Btrfs: Avoid calling into the FS for the final iput on fake root inodes
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48
49 struct btrfs_iget_args {
50 u64 ino;
51 struct btrfs_root *root;
52 };
53
54 static struct inode_operations btrfs_dir_inode_operations;
55 static struct inode_operations btrfs_symlink_inode_operations;
56 static struct inode_operations btrfs_dir_ro_inode_operations;
57 static struct inode_operations btrfs_special_inode_operations;
58 static struct inode_operations btrfs_file_inode_operations;
59 static struct address_space_operations btrfs_aops;
60 static struct address_space_operations btrfs_symlink_aops;
61 static struct file_operations btrfs_dir_file_operations;
62 static struct extent_io_ops btrfs_extent_io_ops;
63
64 static struct kmem_cache *btrfs_inode_cachep;
65 struct kmem_cache *btrfs_trans_handle_cachep;
66 struct kmem_cache *btrfs_transaction_cachep;
67 struct kmem_cache *btrfs_bit_radix_cachep;
68 struct kmem_cache *btrfs_path_cachep;
69
70 #define S_SHIFT 12
71 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
72 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
73 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
74 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
75 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
76 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
77 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
78 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
79 };
80
81 static void btrfs_truncate(struct inode *inode);
82
83 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
84 int for_del)
85 {
86 u64 total;
87 u64 used;
88 u64 thresh;
89 unsigned long flags;
90 int ret = 0;
91
92 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
93 total = btrfs_super_total_bytes(&root->fs_info->super_copy);
94 used = btrfs_super_bytes_used(&root->fs_info->super_copy);
95 if (for_del)
96 thresh = total * 90;
97 else
98 thresh = total * 85;
99
100 do_div(thresh, 100);
101
102 if (used + root->fs_info->delalloc_bytes + num_required > thresh)
103 ret = -ENOSPC;
104 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
105 return ret;
106 }
107
108 static int cow_file_range(struct inode *inode, u64 start, u64 end)
109 {
110 struct btrfs_root *root = BTRFS_I(inode)->root;
111 struct btrfs_trans_handle *trans;
112 u64 alloc_hint = 0;
113 u64 num_bytes;
114 u64 cur_alloc_size;
115 u64 blocksize = root->sectorsize;
116 u64 orig_num_bytes;
117 struct btrfs_key ins;
118 struct extent_map *em;
119 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
120 int ret = 0;
121
122 trans = btrfs_join_transaction(root, 1);
123 BUG_ON(!trans);
124 btrfs_set_trans_block_group(trans, inode);
125
126 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
127 num_bytes = max(blocksize, num_bytes);
128 orig_num_bytes = num_bytes;
129
130 if (alloc_hint == EXTENT_MAP_INLINE)
131 goto out;
132
133 BUG_ON(num_bytes > btrfs_super_total_bytes(&root->fs_info->super_copy));
134 mutex_lock(&BTRFS_I(inode)->extent_mutex);
135 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1);
136 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
137
138 while(num_bytes > 0) {
139 cur_alloc_size = min(num_bytes, root->fs_info->max_extent);
140 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
141 root->sectorsize, 0, 0,
142 (u64)-1, &ins, 1);
143 if (ret) {
144 WARN_ON(1);
145 goto out;
146 }
147 em = alloc_extent_map(GFP_NOFS);
148 em->start = start;
149 em->len = ins.offset;
150 em->block_start = ins.objectid;
151 em->bdev = root->fs_info->fs_devices->latest_bdev;
152 mutex_lock(&BTRFS_I(inode)->extent_mutex);
153 set_bit(EXTENT_FLAG_PINNED, &em->flags);
154 while(1) {
155 spin_lock(&em_tree->lock);
156 ret = add_extent_mapping(em_tree, em);
157 spin_unlock(&em_tree->lock);
158 if (ret != -EEXIST) {
159 free_extent_map(em);
160 break;
161 }
162 btrfs_drop_extent_cache(inode, start,
163 start + ins.offset - 1);
164 }
165 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
166
167 cur_alloc_size = ins.offset;
168 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
169 ins.offset, 0);
170 BUG_ON(ret);
171 if (num_bytes < cur_alloc_size) {
172 printk("num_bytes %Lu cur_alloc %Lu\n", num_bytes,
173 cur_alloc_size);
174 break;
175 }
176 num_bytes -= cur_alloc_size;
177 alloc_hint = ins.objectid + ins.offset;
178 start += cur_alloc_size;
179 }
180 out:
181 btrfs_end_transaction(trans, root);
182 return ret;
183 }
184
185 static int run_delalloc_nocow(struct inode *inode, u64 start, u64 end)
186 {
187 u64 extent_start;
188 u64 extent_end;
189 u64 bytenr;
190 u64 loops = 0;
191 u64 total_fs_bytes;
192 struct btrfs_root *root = BTRFS_I(inode)->root;
193 struct btrfs_block_group_cache *block_group;
194 struct btrfs_trans_handle *trans;
195 struct extent_buffer *leaf;
196 int found_type;
197 struct btrfs_path *path;
198 struct btrfs_file_extent_item *item;
199 int ret;
200 int err = 0;
201 struct btrfs_key found_key;
202
203 total_fs_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
204 path = btrfs_alloc_path();
205 BUG_ON(!path);
206 trans = btrfs_join_transaction(root, 1);
207 BUG_ON(!trans);
208 again:
209 ret = btrfs_lookup_file_extent(NULL, root, path,
210 inode->i_ino, start, 0);
211 if (ret < 0) {
212 err = ret;
213 goto out;
214 }
215
216 if (ret != 0) {
217 if (path->slots[0] == 0)
218 goto not_found;
219 path->slots[0]--;
220 }
221
222 leaf = path->nodes[0];
223 item = btrfs_item_ptr(leaf, path->slots[0],
224 struct btrfs_file_extent_item);
225
226 /* are we inside the extent that was found? */
227 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
228 found_type = btrfs_key_type(&found_key);
229 if (found_key.objectid != inode->i_ino ||
230 found_type != BTRFS_EXTENT_DATA_KEY)
231 goto not_found;
232
233 found_type = btrfs_file_extent_type(leaf, item);
234 extent_start = found_key.offset;
235 if (found_type == BTRFS_FILE_EXTENT_REG) {
236 u64 extent_num_bytes;
237
238 extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item);
239 extent_end = extent_start + extent_num_bytes;
240 err = 0;
241
242 if (loops && start != extent_start)
243 goto not_found;
244
245 if (start < extent_start || start >= extent_end)
246 goto not_found;
247
248 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
249 if (bytenr == 0)
250 goto not_found;
251
252 if (btrfs_cross_ref_exists(trans, root, &found_key, bytenr))
253 goto not_found;
254 /*
255 * we may be called by the resizer, make sure we're inside
256 * the limits of the FS
257 */
258 block_group = btrfs_lookup_block_group(root->fs_info,
259 bytenr);
260 if (!block_group || block_group->ro)
261 goto not_found;
262
263 bytenr += btrfs_file_extent_offset(leaf, item);
264 extent_num_bytes = min(end + 1, extent_end) - start;
265 ret = btrfs_add_ordered_extent(inode, start, bytenr,
266 extent_num_bytes, 1);
267 if (ret) {
268 err = ret;
269 goto out;
270 }
271
272 btrfs_release_path(root, path);
273 start = extent_end;
274 if (start <= end) {
275 loops++;
276 goto again;
277 }
278 } else {
279 not_found:
280 btrfs_end_transaction(trans, root);
281 btrfs_free_path(path);
282 return cow_file_range(inode, start, end);
283 }
284 out:
285 WARN_ON(err);
286 btrfs_end_transaction(trans, root);
287 btrfs_free_path(path);
288 return err;
289 }
290
291 static int run_delalloc_range(struct inode *inode, u64 start, u64 end)
292 {
293 struct btrfs_root *root = BTRFS_I(inode)->root;
294 int ret;
295
296 if (btrfs_test_opt(root, NODATACOW) ||
297 btrfs_test_flag(inode, NODATACOW))
298 ret = run_delalloc_nocow(inode, start, end);
299 else
300 ret = cow_file_range(inode, start, end);
301
302 return ret;
303 }
304
305 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
306 unsigned long old, unsigned long bits)
307 {
308 unsigned long flags;
309 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
310 struct btrfs_root *root = BTRFS_I(inode)->root;
311 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
312 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
313 root->fs_info->delalloc_bytes += end - start + 1;
314 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
315 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
316 &root->fs_info->delalloc_inodes);
317 }
318 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
319 }
320 return 0;
321 }
322
323 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
324 unsigned long old, unsigned long bits)
325 {
326 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
327 struct btrfs_root *root = BTRFS_I(inode)->root;
328 unsigned long flags;
329
330 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
331 if (end - start + 1 > root->fs_info->delalloc_bytes) {
332 printk("warning: delalloc account %Lu %Lu\n",
333 end - start + 1, root->fs_info->delalloc_bytes);
334 root->fs_info->delalloc_bytes = 0;
335 BTRFS_I(inode)->delalloc_bytes = 0;
336 } else {
337 root->fs_info->delalloc_bytes -= end - start + 1;
338 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
339 }
340 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
341 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
342 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
343 }
344 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
345 }
346 return 0;
347 }
348
349 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
350 size_t size, struct bio *bio)
351 {
352 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
353 struct btrfs_mapping_tree *map_tree;
354 u64 logical = bio->bi_sector << 9;
355 u64 length = 0;
356 u64 map_length;
357 int ret;
358
359 length = bio->bi_size;
360 map_tree = &root->fs_info->mapping_tree;
361 map_length = length;
362 ret = btrfs_map_block(map_tree, READ, logical,
363 &map_length, NULL, 0);
364
365 if (map_length < length + size) {
366 return 1;
367 }
368 return 0;
369 }
370
371 int __btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
372 int mirror_num)
373 {
374 struct btrfs_root *root = BTRFS_I(inode)->root;
375 int ret = 0;
376
377 ret = btrfs_csum_one_bio(root, inode, bio);
378 BUG_ON(ret);
379
380 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
381 }
382
383 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
384 int mirror_num)
385 {
386 struct btrfs_root *root = BTRFS_I(inode)->root;
387 int ret = 0;
388
389 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
390 BUG_ON(ret);
391
392 if (!(rw & (1 << BIO_RW))) {
393 goto mapit;
394 }
395
396 if (btrfs_test_opt(root, NODATASUM) ||
397 btrfs_test_flag(inode, NODATASUM)) {
398 goto mapit;
399 }
400
401 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
402 inode, rw, bio, mirror_num,
403 __btrfs_submit_bio_hook);
404 mapit:
405 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
406 }
407
408 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
409 struct inode *inode, u64 file_offset,
410 struct list_head *list)
411 {
412 struct list_head *cur;
413 struct btrfs_ordered_sum *sum;
414
415 btrfs_set_trans_block_group(trans, inode);
416 list_for_each(cur, list) {
417 sum = list_entry(cur, struct btrfs_ordered_sum, list);
418 mutex_lock(&BTRFS_I(inode)->csum_mutex);
419 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
420 inode, sum);
421 mutex_unlock(&BTRFS_I(inode)->csum_mutex);
422 }
423 return 0;
424 }
425
426 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
427 {
428 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
429 GFP_NOFS);
430 }
431
432 struct btrfs_writepage_fixup {
433 struct page *page;
434 struct btrfs_work work;
435 };
436
437 /* see btrfs_writepage_start_hook for details on why this is required */
438 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
439 {
440 struct btrfs_writepage_fixup *fixup;
441 struct btrfs_ordered_extent *ordered;
442 struct page *page;
443 struct inode *inode;
444 u64 page_start;
445 u64 page_end;
446
447 fixup = container_of(work, struct btrfs_writepage_fixup, work);
448 page = fixup->page;
449 again:
450 lock_page(page);
451 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
452 ClearPageChecked(page);
453 goto out_page;
454 }
455
456 inode = page->mapping->host;
457 page_start = page_offset(page);
458 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
459
460 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
461
462 /* already ordered? We're done */
463 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
464 EXTENT_ORDERED, 0)) {
465 goto out;
466 }
467
468 ordered = btrfs_lookup_ordered_extent(inode, page_start);
469 if (ordered) {
470 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
471 page_end, GFP_NOFS);
472 unlock_page(page);
473 btrfs_start_ordered_extent(inode, ordered, 1);
474 goto again;
475 }
476
477 btrfs_set_extent_delalloc(inode, page_start, page_end);
478 ClearPageChecked(page);
479 out:
480 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
481 out_page:
482 unlock_page(page);
483 page_cache_release(page);
484 }
485
486 /*
487 * There are a few paths in the higher layers of the kernel that directly
488 * set the page dirty bit without asking the filesystem if it is a
489 * good idea. This causes problems because we want to make sure COW
490 * properly happens and the data=ordered rules are followed.
491 *
492 * In our case any range that doesn't have the EXTENT_ORDERED bit set
493 * hasn't been properly setup for IO. We kick off an async process
494 * to fix it up. The async helper will wait for ordered extents, set
495 * the delalloc bit and make it safe to write the page.
