Btrfs: Add backrefs and forward refs for subvols and snapshots
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include <linux/falloc.h>
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "compat.h"
51 #include "tree-log.h"
52 #include "ref-cache.h"
53 #include "compression.h"
54
55 struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
58 };
59
60 static struct inode_operations btrfs_dir_inode_operations;
61 static struct inode_operations btrfs_symlink_inode_operations;
62 static struct inode_operations btrfs_dir_ro_inode_operations;
63 static struct inode_operations btrfs_special_inode_operations;
64 static struct inode_operations btrfs_file_inode_operations;
65 static struct address_space_operations btrfs_aops;
66 static struct address_space_operations btrfs_symlink_aops;
67 static struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_bit_radix_cachep;
74 struct kmem_cache *btrfs_path_cachep;
75
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85 };
86
87 static void btrfs_truncate(struct inode *inode);
88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
89 static noinline int cow_file_range(struct inode *inode,
90 struct page *locked_page,
91 u64 start, u64 end, int *page_started,
92 unsigned long *nr_written, int unlock);
93
94 /*
95 * a very lame attempt at stopping writes when the FS is 85% full. There
96 * are countless ways this is incorrect, but it is better than nothing.
97 */
98 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
99 int for_del)
100 {
101 u64 total;
102 u64 used;
103 u64 thresh;
104 unsigned long flags;
105 int ret = 0;
106
107 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
108 total = btrfs_super_total_bytes(&root->fs_info->super_copy);
109 used = btrfs_super_bytes_used(&root->fs_info->super_copy);
110 if (for_del)
111 thresh = total * 90;
112 else
113 thresh = total * 85;
114
115 do_div(thresh, 100);
116
117 if (used + root->fs_info->delalloc_bytes + num_required > thresh)
118 ret = -ENOSPC;
119 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
120 return ret;
121 }
122
123 /*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
128 static int noinline insert_inline_extent(struct btrfs_trans_handle *trans,
129 struct btrfs_root *root, struct inode *inode,
130 u64 start, size_t size, size_t compressed_size,
131 struct page **compressed_pages)
132 {
133 struct btrfs_key key;
134 struct btrfs_path *path;
135 struct extent_buffer *leaf;
136 struct page *page = NULL;
137 char *kaddr;
138 unsigned long ptr;
139 struct btrfs_file_extent_item *ei;
140 int err = 0;
141 int ret;
142 size_t cur_size = size;
143 size_t datasize;
144 unsigned long offset;
145 int use_compress = 0;
146
147 if (compressed_size && compressed_pages) {
148 use_compress = 1;
149 cur_size = compressed_size;
150 }
151
152 path = btrfs_alloc_path(); if (!path)
153 return -ENOMEM;
154
155 btrfs_set_trans_block_group(trans, inode);
156
157 key.objectid = inode->i_ino;
158 key.offset = start;
159 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
160 inode_add_bytes(inode, size);
161 datasize = btrfs_file_extent_calc_inline_size(cur_size);
162
163 inode_add_bytes(inode, size);
164 ret = btrfs_insert_empty_item(trans, root, path, &key,
165 datasize);
166 BUG_ON(ret);
167 if (ret) {
168 err = ret;
169 printk("got bad ret %d\n", ret);
170 goto fail;
171 }
172 leaf = path->nodes[0];
173 ei = btrfs_item_ptr(leaf, path->slots[0],
174 struct btrfs_file_extent_item);
175 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
176 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
177 btrfs_set_file_extent_encryption(leaf, ei, 0);
178 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
179 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
180 ptr = btrfs_file_extent_inline_start(ei);
181
182 if (use_compress) {
183 struct page *cpage;
184 int i = 0;
185 while(compressed_size > 0) {
186 cpage = compressed_pages[i];
187 cur_size = min_t(unsigned long, compressed_size,
188 PAGE_CACHE_SIZE);
189
190 kaddr = kmap(cpage);
191 write_extent_buffer(leaf, kaddr, ptr, cur_size);
192 kunmap(cpage);
193
194 i++;
195 ptr += cur_size;
196 compressed_size -= cur_size;
197 }
198 btrfs_set_file_extent_compression(leaf, ei,
199 BTRFS_COMPRESS_ZLIB);
200 } else {
201 page = find_get_page(inode->i_mapping,
202 start >> PAGE_CACHE_SHIFT);
203 btrfs_set_file_extent_compression(leaf, ei, 0);
204 kaddr = kmap_atomic(page, KM_USER0);
205 offset = start & (PAGE_CACHE_SIZE - 1);
206 write_extent_buffer(leaf, kaddr + offset, ptr, size);
207 kunmap_atomic(kaddr, KM_USER0);
208 page_cache_release(page);
209 }
210 btrfs_mark_buffer_dirty(leaf);
211 btrfs_free_path(path);
212
213 BTRFS_I(inode)->disk_i_size = inode->i_size;
214 btrfs_update_inode(trans, root, inode);
215 return 0;
216 fail:
217 btrfs_free_path(path);
218 return err;
219 }
220
221
222 /*
223 * conditionally insert an inline extent into the file. This
224 * does the checks required to make sure the data is small enough
225 * to fit as an inline extent.
226 */
227 static int cow_file_range_inline(struct btrfs_trans_handle *trans,
228 struct btrfs_root *root,
229 struct inode *inode, u64 start, u64 end,
230 size_t compressed_size,
231 struct page **compressed_pages)
232 {
233 u64 isize = i_size_read(inode);
234 u64 actual_end = min(end + 1, isize);
235 u64 inline_len = actual_end - start;
236 u64 aligned_end = (end + root->sectorsize - 1) &
237 ~((u64)root->sectorsize - 1);
238 u64 hint_byte;
239 u64 data_len = inline_len;
240 int ret;
241
242 if (compressed_size)
243 data_len = compressed_size;
244
245 if (start > 0 ||
246 actual_end >= PAGE_CACHE_SIZE ||
247 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
248 (!compressed_size &&
249 (actual_end & (root->sectorsize - 1)) == 0) ||
250 end + 1 < isize ||
251 data_len > root->fs_info->max_inline) {
252 return 1;
253 }
254
255 ret = btrfs_drop_extents(trans, root, inode, start,
256 aligned_end, start, &hint_byte);
257 BUG_ON(ret);
258
259 if (isize > actual_end)
260 inline_len = min_t(u64, isize, actual_end);
261 ret = insert_inline_extent(trans, root, inode, start,
262 inline_len, compressed_size,
263 compressed_pages);
264 BUG_ON(ret);
265 btrfs_drop_extent_cache(inode, start, aligned_end, 0);
266 return 0;
267 }
268
269 struct async_extent {
270 u64 start;
271 u64 ram_size;
272 u64 compressed_size;
273 struct page **pages;
274 unsigned long nr_pages;
275 struct list_head list;
276 };
277
278 struct async_cow {
279 struct inode *inode;
280 struct btrfs_root *root;
281 struct page *locked_page;
282 u64 start;
283 u64 end;
284 struct list_head extents;
285 struct btrfs_work work;
286 };
287
288 static noinline int add_async_extent(struct async_cow *cow,
289 u64 start, u64 ram_size,
290 u64 compressed_size,
291 struct page **pages,
292 unsigned long nr_pages)
293 {
294 struct async_extent *async_extent;
295
296 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
297 async_extent->start = start;
298 async_extent->ram_size = ram_size;
299 async_extent->compressed_size = compressed_size;
300 async_extent->pages = pages;
301 async_extent->nr_pages = nr_pages;
302 list_add_tail(&async_extent->list, &cow->extents);
303 return 0;
304 }
305
306 /*
307 * we create compressed extents in two phases. The first
308 * phase compresses a range of pages that have already been
309 * locked (both pages and state bits are locked).
310 *
311 * This is done inside an ordered work queue, and the compression
312 * is spread across many cpus. The actual IO submission is step
313 * two, and the ordered work queue takes care of making sure that
314 * happens in the same order things were put onto the queue by
315 * writepages and friends.
316 *
317 * If this code finds it can't get good compression, it puts an
318 * entry onto the work queue to write the uncompressed bytes. This
319 * makes sure that both compressed inodes and uncompressed inodes
320 * are written in the same order that pdflush sent them down.
321 */
322 static noinline int compress_file_range(struct inode *inode,
323 struct page *locked_page,
324 u64 start, u64 end,
325 struct async_cow *async_cow,
326 int *num_added)
327 {
328 struct btrfs_root *root = BTRFS_I(inode)->root;
329 struct btrfs_trans_handle *trans;
330 u64 num_bytes;
331 u64 orig_start;
332 u64 disk_num_bytes;
333 u64 blocksize = root->sectorsize;
334 u64 actual_end;
335 int ret = 0;
336 struct page **pages = NULL;
337 unsigned long nr_pages;
338 unsigned long nr_pages_ret = 0;
339 unsigned long total_compressed = 0;
340 unsigned long total_in = 0;
341 unsigned long max_compressed = 128 * 1024;
342 unsigned long max_uncompressed = 128 * 1024;
343 int i;
344 int will_compress;
345
346 orig_start = start;
347
348 again:
349 will_compress = 0;
350 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
351 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
352
353 actual_end = min_t(u64, i_size_read(inode), end + 1);
354 total_compressed = actual_end - start;
355
356 /* we want to make sure that amount of ram required to uncompress
357 * an extent is reasonable, so we limit the total size in ram
358 * of a compressed extent to 128k. This is a crucial number
359 * because it also controls how easily we can spread reads across
360 * cpus for decompression.
361 *
362 * We also want to make sure the amount of IO required to do
363 * a random read is reasonably small, so we limit the size of
364 * a compressed extent to 128k.
365 */
366 total_compressed = min(total_compressed, max_uncompressed);
367 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
368 num_bytes = max(blocksize, num_bytes);
369 disk_num_bytes = num_bytes;
370 total_in = 0;
371 ret = 0;
372
373 /*
374 * we do compression for mount -o compress and when the
375 * inode has not been flagged as nocompress. This flag can
376 * change at any time if we discover bad compression ratios.
377 */
378 if (!btrfs_test_flag(inode, NOCOMPRESS) &&
379 btrfs_test_opt(root, COMPRESS)) {
380 WARN_ON(pages);
381 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
382
383 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
384 total_compressed, pages,
385 nr_pages, &nr_pages_ret,
386 &total_in,
387 &total_compressed,
388 max_compressed);
389
390 if (!ret) {
391 unsigned long offset = total_compressed &
392 (PAGE_CACHE_SIZE - 1);
393 struct page *page = pages[nr_pages_ret - 1];
394 char *kaddr;
395
396 /* zero the tail end of the last page, we might be
397 * sending it down to disk
398 */
399 if (offset) {
400 kaddr = kmap_atomic(page, KM_USER0);
401 memset(kaddr + offset, 0,
402 PAGE_CACHE_SIZE - offset);
403 kunmap_atomic(kaddr, KM_USER0);
404 }
405 will_compress = 1;
406 }
407 }
408 if (start == 0) {
409 trans = btrfs_join_transaction(root, 1);
410 BUG_ON(!trans);
411 btrfs_set_trans_block_group(trans, inode);
412
413 /* lets try to make an inline extent */
414 if (ret || total_in < (actual_end - start)) {
415 /* we didn't compress the entire range, try
416 * to make an uncompressed inline extent.
417 */
418 ret = cow_file_range_inline(trans, root, inode,
419 start, end, 0, NULL);
420 } else {
421 /* try making a compressed inline extent */
422 ret = cow_file_range_inline(trans, root, inode,
423 start, end,
424 total_compressed, pages);
425 }
426 btrfs_end_transaction(trans, root);
427 if (ret == 0) {
428 /*
429 * inline extent creation worked, we don't need
430 * to create any more async work items. Unlock
431 * and free up our temp pages.
432 */
433 extent_clear_unlock_delalloc(inode,
434 &BTRFS_I(inode)->io_tree,
435 start, end, NULL, 1, 0,
436 0, 1, 1, 1);
437 ret = 0;
438 goto free_pages_out;
439 }
440 }
441
442 if (will_compress) {
443 /*
444 * we aren't doing an inline extent round the compressed size
445 * up to a block size boundary so the allocator does sane
446 * things
447 */
448 total_compressed = (total_compressed + blocksize - 1) &
449 ~(blocksize - 1);
450
451 /*
452 * one last check to make sure the compression is really a
453 * win, compare the page count read with the blocks on disk
454 */
455 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
456 ~(PAGE_CACHE_SIZE - 1);
457 if (total_compressed >= total_in) {
458 will_compress = 0;
459 } else {
460 disk_num_bytes = total_compressed;
461 num_bytes = total_in;
462 }
463 }
464 if (!will_compress && pages) {
465 /*
466 * the compression code ran but failed to make things smaller,
467 * free any pages it allocated and our page pointer array
468 */
469 for (i = 0; i < nr_pages_ret; i++) {
470 WARN_ON(pages[i]->mapping);
471 page_cache_release(pages[i]);
472 }
473 kfree(pages);
474 pages = NULL;
475 total_compressed = 0;
476 nr_pages_ret = 0;
477
478 /* flag the file so we don't compress in the future */
479 btrfs_set_flag(inode, NOCOMPRESS);
480 }
481 if (will_compress) {
482 *num_added += 1;
483
484 /* the async work queues will take care of doing actual
485 * allocation on disk for these compressed pages,
486 * and will submit them to the elevator.
487 */
488 add_async_extent(async_cow, start, num_bytes,
489 total_compressed, pages, nr_pages_ret);
490
491 if (start + num_bytes < end) {
492 start += num_bytes;
493 pages = NULL;
494 cond_resched();
495 goto again;
496 }
497 } else {
498 /*
499 * No compression, but we still need to write the pages in
500 * the file we've been given so far. redirty the locked
501 * page if it corresponds to our extent and set things up
502 * for the async work queue to run cow_file_range to do
503 * the normal delalloc dance
504 */
505 if (page_offset(locked_page) >= start &&
506 page_offset(locked_page) <= end) {
507 __set_page_dirty_nobuffers(locked_page);
508 /* unlocked later on in the async handlers */
509 }
510 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
511 *num_added += 1;
512 }
513
514 out:
515 return 0;
516
517 free_pages_out:
518 for (i = 0; i < nr_pages_ret; i++) {
519 WARN_ON(pages[i]->mapping);
520 page_cache_release(pages[i]);
521 }
522 if (pages)
523 kfree(pages);
524
525 goto out;
526 }
527
528 /*
529 * phase two of compressed writeback. This is the ordered portion
530 * of the code, which only gets called in the order the work was
531 * queued. We walk all the async extents created by compress_file_range
532 * and send them down to the disk.
533 */
534 static noinline int submit_compressed_extents(struct inode *inode,
535 struct async_cow *async_cow)
536 {
537 struct async_extent *async_extent;
538 u64 alloc_hint = 0;
539 struct btrfs_trans_handle *trans;
540 struct btrfs_key ins;
541 struct extent_map *em;
542 struct btrfs_root *root = BTRFS_I(inode)->root;
543 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
544 struct extent_io_tree *io_tree;
545 int ret;
546
547 if (list_empty(&async_cow->extents))
548 return 0;
549
550 trans = btrfs_join_transaction(root, 1);
551
552 while(!list_empty(&async_cow->extents)) {
553 async_extent = list_entry(async_cow->extents.next,
554 struct async_extent, list);
555 list_del(&async_extent->list);
556
557 io_tree = &BTRFS_I(inode)->io_tree;
558
559 /* did the compression code fall back to uncompressed IO? */
560 if (!async_extent->pages) {
561 int page_started = 0;
562 unsigned long nr_written = 0;
563
564 lock_extent(io_tree, async_extent->start,
565 async_extent->start + async_extent->ram_size - 1,
566 GFP_NOFS);
567
568 /* allocate blocks */
569 cow_file_range(inode, async_cow->locked_page,
570 async_extent->start,
571 async_extent->start +
572 async_extent->ram_size - 1,
573 &page_started, &nr_written, 0);
574
575 /*
576 * if page_started, cow_file_range inserted an
577 * inline extent and took care of all the unlocking
578 * and IO for us. Otherwise, we need to submit
579 * all those pages down to the drive.
580 */
581 if (!page_started)
582 extent_write_locked_range(io_tree,
583 inode, async_extent->start,
584 async_extent->start +
585 async_extent->ram_size - 1,
586 btrfs_get_extent,
587 WB_SYNC_ALL);
588 kfree(async_extent);
589 cond_resched();
590 continue;
591 }
592
593 lock_extent(io_tree, async_extent->start,
594 async_extent->start + async_extent->ram_size - 1,
595 GFP_NOFS);
596 /*
597 * here we're doing allocation and writeback of the
598 * compressed pages
599 */
600 btrfs_drop_extent_cache(inode, async_extent->start,
601 async_extent->start +
602 async_extent->ram_size - 1, 0);
603
604 ret = btrfs_reserve_extent(trans, root,
605 async_extent->compressed_size,
606 async_extent->compressed_size,
607 0, alloc_hint,
608 (u64)-1, &ins, 1);
609 BUG_ON(ret);
610 em = alloc_extent_map(GFP_NOFS);
611 em->start = async_extent->start;
612 em->len = async_extent->ram_size;
613 em->orig_start = em->start;
614
615 em->block_start = ins.objectid;
616 em->block_len = ins.offset;
617 em->bdev = root->fs_info->fs_devices->latest_bdev;
618 set_bit(EXTENT_FLAG_PINNED, &em->flags);
619 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
620
621 while(1) {
622 spin_lock(&em_tree->lock);
623 ret = add_extent_mapping(em_tree, em);
624 spin_unlock(&em_tree->lock);
625 if (ret != -EEXIST) {
626 free_extent_map(em);
627 break;
628 }
629 btrfs_drop_extent_cache(inode, async_extent->start,
630 async_extent->start +
631 async_extent->ram_size - 1, 0);
632 }
633
634 ret = btrfs_add_ordered_extent(inode, async_extent->start,
635 ins.objectid,
636 async_extent->ram_size,
637 ins.offset,
638 BTRFS_ORDERED_COMPRESSED);
639 BUG_ON(ret);
640
641 btrfs_end_transaction(trans, root);
642
643 /*
644 * clear dirty, set writeback and unlock the pages.
645 */
646 extent_clear_unlock_delalloc(inode,
647 &BTRFS_I(inode)->io_tree,
648 async_extent->start,
649 async_extent->start +
650 async_extent->ram_size - 1,
651 NULL, 1, 1, 0, 1, 1, 0);
652
653 ret = btrfs_submit_compressed_write(inode,
654 async_extent->start,
655 async_extent->ram_size,
656 ins.objectid,
657 ins.offset, async_extent->pages,
658 async_extent->nr_pages);
659
660 BUG_ON(ret);
661 trans = btrfs_join_transaction(root, 1);
662 alloc_hint = ins.objectid + ins.offset;
663 kfree(async_extent);
664 cond_resched();
665 }
666
667 btrfs_end_transaction(trans, root);
668 return 0;
669 }
670
671 /*
672 * when extent_io.c finds a delayed allocation range in the file,
673 * the call backs end up in this code. The basic idea is to
674 * allocate extents on disk for the range, and create ordered data structs
675 * in ram to track those extents.
676 *
677 * locked_page is the page that writepage had locked already. We use
678 * it to make sure we don't do extra locks or unlocks.
679 *
680 * *page_started is set to one if we unlock locked_page and do everything
681 * required to start IO on it. It may be clean and already done with
682 * IO when we return.
