Btrfs: Use btrfs_join_transaction to avoid deadlocks during snapshot creation
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include <linux/falloc.h>
41 #include "compat.h"
42 #include "ctree.h"
43 #include "disk-io.h"
44 #include "transaction.h"
45 #include "btrfs_inode.h"
46 #include "ioctl.h"
47 #include "print-tree.h"
48 #include "volumes.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "ref-cache.h"
53 #include "compression.h"
54
55 struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
58 };
59
60 static struct inode_operations btrfs_dir_inode_operations;
61 static struct inode_operations btrfs_symlink_inode_operations;
62 static struct inode_operations btrfs_dir_ro_inode_operations;
63 static struct inode_operations btrfs_special_inode_operations;
64 static struct inode_operations btrfs_file_inode_operations;
65 static struct address_space_operations btrfs_aops;
66 static struct address_space_operations btrfs_symlink_aops;
67 static struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_bit_radix_cachep;
74 struct kmem_cache *btrfs_path_cachep;
75
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85 };
86
87 static void btrfs_truncate(struct inode *inode);
88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
89 static noinline int cow_file_range(struct inode *inode,
90 struct page *locked_page,
91 u64 start, u64 end, int *page_started,
92 unsigned long *nr_written, int unlock);
93
94 /*
95 * a very lame attempt at stopping writes when the FS is 85% full. There
96 * are countless ways this is incorrect, but it is better than nothing.
97 */
98 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
99 int for_del)
100 {
101 u64 total;
102 u64 used;
103 u64 thresh;
104 int ret = 0;
105
106 spin_lock(&root->fs_info->delalloc_lock);
107 total = btrfs_super_total_bytes(&root->fs_info->super_copy);
108 used = btrfs_super_bytes_used(&root->fs_info->super_copy);
109 if (for_del)
110 thresh = total * 90;
111 else
112 thresh = total * 85;
113
114 do_div(thresh, 100);
115
116 if (used + root->fs_info->delalloc_bytes + num_required > thresh)
117 ret = -ENOSPC;
118 spin_unlock(&root->fs_info->delalloc_lock);
119 return ret;
120 }
121
122 /*
123 * this does all the hard work for inserting an inline extent into
124 * the btree. The caller should have done a btrfs_drop_extents so that
125 * no overlapping inline items exist in the btree
126 */
127 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
128 struct btrfs_root *root, struct inode *inode,
129 u64 start, size_t size, size_t compressed_size,
130 struct page **compressed_pages)
131 {
132 struct btrfs_key key;
133 struct btrfs_path *path;
134 struct extent_buffer *leaf;
135 struct page *page = NULL;
136 char *kaddr;
137 unsigned long ptr;
138 struct btrfs_file_extent_item *ei;
139 int err = 0;
140 int ret;
141 size_t cur_size = size;
142 size_t datasize;
143 unsigned long offset;
144 int use_compress = 0;
145
146 if (compressed_size && compressed_pages) {
147 use_compress = 1;
148 cur_size = compressed_size;
149 }
150
151 path = btrfs_alloc_path();
152 if (!path)
153 return -ENOMEM;
154
155 btrfs_set_trans_block_group(trans, inode);
156
157 key.objectid = inode->i_ino;
158 key.offset = start;
159 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
160 inode_add_bytes(inode, size);
161 datasize = btrfs_file_extent_calc_inline_size(cur_size);
162
163 inode_add_bytes(inode, size);
164 ret = btrfs_insert_empty_item(trans, root, path, &key,
165 datasize);
166 BUG_ON(ret);
167 if (ret) {
168 err = ret;
169 goto fail;
170 }
171 leaf = path->nodes[0];
172 ei = btrfs_item_ptr(leaf, path->slots[0],
173 struct btrfs_file_extent_item);
174 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
175 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
176 btrfs_set_file_extent_encryption(leaf, ei, 0);
177 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
178 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
179 ptr = btrfs_file_extent_inline_start(ei);
180
181 if (use_compress) {
182 struct page *cpage;
183 int i = 0;
184 while (compressed_size > 0) {
185 cpage = compressed_pages[i];
186 cur_size = min_t(unsigned long, compressed_size,
187 PAGE_CACHE_SIZE);
188
189 kaddr = kmap(cpage);
190 write_extent_buffer(leaf, kaddr, ptr, cur_size);
191 kunmap(cpage);
192
193 i++;
194 ptr += cur_size;
195 compressed_size -= cur_size;
196 }
197 btrfs_set_file_extent_compression(leaf, ei,
198 BTRFS_COMPRESS_ZLIB);
199 } else {
200 page = find_get_page(inode->i_mapping,
201 start >> PAGE_CACHE_SHIFT);
202 btrfs_set_file_extent_compression(leaf, ei, 0);
203 kaddr = kmap_atomic(page, KM_USER0);
204 offset = start & (PAGE_CACHE_SIZE - 1);
205 write_extent_buffer(leaf, kaddr + offset, ptr, size);
206 kunmap_atomic(kaddr, KM_USER0);
207 page_cache_release(page);
208 }
209 btrfs_mark_buffer_dirty(leaf);
210 btrfs_free_path(path);
211
212 BTRFS_I(inode)->disk_i_size = inode->i_size;
213 btrfs_update_inode(trans, root, inode);
214 return 0;
215 fail:
216 btrfs_free_path(path);
217 return err;
218 }
219
220
221 /*
222 * conditionally insert an inline extent into the file. This
223 * does the checks required to make sure the data is small enough
224 * to fit as an inline extent.
225 */
226 static int cow_file_range_inline(struct btrfs_trans_handle *trans,
227 struct btrfs_root *root,
228 struct inode *inode, u64 start, u64 end,
229 size_t compressed_size,
230 struct page **compressed_pages)
231 {
232 u64 isize = i_size_read(inode);
233 u64 actual_end = min(end + 1, isize);
234 u64 inline_len = actual_end - start;
235 u64 aligned_end = (end + root->sectorsize - 1) &
236 ~((u64)root->sectorsize - 1);
237 u64 hint_byte;
238 u64 data_len = inline_len;
239 int ret;
240
241 if (compressed_size)
242 data_len = compressed_size;
243
244 if (start > 0 ||
245 actual_end >= PAGE_CACHE_SIZE ||
246 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
247 (!compressed_size &&
248 (actual_end & (root->sectorsize - 1)) == 0) ||
249 end + 1 < isize ||
250 data_len > root->fs_info->max_inline) {
251 return 1;
252 }
253
254 ret = btrfs_drop_extents(trans, root, inode, start,
255 aligned_end, start, &hint_byte);
256 BUG_ON(ret);
257
258 if (isize > actual_end)
259 inline_len = min_t(u64, isize, actual_end);
260 ret = insert_inline_extent(trans, root, inode, start,
261 inline_len, compressed_size,
262 compressed_pages);
263 BUG_ON(ret);
264 btrfs_drop_extent_cache(inode, start, aligned_end, 0);
265 return 0;
266 }
267
268 struct async_extent {
269 u64 start;
270 u64 ram_size;
271 u64 compressed_size;
272 struct page **pages;
273 unsigned long nr_pages;
274 struct list_head list;
275 };
276
277 struct async_cow {
278 struct inode *inode;
279 struct btrfs_root *root;
280 struct page *locked_page;
281 u64 start;
282 u64 end;
283 struct list_head extents;
284 struct btrfs_work work;
285 };
286
287 static noinline int add_async_extent(struct async_cow *cow,
288 u64 start, u64 ram_size,
289 u64 compressed_size,
290 struct page **pages,
291 unsigned long nr_pages)
292 {
293 struct async_extent *async_extent;
294
295 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
296 async_extent->start = start;
297 async_extent->ram_size = ram_size;
298 async_extent->compressed_size = compressed_size;
299 async_extent->pages = pages;
300 async_extent->nr_pages = nr_pages;
301 list_add_tail(&async_extent->list, &cow->extents);
302 return 0;
303 }
304
305 /*
306 * we create compressed extents in two phases. The first
307 * phase compresses a range of pages that have already been
308 * locked (both pages and state bits are locked).
309 *
310 * This is done inside an ordered work queue, and the compression
311 * is spread across many cpus. The actual IO submission is step
312 * two, and the ordered work queue takes care of making sure that
313 * happens in the same order things were put onto the queue by
314 * writepages and friends.
315 *
316 * If this code finds it can't get good compression, it puts an
317 * entry onto the work queue to write the uncompressed bytes. This
318 * makes sure that both compressed inodes and uncompressed inodes
319 * are written in the same order that pdflush sent them down.
320 */
321 static noinline int compress_file_range(struct inode *inode,
322 struct page *locked_page,
323 u64 start, u64 end,
324 struct async_cow *async_cow,
325 int *num_added)
326 {
327 struct btrfs_root *root = BTRFS_I(inode)->root;
328 struct btrfs_trans_handle *trans;
329 u64 num_bytes;
330 u64 orig_start;
331 u64 disk_num_bytes;
332 u64 blocksize = root->sectorsize;
333 u64 actual_end;
334 u64 isize = i_size_read(inode);
335 int ret = 0;
336 struct page **pages = NULL;
337 unsigned long nr_pages;
338 unsigned long nr_pages_ret = 0;
339 unsigned long total_compressed = 0;
340 unsigned long total_in = 0;
341 unsigned long max_compressed = 128 * 1024;
342 unsigned long max_uncompressed = 128 * 1024;
343 int i;
344 int will_compress;
345
346 orig_start = start;
347
348 actual_end = min_t(u64, isize, end + 1);
349 again:
350 will_compress = 0;
351 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
352 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
353
354 total_compressed = actual_end - start;
355
356 /* we want to make sure that amount of ram required to uncompress
357 * an extent is reasonable, so we limit the total size in ram
358 * of a compressed extent to 128k. This is a crucial number
359 * because it also controls how easily we can spread reads across
360 * cpus for decompression.
361 *
362 * We also want to make sure the amount of IO required to do
363 * a random read is reasonably small, so we limit the size of
364 * a compressed extent to 128k.
365 */
366 total_compressed = min(total_compressed, max_uncompressed);
367 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
368 num_bytes = max(blocksize, num_bytes);
369 disk_num_bytes = num_bytes;
370 total_in = 0;
371 ret = 0;
372
373 /*
374 * we do compression for mount -o compress and when the
375 * inode has not been flagged as nocompress. This flag can
376 * change at any time if we discover bad compression ratios.
377 */
378 if (!btrfs_test_flag(inode, NOCOMPRESS) &&
379 btrfs_test_opt(root, COMPRESS)) {
380 WARN_ON(pages);
381 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
382
383 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
384 total_compressed, pages,
385 nr_pages, &nr_pages_ret,
386 &total_in,
387 &total_compressed,
388 max_compressed);
389
390 if (!ret) {
391 unsigned long offset = total_compressed &
392 (PAGE_CACHE_SIZE - 1);
393 struct page *page = pages[nr_pages_ret - 1];
394 char *kaddr;
395
396 /* zero the tail end of the last page, we might be
397 * sending it down to disk
398 */
399 if (offset) {
400 kaddr = kmap_atomic(page, KM_USER0);
401 memset(kaddr + offset, 0,
402 PAGE_CACHE_SIZE - offset);
403 kunmap_atomic(kaddr, KM_USER0);
404 }
405 will_compress = 1;
406 }
407 }
408 if (start == 0) {
409 trans = btrfs_join_transaction(root, 1);
410 BUG_ON(!trans);
411 btrfs_set_trans_block_group(trans, inode);
412
413 /* lets try to make an inline extent */
414 if (ret || total_in < (actual_end - start)) {
415 /* we didn't compress the entire range, try
416 * to make an uncompressed inline extent.
417 */
418 ret = cow_file_range_inline(trans, root, inode,
419 start, end, 0, NULL);
420 } else {
421 /* try making a compressed inline extent */
422 ret = cow_file_range_inline(trans, root, inode,
423 start, end,
424 total_compressed, pages);
425 }
426 btrfs_end_transaction(trans, root);
427 if (ret == 0) {
428 /*
429 * inline extent creation worked, we don't need
430 * to create any more async work items. Unlock
431 * and free up our temp pages.
432 */
433 extent_clear_unlock_delalloc(inode,
434 &BTRFS_I(inode)->io_tree,
435 start, end, NULL, 1, 0,
436 0, 1, 1, 1);
437 ret = 0;
438 goto free_pages_out;
439 }
440 }
441
442 if (will_compress) {
443 /*
444 * we aren't doing an inline extent round the compressed size
445 * up to a block size boundary so the allocator does sane
446 * things
447 */
448 total_compressed = (total_compressed + blocksize - 1) &
449 ~(blocksize - 1);
450
451 /*
452 * one last check to make sure the compression is really a
453 * win, compare the page count read with the blocks on disk
454 */
455 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
456 ~(PAGE_CACHE_SIZE - 1);
457 if (total_compressed >= total_in) {
458 will_compress = 0;
459 } else {
460 disk_num_bytes = total_compressed;
461 num_bytes = total_in;
462 }
463 }
464 if (!will_compress && pages) {
465 /*
466 * the compression code ran but failed to make things smaller,
467 * free any pages it allocated and our page pointer array
468 */
469 for (i = 0; i < nr_pages_ret; i++) {
470 WARN_ON(pages[i]->mapping);
471 page_cache_release(pages[i]);
472 }
473 kfree(pages);
474 pages = NULL;
475 total_compressed = 0;
476 nr_pages_ret = 0;
477
478 /* flag the file so we don't compress in the future */
479 btrfs_set_flag(inode, NOCOMPRESS);
480 }
481 if (will_compress) {
482 *num_added += 1;
483
484 /* the async work queues will take care of doing actual
485 * allocation on disk for these compressed pages,
486 * and will submit them to the elevator.
487 */
488 add_async_extent(async_cow, start, num_bytes,
489 total_compressed, pages, nr_pages_ret);
490
491 if (start + num_bytes < end && start + num_bytes < actual_end) {
492 start += num_bytes;
493 pages = NULL;
494 cond_resched();
495 goto again;
496 }
497 } else {
498 /*
499 * No compression, but we still need to write the pages in
500 * the file we've been given so far. redirty the locked
501 * page if it corresponds to our extent and set things up
502 * for the async work queue to run cow_file_range to do
503 * the normal delalloc dance
504 */
505 if (page_offset(locked_page) >= start &&
506 page_offset(locked_page) <= end) {
507 __set_page_dirty_nobuffers(locked_page);
508 /* unlocked later on in the async handlers */
509 }
510 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
511 *num_added += 1;
512 }
513
514 out:
515 return 0;
516
517 free_pages_out:
518 for (i = 0; i < nr_pages_ret; i++) {
519 WARN_ON(pages[i]->mapping);
520 page_cache_release(pages[i]);
521 }
522 kfree(pages);
523
524 goto out;
525 }
526
527 /*
528 * phase two of compressed writeback. This is the ordered portion
529 * of the code, which only gets called in the order the work was
530 * queued. We walk all the async extents created by compress_file_range
531 * and send them down to the disk.
532 */
533 static noinline int submit_compressed_extents(struct inode *inode,
534 struct async_cow *async_cow)
535 {
536 struct async_extent *async_extent;
537 u64 alloc_hint = 0;
538 struct btrfs_trans_handle *trans;
539 struct btrfs_key ins;
540 struct extent_map *em;
541 struct btrfs_root *root = BTRFS_I(inode)->root;
542 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
543 struct extent_io_tree *io_tree;
544 int ret;
545
546 if (list_empty(&async_cow->extents))
547 return 0;
548
549 trans = btrfs_join_transaction(root, 1);
550
551 while (!list_empty(&async_cow->extents)) {
552 async_extent = list_entry(async_cow->extents.next,
553 struct async_extent, list);
554 list_del(&async_extent->list);
555
556 io_tree = &BTRFS_I(inode)->io_tree;
557
558 /* did the compression code fall back to uncompressed IO? */
559 if (!async_extent->pages) {
560 int page_started = 0;
561 unsigned long nr_written = 0;
562
563 lock_extent(io_tree, async_extent->start,
564 async_extent->start +
565 async_extent->ram_size - 1, GFP_NOFS);
566
567 /* allocate blocks */
568 cow_file_range(inode, async_cow->locked_page,
569 async_extent->start,
570 async_extent->start +
571 async_extent->ram_size - 1,
572 &page_started, &nr_written, 0);
573
574 /*
575 * if page_started, cow_file_range inserted an
576 * inline extent and took care of all the unlocking
577 * and IO for us. Otherwise, we need to submit
578 * all those pages down to the drive.
579 */
580 if (!page_started)
581 extent_write_locked_range(io_tree,
582 inode, async_extent->start,
583 async_extent->start +
584 async_extent->ram_size - 1,
585 btrfs_get_extent,
586 WB_SYNC_ALL);
587 kfree(async_extent);
588 cond_resched();
589 continue;
590 }
591
592 lock_extent(io_tree, async_extent->start,
593 async_extent->start + async_extent->ram_size - 1,
594 GFP_NOFS);
595 /*
596 * here we're doing allocation and writeback of the
597 * compressed pages
598 */
599 btrfs_drop_extent_cache(inode, async_extent->start,
600 async_extent->start +
601 async_extent->ram_size - 1, 0);
602
603 ret = btrfs_reserve_extent(trans, root,
604 async_extent->compressed_size,
605 async_extent->compressed_size,
606 0, alloc_hint,
607 (u64)-1, &ins, 1);
608 BUG_ON(ret);
609 em = alloc_extent_map(GFP_NOFS);
610 em->start = async_extent->start;
611 em->len = async_extent->ram_size;
612 em->orig_start = em->start;
613
614 em->block_start = ins.objectid;
615 em->block_len = ins.offset;
616 em->bdev = root->fs_info->fs_devices->latest_bdev;
617 set_bit(EXTENT_FLAG_PINNED, &em->flags);
618 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
619
620 while (1) {
621 spin_lock(&em_tree->lock);
622 ret = add_extent_mapping(em_tree, em);
623 spin_unlock(&em_tree->lock);
624 if (ret != -EEXIST) {
625 free_extent_map(em);
626 break;
627 }
628 btrfs_drop_extent_cache(inode, async_extent->start,
629 async_extent->start +
630 async_extent->ram_size - 1, 0);
631 }
632
633 ret = btrfs_add_ordered_extent(inode, async_extent->start,
634 ins.objectid,
635 async_extent->ram_size,
636 ins.offset,
637 BTRFS_ORDERED_COMPRESSED);
638 BUG_ON(ret);
639
640 btrfs_end_transaction(trans, root);
641
642 /*
643 * clear dirty, set writeback and unlock the pages.
644 */
645 extent_clear_unlock_delalloc(inode,
646 &BTRFS_I(inode)->io_tree,
647 async_extent->start,
648 async_extent->start +
649 async_extent->ram_size - 1,
650 NULL, 1, 1, 0, 1, 1, 0);
651
652 ret = btrfs_submit_compressed_write(inode,
653 async_extent->start,
654 async_extent->ram_size,
655 ins.objectid,
656 ins.offset, async_extent->pages,
657 async_extent->nr_pages);
658
659 BUG_ON(ret);
660 trans = btrfs_join_transaction(root, 1);
661 alloc_hint = ins.objectid + ins.offset;
662 kfree(async_extent);
663 cond_resched();
664 }
665
666 btrfs_end_transaction(trans, root);
667 return 0;
668 }
669
670 /*
671 * when extent_io.c finds a delayed allocation range in the file,
672 * the call backs end up in this code. The basic idea is to
673 * allocate extents on disk for the range, and create ordered data structs
674 * in ram to track those extents.
