Btrfs: Full back reference support
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "compat.h"
50 #include "tree-log.h"
51
52 struct btrfs_iget_args {
53 u64 ino;
54 struct btrfs_root *root;
55 };
56
57 static struct inode_operations btrfs_dir_inode_operations;
58 static struct inode_operations btrfs_symlink_inode_operations;
59 static struct inode_operations btrfs_dir_ro_inode_operations;
60 static struct inode_operations btrfs_special_inode_operations;
61 static struct inode_operations btrfs_file_inode_operations;
62 static struct address_space_operations btrfs_aops;
63 static struct address_space_operations btrfs_symlink_aops;
64 static struct file_operations btrfs_dir_file_operations;
65 static struct extent_io_ops btrfs_extent_io_ops;
66
67 static struct kmem_cache *btrfs_inode_cachep;
68 struct kmem_cache *btrfs_trans_handle_cachep;
69 struct kmem_cache *btrfs_transaction_cachep;
70 struct kmem_cache *btrfs_bit_radix_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
82 };
83
84 static void btrfs_truncate(struct inode *inode);
85
86 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
87 int for_del)
88 {
89 u64 total;
90 u64 used;
91 u64 thresh;
92 unsigned long flags;
93 int ret = 0;
94
95 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
96 total = btrfs_super_total_bytes(&root->fs_info->super_copy);
97 used = btrfs_super_bytes_used(&root->fs_info->super_copy);
98 if (for_del)
99 thresh = total * 90;
100 else
101 thresh = total * 85;
102
103 do_div(thresh, 100);
104
105 if (used + root->fs_info->delalloc_bytes + num_required > thresh)
106 ret = -ENOSPC;
107 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
108 return ret;
109 }
110
111 static int cow_file_range(struct inode *inode, u64 start, u64 end)
112 {
113 struct btrfs_root *root = BTRFS_I(inode)->root;
114 struct btrfs_trans_handle *trans;
115 u64 alloc_hint = 0;
116 u64 num_bytes;
117 u64 cur_alloc_size;
118 u64 blocksize = root->sectorsize;
119 u64 orig_num_bytes;
120 struct btrfs_key ins;
121 struct extent_map *em;
122 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
123 int ret = 0;
124
125 trans = btrfs_join_transaction(root, 1);
126 BUG_ON(!trans);
127 btrfs_set_trans_block_group(trans, inode);
128
129 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
130 num_bytes = max(blocksize, num_bytes);
131 orig_num_bytes = num_bytes;
132
133 if (alloc_hint == EXTENT_MAP_INLINE)
134 goto out;
135
136 BUG_ON(num_bytes > btrfs_super_total_bytes(&root->fs_info->super_copy));
137 mutex_lock(&BTRFS_I(inode)->extent_mutex);
138 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1);
139 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
140
141 while(num_bytes > 0) {
142 cur_alloc_size = min(num_bytes, root->fs_info->max_extent);
143 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
144 root->sectorsize, 0, alloc_hint,
145 (u64)-1, &ins, 1);
146 if (ret) {
147 WARN_ON(1);
148 goto out;
149 }
150 em = alloc_extent_map(GFP_NOFS);
151 em->start = start;
152 em->len = ins.offset;
153 em->block_start = ins.objectid;
154 em->bdev = root->fs_info->fs_devices->latest_bdev;
155 mutex_lock(&BTRFS_I(inode)->extent_mutex);
156 set_bit(EXTENT_FLAG_PINNED, &em->flags);
157 while(1) {
158 spin_lock(&em_tree->lock);
159 ret = add_extent_mapping(em_tree, em);
160 spin_unlock(&em_tree->lock);
161 if (ret != -EEXIST) {
162 free_extent_map(em);
163 break;
164 }
165 btrfs_drop_extent_cache(inode, start,
166 start + ins.offset - 1);
167 }
168 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
169
170 cur_alloc_size = ins.offset;
171 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
172 ins.offset, 0);
173 BUG_ON(ret);
174 if (num_bytes < cur_alloc_size) {
175 printk("num_bytes %Lu cur_alloc %Lu\n", num_bytes,
176 cur_alloc_size);
177 break;
178 }
179 num_bytes -= cur_alloc_size;
180 alloc_hint = ins.objectid + ins.offset;
181 start += cur_alloc_size;
182 }
183 out:
184 btrfs_end_transaction(trans, root);
185 return ret;
186 }
187
188 static int run_delalloc_nocow(struct inode *inode, u64 start, u64 end)
189 {
190 u64 extent_start;
191 u64 extent_end;
192 u64 bytenr;
193 u64 loops = 0;
194 u64 total_fs_bytes;
195 struct btrfs_root *root = BTRFS_I(inode)->root;
196 struct btrfs_block_group_cache *block_group;
197 struct btrfs_trans_handle *trans;
198 struct extent_buffer *leaf;
199 int found_type;
200 struct btrfs_path *path;
201 struct btrfs_file_extent_item *item;
202 int ret;
203 int err = 0;
204 struct btrfs_key found_key;
205
206 total_fs_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
207 path = btrfs_alloc_path();
208 BUG_ON(!path);
209 trans = btrfs_join_transaction(root, 1);
210 BUG_ON(!trans);
211 again:
212 ret = btrfs_lookup_file_extent(NULL, root, path,
213 inode->i_ino, start, 0);
214 if (ret < 0) {
215 err = ret;
216 goto out;
217 }
218
219 if (ret != 0) {
220 if (path->slots[0] == 0)
221 goto not_found;
222 path->slots[0]--;
223 }
224
225 leaf = path->nodes[0];
226 item = btrfs_item_ptr(leaf, path->slots[0],
227 struct btrfs_file_extent_item);
228
229 /* are we inside the extent that was found? */
230 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
231 found_type = btrfs_key_type(&found_key);
232 if (found_key.objectid != inode->i_ino ||
233 found_type != BTRFS_EXTENT_DATA_KEY)
234 goto not_found;
235
236 found_type = btrfs_file_extent_type(leaf, item);
237 extent_start = found_key.offset;
238 if (found_type == BTRFS_FILE_EXTENT_REG) {
239 u64 extent_num_bytes;
240
241 extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item);
242 extent_end = extent_start + extent_num_bytes;
243 err = 0;
244
245 if (loops && start != extent_start)
246 goto not_found;
247
248 if (start < extent_start || start >= extent_end)
249 goto not_found;
250
251 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
252 if (bytenr == 0)
253 goto not_found;
254
255 if (btrfs_cross_ref_exists(trans, root, &found_key, bytenr))
256 goto not_found;
257 /*
258 * we may be called by the resizer, make sure we're inside
259 * the limits of the FS
260 */
261 block_group = btrfs_lookup_block_group(root->fs_info,
262 bytenr);
263 if (!block_group || block_group->ro)
264 goto not_found;
265
266 bytenr += btrfs_file_extent_offset(leaf, item);
267 extent_num_bytes = min(end + 1, extent_end) - start;
268 ret = btrfs_add_ordered_extent(inode, start, bytenr,
269 extent_num_bytes, 1);
270 if (ret) {
271 err = ret;
272 goto out;
273 }
274
275 btrfs_release_path(root, path);
276 start = extent_end;
277 if (start <= end) {
278 loops++;
279 goto again;
280 }
281 } else {
282 not_found:
283 btrfs_end_transaction(trans, root);
284 btrfs_free_path(path);
285 return cow_file_range(inode, start, end);
286 }
287 out:
288 WARN_ON(err);
289 btrfs_end_transaction(trans, root);
290 btrfs_free_path(path);
291 return err;
292 }
293
294 static int run_delalloc_range(struct inode *inode, u64 start, u64 end)
295 {
296 struct btrfs_root *root = BTRFS_I(inode)->root;
297 int ret;
298
299 if (btrfs_test_opt(root, NODATACOW) ||
300 btrfs_test_flag(inode, NODATACOW))
301 ret = run_delalloc_nocow(inode, start, end);
302 else
303 ret = cow_file_range(inode, start, end);
304
305 return ret;
306 }
307
308 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
309 unsigned long old, unsigned long bits)
310 {
311 unsigned long flags;
312 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
313 struct btrfs_root *root = BTRFS_I(inode)->root;
314 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
315 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
316 root->fs_info->delalloc_bytes += end - start + 1;
317 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
318 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
319 &root->fs_info->delalloc_inodes);
320 }
321 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
322 }
323 return 0;
324 }
325
326 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
327 unsigned long old, unsigned long bits)
328 {
329 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
330 struct btrfs_root *root = BTRFS_I(inode)->root;
331 unsigned long flags;
332
333 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
334 if (end - start + 1 > root->fs_info->delalloc_bytes) {
335 printk("warning: delalloc account %Lu %Lu\n",
336 end - start + 1, root->fs_info->delalloc_bytes);
337 root->fs_info->delalloc_bytes = 0;
338 BTRFS_I(inode)->delalloc_bytes = 0;
339 } else {
340 root->fs_info->delalloc_bytes -= end - start + 1;
341 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
342 }
343 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
344 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
345 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
346 }
347 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
348 }
349 return 0;
350 }
351
352 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
353 size_t size, struct bio *bio)
354 {
355 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
356 struct btrfs_mapping_tree *map_tree;
357 u64 logical = bio->bi_sector << 9;
358 u64 length = 0;
359 u64 map_length;
360 int ret;
361
362 length = bio->bi_size;
363 map_tree = &root->fs_info->mapping_tree;
364 map_length = length;
365 ret = btrfs_map_block(map_tree, READ, logical,
366 &map_length, NULL, 0);
367
368 if (map_length < length + size) {
369 return 1;
370 }
371 return 0;
372 }
373
374 int __btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
375 int mirror_num)
376 {
377 struct btrfs_root *root = BTRFS_I(inode)->root;
378 int ret = 0;
379
380 ret = btrfs_csum_one_bio(root, inode, bio);
381 BUG_ON(ret);
382
383 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
384 }
385
386 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
387 int mirror_num)
388 {
389 struct btrfs_root *root = BTRFS_I(inode)->root;
390 int ret = 0;
391
392 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
393 BUG_ON(ret);
394
395 if (btrfs_test_opt(root, NODATASUM) ||
396 btrfs_test_flag(inode, NODATASUM)) {
397 goto mapit;
398 }
399
400 if (!(rw & (1 << BIO_RW))) {
401 btrfs_lookup_bio_sums(root, inode, bio);
402 goto mapit;
403 }
404 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
405 inode, rw, bio, mirror_num,
406 __btrfs_submit_bio_hook);
407 mapit:
408 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
409 }
410
411 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
412 struct inode *inode, u64 file_offset,
413 struct list_head *list)
414 {
415 struct list_head *cur;
416 struct btrfs_ordered_sum *sum;
417
418 btrfs_set_trans_block_group(trans, inode);
419 list_for_each(cur, list) {
420 sum = list_entry(cur, struct btrfs_ordered_sum, list);
421 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
422 inode, sum);
423 }
424 return 0;
425 }
426
427 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
428 {
429 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
430 GFP_NOFS);
431 }
432
433 struct btrfs_writepage_fixup {
434 struct page *page;
435 struct btrfs_work work;
436 };
437
438 /* see btrfs_writepage_start_hook for details on why this is required */
439 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
440 {
441 struct btrfs_writepage_fixup *fixup;
442 struct btrfs_ordered_extent *ordered;
443 struct page *page;
444 struct inode *inode;
445 u64 page_start;
446 u64 page_end;
447
448 fixup = container_of(work, struct btrfs_writepage_fixup, work);
449 page = fixup->page;
450 again:
451 lock_page(page);
452 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
453 ClearPageChecked(page);
454 goto out_page;
455 }
456
457 inode = page->mapping->host;
458 page_start = page_offset(page);
459 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
460
461 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
462
463 /* already ordered? We're done */
464 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
465 EXTENT_ORDERED, 0)) {
466 goto out;
467 }
468
469 ordered = btrfs_lookup_ordered_extent(inode, page_start);
470 if (ordered) {
471 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
472 page_end, GFP_NOFS);
473 unlock_page(page);
474 btrfs_start_ordered_extent(inode, ordered, 1);
475 goto again;
476 }
477
478 btrfs_set_extent_delalloc(inode, page_start, page_end);
479 ClearPageChecked(page);
480 out:
481 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
482 out_page:
483 unlock_page(page);
484 page_cache_release(page);
485 }
486
487 /*
488 * There are a few paths in the higher layers of the kernel that directly
489 * set the page dirty bit without asking the filesystem if it is a
490 * good idea. This causes problems because we want to make sure COW
491 * properly happens and the data=ordered rules are followed.
492 *
493 * In our case any range that doesn't have the EXTENT_ORDERED bit set
494 * hasn't been properly setup for IO. We kick off an async process
495 * to fix it up. The async helper will wait for ordered extents, set
496 * the delalloc bit and make it safe to write the page.