683 */
684 static noinline int cow_file_range(struct inode *inode,
685 struct page *locked_page,
686 u64 start, u64 end, int *page_started,
687 unsigned long *nr_written,
688 int unlock)
689 {
690 struct btrfs_root *root = BTRFS_I(inode)->root;
691 struct btrfs_trans_handle *trans;
692 u64 alloc_hint = 0;
693 u64 num_bytes;
694 unsigned long ram_size;
695 u64 disk_num_bytes;
696 u64 cur_alloc_size;
697 u64 blocksize = root->sectorsize;
698 u64 actual_end;
699 struct btrfs_key ins;
700 struct extent_map *em;
701 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
702 int ret = 0;
703
704 trans = btrfs_join_transaction(root, 1);
705 BUG_ON(!trans);
706 btrfs_set_trans_block_group(trans, inode);
707
708 actual_end = min_t(u64, i_size_read(inode), end + 1);
709
710 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
711 num_bytes = max(blocksize, num_bytes);
712 disk_num_bytes = num_bytes;
713 ret = 0;
714
715 if (start == 0) {
716 /* lets try to make an inline extent */
717 ret = cow_file_range_inline(trans, root, inode,
718 start, end, 0, NULL);
719 if (ret == 0) {
720 extent_clear_unlock_delalloc(inode,
721 &BTRFS_I(inode)->io_tree,
722 start, end, NULL, 1, 1,
723 1, 1, 1, 1);
724 *nr_written = *nr_written +
725 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
726 *page_started = 1;
727 ret = 0;
728 goto out;
729 }
730 }
731
732 BUG_ON(disk_num_bytes >
733 btrfs_super_total_bytes(&root->fs_info->super_copy));
734
735 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
736
737 while(disk_num_bytes > 0) {
738 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
739 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
740 root->sectorsize, 0, alloc_hint,
741 (u64)-1, &ins, 1);
742 if (ret) {
743 BUG();
744 }
745 em = alloc_extent_map(GFP_NOFS);
746 em->start = start;
747 em->orig_start = em->start;
748
749 ram_size = ins.offset;
750 em->len = ins.offset;
751
752 em->block_start = ins.objectid;
753 em->block_len = ins.offset;
754 em->bdev = root->fs_info->fs_devices->latest_bdev;
755 set_bit(EXTENT_FLAG_PINNED, &em->flags);
756
757 while(1) {
758 spin_lock(&em_tree->lock);
759 ret = add_extent_mapping(em_tree, em);
760 spin_unlock(&em_tree->lock);
761 if (ret != -EEXIST) {
762 free_extent_map(em);
763 break;
764 }
765 btrfs_drop_extent_cache(inode, start,
766 start + ram_size - 1, 0);
767 }
768
769 cur_alloc_size = ins.offset;
770 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771 ram_size, cur_alloc_size, 0);
772 BUG_ON(ret);
773
774 if (disk_num_bytes < cur_alloc_size) {
775 printk("num_bytes %Lu cur_alloc %Lu\n", disk_num_bytes,
776 cur_alloc_size);
777 break;
778 }
779 /* we're not doing compressed IO, don't unlock the first
780 * page (which the caller expects to stay locked), don't
781 * clear any dirty bits and don't set any writeback bits
782 */
783 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
784 start, start + ram_size - 1,
785 locked_page, unlock, 1,
786 1, 0, 0, 0);
787 disk_num_bytes -= cur_alloc_size;
788 num_bytes -= cur_alloc_size;
789 alloc_hint = ins.objectid + ins.offset;
790 start += cur_alloc_size;
791 }
792 out:
793 ret = 0;
794 btrfs_end_transaction(trans, root);
795
796 return ret;
797 }
798
799 /*
800 * work queue call back to started compression on a file and pages
801 */
802 static noinline void async_cow_start(struct btrfs_work *work)
803 {
804 struct async_cow *async_cow;
805 int num_added = 0;
806 async_cow = container_of(work, struct async_cow, work);
807
808 compress_file_range(async_cow->inode, async_cow->locked_page,
809 async_cow->start, async_cow->end, async_cow,
810 &num_added);
811 if (num_added == 0)
812 async_cow->inode = NULL;
813 }
814
815 /*
816 * work queue call back to submit previously compressed pages
817 */
818 static noinline void async_cow_submit(struct btrfs_work *work)
819 {
820 struct async_cow *async_cow;
821 struct btrfs_root *root;
822 unsigned long nr_pages;
823
824 async_cow = container_of(work, struct async_cow, work);
825
826 root = async_cow->root;
827 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
828 PAGE_CACHE_SHIFT;
829
830 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
831
832 if (atomic_read(&root->fs_info->async_delalloc_pages) <
833 5 * 1042 * 1024 &&
834 waitqueue_active(&root->fs_info->async_submit_wait))
835 wake_up(&root->fs_info->async_submit_wait);
836
837 if (async_cow->inode) {
838 submit_compressed_extents(async_cow->inode, async_cow);
839 }
840 }
841
842 static noinline void async_cow_free(struct btrfs_work *work)
843 {
844 struct async_cow *async_cow;
845 async_cow = container_of(work, struct async_cow, work);
846 kfree(async_cow);
847 }
848
849 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
850 u64 start, u64 end, int *page_started,
851 unsigned long *nr_written)
852 {
853 struct async_cow *async_cow;
854 struct btrfs_root *root = BTRFS_I(inode)->root;
855 unsigned long nr_pages;
856 u64 cur_end;
857 int limit = 10 * 1024 * 1042;
858
859 if (!btrfs_test_opt(root, COMPRESS)) {
860 return cow_file_range(inode, locked_page, start, end,
861 page_started, nr_written, 1);
862 }
863
864 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
865 EXTENT_DELALLOC, 1, 0, GFP_NOFS);
866 while(start < end) {
867 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
868 async_cow->inode = inode;
869 async_cow->root = root;
870 async_cow->locked_page = locked_page;
871 async_cow->start = start;
872
873 if (btrfs_test_flag(inode, NOCOMPRESS))
874 cur_end = end;
875 else
876 cur_end = min(end, start + 512 * 1024 - 1);
877
878 async_cow->end = cur_end;
879 INIT_LIST_HEAD(&async_cow->extents);
880
881 async_cow->work.func = async_cow_start;
882 async_cow->work.ordered_func = async_cow_submit;
883 async_cow->work.ordered_free = async_cow_free;
884 async_cow->work.flags = 0;
885
886 while(atomic_read(&root->fs_info->async_submit_draining) &&
887 atomic_read(&root->fs_info->async_delalloc_pages)) {
888 wait_event(root->fs_info->async_submit_wait,
889 (atomic_read(&root->fs_info->async_delalloc_pages)
890 == 0));
891 }
892
893 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
894 PAGE_CACHE_SHIFT;
895 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
896
897 btrfs_queue_worker(&root->fs_info->delalloc_workers,
898 &async_cow->work);
899
900 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
901 wait_event(root->fs_info->async_submit_wait,
902 (atomic_read(&root->fs_info->async_delalloc_pages) <
903 limit));
904 }
905
906 while(atomic_read(&root->fs_info->async_submit_draining) &&
907 atomic_read(&root->fs_info->async_delalloc_pages)) {
908 wait_event(root->fs_info->async_submit_wait,
909 (atomic_read(&root->fs_info->async_delalloc_pages) ==
910 0));
911 }
912
913 *nr_written += nr_pages;
914 start = cur_end + 1;
915 }
916 *page_started = 1;
917 return 0;
918 }
919
920 /*
921 * when nowcow writeback call back. This checks for snapshots or COW copies
922 * of the extents that exist in the file, and COWs the file as required.
923 *
924 * If no cow copies or snapshots exist, we write directly to the existing
925 * blocks on disk
926 */
927 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page,
928 u64 start, u64 end, int *page_started, int force,
929 unsigned long *nr_written)
930 {
931 struct btrfs_root *root = BTRFS_I(inode)->root;
932 struct btrfs_trans_handle *trans;
933 struct extent_buffer *leaf;
934 struct btrfs_path *path;
935 struct btrfs_file_extent_item *fi;
936 struct btrfs_key found_key;
937 u64 cow_start;
938 u64 cur_offset;
939 u64 extent_end;
940 u64 disk_bytenr;
941 u64 num_bytes;
942 int extent_type;
943 int ret;
944 int type;
945 int nocow;
946 int check_prev = 1;
947
948 path = btrfs_alloc_path();
949 BUG_ON(!path);
950 trans = btrfs_join_transaction(root, 1);
951 BUG_ON(!trans);
952
953 cow_start = (u64)-1;
954 cur_offset = start;
955 while (1) {
956 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
957 cur_offset, 0);
958 BUG_ON(ret < 0);
959 if (ret > 0 && path->slots[0] > 0 && check_prev) {
960 leaf = path->nodes[0];
961 btrfs_item_key_to_cpu(leaf, &found_key,
962 path->slots[0] - 1);
963 if (found_key.objectid == inode->i_ino &&
964 found_key.type == BTRFS_EXTENT_DATA_KEY)
965 path->slots[0]--;
966 }
967 check_prev = 0;
968 next_slot:
969 leaf = path->nodes[0];
970 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
971 ret = btrfs_next_leaf(root, path);
972 if (ret < 0)
973 BUG_ON(1);
974 if (ret > 0)
975 break;
976 leaf = path->nodes[0];
977 }
978
979 nocow = 0;
980 disk_bytenr = 0;
981 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
982
983 if (found_key.objectid > inode->i_ino ||
984 found_key.type > BTRFS_EXTENT_DATA_KEY ||
985 found_key.offset > end)
986 break;
987
988 if (found_key.offset > cur_offset) {
989 extent_end = found_key.offset;
990 goto out_check;
991 }
992
993 fi = btrfs_item_ptr(leaf, path->slots[0],
994 struct btrfs_file_extent_item);
995 extent_type = btrfs_file_extent_type(leaf, fi);
996
997 if (extent_type == BTRFS_FILE_EXTENT_REG ||
998 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
999 struct btrfs_block_group_cache *block_group;
1000 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1001 extent_end = found_key.offset +
1002 btrfs_file_extent_num_bytes(leaf, fi);
1003 if (extent_end <= start) {
1004 path->slots[0]++;
1005 goto next_slot;
1006 }
1007 if (btrfs_file_extent_compression(leaf, fi) ||
1008 btrfs_file_extent_encryption(leaf, fi) ||
1009 btrfs_file_extent_other_encoding(leaf, fi))
1010 goto out_check;
1011 if (disk_bytenr == 0)
1012 goto out_check;
1013 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1014 goto out_check;
1015 if (btrfs_cross_ref_exist(trans, root, disk_bytenr))
1016 goto out_check;
1017 block_group = btrfs_lookup_block_group(root->fs_info,
1018 disk_bytenr);
1019 if (!block_group || block_group->ro)
1020 goto out_check;
1021 disk_bytenr += btrfs_file_extent_offset(leaf, fi);
1022 nocow = 1;
1023 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1024 extent_end = found_key.offset +
1025 btrfs_file_extent_inline_len(leaf, fi);
1026 extent_end = ALIGN(extent_end, root->sectorsize);
1027 } else {
1028 BUG_ON(1);
1029 }
1030 out_check:
1031 if (extent_end <= start) {
1032 path->slots[0]++;
1033 goto next_slot;
1034 }
1035 if (!nocow) {
1036 if (cow_start == (u64)-1)
1037 cow_start = cur_offset;
1038 cur_offset = extent_end;
1039 if (cur_offset > end)
1040 break;
1041 path->slots[0]++;
1042 goto next_slot;
1043 }
1044
1045 btrfs_release_path(root, path);
1046 if (cow_start != (u64)-1) {
1047 ret = cow_file_range(inode, locked_page, cow_start,
1048 found_key.offset - 1, page_started,
1049 nr_written, 1);
1050 BUG_ON(ret);
1051 cow_start = (u64)-1;
1052 }
1053
1054 disk_bytenr += cur_offset - found_key.offset;
1055 num_bytes = min(end + 1, extent_end) - cur_offset;
1056 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1057 struct extent_map *em;
1058 struct extent_map_tree *em_tree;
1059 em_tree = &BTRFS_I(inode)->extent_tree;
1060 em = alloc_extent_map(GFP_NOFS);
1061 em->start = cur_offset;
1062 em->orig_start = em->start;
1063 em->len = num_bytes;
1064 em->block_len = num_bytes;
1065 em->block_start = disk_bytenr;
1066 em->bdev = root->fs_info->fs_devices->latest_bdev;
1067 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1068 while (1) {
1069 spin_lock(&em_tree->lock);
1070 ret = add_extent_mapping(em_tree, em);
1071 spin_unlock(&em_tree->lock);
1072 if (ret != -EEXIST) {
1073 free_extent_map(em);
1074 break;
1075 }
1076 btrfs_drop_extent_cache(inode, em->start,
1077 em->start + em->len - 1, 0);
1078 }
1079 type = BTRFS_ORDERED_PREALLOC;
1080 } else {
1081 type = BTRFS_ORDERED_NOCOW;
1082 }
1083
1084 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1085 num_bytes, num_bytes, type);
1086 BUG_ON(ret);
1087
1088 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1089 cur_offset, cur_offset + num_bytes - 1,
1090 locked_page, 1, 1, 1, 0, 0, 0);
1091 cur_offset = extent_end;
1092 if (cur_offset > end)
1093 break;
1094 }
1095 btrfs_release_path(root, path);
1096
1097 if (cur_offset <= end && cow_start == (u64)-1)
1098 cow_start = cur_offset;
1099 if (cow_start != (u64)-1) {
1100 ret = cow_file_range(inode, locked_page, cow_start, end,
1101 page_started, nr_written, 1);
1102 BUG_ON(ret);
1103 }
1104
1105 ret = btrfs_end_transaction(trans, root);
1106 BUG_ON(ret);
1107 btrfs_free_path(path);
1108 return 0;
1109 }
1110
1111 /*
1112 * extent_io.c call back to do delayed allocation processing
1113 */
1114 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1115 u64 start, u64 end, int *page_started,
1116 unsigned long *nr_written)
1117 {
1118 struct btrfs_root *root = BTRFS_I(inode)->root;
1119 int ret;
1120
1121 if (btrfs_test_opt(root, NODATACOW) ||
1122 btrfs_test_flag(inode, NODATACOW))
1123 ret = run_delalloc_nocow(inode, locked_page, start, end,
1124 page_started, 0, nr_written);
1125 else if (btrfs_test_flag(inode, PREALLOC))
1126 ret = run_delalloc_nocow(inode, locked_page, start, end,
1127 page_started, 1, nr_written);
1128 else
1129 ret = cow_file_range_async(inode, locked_page, start, end,
1130 page_started, nr_written);
1131
1132 return ret;
1133 }
1134
1135 /*
1136 * extent_io.c set_bit_hook, used to track delayed allocation
1137 * bytes in this file, and to maintain the list of inodes that
1138 * have pending delalloc work to be done.
1139 */
1140 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1141 unsigned long old, unsigned long bits)
1142 {
1143 unsigned long flags;
1144 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1145 struct btrfs_root *root = BTRFS_I(inode)->root;
1146 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
1147 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1148 root->fs_info->delalloc_bytes += end - start + 1;
1149 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1150 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1151 &root->fs_info->delalloc_inodes);
1152 }
1153 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
1154 }
1155 return 0;
1156 }
1157
1158 /*
1159 * extent_io.c clear_bit_hook, see set_bit_hook for why
1160 */
1161 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1162 unsigned long old, unsigned long bits)
1163 {
1164 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1165 struct btrfs_root *root = BTRFS_I(inode)->root;
1166 unsigned long flags;
1167
1168 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
1169 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1170 printk("warning: delalloc account %Lu %Lu\n",
1171 end - start + 1, root->fs_info->delalloc_bytes);
1172 root->fs_info->delalloc_bytes = 0;
1173 BTRFS_I(inode)->delalloc_bytes = 0;
1174 } else {
1175 root->fs_info->delalloc_bytes -= end - start + 1;
1176 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1177 }
1178 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1179 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1180 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1181 }
1182 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
1183 }
1184 return 0;
1185 }
1186
1187 /*
1188 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1189 * we don't create bios that span stripes or chunks
1190 */
1191 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1192 size_t size, struct bio *bio,
1193 unsigned long bio_flags)
1194 {
1195 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1196 struct btrfs_mapping_tree *map_tree;
1197 u64 logical = (u64)bio->bi_sector << 9;
1198 u64 length = 0;
1199 u64 map_length;
1200 int ret;
1201
1202 if (bio_flags & EXTENT_BIO_COMPRESSED)
1203 return 0;
1204
1205 length = bio->bi_size;
1206 map_tree = &root->fs_info->mapping_tree;
1207 map_length = length;
1208 ret = btrfs_map_block(map_tree, READ, logical,
1209 &map_length, NULL, 0);
1210
1211 if (map_length < length + size) {
1212 return 1;
1213 }
1214 return 0;
1215 }
1216
1217 /*
1218 * in order to insert checksums into the metadata in large chunks,
1219 * we wait until bio submission time. All the pages in the bio are
1220 * checksummed and sums are attached onto the ordered extent record.
1221 *
1222 * At IO completion time the cums attached on the ordered extent record
1223 * are inserted into the btree
1224 */
1225 int __btrfs_submit_bio_start(struct inode *inode, int rw, struct bio *bio,
1226 int mirror_num, unsigned long bio_flags)
1227 {
1228 struct btrfs_root *root = BTRFS_I(inode)->root;
1229 int ret = 0;
1230
1231 ret = btrfs_csum_one_bio(root, inode, bio);
1232 BUG_ON(ret);
1233 return 0;
1234 }
1235
1236 /*
1237 * in order to insert checksums into the metadata in large chunks,
1238 * we wait until bio submission time. All the pages in the bio are
1239 * checksummed and sums are attached onto the ordered extent record.
1240 *
1241 * At IO completion time the cums attached on the ordered extent record
1242 * are inserted into the btree
1243 */
1244 int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1245 int mirror_num, unsigned long bio_flags)
1246 {
1247 struct btrfs_root *root = BTRFS_I(inode)->root;
1248 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1249 }
1250
1251 /*
1252 * extent_io.c submission hook. This does the right thing for csum calculation on write,
1253 * or reading the csums from the tree before a read
1254 */
1255 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1256 int mirror_num, unsigned long bio_flags)
1257 {
1258 struct btrfs_root *root = BTRFS_I(inode)->root;
1259 int ret = 0;
1260 int skip_sum;
1261
1262 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1263 BUG_ON(ret);
1264
1265 skip_sum = btrfs_test_opt(root, NODATASUM) ||
1266 btrfs_test_flag(inode, NODATASUM);
1267
1268 if (!(rw & (1 << BIO_RW))) {
1269
1270 if (bio_flags & EXTENT_BIO_COMPRESSED)
1271 return btrfs_submit_compressed_read(inode, bio,
1272 mirror_num, bio_flags);
1273 else if (!skip_sum)
1274 btrfs_lookup_bio_sums(root, inode, bio);
1275 goto mapit;
1276 } else if (!skip_sum) {
1277 /* we're doing a write, do the async checksumming */
1278 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1279 inode, rw, bio, mirror_num,
1280 bio_flags, __btrfs_submit_bio_start,
1281 __btrfs_submit_bio_done);
1282 }
1283
1284 mapit:
1285 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1286 }
1287
1288 /*
1289 * given a list of ordered sums record them in the inode. This happens
1290 * at IO completion time based on sums calculated at bio submission time.