675 *
676 * locked_page is the page that writepage had locked already. We use
677 * it to make sure we don't do extra locks or unlocks.
678 *
679 * *page_started is set to one if we unlock locked_page and do everything
680 * required to start IO on it. It may be clean and already done with
681 * IO when we return.
682 */
683 static noinline int cow_file_range(struct inode *inode,
684 struct page *locked_page,
685 u64 start, u64 end, int *page_started,
686 unsigned long *nr_written,
687 int unlock)
688 {
689 struct btrfs_root *root = BTRFS_I(inode)->root;
690 struct btrfs_trans_handle *trans;
691 u64 alloc_hint = 0;
692 u64 num_bytes;
693 unsigned long ram_size;
694 u64 disk_num_bytes;
695 u64 cur_alloc_size;
696 u64 blocksize = root->sectorsize;
697 u64 actual_end;
698 u64 isize = i_size_read(inode);
699 struct btrfs_key ins;
700 struct extent_map *em;
701 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
702 int ret = 0;
703
704 trans = btrfs_join_transaction(root, 1);
705 BUG_ON(!trans);
706 btrfs_set_trans_block_group(trans, inode);
707
708 actual_end = min_t(u64, isize, end + 1);
709
710 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
711 num_bytes = max(blocksize, num_bytes);
712 disk_num_bytes = num_bytes;
713 ret = 0;
714
715 if (start == 0) {
716 /* lets try to make an inline extent */
717 ret = cow_file_range_inline(trans, root, inode,
718 start, end, 0, NULL);
719 if (ret == 0) {
720 extent_clear_unlock_delalloc(inode,
721 &BTRFS_I(inode)->io_tree,
722 start, end, NULL, 1, 1,
723 1, 1, 1, 1);
724 *nr_written = *nr_written +
725 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
726 *page_started = 1;
727 ret = 0;
728 goto out;
729 }
730 }
731
732 BUG_ON(disk_num_bytes >
733 btrfs_super_total_bytes(&root->fs_info->super_copy));
734
735 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
736
737 while (disk_num_bytes > 0) {
738 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
739 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
740 root->sectorsize, 0, alloc_hint,
741 (u64)-1, &ins, 1);
742 BUG_ON(ret);
743
744 em = alloc_extent_map(GFP_NOFS);
745 em->start = start;
746 em->orig_start = em->start;
747
748 ram_size = ins.offset;
749 em->len = ins.offset;
750
751 em->block_start = ins.objectid;
752 em->block_len = ins.offset;
753 em->bdev = root->fs_info->fs_devices->latest_bdev;
754 set_bit(EXTENT_FLAG_PINNED, &em->flags);
755
756 while (1) {
757 spin_lock(&em_tree->lock);
758 ret = add_extent_mapping(em_tree, em);
759 spin_unlock(&em_tree->lock);
760 if (ret != -EEXIST) {
761 free_extent_map(em);
762 break;
763 }
764 btrfs_drop_extent_cache(inode, start,
765 start + ram_size - 1, 0);
766 }
767
768 cur_alloc_size = ins.offset;
769 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
770 ram_size, cur_alloc_size, 0);
771 BUG_ON(ret);
772
773 if (root->root_key.objectid ==
774 BTRFS_DATA_RELOC_TREE_OBJECTID) {
775 ret = btrfs_reloc_clone_csums(inode, start,
776 cur_alloc_size);
777 BUG_ON(ret);
778 }
779
780 if (disk_num_bytes < cur_alloc_size)
781 break;
782
783 /* we're not doing compressed IO, don't unlock the first
784 * page (which the caller expects to stay locked), don't
785 * clear any dirty bits and don't set any writeback bits
786 */
787 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
788 start, start + ram_size - 1,
789 locked_page, unlock, 1,
790 1, 0, 0, 0);
791 disk_num_bytes -= cur_alloc_size;
792 num_bytes -= cur_alloc_size;
793 alloc_hint = ins.objectid + ins.offset;
794 start += cur_alloc_size;
795 }
796 out:
797 ret = 0;
798 btrfs_end_transaction(trans, root);
799
800 return ret;
801 }
802
803 /*
804 * work queue call back to started compression on a file and pages
805 */
806 static noinline void async_cow_start(struct btrfs_work *work)
807 {
808 struct async_cow *async_cow;
809 int num_added = 0;
810 async_cow = container_of(work, struct async_cow, work);
811
812 compress_file_range(async_cow->inode, async_cow->locked_page,
813 async_cow->start, async_cow->end, async_cow,
814 &num_added);
815 if (num_added == 0)
816 async_cow->inode = NULL;
817 }
818
819 /*
820 * work queue call back to submit previously compressed pages
821 */
822 static noinline void async_cow_submit(struct btrfs_work *work)
823 {
824 struct async_cow *async_cow;
825 struct btrfs_root *root;
826 unsigned long nr_pages;
827
828 async_cow = container_of(work, struct async_cow, work);
829
830 root = async_cow->root;
831 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
832 PAGE_CACHE_SHIFT;
833
834 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
835
836 if (atomic_read(&root->fs_info->async_delalloc_pages) <
837 5 * 1042 * 1024 &&
838 waitqueue_active(&root->fs_info->async_submit_wait))
839 wake_up(&root->fs_info->async_submit_wait);
840
841 if (async_cow->inode)
842 submit_compressed_extents(async_cow->inode, async_cow);
843 }
844
845 static noinline void async_cow_free(struct btrfs_work *work)
846 {
847 struct async_cow *async_cow;
848 async_cow = container_of(work, struct async_cow, work);
849 kfree(async_cow);
850 }
851
852 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
853 u64 start, u64 end, int *page_started,
854 unsigned long *nr_written)
855 {
856 struct async_cow *async_cow;
857 struct btrfs_root *root = BTRFS_I(inode)->root;
858 unsigned long nr_pages;
859 u64 cur_end;
860 int limit = 10 * 1024 * 1042;
861
862 if (!btrfs_test_opt(root, COMPRESS)) {
863 return cow_file_range(inode, locked_page, start, end,
864 page_started, nr_written, 1);
865 }
866
867 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
868 EXTENT_DELALLOC, 1, 0, GFP_NOFS);
869 while (start < end) {
870 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
871 async_cow->inode = inode;
872 async_cow->root = root;
873 async_cow->locked_page = locked_page;
874 async_cow->start = start;
875
876 if (btrfs_test_flag(inode, NOCOMPRESS))
877 cur_end = end;
878 else
879 cur_end = min(end, start + 512 * 1024 - 1);
880
881 async_cow->end = cur_end;
882 INIT_LIST_HEAD(&async_cow->extents);
883
884 async_cow->work.func = async_cow_start;
885 async_cow->work.ordered_func = async_cow_submit;
886 async_cow->work.ordered_free = async_cow_free;
887 async_cow->work.flags = 0;
888
889 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
890 PAGE_CACHE_SHIFT;
891 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
892
893 btrfs_queue_worker(&root->fs_info->delalloc_workers,
894 &async_cow->work);
895
896 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
897 wait_event(root->fs_info->async_submit_wait,
898 (atomic_read(&root->fs_info->async_delalloc_pages) <
899 limit));
900 }
901
902 while (atomic_read(&root->fs_info->async_submit_draining) &&
903 atomic_read(&root->fs_info->async_delalloc_pages)) {
904 wait_event(root->fs_info->async_submit_wait,
905 (atomic_read(&root->fs_info->async_delalloc_pages) ==
906 0));
907 }
908
909 *nr_written += nr_pages;
910 start = cur_end + 1;
911 }
912 *page_started = 1;
913 return 0;
914 }
915
916 static noinline int csum_exist_in_range(struct btrfs_root *root,
917 u64 bytenr, u64 num_bytes)
918 {
919 int ret;
920 struct btrfs_ordered_sum *sums;
921 LIST_HEAD(list);
922
923 ret = btrfs_lookup_csums_range(root, bytenr, bytenr + num_bytes - 1,
924 &list);
925 if (ret == 0 && list_empty(&list))
926 return 0;
927
928 while (!list_empty(&list)) {
929 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
930 list_del(&sums->list);
931 kfree(sums);
932 }
933 return 1;
934 }
935
936 /*
937 * when nowcow writeback call back. This checks for snapshots or COW copies
938 * of the extents that exist in the file, and COWs the file as required.
939 *
940 * If no cow copies or snapshots exist, we write directly to the existing
941 * blocks on disk
942 */
943 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page,
944 u64 start, u64 end, int *page_started, int force,
945 unsigned long *nr_written)
946 {
947 struct btrfs_root *root = BTRFS_I(inode)->root;
948 struct btrfs_trans_handle *trans;
949 struct extent_buffer *leaf;
950 struct btrfs_path *path;
951 struct btrfs_file_extent_item *fi;
952 struct btrfs_key found_key;
953 u64 cow_start;
954 u64 cur_offset;
955 u64 extent_end;
956 u64 disk_bytenr;
957 u64 num_bytes;
958 int extent_type;
959 int ret;
960 int type;
961 int nocow;
962 int check_prev = 1;
963
964 path = btrfs_alloc_path();
965 BUG_ON(!path);
966 trans = btrfs_join_transaction(root, 1);
967 BUG_ON(!trans);
968
969 cow_start = (u64)-1;
970 cur_offset = start;
971 while (1) {
972 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
973 cur_offset, 0);
974 BUG_ON(ret < 0);
975 if (ret > 0 && path->slots[0] > 0 && check_prev) {
976 leaf = path->nodes[0];
977 btrfs_item_key_to_cpu(leaf, &found_key,
978 path->slots[0] - 1);
979 if (found_key.objectid == inode->i_ino &&
980 found_key.type == BTRFS_EXTENT_DATA_KEY)
981 path->slots[0]--;
982 }
983 check_prev = 0;
984 next_slot:
985 leaf = path->nodes[0];
986 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
987 ret = btrfs_next_leaf(root, path);
988 if (ret < 0)
989 BUG_ON(1);
990 if (ret > 0)
991 break;
992 leaf = path->nodes[0];
993 }
994
995 nocow = 0;
996 disk_bytenr = 0;
997 num_bytes = 0;
998 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
999
1000 if (found_key.objectid > inode->i_ino ||
1001 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1002 found_key.offset > end)
1003 break;
1004
1005 if (found_key.offset > cur_offset) {
1006 extent_end = found_key.offset;
1007 goto out_check;
1008 }
1009
1010 fi = btrfs_item_ptr(leaf, path->slots[0],
1011 struct btrfs_file_extent_item);
1012 extent_type = btrfs_file_extent_type(leaf, fi);
1013
1014 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1015 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1016 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1017 extent_end = found_key.offset +
1018 btrfs_file_extent_num_bytes(leaf, fi);
1019 if (extent_end <= start) {
1020 path->slots[0]++;
1021 goto next_slot;
1022 }
1023 if (disk_bytenr == 0)
1024 goto out_check;
1025 if (btrfs_file_extent_compression(leaf, fi) ||
1026 btrfs_file_extent_encryption(leaf, fi) ||
1027 btrfs_file_extent_other_encoding(leaf, fi))
1028 goto out_check;
1029 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1030 goto out_check;
1031 if (btrfs_extent_readonly(root, disk_bytenr))
1032 goto out_check;
1033 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1034 disk_bytenr))
1035 goto out_check;
1036 disk_bytenr += btrfs_file_extent_offset(leaf, fi);
1037 disk_bytenr += cur_offset - found_key.offset;
1038 num_bytes = min(end + 1, extent_end) - cur_offset;
1039 /*
1040 * force cow if csum exists in the range.
1041 * this ensure that csum for a given extent are
1042 * either valid or do not exist.
1043 */
1044 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1045 goto out_check;
1046 nocow = 1;
1047 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1048 extent_end = found_key.offset +
1049 btrfs_file_extent_inline_len(leaf, fi);
1050 extent_end = ALIGN(extent_end, root->sectorsize);
1051 } else {
1052 BUG_ON(1);
1053 }
1054 out_check:
1055 if (extent_end <= start) {
1056 path->slots[0]++;
1057 goto next_slot;
1058 }
1059 if (!nocow) {
1060 if (cow_start == (u64)-1)
1061 cow_start = cur_offset;
1062 cur_offset = extent_end;
1063 if (cur_offset > end)
1064 break;
1065 path->slots[0]++;
1066 goto next_slot;
1067 }
1068
1069 btrfs_release_path(root, path);
1070 if (cow_start != (u64)-1) {
1071 ret = cow_file_range(inode, locked_page, cow_start,
1072 found_key.offset - 1, page_started,
1073 nr_written, 1);
1074 BUG_ON(ret);
1075 cow_start = (u64)-1;
1076 }
1077
1078 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1079 struct extent_map *em;
1080 struct extent_map_tree *em_tree;
1081 em_tree = &BTRFS_I(inode)->extent_tree;
1082 em = alloc_extent_map(GFP_NOFS);
1083 em->start = cur_offset;
1084 em->orig_start = em->start;
1085 em->len = num_bytes;
1086 em->block_len = num_bytes;
1087 em->block_start = disk_bytenr;
1088 em->bdev = root->fs_info->fs_devices->latest_bdev;
1089 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1090 while (1) {
1091 spin_lock(&em_tree->lock);
1092 ret = add_extent_mapping(em_tree, em);
1093 spin_unlock(&em_tree->lock);
1094 if (ret != -EEXIST) {
1095 free_extent_map(em);
1096 break;
1097 }
1098 btrfs_drop_extent_cache(inode, em->start,
1099 em->start + em->len - 1, 0);
1100 }
1101 type = BTRFS_ORDERED_PREALLOC;
1102 } else {
1103 type = BTRFS_ORDERED_NOCOW;
1104 }
1105
1106 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1107 num_bytes, num_bytes, type);
1108 BUG_ON(ret);
1109
1110 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1111 cur_offset, cur_offset + num_bytes - 1,
1112 locked_page, 1, 1, 1, 0, 0, 0);
1113 cur_offset = extent_end;
1114 if (cur_offset > end)
1115 break;
1116 }
1117 btrfs_release_path(root, path);
1118
1119 if (cur_offset <= end && cow_start == (u64)-1)
1120 cow_start = cur_offset;
1121 if (cow_start != (u64)-1) {
1122 ret = cow_file_range(inode, locked_page, cow_start, end,
1123 page_started, nr_written, 1);
1124 BUG_ON(ret);
1125 }
1126
1127 ret = btrfs_end_transaction(trans, root);
1128 BUG_ON(ret);
1129 btrfs_free_path(path);
1130 return 0;
1131 }
1132
1133 /*
1134 * extent_io.c call back to do delayed allocation processing
1135 */
1136 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1137 u64 start, u64 end, int *page_started,
1138 unsigned long *nr_written)
1139 {
1140 int ret;
1141
1142 if (btrfs_test_flag(inode, NODATACOW))
1143 ret = run_delalloc_nocow(inode, locked_page, start, end,
1144 page_started, 1, nr_written);
1145 else if (btrfs_test_flag(inode, PREALLOC))
1146 ret = run_delalloc_nocow(inode, locked_page, start, end,
1147 page_started, 0, nr_written);
1148 else
1149 ret = cow_file_range_async(inode, locked_page, start, end,
1150 page_started, nr_written);
1151
1152 return ret;
1153 }
1154
1155 /*
1156 * extent_io.c set_bit_hook, used to track delayed allocation
1157 * bytes in this file, and to maintain the list of inodes that
1158 * have pending delalloc work to be done.
1159 */
1160 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1161 unsigned long old, unsigned long bits)
1162 {
1163 /*
1164 * set_bit and clear bit hooks normally require _irqsave/restore
1165 * but in this case, we are only testeing for the DELALLOC
1166 * bit, which is only set or cleared with irqs on
1167 */
1168 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1169 struct btrfs_root *root = BTRFS_I(inode)->root;
1170 spin_lock(&root->fs_info->delalloc_lock);
1171 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1172 root->fs_info->delalloc_bytes += end - start + 1;
1173 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1174 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1175 &root->fs_info->delalloc_inodes);
1176 }
1177 spin_unlock(&root->fs_info->delalloc_lock);
1178 }
1179 return 0;
1180 }
1181
1182 /*
1183 * extent_io.c clear_bit_hook, see set_bit_hook for why
1184 */
1185 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1186 unsigned long old, unsigned long bits)
1187 {
1188 /*
1189 * set_bit and clear bit hooks normally require _irqsave/restore
1190 * but in this case, we are only testeing for the DELALLOC
1191 * bit, which is only set or cleared with irqs on
1192 */
1193 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1194 struct btrfs_root *root = BTRFS_I(inode)->root;
1195
1196 spin_lock(&root->fs_info->delalloc_lock);
1197 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1198 printk(KERN_INFO "btrfs warning: delalloc account "
1199 "%llu %llu\n",
1200 (unsigned long long)end - start + 1,
1201 (unsigned long long)
1202 root->fs_info->delalloc_bytes);
1203 root->fs_info->delalloc_bytes = 0;
1204 BTRFS_I(inode)->delalloc_bytes = 0;
1205 } else {
1206 root->fs_info->delalloc_bytes -= end - start + 1;
1207 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1208 }
1209 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1210 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1211 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1212 }
1213 spin_unlock(&root->fs_info->delalloc_lock);
1214 }
1215 return 0;
1216 }
1217
1218 /*
1219 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1220 * we don't create bios that span stripes or chunks
1221 */
1222 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1223 size_t size, struct bio *bio,
1224 unsigned long bio_flags)
1225 {
1226 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1227 struct btrfs_mapping_tree *map_tree;
1228 u64 logical = (u64)bio->bi_sector << 9;
1229 u64 length = 0;
1230 u64 map_length;
1231 int ret;
1232
1233 if (bio_flags & EXTENT_BIO_COMPRESSED)
1234 return 0;
1235
1236 length = bio->bi_size;
1237 map_tree = &root->fs_info->mapping_tree;
1238 map_length = length;
1239 ret = btrfs_map_block(map_tree, READ, logical,
1240 &map_length, NULL, 0);
1241
1242 if (map_length < length + size)
1243 return 1;
1244 return 0;
1245 }
1246
1247 /*
1248 * in order to insert checksums into the metadata in large chunks,
1249 * we wait until bio submission time. All the pages in the bio are
1250 * checksummed and sums are attached onto the ordered extent record.
1251 *
1252 * At IO completion time the cums attached on the ordered extent record
1253 * are inserted into the btree
1254 */
1255 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1256 struct bio *bio, int mirror_num,
1257 unsigned long bio_flags)
1258 {
1259 struct btrfs_root *root = BTRFS_I(inode)->root;
1260 int ret = 0;
1261
1262 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1263 BUG_ON(ret);
1264 return 0;
1265 }
1266
1267 /*
1268 * in order to insert checksums into the metadata in large chunks,
1269 * we wait until bio submission time. All the pages in the bio are
1270 * checksummed and sums are attached onto the ordered extent record.
