Btrfs: Remove offset field from struct btrfs_extent_ref
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "compat.h"
50 #include "tree-log.h"
51
52 struct btrfs_iget_args {
53 u64 ino;
54 struct btrfs_root *root;
55 };
56
57 static struct inode_operations btrfs_dir_inode_operations;
58 static struct inode_operations btrfs_symlink_inode_operations;
59 static struct inode_operations btrfs_dir_ro_inode_operations;
60 static struct inode_operations btrfs_special_inode_operations;
61 static struct inode_operations btrfs_file_inode_operations;
62 static struct address_space_operations btrfs_aops;
63 static struct address_space_operations btrfs_symlink_aops;
64 static struct file_operations btrfs_dir_file_operations;
65 static struct extent_io_ops btrfs_extent_io_ops;
66
67 static struct kmem_cache *btrfs_inode_cachep;
68 struct kmem_cache *btrfs_trans_handle_cachep;
69 struct kmem_cache *btrfs_transaction_cachep;
70 struct kmem_cache *btrfs_bit_radix_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
82 };
83
84 static void btrfs_truncate(struct inode *inode);
85
86 /*
87 * a very lame attempt at stopping writes when the FS is 85% full. There
88 * are countless ways this is incorrect, but it is better than nothing.
89 */
90 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
91 int for_del)
92 {
93 u64 total;
94 u64 used;
95 u64 thresh;
96 unsigned long flags;
97 int ret = 0;
98
99 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
100 total = btrfs_super_total_bytes(&root->fs_info->super_copy);
101 used = btrfs_super_bytes_used(&root->fs_info->super_copy);
102 if (for_del)
103 thresh = total * 90;
104 else
105 thresh = total * 85;
106
107 do_div(thresh, 100);
108
109 if (used + root->fs_info->delalloc_bytes + num_required > thresh)
110 ret = -ENOSPC;
111 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
112 return ret;
113 }
114
115 /*
116 * when extent_io.c finds a delayed allocation range in the file,
117 * the call backs end up in this code. The basic idea is to
118 * allocate extents on disk for the range, and create ordered data structs
119 * in ram to track those extents.
120 */
121 static int cow_file_range(struct inode *inode, u64 start, u64 end)
122 {
123 struct btrfs_root *root = BTRFS_I(inode)->root;
124 struct btrfs_trans_handle *trans;
125 u64 alloc_hint = 0;
126 u64 num_bytes;
127 u64 cur_alloc_size;
128 u64 blocksize = root->sectorsize;
129 u64 orig_num_bytes;
130 struct btrfs_key ins;
131 struct extent_map *em;
132 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
133 int ret = 0;
134
135 trans = btrfs_join_transaction(root, 1);
136 BUG_ON(!trans);
137 btrfs_set_trans_block_group(trans, inode);
138
139 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
140 num_bytes = max(blocksize, num_bytes);
141 orig_num_bytes = num_bytes;
142
143 if (alloc_hint == EXTENT_MAP_INLINE)
144 goto out;
145
146 BUG_ON(num_bytes > btrfs_super_total_bytes(&root->fs_info->super_copy));
147 mutex_lock(&BTRFS_I(inode)->extent_mutex);
148 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
149 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
150
151 while(num_bytes > 0) {
152 cur_alloc_size = min(num_bytes, root->fs_info->max_extent);
153 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
154 root->sectorsize, 0, alloc_hint,
155 (u64)-1, &ins, 1);
156 if (ret) {
157 WARN_ON(1);
158 goto out;
159 }
160 em = alloc_extent_map(GFP_NOFS);
161 em->start = start;
162 em->len = ins.offset;
163 em->block_start = ins.objectid;
164 em->bdev = root->fs_info->fs_devices->latest_bdev;
165 mutex_lock(&BTRFS_I(inode)->extent_mutex);
166 set_bit(EXTENT_FLAG_PINNED, &em->flags);
167 while(1) {
168 spin_lock(&em_tree->lock);
169 ret = add_extent_mapping(em_tree, em);
170 spin_unlock(&em_tree->lock);
171 if (ret != -EEXIST) {
172 free_extent_map(em);
173 break;
174 }
175 btrfs_drop_extent_cache(inode, start,
176 start + ins.offset - 1, 0);
177 }
178 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
179
180 cur_alloc_size = ins.offset;
181 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
182 ins.offset, 0);
183 BUG_ON(ret);
184 if (num_bytes < cur_alloc_size) {
185 printk("num_bytes %Lu cur_alloc %Lu\n", num_bytes,
186 cur_alloc_size);
187 break;
188 }
189 num_bytes -= cur_alloc_size;
190 alloc_hint = ins.objectid + ins.offset;
191 start += cur_alloc_size;
192 }
193 out:
194 btrfs_end_transaction(trans, root);
195 return ret;
196 }
197
198 /*
199 * when nowcow writeback call back. This checks for snapshots or COW copies
200 * of the extents that exist in the file, and COWs the file as required.
201 *
202 * If no cow copies or snapshots exist, we write directly to the existing
203 * blocks on disk
204 */
205 static int run_delalloc_nocow(struct inode *inode, u64 start, u64 end)
206 {
207 u64 extent_start;
208 u64 extent_end;
209 u64 bytenr;
210 u64 loops = 0;
211 u64 total_fs_bytes;
212 struct btrfs_root *root = BTRFS_I(inode)->root;
213 struct btrfs_block_group_cache *block_group;
214 struct btrfs_trans_handle *trans;
215 struct extent_buffer *leaf;
216 int found_type;
217 struct btrfs_path *path;
218 struct btrfs_file_extent_item *item;
219 int ret;
220 int err = 0;
221 struct btrfs_key found_key;
222
223 total_fs_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
224 path = btrfs_alloc_path();
225 BUG_ON(!path);
226 trans = btrfs_join_transaction(root, 1);
227 BUG_ON(!trans);
228 again:
229 ret = btrfs_lookup_file_extent(NULL, root, path,
230 inode->i_ino, start, 0);
231 if (ret < 0) {
232 err = ret;
233 goto out;
234 }
235
236 if (ret != 0) {
237 if (path->slots[0] == 0)
238 goto not_found;
239 path->slots[0]--;
240 }
241
242 leaf = path->nodes[0];
243 item = btrfs_item_ptr(leaf, path->slots[0],
244 struct btrfs_file_extent_item);
245
246 /* are we inside the extent that was found? */
247 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
248 found_type = btrfs_key_type(&found_key);
249 if (found_key.objectid != inode->i_ino ||
250 found_type != BTRFS_EXTENT_DATA_KEY)
251 goto not_found;
252
253 found_type = btrfs_file_extent_type(leaf, item);
254 extent_start = found_key.offset;
255 if (found_type == BTRFS_FILE_EXTENT_REG) {
256 u64 extent_num_bytes;
257
258 extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item);
259 extent_end = extent_start + extent_num_bytes;
260 err = 0;
261
262 if (loops && start != extent_start)
263 goto not_found;
264
265 if (start < extent_start || start >= extent_end)
266 goto not_found;
267
268 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
269 if (bytenr == 0)
270 goto not_found;
271
272 if (btrfs_cross_ref_exists(trans, root, &found_key, bytenr))
273 goto not_found;
274 /*
275 * we may be called by the resizer, make sure we're inside
276 * the limits of the FS
277 */
278 block_group = btrfs_lookup_block_group(root->fs_info,
279 bytenr);
280 if (!block_group || block_group->ro)
281 goto not_found;
282
283 bytenr += btrfs_file_extent_offset(leaf, item);
284 extent_num_bytes = min(end + 1, extent_end) - start;
285 ret = btrfs_add_ordered_extent(inode, start, bytenr,
286 extent_num_bytes, 1);
287 if (ret) {
288 err = ret;
289 goto out;
290 }
291
292 btrfs_release_path(root, path);
293 start = extent_end;
294 if (start <= end) {
295 loops++;
296 goto again;
297 }
298 } else {
299 not_found:
300 btrfs_end_transaction(trans, root);
301 btrfs_free_path(path);
302 return cow_file_range(inode, start, end);
303 }
304 out:
305 WARN_ON(err);
306 btrfs_end_transaction(trans, root);
307 btrfs_free_path(path);
308 return err;
309 }
310
311 /*
312 * extent_io.c call back to do delayed allocation processing
313 */
314 static int run_delalloc_range(struct inode *inode, u64 start, u64 end)
315 {
316 struct btrfs_root *root = BTRFS_I(inode)->root;
317 int ret;
318
319 if (btrfs_test_opt(root, NODATACOW) ||
320 btrfs_test_flag(inode, NODATACOW))
321 ret = run_delalloc_nocow(inode, start, end);
322 else
323 ret = cow_file_range(inode, start, end);
324
325 return ret;
326 }
327
328 /*
329 * extent_io.c set_bit_hook, used to track delayed allocation
330 * bytes in this file, and to maintain the list of inodes that
331 * have pending delalloc work to be done.
332 */
333 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
334 unsigned long old, unsigned long bits)
335 {
336 unsigned long flags;
337 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
338 struct btrfs_root *root = BTRFS_I(inode)->root;
339 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
340 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
341 root->fs_info->delalloc_bytes += end - start + 1;
342 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
343 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
344 &root->fs_info->delalloc_inodes);
345 }
346 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
347 }
348 return 0;
349 }
350
351 /*
352 * extent_io.c clear_bit_hook, see set_bit_hook for why
353 */
354 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
355 unsigned long old, unsigned long bits)
356 {
357 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
358 struct btrfs_root *root = BTRFS_I(inode)->root;
359 unsigned long flags;
360
361 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
362 if (end - start + 1 > root->fs_info->delalloc_bytes) {
363 printk("warning: delalloc account %Lu %Lu\n",
364 end - start + 1, root->fs_info->delalloc_bytes);
365 root->fs_info->delalloc_bytes = 0;
366 BTRFS_I(inode)->delalloc_bytes = 0;
367 } else {
368 root->fs_info->delalloc_bytes -= end - start + 1;
369 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
370 }
371 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
372 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
373 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
374 }
375 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
376 }
377 return 0;
378 }
379
380 /*
381 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
382 * we don't create bios that span stripes or chunks
383 */
384 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
385 size_t size, struct bio *bio)
386 {
387 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
388 struct btrfs_mapping_tree *map_tree;
389 u64 logical = (u64)bio->bi_sector << 9;
390 u64 length = 0;
391 u64 map_length;
392 int ret;
393
394 length = bio->bi_size;
395 map_tree = &root->fs_info->mapping_tree;
396 map_length = length;
397 ret = btrfs_map_block(map_tree, READ, logical,
398 &map_length, NULL, 0);
399
400 if (map_length < length + size) {
401 return 1;
402 }
403 return 0;
404 }
405
406 /*
407 * in order to insert checksums into the metadata in large chunks,
408 * we wait until bio submission time. All the pages in the bio are
409 * checksummed and sums are attached onto the ordered extent record.
410 *
411 * At IO completion time the cums attached on the ordered extent record
412 * are inserted into the btree
413 */
414 int __btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
415 int mirror_num)
416 {
417 struct btrfs_root *root = BTRFS_I(inode)->root;
418 int ret = 0;
419
420 ret = btrfs_csum_one_bio(root, inode, bio);
421 BUG_ON(ret);
422
423 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
424 }
425
426 /*
427 * extent_io.c submission hook. This does the right thing for csum calculation on write,
428 * or reading the csums from the tree before a read
429 */
430 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
431 int mirror_num)
432 {
433 struct btrfs_root *root = BTRFS_I(inode)->root;
434 int ret = 0;
435
436 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
437 BUG_ON(ret);
438
439 if (btrfs_test_opt(root, NODATASUM) ||
440 btrfs_test_flag(inode, NODATASUM)) {
441 goto mapit;
442 }
443
444 if (!(rw & (1 << BIO_RW))) {
445 btrfs_lookup_bio_sums(root, inode, bio);
446 goto mapit;
447 }
448 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
449 inode, rw, bio, mirror_num,
450 __btrfs_submit_bio_hook);
451 mapit:
452 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
453 }
454
455 /*
456 * given a list of ordered sums record them in the inode. This happens
457 * at IO completion time based on sums calculated at bio submission time.
458 */
459 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
460 struct inode *inode, u64 file_offset,
461 struct list_head *list)
462 {
463 struct list_head *cur;
464 struct btrfs_ordered_sum *sum;
465
466 btrfs_set_trans_block_group(trans, inode);
467 list_for_each(cur, list) {
468 sum = list_entry(cur, struct btrfs_ordered_sum, list);
469 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
470 inode, sum);
471 }
472 return 0;
473 }
474
475 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
476 {
477 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
478 GFP_NOFS);
479 }
480
481 /* see btrfs_writepage_start_hook for details on why this is required */
482 struct btrfs_writepage_fixup {
483 struct page *page;
484 struct btrfs_work work;
485 };
486
487 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
488 {
489 struct btrfs_writepage_fixup *fixup;
490 struct btrfs_ordered_extent *ordered;
491 struct page *page;
492 struct inode *inode;
493 u64 page_start;
494 u64 page_end;
495
496 fixup = container_of(work, struct btrfs_writepage_fixup, work);
497 page = fixup->page;
498 again:
499 lock_page(page);
500 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
501 ClearPageChecked(page);
502 goto out_page;
503 }
504
505 inode = page->mapping->host;
506 page_start = page_offset(page);
507 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
508
509 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
510
511 /* already ordered? We're done */
512 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
513 EXTENT_ORDERED, 0)) {
514 goto out;
515 }
516
517 ordered = btrfs_lookup_ordered_extent(inode, page_start);
518 if (ordered) {
519 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
520 page_end, GFP_NOFS);
521 unlock_page(page);
522 btrfs_start_ordered_extent(inode, ordered, 1);
523 goto again;
524 }
525
526 btrfs_set_extent_delalloc(inode, page_start, page_end);
527 ClearPageChecked(page);
528 out:
529 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
530 out_page:
531 unlock_page(page);
532 page_cache_release(page);
533 }
534
535 /*
536 * There are a few paths in the higher layers of the kernel that directly
537 * set the page dirty bit without asking the filesystem if it is a
538 * good idea. This causes problems because we want to make sure COW
539 * properly happens and the data=ordered rules are followed.
540 *
541 * In our case any range that doesn't have the EXTENT_ORDERED bit set
542 * hasn't been properly setup for IO. We kick off an async process
543 * to fix it up. The async helper will wait for ordered extents, set
544 * the delalloc bit and make it safe to write the page.
545 */
546 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
547 {
548 struct inode *inode = page->mapping->host;
549 struct btrfs_writepage_fixup *fixup;
550 struct btrfs_root *root = BTRFS_I(inode)->root;
551 int ret;
552
553 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
554 EXTENT_ORDERED, 0);
555 if (ret)
556 return 0;
557
558 if (PageChecked(page))
559 return -EAGAIN;
560
561 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
562 if (!fixup)
563 return -EAGAIN;
564
565 SetPageChecked(page);
566 page_cache_get(page);
567 fixup->work.func = btrfs_writepage_fixup_worker;
568 fixup->page = page;
569 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
570 return -EAGAIN;
571 }
572
573 /* as ordered data IO finishes, this gets called so we can finish
574 * an ordered extent if the range of bytes in the file it covers are
575 * fully written.
