it
3464 */
3465 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3466 &BTRFS_I(inode)->runtime_flags);
3467 atomic_inc(&root->orphan_inodes);
3468
3469 /* if we have links, this was a truncate, lets do that */
3470 if (inode->i_nlink) {
3471 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3472 iput(inode);
3473 continue;
3474 }
3475 nr_truncate++;
3476
3477 /* 1 for the orphan item deletion. */
3478 trans = btrfs_start_transaction(root, 1);
3479 if (IS_ERR(trans)) {
3480 iput(inode);
3481 ret = PTR_ERR(trans);
3482 goto out;
3483 }
3484 ret = btrfs_orphan_add(trans, inode);
3485 btrfs_end_transaction(trans, root);
3486 if (ret) {
3487 iput(inode);
3488 goto out;
3489 }
3490
3491 ret = btrfs_truncate(inode);
3492 if (ret)
3493 btrfs_orphan_del(NULL, inode);
3494 } else {
3495 nr_unlink++;
3496 }
3497
3498 /* this will do delete_inode and everything for us */
3499 iput(inode);
3500 if (ret)
3501 goto out;
3502 }
3503 /* release the path since we're done with it */
3504 btrfs_release_path(path);
3505
3506 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3507
3508 if (root->orphan_block_rsv)
3509 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3510 (u64)-1);
3511
3512 if (root->orphan_block_rsv ||
3513 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3514 trans = btrfs_join_transaction(root);
3515 if (!IS_ERR(trans))
3516 btrfs_end_transaction(trans, root);
3517 }
3518
3519 if (nr_unlink)
3520 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3521 if (nr_truncate)
3522 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3523
3524 out:
3525 if (ret)
3526 btrfs_err(root->fs_info,
3527 "could not do orphan cleanup %d", ret);
3528 btrfs_free_path(path);
3529 return ret;
3530 }
3531
3532 /*
3533 * very simple check to peek ahead in the leaf looking for xattrs. If we
3534 * don't find any xattrs, we know there can't be any acls.
3535 *
3536 * slot is the slot the inode is in, objectid is the objectid of the inode
3537 */
3538 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3539 int slot, u64 objectid,
3540 int *first_xattr_slot)
3541 {
3542 u32 nritems = btrfs_header_nritems(leaf);
3543 struct btrfs_key found_key;
3544 static u64 xattr_access = 0;
3545 static u64 xattr_default = 0;
3546 int scanned = 0;
3547
3548 if (!xattr_access) {
3549 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3550 strlen(POSIX_ACL_XATTR_ACCESS));
3551 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3552 strlen(POSIX_ACL_XATTR_DEFAULT));
3553 }
3554
3555 slot++;
3556 *first_xattr_slot = -1;
3557 while (slot < nritems) {
3558 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3559
3560 /* we found a different objectid, there must not be acls */
3561 if (found_key.objectid != objectid)
3562 return 0;
3563
3564 /* we found an xattr, assume we've got an acl */
3565 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3566 if (*first_xattr_slot == -1)
3567 *first_xattr_slot = slot;
3568 if (found_key.offset == xattr_access ||
3569 found_key.offset == xattr_default)
3570 return 1;
3571 }
3572
3573 /*
3574 * we found a key greater than an xattr key, there can't
3575 * be any acls later on
3576 */
3577 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3578 return 0;
3579
3580 slot++;
3581 scanned++;
3582
3583 /*
3584 * it goes inode, inode backrefs, xattrs, extents,
3585 * so if there are a ton of hard links to an inode there can
3586 * be a lot of backrefs. Don't waste time searching too hard,
3587 * this is just an optimization
3588 */
3589 if (scanned >= 8)
3590 break;
3591 }
3592 /* we hit the end of the leaf before we found an xattr or
3593 * something larger than an xattr. We have to assume the inode
3594 * has acls
3595 */
3596 if (*first_xattr_slot == -1)
3597 *first_xattr_slot = slot;
3598 return 1;
3599 }
3600
3601 /*
3602 * read an inode from the btree into the in-memory inode
3603 */
3604 static void btrfs_read_locked_inode(struct inode *inode)
3605 {
3606 struct btrfs_path *path;
3607 struct extent_buffer *leaf;
3608 struct btrfs_inode_item *inode_item;
3609 struct btrfs_root *root = BTRFS_I(inode)->root;
3610 struct btrfs_key location;
3611 unsigned long ptr;
3612 int maybe_acls;
3613 u32 rdev;
3614 int ret;
3615 bool filled = false;
3616 int first_xattr_slot;
3617
3618 ret = btrfs_fill_inode(inode, &rdev);
3619 if (!ret)
3620 filled = true;
3621
3622 path = btrfs_alloc_path();
3623 if (!path)
3624 goto make_bad;
3625
3626 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3627
3628 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3629 if (ret)
3630 goto make_bad;
3631
3632 leaf = path->nodes[0];
3633
3634 if (filled)
3635 goto cache_index;
3636
3637 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3638 struct btrfs_inode_item);
3639 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3640 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3641 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3642 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3643 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3644
3645 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3646 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3647
3648 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3649 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3650
3651 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3652 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3653
3654 BTRFS_I(inode)->i_otime.tv_sec =
3655 btrfs_timespec_sec(leaf, &inode_item->otime);
3656 BTRFS_I(inode)->i_otime.tv_nsec =
3657 btrfs_timespec_nsec(leaf, &inode_item->otime);
3658
3659 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3660 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3661 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3662
3663 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3664 inode->i_generation = BTRFS_I(inode)->generation;
3665 inode->i_rdev = 0;
3666 rdev = btrfs_inode_rdev(leaf, inode_item);
3667
3668 BTRFS_I(inode)->index_cnt = (u64)-1;
3669 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3670
3671 cache_index:
3672 /*
3673 * If we were modified in the current generation and evicted from memory
3674 * and then re-read we need to do a full sync since we don't have any
3675 * idea about which extents were modified before we were evicted from
3676 * cache.
3677 *
3678 * This is required for both inode re-read from disk and delayed inode
3679 * in delayed_nodes_tree.
3680 */
3681 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3682 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3683 &BTRFS_I(inode)->runtime_flags);
3684
3685 /*
3686 * We don't persist the id of the transaction where an unlink operation
3687 * against the inode was last made. So here we assume the inode might
3688 * have been evicted, and therefore the exact value of last_unlink_trans
3689 * lost, and set it to last_trans to avoid metadata inconsistencies
3690 * between the inode and its parent if the inode is fsync'ed and the log
3691 * replayed. For example, in the scenario:
3692 *
3693 * touch mydir/foo
3694 * ln mydir/foo mydir/bar
3695 * sync
3696 * unlink mydir/bar
3697 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3698 * xfs_io -c fsync mydir/foo
3699 * <power failure>
3700 * mount fs, triggers fsync log replay
3701 *
3702 * We must make sure that when we fsync our inode foo we also log its
3703 * parent inode, otherwise after log replay the parent still has the
3704 * dentry with the "bar" name but our inode foo has a link count of 1
3705 * and doesn't have an inode ref with the name "bar" anymore.
3706 *
3707 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3708 * but it guarantees correctness at the expense of ocassional full
3709 * transaction commits on fsync if our inode is a directory, or if our
3710 * inode is not a directory, logging its parent unnecessarily.
3711 */
3712 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3713
3714 path->slots[0]++;
3715 if (inode->i_nlink != 1 ||
3716 path->slots[0] >= btrfs_header_nritems(leaf))
3717 goto cache_acl;
3718
3719 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3720 if (location.objectid != btrfs_ino(inode))
3721 goto cache_acl;
3722
3723 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3724 if (location.type == BTRFS_INODE_REF_KEY) {
3725 struct btrfs_inode_ref *ref;
3726
3727 ref = (struct btrfs_inode_ref *)ptr;
3728 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3729 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3730 struct btrfs_inode_extref *extref;
3731
3732 extref = (struct btrfs_inode_extref *)ptr;
3733 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3734 extref);
3735 }
3736 cache_acl:
3737 /*
3738 * try to precache a NULL acl entry for files that don't have
3739 * any xattrs or acls
3740 */
3741 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3742 btrfs_ino(inode), &first_xattr_slot);
3743 if (first_xattr_slot != -1) {
3744 path->slots[0] = first_xattr_slot;
3745 ret = btrfs_load_inode_props(inode, path);
3746 if (ret)
3747 btrfs_err(root->fs_info,
3748 "error loading props for ino %llu (root %llu): %d",
3749 btrfs_ino(inode),
3750 root->root_key.objectid, ret);
3751 }
3752 btrfs_free_path(path);
3753
3754 if (!maybe_acls)
3755 cache_no_acl(inode);
3756
3757 switch (inode->i_mode & S_IFMT) {
3758 case S_IFREG:
3759 inode->i_mapping->a_ops = &btrfs_aops;
3760 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3761 inode->i_fop = &btrfs_file_operations;
3762 inode->i_op = &btrfs_file_inode_operations;
3763 break;
3764 case S_IFDIR:
3765 inode->i_fop = &btrfs_dir_file_operations;
3766 if (root == root->fs_info->tree_root)
3767 inode->i_op = &btrfs_dir_ro_inode_operations;
3768 else
3769 inode->i_op = &btrfs_dir_inode_operations;
3770 break;
3771 case S_IFLNK:
3772 inode->i_op = &btrfs_symlink_inode_operations;
3773 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3774 break;
3775 default:
3776 inode->i_op = &btrfs_special_inode_operations;
3777 init_special_inode(inode, inode->i_mode, rdev);
3778 break;
3779 }
3780
3781 btrfs_update_iflags(inode);
3782 return;
3783
3784 make_bad:
3785 btrfs_free_path(path);
3786 make_bad_inode(inode);
3787 }
3788
3789 /*
3790 * given a leaf and an inode, copy the inode fields into the leaf
3791 */
3792 static void fill_inode_item(struct btrfs_trans_handle *trans,
3793 struct extent_buffer *leaf,
3794 struct btrfs_inode_item *item,
3795 struct inode *inode)
3796 {
3797 struct btrfs_map_token token;
3798
3799 btrfs_init_map_token(&token);
3800
3801 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3802 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3803 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3804 &token);
3805 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3806 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3807
3808 btrfs_set_token_timespec_sec(leaf, &item->atime,
3809 inode->i_atime.tv_sec, &token);
3810 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3811 inode->i_atime.tv_nsec, &token);
3812
3813 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3814 inode->i_mtime.tv_sec, &token);
3815 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3816 inode->i_mtime.tv_nsec, &token);
3817
3818 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3819 inode->i_ctime.tv_sec, &token);
3820 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3821 inode->i_ctime.tv_nsec, &token);
3822
3823 btrfs_set_token_timespec_sec(leaf, &item->otime,
3824 BTRFS_I(inode)->i_otime.tv_sec, &token);
3825 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3826 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3827
3828 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3829 &token);
3830 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3831 &token);
3832 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3833 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3834 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3835 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3836 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3837 }
3838
3839 /*
3840 * copy everything in the in-memory inode into the btree.
3841 */
3842 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3843 struct btrfs_root *root, struct inode *inode)
3844 {
3845 struct btrfs_inode_item *inode_item;
3846 struct btrfs_path *path;
3847 struct extent_buffer *leaf;
3848 int ret;
3849
3850 path = btrfs_alloc_path();
3851 if (!path)
3852 return -ENOMEM;
3853
3854 path->leave_spinning = 1;
3855 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3856 1);
3857 if (ret) {
3858 if (ret > 0)
3859 ret = -ENOENT;
3860 goto failed;
3861 }
3862
3863 leaf = path->nodes[0];
3864 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3865 struct btrfs_inode_item);
3866
3867 fill_inode_item(trans, leaf, inode_item, inode);
3868 btrfs_mark_buffer_dirty(leaf);
3869 btrfs_set_inode_last_trans(trans, inode);
3870 ret = 0;
3871 failed:
3872 btrfs_free_path(path);
3873 return ret;
3874 }
3875
3876 /*
3877 * copy everything in the in-memory inode into the btree.
3878 */
3879 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3880 struct btrfs_root *root, struct inode *inode)
3881 {
3882 int ret;
3883
3884 /*
3885 * If the inode is a free space inode, we can deadlock during commit
3886 * if we put it into the delayed code.
3887 *
3888 * The data relocation inode should also be directly updated
3889 * without delay
3890 */
3891 if (!btrfs_is_free_space_inode(inode)
3892 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3893 && !root->fs_info->log_root_recovering) {
3894 btrfs_update_root_times(trans, root);
3895
3896 ret = btrfs_delayed_update_inode(trans, root, inode);
3897 if (!ret)
3898 btrfs_set_inode_last_trans(trans, inode);
3899 return ret;
3900 }
3901
3902 return btrfs_update_inode_item(trans, root, inode);
3903 }
3904
3905 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3906 struct btrfs_root *root,
3907 struct inode *inode)
3908 {
3909 int ret;
3910
3911 ret = btrfs_update_inode(trans, root, inode);
3912 if (ret == -ENOSPC)
3913 return btrfs_update_inode_item(trans, root, inode);
3914 return ret;
3915 }
3916
3917 /*
3918 * unlink helper that gets used here in inode.c and in the tree logging
3919 * recovery code. It remove a link in a directory with a given name, and
3920 * also drops the back refs in the inode to the directory
3921 */
3922 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3923 struct btrfs_root *root,
3924 struct inode *dir, struct inode *inode,
3925 const char *name, int name_len)
3926 {
3927 struct btrfs_path *path;
3928 int ret = 0;
3929 struct extent_buffer *leaf;
3930 struct btrfs_dir_item *di;
3931 struct btrfs_key key;
3932 u64 index;
3933 u64 ino = btrfs_ino(inode);
3934 u64 dir_ino = btrfs_ino(dir);
3935
3936 path = btrfs_alloc_path();
3937 if (!path) {
3938 ret = -ENOMEM;
3939 goto out;
3940 }
3941
3942 path->leave_spinning = 1;
3943 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3944 name, name_len, -1);
3945 if (IS_ERR(di)) {
3946 ret = PTR_ERR(di);
3947 goto err;
3948 }
3949 if (!di) {
3950 ret = -ENOENT;
3951 goto err;
3952 }
3953 leaf = path->nodes[0];
3954 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3955 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3956 if (ret)
3957 goto err;
3958 btrfs_release_path(path);
3959
3960 /*
3961 * If we don't have dir index, we have to get it by looking up
3962 * the inode ref, since we get the inode ref, remove it directly,
3963 * it is unnecessary to do delayed deletion.
3964 *
3965 * But if we have dir index, needn't search inode ref to get it.
3966 * Since the inode ref is close to the inode item, it is better
3967 * that we delay to delete it, and just do this deletion when
3968 * we update the inode item.
3969 */
3970 if (BTRFS_I(inode)->dir_index) {
3971 ret = btrfs_delayed_delete_inode_ref(inode);
3972 if (!ret) {
3973 index = BTRFS_I(inode)->dir_index;
3974 goto skip_backref;
3975 }
3976 }
3977
3978 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3979 dir_ino, &index);
3980 if (ret) {
3981 btrfs_info(root->fs_info,
3982 "failed to delete reference to %.*s, inode %llu parent %llu",
3983 name_len, name, ino, dir_ino);
3984 btrfs_abort_transaction(trans, root, ret);
3985 goto err;
3986 }
3987 skip_backref:
3988 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3989 if (ret) {
3990 btrfs_abort_transaction(trans, root, ret);
3991 goto err;
3992 }
3993
3994 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3995 inode, dir_ino);
3996 if (ret != 0 && ret != -ENOENT) {
3997 btrfs_abort_transaction(trans, root, ret);
3998 goto err;
3999 }
4000
4001 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4002 dir, index);
4003 if (ret == -ENOENT)
4004 ret = 0;
4005 else if (ret)
4006 btrfs_abort_transaction(trans, root, ret);
4007 err:
4008 btrfs_free_path(path);
4009 if (ret)
4010 goto out;
4011
4012 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4013 inode_inc_iversion(inode);
4014 inode_inc_iversion(dir);
4015 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4016 ret = btrfs_update_inode(trans, root, dir);
4017 out:
4018 return ret;
4019 }
4020
4021 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4022 struct btrfs_root *root,
4023 struct inode *dir, struct inode *inode,
4024 const char *name, int name_len)
4025 {
4026 int ret;
4027 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4028 if (!ret) {
4029 drop_nlink(inode);
4030 ret = btrfs_update_inode(trans, root, inode);
4031 }
4032 return ret;
4033 }
4034
4035 /*
4036 * helper to start transaction for unlink and rmdir.
4037 *
4038 * unlink and rmdir are special in btrfs, they do not always free space, so
4039 * if we cannot make our reservations the normal way try and see if there is
4040 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4041 * allow the unlink to occur.
4042 */
4043 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4044 {
4045 struct btrfs_root *root = BTRFS_I(dir)->root;
4046
4047 /*
4048 * 1 for the possible orphan item
4049 * 1 for the dir item
4050 * 1 for the dir index
4051 * 1 for the inode ref
4052 * 1 for the inode
4053 */
4054 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4055 }
4056
4057 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4058 {
4059 struct btrfs_root *root = BTRFS_I(dir)->root;
4060 struct btrfs_trans_handle *trans;
4061 struct inode *inode = d_inode(dentry);
4062 int ret;
4063
4064 trans = __unlink_start_trans(dir);
4065 if (IS_ERR(trans))
4066 return PTR_ERR(trans);
4067
4068 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4069
4070 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4071 dentry->d_name.name, dentry->d_name.len);
4072 if (ret)
4073 goto out;
4074
4075 if (inode->i_nlink == 0) {
4076 ret = btrfs_orphan_add(trans, inode);
4077 if (ret)
4078 goto out;
4079 }
4080
4081 out:
4082 btrfs_end_transaction(trans, root);
4083 btrfs_btree_balance_dirty(root);
4084 return ret;
4085 }
4086
4087 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4088 struct btrfs_root *root,
4089 struct inode *dir, u64 objectid,
4090 const char *name, int name_len)
4091 {
4092 struct btrfs_path *path;
4093 struct extent_buffer *leaf;
4094 struct btrfs_dir_item *di;
4095 struct btrfs_key key;
4096 u64 index;
4097 int ret;
4098 u64 dir_ino = btrfs_ino(dir);
4099
4100 path = btrfs_alloc_path();
4101 if (!path)
4102 return -ENOMEM;
4103
4104 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4105 name, name_len, -1);
4106 if (IS_ERR_OR_NULL(di)) {
4107 if (!di)
4108 ret = -ENOENT;
4109 else
4110 ret = PTR_ERR(di);
4111 goto out;
4112 }
4113
4114 leaf = path->nodes[0];
4115 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4116 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4117 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4118 if (ret) {
4119 btrfs_abort_transaction(trans, root, ret);
4120 goto out;
4121 }
4122 btrfs_release_path(path);
4123
4124 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4125 objectid, root->root_key.objectid,
4126 dir_ino, &index, name, name_len);
4127 if (ret < 0) {
4128 if (ret != -ENOENT) {
4129 btrfs_abort_transaction(trans, root, ret);
4130 goto out;
4131 }
4132 di = btrfs_search_dir_index_item(root, path, dir_ino,
4133 name, name_len);
4134 if (IS_ERR_OR_NULL(di)) {
4135 if (!di)
4136 ret = -ENOENT;
4137 else
4138 ret = PTR_ERR(di);
4139 btrfs_abort_transaction(trans, root, ret);
4140 goto out;
4141 }
4142
4143 leaf = path->nodes[0];
4144 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4145 btrfs_release_path(path);
4146 index = key.offset;
4147 }
4148 btrfs_release_path(path);
4149
4150 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4151 if (ret) {
4152 btrfs_abort_transaction(trans, root, ret);
4153 goto out;
4154 }
4155
4156 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4157 inode_inc_iversion(dir);
4158 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4159 ret = btrfs_update_inode_fallback(trans, root, dir);
4160 if (ret)
4161 btrfs_abort_transaction(trans, root, ret);
4162 out:
4163 btrfs_free_path(path);
4164 return ret;
4165 }
4166
4167 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4168 {
4169 struct inode *inode = d_inode(dentry);
4170 int err = 0;
4171 struct btrfs_root *root = BTRFS_I(dir)->root;
4172 struct btrfs_trans_handle *trans;
4173
4174 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4175 return -ENOTEMPTY;
4176 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4177 return -EPERM;
4178
4179 trans = __unlink_start_trans(dir);
4180 if (IS_ERR(trans))
4181 return PTR_ERR(trans);
4182
4183 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4184 err = btrfs_unlink_subvol(trans, root, dir,
4185 BTRFS_I(inode)->location.objectid,
4186 dentry->d_name.name,
4187 dentry->d_name.len);
4188 goto out;
4189 }
4190
4191 err = btrfs_orphan_add(trans, inode);
4192 if (err)
4193 goto out;
4194
4195 /* now the directory is empty */
4196 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4197 dentry->d_name.name, dentry->d_name.len);
4198 if (!err)
4199 btrfs_i_size_write(inode, 0);
4200 out:
4201 btrfs_end_transaction(trans, root);
4202 btrfs_btree_balance_dirty(root);
4203
4204 return err;
4205 }
4206
4207 static int truncate_space_check(struct btrfs_trans_handle *trans,
4208 struct btrfs_root *root,
4209 u64 bytes_deleted)
4210 {
4211 int ret;
4212
4213 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4214 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4215 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4216 if (!ret)
4217 trans->bytes_reserved += bytes_deleted;
4218 return ret;
4219
4220 }
4221
4222 static int truncate_inline_extent(struct inode *inode,
4223 struct btrfs_path *path,
4224 struct btrfs_key *found_key,
4225 const u64 item_end,
4226 const u64 new_size)
4227 {
4228 struct extent_buffer *leaf = path->nodes[0];
4229 int slot = path->slots[0];
4230 struct btrfs_file_extent_item *fi;
4231 u32 size = (u32)(new_size - found_key->offset);
4232 struct btrfs_root *root = BTRFS_I(inode)->root;
4233
4234 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4235
4236 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4237 loff_t offset = new_size;
4238 loff_t page_end = ALIGN(offset, PAGE_CACHE_SIZE);
4239
4240 /*
4241 * Zero out the remaining of the last page of our inline extent,
4242 * instead of directly truncating our inline extent here - that
4243 * would be much more complex (decompressing all the data, then
4244 * compressing the truncated data, which might be bigger than
4245 * the size of the inline extent, resize the extent, etc).
4246 * We release the path because to get the page we might need to
4247 * read the extent item from disk (data not in the page cache).
4248 */
4249 btrfs_release_path(path);
4250 return btrfs_truncate_page(inode, offset, page_end - offset, 0);
4251 }
4252
4253 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4254 size = btrfs_file_extent_calc_inline_size(size);
4255 btrfs_truncate_item(root, path, size, 1);
4256
4257 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4258 inode_sub_bytes(inode, item_end + 1 - new_size);
4259
4260 return 0;
4261 }
4262
4263 /*
4264 * this can truncate away extent items, csum items and directory items.
4265 * It starts at a high offset and removes keys until it can't find
4266 * any higher than new_size
4267 *
4268 * csum items that cross the new i_size are truncated to the new size
4269 * as well.
4270 *
4271 * min_type is the minimum key type to truncate down to. If set to 0, this
4272 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4273 */
4274 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4275 struct btrfs_root *root,
4276 struct inode *inode,
4277 u64 new_size, u32 min_type)
4278 {
4279 struct btrfs_path *path;
4280 struct extent_buffer *leaf;
4281 struct btrfs_file_extent_item *fi;
4282 struct btrfs_key key;
4283 struct btrfs_key found_key;
4284 u64 extent_start = 0;
4285 u64 extent_num_bytes = 0;
4286 u64 extent_offset = 0;
4287 u64 item_end = 0;
4288 u64 last_size = new_size;
4289 u32 found_type = (u8)-1;
4290 int found_extent;
4291 int del_item;
4292 int pending_del_nr = 0;
4293 int pending_del_slot = 0;
4294 int extent_type = -1;
4295 int ret;
4296 int err = 0;
4297 u64 ino = btrfs_ino(inode);
4298 u64 bytes_deleted = 0;
4299 bool be_nice = 0;
4300 bool should_throttle = 0;
4301 bool should_end = 0;
4302
4303 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4304
4305 /*
4306 * for non-free space inodes and ref cows, we want to back off from
4307 * time to time
4308 */
4309 if (!btrfs_is_free_space_inode(inode) &&
4310 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4311 be_nice = 1;
4312
4313 path = btrfs_alloc_path();
4314 if (!path)
4315 return -ENOMEM;
4316 path->reada = READA_BACK;
4317
4318 /*
4319 * We want to drop from the next block forward in case this new size is
4320 * not block aligned since we will be keeping the last block of the
4321 * extent just the way it is.
4322 */
4323 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4324 root == root->fs_info->tree_root)
4325 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4326 root->sectorsize), (u64)-1, 0);
4327
4328 /*
4329 * This function is also used to drop the items in the log tree before
4330 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4331 * it is used to drop the loged items. So we shouldn't kill the delayed
4332 * items.