497 */
498 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
499 {
500 struct inode *inode = page->mapping->host;
501 struct btrfs_writepage_fixup *fixup;
502 struct btrfs_root *root = BTRFS_I(inode)->root;
503 int ret;
504
505 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
506 EXTENT_ORDERED, 0);
507 if (ret)
508 return 0;
509
510 if (PageChecked(page))
511 return -EAGAIN;
512
513 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
514 if (!fixup)
515 return -EAGAIN;
516
517 SetPageChecked(page);
518 page_cache_get(page);
519 fixup->work.func = btrfs_writepage_fixup_worker;
520 fixup->page = page;
521 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
522 return -EAGAIN;
523 }
524
525 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
526 {
527 struct btrfs_root *root = BTRFS_I(inode)->root;
528 struct btrfs_trans_handle *trans;
529 struct btrfs_ordered_extent *ordered_extent;
530 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
531 struct btrfs_file_extent_item *extent_item;
532 struct btrfs_path *path = NULL;
533 struct extent_buffer *leaf;
534 u64 alloc_hint = 0;
535 struct list_head list;
536 struct btrfs_key ins;
537 int ret;
538
539 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
540 if (!ret)
541 return 0;
542
543 trans = btrfs_join_transaction(root, 1);
544
545 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
546 BUG_ON(!ordered_extent);
547 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
548 goto nocow;
549
550 path = btrfs_alloc_path();
551 BUG_ON(!path);
552
553 lock_extent(io_tree, ordered_extent->file_offset,
554 ordered_extent->file_offset + ordered_extent->len - 1,
555 GFP_NOFS);
556
557 INIT_LIST_HEAD(&list);
558
559 mutex_lock(&BTRFS_I(inode)->extent_mutex);
560
561 ret = btrfs_drop_extents(trans, root, inode,
562 ordered_extent->file_offset,
563 ordered_extent->file_offset +
564 ordered_extent->len,
565 ordered_extent->file_offset, &alloc_hint);
566 BUG_ON(ret);
567
568 ins.objectid = inode->i_ino;
569 ins.offset = ordered_extent->file_offset;
570 ins.type = BTRFS_EXTENT_DATA_KEY;
571 ret = btrfs_insert_empty_item(trans, root, path, &ins,
572 sizeof(*extent_item));
573 BUG_ON(ret);
574 leaf = path->nodes[0];
575 extent_item = btrfs_item_ptr(leaf, path->slots[0],
576 struct btrfs_file_extent_item);
577 btrfs_set_file_extent_generation(leaf, extent_item, trans->transid);
578 btrfs_set_file_extent_type(leaf, extent_item, BTRFS_FILE_EXTENT_REG);
579 btrfs_set_file_extent_disk_bytenr(leaf, extent_item,
580 ordered_extent->start);
581 btrfs_set_file_extent_disk_num_bytes(leaf, extent_item,
582 ordered_extent->len);
583 btrfs_set_file_extent_offset(leaf, extent_item, 0);
584 btrfs_set_file_extent_num_bytes(leaf, extent_item,
585 ordered_extent->len);
586 btrfs_mark_buffer_dirty(leaf);
587
588 btrfs_drop_extent_cache(inode, ordered_extent->file_offset,
589 ordered_extent->file_offset +
590 ordered_extent->len - 1);
591 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
592
593 ins.objectid = ordered_extent->start;
594 ins.offset = ordered_extent->len;
595 ins.type = BTRFS_EXTENT_ITEM_KEY;
596 ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
597 root->root_key.objectid,
598 trans->transid, inode->i_ino,
599 ordered_extent->file_offset, &ins);
600 BUG_ON(ret);
601 btrfs_release_path(root, path);
602
603 inode->i_blocks += ordered_extent->len >> 9;
604 unlock_extent(io_tree, ordered_extent->file_offset,
605 ordered_extent->file_offset + ordered_extent->len - 1,
606 GFP_NOFS);
607 nocow:
608 add_pending_csums(trans, inode, ordered_extent->file_offset,
609 &ordered_extent->list);
610
611 btrfs_ordered_update_i_size(inode, ordered_extent);
612 btrfs_update_inode(trans, root, inode);
613 btrfs_remove_ordered_extent(inode, ordered_extent);
614
615 /* once for us */
616 btrfs_put_ordered_extent(ordered_extent);
617 /* once for the tree */
618 btrfs_put_ordered_extent(ordered_extent);
619
620 btrfs_end_transaction(trans, root);
621 if (path)
622 btrfs_free_path(path);
623 return 0;
624 }
625
626 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
627 struct extent_state *state, int uptodate)
628 {
629 return btrfs_finish_ordered_io(page->mapping->host, start, end);
630 }
631
632 struct io_failure_record {
633 struct page *page;
634 u64 start;
635 u64 len;
636 u64 logical;
637 int last_mirror;
638 };
639
640 int btrfs_io_failed_hook(struct bio *failed_bio,
641 struct page *page, u64 start, u64 end,
642 struct extent_state *state)
643 {
644 struct io_failure_record *failrec = NULL;
645 u64 private;
646 struct extent_map *em;
647 struct inode *inode = page->mapping->host;
648 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
649 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
650 struct bio *bio;
651 int num_copies;
652 int ret;
653 int rw;
654 u64 logical;
655
656 ret = get_state_private(failure_tree, start, &private);
657 if (ret) {
658 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
659 if (!failrec)
660 return -ENOMEM;
661 failrec->start = start;
662 failrec->len = end - start + 1;
663 failrec->last_mirror = 0;
664
665 spin_lock(&em_tree->lock);
666 em = lookup_extent_mapping(em_tree, start, failrec->len);
667 if (em->start > start || em->start + em->len < start) {
668 free_extent_map(em);
669 em = NULL;
670 }
671 spin_unlock(&em_tree->lock);
672
673 if (!em || IS_ERR(em)) {
674 kfree(failrec);
675 return -EIO;
676 }
677 logical = start - em->start;
678 logical = em->block_start + logical;
679 failrec->logical = logical;
680 free_extent_map(em);
681 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
682 EXTENT_DIRTY, GFP_NOFS);
683 set_state_private(failure_tree, start,
684 (u64)(unsigned long)failrec);
685 } else {
686 failrec = (struct io_failure_record *)(unsigned long)private;
687 }
688 num_copies = btrfs_num_copies(
689 &BTRFS_I(inode)->root->fs_info->mapping_tree,
690 failrec->logical, failrec->len);
691 failrec->last_mirror++;
692 if (!state) {
693 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
694 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
695 failrec->start,
696 EXTENT_LOCKED);
697 if (state && state->start != failrec->start)
698 state = NULL;
699 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
700 }
701 if (!state || failrec->last_mirror > num_copies) {
702 set_state_private(failure_tree, failrec->start, 0);
703 clear_extent_bits(failure_tree, failrec->start,
704 failrec->start + failrec->len - 1,
705 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
706 kfree(failrec);
707 return -EIO;
708 }
709 bio = bio_alloc(GFP_NOFS, 1);
710 bio->bi_private = state;
711 bio->bi_end_io = failed_bio->bi_end_io;
712 bio->bi_sector = failrec->logical >> 9;
713 bio->bi_bdev = failed_bio->bi_bdev;
714 bio->bi_size = 0;
715 bio_add_page(bio, page, failrec->len, start - page_offset(page));
716 if (failed_bio->bi_rw & (1 << BIO_RW))
717 rw = WRITE;
718 else
719 rw = READ;
720
721 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
722 failrec->last_mirror);
723 return 0;
724 }
725
726 int btrfs_clean_io_failures(struct inode *inode, u64 start)
727 {
728 u64 private;
729 u64 private_failure;
730 struct io_failure_record *failure;
731 int ret;
732
733 private = 0;
734 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
735 (u64)-1, 1, EXTENT_DIRTY)) {
736 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
737 start, &private_failure);
738 if (ret == 0) {
739 failure = (struct io_failure_record *)(unsigned long)
740 private_failure;
741 set_state_private(&BTRFS_I(inode)->io_failure_tree,
742 failure->start, 0);
743 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
744 failure->start,
745 failure->start + failure->len - 1,
746 EXTENT_DIRTY | EXTENT_LOCKED,
747 GFP_NOFS);
748 kfree(failure);
749 }
750 }
751 return 0;
752 }
753
754 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
755 struct extent_state *state)
756 {
757 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
758 struct inode *inode = page->mapping->host;
759 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
760 char *kaddr;
761 u64 private = ~(u32)0;
762 int ret;
763 struct btrfs_root *root = BTRFS_I(inode)->root;
764 u32 csum = ~(u32)0;
765 unsigned long flags;
766
767 if (btrfs_test_opt(root, NODATASUM) ||
768 btrfs_test_flag(inode, NODATASUM))
769 return 0;
770 if (state && state->start == start) {
771 private = state->private;
772 ret = 0;
773 } else {
774 ret = get_state_private(io_tree, start, &private);
775 }
776 local_irq_save(flags);
777 kaddr = kmap_atomic(page, KM_IRQ0);
778 if (ret) {
779 goto zeroit;
780 }
781 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
782 btrfs_csum_final(csum, (char *)&csum);
783 if (csum != private) {
784 goto zeroit;
785 }
786 kunmap_atomic(kaddr, KM_IRQ0);
787 local_irq_restore(flags);
788
789 /* if the io failure tree for this inode is non-empty,
790 * check to see if we've recovered from a failed IO
791 */
792 btrfs_clean_io_failures(inode, start);
793 return 0;
794
795 zeroit:
796 printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
797 page->mapping->host->i_ino, (unsigned long long)start, csum,
798 private);
799 memset(kaddr + offset, 1, end - start + 1);
800 flush_dcache_page(page);
801 kunmap_atomic(kaddr, KM_IRQ0);
802 local_irq_restore(flags);
803 if (private == 0)
804 return 0;
805 return -EIO;
806 }
807
808 /*
809 * This creates an orphan entry for the given inode in case something goes
810 * wrong in the middle of an unlink/truncate.
811 */
812 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
813 {
814 struct btrfs_root *root = BTRFS_I(inode)->root;
815 int ret = 0;
816
817 spin_lock(&root->list_lock);
818
819 /* already on the orphan list, we're good */
820 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
821 spin_unlock(&root->list_lock);
822 return 0;
823 }
824
825 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
826
827 spin_unlock(&root->list_lock);
828
829 /*
830 * insert an orphan item to track this unlinked/truncated file
831 */
832 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
833
834 return ret;
835 }
836
837 /*
838 * We have done the truncate/delete so we can go ahead and remove the orphan
839 * item for this particular inode.
840 */
841 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
842 {
843 struct btrfs_root *root = BTRFS_I(inode)->root;
844 int ret = 0;
845
846 spin_lock(&root->list_lock);
847
848 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
849 spin_unlock(&root->list_lock);
850 return 0;
851 }
852
853 list_del_init(&BTRFS_I(inode)->i_orphan);
854 if (!trans) {
855 spin_unlock(&root->list_lock);
856 return 0;
857 }
858
859 spin_unlock(&root->list_lock);
860
861 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
862
863 return ret;
864 }
865
866 /*
867 * this cleans up any orphans that may be left on the list from the last use
868 * of this root.
869 */
870 void btrfs_orphan_cleanup(struct btrfs_root *root)
871 {
872 struct btrfs_path *path;
873 struct extent_buffer *leaf;
874 struct btrfs_item *item;
875 struct btrfs_key key, found_key;
876 struct btrfs_trans_handle *trans;
877 struct inode *inode;
878 int ret = 0, nr_unlink = 0, nr_truncate = 0;
879
880 /* don't do orphan cleanup if the fs is readonly. */
881 if (root->inode->i_sb->s_flags & MS_RDONLY)
882 return;
883
884 path = btrfs_alloc_path();
885 if (!path)
886 return;
887 path->reada = -1;
888
889 key.objectid = BTRFS_ORPHAN_OBJECTID;
890 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
891 key.offset = (u64)-1;
892
893 trans = btrfs_start_transaction(root, 1);
894 btrfs_set_trans_block_group(trans, root->inode);
895
896 while (1) {
897 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
898 if (ret < 0) {
899 printk(KERN_ERR "Error searching slot for orphan: %d"
900 "\n", ret);
901 break;
902 }
903
904 /*
905 * if ret == 0 means we found what we were searching for, which
906 * is weird, but possible, so only screw with path if we didnt
907 * find the key and see if we have stuff that matches
908 */
909 if (ret > 0) {
910 if (path->slots[0] == 0)
911 break;
912 path->slots[0]--;
913 }
914
915 /* pull out the item */
916 leaf = path->nodes[0];
917 item = btrfs_item_nr(leaf, path->slots[0]);
918 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
919
920 /* make sure the item matches what we want */
921 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
922 break;
923 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
924 break;
925
926 /* release the path since we're done with it */
927 btrfs_release_path(root, path);
928
929 /*
930 * this is where we are basically btrfs_lookup, without the
931 * crossing root thing. we store the inode number in the
932 * offset of the orphan item.
