Btrfs: Allow subvolumes and snapshots anywhere in the directory tree
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include <linux/falloc.h>
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "compat.h"
51 #include "tree-log.h"
52 #include "ref-cache.h"
53 #include "compression.h"
54
55 struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
58 };
59
60 static struct inode_operations btrfs_dir_inode_operations;
61 static struct inode_operations btrfs_symlink_inode_operations;
62 static struct inode_operations btrfs_dir_ro_inode_operations;
63 static struct inode_operations btrfs_special_inode_operations;
64 static struct inode_operations btrfs_file_inode_operations;
65 static struct address_space_operations btrfs_aops;
66 static struct address_space_operations btrfs_symlink_aops;
67 static struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_bit_radix_cachep;
74 struct kmem_cache *btrfs_path_cachep;
75
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85 };
86
87 static void btrfs_truncate(struct inode *inode);
88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
89 static noinline int cow_file_range(struct inode *inode,
90 struct page *locked_page,
91 u64 start, u64 end, int *page_started,
92 unsigned long *nr_written, int unlock);
93
94 /*
95 * a very lame attempt at stopping writes when the FS is 85% full. There
96 * are countless ways this is incorrect, but it is better than nothing.
97 */
98 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
99 int for_del)
100 {
101 u64 total;
102 u64 used;
103 u64 thresh;
104 unsigned long flags;
105 int ret = 0;
106
107 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
108 total = btrfs_super_total_bytes(&root->fs_info->super_copy);
109 used = btrfs_super_bytes_used(&root->fs_info->super_copy);
110 if (for_del)
111 thresh = total * 90;
112 else
113 thresh = total * 85;
114
115 do_div(thresh, 100);
116
117 if (used + root->fs_info->delalloc_bytes + num_required > thresh)
118 ret = -ENOSPC;
119 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
120 return ret;
121 }
122
123 /*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
128 static int noinline insert_inline_extent(struct btrfs_trans_handle *trans,
129 struct btrfs_root *root, struct inode *inode,
130 u64 start, size_t size, size_t compressed_size,
131 struct page **compressed_pages)
132 {
133 struct btrfs_key key;
134 struct btrfs_path *path;
135 struct extent_buffer *leaf;
136 struct page *page = NULL;
137 char *kaddr;
138 unsigned long ptr;
139 struct btrfs_file_extent_item *ei;
140 int err = 0;
141 int ret;
142 size_t cur_size = size;
143 size_t datasize;
144 unsigned long offset;
145 int use_compress = 0;
146
147 if (compressed_size && compressed_pages) {
148 use_compress = 1;
149 cur_size = compressed_size;
150 }
151
152 path = btrfs_alloc_path(); if (!path)
153 return -ENOMEM;
154
155 btrfs_set_trans_block_group(trans, inode);
156
157 key.objectid = inode->i_ino;
158 key.offset = start;
159 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
160 inode_add_bytes(inode, size);
161 datasize = btrfs_file_extent_calc_inline_size(cur_size);
162
163 inode_add_bytes(inode, size);
164 ret = btrfs_insert_empty_item(trans, root, path, &key,
165 datasize);
166 BUG_ON(ret);
167 if (ret) {
168 err = ret;
169 printk("got bad ret %d\n", ret);
170 goto fail;
171 }
172 leaf = path->nodes[0];
173 ei = btrfs_item_ptr(leaf, path->slots[0],
174 struct btrfs_file_extent_item);
175 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
176 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
177 btrfs_set_file_extent_encryption(leaf, ei, 0);
178 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
179 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
180 ptr = btrfs_file_extent_inline_start(ei);
181
182 if (use_compress) {
183 struct page *cpage;
184 int i = 0;
185 while(compressed_size > 0) {
186 cpage = compressed_pages[i];
187 cur_size = min_t(unsigned long, compressed_size,
188 PAGE_CACHE_SIZE);
189
190 kaddr = kmap(cpage);
191 write_extent_buffer(leaf, kaddr, ptr, cur_size);
192 kunmap(cpage);
193
194 i++;
195 ptr += cur_size;
196 compressed_size -= cur_size;
197 }
198 btrfs_set_file_extent_compression(leaf, ei,
199 BTRFS_COMPRESS_ZLIB);
200 } else {
201 page = find_get_page(inode->i_mapping,
202 start >> PAGE_CACHE_SHIFT);
203 btrfs_set_file_extent_compression(leaf, ei, 0);
204 kaddr = kmap_atomic(page, KM_USER0);
205 offset = start & (PAGE_CACHE_SIZE - 1);
206 write_extent_buffer(leaf, kaddr + offset, ptr, size);
207 kunmap_atomic(kaddr, KM_USER0);
208 page_cache_release(page);
209 }
210 btrfs_mark_buffer_dirty(leaf);
211 btrfs_free_path(path);
212
213 BTRFS_I(inode)->disk_i_size = inode->i_size;
214 btrfs_update_inode(trans, root, inode);
215 return 0;
216 fail:
217 btrfs_free_path(path);
218 return err;
219 }
220
221
222 /*
223 * conditionally insert an inline extent into the file. This
224 * does the checks required to make sure the data is small enough
225 * to fit as an inline extent.
226 */
227 static int cow_file_range_inline(struct btrfs_trans_handle *trans,
228 struct btrfs_root *root,
229 struct inode *inode, u64 start, u64 end,
230 size_t compressed_size,
231 struct page **compressed_pages)
232 {
233 u64 isize = i_size_read(inode);
234 u64 actual_end = min(end + 1, isize);
235 u64 inline_len = actual_end - start;
236 u64 aligned_end = (end + root->sectorsize - 1) &
237 ~((u64)root->sectorsize - 1);
238 u64 hint_byte;
239 u64 data_len = inline_len;
240 int ret;
241
242 if (compressed_size)
243 data_len = compressed_size;
244
245 if (start > 0 ||
246 actual_end >= PAGE_CACHE_SIZE ||
247 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
248 (!compressed_size &&
249 (actual_end & (root->sectorsize - 1)) == 0) ||
250 end + 1 < isize ||
251 data_len > root->fs_info->max_inline) {
252 return 1;
253 }
254
255 ret = btrfs_drop_extents(trans, root, inode, start,
256 aligned_end, start, &hint_byte);
257 BUG_ON(ret);
258
259 if (isize > actual_end)
260 inline_len = min_t(u64, isize, actual_end);
261 ret = insert_inline_extent(trans, root, inode, start,
262 inline_len, compressed_size,
263 compressed_pages);
264 BUG_ON(ret);
265 btrfs_drop_extent_cache(inode, start, aligned_end, 0);
266 return 0;
267 }
268
269 struct async_extent {
270 u64 start;
271 u64 ram_size;
272 u64 compressed_size;
273 struct page **pages;
274 unsigned long nr_pages;
275 struct list_head list;
276 };
277
278 struct async_cow {
279 struct inode *inode;
280 struct btrfs_root *root;
281 struct page *locked_page;
282 u64 start;
283 u64 end;
284 struct list_head extents;
285 struct btrfs_work work;
286 };
287
288 static noinline int add_async_extent(struct async_cow *cow,
289 u64 start, u64 ram_size,
290 u64 compressed_size,
291 struct page **pages,
292 unsigned long nr_pages)
293 {
294 struct async_extent *async_extent;
295
296 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
297 async_extent->start = start;
298 async_extent->ram_size = ram_size;
299 async_extent->compressed_size = compressed_size;
300 async_extent->pages = pages;
301 async_extent->nr_pages = nr_pages;
302 list_add_tail(&async_extent->list, &cow->extents);
303 return 0;
304 }
305
306 /*
307 * we create compressed extents in two phases. The first
308 * phase compresses a range of pages that have already been
309 * locked (both pages and state bits are locked).
310 *
311 * This is done inside an ordered work queue, and the compression
312 * is spread across many cpus. The actual IO submission is step
313 * two, and the ordered work queue takes care of making sure that
314 * happens in the same order things were put onto the queue by
315 * writepages and friends.
316 *
317 * If this code finds it can't get good compression, it puts an
318 * entry onto the work queue to write the uncompressed bytes. This
319 * makes sure that both compressed inodes and uncompressed inodes
320 * are written in the same order that pdflush sent them down.
321 */
322 static noinline int compress_file_range(struct inode *inode,
323 struct page *locked_page,
324 u64 start, u64 end,
325 struct async_cow *async_cow,
326 int *num_added)
327 {
328 struct btrfs_root *root = BTRFS_I(inode)->root;
329 struct btrfs_trans_handle *trans;
330 u64 num_bytes;
331 u64 orig_start;
332 u64 disk_num_bytes;
333 u64 blocksize = root->sectorsize;
334 u64 actual_end;
335 int ret = 0;
336 struct page **pages = NULL;
337 unsigned long nr_pages;
338 unsigned long nr_pages_ret = 0;
339 unsigned long total_compressed = 0;
340 unsigned long total_in = 0;
341 unsigned long max_compressed = 128 * 1024;
342 unsigned long max_uncompressed = 128 * 1024;
343 int i;
344 int will_compress;
345
346 orig_start = start;
347
348 again:
349 will_compress = 0;
350 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
351 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
352
353 actual_end = min_t(u64, i_size_read(inode), end + 1);
354 total_compressed = actual_end - start;
355
356 /* we want to make sure that amount of ram required to uncompress
357 * an extent is reasonable, so we limit the total size in ram
358 * of a compressed extent to 128k. This is a crucial number
359 * because it also controls how easily we can spread reads across
360 * cpus for decompression.
361 *
362 * We also want to make sure the amount of IO required to do
363 * a random read is reasonably small, so we limit the size of
364 * a compressed extent to 128k.
365 */
366 total_compressed = min(total_compressed, max_uncompressed);
367 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
368 num_bytes = max(blocksize, num_bytes);
369 disk_num_bytes = num_bytes;
370 total_in = 0;
371 ret = 0;
372
373 /*
374 * we do compression for mount -o compress and when the
375 * inode has not been flagged as nocompress. This flag can
376 * change at any time if we discover bad compression ratios.
377 */
378 if (!btrfs_test_flag(inode, NOCOMPRESS) &&
379 btrfs_test_opt(root, COMPRESS)) {
380 WARN_ON(pages);
381 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
382
383 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
384 total_compressed, pages,
385 nr_pages, &nr_pages_ret,
386 &total_in,
387 &total_compressed,
388 max_compressed);
389
390 if (!ret) {
391 unsigned long offset = total_compressed &
392 (PAGE_CACHE_SIZE - 1);
393 struct page *page = pages[nr_pages_ret - 1];
394 char *kaddr;
395
396 /* zero the tail end of the last page, we might be
397 * sending it down to disk
398 */
399 if (offset) {
400 kaddr = kmap_atomic(page, KM_USER0);
401 memset(kaddr + offset, 0,
402 PAGE_CACHE_SIZE - offset);
403 kunmap_atomic(kaddr, KM_USER0);
404 }
405 will_compress = 1;
406 }
407 }
408 if (start == 0) {
409 trans = btrfs_join_transaction(root, 1);
410 BUG_ON(!trans);
411 btrfs_set_trans_block_group(trans, inode);
412
413 /* lets try to make an inline extent */
414 if (ret || total_in < (actual_end - start)) {
415 /* we didn't compress the entire range, try
416 * to make an uncompressed inline extent.
417 */
418 ret = cow_file_range_inline(trans, root, inode,
419 start, end, 0, NULL);
420 } else {
421 /* try making a compressed inline extent */
422 ret = cow_file_range_inline(trans, root, inode,
423 start, end,
424 total_compressed, pages);
425 }
426 btrfs_end_transaction(trans, root);
427 if (ret == 0) {
428 /*
429 * inline extent creation worked, we don't need
430 * to create any more async work items. Unlock
431 * and free up our temp pages.
432 */
433 extent_clear_unlock_delalloc(inode,
434 &BTRFS_I(inode)->io_tree,
435 start, end, NULL, 1, 0,
436 0, 1, 1, 1);
437 ret = 0;
438 goto free_pages_out;
439 }
440 }
441
442 if (will_compress) {
443 /*
444 * we aren't doing an inline extent round the compressed size
445 * up to a block size boundary so the allocator does sane
446 * things
447 */
448 total_compressed = (total_compressed + blocksize - 1) &
449 ~(blocksize - 1);
450
451 /*
452 * one last check to make sure the compression is really a
453 * win, compare the page count read with the blocks on disk
454 */
455 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
456 ~(PAGE_CACHE_SIZE - 1);
457 if (total_compressed >= total_in) {
458 will_compress = 0;
459 } else {
460 disk_num_bytes = total_compressed;
461 num_bytes = total_in;
462 }
463 }
464 if (!will_compress && pages) {
465 /*
466 * the compression code ran but failed to make things smaller,
467 * free any pages it allocated and our page pointer array
468 */
469 for (i = 0; i < nr_pages_ret; i++) {
470 WARN_ON(pages[i]->mapping);
471 page_cache_release(pages[i]);
472 }
473 kfree(pages);
474 pages = NULL;
475 total_compressed = 0;
476 nr_pages_ret = 0;
477
478 /* flag the file so we don't compress in the future */
479 btrfs_set_flag(inode, NOCOMPRESS);
480 }
481 if (will_compress) {
482 *num_added += 1;
483
484 /* the async work queues will take care of doing actual
485 * allocation on disk for these compressed pages,
486 * and will submit them to the elevator.
487 */
488 add_async_extent(async_cow, start, num_bytes,
489 total_compressed, pages, nr_pages_ret);
490
491 if (start + num_bytes < end) {
492 start += num_bytes;
493 pages = NULL;
494 cond_resched();
495 goto again;
496 }
497 } else {
498 /*
499 * No compression, but we still need to write the pages in
500 * the file we've been given so far. redirty the locked
501 * page if it corresponds to our extent and set things up
502 * for the async work queue to run cow_file_range to do
503 * the normal delalloc dance
504 */
505 if (page_offset(locked_page) >= start &&
506 page_offset(locked_page) <= end) {
507 __set_page_dirty_nobuffers(locked_page);
508 /* unlocked later on in the async handlers */
509 }
510 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
511 *num_added += 1;
512 }
513
514 out:
515 return 0;
516
517 free_pages_out:
518 for (i = 0; i < nr_pages_ret; i++) {
519 WARN_ON(pages[i]->mapping);
520 page_cache_release(pages[i]);
521 }
522 if (pages)
523 kfree(pages);
524
525 goto out;
526 }
527
528 /*
529 * phase two of compressed writeback. This is the ordered portion
530 * of the code, which only gets called in the order the work was
531 * queued. We walk all the async extents created by compress_file_range
532 * and send them down to the disk.
533 */
534 static noinline int submit_compressed_extents(struct inode *inode,
535 struct async_cow *async_cow)
536 {
537 struct async_extent *async_extent;
538 u64 alloc_hint = 0;
539 struct btrfs_trans_handle *trans;
540 struct btrfs_key ins;
541 struct extent_map *em;
542 struct btrfs_root *root = BTRFS_I(inode)->root;
543 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
544 struct extent_io_tree *io_tree;
545 int ret;
546
547 if (list_empty(&async_cow->extents))
548 return 0;
549
550 trans = btrfs_join_transaction(root, 1);
551
552 while(!list_empty(&async_cow->extents)) {
553 async_extent = list_entry(async_cow->extents.next,
554 struct async_extent, list);
555 list_del(&async_extent->list);
556
557 io_tree = &BTRFS_I(inode)->io_tree;
558
559 /* did the compression code fall back to uncompressed IO? */
560 if (!async_extent->pages) {
561 int page_started = 0;
562 unsigned long nr_written = 0;
563
564 lock_extent(io_tree, async_extent->start,
565 async_extent->start + async_extent->ram_size - 1,
566 GFP_NOFS);
567
568 /* allocate blocks */
569 cow_file_range(inode, async_cow->locked_page,
570 async_extent->start,
571 async_extent->start +
572 async_extent->ram_size - 1,
573 &page_started, &nr_written, 0);
574
575 /*
576 * if page_started, cow_file_range inserted an
577 * inline extent and took care of all the unlocking
578 * and IO for us. Otherwise, we need to submit
579 * all those pages down to the drive.
580 */
581 if (!page_started)
582 extent_write_locked_range(io_tree,
583 inode, async_extent->start,
584 async_extent->start +
585 async_extent->ram_size - 1,
586 btrfs_get_extent,
587 WB_SYNC_ALL);
588 kfree(async_extent);
589 cond_resched();
590 continue;
591 }
592
593 lock_extent(io_tree, async_extent->start,
594 async_extent->start + async_extent->ram_size - 1,
595 GFP_NOFS);
596 /*
597 * here we're doing allocation and writeback of the
598 * compressed pages
599 */
600 btrfs_drop_extent_cache(inode, async_extent->start,
601 async_extent->start +
602 async_extent->ram_size - 1, 0);
603
604 ret = btrfs_reserve_extent(trans, root,
605 async_extent->compressed_size,
606 async_extent->compressed_size,
607 0, alloc_hint,
608 (u64)-1, &ins, 1);
609 BUG_ON(ret);
610 em = alloc_extent_map(GFP_NOFS);
611 em->start = async_extent->start;
612 em->len = async_extent->ram_size;
613 em->orig_start = em->start;
614
615 em->block_start = ins.objectid;
616 em->block_len = ins.offset;
617 em->bdev = root->fs_info->fs_devices->latest_bdev;
618 set_bit(EXTENT_FLAG_PINNED, &em->flags);
619 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
620
621 while(1) {
622 spin_lock(&em_tree->lock);
623 ret = add_extent_mapping(em_tree, em);
624 spin_unlock(&em_tree->lock);
625 if (ret != -EEXIST) {
626 free_extent_map(em);
627 break;
628 }
629 btrfs_drop_extent_cache(inode, async_extent->start,
630 async_extent->start +
631 async_extent->ram_size - 1, 0);
632 }
633
634 ret = btrfs_add_ordered_extent(inode, async_extent->start,
635 ins.objectid,
636 async_extent->ram_size,
637 ins.offset,
638 BTRFS_ORDERED_COMPRESSED);
639 BUG_ON(ret);
640
641 btrfs_end_transaction(trans, root);
642
643 /*
644 * clear dirty, set writeback and unlock the pages.
645 */
646 extent_clear_unlock_delalloc(inode,
647 &BTRFS_I(inode)->io_tree,
648 async_extent->start,
649 async_extent->start +
650 async_extent->ram_size - 1,
651 NULL, 1, 1, 0, 1, 1, 0);
652
653 ret = btrfs_submit_compressed_write(inode,
654 async_extent->start,
655 async_extent->ram_size,
656 ins.objectid,
657 ins.offset, async_extent->pages,
658 async_extent->nr_pages);
659
660 BUG_ON(ret);
661 trans = btrfs_join_transaction(root, 1);
662 alloc_hint = ins.objectid + ins.offset;
663 kfree(async_extent);
664 cond_resched();
665 }
666
667 btrfs_end_transaction(trans, root);
668 return 0;
669 }
670
671 /*
672 * when extent_io.c finds a delayed allocation range in the file,
673 * the call backs end up in this code. The basic idea is to
674 * allocate extents on disk for the range, and create ordered data structs
675 * in ram to track those extents.
676 *
677 * locked_page is the page that writepage had locked already. We use
678 * it to make sure we don't do extra locks or unlocks.
679 *
680 * *page_started is set to one if we unlock locked_page and do everything
681 * required to start IO on it. It may be clean and already done with
682 * IO when we return.