4333 */
4334 if (min_type == 0 && root == BTRFS_I(inode)->root)
4335 btrfs_kill_delayed_inode_items(inode);
4336
4337 key.objectid = ino;
4338 key.offset = (u64)-1;
4339 key.type = (u8)-1;
4340
4341 search_again:
4342 /*
4343 * with a 16K leaf size and 128MB extents, you can actually queue
4344 * up a huge file in a single leaf. Most of the time that
4345 * bytes_deleted is > 0, it will be huge by the time we get here
4346 */
4347 if (be_nice && bytes_deleted > SZ_32M) {
4348 if (btrfs_should_end_transaction(trans, root)) {
4349 err = -EAGAIN;
4350 goto error;
4351 }
4352 }
4353
4354
4355 path->leave_spinning = 1;
4356 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4357 if (ret < 0) {
4358 err = ret;
4359 goto out;
4360 }
4361
4362 if (ret > 0) {
4363 /* there are no items in the tree for us to truncate, we're
4364 * done
4365 */
4366 if (path->slots[0] == 0)
4367 goto out;
4368 path->slots[0]--;
4369 }
4370
4371 while (1) {
4372 fi = NULL;
4373 leaf = path->nodes[0];
4374 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4375 found_type = found_key.type;
4376
4377 if (found_key.objectid != ino)
4378 break;
4379
4380 if (found_type < min_type)
4381 break;
4382
4383 item_end = found_key.offset;
4384 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4385 fi = btrfs_item_ptr(leaf, path->slots[0],
4386 struct btrfs_file_extent_item);
4387 extent_type = btrfs_file_extent_type(leaf, fi);
4388 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4389 item_end +=
4390 btrfs_file_extent_num_bytes(leaf, fi);
4391 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4392 item_end += btrfs_file_extent_inline_len(leaf,
4393 path->slots[0], fi);
4394 }
4395 item_end--;
4396 }
4397 if (found_type > min_type) {
4398 del_item = 1;
4399 } else {
4400 if (item_end < new_size)
4401 break;
4402 if (found_key.offset >= new_size)
4403 del_item = 1;
4404 else
4405 del_item = 0;
4406 }
4407 found_extent = 0;
4408 /* FIXME, shrink the extent if the ref count is only 1 */
4409 if (found_type != BTRFS_EXTENT_DATA_KEY)
4410 goto delete;
4411
4412 if (del_item)
4413 last_size = found_key.offset;
4414 else
4415 last_size = new_size;
4416
4417 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4418 u64 num_dec;
4419 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4420 if (!del_item) {
4421 u64 orig_num_bytes =
4422 btrfs_file_extent_num_bytes(leaf, fi);
4423 extent_num_bytes = ALIGN(new_size -
4424 found_key.offset,
4425 root->sectorsize);
4426 btrfs_set_file_extent_num_bytes(leaf, fi,
4427 extent_num_bytes);
4428 num_dec = (orig_num_bytes -
4429 extent_num_bytes);
4430 if (test_bit(BTRFS_ROOT_REF_COWS,
4431 &root->state) &&
4432 extent_start != 0)
4433 inode_sub_bytes(inode, num_dec);
4434 btrfs_mark_buffer_dirty(leaf);
4435 } else {
4436 extent_num_bytes =
4437 btrfs_file_extent_disk_num_bytes(leaf,
4438 fi);
4439 extent_offset = found_key.offset -
4440 btrfs_file_extent_offset(leaf, fi);
4441
4442 /* FIXME blocksize != 4096 */
4443 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4444 if (extent_start != 0) {
4445 found_extent = 1;
4446 if (test_bit(BTRFS_ROOT_REF_COWS,
4447 &root->state))
4448 inode_sub_bytes(inode, num_dec);
4449 }
4450 }
4451 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4452 /*
4453 * we can't truncate inline items that have had
4454 * special encodings
4455 */
4456 if (!del_item &&
4457 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4458 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4459
4460 /*
4461 * Need to release path in order to truncate a
4462 * compressed extent. So delete any accumulated
4463 * extent items so far.
4464 */
4465 if (btrfs_file_extent_compression(leaf, fi) !=
4466 BTRFS_COMPRESS_NONE && pending_del_nr) {
4467 err = btrfs_del_items(trans, root, path,
4468 pending_del_slot,
4469 pending_del_nr);
4470 if (err) {
4471 btrfs_abort_transaction(trans,
4472 root,
4473 err);
4474 goto error;
4475 }
4476 pending_del_nr = 0;
4477 }
4478
4479 err = truncate_inline_extent(inode, path,
4480 &found_key,
4481 item_end,
4482 new_size);
4483 if (err) {
4484 btrfs_abort_transaction(trans,
4485 root, err);
4486 goto error;
4487 }
4488 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4489 &root->state)) {
4490 inode_sub_bytes(inode, item_end + 1 - new_size);
4491 }
4492 }
4493 delete:
4494 if (del_item) {
4495 if (!pending_del_nr) {
4496 /* no pending yet, add ourselves */
4497 pending_del_slot = path->slots[0];
4498 pending_del_nr = 1;
4499 } else if (pending_del_nr &&
4500 path->slots[0] + 1 == pending_del_slot) {
4501 /* hop on the pending chunk */
4502 pending_del_nr++;
4503 pending_del_slot = path->slots[0];
4504 } else {
4505 BUG();
4506 }
4507 } else {
4508 break;
4509 }
4510 should_throttle = 0;
4511
4512 if (found_extent &&
4513 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4514 root == root->fs_info->tree_root)) {
4515 btrfs_set_path_blocking(path);
4516 bytes_deleted += extent_num_bytes;
4517 ret = btrfs_free_extent(trans, root, extent_start,
4518 extent_num_bytes, 0,
4519 btrfs_header_owner(leaf),
4520 ino, extent_offset);
4521 BUG_ON(ret);
4522 if (btrfs_should_throttle_delayed_refs(trans, root))
4523 btrfs_async_run_delayed_refs(root,
4524 trans->delayed_ref_updates * 2, 0);
4525 if (be_nice) {
4526 if (truncate_space_check(trans, root,
4527 extent_num_bytes)) {
4528 should_end = 1;
4529 }
4530 if (btrfs_should_throttle_delayed_refs(trans,
4531 root)) {
4532 should_throttle = 1;
4533 }
4534 }
4535 }
4536
4537 if (found_type == BTRFS_INODE_ITEM_KEY)
4538 break;
4539
4540 if (path->slots[0] == 0 ||
4541 path->slots[0] != pending_del_slot ||
4542 should_throttle || should_end) {
4543 if (pending_del_nr) {
4544 ret = btrfs_del_items(trans, root, path,
4545 pending_del_slot,
4546 pending_del_nr);
4547 if (ret) {
4548 btrfs_abort_transaction(trans,
4549 root, ret);
4550 goto error;
4551 }
4552 pending_del_nr = 0;
4553 }
4554 btrfs_release_path(path);
4555 if (should_throttle) {
4556 unsigned long updates = trans->delayed_ref_updates;
4557 if (updates) {
4558 trans->delayed_ref_updates = 0;
4559 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4560 if (ret && !err)
4561 err = ret;
4562 }
4563 }
4564 /*
4565 * if we failed to refill our space rsv, bail out
4566 * and let the transaction restart
4567 */
4568 if (should_end) {
4569 err = -EAGAIN;
4570 goto error;
4571 }
4572 goto search_again;
4573 } else {
4574 path->slots[0]--;
4575 }
4576 }
4577 out:
4578 if (pending_del_nr) {
4579 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4580 pending_del_nr);
4581 if (ret)
4582 btrfs_abort_transaction(trans, root, ret);
4583 }
4584 error:
4585 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4586 btrfs_ordered_update_i_size(inode, last_size, NULL);
4587
4588 btrfs_free_path(path);
4589
4590 if (be_nice && bytes_deleted > SZ_32M) {
4591 unsigned long updates = trans->delayed_ref_updates;
4592 if (updates) {
4593 trans->delayed_ref_updates = 0;
4594 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4595 if (ret && !err)
4596 err = ret;
4597 }
4598 }
4599 return err;
4600 }
4601
4602 /*
4603 * btrfs_truncate_page - read, zero a chunk and write a page
4604 * @inode - inode that we're zeroing
4605 * @from - the offset to start zeroing
4606 * @len - the length to zero, 0 to zero the entire range respective to the
4607 * offset
4608 * @front - zero up to the offset instead of from the offset on
4609 *
4610 * This will find the page for the "from" offset and cow the page and zero the
4611 * part we want to zero. This is used with truncate and hole punching.
4612 */
4613 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4614 int front)
4615 {
4616 struct address_space *mapping = inode->i_mapping;
4617 struct btrfs_root *root = BTRFS_I(inode)->root;
4618 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4619 struct btrfs_ordered_extent *ordered;
4620 struct extent_state *cached_state = NULL;
4621 char *kaddr;
4622 u32 blocksize = root->sectorsize;
4623 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4624 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4625 struct page *page;
4626 gfp_t mask = btrfs_alloc_write_mask(mapping);
4627 int ret = 0;
4628 u64 page_start;
4629 u64 page_end;
4630
4631 if ((offset & (blocksize - 1)) == 0 &&
4632 (!len || ((len & (blocksize - 1)) == 0)))
4633 goto out;
4634 ret = btrfs_delalloc_reserve_space(inode,
4635 round_down(from, PAGE_CACHE_SIZE), PAGE_CACHE_SIZE);
4636 if (ret)
4637 goto out;
4638
4639 again:
4640 page = find_or_create_page(mapping, index, mask);
4641 if (!page) {
4642 btrfs_delalloc_release_space(inode,
4643 round_down(from, PAGE_CACHE_SIZE),
4644 PAGE_CACHE_SIZE);
4645 ret = -ENOMEM;
4646 goto out;
4647 }
4648
4649 page_start = page_offset(page);
4650 page_end = page_start + PAGE_CACHE_SIZE - 1;
4651
4652 if (!PageUptodate(page)) {
4653 ret = btrfs_readpage(NULL, page);
4654 lock_page(page);
4655 if (page->mapping != mapping) {
4656 unlock_page(page);
4657 page_cache_release(page);
4658 goto again;
4659 }
4660 if (!PageUptodate(page)) {
4661 ret = -EIO;
4662 goto out_unlock;
4663 }
4664 }
4665 wait_on_page_writeback(page);
4666
4667 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
4668 set_page_extent_mapped(page);
4669
4670 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4671 if (ordered) {
4672 unlock_extent_cached(io_tree, page_start, page_end,
4673 &cached_state, GFP_NOFS);
4674 unlock_page(page);
4675 page_cache_release(page);
4676 btrfs_start_ordered_extent(inode, ordered, 1);
4677 btrfs_put_ordered_extent(ordered);
4678 goto again;
4679 }
4680
4681 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4682 EXTENT_DIRTY | EXTENT_DELALLOC |
4683 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4684 0, 0, &cached_state, GFP_NOFS);
4685
4686 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4687 &cached_state);
4688 if (ret) {
4689 unlock_extent_cached(io_tree, page_start, page_end,
4690 &cached_state, GFP_NOFS);
4691 goto out_unlock;
4692 }
4693
4694 if (offset != PAGE_CACHE_SIZE) {
4695 if (!len)
4696 len = PAGE_CACHE_SIZE - offset;
4697 kaddr = kmap(page);
4698 if (front)
4699 memset(kaddr, 0, offset);
4700 else
4701 memset(kaddr + offset, 0, len);
4702 flush_dcache_page(page);
4703 kunmap(page);
4704 }
4705 ClearPageChecked(page);
4706 set_page_dirty(page);
4707 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4708 GFP_NOFS);
4709
4710 out_unlock:
4711 if (ret)
4712 btrfs_delalloc_release_space(inode, page_start,
4713 PAGE_CACHE_SIZE);
4714 unlock_page(page);
4715 page_cache_release(page);
4716 out:
4717 return ret;
4718 }
4719
4720 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4721 u64 offset, u64 len)
4722 {
4723 struct btrfs_trans_handle *trans;
4724 int ret;
4725
4726 /*
4727 * Still need to make sure the inode looks like it's been updated so
4728 * that any holes get logged if we fsync.
4729 */
4730 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4731 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4732 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4733 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4734 return 0;
4735 }
4736
4737 /*
4738 * 1 - for the one we're dropping
4739 * 1 - for the one we're adding
4740 * 1 - for updating the inode.
4741 */
4742 trans = btrfs_start_transaction(root, 3);
4743 if (IS_ERR(trans))
4744 return PTR_ERR(trans);
4745
4746 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4747 if (ret) {
4748 btrfs_abort_transaction(trans, root, ret);
4749 btrfs_end_transaction(trans, root);
4750 return ret;
4751 }
4752
4753 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4754 0, 0, len, 0, len, 0, 0, 0);
4755 if (ret)
4756 btrfs_abort_transaction(trans, root, ret);
4757 else
4758 btrfs_update_inode(trans, root, inode);
4759 btrfs_end_transaction(trans, root);
4760 return ret;
4761 }
4762
4763 /*
4764 * This function puts in dummy file extents for the area we're creating a hole
4765 * for. So if we are truncating this file to a larger size we need to insert
4766 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4767 * the range between oldsize and size
4768 */
4769 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4770 {
4771 struct btrfs_root *root = BTRFS_I(inode)->root;
4772 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4773 struct extent_map *em = NULL;
4774 struct extent_state *cached_state = NULL;
4775 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4776 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4777 u64 block_end = ALIGN(size, root->sectorsize);
4778 u64 last_byte;
4779 u64 cur_offset;
4780 u64 hole_size;
4781 int err = 0;
4782
4783 /*
4784 * If our size started in the middle of a page we need to zero out the
4785 * rest of the page before we expand the i_size, otherwise we could
4786 * expose stale data.
4787 */
4788 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4789 if (err)
4790 return err;
4791
4792 if (size <= hole_start)
4793 return 0;
4794
4795 while (1) {
4796 struct btrfs_ordered_extent *ordered;
4797
4798 lock_extent_bits(io_tree, hole_start, block_end - 1,
4799 &cached_state);
4800 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4801 block_end - hole_start);
4802 if (!ordered)
4803 break;
4804 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4805 &cached_state, GFP_NOFS);
4806 btrfs_start_ordered_extent(inode, ordered, 1);
4807 btrfs_put_ordered_extent(ordered);
4808 }
4809
4810 cur_offset = hole_start;
4811 while (1) {
4812 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4813 block_end - cur_offset, 0);
4814 if (IS_ERR(em)) {
4815 err = PTR_ERR(em);
4816 em = NULL;
4817 break;
4818 }
4819 last_byte = min(extent_map_end(em), block_end);
4820 last_byte = ALIGN(last_byte , root->sectorsize);
4821 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4822 struct extent_map *hole_em;
4823 hole_size = last_byte - cur_offset;
4824
4825 err = maybe_insert_hole(root, inode, cur_offset,
4826 hole_size);
4827 if (err)
4828 break;
4829 btrfs_drop_extent_cache(inode, cur_offset,
4830 cur_offset + hole_size - 1, 0);
4831 hole_em = alloc_extent_map();
4832 if (!hole_em) {
4833 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4834 &BTRFS_I(inode)->runtime_flags);
4835 goto next;
4836 }
4837 hole_em->start = cur_offset;
4838 hole_em->len = hole_size;
4839 hole_em->orig_start = cur_offset;
4840
4841 hole_em->block_start = EXTENT_MAP_HOLE;
4842 hole_em->block_len = 0;
4843 hole_em->orig_block_len = 0;
4844 hole_em->ram_bytes = hole_size;
4845 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4846 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4847 hole_em->generation = root->fs_info->generation;
4848
4849 while (1) {
4850 write_lock(&em_tree->lock);
4851 err = add_extent_mapping(em_tree, hole_em, 1);
4852 write_unlock(&em_tree->lock);
4853 if (err != -EEXIST)
4854 break;
4855 btrfs_drop_extent_cache(inode, cur_offset,
4856 cur_offset +
4857 hole_size - 1, 0);
4858 }
4859 free_extent_map(hole_em);
4860 }
4861 next:
4862 free_extent_map(em);
4863 em = NULL;
4864 cur_offset = last_byte;
4865 if (cur_offset >= block_end)
4866 break;
4867 }
4868 free_extent_map(em);
4869 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4870 GFP_NOFS);
4871 return err;
4872 }
4873
4874 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4875 {
4876 struct btrfs_root *root = BTRFS_I(inode)->root;
4877 struct btrfs_trans_handle *trans;
4878 loff_t oldsize = i_size_read(inode);
4879 loff_t newsize = attr->ia_size;
4880 int mask = attr->ia_valid;
4881 int ret;
4882
4883 /*
4884 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4885 * special case where we need to update the times despite not having
4886 * these flags set. For all other operations the VFS set these flags
4887 * explicitly if it wants a timestamp update.
4888 */
4889 if (newsize != oldsize) {
4890 inode_inc_iversion(inode);
4891 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4892 inode->i_ctime = inode->i_mtime =
4893 current_fs_time(inode->i_sb);
4894 }
4895
4896 if (newsize > oldsize) {
4897 truncate_pagecache(inode, newsize);
4898 /*
4899 * Don't do an expanding truncate while snapshoting is ongoing.
4900 * This is to ensure the snapshot captures a fully consistent
4901 * state of this file - if the snapshot captures this expanding
4902 * truncation, it must capture all writes that happened before
4903 * this truncation.
4904 */
4905 btrfs_wait_for_snapshot_creation(root);
4906 ret = btrfs_cont_expand(inode, oldsize, newsize);
4907 if (ret) {
4908 btrfs_end_write_no_snapshoting(root);
4909 return ret;
4910 }
4911
4912 trans = btrfs_start_transaction(root, 1);
4913 if (IS_ERR(trans)) {
4914 btrfs_end_write_no_snapshoting(root);
4915 return PTR_ERR(trans);
4916 }
4917
4918 i_size_write(inode, newsize);
4919 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4920 ret = btrfs_update_inode(trans, root, inode);
4921 btrfs_end_write_no_snapshoting(root);
4922 btrfs_end_transaction(trans, root);
4923 } else {
4924
4925 /*
4926 * We're truncating a file that used to have good data down to
4927 * zero. Make sure it gets into the ordered flush list so that
4928 * any new writes get down to disk quickly.
4929 */
4930 if (newsize == 0)
4931 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4932 &BTRFS_I(inode)->runtime_flags);
4933
4934 /*
4935 * 1 for the orphan item we're going to add
4936 * 1 for the orphan item deletion.
4937 */
4938 trans = btrfs_start_transaction(root, 2);
4939 if (IS_ERR(trans))
4940 return PTR_ERR(trans);
4941
4942 /*
4943 * We need to do this in case we fail at _any_ point during the
4944 * actual truncate. Once we do the truncate_setsize we could
4945 * invalidate pages which forces any outstanding ordered io to
4946 * be instantly completed which will give us extents that need
4947 * to be truncated. If we fail to get an orphan inode down we
4948 * could have left over extents that were never meant to live,
4949 * so we need to garuntee from this point on that everything
4950 * will be consistent.
4951 */
4952 ret = btrfs_orphan_add(trans, inode);
4953 btrfs_end_transaction(trans, root);
4954 if (ret)
4955 return ret;
4956
4957 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4958 truncate_setsize(inode, newsize);
4959
4960 /* Disable nonlocked read DIO to avoid the end less truncate */
4961 btrfs_inode_block_unlocked_dio(inode);
4962 inode_dio_wait(inode);
4963 btrfs_inode_resume_unlocked_dio(inode);
4964
4965 ret = btrfs_truncate(inode);
4966 if (ret && inode->i_nlink) {
4967 int err;
4968
4969 /*
4970 * failed to truncate, disk_i_size is only adjusted down
4971 * as we remove extents, so it should represent the true
4972 * size of the inode, so reset the in memory size and
4973 * delete our orphan entry.
4974 */
4975 trans = btrfs_join_transaction(root);
4976 if (IS_ERR(trans)) {
4977 btrfs_orphan_del(NULL, inode);
4978 return ret;
4979 }
4980 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4981 err = btrfs_orphan_del(trans, inode);
4982 if (err)
4983 btrfs_abort_transaction(trans, root, err);
4984 btrfs_end_transaction(trans, root);
4985 }
4986 }
4987
4988 return ret;
4989 }
4990
4991 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4992 {
4993 struct inode *inode = d_inode(dentry);
4994 struct btrfs_root *root = BTRFS_I(inode)->root;
4995 int err;
4996
4997 if (btrfs_root_readonly(root))
4998 return -EROFS;
4999
5000 err = inode_change_ok(inode, attr);
5001 if (err)
5002 return err;
5003
5004 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5005 err = btrfs_setsize(inode, attr);
5006 if (err)
5007 return err;
5008 }
5009
5010 if (attr->ia_valid) {
5011 setattr_copy(inode, attr);
5012 inode_inc_iversion(inode);
5013 err = btrfs_dirty_inode(inode);
5014
5015 if (!err && attr->ia_valid & ATTR_MODE)
5016 err = posix_acl_chmod(inode, inode->i_mode);
5017 }
5018
5019 return err;
5020 }
5021
5022 /*
5023 * While truncating the inode pages during eviction, we get the VFS calling
5024 * btrfs_invalidatepage() against each page of the inode. This is slow because
5025 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5026 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5027 * extent_state structures over and over, wasting lots of time.
5028 *
5029 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5030 * those expensive operations on a per page basis and do only the ordered io
5031 * finishing, while we release here the extent_map and extent_state structures,
5032 * without the excessive merging and splitting.
5033 */
5034 static void evict_inode_truncate_pages(struct inode *inode)
5035 {
5036 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5037 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5038 struct rb_node *node;
5039
5040 ASSERT(inode->i_state & I_FREEING);
5041 truncate_inode_pages_final(&inode->i_data);
5042
5043 write_lock(&map_tree->lock);
5044 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5045 struct extent_map *em;
5046
5047 node = rb_first(&map_tree->map);
5048 em = rb_entry(node, struct extent_map, rb_node);
5049 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5050 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5051 remove_extent_mapping(map_tree, em);
5052 free_extent_map(em);
5053 if (need_resched()) {
5054 write_unlock(&map_tree->lock);
5055 cond_resched();
5056 write_lock(&map_tree->lock);
5057 }
5058 }
5059 write_unlock(&map_tree->lock);
5060
5061 /*
5062 * Keep looping until we have no more ranges in the io tree.
5063 * We can have ongoing bios started by readpages (called from readahead)
5064 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5065 * still in progress (unlocked the pages in the bio but did not yet
5066 * unlocked the ranges in the io tree). Therefore this means some
5067 * ranges can still be locked and eviction started because before
5068 * submitting those bios, which are executed by a separate task (work
5069 * queue kthread), inode references (inode->i_count) were not taken
5070 * (which would be dropped in the end io callback of each bio).
5071 * Therefore here we effectively end up waiting for those bios and
5072 * anyone else holding locked ranges without having bumped the inode's
5073 * reference count - if we don't do it, when they access the inode's
5074 * io_tree to unlock a range it may be too late, leading to an
5075 * use-after-free issue.
5076 */
5077 spin_lock(&io_tree->lock);
5078 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5079 struct extent_state *state;
5080 struct extent_state *cached_state = NULL;
5081 u64 start;
5082 u64 end;
5083
5084 node = rb_first(&io_tree->state);
5085 state = rb_entry(node, struct extent_state, rb_node);
5086 start = state->start;
5087 end = state->end;
5088 spin_unlock(&io_tree->lock);
5089
5090 lock_extent_bits(io_tree, start, end, &cached_state);
5091
5092 /*
5093 * If still has DELALLOC flag, the extent didn't reach disk,
5094 * and its reserved space won't be freed by delayed_ref.
5095 * So we need to free its reserved space here.
5096 * (Refer to comment in btrfs_invalidatepage, case 2)
5097 *
5098 * Note, end is the bytenr of last byte, so we need + 1 here.
5099 */
5100 if (state->state & EXTENT_DELALLOC)
5101 btrfs_qgroup_free_data(inode, start, end - start + 1);
5102
5103 clear_extent_bit(io_tree, start, end,
5104 EXTENT_LOCKED | EXTENT_DIRTY |
5105 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5106 EXTENT_DEFRAG, 1, 1,
5107 &cached_state, GFP_NOFS);
5108
5109 cond_resched();
5110 spin_lock(&io_tree->lock);
5111 }
5112 spin_unlock(&io_tree->lock);
5113 }
5114
5115 void btrfs_evict_inode(struct inode *inode)
5116 {
5117 struct btrfs_trans_handle *trans;
5118 struct btrfs_root *root = BTRFS_I(inode)->root;
5119 struct btrfs_block_rsv *rsv, *global_rsv;
5120 int steal_from_global = 0;
5121 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5122 int ret;
5123
5124 trace_btrfs_inode_evict(inode);
5125
5126 evict_inode_truncate_pages(inode);
5127
5128 if (inode->i_nlink &&
5129 ((btrfs_root_refs(&root->root_item) != 0 &&
5130 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5131 btrfs_is_free_space_inode(inode)))
5132 goto no_delete;
5133
5134 if (is_bad_inode(inode)) {
5135 btrfs_orphan_del(NULL, inode);
5136 goto no_delete;
5137 }
5138 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5139 if (!special_file(inode->i_mode))
5140 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5141
5142 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5143
5144 if (root->fs_info->log_root_recovering) {
5145 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5146 &BTRFS_I(inode)->runtime_flags));
5147 goto no_delete;
5148 }
5149
5150 if (inode->i_nlink > 0) {
5151 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5152 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5153 goto no_delete;
5154 }
5155
5156 ret = btrfs_commit_inode_delayed_inode(inode);
5157 if (ret) {
5158 btrfs_orphan_del(NULL, inode);
5159 goto no_delete;
5160 }
5161
5162 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5163 if (!rsv) {
5164 btrfs_orphan_del(NULL, inode);
5165 goto no_delete;
5166 }
5167 rsv->size = min_size;
5168 rsv->failfast = 1;
5169 global_rsv = &root->fs_info->global_block_rsv;
5170
5171 btrfs_i_size_write(inode, 0);
5172
5173 /*
5174 * This is a bit simpler than btrfs_truncate since we've already
5175 * reserved our space for our orphan item in the unlink, so we just
5176 * need to reserve some slack space in case we add bytes and update
5177 * inode item when doing the truncate.