496 */
497 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
498 {
499 struct inode *inode = page->mapping->host;
500 struct btrfs_writepage_fixup *fixup;
501 struct btrfs_root *root = BTRFS_I(inode)->root;
502 int ret;
503
504 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
505 EXTENT_ORDERED, 0);
506 if (ret)
507 return 0;
508
509 if (PageChecked(page))
510 return -EAGAIN;
511
512 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
513 if (!fixup)
514 return -EAGAIN;
515
516 SetPageChecked(page);
517 page_cache_get(page);
518 fixup->work.func = btrfs_writepage_fixup_worker;
519 fixup->page = page;
520 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
521 return -EAGAIN;
522 }
523
524 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
525 {
526 struct btrfs_root *root = BTRFS_I(inode)->root;
527 struct btrfs_trans_handle *trans;
528 struct btrfs_ordered_extent *ordered_extent;
529 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
530 u64 alloc_hint = 0;
531 struct list_head list;
532 struct btrfs_key ins;
533 int ret;
534
535 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
536 if (!ret)
537 return 0;
538
539 trans = btrfs_join_transaction(root, 1);
540
541 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
542 BUG_ON(!ordered_extent);
543 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
544 goto nocow;
545
546 lock_extent(io_tree, ordered_extent->file_offset,
547 ordered_extent->file_offset + ordered_extent->len - 1,
548 GFP_NOFS);
549
550 INIT_LIST_HEAD(&list);
551
552 ins.objectid = ordered_extent->start;
553 ins.offset = ordered_extent->len;
554 ins.type = BTRFS_EXTENT_ITEM_KEY;
555
556 ret = btrfs_alloc_reserved_extent(trans, root, root->root_key.objectid,
557 trans->transid, inode->i_ino,
558 ordered_extent->file_offset, &ins);
559 BUG_ON(ret);
560
561 mutex_lock(&BTRFS_I(inode)->extent_mutex);
562
563 ret = btrfs_drop_extents(trans, root, inode,
564 ordered_extent->file_offset,
565 ordered_extent->file_offset +
566 ordered_extent->len,
567 ordered_extent->file_offset, &alloc_hint);
568 BUG_ON(ret);
569 ret = btrfs_insert_file_extent(trans, root, inode->i_ino,
570 ordered_extent->file_offset,
571 ordered_extent->start,
572 ordered_extent->len,
573 ordered_extent->len, 0);
574 BUG_ON(ret);
575
576 btrfs_drop_extent_cache(inode, ordered_extent->file_offset,
577 ordered_extent->file_offset +
578 ordered_extent->len - 1);
579 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
580
581 inode->i_blocks += ordered_extent->len >> 9;
582 unlock_extent(io_tree, ordered_extent->file_offset,
583 ordered_extent->file_offset + ordered_extent->len - 1,
584 GFP_NOFS);
585 nocow:
586 add_pending_csums(trans, inode, ordered_extent->file_offset,
587 &ordered_extent->list);
588
589 btrfs_ordered_update_i_size(inode, ordered_extent);
590 btrfs_remove_ordered_extent(inode, ordered_extent);
591
592 /* once for us */
593 btrfs_put_ordered_extent(ordered_extent);
594 /* once for the tree */
595 btrfs_put_ordered_extent(ordered_extent);
596
597 btrfs_update_inode(trans, root, inode);
598 btrfs_end_transaction(trans, root);
599 return 0;
600 }
601
602 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
603 struct extent_state *state, int uptodate)
604 {
605 return btrfs_finish_ordered_io(page->mapping->host, start, end);
606 }
607
608 int btrfs_readpage_io_hook(struct page *page, u64 start, u64 end)
609 {
610 int ret = 0;
611 struct inode *inode = page->mapping->host;
612 struct btrfs_root *root = BTRFS_I(inode)->root;
613 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
614 struct btrfs_csum_item *item;
615 struct btrfs_path *path = NULL;
616 u32 csum;
617
618 if (btrfs_test_opt(root, NODATASUM) ||
619 btrfs_test_flag(inode, NODATASUM))
620 return 0;
621
622 /*
623 * It is possible there is an ordered extent that has
624 * not yet finished for this range in the file. If so,
625 * that extent will have a csum cached, and it will insert
626 * the sum after all the blocks in the extent are fully
627 * on disk. So, look for an ordered extent and use the
628 * sum if found. We have to do this before looking in the
629 * btree because csum items are pre-inserted based on
630 * the file size. btrfs_lookup_csum might find an item
631 * that still hasn't been fully filled.
632 */
633 ret = btrfs_find_ordered_sum(inode, start, &csum);
634 if (ret == 0)
635 goto found;
636
637 ret = 0;
638 path = btrfs_alloc_path();
639 item = btrfs_lookup_csum(NULL, root, path, inode->i_ino, start, 0);
640 if (IS_ERR(item)) {
641 ret = PTR_ERR(item);
642 /* a csum that isn't present is a preallocated region. */
643 if (ret == -ENOENT || ret == -EFBIG)
644 ret = 0;
645 csum = 0;
646 printk("no csum found for inode %lu start %Lu\n", inode->i_ino,
647 start);
648 goto out;
649 }
650 read_extent_buffer(path->nodes[0], &csum, (unsigned long)item,
651 BTRFS_CRC32_SIZE);
652 found:
653 set_state_private(io_tree, start, csum);
654 out:
655 if (path)
656 btrfs_free_path(path);
657 return ret;
658 }
659
660 struct io_failure_record {
661 struct page *page;
662 u64 start;
663 u64 len;
664 u64 logical;
665 int last_mirror;
666 };
667
668 int btrfs_io_failed_hook(struct bio *failed_bio,
669 struct page *page, u64 start, u64 end,
670 struct extent_state *state)
671 {
672 struct io_failure_record *failrec = NULL;
673 u64 private;
674 struct extent_map *em;
675 struct inode *inode = page->mapping->host;
676 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
677 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
678 struct bio *bio;
679 int num_copies;
680 int ret;
681 int rw;
682 u64 logical;
683
684 ret = get_state_private(failure_tree, start, &private);
685 if (ret) {
686 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
687 if (!failrec)
688 return -ENOMEM;
689 failrec->start = start;
690 failrec->len = end - start + 1;
691 failrec->last_mirror = 0;
692
693 spin_lock(&em_tree->lock);
694 em = lookup_extent_mapping(em_tree, start, failrec->len);
695 if (em->start > start || em->start + em->len < start) {
696 free_extent_map(em);
697 em = NULL;
698 }
699 spin_unlock(&em_tree->lock);
700
701 if (!em || IS_ERR(em)) {
702 kfree(failrec);
703 return -EIO;
704 }
705 logical = start - em->start;
706 logical = em->block_start + logical;
707 failrec->logical = logical;
708 free_extent_map(em);
709 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
710 EXTENT_DIRTY, GFP_NOFS);
711 set_state_private(failure_tree, start,
712 (u64)(unsigned long)failrec);
713 } else {
714 failrec = (struct io_failure_record *)(unsigned long)private;
715 }
716 num_copies = btrfs_num_copies(
717 &BTRFS_I(inode)->root->fs_info->mapping_tree,
718 failrec->logical, failrec->len);
719 failrec->last_mirror++;
720 if (!state) {
721 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
722 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
723 failrec->start,
724 EXTENT_LOCKED);
725 if (state && state->start != failrec->start)
726 state = NULL;
727 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
728 }
729 if (!state || failrec->last_mirror > num_copies) {
730 set_state_private(failure_tree, failrec->start, 0);
731 clear_extent_bits(failure_tree, failrec->start,
732 failrec->start + failrec->len - 1,
733 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
734 kfree(failrec);
735 return -EIO;
736 }
737 bio = bio_alloc(GFP_NOFS, 1);
738 bio->bi_private = state;
739 bio->bi_end_io = failed_bio->bi_end_io;
740 bio->bi_sector = failrec->logical >> 9;
741 bio->bi_bdev = failed_bio->bi_bdev;
742 bio->bi_size = 0;
743 bio_add_page(bio, page, failrec->len, start - page_offset(page));
744 if (failed_bio->bi_rw & (1 << BIO_RW))
745 rw = WRITE;
746 else
747 rw = READ;
748
749 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
750 failrec->last_mirror);
751 return 0;
752 }
753
754 int btrfs_clean_io_failures(struct inode *inode, u64 start)
755 {
756 u64 private;
757 u64 private_failure;
758 struct io_failure_record *failure;
759 int ret;
760
761 private = 0;
762 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
763 (u64)-1, 1, EXTENT_DIRTY)) {
764 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
765 start, &private_failure);
766 if (ret == 0) {
767 failure = (struct io_failure_record *)(unsigned long)
768 private_failure;
769 set_state_private(&BTRFS_I(inode)->io_failure_tree,
770 failure->start, 0);
771 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
772 failure->start,
773 failure->start + failure->len - 1,
774 EXTENT_DIRTY | EXTENT_LOCKED,
775 GFP_NOFS);
776 kfree(failure);
777 }
778 }
779 return 0;
780 }
781
782 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
783 struct extent_state *state)
784 {
785 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
786 struct inode *inode = page->mapping->host;
787 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
788 char *kaddr;
789 u64 private = ~(u32)0;
790 int ret;
791 struct btrfs_root *root = BTRFS_I(inode)->root;
792 u32 csum = ~(u32)0;
793 unsigned long flags;
794
795 if (btrfs_test_opt(root, NODATASUM) ||
796 btrfs_test_flag(inode, NODATASUM))
797 return 0;
798 if (state && state->start == start) {
799 private = state->private;
800 ret = 0;
801 } else {
802 ret = get_state_private(io_tree, start, &private);
803 }
804 local_irq_save(flags);
805 kaddr = kmap_atomic(page, KM_IRQ0);
806 if (ret) {
807 goto zeroit;
808 }
809 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
810 btrfs_csum_final(csum, (char *)&csum);
811 if (csum != private) {
812 goto zeroit;
813 }
814 kunmap_atomic(kaddr, KM_IRQ0);
815 local_irq_restore(flags);
816
817 /* if the io failure tree for this inode is non-empty,
818 * check to see if we've recovered from a failed IO
819 */
820 btrfs_clean_io_failures(inode, start);
821 return 0;
822
823 zeroit:
824 printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
825 page->mapping->host->i_ino, (unsigned long long)start, csum,
826 private);
827 memset(kaddr + offset, 1, end - start + 1);
828 flush_dcache_page(page);
829 kunmap_atomic(kaddr, KM_IRQ0);
830 local_irq_restore(flags);
831 if (private == 0)
832 return 0;
833 return -EIO;
834 }
835
836 /*
837 * This creates an orphan entry for the given inode in case something goes
838 * wrong in the middle of an unlink/truncate.
839 */
840 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
841 {
842 struct btrfs_root *root = BTRFS_I(inode)->root;
843 int ret = 0;
844
845 spin_lock(&root->list_lock);
846
847 /* already on the orphan list, we're good */
848 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
849 spin_unlock(&root->list_lock);
850 return 0;
851 }
852
853 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
854
855 spin_unlock(&root->list_lock);
856
857 /*
858 * insert an orphan item to track this unlinked/truncated file
859 */
860 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
861
862 return ret;
863 }
864
865 /*
866 * We have done the truncate/delete so we can go ahead and remove the orphan
867 * item for this particular inode.
868 */
869 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
870 {
871 struct btrfs_root *root = BTRFS_I(inode)->root;
872 int ret = 0;
873
874 spin_lock(&root->list_lock);
875
876 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
877 spin_unlock(&root->list_lock);
878 return 0;
879 }
880
881 list_del_init(&BTRFS_I(inode)->i_orphan);
882 if (!trans) {
883 spin_unlock(&root->list_lock);
884 return 0;
885 }
886
887 spin_unlock(&root->list_lock);
888
889 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
890
891 return ret;
892 }
893
894 /*
895 * this cleans up any orphans that may be left on the list from the last use
896 * of this root.
897 */
898 void btrfs_orphan_cleanup(struct btrfs_root *root)
899 {
900 struct btrfs_path *path;
901 struct extent_buffer *leaf;
902 struct btrfs_item *item;
903 struct btrfs_key key, found_key;
904 struct btrfs_trans_handle *trans;
905 struct inode *inode;
906 int ret = 0, nr_unlink = 0, nr_truncate = 0;
907
908 /* don't do orphan cleanup if the fs is readonly. */
909 if (root->inode->i_sb->s_flags & MS_RDONLY)
910 return;
911
912 path = btrfs_alloc_path();
913 if (!path)
914 return;
915 path->reada = -1;
916
917 key.objectid = BTRFS_ORPHAN_OBJECTID;
918 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
919 key.offset = (u64)-1;
920
921 trans = btrfs_start_transaction(root, 1);
922 btrfs_set_trans_block_group(trans, root->inode);
923
924 while (1) {
925 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
926 if (ret < 0) {
927 printk(KERN_ERR "Error searching slot for orphan: %d"
928 "\n", ret);
929 break;
930 }
931
932 /*
933 * if ret == 0 means we found what we were searching for, which
934 * is weird, but possible, so only screw with path if we didnt
935 * find the key and see if we have stuff that matches
936 */
937 if (ret > 0) {
938 if (path->slots[0] == 0)
939 break;
940 path->slots[0]--;
941 }
942
943 /* pull out the item */
944 leaf = path->nodes[0];
945 item = btrfs_item_nr(leaf, path->slots[0]);
946 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
947
948 /* make sure the item matches what we want */
949 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
950 break;
951 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
952 break;
953
954 /* release the path since we're done with it */
955 btrfs_release_path(root, path);
956
957 /*
958 * this is where we are basically btrfs_lookup, without the
959 * crossing root thing. we store the inode number in the
960 * offset of the orphan item.