683 */
684 static noinline int cow_file_range(struct inode *inode,
685 struct page *locked_page,
686 u64 start, u64 end, int *page_started,
687 unsigned long *nr_written,
688 int unlock)
689 {
690 struct btrfs_root *root = BTRFS_I(inode)->root;
691 struct btrfs_trans_handle *trans;
692 u64 alloc_hint = 0;
693 u64 num_bytes;
694 unsigned long ram_size;
695 u64 disk_num_bytes;
696 u64 cur_alloc_size;
697 u64 blocksize = root->sectorsize;
698 u64 actual_end;
699 struct btrfs_key ins;
700 struct extent_map *em;
701 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
702 int ret = 0;
703
704 trans = btrfs_join_transaction(root, 1);
705 BUG_ON(!trans);
706 btrfs_set_trans_block_group(trans, inode);
707
708 actual_end = min_t(u64, i_size_read(inode), end + 1);
709
710 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
711 num_bytes = max(blocksize, num_bytes);
712 disk_num_bytes = num_bytes;
713 ret = 0;
714
715 if (start == 0) {
716 /* lets try to make an inline extent */
717 ret = cow_file_range_inline(trans, root, inode,
718 start, end, 0, NULL);
719 if (ret == 0) {
720 extent_clear_unlock_delalloc(inode,
721 &BTRFS_I(inode)->io_tree,
722 start, end, NULL, 1, 1,
723 1, 1, 1, 1);
724 *nr_written = *nr_written +
725 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
726 *page_started = 1;
727 ret = 0;
728 goto out;
729 }
730 }
731
732 BUG_ON(disk_num_bytes >
733 btrfs_super_total_bytes(&root->fs_info->super_copy));
734
735 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
736
737 while(disk_num_bytes > 0) {
738 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
739 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
740 root->sectorsize, 0, alloc_hint,
741 (u64)-1, &ins, 1);
742 if (ret) {
743 BUG();
744 }
745 em = alloc_extent_map(GFP_NOFS);
746 em->start = start;
747 em->orig_start = em->start;
748
749 ram_size = ins.offset;
750 em->len = ins.offset;
751
752 em->block_start = ins.objectid;
753 em->block_len = ins.offset;
754 em->bdev = root->fs_info->fs_devices->latest_bdev;
755 set_bit(EXTENT_FLAG_PINNED, &em->flags);
756
757 while(1) {
758 spin_lock(&em_tree->lock);
759 ret = add_extent_mapping(em_tree, em);
760 spin_unlock(&em_tree->lock);
761 if (ret != -EEXIST) {
762 free_extent_map(em);
763 break;
764 }
765 btrfs_drop_extent_cache(inode, start,
766 start + ram_size - 1, 0);
767 }
768
769 cur_alloc_size = ins.offset;
770 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771 ram_size, cur_alloc_size, 0);
772 BUG_ON(ret);
773
774 if (disk_num_bytes < cur_alloc_size) {
775 printk("num_bytes %Lu cur_alloc %Lu\n", disk_num_bytes,
776 cur_alloc_size);
777 break;
778 }
779 /* we're not doing compressed IO, don't unlock the first
780 * page (which the caller expects to stay locked), don't
781 * clear any dirty bits and don't set any writeback bits
782 */
783 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
784 start, start + ram_size - 1,
785 locked_page, unlock, 1,
786 1, 0, 0, 0);
787 disk_num_bytes -= cur_alloc_size;
788 num_bytes -= cur_alloc_size;
789 alloc_hint = ins.objectid + ins.offset;
790 start += cur_alloc_size;
791 }
792 out:
793 ret = 0;
794 btrfs_end_transaction(trans, root);
795
796 return ret;
797 }
798
799 /*
800 * work queue call back to started compression on a file and pages
801 */
802 static noinline void async_cow_start(struct btrfs_work *work)
803 {
804 struct async_cow *async_cow;
805 int num_added = 0;
806 async_cow = container_of(work, struct async_cow, work);
807
808 compress_file_range(async_cow->inode, async_cow->locked_page,
809 async_cow->start, async_cow->end, async_cow,
810 &num_added);
811 if (num_added == 0)
812 async_cow->inode = NULL;
813 }
814
815 /*
816 * work queue call back to submit previously compressed pages
817 */
818 static noinline void async_cow_submit(struct btrfs_work *work)
819 {
820 struct async_cow *async_cow;
821 struct btrfs_root *root;
822 unsigned long nr_pages;
823
824 async_cow = container_of(work, struct async_cow, work);
825
826 root = async_cow->root;
827 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
828 PAGE_CACHE_SHIFT;
829
830 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
831
832 if (atomic_read(&root->fs_info->async_delalloc_pages) <
833 5 * 1042 * 1024 &&
834 waitqueue_active(&root->fs_info->async_submit_wait))
835 wake_up(&root->fs_info->async_submit_wait);
836
837 if (async_cow->inode) {
838 submit_compressed_extents(async_cow->inode, async_cow);
839 }
840 }
841
842 static noinline void async_cow_free(struct btrfs_work *work)
843 {
844 struct async_cow *async_cow;
845 async_cow = container_of(work, struct async_cow, work);
846 kfree(async_cow);
847 }
848
849 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
850 u64 start, u64 end, int *page_started,
851 unsigned long *nr_written)
852 {
853 struct async_cow *async_cow;
854 struct btrfs_root *root = BTRFS_I(inode)->root;
855 unsigned long nr_pages;
856 u64 cur_end;
857 int limit = 10 * 1024 * 1042;
858
859 if (!btrfs_test_opt(root, COMPRESS)) {
860 return cow_file_range(inode, locked_page, start, end,
861 page_started, nr_written, 1);
862 }
863
864 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
865 EXTENT_DELALLOC, 1, 0, GFP_NOFS);
866 while(start < end) {
867 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
868 async_cow->inode = inode;
869 async_cow->root = root;
870 async_cow->locked_page = locked_page;
871 async_cow->start = start;
872
873 if (btrfs_test_flag(inode, NOCOMPRESS))
874 cur_end = end;
875 else
876 cur_end = min(end, start + 512 * 1024 - 1);
877
878 async_cow->end = cur_end;
879 INIT_LIST_HEAD(&async_cow->extents);
880
881 async_cow->work.func = async_cow_start;
882 async_cow->work.ordered_func = async_cow_submit;
883 async_cow->work.ordered_free = async_cow_free;
884 async_cow->work.flags = 0;
885
886 while(atomic_read(&root->fs_info->async_submit_draining) &&
887 atomic_read(&root->fs_info->async_delalloc_pages)) {
888 wait_event(root->fs_info->async_submit_wait,
889 (atomic_read(&root->fs_info->async_delalloc_pages)
890 == 0));
891 }
892
893 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
894 PAGE_CACHE_SHIFT;
895 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
896
897 btrfs_queue_worker(&root->fs_info->delalloc_workers,
898 &async_cow->work);
899
900 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
901 wait_event(root->fs_info->async_submit_wait,
902 (atomic_read(&root->fs_info->async_delalloc_pages) <
903 limit));
904 }
905
906 while(atomic_read(&root->fs_info->async_submit_draining) &&
907 atomic_read(&root->fs_info->async_delalloc_pages)) {
908 wait_event(root->fs_info->async_submit_wait,
909 (atomic_read(&root->fs_info->async_delalloc_pages) ==
910 0));
911 }
912
913 *nr_written += nr_pages;
914 start = cur_end + 1;
915 }
916 *page_started = 1;
917 return 0;
918 }
919
920 /*
921 * when nowcow writeback call back. This checks for snapshots or COW copies
922 * of the extents that exist in the file, and COWs the file as required.
923 *
924 * If no cow copies or snapshots exist, we write directly to the existing
925 * blocks on disk
926 */
927 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page,
928 u64 start, u64 end, int *page_started, int force,
929 unsigned long *nr_written)
930 {
931 struct btrfs_root *root = BTRFS_I(inode)->root;
932 struct btrfs_trans_handle *trans;
933 struct extent_buffer *leaf;
934 struct btrfs_path *path;
935 struct btrfs_file_extent_item *fi;
936 struct btrfs_key found_key;
937 u64 cow_start;
938 u64 cur_offset;
939 u64 extent_end;
940 u64 disk_bytenr;
941 u64 num_bytes;
942 int extent_type;
943 int ret;
944 int type;
945 int nocow;
946 int check_prev = 1;
947
948 path = btrfs_alloc_path();
949 BUG_ON(!path);
950 trans = btrfs_join_transaction(root, 1);
951 BUG_ON(!trans);
952
953 cow_start = (u64)-1;
954 cur_offset = start;
955 while (1) {
956 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
957 cur_offset, 0);
958 BUG_ON(ret < 0);
959 if (ret > 0 && path->slots[0] > 0 && check_prev) {
960 leaf = path->nodes[0];
961 btrfs_item_key_to_cpu(leaf, &found_key,
962 path->slots[0] - 1);
963 if (found_key.objectid == inode->i_ino &&
964 found_key.type == BTRFS_EXTENT_DATA_KEY)
965 path->slots[0]--;
966 }
967 check_prev = 0;
968 next_slot:
969 leaf = path->nodes[0];
970 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
971 ret = btrfs_next_leaf(root, path);
972 if (ret < 0)
973 BUG_ON(1);
974 if (ret > 0)
975 break;
976 leaf = path->nodes[0];
977 }
978
979 nocow = 0;
980 disk_bytenr = 0;
981 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
982
983 if (found_key.objectid > inode->i_ino ||
984 found_key.type > BTRFS_EXTENT_DATA_KEY ||
985 found_key.offset > end)
986 break;
987
988 if (found_key.offset > cur_offset) {
989 extent_end = found_key.offset;
990 goto out_check;
991 }
992
993 fi = btrfs_item_ptr(leaf, path->slots[0],
994 struct btrfs_file_extent_item);
995 extent_type = btrfs_file_extent_type(leaf, fi);
996
997 if (extent_type == BTRFS_FILE_EXTENT_REG ||
998 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
999 struct btrfs_block_group_cache *block_group;
1000 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1001 extent_end = found_key.offset +
1002 btrfs_file_extent_num_bytes(leaf, fi);
1003 if (extent_end <= start) {
1004 path->slots[0]++;
1005 goto next_slot;
1006 }
1007 if (btrfs_file_extent_compression(leaf, fi) ||
1008 btrfs_file_extent_encryption(leaf, fi) ||
1009 btrfs_file_extent_other_encoding(leaf, fi))
1010 goto out_check;
1011 if (disk_bytenr == 0)
1012 goto out_check;
1013 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1014 goto out_check;
1015 if (btrfs_cross_ref_exist(trans, root, disk_bytenr))
1016 goto out_check;
1017 block_group = btrfs_lookup_block_group(root->fs_info,
1018 disk_bytenr);
1019 if (!block_group || block_group->ro)
1020 goto out_check;
1021 disk_bytenr += btrfs_file_extent_offset(leaf, fi);
1022 nocow = 1;
1023 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1024 extent_end = found_key.offset +
1025 btrfs_file_extent_inline_len(leaf, fi);
1026 extent_end = ALIGN(extent_end, root->sectorsize);
1027 } else {
1028 BUG_ON(1);
1029 }
1030 out_check:
1031 if (extent_end <= start) {
1032 path->slots[0]++;
1033 goto next_slot;
1034 }
1035 if (!nocow) {
1036 if (cow_start == (u64)-1)
1037 cow_start = cur_offset;
1038 cur_offset = extent_end;
1039 if (cur_offset > end)
1040 break;
1041 path->slots[0]++;
1042 goto next_slot;
1043 }
1044
1045 btrfs_release_path(root, path);
1046 if (cow_start != (u64)-1) {
1047 ret = cow_file_range(inode, locked_page, cow_start,
1048 found_key.offset - 1, page_started,
1049 nr_written, 1);
1050 BUG_ON(ret);
1051 cow_start = (u64)-1;
1052 }
1053
1054 disk_bytenr += cur_offset - found_key.offset;
1055 num_bytes = min(end + 1, extent_end) - cur_offset;
1056 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1057 struct extent_map *em;
1058 struct extent_map_tree *em_tree;
1059 em_tree = &BTRFS_I(inode)->extent_tree;
1060 em = alloc_extent_map(GFP_NOFS);
1061 em->start = cur_offset;
1062 em->orig_start = em->start;
1063 em->len = num_bytes;
1064 em->block_len = num_bytes;
1065 em->block_start = disk_bytenr;
1066 em->bdev = root->fs_info->fs_devices->latest_bdev;
1067 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1068 while (1) {
1069 spin_lock(&em_tree->lock);
1070 ret = add_extent_mapping(em_tree, em);
1071 spin_unlock(&em_tree->lock);
1072 if (ret != -EEXIST) {
1073 free_extent_map(em);
1074 break;
1075 }
1076 btrfs_drop_extent_cache(inode, em->start,
1077 em->start + em->len - 1, 0);
1078 }
1079 type = BTRFS_ORDERED_PREALLOC;
1080 } else {
1081 type = BTRFS_ORDERED_NOCOW;
1082 }
1083
1084 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1085 num_bytes, num_bytes, type);
1086 BUG_ON(ret);
1087
1088 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1089 cur_offset, cur_offset + num_bytes - 1,
1090 locked_page, 1, 1, 1, 0, 0, 0);
1091 cur_offset = extent_end;
1092 if (cur_offset > end)
1093 break;
1094 }
1095 btrfs_release_path(root, path);
1096
1097 if (cur_offset <= end && cow_start == (u64)-1)
1098 cow_start = cur_offset;
1099 if (cow_start != (u64)-1) {
1100 ret = cow_file_range(inode, locked_page, cow_start, end,
1101 page_started, nr_written, 1);
1102 BUG_ON(ret);
1103 }
1104
1105 ret = btrfs_end_transaction(trans, root);
1106 BUG_ON(ret);
1107 btrfs_free_path(path);
1108 return 0;
1109 }
1110
1111 /*
1112 * extent_io.c call back to do delayed allocation processing
1113 */
1114 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1115 u64 start, u64 end, int *page_started,
1116 unsigned long *nr_written)
1117 {
1118 struct btrfs_root *root = BTRFS_I(inode)->root;
1119 int ret;
1120
1121 if (btrfs_test_opt(root, NODATACOW) ||
1122 btrfs_test_flag(inode, NODATACOW))
1123 ret = run_delalloc_nocow(inode, locked_page, start, end,
1124 page_started, 0, nr_written);
1125 else if (btrfs_test_flag(inode, PREALLOC))
1126 ret = run_delalloc_nocow(inode, locked_page, start, end,
1127 page_started, 1, nr_written);
1128 else
1129 ret = cow_file_range_async(inode, locked_page, start, end,
1130 page_started, nr_written);
1131
1132 return ret;
1133 }
1134
1135 /*
1136 * extent_io.c set_bit_hook, used to track delayed allocation
1137 * bytes in this file, and to maintain the list of inodes that
1138 * have pending delalloc work to be done.
1139 */
1140 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1141 unsigned long old, unsigned long bits)
1142 {
1143 unsigned long flags;
1144 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1145 struct btrfs_root *root = BTRFS_I(inode)->root;
1146 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
1147 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1148 root->fs_info->delalloc_bytes += end - start + 1;
1149 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1150 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1151 &root->fs_info->delalloc_inodes);
1152 }
1153 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
1154 }
1155 return 0;
1156 }
1157
1158 /*
1159 * extent_io.c clear_bit_hook, see set_bit_hook for why
1160 */
1161 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1162 unsigned long old, unsigned long bits)
1163 {
1164 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1165 struct btrfs_root *root = BTRFS_I(inode)->root;
1166 unsigned long flags;
1167
1168 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
1169 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1170 printk("warning: delalloc account %Lu %Lu\n",
1171 end - start + 1, root->fs_info->delalloc_bytes);
1172 root->fs_info->delalloc_bytes = 0;
1173 BTRFS_I(inode)->delalloc_bytes = 0;
1174 } else {
1175 root->fs_info->delalloc_bytes -= end - start + 1;
1176 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1177 }
1178 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1179 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1180 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1181 }
1182 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
1183 }
1184 return 0;
1185 }
1186
1187 /*
1188 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1189 * we don't create bios that span stripes or chunks
1190 */
1191 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1192 size_t size, struct bio *bio,
1193 unsigned long bio_flags)
1194 {
1195 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1196 struct btrfs_mapping_tree *map_tree;
1197 u64 logical = (u64)bio->bi_sector << 9;
1198 u64 length = 0;
1199 u64 map_length;
1200 int ret;
1201
1202 if (bio_flags & EXTENT_BIO_COMPRESSED)
1203 return 0;
1204
1205 length = bio->bi_size;
1206 map_tree = &root->fs_info->mapping_tree;
1207 map_length = length;
1208 ret = btrfs_map_block(map_tree, READ, logical,
1209 &map_length, NULL, 0);
1210
1211 if (map_length < length + size) {
1212 return 1;
1213 }
1214 return 0;
1215 }
1216
1217 /*
1218 * in order to insert checksums into the metadata in large chunks,
1219 * we wait until bio submission time. All the pages in the bio are
1220 * checksummed and sums are attached onto the ordered extent record.
1221 *
1222 * At IO completion time the cums attached on the ordered extent record
1223 * are inserted into the btree
1224 */
1225 int __btrfs_submit_bio_start(struct inode *inode, int rw, struct bio *bio,
1226 int mirror_num, unsigned long bio_flags)
1227 {
1228 struct btrfs_root *root = BTRFS_I(inode)->root;
1229 int ret = 0;
1230
1231 ret = btrfs_csum_one_bio(root, inode, bio);
1232 BUG_ON(ret);
1233 return 0;
1234 }
1235
1236 /*
1237 * in order to insert checksums into the metadata in large chunks,
1238 * we wait until bio submission time. All the pages in the bio are
1239 * checksummed and sums are attached onto the ordered extent record.
1240 *
1241 * At IO completion time the cums attached on the ordered extent record
1242 * are inserted into the btree
1243 */
1244 int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1245 int mirror_num, unsigned long bio_flags)
1246 {
1247 struct btrfs_root *root = BTRFS_I(inode)->root;
1248 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1249 }
1250
1251 /*
1252 * extent_io.c submission hook. This does the right thing for csum calculation on write,
1253 * or reading the csums from the tree before a read
1254 */
1255 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1256 int mirror_num, unsigned long bio_flags)
1257 {
1258 struct btrfs_root *root = BTRFS_I(inode)->root;
1259 int ret = 0;
1260 int skip_sum;
1261
1262 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1263 BUG_ON(ret);
1264
1265 skip_sum = btrfs_test_opt(root, NODATASUM) ||
1266 btrfs_test_flag(inode, NODATASUM);
1267
1268 if (!(rw & (1 << BIO_RW))) {
1269
1270 if (bio_flags & EXTENT_BIO_COMPRESSED)
1271 return btrfs_submit_compressed_read(inode, bio,
1272 mirror_num, bio_flags);
1273 else if (!skip_sum)
1274 btrfs_lookup_bio_sums(root, inode, bio);
1275 goto mapit;
1276 } else if (!skip_sum) {
1277 /* we're doing a write, do the async checksumming */
1278 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1279 inode, rw, bio, mirror_num,
1280 bio_flags, __btrfs_submit_bio_start,
1281 __btrfs_submit_bio_done);
1282 }
1283
1284 mapit:
1285 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1286 }
1287
1288 /*
1289 * given a list of ordered sums record them in the inode. This happens
1290 * at IO completion time based on sums calculated at bio submission time.