933 */
934 inode = btrfs_iget_locked(root->inode->i_sb,
935 found_key.offset, root);
936 if (!inode)
937 break;
938
939 if (inode->i_state & I_NEW) {
940 BTRFS_I(inode)->root = root;
941
942 /* have to set the location manually */
943 BTRFS_I(inode)->location.objectid = inode->i_ino;
944 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
945 BTRFS_I(inode)->location.offset = 0;
946
947 btrfs_read_locked_inode(inode);
948 unlock_new_inode(inode);
949 }
950
951 /*
952 * add this inode to the orphan list so btrfs_orphan_del does
953 * the proper thing when we hit it
954 */
955 spin_lock(&root->list_lock);
956 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
957 spin_unlock(&root->list_lock);
958
959 /*
960 * if this is a bad inode, means we actually succeeded in
961 * removing the inode, but not the orphan record, which means
962 * we need to manually delete the orphan since iput will just
963 * do a destroy_inode
964 */
965 if (is_bad_inode(inode)) {
966 btrfs_orphan_del(trans, inode);
967 iput(inode);
968 continue;
969 }
970
971 /* if we have links, this was a truncate, lets do that */
972 if (inode->i_nlink) {
973 nr_truncate++;
974 btrfs_truncate(inode);
975 } else {
976 nr_unlink++;
977 }
978
979 /* this will do delete_inode and everything for us */
980 iput(inode);
981 }
982
983 if (nr_unlink)
984 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
985 if (nr_truncate)
986 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
987
988 btrfs_free_path(path);
989 btrfs_end_transaction(trans, root);
990 }
991
992 void btrfs_read_locked_inode(struct inode *inode)
993 {
994 struct btrfs_path *path;
995 struct extent_buffer *leaf;
996 struct btrfs_inode_item *inode_item;
997 struct btrfs_timespec *tspec;
998 struct btrfs_root *root = BTRFS_I(inode)->root;
999 struct btrfs_key location;
1000 u64 alloc_group_block;
1001 u32 rdev;
1002 int ret;
1003
1004 path = btrfs_alloc_path();
1005 BUG_ON(!path);
1006 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1007
1008 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1009 if (ret)
1010 goto make_bad;
1011
1012 leaf = path->nodes[0];
1013 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1014 struct btrfs_inode_item);
1015
1016 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1017 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1018 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1019 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1020 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1021
1022 tspec = btrfs_inode_atime(inode_item);
1023 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1024 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1025
1026 tspec = btrfs_inode_mtime(inode_item);
1027 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1028 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1029
1030 tspec = btrfs_inode_ctime(inode_item);
1031 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1032 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1033
1034 inode->i_blocks = btrfs_inode_nblocks(leaf, inode_item);
1035 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
1036 inode->i_generation = BTRFS_I(inode)->generation;
1037 inode->i_rdev = 0;
1038 rdev = btrfs_inode_rdev(leaf, inode_item);
1039
1040 BTRFS_I(inode)->index_cnt = (u64)-1;
1041
1042 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1043 BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1044 alloc_group_block);
1045 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1046 if (!BTRFS_I(inode)->block_group) {
1047 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1048 NULL, 0,
1049 BTRFS_BLOCK_GROUP_METADATA, 0);
1050 }
1051 btrfs_free_path(path);
1052 inode_item = NULL;
1053
1054 switch (inode->i_mode & S_IFMT) {
1055 case S_IFREG:
1056 inode->i_mapping->a_ops = &btrfs_aops;
1057 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1058 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1059 inode->i_fop = &btrfs_file_operations;
1060 inode->i_op = &btrfs_file_inode_operations;
1061 break;
1062 case S_IFDIR:
1063 inode->i_fop = &btrfs_dir_file_operations;
1064 if (root == root->fs_info->tree_root)
1065 inode->i_op = &btrfs_dir_ro_inode_operations;
1066 else
1067 inode->i_op = &btrfs_dir_inode_operations;
1068 break;
1069 case S_IFLNK:
1070 inode->i_op = &btrfs_symlink_inode_operations;
1071 inode->i_mapping->a_ops = &btrfs_symlink_aops;
1072 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1073 break;
1074 default:
1075 init_special_inode(inode, inode->i_mode, rdev);
1076 break;
1077 }
1078 return;
1079
1080 make_bad:
1081 btrfs_free_path(path);
1082 make_bad_inode(inode);
1083 }
1084
1085 static void fill_inode_item(struct btrfs_trans_handle *trans,
1086 struct extent_buffer *leaf,
1087 struct btrfs_inode_item *item,
1088 struct inode *inode)
1089 {
1090 btrfs_set_inode_uid(leaf, item, inode->i_uid);
1091 btrfs_set_inode_gid(leaf, item, inode->i_gid);
1092 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
1093 btrfs_set_inode_mode(leaf, item, inode->i_mode);
1094 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
1095
1096 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
1097 inode->i_atime.tv_sec);
1098 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
1099 inode->i_atime.tv_nsec);
1100
1101 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
1102 inode->i_mtime.tv_sec);
1103 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
1104 inode->i_mtime.tv_nsec);
1105
1106 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
1107 inode->i_ctime.tv_sec);
1108 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
1109 inode->i_ctime.tv_nsec);
1110
1111 btrfs_set_inode_nblocks(leaf, item, inode->i_blocks);
1112 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
1113 btrfs_set_inode_transid(leaf, item, trans->transid);
1114 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
1115 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
1116 btrfs_set_inode_block_group(leaf, item,
1117 BTRFS_I(inode)->block_group->key.objectid);
1118 }
1119
1120 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
1121 struct btrfs_root *root,
1122 struct inode *inode)
1123 {
1124 struct btrfs_inode_item *inode_item;
1125 struct btrfs_path *path;
1126 struct extent_buffer *leaf;
1127 int ret;
1128
1129 path = btrfs_alloc_path();
1130 BUG_ON(!path);
1131 ret = btrfs_lookup_inode(trans, root, path,
1132 &BTRFS_I(inode)->location, 1);
1133 if (ret) {
1134 if (ret > 0)
1135 ret = -ENOENT;
1136 goto failed;
1137 }
1138
1139 leaf = path->nodes[0];
1140 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1141 struct btrfs_inode_item);
1142
1143 fill_inode_item(trans, leaf, inode_item, inode);
1144 btrfs_mark_buffer_dirty(leaf);
1145 btrfs_set_inode_last_trans(trans, inode);
1146 ret = 0;
1147 failed:
1148 btrfs_free_path(path);
1149 return ret;
1150 }
1151
1152
1153 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
1154 struct btrfs_root *root,
1155 struct inode *dir, struct inode *inode,
1156 const char *name, int name_len)
1157 {
1158 struct btrfs_path *path;
1159 int ret = 0;
1160 struct extent_buffer *leaf;
1161 struct btrfs_dir_item *di;
1162 struct btrfs_key key;
1163 u64 index;
1164
1165 path = btrfs_alloc_path();
1166 if (!path) {
1167 ret = -ENOMEM;
1168 goto err;
1169 }
1170
1171 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
1172 name, name_len, -1);
1173 if (IS_ERR(di)) {
1174 ret = PTR_ERR(di);
1175 goto err;
1176 }
1177 if (!di) {
1178 ret = -ENOENT;
1179 goto err;
1180 }
1181 leaf = path->nodes[0];
1182 btrfs_dir_item_key_to_cpu(leaf, di, &key);
1183 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1184 if (ret)
1185 goto err;
1186 btrfs_release_path(root, path);
1187
1188 ret = btrfs_del_inode_ref(trans, root, name, name_len,
1189 inode->i_ino,
1190 dir->i_ino, &index);
1191 if (ret) {
1192 printk("failed to delete reference to %.*s, "
1193 "inode %lu parent %lu\n", name_len, name,
1194 inode->i_ino, dir->i_ino);
1195 goto err;
1196 }
1197
1198 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
1199 index, name, name_len, -1);
1200 if (IS_ERR(di)) {
1201 ret = PTR_ERR(di);
1202 goto err;
1203 }
1204 if (!di) {
1205 ret = -ENOENT;
1206 goto err;
1207 }
1208 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1209 btrfs_release_path(root, path);
1210
1211 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
1212 inode, dir->i_ino);
1213 BUG_ON(ret != 0 && ret != -ENOENT);
1214 if (ret != -ENOENT)
1215 BTRFS_I(dir)->log_dirty_trans = trans->transid;
1216
1217 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
1218 dir, index);
1219 BUG_ON(ret);
1220 err:
1221 btrfs_free_path(path);
1222 if (ret)
1223 goto out;
1224
1225 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
1226 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
1227 btrfs_update_inode(trans, root, dir);
1228 btrfs_drop_nlink(inode);
1229 ret = btrfs_update_inode(trans, root, inode);
1230 dir->i_sb->s_dirt = 1;
1231 out:
1232 return ret;
1233 }
1234
1235 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
1236 {
1237 struct btrfs_root *root;
1238 struct btrfs_trans_handle *trans;
1239 struct inode *inode = dentry->d_inode;
1240 int ret;
1241 unsigned long nr = 0;
1242
1243 root = BTRFS_I(dir)->root;
1244
1245 ret = btrfs_check_free_space(root, 1, 1);
1246 if (ret)
1247 goto fail;
1248
1249 trans = btrfs_start_transaction(root, 1);
1250
1251 btrfs_set_trans_block_group(trans, dir);
1252 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1253 dentry->d_name.name, dentry->d_name.len);
1254
1255 if (inode->i_nlink == 0)
1256 ret = btrfs_orphan_add(trans, inode);
1257
1258 nr = trans->blocks_used;
1259
1260 btrfs_end_transaction_throttle(trans, root);
1261 fail:
1262 btrfs_btree_balance_dirty(root, nr);
1263 return ret;
1264 }
1265
1266 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
1267 {
1268 struct inode *inode = dentry->d_inode;
1269 int err = 0;
1270 int ret;
1271 struct btrfs_root *root = BTRFS_I(dir)->root;
1272 struct btrfs_trans_handle *trans;
1273 unsigned long nr = 0;
1274
1275 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
1276 return -ENOTEMPTY;
1277 }
1278
1279 ret = btrfs_check_free_space(root, 1, 1);
1280 if (ret)
1281 goto fail;
1282
1283 trans = btrfs_start_transaction(root, 1);
1284 btrfs_set_trans_block_group(trans, dir);
1285
1286 err = btrfs_orphan_add(trans, inode);
1287 if (err)
1288 goto fail_trans;
1289
1290 /* now the directory is empty */
1291 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1292 dentry->d_name.name, dentry->d_name.len);
1293 if (!err) {
1294 btrfs_i_size_write(inode, 0);
1295 }
1296
1297 fail_trans:
1298 nr = trans->blocks_used;
1299 ret = btrfs_end_transaction_throttle(trans, root);
1300 fail:
1301 btrfs_btree_balance_dirty(root, nr);
1302
1303 if (ret && !err)
1304 err = ret;
1305 return err;
1306 }
1307
1308 /*
1309 * this can truncate away extent items, csum items and directory items.
1310 * It starts at a high offset and removes keys until it can't find
1311 * any higher than i_size.
1312 *
1313 * csum items that cross the new i_size are truncated to the new size
1314 * as well.
1315 *
1316 * min_type is the minimum key type to truncate down to. If set to 0, this
1317 * will kill all the items on this inode, including the INODE_ITEM_KEY.
1318 */
1319 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
1320 struct btrfs_root *root,
1321 struct inode *inode,
1322 u64 new_size, u32 min_type)
1323 {
1324 int ret;
1325 struct btrfs_path *path;
1326 struct btrfs_key key;
1327 struct btrfs_key found_key;
1328 u32 found_type;
1329 struct extent_buffer *leaf;
1330 struct btrfs_file_extent_item *fi;
1331 u64 extent_start = 0;
1332 u64 extent_num_bytes = 0;
1333 u64 item_end = 0;
1334 u64 root_gen = 0;
1335 u64 root_owner = 0;
1336 int found_extent;
1337 int del_item;
1338 int pending_del_nr = 0;
1339 int pending_del_slot = 0;
1340 int extent_type = -1;
1341 u64 mask = root->sectorsize - 1;
1342
1343 if (root->ref_cows)
1344 btrfs_drop_extent_cache(inode,
1345 new_size & (~mask), (u64)-1);
1346 path = btrfs_alloc_path();
1347 path->reada = -1;
1348 BUG_ON(!path);
1349
1350 /* FIXME, add redo link to tree so we don't leak on crash */
1351 key.objectid = inode->i_ino;
1352 key.offset = (u64)-1;
1353 key.type = (u8)-1;
1354
1355 btrfs_init_path(path);
1356 search_again:
1357 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1358 if (ret < 0) {
1359 goto error;
1360 }
1361 if (ret > 0) {
1362 /* there are no items in the tree for us to truncate, we're
1363 * done
1364 */
1365 if (path->slots[0] == 0) {
1366 ret = 0;
1367 goto error;
1368 }
1369 path->slots[0]--;
1370 }
1371
1372 while(1) {
1373 fi = NULL;
1374 leaf = path->nodes[0];
1375 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1376 found_type = btrfs_key_type(&found_key);
1377
1378 if (found_key.objectid != inode->i_ino)
1379 break;
1380
1381 if (found_type < min_type)
1382 break;
1383
1384 item_end = found_key.offset;
1385 if (found_type == BTRFS_EXTENT_DATA_KEY) {
1386 fi = btrfs_item_ptr(leaf, path->slots[0],
1387 struct btrfs_file_extent_item);
1388 extent_type = btrfs_file_extent_type(leaf, fi);
1389 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1390 item_end +=
1391 btrfs_file_extent_num_bytes(leaf, fi);
1392 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1393 struct btrfs_item *item = btrfs_item_nr(leaf,
1394 path->slots[0]);
1395 item_end += btrfs_file_extent_inline_len(leaf,
1396 item);
1397 }
1398 item_end--;
1399 }
1400 if (found_type == BTRFS_CSUM_ITEM_KEY) {
1401 ret = btrfs_csum_truncate(trans, root, path,
1402 new_size);
1403 BUG_ON(ret);
1404 }
1405 if (item_end < new_size) {
1406 if (found_type == BTRFS_DIR_ITEM_KEY) {
1407 found_type = BTRFS_INODE_ITEM_KEY;
1408 } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
1409 found_type = BTRFS_CSUM_ITEM_KEY;
1410 } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
1411 found_type = BTRFS_XATTR_ITEM_KEY;
1412 } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
1413 found_type = BTRFS_INODE_REF_KEY;
1414 } else if (found_type) {
1415 found_type--;
1416 } else {
1417 break;
1418 }
1419 btrfs_set_key_type(&key, found_type);
1420 goto next;
1421 }
1422 if (found_key.offset >= new_size)
1423 del_item = 1;
1424 else
1425 del_item = 0;
1426 found_extent = 0;
1427
1428 /* FIXME, shrink the extent if the ref count is only 1 */
1429 if (found_type != BTRFS_EXTENT_DATA_KEY)
1430 goto delete;
1431
1432 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1433 u64 num_dec;
1434 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
1435 if (!del_item) {
1436 u64 orig_num_bytes =
1437 btrfs_file_extent_num_bytes(leaf, fi);
1438 extent_num_bytes = new_size -
1439 found_key.offset + root->sectorsize - 1;
1440 extent_num_bytes = extent_num_bytes &
1441 ~((u64)root->sectorsize - 1);
1442 btrfs_set_file_extent_num_bytes(leaf, fi,
1443 extent_num_bytes);
1444 num_dec = (orig_num_bytes -
1445 extent_num_bytes);
1446 if (root->ref_cows && extent_start != 0)
1447 dec_i_blocks(inode, num_dec);
1448 btrfs_mark_buffer_dirty(leaf);
1449 } else {
1450 extent_num_bytes =
1451 btrfs_file_extent_disk_num_bytes(leaf,
1452 fi);
1453 /* FIXME blocksize != 4096 */
1454 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
1455 if (extent_start != 0) {
1456 found_extent = 1;
1457 if (root->ref_cows)
1458 dec_i_blocks(inode, num_dec);
1459 }
1460 root_gen = btrfs_header_generation(leaf);
1461 root_owner = btrfs_header_owner(leaf);
1462 }
1463 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1464 if (!del_item) {
1465 u32 size = new_size - found_key.offset;
1466
1467 if (root->ref_cows) {
1468 dec_i_blocks(inode, item_end + 1 -
1469 found_key.offset - size);
1470 }
1471 size =
1472 btrfs_file_extent_calc_inline_size(size);
1473 ret = btrfs_truncate_item(trans, root, path,
1474 size, 1);
1475 BUG_ON(ret);
1476 } else if (root->ref_cows) {
1477 dec_i_blocks(inode, item_end + 1 -
1478 found_key.offset);
1479 }
1480 }
1481 delete:
1482 if (del_item) {
1483 if (!pending_del_nr) {
1484 /* no pending yet, add ourselves */
1485 pending_del_slot = path->slots[0];
1486 pending_del_nr = 1;
1487 } else if (pending_del_nr &&
1488 path->slots[0] + 1 == pending_del_slot) {
1489 /* hop on the pending chunk */
1490 pending_del_nr++;
1491 pending_del_slot = path->slots[0];
1492 } else {
1493 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
1494 }
1495 } else {
1496 break;
1497 }
1498 if (found_extent) {
1499 ret = btrfs_free_extent(trans, root, extent_start,
1500 extent_num_bytes,
1501 leaf->start, root_owner,
1502 root_gen, inode->i_ino,
1503 found_key.offset, 0);
1504 BUG_ON(ret);
1505 }
1506 next:
1507 if (path->slots[0] == 0) {
1508 if (pending_del_nr)
1509 goto del_pending;
1510 btrfs_release_path(root, path);
1511 goto search_again;
1512 }
1513
1514 path->slots[0]--;
1515 if (pending_del_nr &&
1516 path->slots[0] + 1 != pending_del_slot) {
1517 struct btrfs_key debug;
1518 del_pending:
1519 btrfs_item_key_to_cpu(path->nodes[0], &debug,
1520 pending_del_slot);
1521 ret = btrfs_del_items(trans, root, path,
1522 pending_del_slot,
1523 pending_del_nr);
1524 BUG_ON(ret);
1525 pending_del_nr = 0;
1526 btrfs_release_path(root, path);
1527 goto search_again;
1528 }
1529 }
1530 ret = 0;
1531 error:
1532 if (pending_del_nr) {
1533 ret = btrfs_del_items(trans, root, path, pending_del_slot,
1534 pending_del_nr);
1535 }
1536 btrfs_free_path(path);
1537 inode->i_sb->s_dirt = 1;
1538 return ret;
1539 }
1540
1541 /*
1542 * taken from block_truncate_page, but does cow as it zeros out
1543 * any bytes left in the last page in the file.