961 */
962 inode = btrfs_iget_locked(root->inode->i_sb,
963 found_key.offset, root);
964 if (!inode)
965 break;
966
967 if (inode->i_state & I_NEW) {
968 BTRFS_I(inode)->root = root;
969
970 /* have to set the location manually */
971 BTRFS_I(inode)->location.objectid = inode->i_ino;
972 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
973 BTRFS_I(inode)->location.offset = 0;
974
975 btrfs_read_locked_inode(inode);
976 unlock_new_inode(inode);
977 }
978
979 /*
980 * add this inode to the orphan list so btrfs_orphan_del does
981 * the proper thing when we hit it
982 */
983 spin_lock(&root->list_lock);
984 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
985 spin_unlock(&root->list_lock);
986
987 /*
988 * if this is a bad inode, means we actually succeeded in
989 * removing the inode, but not the orphan record, which means
990 * we need to manually delete the orphan since iput will just
991 * do a destroy_inode
992 */
993 if (is_bad_inode(inode)) {
994 btrfs_orphan_del(trans, inode);
995 iput(inode);
996 continue;
997 }
998
999 /* if we have links, this was a truncate, lets do that */
1000 if (inode->i_nlink) {
1001 nr_truncate++;
1002 btrfs_truncate(inode);
1003 } else {
1004 nr_unlink++;
1005 }
1006
1007 /* this will do delete_inode and everything for us */
1008 iput(inode);
1009 }
1010
1011 if (nr_unlink)
1012 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1013 if (nr_truncate)
1014 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1015
1016 btrfs_free_path(path);
1017 btrfs_end_transaction(trans, root);
1018 }
1019
1020 void btrfs_read_locked_inode(struct inode *inode)
1021 {
1022 struct btrfs_path *path;
1023 struct extent_buffer *leaf;
1024 struct btrfs_inode_item *inode_item;
1025 struct btrfs_timespec *tspec;
1026 struct btrfs_root *root = BTRFS_I(inode)->root;
1027 struct btrfs_key location;
1028 u64 alloc_group_block;
1029 u32 rdev;
1030 int ret;
1031
1032 path = btrfs_alloc_path();
1033 BUG_ON(!path);
1034 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1035
1036 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1037 if (ret)
1038 goto make_bad;
1039
1040 leaf = path->nodes[0];
1041 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1042 struct btrfs_inode_item);
1043
1044 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1045 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1046 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1047 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1048 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1049
1050 tspec = btrfs_inode_atime(inode_item);
1051 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1052 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1053
1054 tspec = btrfs_inode_mtime(inode_item);
1055 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1056 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1057
1058 tspec = btrfs_inode_ctime(inode_item);
1059 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1060 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1061
1062 inode->i_blocks = btrfs_inode_nblocks(leaf, inode_item);
1063 inode->i_generation = btrfs_inode_generation(leaf, inode_item);
1064 inode->i_rdev = 0;
1065 rdev = btrfs_inode_rdev(leaf, inode_item);
1066
1067 BTRFS_I(inode)->index_cnt = (u64)-1;
1068
1069 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1070 BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1071 alloc_group_block);
1072 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1073 if (!BTRFS_I(inode)->block_group) {
1074 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1075 NULL, 0,
1076 BTRFS_BLOCK_GROUP_METADATA, 0);
1077 }
1078 btrfs_free_path(path);
1079 inode_item = NULL;
1080
1081 switch (inode->i_mode & S_IFMT) {
1082 case S_IFREG:
1083 inode->i_mapping->a_ops = &btrfs_aops;
1084 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1085 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1086 inode->i_fop = &btrfs_file_operations;
1087 inode->i_op = &btrfs_file_inode_operations;
1088 break;
1089 case S_IFDIR:
1090 inode->i_fop = &btrfs_dir_file_operations;
1091 if (root == root->fs_info->tree_root)
1092 inode->i_op = &btrfs_dir_ro_inode_operations;
1093 else
1094 inode->i_op = &btrfs_dir_inode_operations;
1095 break;
1096 case S_IFLNK:
1097 inode->i_op = &btrfs_symlink_inode_operations;
1098 inode->i_mapping->a_ops = &btrfs_symlink_aops;
1099 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1100 break;
1101 default:
1102 init_special_inode(inode, inode->i_mode, rdev);
1103 break;
1104 }
1105 return;
1106
1107 make_bad:
1108 btrfs_free_path(path);
1109 make_bad_inode(inode);
1110 }
1111
1112 static void fill_inode_item(struct extent_buffer *leaf,
1113 struct btrfs_inode_item *item,
1114 struct inode *inode)
1115 {
1116 btrfs_set_inode_uid(leaf, item, inode->i_uid);
1117 btrfs_set_inode_gid(leaf, item, inode->i_gid);
1118 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
1119 btrfs_set_inode_mode(leaf, item, inode->i_mode);
1120 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
1121
1122 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
1123 inode->i_atime.tv_sec);
1124 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
1125 inode->i_atime.tv_nsec);
1126
1127 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
1128 inode->i_mtime.tv_sec);
1129 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
1130 inode->i_mtime.tv_nsec);
1131
1132 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
1133 inode->i_ctime.tv_sec);
1134 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
1135 inode->i_ctime.tv_nsec);
1136
1137 btrfs_set_inode_nblocks(leaf, item, inode->i_blocks);
1138 btrfs_set_inode_generation(leaf, item, inode->i_generation);
1139 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
1140 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
1141 btrfs_set_inode_block_group(leaf, item,
1142 BTRFS_I(inode)->block_group->key.objectid);
1143 }
1144
1145 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
1146 struct btrfs_root *root,
1147 struct inode *inode)
1148 {
1149 struct btrfs_inode_item *inode_item;
1150 struct btrfs_path *path;
1151 struct extent_buffer *leaf;
1152 int ret;
1153
1154 path = btrfs_alloc_path();
1155 BUG_ON(!path);
1156 ret = btrfs_lookup_inode(trans, root, path,
1157 &BTRFS_I(inode)->location, 1);
1158 if (ret) {
1159 if (ret > 0)
1160 ret = -ENOENT;
1161 goto failed;
1162 }
1163
1164 leaf = path->nodes[0];
1165 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1166 struct btrfs_inode_item);
1167
1168 fill_inode_item(leaf, inode_item, inode);
1169 btrfs_mark_buffer_dirty(leaf);
1170 btrfs_set_inode_last_trans(trans, inode);
1171 ret = 0;
1172 failed:
1173 btrfs_free_path(path);
1174 return ret;
1175 }
1176
1177
1178 static int btrfs_unlink_trans(struct btrfs_trans_handle *trans,
1179 struct btrfs_root *root,
1180 struct inode *dir,
1181 struct dentry *dentry)
1182 {
1183 struct btrfs_path *path;
1184 const char *name = dentry->d_name.name;
1185 int name_len = dentry->d_name.len;
1186 int ret = 0;
1187 struct extent_buffer *leaf;
1188 struct btrfs_dir_item *di;
1189 struct btrfs_key key;
1190 u64 index;
1191
1192 path = btrfs_alloc_path();
1193 if (!path) {
1194 ret = -ENOMEM;
1195 goto err;
1196 }
1197
1198 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
1199 name, name_len, -1);
1200 if (IS_ERR(di)) {
1201 ret = PTR_ERR(di);
1202 goto err;
1203 }
1204 if (!di) {
1205 ret = -ENOENT;
1206 goto err;
1207 }
1208 leaf = path->nodes[0];
1209 btrfs_dir_item_key_to_cpu(leaf, di, &key);
1210 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1211 if (ret)
1212 goto err;
1213 btrfs_release_path(root, path);
1214
1215 ret = btrfs_del_inode_ref(trans, root, name, name_len,
1216 dentry->d_inode->i_ino,
1217 dentry->d_parent->d_inode->i_ino, &index);
1218 if (ret) {
1219 printk("failed to delete reference to %.*s, "
1220 "inode %lu parent %lu\n", name_len, name,
1221 dentry->d_inode->i_ino,
1222 dentry->d_parent->d_inode->i_ino);
1223 goto err;
1224 }
1225
1226 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
1227 index, name, name_len, -1);
1228 if (IS_ERR(di)) {
1229 ret = PTR_ERR(di);
1230 goto err;
1231 }
1232 if (!di) {
1233 ret = -ENOENT;
1234 goto err;
1235 }
1236 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1237 btrfs_release_path(root, path);
1238
1239 dentry->d_inode->i_ctime = dir->i_ctime;
1240 err:
1241 btrfs_free_path(path);
1242 if (!ret) {
1243 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
1244 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
1245 btrfs_update_inode(trans, root, dir);
1246 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1247 dentry->d_inode->i_nlink--;
1248 #else
1249 drop_nlink(dentry->d_inode);
1250 #endif
1251 ret = btrfs_update_inode(trans, root, dentry->d_inode);
1252 dir->i_sb->s_dirt = 1;
1253 }
1254 return ret;
1255 }
1256
1257 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
1258 {
1259 struct btrfs_root *root;
1260 struct btrfs_trans_handle *trans;
1261 struct inode *inode = dentry->d_inode;
1262 int ret;
1263 unsigned long nr = 0;
1264
1265 root = BTRFS_I(dir)->root;
1266
1267 ret = btrfs_check_free_space(root, 1, 1);
1268 if (ret)
1269 goto fail;
1270
1271 trans = btrfs_start_transaction(root, 1);
1272
1273 btrfs_set_trans_block_group(trans, dir);
1274 ret = btrfs_unlink_trans(trans, root, dir, dentry);
1275
1276 if (inode->i_nlink == 0)
1277 ret = btrfs_orphan_add(trans, inode);
1278
1279 nr = trans->blocks_used;
1280
1281 btrfs_end_transaction_throttle(trans, root);
1282 fail:
1283 btrfs_btree_balance_dirty(root, nr);
1284 return ret;
1285 }
1286
1287 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
1288 {
1289 struct inode *inode = dentry->d_inode;
1290 int err = 0;
1291 int ret;
1292 struct btrfs_root *root = BTRFS_I(dir)->root;
1293 struct btrfs_trans_handle *trans;
1294 unsigned long nr = 0;
1295
1296 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
1297 return -ENOTEMPTY;
1298 }
1299
1300 ret = btrfs_check_free_space(root, 1, 1);
1301 if (ret)
1302 goto fail;
1303
1304 trans = btrfs_start_transaction(root, 1);
1305 btrfs_set_trans_block_group(trans, dir);
1306
1307 err = btrfs_orphan_add(trans, inode);
1308 if (err)
1309 goto fail_trans;
1310
1311 /* now the directory is empty */
1312 err = btrfs_unlink_trans(trans, root, dir, dentry);
1313 if (!err) {
1314 btrfs_i_size_write(inode, 0);
1315 }
1316
1317 fail_trans:
1318 nr = trans->blocks_used;
1319 ret = btrfs_end_transaction_throttle(trans, root);
1320 fail:
1321 btrfs_btree_balance_dirty(root, nr);
1322
1323 if (ret && !err)
1324 err = ret;
1325 return err;
1326 }
1327
1328 /*
1329 * this can truncate away extent items, csum items and directory items.
1330 * It starts at a high offset and removes keys until it can't find
1331 * any higher than i_size.
1332 *
1333 * csum items that cross the new i_size are truncated to the new size
1334 * as well.
1335 *
1336 * min_type is the minimum key type to truncate down to. If set to 0, this
1337 * will kill all the items on this inode, including the INODE_ITEM_KEY.
1338 */
1339 static int btrfs_truncate_in_trans(struct btrfs_trans_handle *trans,
1340 struct btrfs_root *root,
1341 struct inode *inode,
1342 u32 min_type)
1343 {
1344 int ret;
1345 struct btrfs_path *path;
1346 struct btrfs_key key;
1347 struct btrfs_key found_key;
1348 u32 found_type;
1349 struct extent_buffer *leaf;
1350 struct btrfs_file_extent_item *fi;
1351 u64 extent_start = 0;
1352 u64 extent_num_bytes = 0;
1353 u64 item_end = 0;
1354 u64 root_gen = 0;
1355 u64 root_owner = 0;
1356 int found_extent;
1357 int del_item;
1358 int pending_del_nr = 0;
1359 int pending_del_slot = 0;
1360 int extent_type = -1;
1361 u64 mask = root->sectorsize - 1;
1362
1363 btrfs_drop_extent_cache(inode, inode->i_size & (~mask), (u64)-1);
1364 path = btrfs_alloc_path();
1365 path->reada = -1;
1366 BUG_ON(!path);
1367
1368 /* FIXME, add redo link to tree so we don't leak on crash */
1369 key.objectid = inode->i_ino;
1370 key.offset = (u64)-1;
1371 key.type = (u8)-1;
1372
1373 btrfs_init_path(path);
1374 search_again:
1375 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1376 if (ret < 0) {
1377 goto error;
1378 }
1379 if (ret > 0) {
1380 BUG_ON(path->slots[0] == 0);
1381 path->slots[0]--;
1382 }
1383
1384 while(1) {
1385 fi = NULL;
1386 leaf = path->nodes[0];
1387 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1388 found_type = btrfs_key_type(&found_key);
1389
1390 if (found_key.objectid != inode->i_ino)
1391 break;
1392
1393 if (found_type < min_type)
1394 break;
1395
1396 item_end = found_key.offset;
1397 if (found_type == BTRFS_EXTENT_DATA_KEY) {
1398 fi = btrfs_item_ptr(leaf, path->slots[0],
1399 struct btrfs_file_extent_item);
1400 extent_type = btrfs_file_extent_type(leaf, fi);
1401 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1402 item_end +=
1403 btrfs_file_extent_num_bytes(leaf, fi);
1404 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1405 struct btrfs_item *item = btrfs_item_nr(leaf,
1406 path->slots[0]);
1407 item_end += btrfs_file_extent_inline_len(leaf,
1408 item);
1409 }
1410 item_end--;
1411 }
1412 if (found_type == BTRFS_CSUM_ITEM_KEY) {
1413 ret = btrfs_csum_truncate(trans, root, path,
1414 inode->i_size);
1415 BUG_ON(ret);
1416 }
1417 if (item_end < inode->i_size) {
1418 if (found_type == BTRFS_DIR_ITEM_KEY) {
1419 found_type = BTRFS_INODE_ITEM_KEY;
1420 } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
1421 found_type = BTRFS_CSUM_ITEM_KEY;
1422 } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
1423 found_type = BTRFS_XATTR_ITEM_KEY;
1424 } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
1425 found_type = BTRFS_INODE_REF_KEY;
1426 } else if (found_type) {
1427 found_type--;
1428 } else {
1429 break;
1430 }
1431 btrfs_set_key_type(&key, found_type);
1432 goto next;
1433 }
1434 if (found_key.offset >= inode->i_size)
1435 del_item = 1;
1436 else
1437 del_item = 0;
1438 found_extent = 0;
1439
1440 /* FIXME, shrink the extent if the ref count is only 1 */
1441 if (found_type != BTRFS_EXTENT_DATA_KEY)
1442 goto delete;
1443
1444 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1445 u64 num_dec;
1446 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
1447 if (!del_item) {
1448 u64 orig_num_bytes =
1449 btrfs_file_extent_num_bytes(leaf, fi);
1450 extent_num_bytes = inode->i_size -
1451 found_key.offset + root->sectorsize - 1;
1452 extent_num_bytes = extent_num_bytes &
1453 ~((u64)root->sectorsize - 1);
1454 btrfs_set_file_extent_num_bytes(leaf, fi,
1455 extent_num_bytes);
1456 num_dec = (orig_num_bytes -
1457 extent_num_bytes);
1458 if (extent_start != 0)
1459 dec_i_blocks(inode, num_dec);
1460 btrfs_mark_buffer_dirty(leaf);
1461 } else {
1462 extent_num_bytes =
1463 btrfs_file_extent_disk_num_bytes(leaf,
1464 fi);
1465 /* FIXME blocksize != 4096 */
1466 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
1467 if (extent_start != 0) {
1468 found_extent = 1;
1469 dec_i_blocks(inode, num_dec);
1470 }
1471 root_gen = btrfs_header_generation(leaf);
1472 root_owner = btrfs_header_owner(leaf);
1473 }
1474 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1475 if (!del_item) {
1476 u32 newsize = inode->i_size - found_key.offset;
1477 dec_i_blocks(inode, item_end + 1 -
1478 found_key.offset - newsize);
1479 newsize =
1480 btrfs_file_extent_calc_inline_size(newsize);
1481 ret = btrfs_truncate_item(trans, root, path,
1482 newsize, 1);
1483 BUG_ON(ret);
1484 } else {
1485 dec_i_blocks(inode, item_end + 1 -
1486 found_key.offset);
1487 }
1488 }
1489 delete:
1490 if (del_item) {
1491 if (!pending_del_nr) {
1492 /* no pending yet, add ourselves */
1493 pending_del_slot = path->slots[0];
1494 pending_del_nr = 1;
1495 } else if (pending_del_nr &&
1496 path->slots[0] + 1 == pending_del_slot) {
1497 /* hop on the pending chunk */
1498 pending_del_nr++;
1499 pending_del_slot = path->slots[0];
1500 } else {
1501 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
1502 }
1503 } else {
1504 break;
1505 }
1506 if (found_extent) {
1507 ret = btrfs_free_extent(trans, root, extent_start,
1508 extent_num_bytes,
1509 root_owner,
1510 root_gen, inode->i_ino,
1511 found_key.offset, 0);
1512 BUG_ON(ret);
1513 }
1514 next:
1515 if (path->slots[0] == 0) {
1516 if (pending_del_nr)
1517 goto del_pending;
1518 btrfs_release_path(root, path);
1519 goto search_again;
1520 }
1521
1522 path->slots[0]--;
1523 if (pending_del_nr &&
1524 path->slots[0] + 1 != pending_del_slot) {
1525 struct btrfs_key debug;
1526 del_pending:
1527 btrfs_item_key_to_cpu(path->nodes[0], &debug,
1528 pending_del_slot);
1529 ret = btrfs_del_items(trans, root, path,
1530 pending_del_slot,
1531 pending_del_nr);
1532 BUG_ON(ret);
1533 pending_del_nr = 0;
1534 btrfs_release_path(root, path);
1535 goto search_again;
1536 }
1537 }
1538 ret = 0;
1539 error:
1540 if (pending_del_nr) {
1541 ret = btrfs_del_items(trans, root, path, pending_del_slot,
1542 pending_del_nr);
1543 }
1544 btrfs_free_path(path);
1545 inode->i_sb->s_dirt = 1;
1546 return ret;
1547 }
1548
1549 /*
1550 * taken from block_truncate_page, but does cow as it zeros out
1551 * any bytes left in the last page in the file.