5178 */
5179 while (1) {
5180 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5181 BTRFS_RESERVE_FLUSH_LIMIT);
5182
5183 /*
5184 * Try and steal from the global reserve since we will
5185 * likely not use this space anyway, we want to try as
5186 * hard as possible to get this to work.
5187 */
5188 if (ret)
5189 steal_from_global++;
5190 else
5191 steal_from_global = 0;
5192 ret = 0;
5193
5194 /*
5195 * steal_from_global == 0: we reserved stuff, hooray!
5196 * steal_from_global == 1: we didn't reserve stuff, boo!
5197 * steal_from_global == 2: we've committed, still not a lot of
5198 * room but maybe we'll have room in the global reserve this
5199 * time.
5200 * steal_from_global == 3: abandon all hope!
5201 */
5202 if (steal_from_global > 2) {
5203 btrfs_warn(root->fs_info,
5204 "Could not get space for a delete, will truncate on mount %d",
5205 ret);
5206 btrfs_orphan_del(NULL, inode);
5207 btrfs_free_block_rsv(root, rsv);
5208 goto no_delete;
5209 }
5210
5211 trans = btrfs_join_transaction(root);
5212 if (IS_ERR(trans)) {
5213 btrfs_orphan_del(NULL, inode);
5214 btrfs_free_block_rsv(root, rsv);
5215 goto no_delete;
5216 }
5217
5218 /*
5219 * We can't just steal from the global reserve, we need tomake
5220 * sure there is room to do it, if not we need to commit and try
5221 * again.
5222 */
5223 if (steal_from_global) {
5224 if (!btrfs_check_space_for_delayed_refs(trans, root))
5225 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5226 min_size);
5227 else
5228 ret = -ENOSPC;
5229 }
5230
5231 /*
5232 * Couldn't steal from the global reserve, we have too much
5233 * pending stuff built up, commit the transaction and try it
5234 * again.
5235 */
5236 if (ret) {
5237 ret = btrfs_commit_transaction(trans, root);
5238 if (ret) {
5239 btrfs_orphan_del(NULL, inode);
5240 btrfs_free_block_rsv(root, rsv);
5241 goto no_delete;
5242 }
5243 continue;
5244 } else {
5245 steal_from_global = 0;
5246 }
5247
5248 trans->block_rsv = rsv;
5249
5250 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5251 if (ret != -ENOSPC && ret != -EAGAIN)
5252 break;
5253
5254 trans->block_rsv = &root->fs_info->trans_block_rsv;
5255 btrfs_end_transaction(trans, root);
5256 trans = NULL;
5257 btrfs_btree_balance_dirty(root);
5258 }
5259
5260 btrfs_free_block_rsv(root, rsv);
5261
5262 /*
5263 * Errors here aren't a big deal, it just means we leave orphan items
5264 * in the tree. They will be cleaned up on the next mount.
5265 */
5266 if (ret == 0) {
5267 trans->block_rsv = root->orphan_block_rsv;
5268 btrfs_orphan_del(trans, inode);
5269 } else {
5270 btrfs_orphan_del(NULL, inode);
5271 }
5272
5273 trans->block_rsv = &root->fs_info->trans_block_rsv;
5274 if (!(root == root->fs_info->tree_root ||
5275 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5276 btrfs_return_ino(root, btrfs_ino(inode));
5277
5278 btrfs_end_transaction(trans, root);
5279 btrfs_btree_balance_dirty(root);
5280 no_delete:
5281 btrfs_remove_delayed_node(inode);
5282 clear_inode(inode);
5283 }
5284
5285 /*
5286 * this returns the key found in the dir entry in the location pointer.
5287 * If no dir entries were found, location->objectid is 0.
5288 */
5289 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5290 struct btrfs_key *location)
5291 {
5292 const char *name = dentry->d_name.name;
5293 int namelen = dentry->d_name.len;
5294 struct btrfs_dir_item *di;
5295 struct btrfs_path *path;
5296 struct btrfs_root *root = BTRFS_I(dir)->root;
5297 int ret = 0;
5298
5299 path = btrfs_alloc_path();
5300 if (!path)
5301 return -ENOMEM;
5302
5303 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5304 namelen, 0);
5305 if (IS_ERR(di))
5306 ret = PTR_ERR(di);
5307
5308 if (IS_ERR_OR_NULL(di))
5309 goto out_err;
5310
5311 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5312 out:
5313 btrfs_free_path(path);
5314 return ret;
5315 out_err:
5316 location->objectid = 0;
5317 goto out;
5318 }
5319
5320 /*
5321 * when we hit a tree root in a directory, the btrfs part of the inode
5322 * needs to be changed to reflect the root directory of the tree root. This
5323 * is kind of like crossing a mount point.
5324 */
5325 static int fixup_tree_root_location(struct btrfs_root *root,
5326 struct inode *dir,
5327 struct dentry *dentry,
5328 struct btrfs_key *location,
5329 struct btrfs_root **sub_root)
5330 {
5331 struct btrfs_path *path;
5332 struct btrfs_root *new_root;
5333 struct btrfs_root_ref *ref;
5334 struct extent_buffer *leaf;
5335 struct btrfs_key key;
5336 int ret;
5337 int err = 0;
5338
5339 path = btrfs_alloc_path();
5340 if (!path) {
5341 err = -ENOMEM;
5342 goto out;
5343 }
5344
5345 err = -ENOENT;
5346 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5347 key.type = BTRFS_ROOT_REF_KEY;
5348 key.offset = location->objectid;
5349
5350 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5351 0, 0);
5352 if (ret) {
5353 if (ret < 0)
5354 err = ret;
5355 goto out;
5356 }
5357
5358 leaf = path->nodes[0];
5359 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5360 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5361 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5362 goto out;
5363
5364 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5365 (unsigned long)(ref + 1),
5366 dentry->d_name.len);
5367 if (ret)
5368 goto out;
5369
5370 btrfs_release_path(path);
5371
5372 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5373 if (IS_ERR(new_root)) {
5374 err = PTR_ERR(new_root);
5375 goto out;
5376 }
5377
5378 *sub_root = new_root;
5379 location->objectid = btrfs_root_dirid(&new_root->root_item);
5380 location->type = BTRFS_INODE_ITEM_KEY;
5381 location->offset = 0;
5382 err = 0;
5383 out:
5384 btrfs_free_path(path);
5385 return err;
5386 }
5387
5388 static void inode_tree_add(struct inode *inode)
5389 {
5390 struct btrfs_root *root = BTRFS_I(inode)->root;
5391 struct btrfs_inode *entry;
5392 struct rb_node **p;
5393 struct rb_node *parent;
5394 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5395 u64 ino = btrfs_ino(inode);
5396
5397 if (inode_unhashed(inode))
5398 return;
5399 parent = NULL;
5400 spin_lock(&root->inode_lock);
5401 p = &root->inode_tree.rb_node;
5402 while (*p) {
5403 parent = *p;
5404 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5405
5406 if (ino < btrfs_ino(&entry->vfs_inode))
5407 p = &parent->rb_left;
5408 else if (ino > btrfs_ino(&entry->vfs_inode))
5409 p = &parent->rb_right;
5410 else {
5411 WARN_ON(!(entry->vfs_inode.i_state &
5412 (I_WILL_FREE | I_FREEING)));
5413 rb_replace_node(parent, new, &root->inode_tree);
5414 RB_CLEAR_NODE(parent);
5415 spin_unlock(&root->inode_lock);
5416 return;
5417 }
5418 }
5419 rb_link_node(new, parent, p);
5420 rb_insert_color(new, &root->inode_tree);
5421 spin_unlock(&root->inode_lock);
5422 }
5423
5424 static void inode_tree_del(struct inode *inode)
5425 {
5426 struct btrfs_root *root = BTRFS_I(inode)->root;
5427 int empty = 0;
5428
5429 spin_lock(&root->inode_lock);
5430 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5431 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5432 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5433 empty = RB_EMPTY_ROOT(&root->inode_tree);
5434 }
5435 spin_unlock(&root->inode_lock);
5436
5437 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5438 synchronize_srcu(&root->fs_info->subvol_srcu);
5439 spin_lock(&root->inode_lock);
5440 empty = RB_EMPTY_ROOT(&root->inode_tree);
5441 spin_unlock(&root->inode_lock);
5442 if (empty)
5443 btrfs_add_dead_root(root);
5444 }
5445 }
5446
5447 void btrfs_invalidate_inodes(struct btrfs_root *root)
5448 {
5449 struct rb_node *node;
5450 struct rb_node *prev;
5451 struct btrfs_inode *entry;
5452 struct inode *inode;
5453 u64 objectid = 0;
5454
5455 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5456 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5457
5458 spin_lock(&root->inode_lock);
5459 again:
5460 node = root->inode_tree.rb_node;
5461 prev = NULL;
5462 while (node) {
5463 prev = node;
5464 entry = rb_entry(node, struct btrfs_inode, rb_node);
5465
5466 if (objectid < btrfs_ino(&entry->vfs_inode))
5467 node = node->rb_left;
5468 else if (objectid > btrfs_ino(&entry->vfs_inode))
5469 node = node->rb_right;
5470 else
5471 break;
5472 }
5473 if (!node) {
5474 while (prev) {
5475 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5476 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5477 node = prev;
5478 break;
5479 }
5480 prev = rb_next(prev);
5481 }
5482 }
5483 while (node) {
5484 entry = rb_entry(node, struct btrfs_inode, rb_node);
5485 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5486 inode = igrab(&entry->vfs_inode);
5487 if (inode) {
5488 spin_unlock(&root->inode_lock);
5489 if (atomic_read(&inode->i_count) > 1)
5490 d_prune_aliases(inode);
5491 /*
5492 * btrfs_drop_inode will have it removed from
5493 * the inode cache when its usage count
5494 * hits zero.
5495 */
5496 iput(inode);
5497 cond_resched();
5498 spin_lock(&root->inode_lock);
5499 goto again;
5500 }
5501
5502 if (cond_resched_lock(&root->inode_lock))
5503 goto again;
5504
5505 node = rb_next(node);
5506 }
5507 spin_unlock(&root->inode_lock);
5508 }
5509
5510 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5511 {
5512 struct btrfs_iget_args *args = p;
5513 inode->i_ino = args->location->objectid;
5514 memcpy(&BTRFS_I(inode)->location, args->location,
5515 sizeof(*args->location));
5516 BTRFS_I(inode)->root = args->root;
5517 return 0;
5518 }
5519
5520 static int btrfs_find_actor(struct inode *inode, void *opaque)
5521 {
5522 struct btrfs_iget_args *args = opaque;
5523 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5524 args->root == BTRFS_I(inode)->root;
5525 }
5526
5527 static struct inode *btrfs_iget_locked(struct super_block *s,
5528 struct btrfs_key *location,
5529 struct btrfs_root *root)
5530 {
5531 struct inode *inode;
5532 struct btrfs_iget_args args;
5533 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5534
5535 args.location = location;
5536 args.root = root;
5537
5538 inode = iget5_locked(s, hashval, btrfs_find_actor,
5539 btrfs_init_locked_inode,
5540 (void *)&args);
5541 return inode;
5542 }
5543
5544 /* Get an inode object given its location and corresponding root.
5545 * Returns in *is_new if the inode was read from disk
5546 */
5547 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5548 struct btrfs_root *root, int *new)
5549 {
5550 struct inode *inode;
5551
5552 inode = btrfs_iget_locked(s, location, root);
5553 if (!inode)
5554 return ERR_PTR(-ENOMEM);
5555
5556 if (inode->i_state & I_NEW) {
5557 btrfs_read_locked_inode(inode);
5558 if (!is_bad_inode(inode)) {
5559 inode_tree_add(inode);
5560 unlock_new_inode(inode);
5561 if (new)
5562 *new = 1;
5563 } else {
5564 unlock_new_inode(inode);
5565 iput(inode);
5566 inode = ERR_PTR(-ESTALE);
5567 }
5568 }
5569
5570 return inode;
5571 }
5572
5573 static struct inode *new_simple_dir(struct super_block *s,
5574 struct btrfs_key *key,
5575 struct btrfs_root *root)
5576 {
5577 struct inode *inode = new_inode(s);
5578
5579 if (!inode)
5580 return ERR_PTR(-ENOMEM);
5581
5582 BTRFS_I(inode)->root = root;
5583 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5584 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5585
5586 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5587 inode->i_op = &btrfs_dir_ro_inode_operations;
5588 inode->i_fop = &simple_dir_operations;
5589 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5590 inode->i_mtime = CURRENT_TIME;
5591 inode->i_atime = inode->i_mtime;
5592 inode->i_ctime = inode->i_mtime;
5593 BTRFS_I(inode)->i_otime = inode->i_mtime;
5594
5595 return inode;
5596 }
5597
5598 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5599 {
5600 struct inode *inode;
5601 struct btrfs_root *root = BTRFS_I(dir)->root;
5602 struct btrfs_root *sub_root = root;
5603 struct btrfs_key location;
5604 int index;
5605 int ret = 0;
5606
5607 if (dentry->d_name.len > BTRFS_NAME_LEN)
5608 return ERR_PTR(-ENAMETOOLONG);
5609
5610 ret = btrfs_inode_by_name(dir, dentry, &location);
5611 if (ret < 0)
5612 return ERR_PTR(ret);
5613
5614 if (location.objectid == 0)
5615 return ERR_PTR(-ENOENT);
5616
5617 if (location.type == BTRFS_INODE_ITEM_KEY) {
5618 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5619 return inode;
5620 }
5621
5622 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5623
5624 index = srcu_read_lock(&root->fs_info->subvol_srcu);
5625 ret = fixup_tree_root_location(root, dir, dentry,
5626 &location, &sub_root);
5627 if (ret < 0) {
5628 if (ret != -ENOENT)
5629 inode = ERR_PTR(ret);
5630 else
5631 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5632 } else {
5633 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5634 }
5635 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5636
5637 if (!IS_ERR(inode) && root != sub_root) {
5638 down_read(&root->fs_info->cleanup_work_sem);
5639 if (!(inode->i_sb->s_flags & MS_RDONLY))
5640 ret = btrfs_orphan_cleanup(sub_root);
5641 up_read(&root->fs_info->cleanup_work_sem);
5642 if (ret) {
5643 iput(inode);
5644 inode = ERR_PTR(ret);
5645 }
5646 }
5647
5648 return inode;
5649 }
5650
5651 static int btrfs_dentry_delete(const struct dentry *dentry)
5652 {
5653 struct btrfs_root *root;
5654 struct inode *inode = d_inode(dentry);
5655
5656 if (!inode && !IS_ROOT(dentry))
5657 inode = d_inode(dentry->d_parent);
5658
5659 if (inode) {
5660 root = BTRFS_I(inode)->root;
5661 if (btrfs_root_refs(&root->root_item) == 0)
5662 return 1;
5663
5664 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5665 return 1;
5666 }
5667 return 0;
5668 }
5669
5670 static void btrfs_dentry_release(struct dentry *dentry)
5671 {
5672 kfree(dentry->d_fsdata);
5673 }
5674
5675 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5676 unsigned int flags)
5677 {
5678 struct inode *inode;
5679
5680 inode = btrfs_lookup_dentry(dir, dentry);
5681 if (IS_ERR(inode)) {
5682 if (PTR_ERR(inode) == -ENOENT)
5683 inode = NULL;
5684 else
5685 return ERR_CAST(inode);
5686 }
5687
5688 return d_splice_alias(inode, dentry);
5689 }
5690
5691 unsigned char btrfs_filetype_table[] = {
5692 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5693 };
5694
5695 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5696 {
5697 struct inode *inode = file_inode(file);
5698 struct btrfs_root *root = BTRFS_I(inode)->root;
5699 struct btrfs_item *item;
5700 struct btrfs_dir_item *di;
5701 struct btrfs_key key;
5702 struct btrfs_key found_key;
5703 struct btrfs_path *path;
5704 struct list_head ins_list;
5705 struct list_head del_list;
5706 int ret;
5707 struct extent_buffer *leaf;
5708 int slot;
5709 unsigned char d_type;
5710 int over = 0;
5711 u32 di_cur;
5712 u32 di_total;
5713 u32 di_len;
5714 int key_type = BTRFS_DIR_INDEX_KEY;
5715 char tmp_name[32];
5716 char *name_ptr;
5717 int name_len;
5718 int is_curr = 0; /* ctx->pos points to the current index? */
5719
5720 /* FIXME, use a real flag for deciding about the key type */
5721 if (root->fs_info->tree_root == root)
5722 key_type = BTRFS_DIR_ITEM_KEY;
5723
5724 if (!dir_emit_dots(file, ctx))
5725 return 0;
5726
5727 path = btrfs_alloc_path();
5728 if (!path)
5729 return -ENOMEM;
5730
5731 path->reada = READA_FORWARD;
5732
5733 if (key_type == BTRFS_DIR_INDEX_KEY) {
5734 INIT_LIST_HEAD(&ins_list);
5735 INIT_LIST_HEAD(&del_list);
5736 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5737 }
5738
5739 key.type = key_type;
5740 key.offset = ctx->pos;
5741 key.objectid = btrfs_ino(inode);
5742
5743 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5744 if (ret < 0)
5745 goto err;
5746
5747 while (1) {
5748 leaf = path->nodes[0];
5749 slot = path->slots[0];
5750 if (slot >= btrfs_header_nritems(leaf)) {
5751 ret = btrfs_next_leaf(root, path);
5752 if (ret < 0)
5753 goto err;
5754 else if (ret > 0)
5755 break;
5756 continue;
5757 }
5758
5759 item = btrfs_item_nr(slot);
5760 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5761
5762 if (found_key.objectid != key.objectid)
5763 break;
5764 if (found_key.type != key_type)
5765 break;
5766 if (found_key.offset < ctx->pos)
5767 goto next;
5768 if (key_type == BTRFS_DIR_INDEX_KEY &&
5769 btrfs_should_delete_dir_index(&del_list,
5770 found_key.offset))
5771 goto next;
5772
5773 ctx->pos = found_key.offset;
5774 is_curr = 1;
5775
5776 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5777 di_cur = 0;
5778 di_total = btrfs_item_size(leaf, item);
5779
5780 while (di_cur < di_total) {
5781 struct btrfs_key location;
5782
5783 if (verify_dir_item(root, leaf, di))
5784 break;
5785
5786 name_len = btrfs_dir_name_len(leaf, di);
5787 if (name_len <= sizeof(tmp_name)) {
5788 name_ptr = tmp_name;
5789 } else {
5790 name_ptr = kmalloc(name_len, GFP_NOFS);
5791 if (!name_ptr) {
5792 ret = -ENOMEM;
5793 goto err;
5794 }
5795 }
5796 read_extent_buffer(leaf, name_ptr,
5797 (unsigned long)(di + 1), name_len);
5798
5799 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5800 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5801
5802
5803 /* is this a reference to our own snapshot? If so
5804 * skip it.
5805 *
5806 * In contrast to old kernels, we insert the snapshot's
5807 * dir item and dir index after it has been created, so
5808 * we won't find a reference to our own snapshot. We
5809 * still keep the following code for backward
5810 * compatibility.
5811 */
5812 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5813 location.objectid == root->root_key.objectid) {
5814 over = 0;
5815 goto skip;
5816 }
5817 over = !dir_emit(ctx, name_ptr, name_len,
5818 location.objectid, d_type);
5819
5820 skip:
5821 if (name_ptr != tmp_name)
5822 kfree(name_ptr);
5823
5824 if (over)
5825 goto nopos;
5826 di_len = btrfs_dir_name_len(leaf, di) +
5827 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5828 di_cur += di_len;
5829 di = (struct btrfs_dir_item *)((char *)di + di_len);
5830 }
5831 next:
5832 path->slots[0]++;
5833 }
5834
5835 if (key_type == BTRFS_DIR_INDEX_KEY) {
5836 if (is_curr)
5837 ctx->pos++;
5838 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5839 if (ret)
5840 goto nopos;
5841 }
5842
5843 /* Reached end of directory/root. Bump pos past the last item. */
5844 ctx->pos++;
5845
5846 /*
5847 * Stop new entries from being returned after we return the last
5848 * entry.
5849 *
5850 * New directory entries are assigned a strictly increasing
5851 * offset. This means that new entries created during readdir
5852 * are *guaranteed* to be seen in the future by that readdir.
5853 * This has broken buggy programs which operate on names as
5854 * they're returned by readdir. Until we re-use freed offsets
5855 * we have this hack to stop new entries from being returned
5856 * under the assumption that they'll never reach this huge
5857 * offset.
5858 *
5859 * This is being careful not to overflow 32bit loff_t unless the
5860 * last entry requires it because doing so has broken 32bit apps
5861 * in the past.
5862 */
5863 if (key_type == BTRFS_DIR_INDEX_KEY) {
5864 if (ctx->pos >= INT_MAX)
5865 ctx->pos = LLONG_MAX;
5866 else
5867 ctx->pos = INT_MAX;
5868 }
5869 nopos:
5870 ret = 0;
5871 err:
5872 if (key_type == BTRFS_DIR_INDEX_KEY)
5873 btrfs_put_delayed_items(&ins_list, &del_list);
5874 btrfs_free_path(path);
5875 return ret;
5876 }
5877
5878 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5879 {
5880 struct btrfs_root *root = BTRFS_I(inode)->root;
5881 struct btrfs_trans_handle *trans;
5882 int ret = 0;
5883 bool nolock = false;
5884
5885 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5886 return 0;
5887
5888 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5889 nolock = true;
5890
5891 if (wbc->sync_mode == WB_SYNC_ALL) {
5892 if (nolock)
5893 trans = btrfs_join_transaction_nolock(root);
5894 else
5895 trans = btrfs_join_transaction(root);
5896 if (IS_ERR(trans))
5897 return PTR_ERR(trans);
5898 ret = btrfs_commit_transaction(trans, root);
5899 }
5900 return ret;
5901 }
5902
5903 /*
5904 * This is somewhat expensive, updating the tree every time the
5905 * inode changes. But, it is most likely to find the inode in cache.
5906 * FIXME, needs more benchmarking...there are no reasons other than performance
5907 * to keep or drop this code.
5908 */
5909 static int btrfs_dirty_inode(struct inode *inode)
5910 {
5911 struct btrfs_root *root = BTRFS_I(inode)->root;
5912 struct btrfs_trans_handle *trans;
5913 int ret;
5914
5915 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5916 return 0;
5917
5918 trans = btrfs_join_transaction(root);
5919 if (IS_ERR(trans))
5920 return PTR_ERR(trans);
5921
5922 ret = btrfs_update_inode(trans, root, inode);
5923 if (ret && ret == -ENOSPC) {
5924 /* whoops, lets try again with the full transaction */
5925 btrfs_end_transaction(trans, root);
5926 trans = btrfs_start_transaction(root, 1);
5927 if (IS_ERR(trans))
5928 return PTR_ERR(trans);
5929
5930 ret = btrfs_update_inode(trans, root, inode);
5931 }
5932 btrfs_end_transaction(trans, root);
5933 if (BTRFS_I(inode)->delayed_node)
5934 btrfs_balance_delayed_items(root);
5935
5936 return ret;
5937 }
5938
5939 /*
5940 * This is a copy of file_update_time. We need this so we can return error on
5941 * ENOSPC for updating the inode in the case of file write and mmap writes.
5942 */
5943 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5944 int flags)
5945 {
5946 struct btrfs_root *root = BTRFS_I(inode)->root;
5947
5948 if (btrfs_root_readonly(root))
5949 return -EROFS;
5950
5951 if (flags & S_VERSION)
5952 inode_inc_iversion(inode);
5953 if (flags & S_CTIME)
5954 inode->i_ctime = *now;
5955 if (flags & S_MTIME)
5956 inode->i_mtime = *now;
5957 if (flags & S_ATIME)
5958 inode->i_atime = *now;
5959 return btrfs_dirty_inode(inode);
5960 }
5961
5962 /*
5963 * find the highest existing sequence number in a directory
5964 * and then set the in-memory index_cnt variable to reflect
5965 * free sequence numbers
5966 */
5967 static int btrfs_set_inode_index_count(struct inode *inode)
5968 {
5969 struct btrfs_root *root = BTRFS_I(inode)->root;
5970 struct btrfs_key key, found_key;
5971 struct btrfs_path *path;
5972 struct extent_buffer *leaf;
5973 int ret;
5974
5975 key.objectid = btrfs_ino(inode);
5976 key.type = BTRFS_DIR_INDEX_KEY;
5977 key.offset = (u64)-1;
5978
5979 path = btrfs_alloc_path();
5980 if (!path)
5981 return -ENOMEM;
5982
5983 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5984 if (ret < 0)
5985 goto out;
5986 /* FIXME: we should be able to handle this */
5987 if (ret == 0)
5988 goto out;
5989 ret = 0;
5990
5991 /*
5992 * MAGIC NUMBER EXPLANATION:
5993 * since we search a directory based on f_pos we have to start at 2
5994 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5995 * else has to start at 2
5996 */
5997 if (path->slots[0] == 0) {
5998 BTRFS_I(inode)->index_cnt = 2;
5999 goto out;
6000 }
6001
6002 path->slots[0]--;
6003
6004 leaf = path->nodes[0];
6005 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6006
6007 if (found_key.objectid != btrfs_ino(inode) ||
6008 found_key.type != BTRFS_DIR_INDEX_KEY) {
6009 BTRFS_I(inode)->index_cnt = 2;
6010 goto out;
6011 }
6012
6013 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6014 out:
6015 btrfs_free_path(path);
6016 return ret;
6017 }
6018
6019 /*
6020 * helper to find a free sequence number in a given directory. This current
6021 * code is very simple, later versions will do smarter things in the btree
6022 */
6023 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6024 {
6025 int ret = 0;
6026
6027 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6028 ret = btrfs_inode_delayed_dir_index_count(dir);
6029 if (ret) {
6030 ret = btrfs_set_inode_index_count(dir);
6031 if (ret)
6032 return ret;
6033 }
6034 }
6035
6036 *index = BTRFS_I(dir)->index_cnt;
6037 BTRFS_I(dir)->index_cnt++;
6038
6039 return ret;
6040 }
6041
6042 static int btrfs_insert_inode_locked(struct inode *inode)
6043 {
6044 struct btrfs_iget_args args;
6045 args.location = &BTRFS_I(inode)->location;
6046 args.root = BTRFS_I(inode)->root;
6047
6048 return insert_inode_locked4(inode,
6049 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6050 btrfs_find_actor, &args);
6051 }
6052
6053 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6054 struct btrfs_root *root,
6055 struct inode *dir,
6056 const char *name, int name_len,
6057 u64 ref_objectid, u64 objectid,
6058 umode_t mode, u64 *index)
6059 {
6060 struct inode *inode;
6061 struct btrfs_inode_item *inode_item;
6062 struct btrfs_key *location;
6063 struct btrfs_path *path;
6064 struct btrfs_inode_ref *ref;
6065 struct btrfs_key key[2];
6066 u32 sizes[2];
6067 int nitems = name ? 2 : 1;
6068 unsigned long ptr;
6069 int ret;
6070
6071 path = btrfs_alloc_path();
6072 if (!path)
6073 return ERR_PTR(-ENOMEM);
6074
6075 inode = new_inode(root->fs_info->sb);
6076 if (!inode) {
6077 btrfs_free_path(path);
6078 return ERR_PTR(-ENOMEM);
6079 }
6080
6081 /*
6082 * O_TMPFILE, set link count to 0, so that after this point,
6083 * we fill in an inode item with the correct link count.