1544 */
1545 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
1546 {
1547 struct inode *inode = mapping->host;
1548 struct btrfs_root *root = BTRFS_I(inode)->root;
1549 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1550 struct btrfs_ordered_extent *ordered;
1551 char *kaddr;
1552 u32 blocksize = root->sectorsize;
1553 pgoff_t index = from >> PAGE_CACHE_SHIFT;
1554 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1555 struct page *page;
1556 int ret = 0;
1557 u64 page_start;
1558 u64 page_end;
1559
1560 if ((offset & (blocksize - 1)) == 0)
1561 goto out;
1562
1563 ret = -ENOMEM;
1564 again:
1565 page = grab_cache_page(mapping, index);
1566 if (!page)
1567 goto out;
1568
1569 page_start = page_offset(page);
1570 page_end = page_start + PAGE_CACHE_SIZE - 1;
1571
1572 if (!PageUptodate(page)) {
1573 ret = btrfs_readpage(NULL, page);
1574 lock_page(page);
1575 if (page->mapping != mapping) {
1576 unlock_page(page);
1577 page_cache_release(page);
1578 goto again;
1579 }
1580 if (!PageUptodate(page)) {
1581 ret = -EIO;
1582 goto out_unlock;
1583 }
1584 }
1585 wait_on_page_writeback(page);
1586
1587 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
1588 set_page_extent_mapped(page);
1589
1590 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1591 if (ordered) {
1592 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1593 unlock_page(page);
1594 page_cache_release(page);
1595 btrfs_start_ordered_extent(inode, ordered, 1);
1596 btrfs_put_ordered_extent(ordered);
1597 goto again;
1598 }
1599
1600 btrfs_set_extent_delalloc(inode, page_start, page_end);
1601 ret = 0;
1602 if (offset != PAGE_CACHE_SIZE) {
1603 kaddr = kmap(page);
1604 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
1605 flush_dcache_page(page);
1606 kunmap(page);
1607 }
1608 ClearPageChecked(page);
1609 set_page_dirty(page);
1610 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1611
1612 out_unlock:
1613 unlock_page(page);
1614 page_cache_release(page);
1615 out:
1616 return ret;
1617 }
1618
1619 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
1620 {
1621 struct inode *inode = dentry->d_inode;
1622 int err;
1623
1624 err = inode_change_ok(inode, attr);
1625 if (err)
1626 return err;
1627
1628 if (S_ISREG(inode->i_mode) &&
1629 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
1630 struct btrfs_trans_handle *trans;
1631 struct btrfs_root *root = BTRFS_I(inode)->root;
1632 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1633
1634 u64 mask = root->sectorsize - 1;
1635 u64 hole_start = (inode->i_size + mask) & ~mask;
1636 u64 block_end = (attr->ia_size + mask) & ~mask;
1637 u64 hole_size;
1638 u64 alloc_hint = 0;
1639
1640 if (attr->ia_size <= hole_start)
1641 goto out;
1642
1643 err = btrfs_check_free_space(root, 1, 0);
1644 if (err)
1645 goto fail;
1646
1647 btrfs_truncate_page(inode->i_mapping, inode->i_size);
1648
1649 hole_size = block_end - hole_start;
1650 while(1) {
1651 struct btrfs_ordered_extent *ordered;
1652 btrfs_wait_ordered_range(inode, hole_start, hole_size);
1653
1654 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1655 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
1656 if (ordered) {
1657 unlock_extent(io_tree, hole_start,
1658 block_end - 1, GFP_NOFS);
1659 btrfs_put_ordered_extent(ordered);
1660 } else {
1661 break;
1662 }
1663 }
1664
1665 trans = btrfs_start_transaction(root, 1);
1666 btrfs_set_trans_block_group(trans, inode);
1667 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1668 err = btrfs_drop_extents(trans, root, inode,
1669 hole_start, block_end, hole_start,
1670 &alloc_hint);
1671
1672 if (alloc_hint != EXTENT_MAP_INLINE) {
1673 err = btrfs_insert_file_extent(trans, root,
1674 inode->i_ino,
1675 hole_start, 0, 0,
1676 hole_size, 0);
1677 btrfs_drop_extent_cache(inode, hole_start,
1678 (u64)-1);
1679 btrfs_check_file(root, inode);
1680 }
1681 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1682 btrfs_end_transaction(trans, root);
1683 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1684 if (err)
1685 return err;
1686 }
1687 out:
1688 err = inode_setattr(inode, attr);
1689
1690 if (!err && ((attr->ia_valid & ATTR_MODE)))
1691 err = btrfs_acl_chmod(inode);
1692 fail:
1693 return err;
1694 }
1695
1696 void btrfs_delete_inode(struct inode *inode)
1697 {
1698 struct btrfs_trans_handle *trans;
1699 struct btrfs_root *root = BTRFS_I(inode)->root;
1700 unsigned long nr;
1701 int ret;
1702
1703 truncate_inode_pages(&inode->i_data, 0);
1704 if (is_bad_inode(inode)) {
1705 btrfs_orphan_del(NULL, inode);
1706 goto no_delete;
1707 }
1708 btrfs_wait_ordered_range(inode, 0, (u64)-1);
1709
1710 btrfs_i_size_write(inode, 0);
1711 trans = btrfs_start_transaction(root, 1);
1712
1713 btrfs_set_trans_block_group(trans, inode);
1714 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
1715 if (ret) {
1716 btrfs_orphan_del(NULL, inode);
1717 goto no_delete_lock;
1718 }
1719
1720 btrfs_orphan_del(trans, inode);
1721
1722 nr = trans->blocks_used;
1723 clear_inode(inode);
1724
1725 btrfs_end_transaction(trans, root);
1726 btrfs_btree_balance_dirty(root, nr);
1727 return;
1728
1729 no_delete_lock:
1730 nr = trans->blocks_used;
1731 btrfs_end_transaction(trans, root);
1732 btrfs_btree_balance_dirty(root, nr);
1733 no_delete:
1734 clear_inode(inode);
1735 }
1736
1737 /*
1738 * this returns the key found in the dir entry in the location pointer.
1739 * If no dir entries were found, location->objectid is 0.
1740 */
1741 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
1742 struct btrfs_key *location)
1743 {
1744 const char *name = dentry->d_name.name;
1745 int namelen = dentry->d_name.len;
1746 struct btrfs_dir_item *di;
1747 struct btrfs_path *path;
1748 struct btrfs_root *root = BTRFS_I(dir)->root;
1749 int ret = 0;
1750
1751 path = btrfs_alloc_path();
1752 BUG_ON(!path);
1753
1754 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
1755 namelen, 0);
1756 if (IS_ERR(di))
1757 ret = PTR_ERR(di);
1758 if (!di || IS_ERR(di)) {
1759 goto out_err;
1760 }
1761 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
1762 out:
1763 btrfs_free_path(path);
1764 return ret;
1765 out_err:
1766 location->objectid = 0;
1767 goto out;
1768 }
1769
1770 /*
1771 * when we hit a tree root in a directory, the btrfs part of the inode
1772 * needs to be changed to reflect the root directory of the tree root. This
1773 * is kind of like crossing a mount point.
1774 */
1775 static int fixup_tree_root_location(struct btrfs_root *root,
1776 struct btrfs_key *location,
1777 struct btrfs_root **sub_root,
1778 struct dentry *dentry)
1779 {
1780 struct btrfs_root_item *ri;
1781
1782 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
1783 return 0;
1784 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1785 return 0;
1786
1787 *sub_root = btrfs_read_fs_root(root->fs_info, location,
1788 dentry->d_name.name,
1789 dentry->d_name.len);
1790 if (IS_ERR(*sub_root))
1791 return PTR_ERR(*sub_root);
1792
1793 ri = &(*sub_root)->root_item;
1794 location->objectid = btrfs_root_dirid(ri);
1795 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
1796 location->offset = 0;
1797
1798 return 0;
1799 }
1800
1801 static noinline void init_btrfs_i(struct inode *inode)
1802 {
1803 struct btrfs_inode *bi = BTRFS_I(inode);
1804
1805 bi->i_acl = NULL;
1806 bi->i_default_acl = NULL;
1807
1808 bi->generation = 0;
1809 bi->last_trans = 0;
1810 bi->logged_trans = 0;
1811 bi->delalloc_bytes = 0;
1812 bi->disk_i_size = 0;
1813 bi->flags = 0;
1814 bi->index_cnt = (u64)-1;
1815 bi->log_dirty_trans = 0;
1816 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
1817 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
1818 inode->i_mapping, GFP_NOFS);
1819 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
1820 inode->i_mapping, GFP_NOFS);
1821 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
1822 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
1823 mutex_init(&BTRFS_I(inode)->csum_mutex);
1824 mutex_init(&BTRFS_I(inode)->extent_mutex);
1825 mutex_init(&BTRFS_I(inode)->log_mutex);
1826 }
1827
1828 static int btrfs_init_locked_inode(struct inode *inode, void *p)
1829 {
1830 struct btrfs_iget_args *args = p;
1831 inode->i_ino = args->ino;
1832 init_btrfs_i(inode);
1833 BTRFS_I(inode)->root = args->root;
1834 return 0;
1835 }
1836
1837 static int btrfs_find_actor(struct inode *inode, void *opaque)
1838 {
1839 struct btrfs_iget_args *args = opaque;
1840 return (args->ino == inode->i_ino &&
1841 args->root == BTRFS_I(inode)->root);
1842 }
1843
1844 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
1845 struct btrfs_root *root)
1846 {
1847 struct inode *inode;
1848 struct btrfs_iget_args args;
1849 args.ino = objectid;
1850 args.root = root;
1851
1852 inode = iget5_locked(s, objectid, btrfs_find_actor,
1853 btrfs_init_locked_inode,
1854 (void *)&args);
1855 return inode;
1856 }
1857
1858 /* Get an inode object given its location and corresponding root.