576 */
577 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
578 {
579 struct btrfs_root *root = BTRFS_I(inode)->root;
580 struct btrfs_trans_handle *trans;
581 struct btrfs_ordered_extent *ordered_extent;
582 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
583 struct btrfs_file_extent_item *extent_item;
584 struct btrfs_path *path = NULL;
585 struct extent_buffer *leaf;
586 u64 alloc_hint = 0;
587 struct list_head list;
588 struct btrfs_key ins;
589 int ret;
590
591 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
592 if (!ret)
593 return 0;
594
595 trans = btrfs_join_transaction(root, 1);
596
597 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
598 BUG_ON(!ordered_extent);
599 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
600 goto nocow;
601
602 path = btrfs_alloc_path();
603 BUG_ON(!path);
604
605 lock_extent(io_tree, ordered_extent->file_offset,
606 ordered_extent->file_offset + ordered_extent->len - 1,
607 GFP_NOFS);
608
609 INIT_LIST_HEAD(&list);
610
611 mutex_lock(&BTRFS_I(inode)->extent_mutex);
612
613 ret = btrfs_drop_extents(trans, root, inode,
614 ordered_extent->file_offset,
615 ordered_extent->file_offset +
616 ordered_extent->len,
617 ordered_extent->file_offset, &alloc_hint);
618 BUG_ON(ret);
619
620 ins.objectid = inode->i_ino;
621 ins.offset = ordered_extent->file_offset;
622 ins.type = BTRFS_EXTENT_DATA_KEY;
623 ret = btrfs_insert_empty_item(trans, root, path, &ins,
624 sizeof(*extent_item));
625 BUG_ON(ret);
626 leaf = path->nodes[0];
627 extent_item = btrfs_item_ptr(leaf, path->slots[0],
628 struct btrfs_file_extent_item);
629 btrfs_set_file_extent_generation(leaf, extent_item, trans->transid);
630 btrfs_set_file_extent_type(leaf, extent_item, BTRFS_FILE_EXTENT_REG);
631 btrfs_set_file_extent_disk_bytenr(leaf, extent_item,
632 ordered_extent->start);
633 btrfs_set_file_extent_disk_num_bytes(leaf, extent_item,
634 ordered_extent->len);
635 btrfs_set_file_extent_offset(leaf, extent_item, 0);
636 btrfs_set_file_extent_num_bytes(leaf, extent_item,
637 ordered_extent->len);
638 btrfs_mark_buffer_dirty(leaf);
639
640 btrfs_drop_extent_cache(inode, ordered_extent->file_offset,
641 ordered_extent->file_offset +
642 ordered_extent->len - 1, 0);
643 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
644
645 ins.objectid = ordered_extent->start;
646 ins.offset = ordered_extent->len;
647 ins.type = BTRFS_EXTENT_ITEM_KEY;
648 ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
649 root->root_key.objectid,
650 trans->transid, inode->i_ino, &ins);
651 BUG_ON(ret);
652 btrfs_release_path(root, path);
653
654 inode_add_bytes(inode, ordered_extent->len);
655 unlock_extent(io_tree, ordered_extent->file_offset,
656 ordered_extent->file_offset + ordered_extent->len - 1,
657 GFP_NOFS);
658 nocow:
659 add_pending_csums(trans, inode, ordered_extent->file_offset,
660 &ordered_extent->list);
661
662 mutex_lock(&BTRFS_I(inode)->extent_mutex);
663 btrfs_ordered_update_i_size(inode, ordered_extent);
664 btrfs_update_inode(trans, root, inode);
665 btrfs_remove_ordered_extent(inode, ordered_extent);
666 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
667
668 /* once for us */
669 btrfs_put_ordered_extent(ordered_extent);
670 /* once for the tree */
671 btrfs_put_ordered_extent(ordered_extent);
672
673 btrfs_end_transaction(trans, root);
674 if (path)
675 btrfs_free_path(path);
676 return 0;
677 }
678
679 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
680 struct extent_state *state, int uptodate)
681 {
682 return btrfs_finish_ordered_io(page->mapping->host, start, end);
683 }
684
685 /*
686 * When IO fails, either with EIO or csum verification fails, we
687 * try other mirrors that might have a good copy of the data. This
688 * io_failure_record is used to record state as we go through all the
689 * mirrors. If another mirror has good data, the page is set up to date
690 * and things continue. If a good mirror can't be found, the original
691 * bio end_io callback is called to indicate things have failed.
692 */
693 struct io_failure_record {
694 struct page *page;
695 u64 start;
696 u64 len;
697 u64 logical;
698 int last_mirror;
699 };
700
701 int btrfs_io_failed_hook(struct bio *failed_bio,
702 struct page *page, u64 start, u64 end,
703 struct extent_state *state)
704 {
705 struct io_failure_record *failrec = NULL;
706 u64 private;
707 struct extent_map *em;
708 struct inode *inode = page->mapping->host;
709 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
710 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
711 struct bio *bio;
712 int num_copies;
713 int ret;
714 int rw;
715 u64 logical;
716
717 ret = get_state_private(failure_tree, start, &private);
718 if (ret) {
719 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
720 if (!failrec)
721 return -ENOMEM;
722 failrec->start = start;
723 failrec->len = end - start + 1;
724 failrec->last_mirror = 0;
725
726 spin_lock(&em_tree->lock);
727 em = lookup_extent_mapping(em_tree, start, failrec->len);
728 if (em->start > start || em->start + em->len < start) {
729 free_extent_map(em);
730 em = NULL;
731 }
732 spin_unlock(&em_tree->lock);
733
734 if (!em || IS_ERR(em)) {
735 kfree(failrec);
736 return -EIO;
737 }
738 logical = start - em->start;
739 logical = em->block_start + logical;
740 failrec->logical = logical;
741 free_extent_map(em);
742 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
743 EXTENT_DIRTY, GFP_NOFS);
744 set_state_private(failure_tree, start,
745 (u64)(unsigned long)failrec);
746 } else {
747 failrec = (struct io_failure_record *)(unsigned long)private;
748 }
749 num_copies = btrfs_num_copies(
750 &BTRFS_I(inode)->root->fs_info->mapping_tree,
751 failrec->logical, failrec->len);
752 failrec->last_mirror++;
753 if (!state) {
754 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
755 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
756 failrec->start,
757 EXTENT_LOCKED);
758 if (state && state->start != failrec->start)
759 state = NULL;
760 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
761 }
762 if (!state || failrec->last_mirror > num_copies) {
763 set_state_private(failure_tree, failrec->start, 0);
764 clear_extent_bits(failure_tree, failrec->start,
765 failrec->start + failrec->len - 1,
766 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
767 kfree(failrec);
768 return -EIO;
769 }
770 bio = bio_alloc(GFP_NOFS, 1);
771 bio->bi_private = state;
772 bio->bi_end_io = failed_bio->bi_end_io;
773 bio->bi_sector = failrec->logical >> 9;
774 bio->bi_bdev = failed_bio->bi_bdev;
775 bio->bi_size = 0;
776 bio_add_page(bio, page, failrec->len, start - page_offset(page));
777 if (failed_bio->bi_rw & (1 << BIO_RW))
778 rw = WRITE;
779 else
780 rw = READ;
781
782 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
783 failrec->last_mirror);
784 return 0;
785 }
786
787 /*
788 * each time an IO finishes, we do a fast check in the IO failure tree
789 * to see if we need to process or clean up an io_failure_record
790 */
791 int btrfs_clean_io_failures(struct inode *inode, u64 start)
792 {
793 u64 private;
794 u64 private_failure;
795 struct io_failure_record *failure;
796 int ret;
797
798 private = 0;
799 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
800 (u64)-1, 1, EXTENT_DIRTY)) {
801 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
802 start, &private_failure);
803 if (ret == 0) {
804 failure = (struct io_failure_record *)(unsigned long)
805 private_failure;
806 set_state_private(&BTRFS_I(inode)->io_failure_tree,
807 failure->start, 0);
808 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
809 failure->start,
810 failure->start + failure->len - 1,
811 EXTENT_DIRTY | EXTENT_LOCKED,
812 GFP_NOFS);
813 kfree(failure);
814 }
815 }
816 return 0;
817 }
818
819 /*
820 * when reads are done, we need to check csums to verify the data is correct
821 * if there's a match, we allow the bio to finish. If not, we go through
822 * the io_failure_record routines to find good copies
823 */
824 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
825 struct extent_state *state)
826 {
827 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
828 struct inode *inode = page->mapping->host;
829 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
830 char *kaddr;
831 u64 private = ~(u32)0;
832 int ret;
833 struct btrfs_root *root = BTRFS_I(inode)->root;
834 u32 csum = ~(u32)0;
835 unsigned long flags;
836
837 if (btrfs_test_opt(root, NODATASUM) ||
838 btrfs_test_flag(inode, NODATASUM))
839 return 0;
840 if (state && state->start == start) {
841 private = state->private;
842 ret = 0;
843 } else {
844 ret = get_state_private(io_tree, start, &private);
845 }
846 local_irq_save(flags);
847 kaddr = kmap_atomic(page, KM_IRQ0);
848 if (ret) {
849 goto zeroit;
850 }
851 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
852 btrfs_csum_final(csum, (char *)&csum);
853 if (csum != private) {
854 goto zeroit;
855 }
856 kunmap_atomic(kaddr, KM_IRQ0);
857 local_irq_restore(flags);
858
859 /* if the io failure tree for this inode is non-empty,
860 * check to see if we've recovered from a failed IO
861 */
862 btrfs_clean_io_failures(inode, start);
863 return 0;
864
865 zeroit:
866 printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
867 page->mapping->host->i_ino, (unsigned long long)start, csum,
868 private);
869 memset(kaddr + offset, 1, end - start + 1);
870 flush_dcache_page(page);
871 kunmap_atomic(kaddr, KM_IRQ0);
872 local_irq_restore(flags);
873 if (private == 0)
874 return 0;
875 return -EIO;
876 }
877
878 /*
879 * This creates an orphan entry for the given inode in case something goes
880 * wrong in the middle of an unlink/truncate.
881 */
882 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
883 {
884 struct btrfs_root *root = BTRFS_I(inode)->root;
885 int ret = 0;
886
887 spin_lock(&root->list_lock);
888
889 /* already on the orphan list, we're good */
890 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
891 spin_unlock(&root->list_lock);
892 return 0;
893 }
894
895 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
896
897 spin_unlock(&root->list_lock);
898
899 /*
900 * insert an orphan item to track this unlinked/truncated file
901 */
902 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
903
904 return ret;
905 }
906
907 /*
908 * We have done the truncate/delete so we can go ahead and remove the orphan
909 * item for this particular inode.
910 */
911 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
912 {
913 struct btrfs_root *root = BTRFS_I(inode)->root;
914 int ret = 0;
915
916 spin_lock(&root->list_lock);
917
918 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
919 spin_unlock(&root->list_lock);
920 return 0;
921 }
922
923 list_del_init(&BTRFS_I(inode)->i_orphan);
924 if (!trans) {
925 spin_unlock(&root->list_lock);
926 return 0;
927 }
928
929 spin_unlock(&root->list_lock);
930
931 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
932
933 return ret;
934 }
935
936 /*
937 * this cleans up any orphans that may be left on the list from the last use
938 * of this root.
939 */
940 void btrfs_orphan_cleanup(struct btrfs_root *root)
941 {
942 struct btrfs_path *path;
943 struct extent_buffer *leaf;
944 struct btrfs_item *item;
945 struct btrfs_key key, found_key;
946 struct btrfs_trans_handle *trans;
947 struct inode *inode;
948 int ret = 0, nr_unlink = 0, nr_truncate = 0;
949
950 /* don't do orphan cleanup if the fs is readonly. */
951 if (root->fs_info->sb->s_flags & MS_RDONLY)
952 return;
953
954 path = btrfs_alloc_path();
955 if (!path)
956 return;
957 path->reada = -1;
958
959 key.objectid = BTRFS_ORPHAN_OBJECTID;
960 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
961 key.offset = (u64)-1;
962
963
964 while (1) {
965 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
966 if (ret < 0) {
967 printk(KERN_ERR "Error searching slot for orphan: %d"
968 "\n", ret);
969 break;
970 }
971
972 /*
973 * if ret == 0 means we found what we were searching for, which
974 * is weird, but possible, so only screw with path if we didnt
975 * find the key and see if we have stuff that matches
976 */
977 if (ret > 0) {
978 if (path->slots[0] == 0)
979 break;
980 path->slots[0]--;
981 }
982
983 /* pull out the item */
984 leaf = path->nodes[0];
985 item = btrfs_item_nr(leaf, path->slots[0]);
986 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
987
988 /* make sure the item matches what we want */
989 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
990 break;
991 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
992 break;
993
994 /* release the path since we're done with it */
995 btrfs_release_path(root, path);
996
997 /*
998 * this is where we are basically btrfs_lookup, without the
999 * crossing root thing. we store the inode number in the
1000 * offset of the orphan item.