1291 */
1292 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1293 struct inode *inode, u64 file_offset,
1294 struct list_head *list)
1295 {
1296 struct list_head *cur;
1297 struct btrfs_ordered_sum *sum;
1298
1299 btrfs_set_trans_block_group(trans, inode);
1300 list_for_each(cur, list) {
1301 sum = list_entry(cur, struct btrfs_ordered_sum, list);
1302 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
1303 inode, sum);
1304 }
1305 return 0;
1306 }
1307
1308 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1309 {
1310 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) {
1311 WARN_ON(1);
1312 }
1313 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1314 GFP_NOFS);
1315 }
1316
1317 /* see btrfs_writepage_start_hook for details on why this is required */
1318 struct btrfs_writepage_fixup {
1319 struct page *page;
1320 struct btrfs_work work;
1321 };
1322
1323 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1324 {
1325 struct btrfs_writepage_fixup *fixup;
1326 struct btrfs_ordered_extent *ordered;
1327 struct page *page;
1328 struct inode *inode;
1329 u64 page_start;
1330 u64 page_end;
1331
1332 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1333 page = fixup->page;
1334 again:
1335 lock_page(page);
1336 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1337 ClearPageChecked(page);
1338 goto out_page;
1339 }
1340
1341 inode = page->mapping->host;
1342 page_start = page_offset(page);
1343 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1344
1345 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1346
1347 /* already ordered? We're done */
1348 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1349 EXTENT_ORDERED, 0)) {
1350 goto out;
1351 }
1352
1353 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1354 if (ordered) {
1355 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1356 page_end, GFP_NOFS);
1357 unlock_page(page);
1358 btrfs_start_ordered_extent(inode, ordered, 1);
1359 goto again;
1360 }
1361
1362 btrfs_set_extent_delalloc(inode, page_start, page_end);
1363 ClearPageChecked(page);
1364 out:
1365 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1366 out_page:
1367 unlock_page(page);
1368 page_cache_release(page);
1369 }
1370
1371 /*
1372 * There are a few paths in the higher layers of the kernel that directly
1373 * set the page dirty bit without asking the filesystem if it is a
1374 * good idea. This causes problems because we want to make sure COW
1375 * properly happens and the data=ordered rules are followed.
1376 *
1377 * In our case any range that doesn't have the ORDERED bit set
1378 * hasn't been properly setup for IO. We kick off an async process
1379 * to fix it up. The async helper will wait for ordered extents, set
1380 * the delalloc bit and make it safe to write the page.
1381 */
1382 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1383 {
1384 struct inode *inode = page->mapping->host;
1385 struct btrfs_writepage_fixup *fixup;
1386 struct btrfs_root *root = BTRFS_I(inode)->root;
1387 int ret;
1388
1389 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1390 EXTENT_ORDERED, 0);
1391 if (ret)
1392 return 0;
1393
1394 if (PageChecked(page))
1395 return -EAGAIN;
1396
1397 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1398 if (!fixup)
1399 return -EAGAIN;
1400
1401 SetPageChecked(page);
1402 page_cache_get(page);
1403 fixup->work.func = btrfs_writepage_fixup_worker;
1404 fixup->page = page;
1405 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1406 return -EAGAIN;
1407 }
1408
1409 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1410 struct inode *inode, u64 file_pos,
1411 u64 disk_bytenr, u64 disk_num_bytes,
1412 u64 num_bytes, u64 ram_bytes,
1413 u8 compression, u8 encryption,
1414 u16 other_encoding, int extent_type)
1415 {
1416 struct btrfs_root *root = BTRFS_I(inode)->root;
1417 struct btrfs_file_extent_item *fi;
1418 struct btrfs_path *path;
1419 struct extent_buffer *leaf;
1420 struct btrfs_key ins;
1421 u64 hint;
1422 int ret;
1423
1424 path = btrfs_alloc_path();
1425 BUG_ON(!path);
1426
1427 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1428 file_pos + num_bytes, file_pos, &hint);
1429 BUG_ON(ret);
1430
1431 ins.objectid = inode->i_ino;
1432 ins.offset = file_pos;
1433 ins.type = BTRFS_EXTENT_DATA_KEY;
1434 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1435 BUG_ON(ret);
1436 leaf = path->nodes[0];
1437 fi = btrfs_item_ptr(leaf, path->slots[0],
1438 struct btrfs_file_extent_item);
1439 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1440 btrfs_set_file_extent_type(leaf, fi, extent_type);
1441 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1442 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1443 btrfs_set_file_extent_offset(leaf, fi, 0);
1444 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1445 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1446 btrfs_set_file_extent_compression(leaf, fi, compression);
1447 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1448 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1449 btrfs_mark_buffer_dirty(leaf);
1450
1451 inode_add_bytes(inode, num_bytes);
1452 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1453
1454 ins.objectid = disk_bytenr;
1455 ins.offset = disk_num_bytes;
1456 ins.type = BTRFS_EXTENT_ITEM_KEY;
1457 ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1458 root->root_key.objectid,
1459 trans->transid, inode->i_ino, &ins);
1460 BUG_ON(ret);
1461
1462 btrfs_free_path(path);
1463 return 0;
1464 }
1465
1466 /* as ordered data IO finishes, this gets called so we can finish
1467 * an ordered extent if the range of bytes in the file it covers are
1468 * fully written.
1469 */
1470 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1471 {
1472 struct btrfs_root *root = BTRFS_I(inode)->root;
1473 struct btrfs_trans_handle *trans;
1474 struct btrfs_ordered_extent *ordered_extent;
1475 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1476 int compressed = 0;
1477 int ret;
1478
1479 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1480 if (!ret)
1481 return 0;
1482
1483 trans = btrfs_join_transaction(root, 1);
1484
1485 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1486 BUG_ON(!ordered_extent);
1487 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1488 goto nocow;
1489
1490 lock_extent(io_tree, ordered_extent->file_offset,
1491 ordered_extent->file_offset + ordered_extent->len - 1,
1492 GFP_NOFS);
1493
1494 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1495 compressed = 1;
1496 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1497 BUG_ON(compressed);
1498 ret = btrfs_mark_extent_written(trans, root, inode,
1499 ordered_extent->file_offset,
1500 ordered_extent->file_offset +
1501 ordered_extent->len);
1502 BUG_ON(ret);
1503 } else {
1504 ret = insert_reserved_file_extent(trans, inode,
1505 ordered_extent->file_offset,
1506 ordered_extent->start,
1507 ordered_extent->disk_len,
1508 ordered_extent->len,
1509 ordered_extent->len,
1510 compressed, 0, 0,
1511 BTRFS_FILE_EXTENT_REG);
1512 BUG_ON(ret);
1513 }
1514 unlock_extent(io_tree, ordered_extent->file_offset,
1515 ordered_extent->file_offset + ordered_extent->len - 1,
1516 GFP_NOFS);
1517 nocow:
1518 add_pending_csums(trans, inode, ordered_extent->file_offset,
1519 &ordered_extent->list);
1520
1521 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1522 btrfs_ordered_update_i_size(inode, ordered_extent);
1523 btrfs_update_inode(trans, root, inode);
1524 btrfs_remove_ordered_extent(inode, ordered_extent);
1525 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1526
1527 /* once for us */
1528 btrfs_put_ordered_extent(ordered_extent);
1529 /* once for the tree */
1530 btrfs_put_ordered_extent(ordered_extent);
1531
1532 btrfs_end_transaction(trans, root);
1533 return 0;
1534 }
1535
1536 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1537 struct extent_state *state, int uptodate)
1538 {
1539 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1540 }
1541
1542 /*
1543 * When IO fails, either with EIO or csum verification fails, we
1544 * try other mirrors that might have a good copy of the data. This
1545 * io_failure_record is used to record state as we go through all the
1546 * mirrors. If another mirror has good data, the page is set up to date
1547 * and things continue. If a good mirror can't be found, the original
1548 * bio end_io callback is called to indicate things have failed.
1549 */
1550 struct io_failure_record {
1551 struct page *page;
1552 u64 start;
1553 u64 len;
1554 u64 logical;
1555 int last_mirror;
1556 };
1557
1558 int btrfs_io_failed_hook(struct bio *failed_bio,
1559 struct page *page, u64 start, u64 end,
1560 struct extent_state *state)
1561 {
1562 struct io_failure_record *failrec = NULL;
1563 u64 private;
1564 struct extent_map *em;
1565 struct inode *inode = page->mapping->host;
1566 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1567 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1568 struct bio *bio;
1569 int num_copies;
1570 int ret;
1571 int rw;
1572 u64 logical;
1573 unsigned long bio_flags = 0;
1574
1575 ret = get_state_private(failure_tree, start, &private);
1576 if (ret) {
1577 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1578 if (!failrec)
1579 return -ENOMEM;
1580 failrec->start = start;
1581 failrec->len = end - start + 1;
1582 failrec->last_mirror = 0;
1583
1584 spin_lock(&em_tree->lock);
1585 em = lookup_extent_mapping(em_tree, start, failrec->len);
1586 if (em->start > start || em->start + em->len < start) {
1587 free_extent_map(em);
1588 em = NULL;
1589 }
1590 spin_unlock(&em_tree->lock);
1591
1592 if (!em || IS_ERR(em)) {
1593 kfree(failrec);
1594 return -EIO;
1595 }
1596 logical = start - em->start;
1597 logical = em->block_start + logical;
1598 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1599 bio_flags = EXTENT_BIO_COMPRESSED;
1600 failrec->logical = logical;
1601 free_extent_map(em);
1602 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1603 EXTENT_DIRTY, GFP_NOFS);
1604 set_state_private(failure_tree, start,
1605 (u64)(unsigned long)failrec);
1606 } else {
1607 failrec = (struct io_failure_record *)(unsigned long)private;
1608 }
1609 num_copies = btrfs_num_copies(
1610 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1611 failrec->logical, failrec->len);
1612 failrec->last_mirror++;
1613 if (!state) {
1614 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
1615 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1616 failrec->start,
1617 EXTENT_LOCKED);
1618 if (state && state->start != failrec->start)
1619 state = NULL;
1620 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
1621 }
1622 if (!state || failrec->last_mirror > num_copies) {
1623 set_state_private(failure_tree, failrec->start, 0);
1624 clear_extent_bits(failure_tree, failrec->start,
1625 failrec->start + failrec->len - 1,
1626 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1627 kfree(failrec);
1628 return -EIO;
1629 }
1630 bio = bio_alloc(GFP_NOFS, 1);
1631 bio->bi_private = state;
1632 bio->bi_end_io = failed_bio->bi_end_io;
1633 bio->bi_sector = failrec->logical >> 9;
1634 bio->bi_bdev = failed_bio->bi_bdev;
1635 bio->bi_size = 0;
1636 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1637 if (failed_bio->bi_rw & (1 << BIO_RW))
1638 rw = WRITE;
1639 else
1640 rw = READ;
1641
1642 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1643 failrec->last_mirror,
1644 bio_flags);
1645 return 0;
1646 }
1647
1648 /*
1649 * each time an IO finishes, we do a fast check in the IO failure tree
1650 * to see if we need to process or clean up an io_failure_record
1651 */
1652 int btrfs_clean_io_failures(struct inode *inode, u64 start)
1653 {
1654 u64 private;
1655 u64 private_failure;
1656 struct io_failure_record *failure;
1657 int ret;
1658
1659 private = 0;
1660 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1661 (u64)-1, 1, EXTENT_DIRTY)) {
1662 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1663 start, &private_failure);
1664 if (ret == 0) {
1665 failure = (struct io_failure_record *)(unsigned long)
1666 private_failure;
1667 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1668 failure->start, 0);
1669 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1670 failure->start,
1671 failure->start + failure->len - 1,
1672 EXTENT_DIRTY | EXTENT_LOCKED,
1673 GFP_NOFS);
1674 kfree(failure);
1675 }
1676 }
1677 return 0;
1678 }
1679
1680 /*
1681 * when reads are done, we need to check csums to verify the data is correct
1682 * if there's a match, we allow the bio to finish. If not, we go through
1683 * the io_failure_record routines to find good copies
1684 */
1685 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1686 struct extent_state *state)
1687 {
1688 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1689 struct inode *inode = page->mapping->host;
1690 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1691 char *kaddr;
1692 u64 private = ~(u32)0;
1693 int ret;
1694 struct btrfs_root *root = BTRFS_I(inode)->root;
1695 u32 csum = ~(u32)0;
1696 unsigned long flags;
1697
1698 if (btrfs_test_opt(root, NODATASUM) ||
1699 btrfs_test_flag(inode, NODATASUM))
1700 return 0;
1701 if (state && state->start == start) {
1702 private = state->private;
1703 ret = 0;
1704 } else {
1705 ret = get_state_private(io_tree, start, &private);
1706 }
1707 local_irq_save(flags);
1708 kaddr = kmap_atomic(page, KM_IRQ0);
1709 if (ret) {
1710 goto zeroit;
1711 }
1712 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1713 btrfs_csum_final(csum, (char *)&csum);
1714 if (csum != private) {
1715 goto zeroit;
1716 }
1717 kunmap_atomic(kaddr, KM_IRQ0);
1718 local_irq_restore(flags);
1719
1720 /* if the io failure tree for this inode is non-empty,
1721 * check to see if we've recovered from a failed IO
1722 */
1723 btrfs_clean_io_failures(inode, start);
1724 return 0;
1725
1726 zeroit:
1727 printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
1728 page->mapping->host->i_ino, (unsigned long long)start, csum,
1729 private);
1730 memset(kaddr + offset, 1, end - start + 1);
1731 flush_dcache_page(page);
1732 kunmap_atomic(kaddr, KM_IRQ0);
1733 local_irq_restore(flags);
1734 if (private == 0)
1735 return 0;
1736 return -EIO;
1737 }
1738
1739 /*
1740 * This creates an orphan entry for the given inode in case something goes
1741 * wrong in the middle of an unlink/truncate.
1742 */
1743 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1744 {
1745 struct btrfs_root *root = BTRFS_I(inode)->root;
1746 int ret = 0;
1747
1748 spin_lock(&root->list_lock);
1749
1750 /* already on the orphan list, we're good */
1751 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1752 spin_unlock(&root->list_lock);
1753 return 0;
1754 }
1755
1756 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1757
1758 spin_unlock(&root->list_lock);
1759
1760 /*
1761 * insert an orphan item to track this unlinked/truncated file
1762 */
1763 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1764
1765 return ret;
1766 }
1767
1768 /*
1769 * We have done the truncate/delete so we can go ahead and remove the orphan
1770 * item for this particular inode.
1771 */
1772 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1773 {
1774 struct btrfs_root *root = BTRFS_I(inode)->root;
1775 int ret = 0;
1776
1777 spin_lock(&root->list_lock);
1778
1779 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1780 spin_unlock(&root->list_lock);
1781 return 0;
1782 }
1783
1784 list_del_init(&BTRFS_I(inode)->i_orphan);
1785 if (!trans) {
1786 spin_unlock(&root->list_lock);
1787 return 0;
1788 }
1789
1790 spin_unlock(&root->list_lock);
1791
1792 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1793
1794 return ret;
1795 }
1796
1797 /*
1798 * this cleans up any orphans that may be left on the list from the last use
1799 * of this root.
1800 */
1801 void btrfs_orphan_cleanup(struct btrfs_root *root)
1802 {
1803 struct btrfs_path *path;
1804 struct extent_buffer *leaf;
1805 struct btrfs_item *item;
1806 struct btrfs_key key, found_key;
1807 struct btrfs_trans_handle *trans;
1808 struct inode *inode;
1809 int ret = 0, nr_unlink = 0, nr_truncate = 0;
1810
1811 path = btrfs_alloc_path();
1812 if (!path)
1813 return;
1814 path->reada = -1;
1815
1816 key.objectid = BTRFS_ORPHAN_OBJECTID;
1817 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1818 key.offset = (u64)-1;
1819
1820
1821 while (1) {
1822 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1823 if (ret < 0) {
1824 printk(KERN_ERR "Error searching slot for orphan: %d"
1825 "\n", ret);
1826 break;
1827 }
1828
1829 /*
1830 * if ret == 0 means we found what we were searching for, which
1831 * is weird, but possible, so only screw with path if we didnt
1832 * find the key and see if we have stuff that matches
1833 */
1834 if (ret > 0) {
1835 if (path->slots[0] == 0)
1836 break;
1837 path->slots[0]--;
1838 }
1839
1840 /* pull out the item */
1841 leaf = path->nodes[0];
1842 item = btrfs_item_nr(leaf, path->slots[0]);
1843 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1844
1845 /* make sure the item matches what we want */
1846 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1847 break;
1848 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1849 break;
1850
1851 /* release the path since we're done with it */
1852 btrfs_release_path(root, path);
1853
1854 /*
1855 * this is where we are basically btrfs_lookup, without the
1856 * crossing root thing. we store the inode number in the
1857 * offset of the orphan item.