1552 */
1553 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
1554 {
1555 struct inode *inode = mapping->host;
1556 struct btrfs_root *root = BTRFS_I(inode)->root;
1557 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1558 struct btrfs_ordered_extent *ordered;
1559 char *kaddr;
1560 u32 blocksize = root->sectorsize;
1561 pgoff_t index = from >> PAGE_CACHE_SHIFT;
1562 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1563 struct page *page;
1564 int ret = 0;
1565 u64 page_start;
1566 u64 page_end;
1567
1568 if ((offset & (blocksize - 1)) == 0)
1569 goto out;
1570
1571 ret = -ENOMEM;
1572 again:
1573 page = grab_cache_page(mapping, index);
1574 if (!page)
1575 goto out;
1576
1577 page_start = page_offset(page);
1578 page_end = page_start + PAGE_CACHE_SIZE - 1;
1579
1580 if (!PageUptodate(page)) {
1581 ret = btrfs_readpage(NULL, page);
1582 lock_page(page);
1583 if (page->mapping != mapping) {
1584 unlock_page(page);
1585 page_cache_release(page);
1586 goto again;
1587 }
1588 if (!PageUptodate(page)) {
1589 ret = -EIO;
1590 goto out_unlock;
1591 }
1592 }
1593 wait_on_page_writeback(page);
1594
1595 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
1596 set_page_extent_mapped(page);
1597
1598 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1599 if (ordered) {
1600 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1601 unlock_page(page);
1602 page_cache_release(page);
1603 btrfs_start_ordered_extent(inode, ordered, 1);
1604 btrfs_put_ordered_extent(ordered);
1605 goto again;
1606 }
1607
1608 btrfs_set_extent_delalloc(inode, page_start, page_end);
1609 ret = 0;
1610 if (offset != PAGE_CACHE_SIZE) {
1611 kaddr = kmap(page);
1612 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
1613 flush_dcache_page(page);
1614 kunmap(page);
1615 }
1616 ClearPageChecked(page);
1617 set_page_dirty(page);
1618 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1619
1620 out_unlock:
1621 unlock_page(page);
1622 page_cache_release(page);
1623 out:
1624 return ret;
1625 }
1626
1627 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
1628 {
1629 struct inode *inode = dentry->d_inode;
1630 int err;
1631
1632 err = inode_change_ok(inode, attr);
1633 if (err)
1634 return err;
1635
1636 if (S_ISREG(inode->i_mode) &&
1637 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
1638 struct btrfs_trans_handle *trans;
1639 struct btrfs_root *root = BTRFS_I(inode)->root;
1640 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1641
1642 u64 mask = root->sectorsize - 1;
1643 u64 hole_start = (inode->i_size + mask) & ~mask;
1644 u64 block_end = (attr->ia_size + mask) & ~mask;
1645 u64 hole_size;
1646 u64 alloc_hint = 0;
1647
1648 if (attr->ia_size <= hole_start)
1649 goto out;
1650
1651 err = btrfs_check_free_space(root, 1, 0);
1652 if (err)
1653 goto fail;
1654
1655 btrfs_truncate_page(inode->i_mapping, inode->i_size);
1656
1657 hole_size = block_end - hole_start;
1658 btrfs_wait_ordered_range(inode, hole_start, hole_size);
1659 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1660
1661 trans = btrfs_start_transaction(root, 1);
1662 btrfs_set_trans_block_group(trans, inode);
1663 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1664 err = btrfs_drop_extents(trans, root, inode,
1665 hole_start, block_end, hole_start,
1666 &alloc_hint);
1667
1668 if (alloc_hint != EXTENT_MAP_INLINE) {
1669 err = btrfs_insert_file_extent(trans, root,
1670 inode->i_ino,
1671 hole_start, 0, 0,
1672 hole_size, 0);
1673 btrfs_drop_extent_cache(inode, hole_start,
1674 (u64)-1);
1675 btrfs_check_file(root, inode);
1676 }
1677 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1678 btrfs_end_transaction(trans, root);
1679 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1680 if (err)
1681 return err;
1682 }
1683 out:
1684 err = inode_setattr(inode, attr);
1685
1686 if (!err && ((attr->ia_valid & ATTR_MODE)))
1687 err = btrfs_acl_chmod(inode);
1688 fail:
1689 return err;
1690 }
1691
1692 void btrfs_delete_inode(struct inode *inode)
1693 {
1694 struct btrfs_trans_handle *trans;
1695 struct btrfs_root *root = BTRFS_I(inode)->root;
1696 unsigned long nr;
1697 int ret;
1698
1699 truncate_inode_pages(&inode->i_data, 0);
1700 if (is_bad_inode(inode)) {
1701 btrfs_orphan_del(NULL, inode);
1702 goto no_delete;
1703 }
1704 btrfs_wait_ordered_range(inode, 0, (u64)-1);
1705
1706 btrfs_i_size_write(inode, 0);
1707 trans = btrfs_start_transaction(root, 1);
1708
1709 btrfs_set_trans_block_group(trans, inode);
1710 ret = btrfs_truncate_in_trans(trans, root, inode, 0);
1711 if (ret) {
1712 btrfs_orphan_del(NULL, inode);
1713 goto no_delete_lock;
1714 }
1715
1716 btrfs_orphan_del(trans, inode);
1717
1718 nr = trans->blocks_used;
1719 clear_inode(inode);
1720
1721 btrfs_end_transaction(trans, root);
1722 btrfs_btree_balance_dirty(root, nr);
1723 return;
1724
1725 no_delete_lock:
1726 nr = trans->blocks_used;
1727 btrfs_end_transaction(trans, root);
1728 btrfs_btree_balance_dirty(root, nr);
1729 no_delete:
1730 clear_inode(inode);
1731 }
1732
1733 /*
1734 * this returns the key found in the dir entry in the location pointer.
1735 * If no dir entries were found, location->objectid is 0.
1736 */
1737 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
1738 struct btrfs_key *location)
1739 {
1740 const char *name = dentry->d_name.name;
1741 int namelen = dentry->d_name.len;
1742 struct btrfs_dir_item *di;
1743 struct btrfs_path *path;
1744 struct btrfs_root *root = BTRFS_I(dir)->root;
1745 int ret = 0;
1746
1747 if (namelen == 1 && strcmp(name, ".") == 0) {
1748 location->objectid = dir->i_ino;
1749 location->type = BTRFS_INODE_ITEM_KEY;
1750 location->offset = 0;
1751 return 0;
1752 }
1753 path = btrfs_alloc_path();
1754 BUG_ON(!path);
1755
1756 if (namelen == 2 && strcmp(name, "..") == 0) {
1757 struct btrfs_key key;
1758 struct extent_buffer *leaf;
1759 int slot;
1760
1761 key.objectid = dir->i_ino;
1762 key.offset = (u64)-1;
1763 btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY);
1764 if (ret < 0 || path->slots[0] == 0)
1765 goto out_err;
1766 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1767 BUG_ON(ret == 0);
1768 ret = 0;
1769 leaf = path->nodes[0];
1770 slot = path->slots[0] - 1;
1771
1772 btrfs_item_key_to_cpu(leaf, &key, slot);
1773 if (key.objectid != dir->i_ino ||
1774 key.type != BTRFS_INODE_REF_KEY) {
1775 goto out_err;
1776 }
1777 location->objectid = key.offset;
1778 location->type = BTRFS_INODE_ITEM_KEY;
1779 location->offset = 0;
1780 goto out;
1781 }
1782
1783 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
1784 namelen, 0);
1785 if (IS_ERR(di))
1786 ret = PTR_ERR(di);
1787 if (!di || IS_ERR(di)) {
1788 goto out_err;
1789 }
1790 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
1791 out:
1792 btrfs_free_path(path);
1793 return ret;
1794 out_err:
1795 location->objectid = 0;
1796 goto out;
1797 }
1798
1799 /*
1800 * when we hit a tree root in a directory, the btrfs part of the inode
1801 * needs to be changed to reflect the root directory of the tree root. This
1802 * is kind of like crossing a mount point.
1803 */
1804 static int fixup_tree_root_location(struct btrfs_root *root,
1805 struct btrfs_key *location,
1806 struct btrfs_root **sub_root,
1807 struct dentry *dentry)
1808 {
1809 struct btrfs_root_item *ri;
1810
1811 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
1812 return 0;
1813 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1814 return 0;
1815
1816 *sub_root = btrfs_read_fs_root(root->fs_info, location,
1817 dentry->d_name.name,
1818 dentry->d_name.len);
1819 if (IS_ERR(*sub_root))
1820 return PTR_ERR(*sub_root);
1821
1822 ri = &(*sub_root)->root_item;
1823 location->objectid = btrfs_root_dirid(ri);
1824 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
1825 location->offset = 0;
1826
1827 return 0;
1828 }
1829
1830 static int btrfs_init_locked_inode(struct inode *inode, void *p)
1831 {
1832 struct btrfs_iget_args *args = p;
1833 inode->i_ino = args->ino;
1834 BTRFS_I(inode)->root = args->root;
1835 BTRFS_I(inode)->delalloc_bytes = 0;
1836 BTRFS_I(inode)->disk_i_size = 0;
1837 BTRFS_I(inode)->index_cnt = (u64)-1;
1838 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
1839 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
1840 inode->i_mapping, GFP_NOFS);
1841 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
1842 inode->i_mapping, GFP_NOFS);
1843 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
1844 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
1845 mutex_init(&BTRFS_I(inode)->csum_mutex);
1846 mutex_init(&BTRFS_I(inode)->extent_mutex);
1847 return 0;
1848 }
1849
1850 static int btrfs_find_actor(struct inode *inode, void *opaque)
1851 {
1852 struct btrfs_iget_args *args = opaque;
1853 return (args->ino == inode->i_ino &&
1854 args->root == BTRFS_I(inode)->root);
1855 }
1856
1857 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
1858 u64 root_objectid)
1859 {
1860 struct btrfs_iget_args args;
1861 args.ino = objectid;
1862 args.root = btrfs_lookup_fs_root(btrfs_sb(s)->fs_info, root_objectid);
1863
1864 if (!args.root)
1865 return NULL;
1866
1867 return ilookup5(s, objectid, btrfs_find_actor, (void *)&args);
1868 }
1869
1870 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
1871 struct btrfs_root *root)
1872 {
1873 struct inode *inode;
1874 struct btrfs_iget_args args;
1875 args.ino = objectid;
1876 args.root = root;
1877
1878 inode = iget5_locked(s, objectid, btrfs_find_actor,
1879 btrfs_init_locked_inode,
1880 (void *)&args);
1881 return inode;
1882 }
1883
1884 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
1885 struct nameidata *nd)
1886 {
1887 struct inode * inode;
1888 struct btrfs_inode *bi = BTRFS_I(dir);
1889 struct btrfs_root *root = bi->root;
1890 struct btrfs_root *sub_root = root;
1891 struct btrfs_key location;
1892 int ret, do_orphan = 0;
1893
1894 if (dentry->d_name.len > BTRFS_NAME_LEN)
1895 return ERR_PTR(-ENAMETOOLONG);
1896
1897 ret = btrfs_inode_by_name(dir, dentry, &location);
1898
1899 if (ret < 0)
1900 return ERR_PTR(ret);
1901
1902 inode = NULL;
1903 if (location.objectid) {
1904 ret = fixup_tree_root_location(root, &location, &sub_root,
1905 dentry);
1906 if (ret < 0)
1907 return ERR_PTR(ret);
1908 if (ret > 0)
1909 return ERR_PTR(-ENOENT);
1910
1911 inode = btrfs_iget_locked(dir->i_sb, location.objectid,
1912 sub_root);
1913 if (!inode)
1914 return ERR_PTR(-EACCES);
1915 if (inode->i_state & I_NEW) {
1916 /* the inode and parent dir are two different roots */
1917 if (sub_root != root) {
1918 igrab(inode);
1919 sub_root->inode = inode;
1920 do_orphan = 1;
1921 }
1922 BTRFS_I(inode)->root = sub_root;
1923 memcpy(&BTRFS_I(inode)->location, &location,
1924 sizeof(location));
1925 btrfs_read_locked_inode(inode);
1926 unlock_new_inode(inode);
1927 }
1928 }
1929
1930 if (unlikely(do_orphan))
1931 btrfs_orphan_cleanup(sub_root);
1932
1933 return d_splice_alias(inode, dentry);
1934 }
1935
1936 static unsigned char btrfs_filetype_table[] = {
1937 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
1938 };
1939
1940 static int btrfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
1941 {
1942 struct inode *inode = filp->f_dentry->d_inode;
1943 struct btrfs_root *root = BTRFS_I(inode)->root;
1944 struct btrfs_item *item;
1945 struct btrfs_dir_item *di;
1946 struct btrfs_key key;
1947 struct btrfs_key found_key;
1948 struct btrfs_path *path;
1949 int ret;
1950 u32 nritems;
1951 struct extent_buffer *leaf;
1952 int slot;
1953 int advance;
1954 unsigned char d_type;
1955 int over = 0;
1956 u32 di_cur;
1957 u32 di_total;
1958 u32 di_len;
1959 int key_type = BTRFS_DIR_INDEX_KEY;
1960 char tmp_name[32];
1961 char *name_ptr;
1962 int name_len;
1963
1964 /* FIXME, use a real flag for deciding about the key type */