1001 */
1002 inode = btrfs_iget_locked(root->fs_info->sb,
1003 found_key.offset, root);
1004 if (!inode)
1005 break;
1006
1007 if (inode->i_state & I_NEW) {
1008 BTRFS_I(inode)->root = root;
1009
1010 /* have to set the location manually */
1011 BTRFS_I(inode)->location.objectid = inode->i_ino;
1012 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1013 BTRFS_I(inode)->location.offset = 0;
1014
1015 btrfs_read_locked_inode(inode);
1016 unlock_new_inode(inode);
1017 }
1018
1019 /*
1020 * add this inode to the orphan list so btrfs_orphan_del does
1021 * the proper thing when we hit it
1022 */
1023 spin_lock(&root->list_lock);
1024 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1025 spin_unlock(&root->list_lock);
1026
1027 /*
1028 * if this is a bad inode, means we actually succeeded in
1029 * removing the inode, but not the orphan record, which means
1030 * we need to manually delete the orphan since iput will just
1031 * do a destroy_inode
1032 */
1033 if (is_bad_inode(inode)) {
1034 trans = btrfs_start_transaction(root, 1);
1035 btrfs_orphan_del(trans, inode);
1036 btrfs_end_transaction(trans, root);
1037 iput(inode);
1038 continue;
1039 }
1040
1041 /* if we have links, this was a truncate, lets do that */
1042 if (inode->i_nlink) {
1043 nr_truncate++;
1044 btrfs_truncate(inode);
1045 } else {
1046 nr_unlink++;
1047 }
1048
1049 /* this will do delete_inode and everything for us */
1050 iput(inode);
1051 }
1052
1053 if (nr_unlink)
1054 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1055 if (nr_truncate)
1056 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1057
1058 btrfs_free_path(path);
1059 }
1060
1061 /*
1062 * read an inode from the btree into the in-memory inode
1063 */
1064 void btrfs_read_locked_inode(struct inode *inode)
1065 {
1066 struct btrfs_path *path;
1067 struct extent_buffer *leaf;
1068 struct btrfs_inode_item *inode_item;
1069 struct btrfs_timespec *tspec;
1070 struct btrfs_root *root = BTRFS_I(inode)->root;
1071 struct btrfs_key location;
1072 u64 alloc_group_block;
1073 u32 rdev;
1074 int ret;
1075
1076 path = btrfs_alloc_path();
1077 BUG_ON(!path);
1078 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1079
1080 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1081 if (ret)
1082 goto make_bad;
1083
1084 leaf = path->nodes[0];
1085 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1086 struct btrfs_inode_item);
1087
1088 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1089 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1090 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1091 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1092 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1093
1094 tspec = btrfs_inode_atime(inode_item);
1095 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1096 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1097
1098 tspec = btrfs_inode_mtime(inode_item);
1099 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1100 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1101
1102 tspec = btrfs_inode_ctime(inode_item);
1103 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1104 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1105
1106 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
1107 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
1108 inode->i_generation = BTRFS_I(inode)->generation;
1109 inode->i_rdev = 0;
1110 rdev = btrfs_inode_rdev(leaf, inode_item);
1111
1112 BTRFS_I(inode)->index_cnt = (u64)-1;
1113
1114 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1115 BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1116 alloc_group_block);
1117 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1118 if (!BTRFS_I(inode)->block_group) {
1119 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1120 NULL, 0,
1121 BTRFS_BLOCK_GROUP_METADATA, 0);
1122 }
1123 btrfs_free_path(path);
1124 inode_item = NULL;
1125
1126 switch (inode->i_mode & S_IFMT) {
1127 case S_IFREG:
1128 inode->i_mapping->a_ops = &btrfs_aops;
1129 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1130 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1131 inode->i_fop = &btrfs_file_operations;
1132 inode->i_op = &btrfs_file_inode_operations;
1133 break;
1134 case S_IFDIR:
1135 inode->i_fop = &btrfs_dir_file_operations;
1136 if (root == root->fs_info->tree_root)
1137 inode->i_op = &btrfs_dir_ro_inode_operations;
1138 else
1139 inode->i_op = &btrfs_dir_inode_operations;
1140 break;
1141 case S_IFLNK:
1142 inode->i_op = &btrfs_symlink_inode_operations;
1143 inode->i_mapping->a_ops = &btrfs_symlink_aops;
1144 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1145 break;
1146 default:
1147 init_special_inode(inode, inode->i_mode, rdev);
1148 break;
1149 }
1150 return;
1151
1152 make_bad:
1153 btrfs_free_path(path);
1154 make_bad_inode(inode);
1155 }
1156
1157 /*
1158 * given a leaf and an inode, copy the inode fields into the leaf
1159 */
1160 static void fill_inode_item(struct btrfs_trans_handle *trans,
1161 struct extent_buffer *leaf,
1162 struct btrfs_inode_item *item,
1163 struct inode *inode)
1164 {
1165 btrfs_set_inode_uid(leaf, item, inode->i_uid);
1166 btrfs_set_inode_gid(leaf, item, inode->i_gid);
1167 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
1168 btrfs_set_inode_mode(leaf, item, inode->i_mode);
1169 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
1170
1171 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
1172 inode->i_atime.tv_sec);
1173 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
1174 inode->i_atime.tv_nsec);
1175
1176 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
1177 inode->i_mtime.tv_sec);
1178 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
1179 inode->i_mtime.tv_nsec);
1180
1181 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
1182 inode->i_ctime.tv_sec);
1183 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
1184 inode->i_ctime.tv_nsec);
1185
1186 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
1187 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
1188 btrfs_set_inode_transid(leaf, item, trans->transid);
1189 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
1190 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
1191 btrfs_set_inode_block_group(leaf, item,
1192 BTRFS_I(inode)->block_group->key.objectid);
1193 }
1194
1195 /*
1196 * copy everything in the in-memory inode into the btree.
1197 */
1198 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
1199 struct btrfs_root *root,
1200 struct inode *inode)
1201 {
1202 struct btrfs_inode_item *inode_item;
1203 struct btrfs_path *path;
1204 struct extent_buffer *leaf;
1205 int ret;
1206
1207 path = btrfs_alloc_path();
1208 BUG_ON(!path);
1209 ret = btrfs_lookup_inode(trans, root, path,
1210 &BTRFS_I(inode)->location, 1);
1211 if (ret) {
1212 if (ret > 0)
1213 ret = -ENOENT;
1214 goto failed;
1215 }
1216
1217 leaf = path->nodes[0];
1218 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1219 struct btrfs_inode_item);
1220
1221 fill_inode_item(trans, leaf, inode_item, inode);
1222 btrfs_mark_buffer_dirty(leaf);
1223 btrfs_set_inode_last_trans(trans, inode);
1224 ret = 0;
1225 failed:
1226 btrfs_free_path(path);
1227 return ret;
1228 }
1229
1230
1231 /*
1232 * unlink helper that gets used here in inode.c and in the tree logging
1233 * recovery code. It remove a link in a directory with a given name, and
1234 * also drops the back refs in the inode to the directory
1235 */
1236 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
1237 struct btrfs_root *root,
1238 struct inode *dir, struct inode *inode,
1239 const char *name, int name_len)
1240 {
1241 struct btrfs_path *path;
1242 int ret = 0;
1243 struct extent_buffer *leaf;
1244 struct btrfs_dir_item *di;
1245 struct btrfs_key key;
1246 u64 index;
1247
1248 path = btrfs_alloc_path();
1249 if (!path) {
1250 ret = -ENOMEM;
1251 goto err;
1252 }
1253
1254 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
1255 name, name_len, -1);
1256 if (IS_ERR(di)) {
1257 ret = PTR_ERR(di);
1258 goto err;
1259 }
1260 if (!di) {
1261 ret = -ENOENT;
1262 goto err;
1263 }
1264 leaf = path->nodes[0];
1265 btrfs_dir_item_key_to_cpu(leaf, di, &key);
1266 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1267 if (ret)
1268 goto err;
1269 btrfs_release_path(root, path);
1270
1271 ret = btrfs_del_inode_ref(trans, root, name, name_len,
1272 inode->i_ino,
1273 dir->i_ino, &index);
1274 if (ret) {
1275 printk("failed to delete reference to %.*s, "
1276 "inode %lu parent %lu\n", name_len, name,
1277 inode->i_ino, dir->i_ino);
1278 goto err;
1279 }
1280
1281 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
1282 index, name, name_len, -1);
1283 if (IS_ERR(di)) {
1284 ret = PTR_ERR(di);
1285 goto err;
1286 }
1287 if (!di) {
1288 ret = -ENOENT;
1289 goto err;
1290 }
1291 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1292 btrfs_release_path(root, path);
1293
1294 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
1295 inode, dir->i_ino);
1296 BUG_ON(ret != 0 && ret != -ENOENT);
1297 if (ret != -ENOENT)
1298 BTRFS_I(dir)->log_dirty_trans = trans->transid;
1299
1300 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
1301 dir, index);
1302 BUG_ON(ret);
1303 err:
1304 btrfs_free_path(path);
1305 if (ret)
1306 goto out;
1307
1308 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
1309 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
1310 btrfs_update_inode(trans, root, dir);
1311 btrfs_drop_nlink(inode);
1312 ret = btrfs_update_inode(trans, root, inode);
1313 dir->i_sb->s_dirt = 1;
1314 out:
1315 return ret;
1316 }
1317
1318 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
1319 {
1320 struct btrfs_root *root;
1321 struct btrfs_trans_handle *trans;
1322 struct inode *inode = dentry->d_inode;
1323 int ret;
1324 unsigned long nr = 0;
1325
1326 root = BTRFS_I(dir)->root;
1327
1328 ret = btrfs_check_free_space(root, 1, 1);
1329 if (ret)
1330 goto fail;
1331
1332 trans = btrfs_start_transaction(root, 1);
1333
1334 btrfs_set_trans_block_group(trans, dir);
1335 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1336 dentry->d_name.name, dentry->d_name.len);
1337
1338 if (inode->i_nlink == 0)
1339 ret = btrfs_orphan_add(trans, inode);
1340
1341 nr = trans->blocks_used;
1342
1343 btrfs_end_transaction_throttle(trans, root);
1344 fail:
1345 btrfs_btree_balance_dirty(root, nr);
1346 return ret;
1347 }
1348
1349 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
1350 {
1351 struct inode *inode = dentry->d_inode;
1352 int err = 0;
1353 int ret;
1354 struct btrfs_root *root = BTRFS_I(dir)->root;
1355 struct btrfs_trans_handle *trans;
1356 unsigned long nr = 0;
1357
1358 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
1359 return -ENOTEMPTY;
1360 }
1361
1362 ret = btrfs_check_free_space(root, 1, 1);
1363 if (ret)
1364 goto fail;
1365
1366 trans = btrfs_start_transaction(root, 1);
1367 btrfs_set_trans_block_group(trans, dir);
1368
1369 err = btrfs_orphan_add(trans, inode);
1370 if (err)
1371 goto fail_trans;
1372
1373 /* now the directory is empty */
1374 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1375 dentry->d_name.name, dentry->d_name.len);
1376 if (!err) {
1377 btrfs_i_size_write(inode, 0);
1378 }
1379
1380 fail_trans:
1381 nr = trans->blocks_used;
1382 ret = btrfs_end_transaction_throttle(trans, root);
1383 fail:
1384 btrfs_btree_balance_dirty(root, nr);
1385
1386 if (ret && !err)
1387 err = ret;
1388 return err;
1389 }
1390
1391 /*
1392 * when truncating bytes in a file, it is possible to avoid reading
1393 * the leaves that contain only checksum items. This can be the
1394 * majority of the IO required to delete a large file, but it must
1395 * be done carefully.
1396 *
1397 * The keys in the level just above the leaves are checked to make sure
1398 * the lowest key in a given leaf is a csum key, and starts at an offset
1399 * after the new size.
1400 *
1401 * Then the key for the next leaf is checked to make sure it also has
1402 * a checksum item for the same file. If it does, we know our target leaf
1403 * contains only checksum items, and it can be safely freed without reading
1404 * it.
1405 *
1406 * This is just an optimization targeted at large files. It may do
1407 * nothing. It will return 0 unless things went badly.
1408 */
1409 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
1410 struct btrfs_root *root,
1411 struct btrfs_path *path,
1412 struct inode *inode, u64 new_size)
1413 {
1414 struct btrfs_key key;
1415 int ret;
1416 int nritems;
1417 struct btrfs_key found_key;
1418 struct btrfs_key other_key;
1419
1420 path->lowest_level = 1;
1421 key.objectid = inode->i_ino;
1422 key.type = BTRFS_CSUM_ITEM_KEY;
1423 key.offset = new_size;
1424 again:
1425 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1426 if (ret < 0)
1427 goto out;
1428
1429 if (path->nodes[1] == NULL) {
1430 ret = 0;
1431 goto out;
1432 }
1433 ret = 0;
1434 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
1435 nritems = btrfs_header_nritems(path->nodes[1]);
1436
1437 if (!nritems)
1438 goto out;
1439
1440 if (path->slots[1] >= nritems)
1441 goto next_node;
1442
1443 /* did we find a key greater than anything we want to delete? */
1444 if (found_key.objectid > inode->i_ino ||
1445 (found_key.objectid == inode->i_ino && found_key.type > key.type))
1446 goto out;
1447
1448 /* we check the next key in the node to make sure the leave contains
1449 * only checksum items. This comparison doesn't work if our
1450 * leaf is the last one in the node
1451 */
1452 if (path->slots[1] + 1 >= nritems) {
1453 next_node:
1454 /* search forward from the last key in the node, this
1455 * will bring us into the next node in the tree
1456 */
1457 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
1458
1459 /* unlikely, but we inc below, so check to be safe */
1460 if (found_key.offset == (u64)-1)
1461 goto out;
1462
1463 /* search_forward needs a path with locks held, do the
1464 * search again for the original key. It is possible
1465 * this will race with a balance and return a path that
1466 * we could modify, but this drop is just an optimization
1467 * and is allowed to miss some leaves.
1468 */
1469 btrfs_release_path(root, path);
1470 found_key.offset++;
1471
1472 /* setup a max key for search_forward */
1473 other_key.offset = (u64)-1;
1474 other_key.type = key.type;
1475 other_key.objectid = key.objectid;
1476
1477 path->keep_locks = 1;
1478 ret = btrfs_search_forward(root, &found_key, &other_key,
1479 path, 0, 0);
1480 path->keep_locks = 0;
1481 if (ret || found_key.objectid != key.objectid ||
1482 found_key.type != key.type) {
1483 ret = 0;
1484 goto out;
1485 }
1486
1487 key.offset = found_key.offset;
1488 btrfs_release_path(root, path);
1489 cond_resched();
1490 goto again;
1491 }
1492
1493 /* we know there's one more slot after us in the tree,
1494 * read that key so we can verify it is also a checksum item
1495 */
1496 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
1497
1498 if (found_key.objectid < inode->i_ino)
1499 goto next_key;
1500
1501 if (found_key.type != key.type || found_key.offset < new_size)
1502 goto next_key;
1503
1504 /*
1505 * if the key for the next leaf isn't a csum key from this objectid,
1506 * we can't be sure there aren't good items inside this leaf.
1507 * Bail out
1508 */
1509 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
1510 goto out;
1511
1512 /*
1513 * it is safe to delete this leaf, it contains only
1514 * csum items from this inode at an offset >= new_size
1515 */
1516 ret = btrfs_del_leaf(trans, root, path,
1517 btrfs_node_blockptr(path->nodes[1],
1518 path->slots[1]));
1519 BUG_ON(ret);
1520
1521 next_key:
1522 btrfs_release_path(root, path);
1523
1524 if (other_key.objectid == inode->i_ino &&
1525 other_key.type == key.type && other_key.offset > key.offset) {
1526 key.offset = other_key.offset;
1527 cond_resched();
1528 goto again;
1529 }
1530 ret = 0;
1531 out:
1532 /* fixup any changes we've made to the path */
1533 path->lowest_level = 0;
1534 path->keep_locks = 0;
1535 btrfs_release_path(root, path);
1536 return ret;
1537 }
1538
1539 /*
1540 * this can truncate away extent items, csum items and directory items.
1541 * It starts at a high offset and removes keys until it can't find
1542 * any higher than new_size
1543 *
1544 * csum items that cross the new i_size are truncated to the new size
1545 * as well.
1546 *
1547 * min_type is the minimum key type to truncate down to. If set to 0, this
1548 * will kill all the items on this inode, including the INODE_ITEM_KEY.