6084 */
6085 if (!name)
6086 set_nlink(inode, 0);
6087
6088 /*
6089 * we have to initialize this early, so we can reclaim the inode
6090 * number if we fail afterwards in this function.
6091 */
6092 inode->i_ino = objectid;
6093
6094 if (dir && name) {
6095 trace_btrfs_inode_request(dir);
6096
6097 ret = btrfs_set_inode_index(dir, index);
6098 if (ret) {
6099 btrfs_free_path(path);
6100 iput(inode);
6101 return ERR_PTR(ret);
6102 }
6103 } else if (dir) {
6104 *index = 0;
6105 }
6106 /*
6107 * index_cnt is ignored for everything but a dir,
6108 * btrfs_get_inode_index_count has an explanation for the magic
6109 * number
6110 */
6111 BTRFS_I(inode)->index_cnt = 2;
6112 BTRFS_I(inode)->dir_index = *index;
6113 BTRFS_I(inode)->root = root;
6114 BTRFS_I(inode)->generation = trans->transid;
6115 inode->i_generation = BTRFS_I(inode)->generation;
6116
6117 /*
6118 * We could have gotten an inode number from somebody who was fsynced
6119 * and then removed in this same transaction, so let's just set full
6120 * sync since it will be a full sync anyway and this will blow away the
6121 * old info in the log.
6122 */
6123 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6124
6125 key[0].objectid = objectid;
6126 key[0].type = BTRFS_INODE_ITEM_KEY;
6127 key[0].offset = 0;
6128
6129 sizes[0] = sizeof(struct btrfs_inode_item);
6130
6131 if (name) {
6132 /*
6133 * Start new inodes with an inode_ref. This is slightly more
6134 * efficient for small numbers of hard links since they will
6135 * be packed into one item. Extended refs will kick in if we
6136 * add more hard links than can fit in the ref item.
6137 */
6138 key[1].objectid = objectid;
6139 key[1].type = BTRFS_INODE_REF_KEY;
6140 key[1].offset = ref_objectid;
6141
6142 sizes[1] = name_len + sizeof(*ref);
6143 }
6144
6145 location = &BTRFS_I(inode)->location;
6146 location->objectid = objectid;
6147 location->offset = 0;
6148 location->type = BTRFS_INODE_ITEM_KEY;
6149
6150 ret = btrfs_insert_inode_locked(inode);
6151 if (ret < 0)
6152 goto fail;
6153
6154 path->leave_spinning = 1;
6155 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6156 if (ret != 0)
6157 goto fail_unlock;
6158
6159 inode_init_owner(inode, dir, mode);
6160 inode_set_bytes(inode, 0);
6161
6162 inode->i_mtime = CURRENT_TIME;
6163 inode->i_atime = inode->i_mtime;
6164 inode->i_ctime = inode->i_mtime;
6165 BTRFS_I(inode)->i_otime = inode->i_mtime;
6166
6167 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6168 struct btrfs_inode_item);
6169 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6170 sizeof(*inode_item));
6171 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6172
6173 if (name) {
6174 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6175 struct btrfs_inode_ref);
6176 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6177 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6178 ptr = (unsigned long)(ref + 1);
6179 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6180 }
6181
6182 btrfs_mark_buffer_dirty(path->nodes[0]);
6183 btrfs_free_path(path);
6184
6185 btrfs_inherit_iflags(inode, dir);
6186
6187 if (S_ISREG(mode)) {
6188 if (btrfs_test_opt(root, NODATASUM))
6189 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6190 if (btrfs_test_opt(root, NODATACOW))
6191 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6192 BTRFS_INODE_NODATASUM;
6193 }
6194
6195 inode_tree_add(inode);
6196
6197 trace_btrfs_inode_new(inode);
6198 btrfs_set_inode_last_trans(trans, inode);
6199
6200 btrfs_update_root_times(trans, root);
6201
6202 ret = btrfs_inode_inherit_props(trans, inode, dir);
6203 if (ret)
6204 btrfs_err(root->fs_info,
6205 "error inheriting props for ino %llu (root %llu): %d",
6206 btrfs_ino(inode), root->root_key.objectid, ret);
6207
6208 return inode;
6209
6210 fail_unlock:
6211 unlock_new_inode(inode);
6212 fail:
6213 if (dir && name)
6214 BTRFS_I(dir)->index_cnt--;
6215 btrfs_free_path(path);
6216 iput(inode);
6217 return ERR_PTR(ret);
6218 }
6219
6220 static inline u8 btrfs_inode_type(struct inode *inode)
6221 {
6222 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6223 }
6224
6225 /*
6226 * utility function to add 'inode' into 'parent_inode' with
6227 * a give name and a given sequence number.
6228 * if 'add_backref' is true, also insert a backref from the
6229 * inode to the parent directory.
6230 */
6231 int btrfs_add_link(struct btrfs_trans_handle *trans,
6232 struct inode *parent_inode, struct inode *inode,
6233 const char *name, int name_len, int add_backref, u64 index)
6234 {
6235 int ret = 0;
6236 struct btrfs_key key;
6237 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6238 u64 ino = btrfs_ino(inode);
6239 u64 parent_ino = btrfs_ino(parent_inode);
6240
6241 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6242 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6243 } else {
6244 key.objectid = ino;
6245 key.type = BTRFS_INODE_ITEM_KEY;
6246 key.offset = 0;
6247 }
6248
6249 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6250 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6251 key.objectid, root->root_key.objectid,
6252 parent_ino, index, name, name_len);
6253 } else if (add_backref) {
6254 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6255 parent_ino, index);
6256 }
6257
6258 /* Nothing to clean up yet */
6259 if (ret)
6260 return ret;
6261
6262 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6263 parent_inode, &key,
6264 btrfs_inode_type(inode), index);
6265 if (ret == -EEXIST || ret == -EOVERFLOW)
6266 goto fail_dir_item;
6267 else if (ret) {
6268 btrfs_abort_transaction(trans, root, ret);
6269 return ret;
6270 }
6271
6272 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6273 name_len * 2);
6274 inode_inc_iversion(parent_inode);
6275 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6276 ret = btrfs_update_inode(trans, root, parent_inode);
6277 if (ret)
6278 btrfs_abort_transaction(trans, root, ret);
6279 return ret;
6280
6281 fail_dir_item:
6282 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6283 u64 local_index;
6284 int err;
6285 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6286 key.objectid, root->root_key.objectid,
6287 parent_ino, &local_index, name, name_len);
6288
6289 } else if (add_backref) {
6290 u64 local_index;
6291 int err;
6292
6293 err = btrfs_del_inode_ref(trans, root, name, name_len,
6294 ino, parent_ino, &local_index);
6295 }
6296 return ret;
6297 }
6298
6299 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6300 struct inode *dir, struct dentry *dentry,
6301 struct inode *inode, int backref, u64 index)
6302 {
6303 int err = btrfs_add_link(trans, dir, inode,
6304 dentry->d_name.name, dentry->d_name.len,
6305 backref, index);
6306 if (err > 0)
6307 err = -EEXIST;
6308 return err;
6309 }
6310
6311 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6312 umode_t mode, dev_t rdev)
6313 {
6314 struct btrfs_trans_handle *trans;
6315 struct btrfs_root *root = BTRFS_I(dir)->root;
6316 struct inode *inode = NULL;
6317 int err;
6318 int drop_inode = 0;
6319 u64 objectid;
6320 u64 index = 0;
6321
6322 /*
6323 * 2 for inode item and ref
6324 * 2 for dir items
6325 * 1 for xattr if selinux is on
6326 */
6327 trans = btrfs_start_transaction(root, 5);
6328 if (IS_ERR(trans))
6329 return PTR_ERR(trans);
6330
6331 err = btrfs_find_free_ino(root, &objectid);
6332 if (err)
6333 goto out_unlock;
6334
6335 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6336 dentry->d_name.len, btrfs_ino(dir), objectid,
6337 mode, &index);
6338 if (IS_ERR(inode)) {
6339 err = PTR_ERR(inode);
6340 goto out_unlock;
6341 }
6342
6343 /*
6344 * If the active LSM wants to access the inode during
6345 * d_instantiate it needs these. Smack checks to see
6346 * if the filesystem supports xattrs by looking at the
6347 * ops vector.
6348 */
6349 inode->i_op = &btrfs_special_inode_operations;
6350 init_special_inode(inode, inode->i_mode, rdev);
6351
6352 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6353 if (err)
6354 goto out_unlock_inode;
6355
6356 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6357 if (err) {
6358 goto out_unlock_inode;
6359 } else {
6360 btrfs_update_inode(trans, root, inode);
6361 unlock_new_inode(inode);
6362 d_instantiate(dentry, inode);
6363 }
6364
6365 out_unlock:
6366 btrfs_end_transaction(trans, root);
6367 btrfs_balance_delayed_items(root);
6368 btrfs_btree_balance_dirty(root);
6369 if (drop_inode) {
6370 inode_dec_link_count(inode);
6371 iput(inode);
6372 }
6373 return err;
6374
6375 out_unlock_inode:
6376 drop_inode = 1;
6377 unlock_new_inode(inode);
6378 goto out_unlock;
6379
6380 }
6381
6382 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6383 umode_t mode, bool excl)
6384 {
6385 struct btrfs_trans_handle *trans;
6386 struct btrfs_root *root = BTRFS_I(dir)->root;
6387 struct inode *inode = NULL;
6388 int drop_inode_on_err = 0;
6389 int err;
6390 u64 objectid;
6391 u64 index = 0;
6392
6393 /*
6394 * 2 for inode item and ref
6395 * 2 for dir items
6396 * 1 for xattr if selinux is on
6397 */
6398 trans = btrfs_start_transaction(root, 5);
6399 if (IS_ERR(trans))
6400 return PTR_ERR(trans);
6401
6402 err = btrfs_find_free_ino(root, &objectid);
6403 if (err)
6404 goto out_unlock;
6405
6406 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6407 dentry->d_name.len, btrfs_ino(dir), objectid,
6408 mode, &index);
6409 if (IS_ERR(inode)) {
6410 err = PTR_ERR(inode);
6411 goto out_unlock;
6412 }
6413 drop_inode_on_err = 1;
6414 /*
6415 * If the active LSM wants to access the inode during
6416 * d_instantiate it needs these. Smack checks to see
6417 * if the filesystem supports xattrs by looking at the
6418 * ops vector.
6419 */
6420 inode->i_fop = &btrfs_file_operations;
6421 inode->i_op = &btrfs_file_inode_operations;
6422 inode->i_mapping->a_ops = &btrfs_aops;
6423
6424 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6425 if (err)
6426 goto out_unlock_inode;
6427
6428 err = btrfs_update_inode(trans, root, inode);
6429 if (err)
6430 goto out_unlock_inode;
6431
6432 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6433 if (err)
6434 goto out_unlock_inode;
6435
6436 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6437 unlock_new_inode(inode);
6438 d_instantiate(dentry, inode);
6439
6440 out_unlock:
6441 btrfs_end_transaction(trans, root);
6442 if (err && drop_inode_on_err) {
6443 inode_dec_link_count(inode);
6444 iput(inode);
6445 }
6446 btrfs_balance_delayed_items(root);
6447 btrfs_btree_balance_dirty(root);
6448 return err;
6449
6450 out_unlock_inode:
6451 unlock_new_inode(inode);
6452 goto out_unlock;
6453
6454 }
6455
6456 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6457 struct dentry *dentry)
6458 {
6459 struct btrfs_trans_handle *trans = NULL;
6460 struct btrfs_root *root = BTRFS_I(dir)->root;
6461 struct inode *inode = d_inode(old_dentry);
6462 u64 index;
6463 int err;
6464 int drop_inode = 0;
6465
6466 /* do not allow sys_link's with other subvols of the same device */
6467 if (root->objectid != BTRFS_I(inode)->root->objectid)
6468 return -EXDEV;
6469
6470 if (inode->i_nlink >= BTRFS_LINK_MAX)
6471 return -EMLINK;
6472
6473 err = btrfs_set_inode_index(dir, &index);
6474 if (err)
6475 goto fail;
6476
6477 /*
6478 * 2 items for inode and inode ref
6479 * 2 items for dir items
6480 * 1 item for parent inode
6481 */
6482 trans = btrfs_start_transaction(root, 5);
6483 if (IS_ERR(trans)) {
6484 err = PTR_ERR(trans);
6485 trans = NULL;
6486 goto fail;
6487 }
6488
6489 /* There are several dir indexes for this inode, clear the cache. */
6490 BTRFS_I(inode)->dir_index = 0ULL;
6491 inc_nlink(inode);
6492 inode_inc_iversion(inode);
6493 inode->i_ctime = CURRENT_TIME;
6494 ihold(inode);
6495 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6496
6497 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6498
6499 if (err) {
6500 drop_inode = 1;
6501 } else {
6502 struct dentry *parent = dentry->d_parent;
6503 err = btrfs_update_inode(trans, root, inode);
6504 if (err)
6505 goto fail;
6506 if (inode->i_nlink == 1) {
6507 /*
6508 * If new hard link count is 1, it's a file created
6509 * with open(2) O_TMPFILE flag.
6510 */
6511 err = btrfs_orphan_del(trans, inode);
6512 if (err)
6513 goto fail;
6514 }
6515 d_instantiate(dentry, inode);
6516 btrfs_log_new_name(trans, inode, NULL, parent);
6517 }
6518
6519 btrfs_balance_delayed_items(root);
6520 fail:
6521 if (trans)
6522 btrfs_end_transaction(trans, root);
6523 if (drop_inode) {
6524 inode_dec_link_count(inode);
6525 iput(inode);
6526 }
6527 btrfs_btree_balance_dirty(root);
6528 return err;
6529 }
6530
6531 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6532 {
6533 struct inode *inode = NULL;
6534 struct btrfs_trans_handle *trans;
6535 struct btrfs_root *root = BTRFS_I(dir)->root;
6536 int err = 0;
6537 int drop_on_err = 0;
6538 u64 objectid = 0;
6539 u64 index = 0;
6540
6541 /*
6542 * 2 items for inode and ref
6543 * 2 items for dir items
6544 * 1 for xattr if selinux is on
6545 */
6546 trans = btrfs_start_transaction(root, 5);
6547 if (IS_ERR(trans))
6548 return PTR_ERR(trans);
6549
6550 err = btrfs_find_free_ino(root, &objectid);
6551 if (err)
6552 goto out_fail;
6553
6554 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6555 dentry->d_name.len, btrfs_ino(dir), objectid,
6556 S_IFDIR | mode, &index);
6557 if (IS_ERR(inode)) {
6558 err = PTR_ERR(inode);
6559 goto out_fail;
6560 }
6561
6562 drop_on_err = 1;
6563 /* these must be set before we unlock the inode */
6564 inode->i_op = &btrfs_dir_inode_operations;
6565 inode->i_fop = &btrfs_dir_file_operations;
6566
6567 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6568 if (err)
6569 goto out_fail_inode;
6570
6571 btrfs_i_size_write(inode, 0);
6572 err = btrfs_update_inode(trans, root, inode);
6573 if (err)
6574 goto out_fail_inode;
6575
6576 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6577 dentry->d_name.len, 0, index);
6578 if (err)
6579 goto out_fail_inode;
6580
6581 d_instantiate(dentry, inode);
6582 /*
6583 * mkdir is special. We're unlocking after we call d_instantiate
6584 * to avoid a race with nfsd calling d_instantiate.
6585 */
6586 unlock_new_inode(inode);
6587 drop_on_err = 0;
6588
6589 out_fail:
6590 btrfs_end_transaction(trans, root);
6591 if (drop_on_err) {
6592 inode_dec_link_count(inode);
6593 iput(inode);
6594 }
6595 btrfs_balance_delayed_items(root);
6596 btrfs_btree_balance_dirty(root);
6597 return err;
6598
6599 out_fail_inode:
6600 unlock_new_inode(inode);
6601 goto out_fail;
6602 }
6603
6604 /* Find next extent map of a given extent map, caller needs to ensure locks */
6605 static struct extent_map *next_extent_map(struct extent_map *em)
6606 {
6607 struct rb_node *next;
6608
6609 next = rb_next(&em->rb_node);
6610 if (!next)
6611 return NULL;
6612 return container_of(next, struct extent_map, rb_node);
6613 }
6614
6615 static struct extent_map *prev_extent_map(struct extent_map *em)
6616 {
6617 struct rb_node *prev;
6618
6619 prev = rb_prev(&em->rb_node);
6620 if (!prev)
6621 return NULL;
6622 return container_of(prev, struct extent_map, rb_node);
6623 }
6624
6625 /* helper for btfs_get_extent. Given an existing extent in the tree,
6626 * the existing extent is the nearest extent to map_start,
6627 * and an extent that you want to insert, deal with overlap and insert
6628 * the best fitted new extent into the tree.
6629 */
6630 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6631 struct extent_map *existing,
6632 struct extent_map *em,
6633 u64 map_start)
6634 {
6635 struct extent_map *prev;
6636 struct extent_map *next;
6637 u64 start;
6638 u64 end;
6639 u64 start_diff;
6640
6641 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6642
6643 if (existing->start > map_start) {
6644 next = existing;
6645 prev = prev_extent_map(next);
6646 } else {
6647 prev = existing;
6648 next = next_extent_map(prev);
6649 }
6650
6651 start = prev ? extent_map_end(prev) : em->start;
6652 start = max_t(u64, start, em->start);
6653 end = next ? next->start : extent_map_end(em);
6654 end = min_t(u64, end, extent_map_end(em));
6655 start_diff = start - em->start;
6656 em->start = start;
6657 em->len = end - start;
6658 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6659 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6660 em->block_start += start_diff;
6661 em->block_len -= start_diff;
6662 }
6663 return add_extent_mapping(em_tree, em, 0);
6664 }
6665
6666 static noinline int uncompress_inline(struct btrfs_path *path,
6667 struct page *page,
6668 size_t pg_offset, u64 extent_offset,
6669 struct btrfs_file_extent_item *item)
6670 {
6671 int ret;
6672 struct extent_buffer *leaf = path->nodes[0];
6673 char *tmp;
6674 size_t max_size;
6675 unsigned long inline_size;
6676 unsigned long ptr;
6677 int compress_type;
6678
6679 WARN_ON(pg_offset != 0);
6680 compress_type = btrfs_file_extent_compression(leaf, item);
6681 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6682 inline_size = btrfs_file_extent_inline_item_len(leaf,
6683 btrfs_item_nr(path->slots[0]));
6684 tmp = kmalloc(inline_size, GFP_NOFS);
6685 if (!tmp)
6686 return -ENOMEM;
6687 ptr = btrfs_file_extent_inline_start(item);
6688
6689 read_extent_buffer(leaf, tmp, ptr, inline_size);
6690
6691 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6692 ret = btrfs_decompress(compress_type, tmp, page,
6693 extent_offset, inline_size, max_size);
6694 kfree(tmp);
6695 return ret;
6696 }
6697
6698 /*
6699 * a bit scary, this does extent mapping from logical file offset to the disk.
6700 * the ugly parts come from merging extents from the disk with the in-ram
6701 * representation. This gets more complex because of the data=ordered code,
6702 * where the in-ram extents might be locked pending data=ordered completion.
6703 *
6704 * This also copies inline extents directly into the page.
6705 */
6706
6707 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6708 size_t pg_offset, u64 start, u64 len,
6709 int create)
6710 {
6711 int ret;
6712 int err = 0;
6713 u64 extent_start = 0;
6714 u64 extent_end = 0;
6715 u64 objectid = btrfs_ino(inode);
6716 u32 found_type;
6717 struct btrfs_path *path = NULL;
6718 struct btrfs_root *root = BTRFS_I(inode)->root;
6719 struct btrfs_file_extent_item *item;
6720 struct extent_buffer *leaf;
6721 struct btrfs_key found_key;
6722 struct extent_map *em = NULL;
6723 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6724 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6725 struct btrfs_trans_handle *trans = NULL;
6726 const bool new_inline = !page || create;
6727
6728 again:
6729 read_lock(&em_tree->lock);
6730 em = lookup_extent_mapping(em_tree, start, len);
6731 if (em)
6732 em->bdev = root->fs_info->fs_devices->latest_bdev;
6733 read_unlock(&em_tree->lock);
6734
6735 if (em) {
6736 if (em->start > start || em->start + em->len <= start)
6737 free_extent_map(em);
6738 else if (em->block_start == EXTENT_MAP_INLINE && page)
6739 free_extent_map(em);
6740 else
6741 goto out;
6742 }
6743 em = alloc_extent_map();
6744 if (!em) {
6745 err = -ENOMEM;
6746 goto out;
6747 }
6748 em->bdev = root->fs_info->fs_devices->latest_bdev;
6749 em->start = EXTENT_MAP_HOLE;
6750 em->orig_start = EXTENT_MAP_HOLE;
6751 em->len = (u64)-1;
6752 em->block_len = (u64)-1;
6753
6754 if (!path) {
6755 path = btrfs_alloc_path();
6756 if (!path) {
6757 err = -ENOMEM;
6758 goto out;
6759 }
6760 /*
6761 * Chances are we'll be called again, so go ahead and do
6762 * readahead
6763 */
6764 path->reada = READA_FORWARD;
6765 }
6766
6767 ret = btrfs_lookup_file_extent(trans, root, path,
6768 objectid, start, trans != NULL);
6769 if (ret < 0) {
6770 err = ret;
6771 goto out;
6772 }
6773
6774 if (ret != 0) {
6775 if (path->slots[0] == 0)
6776 goto not_found;
6777 path->slots[0]--;
6778 }
6779
6780 leaf = path->nodes[0];
6781 item = btrfs_item_ptr(leaf, path->slots[0],
6782 struct btrfs_file_extent_item);
6783 /* are we inside the extent that was found? */
6784 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6785 found_type = found_key.type;
6786 if (found_key.objectid != objectid ||
6787 found_type != BTRFS_EXTENT_DATA_KEY) {
6788 /*
6789 * If we backup past the first extent we want to move forward
6790 * and see if there is an extent in front of us, otherwise we'll
6791 * say there is a hole for our whole search range which can
6792 * cause problems.