1291 */
1292 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1293 struct inode *inode, u64 file_offset,
1294 struct list_head *list)
1295 {
1296 struct list_head *cur;
1297 struct btrfs_ordered_sum *sum;
1298
1299 btrfs_set_trans_block_group(trans, inode);
1300 list_for_each(cur, list) {
1301 sum = list_entry(cur, struct btrfs_ordered_sum, list);
1302 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
1303 inode, sum);
1304 }
1305 return 0;
1306 }
1307
1308 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1309 {
1310 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) {
1311 WARN_ON(1);
1312 }
1313 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1314 GFP_NOFS);
1315 }
1316
1317 /* see btrfs_writepage_start_hook for details on why this is required */
1318 struct btrfs_writepage_fixup {
1319 struct page *page;
1320 struct btrfs_work work;
1321 };
1322
1323 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1324 {
1325 struct btrfs_writepage_fixup *fixup;
1326 struct btrfs_ordered_extent *ordered;
1327 struct page *page;
1328 struct inode *inode;
1329 u64 page_start;
1330 u64 page_end;
1331
1332 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1333 page = fixup->page;
1334 again:
1335 lock_page(page);
1336 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1337 ClearPageChecked(page);
1338 goto out_page;
1339 }
1340
1341 inode = page->mapping->host;
1342 page_start = page_offset(page);
1343 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1344
1345 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1346
1347 /* already ordered? We're done */
1348 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1349 EXTENT_ORDERED, 0)) {
1350 goto out;
1351 }
1352
1353 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1354 if (ordered) {
1355 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1356 page_end, GFP_NOFS);
1357 unlock_page(page);
1358 btrfs_start_ordered_extent(inode, ordered, 1);
1359 goto again;
1360 }
1361
1362 btrfs_set_extent_delalloc(inode, page_start, page_end);
1363 ClearPageChecked(page);
1364 out:
1365 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1366 out_page:
1367 unlock_page(page);
1368 page_cache_release(page);
1369 }
1370
1371 /*
1372 * There are a few paths in the higher layers of the kernel that directly
1373 * set the page dirty bit without asking the filesystem if it is a
1374 * good idea. This causes problems because we want to make sure COW
1375 * properly happens and the data=ordered rules are followed.
1376 *
1377 * In our case any range that doesn't have the ORDERED bit set
1378 * hasn't been properly setup for IO. We kick off an async process
1379 * to fix it up. The async helper will wait for ordered extents, set
1380 * the delalloc bit and make it safe to write the page.
1381 */
1382 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1383 {
1384 struct inode *inode = page->mapping->host;
1385 struct btrfs_writepage_fixup *fixup;
1386 struct btrfs_root *root = BTRFS_I(inode)->root;
1387 int ret;
1388
1389 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1390 EXTENT_ORDERED, 0);
1391 if (ret)
1392 return 0;
1393
1394 if (PageChecked(page))
1395 return -EAGAIN;
1396
1397 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1398 if (!fixup)
1399 return -EAGAIN;
1400
1401 SetPageChecked(page);
1402 page_cache_get(page);
1403 fixup->work.func = btrfs_writepage_fixup_worker;
1404 fixup->page = page;
1405 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1406 return -EAGAIN;
1407 }
1408
1409 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1410 struct inode *inode, u64 file_pos,
1411 u64 disk_bytenr, u64 disk_num_bytes,
1412 u64 num_bytes, u64 ram_bytes,
1413 u8 compression, u8 encryption,
1414 u16 other_encoding, int extent_type)
1415 {
1416 struct btrfs_root *root = BTRFS_I(inode)->root;
1417 struct btrfs_file_extent_item *fi;
1418 struct btrfs_path *path;
1419 struct extent_buffer *leaf;
1420 struct btrfs_key ins;
1421 u64 hint;
1422 int ret;
1423
1424 path = btrfs_alloc_path();
1425 BUG_ON(!path);
1426
1427 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1428 file_pos + num_bytes, file_pos, &hint);
1429 BUG_ON(ret);
1430
1431 ins.objectid = inode->i_ino;
1432 ins.offset = file_pos;
1433 ins.type = BTRFS_EXTENT_DATA_KEY;
1434 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1435 BUG_ON(ret);
1436 leaf = path->nodes[0];
1437 fi = btrfs_item_ptr(leaf, path->slots[0],
1438 struct btrfs_file_extent_item);
1439 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1440 btrfs_set_file_extent_type(leaf, fi, extent_type);
1441 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1442 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1443 btrfs_set_file_extent_offset(leaf, fi, 0);
1444 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1445 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1446 btrfs_set_file_extent_compression(leaf, fi, compression);
1447 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1448 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1449 btrfs_mark_buffer_dirty(leaf);
1450
1451 inode_add_bytes(inode, num_bytes);
1452 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1453
1454 ins.objectid = disk_bytenr;
1455 ins.offset = disk_num_bytes;
1456 ins.type = BTRFS_EXTENT_ITEM_KEY;
1457 ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1458 root->root_key.objectid,
1459 trans->transid, inode->i_ino, &ins);
1460 BUG_ON(ret);
1461
1462 btrfs_free_path(path);
1463 return 0;
1464 }
1465
1466 /* as ordered data IO finishes, this gets called so we can finish
1467 * an ordered extent if the range of bytes in the file it covers are
1468 * fully written.
1469 */
1470 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1471 {
1472 struct btrfs_root *root = BTRFS_I(inode)->root;
1473 struct btrfs_trans_handle *trans;
1474 struct btrfs_ordered_extent *ordered_extent;
1475 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1476 int compressed = 0;
1477 int ret;
1478
1479 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1480 if (!ret)
1481 return 0;
1482
1483 trans = btrfs_join_transaction(root, 1);
1484
1485 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1486 BUG_ON(!ordered_extent);
1487 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1488 goto nocow;
1489
1490 lock_extent(io_tree, ordered_extent->file_offset,
1491 ordered_extent->file_offset + ordered_extent->len - 1,
1492 GFP_NOFS);
1493
1494 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1495 compressed = 1;
1496 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1497 BUG_ON(compressed);
1498 ret = btrfs_mark_extent_written(trans, root, inode,
1499 ordered_extent->file_offset,
1500 ordered_extent->file_offset +
1501 ordered_extent->len);
1502 BUG_ON(ret);
1503 } else {
1504 ret = insert_reserved_file_extent(trans, inode,
1505 ordered_extent->file_offset,
1506 ordered_extent->start,
1507 ordered_extent->disk_len,
1508 ordered_extent->len,
1509 ordered_extent->len,
1510 compressed, 0, 0,
1511 BTRFS_FILE_EXTENT_REG);
1512 BUG_ON(ret);
1513 }
1514 unlock_extent(io_tree, ordered_extent->file_offset,
1515 ordered_extent->file_offset + ordered_extent->len - 1,
1516 GFP_NOFS);
1517 nocow:
1518 add_pending_csums(trans, inode, ordered_extent->file_offset,
1519 &ordered_extent->list);
1520
1521 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1522 btrfs_ordered_update_i_size(inode, ordered_extent);
1523 btrfs_update_inode(trans, root, inode);
1524 btrfs_remove_ordered_extent(inode, ordered_extent);
1525 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1526
1527 /* once for us */
1528 btrfs_put_ordered_extent(ordered_extent);
1529 /* once for the tree */
1530 btrfs_put_ordered_extent(ordered_extent);
1531
1532 btrfs_end_transaction(trans, root);
1533 return 0;
1534 }
1535
1536 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1537 struct extent_state *state, int uptodate)
1538 {
1539 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1540 }
1541
1542 /*
1543 * When IO fails, either with EIO or csum verification fails, we
1544 * try other mirrors that might have a good copy of the data. This
1545 * io_failure_record is used to record state as we go through all the
1546 * mirrors. If another mirror has good data, the page is set up to date
1547 * and things continue. If a good mirror can't be found, the original
1548 * bio end_io callback is called to indicate things have failed.
1549 */
1550 struct io_failure_record {
1551 struct page *page;
1552 u64 start;
1553 u64 len;
1554 u64 logical;
1555 int last_mirror;
1556 };
1557
1558 int btrfs_io_failed_hook(struct bio *failed_bio,
1559 struct page *page, u64 start, u64 end,
1560 struct extent_state *state)
1561 {
1562 struct io_failure_record *failrec = NULL;
1563 u64 private;
1564 struct extent_map *em;
1565 struct inode *inode = page->mapping->host;
1566 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1567 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1568 struct bio *bio;
1569 int num_copies;
1570 int ret;
1571 int rw;
1572 u64 logical;
1573 unsigned long bio_flags = 0;
1574
1575 ret = get_state_private(failure_tree, start, &private);
1576 if (ret) {
1577 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1578 if (!failrec)
1579 return -ENOMEM;
1580 failrec->start = start;
1581 failrec->len = end - start + 1;
1582 failrec->last_mirror = 0;
1583
1584 spin_lock(&em_tree->lock);
1585 em = lookup_extent_mapping(em_tree, start, failrec->len);
1586 if (em->start > start || em->start + em->len < start) {
1587 free_extent_map(em);
1588 em = NULL;
1589 }
1590 spin_unlock(&em_tree->lock);
1591
1592 if (!em || IS_ERR(em)) {
1593 kfree(failrec);
1594 return -EIO;
1595 }
1596 logical = start - em->start;
1597 logical = em->block_start + logical;
1598 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1599 bio_flags = EXTENT_BIO_COMPRESSED;
1600 failrec->logical = logical;
1601 free_extent_map(em);
1602 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1603 EXTENT_DIRTY, GFP_NOFS);
1604 set_state_private(failure_tree, start,
1605 (u64)(unsigned long)failrec);
1606 } else {
1607 failrec = (struct io_failure_record *)(unsigned long)private;
1608 }
1609 num_copies = btrfs_num_copies(
1610 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1611 failrec->logical, failrec->len);
1612 failrec->last_mirror++;
1613 if (!state) {
1614 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
1615 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1616 failrec->start,
1617 EXTENT_LOCKED);
1618 if (state && state->start != failrec->start)
1619 state = NULL;
1620 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
1621 }
1622 if (!state || failrec->last_mirror > num_copies) {
1623 set_state_private(failure_tree, failrec->start, 0);
1624 clear_extent_bits(failure_tree, failrec->start,
1625 failrec->start + failrec->len - 1,
1626 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1627 kfree(failrec);
1628 return -EIO;
1629 }
1630 bio = bio_alloc(GFP_NOFS, 1);
1631 bio->bi_private = state;
1632 bio->bi_end_io = failed_bio->bi_end_io;
1633 bio->bi_sector = failrec->logical >> 9;
1634 bio->bi_bdev = failed_bio->bi_bdev;
1635 bio->bi_size = 0;
1636 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1637 if (failed_bio->bi_rw & (1 << BIO_RW))
1638 rw = WRITE;
1639 else
1640 rw = READ;
1641
1642 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1643 failrec->last_mirror,
1644 bio_flags);
1645 return 0;
1646 }
1647
1648 /*
1649 * each time an IO finishes, we do a fast check in the IO failure tree
1650 * to see if we need to process or clean up an io_failure_record
1651 */
1652 int btrfs_clean_io_failures(struct inode *inode, u64 start)
1653 {
1654 u64 private;
1655 u64 private_failure;
1656 struct io_failure_record *failure;
1657 int ret;
1658
1659 private = 0;
1660 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1661 (u64)-1, 1, EXTENT_DIRTY)) {
1662 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1663 start, &private_failure);
1664 if (ret == 0) {
1665 failure = (struct io_failure_record *)(unsigned long)
1666 private_failure;
1667 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1668 failure->start, 0);
1669 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1670 failure->start,
1671 failure->start + failure->len - 1,
1672 EXTENT_DIRTY | EXTENT_LOCKED,
1673 GFP_NOFS);
1674 kfree(failure);
1675 }
1676 }
1677 return 0;
1678 }
1679
1680 /*
1681 * when reads are done, we need to check csums to verify the data is correct
1682 * if there's a match, we allow the bio to finish. If not, we go through
1683 * the io_failure_record routines to find good copies
1684 */
1685 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1686 struct extent_state *state)
1687 {
1688 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1689 struct inode *inode = page->mapping->host;
1690 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1691 char *kaddr;
1692 u64 private = ~(u32)0;
1693 int ret;
1694 struct btrfs_root *root = BTRFS_I(inode)->root;
1695 u32 csum = ~(u32)0;
1696 unsigned long flags;
1697
1698 if (btrfs_test_opt(root, NODATASUM) ||
1699 btrfs_test_flag(inode, NODATASUM))
1700 return 0;
1701 if (state && state->start == start) {
1702 private = state->private;
1703 ret = 0;
1704 } else {
1705 ret = get_state_private(io_tree, start, &private);
1706 }
1707 local_irq_save(flags);
1708 kaddr = kmap_atomic(page, KM_IRQ0);
1709 if (ret) {
1710 goto zeroit;
1711 }
1712 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1713 btrfs_csum_final(csum, (char *)&csum);
1714 if (csum != private) {
1715 goto zeroit;
1716 }
1717 kunmap_atomic(kaddr, KM_IRQ0);
1718 local_irq_restore(flags);
1719
1720 /* if the io failure tree for this inode is non-empty,
1721 * check to see if we've recovered from a failed IO
1722 */
1723 btrfs_clean_io_failures(inode, start);
1724 return 0;
1725
1726 zeroit:
1727 printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
1728 page->mapping->host->i_ino, (unsigned long long)start, csum,
1729 private);
1730 memset(kaddr + offset, 1, end - start + 1);
1731 flush_dcache_page(page);
1732 kunmap_atomic(kaddr, KM_IRQ0);
1733 local_irq_restore(flags);
1734 if (private == 0)
1735 return 0;
1736 return -EIO;
1737 }
1738
1739 /*
1740 * This creates an orphan entry for the given inode in case something goes
1741 * wrong in the middle of an unlink/truncate.
1742 */
1743 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1744 {
1745 struct btrfs_root *root = BTRFS_I(inode)->root;
1746 int ret = 0;
1747
1748 spin_lock(&root->list_lock);
1749
1750 /* already on the orphan list, we're good */
1751 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1752 spin_unlock(&root->list_lock);
1753 return 0;
1754 }
1755
1756 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1757
1758 spin_unlock(&root->list_lock);
1759
1760 /*
1761 * insert an orphan item to track this unlinked/truncated file
1762 */
1763 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1764
1765 return ret;
1766 }
1767
1768 /*
1769 * We have done the truncate/delete so we can go ahead and remove the orphan
1770 * item for this particular inode.
1771 */
1772 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1773 {
1774 struct btrfs_root *root = BTRFS_I(inode)->root;
1775 int ret = 0;
1776
1777 spin_lock(&root->list_lock);
1778
1779 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1780 spin_unlock(&root->list_lock);
1781 return 0;
1782 }
1783
1784 list_del_init(&BTRFS_I(inode)->i_orphan);
1785 if (!trans) {
1786 spin_unlock(&root->list_lock);
1787 return 0;
1788 }
1789
1790 spin_unlock(&root->list_lock);
1791
1792 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1793
1794 return ret;
1795 }
1796
1797 /*
1798 * this cleans up any orphans that may be left on the list from the last use
1799 * of this root.
1800 */
1801 void btrfs_orphan_cleanup(struct btrfs_root *root)
1802 {
1803 struct btrfs_path *path;
1804 struct extent_buffer *leaf;
1805 struct btrfs_item *item;
1806 struct btrfs_key key, found_key;
1807 struct btrfs_trans_handle *trans;
1808 struct inode *inode;
1809 int ret = 0, nr_unlink = 0, nr_truncate = 0;
1810
1811 path = btrfs_alloc_path();
1812 if (!path)
1813 return;
1814 path->reada = -1;
1815
1816 key.objectid = BTRFS_ORPHAN_OBJECTID;
1817 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1818 key.offset = (u64)-1;
1819
1820
1821 while (1) {
1822 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1823 if (ret < 0) {
1824 printk(KERN_ERR "Error searching slot for orphan: %d"
1825 "\n", ret);
1826 break;
1827 }
1828
1829 /*
1830 * if ret == 0 means we found what we were searching for, which
1831 * is weird, but possible, so only screw with path if we didnt
1832 * find the key and see if we have stuff that matches
1833 */
1834 if (ret > 0) {
1835 if (path->slots[0] == 0)
1836 break;
1837 path->slots[0]--;
1838 }
1839
1840 /* pull out the item */
1841 leaf = path->nodes[0];
1842 item = btrfs_item_nr(leaf, path->slots[0]);
1843 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1844
1845 /* make sure the item matches what we want */
1846 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1847 break;
1848 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1849 break;
1850
1851 /* release the path since we're done with it */
1852 btrfs_release_path(root, path);
1853
1854 /*
1855 * this is where we are basically btrfs_lookup, without the
1856 * crossing root thing. we store the inode number in the
1857 * offset of the orphan item.