1549 */
1550 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
1551 struct btrfs_root *root,
1552 struct inode *inode,
1553 u64 new_size, u32 min_type)
1554 {
1555 int ret;
1556 struct btrfs_path *path;
1557 struct btrfs_key key;
1558 struct btrfs_key found_key;
1559 u32 found_type;
1560 struct extent_buffer *leaf;
1561 struct btrfs_file_extent_item *fi;
1562 u64 extent_start = 0;
1563 u64 extent_num_bytes = 0;
1564 u64 item_end = 0;
1565 u64 root_gen = 0;
1566 u64 root_owner = 0;
1567 int found_extent;
1568 int del_item;
1569 int pending_del_nr = 0;
1570 int pending_del_slot = 0;
1571 int extent_type = -1;
1572 u64 mask = root->sectorsize - 1;
1573
1574 if (root->ref_cows)
1575 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
1576 path = btrfs_alloc_path();
1577 path->reada = -1;
1578 BUG_ON(!path);
1579
1580 /* FIXME, add redo link to tree so we don't leak on crash */
1581 key.objectid = inode->i_ino;
1582 key.offset = (u64)-1;
1583 key.type = (u8)-1;
1584
1585 btrfs_init_path(path);
1586
1587 ret = drop_csum_leaves(trans, root, path, inode, new_size);
1588 BUG_ON(ret);
1589
1590 search_again:
1591 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1592 if (ret < 0) {
1593 goto error;
1594 }
1595 if (ret > 0) {
1596 /* there are no items in the tree for us to truncate, we're
1597 * done
1598 */
1599 if (path->slots[0] == 0) {
1600 ret = 0;
1601 goto error;
1602 }
1603 path->slots[0]--;
1604 }
1605
1606 while(1) {
1607 fi = NULL;
1608 leaf = path->nodes[0];
1609 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1610 found_type = btrfs_key_type(&found_key);
1611
1612 if (found_key.objectid != inode->i_ino)
1613 break;
1614
1615 if (found_type < min_type)
1616 break;
1617
1618 item_end = found_key.offset;
1619 if (found_type == BTRFS_EXTENT_DATA_KEY) {
1620 fi = btrfs_item_ptr(leaf, path->slots[0],
1621 struct btrfs_file_extent_item);
1622 extent_type = btrfs_file_extent_type(leaf, fi);
1623 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1624 item_end +=
1625 btrfs_file_extent_num_bytes(leaf, fi);
1626 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1627 struct btrfs_item *item = btrfs_item_nr(leaf,
1628 path->slots[0]);
1629 item_end += btrfs_file_extent_inline_len(leaf,
1630 item);
1631 }
1632 item_end--;
1633 }
1634 if (found_type == BTRFS_CSUM_ITEM_KEY) {
1635 ret = btrfs_csum_truncate(trans, root, path,
1636 new_size);
1637 BUG_ON(ret);
1638 }
1639 if (item_end < new_size) {
1640 if (found_type == BTRFS_DIR_ITEM_KEY) {
1641 found_type = BTRFS_INODE_ITEM_KEY;
1642 } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
1643 found_type = BTRFS_CSUM_ITEM_KEY;
1644 } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
1645 found_type = BTRFS_XATTR_ITEM_KEY;
1646 } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
1647 found_type = BTRFS_INODE_REF_KEY;
1648 } else if (found_type) {
1649 found_type--;
1650 } else {
1651 break;
1652 }
1653 btrfs_set_key_type(&key, found_type);
1654 goto next;
1655 }
1656 if (found_key.offset >= new_size)
1657 del_item = 1;
1658 else
1659 del_item = 0;
1660 found_extent = 0;
1661
1662 /* FIXME, shrink the extent if the ref count is only 1 */
1663 if (found_type != BTRFS_EXTENT_DATA_KEY)
1664 goto delete;
1665
1666 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1667 u64 num_dec;
1668 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
1669 if (!del_item) {
1670 u64 orig_num_bytes =
1671 btrfs_file_extent_num_bytes(leaf, fi);
1672 extent_num_bytes = new_size -
1673 found_key.offset + root->sectorsize - 1;
1674 extent_num_bytes = extent_num_bytes &
1675 ~((u64)root->sectorsize - 1);
1676 btrfs_set_file_extent_num_bytes(leaf, fi,
1677 extent_num_bytes);
1678 num_dec = (orig_num_bytes -
1679 extent_num_bytes);
1680 if (root->ref_cows && extent_start != 0)
1681 inode_sub_bytes(inode, num_dec);
1682 btrfs_mark_buffer_dirty(leaf);
1683 } else {
1684 extent_num_bytes =
1685 btrfs_file_extent_disk_num_bytes(leaf,
1686 fi);
1687 /* FIXME blocksize != 4096 */
1688 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
1689 if (extent_start != 0) {
1690 found_extent = 1;
1691 if (root->ref_cows)
1692 inode_sub_bytes(inode, num_dec);
1693 }
1694 root_gen = btrfs_header_generation(leaf);
1695 root_owner = btrfs_header_owner(leaf);
1696 }
1697 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1698 if (!del_item) {
1699 u32 size = new_size - found_key.offset;
1700
1701 if (root->ref_cows) {
1702 inode_sub_bytes(inode, item_end + 1 -
1703 new_size);
1704 }
1705 size =
1706 btrfs_file_extent_calc_inline_size(size);
1707 ret = btrfs_truncate_item(trans, root, path,
1708 size, 1);
1709 BUG_ON(ret);
1710 } else if (root->ref_cows) {
1711 inode_sub_bytes(inode, item_end + 1 -
1712 found_key.offset);
1713 }
1714 }
1715 delete:
1716 if (del_item) {
1717 if (!pending_del_nr) {
1718 /* no pending yet, add ourselves */
1719 pending_del_slot = path->slots[0];
1720 pending_del_nr = 1;
1721 } else if (pending_del_nr &&
1722 path->slots[0] + 1 == pending_del_slot) {
1723 /* hop on the pending chunk */
1724 pending_del_nr++;
1725 pending_del_slot = path->slots[0];
1726 } else {
1727 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
1728 }
1729 } else {
1730 break;
1731 }
1732 if (found_extent) {
1733 ret = btrfs_free_extent(trans, root, extent_start,
1734 extent_num_bytes,
1735 leaf->start, root_owner,
1736 root_gen, inode->i_ino, 0);
1737 BUG_ON(ret);
1738 }
1739 next:
1740 if (path->slots[0] == 0) {
1741 if (pending_del_nr)
1742 goto del_pending;
1743 btrfs_release_path(root, path);
1744 goto search_again;
1745 }
1746
1747 path->slots[0]--;
1748 if (pending_del_nr &&
1749 path->slots[0] + 1 != pending_del_slot) {
1750 struct btrfs_key debug;
1751 del_pending:
1752 btrfs_item_key_to_cpu(path->nodes[0], &debug,
1753 pending_del_slot);
1754 ret = btrfs_del_items(trans, root, path,
1755 pending_del_slot,
1756 pending_del_nr);
1757 BUG_ON(ret);
1758 pending_del_nr = 0;
1759 btrfs_release_path(root, path);
1760 goto search_again;
1761 }
1762 }
1763 ret = 0;
1764 error:
1765 if (pending_del_nr) {
1766 ret = btrfs_del_items(trans, root, path, pending_del_slot,
1767 pending_del_nr);
1768 }
1769 btrfs_free_path(path);
1770 inode->i_sb->s_dirt = 1;
1771 return ret;
1772 }
1773
1774 /*
1775 * taken from block_truncate_page, but does cow as it zeros out
1776 * any bytes left in the last page in the file.
1777 */
1778 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
1779 {
1780 struct inode *inode = mapping->host;
1781 struct btrfs_root *root = BTRFS_I(inode)->root;
1782 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1783 struct btrfs_ordered_extent *ordered;
1784 char *kaddr;
1785 u32 blocksize = root->sectorsize;
1786 pgoff_t index = from >> PAGE_CACHE_SHIFT;
1787 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1788 struct page *page;
1789 int ret = 0;
1790 u64 page_start;
1791 u64 page_end;
1792
1793 if ((offset & (blocksize - 1)) == 0)
1794 goto out;
1795
1796 ret = -ENOMEM;
1797 again:
1798 page = grab_cache_page(mapping, index);
1799 if (!page)
1800 goto out;
1801
1802 page_start = page_offset(page);
1803 page_end = page_start + PAGE_CACHE_SIZE - 1;
1804
1805 if (!PageUptodate(page)) {
1806 ret = btrfs_readpage(NULL, page);
1807 lock_page(page);
1808 if (page->mapping != mapping) {
1809 unlock_page(page);
1810 page_cache_release(page);
1811 goto again;
1812 }
1813 if (!PageUptodate(page)) {
1814 ret = -EIO;
1815 goto out_unlock;
1816 }
1817 }
1818 wait_on_page_writeback(page);
1819
1820 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
1821 set_page_extent_mapped(page);
1822
1823 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1824 if (ordered) {
1825 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1826 unlock_page(page);
1827 page_cache_release(page);
1828 btrfs_start_ordered_extent(inode, ordered, 1);
1829 btrfs_put_ordered_extent(ordered);
1830 goto again;
1831 }
1832
1833 btrfs_set_extent_delalloc(inode, page_start, page_end);
1834 ret = 0;
1835 if (offset != PAGE_CACHE_SIZE) {
1836 kaddr = kmap(page);
1837 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
1838 flush_dcache_page(page);
1839 kunmap(page);
1840 }
1841 ClearPageChecked(page);
1842 set_page_dirty(page);
1843 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1844
1845 out_unlock:
1846 unlock_page(page);
1847 page_cache_release(page);
1848 out:
1849 return ret;
1850 }
1851
1852 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
1853 {
1854 struct inode *inode = dentry->d_inode;
1855 int err;
1856
1857 err = inode_change_ok(inode, attr);
1858 if (err)
1859 return err;
1860
1861 if (S_ISREG(inode->i_mode) &&
1862 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
1863 struct btrfs_trans_handle *trans;
1864 struct btrfs_root *root = BTRFS_I(inode)->root;
1865 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1866
1867 u64 mask = root->sectorsize - 1;
1868 u64 hole_start = (inode->i_size + mask) & ~mask;
1869 u64 block_end = (attr->ia_size + mask) & ~mask;
1870 u64 hole_size;
1871 u64 alloc_hint = 0;
1872
1873 if (attr->ia_size <= hole_start)
1874 goto out;
1875
1876 err = btrfs_check_free_space(root, 1, 0);
1877 if (err)
1878 goto fail;
1879
1880 btrfs_truncate_page(inode->i_mapping, inode->i_size);
1881
1882 hole_size = block_end - hole_start;
1883 while(1) {
1884 struct btrfs_ordered_extent *ordered;
1885 btrfs_wait_ordered_range(inode, hole_start, hole_size);
1886
1887 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1888 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
1889 if (ordered) {
1890 unlock_extent(io_tree, hole_start,
1891 block_end - 1, GFP_NOFS);
1892 btrfs_put_ordered_extent(ordered);
1893 } else {
1894 break;
1895 }
1896 }
1897
1898 trans = btrfs_start_transaction(root, 1);
1899 btrfs_set_trans_block_group(trans, inode);
1900 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1901 err = btrfs_drop_extents(trans, root, inode,
1902 hole_start, block_end, hole_start,
1903 &alloc_hint);
1904
1905 if (alloc_hint != EXTENT_MAP_INLINE) {
1906 err = btrfs_insert_file_extent(trans, root,
1907 inode->i_ino,
1908 hole_start, 0, 0,
1909 hole_size, 0);
1910 btrfs_drop_extent_cache(inode, hole_start,
1911 (u64)-1, 0);
1912 btrfs_check_file(root, inode);
1913 }
1914 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1915 btrfs_end_transaction(trans, root);
1916 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1917 if (err)
1918 return err;
1919 }
1920 out:
1921 err = inode_setattr(inode, attr);
1922
1923 if (!err && ((attr->ia_valid & ATTR_MODE)))
1924 err = btrfs_acl_chmod(inode);
1925 fail:
1926 return err;
1927 }
1928
1929 void btrfs_delete_inode(struct inode *inode)
1930 {
1931 struct btrfs_trans_handle *trans;
1932 struct btrfs_root *root = BTRFS_I(inode)->root;
1933 unsigned long nr;
1934 int ret;
1935
1936 truncate_inode_pages(&inode->i_data, 0);
1937 if (is_bad_inode(inode)) {
1938 btrfs_orphan_del(NULL, inode);
1939 goto no_delete;
1940 }
1941 btrfs_wait_ordered_range(inode, 0, (u64)-1);
1942
1943 btrfs_i_size_write(inode, 0);
1944 trans = btrfs_start_transaction(root, 1);
1945
1946 btrfs_set_trans_block_group(trans, inode);
1947 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
1948 if (ret) {
1949 btrfs_orphan_del(NULL, inode);
1950 goto no_delete_lock;
1951 }
1952
1953 btrfs_orphan_del(trans, inode);
1954
1955 nr = trans->blocks_used;
1956 clear_inode(inode);
1957
1958 btrfs_end_transaction(trans, root);
1959 btrfs_btree_balance_dirty(root, nr);
1960 return;
1961
1962 no_delete_lock:
1963 nr = trans->blocks_used;
1964 btrfs_end_transaction(trans, root);
1965 btrfs_btree_balance_dirty(root, nr);
1966 no_delete:
1967 clear_inode(inode);
1968 }
1969
1970 /*
1971 * this returns the key found in the dir entry in the location pointer.
1972 * If no dir entries were found, location->objectid is 0.
1973 */
1974 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
1975 struct btrfs_key *location)
1976 {
1977 const char *name = dentry->d_name.name;
1978 int namelen = dentry->d_name.len;
1979 struct btrfs_dir_item *di;
1980 struct btrfs_path *path;
1981 struct btrfs_root *root = BTRFS_I(dir)->root;
1982 int ret = 0;
1983
1984 path = btrfs_alloc_path();
1985 BUG_ON(!path);
1986
1987 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
1988 namelen, 0);
1989 if (IS_ERR(di))
1990 ret = PTR_ERR(di);
1991 if (!di || IS_ERR(di)) {
1992 goto out_err;
1993 }
1994 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
1995 out:
1996 btrfs_free_path(path);
1997 return ret;
1998 out_err:
1999 location->objectid = 0;
2000 goto out;
2001 }
2002
2003 /*
2004 * when we hit a tree root in a directory, the btrfs part of the inode
2005 * needs to be changed to reflect the root directory of the tree root. This
2006 * is kind of like crossing a mount point.