1965 if (root->fs_info->tree_root == root)
1966 key_type = BTRFS_DIR_ITEM_KEY;
1967
1968 /* special case for "." */
1969 if (filp->f_pos == 0) {
1970 over = filldir(dirent, ".", 1,
1971 1, inode->i_ino,
1972 DT_DIR);
1973 if (over)
1974 return 0;
1975 filp->f_pos = 1;
1976 }
1977
1978 key.objectid = inode->i_ino;
1979 path = btrfs_alloc_path();
1980 path->reada = 2;
1981
1982 /* special case for .., just use the back ref */
1983 if (filp->f_pos == 1) {
1984 btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY);
1985 key.offset = (u64)-1;
1986 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1987 if (ret < 0 || path->slots[0] == 0) {
1988 btrfs_release_path(root, path);
1989 goto read_dir_items;
1990 }
1991 BUG_ON(ret == 0);
1992 leaf = path->nodes[0];
1993 slot = path->slots[0] - 1;
1994 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1995 btrfs_release_path(root, path);
1996 if (found_key.objectid != key.objectid ||
1997 found_key.type != BTRFS_INODE_REF_KEY)
1998 goto read_dir_items;
1999 over = filldir(dirent, "..", 2,
2000 2, found_key.offset, DT_DIR);
2001 if (over)
2002 goto nopos;
2003 filp->f_pos = 2;
2004 }
2005
2006 read_dir_items:
2007 btrfs_set_key_type(&key, key_type);
2008 key.offset = filp->f_pos;
2009
2010 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2011 if (ret < 0)
2012 goto err;
2013 advance = 0;
2014 while(1) {
2015 leaf = path->nodes[0];
2016 nritems = btrfs_header_nritems(leaf);
2017 slot = path->slots[0];
2018 if (advance || slot >= nritems) {
2019 if (slot >= nritems -1) {
2020 ret = btrfs_next_leaf(root, path);
2021 if (ret)
2022 break;
2023 leaf = path->nodes[0];
2024 nritems = btrfs_header_nritems(leaf);
2025 slot = path->slots[0];
2026 } else {
2027 slot++;
2028 path->slots[0]++;
2029 }
2030 }
2031 advance = 1;
2032 item = btrfs_item_nr(leaf, slot);
2033 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2034
2035 if (found_key.objectid != key.objectid)
2036 break;
2037 if (btrfs_key_type(&found_key) != key_type)
2038 break;
2039 if (found_key.offset < filp->f_pos)
2040 continue;
2041
2042 filp->f_pos = found_key.offset;
2043 advance = 1;
2044 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2045 di_cur = 0;
2046 di_total = btrfs_item_size(leaf, item);
2047 while(di_cur < di_total) {
2048 struct btrfs_key location;
2049
2050 name_len = btrfs_dir_name_len(leaf, di);
2051 if (name_len < 32) {
2052 name_ptr = tmp_name;
2053 } else {
2054 name_ptr = kmalloc(name_len, GFP_NOFS);
2055 BUG_ON(!name_ptr);
2056 }
2057 read_extent_buffer(leaf, name_ptr,
2058 (unsigned long)(di + 1), name_len);
2059
2060 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
2061 btrfs_dir_item_key_to_cpu(leaf, di, &location);
2062 over = filldir(dirent, name_ptr, name_len,
2063 found_key.offset,
2064 location.objectid,
2065 d_type);
2066
2067 if (name_ptr != tmp_name)
2068 kfree(name_ptr);
2069
2070 if (over)
2071 goto nopos;
2072 di_len = btrfs_dir_name_len(leaf, di) +
2073 btrfs_dir_data_len(leaf, di) +sizeof(*di);
2074 di_cur += di_len;
2075 di = (struct btrfs_dir_item *)((char *)di + di_len);
2076 }
2077 }
2078 if (key_type == BTRFS_DIR_INDEX_KEY)
2079 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
2080 else
2081 filp->f_pos++;
2082 nopos:
2083 ret = 0;
2084 err:
2085 btrfs_free_path(path);
2086 return ret;
2087 }
2088
2089 int btrfs_write_inode(struct inode *inode, int wait)
2090 {
2091 struct btrfs_root *root = BTRFS_I(inode)->root;
2092 struct btrfs_trans_handle *trans;
2093 int ret = 0;
2094
2095 if (root->fs_info->closing > 1)
2096 return 0;
2097
2098 if (wait) {
2099 trans = btrfs_join_transaction(root, 1);
2100 btrfs_set_trans_block_group(trans, inode);
2101 ret = btrfs_commit_transaction(trans, root);
2102 }
2103 return ret;
2104 }
2105
2106 /*
2107 * This is somewhat expensive, updating the tree every time the
2108 * inode changes. But, it is most likely to find the inode in cache.
2109 * FIXME, needs more benchmarking...there are no reasons other than performance
2110 * to keep or drop this code.
2111 */
2112 void btrfs_dirty_inode(struct inode *inode)
2113 {
2114 struct btrfs_root *root = BTRFS_I(inode)->root;
2115 struct btrfs_trans_handle *trans;
2116
2117 trans = btrfs_join_transaction(root, 1);
2118 btrfs_set_trans_block_group(trans, inode);
2119 btrfs_update_inode(trans, root, inode);
2120 btrfs_end_transaction(trans, root);
2121 }
2122
2123 static int btrfs_set_inode_index_count(struct inode *inode)
2124 {
2125 struct btrfs_root *root = BTRFS_I(inode)->root;
2126 struct btrfs_key key, found_key;
2127 struct btrfs_path *path;
2128 struct extent_buffer *leaf;
2129 int ret;
2130
2131 key.objectid = inode->i_ino;
2132 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
2133 key.offset = (u64)-1;
2134
2135 path = btrfs_alloc_path();
2136 if (!path)
2137 return -ENOMEM;
2138
2139 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2140 if (ret < 0)
2141 goto out;
2142 /* FIXME: we should be able to handle this */
2143 if (ret == 0)
2144 goto out;
2145 ret = 0;
2146
2147 /*
2148 * MAGIC NUMBER EXPLANATION:
2149 * since we search a directory based on f_pos we have to start at 2
2150 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
2151 * else has to start at 2
2152 */
2153 if (path->slots[0] == 0) {
2154 BTRFS_I(inode)->index_cnt = 2;
2155 goto out;
2156 }
2157
2158 path->slots[0]--;
2159
2160 leaf = path->nodes[0];
2161 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2162
2163 if (found_key.objectid != inode->i_ino ||
2164 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
2165 BTRFS_I(inode)->index_cnt = 2;
2166 goto out;
2167 }
2168
2169 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
2170 out:
2171 btrfs_free_path(path);
2172 return ret;
2173 }
2174
2175 static int btrfs_set_inode_index(struct inode *dir, struct inode *inode,
2176 u64 *index)
2177 {
2178 int ret = 0;
2179
2180 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
2181 ret = btrfs_set_inode_index_count(dir);
2182 if (ret)
2183 return ret;
2184 }
2185
2186 *index = BTRFS_I(dir)->index_cnt;
2187 BTRFS_I(dir)->index_cnt++;
2188
2189 return ret;
2190 }
2191
2192 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
2193 struct btrfs_root *root,
2194 struct inode *dir,
2195 const char *name, int name_len,
2196 u64 ref_objectid,
2197 u64 objectid,
2198 struct btrfs_block_group_cache *group,
2199 int mode, u64 *index)
2200 {
2201 struct inode *inode;
2202 struct btrfs_inode_item *inode_item;
2203 struct btrfs_block_group_cache *new_inode_group;
2204 struct btrfs_key *location;
2205 struct btrfs_path *path;
2206 struct btrfs_inode_ref *ref;
2207 struct btrfs_key key[2];
2208 u32 sizes[2];
2209 unsigned long ptr;
2210 int ret;
2211 int owner;
2212
2213 path = btrfs_alloc_path();
2214 BUG_ON(!path);
2215
2216 inode = new_inode(root->fs_info->sb);
2217 if (!inode)
2218 return ERR_PTR(-ENOMEM);
2219
2220 if (dir) {
2221 ret = btrfs_set_inode_index(dir, inode, index);
2222 if (ret)
2223 return ERR_PTR(ret);
2224 }
2225 /*
2226 * index_cnt is ignored for everything but a dir,
2227 * btrfs_get_inode_index_count has an explanation for the magic
2228 * number
2229 */
2230 BTRFS_I(inode)->index_cnt = 2;
2231
2232 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2233 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2234 inode->i_mapping, GFP_NOFS);
2235 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2236 inode->i_mapping, GFP_NOFS);
2237 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2238 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2239 mutex_init(&BTRFS_I(inode)->csum_mutex);
2240 mutex_init(&BTRFS_I(inode)->extent_mutex);
2241 BTRFS_I(inode)->delalloc_bytes = 0;
2242 BTRFS_I(inode)->disk_i_size = 0;
2243 BTRFS_I(inode)->root = root;
2244
2245 if (mode & S_IFDIR)
2246 owner = 0;
2247 else
2248 owner = 1;
2249 new_inode_group = btrfs_find_block_group(root, group, 0,
2250 BTRFS_BLOCK_GROUP_METADATA, owner);
2251 if (!new_inode_group) {
2252 printk("find_block group failed\n");
2253 new_inode_group = group;
2254 }
2255 BTRFS_I(inode)->block_group = new_inode_group;
2256 BTRFS_I(inode)->flags = 0;
2257
2258 key[0].objectid = objectid;
2259 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
2260 key[0].offset = 0;
2261
2262 key[1].objectid = objectid;
2263 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
2264 key[1].offset = ref_objectid;
2265
2266 sizes[0] = sizeof(struct btrfs_inode_item);
2267 sizes[1] = name_len + sizeof(*ref);
2268
2269 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
2270 if (ret != 0)
2271 goto fail;
2272
2273 if (objectid > root->highest_inode)
2274 root->highest_inode = objectid;
2275
2276 inode->i_uid = current->fsuid;
2277 inode->i_gid = current->fsgid;
2278 inode->i_mode = mode;
2279 inode->i_ino = objectid;
2280 inode->i_blocks = 0;
2281 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2282 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2283 struct btrfs_inode_item);
2284 fill_inode_item(path->nodes[0], inode_item, inode);
2285
2286 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
2287 struct btrfs_inode_ref);
2288 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
2289 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
2290 ptr = (unsigned long)(ref + 1);
2291 write_extent_buffer(path->nodes[0], name, ptr, name_len);
2292
2293 btrfs_mark_buffer_dirty(path->nodes[0]);
2294 btrfs_free_path(path);
2295
2296 location = &BTRFS_I(inode)->location;
2297 location->objectid = objectid;
2298 location->offset = 0;
2299 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2300
2301 insert_inode_hash(inode);
2302 return inode;
2303 fail:
2304 if (dir)
2305 BTRFS_I(dir)->index_cnt--;
2306 btrfs_free_path(path);
2307 return ERR_PTR(ret);
2308 }
2309
2310 static inline u8 btrfs_inode_type(struct inode *inode)
2311 {
2312 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
2313 }
2314
2315 static int btrfs_add_link(struct btrfs_trans_handle *trans,
2316 struct dentry *dentry, struct inode *inode,
2317 int add_backref, u64 index)
2318 {
2319 int ret;
2320 struct btrfs_key key;
2321 struct btrfs_root *root = BTRFS_I(dentry->d_parent->d_inode)->root;
2322 struct inode *parent_inode = dentry->d_parent->d_inode;
2323
2324 key.objectid = inode->i_ino;
2325 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
2326 key.offset = 0;
2327
2328 ret = btrfs_insert_dir_item(trans, root,
2329 dentry->d_name.name, dentry->d_name.len,
2330 dentry->d_parent->d_inode->i_ino,
2331 &key, btrfs_inode_type(inode),
2332 index);
2333 if (ret == 0) {
2334 if (add_backref) {
2335 ret = btrfs_insert_inode_ref(trans, root,
2336 dentry->d_name.name,
2337 dentry->d_name.len,
2338 inode->i_ino,
2339 parent_inode->i_ino,
2340 index);
2341 }
2342 btrfs_i_size_write(parent_inode, parent_inode->i_size +
2343 dentry->d_name.len * 2);
2344 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
2345 ret = btrfs_update_inode(trans, root,
2346 dentry->d_parent->d_inode);
2347 }
2348 return ret;
2349 }
2350
2351 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
2352 struct dentry *dentry, struct inode *inode,
2353 int backref, u64 index)
2354 {
2355 int err = btrfs_add_link(trans, dentry, inode, backref, index);
2356 if (!err) {
2357 d_instantiate(dentry, inode);
2358 return 0;
2359 }
2360 if (err > 0)
2361 err = -EEXIST;
2362 return err;
2363 }
2364
2365 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
2366 int mode, dev_t rdev)
2367 {
2368 struct btrfs_trans_handle *trans;
2369 struct btrfs_root *root = BTRFS_I(dir)->root;
2370 struct inode *inode = NULL;
2371 int err;
2372 int drop_inode = 0;
2373 u64 objectid;
2374 unsigned long nr = 0;
2375 u64 index = 0;
2376
2377 if (!new_valid_dev(rdev))
2378 return -EINVAL;
2379
2380 err = btrfs_check_free_space(root, 1, 0);
