Btrfs: Direct I/O: Fix space accounting
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63
64 struct btrfs_iget_args {
65 struct btrfs_key *location;
66 struct btrfs_root *root;
67 };
68
69 static const struct inode_operations btrfs_dir_inode_operations;
70 static const struct inode_operations btrfs_symlink_inode_operations;
71 static const struct inode_operations btrfs_dir_ro_inode_operations;
72 static const struct inode_operations btrfs_special_inode_operations;
73 static const struct inode_operations btrfs_file_inode_operations;
74 static const struct address_space_operations btrfs_aops;
75 static const struct address_space_operations btrfs_symlink_aops;
76 static const struct file_operations btrfs_dir_file_operations;
77 static struct extent_io_ops btrfs_extent_io_ops;
78
79 static struct kmem_cache *btrfs_inode_cachep;
80 static struct kmem_cache *btrfs_delalloc_work_cachep;
81 struct kmem_cache *btrfs_trans_handle_cachep;
82 struct kmem_cache *btrfs_transaction_cachep;
83 struct kmem_cache *btrfs_path_cachep;
84 struct kmem_cache *btrfs_free_space_cachep;
85
86 #define S_SHIFT 12
87 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
88 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
89 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
90 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
91 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
92 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
93 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
94 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
95 };
96
97 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
98 static int btrfs_truncate(struct inode *inode);
99 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
100 static noinline int cow_file_range(struct inode *inode,
101 struct page *locked_page,
102 u64 start, u64 end, int *page_started,
103 unsigned long *nr_written, int unlock);
104 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
105 u64 len, u64 orig_start,
106 u64 block_start, u64 block_len,
107 u64 orig_block_len, u64 ram_bytes,
108 int type);
109
110 static int btrfs_dirty_inode(struct inode *inode);
111
112 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
113 void btrfs_test_inode_set_ops(struct inode *inode)
114 {
115 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
116 }
117 #endif
118
119 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
120 struct inode *inode, struct inode *dir,
121 const struct qstr *qstr)
122 {
123 int err;
124
125 err = btrfs_init_acl(trans, inode, dir);
126 if (!err)
127 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
128 return err;
129 }
130
131 /*
132 * this does all the hard work for inserting an inline extent into
133 * the btree. The caller should have done a btrfs_drop_extents so that
134 * no overlapping inline items exist in the btree
135 */
136 static int insert_inline_extent(struct btrfs_trans_handle *trans,
137 struct btrfs_path *path, int extent_inserted,
138 struct btrfs_root *root, struct inode *inode,
139 u64 start, size_t size, size_t compressed_size,
140 int compress_type,
141 struct page **compressed_pages)
142 {
143 struct extent_buffer *leaf;
144 struct page *page = NULL;
145 char *kaddr;
146 unsigned long ptr;
147 struct btrfs_file_extent_item *ei;
148 int err = 0;
149 int ret;
150 size_t cur_size = size;
151 unsigned long offset;
152
153 if (compressed_size && compressed_pages)
154 cur_size = compressed_size;
155
156 inode_add_bytes(inode, size);
157
158 if (!extent_inserted) {
159 struct btrfs_key key;
160 size_t datasize;
161
162 key.objectid = btrfs_ino(inode);
163 key.offset = start;
164 key.type = BTRFS_EXTENT_DATA_KEY;
165
166 datasize = btrfs_file_extent_calc_inline_size(cur_size);
167 path->leave_spinning = 1;
168 ret = btrfs_insert_empty_item(trans, root, path, &key,
169 datasize);
170 if (ret) {
171 err = ret;
172 goto fail;
173 }
174 }
175 leaf = path->nodes[0];
176 ei = btrfs_item_ptr(leaf, path->slots[0],
177 struct btrfs_file_extent_item);
178 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
179 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
180 btrfs_set_file_extent_encryption(leaf, ei, 0);
181 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
182 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
183 ptr = btrfs_file_extent_inline_start(ei);
184
185 if (compress_type != BTRFS_COMPRESS_NONE) {
186 struct page *cpage;
187 int i = 0;
188 while (compressed_size > 0) {
189 cpage = compressed_pages[i];
190 cur_size = min_t(unsigned long, compressed_size,
191 PAGE_CACHE_SIZE);
192
193 kaddr = kmap_atomic(cpage);
194 write_extent_buffer(leaf, kaddr, ptr, cur_size);
195 kunmap_atomic(kaddr);
196
197 i++;
198 ptr += cur_size;
199 compressed_size -= cur_size;
200 }
201 btrfs_set_file_extent_compression(leaf, ei,
202 compress_type);
203 } else {
204 page = find_get_page(inode->i_mapping,
205 start >> PAGE_CACHE_SHIFT);
206 btrfs_set_file_extent_compression(leaf, ei, 0);
207 kaddr = kmap_atomic(page);
208 offset = start & (PAGE_CACHE_SIZE - 1);
209 write_extent_buffer(leaf, kaddr + offset, ptr, size);
210 kunmap_atomic(kaddr);
211 page_cache_release(page);
212 }
213 btrfs_mark_buffer_dirty(leaf);
214 btrfs_release_path(path);
215
216 /*
217 * we're an inline extent, so nobody can
218 * extend the file past i_size without locking
219 * a page we already have locked.