2007 */
2008 static int fixup_tree_root_location(struct btrfs_root *root,
2009 struct btrfs_key *location,
2010 struct btrfs_root **sub_root,
2011 struct dentry *dentry)
2012 {
2013 struct btrfs_root_item *ri;
2014
2015 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2016 return 0;
2017 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2018 return 0;
2019
2020 *sub_root = btrfs_read_fs_root(root->fs_info, location,
2021 dentry->d_name.name,
2022 dentry->d_name.len);
2023 if (IS_ERR(*sub_root))
2024 return PTR_ERR(*sub_root);
2025
2026 ri = &(*sub_root)->root_item;
2027 location->objectid = btrfs_root_dirid(ri);
2028 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2029 location->offset = 0;
2030
2031 return 0;
2032 }
2033
2034 static noinline void init_btrfs_i(struct inode *inode)
2035 {
2036 struct btrfs_inode *bi = BTRFS_I(inode);
2037
2038 bi->i_acl = NULL;
2039 bi->i_default_acl = NULL;
2040
2041 bi->generation = 0;
2042 bi->last_trans = 0;
2043 bi->logged_trans = 0;
2044 bi->delalloc_bytes = 0;
2045 bi->disk_i_size = 0;
2046 bi->flags = 0;
2047 bi->index_cnt = (u64)-1;
2048 bi->log_dirty_trans = 0;
2049 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2050 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2051 inode->i_mapping, GFP_NOFS);
2052 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2053 inode->i_mapping, GFP_NOFS);
2054 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2055 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2056 mutex_init(&BTRFS_I(inode)->csum_mutex);
2057 mutex_init(&BTRFS_I(inode)->extent_mutex);
2058 mutex_init(&BTRFS_I(inode)->log_mutex);
2059 }
2060
2061 static int btrfs_init_locked_inode(struct inode *inode, void *p)
2062 {
2063 struct btrfs_iget_args *args = p;
2064 inode->i_ino = args->ino;
2065 init_btrfs_i(inode);
2066 BTRFS_I(inode)->root = args->root;
2067 return 0;
2068 }
2069
2070 static int btrfs_find_actor(struct inode *inode, void *opaque)
2071 {
2072 struct btrfs_iget_args *args = opaque;
2073 return (args->ino == inode->i_ino &&
2074 args->root == BTRFS_I(inode)->root);
2075 }
2076
2077 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
2078 struct btrfs_root *root, int wait)
2079 {
2080 struct inode *inode;
2081 struct btrfs_iget_args args;
2082 args.ino = objectid;
2083 args.root = root;
2084
2085 if (wait) {
2086 inode = ilookup5(s, objectid, btrfs_find_actor,
2087 (void *)&args);
2088 } else {
2089 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
2090 (void *)&args);
2091 }
2092 return inode;
2093 }
2094
2095 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
2096 struct btrfs_root *root)
2097 {
2098 struct inode *inode;
2099 struct btrfs_iget_args args;
2100 args.ino = objectid;
2101 args.root = root;
2102
2103 inode = iget5_locked(s, objectid, btrfs_find_actor,
2104 btrfs_init_locked_inode,
2105 (void *)&args);
2106 return inode;
2107 }
2108
2109 /* Get an inode object given its location and corresponding root.
2110 * Returns in *is_new if the inode was read from disk
2111 */
2112 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
2113 struct btrfs_root *root, int *is_new)
2114 {
2115 struct inode *inode;
2116
2117 inode = btrfs_iget_locked(s, location->objectid, root);
2118 if (!inode)
2119 return ERR_PTR(-EACCES);
2120
2121 if (inode->i_state & I_NEW) {
2122 BTRFS_I(inode)->root = root;
2123 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
2124 btrfs_read_locked_inode(inode);
2125 unlock_new_inode(inode);
2126 if (is_new)
2127 *is_new = 1;
2128 } else {
2129 if (is_new)
2130 *is_new = 0;
2131 }
2132
2133 return inode;
2134 }
2135
2136 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
2137 struct nameidata *nd)
2138 {
2139 struct inode * inode;
2140 struct btrfs_inode *bi = BTRFS_I(dir);
2141 struct btrfs_root *root = bi->root;
2142 struct btrfs_root *sub_root = root;
2143 struct btrfs_key location;
2144 int ret, new, do_orphan = 0;
2145
2146 if (dentry->d_name.len > BTRFS_NAME_LEN)
2147 return ERR_PTR(-ENAMETOOLONG);
2148
2149 ret = btrfs_inode_by_name(dir, dentry, &location);
2150
2151 if (ret < 0)
2152 return ERR_PTR(ret);
2153
2154 inode = NULL;
2155 if (location.objectid) {
2156 ret = fixup_tree_root_location(root, &location, &sub_root,
2157 dentry);
2158 if (ret < 0)
2159 return ERR_PTR(ret);
2160 if (ret > 0)
2161 return ERR_PTR(-ENOENT);
2162 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
2163 if (IS_ERR(inode))
2164 return ERR_CAST(inode);
2165
2166 /* the inode and parent dir are two different roots */
2167 if (new && root != sub_root) {
2168 igrab(inode);
2169 sub_root->inode = inode;
2170 do_orphan = 1;
2171 }
2172 }
2173
2174 if (unlikely(do_orphan))
2175 btrfs_orphan_cleanup(sub_root);
2176
2177 return d_splice_alias(inode, dentry);
2178 }
2179
2180 static unsigned char btrfs_filetype_table[] = {
2181 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
2182 };
2183
2184 static int btrfs_real_readdir(struct file *filp, void *dirent,
2185 filldir_t filldir)
2186 {
2187 struct inode *inode = filp->f_dentry->d_inode;
2188 struct btrfs_root *root = BTRFS_I(inode)->root;
2189 struct btrfs_item *item;
2190 struct btrfs_dir_item *di;
2191 struct btrfs_key key;
2192 struct btrfs_key found_key;
2193 struct btrfs_path *path;
2194 int ret;
2195 u32 nritems;
2196 struct extent_buffer *leaf;
2197 int slot;
2198 int advance;
2199 unsigned char d_type;
2200 int over = 0;
2201 u32 di_cur;
2202 u32 di_total;
2203 u32 di_len;
2204 int key_type = BTRFS_DIR_INDEX_KEY;
2205 char tmp_name[32];
2206 char *name_ptr;
2207 int name_len;
2208
2209 /* FIXME, use a real flag for deciding about the key type */
2210 if (root->fs_info->tree_root == root)
2211 key_type = BTRFS_DIR_ITEM_KEY;
2212
2213 /* special case for "." */
2214 if (filp->f_pos == 0) {
2215 over = filldir(dirent, ".", 1,
2216 1, inode->i_ino,
2217 DT_DIR);
2218 if (over)
2219 return 0;
2220 filp->f_pos = 1;
2221 }
2222 /* special case for .., just use the back ref */
2223 if (filp->f_pos == 1) {
2224 u64 pino = parent_ino(filp->f_path.dentry);
2225 over = filldir(dirent, "..", 2,
2226 2, pino, DT_DIR);
2227 if (over)
2228 return 0;
2229 filp->f_pos = 2;
2230 }
2231
2232 path = btrfs_alloc_path();
2233 path->reada = 2;
2234
2235 btrfs_set_key_type(&key, key_type);
2236 key.offset = filp->f_pos;
2237 key.objectid = inode->i_ino;
2238
2239 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2240 if (ret < 0)
2241 goto err;
2242 advance = 0;
2243
2244 while (1) {
2245 leaf = path->nodes[0];
2246 nritems = btrfs_header_nritems(leaf);
2247 slot = path->slots[0];
2248 if (advance || slot >= nritems) {
2249 if (slot >= nritems - 1) {
2250 ret = btrfs_next_leaf(root, path);
2251 if (ret)
2252 break;
2253 leaf = path->nodes[0];
2254 nritems = btrfs_header_nritems(leaf);
2255 slot = path->slots[0];
2256 } else {
2257 slot++;
2258 path->slots[0]++;
2259 }
2260 }
2261 advance = 1;
2262 item = btrfs_item_nr(leaf, slot);
2263 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2264
2265 if (found_key.objectid != key.objectid)
2266 break;
2267 if (btrfs_key_type(&found_key) != key_type)
2268 break;
2269 if (found_key.offset < filp->f_pos)
2270 continue;
2271
2272 filp->f_pos = found_key.offset;
2273
2274 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2275 di_cur = 0;
2276 di_total = btrfs_item_size(leaf, item);
2277
2278 while (di_cur < di_total) {
2279 struct btrfs_key location;
2280
2281 name_len = btrfs_dir_name_len(leaf, di);
2282 if (name_len <= sizeof(tmp_name)) {
2283 name_ptr = tmp_name;
2284 } else {
2285 name_ptr = kmalloc(name_len, GFP_NOFS);
2286 if (!name_ptr) {
2287 ret = -ENOMEM;
2288 goto err;
2289 }
2290 }
2291 read_extent_buffer(leaf, name_ptr,
2292 (unsigned long)(di + 1), name_len);
2293
2294 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
2295 btrfs_dir_item_key_to_cpu(leaf, di, &location);
2296 over = filldir(dirent, name_ptr, name_len,
2297 found_key.offset, location.objectid,
2298 d_type);
2299
2300 if (name_ptr != tmp_name)
2301 kfree(name_ptr);
2302
2303 if (over)
2304 goto nopos;
2305
2306 di_len = btrfs_dir_name_len(leaf, di) +
2307 btrfs_dir_data_len(leaf, di) + sizeof(*di);
2308 di_cur += di_len;
2309 di = (struct btrfs_dir_item *)((char *)di + di_len);
2310 }
2311 }
2312
2313 /* Reached end of directory/root. Bump pos past the last item. */
2314 if (key_type == BTRFS_DIR_INDEX_KEY)
2315 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
2316 else
2317 filp->f_pos++;
2318 nopos:
2319 ret = 0;
2320 err:
2321 btrfs_free_path(path);
2322 return ret;
2323 }
2324
2325 int btrfs_write_inode(struct inode *inode, int wait)
2326 {
2327 struct btrfs_root *root = BTRFS_I(inode)->root;
2328 struct btrfs_trans_handle *trans;
2329 int ret = 0;
2330
2331 if (root->fs_info->closing > 1)
2332 return 0;
2333
2334 if (wait) {
2335 trans = btrfs_join_transaction(root, 1);
2336 btrfs_set_trans_block_group(trans, inode);
2337 ret = btrfs_commit_transaction(trans, root);
2338 }
2339 return ret;
2340 }
2341
2342 /*
2343 * This is somewhat expensive, updating the tree every time the
2344 * inode changes. But, it is most likely to find the inode in cache.
2345 * FIXME, needs more benchmarking...there are no reasons other than performance
2346 * to keep or drop this code.
2347 */
2348 void btrfs_dirty_inode(struct inode *inode)
2349 {
2350 struct btrfs_root *root = BTRFS_I(inode)->root;
2351 struct btrfs_trans_handle *trans;
2352
2353 trans = btrfs_join_transaction(root, 1);
2354 btrfs_set_trans_block_group(trans, inode);
2355 btrfs_update_inode(trans, root, inode);
2356 btrfs_end_transaction(trans, root);
2357 }
2358
2359 /*
2360 * find the highest existing sequence number in a directory
2361 * and then set the in-memory index_cnt variable to reflect
2362 * free sequence numbers
2363 */
2364 static int btrfs_set_inode_index_count(struct inode *inode)
2365 {
2366 struct btrfs_root *root = BTRFS_I(inode)->root;
2367 struct btrfs_key key, found_key;
2368 struct btrfs_path *path;
2369 struct extent_buffer *leaf;
2370 int ret;
2371
2372 key.objectid = inode->i_ino;
2373 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
2374 key.offset = (u64)-1;
2375
2376 path = btrfs_alloc_path();
2377 if (!path)
2378 return -ENOMEM;
2379
2380 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2381 if (ret < 0)
2382 goto out;
2383 /* FIXME: we should be able to handle this */
2384 if (ret == 0)
2385 goto out;
2386 ret = 0;
2387
2388 /*
2389 * MAGIC NUMBER EXPLANATION:
2390 * since we search a directory based on f_pos we have to start at 2
2391 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
2392 * else has to start at 2
2393 */
2394 if (path->slots[0] == 0) {
2395 BTRFS_I(inode)->index_cnt = 2;
2396 goto out;
2397 }
2398
2399 path->slots[0]--;
2400
2401 leaf = path->nodes[0];
2402 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2403
2404 if (found_key.objectid != inode->i_ino ||
2405 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
2406 BTRFS_I(inode)->index_cnt = 2;
2407 goto out;
2408 }
2409
2410 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
2411 out:
2412 btrfs_free_path(path);
2413 return ret;
2414 }
2415
2416 /*
2417 * helper to find a free sequence number in a given directory. This current
2418 * code is very simple, later versions will do smarter things in the btree
2419 */
2420 static int btrfs_set_inode_index(struct inode *dir, struct inode *inode,
2421 u64 *index)
2422 {
2423 int ret = 0;
2424
2425 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
2426 ret = btrfs_set_inode_index_count(dir);
2427 if (ret) {
2428 return ret;
2429 }
2430 }
2431
2432 *index = BTRFS_I(dir)->index_cnt;
2433 BTRFS_I(dir)->index_cnt++;
2434
2435 return ret;
2436 }
2437
2438 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
2439 struct btrfs_root *root,
2440 struct inode *dir,
2441 const char *name, int name_len,
2442 u64 ref_objectid,
2443 u64 objectid,
2444 struct btrfs_block_group_cache *group,
2445 int mode, u64 *index)
2446 {
2447 struct inode *inode;
2448 struct btrfs_inode_item *inode_item;
2449 struct btrfs_block_group_cache *new_inode_group;
2450 struct btrfs_key *location;
2451 struct btrfs_path *path;
2452 struct btrfs_inode_ref *ref;
2453 struct btrfs_key key[2];
2454 u32 sizes[2];
2455 unsigned long ptr;
2456 int ret;
2457 int owner;
2458
2459 path = btrfs_alloc_path();
2460 BUG_ON(!path);
2461
2462 inode = new_inode(root->fs_info->sb);
2463 if (!inode)
2464 return ERR_PTR(-ENOMEM);
2465
2466 if (dir) {
2467 ret = btrfs_set_inode_index(dir, inode, index);
2468 if (ret)
2469 return ERR_PTR(ret);
2470 }
2471 /*
2472 * index_cnt is ignored for everything but a dir,
2473 * btrfs_get_inode_index_count has an explanation for the magic
2474 * number
2475 */
2476 init_btrfs_i(inode);
2477 BTRFS_I(inode)->index_cnt = 2;
2478 BTRFS_I(inode)->root = root;
2479 BTRFS_I(inode)->generation = trans->transid;
2480
2481 if (mode & S_IFDIR)
2482 owner = 0;
2483 else
2484 owner = 1;
2485 new_inode_group = btrfs_find_block_group(root, group, 0,
2486 BTRFS_BLOCK_GROUP_METADATA, owner);
2487 if (!new_inode_group) {
2488 printk("find_block group failed\n");
2489 new_inode_group = group;
2490 }
2491 BTRFS_I(inode)->block_group = new_inode_group;
2492
2493 key[0].objectid = objectid;
2494 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
2495 key[0].offset = 0;
2496
2497 key[1].objectid = objectid;
2498 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
2499 key[1].offset = ref_objectid;
2500
2501 sizes[0] = sizeof(struct btrfs_inode_item);
2502 sizes[1] = name_len + sizeof(*ref);
2503
2504 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
2505 if (ret != 0)
2506 goto fail;
2507
2508 if (objectid > root->highest_inode)
2509 root->highest_inode = objectid;
2510
2511 inode->i_uid = current->fsuid;
2512 inode->i_gid = current->fsgid;
2513 inode->i_mode = mode;
2514 inode->i_ino = objectid;
2515 inode_set_bytes(inode, 0);
2516 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2517 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2518 struct btrfs_inode_item);
2519 fill_inode_item(trans, path->nodes[0], inode_item, inode);
2520
2521 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
2522 struct btrfs_inode_ref);
2523 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
2524 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
2525 ptr = (unsigned long)(ref + 1);
2526 write_extent_buffer(path->nodes[0], name, ptr, name_len);
2527
2528 btrfs_mark_buffer_dirty(path->nodes[0]);
2529 btrfs_free_path(path);
2530
2531 location = &BTRFS_I(inode)->location;
2532 location->objectid = objectid;
2533 location->offset = 0;
2534 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2535
2536 insert_inode_hash(inode);
2537 return inode;
2538 fail:
2539 if (dir)
2540 BTRFS_I(dir)->index_cnt--;
2541 btrfs_free_path(path);
2542 return ERR_PTR(ret);
2543 }
2544
2545 static inline u8 btrfs_inode_type(struct inode *inode)
2546 {
2547 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
2548 }
2549
2550 /*
2551 * utility function to add 'inode' into 'parent_inode' with
2552 * a give name and a given sequence number.