6793 */
6794 extent_end = start;
6795 goto next;
6796 }
6797
6798 found_type = btrfs_file_extent_type(leaf, item);
6799 extent_start = found_key.offset;
6800 if (found_type == BTRFS_FILE_EXTENT_REG ||
6801 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6802 extent_end = extent_start +
6803 btrfs_file_extent_num_bytes(leaf, item);
6804 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6805 size_t size;
6806 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6807 extent_end = ALIGN(extent_start + size, root->sectorsize);
6808 }
6809 next:
6810 if (start >= extent_end) {
6811 path->slots[0]++;
6812 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6813 ret = btrfs_next_leaf(root, path);
6814 if (ret < 0) {
6815 err = ret;
6816 goto out;
6817 }
6818 if (ret > 0)
6819 goto not_found;
6820 leaf = path->nodes[0];
6821 }
6822 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6823 if (found_key.objectid != objectid ||
6824 found_key.type != BTRFS_EXTENT_DATA_KEY)
6825 goto not_found;
6826 if (start + len <= found_key.offset)
6827 goto not_found;
6828 if (start > found_key.offset)
6829 goto next;
6830 em->start = start;
6831 em->orig_start = start;
6832 em->len = found_key.offset - start;
6833 goto not_found_em;
6834 }
6835
6836 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6837
6838 if (found_type == BTRFS_FILE_EXTENT_REG ||
6839 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6840 goto insert;
6841 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6842 unsigned long ptr;
6843 char *map;
6844 size_t size;
6845 size_t extent_offset;
6846 size_t copy_size;
6847
6848 if (new_inline)
6849 goto out;
6850
6851 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6852 extent_offset = page_offset(page) + pg_offset - extent_start;
6853 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6854 size - extent_offset);
6855 em->start = extent_start + extent_offset;
6856 em->len = ALIGN(copy_size, root->sectorsize);
6857 em->orig_block_len = em->len;
6858 em->orig_start = em->start;
6859 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6860 if (create == 0 && !PageUptodate(page)) {
6861 if (btrfs_file_extent_compression(leaf, item) !=
6862 BTRFS_COMPRESS_NONE) {
6863 ret = uncompress_inline(path, page, pg_offset,
6864 extent_offset, item);
6865 if (ret) {
6866 err = ret;
6867 goto out;
6868 }
6869 } else {
6870 map = kmap(page);
6871 read_extent_buffer(leaf, map + pg_offset, ptr,
6872 copy_size);
6873 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6874 memset(map + pg_offset + copy_size, 0,
6875 PAGE_CACHE_SIZE - pg_offset -
6876 copy_size);
6877 }
6878 kunmap(page);
6879 }
6880 flush_dcache_page(page);
6881 } else if (create && PageUptodate(page)) {
6882 BUG();
6883 if (!trans) {
6884 kunmap(page);
6885 free_extent_map(em);
6886 em = NULL;
6887
6888 btrfs_release_path(path);
6889 trans = btrfs_join_transaction(root);
6890
6891 if (IS_ERR(trans))
6892 return ERR_CAST(trans);
6893 goto again;
6894 }
6895 map = kmap(page);
6896 write_extent_buffer(leaf, map + pg_offset, ptr,
6897 copy_size);
6898 kunmap(page);
6899 btrfs_mark_buffer_dirty(leaf);
6900 }
6901 set_extent_uptodate(io_tree, em->start,
6902 extent_map_end(em) - 1, NULL, GFP_NOFS);
6903 goto insert;
6904 }
6905 not_found:
6906 em->start = start;
6907 em->orig_start = start;
6908 em->len = len;
6909 not_found_em:
6910 em->block_start = EXTENT_MAP_HOLE;
6911 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6912 insert:
6913 btrfs_release_path(path);
6914 if (em->start > start || extent_map_end(em) <= start) {
6915 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6916 em->start, em->len, start, len);
6917 err = -EIO;
6918 goto out;
6919 }
6920
6921 err = 0;
6922 write_lock(&em_tree->lock);
6923 ret = add_extent_mapping(em_tree, em, 0);
6924 /* it is possible that someone inserted the extent into the tree
6925 * while we had the lock dropped. It is also possible that
6926 * an overlapping map exists in the tree
6927 */
6928 if (ret == -EEXIST) {
6929 struct extent_map *existing;
6930
6931 ret = 0;
6932
6933 existing = search_extent_mapping(em_tree, start, len);
6934 /*
6935 * existing will always be non-NULL, since there must be
6936 * extent causing the -EEXIST.
6937 */
6938 if (start >= extent_map_end(existing) ||
6939 start <= existing->start) {
6940 /*
6941 * The existing extent map is the one nearest to
6942 * the [start, start + len) range which overlaps
6943 */
6944 err = merge_extent_mapping(em_tree, existing,
6945 em, start);
6946 free_extent_map(existing);
6947 if (err) {
6948 free_extent_map(em);
6949 em = NULL;
6950 }
6951 } else {
6952 free_extent_map(em);
6953 em = existing;
6954 err = 0;
6955 }
6956 }
6957 write_unlock(&em_tree->lock);
6958 out:
6959
6960 trace_btrfs_get_extent(root, em);
6961
6962 btrfs_free_path(path);
6963 if (trans) {
6964 ret = btrfs_end_transaction(trans, root);
6965 if (!err)
6966 err = ret;
6967 }
6968 if (err) {
6969 free_extent_map(em);
6970 return ERR_PTR(err);
6971 }
6972 BUG_ON(!em); /* Error is always set */
6973 return em;
6974 }
6975
6976 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6977 size_t pg_offset, u64 start, u64 len,
6978 int create)
6979 {
6980 struct extent_map *em;
6981 struct extent_map *hole_em = NULL;
6982 u64 range_start = start;
6983 u64 end;
6984 u64 found;
6985 u64 found_end;
6986 int err = 0;
6987
6988 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6989 if (IS_ERR(em))
6990 return em;
6991 if (em) {
6992 /*
6993 * if our em maps to
6994 * - a hole or
6995 * - a pre-alloc extent,
6996 * there might actually be delalloc bytes behind it.
6997 */
6998 if (em->block_start != EXTENT_MAP_HOLE &&
6999 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7000 return em;
7001 else
7002 hole_em = em;
7003 }
7004
7005 /* check to see if we've wrapped (len == -1 or similar) */
7006 end = start + len;
7007 if (end < start)
7008 end = (u64)-1;
7009 else
7010 end -= 1;
7011
7012 em = NULL;
7013
7014 /* ok, we didn't find anything, lets look for delalloc */
7015 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7016 end, len, EXTENT_DELALLOC, 1);
7017 found_end = range_start + found;
7018 if (found_end < range_start)
7019 found_end = (u64)-1;
7020
7021 /*
7022 * we didn't find anything useful, return
7023 * the original results from get_extent()
7024 */
7025 if (range_start > end || found_end <= start) {
7026 em = hole_em;
7027 hole_em = NULL;
7028 goto out;
7029 }
7030
7031 /* adjust the range_start to make sure it doesn't
7032 * go backwards from the start they passed in
7033 */
7034 range_start = max(start, range_start);
7035 found = found_end - range_start;
7036
7037 if (found > 0) {
7038 u64 hole_start = start;
7039 u64 hole_len = len;
7040
7041 em = alloc_extent_map();
7042 if (!em) {
7043 err = -ENOMEM;
7044 goto out;
7045 }
7046 /*
7047 * when btrfs_get_extent can't find anything it
7048 * returns one huge hole
7049 *
7050 * make sure what it found really fits our range, and
7051 * adjust to make sure it is based on the start from
7052 * the caller
7053 */
7054 if (hole_em) {
7055 u64 calc_end = extent_map_end(hole_em);
7056
7057 if (calc_end <= start || (hole_em->start > end)) {
7058 free_extent_map(hole_em);
7059 hole_em = NULL;
7060 } else {
7061 hole_start = max(hole_em->start, start);
7062 hole_len = calc_end - hole_start;
7063 }
7064 }
7065 em->bdev = NULL;
7066 if (hole_em && range_start > hole_start) {
7067 /* our hole starts before our delalloc, so we
7068 * have to return just the parts of the hole
7069 * that go until the delalloc starts
7070 */
7071 em->len = min(hole_len,
7072 range_start - hole_start);
7073 em->start = hole_start;
7074 em->orig_start = hole_start;
7075 /*
7076 * don't adjust block start at all,
7077 * it is fixed at EXTENT_MAP_HOLE
7078 */
7079 em->block_start = hole_em->block_start;
7080 em->block_len = hole_len;
7081 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7082 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7083 } else {
7084 em->start = range_start;
7085 em->len = found;
7086 em->orig_start = range_start;
7087 em->block_start = EXTENT_MAP_DELALLOC;
7088 em->block_len = found;
7089 }
7090 } else if (hole_em) {
7091 return hole_em;
7092 }
7093 out:
7094
7095 free_extent_map(hole_em);
7096 if (err) {
7097 free_extent_map(em);
7098 return ERR_PTR(err);
7099 }
7100 return em;
7101 }
7102
7103 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7104 u64 start, u64 len)
7105 {
7106 struct btrfs_root *root = BTRFS_I(inode)->root;
7107 struct extent_map *em;
7108 struct btrfs_key ins;
7109 u64 alloc_hint;
7110 int ret;
7111
7112 alloc_hint = get_extent_allocation_hint(inode, start, len);
7113 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7114 alloc_hint, &ins, 1, 1);
7115 if (ret)
7116 return ERR_PTR(ret);
7117
7118 /*
7119 * Create the ordered extent before the extent map. This is to avoid
7120 * races with the fast fsync path that would lead to it logging file
7121 * extent items that point to disk extents that were not yet written to.
7122 * The fast fsync path collects ordered extents into a local list and
7123 * then collects all the new extent maps, so we must create the ordered
7124 * extent first and make sure the fast fsync path collects any new
7125 * ordered extents after collecting new extent maps as well.
7126 * The fsync path simply can not rely on inode_dio_wait() because it
7127 * causes deadlock with AIO.
7128 */
7129 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7130 ins.offset, ins.offset, 0);
7131 if (ret) {
7132 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7133 return ERR_PTR(ret);
7134 }
7135
7136 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
7137 ins.offset, ins.offset, ins.offset, 0);
7138 if (IS_ERR(em)) {
7139 struct btrfs_ordered_extent *oe;
7140
7141 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7142 oe = btrfs_lookup_ordered_extent(inode, start);
7143 ASSERT(oe);
7144 if (WARN_ON(!oe))
7145 return em;
7146 set_bit(BTRFS_ORDERED_IOERR, &oe->flags);
7147 set_bit(BTRFS_ORDERED_IO_DONE, &oe->flags);
7148 btrfs_remove_ordered_extent(inode, oe);
7149 /* Once for our lookup and once for the ordered extents tree. */
7150 btrfs_put_ordered_extent(oe);
7151 btrfs_put_ordered_extent(oe);
7152 }
7153 return em;
7154 }
7155
7156 /*
7157 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7158 * block must be cow'd
7159 */
7160 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7161 u64 *orig_start, u64 *orig_block_len,
7162 u64 *ram_bytes)
7163 {
7164 struct btrfs_trans_handle *trans;
7165 struct btrfs_path *path;
7166 int ret;
7167 struct extent_buffer *leaf;
7168 struct btrfs_root *root = BTRFS_I(inode)->root;
7169 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7170 struct btrfs_file_extent_item *fi;
7171 struct btrfs_key key;
7172 u64 disk_bytenr;
7173 u64 backref_offset;
7174 u64 extent_end;
7175 u64 num_bytes;
7176 int slot;
7177 int found_type;
7178 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7179
7180 path = btrfs_alloc_path();
7181 if (!path)
7182 return -ENOMEM;
7183
7184 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7185 offset, 0);
7186 if (ret < 0)
7187 goto out;
7188
7189 slot = path->slots[0];
7190 if (ret == 1) {
7191 if (slot == 0) {
7192 /* can't find the item, must cow */
7193 ret = 0;
7194 goto out;
7195 }
7196 slot--;
7197 }
7198 ret = 0;
7199 leaf = path->nodes[0];
7200 btrfs_item_key_to_cpu(leaf, &key, slot);
7201 if (key.objectid != btrfs_ino(inode) ||
7202 key.type != BTRFS_EXTENT_DATA_KEY) {
7203 /* not our file or wrong item type, must cow */
7204 goto out;
7205 }
7206
7207 if (key.offset > offset) {
7208 /* Wrong offset, must cow */
7209 goto out;
7210 }
7211
7212 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7213 found_type = btrfs_file_extent_type(leaf, fi);
7214 if (found_type != BTRFS_FILE_EXTENT_REG &&
7215 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7216 /* not a regular extent, must cow */
7217 goto out;
7218 }
7219
7220 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7221 goto out;
7222
7223 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7224 if (extent_end <= offset)
7225 goto out;
7226
7227 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7228 if (disk_bytenr == 0)
7229 goto out;
7230
7231 if (btrfs_file_extent_compression(leaf, fi) ||
7232 btrfs_file_extent_encryption(leaf, fi) ||
7233 btrfs_file_extent_other_encoding(leaf, fi))
7234 goto out;
7235
7236 backref_offset = btrfs_file_extent_offset(leaf, fi);
7237
7238 if (orig_start) {
7239 *orig_start = key.offset - backref_offset;
7240 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7241 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7242 }
7243
7244 if (btrfs_extent_readonly(root, disk_bytenr))
7245 goto out;
7246
7247 num_bytes = min(offset + *len, extent_end) - offset;
7248 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7249 u64 range_end;
7250
7251 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7252 ret = test_range_bit(io_tree, offset, range_end,
7253 EXTENT_DELALLOC, 0, NULL);
7254 if (ret) {
7255 ret = -EAGAIN;
7256 goto out;
7257 }
7258 }
7259
7260 btrfs_release_path(path);
7261
7262 /*
7263 * look for other files referencing this extent, if we
7264 * find any we must cow
7265 */
7266 trans = btrfs_join_transaction(root);
7267 if (IS_ERR(trans)) {
7268 ret = 0;
7269 goto out;
7270 }
7271
7272 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7273 key.offset - backref_offset, disk_bytenr);
7274 btrfs_end_transaction(trans, root);
7275 if (ret) {
7276 ret = 0;
7277 goto out;
7278 }
7279
7280 /*
7281 * adjust disk_bytenr and num_bytes to cover just the bytes
7282 * in this extent we are about to write. If there
7283 * are any csums in that range we have to cow in order
7284 * to keep the csums correct
7285 */
7286 disk_bytenr += backref_offset;
7287 disk_bytenr += offset - key.offset;
7288 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7289 goto out;
7290 /*
7291 * all of the above have passed, it is safe to overwrite this extent
7292 * without cow
7293 */
7294 *len = num_bytes;
7295 ret = 1;
7296 out:
7297 btrfs_free_path(path);
7298 return ret;
7299 }
7300
7301 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7302 {
7303 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7304 int found = false;
7305 void **pagep = NULL;
7306 struct page *page = NULL;
7307 int start_idx;
7308 int end_idx;
7309
7310 start_idx = start >> PAGE_CACHE_SHIFT;
7311
7312 /*
7313 * end is the last byte in the last page. end == start is legal
7314 */
7315 end_idx = end >> PAGE_CACHE_SHIFT;
7316
7317 rcu_read_lock();
7318
7319 /* Most of the code in this while loop is lifted from
7320 * find_get_page. It's been modified to begin searching from a
7321 * page and return just the first page found in that range. If the
7322 * found idx is less than or equal to the end idx then we know that
7323 * a page exists. If no pages are found or if those pages are
7324 * outside of the range then we're fine (yay!) */
7325 while (page == NULL &&
7326 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7327 page = radix_tree_deref_slot(pagep);
7328 if (unlikely(!page))
7329 break;
7330
7331 if (radix_tree_exception(page)) {
7332 if (radix_tree_deref_retry(page)) {
7333 page = NULL;
7334 continue;
7335 }
7336 /*
7337 * Otherwise, shmem/tmpfs must be storing a swap entry
7338 * here as an exceptional entry: so return it without
7339 * attempting to raise page count.
7340 */
7341 page = NULL;
7342 break; /* TODO: Is this relevant for this use case? */
7343 }
7344
7345 if (!page_cache_get_speculative(page)) {
7346 page = NULL;
7347 continue;
7348 }
7349
7350 /*
7351 * Has the page moved?
7352 * This is part of the lockless pagecache protocol. See
7353 * include/linux/pagemap.h for details.
7354 */
7355 if (unlikely(page != *pagep)) {
7356 page_cache_release(page);
7357 page = NULL;
7358 }
7359 }
7360
7361 if (page) {
7362 if (page->index <= end_idx)
7363 found = true;
7364 page_cache_release(page);
7365 }
7366
7367 rcu_read_unlock();
7368 return found;
7369 }
7370
7371 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7372 struct extent_state **cached_state, int writing)
7373 {
7374 struct btrfs_ordered_extent *ordered;
7375 int ret = 0;
7376
7377 while (1) {
7378 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7379 cached_state);
7380 /*
7381 * We're concerned with the entire range that we're going to be
7382 * doing DIO to, so we need to make sure theres no ordered
7383 * extents in this range.
7384 */
7385 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7386 lockend - lockstart + 1);
7387
7388 /*
7389 * We need to make sure there are no buffered pages in this
7390 * range either, we could have raced between the invalidate in
7391 * generic_file_direct_write and locking the extent. The
7392 * invalidate needs to happen so that reads after a write do not
7393 * get stale data.
7394 */
7395 if (!ordered &&
7396 (!writing ||
7397 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7398 break;
7399
7400 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7401 cached_state, GFP_NOFS);
7402
7403 if (ordered) {
7404 btrfs_start_ordered_extent(inode, ordered, 1);
7405 btrfs_put_ordered_extent(ordered);
7406 } else {
7407 /*
7408 * We could trigger writeback for this range (and wait
7409 * for it to complete) and then invalidate the pages for
7410 * this range (through invalidate_inode_pages2_range()),
7411 * but that can lead us to a deadlock with a concurrent
7412 * call to readpages() (a buffered read or a defrag call
7413 * triggered a readahead) on a page lock due to an
7414 * ordered dio extent we created before but did not have
7415 * yet a corresponding bio submitted (whence it can not
7416 * complete), which makes readpages() wait for that
7417 * ordered extent to complete while holding a lock on
7418 * that page.
7419 */
7420 ret = -ENOTBLK;
7421 break;
7422 }
7423
7424 cond_resched();
7425 }
7426
7427 return ret;
7428 }
7429
7430 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7431 u64 len, u64 orig_start,
7432 u64 block_start, u64 block_len,
7433 u64 orig_block_len, u64 ram_bytes,
7434 int type)
7435 {
7436 struct extent_map_tree *em_tree;
7437 struct extent_map *em;
7438 struct btrfs_root *root = BTRFS_I(inode)->root;
7439 int ret;
7440
7441 em_tree = &BTRFS_I(inode)->extent_tree;
7442 em = alloc_extent_map();
7443 if (!em)
7444 return ERR_PTR(-ENOMEM);
7445
7446 em->start = start;
7447 em->orig_start = orig_start;
7448 em->mod_start = start;
7449 em->mod_len = len;
7450 em->len = len;
7451 em->block_len = block_len;
7452 em->block_start = block_start;
7453 em->bdev = root->fs_info->fs_devices->latest_bdev;
7454 em->orig_block_len = orig_block_len;
7455 em->ram_bytes = ram_bytes;
7456 em->generation = -1;
7457 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7458 if (type == BTRFS_ORDERED_PREALLOC)
7459 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7460
7461 do {
7462 btrfs_drop_extent_cache(inode, em->start,
7463 em->start + em->len - 1, 0);
7464 write_lock(&em_tree->lock);
7465 ret = add_extent_mapping(em_tree, em, 1);
7466 write_unlock(&em_tree->lock);
7467 } while (ret == -EEXIST);
7468
7469 if (ret) {
7470 free_extent_map(em);
7471 return ERR_PTR(ret);
7472 }
7473
7474 return em;
7475 }
7476
7477 static void adjust_dio_outstanding_extents(struct inode *inode,
7478 struct btrfs_dio_data *dio_data,
7479 const u64 len)
7480 {
7481 unsigned num_extents;
7482
7483 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7484 BTRFS_MAX_EXTENT_SIZE);
7485 /*
7486 * If we have an outstanding_extents count still set then we're
7487 * within our reservation, otherwise we need to adjust our inode
7488 * counter appropriately.
7489 */
7490 if (dio_data->outstanding_extents) {
7491 dio_data->outstanding_extents -= num_extents;
7492 } else {
7493 spin_lock(&BTRFS_I(inode)->lock);
7494 BTRFS_I(inode)->outstanding_extents += num_extents;
7495 spin_unlock(&BTRFS_I(inode)->lock);
7496 }
7497 }
7498
7499 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7500 struct buffer_head *bh_result, int create)
7501 {
7502 struct extent_map *em;
7503 struct btrfs_root *root = BTRFS_I(inode)->root;
7504 struct extent_state *cached_state = NULL;
7505 struct btrfs_dio_data *dio_data = NULL;
7506 u64 start = iblock << inode->i_blkbits;
7507 u64 lockstart, lockend;
7508 u64 len = bh_result->b_size;
7509 int unlock_bits = EXTENT_LOCKED;
7510 int ret = 0;
7511
7512 if (create)
7513 unlock_bits |= EXTENT_DIRTY;
7514 else
7515 len = min_t(u64, len, root->sectorsize);
7516
7517 lockstart = start;
7518 lockend = start + len - 1;
7519
7520 if (current->journal_info) {
7521 /*
7522 * Need to pull our outstanding extents and set journal_info to NULL so
7523 * that anything that needs to check if there's a transction doesn't get
7524 * confused.
7525 */
7526 dio_data = current->journal_info;
7527 current->journal_info = NULL;
7528 }
7529
7530 /*
7531 * If this errors out it's because we couldn't invalidate pagecache for
7532 * this range and we need to fallback to buffered.
7533 */
7534 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7535 create)) {
7536 ret = -ENOTBLK;
7537 goto err;
7538 }
7539
7540 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7541 if (IS_ERR(em)) {
7542 ret = PTR_ERR(em);
7543 goto unlock_err;
7544 }
7545
7546 /*
7547 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7548 * io. INLINE is special, and we could probably kludge it in here, but
7549 * it's still buffered so for safety lets just fall back to the generic
7550 * buffered path.
7551 *
7552 * For COMPRESSED we _have_ to read the entire extent in so we can
7553 * decompress it, so there will be buffering required no matter what we
7554 * do, so go ahead and fallback to buffered.
7555 *
7556 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7557 * to buffered IO. Don't blame me, this is the price we pay for using
7558 * the generic code.
7559 */
7560 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7561 em->block_start == EXTENT_MAP_INLINE) {
7562 free_extent_map(em);
7563 ret = -ENOTBLK;
7564 goto unlock_err;
7565 }
7566
7567 /* Just a good old fashioned hole, return */
7568 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7569 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7570 free_extent_map(em);
7571 goto unlock_err;
7572 }
7573
7574 /*
7575 * We don't allocate a new extent in the following cases
7576 *
7577 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7578 * existing extent.
7579 * 2) The extent is marked as PREALLOC. We're good to go here and can
7580 * just use the extent.
7581 *
7582 */
7583 if (!create) {
7584 len = min(len, em->len - (start - em->start));
7585 lockstart = start + len;
7586 goto unlock;
7587 }
7588
7589 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7590 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7591 em->block_start != EXTENT_MAP_HOLE)) {
7592 int type;
7593 u64 block_start, orig_start, orig_block_len, ram_bytes;
7594
7595 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7596 type = BTRFS_ORDERED_PREALLOC;
7597 else
7598 type = BTRFS_ORDERED_NOCOW;
7599 len = min(len, em->len - (start - em->start));
7600 block_start = em->block_start + (start - em->start);
7601
7602 if (can_nocow_extent(inode, start, &len, &orig_start,
7603 &orig_block_len, &ram_bytes) == 1) {
7604 if (type == BTRFS_ORDERED_PREALLOC) {
7605 free_extent_map(em);
7606 em = create_pinned_em(inode, start, len,
7607 orig_start,
7608 block_start, len,
7609 orig_block_len,
7610 ram_bytes, type);
7611 if (IS_ERR(em)) {
7612 ret = PTR_ERR(em);
7613 goto unlock_err;
7614 }
7615 }
7616
7617 ret = btrfs_add_ordered_extent_dio(inode, start,
7618 block_start, len, len, type);
7619 if (ret) {
7620 free_extent_map(em);
7621 goto unlock_err;
7622 }
7623 goto unlock;
7624 }
7625 }
7626
7627 /*
7628 * this will cow the extent, reset the len in case we changed
7629 * it above
7630 */
7631 len = bh_result->b_size;
7632 free_extent_map(em);
7633 em = btrfs_new_extent_direct(inode, start, len);
7634 if (IS_ERR(em)) {
7635 ret = PTR_ERR(em);
7636 goto unlock_err;
7637 }
7638 len = min(len, em->len - (start - em->start));
7639 unlock:
7640 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7641 inode->i_blkbits;
7642 bh_result->b_size = len;
7643 bh_result->b_bdev = em->bdev;
7644 set_buffer_mapped(bh_result);
7645 if (create) {
7646 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7647 set_buffer_new(bh_result);
7648
7649 /*
7650 * Need to update the i_size under the extent lock so buffered
7651 * readers will get the updated i_size when we unlock.
7652 */
7653 if (start + len > i_size_read(inode))
7654 i_size_write(inode, start + len);
7655
7656 adjust_dio_outstanding_extents(inode, dio_data, len);
7657 btrfs_free_reserved_data_space(inode, start, len);
7658 WARN_ON(dio_data->reserve < len);
7659 dio_data->reserve -= len;
7660 dio_data->unsubmitted_oe_range_end = start + len;
7661 current->journal_info = dio_data;
7662 }
7663
7664 /*
7665 * In the case of write we need to clear and unlock the entire range,
7666 * in the case of read we need to unlock only the end area that we
7667 * aren't using if there is any left over space.
7668 */
7669 if (lockstart < lockend) {
7670 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7671 lockend, unlock_bits, 1, 0,
7672 &cached_state, GFP_NOFS);
7673 } else {
7674 free_extent_state(cached_state);
7675 }
7676
7677 free_extent_map(em);
7678
7679 return 0;
7680
7681 unlock_err:
7682 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7683 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7684 err:
7685 if (dio_data)
7686 current->journal_info = dio_data;
7687 /*
7688 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7689 * write less data then expected, so that we don't underflow our inode's
7690 * outstanding extents counter.
7691 */
7692 if (create && dio_data)
7693 adjust_dio_outstanding_extents(inode, dio_data, len);
7694
7695 return ret;
7696 }
7697
7698 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7699 int rw, int mirror_num)
7700 {
7701 struct btrfs_root *root = BTRFS_I(inode)->root;
7702 int ret;
7703
7704 BUG_ON(rw & REQ_WRITE);
7705
7706 bio_get(bio);
7707
7708 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7709 BTRFS_WQ_ENDIO_DIO_REPAIR);
7710 if (ret)
7711 goto err;
7712
7713 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7714 err:
7715 bio_put(bio);
7716 return ret;
7717 }
7718
7719 static int btrfs_check_dio_repairable(struct inode *inode,
7720 struct bio *failed_bio,
7721 struct io_failure_record *failrec,
7722 int failed_mirror)
7723 {
7724 int num_copies;
7725
7726 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7727 failrec->logical, failrec->len);
7728 if (num_copies == 1) {
7729 /*
7730 * we only have a single copy of the data, so don't bother with
7731 * all the retry and error correction code that follows. no
7732 * matter what the error is, it is very likely to persist.