220 *
221 * We must do any isize and inode updates
222 * before we unlock the pages. Otherwise we
223 * could end up racing with unlink.
224 */
225 BTRFS_I(inode)->disk_i_size = inode->i_size;
226 ret = btrfs_update_inode(trans, root, inode);
227
228 return ret;
229 fail:
230 return err;
231 }
232
233
234 /*
235 * conditionally insert an inline extent into the file. This
236 * does the checks required to make sure the data is small enough
237 * to fit as an inline extent.
238 */
239 static noinline int cow_file_range_inline(struct btrfs_root *root,
240 struct inode *inode, u64 start,
241 u64 end, size_t compressed_size,
242 int compress_type,
243 struct page **compressed_pages)
244 {
245 struct btrfs_trans_handle *trans;
246 u64 isize = i_size_read(inode);
247 u64 actual_end = min(end + 1, isize);
248 u64 inline_len = actual_end - start;
249 u64 aligned_end = ALIGN(end, root->sectorsize);
250 u64 data_len = inline_len;
251 int ret;
252 struct btrfs_path *path;
253 int extent_inserted = 0;
254 u32 extent_item_size;
255
256 if (compressed_size)
257 data_len = compressed_size;
258
259 if (start > 0 ||
260 actual_end > PAGE_CACHE_SIZE ||
261 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
262 (!compressed_size &&
263 (actual_end & (root->sectorsize - 1)) == 0) ||
264 end + 1 < isize ||
265 data_len > root->fs_info->max_inline) {
266 return 1;
267 }
268
269 path = btrfs_alloc_path();
270 if (!path)
271 return -ENOMEM;
272
273 trans = btrfs_join_transaction(root);
274 if (IS_ERR(trans)) {
275 btrfs_free_path(path);
276 return PTR_ERR(trans);
277 }
278 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
279
280 if (compressed_size && compressed_pages)
281 extent_item_size = btrfs_file_extent_calc_inline_size(
282 compressed_size);
283 else
284 extent_item_size = btrfs_file_extent_calc_inline_size(
285 inline_len);
286
287 ret = __btrfs_drop_extents(trans, root, inode, path,
288 start, aligned_end, NULL,
289 1, 1, extent_item_size, &extent_inserted);
290 if (ret) {
291 btrfs_abort_transaction(trans, root, ret);
292 goto out;
293 }
294
295 if (isize > actual_end)
296 inline_len = min_t(u64, isize, actual_end);
297 ret = insert_inline_extent(trans, path, extent_inserted,
298 root, inode, start,
299 inline_len, compressed_size,
300 compress_type, compressed_pages);
301 if (ret && ret != -ENOSPC) {
302 btrfs_abort_transaction(trans, root, ret);
303 goto out;
304 } else if (ret == -ENOSPC) {
305 ret = 1;
306 goto out;
307 }
308
309 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
310 btrfs_delalloc_release_metadata(inode, end + 1 - start);
311 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
312 out:
313 btrfs_free_path(path);
314 btrfs_end_transaction(trans, root);
315 return ret;
316 }
317
318 struct async_extent {
319 u64 start;
320 u64 ram_size;
321 u64 compressed_size;
322 struct page **pages;
323 unsigned long nr_pages;
324 int compress_type;
325 struct list_head list;
326 };
327
328 struct async_cow {
329 struct inode *inode;
330 struct btrfs_root *root;
331 struct page *locked_page;
332 u64 start;
333 u64 end;
334 struct list_head extents;
335 struct btrfs_work work;
336 };
337
338 static noinline int add_async_extent(struct async_cow *cow,
339 u64 start, u64 ram_size,
340 u64 compressed_size,
341 struct page **pages,
342 unsigned long nr_pages,
343 int compress_type)
344 {
345 struct async_extent *async_extent;
346
347 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
348 BUG_ON(!async_extent); /* -ENOMEM */
349 async_extent->start = start;
350 async_extent->ram_size = ram_size;
351 async_extent->compressed_size = compressed_size;
352 async_extent->pages = pages;
353 async_extent->nr_pages = nr_pages;
354 async_extent->compress_type = compress_type;
355 list_add_tail(&async_extent->list, &cow->extents);
356 return 0;
357 }
358
359 static inline int inode_need_compress(struct inode *inode)
360 {
361 struct btrfs_root *root = BTRFS_I(inode)->root;
362
363 /* force compress */
364 if (btrfs_test_opt(root, FORCE_COMPRESS))
365 return 1;
366 /* bad compression ratios */
367 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
368 return 0;
369 if (btrfs_test_opt(root, COMPRESS) ||
370 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
371 BTRFS_I(inode)->force_compress)
372 return 1;
373 return 0;
374 }
375
376 /*
377 * we create compressed extents in two phases. The first
378 * phase compresses a range of pages that have already been
379 * locked (both pages and state bits are locked).