1271 *
1272 * At IO completion time the cums attached on the ordered extent record
1273 * are inserted into the btree
1274 */
1275 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1276 int mirror_num, unsigned long bio_flags)
1277 {
1278 struct btrfs_root *root = BTRFS_I(inode)->root;
1279 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1280 }
1281
1282 /*
1283 * extent_io.c submission hook. This does the right thing for csum calculation
1284 * on write, or reading the csums from the tree before a read
1285 */
1286 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1287 int mirror_num, unsigned long bio_flags)
1288 {
1289 struct btrfs_root *root = BTRFS_I(inode)->root;
1290 int ret = 0;
1291 int skip_sum;
1292
1293 skip_sum = btrfs_test_flag(inode, NODATASUM);
1294
1295 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1296 BUG_ON(ret);
1297
1298 if (!(rw & (1 << BIO_RW))) {
1299 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1300 return btrfs_submit_compressed_read(inode, bio,
1301 mirror_num, bio_flags);
1302 } else if (!skip_sum)
1303 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1304 goto mapit;
1305 } else if (!skip_sum) {
1306 /* csum items have already been cloned */
1307 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1308 goto mapit;
1309 /* we're doing a write, do the async checksumming */
1310 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1311 inode, rw, bio, mirror_num,
1312 bio_flags, __btrfs_submit_bio_start,
1313 __btrfs_submit_bio_done);
1314 }
1315
1316 mapit:
1317 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1318 }
1319
1320 /*
1321 * given a list of ordered sums record them in the inode. This happens
1322 * at IO completion time based on sums calculated at bio submission time.
1323 */
1324 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1325 struct inode *inode, u64 file_offset,
1326 struct list_head *list)
1327 {
1328 struct list_head *cur;
1329 struct btrfs_ordered_sum *sum;
1330
1331 btrfs_set_trans_block_group(trans, inode);
1332 list_for_each(cur, list) {
1333 sum = list_entry(cur, struct btrfs_ordered_sum, list);
1334 btrfs_csum_file_blocks(trans,
1335 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1336 }
1337 return 0;
1338 }
1339
1340 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1341 {
1342 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1343 WARN_ON(1);
1344 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1345 GFP_NOFS);
1346 }
1347
1348 /* see btrfs_writepage_start_hook for details on why this is required */
1349 struct btrfs_writepage_fixup {
1350 struct page *page;
1351 struct btrfs_work work;
1352 };
1353
1354 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1355 {
1356 struct btrfs_writepage_fixup *fixup;
1357 struct btrfs_ordered_extent *ordered;
1358 struct page *page;
1359 struct inode *inode;
1360 u64 page_start;
1361 u64 page_end;
1362
1363 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1364 page = fixup->page;
1365 again:
1366 lock_page(page);
1367 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1368 ClearPageChecked(page);
1369 goto out_page;
1370 }
1371
1372 inode = page->mapping->host;
1373 page_start = page_offset(page);
1374 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1375
1376 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1377
1378 /* already ordered? We're done */
1379 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1380 EXTENT_ORDERED, 0)) {
1381 goto out;
1382 }
1383
1384 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1385 if (ordered) {
1386 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1387 page_end, GFP_NOFS);
1388 unlock_page(page);
1389 btrfs_start_ordered_extent(inode, ordered, 1);
1390 goto again;
1391 }
1392
1393 btrfs_set_extent_delalloc(inode, page_start, page_end);
1394 ClearPageChecked(page);
1395 out:
1396 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1397 out_page:
1398 unlock_page(page);
1399 page_cache_release(page);
1400 }
1401
1402 /*
1403 * There are a few paths in the higher layers of the kernel that directly
1404 * set the page dirty bit without asking the filesystem if it is a
1405 * good idea. This causes problems because we want to make sure COW
1406 * properly happens and the data=ordered rules are followed.
1407 *
1408 * In our case any range that doesn't have the ORDERED bit set
1409 * hasn't been properly setup for IO. We kick off an async process
1410 * to fix it up. The async helper will wait for ordered extents, set
1411 * the delalloc bit and make it safe to write the page.
1412 */
1413 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1414 {
1415 struct inode *inode = page->mapping->host;
1416 struct btrfs_writepage_fixup *fixup;
1417 struct btrfs_root *root = BTRFS_I(inode)->root;
1418 int ret;
1419
1420 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1421 EXTENT_ORDERED, 0);
1422 if (ret)
1423 return 0;
1424
1425 if (PageChecked(page))
1426 return -EAGAIN;
1427
1428 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1429 if (!fixup)
1430 return -EAGAIN;
1431
1432 SetPageChecked(page);
1433 page_cache_get(page);
1434 fixup->work.func = btrfs_writepage_fixup_worker;
1435 fixup->page = page;
1436 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1437 return -EAGAIN;
1438 }
1439
1440 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1441 struct inode *inode, u64 file_pos,
1442 u64 disk_bytenr, u64 disk_num_bytes,
1443 u64 num_bytes, u64 ram_bytes,
1444 u8 compression, u8 encryption,
1445 u16 other_encoding, int extent_type)
1446 {
1447 struct btrfs_root *root = BTRFS_I(inode)->root;
1448 struct btrfs_file_extent_item *fi;
1449 struct btrfs_path *path;
1450 struct extent_buffer *leaf;
1451 struct btrfs_key ins;
1452 u64 hint;
1453 int ret;
1454
1455 path = btrfs_alloc_path();
1456 BUG_ON(!path);
1457
1458 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1459 file_pos + num_bytes, file_pos, &hint);
1460 BUG_ON(ret);
1461
1462 ins.objectid = inode->i_ino;
1463 ins.offset = file_pos;
1464 ins.type = BTRFS_EXTENT_DATA_KEY;
1465 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1466 BUG_ON(ret);
1467 leaf = path->nodes[0];
1468 fi = btrfs_item_ptr(leaf, path->slots[0],
1469 struct btrfs_file_extent_item);
1470 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1471 btrfs_set_file_extent_type(leaf, fi, extent_type);
1472 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1473 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1474 btrfs_set_file_extent_offset(leaf, fi, 0);
1475 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1476 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1477 btrfs_set_file_extent_compression(leaf, fi, compression);
1478 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1479 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1480 btrfs_mark_buffer_dirty(leaf);
1481
1482 inode_add_bytes(inode, num_bytes);
1483 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1484
1485 ins.objectid = disk_bytenr;
1486 ins.offset = disk_num_bytes;
1487 ins.type = BTRFS_EXTENT_ITEM_KEY;
1488 ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1489 root->root_key.objectid,
1490 trans->transid, inode->i_ino, &ins);
1491 BUG_ON(ret);
1492
1493 btrfs_free_path(path);
1494 return 0;
1495 }
1496
1497 /* as ordered data IO finishes, this gets called so we can finish
1498 * an ordered extent if the range of bytes in the file it covers are
1499 * fully written.
1500 */
1501 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1502 {
1503 struct btrfs_root *root = BTRFS_I(inode)->root;
1504 struct btrfs_trans_handle *trans;
1505 struct btrfs_ordered_extent *ordered_extent;
1506 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1507 int compressed = 0;
1508 int ret;
1509
1510 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1511 if (!ret)
1512 return 0;
1513
1514 trans = btrfs_join_transaction(root, 1);
1515
1516 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1517 BUG_ON(!ordered_extent);
1518 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1519 goto nocow;
1520
1521 lock_extent(io_tree, ordered_extent->file_offset,
1522 ordered_extent->file_offset + ordered_extent->len - 1,
1523 GFP_NOFS);
1524
1525 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1526 compressed = 1;
1527 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1528 BUG_ON(compressed);
1529 ret = btrfs_mark_extent_written(trans, root, inode,
1530 ordered_extent->file_offset,
1531 ordered_extent->file_offset +
1532 ordered_extent->len);
1533 BUG_ON(ret);
1534 } else {
1535 ret = insert_reserved_file_extent(trans, inode,
1536 ordered_extent->file_offset,
1537 ordered_extent->start,
1538 ordered_extent->disk_len,
1539 ordered_extent->len,
1540 ordered_extent->len,
1541 compressed, 0, 0,
1542 BTRFS_FILE_EXTENT_REG);
1543 BUG_ON(ret);
1544 }
1545 unlock_extent(io_tree, ordered_extent->file_offset,
1546 ordered_extent->file_offset + ordered_extent->len - 1,
1547 GFP_NOFS);
1548 nocow:
1549 add_pending_csums(trans, inode, ordered_extent->file_offset,
1550 &ordered_extent->list);
1551
1552 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1553 btrfs_ordered_update_i_size(inode, ordered_extent);
1554 btrfs_update_inode(trans, root, inode);
1555 btrfs_remove_ordered_extent(inode, ordered_extent);
1556 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1557
1558 /* once for us */
1559 btrfs_put_ordered_extent(ordered_extent);
1560 /* once for the tree */
1561 btrfs_put_ordered_extent(ordered_extent);
1562
1563 btrfs_end_transaction(trans, root);
1564 return 0;
1565 }
1566
1567 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1568 struct extent_state *state, int uptodate)
1569 {
1570 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1571 }
1572
1573 /*
1574 * When IO fails, either with EIO or csum verification fails, we
1575 * try other mirrors that might have a good copy of the data. This
1576 * io_failure_record is used to record state as we go through all the
1577 * mirrors. If another mirror has good data, the page is set up to date
1578 * and things continue. If a good mirror can't be found, the original
1579 * bio end_io callback is called to indicate things have failed.
1580 */
1581 struct io_failure_record {
1582 struct page *page;
1583 u64 start;
1584 u64 len;
1585 u64 logical;
1586 unsigned long bio_flags;
1587 int last_mirror;
1588 };
1589
1590 static int btrfs_io_failed_hook(struct bio *failed_bio,
1591 struct page *page, u64 start, u64 end,
1592 struct extent_state *state)
1593 {
1594 struct io_failure_record *failrec = NULL;
1595 u64 private;
1596 struct extent_map *em;
1597 struct inode *inode = page->mapping->host;
1598 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1599 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1600 struct bio *bio;
1601 int num_copies;
1602 int ret;
1603 int rw;
1604 u64 logical;
1605
1606 ret = get_state_private(failure_tree, start, &private);
1607 if (ret) {
1608 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1609 if (!failrec)
1610 return -ENOMEM;
1611 failrec->start = start;
1612 failrec->len = end - start + 1;
1613 failrec->last_mirror = 0;
1614 failrec->bio_flags = 0;
1615
1616 spin_lock(&em_tree->lock);
1617 em = lookup_extent_mapping(em_tree, start, failrec->len);
1618 if (em->start > start || em->start + em->len < start) {
1619 free_extent_map(em);
1620 em = NULL;
1621 }
1622 spin_unlock(&em_tree->lock);
1623
1624 if (!em || IS_ERR(em)) {
1625 kfree(failrec);
1626 return -EIO;
1627 }
1628 logical = start - em->start;
1629 logical = em->block_start + logical;
1630 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1631 logical = em->block_start;
1632 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1633 }
1634 failrec->logical = logical;
1635 free_extent_map(em);
1636 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1637 EXTENT_DIRTY, GFP_NOFS);
1638 set_state_private(failure_tree, start,
1639 (u64)(unsigned long)failrec);
1640 } else {
1641 failrec = (struct io_failure_record *)(unsigned long)private;
1642 }
1643 num_copies = btrfs_num_copies(
1644 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1645 failrec->logical, failrec->len);
1646 failrec->last_mirror++;
1647 if (!state) {
1648 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1649 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1650 failrec->start,
1651 EXTENT_LOCKED);
1652 if (state && state->start != failrec->start)
1653 state = NULL;
1654 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1655 }
1656 if (!state || failrec->last_mirror > num_copies) {
1657 set_state_private(failure_tree, failrec->start, 0);
1658 clear_extent_bits(failure_tree, failrec->start,
1659 failrec->start + failrec->len - 1,
1660 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1661 kfree(failrec);
1662 return -EIO;
1663 }
1664 bio = bio_alloc(GFP_NOFS, 1);
1665 bio->bi_private = state;
1666 bio->bi_end_io = failed_bio->bi_end_io;
1667 bio->bi_sector = failrec->logical >> 9;
1668 bio->bi_bdev = failed_bio->bi_bdev;
1669 bio->bi_size = 0;
1670
1671 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1672 if (failed_bio->bi_rw & (1 << BIO_RW))
1673 rw = WRITE;
1674 else
1675 rw = READ;
1676
1677 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1678 failrec->last_mirror,
1679 failrec->bio_flags);
1680 return 0;
1681 }
1682
1683 /*
1684 * each time an IO finishes, we do a fast check in the IO failure tree
1685 * to see if we need to process or clean up an io_failure_record
1686 */
1687 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1688 {
1689 u64 private;
1690 u64 private_failure;
1691 struct io_failure_record *failure;
1692 int ret;
1693
1694 private = 0;
1695 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1696 (u64)-1, 1, EXTENT_DIRTY)) {
1697 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1698 start, &private_failure);
1699 if (ret == 0) {
1700 failure = (struct io_failure_record *)(unsigned long)
1701 private_failure;
1702 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1703 failure->start, 0);
1704 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1705 failure->start,
1706 failure->start + failure->len - 1,
1707 EXTENT_DIRTY | EXTENT_LOCKED,
1708 GFP_NOFS);
1709 kfree(failure);
1710 }
1711 }
1712 return 0;
1713 }
1714
1715 /*
1716 * when reads are done, we need to check csums to verify the data is correct
1717 * if there's a match, we allow the bio to finish. If not, we go through
1718 * the io_failure_record routines to find good copies
1719 */
1720 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1721 struct extent_state *state)
1722 {
1723 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1724 struct inode *inode = page->mapping->host;
1725 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1726 char *kaddr;
1727 u64 private = ~(u32)0;
1728 int ret;
1729 struct btrfs_root *root = BTRFS_I(inode)->root;
1730 u32 csum = ~(u32)0;
1731 unsigned long flags;
1732
1733 if (PageChecked(page)) {
1734 ClearPageChecked(page);
1735 goto good;
1736 }
1737 if (btrfs_test_flag(inode, NODATASUM))
1738 return 0;
1739
1740 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1741 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1742 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1743 GFP_NOFS);
1744 return 0;
1745 }
1746
1747 if (state && state->start == start) {
1748 private = state->private;
1749 ret = 0;
1750 } else {
1751 ret = get_state_private(io_tree, start, &private);
1752 }
1753 local_irq_save(flags);
1754 kaddr = kmap_atomic(page, KM_IRQ0);
1755 if (ret)
1756 goto zeroit;
1757
1758 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1759 btrfs_csum_final(csum, (char *)&csum);
1760 if (csum != private)
1761 goto zeroit;
1762
1763 kunmap_atomic(kaddr, KM_IRQ0);
1764 local_irq_restore(flags);
1765 good:
1766 /* if the io failure tree for this inode is non-empty,
1767 * check to see if we've recovered from a failed IO
1768 */
1769 btrfs_clean_io_failures(inode, start);
1770 return 0;
1771
1772 zeroit:
1773 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1774 "private %llu\n", page->mapping->host->i_ino,
1775 (unsigned long long)start, csum,
1776 (unsigned long long)private);
1777 memset(kaddr + offset, 1, end - start + 1);
1778 flush_dcache_page(page);
1779 kunmap_atomic(kaddr, KM_IRQ0);
1780 local_irq_restore(flags);
1781 if (private == 0)
1782 return 0;
1783 return -EIO;
1784 }
1785
1786 /*
1787 * This creates an orphan entry for the given inode in case something goes
1788 * wrong in the middle of an unlink/truncate.
1789 */
1790 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1791 {
1792 struct btrfs_root *root = BTRFS_I(inode)->root;
1793 int ret = 0;
1794
1795 spin_lock(&root->list_lock);
1796
1797 /* already on the orphan list, we're good */
1798 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1799 spin_unlock(&root->list_lock);
1800 return 0;
1801 }
1802
1803 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1804
1805 spin_unlock(&root->list_lock);
1806
1807 /*
1808 * insert an orphan item to track this unlinked/truncated file
1809 */
1810 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1811
1812 return ret;
1813 }
1814
1815 /*
1816 * We have done the truncate/delete so we can go ahead and remove the orphan
1817 * item for this particular inode.
1818 */
1819 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1820 {
1821 struct btrfs_root *root = BTRFS_I(inode)->root;
1822 int ret = 0;
1823
1824 spin_lock(&root->list_lock);
1825
1826 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1827 spin_unlock(&root->list_lock);
1828 return 0;
1829 }
1830
1831 list_del_init(&BTRFS_I(inode)->i_orphan);
1832 if (!trans) {
1833 spin_unlock(&root->list_lock);
1834 return 0;
1835 }
1836
1837 spin_unlock(&root->list_lock);
1838
1839 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1840
1841 return ret;
1842 }
1843
1844 /*
1845 * this cleans up any orphans that may be left on the list from the last use
1846 * of this root.
1847 */
1848 void btrfs_orphan_cleanup(struct btrfs_root *root)
1849 {
1850 struct btrfs_path *path;
1851 struct extent_buffer *leaf;
1852 struct btrfs_item *item;
1853 struct btrfs_key key, found_key;
1854 struct btrfs_trans_handle *trans;
1855 struct inode *inode;
1856 int ret = 0, nr_unlink = 0, nr_truncate = 0;
1857
1858 path = btrfs_alloc_path();
1859 if (!path)
1860 return;
1861 path->reada = -1;
1862
1863 key.objectid = BTRFS_ORPHAN_OBJECTID;
1864 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1865 key.offset = (u64)-1;
1866
1867
1868 while (1) {
1869 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1870 if (ret < 0) {
1871 printk(KERN_ERR "Error searching slot for orphan: %d"
1872 "\n", ret);
1873 break;
1874 }
1875
1876 /*
1877 * if ret == 0 means we found what we were searching for, which
1878 * is weird, but possible, so only screw with path if we didnt
1879 * find the key and see if we have stuff that matches
1880 */
1881 if (ret > 0) {
1882 if (path->slots[0] == 0)
1883 break;
1884 path->slots[0]--;
1885 }
1886
1887 /* pull out the item */
1888 leaf = path->nodes[0];
1889 item = btrfs_item_nr(leaf, path->slots[0]);
1890 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1891
1892 /* make sure the item matches what we want */
1893 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1894 break;
1895 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1896 break;
1897
1898 /* release the path since we're done with it */
1899 btrfs_release_path(root, path);
1900
1901 /*
1902 * this is where we are basically btrfs_lookup, without the
1903 * crossing root thing. we store the inode number in the
1904 * offset of the orphan item.