2381 if (err)
2382 goto fail;
2383
2384 trans = btrfs_start_transaction(root, 1);
2385 btrfs_set_trans_block_group(trans, dir);
2386
2387 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2388 if (err) {
2389 err = -ENOSPC;
2390 goto out_unlock;
2391 }
2392
2393 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2394 dentry->d_name.len,
2395 dentry->d_parent->d_inode->i_ino, objectid,
2396 BTRFS_I(dir)->block_group, mode, &index);
2397 err = PTR_ERR(inode);
2398 if (IS_ERR(inode))
2399 goto out_unlock;
2400
2401 err = btrfs_init_acl(inode, dir);
2402 if (err) {
2403 drop_inode = 1;
2404 goto out_unlock;
2405 }
2406
2407 btrfs_set_trans_block_group(trans, inode);
2408 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2409 if (err)
2410 drop_inode = 1;
2411 else {
2412 inode->i_op = &btrfs_special_inode_operations;
2413 init_special_inode(inode, inode->i_mode, rdev);
2414 btrfs_update_inode(trans, root, inode);
2415 }
2416 dir->i_sb->s_dirt = 1;
2417 btrfs_update_inode_block_group(trans, inode);
2418 btrfs_update_inode_block_group(trans, dir);
2419 out_unlock:
2420 nr = trans->blocks_used;
2421 btrfs_end_transaction_throttle(trans, root);
2422 fail:
2423 if (drop_inode) {
2424 inode_dec_link_count(inode);
2425 iput(inode);
2426 }
2427 btrfs_btree_balance_dirty(root, nr);
2428 return err;
2429 }
2430
2431 static int btrfs_create(struct inode *dir, struct dentry *dentry,
2432 int mode, struct nameidata *nd)
2433 {
2434 struct btrfs_trans_handle *trans;
2435 struct btrfs_root *root = BTRFS_I(dir)->root;
2436 struct inode *inode = NULL;
2437 int err;
2438 int drop_inode = 0;
2439 unsigned long nr = 0;
2440 u64 objectid;
2441 u64 index = 0;
2442
2443 err = btrfs_check_free_space(root, 1, 0);
2444 if (err)
2445 goto fail;
2446 trans = btrfs_start_transaction(root, 1);
2447 btrfs_set_trans_block_group(trans, dir);
2448
2449 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2450 if (err) {
2451 err = -ENOSPC;
2452 goto out_unlock;
2453 }
2454
2455 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2456 dentry->d_name.len,
2457 dentry->d_parent->d_inode->i_ino,
2458 objectid, BTRFS_I(dir)->block_group, mode,
2459 &index);
2460 err = PTR_ERR(inode);
2461 if (IS_ERR(inode))
2462 goto out_unlock;
2463
2464 err = btrfs_init_acl(inode, dir);
2465 if (err) {
2466 drop_inode = 1;
2467 goto out_unlock;
2468 }
2469
2470 btrfs_set_trans_block_group(trans, inode);
2471 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2472 if (err)
2473 drop_inode = 1;
2474 else {
2475 inode->i_mapping->a_ops = &btrfs_aops;
2476 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2477 inode->i_fop = &btrfs_file_operations;
2478 inode->i_op = &btrfs_file_inode_operations;
2479 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2480 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2481 inode->i_mapping, GFP_NOFS);
2482 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2483 inode->i_mapping, GFP_NOFS);
2484 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2485 mutex_init(&BTRFS_I(inode)->csum_mutex);
2486 mutex_init(&BTRFS_I(inode)->extent_mutex);
2487 BTRFS_I(inode)->delalloc_bytes = 0;
2488 BTRFS_I(inode)->disk_i_size = 0;
2489 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2490 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2491 }
2492 dir->i_sb->s_dirt = 1;
2493 btrfs_update_inode_block_group(trans, inode);
2494 btrfs_update_inode_block_group(trans, dir);
2495 out_unlock:
2496 nr = trans->blocks_used;
2497 btrfs_end_transaction_throttle(trans, root);
2498 fail:
2499 if (drop_inode) {
2500 inode_dec_link_count(inode);
2501 iput(inode);
2502 }
2503 btrfs_btree_balance_dirty(root, nr);
2504 return err;
2505 }
2506
2507 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
2508 struct dentry *dentry)
2509 {
2510 struct btrfs_trans_handle *trans;
2511 struct btrfs_root *root = BTRFS_I(dir)->root;
2512 struct inode *inode = old_dentry->d_inode;
2513 u64 index;
2514 unsigned long nr = 0;
2515 int err;
2516 int drop_inode = 0;
2517
2518 if (inode->i_nlink == 0)
2519 return -ENOENT;
2520
2521 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
2522 inode->i_nlink++;
2523 #else
2524 inc_nlink(inode);
2525 #endif
2526 err = btrfs_check_free_space(root, 1, 0);
2527 if (err)
2528 goto fail;
2529 err = btrfs_set_inode_index(dir, inode, &index);
2530 if (err)
2531 goto fail;
2532
2533 trans = btrfs_start_transaction(root, 1);
2534
2535 btrfs_set_trans_block_group(trans, dir);
2536 atomic_inc(&inode->i_count);
2537
2538 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
2539
2540 if (err)
2541 drop_inode = 1;
2542
2543 dir->i_sb->s_dirt = 1;
2544 btrfs_update_inode_block_group(trans, dir);
2545 err = btrfs_update_inode(trans, root, inode);
2546
2547 if (err)
2548 drop_inode = 1;
2549
2550 nr = trans->blocks_used;
2551 btrfs_end_transaction_throttle(trans, root);
2552 fail:
2553 if (drop_inode) {
2554 inode_dec_link_count(inode);
2555 iput(inode);
2556 }
2557 btrfs_btree_balance_dirty(root, nr);
2558 return err;
2559 }
2560
2561 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2562 {
2563 struct inode *inode = NULL;
2564 struct btrfs_trans_handle *trans;
2565 struct btrfs_root *root = BTRFS_I(dir)->root;
2566 int err = 0;
2567 int drop_on_err = 0;
2568 u64 objectid = 0;
2569 u64 index = 0;
2570 unsigned long nr = 1;
2571
2572 err = btrfs_check_free_space(root, 1, 0);
2573 if (err)
2574 goto out_unlock;
2575
2576 trans = btrfs_start_transaction(root, 1);
2577 btrfs_set_trans_block_group(trans, dir);
2578
2579 if (IS_ERR(trans)) {
2580 err = PTR_ERR(trans);
2581 goto out_unlock;
2582 }
2583
2584 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2585 if (err) {
2586 err = -ENOSPC;
2587 goto out_unlock;
2588 }
2589
2590 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2591 dentry->d_name.len,
2592 dentry->d_parent->d_inode->i_ino, objectid,
2593 BTRFS_I(dir)->block_group, S_IFDIR | mode,
2594 &index);
2595 if (IS_ERR(inode)) {
2596 err = PTR_ERR(inode);
2597 goto out_fail;
2598 }
2599
2600 drop_on_err = 1;
2601
2602 err = btrfs_init_acl(inode, dir);
2603 if (err)
2604 goto out_fail;
2605
2606 inode->i_op = &btrfs_dir_inode_operations;
2607 inode->i_fop = &btrfs_dir_file_operations;
2608 btrfs_set_trans_block_group(trans, inode);
2609
2610 btrfs_i_size_write(inode, 0);
2611 err = btrfs_update_inode(trans, root, inode);
2612 if (err)
2613 goto out_fail;
2614
2615 err = btrfs_add_link(trans, dentry, inode, 0, index);
2616 if (err)
2617 goto out_fail;
2618
2619 d_instantiate(dentry, inode);
2620 drop_on_err = 0;
2621 dir->i_sb->s_dirt = 1;
2622 btrfs_update_inode_block_group(trans, inode);
2623 btrfs_update_inode_block_group(trans, dir);
2624
2625 out_fail:
2626 nr = trans->blocks_used;
2627 btrfs_end_transaction_throttle(trans, root);
2628
2629 out_unlock:
2630 if (drop_on_err)
2631 iput(inode);
2632 btrfs_btree_balance_dirty(root, nr);
2633 return err;
2634 }
2635
2636 static int merge_extent_mapping(struct extent_map_tree *em_tree,
2637 struct extent_map *existing,
2638 struct extent_map *em,
2639 u64 map_start, u64 map_len)
2640 {
2641 u64 start_diff;
2642
2643 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
2644 start_diff = map_start - em->start;
2645 em->start = map_start;
2646 em->len = map_len;
2647 if (em->block_start < EXTENT_MAP_LAST_BYTE)
2648 em->block_start += start_diff;
2649 return add_extent_mapping(em_tree, em);
2650 }
2651
2652 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
2653 size_t pg_offset, u64 start, u64 len,
2654 int create)
2655 {
2656 int ret;
2657 int err = 0;
2658 u64 bytenr;
2659 u64 extent_start = 0;
2660 u64 extent_end = 0;
2661 u64 objectid = inode->i_ino;
2662 u32 found_type;
2663 struct btrfs_path *path = NULL;
2664 struct btrfs_root *root = BTRFS_I(inode)->root;
2665 struct btrfs_file_extent_item *item;
2666 struct extent_buffer *leaf;
2667 struct btrfs_key found_key;
2668 struct extent_map *em = NULL;
2669 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2670 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2671 struct btrfs_trans_handle *trans = NULL;
2672
2673 again:
2674 spin_lock(&em_tree->lock);
2675 em = lookup_extent_mapping(em_tree, start, len);
2676 if (em)
2677 em->bdev = root->fs_info->fs_devices->latest_bdev;
2678 spin_unlock(&em_tree->lock);
2679
2680 if (em) {
2681 if (em->start > start || em->start + em->len <= start)
2682 free_extent_map(em);
2683 else if (em->block_start == EXTENT_MAP_INLINE && page)
2684 free_extent_map(em);
2685 else
2686 goto out;
2687 }
2688 em = alloc_extent_map(GFP_NOFS);
2689 if (!em) {
2690 err = -ENOMEM;
2691 goto out;
2692 }
2693 em->bdev = root->fs_info->fs_devices->latest_bdev;
2694 em->start = EXTENT_MAP_HOLE;
2695 em->len = (u64)-1;
2696
2697 if (!path) {
2698 path = btrfs_alloc_path();
2699 BUG_ON(!path);
2700 }
2701
2702 ret = btrfs_lookup_file_extent(trans, root, path,
2703 objectid, start, trans != NULL);
2704 if (ret < 0) {
2705 err = ret;
2706 goto out;
2707 }
2708
2709 if (ret != 0) {
2710 if (path->slots[0] == 0)
2711 goto not_found;
2712 path->slots[0]--;
2713 }
2714
2715 leaf = path->nodes[0];
2716 item = btrfs_item_ptr(leaf, path->slots[0],
2717 struct btrfs_file_extent_item);
2718 /* are we inside the extent that was found? */
2719 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2720 found_type = btrfs_key_type(&found_key);
2721 if (found_key.objectid != objectid ||
2722 found_type != BTRFS_EXTENT_DATA_KEY) {
2723 goto not_found;
2724 }
2725
2726 found_type = btrfs_file_extent_type(leaf, item);
2727 extent_start = found_key.offset;
2728 if (found_type == BTRFS_FILE_EXTENT_REG) {
2729 extent_end = extent_start +
2730 btrfs_file_extent_num_bytes(leaf, item);
2731 err = 0;
2732 if (start < extent_start || start >= extent_end) {
2733 em->start = start;
2734 if (start < extent_start) {
2735 if (start + len <= extent_start)
2736 goto not_found;
2737 em->len = extent_end - extent_start;
2738 } else {
2739 em->len = len;
2740 }
2741 goto not_found_em;
2742 }
2743 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
2744 if (bytenr == 0) {
2745 em->start = extent_start;
2746 em->len = extent_end - extent_start;
2747 em->block_start = EXTENT_MAP_HOLE;
2748 goto insert;
2749 }
2750 bytenr += btrfs_file_extent_offset(leaf, item);
2751 em->block_start = bytenr;
2752 em->start = extent_start;
2753 em->len = extent_end - extent_start;
2754 goto insert;
2755 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
2756 u64 page_start;
2757 unsigned long ptr;
2758 char *map;
2759 size_t size;
2760 size_t extent_offset;
2761 size_t copy_size;
2762
2763 size = btrfs_file_extent_inline_len(leaf, btrfs_item_nr(leaf,
2764 path->slots[0]));
2765 extent_end = (extent_start + size + root->sectorsize - 1) &
2766 ~((u64)root->sectorsize - 1);
2767 if (start < extent_start || start >= extent_end) {
2768 em->start = start;
2769 if (start < extent_start) {
2770 if (start + len <= extent_start)
2771 goto not_found;
2772 em->len = extent_end - extent_start;
2773 } else {
2774 em->len = len;
2775 }
2776 goto not_found_em;
2777 }
2778 em->block_start = EXTENT_MAP_INLINE;
2779
2780 if (!page) {
2781 em->start = extent_start;
2782 em->len = size;
2783 goto out;
2784 }
2785
2786 page_start = page_offset(page) + pg_offset;
2787 extent_offset = page_start - extent_start;
2788 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
2789 size - extent_offset);
2790 em->start = extent_start + extent_offset;
2791 em->len = (copy_size + root->sectorsize - 1) &
2792 ~((u64)root->sectorsize - 1);
2793 map = kmap(page);
2794 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
2795 if (create == 0 && !PageUptodate(page)) {
2796 read_extent_buffer(leaf, map + pg_offset, ptr,
2797 copy_size);
2798 flush_dcache_page(page);