1859 * Returns in *is_new if the inode was read from disk
1860 */
1861 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
1862 struct btrfs_root *root, int *is_new)
1863 {
1864 struct inode *inode;
1865
1866 inode = btrfs_iget_locked(s, location->objectid, root);
1867 if (!inode)
1868 return ERR_PTR(-EACCES);
1869
1870 if (inode->i_state & I_NEW) {
1871 BTRFS_I(inode)->root = root;
1872 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
1873 btrfs_read_locked_inode(inode);
1874 unlock_new_inode(inode);
1875 if (is_new)
1876 *is_new = 1;
1877 } else {
1878 if (is_new)
1879 *is_new = 0;
1880 }
1881
1882 return inode;
1883 }
1884
1885 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
1886 struct nameidata *nd)
1887 {
1888 struct inode * inode;
1889 struct btrfs_inode *bi = BTRFS_I(dir);
1890 struct btrfs_root *root = bi->root;
1891 struct btrfs_root *sub_root = root;
1892 struct btrfs_key location;
1893 int ret, new, do_orphan = 0;
1894
1895 if (dentry->d_name.len > BTRFS_NAME_LEN)
1896 return ERR_PTR(-ENAMETOOLONG);
1897
1898 ret = btrfs_inode_by_name(dir, dentry, &location);
1899
1900 if (ret < 0)
1901 return ERR_PTR(ret);
1902
1903 inode = NULL;
1904 if (location.objectid) {
1905 ret = fixup_tree_root_location(root, &location, &sub_root,
1906 dentry);
1907 if (ret < 0)
1908 return ERR_PTR(ret);
1909 if (ret > 0)
1910 return ERR_PTR(-ENOENT);
1911 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
1912 if (IS_ERR(inode))
1913 return ERR_CAST(inode);
1914
1915 /* the inode and parent dir are two different roots */
1916 if (new && root != sub_root) {
1917 igrab(inode);
1918 sub_root->inode = inode;
1919 do_orphan = 1;
1920 }
1921 }
1922
1923 if (unlikely(do_orphan))
1924 btrfs_orphan_cleanup(sub_root);
1925
1926 return d_splice_alias(inode, dentry);
1927 }
1928
1929 static unsigned char btrfs_filetype_table[] = {
1930 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
1931 };
1932
1933 static int btrfs_real_readdir(struct file *filp, void *dirent,
1934 filldir_t filldir)
1935 {
1936 struct inode *inode = filp->f_dentry->d_inode;
1937 struct btrfs_root *root = BTRFS_I(inode)->root;
1938 struct btrfs_item *item;
1939 struct btrfs_dir_item *di;
1940 struct btrfs_key key;
1941 struct btrfs_key found_key;
1942 struct btrfs_path *path;
1943 int ret;
1944 u32 nritems;
1945 struct extent_buffer *leaf;
1946 int slot;
1947 int advance;
1948 unsigned char d_type;
1949 int over = 0;
1950 u32 di_cur;
1951 u32 di_total;
1952 u32 di_len;
1953 int key_type = BTRFS_DIR_INDEX_KEY;
1954 char tmp_name[32];
1955 char *name_ptr;
1956 int name_len;
1957
1958 /* FIXME, use a real flag for deciding about the key type */
1959 if (root->fs_info->tree_root == root)
1960 key_type = BTRFS_DIR_ITEM_KEY;
1961
1962 /* special case for "." */
1963 if (filp->f_pos == 0) {
1964 over = filldir(dirent, ".", 1,
1965 1, inode->i_ino,
1966 DT_DIR);
1967 if (over)
1968 return 0;
1969 filp->f_pos = 1;
1970 }
1971 /* special case for .., just use the back ref */
1972 if (filp->f_pos == 1) {
1973 u64 pino = parent_ino(filp->f_path.dentry);
1974 over = filldir(dirent, "..", 2,
1975 2, pino, DT_DIR);
1976 if (over)
1977 return 0;
1978 filp->f_pos = 2;
1979 }
1980
1981 path = btrfs_alloc_path();
1982 path->reada = 2;
1983
1984 btrfs_set_key_type(&key, key_type);
1985 key.offset = filp->f_pos;
1986 key.objectid = inode->i_ino;
1987
1988 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1989 if (ret < 0)
1990 goto err;
1991 advance = 0;
1992
1993 while (1) {
1994 leaf = path->nodes[0];
1995 nritems = btrfs_header_nritems(leaf);
1996 slot = path->slots[0];
1997 if (advance || slot >= nritems) {
1998 if (slot >= nritems - 1) {
1999 ret = btrfs_next_leaf(root, path);
2000 if (ret)
2001 break;
2002 leaf = path->nodes[0];
2003 nritems = btrfs_header_nritems(leaf);
2004 slot = path->slots[0];
2005 } else {
2006 slot++;
2007 path->slots[0]++;
2008 }
2009 }
2010 advance = 1;
2011 item = btrfs_item_nr(leaf, slot);
2012 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2013
2014 if (found_key.objectid != key.objectid)
2015 break;
2016 if (btrfs_key_type(&found_key) != key_type)
2017 break;
2018 if (found_key.offset < filp->f_pos)
2019 continue;
2020
2021 filp->f_pos = found_key.offset;
2022
2023 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2024 di_cur = 0;
2025 di_total = btrfs_item_size(leaf, item);
2026
2027 while (di_cur < di_total) {
2028 struct btrfs_key location;
2029
2030 name_len = btrfs_dir_name_len(leaf, di);
2031 if (name_len <= sizeof(tmp_name)) {
2032 name_ptr = tmp_name;
2033 } else {
2034 name_ptr = kmalloc(name_len, GFP_NOFS);
2035 if (!name_ptr) {
2036 ret = -ENOMEM;
2037 goto err;
2038 }
2039 }
2040 read_extent_buffer(leaf, name_ptr,
2041 (unsigned long)(di + 1), name_len);
2042
2043 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
2044 btrfs_dir_item_key_to_cpu(leaf, di, &location);
2045 over = filldir(dirent, name_ptr, name_len,
2046 found_key.offset, location.objectid,
2047 d_type);
2048
2049 if (name_ptr != tmp_name)
2050 kfree(name_ptr);
2051
2052 if (over)
2053 goto nopos;
2054
2055 di_len = btrfs_dir_name_len(leaf, di) +
2056 btrfs_dir_data_len(leaf, di) + sizeof(*di);
2057 di_cur += di_len;
2058 di = (struct btrfs_dir_item *)((char *)di + di_len);
2059 }
2060 }
2061
2062 /* Reached end of directory/root. Bump pos past the last item. */
2063 if (key_type == BTRFS_DIR_INDEX_KEY)
2064 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
2065 else
2066 filp->f_pos++;
2067 nopos:
2068 ret = 0;
2069 err:
2070 btrfs_free_path(path);
2071 return ret;
2072 }
2073
2074 /* Kernels earlier than 2.6.28 still have the NFS deadlock where nfsd
2075 will call the file system's ->lookup() method from within its
2076 filldir callback, which in turn was called from the file system's
2077 ->readdir() method. And will deadlock for many file systems. */
2078 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
2079
2080 struct nfshack_dirent {
2081 u64 ino;
2082 loff_t offset;
2083 int namlen;
2084 unsigned int d_type;
2085 char name[];
2086 };
2087
2088 struct nfshack_readdir {
2089 char *dirent;
2090 size_t used;
2091 int full;
2092 };
2093
2094
2095
2096 static int btrfs_nfshack_filldir(void *__buf, const char *name, int namlen,
2097 loff_t offset, u64 ino, unsigned int d_type)
2098 {
2099 struct nfshack_readdir *buf = __buf;
2100 struct nfshack_dirent *de = (void *)(buf->dirent + buf->used);
2101 unsigned int reclen;
2102
2103 reclen = ALIGN(sizeof(struct nfshack_dirent) + namlen, sizeof(u64));
2104 if (buf->used + reclen > PAGE_SIZE) {
2105 buf->full = 1;
2106 return -EINVAL;
2107 }
2108
2109 de->namlen = namlen;
2110 de->offset = offset;
2111 de->ino = ino;
2112 de->d_type = d_type;
2113 memcpy(de->name, name, namlen);
2114 buf->used += reclen;
2115
2116 return 0;
2117 }
2118
2119 static int btrfs_nfshack_readdir(struct file *file, void *dirent,
2120 filldir_t filldir)
2121 {
2122 struct nfshack_readdir buf;
2123 struct nfshack_dirent *de;
2124 int err;
2125 int size;
2126 loff_t offset;
2127
2128 buf.dirent = (void *)__get_free_page(GFP_KERNEL);
2129 if (!buf.dirent)
2130 return -ENOMEM;
2131
2132 offset = file->f_pos;
2133
2134 do {
2135 unsigned int reclen;
2136
2137 buf.used = 0;
2138 buf.full = 0;
2139 err = btrfs_real_readdir(file, &buf, btrfs_nfshack_filldir);
2140 if (err)
2141 break;
2142
2143 size = buf.used;
2144
2145 if (!size)
2146 break;
2147
2148 de = (struct nfshack_dirent *)buf.dirent;
2149 while (size > 0) {
2150 offset = de->offset;
2151
2152 if (filldir(dirent, de->name, de->namlen, de->offset,
2153 de->ino, de->d_type))
2154 goto done;
2155 offset = file->f_pos;
2156
2157 reclen = ALIGN(sizeof(*de) + de->namlen,
2158 sizeof(u64));
2159 size -= reclen;
2160 de = (struct nfshack_dirent *)((char *)de + reclen);
2161 }
2162 } while (buf.full);
2163
2164 done:
2165 free_page((unsigned long)buf.dirent);
2166 file->f_pos = offset;
2167
2168 return err;
2169 }
2170 #endif
2171
2172 int btrfs_write_inode(struct inode *inode, int wait)
2173 {
2174 struct btrfs_root *root = BTRFS_I(inode)->root;
2175 struct btrfs_trans_handle *trans;
2176 int ret = 0;
2177
2178 if (root->fs_info->closing > 1)
2179 return 0;
2180
2181 if (wait) {
2182 trans = btrfs_join_transaction(root, 1);
2183 btrfs_set_trans_block_group(trans, inode);
2184 ret = btrfs_commit_transaction(trans, root);
2185 }
2186 return ret;
2187 }
2188
2189 /*
2190 * This is somewhat expensive, updating the tree every time the
2191 * inode changes. But, it is most likely to find the inode in cache.
2192 * FIXME, needs more benchmarking...there are no reasons other than performance
2193 * to keep or drop this code.
2194 */
2195 void btrfs_dirty_inode(struct inode *inode)
2196 {
2197 struct btrfs_root *root = BTRFS_I(inode)->root;
2198 struct btrfs_trans_handle *trans;
2199
2200 trans = btrfs_join_transaction(root, 1);
2201 btrfs_set_trans_block_group(trans, inode);
2202 btrfs_update_inode(trans, root, inode);
2203 btrfs_end_transaction(trans, root);
2204 }
2205
2206 static int btrfs_set_inode_index_count(struct inode *inode)
2207 {
2208 struct btrfs_root *root = BTRFS_I(inode)->root;
2209 struct btrfs_key key, found_key;
2210 struct btrfs_path *path;
2211 struct extent_buffer *leaf;
2212 int ret;
2213
2214 key.objectid = inode->i_ino;
2215 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
2216 key.offset = (u64)-1;
2217
2218 path = btrfs_alloc_path();
2219 if (!path)
2220 return -ENOMEM;
2221
2222 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2223 if (ret < 0)
2224 goto out;
2225 /* FIXME: we should be able to handle this */
2226 if (ret == 0)
2227 goto out;
2228 ret = 0;
2229
2230 /*
2231 * MAGIC NUMBER EXPLANATION:
2232 * since we search a directory based on f_pos we have to start at 2
2233 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
2234 * else has to start at 2
2235 */
2236 if (path->slots[0] == 0) {
2237 BTRFS_I(inode)->index_cnt = 2;
2238 goto out;
2239 }
2240
2241 path->slots[0]--;
2242
2243 leaf = path->nodes[0];
2244 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2245
2246 if (found_key.objectid != inode->i_ino ||
2247 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
2248 BTRFS_I(inode)->index_cnt = 2;
2249 goto out;
2250 }
2251
2252 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
2253 out:
2254 btrfs_free_path(path);
2255 return ret;
2256 }
2257
2258 static int btrfs_set_inode_index(struct inode *dir, struct inode *inode,
2259 u64 *index)
2260 {
2261 int ret = 0;
2262
2263 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
2264 ret = btrfs_set_inode_index_count(dir);
2265 if (ret) {
2266 return ret;
2267 }
2268 }
2269
2270 *index = BTRFS_I(dir)->index_cnt;
2271 BTRFS_I(dir)->index_cnt++;
2272
2273 return ret;
2274 }
2275
2276 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
2277 struct btrfs_root *root,
2278 struct inode *dir,
2279 const char *name, int name_len,
2280 u64 ref_objectid,
2281 u64 objectid,
2282 struct btrfs_block_group_cache *group,
2283 int mode, u64 *index)
2284 {
2285 struct inode *inode;
2286 struct btrfs_inode_item *inode_item;
2287 struct btrfs_block_group_cache *new_inode_group;
2288 struct btrfs_key *location;
2289 struct btrfs_path *path;
2290 struct btrfs_inode_ref *ref;
2291 struct btrfs_key key[2];
2292 u32 sizes[2];
2293 unsigned long ptr;
2294 int ret;
2295 int owner;
2296
2297 path = btrfs_alloc_path();
2298 BUG_ON(!path);
2299
2300 inode = new_inode(root->fs_info->sb);
2301 if (!inode)
2302 return ERR_PTR(-ENOMEM);
2303
2304 if (dir) {
2305 ret = btrfs_set_inode_index(dir, inode, index);
2306 if (ret)
2307 return ERR_PTR(ret);
2308 }
2309 /*
2310 * index_cnt is ignored for everything but a dir,
2311 * btrfs_get_inode_index_count has an explanation for the magic
2312 * number
2313 */
2314 init_btrfs_i(inode);
2315 BTRFS_I(inode)->index_cnt = 2;
2316 BTRFS_I(inode)->root = root;
2317 BTRFS_I(inode)->generation = trans->transid;
2318
2319 if (mode & S_IFDIR)
2320 owner = 0;
2321 else
2322 owner = 1;
2323 new_inode_group = btrfs_find_block_group(root, group, 0,
2324 BTRFS_BLOCK_GROUP_METADATA, owner);
2325 if (!new_inode_group) {
2326 printk("find_block group failed\n");
2327 new_inode_group = group;
2328 }
2329 BTRFS_I(inode)->block_group = new_inode_group;
2330
2331 key[0].objectid = objectid;
2332 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
2333 key[0].offset = 0;
2334
2335 key[1].objectid = objectid;
2336 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
2337 key[1].offset = ref_objectid;
2338
2339 sizes[0] = sizeof(struct btrfs_inode_item);
2340 sizes[1] = name_len + sizeof(*ref);
2341
2342 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
2343 if (ret != 0)
2344 goto fail;
2345
2346 if (objectid > root->highest_inode)
2347 root->highest_inode = objectid;
2348
2349 inode->i_uid = current->fsuid;
2350 inode->i_gid = current->fsgid;
2351 inode->i_mode = mode;
2352 inode->i_ino = objectid;
2353 inode->i_blocks = 0;