1905 */
1906 inode = btrfs_iget_locked(root->fs_info->sb,
1907 found_key.offset, root);
1908 if (!inode)
1909 break;
1910
1911 if (inode->i_state & I_NEW) {
1912 BTRFS_I(inode)->root = root;
1913
1914 /* have to set the location manually */
1915 BTRFS_I(inode)->location.objectid = inode->i_ino;
1916 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1917 BTRFS_I(inode)->location.offset = 0;
1918
1919 btrfs_read_locked_inode(inode);
1920 unlock_new_inode(inode);
1921 }
1922
1923 /*
1924 * add this inode to the orphan list so btrfs_orphan_del does
1925 * the proper thing when we hit it
1926 */
1927 spin_lock(&root->list_lock);
1928 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1929 spin_unlock(&root->list_lock);
1930
1931 /*
1932 * if this is a bad inode, means we actually succeeded in
1933 * removing the inode, but not the orphan record, which means
1934 * we need to manually delete the orphan since iput will just
1935 * do a destroy_inode
1936 */
1937 if (is_bad_inode(inode)) {
1938 trans = btrfs_start_transaction(root, 1);
1939 btrfs_orphan_del(trans, inode);
1940 btrfs_end_transaction(trans, root);
1941 iput(inode);
1942 continue;
1943 }
1944
1945 /* if we have links, this was a truncate, lets do that */
1946 if (inode->i_nlink) {
1947 nr_truncate++;
1948 btrfs_truncate(inode);
1949 } else {
1950 nr_unlink++;
1951 }
1952
1953 /* this will do delete_inode and everything for us */
1954 iput(inode);
1955 }
1956
1957 if (nr_unlink)
1958 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1959 if (nr_truncate)
1960 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1961
1962 btrfs_free_path(path);
1963 }
1964
1965 /*
1966 * read an inode from the btree into the in-memory inode
1967 */
1968 void btrfs_read_locked_inode(struct inode *inode)
1969 {
1970 struct btrfs_path *path;
1971 struct extent_buffer *leaf;
1972 struct btrfs_inode_item *inode_item;
1973 struct btrfs_timespec *tspec;
1974 struct btrfs_root *root = BTRFS_I(inode)->root;
1975 struct btrfs_key location;
1976 u64 alloc_group_block;
1977 u32 rdev;
1978 int ret;
1979
1980 path = btrfs_alloc_path();
1981 BUG_ON(!path);
1982 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1983
1984 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1985 if (ret)
1986 goto make_bad;
1987
1988 leaf = path->nodes[0];
1989 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1990 struct btrfs_inode_item);
1991
1992 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1993 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1994 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1995 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1996 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1997
1998 tspec = btrfs_inode_atime(inode_item);
1999 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2000 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2001
2002 tspec = btrfs_inode_mtime(inode_item);
2003 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2004 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2005
2006 tspec = btrfs_inode_ctime(inode_item);
2007 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2008 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2009
2010 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2011 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2012 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2013 inode->i_generation = BTRFS_I(inode)->generation;
2014 inode->i_rdev = 0;
2015 rdev = btrfs_inode_rdev(leaf, inode_item);
2016
2017 BTRFS_I(inode)->index_cnt = (u64)-1;
2018 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2019
2020 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2021 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2022 alloc_group_block, 0);
2023 btrfs_free_path(path);
2024 inode_item = NULL;
2025
2026 switch (inode->i_mode & S_IFMT) {
2027 case S_IFREG:
2028 inode->i_mapping->a_ops = &btrfs_aops;
2029 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2030 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2031 inode->i_fop = &btrfs_file_operations;
2032 inode->i_op = &btrfs_file_inode_operations;
2033 break;
2034 case S_IFDIR:
2035 inode->i_fop = &btrfs_dir_file_operations;
2036 if (root == root->fs_info->tree_root)
2037 inode->i_op = &btrfs_dir_ro_inode_operations;
2038 else
2039 inode->i_op = &btrfs_dir_inode_operations;
2040 break;
2041 case S_IFLNK:
2042 inode->i_op = &btrfs_symlink_inode_operations;
2043 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2044 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2045 break;
2046 default:
2047 init_special_inode(inode, inode->i_mode, rdev);
2048 break;
2049 }
2050 return;
2051
2052 make_bad:
2053 btrfs_free_path(path);
2054 make_bad_inode(inode);
2055 }
2056
2057 /*
2058 * given a leaf and an inode, copy the inode fields into the leaf
2059 */
2060 static void fill_inode_item(struct btrfs_trans_handle *trans,
2061 struct extent_buffer *leaf,
2062 struct btrfs_inode_item *item,
2063 struct inode *inode)
2064 {
2065 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2066 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2067 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2068 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2069 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2070
2071 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2072 inode->i_atime.tv_sec);
2073 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2074 inode->i_atime.tv_nsec);
2075
2076 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2077 inode->i_mtime.tv_sec);
2078 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2079 inode->i_mtime.tv_nsec);
2080
2081 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2082 inode->i_ctime.tv_sec);
2083 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2084 inode->i_ctime.tv_nsec);
2085
2086 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2087 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2088 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2089 btrfs_set_inode_transid(leaf, item, trans->transid);
2090 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2091 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2092 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2093 }
2094
2095 /*
2096 * copy everything in the in-memory inode into the btree.
2097 */
2098 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2099 struct btrfs_root *root, struct inode *inode)
2100 {
2101 struct btrfs_inode_item *inode_item;
2102 struct btrfs_path *path;
2103 struct extent_buffer *leaf;
2104 int ret;
2105
2106 path = btrfs_alloc_path();
2107 BUG_ON(!path);
2108 ret = btrfs_lookup_inode(trans, root, path,
2109 &BTRFS_I(inode)->location, 1);
2110 if (ret) {
2111 if (ret > 0)
2112 ret = -ENOENT;
2113 goto failed;
2114 }
2115
2116 leaf = path->nodes[0];
2117 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2118 struct btrfs_inode_item);
2119
2120 fill_inode_item(trans, leaf, inode_item, inode);
2121 btrfs_mark_buffer_dirty(leaf);
2122 btrfs_set_inode_last_trans(trans, inode);
2123 ret = 0;
2124 failed:
2125 btrfs_free_path(path);
2126 return ret;
2127 }
2128
2129
2130 /*
2131 * unlink helper that gets used here in inode.c and in the tree logging
2132 * recovery code. It remove a link in a directory with a given name, and
2133 * also drops the back refs in the inode to the directory
2134 */
2135 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2136 struct btrfs_root *root,
2137 struct inode *dir, struct inode *inode,
2138 const char *name, int name_len)
2139 {
2140 struct btrfs_path *path;
2141 int ret = 0;
2142 struct extent_buffer *leaf;
2143 struct btrfs_dir_item *di;
2144 struct btrfs_key key;
2145 u64 index;
2146
2147 path = btrfs_alloc_path();
2148 if (!path) {
2149 ret = -ENOMEM;
2150 goto err;
2151 }
2152
2153 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2154 name, name_len, -1);
2155 if (IS_ERR(di)) {
2156 ret = PTR_ERR(di);
2157 goto err;
2158 }
2159 if (!di) {
2160 ret = -ENOENT;
2161 goto err;
2162 }
2163 leaf = path->nodes[0];
2164 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2165 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2166 if (ret)
2167 goto err;
2168 btrfs_release_path(root, path);
2169
2170 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2171 inode->i_ino,
2172 dir->i_ino, &index);
2173 if (ret) {
2174 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2175 "inode %lu parent %lu\n", name_len, name,
2176 inode->i_ino, dir->i_ino);
2177 goto err;
2178 }
2179
2180 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2181 index, name, name_len, -1);
2182 if (IS_ERR(di)) {
2183 ret = PTR_ERR(di);
2184 goto err;
2185 }
2186 if (!di) {
2187 ret = -ENOENT;
2188 goto err;
2189 }
2190 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2191 btrfs_release_path(root, path);
2192
2193 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2194 inode, dir->i_ino);
2195 BUG_ON(ret != 0 && ret != -ENOENT);
2196 if (ret != -ENOENT)
2197 BTRFS_I(dir)->log_dirty_trans = trans->transid;
2198
2199 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2200 dir, index);
2201 BUG_ON(ret);
2202 err:
2203 btrfs_free_path(path);
2204 if (ret)
2205 goto out;
2206
2207 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2208 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2209 btrfs_update_inode(trans, root, dir);
2210 btrfs_drop_nlink(inode);
2211 ret = btrfs_update_inode(trans, root, inode);
2212 dir->i_sb->s_dirt = 1;
2213 out:
2214 return ret;
2215 }
2216
2217 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2218 {
2219 struct btrfs_root *root;
2220 struct btrfs_trans_handle *trans;
2221 struct inode *inode = dentry->d_inode;
2222 int ret;
2223 unsigned long nr = 0;
2224
2225 root = BTRFS_I(dir)->root;
2226
2227 ret = btrfs_check_free_space(root, 1, 1);
2228 if (ret)
2229 goto fail;
2230
2231 trans = btrfs_start_transaction(root, 1);
2232
2233 btrfs_set_trans_block_group(trans, dir);
2234 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2235 dentry->d_name.name, dentry->d_name.len);
2236
2237 if (inode->i_nlink == 0)
2238 ret = btrfs_orphan_add(trans, inode);
2239
2240 nr = trans->blocks_used;
2241
2242 btrfs_end_transaction_throttle(trans, root);
2243 fail:
2244 btrfs_btree_balance_dirty(root, nr);
2245 return ret;
2246 }
2247
2248 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2249 {
2250 struct inode *inode = dentry->d_inode;
2251 int err = 0;
2252 int ret;
2253 struct btrfs_root *root = BTRFS_I(dir)->root;
2254 struct btrfs_trans_handle *trans;
2255 unsigned long nr = 0;
2256
2257 /*
2258 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2259 * the root of a subvolume or snapshot
2260 */
2261 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2262 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2263 return -ENOTEMPTY;
2264 }
2265
2266 ret = btrfs_check_free_space(root, 1, 1);
2267 if (ret)
2268 goto fail;
2269
2270 trans = btrfs_start_transaction(root, 1);
2271 btrfs_set_trans_block_group(trans, dir);
2272
2273 err = btrfs_orphan_add(trans, inode);
2274 if (err)
2275 goto fail_trans;
2276
2277 /* now the directory is empty */
2278 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2279 dentry->d_name.name, dentry->d_name.len);
2280 if (!err)
2281 btrfs_i_size_write(inode, 0);
2282
2283 fail_trans:
2284 nr = trans->blocks_used;
2285 ret = btrfs_end_transaction_throttle(trans, root);
2286 fail:
2287 btrfs_btree_balance_dirty(root, nr);
2288
2289 if (ret && !err)
2290 err = ret;
2291 return err;
2292 }
2293
2294 #if 0
2295 /*
2296 * when truncating bytes in a file, it is possible to avoid reading
2297 * the leaves that contain only checksum items. This can be the
2298 * majority of the IO required to delete a large file, but it must
2299 * be done carefully.
2300 *
2301 * The keys in the level just above the leaves are checked to make sure
2302 * the lowest key in a given leaf is a csum key, and starts at an offset
2303 * after the new size.
2304 *
2305 * Then the key for the next leaf is checked to make sure it also has
2306 * a checksum item for the same file. If it does, we know our target leaf
2307 * contains only checksum items, and it can be safely freed without reading
2308 * it.
2309 *
2310 * This is just an optimization targeted at large files. It may do
2311 * nothing. It will return 0 unless things went badly.
2312 */
2313 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2314 struct btrfs_root *root,
2315 struct btrfs_path *path,
2316 struct inode *inode, u64 new_size)
2317 {
2318 struct btrfs_key key;
2319 int ret;
2320 int nritems;
2321 struct btrfs_key found_key;
2322 struct btrfs_key other_key;
2323 struct btrfs_leaf_ref *ref;
2324 u64 leaf_gen;
2325 u64 leaf_start;
2326
2327 path->lowest_level = 1;
2328 key.objectid = inode->i_ino;
2329 key.type = BTRFS_CSUM_ITEM_KEY;
2330 key.offset = new_size;
2331 again:
2332 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2333 if (ret < 0)
2334 goto out;
2335
2336 if (path->nodes[1] == NULL) {
2337 ret = 0;
2338 goto out;
2339 }
2340 ret = 0;
2341 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2342 nritems = btrfs_header_nritems(path->nodes[1]);
2343
2344 if (!nritems)
2345 goto out;
2346
2347 if (path->slots[1] >= nritems)
2348 goto next_node;
2349
2350 /* did we find a key greater than anything we want to delete? */
2351 if (found_key.objectid > inode->i_ino ||
2352 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2353 goto out;
2354
2355 /* we check the next key in the node to make sure the leave contains
2356 * only checksum items. This comparison doesn't work if our
2357 * leaf is the last one in the node
2358 */
2359 if (path->slots[1] + 1 >= nritems) {
2360 next_node:
2361 /* search forward from the last key in the node, this
2362 * will bring us into the next node in the tree
2363 */
2364 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2365
2366 /* unlikely, but we inc below, so check to be safe */
2367 if (found_key.offset == (u64)-1)
2368 goto out;
2369
2370 /* search_forward needs a path with locks held, do the
2371 * search again for the original key. It is possible
2372 * this will race with a balance and return a path that
2373 * we could modify, but this drop is just an optimization
2374 * and is allowed to miss some leaves.
2375 */
2376 btrfs_release_path(root, path);
2377 found_key.offset++;
2378
2379 /* setup a max key for search_forward */
2380 other_key.offset = (u64)-1;
2381 other_key.type = key.type;
2382 other_key.objectid = key.objectid;
2383
2384 path->keep_locks = 1;
2385 ret = btrfs_search_forward(root, &found_key, &other_key,
2386 path, 0, 0);
2387 path->keep_locks = 0;
2388 if (ret || found_key.objectid != key.objectid ||
2389 found_key.type != key.type) {
2390 ret = 0;
2391 goto out;
2392 }
2393
2394 key.offset = found_key.offset;
2395 btrfs_release_path(root, path);
2396 cond_resched();
2397 goto again;
2398 }
2399
2400 /* we know there's one more slot after us in the tree,
2401 * read that key so we can verify it is also a checksum item
2402 */
2403 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2404
2405 if (found_key.objectid < inode->i_ino)
2406 goto next_key;
2407
2408 if (found_key.type != key.type || found_key.offset < new_size)
2409 goto next_key;
2410
2411 /*
2412 * if the key for the next leaf isn't a csum key from this objectid,
2413 * we can't be sure there aren't good items inside this leaf.
2414 * Bail out
2415 */
2416 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2417 goto out;
2418
2419 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2420 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2421 /*
2422 * it is safe to delete this leaf, it contains only
2423 * csum items from this inode at an offset >= new_size
2424 */
2425 ret = btrfs_del_leaf(trans, root, path, leaf_start);
2426 BUG_ON(ret);
2427
2428 if (root->ref_cows && leaf_gen < trans->transid) {
2429 ref = btrfs_alloc_leaf_ref(root, 0);
2430 if (ref) {
2431 ref->root_gen = root->root_key.offset;
2432 ref->bytenr = leaf_start;
2433 ref->owner = 0;
2434 ref->generation = leaf_gen;
2435 ref->nritems = 0;
2436
2437 ret = btrfs_add_leaf_ref(root, ref, 0);
2438 WARN_ON(ret);
2439 btrfs_free_leaf_ref(root, ref);
2440 } else {
2441 WARN_ON(1);
2442 }
2443 }
2444 next_key:
2445 btrfs_release_path(root, path);
2446
2447 if (other_key.objectid == inode->i_ino &&
2448 other_key.type == key.type && other_key.offset > key.offset) {
2449 key.offset = other_key.offset;
2450 cond_resched();
2451 goto again;
2452 }
2453 ret = 0;
2454 out:
2455 /* fixup any changes we've made to the path */
2456 path->lowest_level = 0;
2457 path->keep_locks = 0;
2458 btrfs_release_path(root, path);
2459 return ret;
2460 }
2461
2462 #endif
2463
2464 /*
2465 * this can truncate away extent items, csum items and directory items.
2466 * It starts at a high offset and removes keys until it can't find
2467 * any higher than new_size
2468 *
2469 * csum items that cross the new i_size are truncated to the new size
2470 * as well.
2471 *
2472 * min_type is the minimum key type to truncate down to. If set to 0, this
2473 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2474 */
2475 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2476 struct btrfs_root *root,
2477 struct inode *inode,
2478 u64 new_size, u32 min_type)
2479 {
2480 int ret;
2481 struct btrfs_path *path;
2482 struct btrfs_key key;
2483 struct btrfs_key found_key;
2484 u32 found_type;
2485 struct extent_buffer *leaf;
2486 struct btrfs_file_extent_item *fi;
2487 u64 extent_start = 0;
2488 u64 extent_num_bytes = 0;
2489 u64 item_end = 0;
2490 u64 root_gen = 0;
2491 u64 root_owner = 0;
2492 int found_extent;
2493 int del_item;
2494 int pending_del_nr = 0;
2495 int pending_del_slot = 0;
2496 int extent_type = -1;
2497 int encoding;
2498 u64 mask = root->sectorsize - 1;
2499
2500 if (root->ref_cows)
2501 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2502 path = btrfs_alloc_path();
2503 path->reada = -1;
2504 BUG_ON(!path);
2505
2506 /* FIXME, add redo link to tree so we don't leak on crash */
2507 key.objectid = inode->i_ino;
2508 key.offset = (u64)-1;
2509 key.type = (u8)-1;
2510
2511 btrfs_init_path(path);
2512
2513 search_again:
2514 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2515 if (ret < 0)
2516 goto error;
2517
2518 if (ret > 0) {
2519 /* there are no items in the tree for us to truncate, we're
2520 * done
2521 */
2522 if (path->slots[0] == 0) {
2523 ret = 0;
2524 goto error;
2525 }
2526 path->slots[0]--;
2527 }
2528
2529 while (1) {
2530 fi = NULL;
2531 leaf = path->nodes[0];
2532 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2533 found_type = btrfs_key_type(&found_key);
2534 encoding = 0;
2535
2536 if (found_key.objectid != inode->i_ino)
2537 break;
2538
2539 if (found_type < min_type)
2540 break;
2541
2542 item_end = found_key.offset;
2543 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2544 fi = btrfs_item_ptr(leaf, path->slots[0],
2545 struct btrfs_file_extent_item);
2546 extent_type = btrfs_file_extent_type(leaf, fi);
2547 encoding = btrfs_file_extent_compression(leaf, fi);
2548 encoding |= btrfs_file_extent_encryption(leaf, fi);
2549 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2550
2551 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2552 item_end +=
2553 btrfs_file_extent_num_bytes(leaf, fi);
2554 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2555 item_end += btrfs_file_extent_inline_len(leaf,
2556 fi);
2557 }
2558 item_end--;
2559 }
2560 if (item_end < new_size) {
2561 if (found_type == BTRFS_DIR_ITEM_KEY)
2562 found_type = BTRFS_INODE_ITEM_KEY;
2563 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2564 found_type = BTRFS_EXTENT_DATA_KEY;
2565 else if (found_type == BTRFS_EXTENT_DATA_KEY)
2566 found_type = BTRFS_XATTR_ITEM_KEY;
2567 else if (found_type == BTRFS_XATTR_ITEM_KEY)
2568 found_type = BTRFS_INODE_REF_KEY;
2569 else if (found_type)
2570 found_type--;
2571 else
2572 break;
2573 btrfs_set_key_type(&key, found_type);
2574 goto next;
2575 }
2576 if (found_key.offset >= new_size)
2577 del_item = 1;
2578 else
2579 del_item = 0;
2580 found_extent = 0;
2581
2582 /* FIXME, shrink the extent if the ref count is only 1 */
2583 if (found_type != BTRFS_EXTENT_DATA_KEY)
2584 goto delete;
2585
2586 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2587 u64 num_dec;
2588 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2589 if (!del_item && !encoding) {
2590 u64 orig_num_bytes =
2591 btrfs_file_extent_num_bytes(leaf, fi);
2592 extent_num_bytes = new_size -
2593 found_key.offset + root->sectorsize - 1;
2594 extent_num_bytes = extent_num_bytes &
2595 ~((u64)root->sectorsize - 1);
2596 btrfs_set_file_extent_num_bytes(leaf, fi,
2597 extent_num_bytes);
2598 num_dec = (orig_num_bytes -
2599 extent_num_bytes);
2600 if (root->ref_cows && extent_start != 0)
2601 inode_sub_bytes(inode, num_dec);
2602 btrfs_mark_buffer_dirty(leaf);
2603 } else {
2604 extent_num_bytes =
2605 btrfs_file_extent_disk_num_bytes(leaf,
2606 fi);
2607 /* FIXME blocksize != 4096 */
2608 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2609 if (extent_start != 0) {
2610 found_extent = 1;
2611 if (root->ref_cows)
2612 inode_sub_bytes(inode, num_dec);
2613 }
2614 root_gen = btrfs_header_generation(leaf);
2615 root_owner = btrfs_header_owner(leaf);
2616 }
2617 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2618 /*
2619 * we can't truncate inline items that have had
2620 * special encodings
2621 */
2622 if (!del_item &&
2623 btrfs_file_extent_compression(leaf, fi) == 0 &&
2624 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2625 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2626 u32 size = new_size - found_key.offset;
2627
2628 if (root->ref_cows) {
2629 inode_sub_bytes(inode, item_end + 1 -
2630 new_size);
2631 }
2632 size =
2633 btrfs_file_extent_calc_inline_size(size);
2634 ret = btrfs_truncate_item(trans, root, path,
2635 size, 1);
2636 BUG_ON(ret);
2637 } else if (root->ref_cows) {
2638 inode_sub_bytes(inode, item_end + 1 -
2639 found_key.offset);
2640 }
2641 }
2642 delete:
2643 if (del_item) {
2644 if (!pending_del_nr) {
2645 /* no pending yet, add ourselves */
2646 pending_del_slot = path->slots[0];
2647 pending_del_nr = 1;
2648 } else if (pending_del_nr &&
2649 path->slots[0] + 1 == pending_del_slot) {
2650 /* hop on the pending chunk */
2651 pending_del_nr++;
2652 pending_del_slot = path->slots[0];
2653 } else {
2654 BUG();
2655 }
2656 } else {
2657 break;
2658 }
2659 if (found_extent) {
2660 ret = btrfs_free_extent(trans, root, extent_start,
2661 extent_num_bytes,
2662 leaf->start, root_owner,
2663 root_gen, inode->i_ino, 0);
2664 BUG_ON(ret);
2665 }
2666 next:
2667 if (path->slots[0] == 0) {
2668 if (pending_del_nr)
2669 goto del_pending;
2670 btrfs_release_path(root, path);
2671 goto search_again;
2672 }
2673
2674 path->slots[0]--;
2675 if (pending_del_nr &&
2676 path->slots[0] + 1 != pending_del_slot) {
2677 struct btrfs_key debug;
2678 del_pending:
2679 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2680 pending_del_slot);
2681 ret = btrfs_del_items(trans, root, path,
2682 pending_del_slot,
2683 pending_del_nr);
2684 BUG_ON(ret);
2685 pending_del_nr = 0;
2686 btrfs_release_path(root, path);
2687 goto search_again;
2688 }
2689 }
2690 ret = 0;
2691 error:
2692 if (pending_del_nr) {
2693 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2694 pending_del_nr);
2695 }
2696 btrfs_free_path(path);
2697 inode->i_sb->s_dirt = 1;
2698 return ret;
2699 }
2700
2701 /*
2702 * taken from block_truncate_page, but does cow as it zeros out
2703 * any bytes left in the last page in the file.