1858 */
1859 inode = btrfs_iget_locked(root->fs_info->sb,
1860 found_key.offset, root);
1861 if (!inode)
1862 break;
1863
1864 if (inode->i_state & I_NEW) {
1865 BTRFS_I(inode)->root = root;
1866
1867 /* have to set the location manually */
1868 BTRFS_I(inode)->location.objectid = inode->i_ino;
1869 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1870 BTRFS_I(inode)->location.offset = 0;
1871
1872 btrfs_read_locked_inode(inode);
1873 unlock_new_inode(inode);
1874 }
1875
1876 /*
1877 * add this inode to the orphan list so btrfs_orphan_del does
1878 * the proper thing when we hit it
1879 */
1880 spin_lock(&root->list_lock);
1881 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1882 spin_unlock(&root->list_lock);
1883
1884 /*
1885 * if this is a bad inode, means we actually succeeded in
1886 * removing the inode, but not the orphan record, which means
1887 * we need to manually delete the orphan since iput will just
1888 * do a destroy_inode
1889 */
1890 if (is_bad_inode(inode)) {
1891 trans = btrfs_start_transaction(root, 1);
1892 btrfs_orphan_del(trans, inode);
1893 btrfs_end_transaction(trans, root);
1894 iput(inode);
1895 continue;
1896 }
1897
1898 /* if we have links, this was a truncate, lets do that */
1899 if (inode->i_nlink) {
1900 nr_truncate++;
1901 btrfs_truncate(inode);
1902 } else {
1903 nr_unlink++;
1904 }
1905
1906 /* this will do delete_inode and everything for us */
1907 iput(inode);
1908 }
1909
1910 if (nr_unlink)
1911 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1912 if (nr_truncate)
1913 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1914
1915 btrfs_free_path(path);
1916 }
1917
1918 /*
1919 * read an inode from the btree into the in-memory inode
1920 */
1921 void btrfs_read_locked_inode(struct inode *inode)
1922 {
1923 struct btrfs_path *path;
1924 struct extent_buffer *leaf;
1925 struct btrfs_inode_item *inode_item;
1926 struct btrfs_timespec *tspec;
1927 struct btrfs_root *root = BTRFS_I(inode)->root;
1928 struct btrfs_key location;
1929 u64 alloc_group_block;
1930 u32 rdev;
1931 int ret;
1932
1933 path = btrfs_alloc_path();
1934 BUG_ON(!path);
1935 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1936
1937 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1938 if (ret)
1939 goto make_bad;
1940
1941 leaf = path->nodes[0];
1942 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1943 struct btrfs_inode_item);
1944
1945 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1946 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1947 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1948 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1949 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1950
1951 tspec = btrfs_inode_atime(inode_item);
1952 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1953 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1954
1955 tspec = btrfs_inode_mtime(inode_item);
1956 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1957 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1958
1959 tspec = btrfs_inode_ctime(inode_item);
1960 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1961 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1962
1963 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
1964 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
1965 inode->i_generation = BTRFS_I(inode)->generation;
1966 inode->i_rdev = 0;
1967 rdev = btrfs_inode_rdev(leaf, inode_item);
1968
1969 BTRFS_I(inode)->index_cnt = (u64)-1;
1970
1971 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1972 BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1973 alloc_group_block);
1974 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1975 if (!BTRFS_I(inode)->block_group) {
1976 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1977 NULL, 0,
1978 BTRFS_BLOCK_GROUP_METADATA, 0);
1979 }
1980 btrfs_free_path(path);
1981 inode_item = NULL;
1982
1983 switch (inode->i_mode & S_IFMT) {
1984 case S_IFREG:
1985 inode->i_mapping->a_ops = &btrfs_aops;
1986 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1987 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1988 inode->i_fop = &btrfs_file_operations;
1989 inode->i_op = &btrfs_file_inode_operations;
1990 break;
1991 case S_IFDIR:
1992 inode->i_fop = &btrfs_dir_file_operations;
1993 if (root == root->fs_info->tree_root)
1994 inode->i_op = &btrfs_dir_ro_inode_operations;
1995 else
1996 inode->i_op = &btrfs_dir_inode_operations;
1997 break;
1998 case S_IFLNK:
1999 inode->i_op = &btrfs_symlink_inode_operations;
2000 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2001 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2002 break;
2003 default:
2004 init_special_inode(inode, inode->i_mode, rdev);
2005 break;
2006 }
2007 return;
2008
2009 make_bad:
2010 btrfs_free_path(path);
2011 make_bad_inode(inode);
2012 }
2013
2014 /*
2015 * given a leaf and an inode, copy the inode fields into the leaf
2016 */
2017 static void fill_inode_item(struct btrfs_trans_handle *trans,
2018 struct extent_buffer *leaf,
2019 struct btrfs_inode_item *item,
2020 struct inode *inode)
2021 {
2022 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2023 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2024 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2025 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2026 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2027
2028 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2029 inode->i_atime.tv_sec);
2030 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2031 inode->i_atime.tv_nsec);
2032
2033 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2034 inode->i_mtime.tv_sec);
2035 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2036 inode->i_mtime.tv_nsec);
2037
2038 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2039 inode->i_ctime.tv_sec);
2040 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2041 inode->i_ctime.tv_nsec);
2042
2043 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2044 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2045 btrfs_set_inode_transid(leaf, item, trans->transid);
2046 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2047 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2048 btrfs_set_inode_block_group(leaf, item,
2049 BTRFS_I(inode)->block_group->key.objectid);
2050 }
2051
2052 /*
2053 * copy everything in the in-memory inode into the btree.
2054 */
2055 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
2056 struct btrfs_root *root,
2057 struct inode *inode)
2058 {
2059 struct btrfs_inode_item *inode_item;
2060 struct btrfs_path *path;
2061 struct extent_buffer *leaf;
2062 int ret;
2063
2064 path = btrfs_alloc_path();
2065 BUG_ON(!path);
2066 ret = btrfs_lookup_inode(trans, root, path,
2067 &BTRFS_I(inode)->location, 1);
2068 if (ret) {
2069 if (ret > 0)
2070 ret = -ENOENT;
2071 goto failed;
2072 }
2073
2074 leaf = path->nodes[0];
2075 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2076 struct btrfs_inode_item);
2077
2078 fill_inode_item(trans, leaf, inode_item, inode);
2079 btrfs_mark_buffer_dirty(leaf);
2080 btrfs_set_inode_last_trans(trans, inode);
2081 ret = 0;
2082 failed:
2083 btrfs_free_path(path);
2084 return ret;
2085 }
2086
2087
2088 /*
2089 * unlink helper that gets used here in inode.c and in the tree logging
2090 * recovery code. It remove a link in a directory with a given name, and
2091 * also drops the back refs in the inode to the directory
2092 */
2093 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2094 struct btrfs_root *root,
2095 struct inode *dir, struct inode *inode,
2096 const char *name, int name_len)
2097 {
2098 struct btrfs_path *path;
2099 int ret = 0;
2100 struct extent_buffer *leaf;
2101 struct btrfs_dir_item *di;
2102 struct btrfs_key key;
2103 u64 index;
2104
2105 path = btrfs_alloc_path();
2106 if (!path) {
2107 ret = -ENOMEM;
2108 goto err;
2109 }
2110
2111 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2112 name, name_len, -1);
2113 if (IS_ERR(di)) {
2114 ret = PTR_ERR(di);
2115 goto err;
2116 }
2117 if (!di) {
2118 ret = -ENOENT;
2119 goto err;
2120 }
2121 leaf = path->nodes[0];
2122 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2123 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2124 if (ret)
2125 goto err;
2126 btrfs_release_path(root, path);
2127
2128 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2129 inode->i_ino,
2130 dir->i_ino, &index);
2131 if (ret) {
2132 printk("failed to delete reference to %.*s, "
2133 "inode %lu parent %lu\n", name_len, name,
2134 inode->i_ino, dir->i_ino);
2135 goto err;
2136 }
2137
2138 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2139 index, name, name_len, -1);
2140 if (IS_ERR(di)) {
2141 ret = PTR_ERR(di);
2142 goto err;
2143 }
2144 if (!di) {
2145 ret = -ENOENT;
2146 goto err;
2147 }
2148 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2149 btrfs_release_path(root, path);
2150
2151 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2152 inode, dir->i_ino);
2153 BUG_ON(ret != 0 && ret != -ENOENT);
2154 if (ret != -ENOENT)
2155 BTRFS_I(dir)->log_dirty_trans = trans->transid;
2156
2157 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2158 dir, index);
2159 BUG_ON(ret);
2160 err:
2161 btrfs_free_path(path);
2162 if (ret)
2163 goto out;
2164
2165 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2166 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2167 btrfs_update_inode(trans, root, dir);
2168 btrfs_drop_nlink(inode);
2169 ret = btrfs_update_inode(trans, root, inode);
2170 dir->i_sb->s_dirt = 1;
2171 out:
2172 return ret;
2173 }
2174
2175 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2176 {
2177 struct btrfs_root *root;
2178 struct btrfs_trans_handle *trans;
2179 struct inode *inode = dentry->d_inode;
2180 int ret;
2181 unsigned long nr = 0;
2182
2183 root = BTRFS_I(dir)->root;
2184
2185 ret = btrfs_check_free_space(root, 1, 1);
2186 if (ret)
2187 goto fail;
2188
2189 trans = btrfs_start_transaction(root, 1);
2190
2191 btrfs_set_trans_block_group(trans, dir);
2192 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2193 dentry->d_name.name, dentry->d_name.len);
2194
2195 if (inode->i_nlink == 0)
2196 ret = btrfs_orphan_add(trans, inode);
2197
2198 nr = trans->blocks_used;
2199
2200 btrfs_end_transaction_throttle(trans, root);
2201 fail:
2202 btrfs_btree_balance_dirty(root, nr);
2203 return ret;
2204 }
2205
2206 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2207 {
2208 struct inode *inode = dentry->d_inode;
2209 int err = 0;
2210 int ret;
2211 struct btrfs_root *root = BTRFS_I(dir)->root;
2212 struct btrfs_trans_handle *trans;
2213 unsigned long nr = 0;
2214
2215 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
2216 return -ENOTEMPTY;
2217 }
2218
2219 ret = btrfs_check_free_space(root, 1, 1);
2220 if (ret)
2221 goto fail;
2222
2223 trans = btrfs_start_transaction(root, 1);
2224 btrfs_set_trans_block_group(trans, dir);
2225
2226 err = btrfs_orphan_add(trans, inode);
2227 if (err)
2228 goto fail_trans;
2229
2230 /* now the directory is empty */
2231 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2232 dentry->d_name.name, dentry->d_name.len);
2233 if (!err) {
2234 btrfs_i_size_write(inode, 0);
2235 }
2236
2237 fail_trans:
2238 nr = trans->blocks_used;
2239 ret = btrfs_end_transaction_throttle(trans, root);
2240 fail:
2241 btrfs_btree_balance_dirty(root, nr);
2242
2243 if (ret && !err)
2244 err = ret;
2245 return err;
2246 }
2247
2248 /*
2249 * when truncating bytes in a file, it is possible to avoid reading
2250 * the leaves that contain only checksum items. This can be the
2251 * majority of the IO required to delete a large file, but it must
2252 * be done carefully.
2253 *
2254 * The keys in the level just above the leaves are checked to make sure
2255 * the lowest key in a given leaf is a csum key, and starts at an offset
2256 * after the new size.
2257 *
2258 * Then the key for the next leaf is checked to make sure it also has
2259 * a checksum item for the same file. If it does, we know our target leaf
2260 * contains only checksum items, and it can be safely freed without reading
2261 * it.
2262 *
2263 * This is just an optimization targeted at large files. It may do
2264 * nothing. It will return 0 unless things went badly.
2265 */
2266 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2267 struct btrfs_root *root,
2268 struct btrfs_path *path,
2269 struct inode *inode, u64 new_size)
2270 {
2271 struct btrfs_key key;
2272 int ret;
2273 int nritems;
2274 struct btrfs_key found_key;
2275 struct btrfs_key other_key;
2276 struct btrfs_leaf_ref *ref;
2277 u64 leaf_gen;
2278 u64 leaf_start;
2279
2280 path->lowest_level = 1;
2281 key.objectid = inode->i_ino;
2282 key.type = BTRFS_CSUM_ITEM_KEY;
2283 key.offset = new_size;
2284 again:
2285 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2286 if (ret < 0)
2287 goto out;
2288
2289 if (path->nodes[1] == NULL) {
2290 ret = 0;
2291 goto out;
2292 }
2293 ret = 0;
2294 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2295 nritems = btrfs_header_nritems(path->nodes[1]);
2296
2297 if (!nritems)
2298 goto out;
2299
2300 if (path->slots[1] >= nritems)
2301 goto next_node;
2302
2303 /* did we find a key greater than anything we want to delete? */
2304 if (found_key.objectid > inode->i_ino ||
2305 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2306 goto out;
2307
2308 /* we check the next key in the node to make sure the leave contains
2309 * only checksum items. This comparison doesn't work if our
2310 * leaf is the last one in the node
2311 */
2312 if (path->slots[1] + 1 >= nritems) {
2313 next_node:
2314 /* search forward from the last key in the node, this
2315 * will bring us into the next node in the tree
2316 */
2317 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2318
2319 /* unlikely, but we inc below, so check to be safe */
2320 if (found_key.offset == (u64)-1)
2321 goto out;
2322
2323 /* search_forward needs a path with locks held, do the
2324 * search again for the original key. It is possible
2325 * this will race with a balance and return a path that
2326 * we could modify, but this drop is just an optimization
2327 * and is allowed to miss some leaves.
2328 */
2329 btrfs_release_path(root, path);
2330 found_key.offset++;
2331
2332 /* setup a max key for search_forward */
2333 other_key.offset = (u64)-1;
2334 other_key.type = key.type;
2335 other_key.objectid = key.objectid;
2336
2337 path->keep_locks = 1;
2338 ret = btrfs_search_forward(root, &found_key, &other_key,
2339 path, 0, 0);
2340 path->keep_locks = 0;
2341 if (ret || found_key.objectid != key.objectid ||
2342 found_key.type != key.type) {
2343 ret = 0;
2344 goto out;
2345 }
2346
2347 key.offset = found_key.offset;
2348 btrfs_release_path(root, path);
2349 cond_resched();
2350 goto again;
2351 }
2352
2353 /* we know there's one more slot after us in the tree,
2354 * read that key so we can verify it is also a checksum item
2355 */
2356 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2357
2358 if (found_key.objectid < inode->i_ino)
2359 goto next_key;
2360
2361 if (found_key.type != key.type || found_key.offset < new_size)
2362 goto next_key;
2363
2364 /*
2365 * if the key for the next leaf isn't a csum key from this objectid,
2366 * we can't be sure there aren't good items inside this leaf.
2367 * Bail out
2368 */
2369 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2370 goto out;
2371
2372 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2373 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2374 /*
2375 * it is safe to delete this leaf, it contains only
2376 * csum items from this inode at an offset >= new_size
2377 */
2378 ret = btrfs_del_leaf(trans, root, path, leaf_start);
2379 BUG_ON(ret);
2380
2381 if (root->ref_cows && leaf_gen < trans->transid) {
2382 ref = btrfs_alloc_leaf_ref(root, 0);
2383 if (ref) {
2384 ref->root_gen = root->root_key.offset;
2385 ref->bytenr = leaf_start;
2386 ref->owner = 0;
2387 ref->generation = leaf_gen;
2388 ref->nritems = 0;
2389
2390 ret = btrfs_add_leaf_ref(root, ref, 0);
2391 WARN_ON(ret);
2392 btrfs_free_leaf_ref(root, ref);
2393 } else {
2394 WARN_ON(1);
2395 }
2396 }
2397 next_key:
2398 btrfs_release_path(root, path);
2399
2400 if (other_key.objectid == inode->i_ino &&
2401 other_key.type == key.type && other_key.offset > key.offset) {
2402 key.offset = other_key.offset;
2403 cond_resched();
2404 goto again;
2405 }
2406 ret = 0;
2407 out:
2408 /* fixup any changes we've made to the path */
2409 path->lowest_level = 0;
2410 path->keep_locks = 0;
2411 btrfs_release_path(root, path);
2412 return ret;
2413 }
2414
2415 /*
2416 * this can truncate away extent items, csum items and directory items.
2417 * It starts at a high offset and removes keys until it can't find
2418 * any higher than new_size
2419 *
2420 * csum items that cross the new i_size are truncated to the new size
2421 * as well.
2422 *
2423 * min_type is the minimum key type to truncate down to. If set to 0, this
2424 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2425 */
2426 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2427 struct btrfs_root *root,
2428 struct inode *inode,
2429 u64 new_size, u32 min_type)
2430 {
2431 int ret;
2432 struct btrfs_path *path;
2433 struct btrfs_key key;
2434 struct btrfs_key found_key;
2435 u32 found_type;
2436 struct extent_buffer *leaf;
2437 struct btrfs_file_extent_item *fi;
2438 u64 extent_start = 0;
2439 u64 extent_num_bytes = 0;
2440 u64 item_end = 0;
2441 u64 root_gen = 0;
2442 u64 root_owner = 0;
2443 int found_extent;
2444 int del_item;
2445 int pending_del_nr = 0;
2446 int pending_del_slot = 0;
2447 int extent_type = -1;
2448 int encoding;
2449 u64 mask = root->sectorsize - 1;
2450
2451 if (root->ref_cows)
2452 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2453 path = btrfs_alloc_path();
2454 path->reada = -1;
2455 BUG_ON(!path);
2456
2457 /* FIXME, add redo link to tree so we don't leak on crash */
2458 key.objectid = inode->i_ino;
2459 key.offset = (u64)-1;
2460 key.type = (u8)-1;
2461
2462 btrfs_init_path(path);
2463
2464 ret = drop_csum_leaves(trans, root, path, inode, new_size);
2465 BUG_ON(ret);
2466
2467 search_again:
2468 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2469 if (ret < 0) {
2470 goto error;
2471 }
2472 if (ret > 0) {
2473 /* there are no items in the tree for us to truncate, we're
2474 * done
2475 */
2476 if (path->slots[0] == 0) {
2477 ret = 0;
2478 goto error;
2479 }
2480 path->slots[0]--;
2481 }
2482
2483 while(1) {
2484 fi = NULL;
2485 leaf = path->nodes[0];
2486 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2487 found_type = btrfs_key_type(&found_key);
2488 encoding = 0;
2489
2490 if (found_key.objectid != inode->i_ino)
2491 break;
2492
2493 if (found_type < min_type)
2494 break;
2495
2496 item_end = found_key.offset;
2497 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2498 fi = btrfs_item_ptr(leaf, path->slots[0],
2499 struct btrfs_file_extent_item);
2500 extent_type = btrfs_file_extent_type(leaf, fi);
2501 encoding = btrfs_file_extent_compression(leaf, fi);
2502 encoding |= btrfs_file_extent_encryption(leaf, fi);
2503 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2504
2505 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2506 item_end +=
2507 btrfs_file_extent_num_bytes(leaf, fi);
2508 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2509 item_end += btrfs_file_extent_inline_len(leaf,
2510 fi);
2511 }
2512 item_end--;
2513 }
2514 if (found_type == BTRFS_CSUM_ITEM_KEY) {
2515 ret = btrfs_csum_truncate(trans, root, path,
2516 new_size);
2517 BUG_ON(ret);
2518 }
2519 if (item_end < new_size) {
2520 if (found_type == BTRFS_DIR_ITEM_KEY) {
2521 found_type = BTRFS_INODE_ITEM_KEY;
2522 } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
2523 found_type = BTRFS_CSUM_ITEM_KEY;
2524 } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
2525 found_type = BTRFS_XATTR_ITEM_KEY;
2526 } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
2527 found_type = BTRFS_INODE_REF_KEY;
2528 } else if (found_type) {
2529 found_type--;
2530 } else {
2531 break;
2532 }
2533 btrfs_set_key_type(&key, found_type);
2534 goto next;
2535 }
2536 if (found_key.offset >= new_size)
2537 del_item = 1;
2538 else
2539 del_item = 0;
2540 found_extent = 0;
2541
2542 /* FIXME, shrink the extent if the ref count is only 1 */
2543 if (found_type != BTRFS_EXTENT_DATA_KEY)
2544 goto delete;
2545
2546 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2547 u64 num_dec;
2548 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2549 if (!del_item && !encoding) {
2550 u64 orig_num_bytes =
2551 btrfs_file_extent_num_bytes(leaf, fi);
2552 extent_num_bytes = new_size -
2553 found_key.offset + root->sectorsize - 1;
2554 extent_num_bytes = extent_num_bytes &
2555 ~((u64)root->sectorsize - 1);
2556 btrfs_set_file_extent_num_bytes(leaf, fi,
2557 extent_num_bytes);
2558 num_dec = (orig_num_bytes -
2559 extent_num_bytes);
2560 if (root->ref_cows && extent_start != 0)
2561 inode_sub_bytes(inode, num_dec);
2562 btrfs_mark_buffer_dirty(leaf);
2563 } else {
2564 extent_num_bytes =
2565 btrfs_file_extent_disk_num_bytes(leaf,
2566 fi);
2567 /* FIXME blocksize != 4096 */
2568 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2569 if (extent_start != 0) {
2570 found_extent = 1;
2571 if (root->ref_cows)
2572 inode_sub_bytes(inode, num_dec);
2573 }
2574 root_gen = btrfs_header_generation(leaf);
2575 root_owner = btrfs_header_owner(leaf);
2576 }
2577 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2578 /*
2579 * we can't truncate inline items that have had
2580 * special encodings
2581 */
2582 if (!del_item &&
2583 btrfs_file_extent_compression(leaf, fi) == 0 &&
2584 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2585 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2586 u32 size = new_size - found_key.offset;
2587
2588 if (root->ref_cows) {
2589 inode_sub_bytes(inode, item_end + 1 -
2590 new_size);
2591 }
2592 size =
2593 btrfs_file_extent_calc_inline_size(size);
2594 ret = btrfs_truncate_item(trans, root, path,
2595 size, 1);
2596 BUG_ON(ret);
2597 } else if (root->ref_cows) {
2598 inode_sub_bytes(inode, item_end + 1 -
2599 found_key.offset);
2600 }
2601 }
2602 delete:
2603 if (del_item) {
2604 if (!pending_del_nr) {
2605 /* no pending yet, add ourselves */
2606 pending_del_slot = path->slots[0];
2607 pending_del_nr = 1;
2608 } else if (pending_del_nr &&
2609 path->slots[0] + 1 == pending_del_slot) {
2610 /* hop on the pending chunk */
2611 pending_del_nr++;
2612 pending_del_slot = path->slots[0];
2613 } else {
2614 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
2615 }
2616 } else {
2617 break;
2618 }
2619 if (found_extent) {
2620 ret = btrfs_free_extent(trans, root, extent_start,
2621 extent_num_bytes,
2622 leaf->start, root_owner,
2623 root_gen, inode->i_ino, 0);
2624 BUG_ON(ret);
2625 }
2626 next:
2627 if (path->slots[0] == 0) {
2628 if (pending_del_nr)
2629 goto del_pending;
2630 btrfs_release_path(root, path);
2631 goto search_again;
2632 }
2633
2634 path->slots[0]--;
2635 if (pending_del_nr &&
2636 path->slots[0] + 1 != pending_del_slot) {
2637 struct btrfs_key debug;
2638 del_pending:
2639 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2640 pending_del_slot);
2641 ret = btrfs_del_items(trans, root, path,
2642 pending_del_slot,
2643 pending_del_nr);
2644 BUG_ON(ret);
2645 pending_del_nr = 0;
2646 btrfs_release_path(root, path);
2647 goto search_again;
2648 }
2649 }
2650 ret = 0;
2651 error:
2652 if (pending_del_nr) {
2653 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2654 pending_del_nr);
2655 }
2656 btrfs_free_path(path);
2657 inode->i_sb->s_dirt = 1;
2658 return ret;
2659 }
2660
2661 /*
2662 * taken from block_truncate_page, but does cow as it zeros out
2663 * any bytes left in the last page in the file.