7733 */
7734 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7735 num_copies, failrec->this_mirror, failed_mirror);
7736 return 0;
7737 }
7738
7739 failrec->failed_mirror = failed_mirror;
7740 failrec->this_mirror++;
7741 if (failrec->this_mirror == failed_mirror)
7742 failrec->this_mirror++;
7743
7744 if (failrec->this_mirror > num_copies) {
7745 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7746 num_copies, failrec->this_mirror, failed_mirror);
7747 return 0;
7748 }
7749
7750 return 1;
7751 }
7752
7753 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7754 struct page *page, u64 start, u64 end,
7755 int failed_mirror, bio_end_io_t *repair_endio,
7756 void *repair_arg)
7757 {
7758 struct io_failure_record *failrec;
7759 struct bio *bio;
7760 int isector;
7761 int read_mode;
7762 int ret;
7763
7764 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7765
7766 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7767 if (ret)
7768 return ret;
7769
7770 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7771 failed_mirror);
7772 if (!ret) {
7773 free_io_failure(inode, failrec);
7774 return -EIO;
7775 }
7776
7777 if (failed_bio->bi_vcnt > 1)
7778 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7779 else
7780 read_mode = READ_SYNC;
7781
7782 isector = start - btrfs_io_bio(failed_bio)->logical;
7783 isector >>= inode->i_sb->s_blocksize_bits;
7784 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7785 0, isector, repair_endio, repair_arg);
7786 if (!bio) {
7787 free_io_failure(inode, failrec);
7788 return -EIO;
7789 }
7790
7791 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7792 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7793 read_mode, failrec->this_mirror, failrec->in_validation);
7794
7795 ret = submit_dio_repair_bio(inode, bio, read_mode,
7796 failrec->this_mirror);
7797 if (ret) {
7798 free_io_failure(inode, failrec);
7799 bio_put(bio);
7800 }
7801
7802 return ret;
7803 }
7804
7805 struct btrfs_retry_complete {
7806 struct completion done;
7807 struct inode *inode;
7808 u64 start;
7809 int uptodate;
7810 };
7811
7812 static void btrfs_retry_endio_nocsum(struct bio *bio)
7813 {
7814 struct btrfs_retry_complete *done = bio->bi_private;
7815 struct bio_vec *bvec;
7816 int i;
7817
7818 if (bio->bi_error)
7819 goto end;
7820
7821 done->uptodate = 1;
7822 bio_for_each_segment_all(bvec, bio, i)
7823 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7824 end:
7825 complete(&done->done);
7826 bio_put(bio);
7827 }
7828
7829 static int __btrfs_correct_data_nocsum(struct inode *inode,
7830 struct btrfs_io_bio *io_bio)
7831 {
7832 struct bio_vec *bvec;
7833 struct btrfs_retry_complete done;
7834 u64 start;
7835 int i;
7836 int ret;
7837
7838 start = io_bio->logical;
7839 done.inode = inode;
7840
7841 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7842 try_again:
7843 done.uptodate = 0;
7844 done.start = start;
7845 init_completion(&done.done);
7846
7847 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7848 start + bvec->bv_len - 1,
7849 io_bio->mirror_num,
7850 btrfs_retry_endio_nocsum, &done);
7851 if (ret)
7852 return ret;
7853
7854 wait_for_completion(&done.done);
7855
7856 if (!done.uptodate) {
7857 /* We might have another mirror, so try again */
7858 goto try_again;
7859 }
7860
7861 start += bvec->bv_len;
7862 }
7863
7864 return 0;
7865 }
7866
7867 static void btrfs_retry_endio(struct bio *bio)
7868 {
7869 struct btrfs_retry_complete *done = bio->bi_private;
7870 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7871 struct bio_vec *bvec;
7872 int uptodate;
7873 int ret;
7874 int i;
7875
7876 if (bio->bi_error)
7877 goto end;
7878
7879 uptodate = 1;
7880 bio_for_each_segment_all(bvec, bio, i) {
7881 ret = __readpage_endio_check(done->inode, io_bio, i,
7882 bvec->bv_page, 0,
7883 done->start, bvec->bv_len);
7884 if (!ret)
7885 clean_io_failure(done->inode, done->start,
7886 bvec->bv_page, 0);
7887 else
7888 uptodate = 0;
7889 }
7890
7891 done->uptodate = uptodate;
7892 end:
7893 complete(&done->done);
7894 bio_put(bio);
7895 }
7896
7897 static int __btrfs_subio_endio_read(struct inode *inode,
7898 struct btrfs_io_bio *io_bio, int err)
7899 {
7900 struct bio_vec *bvec;
7901 struct btrfs_retry_complete done;
7902 u64 start;
7903 u64 offset = 0;
7904 int i;
7905 int ret;
7906
7907 err = 0;
7908 start = io_bio->logical;
7909 done.inode = inode;
7910
7911 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7912 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7913 0, start, bvec->bv_len);
7914 if (likely(!ret))
7915 goto next;
7916 try_again:
7917 done.uptodate = 0;
7918 done.start = start;
7919 init_completion(&done.done);
7920
7921 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7922 start + bvec->bv_len - 1,
7923 io_bio->mirror_num,
7924 btrfs_retry_endio, &done);
7925 if (ret) {
7926 err = ret;
7927 goto next;
7928 }
7929
7930 wait_for_completion(&done.done);
7931
7932 if (!done.uptodate) {
7933 /* We might have another mirror, so try again */
7934 goto try_again;
7935 }
7936 next:
7937 offset += bvec->bv_len;
7938 start += bvec->bv_len;
7939 }
7940
7941 return err;
7942 }
7943
7944 static int btrfs_subio_endio_read(struct inode *inode,
7945 struct btrfs_io_bio *io_bio, int err)
7946 {
7947 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7948
7949 if (skip_csum) {
7950 if (unlikely(err))
7951 return __btrfs_correct_data_nocsum(inode, io_bio);
7952 else
7953 return 0;
7954 } else {
7955 return __btrfs_subio_endio_read(inode, io_bio, err);
7956 }
7957 }
7958
7959 static void btrfs_endio_direct_read(struct bio *bio)
7960 {
7961 struct btrfs_dio_private *dip = bio->bi_private;
7962 struct inode *inode = dip->inode;
7963 struct bio *dio_bio;
7964 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7965 int err = bio->bi_error;
7966
7967 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7968 err = btrfs_subio_endio_read(inode, io_bio, err);
7969
7970 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7971 dip->logical_offset + dip->bytes - 1);
7972 dio_bio = dip->dio_bio;
7973
7974 kfree(dip);
7975
7976 dio_end_io(dio_bio, bio->bi_error);
7977
7978 if (io_bio->end_io)
7979 io_bio->end_io(io_bio, err);
7980 bio_put(bio);
7981 }
7982
7983 static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
7984 const u64 offset,
7985 const u64 bytes,
7986 const int uptodate)
7987 {
7988 struct btrfs_root *root = BTRFS_I(inode)->root;
7989 struct btrfs_ordered_extent *ordered = NULL;
7990 u64 ordered_offset = offset;
7991 u64 ordered_bytes = bytes;
7992 int ret;
7993
7994 again:
7995 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7996 &ordered_offset,
7997 ordered_bytes,
7998 uptodate);
7999 if (!ret)
8000 goto out_test;
8001
8002 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8003 finish_ordered_fn, NULL, NULL);
8004 btrfs_queue_work(root->fs_info->endio_write_workers,
8005 &ordered->work);
8006 out_test:
8007 /*
8008 * our bio might span multiple ordered extents. If we haven't
8009 * completed the accounting for the whole dio, go back and try again
8010 */
8011 if (ordered_offset < offset + bytes) {
8012 ordered_bytes = offset + bytes - ordered_offset;
8013 ordered = NULL;
8014 goto again;
8015 }
8016 }
8017
8018 static void btrfs_endio_direct_write(struct bio *bio)
8019 {
8020 struct btrfs_dio_private *dip = bio->bi_private;
8021 struct bio *dio_bio = dip->dio_bio;
8022
8023 btrfs_endio_direct_write_update_ordered(dip->inode,
8024 dip->logical_offset,
8025 dip->bytes,
8026 !bio->bi_error);
8027
8028 kfree(dip);
8029
8030 dio_end_io(dio_bio, bio->bi_error);
8031 bio_put(bio);
8032 }
8033
8034 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8035 struct bio *bio, int mirror_num,
8036 unsigned long bio_flags, u64 offset)
8037 {
8038 int ret;
8039 struct btrfs_root *root = BTRFS_I(inode)->root;
8040 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8041 BUG_ON(ret); /* -ENOMEM */
8042 return 0;
8043 }
8044
8045 static void btrfs_end_dio_bio(struct bio *bio)
8046 {
8047 struct btrfs_dio_private *dip = bio->bi_private;
8048 int err = bio->bi_error;
8049
8050 if (err)
8051 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8052 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8053 btrfs_ino(dip->inode), bio->bi_rw,
8054 (unsigned long long)bio->bi_iter.bi_sector,
8055 bio->bi_iter.bi_size, err);
8056
8057 if (dip->subio_endio)
8058 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8059
8060 if (err) {
8061 dip->errors = 1;
8062
8063 /*
8064 * before atomic variable goto zero, we must make sure
8065 * dip->errors is perceived to be set.
8066 */
8067 smp_mb__before_atomic();
8068 }
8069
8070 /* if there are more bios still pending for this dio, just exit */
8071 if (!atomic_dec_and_test(&dip->pending_bios))
8072 goto out;
8073
8074 if (dip->errors) {
8075 bio_io_error(dip->orig_bio);
8076 } else {
8077 dip->dio_bio->bi_error = 0;
8078 bio_endio(dip->orig_bio);
8079 }
8080 out:
8081 bio_put(bio);
8082 }
8083
8084 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8085 u64 first_sector, gfp_t gfp_flags)
8086 {
8087 struct bio *bio;
8088 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8089 if (bio)
8090 bio_associate_current(bio);
8091 return bio;
8092 }
8093
8094 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8095 struct inode *inode,
8096 struct btrfs_dio_private *dip,
8097 struct bio *bio,
8098 u64 file_offset)
8099 {
8100 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8101 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8102 int ret;
8103
8104 /*
8105 * We load all the csum data we need when we submit
8106 * the first bio to reduce the csum tree search and
8107 * contention.
8108 */
8109 if (dip->logical_offset == file_offset) {
8110 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8111 file_offset);
8112 if (ret)
8113 return ret;
8114 }
8115
8116 if (bio == dip->orig_bio)
8117 return 0;
8118
8119 file_offset -= dip->logical_offset;
8120 file_offset >>= inode->i_sb->s_blocksize_bits;
8121 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8122
8123 return 0;
8124 }
8125
8126 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8127 int rw, u64 file_offset, int skip_sum,
8128 int async_submit)
8129 {
8130 struct btrfs_dio_private *dip = bio->bi_private;
8131 int write = rw & REQ_WRITE;
8132 struct btrfs_root *root = BTRFS_I(inode)->root;
8133 int ret;
8134
8135 if (async_submit)
8136 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8137
8138 bio_get(bio);
8139
8140 if (!write) {
8141 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8142 BTRFS_WQ_ENDIO_DATA);
8143 if (ret)
8144 goto err;
8145 }
8146
8147 if (skip_sum)
8148 goto map;
8149
8150 if (write && async_submit) {
8151 ret = btrfs_wq_submit_bio(root->fs_info,
8152 inode, rw, bio, 0, 0,
8153 file_offset,
8154 __btrfs_submit_bio_start_direct_io,
8155 __btrfs_submit_bio_done);
8156 goto err;
8157 } else if (write) {
8158 /*
8159 * If we aren't doing async submit, calculate the csum of the
8160 * bio now.
8161 */
8162 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8163 if (ret)
8164 goto err;
8165 } else {
8166 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8167 file_offset);
8168 if (ret)
8169 goto err;
8170 }
8171 map:
8172 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
8173 err:
8174 bio_put(bio);
8175 return ret;
8176 }
8177
8178 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8179 int skip_sum)
8180 {
8181 struct inode *inode = dip->inode;
8182 struct btrfs_root *root = BTRFS_I(inode)->root;
8183 struct bio *bio;
8184 struct bio *orig_bio = dip->orig_bio;
8185 struct bio_vec *bvec = orig_bio->bi_io_vec;
8186 u64 start_sector = orig_bio->bi_iter.bi_sector;
8187 u64 file_offset = dip->logical_offset;
8188 u64 submit_len = 0;
8189 u64 map_length;
8190 int nr_pages = 0;
8191 int ret;
8192 int async_submit = 0;
8193
8194 map_length = orig_bio->bi_iter.bi_size;
8195 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
8196 &map_length, NULL, 0);
8197 if (ret)
8198 return -EIO;
8199
8200 if (map_length >= orig_bio->bi_iter.bi_size) {
8201 bio = orig_bio;
8202 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8203 goto submit;
8204 }
8205
8206 /* async crcs make it difficult to collect full stripe writes. */
8207 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8208 async_submit = 0;
8209 else
8210 async_submit = 1;
8211
8212 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8213 if (!bio)
8214 return -ENOMEM;
8215
8216 bio->bi_private = dip;
8217 bio->bi_end_io = btrfs_end_dio_bio;
8218 btrfs_io_bio(bio)->logical = file_offset;
8219 atomic_inc(&dip->pending_bios);
8220
8221 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8222 if (map_length < submit_len + bvec->bv_len ||
8223 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
8224 bvec->bv_offset) < bvec->bv_len) {
8225 /*
8226 * inc the count before we submit the bio so
8227 * we know the end IO handler won't happen before
8228 * we inc the count. Otherwise, the dip might get freed
8229 * before we're done setting it up
8230 */
8231 atomic_inc(&dip->pending_bios);
8232 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8233 file_offset, skip_sum,
8234 async_submit);
8235 if (ret) {
8236 bio_put(bio);
8237 atomic_dec(&dip->pending_bios);
8238 goto out_err;
8239 }
8240
8241 start_sector += submit_len >> 9;
8242 file_offset += submit_len;
8243
8244 submit_len = 0;
8245 nr_pages = 0;
8246
8247 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8248 start_sector, GFP_NOFS);
8249 if (!bio)
8250 goto out_err;
8251 bio->bi_private = dip;
8252 bio->bi_end_io = btrfs_end_dio_bio;
8253 btrfs_io_bio(bio)->logical = file_offset;
8254
8255 map_length = orig_bio->bi_iter.bi_size;
8256 ret = btrfs_map_block(root->fs_info, rw,
8257 start_sector << 9,
8258 &map_length, NULL, 0);
8259 if (ret) {
8260 bio_put(bio);
8261 goto out_err;
8262 }
8263 } else {
8264 submit_len += bvec->bv_len;
8265 nr_pages++;
8266 bvec++;
8267 }
8268 }
8269
8270 submit:
8271 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
8272 async_submit);
8273 if (!ret)
8274 return 0;
8275
8276 bio_put(bio);
8277 out_err:
8278 dip->errors = 1;
8279 /*
8280 * before atomic variable goto zero, we must
8281 * make sure dip->errors is perceived to be set.
8282 */
8283 smp_mb__before_atomic();
8284 if (atomic_dec_and_test(&dip->pending_bios))
8285 bio_io_error(dip->orig_bio);
8286
8287 /* bio_end_io() will handle error, so we needn't return it */
8288 return 0;
8289 }
8290
8291 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8292 struct inode *inode, loff_t file_offset)
8293 {
8294 struct btrfs_dio_private *dip = NULL;
8295 struct bio *io_bio = NULL;
8296 struct btrfs_io_bio *btrfs_bio;
8297 int skip_sum;
8298 int write = rw & REQ_WRITE;
8299 int ret = 0;
8300
8301 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8302
8303 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8304 if (!io_bio) {
8305 ret = -ENOMEM;
8306 goto free_ordered;
8307 }
8308
8309 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8310 if (!dip) {
8311 ret = -ENOMEM;
8312 goto free_ordered;
8313 }
8314
8315 dip->private = dio_bio->bi_private;
8316 dip->inode = inode;
8317 dip->logical_offset = file_offset;
8318 dip->bytes = dio_bio->bi_iter.bi_size;
8319 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8320 io_bio->bi_private = dip;
8321 dip->orig_bio = io_bio;
8322 dip->dio_bio = dio_bio;
8323 atomic_set(&dip->pending_bios, 0);
8324 btrfs_bio = btrfs_io_bio(io_bio);
8325 btrfs_bio->logical = file_offset;
8326
8327 if (write) {
8328 io_bio->bi_end_io = btrfs_endio_direct_write;
8329 } else {
8330 io_bio->bi_end_io = btrfs_endio_direct_read;
8331 dip->subio_endio = btrfs_subio_endio_read;
8332 }
8333
8334 /*
8335 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8336 * even if we fail to submit a bio, because in such case we do the
8337 * corresponding error handling below and it must not be done a second
8338 * time by btrfs_direct_IO().
8339 */
8340 if (write) {
8341 struct btrfs_dio_data *dio_data = current->journal_info;
8342
8343 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8344 dip->bytes;
8345 dio_data->unsubmitted_oe_range_start =
8346 dio_data->unsubmitted_oe_range_end;
8347 }
8348
8349 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8350 if (!ret)
8351 return;
8352
8353 if (btrfs_bio->end_io)
8354 btrfs_bio->end_io(btrfs_bio, ret);
8355
8356 free_ordered:
8357 /*
8358 * If we arrived here it means either we failed to submit the dip
8359 * or we either failed to clone the dio_bio or failed to allocate the
8360 * dip. If we cloned the dio_bio and allocated the dip, we can just
8361 * call bio_endio against our io_bio so that we get proper resource
8362 * cleanup if we fail to submit the dip, otherwise, we must do the
8363 * same as btrfs_endio_direct_[write|read] because we can't call these
8364 * callbacks - they require an allocated dip and a clone of dio_bio.
8365 */
8366 if (io_bio && dip) {
8367 io_bio->bi_error = -EIO;
8368 bio_endio(io_bio);
8369 /*
8370 * The end io callbacks free our dip, do the final put on io_bio
8371 * and all the cleanup and final put for dio_bio (through
8372 * dio_end_io()).
8373 */
8374 dip = NULL;
8375 io_bio = NULL;
8376 } else {
8377 if (write)
8378 btrfs_endio_direct_write_update_ordered(inode,
8379 file_offset,
8380 dio_bio->bi_iter.bi_size,
8381 0);
8382 else
8383 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8384 file_offset + dio_bio->bi_iter.bi_size - 1);
8385
8386 dio_bio->bi_error = -EIO;
8387 /*
8388 * Releases and cleans up our dio_bio, no need to bio_put()
8389 * nor bio_endio()/bio_io_error() against dio_bio.
8390 */
8391 dio_end_io(dio_bio, ret);
8392 }
8393 if (io_bio)
8394 bio_put(io_bio);
8395 kfree(dip);
8396 }
8397
8398 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8399 const struct iov_iter *iter, loff_t offset)
8400 {
8401 int seg;
8402 int i;
8403 unsigned blocksize_mask = root->sectorsize - 1;
8404 ssize_t retval = -EINVAL;
8405
8406 if (offset & blocksize_mask)
8407 goto out;
8408
8409 if (iov_iter_alignment(iter) & blocksize_mask)
8410 goto out;
8411
8412 /* If this is a write we don't need to check anymore */
8413 if (iov_iter_rw(iter) == WRITE)
8414 return 0;
8415 /*
8416 * Check to make sure we don't have duplicate iov_base's in this
8417 * iovec, if so return EINVAL, otherwise we'll get csum errors
8418 * when reading back.
8419 */
8420 for (seg = 0; seg < iter->nr_segs; seg++) {
8421 for (i = seg + 1; i < iter->nr_segs; i++) {
8422 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8423 goto out;
8424 }
8425 }
8426 retval = 0;
8427 out:
8428 return retval;
8429 }
8430
8431 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8432 loff_t offset)
8433 {
8434 struct file *file = iocb->ki_filp;
8435 struct inode *inode = file->f_mapping->host;
8436 struct btrfs_root *root = BTRFS_I(inode)->root;
8437 struct btrfs_dio_data dio_data = { 0 };
8438 size_t count = 0;
8439 int flags = 0;
8440 bool wakeup = true;
8441 bool relock = false;
8442 ssize_t ret;
8443
8444 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8445 return 0;
8446
8447 inode_dio_begin(inode);
8448 smp_mb__after_atomic();
8449
8450 /*
8451 * The generic stuff only does filemap_write_and_wait_range, which
8452 * isn't enough if we've written compressed pages to this area, so
8453 * we need to flush the dirty pages again to make absolutely sure
8454 * that any outstanding dirty pages are on disk.
8455 */
8456 count = iov_iter_count(iter);
8457 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8458 &BTRFS_I(inode)->runtime_flags))
8459 filemap_fdatawrite_range(inode->i_mapping, offset,
8460 offset + count - 1);
8461
8462 if (iov_iter_rw(iter) == WRITE) {
8463 /*
8464 * If the write DIO is beyond the EOF, we need update
8465 * the isize, but it is protected by i_mutex. So we can
8466 * not unlock the i_mutex at this case.
8467 */
8468 if (offset + count <= inode->i_size) {
8469 mutex_unlock(&inode->i_mutex);
8470 relock = true;
8471 }
8472 ret = btrfs_delalloc_reserve_space(inode, offset, count);
8473 if (ret)
8474 goto out;
8475 dio_data.outstanding_extents = div64_u64(count +
8476 BTRFS_MAX_EXTENT_SIZE - 1,
8477 BTRFS_MAX_EXTENT_SIZE);
8478
8479 /*
8480 * We need to know how many extents we reserved so that we can
8481 * do the accounting properly if we go over the number we
8482 * originally calculated. Abuse current->journal_info for this.
8483 */
8484 dio_data.reserve = round_up(count, root->sectorsize);
8485 dio_data.unsubmitted_oe_range_start = (u64)offset;
8486 dio_data.unsubmitted_oe_range_end = (u64)offset;
8487 current->journal_info = &dio_data;
8488 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8489 &BTRFS_I(inode)->runtime_flags)) {
8490 inode_dio_end(inode);
8491 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8492 wakeup = false;
8493 }
8494
8495 ret = __blockdev_direct_IO(iocb, inode,
8496 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8497 iter, offset, btrfs_get_blocks_direct, NULL,
8498 btrfs_submit_direct, flags);
8499 if (iov_iter_rw(iter) == WRITE) {
8500 current->journal_info = NULL;
8501 if (ret < 0 && ret != -EIOCBQUEUED) {
8502 if (dio_data.reserve)
8503 btrfs_delalloc_release_space(inode, offset,
8504 dio_data.reserve);
8505 /*
8506 * On error we might have left some ordered extents
8507 * without submitting corresponding bios for them, so
8508 * cleanup them up to avoid other tasks getting them
8509 * and waiting for them to complete forever.
8510 */
8511 if (dio_data.unsubmitted_oe_range_start <
8512 dio_data.unsubmitted_oe_range_end)
8513 btrfs_endio_direct_write_update_ordered(inode,
8514 dio_data.unsubmitted_oe_range_start,
8515 dio_data.unsubmitted_oe_range_end -
8516 dio_data.unsubmitted_oe_range_start,
8517 0);
8518 } else if (ret >= 0 && (size_t)ret < count)
8519 btrfs_delalloc_release_space(inode, offset,
8520 count - (size_t)ret);
8521 }
8522 out:
8523 if (wakeup)
8524 inode_dio_end(inode);
8525 if (relock)
8526 mutex_lock(&inode->i_mutex);
8527
8528 return ret;
8529 }
8530
8531 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8532
8533 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8534 __u64 start, __u64 len)
8535 {
8536 int ret;
8537
8538 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8539 if (ret)
8540 return ret;
8541
8542 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8543 }
8544
8545 int btrfs_readpage(struct file *file, struct page *page)
8546 {
8547 struct extent_io_tree *tree;
8548 tree = &BTRFS_I(page->mapping->host)->io_tree;
8549 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8550 }
8551
8552 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8553 {
8554 struct extent_io_tree *tree;
8555 struct inode *inode = page->mapping->host;
8556 int ret;
8557
8558 if (current->flags & PF_MEMALLOC) {
8559 redirty_page_for_writepage(wbc, page);
8560 unlock_page(page);
8561 return 0;
8562 }
8563
8564 /*
8565 * If we are under memory pressure we will call this directly from the
8566 * VM, we need to make sure we have the inode referenced for the ordered
8567 * extent. If not just return like we didn't do anything.