2704 */
2705 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2706 {
2707 struct inode *inode = mapping->host;
2708 struct btrfs_root *root = BTRFS_I(inode)->root;
2709 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2710 struct btrfs_ordered_extent *ordered;
2711 char *kaddr;
2712 u32 blocksize = root->sectorsize;
2713 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2714 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2715 struct page *page;
2716 int ret = 0;
2717 u64 page_start;
2718 u64 page_end;
2719
2720 if ((offset & (blocksize - 1)) == 0)
2721 goto out;
2722
2723 ret = -ENOMEM;
2724 again:
2725 page = grab_cache_page(mapping, index);
2726 if (!page)
2727 goto out;
2728
2729 page_start = page_offset(page);
2730 page_end = page_start + PAGE_CACHE_SIZE - 1;
2731
2732 if (!PageUptodate(page)) {
2733 ret = btrfs_readpage(NULL, page);
2734 lock_page(page);
2735 if (page->mapping != mapping) {
2736 unlock_page(page);
2737 page_cache_release(page);
2738 goto again;
2739 }
2740 if (!PageUptodate(page)) {
2741 ret = -EIO;
2742 goto out_unlock;
2743 }
2744 }
2745 wait_on_page_writeback(page);
2746
2747 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2748 set_page_extent_mapped(page);
2749
2750 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2751 if (ordered) {
2752 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2753 unlock_page(page);
2754 page_cache_release(page);
2755 btrfs_start_ordered_extent(inode, ordered, 1);
2756 btrfs_put_ordered_extent(ordered);
2757 goto again;
2758 }
2759
2760 btrfs_set_extent_delalloc(inode, page_start, page_end);
2761 ret = 0;
2762 if (offset != PAGE_CACHE_SIZE) {
2763 kaddr = kmap(page);
2764 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2765 flush_dcache_page(page);
2766 kunmap(page);
2767 }
2768 ClearPageChecked(page);
2769 set_page_dirty(page);
2770 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2771
2772 out_unlock:
2773 unlock_page(page);
2774 page_cache_release(page);
2775 out:
2776 return ret;
2777 }
2778
2779 int btrfs_cont_expand(struct inode *inode, loff_t size)
2780 {
2781 struct btrfs_trans_handle *trans;
2782 struct btrfs_root *root = BTRFS_I(inode)->root;
2783 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2784 struct extent_map *em;
2785 u64 mask = root->sectorsize - 1;
2786 u64 hole_start = (inode->i_size + mask) & ~mask;
2787 u64 block_end = (size + mask) & ~mask;
2788 u64 last_byte;
2789 u64 cur_offset;
2790 u64 hole_size;
2791 int err;
2792
2793 if (size <= hole_start)
2794 return 0;
2795
2796 err = btrfs_check_free_space(root, 1, 0);
2797 if (err)
2798 return err;
2799
2800 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2801
2802 while (1) {
2803 struct btrfs_ordered_extent *ordered;
2804 btrfs_wait_ordered_range(inode, hole_start,
2805 block_end - hole_start);
2806 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2807 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2808 if (!ordered)
2809 break;
2810 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2811 btrfs_put_ordered_extent(ordered);
2812 }
2813
2814 trans = btrfs_start_transaction(root, 1);
2815 btrfs_set_trans_block_group(trans, inode);
2816
2817 cur_offset = hole_start;
2818 while (1) {
2819 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2820 block_end - cur_offset, 0);
2821 BUG_ON(IS_ERR(em) || !em);
2822 last_byte = min(extent_map_end(em), block_end);
2823 last_byte = (last_byte + mask) & ~mask;
2824 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2825 u64 hint_byte = 0;
2826 hole_size = last_byte - cur_offset;
2827 err = btrfs_drop_extents(trans, root, inode,
2828 cur_offset,
2829 cur_offset + hole_size,
2830 cur_offset, &hint_byte);
2831 if (err)
2832 break;
2833 err = btrfs_insert_file_extent(trans, root,
2834 inode->i_ino, cur_offset, 0,
2835 0, hole_size, 0, hole_size,
2836 0, 0, 0);
2837 btrfs_drop_extent_cache(inode, hole_start,
2838 last_byte - 1, 0);
2839 }
2840 free_extent_map(em);
2841 cur_offset = last_byte;
2842 if (err || cur_offset >= block_end)
2843 break;
2844 }
2845
2846 btrfs_end_transaction(trans, root);
2847 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2848 return err;
2849 }
2850
2851 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2852 {
2853 struct inode *inode = dentry->d_inode;
2854 int err;
2855
2856 err = inode_change_ok(inode, attr);
2857 if (err)
2858 return err;
2859
2860 if (S_ISREG(inode->i_mode) &&
2861 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
2862 err = btrfs_cont_expand(inode, attr->ia_size);
2863 if (err)
2864 return err;
2865 }
2866
2867 err = inode_setattr(inode, attr);
2868
2869 if (!err && ((attr->ia_valid & ATTR_MODE)))
2870 err = btrfs_acl_chmod(inode);
2871 return err;
2872 }
2873
2874 void btrfs_delete_inode(struct inode *inode)
2875 {
2876 struct btrfs_trans_handle *trans;
2877 struct btrfs_root *root = BTRFS_I(inode)->root;
2878 unsigned long nr;
2879 int ret;
2880
2881 truncate_inode_pages(&inode->i_data, 0);
2882 if (is_bad_inode(inode)) {
2883 btrfs_orphan_del(NULL, inode);
2884 goto no_delete;
2885 }
2886 btrfs_wait_ordered_range(inode, 0, (u64)-1);
2887
2888 btrfs_i_size_write(inode, 0);
2889 trans = btrfs_join_transaction(root, 1);
2890
2891 btrfs_set_trans_block_group(trans, inode);
2892 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2893 if (ret) {
2894 btrfs_orphan_del(NULL, inode);
2895 goto no_delete_lock;
2896 }
2897
2898 btrfs_orphan_del(trans, inode);
2899
2900 nr = trans->blocks_used;
2901 clear_inode(inode);
2902
2903 btrfs_end_transaction(trans, root);
2904 btrfs_btree_balance_dirty(root, nr);
2905 return;
2906
2907 no_delete_lock:
2908 nr = trans->blocks_used;
2909 btrfs_end_transaction(trans, root);
2910 btrfs_btree_balance_dirty(root, nr);
2911 no_delete:
2912 clear_inode(inode);
2913 }
2914
2915 /*
2916 * this returns the key found in the dir entry in the location pointer.
2917 * If no dir entries were found, location->objectid is 0.
2918 */
2919 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2920 struct btrfs_key *location)
2921 {
2922 const char *name = dentry->d_name.name;
2923 int namelen = dentry->d_name.len;
2924 struct btrfs_dir_item *di;
2925 struct btrfs_path *path;
2926 struct btrfs_root *root = BTRFS_I(dir)->root;
2927 int ret = 0;
2928
2929 path = btrfs_alloc_path();
2930 BUG_ON(!path);
2931
2932 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2933 namelen, 0);
2934 if (IS_ERR(di))
2935 ret = PTR_ERR(di);
2936
2937 if (!di || IS_ERR(di))
2938 goto out_err;
2939
2940 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
2941 out:
2942 btrfs_free_path(path);
2943 return ret;
2944 out_err:
2945 location->objectid = 0;
2946 goto out;
2947 }
2948
2949 /*
2950 * when we hit a tree root in a directory, the btrfs part of the inode
2951 * needs to be changed to reflect the root directory of the tree root. This
2952 * is kind of like crossing a mount point.
2953 */
2954 static int fixup_tree_root_location(struct btrfs_root *root,
2955 struct btrfs_key *location,
2956 struct btrfs_root **sub_root,
2957 struct dentry *dentry)
2958 {
2959 struct btrfs_root_item *ri;
2960
2961 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2962 return 0;
2963 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2964 return 0;
2965
2966 *sub_root = btrfs_read_fs_root(root->fs_info, location,
2967 dentry->d_name.name,
2968 dentry->d_name.len);
2969 if (IS_ERR(*sub_root))
2970 return PTR_ERR(*sub_root);
2971
2972 ri = &(*sub_root)->root_item;
2973 location->objectid = btrfs_root_dirid(ri);
2974 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2975 location->offset = 0;
2976
2977 return 0;
2978 }
2979
2980 static noinline void init_btrfs_i(struct inode *inode)
2981 {
2982 struct btrfs_inode *bi = BTRFS_I(inode);
2983
2984 bi->i_acl = NULL;
2985 bi->i_default_acl = NULL;
2986
2987 bi->generation = 0;
2988 bi->sequence = 0;
2989 bi->last_trans = 0;
2990 bi->logged_trans = 0;
2991 bi->delalloc_bytes = 0;
2992 bi->disk_i_size = 0;
2993 bi->flags = 0;
2994 bi->index_cnt = (u64)-1;
2995 bi->log_dirty_trans = 0;
2996 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2997 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2998 inode->i_mapping, GFP_NOFS);
2999 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3000 inode->i_mapping, GFP_NOFS);
3001 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3002 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3003 mutex_init(&BTRFS_I(inode)->extent_mutex);
3004 mutex_init(&BTRFS_I(inode)->log_mutex);
3005 }
3006
3007 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3008 {
3009 struct btrfs_iget_args *args = p;
3010 inode->i_ino = args->ino;
3011 init_btrfs_i(inode);
3012 BTRFS_I(inode)->root = args->root;
3013 return 0;
3014 }
3015
3016 static int btrfs_find_actor(struct inode *inode, void *opaque)
3017 {
3018 struct btrfs_iget_args *args = opaque;
3019 return args->ino == inode->i_ino &&
3020 args->root == BTRFS_I(inode)->root;
3021 }
3022
3023 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
3024 struct btrfs_root *root, int wait)
3025 {
3026 struct inode *inode;
3027 struct btrfs_iget_args args;
3028 args.ino = objectid;
3029 args.root = root;
3030
3031 if (wait) {
3032 inode = ilookup5(s, objectid, btrfs_find_actor,
3033 (void *)&args);
3034 } else {
3035 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
3036 (void *)&args);
3037 }
3038 return inode;
3039 }
3040
3041 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
3042 struct btrfs_root *root)
3043 {
3044 struct inode *inode;
3045 struct btrfs_iget_args args;
3046 args.ino = objectid;
3047 args.root = root;
3048
3049 inode = iget5_locked(s, objectid, btrfs_find_actor,
3050 btrfs_init_locked_inode,
3051 (void *)&args);
3052 return inode;
3053 }
3054
3055 /* Get an inode object given its location and corresponding root.
3056 * Returns in *is_new if the inode was read from disk
3057 */
3058 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3059 struct btrfs_root *root, int *is_new)
3060 {
3061 struct inode *inode;
3062
3063 inode = btrfs_iget_locked(s, location->objectid, root);
3064 if (!inode)
3065 return ERR_PTR(-EACCES);
3066
3067 if (inode->i_state & I_NEW) {
3068 BTRFS_I(inode)->root = root;
3069 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3070 btrfs_read_locked_inode(inode);
3071 unlock_new_inode(inode);
3072 if (is_new)
3073 *is_new = 1;
3074 } else {
3075 if (is_new)
3076 *is_new = 0;
3077 }
3078
3079 return inode;
3080 }
3081
3082 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3083 {
3084 struct inode *inode;
3085 struct btrfs_inode *bi = BTRFS_I(dir);
3086 struct btrfs_root *root = bi->root;
3087 struct btrfs_root *sub_root = root;
3088 struct btrfs_key location;
3089 int ret, new;
3090
3091 if (dentry->d_name.len > BTRFS_NAME_LEN)
3092 return ERR_PTR(-ENAMETOOLONG);
3093
3094 ret = btrfs_inode_by_name(dir, dentry, &location);
3095
3096 if (ret < 0)
3097 return ERR_PTR(ret);
3098
3099 inode = NULL;
3100 if (location.objectid) {
3101 ret = fixup_tree_root_location(root, &location, &sub_root,
3102 dentry);
3103 if (ret < 0)
3104 return ERR_PTR(ret);
3105 if (ret > 0)
3106 return ERR_PTR(-ENOENT);
3107 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
3108 if (IS_ERR(inode))
3109 return ERR_CAST(inode);
3110 }
3111 return inode;
3112 }
3113
3114 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3115 struct nameidata *nd)
3116 {
3117 struct inode *inode;
3118
3119 if (dentry->d_name.len > BTRFS_NAME_LEN)
3120 return ERR_PTR(-ENAMETOOLONG);
3121
3122 inode = btrfs_lookup_dentry(dir, dentry);
3123 if (IS_ERR(inode))
3124 return ERR_CAST(inode);
3125
3126 return d_splice_alias(inode, dentry);
3127 }
3128
3129 static unsigned char btrfs_filetype_table[] = {
3130 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3131 };
3132
3133 static int btrfs_real_readdir(struct file *filp, void *dirent,
3134 filldir_t filldir)
3135 {
3136 struct inode *inode = filp->f_dentry->d_inode;
3137 struct btrfs_root *root = BTRFS_I(inode)->root;
3138 struct btrfs_item *item;
3139 struct btrfs_dir_item *di;
3140 struct btrfs_key key;
3141 struct btrfs_key found_key;
3142 struct btrfs_path *path;
3143 int ret;
3144 u32 nritems;
3145 struct extent_buffer *leaf;
3146 int slot;
3147 int advance;
3148 unsigned char d_type;
3149 int over = 0;
3150 u32 di_cur;
3151 u32 di_total;
3152 u32 di_len;
3153 int key_type = BTRFS_DIR_INDEX_KEY;
3154 char tmp_name[32];
3155 char *name_ptr;
3156 int name_len;
3157
3158 /* FIXME, use a real flag for deciding about the key type */
3159 if (root->fs_info->tree_root == root)
3160 key_type = BTRFS_DIR_ITEM_KEY;
3161
3162 /* special case for "." */
3163 if (filp->f_pos == 0) {
3164 over = filldir(dirent, ".", 1,
3165 1, inode->i_ino,
3166 DT_DIR);
3167 if (over)
3168 return 0;
3169 filp->f_pos = 1;
3170 }
3171 /* special case for .., just use the back ref */
3172 if (filp->f_pos == 1) {
3173 u64 pino = parent_ino(filp->f_path.dentry);
3174 over = filldir(dirent, "..", 2,
3175 2, pino, DT_DIR);
3176 if (over)
3177 return 0;
3178 filp->f_pos = 2;
3179 }
3180 path = btrfs_alloc_path();
3181 path->reada = 2;
3182
3183 btrfs_set_key_type(&key, key_type);
3184 key.offset = filp->f_pos;
3185 key.objectid = inode->i_ino;
3186
3187 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3188 if (ret < 0)
3189 goto err;
3190 advance = 0;
3191
3192 while (1) {
3193 leaf = path->nodes[0];
3194 nritems = btrfs_header_nritems(leaf);
3195 slot = path->slots[0];
3196 if (advance || slot >= nritems) {
3197 if (slot >= nritems - 1) {
3198 ret = btrfs_next_leaf(root, path);
3199 if (ret)
3200 break;
3201 leaf = path->nodes[0];
3202 nritems = btrfs_header_nritems(leaf);
3203 slot = path->slots[0];
3204 } else {
3205 slot++;
3206 path->slots[0]++;
3207 }
3208 }
3209
3210 advance = 1;
3211 item = btrfs_item_nr(leaf, slot);
3212 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3213
3214 if (found_key.objectid != key.objectid)
3215 break;
3216 if (btrfs_key_type(&found_key) != key_type)
3217 break;
3218 if (found_key.offset < filp->f_pos)
3219 continue;
3220
3221 filp->f_pos = found_key.offset;
3222
3223 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3224 di_cur = 0;
3225 di_total = btrfs_item_size(leaf, item);
3226
3227 while (di_cur < di_total) {
3228 struct btrfs_key location;
3229
3230 name_len = btrfs_dir_name_len(leaf, di);
3231 if (name_len <= sizeof(tmp_name)) {
3232 name_ptr = tmp_name;
3233 } else {
3234 name_ptr = kmalloc(name_len, GFP_NOFS);
3235 if (!name_ptr) {
3236 ret = -ENOMEM;
3237 goto err;
3238 }
3239 }
3240 read_extent_buffer(leaf, name_ptr,
3241 (unsigned long)(di + 1), name_len);
3242
3243 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3244 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3245
3246 /* is this a reference to our own snapshot? If so
3247 * skip it
3248 */
3249 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3250 location.objectid == root->root_key.objectid) {
3251 over = 0;
3252 goto skip;
3253 }
3254 over = filldir(dirent, name_ptr, name_len,
3255 found_key.offset, location.objectid,
3256 d_type);
3257
3258 skip:
3259 if (name_ptr != tmp_name)
3260 kfree(name_ptr);
3261
3262 if (over)
3263 goto nopos;
3264 di_len = btrfs_dir_name_len(leaf, di) +
3265 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3266 di_cur += di_len;
3267 di = (struct btrfs_dir_item *)((char *)di + di_len);
3268 }
3269 }
3270
3271 /* Reached end of directory/root. Bump pos past the last item. */
3272 if (key_type == BTRFS_DIR_INDEX_KEY)
3273 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
3274 else
3275 filp->f_pos++;
3276 nopos:
3277 ret = 0;
3278 err:
3279 btrfs_free_path(path);
3280 return ret;
3281 }
3282
3283 int btrfs_write_inode(struct inode *inode, int wait)
3284 {
3285 struct btrfs_root *root = BTRFS_I(inode)->root;
3286 struct btrfs_trans_handle *trans;
3287 int ret = 0;
3288
3289 if (root->fs_info->btree_inode == inode)
3290 return 0;
3291
3292 if (wait) {
3293 trans = btrfs_join_transaction(root, 1);
3294 btrfs_set_trans_block_group(trans, inode);
3295 ret = btrfs_commit_transaction(trans, root);
3296 }
3297 return ret;
3298 }
3299
3300 /*
3301 * This is somewhat expensive, updating the tree every time the
3302 * inode changes. But, it is most likely to find the inode in cache.