2664 */
2665 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2666 {
2667 struct inode *inode = mapping->host;
2668 struct btrfs_root *root = BTRFS_I(inode)->root;
2669 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2670 struct btrfs_ordered_extent *ordered;
2671 char *kaddr;
2672 u32 blocksize = root->sectorsize;
2673 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2674 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2675 struct page *page;
2676 int ret = 0;
2677 u64 page_start;
2678 u64 page_end;
2679
2680 if ((offset & (blocksize - 1)) == 0)
2681 goto out;
2682
2683 ret = -ENOMEM;
2684 again:
2685 page = grab_cache_page(mapping, index);
2686 if (!page)
2687 goto out;
2688
2689 page_start = page_offset(page);
2690 page_end = page_start + PAGE_CACHE_SIZE - 1;
2691
2692 if (!PageUptodate(page)) {
2693 ret = btrfs_readpage(NULL, page);
2694 lock_page(page);
2695 if (page->mapping != mapping) {
2696 unlock_page(page);
2697 page_cache_release(page);
2698 goto again;
2699 }
2700 if (!PageUptodate(page)) {
2701 ret = -EIO;
2702 goto out_unlock;
2703 }
2704 }
2705 wait_on_page_writeback(page);
2706
2707 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2708 set_page_extent_mapped(page);
2709
2710 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2711 if (ordered) {
2712 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2713 unlock_page(page);
2714 page_cache_release(page);
2715 btrfs_start_ordered_extent(inode, ordered, 1);
2716 btrfs_put_ordered_extent(ordered);
2717 goto again;
2718 }
2719
2720 btrfs_set_extent_delalloc(inode, page_start, page_end);
2721 ret = 0;
2722 if (offset != PAGE_CACHE_SIZE) {
2723 kaddr = kmap(page);
2724 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2725 flush_dcache_page(page);
2726 kunmap(page);
2727 }
2728 ClearPageChecked(page);
2729 set_page_dirty(page);
2730 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2731
2732 out_unlock:
2733 unlock_page(page);
2734 page_cache_release(page);
2735 out:
2736 return ret;
2737 }
2738
2739 int btrfs_cont_expand(struct inode *inode, loff_t size)
2740 {
2741 struct btrfs_trans_handle *trans;
2742 struct btrfs_root *root = BTRFS_I(inode)->root;
2743 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2744 struct extent_map *em;
2745 u64 mask = root->sectorsize - 1;
2746 u64 hole_start = (inode->i_size + mask) & ~mask;
2747 u64 block_end = (size + mask) & ~mask;
2748 u64 last_byte;
2749 u64 cur_offset;
2750 u64 hole_size;
2751 int err;
2752
2753 if (size <= hole_start)
2754 return 0;
2755
2756 err = btrfs_check_free_space(root, 1, 0);
2757 if (err)
2758 return err;
2759
2760 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2761
2762 while (1) {
2763 struct btrfs_ordered_extent *ordered;
2764 btrfs_wait_ordered_range(inode, hole_start,
2765 block_end - hole_start);
2766 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2767 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2768 if (!ordered)
2769 break;
2770 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2771 btrfs_put_ordered_extent(ordered);
2772 }
2773
2774 trans = btrfs_start_transaction(root, 1);
2775 btrfs_set_trans_block_group(trans, inode);
2776
2777 cur_offset = hole_start;
2778 while (1) {
2779 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2780 block_end - cur_offset, 0);
2781 BUG_ON(IS_ERR(em) || !em);
2782 last_byte = min(extent_map_end(em), block_end);
2783 last_byte = (last_byte + mask) & ~mask;
2784 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2785 u64 hint_byte = 0;
2786 hole_size = last_byte - cur_offset;
2787 err = btrfs_drop_extents(trans, root, inode,
2788 cur_offset,
2789 cur_offset + hole_size,
2790 cur_offset, &hint_byte);
2791 if (err)
2792 break;
2793 err = btrfs_insert_file_extent(trans, root,
2794 inode->i_ino, cur_offset, 0,
2795 0, hole_size, 0, hole_size,
2796 0, 0, 0);
2797 btrfs_drop_extent_cache(inode, hole_start,
2798 last_byte - 1, 0);
2799 }
2800 free_extent_map(em);
2801 cur_offset = last_byte;
2802 if (err || cur_offset >= block_end)
2803 break;
2804 }
2805
2806 btrfs_end_transaction(trans, root);
2807 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2808 return err;
2809 }
2810
2811 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2812 {
2813 struct inode *inode = dentry->d_inode;
2814 int err;
2815
2816 err = inode_change_ok(inode, attr);
2817 if (err)
2818 return err;
2819
2820 if (S_ISREG(inode->i_mode) &&
2821 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
2822 err = btrfs_cont_expand(inode, attr->ia_size);
2823 if (err)
2824 return err;
2825 }
2826
2827 err = inode_setattr(inode, attr);
2828
2829 if (!err && ((attr->ia_valid & ATTR_MODE)))
2830 err = btrfs_acl_chmod(inode);
2831 return err;
2832 }
2833
2834 void btrfs_delete_inode(struct inode *inode)
2835 {
2836 struct btrfs_trans_handle *trans;
2837 struct btrfs_root *root = BTRFS_I(inode)->root;
2838 unsigned long nr;
2839 int ret;
2840
2841 truncate_inode_pages(&inode->i_data, 0);
2842 if (is_bad_inode(inode)) {
2843 btrfs_orphan_del(NULL, inode);
2844 goto no_delete;
2845 }
2846 btrfs_wait_ordered_range(inode, 0, (u64)-1);
2847
2848 btrfs_i_size_write(inode, 0);
2849 trans = btrfs_start_transaction(root, 1);
2850
2851 btrfs_set_trans_block_group(trans, inode);
2852 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2853 if (ret) {
2854 btrfs_orphan_del(NULL, inode);
2855 goto no_delete_lock;
2856 }
2857
2858 btrfs_orphan_del(trans, inode);
2859
2860 nr = trans->blocks_used;
2861 clear_inode(inode);
2862
2863 btrfs_end_transaction(trans, root);
2864 btrfs_btree_balance_dirty(root, nr);
2865 return;
2866
2867 no_delete_lock:
2868 nr = trans->blocks_used;
2869 btrfs_end_transaction(trans, root);
2870 btrfs_btree_balance_dirty(root, nr);
2871 no_delete:
2872 clear_inode(inode);
2873 }
2874
2875 /*
2876 * this returns the key found in the dir entry in the location pointer.
2877 * If no dir entries were found, location->objectid is 0.
2878 */
2879 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2880 struct btrfs_key *location)
2881 {
2882 const char *name = dentry->d_name.name;
2883 int namelen = dentry->d_name.len;
2884 struct btrfs_dir_item *di;
2885 struct btrfs_path *path;
2886 struct btrfs_root *root = BTRFS_I(dir)->root;
2887 int ret = 0;
2888
2889 path = btrfs_alloc_path();
2890 BUG_ON(!path);
2891
2892 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2893 namelen, 0);
2894 if (IS_ERR(di))
2895 ret = PTR_ERR(di);
2896 if (!di || IS_ERR(di)) {
2897 goto out_err;
2898 }
2899 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
2900 out:
2901 btrfs_free_path(path);
2902 return ret;
2903 out_err:
2904 location->objectid = 0;
2905 goto out;
2906 }
2907
2908 /*
2909 * when we hit a tree root in a directory, the btrfs part of the inode
2910 * needs to be changed to reflect the root directory of the tree root. This
2911 * is kind of like crossing a mount point.
2912 */
2913 static int fixup_tree_root_location(struct btrfs_root *root,
2914 struct btrfs_key *location,
2915 struct btrfs_root **sub_root,
2916 struct dentry *dentry)
2917 {
2918 struct btrfs_root_item *ri;
2919
2920 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2921 return 0;
2922 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2923 return 0;
2924
2925 *sub_root = btrfs_read_fs_root(root->fs_info, location,
2926 dentry->d_name.name,
2927 dentry->d_name.len);
2928 if (IS_ERR(*sub_root))
2929 return PTR_ERR(*sub_root);
2930
2931 ri = &(*sub_root)->root_item;
2932 location->objectid = btrfs_root_dirid(ri);
2933 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2934 location->offset = 0;
2935
2936 return 0;
2937 }
2938
2939 static noinline void init_btrfs_i(struct inode *inode)
2940 {
2941 struct btrfs_inode *bi = BTRFS_I(inode);
2942
2943 bi->i_acl = NULL;
2944 bi->i_default_acl = NULL;
2945
2946 bi->generation = 0;
2947 bi->last_trans = 0;
2948 bi->logged_trans = 0;
2949 bi->delalloc_bytes = 0;
2950 bi->disk_i_size = 0;
2951 bi->flags = 0;
2952 bi->index_cnt = (u64)-1;
2953 bi->log_dirty_trans = 0;
2954 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2955 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2956 inode->i_mapping, GFP_NOFS);
2957 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2958 inode->i_mapping, GFP_NOFS);
2959 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2960 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2961 mutex_init(&BTRFS_I(inode)->csum_mutex);
2962 mutex_init(&BTRFS_I(inode)->extent_mutex);
2963 mutex_init(&BTRFS_I(inode)->log_mutex);
2964 }
2965
2966 static int btrfs_init_locked_inode(struct inode *inode, void *p)
2967 {
2968 struct btrfs_iget_args *args = p;
2969 inode->i_ino = args->ino;
2970 init_btrfs_i(inode);
2971 BTRFS_I(inode)->root = args->root;
2972 return 0;
2973 }
2974
2975 static int btrfs_find_actor(struct inode *inode, void *opaque)
2976 {
2977 struct btrfs_iget_args *args = opaque;
2978 return (args->ino == inode->i_ino &&
2979 args->root == BTRFS_I(inode)->root);
2980 }
2981
2982 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
2983 struct btrfs_root *root, int wait)
2984 {
2985 struct inode *inode;
2986 struct btrfs_iget_args args;
2987 args.ino = objectid;
2988 args.root = root;
2989
2990 if (wait) {
2991 inode = ilookup5(s, objectid, btrfs_find_actor,
2992 (void *)&args);
2993 } else {
2994 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
2995 (void *)&args);
2996 }
2997 return inode;
2998 }
2999
3000 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
3001 struct btrfs_root *root)
3002 {
3003 struct inode *inode;
3004 struct btrfs_iget_args args;
3005 args.ino = objectid;
3006 args.root = root;
3007
3008 inode = iget5_locked(s, objectid, btrfs_find_actor,
3009 btrfs_init_locked_inode,
3010 (void *)&args);
3011 return inode;
3012 }
3013
3014 /* Get an inode object given its location and corresponding root.
3015 * Returns in *is_new if the inode was read from disk
3016 */
3017 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3018 struct btrfs_root *root, int *is_new)
3019 {
3020 struct inode *inode;
3021
3022 inode = btrfs_iget_locked(s, location->objectid, root);
3023 if (!inode)
3024 return ERR_PTR(-EACCES);
3025
3026 if (inode->i_state & I_NEW) {
3027 BTRFS_I(inode)->root = root;
3028 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3029 btrfs_read_locked_inode(inode);
3030 unlock_new_inode(inode);
3031 if (is_new)
3032 *is_new = 1;
3033 } else {
3034 if (is_new)
3035 *is_new = 0;
3036 }
3037
3038 return inode;
3039 }
3040
3041 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3042 {
3043 struct inode * inode;
3044 struct btrfs_inode *bi = BTRFS_I(dir);
3045 struct btrfs_root *root = bi->root;
3046 struct btrfs_root *sub_root = root;
3047 struct btrfs_key location;
3048 int ret, new;
3049
3050 if (dentry->d_name.len > BTRFS_NAME_LEN)
3051 return ERR_PTR(-ENAMETOOLONG);
3052
3053 ret = btrfs_inode_by_name(dir, dentry, &location);
3054
3055 if (ret < 0)
3056 return ERR_PTR(ret);
3057
3058 inode = NULL;
3059 if (location.objectid) {
3060 ret = fixup_tree_root_location(root, &location, &sub_root,
3061 dentry);
3062 if (ret < 0)
3063 return ERR_PTR(ret);
3064 if (ret > 0)
3065 return ERR_PTR(-ENOENT);
3066 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
3067 if (IS_ERR(inode))
3068 return ERR_CAST(inode);
3069 }
3070 return inode;
3071 }
3072
3073 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3074 struct nameidata *nd)
3075 {
3076 struct inode *inode;
3077
3078 if (dentry->d_name.len > BTRFS_NAME_LEN)
3079 return ERR_PTR(-ENAMETOOLONG);
3080
3081 inode = btrfs_lookup_dentry(dir, dentry);
3082 if (IS_ERR(inode))
3083 return ERR_CAST(inode);
3084
3085 return d_splice_alias(inode, dentry);
3086 }
3087
3088 static unsigned char btrfs_filetype_table[] = {
3089 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3090 };
3091
3092 static int btrfs_real_readdir(struct file *filp, void *dirent,
3093 filldir_t filldir)
3094 {
3095 struct inode *inode = filp->f_dentry->d_inode;
3096 struct btrfs_root *root = BTRFS_I(inode)->root;
3097 struct btrfs_item *item;
3098 struct btrfs_dir_item *di;
3099 struct btrfs_key key;
3100 struct btrfs_key found_key;
3101 struct btrfs_path *path;
3102 int ret;
3103 u32 nritems;
3104 struct extent_buffer *leaf;
3105 int slot;
3106 int advance;
3107 unsigned char d_type;
3108 int over = 0;
3109 u32 di_cur;
3110 u32 di_total;
3111 u32 di_len;
3112 int key_type = BTRFS_DIR_INDEX_KEY;
3113 char tmp_name[32];
3114 char *name_ptr;
3115 int name_len;
3116
3117 /* FIXME, use a real flag for deciding about the key type */
3118 if (root->fs_info->tree_root == root)
3119 key_type = BTRFS_DIR_ITEM_KEY;
3120
3121 /* special case for "." */
3122 if (filp->f_pos == 0) {
3123 over = filldir(dirent, ".", 1,
3124 1, inode->i_ino,
3125 DT_DIR);
3126 if (over)
3127 return 0;
3128 filp->f_pos = 1;
3129 }
3130 /* special case for .., just use the back ref */
3131 if (filp->f_pos == 1) {
3132 u64 pino = parent_ino(filp->f_path.dentry);
3133 over = filldir(dirent, "..", 2,
3134 2, pino, DT_DIR);
3135 if (over)
3136 return 0;
3137 filp->f_pos = 2;
3138 }
3139 path = btrfs_alloc_path();
3140 path->reada = 2;
3141
3142 btrfs_set_key_type(&key, key_type);
3143 key.offset = filp->f_pos;
3144 key.objectid = inode->i_ino;
3145
3146 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3147 if (ret < 0)
3148 goto err;
3149 advance = 0;
3150
3151 while (1) {
3152 leaf = path->nodes[0];
3153 nritems = btrfs_header_nritems(leaf);
3154 slot = path->slots[0];
3155 if (advance || slot >= nritems) {
3156 if (slot >= nritems - 1) {
3157 ret = btrfs_next_leaf(root, path);
3158 if (ret)
3159 break;
3160 leaf = path->nodes[0];
3161 nritems = btrfs_header_nritems(leaf);
3162 slot = path->slots[0];
3163 } else {
3164 slot++;
3165 path->slots[0]++;
3166 }
3167 }
3168
3169 advance = 1;
3170 item = btrfs_item_nr(leaf, slot);
3171 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3172
3173 if (found_key.objectid != key.objectid)
3174 break;
3175 if (btrfs_key_type(&found_key) != key_type)
3176 break;
3177 if (found_key.offset < filp->f_pos)
3178 continue;
3179
3180 filp->f_pos = found_key.offset;
3181
3182 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3183 di_cur = 0;
3184 di_total = btrfs_item_size(leaf, item);
3185
3186 while (di_cur < di_total) {
3187 struct btrfs_key location;
3188
3189 name_len = btrfs_dir_name_len(leaf, di);
3190 if (name_len <= sizeof(tmp_name)) {
3191 name_ptr = tmp_name;
3192 } else {
3193 name_ptr = kmalloc(name_len, GFP_NOFS);
3194 if (!name_ptr) {
3195 ret = -ENOMEM;
3196 goto err;
3197 }
3198 }
3199 read_extent_buffer(leaf, name_ptr,
3200 (unsigned long)(di + 1), name_len);
3201
3202 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3203 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3204
3205 /* is this a reference to our own snapshot? If so
3206 * skip it
3207 */
3208 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3209 location.objectid == root->root_key.objectid) {
3210 over = 0;
3211 goto skip;
3212 }
3213 over = filldir(dirent, name_ptr, name_len,
3214 found_key.offset, location.objectid,
3215 d_type);
3216
3217 skip:
3218 if (name_ptr != tmp_name)
3219 kfree(name_ptr);
3220
3221 if (over)
3222 goto nopos;
3223 di_len = btrfs_dir_name_len(leaf, di) +
3224 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3225 di_cur += di_len;
3226 di = (struct btrfs_dir_item *)((char *)di + di_len);
3227 }
3228 }
3229
3230 /* Reached end of directory/root. Bump pos past the last item. */
3231 if (key_type == BTRFS_DIR_INDEX_KEY)
3232 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
3233 else
3234 filp->f_pos++;
3235 nopos:
3236 ret = 0;
3237 err:
3238 btrfs_free_path(path);
3239 return ret;
3240 }
3241
3242 int btrfs_write_inode(struct inode *inode, int wait)
3243 {
3244 struct btrfs_root *root = BTRFS_I(inode)->root;
3245 struct btrfs_trans_handle *trans;
3246 int ret = 0;
3247
3248 if (root->fs_info->btree_inode == inode)
3249 return 0;
3250
3251 if (wait) {
3252 trans = btrfs_join_transaction(root, 1);
3253 btrfs_set_trans_block_group(trans, inode);
3254 ret = btrfs_commit_transaction(trans, root);
3255 }
3256 return ret;
3257 }
3258
3259 /*
3260 * This is somewhat expensive, updating the tree every time the
3261 * inode changes. But, it is most likely to find the inode in cache.