8568 */
8569 if (!igrab(inode)) {
8570 redirty_page_for_writepage(wbc, page);
8571 return AOP_WRITEPAGE_ACTIVATE;
8572 }
8573 tree = &BTRFS_I(page->mapping->host)->io_tree;
8574 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8575 btrfs_add_delayed_iput(inode);
8576 return ret;
8577 }
8578
8579 static int btrfs_writepages(struct address_space *mapping,
8580 struct writeback_control *wbc)
8581 {
8582 struct extent_io_tree *tree;
8583
8584 tree = &BTRFS_I(mapping->host)->io_tree;
8585 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8586 }
8587
8588 static int
8589 btrfs_readpages(struct file *file, struct address_space *mapping,
8590 struct list_head *pages, unsigned nr_pages)
8591 {
8592 struct extent_io_tree *tree;
8593 tree = &BTRFS_I(mapping->host)->io_tree;
8594 return extent_readpages(tree, mapping, pages, nr_pages,
8595 btrfs_get_extent);
8596 }
8597 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8598 {
8599 struct extent_io_tree *tree;
8600 struct extent_map_tree *map;
8601 int ret;
8602
8603 tree = &BTRFS_I(page->mapping->host)->io_tree;
8604 map = &BTRFS_I(page->mapping->host)->extent_tree;
8605 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8606 if (ret == 1) {
8607 ClearPagePrivate(page);
8608 set_page_private(page, 0);
8609 page_cache_release(page);
8610 }
8611 return ret;
8612 }
8613
8614 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8615 {
8616 if (PageWriteback(page) || PageDirty(page))
8617 return 0;
8618 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8619 }
8620
8621 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8622 unsigned int length)
8623 {
8624 struct inode *inode = page->mapping->host;
8625 struct extent_io_tree *tree;
8626 struct btrfs_ordered_extent *ordered;
8627 struct extent_state *cached_state = NULL;
8628 u64 page_start = page_offset(page);
8629 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8630 int inode_evicting = inode->i_state & I_FREEING;
8631
8632 /*
8633 * we have the page locked, so new writeback can't start,
8634 * and the dirty bit won't be cleared while we are here.
8635 *
8636 * Wait for IO on this page so that we can safely clear
8637 * the PagePrivate2 bit and do ordered accounting
8638 */
8639 wait_on_page_writeback(page);
8640
8641 tree = &BTRFS_I(inode)->io_tree;
8642 if (offset) {
8643 btrfs_releasepage(page, GFP_NOFS);
8644 return;
8645 }
8646
8647 if (!inode_evicting)
8648 lock_extent_bits(tree, page_start, page_end, &cached_state);
8649 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8650 if (ordered) {
8651 /*
8652 * IO on this page will never be started, so we need
8653 * to account for any ordered extents now
8654 */
8655 if (!inode_evicting)
8656 clear_extent_bit(tree, page_start, page_end,
8657 EXTENT_DIRTY | EXTENT_DELALLOC |
8658 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8659 EXTENT_DEFRAG, 1, 0, &cached_state,
8660 GFP_NOFS);
8661 /*
8662 * whoever cleared the private bit is responsible
8663 * for the finish_ordered_io
8664 */
8665 if (TestClearPagePrivate2(page)) {
8666 struct btrfs_ordered_inode_tree *tree;
8667 u64 new_len;
8668
8669 tree = &BTRFS_I(inode)->ordered_tree;
8670
8671 spin_lock_irq(&tree->lock);
8672 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8673 new_len = page_start - ordered->file_offset;
8674 if (new_len < ordered->truncated_len)
8675 ordered->truncated_len = new_len;
8676 spin_unlock_irq(&tree->lock);
8677
8678 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8679 page_start,
8680 PAGE_CACHE_SIZE, 1))
8681 btrfs_finish_ordered_io(ordered);
8682 }
8683 btrfs_put_ordered_extent(ordered);
8684 if (!inode_evicting) {
8685 cached_state = NULL;
8686 lock_extent_bits(tree, page_start, page_end,
8687 &cached_state);
8688 }
8689 }
8690
8691 /*
8692 * Qgroup reserved space handler
8693 * Page here will be either
8694 * 1) Already written to disk
8695 * In this case, its reserved space is released from data rsv map
8696 * and will be freed by delayed_ref handler finally.
8697 * So even we call qgroup_free_data(), it won't decrease reserved
8698 * space.
8699 * 2) Not written to disk
8700 * This means the reserved space should be freed here.
8701 */
8702 btrfs_qgroup_free_data(inode, page_start, PAGE_CACHE_SIZE);
8703 if (!inode_evicting) {
8704 clear_extent_bit(tree, page_start, page_end,
8705 EXTENT_LOCKED | EXTENT_DIRTY |
8706 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8707 EXTENT_DEFRAG, 1, 1,
8708 &cached_state, GFP_NOFS);
8709
8710 __btrfs_releasepage(page, GFP_NOFS);
8711 }
8712
8713 ClearPageChecked(page);
8714 if (PagePrivate(page)) {
8715 ClearPagePrivate(page);
8716 set_page_private(page, 0);
8717 page_cache_release(page);
8718 }
8719 }
8720
8721 /*
8722 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8723 * called from a page fault handler when a page is first dirtied. Hence we must
8724 * be careful to check for EOF conditions here. We set the page up correctly
8725 * for a written page which means we get ENOSPC checking when writing into
8726 * holes and correct delalloc and unwritten extent mapping on filesystems that
8727 * support these features.
8728 *
8729 * We are not allowed to take the i_mutex here so we have to play games to
8730 * protect against truncate races as the page could now be beyond EOF. Because
8731 * vmtruncate() writes the inode size before removing pages, once we have the
8732 * page lock we can determine safely if the page is beyond EOF. If it is not
8733 * beyond EOF, then the page is guaranteed safe against truncation until we
8734 * unlock the page.
8735 */
8736 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8737 {
8738 struct page *page = vmf->page;
8739 struct inode *inode = file_inode(vma->vm_file);
8740 struct btrfs_root *root = BTRFS_I(inode)->root;
8741 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8742 struct btrfs_ordered_extent *ordered;
8743 struct extent_state *cached_state = NULL;
8744 char *kaddr;
8745 unsigned long zero_start;
8746 loff_t size;
8747 int ret;
8748 int reserved = 0;
8749 u64 page_start;
8750 u64 page_end;
8751
8752 sb_start_pagefault(inode->i_sb);
8753 page_start = page_offset(page);
8754 page_end = page_start + PAGE_CACHE_SIZE - 1;
8755
8756 ret = btrfs_delalloc_reserve_space(inode, page_start,
8757 PAGE_CACHE_SIZE);
8758 if (!ret) {
8759 ret = file_update_time(vma->vm_file);
8760 reserved = 1;
8761 }
8762 if (ret) {
8763 if (ret == -ENOMEM)
8764 ret = VM_FAULT_OOM;
8765 else /* -ENOSPC, -EIO, etc */
8766 ret = VM_FAULT_SIGBUS;
8767 if (reserved)
8768 goto out;
8769 goto out_noreserve;
8770 }
8771
8772 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8773 again:
8774 lock_page(page);
8775 size = i_size_read(inode);
8776
8777 if ((page->mapping != inode->i_mapping) ||
8778 (page_start >= size)) {
8779 /* page got truncated out from underneath us */
8780 goto out_unlock;
8781 }
8782 wait_on_page_writeback(page);
8783
8784 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8785 set_page_extent_mapped(page);
8786
8787 /*
8788 * we can't set the delalloc bits if there are pending ordered
8789 * extents. Drop our locks and wait for them to finish
8790 */
8791 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8792 if (ordered) {
8793 unlock_extent_cached(io_tree, page_start, page_end,
8794 &cached_state, GFP_NOFS);
8795 unlock_page(page);
8796 btrfs_start_ordered_extent(inode, ordered, 1);
8797 btrfs_put_ordered_extent(ordered);
8798 goto again;
8799 }
8800
8801 /*
8802 * XXX - page_mkwrite gets called every time the page is dirtied, even
8803 * if it was already dirty, so for space accounting reasons we need to
8804 * clear any delalloc bits for the range we are fixing to save. There
8805 * is probably a better way to do this, but for now keep consistent with
8806 * prepare_pages in the normal write path.
8807 */
8808 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8809 EXTENT_DIRTY | EXTENT_DELALLOC |
8810 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8811 0, 0, &cached_state, GFP_NOFS);
8812
8813 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8814 &cached_state);
8815 if (ret) {
8816 unlock_extent_cached(io_tree, page_start, page_end,
8817 &cached_state, GFP_NOFS);
8818 ret = VM_FAULT_SIGBUS;
8819 goto out_unlock;
8820 }
8821 ret = 0;
8822
8823 /* page is wholly or partially inside EOF */
8824 if (page_start + PAGE_CACHE_SIZE > size)
8825 zero_start = size & ~PAGE_CACHE_MASK;
8826 else
8827 zero_start = PAGE_CACHE_SIZE;
8828
8829 if (zero_start != PAGE_CACHE_SIZE) {
8830 kaddr = kmap(page);
8831 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8832 flush_dcache_page(page);
8833 kunmap(page);
8834 }
8835 ClearPageChecked(page);
8836 set_page_dirty(page);
8837 SetPageUptodate(page);
8838
8839 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8840 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8841 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8842
8843 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8844
8845 out_unlock:
8846 if (!ret) {
8847 sb_end_pagefault(inode->i_sb);
8848 return VM_FAULT_LOCKED;
8849 }
8850 unlock_page(page);
8851 out:
8852 btrfs_delalloc_release_space(inode, page_start, PAGE_CACHE_SIZE);
8853 out_noreserve:
8854 sb_end_pagefault(inode->i_sb);
8855 return ret;
8856 }
8857
8858 static int btrfs_truncate(struct inode *inode)
8859 {
8860 struct btrfs_root *root = BTRFS_I(inode)->root;
8861 struct btrfs_block_rsv *rsv;
8862 int ret = 0;
8863 int err = 0;
8864 struct btrfs_trans_handle *trans;
8865 u64 mask = root->sectorsize - 1;
8866 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8867
8868 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8869 (u64)-1);
8870 if (ret)
8871 return ret;
8872
8873 /*
8874 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8875 * 3 things going on here
8876 *
8877 * 1) We need to reserve space for our orphan item and the space to
8878 * delete our orphan item. Lord knows we don't want to have a dangling
8879 * orphan item because we didn't reserve space to remove it.
8880 *
8881 * 2) We need to reserve space to update our inode.
8882 *
8883 * 3) We need to have something to cache all the space that is going to
8884 * be free'd up by the truncate operation, but also have some slack
8885 * space reserved in case it uses space during the truncate (thank you
8886 * very much snapshotting).
8887 *
8888 * And we need these to all be seperate. The fact is we can use alot of
8889 * space doing the truncate, and we have no earthly idea how much space
8890 * we will use, so we need the truncate reservation to be seperate so it
8891 * doesn't end up using space reserved for updating the inode or
8892 * removing the orphan item. We also need to be able to stop the
8893 * transaction and start a new one, which means we need to be able to
8894 * update the inode several times, and we have no idea of knowing how
8895 * many times that will be, so we can't just reserve 1 item for the
8896 * entirety of the opration, so that has to be done seperately as well.
8897 * Then there is the orphan item, which does indeed need to be held on
8898 * to for the whole operation, and we need nobody to touch this reserved
8899 * space except the orphan code.
8900 *
8901 * So that leaves us with
8902 *
8903 * 1) root->orphan_block_rsv - for the orphan deletion.
8904 * 2) rsv - for the truncate reservation, which we will steal from the
8905 * transaction reservation.
8906 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8907 * updating the inode.
8908 */
8909 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8910 if (!rsv)
8911 return -ENOMEM;
8912 rsv->size = min_size;
8913 rsv->failfast = 1;
8914
8915 /*
8916 * 1 for the truncate slack space
8917 * 1 for updating the inode.
8918 */
8919 trans = btrfs_start_transaction(root, 2);
8920 if (IS_ERR(trans)) {
8921 err = PTR_ERR(trans);
8922 goto out;
8923 }
8924
8925 /* Migrate the slack space for the truncate to our reserve */
8926 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8927 min_size);
8928 BUG_ON(ret);
8929
8930 /*
8931 * So if we truncate and then write and fsync we normally would just
8932 * write the extents that changed, which is a problem if we need to
8933 * first truncate that entire inode. So set this flag so we write out
8934 * all of the extents in the inode to the sync log so we're completely
8935 * safe.
8936 */
8937 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8938 trans->block_rsv = rsv;
8939
8940 while (1) {
8941 ret = btrfs_truncate_inode_items(trans, root, inode,
8942 inode->i_size,
8943 BTRFS_EXTENT_DATA_KEY);
8944 if (ret != -ENOSPC && ret != -EAGAIN) {
8945 err = ret;
8946 break;
8947 }
8948
8949 trans->block_rsv = &root->fs_info->trans_block_rsv;
8950 ret = btrfs_update_inode(trans, root, inode);
8951 if (ret) {
8952 err = ret;
8953 break;
8954 }
8955
8956 btrfs_end_transaction(trans, root);
8957 btrfs_btree_balance_dirty(root);
8958
8959 trans = btrfs_start_transaction(root, 2);
8960 if (IS_ERR(trans)) {
8961 ret = err = PTR_ERR(trans);
8962 trans = NULL;
8963 break;
8964 }
8965
8966 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8967 rsv, min_size);
8968 BUG_ON(ret); /* shouldn't happen */
8969 trans->block_rsv = rsv;
8970 }
8971
8972 if (ret == 0 && inode->i_nlink > 0) {
8973 trans->block_rsv = root->orphan_block_rsv;
8974 ret = btrfs_orphan_del(trans, inode);
8975 if (ret)
8976 err = ret;
8977 }
8978
8979 if (trans) {
8980 trans->block_rsv = &root->fs_info->trans_block_rsv;
8981 ret = btrfs_update_inode(trans, root, inode);
8982 if (ret && !err)
8983 err = ret;
8984
8985 ret = btrfs_end_transaction(trans, root);
8986 btrfs_btree_balance_dirty(root);
8987 }
8988
8989 out:
8990 btrfs_free_block_rsv(root, rsv);
8991
8992 if (ret && !err)
8993 err = ret;
8994
8995 return err;
8996 }
8997
8998 /*
8999 * create a new subvolume directory/inode (helper for the ioctl).
9000 */
9001 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9002 struct btrfs_root *new_root,
9003 struct btrfs_root *parent_root,
9004 u64 new_dirid)
9005 {
9006 struct inode *inode;
9007 int err;
9008 u64 index = 0;
9009
9010 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9011 new_dirid, new_dirid,
9012 S_IFDIR | (~current_umask() & S_IRWXUGO),
9013 &index);
9014 if (IS_ERR(inode))
9015 return PTR_ERR(inode);
9016 inode->i_op = &btrfs_dir_inode_operations;
9017 inode->i_fop = &btrfs_dir_file_operations;
9018
9019 set_nlink(inode, 1);
9020 btrfs_i_size_write(inode, 0);
9021 unlock_new_inode(inode);
9022
9023 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9024 if (err)
9025 btrfs_err(new_root->fs_info,
9026 "error inheriting subvolume %llu properties: %d",
9027 new_root->root_key.objectid, err);
9028
9029 err = btrfs_update_inode(trans, new_root, inode);
9030
9031 iput(inode);
9032 return err;
9033 }
9034
9035 struct inode *btrfs_alloc_inode(struct super_block *sb)
9036 {
9037 struct btrfs_inode *ei;
9038 struct inode *inode;
9039
9040 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9041 if (!ei)
9042 return NULL;
9043
9044 ei->root = NULL;
9045 ei->generation = 0;
9046 ei->last_trans = 0;
9047 ei->last_sub_trans = 0;
9048 ei->logged_trans = 0;
9049 ei->delalloc_bytes = 0;
9050 ei->defrag_bytes = 0;
9051 ei->disk_i_size = 0;
9052 ei->flags = 0;
9053 ei->csum_bytes = 0;
9054 ei->index_cnt = (u64)-1;
9055 ei->dir_index = 0;
9056 ei->last_unlink_trans = 0;
9057 ei->last_log_commit = 0;
9058 ei->delayed_iput_count = 0;
9059
9060 spin_lock_init(&ei->lock);
9061 ei->outstanding_extents = 0;
9062 ei->reserved_extents = 0;
9063
9064 ei->runtime_flags = 0;
9065 ei->force_compress = BTRFS_COMPRESS_NONE;
9066
9067 ei->delayed_node = NULL;
9068
9069 ei->i_otime.tv_sec = 0;
9070 ei->i_otime.tv_nsec = 0;
9071
9072 inode = &ei->vfs_inode;
9073 extent_map_tree_init(&ei->extent_tree);
9074 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9075 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9076 ei->io_tree.track_uptodate = 1;
9077 ei->io_failure_tree.track_uptodate = 1;
9078 atomic_set(&ei->sync_writers, 0);
9079 mutex_init(&ei->log_mutex);
9080 mutex_init(&ei->delalloc_mutex);
9081 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9082 INIT_LIST_HEAD(&ei->delalloc_inodes);
9083 INIT_LIST_HEAD(&ei->delayed_iput);
9084 RB_CLEAR_NODE(&ei->rb_node);
9085
9086 return inode;
9087 }
9088
9089 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9090 void btrfs_test_destroy_inode(struct inode *inode)
9091 {
9092 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9093 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9094 }
9095 #endif
9096
9097 static void btrfs_i_callback(struct rcu_head *head)
9098 {
9099 struct inode *inode = container_of(head, struct inode, i_rcu);
9100 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9101 }
9102
9103 void btrfs_destroy_inode(struct inode *inode)
9104 {
9105 struct btrfs_ordered_extent *ordered;
9106 struct btrfs_root *root = BTRFS_I(inode)->root;
9107
9108 WARN_ON(!hlist_empty(&inode->i_dentry));
9109 WARN_ON(inode->i_data.nrpages);
9110 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9111 WARN_ON(BTRFS_I(inode)->reserved_extents);
9112 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9113 WARN_ON(BTRFS_I(inode)->csum_bytes);
9114 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9115
9116 /*
9117 * This can happen where we create an inode, but somebody else also
9118 * created the same inode and we need to destroy the one we already
9119 * created.
9120 */
9121 if (!root)
9122 goto free;
9123
9124 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9125 &BTRFS_I(inode)->runtime_flags)) {
9126 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9127 btrfs_ino(inode));
9128 atomic_dec(&root->orphan_inodes);
9129 }
9130
9131 while (1) {
9132 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9133 if (!ordered)
9134 break;
9135 else {
9136 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
9137 ordered->file_offset, ordered->len);
9138 btrfs_remove_ordered_extent(inode, ordered);
9139 btrfs_put_ordered_extent(ordered);
9140 btrfs_put_ordered_extent(ordered);
9141 }
9142 }
9143 btrfs_qgroup_check_reserved_leak(inode);
9144 inode_tree_del(inode);
9145 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9146 free:
9147 call_rcu(&inode->i_rcu, btrfs_i_callback);
9148 }
9149
9150 int btrfs_drop_inode(struct inode *inode)
9151 {
9152 struct btrfs_root *root = BTRFS_I(inode)->root;
9153
9154 if (root == NULL)
9155 return 1;
9156
9157 /* the snap/subvol tree is on deleting */
9158 if (btrfs_root_refs(&root->root_item) == 0)
9159 return 1;
9160 else
9161 return generic_drop_inode(inode);
9162 }
9163
9164 static void init_once(void *foo)
9165 {
9166 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9167
9168 inode_init_once(&ei->vfs_inode);
9169 }
9170
9171 void btrfs_destroy_cachep(void)
9172 {
9173 /*
9174 * Make sure all delayed rcu free inodes are flushed before we
9175 * destroy cache.
9176 */
9177 rcu_barrier();
9178 if (btrfs_inode_cachep)
9179 kmem_cache_destroy(btrfs_inode_cachep);
9180 if (btrfs_trans_handle_cachep)
9181 kmem_cache_destroy(btrfs_trans_handle_cachep);
9182 if (btrfs_transaction_cachep)
9183 kmem_cache_destroy(btrfs_transaction_cachep);
9184 if (btrfs_path_cachep)
9185 kmem_cache_destroy(btrfs_path_cachep);
9186 if (btrfs_free_space_cachep)
9187 kmem_cache_destroy(btrfs_free_space_cachep);
9188 }
9189
9190 int btrfs_init_cachep(void)
9191 {
9192 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9193 sizeof(struct btrfs_inode), 0,
9194 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
9195 if (!btrfs_inode_cachep)
9196 goto fail;
9197
9198 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9199 sizeof(struct btrfs_trans_handle), 0,
9200 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9201 if (!btrfs_trans_handle_cachep)
9202 goto fail;
9203
9204 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9205 sizeof(struct btrfs_transaction), 0,
9206 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9207 if (!btrfs_transaction_cachep)
9208 goto fail;
9209
9210 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9211 sizeof(struct btrfs_path), 0,
9212 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9213 if (!btrfs_path_cachep)
9214 goto fail;
9215
9216 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9217 sizeof(struct btrfs_free_space), 0,
9218 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9219 if (!btrfs_free_space_cachep)
9220 goto fail;
9221
9222 return 0;
9223 fail:
9224 btrfs_destroy_cachep();
9225 return -ENOMEM;
9226 }
9227
9228 static int btrfs_getattr(struct vfsmount *mnt,
9229 struct dentry *dentry, struct kstat *stat)
9230 {
9231 u64 delalloc_bytes;
9232 struct inode *inode = d_inode(dentry);
9233 u32 blocksize = inode->i_sb->s_blocksize;
9234
9235 generic_fillattr(inode, stat);
9236 stat->dev = BTRFS_I(inode)->root->anon_dev;
9237 stat->blksize = PAGE_CACHE_SIZE;
9238
9239 spin_lock(&BTRFS_I(inode)->lock);
9240 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9241 spin_unlock(&BTRFS_I(inode)->lock);
9242 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9243 ALIGN(delalloc_bytes, blocksize)) >> 9;
9244 return 0;
9245 }
9246
9247 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9248 struct inode *new_dir, struct dentry *new_dentry)
9249 {
9250 struct btrfs_trans_handle *trans;
9251 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9252 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9253 struct inode *new_inode = d_inode(new_dentry);
9254 struct inode *old_inode = d_inode(old_dentry);
9255 struct timespec ctime = CURRENT_TIME;
9256 u64 index = 0;
9257 u64 root_objectid;
9258 int ret;
9259 u64 old_ino = btrfs_ino(old_inode);
9260
9261 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9262 return -EPERM;
9263
9264 /* we only allow rename subvolume link between subvolumes */
9265 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9266 return -EXDEV;
9267
9268 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9269 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9270 return -ENOTEMPTY;
9271
9272 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9273 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9274 return -ENOTEMPTY;
9275
9276
9277 /* check for collisions, even if the name isn't there */
9278 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9279 new_dentry->d_name.name,
9280 new_dentry->d_name.len);
9281
9282 if (ret) {
9283 if (ret == -EEXIST) {
9284 /* we shouldn't get
9285 * eexist without a new_inode */
9286 if (WARN_ON(!new_inode)) {
9287 return ret;
9288 }
9289 } else {
9290 /* maybe -EOVERFLOW */
9291 return ret;
9292 }
9293 }
9294 ret = 0;
9295
9296 /*
9297 * we're using rename to replace one file with another. Start IO on it
9298 * now so we don't add too much work to the end of the transaction
9299 */
9300 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9301 filemap_flush(old_inode->i_mapping);
9302
9303 /* close the racy window with snapshot create/destroy ioctl */
9304 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9305 down_read(&root->fs_info->subvol_sem);
9306 /*
9307 * We want to reserve the absolute worst case amount of items. So if
9308 * both inodes are subvols and we need to unlink them then that would
9309 * require 4 item modifications, but if they are both normal inodes it
9310 * would require 5 item modifications, so we'll assume their normal
9311 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9312 * should cover the worst case number of items we'll modify.
9313 */
9314 trans = btrfs_start_transaction(root, 11);
9315 if (IS_ERR(trans)) {
9316 ret = PTR_ERR(trans);
9317 goto out_notrans;
9318 }
9319
9320 if (dest != root)
9321 btrfs_record_root_in_trans(trans, dest);
9322
9323 ret = btrfs_set_inode_index(new_dir, &index);
9324 if (ret)
9325 goto out_fail;
9326
9327 BTRFS_I(old_inode)->dir_index = 0ULL;
9328 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9329 /* force full log commit if subvolume involved. */
9330 btrfs_set_log_full_commit(root->fs_info, trans);
9331 } else {
9332 ret = btrfs_insert_inode_ref(trans, dest,
9333 new_dentry->d_name.name,
9334 new_dentry->d_name.len,
9335 old_ino,
9336 btrfs_ino(new_dir), index);
9337 if (ret)
9338 goto out_fail;
9339 /*
9340 * this is an ugly little race, but the rename is required
9341 * to make sure that if we crash, the inode is either at the
9342 * old name or the new one. pinning the log transaction lets
9343 * us make sure we don't allow a log commit to come in after
9344 * we unlink the name but before we add the new name back in.