3303 * FIXME, needs more benchmarking...there are no reasons other than performance
3304 * to keep or drop this code.
3305 */
3306 void btrfs_dirty_inode(struct inode *inode)
3307 {
3308 struct btrfs_root *root = BTRFS_I(inode)->root;
3309 struct btrfs_trans_handle *trans;
3310
3311 trans = btrfs_join_transaction(root, 1);
3312 btrfs_set_trans_block_group(trans, inode);
3313 btrfs_update_inode(trans, root, inode);
3314 btrfs_end_transaction(trans, root);
3315 }
3316
3317 /*
3318 * find the highest existing sequence number in a directory
3319 * and then set the in-memory index_cnt variable to reflect
3320 * free sequence numbers
3321 */
3322 static int btrfs_set_inode_index_count(struct inode *inode)
3323 {
3324 struct btrfs_root *root = BTRFS_I(inode)->root;
3325 struct btrfs_key key, found_key;
3326 struct btrfs_path *path;
3327 struct extent_buffer *leaf;
3328 int ret;
3329
3330 key.objectid = inode->i_ino;
3331 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3332 key.offset = (u64)-1;
3333
3334 path = btrfs_alloc_path();
3335 if (!path)
3336 return -ENOMEM;
3337
3338 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3339 if (ret < 0)
3340 goto out;
3341 /* FIXME: we should be able to handle this */
3342 if (ret == 0)
3343 goto out;
3344 ret = 0;
3345
3346 /*
3347 * MAGIC NUMBER EXPLANATION:
3348 * since we search a directory based on f_pos we have to start at 2
3349 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3350 * else has to start at 2
3351 */
3352 if (path->slots[0] == 0) {
3353 BTRFS_I(inode)->index_cnt = 2;
3354 goto out;
3355 }
3356
3357 path->slots[0]--;
3358
3359 leaf = path->nodes[0];
3360 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3361
3362 if (found_key.objectid != inode->i_ino ||
3363 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3364 BTRFS_I(inode)->index_cnt = 2;
3365 goto out;
3366 }
3367
3368 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3369 out:
3370 btrfs_free_path(path);
3371 return ret;
3372 }
3373
3374 /*
3375 * helper to find a free sequence number in a given directory. This current
3376 * code is very simple, later versions will do smarter things in the btree
3377 */
3378 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3379 {
3380 int ret = 0;
3381
3382 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3383 ret = btrfs_set_inode_index_count(dir);
3384 if (ret)
3385 return ret;
3386 }
3387
3388 *index = BTRFS_I(dir)->index_cnt;
3389 BTRFS_I(dir)->index_cnt++;
3390
3391 return ret;
3392 }
3393
3394 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3395 struct btrfs_root *root,
3396 struct inode *dir,
3397 const char *name, int name_len,
3398 u64 ref_objectid, u64 objectid,
3399 u64 alloc_hint, int mode, u64 *index)
3400 {
3401 struct inode *inode;
3402 struct btrfs_inode_item *inode_item;
3403 struct btrfs_key *location;
3404 struct btrfs_path *path;
3405 struct btrfs_inode_ref *ref;
3406 struct btrfs_key key[2];
3407 u32 sizes[2];
3408 unsigned long ptr;
3409 int ret;
3410 int owner;
3411
3412 path = btrfs_alloc_path();
3413 BUG_ON(!path);
3414
3415 inode = new_inode(root->fs_info->sb);
3416 if (!inode)
3417 return ERR_PTR(-ENOMEM);
3418
3419 if (dir) {
3420 ret = btrfs_set_inode_index(dir, index);
3421 if (ret)
3422 return ERR_PTR(ret);
3423 }
3424 /*
3425 * index_cnt is ignored for everything but a dir,
3426 * btrfs_get_inode_index_count has an explanation for the magic
3427 * number
3428 */
3429 init_btrfs_i(inode);
3430 BTRFS_I(inode)->index_cnt = 2;
3431 BTRFS_I(inode)->root = root;
3432 BTRFS_I(inode)->generation = trans->transid;
3433
3434 if (mode & S_IFDIR)
3435 owner = 0;
3436 else
3437 owner = 1;
3438 BTRFS_I(inode)->block_group =
3439 btrfs_find_block_group(root, 0, alloc_hint, owner);
3440 if ((mode & S_IFREG)) {
3441 if (btrfs_test_opt(root, NODATASUM))
3442 btrfs_set_flag(inode, NODATASUM);
3443 if (btrfs_test_opt(root, NODATACOW))
3444 btrfs_set_flag(inode, NODATACOW);
3445 }
3446
3447 key[0].objectid = objectid;
3448 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3449 key[0].offset = 0;
3450
3451 key[1].objectid = objectid;
3452 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3453 key[1].offset = ref_objectid;
3454
3455 sizes[0] = sizeof(struct btrfs_inode_item);
3456 sizes[1] = name_len + sizeof(*ref);
3457
3458 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3459 if (ret != 0)
3460 goto fail;
3461
3462 if (objectid > root->highest_inode)
3463 root->highest_inode = objectid;
3464
3465 inode->i_uid = current_fsuid();
3466 inode->i_gid = current_fsgid();
3467 inode->i_mode = mode;
3468 inode->i_ino = objectid;
3469 inode_set_bytes(inode, 0);
3470 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3471 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3472 struct btrfs_inode_item);
3473 fill_inode_item(trans, path->nodes[0], inode_item, inode);
3474
3475 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3476 struct btrfs_inode_ref);
3477 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3478 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3479 ptr = (unsigned long)(ref + 1);
3480 write_extent_buffer(path->nodes[0], name, ptr, name_len);
3481
3482 btrfs_mark_buffer_dirty(path->nodes[0]);
3483 btrfs_free_path(path);
3484
3485 location = &BTRFS_I(inode)->location;
3486 location->objectid = objectid;
3487 location->offset = 0;
3488 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3489
3490 insert_inode_hash(inode);
3491 return inode;
3492 fail:
3493 if (dir)
3494 BTRFS_I(dir)->index_cnt--;
3495 btrfs_free_path(path);
3496 return ERR_PTR(ret);
3497 }
3498
3499 static inline u8 btrfs_inode_type(struct inode *inode)
3500 {
3501 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3502 }
3503
3504 /*
3505 * utility function to add 'inode' into 'parent_inode' with
3506 * a give name and a given sequence number.
3507 * if 'add_backref' is true, also insert a backref from the
3508 * inode to the parent directory.
3509 */
3510 int btrfs_add_link(struct btrfs_trans_handle *trans,
3511 struct inode *parent_inode, struct inode *inode,
3512 const char *name, int name_len, int add_backref, u64 index)
3513 {
3514 int ret;
3515 struct btrfs_key key;
3516 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3517
3518 key.objectid = inode->i_ino;
3519 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3520 key.offset = 0;
3521
3522 ret = btrfs_insert_dir_item(trans, root, name, name_len,
3523 parent_inode->i_ino,
3524 &key, btrfs_inode_type(inode),
3525 index);
3526 if (ret == 0) {
3527 if (add_backref) {
3528 ret = btrfs_insert_inode_ref(trans, root,
3529 name, name_len,
3530 inode->i_ino,
3531 parent_inode->i_ino,
3532 index);
3533 }
3534 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3535 name_len * 2);
3536 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3537 ret = btrfs_update_inode(trans, root, parent_inode);
3538 }
3539 return ret;
3540 }
3541
3542 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3543 struct dentry *dentry, struct inode *inode,
3544 int backref, u64 index)
3545 {
3546 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3547 inode, dentry->d_name.name,
3548 dentry->d_name.len, backref, index);
3549 if (!err) {
3550 d_instantiate(dentry, inode);
3551 return 0;
3552 }
3553 if (err > 0)
3554 err = -EEXIST;
3555 return err;
3556 }
3557
3558 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3559 int mode, dev_t rdev)
3560 {
3561 struct btrfs_trans_handle *trans;
3562 struct btrfs_root *root = BTRFS_I(dir)->root;
3563 struct inode *inode = NULL;
3564 int err;
3565 int drop_inode = 0;
3566 u64 objectid;
3567 unsigned long nr = 0;
3568 u64 index = 0;
3569
3570 if (!new_valid_dev(rdev))
3571 return -EINVAL;
3572
3573 err = btrfs_check_free_space(root, 1, 0);
3574 if (err)
3575 goto fail;
3576
3577 trans = btrfs_start_transaction(root, 1);
3578 btrfs_set_trans_block_group(trans, dir);
3579
3580 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3581 if (err) {
3582 err = -ENOSPC;
3583 goto out_unlock;
3584 }
3585
3586 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3587 dentry->d_name.len,
3588 dentry->d_parent->d_inode->i_ino, objectid,
3589 BTRFS_I(dir)->block_group, mode, &index);
3590 err = PTR_ERR(inode);
3591 if (IS_ERR(inode))
3592 goto out_unlock;
3593
3594 err = btrfs_init_acl(inode, dir);
3595 if (err) {
3596 drop_inode = 1;
3597 goto out_unlock;
3598 }
3599
3600 btrfs_set_trans_block_group(trans, inode);
3601 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3602 if (err)
3603 drop_inode = 1;
3604 else {
3605 inode->i_op = &btrfs_special_inode_operations;
3606 init_special_inode(inode, inode->i_mode, rdev);
3607 btrfs_update_inode(trans, root, inode);
3608 }
3609 dir->i_sb->s_dirt = 1;
3610 btrfs_update_inode_block_group(trans, inode);
3611 btrfs_update_inode_block_group(trans, dir);
3612 out_unlock:
3613 nr = trans->blocks_used;
3614 btrfs_end_transaction_throttle(trans, root);
3615 fail:
3616 if (drop_inode) {
3617 inode_dec_link_count(inode);
3618 iput(inode);
3619 }
3620 btrfs_btree_balance_dirty(root, nr);
3621 return err;
3622 }
3623
3624 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3625 int mode, struct nameidata *nd)
3626 {
3627 struct btrfs_trans_handle *trans;
3628 struct btrfs_root *root = BTRFS_I(dir)->root;
3629 struct inode *inode = NULL;
3630 int err;
3631 int drop_inode = 0;
3632 unsigned long nr = 0;
3633 u64 objectid;
3634 u64 index = 0;
3635
3636 err = btrfs_check_free_space(root, 1, 0);
3637 if (err)
3638 goto fail;
3639 trans = btrfs_start_transaction(root, 1);
3640 btrfs_set_trans_block_group(trans, dir);
3641
3642 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3643 if (err) {
3644 err = -ENOSPC;
3645 goto out_unlock;
3646 }
3647
3648 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3649 dentry->d_name.len,
3650 dentry->d_parent->d_inode->i_ino,
3651 objectid, BTRFS_I(dir)->block_group, mode,
3652 &index);
3653 err = PTR_ERR(inode);
3654 if (IS_ERR(inode))
3655 goto out_unlock;
3656
3657 err = btrfs_init_acl(inode, dir);
3658 if (err) {
3659 drop_inode = 1;
3660 goto out_unlock;
3661 }
3662
3663 btrfs_set_trans_block_group(trans, inode);
3664 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3665 if (err)
3666 drop_inode = 1;
3667 else {
3668 inode->i_mapping->a_ops = &btrfs_aops;
3669 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3670 inode->i_fop = &btrfs_file_operations;
3671 inode->i_op = &btrfs_file_inode_operations;
3672 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3673 }
3674 dir->i_sb->s_dirt = 1;
3675 btrfs_update_inode_block_group(trans, inode);
3676 btrfs_update_inode_block_group(trans, dir);
3677 out_unlock:
3678 nr = trans->blocks_used;
3679 btrfs_end_transaction_throttle(trans, root);
3680 fail:
3681 if (drop_inode) {
3682 inode_dec_link_count(inode);
3683 iput(inode);
3684 }
3685 btrfs_btree_balance_dirty(root, nr);
3686 return err;
3687 }
3688
3689 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3690 struct dentry *dentry)
3691 {
3692 struct btrfs_trans_handle *trans;
3693 struct btrfs_root *root = BTRFS_I(dir)->root;
3694 struct inode *inode = old_dentry->d_inode;
3695 u64 index;
3696 unsigned long nr = 0;
3697 int err;
3698 int drop_inode = 0;
3699
3700 if (inode->i_nlink == 0)
3701 return -ENOENT;
3702
3703 btrfs_inc_nlink(inode);
3704 err = btrfs_check_free_space(root, 1, 0);
3705 if (err)
3706 goto fail;
3707 err = btrfs_set_inode_index(dir, &index);
3708 if (err)
3709 goto fail;
3710
3711 trans = btrfs_start_transaction(root, 1);
3712
3713 btrfs_set_trans_block_group(trans, dir);
3714 atomic_inc(&inode->i_count);
3715
3716 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3717
3718 if (err)
3719 drop_inode = 1;
3720
3721 dir->i_sb->s_dirt = 1;
3722 btrfs_update_inode_block_group(trans, dir);
3723 err = btrfs_update_inode(trans, root, inode);
3724
3725 if (err)
3726 drop_inode = 1;
3727
3728 nr = trans->blocks_used;
3729 btrfs_end_transaction_throttle(trans, root);
3730 fail:
3731 if (drop_inode) {
3732 inode_dec_link_count(inode);
3733 iput(inode);
3734 }
3735 btrfs_btree_balance_dirty(root, nr);
3736 return err;
3737 }
3738
3739 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3740 {
3741 struct inode *inode = NULL;
3742 struct btrfs_trans_handle *trans;
3743 struct btrfs_root *root = BTRFS_I(dir)->root;
3744 int err = 0;
3745 int drop_on_err = 0;
3746 u64 objectid = 0;
3747 u64 index = 0;
3748 unsigned long nr = 1;
3749
3750 err = btrfs_check_free_space(root, 1, 0);
3751 if (err)
3752 goto out_unlock;
3753
3754 trans = btrfs_start_transaction(root, 1);
3755 btrfs_set_trans_block_group(trans, dir);
3756
3757 if (IS_ERR(trans)) {
3758 err = PTR_ERR(trans);
3759 goto out_unlock;
3760 }
3761
3762 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3763 if (err) {
3764 err = -ENOSPC;
3765 goto out_unlock;
3766 }
3767
3768 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3769 dentry->d_name.len,
3770 dentry->d_parent->d_inode->i_ino, objectid,
3771 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3772 &index);
3773 if (IS_ERR(inode)) {
3774 err = PTR_ERR(inode);
3775 goto out_fail;
3776 }
3777
3778 drop_on_err = 1;
3779
3780 err = btrfs_init_acl(inode, dir);
3781 if (err)
3782 goto out_fail;
3783
3784 inode->i_op = &btrfs_dir_inode_operations;
3785 inode->i_fop = &btrfs_dir_file_operations;
3786 btrfs_set_trans_block_group(trans, inode);
3787
3788 btrfs_i_size_write(inode, 0);
3789 err = btrfs_update_inode(trans, root, inode);
3790 if (err)
3791 goto out_fail;
3792
3793 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3794 inode, dentry->d_name.name,
3795 dentry->d_name.len, 0, index);
3796 if (err)
3797 goto out_fail;
3798
3799 d_instantiate(dentry, inode);
3800 drop_on_err = 0;
3801 dir->i_sb->s_dirt = 1;
3802 btrfs_update_inode_block_group(trans, inode);
3803 btrfs_update_inode_block_group(trans, dir);
3804
3805 out_fail:
3806 nr = trans->blocks_used;
3807 btrfs_end_transaction_throttle(trans, root);
3808
3809 out_unlock:
3810 if (drop_on_err)
3811 iput(inode);
3812 btrfs_btree_balance_dirty(root, nr);
3813 return err;
3814 }
3815
3816 /* helper for btfs_get_extent. Given an existing extent in the tree,
3817 * and an extent that you want to insert, deal with overlap and insert
3818 * the new extent into the tree.
3819 */
3820 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3821 struct extent_map *existing,
3822 struct extent_map *em,
3823 u64 map_start, u64 map_len)
3824 {
3825 u64 start_diff;
3826
3827 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3828 start_diff = map_start - em->start;
3829 em->start = map_start;
3830 em->len = map_len;
3831 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3832 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3833 em->block_start += start_diff;
3834 em->block_len -= start_diff;
3835 }
3836 return add_extent_mapping(em_tree, em);
3837 }
3838
3839 static noinline int uncompress_inline(struct btrfs_path *path,
3840 struct inode *inode, struct page *page,
3841 size_t pg_offset, u64 extent_offset,
3842 struct btrfs_file_extent_item *item)
3843 {
3844 int ret;
3845 struct extent_buffer *leaf = path->nodes[0];
3846 char *tmp;
3847 size_t max_size;
3848 unsigned long inline_size;
3849 unsigned long ptr;
3850
3851 WARN_ON(pg_offset != 0);
3852 max_size = btrfs_file_extent_ram_bytes(leaf, item);
3853 inline_size = btrfs_file_extent_inline_item_len(leaf,
3854 btrfs_item_nr(leaf, path->slots[0]));
3855 tmp = kmalloc(inline_size, GFP_NOFS);
3856 ptr = btrfs_file_extent_inline_start(item);
3857
3858 read_extent_buffer(leaf, tmp, ptr, inline_size);
3859
3860 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
3861 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3862 inline_size, max_size);
3863 if (ret) {
3864 char *kaddr = kmap_atomic(page, KM_USER0);
3865 unsigned long copy_size = min_t(u64,
3866 PAGE_CACHE_SIZE - pg_offset,
3867 max_size - extent_offset);
3868 memset(kaddr + pg_offset, 0, copy_size);
3869 kunmap_atomic(kaddr, KM_USER0);
3870 }
3871 kfree(tmp);
3872 return 0;
3873 }
3874
3875 /*
3876 * a bit scary, this does extent mapping from logical file offset to the disk.
3877 * the ugly parts come from merging extents from the disk with the in-ram
3878 * representation. This gets more complex because of the data=ordered code,
3879 * where the in-ram extents might be locked pending data=ordered completion.
3880 *
3881 * This also copies inline extents directly into the page.