3262 * FIXME, needs more benchmarking...there are no reasons other than performance
3263 * to keep or drop this code.
3264 */
3265 void btrfs_dirty_inode(struct inode *inode)
3266 {
3267 struct btrfs_root *root = BTRFS_I(inode)->root;
3268 struct btrfs_trans_handle *trans;
3269
3270 trans = btrfs_join_transaction(root, 1);
3271 btrfs_set_trans_block_group(trans, inode);
3272 btrfs_update_inode(trans, root, inode);
3273 btrfs_end_transaction(trans, root);
3274 }
3275
3276 /*
3277 * find the highest existing sequence number in a directory
3278 * and then set the in-memory index_cnt variable to reflect
3279 * free sequence numbers
3280 */
3281 static int btrfs_set_inode_index_count(struct inode *inode)
3282 {
3283 struct btrfs_root *root = BTRFS_I(inode)->root;
3284 struct btrfs_key key, found_key;
3285 struct btrfs_path *path;
3286 struct extent_buffer *leaf;
3287 int ret;
3288
3289 key.objectid = inode->i_ino;
3290 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3291 key.offset = (u64)-1;
3292
3293 path = btrfs_alloc_path();
3294 if (!path)
3295 return -ENOMEM;
3296
3297 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3298 if (ret < 0)
3299 goto out;
3300 /* FIXME: we should be able to handle this */
3301 if (ret == 0)
3302 goto out;
3303 ret = 0;
3304
3305 /*
3306 * MAGIC NUMBER EXPLANATION:
3307 * since we search a directory based on f_pos we have to start at 2
3308 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3309 * else has to start at 2
3310 */
3311 if (path->slots[0] == 0) {
3312 BTRFS_I(inode)->index_cnt = 2;
3313 goto out;
3314 }
3315
3316 path->slots[0]--;
3317
3318 leaf = path->nodes[0];
3319 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3320
3321 if (found_key.objectid != inode->i_ino ||
3322 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3323 BTRFS_I(inode)->index_cnt = 2;
3324 goto out;
3325 }
3326
3327 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3328 out:
3329 btrfs_free_path(path);
3330 return ret;
3331 }
3332
3333 /*
3334 * helper to find a free sequence number in a given directory. This current
3335 * code is very simple, later versions will do smarter things in the btree
3336 */
3337 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3338 {
3339 int ret = 0;
3340
3341 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3342 ret = btrfs_set_inode_index_count(dir);
3343 if (ret) {
3344 return ret;
3345 }
3346 }
3347
3348 *index = BTRFS_I(dir)->index_cnt;
3349 BTRFS_I(dir)->index_cnt++;
3350
3351 return ret;
3352 }
3353
3354 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3355 struct btrfs_root *root,
3356 struct inode *dir,
3357 const char *name, int name_len,
3358 u64 ref_objectid,
3359 u64 objectid,
3360 struct btrfs_block_group_cache *group,
3361 int mode, u64 *index)
3362 {
3363 struct inode *inode;
3364 struct btrfs_inode_item *inode_item;
3365 struct btrfs_block_group_cache *new_inode_group;
3366 struct btrfs_key *location;
3367 struct btrfs_path *path;
3368 struct btrfs_inode_ref *ref;
3369 struct btrfs_key key[2];
3370 u32 sizes[2];
3371 unsigned long ptr;
3372 int ret;
3373 int owner;
3374
3375 path = btrfs_alloc_path();
3376 BUG_ON(!path);
3377
3378 inode = new_inode(root->fs_info->sb);
3379 if (!inode)
3380 return ERR_PTR(-ENOMEM);
3381
3382 if (dir) {
3383 ret = btrfs_set_inode_index(dir, index);
3384 if (ret)
3385 return ERR_PTR(ret);
3386 }
3387 /*
3388 * index_cnt is ignored for everything but a dir,
3389 * btrfs_get_inode_index_count has an explanation for the magic
3390 * number
3391 */
3392 init_btrfs_i(inode);
3393 BTRFS_I(inode)->index_cnt = 2;
3394 BTRFS_I(inode)->root = root;
3395 BTRFS_I(inode)->generation = trans->transid;
3396
3397 if (mode & S_IFDIR)
3398 owner = 0;
3399 else
3400 owner = 1;
3401 new_inode_group = btrfs_find_block_group(root, group, 0,
3402 BTRFS_BLOCK_GROUP_METADATA, owner);
3403 if (!new_inode_group) {
3404 printk("find_block group failed\n");
3405 new_inode_group = group;
3406 }
3407 BTRFS_I(inode)->block_group = new_inode_group;
3408
3409 key[0].objectid = objectid;
3410 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3411 key[0].offset = 0;
3412
3413 key[1].objectid = objectid;
3414 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3415 key[1].offset = ref_objectid;
3416
3417 sizes[0] = sizeof(struct btrfs_inode_item);
3418 sizes[1] = name_len + sizeof(*ref);
3419
3420 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3421 if (ret != 0)
3422 goto fail;
3423
3424 if (objectid > root->highest_inode)
3425 root->highest_inode = objectid;
3426
3427 inode->i_uid = current->fsuid;
3428 inode->i_gid = current->fsgid;
3429 inode->i_mode = mode;
3430 inode->i_ino = objectid;
3431 inode_set_bytes(inode, 0);
3432 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3433 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3434 struct btrfs_inode_item);
3435 fill_inode_item(trans, path->nodes[0], inode_item, inode);
3436
3437 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3438 struct btrfs_inode_ref);
3439 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3440 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3441 ptr = (unsigned long)(ref + 1);
3442 write_extent_buffer(path->nodes[0], name, ptr, name_len);
3443
3444 btrfs_mark_buffer_dirty(path->nodes[0]);
3445 btrfs_free_path(path);
3446
3447 location = &BTRFS_I(inode)->location;
3448 location->objectid = objectid;
3449 location->offset = 0;
3450 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3451
3452 insert_inode_hash(inode);
3453 return inode;
3454 fail:
3455 if (dir)
3456 BTRFS_I(dir)->index_cnt--;
3457 btrfs_free_path(path);
3458 return ERR_PTR(ret);
3459 }
3460
3461 static inline u8 btrfs_inode_type(struct inode *inode)
3462 {
3463 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3464 }
3465
3466 /*
3467 * utility function to add 'inode' into 'parent_inode' with
3468 * a give name and a given sequence number.
3469 * if 'add_backref' is true, also insert a backref from the
3470 * inode to the parent directory.
3471 */
3472 int btrfs_add_link(struct btrfs_trans_handle *trans,
3473 struct inode *parent_inode, struct inode *inode,
3474 const char *name, int name_len, int add_backref, u64 index)
3475 {
3476 int ret;
3477 struct btrfs_key key;
3478 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3479
3480 key.objectid = inode->i_ino;
3481 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3482 key.offset = 0;
3483
3484 ret = btrfs_insert_dir_item(trans, root, name, name_len,
3485 parent_inode->i_ino,
3486 &key, btrfs_inode_type(inode),
3487 index);
3488 if (ret == 0) {
3489 if (add_backref) {
3490 ret = btrfs_insert_inode_ref(trans, root,
3491 name, name_len,
3492 inode->i_ino,
3493 parent_inode->i_ino,
3494 index);
3495 }
3496 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3497 name_len * 2);
3498 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3499 ret = btrfs_update_inode(trans, root, parent_inode);
3500 }
3501 return ret;
3502 }
3503
3504 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3505 struct dentry *dentry, struct inode *inode,
3506 int backref, u64 index)
3507 {
3508 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3509 inode, dentry->d_name.name,
3510 dentry->d_name.len, backref, index);
3511 if (!err) {
3512 d_instantiate(dentry, inode);
3513 return 0;
3514 }
3515 if (err > 0)
3516 err = -EEXIST;
3517 return err;
3518 }
3519
3520 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3521 int mode, dev_t rdev)
3522 {
3523 struct btrfs_trans_handle *trans;
3524 struct btrfs_root *root = BTRFS_I(dir)->root;
3525 struct inode *inode = NULL;
3526 int err;
3527 int drop_inode = 0;
3528 u64 objectid;
3529 unsigned long nr = 0;
3530 u64 index = 0;
3531
3532 if (!new_valid_dev(rdev))
3533 return -EINVAL;
3534
3535 err = btrfs_check_free_space(root, 1, 0);
3536 if (err)
3537 goto fail;
3538
3539 trans = btrfs_start_transaction(root, 1);
3540 btrfs_set_trans_block_group(trans, dir);
3541
3542 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3543 if (err) {
3544 err = -ENOSPC;
3545 goto out_unlock;
3546 }
3547
3548 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3549 dentry->d_name.len,
3550 dentry->d_parent->d_inode->i_ino, objectid,
3551 BTRFS_I(dir)->block_group, mode, &index);
3552 err = PTR_ERR(inode);
3553 if (IS_ERR(inode))
3554 goto out_unlock;
3555
3556 err = btrfs_init_acl(inode, dir);
3557 if (err) {
3558 drop_inode = 1;
3559 goto out_unlock;
3560 }
3561
3562 btrfs_set_trans_block_group(trans, inode);
3563 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3564 if (err)
3565 drop_inode = 1;
3566 else {
3567 inode->i_op = &btrfs_special_inode_operations;
3568 init_special_inode(inode, inode->i_mode, rdev);
3569 btrfs_update_inode(trans, root, inode);
3570 }
3571 dir->i_sb->s_dirt = 1;
3572 btrfs_update_inode_block_group(trans, inode);
3573 btrfs_update_inode_block_group(trans, dir);
3574 out_unlock:
3575 nr = trans->blocks_used;
3576 btrfs_end_transaction_throttle(trans, root);
3577 fail:
3578 if (drop_inode) {
3579 inode_dec_link_count(inode);
3580 iput(inode);
3581 }
3582 btrfs_btree_balance_dirty(root, nr);
3583 return err;
3584 }
3585
3586 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3587 int mode, struct nameidata *nd)
3588 {
3589 struct btrfs_trans_handle *trans;
3590 struct btrfs_root *root = BTRFS_I(dir)->root;
3591 struct inode *inode = NULL;
3592 int err;
3593 int drop_inode = 0;
3594 unsigned long nr = 0;
3595 u64 objectid;
3596 u64 index = 0;
3597
3598 err = btrfs_check_free_space(root, 1, 0);
3599 if (err)
3600 goto fail;
3601 trans = btrfs_start_transaction(root, 1);
3602 btrfs_set_trans_block_group(trans, dir);
3603
3604 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3605 if (err) {
3606 err = -ENOSPC;
3607 goto out_unlock;
3608 }
3609
3610 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3611 dentry->d_name.len,
3612 dentry->d_parent->d_inode->i_ino,
3613 objectid, BTRFS_I(dir)->block_group, mode,
3614 &index);
3615 err = PTR_ERR(inode);
3616 if (IS_ERR(inode))
3617 goto out_unlock;
3618
3619 err = btrfs_init_acl(inode, dir);
3620 if (err) {
3621 drop_inode = 1;
3622 goto out_unlock;
3623 }
3624
3625 btrfs_set_trans_block_group(trans, inode);
3626 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3627 if (err)
3628 drop_inode = 1;
3629 else {
3630 inode->i_mapping->a_ops = &btrfs_aops;
3631 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3632 inode->i_fop = &btrfs_file_operations;
3633 inode->i_op = &btrfs_file_inode_operations;
3634 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3635 }
3636 dir->i_sb->s_dirt = 1;
3637 btrfs_update_inode_block_group(trans, inode);
3638 btrfs_update_inode_block_group(trans, dir);
3639 out_unlock:
3640 nr = trans->blocks_used;
3641 btrfs_end_transaction_throttle(trans, root);
3642 fail:
3643 if (drop_inode) {
3644 inode_dec_link_count(inode);
3645 iput(inode);
3646 }
3647 btrfs_btree_balance_dirty(root, nr);
3648 return err;
3649 }
3650
3651 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3652 struct dentry *dentry)
3653 {
3654 struct btrfs_trans_handle *trans;
3655 struct btrfs_root *root = BTRFS_I(dir)->root;
3656 struct inode *inode = old_dentry->d_inode;
3657 u64 index;
3658 unsigned long nr = 0;
3659 int err;
3660 int drop_inode = 0;
3661
3662 if (inode->i_nlink == 0)
3663 return -ENOENT;
3664
3665 btrfs_inc_nlink(inode);
3666 err = btrfs_check_free_space(root, 1, 0);
3667 if (err)
3668 goto fail;
3669 err = btrfs_set_inode_index(dir, &index);
3670 if (err)
3671 goto fail;
3672
3673 trans = btrfs_start_transaction(root, 1);
3674
3675 btrfs_set_trans_block_group(trans, dir);
3676 atomic_inc(&inode->i_count);
3677
3678 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3679
3680 if (err)
3681 drop_inode = 1;
3682
3683 dir->i_sb->s_dirt = 1;
3684 btrfs_update_inode_block_group(trans, dir);
3685 err = btrfs_update_inode(trans, root, inode);
3686
3687 if (err)
3688 drop_inode = 1;
3689
3690 nr = trans->blocks_used;
3691 btrfs_end_transaction_throttle(trans, root);
3692 fail:
3693 if (drop_inode) {
3694 inode_dec_link_count(inode);
3695 iput(inode);
3696 }
3697 btrfs_btree_balance_dirty(root, nr);
3698 return err;
3699 }
3700
3701 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3702 {
3703 struct inode *inode = NULL;
3704 struct btrfs_trans_handle *trans;
3705 struct btrfs_root *root = BTRFS_I(dir)->root;
3706 int err = 0;
3707 int drop_on_err = 0;
3708 u64 objectid = 0;
3709 u64 index = 0;
3710 unsigned long nr = 1;
3711
3712 err = btrfs_check_free_space(root, 1, 0);
3713 if (err)
3714 goto out_unlock;
3715
3716 trans = btrfs_start_transaction(root, 1);
3717 btrfs_set_trans_block_group(trans, dir);
3718
3719 if (IS_ERR(trans)) {
3720 err = PTR_ERR(trans);
3721 goto out_unlock;
3722 }
3723
3724 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3725 if (err) {
3726 err = -ENOSPC;
3727 goto out_unlock;
3728 }
3729
3730 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3731 dentry->d_name.len,
3732 dentry->d_parent->d_inode->i_ino, objectid,
3733 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3734 &index);
3735 if (IS_ERR(inode)) {
3736 err = PTR_ERR(inode);
3737 goto out_fail;
3738 }
3739
3740 drop_on_err = 1;
3741
3742 err = btrfs_init_acl(inode, dir);
3743 if (err)
3744 goto out_fail;
3745
3746 inode->i_op = &btrfs_dir_inode_operations;
3747 inode->i_fop = &btrfs_dir_file_operations;
3748 btrfs_set_trans_block_group(trans, inode);
3749
3750 btrfs_i_size_write(inode, 0);
3751 err = btrfs_update_inode(trans, root, inode);
3752 if (err)
3753 goto out_fail;
3754
3755 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3756 inode, dentry->d_name.name,
3757 dentry->d_name.len, 0, index);
3758 if (err)
3759 goto out_fail;
3760
3761 d_instantiate(dentry, inode);
3762 drop_on_err = 0;
3763 dir->i_sb->s_dirt = 1;
3764 btrfs_update_inode_block_group(trans, inode);
3765 btrfs_update_inode_block_group(trans, dir);
3766
3767 out_fail:
3768 nr = trans->blocks_used;
3769 btrfs_end_transaction_throttle(trans, root);
3770
3771 out_unlock:
3772 if (drop_on_err)
3773 iput(inode);
3774 btrfs_btree_balance_dirty(root, nr);
3775 return err;
3776 }
3777
3778 /* helper for btfs_get_extent. Given an existing extent in the tree,
3779 * and an extent that you want to insert, deal with overlap and insert
3780 * the new extent into the tree.
3781 */
3782 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3783 struct extent_map *existing,
3784 struct extent_map *em,
3785 u64 map_start, u64 map_len)
3786 {
3787 u64 start_diff;
3788
3789 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3790 start_diff = map_start - em->start;
3791 em->start = map_start;
3792 em->len = map_len;
3793 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3794 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3795 em->block_start += start_diff;
3796 em->block_len -= start_diff;
3797 }
3798 return add_extent_mapping(em_tree, em);
3799 }
3800
3801 static noinline int uncompress_inline(struct btrfs_path *path,
3802 struct inode *inode, struct page *page,
3803 size_t pg_offset, u64 extent_offset,
3804 struct btrfs_file_extent_item *item)
3805 {
3806 int ret;
3807 struct extent_buffer *leaf = path->nodes[0];
3808 char *tmp;
3809 size_t max_size;
3810 unsigned long inline_size;
3811 unsigned long ptr;
3812
3813 WARN_ON(pg_offset != 0);
3814 max_size = btrfs_file_extent_ram_bytes(leaf, item);
3815 inline_size = btrfs_file_extent_inline_item_len(leaf,
3816 btrfs_item_nr(leaf, path->slots[0]));
3817 tmp = kmalloc(inline_size, GFP_NOFS);
3818 ptr = btrfs_file_extent_inline_start(item);
3819
3820 read_extent_buffer(leaf, tmp, ptr, inline_size);
3821
3822 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
3823 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3824 inline_size, max_size);
3825 if (ret) {
3826 char *kaddr = kmap_atomic(page, KM_USER0);
3827 unsigned long copy_size = min_t(u64,
3828 PAGE_CACHE_SIZE - pg_offset,
3829 max_size - extent_offset);
3830 memset(kaddr + pg_offset, 0, copy_size);
3831 kunmap_atomic(kaddr, KM_USER0);
3832 }
3833 kfree(tmp);
3834 return 0;
3835 }
3836
3837 /*
3838 * a bit scary, this does extent mapping from logical file offset to the disk.
3839 * the ugly parts come from merging extents from the disk with the
3840 * in-ram representation. This gets more complex because of the data=ordered code,
3841 * where the in-ram extents might be locked pending data=ordered completion.
3842 *
3843 * This also copies inline extents directly into the page.