2354 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2355 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2356 struct btrfs_inode_item);
2357 fill_inode_item(trans, path->nodes[0], inode_item, inode);
2358
2359 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
2360 struct btrfs_inode_ref);
2361 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
2362 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
2363 ptr = (unsigned long)(ref + 1);
2364 write_extent_buffer(path->nodes[0], name, ptr, name_len);
2365
2366 btrfs_mark_buffer_dirty(path->nodes[0]);
2367 btrfs_free_path(path);
2368
2369 location = &BTRFS_I(inode)->location;
2370 location->objectid = objectid;
2371 location->offset = 0;
2372 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2373
2374 insert_inode_hash(inode);
2375 return inode;
2376 fail:
2377 if (dir)
2378 BTRFS_I(dir)->index_cnt--;
2379 btrfs_free_path(path);
2380 return ERR_PTR(ret);
2381 }
2382
2383 static inline u8 btrfs_inode_type(struct inode *inode)
2384 {
2385 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
2386 }
2387
2388 int btrfs_add_link(struct btrfs_trans_handle *trans,
2389 struct inode *parent_inode, struct inode *inode,
2390 const char *name, int name_len, int add_backref, u64 index)
2391 {
2392 int ret;
2393 struct btrfs_key key;
2394 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
2395
2396 key.objectid = inode->i_ino;
2397 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
2398 key.offset = 0;
2399
2400 ret = btrfs_insert_dir_item(trans, root, name, name_len,
2401 parent_inode->i_ino,
2402 &key, btrfs_inode_type(inode),
2403 index);
2404 if (ret == 0) {
2405 if (add_backref) {
2406 ret = btrfs_insert_inode_ref(trans, root,
2407 name, name_len,
2408 inode->i_ino,
2409 parent_inode->i_ino,
2410 index);
2411 }
2412 btrfs_i_size_write(parent_inode, parent_inode->i_size +
2413 name_len * 2);
2414 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
2415 ret = btrfs_update_inode(trans, root, parent_inode);
2416 }
2417 return ret;
2418 }
2419
2420 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
2421 struct dentry *dentry, struct inode *inode,
2422 int backref, u64 index)
2423 {
2424 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
2425 inode, dentry->d_name.name,
2426 dentry->d_name.len, backref, index);
2427 if (!err) {
2428 d_instantiate(dentry, inode);
2429 return 0;
2430 }
2431 if (err > 0)
2432 err = -EEXIST;
2433 return err;
2434 }
2435
2436 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
2437 int mode, dev_t rdev)
2438 {
2439 struct btrfs_trans_handle *trans;
2440 struct btrfs_root *root = BTRFS_I(dir)->root;
2441 struct inode *inode = NULL;
2442 int err;
2443 int drop_inode = 0;
2444 u64 objectid;
2445 unsigned long nr = 0;
2446 u64 index = 0;
2447
2448 if (!new_valid_dev(rdev))
2449 return -EINVAL;
2450
2451 err = btrfs_check_free_space(root, 1, 0);
2452 if (err)
2453 goto fail;
2454
2455 trans = btrfs_start_transaction(root, 1);
2456 btrfs_set_trans_block_group(trans, dir);
2457
2458 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2459 if (err) {
2460 err = -ENOSPC;
2461 goto out_unlock;
2462 }
2463
2464 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2465 dentry->d_name.len,
2466 dentry->d_parent->d_inode->i_ino, objectid,
2467 BTRFS_I(dir)->block_group, mode, &index);
2468 err = PTR_ERR(inode);
2469 if (IS_ERR(inode))
2470 goto out_unlock;
2471
2472 err = btrfs_init_acl(inode, dir);
2473 if (err) {
2474 drop_inode = 1;
2475 goto out_unlock;
2476 }
2477
2478 btrfs_set_trans_block_group(trans, inode);
2479 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2480 if (err)
2481 drop_inode = 1;
2482 else {
2483 inode->i_op = &btrfs_special_inode_operations;
2484 init_special_inode(inode, inode->i_mode, rdev);
2485 btrfs_update_inode(trans, root, inode);
2486 }
2487 dir->i_sb->s_dirt = 1;
2488 btrfs_update_inode_block_group(trans, inode);
2489 btrfs_update_inode_block_group(trans, dir);
2490 out_unlock:
2491 nr = trans->blocks_used;
2492 btrfs_end_transaction_throttle(trans, root);
2493 fail:
2494 if (drop_inode) {
2495 inode_dec_link_count(inode);
2496 iput(inode);
2497 }
2498 btrfs_btree_balance_dirty(root, nr);
2499 return err;
2500 }
2501
2502 static int btrfs_create(struct inode *dir, struct dentry *dentry,
2503 int mode, struct nameidata *nd)
2504 {
2505 struct btrfs_trans_handle *trans;
2506 struct btrfs_root *root = BTRFS_I(dir)->root;
2507 struct inode *inode = NULL;
2508 int err;
2509 int drop_inode = 0;
2510 unsigned long nr = 0;
2511 u64 objectid;
2512 u64 index = 0;
2513
2514 err = btrfs_check_free_space(root, 1, 0);
2515 if (err)
2516 goto fail;
2517 trans = btrfs_start_transaction(root, 1);
2518 btrfs_set_trans_block_group(trans, dir);
2519
2520 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2521 if (err) {
2522 err = -ENOSPC;
2523 goto out_unlock;
2524 }
2525
2526 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2527 dentry->d_name.len,
2528 dentry->d_parent->d_inode->i_ino,
2529 objectid, BTRFS_I(dir)->block_group, mode,
2530 &index);
2531 err = PTR_ERR(inode);
2532 if (IS_ERR(inode))
2533 goto out_unlock;
2534
2535 err = btrfs_init_acl(inode, dir);
2536 if (err) {
2537 drop_inode = 1;
2538 goto out_unlock;
2539 }
2540
2541 btrfs_set_trans_block_group(trans, inode);
2542 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2543 if (err)
2544 drop_inode = 1;
2545 else {
2546 inode->i_mapping->a_ops = &btrfs_aops;
2547 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2548 inode->i_fop = &btrfs_file_operations;
2549 inode->i_op = &btrfs_file_inode_operations;
2550 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2551 }
2552 dir->i_sb->s_dirt = 1;
2553 btrfs_update_inode_block_group(trans, inode);
2554 btrfs_update_inode_block_group(trans, dir);
2555 out_unlock:
2556 nr = trans->blocks_used;
2557 btrfs_end_transaction_throttle(trans, root);
2558 fail:
2559 if (drop_inode) {
2560 inode_dec_link_count(inode);
2561 iput(inode);
2562 }
2563 btrfs_btree_balance_dirty(root, nr);
2564 return err;
2565 }
2566
2567 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
2568 struct dentry *dentry)
2569 {
2570 struct btrfs_trans_handle *trans;
2571 struct btrfs_root *root = BTRFS_I(dir)->root;
2572 struct inode *inode = old_dentry->d_inode;
2573 u64 index;
2574 unsigned long nr = 0;
2575 int err;
2576 int drop_inode = 0;
2577
2578 if (inode->i_nlink == 0)
2579 return -ENOENT;
2580
2581 btrfs_inc_nlink(inode);
2582 err = btrfs_check_free_space(root, 1, 0);
2583 if (err)
2584 goto fail;
2585 err = btrfs_set_inode_index(dir, inode, &index);
2586 if (err)
2587 goto fail;
2588
2589 trans = btrfs_start_transaction(root, 1);
2590
2591 btrfs_set_trans_block_group(trans, dir);
2592 atomic_inc(&inode->i_count);
2593
2594 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
2595
2596 if (err)
2597 drop_inode = 1;
2598
2599 dir->i_sb->s_dirt = 1;
2600 btrfs_update_inode_block_group(trans, dir);
2601 err = btrfs_update_inode(trans, root, inode);
2602
2603 if (err)
2604 drop_inode = 1;
2605
2606 nr = trans->blocks_used;
2607 btrfs_end_transaction_throttle(trans, root);
2608 fail:
2609 if (drop_inode) {
2610 inode_dec_link_count(inode);
2611 iput(inode);
2612 }
2613 btrfs_btree_balance_dirty(root, nr);
2614 return err;
2615 }
2616
2617 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2618 {
2619 struct inode *inode = NULL;
2620 struct btrfs_trans_handle *trans;
2621 struct btrfs_root *root = BTRFS_I(dir)->root;
2622 int err = 0;
2623 int drop_on_err = 0;
2624 u64 objectid = 0;
2625 u64 index = 0;
2626 unsigned long nr = 1;
2627
2628 err = btrfs_check_free_space(root, 1, 0);
2629 if (err)
2630 goto out_unlock;
2631
2632 trans = btrfs_start_transaction(root, 1);
2633 btrfs_set_trans_block_group(trans, dir);
2634
2635 if (IS_ERR(trans)) {
2636 err = PTR_ERR(trans);
2637 goto out_unlock;
2638 }
2639
2640 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2641 if (err) {
2642 err = -ENOSPC;
2643 goto out_unlock;
2644 }
2645
2646 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2647 dentry->d_name.len,
2648 dentry->d_parent->d_inode->i_ino, objectid,
2649 BTRFS_I(dir)->block_group, S_IFDIR | mode,
2650 &index);
2651 if (IS_ERR(inode)) {
2652 err = PTR_ERR(inode);
2653 goto out_fail;
2654 }
2655
2656 drop_on_err = 1;
2657
2658 err = btrfs_init_acl(inode, dir);
2659 if (err)
2660 goto out_fail;
2661
2662 inode->i_op = &btrfs_dir_inode_operations;
2663 inode->i_fop = &btrfs_dir_file_operations;
2664 btrfs_set_trans_block_group(trans, inode);
2665
2666 btrfs_i_size_write(inode, 0);
2667 err = btrfs_update_inode(trans, root, inode);
2668 if (err)
2669 goto out_fail;
2670
2671 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
2672 inode, dentry->d_name.name,
2673 dentry->d_name.len, 0, index);
2674 if (err)
2675 goto out_fail;
2676
2677 d_instantiate(dentry, inode);
2678 drop_on_err = 0;
2679 dir->i_sb->s_dirt = 1;
2680 btrfs_update_inode_block_group(trans, inode);
2681 btrfs_update_inode_block_group(trans, dir);
2682
2683 out_fail:
2684 nr = trans->blocks_used;
2685 btrfs_end_transaction_throttle(trans, root);
2686
2687 out_unlock:
2688 if (drop_on_err)
2689 iput(inode);
2690 btrfs_btree_balance_dirty(root, nr);
2691 return err;
2692 }
2693
2694 static int merge_extent_mapping(struct extent_map_tree *em_tree,
2695 struct extent_map *existing,
2696 struct extent_map *em,
2697 u64 map_start, u64 map_len)
2698 {
2699 u64 start_diff;
2700
2701 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
2702 start_diff = map_start - em->start;
2703 em->start = map_start;
2704 em->len = map_len;
2705 if (em->block_start < EXTENT_MAP_LAST_BYTE)
2706 em->block_start += start_diff;
2707 return add_extent_mapping(em_tree, em);
2708 }
2709
2710 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
2711 size_t pg_offset, u64 start, u64 len,
2712 int create)
2713 {
2714 int ret;
2715 int err = 0;
2716 u64 bytenr;
2717 u64 extent_start = 0;
2718 u64 extent_end = 0;
2719 u64 objectid = inode->i_ino;
2720 u32 found_type;
2721 struct btrfs_path *path = NULL;
2722 struct btrfs_root *root = BTRFS_I(inode)->root;
2723 struct btrfs_file_extent_item *item;
2724 struct extent_buffer *leaf;
2725 struct btrfs_key found_key;
2726 struct extent_map *em = NULL;
2727 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2728 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2729 struct btrfs_trans_handle *trans = NULL;
2730
2731 again:
2732 spin_lock(&em_tree->lock);
2733 em = lookup_extent_mapping(em_tree, start, len);
2734 if (em)
2735 em->bdev = root->fs_info->fs_devices->latest_bdev;
2736 spin_unlock(&em_tree->lock);
2737
2738 if (em) {
2739 if (em->start > start || em->start + em->len <= start)
2740 free_extent_map(em);
2741 else if (em->block_start == EXTENT_MAP_INLINE && page)
2742 free_extent_map(em);
2743 else
2744 goto out;
2745 }
2746 em = alloc_extent_map(GFP_NOFS);
2747 if (!em) {
2748 err = -ENOMEM;
2749 goto out;
2750 }
2751 em->bdev = root->fs_info->fs_devices->latest_bdev;
2752 em->start = EXTENT_MAP_HOLE;
2753 em->len = (u64)-1;
2754
2755 if (!path) {
2756 path = btrfs_alloc_path();
2757 BUG_ON(!path);
2758 }
2759
2760 ret = btrfs_lookup_file_extent(trans, root, path,
2761 objectid, start, trans != NULL);
2762 if (ret < 0) {
2763 err = ret;
2764 goto out;
2765 }
2766
2767 if (ret != 0) {
2768 if (path->slots[0] == 0)
2769 goto not_found;
2770 path->slots[0]--;
2771 }
2772
2773 leaf = path->nodes[0];
2774 item = btrfs_item_ptr(leaf, path->slots[0],
2775 struct btrfs_file_extent_item);
2776 /* are we inside the extent that was found? */
2777 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2778 found_type = btrfs_key_type(&found_key);
2779 if (found_key.objectid != objectid ||
2780 found_type != BTRFS_EXTENT_DATA_KEY) {
2781 goto not_found;
2782 }
2783
2784 found_type = btrfs_file_extent_type(leaf, item);
2785 extent_start = found_key.offset;
2786 if (found_type == BTRFS_FILE_EXTENT_REG) {
2787 extent_end = extent_start +
2788 btrfs_file_extent_num_bytes(leaf, item);
2789 err = 0;
2790 if (start < extent_start || start >= extent_end) {
2791 em->start = start;
2792 if (start < extent_start) {
2793 if (start + len <= extent_start)
2794 goto not_found;
2795 em->len = extent_end - extent_start;
2796 } else {
2797 em->len = len;
2798 }
2799 goto not_found_em;
2800 }
2801 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
2802 if (bytenr == 0) {
2803 em->start = extent_start;
2804 em->len = extent_end - extent_start;
2805 em->block_start = EXTENT_MAP_HOLE;
2806 goto insert;
2807 }
2808 bytenr += btrfs_file_extent_offset(leaf, item);
2809 em->block_start = bytenr;
2810 em->start = extent_start;
2811 em->len = extent_end - extent_start;
2812 goto insert;
2813 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
2814 u64 page_start;
2815 unsigned long ptr;
2816 char *map;
2817 size_t size;
2818 size_t extent_offset;
2819 size_t copy_size;
2820
2821 size = btrfs_file_extent_inline_len(leaf, btrfs_item_nr(leaf,