1858 */
1859 inode = btrfs_iget_locked(root->fs_info->sb,
1860 found_key.offset, root);
1861 if (!inode)
1862 break;
1863
1864 if (inode->i_state & I_NEW) {
1865 BTRFS_I(inode)->root = root;
1866
1867 /* have to set the location manually */
1868 BTRFS_I(inode)->location.objectid = inode->i_ino;
1869 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1870 BTRFS_I(inode)->location.offset = 0;
1871
1872 btrfs_read_locked_inode(inode);
1873 unlock_new_inode(inode);
1874 }
1875
1876 /*
1877 * add this inode to the orphan list so btrfs_orphan_del does
1878 * the proper thing when we hit it
1879 */
1880 spin_lock(&root->list_lock);
1881 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1882 spin_unlock(&root->list_lock);
1883
1884 /*
1885 * if this is a bad inode, means we actually succeeded in
1886 * removing the inode, but not the orphan record, which means
1887 * we need to manually delete the orphan since iput will just
1888 * do a destroy_inode
1889 */
1890 if (is_bad_inode(inode)) {
1891 trans = btrfs_start_transaction(root, 1);
1892 btrfs_orphan_del(trans, inode);
1893 btrfs_end_transaction(trans, root);
1894 iput(inode);
1895 continue;
1896 }
1897
1898 /* if we have links, this was a truncate, lets do that */
1899 if (inode->i_nlink) {
1900 nr_truncate++;
1901 btrfs_truncate(inode);
1902 } else {
1903 nr_unlink++;
1904 }
1905
1906 /* this will do delete_inode and everything for us */
1907 iput(inode);
1908 }
1909
1910 if (nr_unlink)
1911 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1912 if (nr_truncate)
1913 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1914
1915 btrfs_free_path(path);
1916 }
1917
1918 /*
1919 * read an inode from the btree into the in-memory inode
1920 */
1921 void btrfs_read_locked_inode(struct inode *inode)
1922 {
1923 struct btrfs_path *path;
1924 struct extent_buffer *leaf;
1925 struct btrfs_inode_item *inode_item;
1926 struct btrfs_timespec *tspec;
1927 struct btrfs_root *root = BTRFS_I(inode)->root;
1928 struct btrfs_key location;
1929 u64 alloc_group_block;
1930 u32 rdev;
1931 int ret;
1932
1933 path = btrfs_alloc_path();
1934 BUG_ON(!path);
1935 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1936
1937 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1938 if (ret)
1939 goto make_bad;
1940
1941 leaf = path->nodes[0];
1942 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1943 struct btrfs_inode_item);
1944
1945 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1946 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1947 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1948 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1949 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1950
1951 tspec = btrfs_inode_atime(inode_item);
1952 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1953 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1954
1955 tspec = btrfs_inode_mtime(inode_item);
1956 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1957 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1958
1959 tspec = btrfs_inode_ctime(inode_item);
1960 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1961 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1962
1963 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
1964 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
1965 inode->i_generation = BTRFS_I(inode)->generation;
1966 inode->i_rdev = 0;
1967 rdev = btrfs_inode_rdev(leaf, inode_item);
1968
1969 BTRFS_I(inode)->index_cnt = (u64)-1;
1970
1971 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1972 BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1973 alloc_group_block);
1974 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1975 if (!BTRFS_I(inode)->block_group) {
1976 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1977 NULL, 0,
1978 BTRFS_BLOCK_GROUP_METADATA, 0);
1979 }
1980 btrfs_free_path(path);
1981 inode_item = NULL;
1982
1983 switch (inode->i_mode & S_IFMT) {
1984 case S_IFREG:
1985 inode->i_mapping->a_ops = &btrfs_aops;
1986 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1987 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1988 inode->i_fop = &btrfs_file_operations;
1989 inode->i_op = &btrfs_file_inode_operations;
1990 break;
1991 case S_IFDIR:
1992 inode->i_fop = &btrfs_dir_file_operations;
1993 if (root == root->fs_info->tree_root)
1994 inode->i_op = &btrfs_dir_ro_inode_operations;
1995 else
1996 inode->i_op = &btrfs_dir_inode_operations;
1997 break;
1998 case S_IFLNK:
1999 inode->i_op = &btrfs_symlink_inode_operations;
2000 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2001 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2002 break;
2003 default:
2004 init_special_inode(inode, inode->i_mode, rdev);
2005 break;
2006 }
2007 return;
2008
2009 make_bad:
2010 btrfs_free_path(path);
2011 make_bad_inode(inode);
2012 }
2013
2014 /*
2015 * given a leaf and an inode, copy the inode fields into the leaf
2016 */
2017 static void fill_inode_item(struct btrfs_trans_handle *trans,
2018 struct extent_buffer *leaf,
2019 struct btrfs_inode_item *item,
2020 struct inode *inode)
2021 {
2022 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2023 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2024 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2025 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2026 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2027
2028 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2029 inode->i_atime.tv_sec);
2030 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2031 inode->i_atime.tv_nsec);
2032
2033 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2034 inode->i_mtime.tv_sec);
2035 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2036 inode->i_mtime.tv_nsec);
2037
2038 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2039 inode->i_ctime.tv_sec);
2040 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2041 inode->i_ctime.tv_nsec);
2042
2043 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2044 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2045 btrfs_set_inode_transid(leaf, item, trans->transid);
2046 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2047 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2048 btrfs_set_inode_block_group(leaf, item,
2049 BTRFS_I(inode)->block_group->key.objectid);
2050 }
2051
2052 /*
2053 * copy everything in the in-memory inode into the btree.
2054 */
2055 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
2056 struct btrfs_root *root,
2057 struct inode *inode)
2058 {
2059 struct btrfs_inode_item *inode_item;
2060 struct btrfs_path *path;
2061 struct extent_buffer *leaf;
2062 int ret;
2063
2064 path = btrfs_alloc_path();
2065 BUG_ON(!path);
2066 ret = btrfs_lookup_inode(trans, root, path,
2067 &BTRFS_I(inode)->location, 1);
2068 if (ret) {
2069 if (ret > 0)
2070 ret = -ENOENT;
2071 goto failed;
2072 }
2073
2074 leaf = path->nodes[0];
2075 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2076 struct btrfs_inode_item);
2077
2078 fill_inode_item(trans, leaf, inode_item, inode);
2079 btrfs_mark_buffer_dirty(leaf);
2080 btrfs_set_inode_last_trans(trans, inode);
2081 ret = 0;
2082 failed:
2083 btrfs_free_path(path);
2084 return ret;
2085 }
2086
2087
2088 /*
2089 * unlink helper that gets used here in inode.c and in the tree logging
2090 * recovery code. It remove a link in a directory with a given name, and
2091 * also drops the back refs in the inode to the directory
2092 */
2093 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2094 struct btrfs_root *root,
2095 struct inode *dir, struct inode *inode,
2096 const char *name, int name_len)
2097 {
2098 struct btrfs_path *path;
2099 int ret = 0;
2100 struct extent_buffer *leaf;
2101 struct btrfs_dir_item *di;
2102 struct btrfs_key key;
2103 u64 index;
2104
2105 path = btrfs_alloc_path();
2106 if (!path) {
2107 ret = -ENOMEM;
2108 goto err;
2109 }
2110
2111 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2112 name, name_len, -1);
2113 if (IS_ERR(di)) {
2114 ret = PTR_ERR(di);
2115 goto err;
2116 }
2117 if (!di) {
2118 ret = -ENOENT;
2119 goto err;
2120 }
2121 leaf = path->nodes[0];
2122 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2123 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2124 if (ret)
2125 goto err;
2126 btrfs_release_path(root, path);
2127
2128 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2129 inode->i_ino,
2130 dir->i_ino, &index);
2131 if (ret) {
2132 printk("failed to delete reference to %.*s, "
2133 "inode %lu parent %lu\n", name_len, name,
2134 inode->i_ino, dir->i_ino);
2135 goto err;
2136 }
2137
2138 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2139 index, name, name_len, -1);
2140 if (IS_ERR(di)) {
2141 ret = PTR_ERR(di);
2142 goto err;
2143 }
2144 if (!di) {
2145 ret = -ENOENT;
2146 goto err;
2147 }
2148 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2149 btrfs_release_path(root, path);
2150
2151 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2152 inode, dir->i_ino);
2153 BUG_ON(ret != 0 && ret != -ENOENT);
2154 if (ret != -ENOENT)
2155 BTRFS_I(dir)->log_dirty_trans = trans->transid;
2156
2157 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2158 dir, index);
2159 BUG_ON(ret);
2160 err:
2161 btrfs_free_path(path);
2162 if (ret)
2163 goto out;
2164
2165 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2166 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2167 btrfs_update_inode(trans, root, dir);
2168 btrfs_drop_nlink(inode);
2169 ret = btrfs_update_inode(trans, root, inode);
2170 dir->i_sb->s_dirt = 1;
2171 out:
2172 return ret;
2173 }
2174
2175 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2176 {
2177 struct btrfs_root *root;
2178 struct btrfs_trans_handle *trans;
2179 struct inode *inode = dentry->d_inode;
2180 int ret;
2181 unsigned long nr = 0;
2182
2183 root = BTRFS_I(dir)->root;
2184
2185 ret = btrfs_check_free_space(root, 1, 1);
2186 if (ret)
2187 goto fail;
2188
2189 trans = btrfs_start_transaction(root, 1);
2190
2191 btrfs_set_trans_block_group(trans, dir);
2192 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2193 dentry->d_name.name, dentry->d_name.len);
2194
2195 if (inode->i_nlink == 0)
2196 ret = btrfs_orphan_add(trans, inode);
2197
2198 nr = trans->blocks_used;
2199
2200 btrfs_end_transaction_throttle(trans, root);
2201 fail:
2202 btrfs_btree_balance_dirty(root, nr);
2203 return ret;
2204 }
2205
2206 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2207 {
2208 struct inode *inode = dentry->d_inode;
2209 int err = 0;
2210 int ret;
2211 struct btrfs_root *root = BTRFS_I(dir)->root;
2212 struct btrfs_trans_handle *trans;
2213 unsigned long nr = 0;
2214
2215 /*
2216 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2217 * the root of a subvolume or snapshot
2218 */
2219 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2220 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2221 return -ENOTEMPTY;
2222 }
2223
2224 ret = btrfs_check_free_space(root, 1, 1);
2225 if (ret)
2226 goto fail;
2227
2228 trans = btrfs_start_transaction(root, 1);
2229 btrfs_set_trans_block_group(trans, dir);
2230
2231 err = btrfs_orphan_add(trans, inode);
2232 if (err)
2233 goto fail_trans;
2234
2235 /* now the directory is empty */
2236 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2237 dentry->d_name.name, dentry->d_name.len);
2238 if (!err) {
2239 btrfs_i_size_write(inode, 0);
2240 }
2241
2242 fail_trans:
2243 nr = trans->blocks_used;
2244 ret = btrfs_end_transaction_throttle(trans, root);
2245 fail:
2246 btrfs_btree_balance_dirty(root, nr);
2247
2248 if (ret && !err)
2249 err = ret;
2250 return err;
2251 }
2252
2253 /*
2254 * when truncating bytes in a file, it is possible to avoid reading
2255 * the leaves that contain only checksum items. This can be the
2256 * majority of the IO required to delete a large file, but it must
2257 * be done carefully.
2258 *
2259 * The keys in the level just above the leaves are checked to make sure
2260 * the lowest key in a given leaf is a csum key, and starts at an offset
2261 * after the new size.
2262 *
2263 * Then the key for the next leaf is checked to make sure it also has
2264 * a checksum item for the same file. If it does, we know our target leaf
2265 * contains only checksum items, and it can be safely freed without reading
2266 * it.
2267 *
2268 * This is just an optimization targeted at large files. It may do
2269 * nothing. It will return 0 unless things went badly.
2270 */
2271 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2272 struct btrfs_root *root,
2273 struct btrfs_path *path,
2274 struct inode *inode, u64 new_size)
2275 {
2276 struct btrfs_key key;
2277 int ret;
2278 int nritems;
2279 struct btrfs_key found_key;
2280 struct btrfs_key other_key;
2281 struct btrfs_leaf_ref *ref;
2282 u64 leaf_gen;
2283 u64 leaf_start;
2284
2285 path->lowest_level = 1;
2286 key.objectid = inode->i_ino;
2287 key.type = BTRFS_CSUM_ITEM_KEY;
2288 key.offset = new_size;
2289 again:
2290 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2291 if (ret < 0)
2292 goto out;
2293
2294 if (path->nodes[1] == NULL) {
2295 ret = 0;
2296 goto out;
2297 }
2298 ret = 0;
2299 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2300 nritems = btrfs_header_nritems(path->nodes[1]);
2301
2302 if (!nritems)
2303 goto out;
2304
2305 if (path->slots[1] >= nritems)
2306 goto next_node;
2307
2308 /* did we find a key greater than anything we want to delete? */
2309 if (found_key.objectid > inode->i_ino ||
2310 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2311 goto out;
2312
2313 /* we check the next key in the node to make sure the leave contains
2314 * only checksum items. This comparison doesn't work if our
2315 * leaf is the last one in the node
2316 */
2317 if (path->slots[1] + 1 >= nritems) {
2318 next_node:
2319 /* search forward from the last key in the node, this
2320 * will bring us into the next node in the tree
2321 */
2322 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2323
2324 /* unlikely, but we inc below, so check to be safe */
2325 if (found_key.offset == (u64)-1)
2326 goto out;
2327
2328 /* search_forward needs a path with locks held, do the
2329 * search again for the original key. It is possible
2330 * this will race with a balance and return a path that
2331 * we could modify, but this drop is just an optimization
2332 * and is allowed to miss some leaves.
2333 */
2334 btrfs_release_path(root, path);
2335 found_key.offset++;
2336
2337 /* setup a max key for search_forward */
2338 other_key.offset = (u64)-1;
2339 other_key.type = key.type;
2340 other_key.objectid = key.objectid;
2341
2342 path->keep_locks = 1;
2343 ret = btrfs_search_forward(root, &found_key, &other_key,
2344 path, 0, 0);
2345 path->keep_locks = 0;
2346 if (ret || found_key.objectid != key.objectid ||
2347 found_key.type != key.type) {
2348 ret = 0;
2349 goto out;
2350 }
2351
2352 key.offset = found_key.offset;
2353 btrfs_release_path(root, path);
2354 cond_resched();
2355 goto again;
2356 }
2357
2358 /* we know there's one more slot after us in the tree,
2359 * read that key so we can verify it is also a checksum item
2360 */
2361 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2362
2363 if (found_key.objectid < inode->i_ino)
2364 goto next_key;
2365
2366 if (found_key.type != key.type || found_key.offset < new_size)
2367 goto next_key;
2368
2369 /*
2370 * if the key for the next leaf isn't a csum key from this objectid,
2371 * we can't be sure there aren't good items inside this leaf.
2372 * Bail out
2373 */
2374 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2375 goto out;
2376
2377 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2378 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2379 /*
2380 * it is safe to delete this leaf, it contains only
2381 * csum items from this inode at an offset >= new_size
2382 */
2383 ret = btrfs_del_leaf(trans, root, path, leaf_start);
2384 BUG_ON(ret);
2385
2386 if (root->ref_cows && leaf_gen < trans->transid) {
2387 ref = btrfs_alloc_leaf_ref(root, 0);
2388 if (ref) {
2389 ref->root_gen = root->root_key.offset;
2390 ref->bytenr = leaf_start;
2391 ref->owner = 0;
2392 ref->generation = leaf_gen;
2393 ref->nritems = 0;
2394
2395 ret = btrfs_add_leaf_ref(root, ref, 0);
2396 WARN_ON(ret);
2397 btrfs_free_leaf_ref(root, ref);
2398 } else {
2399 WARN_ON(1);
2400 }
2401 }
2402 next_key:
2403 btrfs_release_path(root, path);
2404
2405 if (other_key.objectid == inode->i_ino &&
2406 other_key.type == key.type && other_key.offset > key.offset) {
2407 key.offset = other_key.offset;
2408 cond_resched();
2409 goto again;
2410 }
2411 ret = 0;
2412 out:
2413 /* fixup any changes we've made to the path */
2414 path->lowest_level = 0;
2415 path->keep_locks = 0;
2416 btrfs_release_path(root, path);
2417 return ret;
2418 }
2419
2420 /*
2421 * this can truncate away extent items, csum items and directory items.
2422 * It starts at a high offset and removes keys until it can't find
2423 * any higher than new_size
2424 *
2425 * csum items that cross the new i_size are truncated to the new size
2426 * as well.
2427 *
2428 * min_type is the minimum key type to truncate down to. If set to 0, this
2429 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2430 */
2431 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2432 struct btrfs_root *root,
2433 struct inode *inode,
2434 u64 new_size, u32 min_type)
2435 {
2436 int ret;
2437 struct btrfs_path *path;
2438 struct btrfs_key key;
2439 struct btrfs_key found_key;
2440 u32 found_type;
2441 struct extent_buffer *leaf;
2442 struct btrfs_file_extent_item *fi;
2443 u64 extent_start = 0;
2444 u64 extent_num_bytes = 0;
2445 u64 item_end = 0;
2446 u64 root_gen = 0;
2447 u64 root_owner = 0;
2448 int found_extent;
2449 int del_item;
2450 int pending_del_nr = 0;
2451 int pending_del_slot = 0;
2452 int extent_type = -1;
2453 int encoding;
2454 u64 mask = root->sectorsize - 1;
2455
2456 if (root->ref_cows)
2457 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2458 path = btrfs_alloc_path();
2459 path->reada = -1;
2460 BUG_ON(!path);
2461
2462 /* FIXME, add redo link to tree so we don't leak on crash */
2463 key.objectid = inode->i_ino;
2464 key.offset = (u64)-1;
2465 key.type = (u8)-1;
2466
2467 btrfs_init_path(path);
2468
2469 ret = drop_csum_leaves(trans, root, path, inode, new_size);
2470 BUG_ON(ret);
2471
2472 search_again:
2473 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2474 if (ret < 0) {
2475 goto error;
2476 }
2477 if (ret > 0) {
2478 /* there are no items in the tree for us to truncate, we're
2479 * done
2480 */
2481 if (path->slots[0] == 0) {
2482 ret = 0;
2483 goto error;
2484 }
2485 path->slots[0]--;
2486 }
2487
2488 while(1) {
2489 fi = NULL;
2490 leaf = path->nodes[0];
2491 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2492 found_type = btrfs_key_type(&found_key);
2493 encoding = 0;
2494
2495 if (found_key.objectid != inode->i_ino)
2496 break;
2497
2498 if (found_type < min_type)
2499 break;
2500
2501 item_end = found_key.offset;
2502 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2503 fi = btrfs_item_ptr(leaf, path->slots[0],
2504 struct btrfs_file_extent_item);
2505 extent_type = btrfs_file_extent_type(leaf, fi);
2506 encoding = btrfs_file_extent_compression(leaf, fi);
2507 encoding |= btrfs_file_extent_encryption(leaf, fi);
2508 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2509
2510 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2511 item_end +=
2512 btrfs_file_extent_num_bytes(leaf, fi);
2513 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2514 item_end += btrfs_file_extent_inline_len(leaf,
2515 fi);
2516 }
2517 item_end--;
2518 }
2519 if (found_type == BTRFS_CSUM_ITEM_KEY) {
2520 ret = btrfs_csum_truncate(trans, root, path,
2521 new_size);
2522 BUG_ON(ret);
2523 }
2524 if (item_end < new_size) {
2525 if (found_type == BTRFS_DIR_ITEM_KEY) {
2526 found_type = BTRFS_INODE_ITEM_KEY;
2527 } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
2528 found_type = BTRFS_CSUM_ITEM_KEY;
2529 } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
2530 found_type = BTRFS_XATTR_ITEM_KEY;
2531 } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
2532 found_type = BTRFS_INODE_REF_KEY;
2533 } else if (found_type) {
2534 found_type--;
2535 } else {
2536 break;
2537 }
2538 btrfs_set_key_type(&key, found_type);
2539 goto next;
2540 }
2541 if (found_key.offset >= new_size)
2542 del_item = 1;
2543 else
2544 del_item = 0;
2545 found_extent = 0;
2546
2547 /* FIXME, shrink the extent if the ref count is only 1 */
2548 if (found_type != BTRFS_EXTENT_DATA_KEY)
2549 goto delete;
2550
2551 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2552 u64 num_dec;
2553 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2554 if (!del_item && !encoding) {
2555 u64 orig_num_bytes =
2556 btrfs_file_extent_num_bytes(leaf, fi);
2557 extent_num_bytes = new_size -
2558 found_key.offset + root->sectorsize - 1;
2559 extent_num_bytes = extent_num_bytes &
2560 ~((u64)root->sectorsize - 1);
2561 btrfs_set_file_extent_num_bytes(leaf, fi,
2562 extent_num_bytes);
2563 num_dec = (orig_num_bytes -
2564 extent_num_bytes);
2565 if (root->ref_cows && extent_start != 0)
2566 inode_sub_bytes(inode, num_dec);
2567 btrfs_mark_buffer_dirty(leaf);
2568 } else {
2569 extent_num_bytes =
2570 btrfs_file_extent_disk_num_bytes(leaf,
2571 fi);
2572 /* FIXME blocksize != 4096 */
2573 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2574 if (extent_start != 0) {
2575 found_extent = 1;
2576 if (root->ref_cows)
2577 inode_sub_bytes(inode, num_dec);
2578 }
2579 root_gen = btrfs_header_generation(leaf);
2580 root_owner = btrfs_header_owner(leaf);
2581 }
2582 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2583 /*
2584 * we can't truncate inline items that have had
2585 * special encodings
2586 */
2587 if (!del_item &&
2588 btrfs_file_extent_compression(leaf, fi) == 0 &&
2589 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2590 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2591 u32 size = new_size - found_key.offset;
2592
2593 if (root->ref_cows) {
2594 inode_sub_bytes(inode, item_end + 1 -
2595 new_size);
2596 }
2597 size =
2598 btrfs_file_extent_calc_inline_size(size);
2599 ret = btrfs_truncate_item(trans, root, path,
2600 size, 1);
2601 BUG_ON(ret);
2602 } else if (root->ref_cows) {
2603 inode_sub_bytes(inode, item_end + 1 -
2604 found_key.offset);
2605 }
2606 }
2607 delete:
2608 if (del_item) {
2609 if (!pending_del_nr) {
2610 /* no pending yet, add ourselves */
2611 pending_del_slot = path->slots[0];
2612 pending_del_nr = 1;
2613 } else if (pending_del_nr &&
2614 path->slots[0] + 1 == pending_del_slot) {
2615 /* hop on the pending chunk */
2616 pending_del_nr++;
2617 pending_del_slot = path->slots[0];
2618 } else {
2619 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
2620 }
2621 } else {
2622 break;
2623 }
2624 if (found_extent) {
2625 ret = btrfs_free_extent(trans, root, extent_start,
2626 extent_num_bytes,
2627 leaf->start, root_owner,
2628 root_gen, inode->i_ino, 0);
2629 BUG_ON(ret);
2630 }
2631 next:
2632 if (path->slots[0] == 0) {
2633 if (pending_del_nr)
2634 goto del_pending;
2635 btrfs_release_path(root, path);
2636 goto search_again;
2637 }
2638
2639 path->slots[0]--;
2640 if (pending_del_nr &&
2641 path->slots[0] + 1 != pending_del_slot) {
2642 struct btrfs_key debug;
2643 del_pending:
2644 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2645 pending_del_slot);
2646 ret = btrfs_del_items(trans, root, path,
2647 pending_del_slot,
2648 pending_del_nr);
2649 BUG_ON(ret);
2650 pending_del_nr = 0;
2651 btrfs_release_path(root, path);
2652 goto search_again;
2653 }
2654 }
2655 ret = 0;
2656 error:
2657 if (pending_del_nr) {
2658 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2659 pending_del_nr);
2660 }
2661 btrfs_free_path(path);
2662 inode->i_sb->s_dirt = 1;
2663 return ret;
2664 }
2665
2666 /*
2667 * taken from block_truncate_page, but does cow as it zeros out
2668 * any bytes left in the last page in the file.