3882 */
3883
3884 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3885 size_t pg_offset, u64 start, u64 len,
3886 int create)
3887 {
3888 int ret;
3889 int err = 0;
3890 u64 bytenr;
3891 u64 extent_start = 0;
3892 u64 extent_end = 0;
3893 u64 objectid = inode->i_ino;
3894 u32 found_type;
3895 struct btrfs_path *path = NULL;
3896 struct btrfs_root *root = BTRFS_I(inode)->root;
3897 struct btrfs_file_extent_item *item;
3898 struct extent_buffer *leaf;
3899 struct btrfs_key found_key;
3900 struct extent_map *em = NULL;
3901 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3902 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3903 struct btrfs_trans_handle *trans = NULL;
3904 int compressed;
3905
3906 again:
3907 spin_lock(&em_tree->lock);
3908 em = lookup_extent_mapping(em_tree, start, len);
3909 if (em)
3910 em->bdev = root->fs_info->fs_devices->latest_bdev;
3911 spin_unlock(&em_tree->lock);
3912
3913 if (em) {
3914 if (em->start > start || em->start + em->len <= start)
3915 free_extent_map(em);
3916 else if (em->block_start == EXTENT_MAP_INLINE && page)
3917 free_extent_map(em);
3918 else
3919 goto out;
3920 }
3921 em = alloc_extent_map(GFP_NOFS);
3922 if (!em) {
3923 err = -ENOMEM;
3924 goto out;
3925 }
3926 em->bdev = root->fs_info->fs_devices->latest_bdev;
3927 em->start = EXTENT_MAP_HOLE;
3928 em->orig_start = EXTENT_MAP_HOLE;
3929 em->len = (u64)-1;
3930 em->block_len = (u64)-1;
3931
3932 if (!path) {
3933 path = btrfs_alloc_path();
3934 BUG_ON(!path);
3935 }
3936
3937 ret = btrfs_lookup_file_extent(trans, root, path,
3938 objectid, start, trans != NULL);
3939 if (ret < 0) {
3940 err = ret;
3941 goto out;
3942 }
3943
3944 if (ret != 0) {
3945 if (path->slots[0] == 0)
3946 goto not_found;
3947 path->slots[0]--;
3948 }
3949
3950 leaf = path->nodes[0];
3951 item = btrfs_item_ptr(leaf, path->slots[0],
3952 struct btrfs_file_extent_item);
3953 /* are we inside the extent that was found? */
3954 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3955 found_type = btrfs_key_type(&found_key);
3956 if (found_key.objectid != objectid ||
3957 found_type != BTRFS_EXTENT_DATA_KEY) {
3958 goto not_found;
3959 }
3960
3961 found_type = btrfs_file_extent_type(leaf, item);
3962 extent_start = found_key.offset;
3963 compressed = btrfs_file_extent_compression(leaf, item);
3964 if (found_type == BTRFS_FILE_EXTENT_REG ||
3965 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3966 extent_end = extent_start +
3967 btrfs_file_extent_num_bytes(leaf, item);
3968 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3969 size_t size;
3970 size = btrfs_file_extent_inline_len(leaf, item);
3971 extent_end = (extent_start + size + root->sectorsize - 1) &
3972 ~((u64)root->sectorsize - 1);
3973 }
3974
3975 if (start >= extent_end) {
3976 path->slots[0]++;
3977 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3978 ret = btrfs_next_leaf(root, path);
3979 if (ret < 0) {
3980 err = ret;
3981 goto out;
3982 }
3983 if (ret > 0)
3984 goto not_found;
3985 leaf = path->nodes[0];
3986 }
3987 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3988 if (found_key.objectid != objectid ||
3989 found_key.type != BTRFS_EXTENT_DATA_KEY)
3990 goto not_found;
3991 if (start + len <= found_key.offset)
3992 goto not_found;
3993 em->start = start;
3994 em->len = found_key.offset - start;
3995 goto not_found_em;
3996 }
3997
3998 if (found_type == BTRFS_FILE_EXTENT_REG ||
3999 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4000 em->start = extent_start;
4001 em->len = extent_end - extent_start;
4002 em->orig_start = extent_start -
4003 btrfs_file_extent_offset(leaf, item);
4004 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4005 if (bytenr == 0) {
4006 em->block_start = EXTENT_MAP_HOLE;
4007 goto insert;
4008 }
4009 if (compressed) {
4010 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4011 em->block_start = bytenr;
4012 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4013 item);
4014 } else {
4015 bytenr += btrfs_file_extent_offset(leaf, item);
4016 em->block_start = bytenr;
4017 em->block_len = em->len;
4018 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4019 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4020 }
4021 goto insert;
4022 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4023 unsigned long ptr;
4024 char *map;
4025 size_t size;
4026 size_t extent_offset;
4027 size_t copy_size;
4028
4029 em->block_start = EXTENT_MAP_INLINE;
4030 if (!page || create) {
4031 em->start = extent_start;
4032 em->len = extent_end - extent_start;
4033 goto out;
4034 }
4035
4036 size = btrfs_file_extent_inline_len(leaf, item);
4037 extent_offset = page_offset(page) + pg_offset - extent_start;
4038 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4039 size - extent_offset);
4040 em->start = extent_start + extent_offset;
4041 em->len = (copy_size + root->sectorsize - 1) &
4042 ~((u64)root->sectorsize - 1);
4043 em->orig_start = EXTENT_MAP_INLINE;
4044 if (compressed)
4045 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4046 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4047 if (create == 0 && !PageUptodate(page)) {
4048 if (btrfs_file_extent_compression(leaf, item) ==
4049 BTRFS_COMPRESS_ZLIB) {
4050 ret = uncompress_inline(path, inode, page,
4051 pg_offset,
4052 extent_offset, item);
4053 BUG_ON(ret);
4054 } else {
4055 map = kmap(page);
4056 read_extent_buffer(leaf, map + pg_offset, ptr,
4057 copy_size);
4058 kunmap(page);
4059 }
4060 flush_dcache_page(page);
4061 } else if (create && PageUptodate(page)) {
4062 if (!trans) {
4063 kunmap(page);
4064 free_extent_map(em);
4065 em = NULL;
4066 btrfs_release_path(root, path);
4067 trans = btrfs_join_transaction(root, 1);
4068 goto again;
4069 }
4070 map = kmap(page);
4071 write_extent_buffer(leaf, map + pg_offset, ptr,
4072 copy_size);
4073 kunmap(page);
4074 btrfs_mark_buffer_dirty(leaf);
4075 }
4076 set_extent_uptodate(io_tree, em->start,
4077 extent_map_end(em) - 1, GFP_NOFS);
4078 goto insert;
4079 } else {
4080 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4081 WARN_ON(1);
4082 }
4083 not_found:
4084 em->start = start;
4085 em->len = len;
4086 not_found_em:
4087 em->block_start = EXTENT_MAP_HOLE;
4088 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4089 insert:
4090 btrfs_release_path(root, path);
4091 if (em->start > start || extent_map_end(em) <= start) {
4092 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4093 "[%llu %llu]\n", (unsigned long long)em->start,
4094 (unsigned long long)em->len,
4095 (unsigned long long)start,
4096 (unsigned long long)len);
4097 err = -EIO;
4098 goto out;
4099 }
4100
4101 err = 0;
4102 spin_lock(&em_tree->lock);
4103 ret = add_extent_mapping(em_tree, em);
4104 /* it is possible that someone inserted the extent into the tree
4105 * while we had the lock dropped. It is also possible that
4106 * an overlapping map exists in the tree
4107 */
4108 if (ret == -EEXIST) {
4109 struct extent_map *existing;
4110
4111 ret = 0;
4112
4113 existing = lookup_extent_mapping(em_tree, start, len);
4114 if (existing && (existing->start > start ||
4115 existing->start + existing->len <= start)) {
4116 free_extent_map(existing);
4117 existing = NULL;
4118 }
4119 if (!existing) {
4120 existing = lookup_extent_mapping(em_tree, em->start,
4121 em->len);
4122 if (existing) {
4123 err = merge_extent_mapping(em_tree, existing,
4124 em, start,
4125 root->sectorsize);
4126 free_extent_map(existing);
4127 if (err) {
4128 free_extent_map(em);
4129 em = NULL;
4130 }
4131 } else {
4132 err = -EIO;
4133 free_extent_map(em);
4134 em = NULL;
4135 }
4136 } else {
4137 free_extent_map(em);
4138 em = existing;
4139 err = 0;
4140 }
4141 }
4142 spin_unlock(&em_tree->lock);
4143 out:
4144 if (path)
4145 btrfs_free_path(path);
4146 if (trans) {
4147 ret = btrfs_end_transaction(trans, root);
4148 if (!err)
4149 err = ret;
4150 }
4151 if (err) {
4152 free_extent_map(em);
4153 WARN_ON(1);
4154 return ERR_PTR(err);
4155 }
4156 return em;
4157 }
4158
4159 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4160 const struct iovec *iov, loff_t offset,
4161 unsigned long nr_segs)
4162 {
4163 return -EINVAL;
4164 }
4165
4166 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
4167 {
4168 return extent_bmap(mapping, iblock, btrfs_get_extent);
4169 }
4170
4171 int btrfs_readpage(struct file *file, struct page *page)
4172 {
4173 struct extent_io_tree *tree;
4174 tree = &BTRFS_I(page->mapping->host)->io_tree;
4175 return extent_read_full_page(tree, page, btrfs_get_extent);
4176 }
4177
4178 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4179 {
4180 struct extent_io_tree *tree;
4181
4182
4183 if (current->flags & PF_MEMALLOC) {
4184 redirty_page_for_writepage(wbc, page);
4185 unlock_page(page);
4186 return 0;
4187 }
4188 tree = &BTRFS_I(page->mapping->host)->io_tree;
4189 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4190 }
4191
4192 int btrfs_writepages(struct address_space *mapping,
4193 struct writeback_control *wbc)
4194 {
4195 struct extent_io_tree *tree;
4196
4197 tree = &BTRFS_I(mapping->host)->io_tree;
4198 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4199 }
4200
4201 static int
4202 btrfs_readpages(struct file *file, struct address_space *mapping,
4203 struct list_head *pages, unsigned nr_pages)
4204 {
4205 struct extent_io_tree *tree;
4206 tree = &BTRFS_I(mapping->host)->io_tree;
4207 return extent_readpages(tree, mapping, pages, nr_pages,
4208 btrfs_get_extent);
4209 }
4210 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4211 {
4212 struct extent_io_tree *tree;
4213 struct extent_map_tree *map;
4214 int ret;
4215
4216 tree = &BTRFS_I(page->mapping->host)->io_tree;
4217 map = &BTRFS_I(page->mapping->host)->extent_tree;
4218 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4219 if (ret == 1) {
4220 ClearPagePrivate(page);
4221 set_page_private(page, 0);
4222 page_cache_release(page);
4223 }
4224 return ret;
4225 }
4226
4227 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4228 {
4229 if (PageWriteback(page) || PageDirty(page))
4230 return 0;
4231 return __btrfs_releasepage(page, gfp_flags);
4232 }
4233
4234 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4235 {
4236 struct extent_io_tree *tree;
4237 struct btrfs_ordered_extent *ordered;
4238 u64 page_start = page_offset(page);
4239 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4240
4241 wait_on_page_writeback(page);
4242 tree = &BTRFS_I(page->mapping->host)->io_tree;
4243 if (offset) {
4244 btrfs_releasepage(page, GFP_NOFS);
4245 return;
4246 }
4247
4248 lock_extent(tree, page_start, page_end, GFP_NOFS);
4249 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4250 page_offset(page));
4251 if (ordered) {
4252 /*
4253 * IO on this page will never be started, so we need
4254 * to account for any ordered extents now
4255 */
4256 clear_extent_bit(tree, page_start, page_end,
4257 EXTENT_DIRTY | EXTENT_DELALLOC |
4258 EXTENT_LOCKED, 1, 0, GFP_NOFS);
4259 btrfs_finish_ordered_io(page->mapping->host,
4260 page_start, page_end);
4261 btrfs_put_ordered_extent(ordered);
4262 lock_extent(tree, page_start, page_end, GFP_NOFS);
4263 }
4264 clear_extent_bit(tree, page_start, page_end,
4265 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4266 EXTENT_ORDERED,
4267 1, 1, GFP_NOFS);
4268 __btrfs_releasepage(page, GFP_NOFS);
4269
4270 ClearPageChecked(page);
4271 if (PagePrivate(page)) {
4272 ClearPagePrivate(page);
4273 set_page_private(page, 0);
4274 page_cache_release(page);
4275 }
4276 }
4277
4278 /*
4279 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4280 * called from a page fault handler when a page is first dirtied. Hence we must
4281 * be careful to check for EOF conditions here. We set the page up correctly
4282 * for a written page which means we get ENOSPC checking when writing into
4283 * holes and correct delalloc and unwritten extent mapping on filesystems that
4284 * support these features.
4285 *
4286 * We are not allowed to take the i_mutex here so we have to play games to
4287 * protect against truncate races as the page could now be beyond EOF. Because
4288 * vmtruncate() writes the inode size before removing pages, once we have the
4289 * page lock we can determine safely if the page is beyond EOF. If it is not
4290 * beyond EOF, then the page is guaranteed safe against truncation until we
4291 * unlock the page.
4292 */
4293 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4294 {
4295 struct inode *inode = fdentry(vma->vm_file)->d_inode;
4296 struct btrfs_root *root = BTRFS_I(inode)->root;
4297 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4298 struct btrfs_ordered_extent *ordered;
4299 char *kaddr;
4300 unsigned long zero_start;
4301 loff_t size;
4302 int ret;
4303 u64 page_start;
4304 u64 page_end;
4305
4306 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
4307 if (ret)
4308 goto out;
4309
4310 ret = -EINVAL;
4311 again:
4312 lock_page(page);
4313 size = i_size_read(inode);
4314 page_start = page_offset(page);
4315 page_end = page_start + PAGE_CACHE_SIZE - 1;
4316
4317 if ((page->mapping != inode->i_mapping) ||
4318 (page_start >= size)) {
4319 /* page got truncated out from underneath us */
4320 goto out_unlock;
4321 }
4322 wait_on_page_writeback(page);
4323
4324 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4325 set_page_extent_mapped(page);
4326
4327 /*
4328 * we can't set the delalloc bits if there are pending ordered
4329 * extents. Drop our locks and wait for them to finish
4330 */
4331 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4332 if (ordered) {
4333 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4334 unlock_page(page);
4335 btrfs_start_ordered_extent(inode, ordered, 1);
4336 btrfs_put_ordered_extent(ordered);
4337 goto again;
4338 }
4339
4340 btrfs_set_extent_delalloc(inode, page_start, page_end);
4341 ret = 0;
4342
4343 /* page is wholly or partially inside EOF */
4344 if (page_start + PAGE_CACHE_SIZE > size)
4345 zero_start = size & ~PAGE_CACHE_MASK;
4346 else
4347 zero_start = PAGE_CACHE_SIZE;
4348
4349 if (zero_start != PAGE_CACHE_SIZE) {
4350 kaddr = kmap(page);
4351 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4352 flush_dcache_page(page);
4353 kunmap(page);
4354 }
4355 ClearPageChecked(page);
4356 set_page_dirty(page);
4357 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4358
4359 out_unlock:
4360 unlock_page(page);
4361 out:
4362 return ret;
4363 }
4364
4365 static void btrfs_truncate(struct inode *inode)
4366 {
4367 struct btrfs_root *root = BTRFS_I(inode)->root;
4368 int ret;
4369 struct btrfs_trans_handle *trans;
4370 unsigned long nr;
4371 u64 mask = root->sectorsize - 1;
4372
4373 if (!S_ISREG(inode->i_mode))
4374 return;
4375 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4376 return;
4377
4378 btrfs_truncate_page(inode->i_mapping, inode->i_size);
4379 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4380
4381 trans = btrfs_start_transaction(root, 1);
4382 btrfs_set_trans_block_group(trans, inode);
4383 btrfs_i_size_write(inode, inode->i_size);
4384
4385 ret = btrfs_orphan_add(trans, inode);
4386 if (ret)
4387 goto out;
4388 /* FIXME, add redo link to tree so we don't leak on crash */
4389 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4390 BTRFS_EXTENT_DATA_KEY);
4391 btrfs_update_inode(trans, root, inode);
4392
4393 ret = btrfs_orphan_del(trans, inode);
4394 BUG_ON(ret);
4395
4396 out:
4397 nr = trans->blocks_used;
4398 ret = btrfs_end_transaction_throttle(trans, root);
4399 BUG_ON(ret);
4400 btrfs_btree_balance_dirty(root, nr);
4401 }
4402
4403 /*
4404 * create a new subvolume directory/inode (helper for the ioctl).