3844 */
3845 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3846 size_t pg_offset, u64 start, u64 len,
3847 int create)
3848 {
3849 int ret;
3850 int err = 0;
3851 u64 bytenr;
3852 u64 extent_start = 0;
3853 u64 extent_end = 0;
3854 u64 objectid = inode->i_ino;
3855 u32 found_type;
3856 struct btrfs_path *path = NULL;
3857 struct btrfs_root *root = BTRFS_I(inode)->root;
3858 struct btrfs_file_extent_item *item;
3859 struct extent_buffer *leaf;
3860 struct btrfs_key found_key;
3861 struct extent_map *em = NULL;
3862 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3863 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3864 struct btrfs_trans_handle *trans = NULL;
3865 int compressed;
3866
3867 again:
3868 spin_lock(&em_tree->lock);
3869 em = lookup_extent_mapping(em_tree, start, len);
3870 if (em)
3871 em->bdev = root->fs_info->fs_devices->latest_bdev;
3872 spin_unlock(&em_tree->lock);
3873
3874 if (em) {
3875 if (em->start > start || em->start + em->len <= start)
3876 free_extent_map(em);
3877 else if (em->block_start == EXTENT_MAP_INLINE && page)
3878 free_extent_map(em);
3879 else
3880 goto out;
3881 }
3882 em = alloc_extent_map(GFP_NOFS);
3883 if (!em) {
3884 err = -ENOMEM;
3885 goto out;
3886 }
3887 em->bdev = root->fs_info->fs_devices->latest_bdev;
3888 em->start = EXTENT_MAP_HOLE;
3889 em->orig_start = EXTENT_MAP_HOLE;
3890 em->len = (u64)-1;
3891 em->block_len = (u64)-1;
3892
3893 if (!path) {
3894 path = btrfs_alloc_path();
3895 BUG_ON(!path);
3896 }
3897
3898 ret = btrfs_lookup_file_extent(trans, root, path,
3899 objectid, start, trans != NULL);
3900 if (ret < 0) {
3901 err = ret;
3902 goto out;
3903 }
3904
3905 if (ret != 0) {
3906 if (path->slots[0] == 0)
3907 goto not_found;
3908 path->slots[0]--;
3909 }
3910
3911 leaf = path->nodes[0];
3912 item = btrfs_item_ptr(leaf, path->slots[0],
3913 struct btrfs_file_extent_item);
3914 /* are we inside the extent that was found? */
3915 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3916 found_type = btrfs_key_type(&found_key);
3917 if (found_key.objectid != objectid ||
3918 found_type != BTRFS_EXTENT_DATA_KEY) {
3919 goto not_found;
3920 }
3921
3922 found_type = btrfs_file_extent_type(leaf, item);
3923 extent_start = found_key.offset;
3924 compressed = btrfs_file_extent_compression(leaf, item);
3925 if (found_type == BTRFS_FILE_EXTENT_REG ||
3926 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3927 extent_end = extent_start +
3928 btrfs_file_extent_num_bytes(leaf, item);
3929 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3930 size_t size;
3931 size = btrfs_file_extent_inline_len(leaf, item);
3932 extent_end = (extent_start + size + root->sectorsize - 1) &
3933 ~((u64)root->sectorsize - 1);
3934 }
3935
3936 if (start >= extent_end) {
3937 path->slots[0]++;
3938 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3939 ret = btrfs_next_leaf(root, path);
3940 if (ret < 0) {
3941 err = ret;
3942 goto out;
3943 }
3944 if (ret > 0)
3945 goto not_found;
3946 leaf = path->nodes[0];
3947 }
3948 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3949 if (found_key.objectid != objectid ||
3950 found_key.type != BTRFS_EXTENT_DATA_KEY)
3951 goto not_found;
3952 if (start + len <= found_key.offset)
3953 goto not_found;
3954 em->start = start;
3955 em->len = found_key.offset - start;
3956 goto not_found_em;
3957 }
3958
3959 if (found_type == BTRFS_FILE_EXTENT_REG ||
3960 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3961 em->start = extent_start;
3962 em->len = extent_end - extent_start;
3963 em->orig_start = extent_start -
3964 btrfs_file_extent_offset(leaf, item);
3965 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
3966 if (bytenr == 0) {
3967 em->block_start = EXTENT_MAP_HOLE;
3968 goto insert;
3969 }
3970 if (compressed) {
3971 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3972 em->block_start = bytenr;
3973 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
3974 item);
3975 } else {
3976 bytenr += btrfs_file_extent_offset(leaf, item);
3977 em->block_start = bytenr;
3978 em->block_len = em->len;
3979 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
3980 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
3981 }
3982 goto insert;
3983 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3984 unsigned long ptr;
3985 char *map;
3986 size_t size;
3987 size_t extent_offset;
3988 size_t copy_size;
3989
3990 em->block_start = EXTENT_MAP_INLINE;
3991 if (!page || create) {
3992 em->start = extent_start;
3993 em->len = extent_end - extent_start;
3994 goto out;
3995 }
3996
3997 size = btrfs_file_extent_inline_len(leaf, item);
3998 extent_offset = page_offset(page) + pg_offset - extent_start;
3999 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4000 size - extent_offset);
4001 em->start = extent_start + extent_offset;
4002 em->len = (copy_size + root->sectorsize - 1) &
4003 ~((u64)root->sectorsize - 1);
4004 em->orig_start = EXTENT_MAP_INLINE;
4005 if (compressed)
4006 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4007 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4008 if (create == 0 && !PageUptodate(page)) {
4009 if (btrfs_file_extent_compression(leaf, item) ==
4010 BTRFS_COMPRESS_ZLIB) {
4011 ret = uncompress_inline(path, inode, page,
4012 pg_offset,
4013 extent_offset, item);
4014 BUG_ON(ret);
4015 } else {
4016 map = kmap(page);
4017 read_extent_buffer(leaf, map + pg_offset, ptr,
4018 copy_size);
4019 kunmap(page);
4020 }
4021 flush_dcache_page(page);
4022 } else if (create && PageUptodate(page)) {
4023 if (!trans) {
4024 kunmap(page);
4025 free_extent_map(em);
4026 em = NULL;
4027 btrfs_release_path(root, path);
4028 trans = btrfs_join_transaction(root, 1);
4029 goto again;
4030 }
4031 map = kmap(page);
4032 write_extent_buffer(leaf, map + pg_offset, ptr,
4033 copy_size);
4034 kunmap(page);
4035 btrfs_mark_buffer_dirty(leaf);
4036 }
4037 set_extent_uptodate(io_tree, em->start,
4038 extent_map_end(em) - 1, GFP_NOFS);
4039 goto insert;
4040 } else {
4041 printk("unkknown found_type %d\n", found_type);
4042 WARN_ON(1);
4043 }
4044 not_found:
4045 em->start = start;
4046 em->len = len;
4047 not_found_em:
4048 em->block_start = EXTENT_MAP_HOLE;
4049 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4050 insert:
4051 btrfs_release_path(root, path);
4052 if (em->start > start || extent_map_end(em) <= start) {
4053 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
4054 err = -EIO;
4055 goto out;
4056 }
4057
4058 err = 0;
4059 spin_lock(&em_tree->lock);
4060 ret = add_extent_mapping(em_tree, em);
4061 /* it is possible that someone inserted the extent into the tree
4062 * while we had the lock dropped. It is also possible that
4063 * an overlapping map exists in the tree
4064 */
4065 if (ret == -EEXIST) {
4066 struct extent_map *existing;
4067
4068 ret = 0;
4069
4070 existing = lookup_extent_mapping(em_tree, start, len);
4071 if (existing && (existing->start > start ||
4072 existing->start + existing->len <= start)) {
4073 free_extent_map(existing);
4074 existing = NULL;
4075 }
4076 if (!existing) {
4077 existing = lookup_extent_mapping(em_tree, em->start,
4078 em->len);
4079 if (existing) {
4080 err = merge_extent_mapping(em_tree, existing,
4081 em, start,
4082 root->sectorsize);
4083 free_extent_map(existing);
4084 if (err) {
4085 free_extent_map(em);
4086 em = NULL;
4087 }
4088 } else {
4089 err = -EIO;
4090 printk("failing to insert %Lu %Lu\n",
4091 start, len);
4092 free_extent_map(em);
4093 em = NULL;
4094 }
4095 } else {
4096 free_extent_map(em);
4097 em = existing;
4098 err = 0;
4099 }
4100 }
4101 spin_unlock(&em_tree->lock);
4102 out:
4103 if (path)
4104 btrfs_free_path(path);
4105 if (trans) {
4106 ret = btrfs_end_transaction(trans, root);
4107 if (!err) {
4108 err = ret;
4109 }
4110 }
4111 if (err) {
4112 free_extent_map(em);
4113 WARN_ON(1);
4114 return ERR_PTR(err);
4115 }
4116 return em;
4117 }
4118
4119 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4120 const struct iovec *iov, loff_t offset,
4121 unsigned long nr_segs)
4122 {
4123 return -EINVAL;
4124 }
4125
4126 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
4127 {
4128 return extent_bmap(mapping, iblock, btrfs_get_extent);
4129 }
4130
4131 int btrfs_readpage(struct file *file, struct page *page)
4132 {
4133 struct extent_io_tree *tree;
4134 tree = &BTRFS_I(page->mapping->host)->io_tree;
4135 return extent_read_full_page(tree, page, btrfs_get_extent);
4136 }
4137
4138 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4139 {
4140 struct extent_io_tree *tree;
4141
4142
4143 if (current->flags & PF_MEMALLOC) {
4144 redirty_page_for_writepage(wbc, page);
4145 unlock_page(page);
4146 return 0;
4147 }
4148 tree = &BTRFS_I(page->mapping->host)->io_tree;
4149 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4150 }
4151
4152 int btrfs_writepages(struct address_space *mapping,
4153 struct writeback_control *wbc)
4154 {
4155 struct extent_io_tree *tree;
4156
4157 tree = &BTRFS_I(mapping->host)->io_tree;
4158 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4159 }
4160
4161 static int
4162 btrfs_readpages(struct file *file, struct address_space *mapping,
4163 struct list_head *pages, unsigned nr_pages)
4164 {
4165 struct extent_io_tree *tree;
4166 tree = &BTRFS_I(mapping->host)->io_tree;
4167 return extent_readpages(tree, mapping, pages, nr_pages,
4168 btrfs_get_extent);
4169 }
4170 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4171 {
4172 struct extent_io_tree *tree;
4173 struct extent_map_tree *map;
4174 int ret;
4175
4176 tree = &BTRFS_I(page->mapping->host)->io_tree;
4177 map = &BTRFS_I(page->mapping->host)->extent_tree;
4178 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4179 if (ret == 1) {
4180 ClearPagePrivate(page);
4181 set_page_private(page, 0);
4182 page_cache_release(page);
4183 }
4184 return ret;
4185 }
4186
4187 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4188 {
4189 if (PageWriteback(page) || PageDirty(page))
4190 return 0;
4191 return __btrfs_releasepage(page, gfp_flags);
4192 }
4193
4194 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4195 {
4196 struct extent_io_tree *tree;
4197 struct btrfs_ordered_extent *ordered;
4198 u64 page_start = page_offset(page);
4199 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4200
4201 wait_on_page_writeback(page);
4202 tree = &BTRFS_I(page->mapping->host)->io_tree;
4203 if (offset) {
4204 btrfs_releasepage(page, GFP_NOFS);
4205 return;
4206 }
4207
4208 lock_extent(tree, page_start, page_end, GFP_NOFS);
4209 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4210 page_offset(page));
4211 if (ordered) {
4212 /*
4213 * IO on this page will never be started, so we need
4214 * to account for any ordered extents now
4215 */
4216 clear_extent_bit(tree, page_start, page_end,
4217 EXTENT_DIRTY | EXTENT_DELALLOC |
4218 EXTENT_LOCKED, 1, 0, GFP_NOFS);
4219 btrfs_finish_ordered_io(page->mapping->host,
4220 page_start, page_end);
4221 btrfs_put_ordered_extent(ordered);
4222 lock_extent(tree, page_start, page_end, GFP_NOFS);
4223 }
4224 clear_extent_bit(tree, page_start, page_end,
4225 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4226 EXTENT_ORDERED,
4227 1, 1, GFP_NOFS);
4228 __btrfs_releasepage(page, GFP_NOFS);
4229
4230 ClearPageChecked(page);
4231 if (PagePrivate(page)) {
4232 ClearPagePrivate(page);
4233 set_page_private(page, 0);
4234 page_cache_release(page);
4235 }
4236 }
4237
4238 /*
4239 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4240 * called from a page fault handler when a page is first dirtied. Hence we must
4241 * be careful to check for EOF conditions here. We set the page up correctly
4242 * for a written page which means we get ENOSPC checking when writing into
4243 * holes and correct delalloc and unwritten extent mapping on filesystems that
4244 * support these features.
4245 *
4246 * We are not allowed to take the i_mutex here so we have to play games to
4247 * protect against truncate races as the page could now be beyond EOF. Because
4248 * vmtruncate() writes the inode size before removing pages, once we have the
4249 * page lock we can determine safely if the page is beyond EOF. If it is not
4250 * beyond EOF, then the page is guaranteed safe against truncation until we
4251 * unlock the page.
4252 */
4253 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4254 {
4255 struct inode *inode = fdentry(vma->vm_file)->d_inode;
4256 struct btrfs_root *root = BTRFS_I(inode)->root;
4257 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4258 struct btrfs_ordered_extent *ordered;
4259 char *kaddr;
4260 unsigned long zero_start;
4261 loff_t size;
4262 int ret;
4263 u64 page_start;
4264 u64 page_end;
4265
4266 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
4267 if (ret)
4268 goto out;
4269
4270 ret = -EINVAL;
4271 again:
4272 lock_page(page);
4273 size = i_size_read(inode);
4274 page_start = page_offset(page);
4275 page_end = page_start + PAGE_CACHE_SIZE - 1;
4276
4277 if ((page->mapping != inode->i_mapping) ||
4278 (page_start >= size)) {
4279 /* page got truncated out from underneath us */
4280 goto out_unlock;
4281 }
4282 wait_on_page_writeback(page);
4283
4284 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4285 set_page_extent_mapped(page);
4286
4287 /*
4288 * we can't set the delalloc bits if there are pending ordered
4289 * extents. Drop our locks and wait for them to finish
4290 */
4291 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4292 if (ordered) {
4293 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4294 unlock_page(page);
4295 btrfs_start_ordered_extent(inode, ordered, 1);
4296 btrfs_put_ordered_extent(ordered);
4297 goto again;
4298 }
4299
4300 btrfs_set_extent_delalloc(inode, page_start, page_end);
4301 ret = 0;
4302
4303 /* page is wholly or partially inside EOF */
4304 if (page_start + PAGE_CACHE_SIZE > size)
4305 zero_start = size & ~PAGE_CACHE_MASK;
4306 else
4307 zero_start = PAGE_CACHE_SIZE;
4308
4309 if (zero_start != PAGE_CACHE_SIZE) {
4310 kaddr = kmap(page);
4311 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4312 flush_dcache_page(page);
4313 kunmap(page);
4314 }
4315 ClearPageChecked(page);
4316 set_page_dirty(page);
4317 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4318
4319 out_unlock:
4320 unlock_page(page);
4321 out:
4322 return ret;
4323 }
4324
4325 static void btrfs_truncate(struct inode *inode)
4326 {
4327 struct btrfs_root *root = BTRFS_I(inode)->root;
4328 int ret;
4329 struct btrfs_trans_handle *trans;
4330 unsigned long nr;
4331 u64 mask = root->sectorsize - 1;
4332
4333 if (!S_ISREG(inode->i_mode))
4334 return;
4335 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4336 return;
4337
4338 btrfs_truncate_page(inode->i_mapping, inode->i_size);
4339 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4340
4341 trans = btrfs_start_transaction(root, 1);
4342 btrfs_set_trans_block_group(trans, inode);
4343 btrfs_i_size_write(inode, inode->i_size);
4344
4345 ret = btrfs_orphan_add(trans, inode);
4346 if (ret)
4347 goto out;
4348 /* FIXME, add redo link to tree so we don't leak on crash */
4349 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4350 BTRFS_EXTENT_DATA_KEY);
4351 btrfs_update_inode(trans, root, inode);
4352
4353 ret = btrfs_orphan_del(trans, inode);
4354 BUG_ON(ret);
4355
4356 out:
4357 nr = trans->blocks_used;
4358 ret = btrfs_end_transaction_throttle(trans, root);
4359 BUG_ON(ret);
4360 btrfs_btree_balance_dirty(root, nr);
4361 }
4362
4363 /*
4364 * Invalidate a single dcache entry at the root of the filesystem.
4365 * Needed after creation of snapshot or subvolume.
4366 */
4367 void btrfs_invalidate_dcache_root(struct inode *dir, char *name,
4368 int namelen)
4369 {
4370 struct dentry *alias, *entry;
4371 struct qstr qstr;
4372
4373 alias = d_find_alias(dir);
4374 if (alias) {
4375 qstr.name = name;
4376 qstr.len = namelen;
4377 /* change me if btrfs ever gets a d_hash operation */
4378 qstr.hash = full_name_hash(qstr.name, qstr.len);
4379 entry = d_lookup(alias, &qstr);
4380 dput(alias);
4381 if (entry) {
4382 d_invalidate(entry);
4383 dput(entry);
4384 }
4385 }
4386 }
4387
4388 /*
4389 * create a new subvolume directory/inode (helper for the ioctl).