2822 path->slots[0]));
2823 extent_end = (extent_start + size + root->sectorsize - 1) &
2824 ~((u64)root->sectorsize - 1);
2825 if (start < extent_start || start >= extent_end) {
2826 em->start = start;
2827 if (start < extent_start) {
2828 if (start + len <= extent_start)
2829 goto not_found;
2830 em->len = extent_end - extent_start;
2831 } else {
2832 em->len = len;
2833 }
2834 goto not_found_em;
2835 }
2836 em->block_start = EXTENT_MAP_INLINE;
2837
2838 if (!page) {
2839 em->start = extent_start;
2840 em->len = size;
2841 goto out;
2842 }
2843
2844 page_start = page_offset(page) + pg_offset;
2845 extent_offset = page_start - extent_start;
2846 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
2847 size - extent_offset);
2848 em->start = extent_start + extent_offset;
2849 em->len = (copy_size + root->sectorsize - 1) &
2850 ~((u64)root->sectorsize - 1);
2851 map = kmap(page);
2852 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
2853 if (create == 0 && !PageUptodate(page)) {
2854 read_extent_buffer(leaf, map + pg_offset, ptr,
2855 copy_size);
2856 flush_dcache_page(page);
2857 } else if (create && PageUptodate(page)) {
2858 if (!trans) {
2859 kunmap(page);
2860 free_extent_map(em);
2861 em = NULL;
2862 btrfs_release_path(root, path);
2863 trans = btrfs_join_transaction(root, 1);
2864 goto again;
2865 }
2866 write_extent_buffer(leaf, map + pg_offset, ptr,
2867 copy_size);
2868 btrfs_mark_buffer_dirty(leaf);
2869 }
2870 kunmap(page);
2871 set_extent_uptodate(io_tree, em->start,
2872 extent_map_end(em) - 1, GFP_NOFS);
2873 goto insert;
2874 } else {
2875 printk("unkknown found_type %d\n", found_type);
2876 WARN_ON(1);
2877 }
2878 not_found:
2879 em->start = start;
2880 em->len = len;
2881 not_found_em:
2882 em->block_start = EXTENT_MAP_HOLE;
2883 insert:
2884 btrfs_release_path(root, path);
2885 if (em->start > start || extent_map_end(em) <= start) {
2886 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
2887 err = -EIO;
2888 goto out;
2889 }
2890
2891 err = 0;
2892 spin_lock(&em_tree->lock);
2893 ret = add_extent_mapping(em_tree, em);
2894 /* it is possible that someone inserted the extent into the tree
2895 * while we had the lock dropped. It is also possible that
2896 * an overlapping map exists in the tree
2897 */
2898 if (ret == -EEXIST) {
2899 struct extent_map *existing;
2900
2901 ret = 0;
2902
2903 existing = lookup_extent_mapping(em_tree, start, len);
2904 if (existing && (existing->start > start ||
2905 existing->start + existing->len <= start)) {
2906 free_extent_map(existing);
2907 existing = NULL;
2908 }
2909 if (!existing) {
2910 existing = lookup_extent_mapping(em_tree, em->start,
2911 em->len);
2912 if (existing) {
2913 err = merge_extent_mapping(em_tree, existing,
2914 em, start,
2915 root->sectorsize);
2916 free_extent_map(existing);
2917 if (err) {
2918 free_extent_map(em);
2919 em = NULL;
2920 }
2921 } else {
2922 err = -EIO;
2923 printk("failing to insert %Lu %Lu\n",
2924 start, len);
2925 free_extent_map(em);
2926 em = NULL;
2927 }
2928 } else {
2929 free_extent_map(em);
2930 em = existing;
2931 err = 0;
2932 }
2933 }
2934 spin_unlock(&em_tree->lock);
2935 out:
2936 if (path)
2937 btrfs_free_path(path);
2938 if (trans) {
2939 ret = btrfs_end_transaction(trans, root);
2940 if (!err) {
2941 err = ret;
2942 }
2943 }
2944 if (err) {
2945 free_extent_map(em);
2946 WARN_ON(1);
2947 return ERR_PTR(err);
2948 }
2949 return em;
2950 }
2951
2952 #if 0 /* waiting for O_DIRECT reads */
2953 static int btrfs_get_block(struct inode *inode, sector_t iblock,
2954 struct buffer_head *bh_result, int create)
2955 {
2956 struct extent_map *em;
2957 u64 start = (u64)iblock << inode->i_blkbits;
2958 struct btrfs_multi_bio *multi = NULL;
2959 struct btrfs_root *root = BTRFS_I(inode)->root;
2960 u64 len;
2961 u64 logical;
2962 u64 map_length;
2963 int ret = 0;
2964
2965 em = btrfs_get_extent(inode, NULL, 0, start, bh_result->b_size, 0);
2966
2967 if (!em || IS_ERR(em))
2968 goto out;
2969
2970 if (em->start > start || em->start + em->len <= start) {
2971 goto out;
2972 }
2973
2974 if (em->block_start == EXTENT_MAP_INLINE) {
2975 ret = -EINVAL;
2976 goto out;
2977 }
2978
2979 len = em->start + em->len - start;
2980 len = min_t(u64, len, INT_LIMIT(typeof(bh_result->b_size)));
2981
2982 if (em->block_start == EXTENT_MAP_HOLE ||
2983 em->block_start == EXTENT_MAP_DELALLOC) {
2984 bh_result->b_size = len;
2985 goto out;
2986 }
2987
2988 logical = start - em->start;
2989 logical = em->block_start + logical;
2990
2991 map_length = len;
2992 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
2993 logical, &map_length, &multi, 0);
2994 BUG_ON(ret);
2995 bh_result->b_blocknr = multi->stripes[0].physical >> inode->i_blkbits;
2996 bh_result->b_size = min(map_length, len);
2997
2998 bh_result->b_bdev = multi->stripes[0].dev->bdev;
2999 set_buffer_mapped(bh_result);
3000 kfree(multi);
3001 out:
3002 free_extent_map(em);
3003 return ret;
3004 }
3005 #endif
3006
3007 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
3008 const struct iovec *iov, loff_t offset,
3009 unsigned long nr_segs)
3010 {
3011 return -EINVAL;
3012 #if 0
3013 struct file *file = iocb->ki_filp;
3014 struct inode *inode = file->f_mapping->host;
3015
3016 if (rw == WRITE)
3017 return -EINVAL;
3018
3019 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3020 offset, nr_segs, btrfs_get_block, NULL);
3021 #endif
3022 }
3023
3024 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
3025 {
3026 return extent_bmap(mapping, iblock, btrfs_get_extent);
3027 }
3028
3029 int btrfs_readpage(struct file *file, struct page *page)
3030 {
3031 struct extent_io_tree *tree;
3032 tree = &BTRFS_I(page->mapping->host)->io_tree;
3033 return extent_read_full_page(tree, page, btrfs_get_extent);
3034 }
3035
3036 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
3037 {
3038 struct extent_io_tree *tree;
3039
3040
3041 if (current->flags & PF_MEMALLOC) {
3042 redirty_page_for_writepage(wbc, page);
3043 unlock_page(page);
3044 return 0;
3045 }
3046 tree = &BTRFS_I(page->mapping->host)->io_tree;
3047 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
3048 }
3049
3050 int btrfs_writepages(struct address_space *mapping,
3051 struct writeback_control *wbc)
3052 {
3053 struct extent_io_tree *tree;
3054 tree = &BTRFS_I(mapping->host)->io_tree;
3055 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
3056 }
3057
3058 static int
3059 btrfs_readpages(struct file *file, struct address_space *mapping,
3060 struct list_head *pages, unsigned nr_pages)
3061 {
3062 struct extent_io_tree *tree;
3063 tree = &BTRFS_I(mapping->host)->io_tree;
3064 return extent_readpages(tree, mapping, pages, nr_pages,
3065 btrfs_get_extent);
3066 }
3067 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3068 {
3069 struct extent_io_tree *tree;
3070 struct extent_map_tree *map;
3071 int ret;
3072
3073 tree = &BTRFS_I(page->mapping->host)->io_tree;
3074 map = &BTRFS_I(page->mapping->host)->extent_tree;
3075 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
3076 if (ret == 1) {
3077 ClearPagePrivate(page);
3078 set_page_private(page, 0);
3079 page_cache_release(page);
3080 }
3081 return ret;
3082 }
3083
3084 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3085 {
3086 if (PageWriteback(page) || PageDirty(page))
3087 return 0;
3088 return __btrfs_releasepage(page, gfp_flags);
3089 }
3090
3091 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
3092 {
3093 struct extent_io_tree *tree;
3094 struct btrfs_ordered_extent *ordered;
3095 u64 page_start = page_offset(page);
3096 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
3097
3098 wait_on_page_writeback(page);
3099 tree = &BTRFS_I(page->mapping->host)->io_tree;
3100 if (offset) {
3101 btrfs_releasepage(page, GFP_NOFS);
3102 return;
3103 }
3104
3105 lock_extent(tree, page_start, page_end, GFP_NOFS);
3106 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
3107 page_offset(page));
3108 if (ordered) {
3109 /*
3110 * IO on this page will never be started, so we need
3111 * to account for any ordered extents now
3112 */
3113 clear_extent_bit(tree, page_start, page_end,
3114 EXTENT_DIRTY | EXTENT_DELALLOC |
3115 EXTENT_LOCKED, 1, 0, GFP_NOFS);
3116 btrfs_finish_ordered_io(page->mapping->host,
3117 page_start, page_end);
3118 btrfs_put_ordered_extent(ordered);
3119 lock_extent(tree, page_start, page_end, GFP_NOFS);
3120 }
3121 clear_extent_bit(tree, page_start, page_end,
3122 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3123 EXTENT_ORDERED,
3124 1, 1, GFP_NOFS);
3125 __btrfs_releasepage(page, GFP_NOFS);
3126
3127 ClearPageChecked(page);
3128 if (PagePrivate(page)) {
3129 ClearPagePrivate(page);
3130 set_page_private(page, 0);
3131 page_cache_release(page);
3132 }
3133 }
3134
3135 /*
3136 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
3137 * called from a page fault handler when a page is first dirtied. Hence we must
3138 * be careful to check for EOF conditions here. We set the page up correctly
3139 * for a written page which means we get ENOSPC checking when writing into
3140 * holes and correct delalloc and unwritten extent mapping on filesystems that
3141 * support these features.
3142 *
3143 * We are not allowed to take the i_mutex here so we have to play games to
3144 * protect against truncate races as the page could now be beyond EOF. Because
3145 * vmtruncate() writes the inode size before removing pages, once we have the
3146 * page lock we can determine safely if the page is beyond EOF. If it is not
3147 * beyond EOF, then the page is guaranteed safe against truncation until we
3148 * unlock the page.
3149 */
3150 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3151 {
3152 struct inode *inode = fdentry(vma->vm_file)->d_inode;
3153 struct btrfs_root *root = BTRFS_I(inode)->root;
3154 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3155 struct btrfs_ordered_extent *ordered;
3156 char *kaddr;
3157 unsigned long zero_start;
3158 loff_t size;
3159 int ret;
3160 u64 page_start;
3161 u64 page_end;
3162
3163 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
3164 if (ret)
3165 goto out;
3166
3167 ret = -EINVAL;
3168 again:
3169 lock_page(page);
3170 size = i_size_read(inode);
3171 page_start = page_offset(page);
3172 page_end = page_start + PAGE_CACHE_SIZE - 1;
3173
3174 if ((page->mapping != inode->i_mapping) ||
3175 (page_start >= size)) {
3176 /* page got truncated out from underneath us */
3177 goto out_unlock;
3178 }
3179 wait_on_page_writeback(page);
3180
3181 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3182 set_page_extent_mapped(page);
3183
3184 /*
3185 * we can't set the delalloc bits if there are pending ordered
3186 * extents. Drop our locks and wait for them to finish
3187 */
3188 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3189 if (ordered) {
3190 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3191 unlock_page(page);
3192 btrfs_start_ordered_extent(inode, ordered, 1);
3193 btrfs_put_ordered_extent(ordered);
3194 goto again;
3195 }
3196
3197 btrfs_set_extent_delalloc(inode, page_start, page_end);
3198 ret = 0;
3199
3200 /* page is wholly or partially inside EOF */
3201 if (page_start + PAGE_CACHE_SIZE > size)
3202 zero_start = size & ~PAGE_CACHE_MASK;
3203 else
3204 zero_start = PAGE_CACHE_SIZE;
3205
3206 if (zero_start != PAGE_CACHE_SIZE) {
3207 kaddr = kmap(page);
3208 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
3209 flush_dcache_page(page);
3210 kunmap(page);
3211 }
3212 ClearPageChecked(page);
3213 set_page_dirty(page);
3214 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3215
3216 out_unlock:
3217 unlock_page(page);
3218 out:
3219 return ret;
3220 }
3221
3222 static void btrfs_truncate(struct inode *inode)
3223 {
3224 struct btrfs_root *root = BTRFS_I(inode)->root;
3225 int ret;
3226 struct btrfs_trans_handle *trans;
3227 unsigned long nr;
3228 u64 mask = root->sectorsize - 1;
3229
3230 if (!S_ISREG(inode->i_mode))
3231 return;
3232 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3233 return;
3234
3235 btrfs_truncate_page(inode->i_mapping, inode->i_size);
3236 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
3237
3238 trans = btrfs_start_transaction(root, 1);
3239 btrfs_set_trans_block_group(trans, inode);
3240 btrfs_i_size_write(inode, inode->i_size);
3241
3242 ret = btrfs_orphan_add(trans, inode);
3243 if (ret)
3244 goto out;
3245 /* FIXME, add redo link to tree so we don't leak on crash */
3246 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
3247 BTRFS_EXTENT_DATA_KEY);
3248 btrfs_update_inode(trans, root, inode);
3249
3250 ret = btrfs_orphan_del(trans, inode);
3251 BUG_ON(ret);
3252
3253 out:
3254 nr = trans->blocks_used;
3255 ret = btrfs_end_transaction_throttle(trans, root);
3256 BUG_ON(ret);
3257 btrfs_btree_balance_dirty(root, nr);
3258 }
3259
3260 /*
3261 * Invalidate a single dcache entry at the root of the filesystem.
3262 * Needed after creation of snapshot or subvolume.