2799 } else if (create && PageUptodate(page)) {
2800 if (!trans) {
2801 kunmap(page);
2802 free_extent_map(em);
2803 em = NULL;
2804 btrfs_release_path(root, path);
2805 trans = btrfs_join_transaction(root, 1);
2806 goto again;
2807 }
2808 write_extent_buffer(leaf, map + pg_offset, ptr,
2809 copy_size);
2810 btrfs_mark_buffer_dirty(leaf);
2811 }
2812 kunmap(page);
2813 set_extent_uptodate(io_tree, em->start,
2814 extent_map_end(em) - 1, GFP_NOFS);
2815 goto insert;
2816 } else {
2817 printk("unkknown found_type %d\n", found_type);
2818 WARN_ON(1);
2819 }
2820 not_found:
2821 em->start = start;
2822 em->len = len;
2823 not_found_em:
2824 em->block_start = EXTENT_MAP_HOLE;
2825 insert:
2826 btrfs_release_path(root, path);
2827 if (em->start > start || extent_map_end(em) <= start) {
2828 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
2829 err = -EIO;
2830 goto out;
2831 }
2832
2833 err = 0;
2834 spin_lock(&em_tree->lock);
2835 ret = add_extent_mapping(em_tree, em);
2836 /* it is possible that someone inserted the extent into the tree
2837 * while we had the lock dropped. It is also possible that
2838 * an overlapping map exists in the tree
2839 */
2840 if (ret == -EEXIST) {
2841 struct extent_map *existing;
2842
2843 ret = 0;
2844
2845 existing = lookup_extent_mapping(em_tree, start, len);
2846 if (existing && (existing->start > start ||
2847 existing->start + existing->len <= start)) {
2848 free_extent_map(existing);
2849 existing = NULL;
2850 }
2851 if (!existing) {
2852 existing = lookup_extent_mapping(em_tree, em->start,
2853 em->len);
2854 if (existing) {
2855 err = merge_extent_mapping(em_tree, existing,
2856 em, start,
2857 root->sectorsize);
2858 free_extent_map(existing);
2859 if (err) {
2860 free_extent_map(em);
2861 em = NULL;
2862 }
2863 } else {
2864 err = -EIO;
2865 printk("failing to insert %Lu %Lu\n",
2866 start, len);
2867 free_extent_map(em);
2868 em = NULL;
2869 }
2870 } else {
2871 free_extent_map(em);
2872 em = existing;
2873 err = 0;
2874 }
2875 }
2876 spin_unlock(&em_tree->lock);
2877 out:
2878 if (path)
2879 btrfs_free_path(path);
2880 if (trans) {
2881 ret = btrfs_end_transaction(trans, root);
2882 if (!err) {
2883 err = ret;
2884 }
2885 }
2886 if (err) {
2887 free_extent_map(em);
2888 WARN_ON(1);
2889 return ERR_PTR(err);
2890 }
2891 return em;
2892 }
2893
2894 #if 0 /* waiting for O_DIRECT reads */
2895 static int btrfs_get_block(struct inode *inode, sector_t iblock,
2896 struct buffer_head *bh_result, int create)
2897 {
2898 struct extent_map *em;
2899 u64 start = (u64)iblock << inode->i_blkbits;
2900 struct btrfs_multi_bio *multi = NULL;
2901 struct btrfs_root *root = BTRFS_I(inode)->root;
2902 u64 len;
2903 u64 logical;
2904 u64 map_length;
2905 int ret = 0;
2906
2907 em = btrfs_get_extent(inode, NULL, 0, start, bh_result->b_size, 0);
2908
2909 if (!em || IS_ERR(em))
2910 goto out;
2911
2912 if (em->start > start || em->start + em->len <= start) {
2913 goto out;
2914 }
2915
2916 if (em->block_start == EXTENT_MAP_INLINE) {
2917 ret = -EINVAL;
2918 goto out;
2919 }
2920
2921 len = em->start + em->len - start;
2922 len = min_t(u64, len, INT_LIMIT(typeof(bh_result->b_size)));
2923
2924 if (em->block_start == EXTENT_MAP_HOLE ||
2925 em->block_start == EXTENT_MAP_DELALLOC) {
2926 bh_result->b_size = len;
2927 goto out;
2928 }
2929
2930 logical = start - em->start;
2931 logical = em->block_start + logical;
2932
2933 map_length = len;
2934 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
2935 logical, &map_length, &multi, 0);
2936 BUG_ON(ret);
2937 bh_result->b_blocknr = multi->stripes[0].physical >> inode->i_blkbits;
2938 bh_result->b_size = min(map_length, len);
2939
2940 bh_result->b_bdev = multi->stripes[0].dev->bdev;
2941 set_buffer_mapped(bh_result);
2942 kfree(multi);
2943 out:
2944 free_extent_map(em);
2945 return ret;
2946 }
2947 #endif
2948
2949 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
2950 const struct iovec *iov, loff_t offset,
2951 unsigned long nr_segs)
2952 {
2953 return -EINVAL;
2954 #if 0
2955 struct file *file = iocb->ki_filp;
2956 struct inode *inode = file->f_mapping->host;
2957
2958 if (rw == WRITE)
2959 return -EINVAL;
2960
2961 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2962 offset, nr_segs, btrfs_get_block, NULL);
2963 #endif
2964 }
2965
2966 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
2967 {
2968 return extent_bmap(mapping, iblock, btrfs_get_extent);
2969 }
2970
2971 int btrfs_readpage(struct file *file, struct page *page)
2972 {
2973 struct extent_io_tree *tree;
2974 tree = &BTRFS_I(page->mapping->host)->io_tree;
2975 return extent_read_full_page(tree, page, btrfs_get_extent);
2976 }
2977
2978 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
2979 {
2980 struct extent_io_tree *tree;
2981
2982
2983 if (current->flags & PF_MEMALLOC) {
2984 redirty_page_for_writepage(wbc, page);
2985 unlock_page(page);
2986 return 0;
2987 }
2988 tree = &BTRFS_I(page->mapping->host)->io_tree;
2989 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
2990 }
2991
2992 int btrfs_writepages(struct address_space *mapping,
2993 struct writeback_control *wbc)
2994 {
2995 struct extent_io_tree *tree;
2996 tree = &BTRFS_I(mapping->host)->io_tree;
2997 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
2998 }
2999
3000 static int
3001 btrfs_readpages(struct file *file, struct address_space *mapping,
3002 struct list_head *pages, unsigned nr_pages)
3003 {
3004 struct extent_io_tree *tree;
3005 tree = &BTRFS_I(mapping->host)->io_tree;
3006 return extent_readpages(tree, mapping, pages, nr_pages,
3007 btrfs_get_extent);
3008 }
3009 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3010 {
3011 struct extent_io_tree *tree;
3012 struct extent_map_tree *map;
3013 int ret;
3014
3015 tree = &BTRFS_I(page->mapping->host)->io_tree;
3016 map = &BTRFS_I(page->mapping->host)->extent_tree;
3017 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
3018 if (ret == 1) {
3019 ClearPagePrivate(page);
3020 set_page_private(page, 0);
3021 page_cache_release(page);
3022 }
3023 return ret;
3024 }
3025
3026 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3027 {
3028 return __btrfs_releasepage(page, gfp_flags);
3029 }
3030
3031 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
3032 {
3033 struct extent_io_tree *tree;
3034 struct btrfs_ordered_extent *ordered;
3035 u64 page_start = page_offset(page);
3036 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
3037
3038 wait_on_page_writeback(page);
3039 tree = &BTRFS_I(page->mapping->host)->io_tree;
3040 if (offset) {
3041 btrfs_releasepage(page, GFP_NOFS);
3042 return;
3043 }
3044
3045 lock_extent(tree, page_start, page_end, GFP_NOFS);
3046 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
3047 page_offset(page));
3048 if (ordered) {
3049 /*
3050 * IO on this page will never be started, so we need
3051 * to account for any ordered extents now
3052 */
3053 clear_extent_bit(tree, page_start, page_end,
3054 EXTENT_DIRTY | EXTENT_DELALLOC |
3055 EXTENT_LOCKED, 1, 0, GFP_NOFS);
3056 btrfs_finish_ordered_io(page->mapping->host,
3057 page_start, page_end);
3058 btrfs_put_ordered_extent(ordered);
3059 lock_extent(tree, page_start, page_end, GFP_NOFS);
3060 }
3061 clear_extent_bit(tree, page_start, page_end,
3062 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3063 EXTENT_ORDERED,
3064 1, 1, GFP_NOFS);
3065 __btrfs_releasepage(page, GFP_NOFS);
3066
3067 ClearPageChecked(page);
3068 if (PagePrivate(page)) {
3069 ClearPagePrivate(page);
3070 set_page_private(page, 0);
3071 page_cache_release(page);
3072 }
3073 }
3074
3075 /*
3076 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
3077 * called from a page fault handler when a page is first dirtied. Hence we must
3078 * be careful to check for EOF conditions here. We set the page up correctly
3079 * for a written page which means we get ENOSPC checking when writing into
3080 * holes and correct delalloc and unwritten extent mapping on filesystems that
3081 * support these features.
3082 *
3083 * We are not allowed to take the i_mutex here so we have to play games to
3084 * protect against truncate races as the page could now be beyond EOF. Because
3085 * vmtruncate() writes the inode size before removing pages, once we have the
3086 * page lock we can determine safely if the page is beyond EOF. If it is not
3087 * beyond EOF, then the page is guaranteed safe against truncation until we
3088 * unlock the page.
3089 */
3090 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3091 {
3092 struct inode *inode = fdentry(vma->vm_file)->d_inode;
3093 struct btrfs_root *root = BTRFS_I(inode)->root;
3094 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3095 struct btrfs_ordered_extent *ordered;
3096 char *kaddr;
3097 unsigned long zero_start;
3098 loff_t size;
3099 int ret;
3100 u64 page_start;
3101 u64 page_end;
3102
3103 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
3104 if (ret)
3105 goto out;
3106
3107 ret = -EINVAL;
3108 again:
3109 lock_page(page);
3110 size = i_size_read(inode);
3111 page_start = page_offset(page);
3112 page_end = page_start + PAGE_CACHE_SIZE - 1;
3113
3114 if ((page->mapping != inode->i_mapping) ||
3115 (page_start >= size)) {
3116 /* page got truncated out from underneath us */
3117 goto out_unlock;
3118 }
3119 wait_on_page_writeback(page);
3120
3121 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3122 set_page_extent_mapped(page);
3123
3124 /*
3125 * we can't set the delalloc bits if there are pending ordered
3126 * extents. Drop our locks and wait for them to finish
3127 */
3128 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3129 if (ordered) {
3130 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3131 unlock_page(page);
3132 btrfs_start_ordered_extent(inode, ordered, 1);
3133 btrfs_put_ordered_extent(ordered);
3134 goto again;
3135 }
3136
3137 btrfs_set_extent_delalloc(inode, page_start, page_end);
3138 ret = 0;
3139
3140 /* page is wholly or partially inside EOF */
3141 if (page_start + PAGE_CACHE_SIZE > size)
3142 zero_start = size & ~PAGE_CACHE_MASK;
3143 else
3144 zero_start = PAGE_CACHE_SIZE;
3145
3146 if (zero_start != PAGE_CACHE_SIZE) {
3147 kaddr = kmap(page);
3148 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
3149 flush_dcache_page(page);
3150 kunmap(page);
3151 }
3152 ClearPageChecked(page);
3153 set_page_dirty(page);
3154 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3155
3156 out_unlock:
3157 unlock_page(page);
3158 out:
3159 return ret;
3160 }
3161
3162 static void btrfs_truncate(struct inode *inode)
3163 {
3164 struct btrfs_root *root = BTRFS_I(inode)->root;
3165 int ret;
3166 struct btrfs_trans_handle *trans;
3167 unsigned long nr;
3168 u64 mask = root->sectorsize - 1;
3169
3170 if (!S_ISREG(inode->i_mode))
3171 return;
3172 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3173 return;
3174
3175 btrfs_truncate_page(inode->i_mapping, inode->i_size);
3176 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
3177
3178 trans = btrfs_start_transaction(root, 1);
3179 btrfs_set_trans_block_group(trans, inode);
3180 btrfs_i_size_write(inode, inode->i_size);
3181
3182 ret = btrfs_orphan_add(trans, inode);
3183 if (ret)
3184 goto out;
3185 /* FIXME, add redo link to tree so we don't leak on crash */
3186 ret = btrfs_truncate_in_trans(trans, root, inode,
3187 BTRFS_EXTENT_DATA_KEY);
3188 btrfs_update_inode(trans, root, inode);
3189
3190 ret = btrfs_orphan_del(trans, inode);
3191 BUG_ON(ret);
3192
3193 out:
3194 nr = trans->blocks_used;
3195 ret = btrfs_end_transaction_throttle(trans, root);
3196 BUG_ON(ret);
3197 btrfs_btree_balance_dirty(root, nr);
3198 }
3199
3200 /*
3201 * Invalidate a single dcache entry at the root of the filesystem.
3202 * Needed after creation of snapshot or subvolume.