2669 */
2670 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2671 {
2672 struct inode *inode = mapping->host;
2673 struct btrfs_root *root = BTRFS_I(inode)->root;
2674 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2675 struct btrfs_ordered_extent *ordered;
2676 char *kaddr;
2677 u32 blocksize = root->sectorsize;
2678 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2679 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2680 struct page *page;
2681 int ret = 0;
2682 u64 page_start;
2683 u64 page_end;
2684
2685 if ((offset & (blocksize - 1)) == 0)
2686 goto out;
2687
2688 ret = -ENOMEM;
2689 again:
2690 page = grab_cache_page(mapping, index);
2691 if (!page)
2692 goto out;
2693
2694 page_start = page_offset(page);
2695 page_end = page_start + PAGE_CACHE_SIZE - 1;
2696
2697 if (!PageUptodate(page)) {
2698 ret = btrfs_readpage(NULL, page);
2699 lock_page(page);
2700 if (page->mapping != mapping) {
2701 unlock_page(page);
2702 page_cache_release(page);
2703 goto again;
2704 }
2705 if (!PageUptodate(page)) {
2706 ret = -EIO;
2707 goto out_unlock;
2708 }
2709 }
2710 wait_on_page_writeback(page);
2711
2712 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2713 set_page_extent_mapped(page);
2714
2715 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2716 if (ordered) {
2717 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2718 unlock_page(page);
2719 page_cache_release(page);
2720 btrfs_start_ordered_extent(inode, ordered, 1);
2721 btrfs_put_ordered_extent(ordered);
2722 goto again;
2723 }
2724
2725 btrfs_set_extent_delalloc(inode, page_start, page_end);
2726 ret = 0;
2727 if (offset != PAGE_CACHE_SIZE) {
2728 kaddr = kmap(page);
2729 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2730 flush_dcache_page(page);
2731 kunmap(page);
2732 }
2733 ClearPageChecked(page);
2734 set_page_dirty(page);
2735 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2736
2737 out_unlock:
2738 unlock_page(page);
2739 page_cache_release(page);
2740 out:
2741 return ret;
2742 }
2743
2744 int btrfs_cont_expand(struct inode *inode, loff_t size)
2745 {
2746 struct btrfs_trans_handle *trans;
2747 struct btrfs_root *root = BTRFS_I(inode)->root;
2748 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2749 struct extent_map *em;
2750 u64 mask = root->sectorsize - 1;
2751 u64 hole_start = (inode->i_size + mask) & ~mask;
2752 u64 block_end = (size + mask) & ~mask;
2753 u64 last_byte;
2754 u64 cur_offset;
2755 u64 hole_size;
2756 int err;
2757
2758 if (size <= hole_start)
2759 return 0;
2760
2761 err = btrfs_check_free_space(root, 1, 0);
2762 if (err)
2763 return err;
2764
2765 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2766
2767 while (1) {
2768 struct btrfs_ordered_extent *ordered;
2769 btrfs_wait_ordered_range(inode, hole_start,
2770 block_end - hole_start);
2771 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2772 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2773 if (!ordered)
2774 break;
2775 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2776 btrfs_put_ordered_extent(ordered);
2777 }
2778
2779 trans = btrfs_start_transaction(root, 1);
2780 btrfs_set_trans_block_group(trans, inode);
2781
2782 cur_offset = hole_start;
2783 while (1) {
2784 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2785 block_end - cur_offset, 0);
2786 BUG_ON(IS_ERR(em) || !em);
2787 last_byte = min(extent_map_end(em), block_end);
2788 last_byte = (last_byte + mask) & ~mask;
2789 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2790 u64 hint_byte = 0;
2791 hole_size = last_byte - cur_offset;
2792 err = btrfs_drop_extents(trans, root, inode,
2793 cur_offset,
2794 cur_offset + hole_size,
2795 cur_offset, &hint_byte);
2796 if (err)
2797 break;
2798 err = btrfs_insert_file_extent(trans, root,
2799 inode->i_ino, cur_offset, 0,
2800 0, hole_size, 0, hole_size,
2801 0, 0, 0);
2802 btrfs_drop_extent_cache(inode, hole_start,
2803 last_byte - 1, 0);
2804 }
2805 free_extent_map(em);
2806 cur_offset = last_byte;
2807 if (err || cur_offset >= block_end)
2808 break;
2809 }
2810
2811 btrfs_end_transaction(trans, root);
2812 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2813 return err;
2814 }
2815
2816 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2817 {
2818 struct inode *inode = dentry->d_inode;
2819 int err;
2820
2821 err = inode_change_ok(inode, attr);
2822 if (err)
2823 return err;
2824
2825 if (S_ISREG(inode->i_mode) &&
2826 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
2827 err = btrfs_cont_expand(inode, attr->ia_size);
2828 if (err)
2829 return err;
2830 }
2831
2832 err = inode_setattr(inode, attr);
2833
2834 if (!err && ((attr->ia_valid & ATTR_MODE)))
2835 err = btrfs_acl_chmod(inode);
2836 return err;
2837 }
2838
2839 void btrfs_delete_inode(struct inode *inode)
2840 {
2841 struct btrfs_trans_handle *trans;
2842 struct btrfs_root *root = BTRFS_I(inode)->root;
2843 unsigned long nr;
2844 int ret;
2845
2846 truncate_inode_pages(&inode->i_data, 0);
2847 if (is_bad_inode(inode)) {
2848 btrfs_orphan_del(NULL, inode);
2849 goto no_delete;
2850 }
2851 btrfs_wait_ordered_range(inode, 0, (u64)-1);
2852
2853 btrfs_i_size_write(inode, 0);
2854 trans = btrfs_start_transaction(root, 1);
2855
2856 btrfs_set_trans_block_group(trans, inode);
2857 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2858 if (ret) {
2859 btrfs_orphan_del(NULL, inode);
2860 goto no_delete_lock;
2861 }
2862
2863 btrfs_orphan_del(trans, inode);
2864
2865 nr = trans->blocks_used;
2866 clear_inode(inode);
2867
2868 btrfs_end_transaction(trans, root);
2869 btrfs_btree_balance_dirty(root, nr);
2870 return;
2871
2872 no_delete_lock:
2873 nr = trans->blocks_used;
2874 btrfs_end_transaction(trans, root);
2875 btrfs_btree_balance_dirty(root, nr);
2876 no_delete:
2877 clear_inode(inode);
2878 }
2879
2880 /*
2881 * this returns the key found in the dir entry in the location pointer.
2882 * If no dir entries were found, location->objectid is 0.
2883 */
2884 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2885 struct btrfs_key *location)
2886 {
2887 const char *name = dentry->d_name.name;
2888 int namelen = dentry->d_name.len;
2889 struct btrfs_dir_item *di;
2890 struct btrfs_path *path;
2891 struct btrfs_root *root = BTRFS_I(dir)->root;
2892 int ret = 0;
2893
2894 path = btrfs_alloc_path();
2895 BUG_ON(!path);
2896
2897 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2898 namelen, 0);
2899 if (IS_ERR(di))
2900 ret = PTR_ERR(di);
2901 if (!di || IS_ERR(di)) {
2902 goto out_err;
2903 }
2904 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
2905 out:
2906 btrfs_free_path(path);
2907 return ret;
2908 out_err:
2909 location->objectid = 0;
2910 goto out;
2911 }
2912
2913 /*
2914 * when we hit a tree root in a directory, the btrfs part of the inode
2915 * needs to be changed to reflect the root directory of the tree root. This
2916 * is kind of like crossing a mount point.
2917 */
2918 static int fixup_tree_root_location(struct btrfs_root *root,
2919 struct btrfs_key *location,
2920 struct btrfs_root **sub_root,
2921 struct dentry *dentry)
2922 {
2923 struct btrfs_root_item *ri;
2924
2925 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2926 return 0;
2927 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2928 return 0;
2929
2930 *sub_root = btrfs_read_fs_root(root->fs_info, location,
2931 dentry->d_name.name,
2932 dentry->d_name.len);
2933 if (IS_ERR(*sub_root))
2934 return PTR_ERR(*sub_root);
2935
2936 ri = &(*sub_root)->root_item;
2937 location->objectid = btrfs_root_dirid(ri);
2938 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2939 location->offset = 0;
2940
2941 return 0;
2942 }
2943
2944 static noinline void init_btrfs_i(struct inode *inode)
2945 {
2946 struct btrfs_inode *bi = BTRFS_I(inode);
2947
2948 bi->i_acl = NULL;
2949 bi->i_default_acl = NULL;
2950
2951 bi->generation = 0;
2952 bi->last_trans = 0;
2953 bi->logged_trans = 0;
2954 bi->delalloc_bytes = 0;
2955 bi->disk_i_size = 0;
2956 bi->flags = 0;
2957 bi->index_cnt = (u64)-1;
2958 bi->log_dirty_trans = 0;
2959 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2960 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2961 inode->i_mapping, GFP_NOFS);
2962 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2963 inode->i_mapping, GFP_NOFS);
2964 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2965 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2966 mutex_init(&BTRFS_I(inode)->csum_mutex);
2967 mutex_init(&BTRFS_I(inode)->extent_mutex);
2968 mutex_init(&BTRFS_I(inode)->log_mutex);
2969 }
2970
2971 static int btrfs_init_locked_inode(struct inode *inode, void *p)
2972 {
2973 struct btrfs_iget_args *args = p;
2974 inode->i_ino = args->ino;
2975 init_btrfs_i(inode);
2976 BTRFS_I(inode)->root = args->root;
2977 return 0;
2978 }
2979
2980 static int btrfs_find_actor(struct inode *inode, void *opaque)
2981 {
2982 struct btrfs_iget_args *args = opaque;
2983 return (args->ino == inode->i_ino &&
2984 args->root == BTRFS_I(inode)->root);
2985 }
2986
2987 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
2988 struct btrfs_root *root, int wait)
2989 {
2990 struct inode *inode;
2991 struct btrfs_iget_args args;
2992 args.ino = objectid;
2993 args.root = root;
2994
2995 if (wait) {
2996 inode = ilookup5(s, objectid, btrfs_find_actor,
2997 (void *)&args);
2998 } else {
2999 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
3000 (void *)&args);
3001 }
3002 return inode;
3003 }
3004
3005 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
3006 struct btrfs_root *root)
3007 {
3008 struct inode *inode;
3009 struct btrfs_iget_args args;
3010 args.ino = objectid;
3011 args.root = root;
3012
3013 inode = iget5_locked(s, objectid, btrfs_find_actor,
3014 btrfs_init_locked_inode,
3015 (void *)&args);
3016 return inode;
3017 }
3018
3019 /* Get an inode object given its location and corresponding root.
3020 * Returns in *is_new if the inode was read from disk
3021 */
3022 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3023 struct btrfs_root *root, int *is_new)
3024 {
3025 struct inode *inode;
3026
3027 inode = btrfs_iget_locked(s, location->objectid, root);
3028 if (!inode)
3029 return ERR_PTR(-EACCES);
3030
3031 if (inode->i_state & I_NEW) {
3032 BTRFS_I(inode)->root = root;
3033 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3034 btrfs_read_locked_inode(inode);
3035 unlock_new_inode(inode);
3036 if (is_new)
3037 *is_new = 1;
3038 } else {
3039 if (is_new)
3040 *is_new = 0;
3041 }
3042
3043 return inode;
3044 }
3045
3046 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3047 {
3048 struct inode * inode;
3049 struct btrfs_inode *bi = BTRFS_I(dir);
3050 struct btrfs_root *root = bi->root;
3051 struct btrfs_root *sub_root = root;
3052 struct btrfs_key location;
3053 int ret, new;
3054
3055 if (dentry->d_name.len > BTRFS_NAME_LEN)
3056 return ERR_PTR(-ENAMETOOLONG);
3057
3058 ret = btrfs_inode_by_name(dir, dentry, &location);
3059
3060 if (ret < 0)
3061 return ERR_PTR(ret);
3062
3063 inode = NULL;
3064 if (location.objectid) {
3065 ret = fixup_tree_root_location(root, &location, &sub_root,
3066 dentry);
3067 if (ret < 0)
3068 return ERR_PTR(ret);
3069 if (ret > 0)
3070 return ERR_PTR(-ENOENT);
3071 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
3072 if (IS_ERR(inode))
3073 return ERR_CAST(inode);
3074 }
3075 return inode;
3076 }
3077
3078 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3079 struct nameidata *nd)
3080 {
3081 struct inode *inode;
3082
3083 if (dentry->d_name.len > BTRFS_NAME_LEN)
3084 return ERR_PTR(-ENAMETOOLONG);
3085
3086 inode = btrfs_lookup_dentry(dir, dentry);
3087 if (IS_ERR(inode))
3088 return ERR_CAST(inode);
3089
3090 return d_splice_alias(inode, dentry);
3091 }
3092
3093 static unsigned char btrfs_filetype_table[] = {
3094 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3095 };
3096
3097 static int btrfs_real_readdir(struct file *filp, void *dirent,
3098 filldir_t filldir)
3099 {
3100 struct inode *inode = filp->f_dentry->d_inode;
3101 struct btrfs_root *root = BTRFS_I(inode)->root;
3102 struct btrfs_item *item;
3103 struct btrfs_dir_item *di;
3104 struct btrfs_key key;
3105 struct btrfs_key found_key;
3106 struct btrfs_path *path;
3107 int ret;
3108 u32 nritems;
3109 struct extent_buffer *leaf;
3110 int slot;
3111 int advance;
3112 unsigned char d_type;
3113 int over = 0;
3114 u32 di_cur;
3115 u32 di_total;
3116 u32 di_len;
3117 int key_type = BTRFS_DIR_INDEX_KEY;
3118 char tmp_name[32];
3119 char *name_ptr;
3120 int name_len;
3121
3122 /* FIXME, use a real flag for deciding about the key type */
3123 if (root->fs_info->tree_root == root)
3124 key_type = BTRFS_DIR_ITEM_KEY;
3125
3126 /* special case for "." */
3127 if (filp->f_pos == 0) {
3128 over = filldir(dirent, ".", 1,
3129 1, inode->i_ino,
3130 DT_DIR);
3131 if (over)
3132 return 0;
3133 filp->f_pos = 1;
3134 }
3135 /* special case for .., just use the back ref */
3136 if (filp->f_pos == 1) {
3137 u64 pino = parent_ino(filp->f_path.dentry);
3138 over = filldir(dirent, "..", 2,
3139 2, pino, DT_DIR);
3140 if (over)
3141 return 0;
3142 filp->f_pos = 2;
3143 }
3144 path = btrfs_alloc_path();
3145 path->reada = 2;
3146
3147 btrfs_set_key_type(&key, key_type);
3148 key.offset = filp->f_pos;
3149 key.objectid = inode->i_ino;
3150
3151 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3152 if (ret < 0)
3153 goto err;
3154 advance = 0;
3155
3156 while (1) {
3157 leaf = path->nodes[0];
3158 nritems = btrfs_header_nritems(leaf);
3159 slot = path->slots[0];
3160 if (advance || slot >= nritems) {
3161 if (slot >= nritems - 1) {
3162 ret = btrfs_next_leaf(root, path);
3163 if (ret)
3164 break;
3165 leaf = path->nodes[0];
3166 nritems = btrfs_header_nritems(leaf);
3167 slot = path->slots[0];
3168 } else {
3169 slot++;
3170 path->slots[0]++;
3171 }
3172 }
3173
3174 advance = 1;
3175 item = btrfs_item_nr(leaf, slot);
3176 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3177
3178 if (found_key.objectid != key.objectid)
3179 break;
3180 if (btrfs_key_type(&found_key) != key_type)
3181 break;
3182 if (found_key.offset < filp->f_pos)
3183 continue;
3184
3185 filp->f_pos = found_key.offset;
3186
3187 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3188 di_cur = 0;
3189 di_total = btrfs_item_size(leaf, item);
3190
3191 while (di_cur < di_total) {
3192 struct btrfs_key location;
3193
3194 name_len = btrfs_dir_name_len(leaf, di);
3195 if (name_len <= sizeof(tmp_name)) {
3196 name_ptr = tmp_name;
3197 } else {
3198 name_ptr = kmalloc(name_len, GFP_NOFS);
3199 if (!name_ptr) {
3200 ret = -ENOMEM;
3201 goto err;
3202 }
3203 }
3204 read_extent_buffer(leaf, name_ptr,
3205 (unsigned long)(di + 1), name_len);
3206
3207 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3208 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3209
3210 /* is this a reference to our own snapshot? If so
3211 * skip it
3212 */
3213 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3214 location.objectid == root->root_key.objectid) {
3215 over = 0;
3216 goto skip;
3217 }
3218 over = filldir(dirent, name_ptr, name_len,
3219 found_key.offset, location.objectid,
3220 d_type);
3221
3222 skip:
3223 if (name_ptr != tmp_name)
3224 kfree(name_ptr);
3225
3226 if (over)
3227 goto nopos;
3228 di_len = btrfs_dir_name_len(leaf, di) +
3229 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3230 di_cur += di_len;
3231 di = (struct btrfs_dir_item *)((char *)di + di_len);
3232 }
3233 }
3234
3235 /* Reached end of directory/root. Bump pos past the last item. */
3236 if (key_type == BTRFS_DIR_INDEX_KEY)
3237 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
3238 else
3239 filp->f_pos++;
3240 nopos:
3241 ret = 0;
3242 err:
3243 btrfs_free_path(path);
3244 return ret;
3245 }
3246
3247 int btrfs_write_inode(struct inode *inode, int wait)
3248 {
3249 struct btrfs_root *root = BTRFS_I(inode)->root;
3250 struct btrfs_trans_handle *trans;
3251 int ret = 0;
3252
3253 if (root->fs_info->btree_inode == inode)
3254 return 0;
3255
3256 if (wait) {
3257 trans = btrfs_join_transaction(root, 1);
3258 btrfs_set_trans_block_group(trans, inode);
3259 ret = btrfs_commit_transaction(trans, root);
3260 }
3261 return ret;
3262 }
3263
3264 /*
3265 * This is somewhat expensive, updating the tree every time the
3266 * inode changes. But, it is most likely to find the inode in cache.