2553 * if 'add_backref' is true, also insert a backref from the
2554 * inode to the parent directory.
2555 */
2556 int btrfs_add_link(struct btrfs_trans_handle *trans,
2557 struct inode *parent_inode, struct inode *inode,
2558 const char *name, int name_len, int add_backref, u64 index)
2559 {
2560 int ret;
2561 struct btrfs_key key;
2562 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
2563
2564 key.objectid = inode->i_ino;
2565 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
2566 key.offset = 0;
2567
2568 ret = btrfs_insert_dir_item(trans, root, name, name_len,
2569 parent_inode->i_ino,
2570 &key, btrfs_inode_type(inode),
2571 index);
2572 if (ret == 0) {
2573 if (add_backref) {
2574 ret = btrfs_insert_inode_ref(trans, root,
2575 name, name_len,
2576 inode->i_ino,
2577 parent_inode->i_ino,
2578 index);
2579 }
2580 btrfs_i_size_write(parent_inode, parent_inode->i_size +
2581 name_len * 2);
2582 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
2583 ret = btrfs_update_inode(trans, root, parent_inode);
2584 }
2585 return ret;
2586 }
2587
2588 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
2589 struct dentry *dentry, struct inode *inode,
2590 int backref, u64 index)
2591 {
2592 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
2593 inode, dentry->d_name.name,
2594 dentry->d_name.len, backref, index);
2595 if (!err) {
2596 d_instantiate(dentry, inode);
2597 return 0;
2598 }
2599 if (err > 0)
2600 err = -EEXIST;
2601 return err;
2602 }
2603
2604 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
2605 int mode, dev_t rdev)
2606 {
2607 struct btrfs_trans_handle *trans;
2608 struct btrfs_root *root = BTRFS_I(dir)->root;
2609 struct inode *inode = NULL;
2610 int err;
2611 int drop_inode = 0;
2612 u64 objectid;
2613 unsigned long nr = 0;
2614 u64 index = 0;
2615
2616 if (!new_valid_dev(rdev))
2617 return -EINVAL;
2618
2619 err = btrfs_check_free_space(root, 1, 0);
2620 if (err)
2621 goto fail;
2622
2623 trans = btrfs_start_transaction(root, 1);
2624 btrfs_set_trans_block_group(trans, dir);
2625
2626 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2627 if (err) {
2628 err = -ENOSPC;
2629 goto out_unlock;
2630 }
2631
2632 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2633 dentry->d_name.len,
2634 dentry->d_parent->d_inode->i_ino, objectid,
2635 BTRFS_I(dir)->block_group, mode, &index);
2636 err = PTR_ERR(inode);
2637 if (IS_ERR(inode))
2638 goto out_unlock;
2639
2640 err = btrfs_init_acl(inode, dir);
2641 if (err) {
2642 drop_inode = 1;
2643 goto out_unlock;
2644 }
2645
2646 btrfs_set_trans_block_group(trans, inode);
2647 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2648 if (err)
2649 drop_inode = 1;
2650 else {
2651 inode->i_op = &btrfs_special_inode_operations;
2652 init_special_inode(inode, inode->i_mode, rdev);
2653 btrfs_update_inode(trans, root, inode);
2654 }
2655 dir->i_sb->s_dirt = 1;
2656 btrfs_update_inode_block_group(trans, inode);
2657 btrfs_update_inode_block_group(trans, dir);
2658 out_unlock:
2659 nr = trans->blocks_used;
2660 btrfs_end_transaction_throttle(trans, root);
2661 fail:
2662 if (drop_inode) {
2663 inode_dec_link_count(inode);
2664 iput(inode);
2665 }
2666 btrfs_btree_balance_dirty(root, nr);
2667 return err;
2668 }
2669
2670 static int btrfs_create(struct inode *dir, struct dentry *dentry,
2671 int mode, struct nameidata *nd)
2672 {
2673 struct btrfs_trans_handle *trans;
2674 struct btrfs_root *root = BTRFS_I(dir)->root;
2675 struct inode *inode = NULL;
2676 int err;
2677 int drop_inode = 0;
2678 unsigned long nr = 0;
2679 u64 objectid;
2680 u64 index = 0;
2681
2682 err = btrfs_check_free_space(root, 1, 0);
2683 if (err)
2684 goto fail;
2685 trans = btrfs_start_transaction(root, 1);
2686 btrfs_set_trans_block_group(trans, dir);
2687
2688 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2689 if (err) {
2690 err = -ENOSPC;
2691 goto out_unlock;
2692 }
2693
2694 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2695 dentry->d_name.len,
2696 dentry->d_parent->d_inode->i_ino,
2697 objectid, BTRFS_I(dir)->block_group, mode,
2698 &index);
2699 err = PTR_ERR(inode);
2700 if (IS_ERR(inode))
2701 goto out_unlock;
2702
2703 err = btrfs_init_acl(inode, dir);
2704 if (err) {
2705 drop_inode = 1;
2706 goto out_unlock;
2707 }
2708
2709 btrfs_set_trans_block_group(trans, inode);
2710 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2711 if (err)
2712 drop_inode = 1;
2713 else {
2714 inode->i_mapping->a_ops = &btrfs_aops;
2715 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2716 inode->i_fop = &btrfs_file_operations;
2717 inode->i_op = &btrfs_file_inode_operations;
2718 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2719 }
2720 dir->i_sb->s_dirt = 1;
2721 btrfs_update_inode_block_group(trans, inode);
2722 btrfs_update_inode_block_group(trans, dir);
2723 out_unlock:
2724 nr = trans->blocks_used;
2725 btrfs_end_transaction_throttle(trans, root);
2726 fail:
2727 if (drop_inode) {
2728 inode_dec_link_count(inode);
2729 iput(inode);
2730 }
2731 btrfs_btree_balance_dirty(root, nr);
2732 return err;
2733 }
2734
2735 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
2736 struct dentry *dentry)
2737 {
2738 struct btrfs_trans_handle *trans;
2739 struct btrfs_root *root = BTRFS_I(dir)->root;
2740 struct inode *inode = old_dentry->d_inode;
2741 u64 index;
2742 unsigned long nr = 0;
2743 int err;
2744 int drop_inode = 0;
2745
2746 if (inode->i_nlink == 0)
2747 return -ENOENT;
2748
2749 btrfs_inc_nlink(inode);
2750 err = btrfs_check_free_space(root, 1, 0);
2751 if (err)
2752 goto fail;
2753 err = btrfs_set_inode_index(dir, inode, &index);
2754 if (err)
2755 goto fail;
2756
2757 trans = btrfs_start_transaction(root, 1);
2758
2759 btrfs_set_trans_block_group(trans, dir);
2760 atomic_inc(&inode->i_count);
2761
2762 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
2763
2764 if (err)
2765 drop_inode = 1;
2766
2767 dir->i_sb->s_dirt = 1;
2768 btrfs_update_inode_block_group(trans, dir);
2769 err = btrfs_update_inode(trans, root, inode);
2770
2771 if (err)
2772 drop_inode = 1;
2773
2774 nr = trans->blocks_used;
2775 btrfs_end_transaction_throttle(trans, root);
2776 fail:
2777 if (drop_inode) {
2778 inode_dec_link_count(inode);
2779 iput(inode);
2780 }
2781 btrfs_btree_balance_dirty(root, nr);
2782 return err;
2783 }
2784
2785 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2786 {
2787 struct inode *inode = NULL;
2788 struct btrfs_trans_handle *trans;
2789 struct btrfs_root *root = BTRFS_I(dir)->root;
2790 int err = 0;
2791 int drop_on_err = 0;
2792 u64 objectid = 0;
2793 u64 index = 0;
2794 unsigned long nr = 1;
2795
2796 err = btrfs_check_free_space(root, 1, 0);
2797 if (err)
2798 goto out_unlock;
2799
2800 trans = btrfs_start_transaction(root, 1);
2801 btrfs_set_trans_block_group(trans, dir);
2802
2803 if (IS_ERR(trans)) {
2804 err = PTR_ERR(trans);
2805 goto out_unlock;
2806 }
2807
2808 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2809 if (err) {
2810 err = -ENOSPC;
2811 goto out_unlock;
2812 }
2813
2814 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2815 dentry->d_name.len,
2816 dentry->d_parent->d_inode->i_ino, objectid,
2817 BTRFS_I(dir)->block_group, S_IFDIR | mode,
2818 &index);
2819 if (IS_ERR(inode)) {
2820 err = PTR_ERR(inode);
2821 goto out_fail;
2822 }
2823
2824 drop_on_err = 1;
2825
2826 err = btrfs_init_acl(inode, dir);
2827 if (err)
2828 goto out_fail;
2829
2830 inode->i_op = &btrfs_dir_inode_operations;
2831 inode->i_fop = &btrfs_dir_file_operations;
2832 btrfs_set_trans_block_group(trans, inode);
2833
2834 btrfs_i_size_write(inode, 0);
2835 err = btrfs_update_inode(trans, root, inode);
2836 if (err)
2837 goto out_fail;
2838
2839 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
2840 inode, dentry->d_name.name,
2841 dentry->d_name.len, 0, index);
2842 if (err)
2843 goto out_fail;
2844
2845 d_instantiate(dentry, inode);
2846 drop_on_err = 0;
2847 dir->i_sb->s_dirt = 1;
2848 btrfs_update_inode_block_group(trans, inode);
2849 btrfs_update_inode_block_group(trans, dir);
2850
2851 out_fail:
2852 nr = trans->blocks_used;
2853 btrfs_end_transaction_throttle(trans, root);
2854
2855 out_unlock:
2856 if (drop_on_err)
2857 iput(inode);
2858 btrfs_btree_balance_dirty(root, nr);
2859 return err;
2860 }
2861
2862 /* helper for btfs_get_extent. Given an existing extent in the tree,
2863 * and an extent that you want to insert, deal with overlap and insert
2864 * the new extent into the tree.
2865 */
2866 static int merge_extent_mapping(struct extent_map_tree *em_tree,
2867 struct extent_map *existing,
2868 struct extent_map *em,
2869 u64 map_start, u64 map_len)
2870 {
2871 u64 start_diff;
2872
2873 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
2874 start_diff = map_start - em->start;
2875 em->start = map_start;
2876 em->len = map_len;
2877 if (em->block_start < EXTENT_MAP_LAST_BYTE)
2878 em->block_start += start_diff;
2879 return add_extent_mapping(em_tree, em);
2880 }
2881
2882 /*
2883 * a bit scary, this does extent mapping from logical file offset to the disk.
2884 * the ugly parts come from merging extents from the disk with the
2885 * in-ram representation. This gets more complex because of the data=ordered code,
2886 * where the in-ram extents might be locked pending data=ordered completion.
2887 *
2888 * This also copies inline extents directly into the page.