4390 */
4391 int btrfs_create_subvol_root(struct btrfs_root *new_root, struct dentry *dentry,
4392 struct btrfs_trans_handle *trans, u64 new_dirid,
4393 struct btrfs_block_group_cache *block_group)
4394 {
4395 struct inode *inode;
4396 int error;
4397 u64 index = 0;
4398
4399 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4400 new_dirid, block_group, S_IFDIR | 0700, &index);
4401 if (IS_ERR(inode))
4402 return PTR_ERR(inode);
4403 inode->i_op = &btrfs_dir_inode_operations;
4404 inode->i_fop = &btrfs_dir_file_operations;
4405
4406 inode->i_nlink = 1;
4407 btrfs_i_size_write(inode, 0);
4408
4409 error = btrfs_update_inode(trans, new_root, inode);
4410 if (error)
4411 return error;
4412
4413 atomic_inc(&inode->i_count);
4414 d_instantiate(dentry, inode);
4415 return 0;
4416 }
4417
4418 /* helper function for file defrag and space balancing. This
4419 * forces readahead on a given range of bytes in an inode
4420 */
4421 unsigned long btrfs_force_ra(struct address_space *mapping,
4422 struct file_ra_state *ra, struct file *file,
4423 pgoff_t offset, pgoff_t last_index)
4424 {
4425 pgoff_t req_size = last_index - offset + 1;
4426
4427 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4428 return offset + req_size;
4429 }
4430
4431 struct inode *btrfs_alloc_inode(struct super_block *sb)
4432 {
4433 struct btrfs_inode *ei;
4434
4435 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4436 if (!ei)
4437 return NULL;
4438 ei->last_trans = 0;
4439 ei->logged_trans = 0;
4440 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4441 ei->i_acl = BTRFS_ACL_NOT_CACHED;
4442 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4443 INIT_LIST_HEAD(&ei->i_orphan);
4444 return &ei->vfs_inode;
4445 }
4446
4447 void btrfs_destroy_inode(struct inode *inode)
4448 {
4449 struct btrfs_ordered_extent *ordered;
4450 WARN_ON(!list_empty(&inode->i_dentry));
4451 WARN_ON(inode->i_data.nrpages);
4452
4453 if (BTRFS_I(inode)->i_acl &&
4454 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4455 posix_acl_release(BTRFS_I(inode)->i_acl);
4456 if (BTRFS_I(inode)->i_default_acl &&
4457 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4458 posix_acl_release(BTRFS_I(inode)->i_default_acl);
4459
4460 spin_lock(&BTRFS_I(inode)->root->list_lock);
4461 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4462 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4463 " list\n", inode->i_ino);
4464 dump_stack();
4465 }
4466 spin_unlock(&BTRFS_I(inode)->root->list_lock);
4467
4468 while(1) {
4469 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4470 if (!ordered)
4471 break;
4472 else {
4473 printk("found ordered extent %Lu %Lu\n",
4474 ordered->file_offset, ordered->len);
4475 btrfs_remove_ordered_extent(inode, ordered);
4476 btrfs_put_ordered_extent(ordered);
4477 btrfs_put_ordered_extent(ordered);
4478 }
4479 }
4480 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4481 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4482 }
4483
4484 static void init_once(void *foo)
4485 {
4486 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4487
4488 inode_init_once(&ei->vfs_inode);
4489 }
4490
4491 void btrfs_destroy_cachep(void)
4492 {
4493 if (btrfs_inode_cachep)
4494 kmem_cache_destroy(btrfs_inode_cachep);
4495 if (btrfs_trans_handle_cachep)
4496 kmem_cache_destroy(btrfs_trans_handle_cachep);
4497 if (btrfs_transaction_cachep)
4498 kmem_cache_destroy(btrfs_transaction_cachep);
4499 if (btrfs_bit_radix_cachep)
4500 kmem_cache_destroy(btrfs_bit_radix_cachep);
4501 if (btrfs_path_cachep)
4502 kmem_cache_destroy(btrfs_path_cachep);
4503 }
4504
4505 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
4506 unsigned long extra_flags,
4507 void (*ctor)(void *))
4508 {
4509 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
4510 SLAB_MEM_SPREAD | extra_flags), ctor);
4511 }
4512
4513 int btrfs_init_cachep(void)
4514 {
4515 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
4516 sizeof(struct btrfs_inode),
4517 0, init_once);
4518 if (!btrfs_inode_cachep)
4519 goto fail;
4520 btrfs_trans_handle_cachep =
4521 btrfs_cache_create("btrfs_trans_handle_cache",
4522 sizeof(struct btrfs_trans_handle),
4523 0, NULL);
4524 if (!btrfs_trans_handle_cachep)
4525 goto fail;
4526 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
4527 sizeof(struct btrfs_transaction),
4528 0, NULL);
4529 if (!btrfs_transaction_cachep)
4530 goto fail;
4531 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
4532 sizeof(struct btrfs_path),
4533 0, NULL);
4534 if (!btrfs_path_cachep)
4535 goto fail;
4536 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
4537 SLAB_DESTROY_BY_RCU, NULL);
4538 if (!btrfs_bit_radix_cachep)
4539 goto fail;
4540 return 0;
4541 fail:
4542 btrfs_destroy_cachep();
4543 return -ENOMEM;
4544 }
4545
4546 static int btrfs_getattr(struct vfsmount *mnt,
4547 struct dentry *dentry, struct kstat *stat)
4548 {
4549 struct inode *inode = dentry->d_inode;
4550 generic_fillattr(inode, stat);
4551 stat->blksize = PAGE_CACHE_SIZE;
4552 stat->blocks = (inode_get_bytes(inode) +
4553 BTRFS_I(inode)->delalloc_bytes) >> 9;
4554 return 0;
4555 }
4556
4557 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
4558 struct inode * new_dir,struct dentry *new_dentry)
4559 {
4560 struct btrfs_trans_handle *trans;
4561 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4562 struct inode *new_inode = new_dentry->d_inode;
4563 struct inode *old_inode = old_dentry->d_inode;
4564 struct timespec ctime = CURRENT_TIME;
4565 u64 index = 0;
4566 int ret;
4567
4568 if (S_ISDIR(old_inode->i_mode) && new_inode &&
4569 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4570 return -ENOTEMPTY;
4571 }
4572
4573 ret = btrfs_check_free_space(root, 1, 0);
4574 if (ret)
4575 goto out_unlock;
4576
4577 trans = btrfs_start_transaction(root, 1);
4578
4579 btrfs_set_trans_block_group(trans, new_dir);
4580
4581 btrfs_inc_nlink(old_dentry->d_inode);
4582 old_dir->i_ctime = old_dir->i_mtime = ctime;
4583 new_dir->i_ctime = new_dir->i_mtime = ctime;
4584 old_inode->i_ctime = ctime;
4585
4586 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4587 old_dentry->d_name.name,
4588 old_dentry->d_name.len);
4589 if (ret)
4590 goto out_fail;
4591
4592 if (new_inode) {
4593 new_inode->i_ctime = CURRENT_TIME;
4594 ret = btrfs_unlink_inode(trans, root, new_dir,
4595 new_dentry->d_inode,
4596 new_dentry->d_name.name,
4597 new_dentry->d_name.len);
4598 if (ret)
4599 goto out_fail;
4600 if (new_inode->i_nlink == 0) {
4601 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4602 if (ret)
4603 goto out_fail;
4604 }
4605
4606 }
4607 ret = btrfs_set_inode_index(new_dir, &index);
4608 if (ret)
4609 goto out_fail;
4610
4611 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4612 old_inode, new_dentry->d_name.name,
4613 new_dentry->d_name.len, 1, index);
4614 if (ret)
4615 goto out_fail;
4616
4617 out_fail:
4618 btrfs_end_transaction_throttle(trans, root);
4619 out_unlock:
4620 return ret;
4621 }
4622
4623 /*
4624 * some fairly slow code that needs optimization. This walks the list
4625 * of all the inodes with pending delalloc and forces them to disk.
4626 */
4627 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4628 {
4629 struct list_head *head = &root->fs_info->delalloc_inodes;
4630 struct btrfs_inode *binode;
4631 struct inode *inode;
4632 unsigned long flags;
4633
4634 if (root->fs_info->sb->s_flags & MS_RDONLY)
4635 return -EROFS;
4636
4637 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
4638 while(!list_empty(head)) {
4639 binode = list_entry(head->next, struct btrfs_inode,
4640 delalloc_inodes);
4641 inode = igrab(&binode->vfs_inode);
4642 if (!inode)
4643 list_del_init(&binode->delalloc_inodes);
4644 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
4645 if (inode) {
4646 filemap_flush(inode->i_mapping);
4647 iput(inode);
4648 }
4649 cond_resched();
4650 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
4651 }
4652 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
4653
4654 /* the filemap_flush will queue IO into the worker threads, but
4655 * we have to make sure the IO is actually started and that
4656 * ordered extents get created before we return
4657 */
4658 atomic_inc(&root->fs_info->async_submit_draining);
4659 while(atomic_read(&root->fs_info->nr_async_submits) ||
4660 atomic_read(&root->fs_info->async_delalloc_pages)) {
4661 wait_event(root->fs_info->async_submit_wait,
4662 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4663 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4664 }
4665 atomic_dec(&root->fs_info->async_submit_draining);
4666 return 0;
4667 }
4668
4669 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4670 const char *symname)
4671 {
4672 struct btrfs_trans_handle *trans;
4673 struct btrfs_root *root = BTRFS_I(dir)->root;
4674 struct btrfs_path *path;
4675 struct btrfs_key key;
4676 struct inode *inode = NULL;
4677 int err;
4678 int drop_inode = 0;
4679 u64 objectid;
4680 u64 index = 0 ;
4681 int name_len;
4682 int datasize;
4683 unsigned long ptr;
4684 struct btrfs_file_extent_item *ei;
4685 struct extent_buffer *leaf;
4686 unsigned long nr = 0;
4687
4688 name_len = strlen(symname) + 1;
4689 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4690 return -ENAMETOOLONG;
4691
4692 err = btrfs_check_free_space(root, 1, 0);
4693 if (err)
4694 goto out_fail;
4695
4696 trans = btrfs_start_transaction(root, 1);
4697 btrfs_set_trans_block_group(trans, dir);
4698
4699 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4700 if (err) {
4701 err = -ENOSPC;
4702 goto out_unlock;
4703 }
4704
4705 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4706 dentry->d_name.len,
4707 dentry->d_parent->d_inode->i_ino, objectid,
4708 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4709 &index);
4710 err = PTR_ERR(inode);
4711 if (IS_ERR(inode))
4712 goto out_unlock;
4713
4714 err = btrfs_init_acl(inode, dir);
4715 if (err) {
4716 drop_inode = 1;
4717 goto out_unlock;
4718 }
4719
4720 btrfs_set_trans_block_group(trans, inode);
4721 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4722 if (err)
4723 drop_inode = 1;
4724 else {
4725 inode->i_mapping->a_ops = &btrfs_aops;
4726 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4727 inode->i_fop = &btrfs_file_operations;
4728 inode->i_op = &btrfs_file_inode_operations;
4729 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4730 }
4731 dir->i_sb->s_dirt = 1;
4732 btrfs_update_inode_block_group(trans, inode);
4733 btrfs_update_inode_block_group(trans, dir);
4734 if (drop_inode)
4735 goto out_unlock;
4736
4737 path = btrfs_alloc_path();
4738 BUG_ON(!path);
4739 key.objectid = inode->i_ino;
4740 key.offset = 0;
4741 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4742 datasize = btrfs_file_extent_calc_inline_size(name_len);
4743 err = btrfs_insert_empty_item(trans, root, path, &key,
4744 datasize);
4745 if (err) {
4746 drop_inode = 1;
4747 goto out_unlock;
4748 }
4749 leaf = path->nodes[0];
4750 ei = btrfs_item_ptr(leaf, path->slots[0],
4751 struct btrfs_file_extent_item);
4752 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4753 btrfs_set_file_extent_type(leaf, ei,
4754 BTRFS_FILE_EXTENT_INLINE);
4755 btrfs_set_file_extent_encryption(leaf, ei, 0);
4756 btrfs_set_file_extent_compression(leaf, ei, 0);
4757 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4758 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4759
4760 ptr = btrfs_file_extent_inline_start(ei);
4761 write_extent_buffer(leaf, symname, ptr, name_len);
4762 btrfs_mark_buffer_dirty(leaf);
4763 btrfs_free_path(path);
4764
4765 inode->i_op = &btrfs_symlink_inode_operations;
4766 inode->i_mapping->a_ops = &btrfs_symlink_aops;
4767 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4768 inode_set_bytes(inode, name_len);
4769 btrfs_i_size_write(inode, name_len - 1);
4770 err = btrfs_update_inode(trans, root, inode);
4771 if (err)
4772 drop_inode = 1;
4773
4774 out_unlock:
4775 nr = trans->blocks_used;
4776 btrfs_end_transaction_throttle(trans, root);
4777 out_fail:
4778 if (drop_inode) {
4779 inode_dec_link_count(inode);
4780 iput(inode);
4781 }
4782 btrfs_btree_balance_dirty(root, nr);
4783 return err;
4784 }
4785
4786 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
4787 u64 alloc_hint, int mode)
4788 {
4789 struct btrfs_trans_handle *trans;
4790 struct btrfs_root *root = BTRFS_I(inode)->root;
4791 struct btrfs_key ins;
4792 u64 alloc_size;
4793 u64 cur_offset = start;
4794 u64 num_bytes = end - start;
4795 int ret = 0;
4796
4797 trans = btrfs_join_transaction(root, 1);
4798 BUG_ON(!trans);
4799 btrfs_set_trans_block_group(trans, inode);
4800
4801 while (num_bytes > 0) {
4802 alloc_size = min(num_bytes, root->fs_info->max_extent);
4803 ret = btrfs_reserve_extent(trans, root, alloc_size,
4804 root->sectorsize, 0, alloc_hint,
4805 (u64)-1, &ins, 1);
4806 if (ret) {
4807 WARN_ON(1);
4808 goto out;
4809 }
4810 ret = insert_reserved_file_extent(trans, inode,
4811 cur_offset, ins.objectid,
4812 ins.offset, ins.offset,
4813 ins.offset, 0, 0, 0,
4814 BTRFS_FILE_EXTENT_PREALLOC);
4815 BUG_ON(ret);
4816 num_bytes -= ins.offset;
4817 cur_offset += ins.offset;
4818 alloc_hint = ins.objectid + ins.offset;
4819 }
4820 out:
4821 if (cur_offset > start) {
4822 inode->i_ctime = CURRENT_TIME;
4823 btrfs_set_flag(inode, PREALLOC);
4824 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4825 cur_offset > i_size_read(inode))
4826 btrfs_i_size_write(inode, cur_offset);
4827 ret = btrfs_update_inode(trans, root, inode);
4828 BUG_ON(ret);
4829 }
4830
4831 btrfs_end_transaction(trans, root);
4832 return ret;
4833 }
4834
4835 static long btrfs_fallocate(struct inode *inode, int mode,
4836 loff_t offset, loff_t len)
4837 {
4838 u64 cur_offset;
4839 u64 last_byte;
4840 u64 alloc_start;
4841 u64 alloc_end;
4842 u64 alloc_hint = 0;
4843 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
4844 struct extent_map *em;
4845 int ret;
4846
4847 alloc_start = offset & ~mask;
4848 alloc_end = (offset + len + mask) & ~mask;
4849
4850 mutex_lock(&inode->i_mutex);
4851 if (alloc_start > inode->i_size) {
4852 ret = btrfs_cont_expand(inode, alloc_start);
4853 if (ret)
4854 goto out;
4855 }
4856
4857 while (1) {
4858 struct btrfs_ordered_extent *ordered;
4859 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start,
4860 alloc_end - 1, GFP_NOFS);
4861 ordered = btrfs_lookup_first_ordered_extent(inode,
4862 alloc_end - 1);
4863 if (ordered &&
4864 ordered->file_offset + ordered->len > alloc_start &&
4865 ordered->file_offset < alloc_end) {
4866 btrfs_put_ordered_extent(ordered);
4867 unlock_extent(&BTRFS_I(inode)->io_tree,
4868 alloc_start, alloc_end - 1, GFP_NOFS);
4869 btrfs_wait_ordered_range(inode, alloc_start,
4870 alloc_end - alloc_start);
4871 } else {
4872 if (ordered)
4873 btrfs_put_ordered_extent(ordered);
4874 break;
4875 }
4876 }
4877
4878 cur_offset = alloc_start;
4879 while (1) {
4880 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4881 alloc_end - cur_offset, 0);
4882 BUG_ON(IS_ERR(em) || !em);
4883 last_byte = min(extent_map_end(em), alloc_end);
4884 last_byte = (last_byte + mask) & ~mask;
4885 if (em->block_start == EXTENT_MAP_HOLE) {
4886 ret = prealloc_file_range(inode, cur_offset,
4887 last_byte, alloc_hint, mode);
4888 if (ret < 0) {
4889 free_extent_map(em);
4890 break;
4891 }
4892 }
4893 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
4894 alloc_hint = em->block_start;
4895 free_extent_map(em);
4896
4897 cur_offset = last_byte;
4898 if (cur_offset >= alloc_end) {
4899 ret = 0;
4900 break;
4901 }
4902 }
4903 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1,
4904 GFP_NOFS);
4905 out:
4906 mutex_unlock(&inode->i_mutex);
4907 return ret;
4908 }
4909
4910 static int btrfs_set_page_dirty(struct page *page)
4911 {
4912 return __set_page_dirty_nobuffers(page);
4913 }
4914
4915 static int btrfs_permission(struct inode *inode, int mask)
4916 {
4917 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
4918 return -EACCES;
4919 return generic_permission(inode, mask, btrfs_check_acl);
4920 }
4921
4922 static struct inode_operations btrfs_dir_inode_operations = {
4923 .lookup = btrfs_lookup,
4924 .create = btrfs_create,
4925 .unlink = btrfs_unlink,
4926 .link = btrfs_link,
4927 .mkdir = btrfs_mkdir,
4928 .rmdir = btrfs_rmdir,
4929 .rename = btrfs_rename,
4930 .symlink = btrfs_symlink,
4931 .setattr = btrfs_setattr,
4932 .mknod = btrfs_mknod,
4933 .setxattr = btrfs_setxattr,
4934 .getxattr = btrfs_getxattr,
4935 .listxattr = btrfs_listxattr,
4936 .removexattr = btrfs_removexattr,
4937 .permission = btrfs_permission,
4938 };
4939 static struct inode_operations btrfs_dir_ro_inode_operations = {
4940 .lookup = btrfs_lookup,
4941 .permission = btrfs_permission,
4942 };
4943 static struct file_operations btrfs_dir_file_operations = {
4944 .llseek = generic_file_llseek,
4945 .read = generic_read_dir,
4946 .readdir = btrfs_real_readdir,
4947 .unlocked_ioctl = btrfs_ioctl,
4948 #ifdef CONFIG_COMPAT
4949 .compat_ioctl = btrfs_ioctl,
4950 #endif
4951 .release = btrfs_release_file,
4952 .fsync = btrfs_sync_file,
4953 };
4954
4955 static struct extent_io_ops btrfs_extent_io_ops = {
4956 .fill_delalloc = run_delalloc_range,
4957 .submit_bio_hook = btrfs_submit_bio_hook,
4958 .merge_bio_hook = btrfs_merge_bio_hook,
4959 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4960 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
4961 .writepage_start_hook = btrfs_writepage_start_hook,
4962 .readpage_io_failed_hook = btrfs_io_failed_hook,
4963 .set_bit_hook = btrfs_set_bit_hook,
4964 .clear_bit_hook = btrfs_clear_bit_hook,
4965 };
4966
4967 static struct address_space_operations btrfs_aops = {
4968 .readpage = btrfs_readpage,
4969 .writepage = btrfs_writepage,
4970 .writepages = btrfs_writepages,
4971 .readpages = btrfs_readpages,
4972 .sync_page = block_sync_page,
4973 .bmap = btrfs_bmap,
4974 .direct_IO = btrfs_direct_IO,
4975 .invalidatepage = btrfs_invalidatepage,
4976 .releasepage = btrfs_releasepage,
4977 .set_page_dirty = btrfs_set_page_dirty,
4978 };
4979
4980 static struct address_space_operations btrfs_symlink_aops = {
4981 .readpage = btrfs_readpage,
4982 .writepage = btrfs_writepage,
4983 .invalidatepage = btrfs_invalidatepage,
4984 .releasepage = btrfs_releasepage,
4985 };
4986
4987 static struct inode_operations btrfs_file_inode_operations = {
4988 .truncate = btrfs_truncate,
4989 .getattr = btrfs_getattr,
4990 .setattr = btrfs_setattr,
4991 .setxattr = btrfs_setxattr,
4992 .getxattr = btrfs_getxattr,
4993 .listxattr = btrfs_listxattr,
4994 .removexattr = btrfs_removexattr,
4995 .permission = btrfs_permission,
4996 .fallocate = btrfs_fallocate,
4997 };
4998 static struct inode_operations btrfs_special_inode_operations = {
4999 .getattr = btrfs_getattr,
5000 .setattr = btrfs_setattr,
5001 .permission = btrfs_permission,
5002 .setxattr = btrfs_setxattr,
5003 .getxattr = btrfs_getxattr,
5004 .listxattr = btrfs_listxattr,
5005 .removexattr = btrfs_removexattr,
5006 };
5007 static struct inode_operations btrfs_symlink_inode_operations = {
5008 .readlink = generic_readlink,
5009 .follow_link = page_follow_link_light,
5010 .put_link = page_put_link,
5011 .permission = btrfs_permission,
5012 };
This page took 0.176561 seconds and 6 git commands to generate.