3267 * FIXME, needs more benchmarking...there are no reasons other than performance
3268 * to keep or drop this code.
3269 */
3270 void btrfs_dirty_inode(struct inode *inode)
3271 {
3272 struct btrfs_root *root = BTRFS_I(inode)->root;
3273 struct btrfs_trans_handle *trans;
3274
3275 trans = btrfs_join_transaction(root, 1);
3276 btrfs_set_trans_block_group(trans, inode);
3277 btrfs_update_inode(trans, root, inode);
3278 btrfs_end_transaction(trans, root);
3279 }
3280
3281 /*
3282 * find the highest existing sequence number in a directory
3283 * and then set the in-memory index_cnt variable to reflect
3284 * free sequence numbers
3285 */
3286 static int btrfs_set_inode_index_count(struct inode *inode)
3287 {
3288 struct btrfs_root *root = BTRFS_I(inode)->root;
3289 struct btrfs_key key, found_key;
3290 struct btrfs_path *path;
3291 struct extent_buffer *leaf;
3292 int ret;
3293
3294 key.objectid = inode->i_ino;
3295 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3296 key.offset = (u64)-1;
3297
3298 path = btrfs_alloc_path();
3299 if (!path)
3300 return -ENOMEM;
3301
3302 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3303 if (ret < 0)
3304 goto out;
3305 /* FIXME: we should be able to handle this */
3306 if (ret == 0)
3307 goto out;
3308 ret = 0;
3309
3310 /*
3311 * MAGIC NUMBER EXPLANATION:
3312 * since we search a directory based on f_pos we have to start at 2
3313 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3314 * else has to start at 2
3315 */
3316 if (path->slots[0] == 0) {
3317 BTRFS_I(inode)->index_cnt = 2;
3318 goto out;
3319 }
3320
3321 path->slots[0]--;
3322
3323 leaf = path->nodes[0];
3324 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3325
3326 if (found_key.objectid != inode->i_ino ||
3327 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3328 BTRFS_I(inode)->index_cnt = 2;
3329 goto out;
3330 }
3331
3332 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3333 out:
3334 btrfs_free_path(path);
3335 return ret;
3336 }
3337
3338 /*
3339 * helper to find a free sequence number in a given directory. This current
3340 * code is very simple, later versions will do smarter things in the btree
3341 */
3342 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3343 {
3344 int ret = 0;
3345
3346 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3347 ret = btrfs_set_inode_index_count(dir);
3348 if (ret) {
3349 return ret;
3350 }
3351 }
3352
3353 *index = BTRFS_I(dir)->index_cnt;
3354 BTRFS_I(dir)->index_cnt++;
3355
3356 return ret;
3357 }
3358
3359 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3360 struct btrfs_root *root,
3361 struct inode *dir,
3362 const char *name, int name_len,
3363 u64 ref_objectid,
3364 u64 objectid,
3365 struct btrfs_block_group_cache *group,
3366 int mode, u64 *index)
3367 {
3368 struct inode *inode;
3369 struct btrfs_inode_item *inode_item;
3370 struct btrfs_block_group_cache *new_inode_group;
3371 struct btrfs_key *location;
3372 struct btrfs_path *path;
3373 struct btrfs_inode_ref *ref;
3374 struct btrfs_key key[2];
3375 u32 sizes[2];
3376 unsigned long ptr;
3377 int ret;
3378 int owner;
3379
3380 path = btrfs_alloc_path();
3381 BUG_ON(!path);
3382
3383 inode = new_inode(root->fs_info->sb);
3384 if (!inode)
3385 return ERR_PTR(-ENOMEM);
3386
3387 if (dir) {
3388 ret = btrfs_set_inode_index(dir, index);
3389 if (ret)
3390 return ERR_PTR(ret);
3391 }
3392 /*
3393 * index_cnt is ignored for everything but a dir,
3394 * btrfs_get_inode_index_count has an explanation for the magic
3395 * number
3396 */
3397 init_btrfs_i(inode);
3398 BTRFS_I(inode)->index_cnt = 2;
3399 BTRFS_I(inode)->root = root;
3400 BTRFS_I(inode)->generation = trans->transid;
3401
3402 if (mode & S_IFDIR)
3403 owner = 0;
3404 else
3405 owner = 1;
3406 new_inode_group = btrfs_find_block_group(root, group, 0,
3407 BTRFS_BLOCK_GROUP_METADATA, owner);
3408 if (!new_inode_group) {
3409 printk("find_block group failed\n");
3410 new_inode_group = group;
3411 }
3412 BTRFS_I(inode)->block_group = new_inode_group;
3413
3414 key[0].objectid = objectid;
3415 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3416 key[0].offset = 0;
3417
3418 key[1].objectid = objectid;
3419 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3420 key[1].offset = ref_objectid;
3421
3422 sizes[0] = sizeof(struct btrfs_inode_item);
3423 sizes[1] = name_len + sizeof(*ref);
3424
3425 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3426 if (ret != 0)
3427 goto fail;
3428
3429 if (objectid > root->highest_inode)
3430 root->highest_inode = objectid;
3431
3432 inode->i_uid = current->fsuid;
3433 inode->i_gid = current->fsgid;
3434 inode->i_mode = mode;
3435 inode->i_ino = objectid;
3436 inode_set_bytes(inode, 0);
3437 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3438 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3439 struct btrfs_inode_item);
3440 fill_inode_item(trans, path->nodes[0], inode_item, inode);
3441
3442 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3443 struct btrfs_inode_ref);
3444 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3445 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3446 ptr = (unsigned long)(ref + 1);
3447 write_extent_buffer(path->nodes[0], name, ptr, name_len);
3448
3449 btrfs_mark_buffer_dirty(path->nodes[0]);
3450 btrfs_free_path(path);
3451
3452 location = &BTRFS_I(inode)->location;
3453 location->objectid = objectid;
3454 location->offset = 0;
3455 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3456
3457 insert_inode_hash(inode);
3458 return inode;
3459 fail:
3460 if (dir)
3461 BTRFS_I(dir)->index_cnt--;
3462 btrfs_free_path(path);
3463 return ERR_PTR(ret);
3464 }
3465
3466 static inline u8 btrfs_inode_type(struct inode *inode)
3467 {
3468 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3469 }
3470
3471 /*
3472 * utility function to add 'inode' into 'parent_inode' with
3473 * a give name and a given sequence number.
3474 * if 'add_backref' is true, also insert a backref from the
3475 * inode to the parent directory.
3476 */
3477 int btrfs_add_link(struct btrfs_trans_handle *trans,
3478 struct inode *parent_inode, struct inode *inode,
3479 const char *name, int name_len, int add_backref, u64 index)
3480 {
3481 int ret;
3482 struct btrfs_key key;
3483 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3484
3485 key.objectid = inode->i_ino;
3486 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3487 key.offset = 0;
3488
3489 ret = btrfs_insert_dir_item(trans, root, name, name_len,
3490 parent_inode->i_ino,
3491 &key, btrfs_inode_type(inode),
3492 index);
3493 if (ret == 0) {
3494 if (add_backref) {
3495 ret = btrfs_insert_inode_ref(trans, root,
3496 name, name_len,
3497 inode->i_ino,
3498 parent_inode->i_ino,
3499 index);
3500 }
3501 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3502 name_len * 2);
3503 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3504 ret = btrfs_update_inode(trans, root, parent_inode);
3505 }
3506 return ret;
3507 }
3508
3509 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3510 struct dentry *dentry, struct inode *inode,
3511 int backref, u64 index)
3512 {
3513 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3514 inode, dentry->d_name.name,
3515 dentry->d_name.len, backref, index);
3516 if (!err) {
3517 d_instantiate(dentry, inode);
3518 return 0;
3519 }
3520 if (err > 0)
3521 err = -EEXIST;
3522 return err;
3523 }
3524
3525 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3526 int mode, dev_t rdev)
3527 {
3528 struct btrfs_trans_handle *trans;
3529 struct btrfs_root *root = BTRFS_I(dir)->root;
3530 struct inode *inode = NULL;
3531 int err;
3532 int drop_inode = 0;
3533 u64 objectid;
3534 unsigned long nr = 0;
3535 u64 index = 0;
3536
3537 if (!new_valid_dev(rdev))
3538 return -EINVAL;
3539
3540 err = btrfs_check_free_space(root, 1, 0);
3541 if (err)
3542 goto fail;
3543
3544 trans = btrfs_start_transaction(root, 1);
3545 btrfs_set_trans_block_group(trans, dir);
3546
3547 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3548 if (err) {
3549 err = -ENOSPC;
3550 goto out_unlock;
3551 }
3552
3553 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3554 dentry->d_name.len,
3555 dentry->d_parent->d_inode->i_ino, objectid,
3556 BTRFS_I(dir)->block_group, mode, &index);
3557 err = PTR_ERR(inode);
3558 if (IS_ERR(inode))
3559 goto out_unlock;
3560
3561 err = btrfs_init_acl(inode, dir);
3562 if (err) {
3563 drop_inode = 1;
3564 goto out_unlock;
3565 }
3566
3567 btrfs_set_trans_block_group(trans, inode);
3568 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3569 if (err)
3570 drop_inode = 1;
3571 else {
3572 inode->i_op = &btrfs_special_inode_operations;
3573 init_special_inode(inode, inode->i_mode, rdev);
3574 btrfs_update_inode(trans, root, inode);
3575 }
3576 dir->i_sb->s_dirt = 1;
3577 btrfs_update_inode_block_group(trans, inode);
3578 btrfs_update_inode_block_group(trans, dir);
3579 out_unlock:
3580 nr = trans->blocks_used;
3581 btrfs_end_transaction_throttle(trans, root);
3582 fail:
3583 if (drop_inode) {
3584 inode_dec_link_count(inode);
3585 iput(inode);
3586 }
3587 btrfs_btree_balance_dirty(root, nr);
3588 return err;
3589 }
3590
3591 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3592 int mode, struct nameidata *nd)
3593 {
3594 struct btrfs_trans_handle *trans;
3595 struct btrfs_root *root = BTRFS_I(dir)->root;
3596 struct inode *inode = NULL;
3597 int err;
3598 int drop_inode = 0;
3599 unsigned long nr = 0;
3600 u64 objectid;
3601 u64 index = 0;
3602
3603 err = btrfs_check_free_space(root, 1, 0);
3604 if (err)
3605 goto fail;
3606 trans = btrfs_start_transaction(root, 1);
3607 btrfs_set_trans_block_group(trans, dir);
3608
3609 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3610 if (err) {
3611 err = -ENOSPC;
3612 goto out_unlock;
3613 }
3614
3615 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3616 dentry->d_name.len,
3617 dentry->d_parent->d_inode->i_ino,
3618 objectid, BTRFS_I(dir)->block_group, mode,
3619 &index);
3620 err = PTR_ERR(inode);
3621 if (IS_ERR(inode))
3622 goto out_unlock;
3623
3624 err = btrfs_init_acl(inode, dir);
3625 if (err) {
3626 drop_inode = 1;
3627 goto out_unlock;
3628 }
3629
3630 btrfs_set_trans_block_group(trans, inode);
3631 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3632 if (err)
3633 drop_inode = 1;
3634 else {
3635 inode->i_mapping->a_ops = &btrfs_aops;
3636 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3637 inode->i_fop = &btrfs_file_operations;
3638 inode->i_op = &btrfs_file_inode_operations;
3639 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3640 }
3641 dir->i_sb->s_dirt = 1;
3642 btrfs_update_inode_block_group(trans, inode);
3643 btrfs_update_inode_block_group(trans, dir);
3644 out_unlock:
3645 nr = trans->blocks_used;
3646 btrfs_end_transaction_throttle(trans, root);
3647 fail:
3648 if (drop_inode) {
3649 inode_dec_link_count(inode);
3650 iput(inode);
3651 }
3652 btrfs_btree_balance_dirty(root, nr);
3653 return err;
3654 }
3655
3656 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3657 struct dentry *dentry)
3658 {
3659 struct btrfs_trans_handle *trans;
3660 struct btrfs_root *root = BTRFS_I(dir)->root;
3661 struct inode *inode = old_dentry->d_inode;
3662 u64 index;
3663 unsigned long nr = 0;
3664 int err;
3665 int drop_inode = 0;
3666
3667 if (inode->i_nlink == 0)
3668 return -ENOENT;
3669
3670 btrfs_inc_nlink(inode);
3671 err = btrfs_check_free_space(root, 1, 0);
3672 if (err)
3673 goto fail;
3674 err = btrfs_set_inode_index(dir, &index);
3675 if (err)
3676 goto fail;
3677
3678 trans = btrfs_start_transaction(root, 1);
3679
3680 btrfs_set_trans_block_group(trans, dir);
3681 atomic_inc(&inode->i_count);
3682
3683 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3684
3685 if (err)
3686 drop_inode = 1;
3687
3688 dir->i_sb->s_dirt = 1;
3689 btrfs_update_inode_block_group(trans, dir);
3690 err = btrfs_update_inode(trans, root, inode);
3691
3692 if (err)
3693 drop_inode = 1;
3694
3695 nr = trans->blocks_used;
3696 btrfs_end_transaction_throttle(trans, root);
3697 fail:
3698 if (drop_inode) {
3699 inode_dec_link_count(inode);
3700 iput(inode);
3701 }
3702 btrfs_btree_balance_dirty(root, nr);
3703 return err;
3704 }
3705
3706 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3707 {
3708 struct inode *inode = NULL;
3709 struct btrfs_trans_handle *trans;
3710 struct btrfs_root *root = BTRFS_I(dir)->root;
3711 int err = 0;
3712 int drop_on_err = 0;
3713 u64 objectid = 0;
3714 u64 index = 0;
3715 unsigned long nr = 1;
3716
3717 err = btrfs_check_free_space(root, 1, 0);
3718 if (err)
3719 goto out_unlock;
3720
3721 trans = btrfs_start_transaction(root, 1);
3722 btrfs_set_trans_block_group(trans, dir);
3723
3724 if (IS_ERR(trans)) {
3725 err = PTR_ERR(trans);
3726 goto out_unlock;
3727 }
3728
3729 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3730 if (err) {
3731 err = -ENOSPC;
3732 goto out_unlock;
3733 }
3734
3735 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3736 dentry->d_name.len,
3737 dentry->d_parent->d_inode->i_ino, objectid,
3738 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3739 &index);
3740 if (IS_ERR(inode)) {
3741 err = PTR_ERR(inode);
3742 goto out_fail;
3743 }
3744
3745 drop_on_err = 1;
3746
3747 err = btrfs_init_acl(inode, dir);
3748 if (err)
3749 goto out_fail;
3750
3751 inode->i_op = &btrfs_dir_inode_operations;
3752 inode->i_fop = &btrfs_dir_file_operations;
3753 btrfs_set_trans_block_group(trans, inode);
3754
3755 btrfs_i_size_write(inode, 0);
3756 err = btrfs_update_inode(trans, root, inode);
3757 if (err)
3758 goto out_fail;
3759
3760 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3761 inode, dentry->d_name.name,
3762 dentry->d_name.len, 0, index);
3763 if (err)
3764 goto out_fail;
3765
3766 d_instantiate(dentry, inode);
3767 drop_on_err = 0;
3768 dir->i_sb->s_dirt = 1;
3769 btrfs_update_inode_block_group(trans, inode);
3770 btrfs_update_inode_block_group(trans, dir);
3771
3772 out_fail:
3773 nr = trans->blocks_used;
3774 btrfs_end_transaction_throttle(trans, root);
3775
3776 out_unlock:
3777 if (drop_on_err)
3778 iput(inode);
3779 btrfs_btree_balance_dirty(root, nr);
3780 return err;
3781 }
3782
3783 /* helper for btfs_get_extent. Given an existing extent in the tree,
3784 * and an extent that you want to insert, deal with overlap and insert
3785 * the new extent into the tree.
3786 */
3787 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3788 struct extent_map *existing,
3789 struct extent_map *em,
3790 u64 map_start, u64 map_len)
3791 {
3792 u64 start_diff;
3793
3794 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3795 start_diff = map_start - em->start;
3796 em->start = map_start;
3797 em->len = map_len;
3798 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3799 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3800 em->block_start += start_diff;
3801 em->block_len -= start_diff;
3802 }
3803 return add_extent_mapping(em_tree, em);
3804 }
3805
3806 static noinline int uncompress_inline(struct btrfs_path *path,
3807 struct inode *inode, struct page *page,
3808 size_t pg_offset, u64 extent_offset,
3809 struct btrfs_file_extent_item *item)
3810 {
3811 int ret;
3812 struct extent_buffer *leaf = path->nodes[0];
3813 char *tmp;
3814 size_t max_size;
3815 unsigned long inline_size;
3816 unsigned long ptr;
3817
3818 WARN_ON(pg_offset != 0);
3819 max_size = btrfs_file_extent_ram_bytes(leaf, item);
3820 inline_size = btrfs_file_extent_inline_item_len(leaf,
3821 btrfs_item_nr(leaf, path->slots[0]));
3822 tmp = kmalloc(inline_size, GFP_NOFS);
3823 ptr = btrfs_file_extent_inline_start(item);
3824
3825 read_extent_buffer(leaf, tmp, ptr, inline_size);
3826
3827 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
3828 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3829 inline_size, max_size);
3830 if (ret) {
3831 char *kaddr = kmap_atomic(page, KM_USER0);
3832 unsigned long copy_size = min_t(u64,
3833 PAGE_CACHE_SIZE - pg_offset,
3834 max_size - extent_offset);
3835 memset(kaddr + pg_offset, 0, copy_size);
3836 kunmap_atomic(kaddr, KM_USER0);
3837 }
3838 kfree(tmp);
3839 return 0;
3840 }
3841
3842 /*
3843 * a bit scary, this does extent mapping from logical file offset to the disk.
3844 * the ugly parts come from merging extents from the disk with the
3845 * in-ram representation. This gets more complex because of the data=ordered code,
3846 * where the in-ram extents might be locked pending data=ordered completion.
3847 *
3848 * This also copies inline extents directly into the page.