2889 */
2890 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
2891 size_t pg_offset, u64 start, u64 len,
2892 int create)
2893 {
2894 int ret;
2895 int err = 0;
2896 u64 bytenr;
2897 u64 extent_start = 0;
2898 u64 extent_end = 0;
2899 u64 objectid = inode->i_ino;
2900 u32 found_type;
2901 struct btrfs_path *path = NULL;
2902 struct btrfs_root *root = BTRFS_I(inode)->root;
2903 struct btrfs_file_extent_item *item;
2904 struct extent_buffer *leaf;
2905 struct btrfs_key found_key;
2906 struct extent_map *em = NULL;
2907 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2908 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2909 struct btrfs_trans_handle *trans = NULL;
2910
2911 again:
2912 spin_lock(&em_tree->lock);
2913 em = lookup_extent_mapping(em_tree, start, len);
2914 if (em)
2915 em->bdev = root->fs_info->fs_devices->latest_bdev;
2916 spin_unlock(&em_tree->lock);
2917
2918 if (em) {
2919 if (em->start > start || em->start + em->len <= start)
2920 free_extent_map(em);
2921 else if (em->block_start == EXTENT_MAP_INLINE && page)
2922 free_extent_map(em);
2923 else
2924 goto out;
2925 }
2926 em = alloc_extent_map(GFP_NOFS);
2927 if (!em) {
2928 err = -ENOMEM;
2929 goto out;
2930 }
2931 em->bdev = root->fs_info->fs_devices->latest_bdev;
2932 em->start = EXTENT_MAP_HOLE;
2933 em->len = (u64)-1;
2934
2935 if (!path) {
2936 path = btrfs_alloc_path();
2937 BUG_ON(!path);
2938 }
2939
2940 ret = btrfs_lookup_file_extent(trans, root, path,
2941 objectid, start, trans != NULL);
2942 if (ret < 0) {
2943 err = ret;
2944 goto out;
2945 }
2946
2947 if (ret != 0) {
2948 if (path->slots[0] == 0)
2949 goto not_found;
2950 path->slots[0]--;
2951 }
2952
2953 leaf = path->nodes[0];
2954 item = btrfs_item_ptr(leaf, path->slots[0],
2955 struct btrfs_file_extent_item);
2956 /* are we inside the extent that was found? */
2957 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2958 found_type = btrfs_key_type(&found_key);
2959 if (found_key.objectid != objectid ||
2960 found_type != BTRFS_EXTENT_DATA_KEY) {
2961 goto not_found;
2962 }
2963
2964 found_type = btrfs_file_extent_type(leaf, item);
2965 extent_start = found_key.offset;
2966 if (found_type == BTRFS_FILE_EXTENT_REG) {
2967 extent_end = extent_start +
2968 btrfs_file_extent_num_bytes(leaf, item);
2969 err = 0;
2970 if (start < extent_start || start >= extent_end) {
2971 em->start = start;
2972 if (start < extent_start) {
2973 if (start + len <= extent_start)
2974 goto not_found;
2975 em->len = extent_end - extent_start;
2976 } else {
2977 em->len = len;
2978 }
2979 goto not_found_em;
2980 }
2981 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
2982 if (bytenr == 0) {
2983 em->start = extent_start;
2984 em->len = extent_end - extent_start;
2985 em->block_start = EXTENT_MAP_HOLE;
2986 goto insert;
2987 }
2988 bytenr += btrfs_file_extent_offset(leaf, item);
2989 em->block_start = bytenr;
2990 em->start = extent_start;
2991 em->len = extent_end - extent_start;
2992 goto insert;
2993 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
2994 u64 page_start;
2995 unsigned long ptr;
2996 char *map;
2997 size_t size;
2998 size_t extent_offset;
2999 size_t copy_size;
3000
3001 size = btrfs_file_extent_inline_len(leaf, btrfs_item_nr(leaf,
3002 path->slots[0]));
3003 extent_end = (extent_start + size + root->sectorsize - 1) &
3004 ~((u64)root->sectorsize - 1);
3005 if (start < extent_start || start >= extent_end) {
3006 em->start = start;
3007 if (start < extent_start) {
3008 if (start + len <= extent_start)
3009 goto not_found;
3010 em->len = extent_end - extent_start;
3011 } else {
3012 em->len = len;
3013 }
3014 goto not_found_em;
3015 }
3016 em->block_start = EXTENT_MAP_INLINE;
3017
3018 if (!page) {
3019 em->start = extent_start;
3020 em->len = size;
3021 goto out;
3022 }
3023
3024 page_start = page_offset(page) + pg_offset;
3025 extent_offset = page_start - extent_start;
3026 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3027 size - extent_offset);
3028 em->start = extent_start + extent_offset;
3029 em->len = (copy_size + root->sectorsize - 1) &
3030 ~((u64)root->sectorsize - 1);
3031 map = kmap(page);
3032 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
3033 if (create == 0 && !PageUptodate(page)) {
3034 read_extent_buffer(leaf, map + pg_offset, ptr,
3035 copy_size);
3036 flush_dcache_page(page);
3037 } else if (create && PageUptodate(page)) {
3038 if (!trans) {
3039 kunmap(page);
3040 free_extent_map(em);
3041 em = NULL;
3042 btrfs_release_path(root, path);
3043 trans = btrfs_join_transaction(root, 1);
3044 goto again;
3045 }
3046 write_extent_buffer(leaf, map + pg_offset, ptr,
3047 copy_size);
3048 btrfs_mark_buffer_dirty(leaf);
3049 }
3050 kunmap(page);
3051 set_extent_uptodate(io_tree, em->start,
3052 extent_map_end(em) - 1, GFP_NOFS);
3053 goto insert;
3054 } else {
3055 printk("unkknown found_type %d\n", found_type);
3056 WARN_ON(1);
3057 }
3058 not_found:
3059 em->start = start;
3060 em->len = len;
3061 not_found_em:
3062 em->block_start = EXTENT_MAP_HOLE;
3063 insert:
3064 btrfs_release_path(root, path);
3065 if (em->start > start || extent_map_end(em) <= start) {
3066 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
3067 err = -EIO;
3068 goto out;
3069 }
3070
3071 err = 0;
3072 spin_lock(&em_tree->lock);
3073 ret = add_extent_mapping(em_tree, em);
3074 /* it is possible that someone inserted the extent into the tree
3075 * while we had the lock dropped. It is also possible that
3076 * an overlapping map exists in the tree
3077 */
3078 if (ret == -EEXIST) {
3079 struct extent_map *existing;
3080
3081 ret = 0;
3082
3083 existing = lookup_extent_mapping(em_tree, start, len);
3084 if (existing && (existing->start > start ||
3085 existing->start + existing->len <= start)) {
3086 free_extent_map(existing);
3087 existing = NULL;
3088 }
3089 if (!existing) {
3090 existing = lookup_extent_mapping(em_tree, em->start,
3091 em->len);
3092 if (existing) {
3093 err = merge_extent_mapping(em_tree, existing,
3094 em, start,
3095 root->sectorsize);
3096 free_extent_map(existing);
3097 if (err) {
3098 free_extent_map(em);
3099 em = NULL;
3100 }
3101 } else {
3102 err = -EIO;
3103 printk("failing to insert %Lu %Lu\n",
3104 start, len);
3105 free_extent_map(em);
3106 em = NULL;
3107 }
3108 } else {
3109 free_extent_map(em);
3110 em = existing;
3111 err = 0;
3112 }
3113 }
3114 spin_unlock(&em_tree->lock);
3115 out:
3116 if (path)
3117 btrfs_free_path(path);
3118 if (trans) {
3119 ret = btrfs_end_transaction(trans, root);
3120 if (!err) {
3121 err = ret;
3122 }
3123 }
3124 if (err) {
3125 free_extent_map(em);
3126 WARN_ON(1);
3127 return ERR_PTR(err);
3128 }
3129 return em;
3130 }
3131
3132 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
3133 const struct iovec *iov, loff_t offset,
3134 unsigned long nr_segs)
3135 {
3136 return -EINVAL;
3137 }
3138
3139 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
3140 {
3141 return extent_bmap(mapping, iblock, btrfs_get_extent);
3142 }
3143
3144 int btrfs_readpage(struct file *file, struct page *page)
3145 {
3146 struct extent_io_tree *tree;
3147 tree = &BTRFS_I(page->mapping->host)->io_tree;
3148 return extent_read_full_page(tree, page, btrfs_get_extent);
3149 }
3150
3151 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
3152 {
3153 struct extent_io_tree *tree;
3154
3155
3156 if (current->flags & PF_MEMALLOC) {
3157 redirty_page_for_writepage(wbc, page);
3158 unlock_page(page);
3159 return 0;
3160 }
3161 tree = &BTRFS_I(page->mapping->host)->io_tree;
3162 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
3163 }
3164
3165 int btrfs_writepages(struct address_space *mapping,
3166 struct writeback_control *wbc)
3167 {
3168 struct extent_io_tree *tree;
3169 tree = &BTRFS_I(mapping->host)->io_tree;
3170 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
3171 }
3172
3173 static int
3174 btrfs_readpages(struct file *file, struct address_space *mapping,
3175 struct list_head *pages, unsigned nr_pages)
3176 {
3177 struct extent_io_tree *tree;
3178 tree = &BTRFS_I(mapping->host)->io_tree;
3179 return extent_readpages(tree, mapping, pages, nr_pages,
3180 btrfs_get_extent);
3181 }
3182 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3183 {
3184 struct extent_io_tree *tree;
3185 struct extent_map_tree *map;
3186 int ret;
3187
3188 tree = &BTRFS_I(page->mapping->host)->io_tree;
3189 map = &BTRFS_I(page->mapping->host)->extent_tree;
3190 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
3191 if (ret == 1) {
3192 ClearPagePrivate(page);
3193 set_page_private(page, 0);
3194 page_cache_release(page);
3195 }
3196 return ret;
3197 }
3198
3199 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3200 {
3201 if (PageWriteback(page) || PageDirty(page))
3202 return 0;
3203 return __btrfs_releasepage(page, gfp_flags);
3204 }
3205
3206 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
3207 {
3208 struct extent_io_tree *tree;
3209 struct btrfs_ordered_extent *ordered;
3210 u64 page_start = page_offset(page);
3211 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
3212
3213 wait_on_page_writeback(page);
3214 tree = &BTRFS_I(page->mapping->host)->io_tree;
3215 if (offset) {
3216 btrfs_releasepage(page, GFP_NOFS);
3217 return;
3218 }
3219
3220 lock_extent(tree, page_start, page_end, GFP_NOFS);
3221 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
3222 page_offset(page));
3223 if (ordered) {
3224 /*
3225 * IO on this page will never be started, so we need
3226 * to account for any ordered extents now
3227 */
3228 clear_extent_bit(tree, page_start, page_end,
3229 EXTENT_DIRTY | EXTENT_DELALLOC |
3230 EXTENT_LOCKED, 1, 0, GFP_NOFS);
3231 btrfs_finish_ordered_io(page->mapping->host,
3232 page_start, page_end);
3233 btrfs_put_ordered_extent(ordered);
3234 lock_extent(tree, page_start, page_end, GFP_NOFS);
3235 }
3236 clear_extent_bit(tree, page_start, page_end,
3237 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3238 EXTENT_ORDERED,
3239 1, 1, GFP_NOFS);
3240 __btrfs_releasepage(page, GFP_NOFS);
3241
3242 ClearPageChecked(page);
3243 if (PagePrivate(page)) {
3244 ClearPagePrivate(page);
3245 set_page_private(page, 0);
3246 page_cache_release(page);
3247 }
3248 }
3249
3250 /*
3251 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
3252 * called from a page fault handler when a page is first dirtied. Hence we must
3253 * be careful to check for EOF conditions here. We set the page up correctly
3254 * for a written page which means we get ENOSPC checking when writing into
3255 * holes and correct delalloc and unwritten extent mapping on filesystems that
3256 * support these features.
3257 *
3258 * We are not allowed to take the i_mutex here so we have to play games to
3259 * protect against truncate races as the page could now be beyond EOF. Because
3260 * vmtruncate() writes the inode size before removing pages, once we have the
3261 * page lock we can determine safely if the page is beyond EOF. If it is not
3262 * beyond EOF, then the page is guaranteed safe against truncation until we
3263 * unlock the page.
3264 */
3265 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3266 {
3267 struct inode *inode = fdentry(vma->vm_file)->d_inode;
3268 struct btrfs_root *root = BTRFS_I(inode)->root;
3269 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3270 struct btrfs_ordered_extent *ordered;
3271 char *kaddr;
3272 unsigned long zero_start;
3273 loff_t size;
3274 int ret;
3275 u64 page_start;
3276 u64 page_end;
3277
3278 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
3279 if (ret)
3280 goto out;
3281
3282 ret = -EINVAL;
3283 again:
3284 lock_page(page);
3285 size = i_size_read(inode);
3286 page_start = page_offset(page);
3287 page_end = page_start + PAGE_CACHE_SIZE - 1;
3288
3289 if ((page->mapping != inode->i_mapping) ||
3290 (page_start >= size)) {
3291 /* page got truncated out from underneath us */
3292 goto out_unlock;
3293 }
3294 wait_on_page_writeback(page);
3295
3296 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3297 set_page_extent_mapped(page);
3298
3299 /*
3300 * we can't set the delalloc bits if there are pending ordered
3301 * extents. Drop our locks and wait for them to finish
3302 */
3303 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3304 if (ordered) {
3305 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3306 unlock_page(page);
3307 btrfs_start_ordered_extent(inode, ordered, 1);
3308 btrfs_put_ordered_extent(ordered);
3309 goto again;
3310 }
3311
3312 btrfs_set_extent_delalloc(inode, page_start, page_end);
3313 ret = 0;
3314
3315 /* page is wholly or partially inside EOF */
3316 if (page_start + PAGE_CACHE_SIZE > size)
3317 zero_start = size & ~PAGE_CACHE_MASK;
3318 else
3319 zero_start = PAGE_CACHE_SIZE;
3320
3321 if (zero_start != PAGE_CACHE_SIZE) {
3322 kaddr = kmap(page);
3323 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
3324 flush_dcache_page(page);
3325 kunmap(page);
3326 }
3327 ClearPageChecked(page);
3328 set_page_dirty(page);
3329 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3330
3331 out_unlock:
3332 unlock_page(page);
3333 out:
3334 return ret;
3335 }
3336
3337 static void btrfs_truncate(struct inode *inode)
3338 {
3339 struct btrfs_root *root = BTRFS_I(inode)->root;
3340 int ret;
3341 struct btrfs_trans_handle *trans;
3342 unsigned long nr;
3343 u64 mask = root->sectorsize - 1;
3344
3345 if (!S_ISREG(inode->i_mode))
3346 return;
3347 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3348 return;
3349
3350 btrfs_truncate_page(inode->i_mapping, inode->i_size);
3351 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
3352
3353 trans = btrfs_start_transaction(root, 1);
3354 btrfs_set_trans_block_group(trans, inode);
3355 btrfs_i_size_write(inode, inode->i_size);
3356
3357 ret = btrfs_orphan_add(trans, inode);
3358 if (ret)
3359 goto out;
3360 /* FIXME, add redo link to tree so we don't leak on crash */
3361 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
3362 BTRFS_EXTENT_DATA_KEY);
3363 btrfs_update_inode(trans, root, inode);
3364
3365 ret = btrfs_orphan_del(trans, inode);
3366 BUG_ON(ret);
3367
3368 out:
3369 nr = trans->blocks_used;
3370 ret = btrfs_end_transaction_throttle(trans, root);
3371 BUG_ON(ret);
3372 btrfs_btree_balance_dirty(root, nr);
3373 }
3374
3375 /*
3376 * Invalidate a single dcache entry at the root of the filesystem.
3377 * Needed after creation of snapshot or subvolume.
3378 */
3379 void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name,
3380 int namelen)
3381 {
3382 struct dentry *alias, *entry;
3383 struct qstr qstr;
3384
3385 alias = d_find_alias(root->fs_info->sb->s_root->d_inode);
3386 if (alias) {
3387 qstr.name = name;
3388 qstr.len = namelen;
3389 /* change me if btrfs ever gets a d_hash operation */
3390 qstr.hash = full_name_hash(qstr.name, qstr.len);
3391 entry = d_lookup(alias, &qstr);
3392 dput(alias);
3393 if (entry) {
3394 d_invalidate(entry);
3395 dput(entry);
3396 }
3397 }
3398 }
3399
3400 /*
3401 * create a new subvolume directory/inode (helper for the ioctl).