9345 */
9346 btrfs_pin_log_trans(root);
9347 }
9348
9349 inode_inc_iversion(old_dir);
9350 inode_inc_iversion(new_dir);
9351 inode_inc_iversion(old_inode);
9352 old_dir->i_ctime = old_dir->i_mtime = ctime;
9353 new_dir->i_ctime = new_dir->i_mtime = ctime;
9354 old_inode->i_ctime = ctime;
9355
9356 if (old_dentry->d_parent != new_dentry->d_parent)
9357 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9358
9359 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9360 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9361 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9362 old_dentry->d_name.name,
9363 old_dentry->d_name.len);
9364 } else {
9365 ret = __btrfs_unlink_inode(trans, root, old_dir,
9366 d_inode(old_dentry),
9367 old_dentry->d_name.name,
9368 old_dentry->d_name.len);
9369 if (!ret)
9370 ret = btrfs_update_inode(trans, root, old_inode);
9371 }
9372 if (ret) {
9373 btrfs_abort_transaction(trans, root, ret);
9374 goto out_fail;
9375 }
9376
9377 if (new_inode) {
9378 inode_inc_iversion(new_inode);
9379 new_inode->i_ctime = CURRENT_TIME;
9380 if (unlikely(btrfs_ino(new_inode) ==
9381 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9382 root_objectid = BTRFS_I(new_inode)->location.objectid;
9383 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9384 root_objectid,
9385 new_dentry->d_name.name,
9386 new_dentry->d_name.len);
9387 BUG_ON(new_inode->i_nlink == 0);
9388 } else {
9389 ret = btrfs_unlink_inode(trans, dest, new_dir,
9390 d_inode(new_dentry),
9391 new_dentry->d_name.name,
9392 new_dentry->d_name.len);
9393 }
9394 if (!ret && new_inode->i_nlink == 0)
9395 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9396 if (ret) {
9397 btrfs_abort_transaction(trans, root, ret);
9398 goto out_fail;
9399 }
9400 }
9401
9402 ret = btrfs_add_link(trans, new_dir, old_inode,
9403 new_dentry->d_name.name,
9404 new_dentry->d_name.len, 0, index);
9405 if (ret) {
9406 btrfs_abort_transaction(trans, root, ret);
9407 goto out_fail;
9408 }
9409
9410 if (old_inode->i_nlink == 1)
9411 BTRFS_I(old_inode)->dir_index = index;
9412
9413 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9414 struct dentry *parent = new_dentry->d_parent;
9415 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9416 btrfs_end_log_trans(root);
9417 }
9418 out_fail:
9419 btrfs_end_transaction(trans, root);
9420 out_notrans:
9421 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9422 up_read(&root->fs_info->subvol_sem);
9423
9424 return ret;
9425 }
9426
9427 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9428 struct inode *new_dir, struct dentry *new_dentry,
9429 unsigned int flags)
9430 {
9431 if (flags & ~RENAME_NOREPLACE)
9432 return -EINVAL;
9433
9434 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9435 }
9436
9437 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9438 {
9439 struct btrfs_delalloc_work *delalloc_work;
9440 struct inode *inode;
9441
9442 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9443 work);
9444 inode = delalloc_work->inode;
9445 filemap_flush(inode->i_mapping);
9446 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9447 &BTRFS_I(inode)->runtime_flags))
9448 filemap_flush(inode->i_mapping);
9449
9450 if (delalloc_work->delay_iput)
9451 btrfs_add_delayed_iput(inode);
9452 else
9453 iput(inode);
9454 complete(&delalloc_work->completion);
9455 }
9456
9457 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9458 int delay_iput)
9459 {
9460 struct btrfs_delalloc_work *work;
9461
9462 work = kmalloc(sizeof(*work), GFP_NOFS);
9463 if (!work)
9464 return NULL;
9465
9466 init_completion(&work->completion);
9467 INIT_LIST_HEAD(&work->list);
9468 work->inode = inode;
9469 work->delay_iput = delay_iput;
9470 WARN_ON_ONCE(!inode);
9471 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9472 btrfs_run_delalloc_work, NULL, NULL);
9473
9474 return work;
9475 }
9476
9477 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9478 {
9479 wait_for_completion(&work->completion);
9480 kfree(work);
9481 }
9482
9483 /*
9484 * some fairly slow code that needs optimization. This walks the list
9485 * of all the inodes with pending delalloc and forces them to disk.
9486 */
9487 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9488 int nr)
9489 {
9490 struct btrfs_inode *binode;
9491 struct inode *inode;
9492 struct btrfs_delalloc_work *work, *next;
9493 struct list_head works;
9494 struct list_head splice;
9495 int ret = 0;
9496
9497 INIT_LIST_HEAD(&works);
9498 INIT_LIST_HEAD(&splice);
9499
9500 mutex_lock(&root->delalloc_mutex);
9501 spin_lock(&root->delalloc_lock);
9502 list_splice_init(&root->delalloc_inodes, &splice);
9503 while (!list_empty(&splice)) {
9504 binode = list_entry(splice.next, struct btrfs_inode,
9505 delalloc_inodes);
9506
9507 list_move_tail(&binode->delalloc_inodes,
9508 &root->delalloc_inodes);
9509 inode = igrab(&binode->vfs_inode);
9510 if (!inode) {
9511 cond_resched_lock(&root->delalloc_lock);
9512 continue;
9513 }
9514 spin_unlock(&root->delalloc_lock);
9515
9516 work = btrfs_alloc_delalloc_work(inode, delay_iput);
9517 if (!work) {
9518 if (delay_iput)
9519 btrfs_add_delayed_iput(inode);
9520 else
9521 iput(inode);
9522 ret = -ENOMEM;
9523 goto out;
9524 }
9525 list_add_tail(&work->list, &works);
9526 btrfs_queue_work(root->fs_info->flush_workers,
9527 &work->work);
9528 ret++;
9529 if (nr != -1 && ret >= nr)
9530 goto out;
9531 cond_resched();
9532 spin_lock(&root->delalloc_lock);
9533 }
9534 spin_unlock(&root->delalloc_lock);
9535
9536 out:
9537 list_for_each_entry_safe(work, next, &works, list) {
9538 list_del_init(&work->list);
9539 btrfs_wait_and_free_delalloc_work(work);
9540 }
9541
9542 if (!list_empty_careful(&splice)) {
9543 spin_lock(&root->delalloc_lock);
9544 list_splice_tail(&splice, &root->delalloc_inodes);
9545 spin_unlock(&root->delalloc_lock);
9546 }
9547 mutex_unlock(&root->delalloc_mutex);
9548 return ret;
9549 }
9550
9551 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9552 {
9553 int ret;
9554
9555 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9556 return -EROFS;
9557
9558 ret = __start_delalloc_inodes(root, delay_iput, -1);
9559 if (ret > 0)
9560 ret = 0;
9561 /*
9562 * the filemap_flush will queue IO into the worker threads, but
9563 * we have to make sure the IO is actually started and that
9564 * ordered extents get created before we return
9565 */
9566 atomic_inc(&root->fs_info->async_submit_draining);
9567 while (atomic_read(&root->fs_info->nr_async_submits) ||
9568 atomic_read(&root->fs_info->async_delalloc_pages)) {
9569 wait_event(root->fs_info->async_submit_wait,
9570 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9571 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9572 }
9573 atomic_dec(&root->fs_info->async_submit_draining);
9574 return ret;
9575 }
9576
9577 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9578 int nr)
9579 {
9580 struct btrfs_root *root;
9581 struct list_head splice;
9582 int ret;
9583
9584 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9585 return -EROFS;
9586
9587 INIT_LIST_HEAD(&splice);
9588
9589 mutex_lock(&fs_info->delalloc_root_mutex);
9590 spin_lock(&fs_info->delalloc_root_lock);
9591 list_splice_init(&fs_info->delalloc_roots, &splice);
9592 while (!list_empty(&splice) && nr) {
9593 root = list_first_entry(&splice, struct btrfs_root,
9594 delalloc_root);
9595 root = btrfs_grab_fs_root(root);
9596 BUG_ON(!root);
9597 list_move_tail(&root->delalloc_root,
9598 &fs_info->delalloc_roots);
9599 spin_unlock(&fs_info->delalloc_root_lock);
9600
9601 ret = __start_delalloc_inodes(root, delay_iput, nr);
9602 btrfs_put_fs_root(root);
9603 if (ret < 0)
9604 goto out;
9605
9606 if (nr != -1) {
9607 nr -= ret;
9608 WARN_ON(nr < 0);
9609 }
9610 spin_lock(&fs_info->delalloc_root_lock);
9611 }
9612 spin_unlock(&fs_info->delalloc_root_lock);
9613
9614 ret = 0;
9615 atomic_inc(&fs_info->async_submit_draining);
9616 while (atomic_read(&fs_info->nr_async_submits) ||
9617 atomic_read(&fs_info->async_delalloc_pages)) {
9618 wait_event(fs_info->async_submit_wait,
9619 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9620 atomic_read(&fs_info->async_delalloc_pages) == 0));
9621 }
9622 atomic_dec(&fs_info->async_submit_draining);
9623 out:
9624 if (!list_empty_careful(&splice)) {
9625 spin_lock(&fs_info->delalloc_root_lock);
9626 list_splice_tail(&splice, &fs_info->delalloc_roots);
9627 spin_unlock(&fs_info->delalloc_root_lock);
9628 }
9629 mutex_unlock(&fs_info->delalloc_root_mutex);
9630 return ret;
9631 }
9632
9633 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9634 const char *symname)
9635 {
9636 struct btrfs_trans_handle *trans;
9637 struct btrfs_root *root = BTRFS_I(dir)->root;
9638 struct btrfs_path *path;
9639 struct btrfs_key key;
9640 struct inode *inode = NULL;
9641 int err;
9642 int drop_inode = 0;
9643 u64 objectid;
9644 u64 index = 0;
9645 int name_len;
9646 int datasize;
9647 unsigned long ptr;
9648 struct btrfs_file_extent_item *ei;
9649 struct extent_buffer *leaf;
9650
9651 name_len = strlen(symname);
9652 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9653 return -ENAMETOOLONG;
9654
9655 /*
9656 * 2 items for inode item and ref
9657 * 2 items for dir items
9658 * 1 item for updating parent inode item
9659 * 1 item for the inline extent item
9660 * 1 item for xattr if selinux is on
9661 */
9662 trans = btrfs_start_transaction(root, 7);
9663 if (IS_ERR(trans))
9664 return PTR_ERR(trans);
9665
9666 err = btrfs_find_free_ino(root, &objectid);
9667 if (err)
9668 goto out_unlock;
9669
9670 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9671 dentry->d_name.len, btrfs_ino(dir), objectid,
9672 S_IFLNK|S_IRWXUGO, &index);
9673 if (IS_ERR(inode)) {
9674 err = PTR_ERR(inode);
9675 goto out_unlock;
9676 }
9677
9678 /*
9679 * If the active LSM wants to access the inode during
9680 * d_instantiate it needs these. Smack checks to see
9681 * if the filesystem supports xattrs by looking at the
9682 * ops vector.
9683 */
9684 inode->i_fop = &btrfs_file_operations;
9685 inode->i_op = &btrfs_file_inode_operations;
9686 inode->i_mapping->a_ops = &btrfs_aops;
9687 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9688
9689 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9690 if (err)
9691 goto out_unlock_inode;
9692
9693 path = btrfs_alloc_path();
9694 if (!path) {
9695 err = -ENOMEM;
9696 goto out_unlock_inode;
9697 }
9698 key.objectid = btrfs_ino(inode);
9699 key.offset = 0;
9700 key.type = BTRFS_EXTENT_DATA_KEY;
9701 datasize = btrfs_file_extent_calc_inline_size(name_len);
9702 err = btrfs_insert_empty_item(trans, root, path, &key,
9703 datasize);
9704 if (err) {
9705 btrfs_free_path(path);
9706 goto out_unlock_inode;
9707 }
9708 leaf = path->nodes[0];
9709 ei = btrfs_item_ptr(leaf, path->slots[0],
9710 struct btrfs_file_extent_item);
9711 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9712 btrfs_set_file_extent_type(leaf, ei,
9713 BTRFS_FILE_EXTENT_INLINE);
9714 btrfs_set_file_extent_encryption(leaf, ei, 0);
9715 btrfs_set_file_extent_compression(leaf, ei, 0);
9716 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9717 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9718
9719 ptr = btrfs_file_extent_inline_start(ei);
9720 write_extent_buffer(leaf, symname, ptr, name_len);
9721 btrfs_mark_buffer_dirty(leaf);
9722 btrfs_free_path(path);
9723
9724 inode->i_op = &btrfs_symlink_inode_operations;
9725 inode->i_mapping->a_ops = &btrfs_symlink_aops;
9726 inode_set_bytes(inode, name_len);
9727 btrfs_i_size_write(inode, name_len);
9728 err = btrfs_update_inode(trans, root, inode);
9729 /*
9730 * Last step, add directory indexes for our symlink inode. This is the
9731 * last step to avoid extra cleanup of these indexes if an error happens
9732 * elsewhere above.
9733 */
9734 if (!err)
9735 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9736 if (err) {
9737 drop_inode = 1;
9738 goto out_unlock_inode;
9739 }
9740
9741 unlock_new_inode(inode);
9742 d_instantiate(dentry, inode);
9743
9744 out_unlock:
9745 btrfs_end_transaction(trans, root);
9746 if (drop_inode) {
9747 inode_dec_link_count(inode);
9748 iput(inode);
9749 }
9750 btrfs_btree_balance_dirty(root);
9751 return err;
9752
9753 out_unlock_inode:
9754 drop_inode = 1;
9755 unlock_new_inode(inode);
9756 goto out_unlock;
9757 }
9758
9759 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9760 u64 start, u64 num_bytes, u64 min_size,
9761 loff_t actual_len, u64 *alloc_hint,
9762 struct btrfs_trans_handle *trans)
9763 {
9764 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9765 struct extent_map *em;
9766 struct btrfs_root *root = BTRFS_I(inode)->root;
9767 struct btrfs_key ins;
9768 u64 cur_offset = start;
9769 u64 i_size;
9770 u64 cur_bytes;
9771 u64 last_alloc = (u64)-1;
9772 int ret = 0;
9773 bool own_trans = true;
9774
9775 if (trans)
9776 own_trans = false;
9777 while (num_bytes > 0) {
9778 if (own_trans) {
9779 trans = btrfs_start_transaction(root, 3);
9780 if (IS_ERR(trans)) {
9781 ret = PTR_ERR(trans);
9782 break;
9783 }
9784 }
9785
9786 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9787 cur_bytes = max(cur_bytes, min_size);
9788 /*
9789 * If we are severely fragmented we could end up with really
9790 * small allocations, so if the allocator is returning small
9791 * chunks lets make its job easier by only searching for those
9792 * sized chunks.
9793 */
9794 cur_bytes = min(cur_bytes, last_alloc);
9795 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9796 *alloc_hint, &ins, 1, 0);
9797 if (ret) {
9798 if (own_trans)
9799 btrfs_end_transaction(trans, root);
9800 break;
9801 }
9802
9803 last_alloc = ins.offset;
9804 ret = insert_reserved_file_extent(trans, inode,
9805 cur_offset, ins.objectid,
9806 ins.offset, ins.offset,
9807 ins.offset, 0, 0, 0,
9808 BTRFS_FILE_EXTENT_PREALLOC);
9809 if (ret) {
9810 btrfs_free_reserved_extent(root, ins.objectid,
9811 ins.offset, 0);
9812 btrfs_abort_transaction(trans, root, ret);
9813 if (own_trans)
9814 btrfs_end_transaction(trans, root);
9815 break;
9816 }
9817
9818 btrfs_drop_extent_cache(inode, cur_offset,
9819 cur_offset + ins.offset -1, 0);
9820
9821 em = alloc_extent_map();
9822 if (!em) {
9823 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9824 &BTRFS_I(inode)->runtime_flags);
9825 goto next;
9826 }
9827
9828 em->start = cur_offset;
9829 em->orig_start = cur_offset;
9830 em->len = ins.offset;
9831 em->block_start = ins.objectid;
9832 em->block_len = ins.offset;
9833 em->orig_block_len = ins.offset;
9834 em->ram_bytes = ins.offset;
9835 em->bdev = root->fs_info->fs_devices->latest_bdev;
9836 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9837 em->generation = trans->transid;
9838
9839 while (1) {
9840 write_lock(&em_tree->lock);
9841 ret = add_extent_mapping(em_tree, em, 1);
9842 write_unlock(&em_tree->lock);
9843 if (ret != -EEXIST)
9844 break;
9845 btrfs_drop_extent_cache(inode, cur_offset,
9846 cur_offset + ins.offset - 1,
9847 0);
9848 }
9849 free_extent_map(em);
9850 next:
9851 num_bytes -= ins.offset;
9852 cur_offset += ins.offset;
9853 *alloc_hint = ins.objectid + ins.offset;
9854
9855 inode_inc_iversion(inode);
9856 inode->i_ctime = CURRENT_TIME;
9857 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9858 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9859 (actual_len > inode->i_size) &&
9860 (cur_offset > inode->i_size)) {
9861 if (cur_offset > actual_len)
9862 i_size = actual_len;
9863 else
9864 i_size = cur_offset;
9865 i_size_write(inode, i_size);
9866 btrfs_ordered_update_i_size(inode, i_size, NULL);
9867 }
9868
9869 ret = btrfs_update_inode(trans, root, inode);
9870
9871 if (ret) {
9872 btrfs_abort_transaction(trans, root, ret);
9873 if (own_trans)
9874 btrfs_end_transaction(trans, root);
9875 break;
9876 }
9877
9878 if (own_trans)
9879 btrfs_end_transaction(trans, root);
9880 }
9881 return ret;
9882 }
9883
9884 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9885 u64 start, u64 num_bytes, u64 min_size,
9886 loff_t actual_len, u64 *alloc_hint)
9887 {
9888 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9889 min_size, actual_len, alloc_hint,
9890 NULL);
9891 }
9892
9893 int btrfs_prealloc_file_range_trans(struct inode *inode,
9894 struct btrfs_trans_handle *trans, int mode,
9895 u64 start, u64 num_bytes, u64 min_size,
9896 loff_t actual_len, u64 *alloc_hint)
9897 {
9898 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9899 min_size, actual_len, alloc_hint, trans);
9900 }
9901
9902 static int btrfs_set_page_dirty(struct page *page)
9903 {
9904 return __set_page_dirty_nobuffers(page);
9905 }
9906
9907 static int btrfs_permission(struct inode *inode, int mask)
9908 {
9909 struct btrfs_root *root = BTRFS_I(inode)->root;
9910 umode_t mode = inode->i_mode;
9911
9912 if (mask & MAY_WRITE &&
9913 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9914 if (btrfs_root_readonly(root))
9915 return -EROFS;
9916 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9917 return -EACCES;
9918 }
9919 return generic_permission(inode, mask);
9920 }
9921
9922 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9923 {
9924 struct btrfs_trans_handle *trans;
9925 struct btrfs_root *root = BTRFS_I(dir)->root;
9926 struct inode *inode = NULL;
9927 u64 objectid;
9928 u64 index;
9929 int ret = 0;
9930
9931 /*
9932 * 5 units required for adding orphan entry
9933 */
9934 trans = btrfs_start_transaction(root, 5);
9935 if (IS_ERR(trans))
9936 return PTR_ERR(trans);
9937
9938 ret = btrfs_find_free_ino(root, &objectid);
9939 if (ret)
9940 goto out;
9941
9942 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9943 btrfs_ino(dir), objectid, mode, &index);
9944 if (IS_ERR(inode)) {
9945 ret = PTR_ERR(inode);
9946 inode = NULL;
9947 goto out;
9948 }
9949
9950 inode->i_fop = &btrfs_file_operations;
9951 inode->i_op = &btrfs_file_inode_operations;
9952
9953 inode->i_mapping->a_ops = &btrfs_aops;
9954 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9955
9956 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9957 if (ret)
9958 goto out_inode;
9959
9960 ret = btrfs_update_inode(trans, root, inode);
9961 if (ret)
9962 goto out_inode;
9963 ret = btrfs_orphan_add(trans, inode);
9964 if (ret)
9965 goto out_inode;
9966
9967 /*
9968 * We set number of links to 0 in btrfs_new_inode(), and here we set
9969 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9970 * through:
9971 *
9972 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9973 */
9974 set_nlink(inode, 1);
9975 unlock_new_inode(inode);
9976 d_tmpfile(dentry, inode);
9977 mark_inode_dirty(inode);
9978
9979 out:
9980 btrfs_end_transaction(trans, root);
9981 if (ret)
9982 iput(inode);
9983 btrfs_balance_delayed_items(root);
9984 btrfs_btree_balance_dirty(root);
9985 return ret;
9986
9987 out_inode:
9988 unlock_new_inode(inode);
9989 goto out;
9990
9991 }
9992
9993 /* Inspired by filemap_check_errors() */
9994 int btrfs_inode_check_errors(struct inode *inode)
9995 {
9996 int ret = 0;
9997
9998 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9999 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10000 ret = -ENOSPC;
10001 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10002 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10003 ret = -EIO;
10004
10005 return ret;
10006 }
10007
10008 static const struct inode_operations btrfs_dir_inode_operations = {
10009 .getattr = btrfs_getattr,
10010 .lookup = btrfs_lookup,
10011 .create = btrfs_create,
10012 .unlink = btrfs_unlink,
10013 .link = btrfs_link,
10014 .mkdir = btrfs_mkdir,
10015 .rmdir = btrfs_rmdir,
10016 .rename2 = btrfs_rename2,
10017 .symlink = btrfs_symlink,
10018 .setattr = btrfs_setattr,
10019 .mknod = btrfs_mknod,
10020 .setxattr = btrfs_setxattr,
10021 .getxattr = btrfs_getxattr,
10022 .listxattr = btrfs_listxattr,
10023 .removexattr = btrfs_removexattr,
10024 .permission = btrfs_permission,
10025 .get_acl = btrfs_get_acl,
10026 .set_acl = btrfs_set_acl,
10027 .update_time = btrfs_update_time,
10028 .tmpfile = btrfs_tmpfile,
10029 };
10030 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10031 .lookup = btrfs_lookup,
10032 .permission = btrfs_permission,
10033 .get_acl = btrfs_get_acl,
10034 .set_acl = btrfs_set_acl,
10035 .update_time = btrfs_update_time,
10036 };
10037
10038 static const struct file_operations btrfs_dir_file_operations = {
10039 .llseek = generic_file_llseek,
10040 .read = generic_read_dir,
10041 .iterate = btrfs_real_readdir,
10042 .unlocked_ioctl = btrfs_ioctl,
10043 #ifdef CONFIG_COMPAT
10044 .compat_ioctl = btrfs_ioctl,
10045 #endif
10046 .release = btrfs_release_file,
10047 .fsync = btrfs_sync_file,
10048 };
10049
10050 static const struct extent_io_ops btrfs_extent_io_ops = {
10051 .fill_delalloc = run_delalloc_range,
10052 .submit_bio_hook = btrfs_submit_bio_hook,
10053 .merge_bio_hook = btrfs_merge_bio_hook,
10054 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10055 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10056 .writepage_start_hook = btrfs_writepage_start_hook,
10057 .set_bit_hook = btrfs_set_bit_hook,
10058 .clear_bit_hook = btrfs_clear_bit_hook,
10059 .merge_extent_hook = btrfs_merge_extent_hook,
10060 .split_extent_hook = btrfs_split_extent_hook,
10061 };
10062
10063 /*
10064 * btrfs doesn't support the bmap operation because swapfiles
10065 * use bmap to make a mapping of extents in the file. They assume
10066 * these extents won't change over the life of the file and they
10067 * use the bmap result to do IO directly to the drive.
10068 *
10069 * the btrfs bmap call would return logical addresses that aren't
10070 * suitable for IO and they also will change frequently as COW
10071 * operations happen. So, swapfile + btrfs == corruption.
10072 *
10073 * For now we're avoiding this by dropping bmap.
10074 */
10075 static const struct address_space_operations btrfs_aops = {
10076 .readpage = btrfs_readpage,
10077 .writepage = btrfs_writepage,
10078 .writepages = btrfs_writepages,
10079 .readpages = btrfs_readpages,
10080 .direct_IO = btrfs_direct_IO,
10081 .invalidatepage = btrfs_invalidatepage,
10082 .releasepage = btrfs_releasepage,
10083 .set_page_dirty = btrfs_set_page_dirty,
10084 .error_remove_page = generic_error_remove_page,
10085 };
10086
10087 static const struct address_space_operations btrfs_symlink_aops = {
10088 .readpage = btrfs_readpage,
10089 .writepage = btrfs_writepage,
10090 .invalidatepage = btrfs_invalidatepage,
10091 .releasepage = btrfs_releasepage,
10092 };
10093
10094 static const struct inode_operations btrfs_file_inode_operations = {
10095 .getattr = btrfs_getattr,
10096 .setattr = btrfs_setattr,
10097 .setxattr = btrfs_setxattr,
10098 .getxattr = btrfs_getxattr,
10099 .listxattr = btrfs_listxattr,
10100 .removexattr = btrfs_removexattr,
10101 .permission = btrfs_permission,
10102 .fiemap = btrfs_fiemap,
10103 .get_acl = btrfs_get_acl,
10104 .set_acl = btrfs_set_acl,
10105 .update_time = btrfs_update_time,
10106 };
10107 static const struct inode_operations btrfs_special_inode_operations = {
10108 .getattr = btrfs_getattr,
10109 .setattr = btrfs_setattr,
10110 .permission = btrfs_permission,
10111 .setxattr = btrfs_setxattr,
10112 .getxattr = btrfs_getxattr,
10113 .listxattr = btrfs_listxattr,
10114 .removexattr = btrfs_removexattr,
10115 .get_acl = btrfs_get_acl,
10116 .set_acl = btrfs_set_acl,
10117 .update_time = btrfs_update_time,
10118 };
10119 static const struct inode_operations btrfs_symlink_inode_operations = {
10120 .readlink = generic_readlink,
10121 .follow_link = page_follow_link_light,
10122 .put_link = page_put_link,
10123 .getattr = btrfs_getattr,
10124 .setattr = btrfs_setattr,
10125 .permission = btrfs_permission,
10126 .setxattr = btrfs_setxattr,
10127 .getxattr = btrfs_getxattr,
10128 .listxattr = btrfs_listxattr,
10129 .removexattr = btrfs_removexattr,
10130 .update_time = btrfs_update_time,
10131 };
10132
10133 const struct dentry_operations btrfs_dentry_operations = {
10134 .d_delete = btrfs_dentry_delete,
10135 .d_release = btrfs_dentry_release,
10136 };
This page took 0.348532 seconds and 5 git commands to generate.