3849 */
3850 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3851 size_t pg_offset, u64 start, u64 len,
3852 int create)
3853 {
3854 int ret;
3855 int err = 0;
3856 u64 bytenr;
3857 u64 extent_start = 0;
3858 u64 extent_end = 0;
3859 u64 objectid = inode->i_ino;
3860 u32 found_type;
3861 struct btrfs_path *path = NULL;
3862 struct btrfs_root *root = BTRFS_I(inode)->root;
3863 struct btrfs_file_extent_item *item;
3864 struct extent_buffer *leaf;
3865 struct btrfs_key found_key;
3866 struct extent_map *em = NULL;
3867 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3868 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3869 struct btrfs_trans_handle *trans = NULL;
3870 int compressed;
3871
3872 again:
3873 spin_lock(&em_tree->lock);
3874 em = lookup_extent_mapping(em_tree, start, len);
3875 if (em)
3876 em->bdev = root->fs_info->fs_devices->latest_bdev;
3877 spin_unlock(&em_tree->lock);
3878
3879 if (em) {
3880 if (em->start > start || em->start + em->len <= start)
3881 free_extent_map(em);
3882 else if (em->block_start == EXTENT_MAP_INLINE && page)
3883 free_extent_map(em);
3884 else
3885 goto out;
3886 }
3887 em = alloc_extent_map(GFP_NOFS);
3888 if (!em) {
3889 err = -ENOMEM;
3890 goto out;
3891 }
3892 em->bdev = root->fs_info->fs_devices->latest_bdev;
3893 em->start = EXTENT_MAP_HOLE;
3894 em->orig_start = EXTENT_MAP_HOLE;
3895 em->len = (u64)-1;
3896 em->block_len = (u64)-1;
3897
3898 if (!path) {
3899 path = btrfs_alloc_path();
3900 BUG_ON(!path);
3901 }
3902
3903 ret = btrfs_lookup_file_extent(trans, root, path,
3904 objectid, start, trans != NULL);
3905 if (ret < 0) {
3906 err = ret;
3907 goto out;
3908 }
3909
3910 if (ret != 0) {
3911 if (path->slots[0] == 0)
3912 goto not_found;
3913 path->slots[0]--;
3914 }
3915
3916 leaf = path->nodes[0];
3917 item = btrfs_item_ptr(leaf, path->slots[0],
3918 struct btrfs_file_extent_item);
3919 /* are we inside the extent that was found? */
3920 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3921 found_type = btrfs_key_type(&found_key);
3922 if (found_key.objectid != objectid ||
3923 found_type != BTRFS_EXTENT_DATA_KEY) {
3924 goto not_found;
3925 }
3926
3927 found_type = btrfs_file_extent_type(leaf, item);
3928 extent_start = found_key.offset;
3929 compressed = btrfs_file_extent_compression(leaf, item);
3930 if (found_type == BTRFS_FILE_EXTENT_REG ||
3931 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3932 extent_end = extent_start +
3933 btrfs_file_extent_num_bytes(leaf, item);
3934 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3935 size_t size;
3936 size = btrfs_file_extent_inline_len(leaf, item);
3937 extent_end = (extent_start + size + root->sectorsize - 1) &
3938 ~((u64)root->sectorsize - 1);
3939 }
3940
3941 if (start >= extent_end) {
3942 path->slots[0]++;
3943 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3944 ret = btrfs_next_leaf(root, path);
3945 if (ret < 0) {
3946 err = ret;
3947 goto out;
3948 }
3949 if (ret > 0)
3950 goto not_found;
3951 leaf = path->nodes[0];
3952 }
3953 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3954 if (found_key.objectid != objectid ||
3955 found_key.type != BTRFS_EXTENT_DATA_KEY)
3956 goto not_found;
3957 if (start + len <= found_key.offset)
3958 goto not_found;
3959 em->start = start;
3960 em->len = found_key.offset - start;
3961 goto not_found_em;
3962 }
3963
3964 if (found_type == BTRFS_FILE_EXTENT_REG ||
3965 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3966 em->start = extent_start;
3967 em->len = extent_end - extent_start;
3968 em->orig_start = extent_start -
3969 btrfs_file_extent_offset(leaf, item);
3970 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
3971 if (bytenr == 0) {
3972 em->block_start = EXTENT_MAP_HOLE;
3973 goto insert;
3974 }
3975 if (compressed) {
3976 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3977 em->block_start = bytenr;
3978 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
3979 item);
3980 } else {
3981 bytenr += btrfs_file_extent_offset(leaf, item);
3982 em->block_start = bytenr;
3983 em->block_len = em->len;
3984 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
3985 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
3986 }
3987 goto insert;
3988 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3989 unsigned long ptr;
3990 char *map;
3991 size_t size;
3992 size_t extent_offset;
3993 size_t copy_size;
3994
3995 em->block_start = EXTENT_MAP_INLINE;
3996 if (!page || create) {
3997 em->start = extent_start;
3998 em->len = extent_end - extent_start;
3999 goto out;
4000 }
4001
4002 size = btrfs_file_extent_inline_len(leaf, item);
4003 extent_offset = page_offset(page) + pg_offset - extent_start;
4004 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4005 size - extent_offset);
4006 em->start = extent_start + extent_offset;
4007 em->len = (copy_size + root->sectorsize - 1) &
4008 ~((u64)root->sectorsize - 1);
4009 em->orig_start = EXTENT_MAP_INLINE;
4010 if (compressed)
4011 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4012 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4013 if (create == 0 && !PageUptodate(page)) {
4014 if (btrfs_file_extent_compression(leaf, item) ==
4015 BTRFS_COMPRESS_ZLIB) {
4016 ret = uncompress_inline(path, inode, page,
4017 pg_offset,
4018 extent_offset, item);
4019 BUG_ON(ret);
4020 } else {
4021 map = kmap(page);
4022 read_extent_buffer(leaf, map + pg_offset, ptr,
4023 copy_size);
4024 kunmap(page);
4025 }
4026 flush_dcache_page(page);
4027 } else if (create && PageUptodate(page)) {
4028 if (!trans) {
4029 kunmap(page);
4030 free_extent_map(em);
4031 em = NULL;
4032 btrfs_release_path(root, path);
4033 trans = btrfs_join_transaction(root, 1);
4034 goto again;
4035 }
4036 map = kmap(page);
4037 write_extent_buffer(leaf, map + pg_offset, ptr,
4038 copy_size);
4039 kunmap(page);
4040 btrfs_mark_buffer_dirty(leaf);
4041 }
4042 set_extent_uptodate(io_tree, em->start,
4043 extent_map_end(em) - 1, GFP_NOFS);
4044 goto insert;
4045 } else {
4046 printk("unkknown found_type %d\n", found_type);
4047 WARN_ON(1);
4048 }
4049 not_found:
4050 em->start = start;
4051 em->len = len;
4052 not_found_em:
4053 em->block_start = EXTENT_MAP_HOLE;
4054 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4055 insert:
4056 btrfs_release_path(root, path);
4057 if (em->start > start || extent_map_end(em) <= start) {
4058 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
4059 err = -EIO;
4060 goto out;
4061 }
4062
4063 err = 0;
4064 spin_lock(&em_tree->lock);
4065 ret = add_extent_mapping(em_tree, em);
4066 /* it is possible that someone inserted the extent into the tree
4067 * while we had the lock dropped. It is also possible that
4068 * an overlapping map exists in the tree
4069 */
4070 if (ret == -EEXIST) {
4071 struct extent_map *existing;
4072
4073 ret = 0;
4074
4075 existing = lookup_extent_mapping(em_tree, start, len);
4076 if (existing && (existing->start > start ||
4077 existing->start + existing->len <= start)) {
4078 free_extent_map(existing);
4079 existing = NULL;
4080 }
4081 if (!existing) {
4082 existing = lookup_extent_mapping(em_tree, em->start,
4083 em->len);
4084 if (existing) {
4085 err = merge_extent_mapping(em_tree, existing,
4086 em, start,
4087 root->sectorsize);
4088 free_extent_map(existing);
4089 if (err) {
4090 free_extent_map(em);
4091 em = NULL;
4092 }
4093 } else {
4094 err = -EIO;
4095 printk("failing to insert %Lu %Lu\n",
4096 start, len);
4097 free_extent_map(em);
4098 em = NULL;
4099 }
4100 } else {
4101 free_extent_map(em);
4102 em = existing;
4103 err = 0;
4104 }
4105 }
4106 spin_unlock(&em_tree->lock);
4107 out:
4108 if (path)
4109 btrfs_free_path(path);
4110 if (trans) {
4111 ret = btrfs_end_transaction(trans, root);
4112 if (!err) {
4113 err = ret;
4114 }
4115 }
4116 if (err) {
4117 free_extent_map(em);
4118 WARN_ON(1);
4119 return ERR_PTR(err);
4120 }
4121 return em;
4122 }
4123
4124 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4125 const struct iovec *iov, loff_t offset,
4126 unsigned long nr_segs)
4127 {
4128 return -EINVAL;
4129 }
4130
4131 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
4132 {
4133 return extent_bmap(mapping, iblock, btrfs_get_extent);
4134 }
4135
4136 int btrfs_readpage(struct file *file, struct page *page)
4137 {
4138 struct extent_io_tree *tree;
4139 tree = &BTRFS_I(page->mapping->host)->io_tree;
4140 return extent_read_full_page(tree, page, btrfs_get_extent);
4141 }
4142
4143 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4144 {
4145 struct extent_io_tree *tree;
4146
4147
4148 if (current->flags & PF_MEMALLOC) {
4149 redirty_page_for_writepage(wbc, page);
4150 unlock_page(page);
4151 return 0;
4152 }
4153 tree = &BTRFS_I(page->mapping->host)->io_tree;
4154 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4155 }
4156
4157 int btrfs_writepages(struct address_space *mapping,
4158 struct writeback_control *wbc)
4159 {
4160 struct extent_io_tree *tree;
4161
4162 tree = &BTRFS_I(mapping->host)->io_tree;
4163 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4164 }
4165
4166 static int
4167 btrfs_readpages(struct file *file, struct address_space *mapping,
4168 struct list_head *pages, unsigned nr_pages)
4169 {
4170 struct extent_io_tree *tree;
4171 tree = &BTRFS_I(mapping->host)->io_tree;
4172 return extent_readpages(tree, mapping, pages, nr_pages,
4173 btrfs_get_extent);
4174 }
4175 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4176 {
4177 struct extent_io_tree *tree;
4178 struct extent_map_tree *map;
4179 int ret;
4180
4181 tree = &BTRFS_I(page->mapping->host)->io_tree;
4182 map = &BTRFS_I(page->mapping->host)->extent_tree;
4183 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4184 if (ret == 1) {
4185 ClearPagePrivate(page);
4186 set_page_private(page, 0);
4187 page_cache_release(page);
4188 }
4189 return ret;
4190 }
4191
4192 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4193 {
4194 if (PageWriteback(page) || PageDirty(page))
4195 return 0;
4196 return __btrfs_releasepage(page, gfp_flags);
4197 }
4198
4199 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4200 {
4201 struct extent_io_tree *tree;
4202 struct btrfs_ordered_extent *ordered;
4203 u64 page_start = page_offset(page);
4204 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4205
4206 wait_on_page_writeback(page);
4207 tree = &BTRFS_I(page->mapping->host)->io_tree;
4208 if (offset) {
4209 btrfs_releasepage(page, GFP_NOFS);
4210 return;
4211 }
4212
4213 lock_extent(tree, page_start, page_end, GFP_NOFS);
4214 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4215 page_offset(page));
4216 if (ordered) {
4217 /*
4218 * IO on this page will never be started, so we need
4219 * to account for any ordered extents now
4220 */
4221 clear_extent_bit(tree, page_start, page_end,
4222 EXTENT_DIRTY | EXTENT_DELALLOC |
4223 EXTENT_LOCKED, 1, 0, GFP_NOFS);
4224 btrfs_finish_ordered_io(page->mapping->host,
4225 page_start, page_end);
4226 btrfs_put_ordered_extent(ordered);
4227 lock_extent(tree, page_start, page_end, GFP_NOFS);
4228 }
4229 clear_extent_bit(tree, page_start, page_end,
4230 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4231 EXTENT_ORDERED,
4232 1, 1, GFP_NOFS);
4233 __btrfs_releasepage(page, GFP_NOFS);
4234
4235 ClearPageChecked(page);
4236 if (PagePrivate(page)) {
4237 ClearPagePrivate(page);
4238 set_page_private(page, 0);
4239 page_cache_release(page);
4240 }
4241 }
4242
4243 /*
4244 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4245 * called from a page fault handler when a page is first dirtied. Hence we must
4246 * be careful to check for EOF conditions here. We set the page up correctly
4247 * for a written page which means we get ENOSPC checking when writing into
4248 * holes and correct delalloc and unwritten extent mapping on filesystems that
4249 * support these features.
4250 *
4251 * We are not allowed to take the i_mutex here so we have to play games to
4252 * protect against truncate races as the page could now be beyond EOF. Because
4253 * vmtruncate() writes the inode size before removing pages, once we have the
4254 * page lock we can determine safely if the page is beyond EOF. If it is not
4255 * beyond EOF, then the page is guaranteed safe against truncation until we
4256 * unlock the page.
4257 */
4258 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4259 {
4260 struct inode *inode = fdentry(vma->vm_file)->d_inode;
4261 struct btrfs_root *root = BTRFS_I(inode)->root;
4262 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4263 struct btrfs_ordered_extent *ordered;
4264 char *kaddr;
4265 unsigned long zero_start;
4266 loff_t size;
4267 int ret;
4268 u64 page_start;
4269 u64 page_end;
4270
4271 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
4272 if (ret)
4273 goto out;
4274
4275 ret = -EINVAL;
4276 again:
4277 lock_page(page);
4278 size = i_size_read(inode);
4279 page_start = page_offset(page);
4280 page_end = page_start + PAGE_CACHE_SIZE - 1;
4281
4282 if ((page->mapping != inode->i_mapping) ||
4283 (page_start >= size)) {
4284 /* page got truncated out from underneath us */
4285 goto out_unlock;
4286 }
4287 wait_on_page_writeback(page);
4288
4289 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4290 set_page_extent_mapped(page);
4291
4292 /*
4293 * we can't set the delalloc bits if there are pending ordered
4294 * extents. Drop our locks and wait for them to finish
4295 */
4296 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4297 if (ordered) {
4298 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4299 unlock_page(page);
4300 btrfs_start_ordered_extent(inode, ordered, 1);
4301 btrfs_put_ordered_extent(ordered);
4302 goto again;
4303 }
4304
4305 btrfs_set_extent_delalloc(inode, page_start, page_end);
4306 ret = 0;
4307
4308 /* page is wholly or partially inside EOF */
4309 if (page_start + PAGE_CACHE_SIZE > size)
4310 zero_start = size & ~PAGE_CACHE_MASK;
4311 else
4312 zero_start = PAGE_CACHE_SIZE;
4313
4314 if (zero_start != PAGE_CACHE_SIZE) {
4315 kaddr = kmap(page);
4316 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4317 flush_dcache_page(page);
4318 kunmap(page);
4319 }
4320 ClearPageChecked(page);
4321 set_page_dirty(page);
4322 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4323
4324 out_unlock:
4325 unlock_page(page);
4326 out:
4327 return ret;
4328 }
4329
4330 static void btrfs_truncate(struct inode *inode)
4331 {
4332 struct btrfs_root *root = BTRFS_I(inode)->root;
4333 int ret;
4334 struct btrfs_trans_handle *trans;
4335 unsigned long nr;
4336 u64 mask = root->sectorsize - 1;
4337
4338 if (!S_ISREG(inode->i_mode))
4339 return;
4340 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4341 return;
4342
4343 btrfs_truncate_page(inode->i_mapping, inode->i_size);
4344 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4345
4346 trans = btrfs_start_transaction(root, 1);
4347 btrfs_set_trans_block_group(trans, inode);
4348 btrfs_i_size_write(inode, inode->i_size);
4349
4350 ret = btrfs_orphan_add(trans, inode);
4351 if (ret)
4352 goto out;
4353 /* FIXME, add redo link to tree so we don't leak on crash */
4354 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4355 BTRFS_EXTENT_DATA_KEY);
4356 btrfs_update_inode(trans, root, inode);
4357
4358 ret = btrfs_orphan_del(trans, inode);
4359 BUG_ON(ret);
4360
4361 out:
4362 nr = trans->blocks_used;
4363 ret = btrfs_end_transaction_throttle(trans, root);
4364 BUG_ON(ret);
4365 btrfs_btree_balance_dirty(root, nr);
4366 }
4367
4368 /*
4369 * Invalidate a single dcache entry at the root of the filesystem.
4370 * Needed after creation of snapshot or subvolume.
4371 */
4372 void btrfs_invalidate_dcache_root(struct inode *dir, char *name,
4373 int namelen)
4374 {
4375 struct dentry *alias, *entry;
4376 struct qstr qstr;
4377
4378 alias = d_find_alias(dir);
4379 if (alias) {
4380 qstr.name = name;
4381 qstr.len = namelen;
4382 /* change me if btrfs ever gets a d_hash operation */
4383 qstr.hash = full_name_hash(qstr.name, qstr.len);
4384 entry = d_lookup(alias, &qstr);
4385 dput(alias);
4386 if (entry) {
4387 d_invalidate(entry);
4388 dput(entry);
4389 }
4390 }
4391 }
4392
4393 /*
4394 * create a new subvolume directory/inode (helper for the ioctl).