3203 */
3204 void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name,
3205 int namelen)
3206 {
3207 struct dentry *alias, *entry;
3208 struct qstr qstr;
3209
3210 alias = d_find_alias(root->fs_info->sb->s_root->d_inode);
3211 if (alias) {
3212 qstr.name = name;
3213 qstr.len = namelen;
3214 /* change me if btrfs ever gets a d_hash operation */
3215 qstr.hash = full_name_hash(qstr.name, qstr.len);
3216 entry = d_lookup(alias, &qstr);
3217 dput(alias);
3218 if (entry) {
3219 d_invalidate(entry);
3220 dput(entry);
3221 }
3222 }
3223 }
3224
3225 int btrfs_create_subvol_root(struct btrfs_root *new_root,
3226 struct btrfs_trans_handle *trans, u64 new_dirid,
3227 struct btrfs_block_group_cache *block_group)
3228 {
3229 struct inode *inode;
3230 u64 index = 0;
3231
3232 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
3233 new_dirid, block_group, S_IFDIR | 0700, &index);
3234 if (IS_ERR(inode))
3235 return PTR_ERR(inode);
3236 inode->i_op = &btrfs_dir_inode_operations;
3237 inode->i_fop = &btrfs_dir_file_operations;
3238 new_root->inode = inode;
3239
3240 inode->i_nlink = 1;
3241 btrfs_i_size_write(inode, 0);
3242
3243 return btrfs_update_inode(trans, new_root, inode);
3244 }
3245
3246 unsigned long btrfs_force_ra(struct address_space *mapping,
3247 struct file_ra_state *ra, struct file *file,
3248 pgoff_t offset, pgoff_t last_index)
3249 {
3250 pgoff_t req_size = last_index - offset + 1;
3251
3252 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3253 offset = page_cache_readahead(mapping, ra, file, offset, req_size);
3254 return offset;
3255 #else
3256 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3257 return offset + req_size;
3258 #endif
3259 }
3260
3261 struct inode *btrfs_alloc_inode(struct super_block *sb)
3262 {
3263 struct btrfs_inode *ei;
3264
3265 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
3266 if (!ei)
3267 return NULL;
3268 ei->last_trans = 0;
3269 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
3270 ei->i_acl = BTRFS_ACL_NOT_CACHED;
3271 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
3272 INIT_LIST_HEAD(&ei->i_orphan);
3273 return &ei->vfs_inode;
3274 }
3275
3276 void btrfs_destroy_inode(struct inode *inode)
3277 {
3278 struct btrfs_ordered_extent *ordered;
3279 WARN_ON(!list_empty(&inode->i_dentry));
3280 WARN_ON(inode->i_data.nrpages);
3281
3282 if (BTRFS_I(inode)->i_acl &&
3283 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
3284 posix_acl_release(BTRFS_I(inode)->i_acl);
3285 if (BTRFS_I(inode)->i_default_acl &&
3286 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
3287 posix_acl_release(BTRFS_I(inode)->i_default_acl);
3288
3289 spin_lock(&BTRFS_I(inode)->root->list_lock);
3290 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
3291 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
3292 " list\n", inode->i_ino);
3293 dump_stack();
3294 }
3295 spin_unlock(&BTRFS_I(inode)->root->list_lock);
3296
3297 while(1) {
3298 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
3299 if (!ordered)
3300 break;
3301 else {
3302 printk("found ordered extent %Lu %Lu\n",
3303 ordered->file_offset, ordered->len);
3304 btrfs_remove_ordered_extent(inode, ordered);
3305 btrfs_put_ordered_extent(ordered);
3306 btrfs_put_ordered_extent(ordered);
3307 }
3308 }
3309 btrfs_drop_extent_cache(inode, 0, (u64)-1);
3310 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
3311 }
3312
3313 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3314 static void init_once(void *foo)
3315 #elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3316 static void init_once(struct kmem_cache * cachep, void *foo)
3317 #else
3318 static void init_once(void * foo, struct kmem_cache * cachep,
3319 unsigned long flags)
3320 #endif
3321 {
3322 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
3323
3324 inode_init_once(&ei->vfs_inode);
3325 }
3326
3327 void btrfs_destroy_cachep(void)
3328 {
3329 if (btrfs_inode_cachep)
3330 kmem_cache_destroy(btrfs_inode_cachep);
3331 if (btrfs_trans_handle_cachep)
3332 kmem_cache_destroy(btrfs_trans_handle_cachep);
3333 if (btrfs_transaction_cachep)
3334 kmem_cache_destroy(btrfs_transaction_cachep);
3335 if (btrfs_bit_radix_cachep)
3336 kmem_cache_destroy(btrfs_bit_radix_cachep);
3337 if (btrfs_path_cachep)
3338 kmem_cache_destroy(btrfs_path_cachep);
3339 }
3340
3341 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
3342 unsigned long extra_flags,
3343 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3344 void (*ctor)(void *)
3345 #elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3346 void (*ctor)(struct kmem_cache *, void *)
3347 #else
3348 void (*ctor)(void *, struct kmem_cache *,
3349 unsigned long)
3350 #endif
3351 )
3352 {
3353 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
3354 SLAB_MEM_SPREAD | extra_flags), ctor
3355 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3356 ,NULL
3357 #endif
3358 );
3359 }
3360
3361 int btrfs_init_cachep(void)
3362 {
3363 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
3364 sizeof(struct btrfs_inode),
3365 0, init_once);
3366 if (!btrfs_inode_cachep)
3367 goto fail;
3368 btrfs_trans_handle_cachep =
3369 btrfs_cache_create("btrfs_trans_handle_cache",
3370 sizeof(struct btrfs_trans_handle),
3371 0, NULL);
3372 if (!btrfs_trans_handle_cachep)
3373 goto fail;
3374 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
3375 sizeof(struct btrfs_transaction),
3376 0, NULL);
3377 if (!btrfs_transaction_cachep)
3378 goto fail;
3379 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
3380 sizeof(struct btrfs_path),
3381 0, NULL);
3382 if (!btrfs_path_cachep)
3383 goto fail;
3384 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
3385 SLAB_DESTROY_BY_RCU, NULL);
3386 if (!btrfs_bit_radix_cachep)
3387 goto fail;
3388 return 0;
3389 fail:
3390 btrfs_destroy_cachep();
3391 return -ENOMEM;
3392 }
3393
3394 static int btrfs_getattr(struct vfsmount *mnt,
3395 struct dentry *dentry, struct kstat *stat)
3396 {
3397 struct inode *inode = dentry->d_inode;
3398 generic_fillattr(inode, stat);
3399 stat->blksize = PAGE_CACHE_SIZE;
3400 stat->blocks = inode->i_blocks + (BTRFS_I(inode)->delalloc_bytes >> 9);
3401 return 0;
3402 }
3403
3404 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
3405 struct inode * new_dir,struct dentry *new_dentry)
3406 {
3407 struct btrfs_trans_handle *trans;
3408 struct btrfs_root *root = BTRFS_I(old_dir)->root;
3409 struct inode *new_inode = new_dentry->d_inode;
3410 struct inode *old_inode = old_dentry->d_inode;
3411 struct timespec ctime = CURRENT_TIME;
3412 u64 index = 0;
3413 int ret;
3414
3415 if (S_ISDIR(old_inode->i_mode) && new_inode &&
3416 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
3417 return -ENOTEMPTY;
3418 }
3419
3420 ret = btrfs_check_free_space(root, 1, 0);
3421 if (ret)
3422 goto out_unlock;
3423
3424 trans = btrfs_start_transaction(root, 1);
3425
3426 btrfs_set_trans_block_group(trans, new_dir);
3427
3428 old_dentry->d_inode->i_nlink++;
3429 old_dir->i_ctime = old_dir->i_mtime = ctime;
3430 new_dir->i_ctime = new_dir->i_mtime = ctime;
3431 old_inode->i_ctime = ctime;
3432
3433 ret = btrfs_unlink_trans(trans, root, old_dir, old_dentry);
3434 if (ret)
3435 goto out_fail;
3436
3437 if (new_inode) {
3438 new_inode->i_ctime = CURRENT_TIME;
3439 ret = btrfs_unlink_trans(trans, root, new_dir, new_dentry);
3440 if (ret)
3441 goto out_fail;
3442 if (new_inode->i_nlink == 0) {
3443 ret = btrfs_orphan_add(trans, new_inode);
3444 if (ret)
3445 goto out_fail;
3446 }
3447 }
3448 ret = btrfs_set_inode_index(new_dir, old_inode, &index);
3449 if (ret)
3450 goto out_fail;
3451
3452 ret = btrfs_add_link(trans, new_dentry, old_inode, 1, index);
3453 if (ret)
3454 goto out_fail;
3455
3456 out_fail:
3457 btrfs_end_transaction_throttle(trans, root);
3458 out_unlock:
3459 return ret;
3460 }
3461
3462 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
3463 {
3464 struct list_head *head = &root->fs_info->delalloc_inodes;
3465 struct btrfs_inode *binode;
3466 unsigned long flags;
3467
3468 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3469 while(!list_empty(head)) {
3470 binode = list_entry(head->next, struct btrfs_inode,
3471 delalloc_inodes);
3472 atomic_inc(&binode->vfs_inode.i_count);
3473 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3474 filemap_write_and_wait(binode->vfs_inode.i_mapping);
3475 iput(&binode->vfs_inode);
3476 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3477 }
3478 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3479 return 0;
3480 }
3481
3482 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
3483 const char *symname)
3484 {
3485 struct btrfs_trans_handle *trans;
3486 struct btrfs_root *root = BTRFS_I(dir)->root;
3487 struct btrfs_path *path;
3488 struct btrfs_key key;
3489 struct inode *inode = NULL;
3490 int err;
3491 int drop_inode = 0;
3492 u64 objectid;
3493 u64 index = 0 ;
3494 int name_len;
3495 int datasize;
3496 unsigned long ptr;
3497 struct btrfs_file_extent_item *ei;
3498 struct extent_buffer *leaf;
3499 unsigned long nr = 0;
3500
3501 name_len = strlen(symname) + 1;
3502 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
3503 return -ENAMETOOLONG;
3504
3505 err = btrfs_check_free_space(root, 1, 0);
3506 if (err)
3507 goto out_fail;
3508
3509 trans = btrfs_start_transaction(root, 1);
3510 btrfs_set_trans_block_group(trans, dir);
3511
3512 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3513 if (err) {
3514 err = -ENOSPC;
3515 goto out_unlock;
3516 }
3517
3518 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3519 dentry->d_name.len,
3520 dentry->d_parent->d_inode->i_ino, objectid,
3521 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
3522 &index);
3523 err = PTR_ERR(inode);
3524 if (IS_ERR(inode))
3525 goto out_unlock;
3526
3527 err = btrfs_init_acl(inode, dir);
3528 if (err) {
3529 drop_inode = 1;
3530 goto out_unlock;
3531 }
3532
3533 btrfs_set_trans_block_group(trans, inode);
3534 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3535 if (err)
3536 drop_inode = 1;
3537 else {
3538 inode->i_mapping->a_ops = &btrfs_aops;
3539 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3540 inode->i_fop = &btrfs_file_operations;
3541 inode->i_op = &btrfs_file_inode_operations;
3542 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3543 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3544 inode->i_mapping, GFP_NOFS);
3545 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3546 inode->i_mapping, GFP_NOFS);
3547 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3548 mutex_init(&BTRFS_I(inode)->csum_mutex);
3549 mutex_init(&BTRFS_I(inode)->extent_mutex);
3550 BTRFS_I(inode)->delalloc_bytes = 0;
3551 BTRFS_I(inode)->disk_i_size = 0;
3552 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3553 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3554 }
3555 dir->i_sb->s_dirt = 1;
3556 btrfs_update_inode_block_group(trans, inode);
3557 btrfs_update_inode_block_group(trans, dir);
3558 if (drop_inode)
3559 goto out_unlock;
3560
3561 path = btrfs_alloc_path();
3562 BUG_ON(!path);
3563 key.objectid = inode->i_ino;
3564 key.offset = 0;
3565 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
3566 datasize = btrfs_file_extent_calc_inline_size(name_len);
3567 err = btrfs_insert_empty_item(trans, root, path, &key,
3568 datasize);
3569 if (err) {
3570 drop_inode = 1;
3571 goto out_unlock;
3572 }
3573 leaf = path->nodes[0];
3574 ei = btrfs_item_ptr(leaf, path->slots[0],
3575 struct btrfs_file_extent_item);
3576 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
3577 btrfs_set_file_extent_type(leaf, ei,
3578 BTRFS_FILE_EXTENT_INLINE);
3579 ptr = btrfs_file_extent_inline_start(ei);
3580 write_extent_buffer(leaf, symname, ptr, name_len);
3581 btrfs_mark_buffer_dirty(leaf);
3582 btrfs_free_path(path);
3583
3584 inode->i_op = &btrfs_symlink_inode_operations;
3585 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3586 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3587 btrfs_i_size_write(inode, name_len - 1);
3588 err = btrfs_update_inode(trans, root, inode);
3589 if (err)
3590 drop_inode = 1;
3591
3592 out_unlock:
3593 nr = trans->blocks_used;
3594 btrfs_end_transaction_throttle(trans, root);
3595 out_fail:
3596 if (drop_inode) {
3597 inode_dec_link_count(inode);
3598 iput(inode);
3599 }
3600 btrfs_btree_balance_dirty(root, nr);
3601 return err;
3602 }
3603
3604 static int btrfs_set_page_dirty(struct page *page)
3605 {
3606 return __set_page_dirty_nobuffers(page);
3607 }
3608
3609 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3610 static int btrfs_permission(struct inode *inode, int mask)
3611 #else
3612 static int btrfs_permission(struct inode *inode, int mask,
3613 struct nameidata *nd)
3614 #endif
3615 {
3616 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
3617 return -EACCES;
3618 return generic_permission(inode, mask, btrfs_check_acl);
3619 }
3620
3621 static struct inode_operations btrfs_dir_inode_operations = {
3622 .lookup = btrfs_lookup,
3623 .create = btrfs_create,
3624 .unlink = btrfs_unlink,
3625 .link = btrfs_link,
3626 .mkdir = btrfs_mkdir,
3627 .rmdir = btrfs_rmdir,
3628 .rename = btrfs_rename,
3629 .symlink = btrfs_symlink,
3630 .setattr = btrfs_setattr,
3631 .mknod = btrfs_mknod,
3632 .setxattr = generic_setxattr,
3633 .getxattr = generic_getxattr,
3634 .listxattr = btrfs_listxattr,
3635 .removexattr = generic_removexattr,
3636 .permission = btrfs_permission,
3637 };
3638 static struct inode_operations btrfs_dir_ro_inode_operations = {
3639 .lookup = btrfs_lookup,
3640 .permission = btrfs_permission,
3641 };
3642 static struct file_operations btrfs_dir_file_operations = {
3643 .llseek = generic_file_llseek,
3644 .read = generic_read_dir,
3645 .readdir = btrfs_readdir,
3646 .unlocked_ioctl = btrfs_ioctl,
3647 #ifdef CONFIG_COMPAT
3648 .compat_ioctl = btrfs_ioctl,
3649 #endif
3650 .release = btrfs_release_file,
3651 };
3652
3653 static struct extent_io_ops btrfs_extent_io_ops = {
3654 .fill_delalloc = run_delalloc_range,
3655 .submit_bio_hook = btrfs_submit_bio_hook,
3656 .merge_bio_hook = btrfs_merge_bio_hook,
3657 .readpage_io_hook = btrfs_readpage_io_hook,
3658 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
3659 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
3660 .writepage_start_hook = btrfs_writepage_start_hook,
3661 .readpage_io_failed_hook = btrfs_io_failed_hook,
3662 .set_bit_hook = btrfs_set_bit_hook,
3663 .clear_bit_hook = btrfs_clear_bit_hook,
3664 };
3665
3666 static struct address_space_operations btrfs_aops = {
3667 .readpage = btrfs_readpage,
3668 .writepage = btrfs_writepage,
3669 .writepages = btrfs_writepages,
3670 .readpages = btrfs_readpages,
3671 .sync_page = block_sync_page,
3672 .bmap = btrfs_bmap,
3673 .direct_IO = btrfs_direct_IO,
3674 .invalidatepage = btrfs_invalidatepage,
3675 .releasepage = btrfs_releasepage,
3676 .set_page_dirty = btrfs_set_page_dirty,
3677 };
3678
3679 static struct address_space_operations btrfs_symlink_aops = {
3680 .readpage = btrfs_readpage,
3681 .writepage = btrfs_writepage,
3682 .invalidatepage = btrfs_invalidatepage,
3683 .releasepage = btrfs_releasepage,
3684 };
3685
3686 static struct inode_operations btrfs_file_inode_operations = {
3687 .truncate = btrfs_truncate,
3688 .getattr = btrfs_getattr,
3689 .setattr = btrfs_setattr,
3690 .setxattr = generic_setxattr,
3691 .getxattr = generic_getxattr,
3692 .listxattr = btrfs_listxattr,
3693 .removexattr = generic_removexattr,
3694 .permission = btrfs_permission,
3695 };
3696 static struct inode_operations btrfs_special_inode_operations = {
3697 .getattr = btrfs_getattr,
3698 .setattr = btrfs_setattr,
3699 .permission = btrfs_permission,
3700 .setxattr = generic_setxattr,
3701 .getxattr = generic_getxattr,
3702 .listxattr = btrfs_listxattr,
3703 .removexattr = generic_removexattr,
3704 };
3705 static struct inode_operations btrfs_symlink_inode_operations = {
3706 .readlink = generic_readlink,
3707 .follow_link = page_follow_link_light,
3708 .put_link = page_put_link,
3709 .permission = btrfs_permission,
3710 };
This page took 0.174437 seconds and 6 git commands to generate.