4405 */
4406 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4407 struct btrfs_root *new_root, struct dentry *dentry,
4408 u64 new_dirid, u64 alloc_hint)
4409 {
4410 struct inode *inode;
4411 int error;
4412 u64 index = 0;
4413
4414 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4415 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4416 if (IS_ERR(inode))
4417 return PTR_ERR(inode);
4418 inode->i_op = &btrfs_dir_inode_operations;
4419 inode->i_fop = &btrfs_dir_file_operations;
4420
4421 inode->i_nlink = 1;
4422 btrfs_i_size_write(inode, 0);
4423
4424 error = btrfs_update_inode(trans, new_root, inode);
4425 if (error)
4426 return error;
4427
4428 d_instantiate(dentry, inode);
4429 return 0;
4430 }
4431
4432 /* helper function for file defrag and space balancing. This
4433 * forces readahead on a given range of bytes in an inode
4434 */
4435 unsigned long btrfs_force_ra(struct address_space *mapping,
4436 struct file_ra_state *ra, struct file *file,
4437 pgoff_t offset, pgoff_t last_index)
4438 {
4439 pgoff_t req_size = last_index - offset + 1;
4440
4441 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4442 return offset + req_size;
4443 }
4444
4445 struct inode *btrfs_alloc_inode(struct super_block *sb)
4446 {
4447 struct btrfs_inode *ei;
4448
4449 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4450 if (!ei)
4451 return NULL;
4452 ei->last_trans = 0;
4453 ei->logged_trans = 0;
4454 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4455 ei->i_acl = BTRFS_ACL_NOT_CACHED;
4456 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4457 INIT_LIST_HEAD(&ei->i_orphan);
4458 return &ei->vfs_inode;
4459 }
4460
4461 void btrfs_destroy_inode(struct inode *inode)
4462 {
4463 struct btrfs_ordered_extent *ordered;
4464 WARN_ON(!list_empty(&inode->i_dentry));
4465 WARN_ON(inode->i_data.nrpages);
4466
4467 if (BTRFS_I(inode)->i_acl &&
4468 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4469 posix_acl_release(BTRFS_I(inode)->i_acl);
4470 if (BTRFS_I(inode)->i_default_acl &&
4471 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4472 posix_acl_release(BTRFS_I(inode)->i_default_acl);
4473
4474 spin_lock(&BTRFS_I(inode)->root->list_lock);
4475 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4476 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4477 " list\n", inode->i_ino);
4478 dump_stack();
4479 }
4480 spin_unlock(&BTRFS_I(inode)->root->list_lock);
4481
4482 while (1) {
4483 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4484 if (!ordered)
4485 break;
4486 else {
4487 printk(KERN_ERR "btrfs found ordered "
4488 "extent %llu %llu on inode cleanup\n",
4489 (unsigned long long)ordered->file_offset,
4490 (unsigned long long)ordered->len);
4491 btrfs_remove_ordered_extent(inode, ordered);
4492 btrfs_put_ordered_extent(ordered);
4493 btrfs_put_ordered_extent(ordered);
4494 }
4495 }
4496 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4497 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4498 }
4499
4500 static void init_once(void *foo)
4501 {
4502 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4503
4504 inode_init_once(&ei->vfs_inode);
4505 }
4506
4507 void btrfs_destroy_cachep(void)
4508 {
4509 if (btrfs_inode_cachep)
4510 kmem_cache_destroy(btrfs_inode_cachep);
4511 if (btrfs_trans_handle_cachep)
4512 kmem_cache_destroy(btrfs_trans_handle_cachep);
4513 if (btrfs_transaction_cachep)
4514 kmem_cache_destroy(btrfs_transaction_cachep);
4515 if (btrfs_bit_radix_cachep)
4516 kmem_cache_destroy(btrfs_bit_radix_cachep);
4517 if (btrfs_path_cachep)
4518 kmem_cache_destroy(btrfs_path_cachep);
4519 }
4520
4521 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
4522 unsigned long extra_flags,
4523 void (*ctor)(void *))
4524 {
4525 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
4526 SLAB_MEM_SPREAD | extra_flags), ctor);
4527 }
4528
4529 int btrfs_init_cachep(void)
4530 {
4531 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
4532 sizeof(struct btrfs_inode),
4533 0, init_once);
4534 if (!btrfs_inode_cachep)
4535 goto fail;
4536 btrfs_trans_handle_cachep =
4537 btrfs_cache_create("btrfs_trans_handle_cache",
4538 sizeof(struct btrfs_trans_handle),
4539 0, NULL);
4540 if (!btrfs_trans_handle_cachep)
4541 goto fail;
4542 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
4543 sizeof(struct btrfs_transaction),
4544 0, NULL);
4545 if (!btrfs_transaction_cachep)
4546 goto fail;
4547 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
4548 sizeof(struct btrfs_path),
4549 0, NULL);
4550 if (!btrfs_path_cachep)
4551 goto fail;
4552 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
4553 SLAB_DESTROY_BY_RCU, NULL);
4554 if (!btrfs_bit_radix_cachep)
4555 goto fail;
4556 return 0;
4557 fail:
4558 btrfs_destroy_cachep();
4559 return -ENOMEM;
4560 }
4561
4562 static int btrfs_getattr(struct vfsmount *mnt,
4563 struct dentry *dentry, struct kstat *stat)
4564 {
4565 struct inode *inode = dentry->d_inode;
4566 generic_fillattr(inode, stat);
4567 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4568 stat->blksize = PAGE_CACHE_SIZE;
4569 stat->blocks = (inode_get_bytes(inode) +
4570 BTRFS_I(inode)->delalloc_bytes) >> 9;
4571 return 0;
4572 }
4573
4574 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4575 struct inode *new_dir, struct dentry *new_dentry)
4576 {
4577 struct btrfs_trans_handle *trans;
4578 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4579 struct inode *new_inode = new_dentry->d_inode;
4580 struct inode *old_inode = old_dentry->d_inode;
4581 struct timespec ctime = CURRENT_TIME;
4582 u64 index = 0;
4583 int ret;
4584
4585 /* we're not allowed to rename between subvolumes */
4586 if (BTRFS_I(old_inode)->root->root_key.objectid !=
4587 BTRFS_I(new_dir)->root->root_key.objectid)
4588 return -EXDEV;
4589
4590 if (S_ISDIR(old_inode->i_mode) && new_inode &&
4591 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4592 return -ENOTEMPTY;
4593 }
4594
4595 /* to rename a snapshot or subvolume, we need to juggle the
4596 * backrefs. This isn't coded yet
4597 */
4598 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4599 return -EXDEV;
4600
4601 ret = btrfs_check_free_space(root, 1, 0);
4602 if (ret)
4603 goto out_unlock;
4604
4605 trans = btrfs_start_transaction(root, 1);
4606
4607 btrfs_set_trans_block_group(trans, new_dir);
4608
4609 btrfs_inc_nlink(old_dentry->d_inode);
4610 old_dir->i_ctime = old_dir->i_mtime = ctime;
4611 new_dir->i_ctime = new_dir->i_mtime = ctime;
4612 old_inode->i_ctime = ctime;
4613
4614 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4615 old_dentry->d_name.name,
4616 old_dentry->d_name.len);
4617 if (ret)
4618 goto out_fail;
4619
4620 if (new_inode) {
4621 new_inode->i_ctime = CURRENT_TIME;
4622 ret = btrfs_unlink_inode(trans, root, new_dir,
4623 new_dentry->d_inode,
4624 new_dentry->d_name.name,
4625 new_dentry->d_name.len);
4626 if (ret)
4627 goto out_fail;
4628 if (new_inode->i_nlink == 0) {
4629 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4630 if (ret)
4631 goto out_fail;
4632 }
4633
4634 }
4635 ret = btrfs_set_inode_index(new_dir, &index);
4636 if (ret)
4637 goto out_fail;
4638
4639 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4640 old_inode, new_dentry->d_name.name,
4641 new_dentry->d_name.len, 1, index);
4642 if (ret)
4643 goto out_fail;
4644
4645 out_fail:
4646 btrfs_end_transaction_throttle(trans, root);
4647 out_unlock:
4648 return ret;
4649 }
4650
4651 /*
4652 * some fairly slow code that needs optimization. This walks the list
4653 * of all the inodes with pending delalloc and forces them to disk.
4654 */
4655 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4656 {
4657 struct list_head *head = &root->fs_info->delalloc_inodes;
4658 struct btrfs_inode *binode;
4659 struct inode *inode;
4660
4661 if (root->fs_info->sb->s_flags & MS_RDONLY)
4662 return -EROFS;
4663
4664 spin_lock(&root->fs_info->delalloc_lock);
4665 while (!list_empty(head)) {
4666 binode = list_entry(head->next, struct btrfs_inode,
4667 delalloc_inodes);
4668 inode = igrab(&binode->vfs_inode);
4669 if (!inode)
4670 list_del_init(&binode->delalloc_inodes);
4671 spin_unlock(&root->fs_info->delalloc_lock);
4672 if (inode) {
4673 filemap_flush(inode->i_mapping);
4674 iput(inode);
4675 }
4676 cond_resched();
4677 spin_lock(&root->fs_info->delalloc_lock);
4678 }
4679 spin_unlock(&root->fs_info->delalloc_lock);
4680
4681 /* the filemap_flush will queue IO into the worker threads, but
4682 * we have to make sure the IO is actually started and that
4683 * ordered extents get created before we return
4684 */
4685 atomic_inc(&root->fs_info->async_submit_draining);
4686 while (atomic_read(&root->fs_info->nr_async_submits) ||
4687 atomic_read(&root->fs_info->async_delalloc_pages)) {
4688 wait_event(root->fs_info->async_submit_wait,
4689 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4690 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4691 }
4692 atomic_dec(&root->fs_info->async_submit_draining);
4693 return 0;
4694 }
4695
4696 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4697 const char *symname)
4698 {
4699 struct btrfs_trans_handle *trans;
4700 struct btrfs_root *root = BTRFS_I(dir)->root;
4701 struct btrfs_path *path;
4702 struct btrfs_key key;
4703 struct inode *inode = NULL;
4704 int err;
4705 int drop_inode = 0;
4706 u64 objectid;
4707 u64 index = 0 ;
4708 int name_len;
4709 int datasize;
4710 unsigned long ptr;
4711 struct btrfs_file_extent_item *ei;
4712 struct extent_buffer *leaf;
4713 unsigned long nr = 0;
4714
4715 name_len = strlen(symname) + 1;
4716 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4717 return -ENAMETOOLONG;
4718
4719 err = btrfs_check_free_space(root, 1, 0);
4720 if (err)
4721 goto out_fail;
4722
4723 trans = btrfs_start_transaction(root, 1);
4724 btrfs_set_trans_block_group(trans, dir);
4725
4726 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4727 if (err) {
4728 err = -ENOSPC;
4729 goto out_unlock;
4730 }
4731
4732 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4733 dentry->d_name.len,
4734 dentry->d_parent->d_inode->i_ino, objectid,
4735 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4736 &index);
4737 err = PTR_ERR(inode);
4738 if (IS_ERR(inode))
4739 goto out_unlock;
4740
4741 err = btrfs_init_acl(inode, dir);
4742 if (err) {
4743 drop_inode = 1;
4744 goto out_unlock;
4745 }
4746
4747 btrfs_set_trans_block_group(trans, inode);
4748 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4749 if (err)
4750 drop_inode = 1;
4751 else {
4752 inode->i_mapping->a_ops = &btrfs_aops;
4753 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4754 inode->i_fop = &btrfs_file_operations;
4755 inode->i_op = &btrfs_file_inode_operations;
4756 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4757 }
4758 dir->i_sb->s_dirt = 1;
4759 btrfs_update_inode_block_group(trans, inode);
4760 btrfs_update_inode_block_group(trans, dir);
4761 if (drop_inode)
4762 goto out_unlock;
4763
4764 path = btrfs_alloc_path();
4765 BUG_ON(!path);
4766 key.objectid = inode->i_ino;
4767 key.offset = 0;
4768 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4769 datasize = btrfs_file_extent_calc_inline_size(name_len);
4770 err = btrfs_insert_empty_item(trans, root, path, &key,
4771 datasize);
4772 if (err) {
4773 drop_inode = 1;
4774 goto out_unlock;
4775 }
4776 leaf = path->nodes[0];
4777 ei = btrfs_item_ptr(leaf, path->slots[0],
4778 struct btrfs_file_extent_item);
4779 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4780 btrfs_set_file_extent_type(leaf, ei,
4781 BTRFS_FILE_EXTENT_INLINE);
4782 btrfs_set_file_extent_encryption(leaf, ei, 0);
4783 btrfs_set_file_extent_compression(leaf, ei, 0);
4784 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4785 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4786
4787 ptr = btrfs_file_extent_inline_start(ei);
4788 write_extent_buffer(leaf, symname, ptr, name_len);
4789 btrfs_mark_buffer_dirty(leaf);
4790 btrfs_free_path(path);
4791
4792 inode->i_op = &btrfs_symlink_inode_operations;
4793 inode->i_mapping->a_ops = &btrfs_symlink_aops;
4794 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4795 inode_set_bytes(inode, name_len);
4796 btrfs_i_size_write(inode, name_len - 1);
4797 err = btrfs_update_inode(trans, root, inode);
4798 if (err)
4799 drop_inode = 1;
4800
4801 out_unlock:
4802 nr = trans->blocks_used;
4803 btrfs_end_transaction_throttle(trans, root);
4804 out_fail:
4805 if (drop_inode) {
4806 inode_dec_link_count(inode);
4807 iput(inode);
4808 }
4809 btrfs_btree_balance_dirty(root, nr);
4810 return err;
4811 }
4812
4813 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
4814 u64 alloc_hint, int mode)
4815 {
4816 struct btrfs_trans_handle *trans;
4817 struct btrfs_root *root = BTRFS_I(inode)->root;
4818 struct btrfs_key ins;
4819 u64 alloc_size;
4820 u64 cur_offset = start;
4821 u64 num_bytes = end - start;
4822 int ret = 0;
4823
4824 trans = btrfs_join_transaction(root, 1);
4825 BUG_ON(!trans);
4826 btrfs_set_trans_block_group(trans, inode);
4827
4828 while (num_bytes > 0) {
4829 alloc_size = min(num_bytes, root->fs_info->max_extent);
4830 ret = btrfs_reserve_extent(trans, root, alloc_size,
4831 root->sectorsize, 0, alloc_hint,
4832 (u64)-1, &ins, 1);
4833 if (ret) {
4834 WARN_ON(1);
4835 goto out;
4836 }
4837 ret = insert_reserved_file_extent(trans, inode,
4838 cur_offset, ins.objectid,
4839 ins.offset, ins.offset,
4840 ins.offset, 0, 0, 0,
4841 BTRFS_FILE_EXTENT_PREALLOC);
4842 BUG_ON(ret);
4843 num_bytes -= ins.offset;
4844 cur_offset += ins.offset;
4845 alloc_hint = ins.objectid + ins.offset;
4846 }
4847 out:
4848 if (cur_offset > start) {
4849 inode->i_ctime = CURRENT_TIME;
4850 btrfs_set_flag(inode, PREALLOC);
4851 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4852 cur_offset > i_size_read(inode))
4853 btrfs_i_size_write(inode, cur_offset);
4854 ret = btrfs_update_inode(trans, root, inode);
4855 BUG_ON(ret);
4856 }
4857
4858 btrfs_end_transaction(trans, root);
4859 return ret;
4860 }
4861
4862 static long btrfs_fallocate(struct inode *inode, int mode,
4863 loff_t offset, loff_t len)
4864 {
4865 u64 cur_offset;
4866 u64 last_byte;
4867 u64 alloc_start;
4868 u64 alloc_end;
4869 u64 alloc_hint = 0;
4870 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
4871 struct extent_map *em;
4872 int ret;
4873
4874 alloc_start = offset & ~mask;
4875 alloc_end = (offset + len + mask) & ~mask;
4876
4877 mutex_lock(&inode->i_mutex);
4878 if (alloc_start > inode->i_size) {
4879 ret = btrfs_cont_expand(inode, alloc_start);
4880 if (ret)
4881 goto out;
4882 }
4883
4884 while (1) {
4885 struct btrfs_ordered_extent *ordered;
4886 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start,
4887 alloc_end - 1, GFP_NOFS);
4888 ordered = btrfs_lookup_first_ordered_extent(inode,
4889 alloc_end - 1);
4890 if (ordered &&
4891 ordered->file_offset + ordered->len > alloc_start &&
4892 ordered->file_offset < alloc_end) {
4893 btrfs_put_ordered_extent(ordered);
4894 unlock_extent(&BTRFS_I(inode)->io_tree,
4895 alloc_start, alloc_end - 1, GFP_NOFS);
4896 btrfs_wait_ordered_range(inode, alloc_start,
4897 alloc_end - alloc_start);
4898 } else {
4899 if (ordered)
4900 btrfs_put_ordered_extent(ordered);
4901 break;
4902 }
4903 }
4904
4905 cur_offset = alloc_start;
4906 while (1) {
4907 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4908 alloc_end - cur_offset, 0);
4909 BUG_ON(IS_ERR(em) || !em);
4910 last_byte = min(extent_map_end(em), alloc_end);
4911 last_byte = (last_byte + mask) & ~mask;
4912 if (em->block_start == EXTENT_MAP_HOLE) {
4913 ret = prealloc_file_range(inode, cur_offset,
4914 last_byte, alloc_hint, mode);
4915 if (ret < 0) {
4916 free_extent_map(em);
4917 break;
4918 }
4919 }
4920 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
4921 alloc_hint = em->block_start;
4922 free_extent_map(em);
4923
4924 cur_offset = last_byte;
4925 if (cur_offset >= alloc_end) {
4926 ret = 0;
4927 break;
4928 }
4929 }
4930 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1,
4931 GFP_NOFS);
4932 out:
4933 mutex_unlock(&inode->i_mutex);
4934 return ret;
4935 }
4936
4937 static int btrfs_set_page_dirty(struct page *page)
4938 {
4939 return __set_page_dirty_nobuffers(page);
4940 }
4941
4942 static int btrfs_permission(struct inode *inode, int mask)
4943 {
4944 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
4945 return -EACCES;
4946 return generic_permission(inode, mask, btrfs_check_acl);
4947 }
4948
4949 static struct inode_operations btrfs_dir_inode_operations = {
4950 .getattr = btrfs_getattr,
4951 .lookup = btrfs_lookup,
4952 .create = btrfs_create,
4953 .unlink = btrfs_unlink,
4954 .link = btrfs_link,
4955 .mkdir = btrfs_mkdir,
4956 .rmdir = btrfs_rmdir,
4957 .rename = btrfs_rename,
4958 .symlink = btrfs_symlink,
4959 .setattr = btrfs_setattr,
4960 .mknod = btrfs_mknod,
4961 .setxattr = btrfs_setxattr,
4962 .getxattr = btrfs_getxattr,
4963 .listxattr = btrfs_listxattr,
4964 .removexattr = btrfs_removexattr,
4965 .permission = btrfs_permission,
4966 };
4967 static struct inode_operations btrfs_dir_ro_inode_operations = {
4968 .lookup = btrfs_lookup,
4969 .permission = btrfs_permission,
4970 };
4971 static struct file_operations btrfs_dir_file_operations = {
4972 .llseek = generic_file_llseek,
4973 .read = generic_read_dir,
4974 .readdir = btrfs_real_readdir,
4975 .unlocked_ioctl = btrfs_ioctl,
4976 #ifdef CONFIG_COMPAT
4977 .compat_ioctl = btrfs_ioctl,
4978 #endif
4979 .release = btrfs_release_file,
4980 .fsync = btrfs_sync_file,
4981 };
4982
4983 static struct extent_io_ops btrfs_extent_io_ops = {
4984 .fill_delalloc = run_delalloc_range,
4985 .submit_bio_hook = btrfs_submit_bio_hook,
4986 .merge_bio_hook = btrfs_merge_bio_hook,
4987 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4988 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
4989 .writepage_start_hook = btrfs_writepage_start_hook,
4990 .readpage_io_failed_hook = btrfs_io_failed_hook,
4991 .set_bit_hook = btrfs_set_bit_hook,
4992 .clear_bit_hook = btrfs_clear_bit_hook,
4993 };
4994
4995 static struct address_space_operations btrfs_aops = {
4996 .readpage = btrfs_readpage,
4997 .writepage = btrfs_writepage,
4998 .writepages = btrfs_writepages,
4999 .readpages = btrfs_readpages,
5000 .sync_page = block_sync_page,
5001 .bmap = btrfs_bmap,
5002 .direct_IO = btrfs_direct_IO,
5003 .invalidatepage = btrfs_invalidatepage,
5004 .releasepage = btrfs_releasepage,
5005 .set_page_dirty = btrfs_set_page_dirty,
5006 };
5007
5008 static struct address_space_operations btrfs_symlink_aops = {
5009 .readpage = btrfs_readpage,
5010 .writepage = btrfs_writepage,
5011 .invalidatepage = btrfs_invalidatepage,
5012 .releasepage = btrfs_releasepage,
5013 };
5014
5015 static struct inode_operations btrfs_file_inode_operations = {
5016 .truncate = btrfs_truncate,
5017 .getattr = btrfs_getattr,
5018 .setattr = btrfs_setattr,
5019 .setxattr = btrfs_setxattr,
5020 .getxattr = btrfs_getxattr,
5021 .listxattr = btrfs_listxattr,
5022 .removexattr = btrfs_removexattr,
5023 .permission = btrfs_permission,
5024 .fallocate = btrfs_fallocate,
5025 };
5026 static struct inode_operations btrfs_special_inode_operations = {
5027 .getattr = btrfs_getattr,
5028 .setattr = btrfs_setattr,
5029 .permission = btrfs_permission,
5030 .setxattr = btrfs_setxattr,
5031 .getxattr = btrfs_getxattr,
5032 .listxattr = btrfs_listxattr,
5033 .removexattr = btrfs_removexattr,
5034 };
5035 static struct inode_operations btrfs_symlink_inode_operations = {
5036 .readlink = generic_readlink,
5037 .follow_link = page_follow_link_light,
5038 .put_link = page_put_link,
5039 .permission = btrfs_permission,
5040 };
This page took 0.630908 seconds and 6 git commands to generate.