3402 */
3403 int btrfs_create_subvol_root(struct btrfs_root *new_root,
3404 struct btrfs_trans_handle *trans, u64 new_dirid,
3405 struct btrfs_block_group_cache *block_group)
3406 {
3407 struct inode *inode;
3408 u64 index = 0;
3409
3410 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
3411 new_dirid, block_group, S_IFDIR | 0700, &index);
3412 if (IS_ERR(inode))
3413 return PTR_ERR(inode);
3414 inode->i_op = &btrfs_dir_inode_operations;
3415 inode->i_fop = &btrfs_dir_file_operations;
3416 new_root->inode = inode;
3417
3418 inode->i_nlink = 1;
3419 btrfs_i_size_write(inode, 0);
3420
3421 return btrfs_update_inode(trans, new_root, inode);
3422 }
3423
3424 /* helper function for file defrag and space balancing. This
3425 * forces readahead on a given range of bytes in an inode
3426 */
3427 unsigned long btrfs_force_ra(struct address_space *mapping,
3428 struct file_ra_state *ra, struct file *file,
3429 pgoff_t offset, pgoff_t last_index)
3430 {
3431 pgoff_t req_size = last_index - offset + 1;
3432
3433 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3434 return offset + req_size;
3435 }
3436
3437 struct inode *btrfs_alloc_inode(struct super_block *sb)
3438 {
3439 struct btrfs_inode *ei;
3440
3441 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
3442 if (!ei)
3443 return NULL;
3444 ei->last_trans = 0;
3445 ei->logged_trans = 0;
3446 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
3447 ei->i_acl = BTRFS_ACL_NOT_CACHED;
3448 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
3449 INIT_LIST_HEAD(&ei->i_orphan);
3450 return &ei->vfs_inode;
3451 }
3452
3453 void btrfs_destroy_inode(struct inode *inode)
3454 {
3455 struct btrfs_ordered_extent *ordered;
3456 WARN_ON(!list_empty(&inode->i_dentry));
3457 WARN_ON(inode->i_data.nrpages);
3458
3459 if (BTRFS_I(inode)->i_acl &&
3460 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
3461 posix_acl_release(BTRFS_I(inode)->i_acl);
3462 if (BTRFS_I(inode)->i_default_acl &&
3463 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
3464 posix_acl_release(BTRFS_I(inode)->i_default_acl);
3465
3466 spin_lock(&BTRFS_I(inode)->root->list_lock);
3467 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
3468 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
3469 " list\n", inode->i_ino);
3470 dump_stack();
3471 }
3472 spin_unlock(&BTRFS_I(inode)->root->list_lock);
3473
3474 while(1) {
3475 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
3476 if (!ordered)
3477 break;
3478 else {
3479 printk("found ordered extent %Lu %Lu\n",
3480 ordered->file_offset, ordered->len);
3481 btrfs_remove_ordered_extent(inode, ordered);
3482 btrfs_put_ordered_extent(ordered);
3483 btrfs_put_ordered_extent(ordered);
3484 }
3485 }
3486 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
3487 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
3488 }
3489
3490 static void init_once(void *foo)
3491 {
3492 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
3493
3494 inode_init_once(&ei->vfs_inode);
3495 }
3496
3497 void btrfs_destroy_cachep(void)
3498 {
3499 if (btrfs_inode_cachep)
3500 kmem_cache_destroy(btrfs_inode_cachep);
3501 if (btrfs_trans_handle_cachep)
3502 kmem_cache_destroy(btrfs_trans_handle_cachep);
3503 if (btrfs_transaction_cachep)
3504 kmem_cache_destroy(btrfs_transaction_cachep);
3505 if (btrfs_bit_radix_cachep)
3506 kmem_cache_destroy(btrfs_bit_radix_cachep);
3507 if (btrfs_path_cachep)
3508 kmem_cache_destroy(btrfs_path_cachep);
3509 }
3510
3511 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
3512 unsigned long extra_flags,
3513 void (*ctor)(void *))
3514 {
3515 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
3516 SLAB_MEM_SPREAD | extra_flags), ctor);
3517 }
3518
3519 int btrfs_init_cachep(void)
3520 {
3521 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
3522 sizeof(struct btrfs_inode),
3523 0, init_once);
3524 if (!btrfs_inode_cachep)
3525 goto fail;
3526 btrfs_trans_handle_cachep =
3527 btrfs_cache_create("btrfs_trans_handle_cache",
3528 sizeof(struct btrfs_trans_handle),
3529 0, NULL);
3530 if (!btrfs_trans_handle_cachep)
3531 goto fail;
3532 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
3533 sizeof(struct btrfs_transaction),
3534 0, NULL);
3535 if (!btrfs_transaction_cachep)
3536 goto fail;
3537 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
3538 sizeof(struct btrfs_path),
3539 0, NULL);
3540 if (!btrfs_path_cachep)
3541 goto fail;
3542 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
3543 SLAB_DESTROY_BY_RCU, NULL);
3544 if (!btrfs_bit_radix_cachep)
3545 goto fail;
3546 return 0;
3547 fail:
3548 btrfs_destroy_cachep();
3549 return -ENOMEM;
3550 }
3551
3552 static int btrfs_getattr(struct vfsmount *mnt,
3553 struct dentry *dentry, struct kstat *stat)
3554 {
3555 struct inode *inode = dentry->d_inode;
3556 generic_fillattr(inode, stat);
3557 stat->blksize = PAGE_CACHE_SIZE;
3558 stat->blocks = (inode_get_bytes(inode) +
3559 BTRFS_I(inode)->delalloc_bytes) >> 9;
3560 return 0;
3561 }
3562
3563 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
3564 struct inode * new_dir,struct dentry *new_dentry)
3565 {
3566 struct btrfs_trans_handle *trans;
3567 struct btrfs_root *root = BTRFS_I(old_dir)->root;
3568 struct inode *new_inode = new_dentry->d_inode;
3569 struct inode *old_inode = old_dentry->d_inode;
3570 struct timespec ctime = CURRENT_TIME;
3571 u64 index = 0;
3572 int ret;
3573
3574 if (S_ISDIR(old_inode->i_mode) && new_inode &&
3575 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
3576 return -ENOTEMPTY;
3577 }
3578
3579 ret = btrfs_check_free_space(root, 1, 0);
3580 if (ret)
3581 goto out_unlock;
3582
3583 trans = btrfs_start_transaction(root, 1);
3584
3585 btrfs_set_trans_block_group(trans, new_dir);
3586
3587 btrfs_inc_nlink(old_dentry->d_inode);
3588 old_dir->i_ctime = old_dir->i_mtime = ctime;
3589 new_dir->i_ctime = new_dir->i_mtime = ctime;
3590 old_inode->i_ctime = ctime;
3591
3592 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
3593 old_dentry->d_name.name,
3594 old_dentry->d_name.len);
3595 if (ret)
3596 goto out_fail;
3597
3598 if (new_inode) {
3599 new_inode->i_ctime = CURRENT_TIME;
3600 ret = btrfs_unlink_inode(trans, root, new_dir,
3601 new_dentry->d_inode,
3602 new_dentry->d_name.name,
3603 new_dentry->d_name.len);
3604 if (ret)
3605 goto out_fail;
3606 if (new_inode->i_nlink == 0) {
3607 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
3608 if (ret)
3609 goto out_fail;
3610 }
3611
3612 }
3613 ret = btrfs_set_inode_index(new_dir, old_inode, &index);
3614 if (ret)
3615 goto out_fail;
3616
3617 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
3618 old_inode, new_dentry->d_name.name,
3619 new_dentry->d_name.len, 1, index);
3620 if (ret)
3621 goto out_fail;
3622
3623 out_fail:
3624 btrfs_end_transaction_throttle(trans, root);
3625 out_unlock:
3626 return ret;
3627 }
3628
3629 /*
3630 * some fairly slow code that needs optimization. This walks the list
3631 * of all the inodes with pending delalloc and forces them to disk.
3632 */
3633 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
3634 {
3635 struct list_head *head = &root->fs_info->delalloc_inodes;
3636 struct btrfs_inode *binode;
3637 struct inode *inode;
3638 unsigned long flags;
3639
3640 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3641 while(!list_empty(head)) {
3642 binode = list_entry(head->next, struct btrfs_inode,
3643 delalloc_inodes);
3644 inode = igrab(&binode->vfs_inode);
3645 if (!inode)
3646 list_del_init(&binode->delalloc_inodes);
3647 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3648 if (inode) {
3649 filemap_flush(inode->i_mapping);
3650 iput(inode);
3651 }
3652 cond_resched();
3653 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3654 }
3655 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3656
3657 /* the filemap_flush will queue IO into the worker threads, but
3658 * we have to make sure the IO is actually started and that
3659 * ordered extents get created before we return
3660 */
3661 atomic_inc(&root->fs_info->async_submit_draining);
3662 while(atomic_read(&root->fs_info->nr_async_submits)) {
3663 wait_event(root->fs_info->async_submit_wait,
3664 (atomic_read(&root->fs_info->nr_async_submits) == 0));
3665 }
3666 atomic_dec(&root->fs_info->async_submit_draining);
3667 return 0;
3668 }
3669
3670 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
3671 const char *symname)
3672 {
3673 struct btrfs_trans_handle *trans;
3674 struct btrfs_root *root = BTRFS_I(dir)->root;
3675 struct btrfs_path *path;
3676 struct btrfs_key key;
3677 struct inode *inode = NULL;
3678 int err;
3679 int drop_inode = 0;
3680 u64 objectid;
3681 u64 index = 0 ;
3682 int name_len;
3683 int datasize;
3684 unsigned long ptr;
3685 struct btrfs_file_extent_item *ei;
3686 struct extent_buffer *leaf;
3687 unsigned long nr = 0;
3688
3689 name_len = strlen(symname) + 1;
3690 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
3691 return -ENAMETOOLONG;
3692
3693 err = btrfs_check_free_space(root, 1, 0);
3694 if (err)
3695 goto out_fail;
3696
3697 trans = btrfs_start_transaction(root, 1);
3698 btrfs_set_trans_block_group(trans, dir);
3699
3700 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3701 if (err) {
3702 err = -ENOSPC;
3703 goto out_unlock;
3704 }
3705
3706 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3707 dentry->d_name.len,
3708 dentry->d_parent->d_inode->i_ino, objectid,
3709 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
3710 &index);
3711 err = PTR_ERR(inode);
3712 if (IS_ERR(inode))
3713 goto out_unlock;
3714
3715 err = btrfs_init_acl(inode, dir);
3716 if (err) {
3717 drop_inode = 1;
3718 goto out_unlock;
3719 }
3720
3721 btrfs_set_trans_block_group(trans, inode);
3722 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3723 if (err)
3724 drop_inode = 1;
3725 else {
3726 inode->i_mapping->a_ops = &btrfs_aops;
3727 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3728 inode->i_fop = &btrfs_file_operations;
3729 inode->i_op = &btrfs_file_inode_operations;
3730 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3731 }
3732 dir->i_sb->s_dirt = 1;
3733 btrfs_update_inode_block_group(trans, inode);
3734 btrfs_update_inode_block_group(trans, dir);
3735 if (drop_inode)
3736 goto out_unlock;
3737
3738 path = btrfs_alloc_path();
3739 BUG_ON(!path);
3740 key.objectid = inode->i_ino;
3741 key.offset = 0;
3742 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
3743 datasize = btrfs_file_extent_calc_inline_size(name_len);
3744 err = btrfs_insert_empty_item(trans, root, path, &key,
3745 datasize);
3746 if (err) {
3747 drop_inode = 1;
3748 goto out_unlock;
3749 }
3750 leaf = path->nodes[0];
3751 ei = btrfs_item_ptr(leaf, path->slots[0],
3752 struct btrfs_file_extent_item);
3753 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
3754 btrfs_set_file_extent_type(leaf, ei,
3755 BTRFS_FILE_EXTENT_INLINE);
3756 ptr = btrfs_file_extent_inline_start(ei);
3757 write_extent_buffer(leaf, symname, ptr, name_len);
3758 btrfs_mark_buffer_dirty(leaf);
3759 btrfs_free_path(path);
3760
3761 inode->i_op = &btrfs_symlink_inode_operations;
3762 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3763 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3764 btrfs_i_size_write(inode, name_len - 1);
3765 err = btrfs_update_inode(trans, root, inode);
3766 if (err)
3767 drop_inode = 1;
3768
3769 out_unlock:
3770 nr = trans->blocks_used;
3771 btrfs_end_transaction_throttle(trans, root);
3772 out_fail:
3773 if (drop_inode) {
3774 inode_dec_link_count(inode);
3775 iput(inode);
3776 }
3777 btrfs_btree_balance_dirty(root, nr);
3778 return err;
3779 }
3780
3781 static int btrfs_set_page_dirty(struct page *page)
3782 {
3783 return __set_page_dirty_nobuffers(page);
3784 }
3785
3786 static int btrfs_permission(struct inode *inode, int mask)
3787 {
3788 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
3789 return -EACCES;
3790 return generic_permission(inode, mask, btrfs_check_acl);
3791 }
3792
3793 static struct inode_operations btrfs_dir_inode_operations = {
3794 .lookup = btrfs_lookup,
3795 .create = btrfs_create,
3796 .unlink = btrfs_unlink,
3797 .link = btrfs_link,
3798 .mkdir = btrfs_mkdir,
3799 .rmdir = btrfs_rmdir,
3800 .rename = btrfs_rename,
3801 .symlink = btrfs_symlink,
3802 .setattr = btrfs_setattr,
3803 .mknod = btrfs_mknod,
3804 .setxattr = btrfs_setxattr,
3805 .getxattr = btrfs_getxattr,
3806 .listxattr = btrfs_listxattr,
3807 .removexattr = btrfs_removexattr,
3808 .permission = btrfs_permission,
3809 };
3810 static struct inode_operations btrfs_dir_ro_inode_operations = {
3811 .lookup = btrfs_lookup,
3812 .permission = btrfs_permission,
3813 };
3814 static struct file_operations btrfs_dir_file_operations = {
3815 .llseek = generic_file_llseek,
3816 .read = generic_read_dir,
3817 .readdir = btrfs_real_readdir,
3818 .unlocked_ioctl = btrfs_ioctl,
3819 #ifdef CONFIG_COMPAT
3820 .compat_ioctl = btrfs_ioctl,
3821 #endif
3822 .release = btrfs_release_file,
3823 .fsync = btrfs_sync_file,
3824 };
3825
3826 static struct extent_io_ops btrfs_extent_io_ops = {
3827 .fill_delalloc = run_delalloc_range,
3828 .submit_bio_hook = btrfs_submit_bio_hook,
3829 .merge_bio_hook = btrfs_merge_bio_hook,
3830 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
3831 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
3832 .writepage_start_hook = btrfs_writepage_start_hook,
3833 .readpage_io_failed_hook = btrfs_io_failed_hook,
3834 .set_bit_hook = btrfs_set_bit_hook,
3835 .clear_bit_hook = btrfs_clear_bit_hook,
3836 };
3837
3838 static struct address_space_operations btrfs_aops = {
3839 .readpage = btrfs_readpage,
3840 .writepage = btrfs_writepage,
3841 .writepages = btrfs_writepages,
3842 .readpages = btrfs_readpages,
3843 .sync_page = block_sync_page,
3844 .bmap = btrfs_bmap,
3845 .direct_IO = btrfs_direct_IO,
3846 .invalidatepage = btrfs_invalidatepage,
3847 .releasepage = btrfs_releasepage,
3848 .set_page_dirty = btrfs_set_page_dirty,
3849 };
3850
3851 static struct address_space_operations btrfs_symlink_aops = {
3852 .readpage = btrfs_readpage,
3853 .writepage = btrfs_writepage,
3854 .invalidatepage = btrfs_invalidatepage,
3855 .releasepage = btrfs_releasepage,
3856 };
3857
3858 static struct inode_operations btrfs_file_inode_operations = {
3859 .truncate = btrfs_truncate,
3860 .getattr = btrfs_getattr,
3861 .setattr = btrfs_setattr,
3862 .setxattr = btrfs_setxattr,
3863 .getxattr = btrfs_getxattr,
3864 .listxattr = btrfs_listxattr,
3865 .removexattr = btrfs_removexattr,
3866 .permission = btrfs_permission,
3867 };
3868 static struct inode_operations btrfs_special_inode_operations = {
3869 .getattr = btrfs_getattr,
3870 .setattr = btrfs_setattr,
3871 .permission = btrfs_permission,
3872 .setxattr = btrfs_setxattr,
3873 .getxattr = btrfs_getxattr,
3874 .listxattr = btrfs_listxattr,
3875 .removexattr = btrfs_removexattr,
3876 };
3877 static struct inode_operations btrfs_symlink_inode_operations = {
3878 .readlink = generic_readlink,
3879 .follow_link = page_follow_link_light,
3880 .put_link = page_put_link,
3881 .permission = btrfs_permission,
3882 };
This page took 0.117671 seconds and 6 git commands to generate.