4395 */
4396 int btrfs_create_subvol_root(struct btrfs_root *new_root, struct dentry *dentry,
4397 struct btrfs_trans_handle *trans, u64 new_dirid,
4398 struct btrfs_block_group_cache *block_group)
4399 {
4400 struct inode *inode;
4401 int error;
4402 u64 index = 0;
4403
4404 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4405 new_dirid, block_group, S_IFDIR | 0700, &index);
4406 if (IS_ERR(inode))
4407 return PTR_ERR(inode);
4408 inode->i_op = &btrfs_dir_inode_operations;
4409 inode->i_fop = &btrfs_dir_file_operations;
4410
4411 inode->i_nlink = 1;
4412 btrfs_i_size_write(inode, 0);
4413
4414 error = btrfs_update_inode(trans, new_root, inode);
4415 if (error)
4416 return error;
4417
4418 d_instantiate(dentry, inode);
4419 return 0;
4420 }
4421
4422 /* helper function for file defrag and space balancing. This
4423 * forces readahead on a given range of bytes in an inode
4424 */
4425 unsigned long btrfs_force_ra(struct address_space *mapping,
4426 struct file_ra_state *ra, struct file *file,
4427 pgoff_t offset, pgoff_t last_index)
4428 {
4429 pgoff_t req_size = last_index - offset + 1;
4430
4431 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4432 return offset + req_size;
4433 }
4434
4435 struct inode *btrfs_alloc_inode(struct super_block *sb)
4436 {
4437 struct btrfs_inode *ei;
4438
4439 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4440 if (!ei)
4441 return NULL;
4442 ei->last_trans = 0;
4443 ei->logged_trans = 0;
4444 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4445 ei->i_acl = BTRFS_ACL_NOT_CACHED;
4446 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4447 INIT_LIST_HEAD(&ei->i_orphan);
4448 return &ei->vfs_inode;
4449 }
4450
4451 void btrfs_destroy_inode(struct inode *inode)
4452 {
4453 struct btrfs_ordered_extent *ordered;
4454 WARN_ON(!list_empty(&inode->i_dentry));
4455 WARN_ON(inode->i_data.nrpages);
4456
4457 if (BTRFS_I(inode)->i_acl &&
4458 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4459 posix_acl_release(BTRFS_I(inode)->i_acl);
4460 if (BTRFS_I(inode)->i_default_acl &&
4461 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4462 posix_acl_release(BTRFS_I(inode)->i_default_acl);
4463
4464 spin_lock(&BTRFS_I(inode)->root->list_lock);
4465 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4466 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4467 " list\n", inode->i_ino);
4468 dump_stack();
4469 }
4470 spin_unlock(&BTRFS_I(inode)->root->list_lock);
4471
4472 while(1) {
4473 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4474 if (!ordered)
4475 break;
4476 else {
4477 printk("found ordered extent %Lu %Lu\n",
4478 ordered->file_offset, ordered->len);
4479 btrfs_remove_ordered_extent(inode, ordered);
4480 btrfs_put_ordered_extent(ordered);
4481 btrfs_put_ordered_extent(ordered);
4482 }
4483 }
4484 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4485 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4486 }
4487
4488 static void init_once(void *foo)
4489 {
4490 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4491
4492 inode_init_once(&ei->vfs_inode);
4493 }
4494
4495 void btrfs_destroy_cachep(void)
4496 {
4497 if (btrfs_inode_cachep)
4498 kmem_cache_destroy(btrfs_inode_cachep);
4499 if (btrfs_trans_handle_cachep)
4500 kmem_cache_destroy(btrfs_trans_handle_cachep);
4501 if (btrfs_transaction_cachep)
4502 kmem_cache_destroy(btrfs_transaction_cachep);
4503 if (btrfs_bit_radix_cachep)
4504 kmem_cache_destroy(btrfs_bit_radix_cachep);
4505 if (btrfs_path_cachep)
4506 kmem_cache_destroy(btrfs_path_cachep);
4507 }
4508
4509 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
4510 unsigned long extra_flags,
4511 void (*ctor)(void *))
4512 {
4513 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
4514 SLAB_MEM_SPREAD | extra_flags), ctor);
4515 }
4516
4517 int btrfs_init_cachep(void)
4518 {
4519 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
4520 sizeof(struct btrfs_inode),
4521 0, init_once);
4522 if (!btrfs_inode_cachep)
4523 goto fail;
4524 btrfs_trans_handle_cachep =
4525 btrfs_cache_create("btrfs_trans_handle_cache",
4526 sizeof(struct btrfs_trans_handle),
4527 0, NULL);
4528 if (!btrfs_trans_handle_cachep)
4529 goto fail;
4530 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
4531 sizeof(struct btrfs_transaction),
4532 0, NULL);
4533 if (!btrfs_transaction_cachep)
4534 goto fail;
4535 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
4536 sizeof(struct btrfs_path),
4537 0, NULL);
4538 if (!btrfs_path_cachep)
4539 goto fail;
4540 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
4541 SLAB_DESTROY_BY_RCU, NULL);
4542 if (!btrfs_bit_radix_cachep)
4543 goto fail;
4544 return 0;
4545 fail:
4546 btrfs_destroy_cachep();
4547 return -ENOMEM;
4548 }
4549
4550 static int btrfs_getattr(struct vfsmount *mnt,
4551 struct dentry *dentry, struct kstat *stat)
4552 {
4553 struct inode *inode = dentry->d_inode;
4554 generic_fillattr(inode, stat);
4555 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4556 stat->blksize = PAGE_CACHE_SIZE;
4557 stat->blocks = (inode_get_bytes(inode) +
4558 BTRFS_I(inode)->delalloc_bytes) >> 9;
4559 return 0;
4560 }
4561
4562 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
4563 struct inode * new_dir,struct dentry *new_dentry)
4564 {
4565 struct btrfs_trans_handle *trans;
4566 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4567 struct inode *new_inode = new_dentry->d_inode;
4568 struct inode *old_inode = old_dentry->d_inode;
4569 struct timespec ctime = CURRENT_TIME;
4570 u64 index = 0;
4571 int ret;
4572
4573 /* we're not allowed to rename between subvolumes */
4574 if (BTRFS_I(old_inode)->root->root_key.objectid !=
4575 BTRFS_I(new_dir)->root->root_key.objectid)
4576 return -EXDEV;
4577
4578 if (S_ISDIR(old_inode->i_mode) && new_inode &&
4579 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4580 return -ENOTEMPTY;
4581 }
4582
4583 /* to rename a snapshot or subvolume, we need to juggle the
4584 * backrefs. This isn't coded yet
4585 */
4586 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4587 return -EXDEV;
4588
4589 ret = btrfs_check_free_space(root, 1, 0);
4590 if (ret)
4591 goto out_unlock;
4592
4593 trans = btrfs_start_transaction(root, 1);
4594
4595 btrfs_set_trans_block_group(trans, new_dir);
4596
4597 btrfs_inc_nlink(old_dentry->d_inode);
4598 old_dir->i_ctime = old_dir->i_mtime = ctime;
4599 new_dir->i_ctime = new_dir->i_mtime = ctime;
4600 old_inode->i_ctime = ctime;
4601
4602 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4603 old_dentry->d_name.name,
4604 old_dentry->d_name.len);
4605 if (ret)
4606 goto out_fail;
4607
4608 if (new_inode) {
4609 new_inode->i_ctime = CURRENT_TIME;
4610 ret = btrfs_unlink_inode(trans, root, new_dir,
4611 new_dentry->d_inode,
4612 new_dentry->d_name.name,
4613 new_dentry->d_name.len);
4614 if (ret)
4615 goto out_fail;
4616 if (new_inode->i_nlink == 0) {
4617 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4618 if (ret)
4619 goto out_fail;
4620 }
4621
4622 }
4623 ret = btrfs_set_inode_index(new_dir, &index);
4624 if (ret)
4625 goto out_fail;
4626
4627 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4628 old_inode, new_dentry->d_name.name,
4629 new_dentry->d_name.len, 1, index);
4630 if (ret)
4631 goto out_fail;
4632
4633 out_fail:
4634 btrfs_end_transaction_throttle(trans, root);
4635 out_unlock:
4636 return ret;
4637 }
4638
4639 /*
4640 * some fairly slow code that needs optimization. This walks the list
4641 * of all the inodes with pending delalloc and forces them to disk.
4642 */
4643 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4644 {
4645 struct list_head *head = &root->fs_info->delalloc_inodes;
4646 struct btrfs_inode *binode;
4647 struct inode *inode;
4648 unsigned long flags;
4649
4650 if (root->fs_info->sb->s_flags & MS_RDONLY)
4651 return -EROFS;
4652
4653 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
4654 while(!list_empty(head)) {
4655 binode = list_entry(head->next, struct btrfs_inode,
4656 delalloc_inodes);
4657 inode = igrab(&binode->vfs_inode);
4658 if (!inode)
4659 list_del_init(&binode->delalloc_inodes);
4660 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
4661 if (inode) {
4662 filemap_flush(inode->i_mapping);
4663 iput(inode);
4664 }
4665 cond_resched();
4666 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
4667 }
4668 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
4669
4670 /* the filemap_flush will queue IO into the worker threads, but
4671 * we have to make sure the IO is actually started and that
4672 * ordered extents get created before we return
4673 */
4674 atomic_inc(&root->fs_info->async_submit_draining);
4675 while(atomic_read(&root->fs_info->nr_async_submits) ||
4676 atomic_read(&root->fs_info->async_delalloc_pages)) {
4677 wait_event(root->fs_info->async_submit_wait,
4678 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4679 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4680 }
4681 atomic_dec(&root->fs_info->async_submit_draining);
4682 return 0;
4683 }
4684
4685 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4686 const char *symname)
4687 {
4688 struct btrfs_trans_handle *trans;
4689 struct btrfs_root *root = BTRFS_I(dir)->root;
4690 struct btrfs_path *path;
4691 struct btrfs_key key;
4692 struct inode *inode = NULL;
4693 int err;
4694 int drop_inode = 0;
4695 u64 objectid;
4696 u64 index = 0 ;
4697 int name_len;
4698 int datasize;
4699 unsigned long ptr;
4700 struct btrfs_file_extent_item *ei;
4701 struct extent_buffer *leaf;
4702 unsigned long nr = 0;
4703
4704 name_len = strlen(symname) + 1;
4705 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4706 return -ENAMETOOLONG;
4707
4708 err = btrfs_check_free_space(root, 1, 0);
4709 if (err)
4710 goto out_fail;
4711
4712 trans = btrfs_start_transaction(root, 1);
4713 btrfs_set_trans_block_group(trans, dir);
4714
4715 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4716 if (err) {
4717 err = -ENOSPC;
4718 goto out_unlock;
4719 }
4720
4721 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4722 dentry->d_name.len,
4723 dentry->d_parent->d_inode->i_ino, objectid,
4724 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4725 &index);
4726 err = PTR_ERR(inode);
4727 if (IS_ERR(inode))
4728 goto out_unlock;
4729
4730 err = btrfs_init_acl(inode, dir);
4731 if (err) {
4732 drop_inode = 1;
4733 goto out_unlock;
4734 }
4735
4736 btrfs_set_trans_block_group(trans, inode);
4737 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4738 if (err)
4739 drop_inode = 1;
4740 else {
4741 inode->i_mapping->a_ops = &btrfs_aops;
4742 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4743 inode->i_fop = &btrfs_file_operations;
4744 inode->i_op = &btrfs_file_inode_operations;
4745 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4746 }
4747 dir->i_sb->s_dirt = 1;
4748 btrfs_update_inode_block_group(trans, inode);
4749 btrfs_update_inode_block_group(trans, dir);
4750 if (drop_inode)
4751 goto out_unlock;
4752
4753 path = btrfs_alloc_path();
4754 BUG_ON(!path);
4755 key.objectid = inode->i_ino;
4756 key.offset = 0;
4757 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4758 datasize = btrfs_file_extent_calc_inline_size(name_len);
4759 err = btrfs_insert_empty_item(trans, root, path, &key,
4760 datasize);
4761 if (err) {
4762 drop_inode = 1;
4763 goto out_unlock;
4764 }
4765 leaf = path->nodes[0];
4766 ei = btrfs_item_ptr(leaf, path->slots[0],
4767 struct btrfs_file_extent_item);
4768 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4769 btrfs_set_file_extent_type(leaf, ei,
4770 BTRFS_FILE_EXTENT_INLINE);
4771 btrfs_set_file_extent_encryption(leaf, ei, 0);
4772 btrfs_set_file_extent_compression(leaf, ei, 0);
4773 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4774 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4775
4776 ptr = btrfs_file_extent_inline_start(ei);
4777 write_extent_buffer(leaf, symname, ptr, name_len);
4778 btrfs_mark_buffer_dirty(leaf);
4779 btrfs_free_path(path);
4780
4781 inode->i_op = &btrfs_symlink_inode_operations;
4782 inode->i_mapping->a_ops = &btrfs_symlink_aops;
4783 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4784 inode_set_bytes(inode, name_len);
4785 btrfs_i_size_write(inode, name_len - 1);
4786 err = btrfs_update_inode(trans, root, inode);
4787 if (err)
4788 drop_inode = 1;
4789
4790 out_unlock:
4791 nr = trans->blocks_used;
4792 btrfs_end_transaction_throttle(trans, root);
4793 out_fail:
4794 if (drop_inode) {
4795 inode_dec_link_count(inode);
4796 iput(inode);
4797 }
4798 btrfs_btree_balance_dirty(root, nr);
4799 return err;
4800 }
4801
4802 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
4803 u64 alloc_hint, int mode)
4804 {
4805 struct btrfs_trans_handle *trans;
4806 struct btrfs_root *root = BTRFS_I(inode)->root;
4807 struct btrfs_key ins;
4808 u64 alloc_size;
4809 u64 cur_offset = start;
4810 u64 num_bytes = end - start;
4811 int ret = 0;
4812
4813 trans = btrfs_join_transaction(root, 1);
4814 BUG_ON(!trans);
4815 btrfs_set_trans_block_group(trans, inode);
4816
4817 while (num_bytes > 0) {
4818 alloc_size = min(num_bytes, root->fs_info->max_extent);
4819 ret = btrfs_reserve_extent(trans, root, alloc_size,
4820 root->sectorsize, 0, alloc_hint,
4821 (u64)-1, &ins, 1);
4822 if (ret) {
4823 WARN_ON(1);
4824 goto out;
4825 }
4826 ret = insert_reserved_file_extent(trans, inode,
4827 cur_offset, ins.objectid,
4828 ins.offset, ins.offset,
4829 ins.offset, 0, 0, 0,
4830 BTRFS_FILE_EXTENT_PREALLOC);
4831 BUG_ON(ret);
4832 num_bytes -= ins.offset;
4833 cur_offset += ins.offset;
4834 alloc_hint = ins.objectid + ins.offset;
4835 }
4836 out:
4837 if (cur_offset > start) {
4838 inode->i_ctime = CURRENT_TIME;
4839 btrfs_set_flag(inode, PREALLOC);
4840 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4841 cur_offset > i_size_read(inode))
4842 btrfs_i_size_write(inode, cur_offset);
4843 ret = btrfs_update_inode(trans, root, inode);
4844 BUG_ON(ret);
4845 }
4846
4847 btrfs_end_transaction(trans, root);
4848 return ret;
4849 }
4850
4851 static long btrfs_fallocate(struct inode *inode, int mode,
4852 loff_t offset, loff_t len)
4853 {
4854 u64 cur_offset;
4855 u64 last_byte;
4856 u64 alloc_start;
4857 u64 alloc_end;
4858 u64 alloc_hint = 0;
4859 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
4860 struct extent_map *em;
4861 int ret;
4862
4863 alloc_start = offset & ~mask;
4864 alloc_end = (offset + len + mask) & ~mask;
4865
4866 mutex_lock(&inode->i_mutex);
4867 if (alloc_start > inode->i_size) {
4868 ret = btrfs_cont_expand(inode, alloc_start);
4869 if (ret)
4870 goto out;
4871 }
4872
4873 while (1) {
4874 struct btrfs_ordered_extent *ordered;
4875 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start,
4876 alloc_end - 1, GFP_NOFS);
4877 ordered = btrfs_lookup_first_ordered_extent(inode,
4878 alloc_end - 1);
4879 if (ordered &&
4880 ordered->file_offset + ordered->len > alloc_start &&
4881 ordered->file_offset < alloc_end) {
4882 btrfs_put_ordered_extent(ordered);
4883 unlock_extent(&BTRFS_I(inode)->io_tree,
4884 alloc_start, alloc_end - 1, GFP_NOFS);
4885 btrfs_wait_ordered_range(inode, alloc_start,
4886 alloc_end - alloc_start);
4887 } else {
4888 if (ordered)
4889 btrfs_put_ordered_extent(ordered);
4890 break;
4891 }
4892 }
4893
4894 cur_offset = alloc_start;
4895 while (1) {
4896 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4897 alloc_end - cur_offset, 0);
4898 BUG_ON(IS_ERR(em) || !em);
4899 last_byte = min(extent_map_end(em), alloc_end);
4900 last_byte = (last_byte + mask) & ~mask;
4901 if (em->block_start == EXTENT_MAP_HOLE) {
4902 ret = prealloc_file_range(inode, cur_offset,
4903 last_byte, alloc_hint, mode);
4904 if (ret < 0) {
4905 free_extent_map(em);
4906 break;
4907 }
4908 }
4909 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
4910 alloc_hint = em->block_start;
4911 free_extent_map(em);
4912
4913 cur_offset = last_byte;
4914 if (cur_offset >= alloc_end) {
4915 ret = 0;
4916 break;
4917 }
4918 }
4919 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1,
4920 GFP_NOFS);
4921 out:
4922 mutex_unlock(&inode->i_mutex);
4923 return ret;
4924 }
4925
4926 static int btrfs_set_page_dirty(struct page *page)
4927 {
4928 return __set_page_dirty_nobuffers(page);
4929 }
4930
4931 static int btrfs_permission(struct inode *inode, int mask)
4932 {
4933 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
4934 return -EACCES;
4935 return generic_permission(inode, mask, btrfs_check_acl);
4936 }
4937
4938 static struct inode_operations btrfs_dir_inode_operations = {
4939 .getattr = btrfs_getattr,
4940 .lookup = btrfs_lookup,
4941 .create = btrfs_create,
4942 .unlink = btrfs_unlink,
4943 .link = btrfs_link,
4944 .mkdir = btrfs_mkdir,
4945 .rmdir = btrfs_rmdir,
4946 .rename = btrfs_rename,
4947 .symlink = btrfs_symlink,
4948 .setattr = btrfs_setattr,
4949 .mknod = btrfs_mknod,
4950 .setxattr = btrfs_setxattr,
4951 .getxattr = btrfs_getxattr,
4952 .listxattr = btrfs_listxattr,
4953 .removexattr = btrfs_removexattr,
4954 .permission = btrfs_permission,
4955 };
4956 static struct inode_operations btrfs_dir_ro_inode_operations = {
4957 .lookup = btrfs_lookup,
4958 .permission = btrfs_permission,
4959 };
4960 static struct file_operations btrfs_dir_file_operations = {
4961 .llseek = generic_file_llseek,
4962 .read = generic_read_dir,
4963 .readdir = btrfs_real_readdir,
4964 .unlocked_ioctl = btrfs_ioctl,
4965 #ifdef CONFIG_COMPAT
4966 .compat_ioctl = btrfs_ioctl,
4967 #endif
4968 .release = btrfs_release_file,
4969 .fsync = btrfs_sync_file,
4970 };
4971
4972 static struct extent_io_ops btrfs_extent_io_ops = {
4973 .fill_delalloc = run_delalloc_range,
4974 .submit_bio_hook = btrfs_submit_bio_hook,
4975 .merge_bio_hook = btrfs_merge_bio_hook,
4976 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4977 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
4978 .writepage_start_hook = btrfs_writepage_start_hook,
4979 .readpage_io_failed_hook = btrfs_io_failed_hook,
4980 .set_bit_hook = btrfs_set_bit_hook,
4981 .clear_bit_hook = btrfs_clear_bit_hook,
4982 };
4983
4984 static struct address_space_operations btrfs_aops = {
4985 .readpage = btrfs_readpage,
4986 .writepage = btrfs_writepage,
4987 .writepages = btrfs_writepages,
4988 .readpages = btrfs_readpages,
4989 .sync_page = block_sync_page,
4990 .bmap = btrfs_bmap,
4991 .direct_IO = btrfs_direct_IO,
4992 .invalidatepage = btrfs_invalidatepage,
4993 .releasepage = btrfs_releasepage,
4994 .set_page_dirty = btrfs_set_page_dirty,
4995 };
4996
4997 static struct address_space_operations btrfs_symlink_aops = {
4998 .readpage = btrfs_readpage,
4999 .writepage = btrfs_writepage,
5000 .invalidatepage = btrfs_invalidatepage,
5001 .releasepage = btrfs_releasepage,
5002 };
5003
5004 static struct inode_operations btrfs_file_inode_operations = {
5005 .truncate = btrfs_truncate,
5006 .getattr = btrfs_getattr,
5007 .setattr = btrfs_setattr,
5008 .setxattr = btrfs_setxattr,
5009 .getxattr = btrfs_getxattr,
5010 .listxattr = btrfs_listxattr,
5011 .removexattr = btrfs_removexattr,
5012 .permission = btrfs_permission,
5013 .fallocate = btrfs_fallocate,
5014 };
5015 static struct inode_operations btrfs_special_inode_operations = {
5016 .getattr = btrfs_getattr,
5017 .setattr = btrfs_setattr,
5018 .permission = btrfs_permission,
5019 .setxattr = btrfs_setxattr,
5020 .getxattr = btrfs_getxattr,
5021 .listxattr = btrfs_listxattr,
5022 .removexattr = btrfs_removexattr,
5023 };
5024 static struct inode_operations btrfs_symlink_inode_operations = {
5025 .readlink = generic_readlink,
5026 .follow_link = page_follow_link_light,
5027 .put_link = page_put_link,
5028 .permission = btrfs_permission,
5029 };
This page took 0.130853 seconds and 6 git commands to generate.