3263 */
3264 void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name,
3265 int namelen)
3266 {
3267 struct dentry *alias, *entry;
3268 struct qstr qstr;
3269
3270 alias = d_find_alias(root->fs_info->sb->s_root->d_inode);
3271 if (alias) {
3272 qstr.name = name;
3273 qstr.len = namelen;
3274 /* change me if btrfs ever gets a d_hash operation */
3275 qstr.hash = full_name_hash(qstr.name, qstr.len);
3276 entry = d_lookup(alias, &qstr);
3277 dput(alias);
3278 if (entry) {
3279 d_invalidate(entry);
3280 dput(entry);
3281 }
3282 }
3283 }
3284
3285 int btrfs_create_subvol_root(struct btrfs_root *new_root,
3286 struct btrfs_trans_handle *trans, u64 new_dirid,
3287 struct btrfs_block_group_cache *block_group)
3288 {
3289 struct inode *inode;
3290 u64 index = 0;
3291
3292 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
3293 new_dirid, block_group, S_IFDIR | 0700, &index);
3294 if (IS_ERR(inode))
3295 return PTR_ERR(inode);
3296 inode->i_op = &btrfs_dir_inode_operations;
3297 inode->i_fop = &btrfs_dir_file_operations;
3298 new_root->inode = inode;
3299
3300 inode->i_nlink = 1;
3301 btrfs_i_size_write(inode, 0);
3302
3303 return btrfs_update_inode(trans, new_root, inode);
3304 }
3305
3306 unsigned long btrfs_force_ra(struct address_space *mapping,
3307 struct file_ra_state *ra, struct file *file,
3308 pgoff_t offset, pgoff_t last_index)
3309 {
3310 pgoff_t req_size = last_index - offset + 1;
3311
3312 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3313 offset = page_cache_readahead(mapping, ra, file, offset, req_size);
3314 return offset;
3315 #else
3316 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3317 return offset + req_size;
3318 #endif
3319 }
3320
3321 struct inode *btrfs_alloc_inode(struct super_block *sb)
3322 {
3323 struct btrfs_inode *ei;
3324
3325 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
3326 if (!ei)
3327 return NULL;
3328 ei->last_trans = 0;
3329 ei->logged_trans = 0;
3330 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
3331 ei->i_acl = BTRFS_ACL_NOT_CACHED;
3332 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
3333 INIT_LIST_HEAD(&ei->i_orphan);
3334 return &ei->vfs_inode;
3335 }
3336
3337 void btrfs_destroy_inode(struct inode *inode)
3338 {
3339 struct btrfs_ordered_extent *ordered;
3340 WARN_ON(!list_empty(&inode->i_dentry));
3341 WARN_ON(inode->i_data.nrpages);
3342
3343 if (BTRFS_I(inode)->i_acl &&
3344 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
3345 posix_acl_release(BTRFS_I(inode)->i_acl);
3346 if (BTRFS_I(inode)->i_default_acl &&
3347 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
3348 posix_acl_release(BTRFS_I(inode)->i_default_acl);
3349
3350 spin_lock(&BTRFS_I(inode)->root->list_lock);
3351 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
3352 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
3353 " list\n", inode->i_ino);
3354 dump_stack();
3355 }
3356 spin_unlock(&BTRFS_I(inode)->root->list_lock);
3357
3358 while(1) {
3359 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
3360 if (!ordered)
3361 break;
3362 else {
3363 printk("found ordered extent %Lu %Lu\n",
3364 ordered->file_offset, ordered->len);
3365 btrfs_remove_ordered_extent(inode, ordered);
3366 btrfs_put_ordered_extent(ordered);
3367 btrfs_put_ordered_extent(ordered);
3368 }
3369 }
3370 btrfs_drop_extent_cache(inode, 0, (u64)-1);
3371 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
3372 }
3373
3374 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3375 static void init_once(void *foo)
3376 #elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3377 static void init_once(struct kmem_cache * cachep, void *foo)
3378 #else
3379 static void init_once(void * foo, struct kmem_cache * cachep,
3380 unsigned long flags)
3381 #endif
3382 {
3383 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
3384
3385 inode_init_once(&ei->vfs_inode);
3386 }
3387
3388 void btrfs_destroy_cachep(void)
3389 {
3390 if (btrfs_inode_cachep)
3391 kmem_cache_destroy(btrfs_inode_cachep);
3392 if (btrfs_trans_handle_cachep)
3393 kmem_cache_destroy(btrfs_trans_handle_cachep);
3394 if (btrfs_transaction_cachep)
3395 kmem_cache_destroy(btrfs_transaction_cachep);
3396 if (btrfs_bit_radix_cachep)
3397 kmem_cache_destroy(btrfs_bit_radix_cachep);
3398 if (btrfs_path_cachep)
3399 kmem_cache_destroy(btrfs_path_cachep);
3400 }
3401
3402 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
3403 unsigned long extra_flags,
3404 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3405 void (*ctor)(void *)
3406 #elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3407 void (*ctor)(struct kmem_cache *, void *)
3408 #else
3409 void (*ctor)(void *, struct kmem_cache *,
3410 unsigned long)
3411 #endif
3412 )
3413 {
3414 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
3415 SLAB_MEM_SPREAD | extra_flags), ctor
3416 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3417 ,NULL
3418 #endif
3419 );
3420 }
3421
3422 int btrfs_init_cachep(void)
3423 {
3424 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
3425 sizeof(struct btrfs_inode),
3426 0, init_once);
3427 if (!btrfs_inode_cachep)
3428 goto fail;
3429 btrfs_trans_handle_cachep =
3430 btrfs_cache_create("btrfs_trans_handle_cache",
3431 sizeof(struct btrfs_trans_handle),
3432 0, NULL);
3433 if (!btrfs_trans_handle_cachep)
3434 goto fail;
3435 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
3436 sizeof(struct btrfs_transaction),
3437 0, NULL);
3438 if (!btrfs_transaction_cachep)
3439 goto fail;
3440 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
3441 sizeof(struct btrfs_path),
3442 0, NULL);
3443 if (!btrfs_path_cachep)
3444 goto fail;
3445 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
3446 SLAB_DESTROY_BY_RCU, NULL);
3447 if (!btrfs_bit_radix_cachep)
3448 goto fail;
3449 return 0;
3450 fail:
3451 btrfs_destroy_cachep();
3452 return -ENOMEM;
3453 }
3454
3455 static int btrfs_getattr(struct vfsmount *mnt,
3456 struct dentry *dentry, struct kstat *stat)
3457 {
3458 struct inode *inode = dentry->d_inode;
3459 generic_fillattr(inode, stat);
3460 stat->blksize = PAGE_CACHE_SIZE;
3461 stat->blocks = inode->i_blocks + (BTRFS_I(inode)->delalloc_bytes >> 9);
3462 return 0;
3463 }
3464
3465 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
3466 struct inode * new_dir,struct dentry *new_dentry)
3467 {
3468 struct btrfs_trans_handle *trans;
3469 struct btrfs_root *root = BTRFS_I(old_dir)->root;
3470 struct inode *new_inode = new_dentry->d_inode;
3471 struct inode *old_inode = old_dentry->d_inode;
3472 struct timespec ctime = CURRENT_TIME;
3473 u64 index = 0;
3474 int ret;
3475
3476 if (S_ISDIR(old_inode->i_mode) && new_inode &&
3477 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
3478 return -ENOTEMPTY;
3479 }
3480
3481 ret = btrfs_check_free_space(root, 1, 0);
3482 if (ret)
3483 goto out_unlock;
3484
3485 trans = btrfs_start_transaction(root, 1);
3486
3487 btrfs_set_trans_block_group(trans, new_dir);
3488
3489 btrfs_inc_nlink(old_dentry->d_inode);
3490 old_dir->i_ctime = old_dir->i_mtime = ctime;
3491 new_dir->i_ctime = new_dir->i_mtime = ctime;
3492 old_inode->i_ctime = ctime;
3493
3494 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
3495 old_dentry->d_name.name,
3496 old_dentry->d_name.len);
3497 if (ret)
3498 goto out_fail;
3499
3500 if (new_inode) {
3501 new_inode->i_ctime = CURRENT_TIME;
3502 ret = btrfs_unlink_inode(trans, root, new_dir,
3503 new_dentry->d_inode,
3504 new_dentry->d_name.name,
3505 new_dentry->d_name.len);
3506 if (ret)
3507 goto out_fail;
3508 if (new_inode->i_nlink == 0) {
3509 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
3510 if (ret)
3511 goto out_fail;
3512 }
3513
3514 }
3515 ret = btrfs_set_inode_index(new_dir, old_inode, &index);
3516 if (ret)
3517 goto out_fail;
3518
3519 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
3520 old_inode, new_dentry->d_name.name,
3521 new_dentry->d_name.len, 1, index);
3522 if (ret)
3523 goto out_fail;
3524
3525 out_fail:
3526 btrfs_end_transaction_throttle(trans, root);
3527 out_unlock:
3528 return ret;
3529 }
3530
3531 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
3532 {
3533 struct list_head *head = &root->fs_info->delalloc_inodes;
3534 struct btrfs_inode *binode;
3535 unsigned long flags;
3536
3537 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3538 while(!list_empty(head)) {
3539 binode = list_entry(head->next, struct btrfs_inode,
3540 delalloc_inodes);
3541 atomic_inc(&binode->vfs_inode.i_count);
3542 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3543 filemap_write_and_wait(binode->vfs_inode.i_mapping);
3544 iput(&binode->vfs_inode);
3545 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3546 }
3547 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3548 return 0;
3549 }
3550
3551 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
3552 const char *symname)
3553 {
3554 struct btrfs_trans_handle *trans;
3555 struct btrfs_root *root = BTRFS_I(dir)->root;
3556 struct btrfs_path *path;
3557 struct btrfs_key key;
3558 struct inode *inode = NULL;
3559 int err;
3560 int drop_inode = 0;
3561 u64 objectid;
3562 u64 index = 0 ;
3563 int name_len;
3564 int datasize;
3565 unsigned long ptr;
3566 struct btrfs_file_extent_item *ei;
3567 struct extent_buffer *leaf;
3568 unsigned long nr = 0;
3569
3570 name_len = strlen(symname) + 1;
3571 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
3572 return -ENAMETOOLONG;
3573
3574 err = btrfs_check_free_space(root, 1, 0);
3575 if (err)
3576 goto out_fail;
3577
3578 trans = btrfs_start_transaction(root, 1);
3579 btrfs_set_trans_block_group(trans, dir);
3580
3581 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3582 if (err) {
3583 err = -ENOSPC;
3584 goto out_unlock;
3585 }
3586
3587 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3588 dentry->d_name.len,
3589 dentry->d_parent->d_inode->i_ino, objectid,
3590 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
3591 &index);
3592 err = PTR_ERR(inode);
3593 if (IS_ERR(inode))
3594 goto out_unlock;
3595
3596 err = btrfs_init_acl(inode, dir);
3597 if (err) {
3598 drop_inode = 1;
3599 goto out_unlock;
3600 }
3601
3602 btrfs_set_trans_block_group(trans, inode);
3603 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3604 if (err)
3605 drop_inode = 1;
3606 else {
3607 inode->i_mapping->a_ops = &btrfs_aops;
3608 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3609 inode->i_fop = &btrfs_file_operations;
3610 inode->i_op = &btrfs_file_inode_operations;
3611 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3612 }
3613 dir->i_sb->s_dirt = 1;
3614 btrfs_update_inode_block_group(trans, inode);
3615 btrfs_update_inode_block_group(trans, dir);
3616 if (drop_inode)
3617 goto out_unlock;
3618
3619 path = btrfs_alloc_path();
3620 BUG_ON(!path);
3621 key.objectid = inode->i_ino;
3622 key.offset = 0;
3623 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
3624 datasize = btrfs_file_extent_calc_inline_size(name_len);
3625 err = btrfs_insert_empty_item(trans, root, path, &key,
3626 datasize);
3627 if (err) {
3628 drop_inode = 1;
3629 goto out_unlock;
3630 }
3631 leaf = path->nodes[0];
3632 ei = btrfs_item_ptr(leaf, path->slots[0],
3633 struct btrfs_file_extent_item);
3634 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
3635 btrfs_set_file_extent_type(leaf, ei,
3636 BTRFS_FILE_EXTENT_INLINE);
3637 ptr = btrfs_file_extent_inline_start(ei);
3638 write_extent_buffer(leaf, symname, ptr, name_len);
3639 btrfs_mark_buffer_dirty(leaf);
3640 btrfs_free_path(path);
3641
3642 inode->i_op = &btrfs_symlink_inode_operations;
3643 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3644 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3645 btrfs_i_size_write(inode, name_len - 1);
3646 err = btrfs_update_inode(trans, root, inode);
3647 if (err)
3648 drop_inode = 1;
3649
3650 out_unlock:
3651 nr = trans->blocks_used;
3652 btrfs_end_transaction_throttle(trans, root);
3653 out_fail:
3654 if (drop_inode) {
3655 inode_dec_link_count(inode);
3656 iput(inode);
3657 }
3658 btrfs_btree_balance_dirty(root, nr);
3659 return err;
3660 }
3661
3662 static int btrfs_set_page_dirty(struct page *page)
3663 {
3664 return __set_page_dirty_nobuffers(page);
3665 }
3666
3667 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3668 static int btrfs_permission(struct inode *inode, int mask)
3669 #else
3670 static int btrfs_permission(struct inode *inode, int mask,
3671 struct nameidata *nd)
3672 #endif
3673 {
3674 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
3675 return -EACCES;
3676 return generic_permission(inode, mask, btrfs_check_acl);
3677 }
3678
3679 static struct inode_operations btrfs_dir_inode_operations = {
3680 .lookup = btrfs_lookup,
3681 .create = btrfs_create,
3682 .unlink = btrfs_unlink,
3683 .link = btrfs_link,
3684 .mkdir = btrfs_mkdir,
3685 .rmdir = btrfs_rmdir,
3686 .rename = btrfs_rename,
3687 .symlink = btrfs_symlink,
3688 .setattr = btrfs_setattr,
3689 .mknod = btrfs_mknod,
3690 .setxattr = btrfs_setxattr,
3691 .getxattr = btrfs_getxattr,
3692 .listxattr = btrfs_listxattr,
3693 .removexattr = btrfs_removexattr,
3694 .permission = btrfs_permission,
3695 };
3696 static struct inode_operations btrfs_dir_ro_inode_operations = {
3697 .lookup = btrfs_lookup,
3698 .permission = btrfs_permission,
3699 };
3700 static struct file_operations btrfs_dir_file_operations = {
3701 .llseek = generic_file_llseek,
3702 .read = generic_read_dir,
3703 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
3704 .readdir = btrfs_nfshack_readdir,
3705 #else /* NFSd readdir/lookup deadlock is fixed */
3706 .readdir = btrfs_real_readdir,
3707 #endif
3708 .unlocked_ioctl = btrfs_ioctl,
3709 #ifdef CONFIG_COMPAT
3710 .compat_ioctl = btrfs_ioctl,
3711 #endif
3712 .release = btrfs_release_file,
3713 .fsync = btrfs_sync_file,
3714 };
3715
3716 static struct extent_io_ops btrfs_extent_io_ops = {
3717 .fill_delalloc = run_delalloc_range,
3718 .submit_bio_hook = btrfs_submit_bio_hook,
3719 .merge_bio_hook = btrfs_merge_bio_hook,
3720 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
3721 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
3722 .writepage_start_hook = btrfs_writepage_start_hook,
3723 .readpage_io_failed_hook = btrfs_io_failed_hook,
3724 .set_bit_hook = btrfs_set_bit_hook,
3725 .clear_bit_hook = btrfs_clear_bit_hook,
3726 };
3727
3728 static struct address_space_operations btrfs_aops = {
3729 .readpage = btrfs_readpage,
3730 .writepage = btrfs_writepage,
3731 .writepages = btrfs_writepages,
3732 .readpages = btrfs_readpages,
3733 .sync_page = block_sync_page,
3734 .bmap = btrfs_bmap,
3735 .direct_IO = btrfs_direct_IO,
3736 .invalidatepage = btrfs_invalidatepage,
3737 .releasepage = btrfs_releasepage,
3738 .set_page_dirty = btrfs_set_page_dirty,
3739 };
3740
3741 static struct address_space_operations btrfs_symlink_aops = {
3742 .readpage = btrfs_readpage,
3743 .writepage = btrfs_writepage,
3744 .invalidatepage = btrfs_invalidatepage,
3745 .releasepage = btrfs_releasepage,
3746 };
3747
3748 static struct inode_operations btrfs_file_inode_operations = {
3749 .truncate = btrfs_truncate,
3750 .getattr = btrfs_getattr,
3751 .setattr = btrfs_setattr,
3752 .setxattr = btrfs_setxattr,
3753 .getxattr = btrfs_getxattr,
3754 .listxattr = btrfs_listxattr,
3755 .removexattr = btrfs_removexattr,
3756 .permission = btrfs_permission,
3757 };
3758 static struct inode_operations btrfs_special_inode_operations = {
3759 .getattr = btrfs_getattr,
3760 .setattr = btrfs_setattr,
3761 .permission = btrfs_permission,
3762 .setxattr = btrfs_setxattr,
3763 .getxattr = btrfs_getxattr,
3764 .listxattr = btrfs_listxattr,
3765 .removexattr = btrfs_removexattr,
3766 };
3767 static struct inode_operations btrfs_symlink_inode_operations = {
3768 .readlink = generic_readlink,
3769 .follow_link = page_follow_link_light,
3770 .put_link = page_put_link,
3771 .permission = btrfs_permission,
3772 };
This page took 0.109743 seconds and 6 git commands to generate.