380 *
381 * This is done inside an ordered work queue, and the compression
382 * is spread across many cpus. The actual IO submission is step
383 * two, and the ordered work queue takes care of making sure that
384 * happens in the same order things were put onto the queue by
385 * writepages and friends.
386 *
387 * If this code finds it can't get good compression, it puts an
388 * entry onto the work queue to write the uncompressed bytes. This
389 * makes sure that both compressed inodes and uncompressed inodes
390 * are written in the same order that the flusher thread sent them
391 * down.
392 */
393 static noinline void compress_file_range(struct inode *inode,
394 struct page *locked_page,
395 u64 start, u64 end,
396 struct async_cow *async_cow,
397 int *num_added)
398 {
399 struct btrfs_root *root = BTRFS_I(inode)->root;
400 u64 num_bytes;
401 u64 blocksize = root->sectorsize;
402 u64 actual_end;
403 u64 isize = i_size_read(inode);
404 int ret = 0;
405 struct page **pages = NULL;
406 unsigned long nr_pages;
407 unsigned long nr_pages_ret = 0;
408 unsigned long total_compressed = 0;
409 unsigned long total_in = 0;
410 unsigned long max_compressed = 128 * 1024;
411 unsigned long max_uncompressed = 128 * 1024;
412 int i;
413 int will_compress;
414 int compress_type = root->fs_info->compress_type;
415 int redirty = 0;
416
417 /* if this is a small write inside eof, kick off a defrag */
418 if ((end - start + 1) < 16 * 1024 &&
419 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
420 btrfs_add_inode_defrag(NULL, inode);
421
422 actual_end = min_t(u64, isize, end + 1);
423 again:
424 will_compress = 0;
425 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
426 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
427
428 /*
429 * we don't want to send crud past the end of i_size through
430 * compression, that's just a waste of CPU time. So, if the
431 * end of the file is before the start of our current
432 * requested range of bytes, we bail out to the uncompressed
433 * cleanup code that can deal with all of this.
434 *
435 * It isn't really the fastest way to fix things, but this is a
436 * very uncommon corner.
437 */
438 if (actual_end <= start)
439 goto cleanup_and_bail_uncompressed;
440
441 total_compressed = actual_end - start;
442
443 /*
444 * skip compression for a small file range(<=blocksize) that
445 * isn't an inline extent, since it dosen't save disk space at all.
446 */
447 if (total_compressed <= blocksize &&
448 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
449 goto cleanup_and_bail_uncompressed;
450
451 /* we want to make sure that amount of ram required to uncompress
452 * an extent is reasonable, so we limit the total size in ram
453 * of a compressed extent to 128k. This is a crucial number
454 * because it also controls how easily we can spread reads across
455 * cpus for decompression.
456 *
457 * We also want to make sure the amount of IO required to do
458 * a random read is reasonably small, so we limit the size of
459 * a compressed extent to 128k.
460 */
461 total_compressed = min(total_compressed, max_uncompressed);
462 num_bytes = ALIGN(end - start + 1, blocksize);
463 num_bytes = max(blocksize, num_bytes);
464 total_in = 0;
465 ret = 0;
466
467 /*
468 * we do compression for mount -o compress and when the
469 * inode has not been flagged as nocompress. This flag can
470 * change at any time if we discover bad compression ratios.
471 */
472 if (inode_need_compress(inode)) {
473 WARN_ON(pages);
474 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
475 if (!pages) {
476 /* just bail out to the uncompressed code */
477 goto cont;
478 }
479
480 if (BTRFS_I(inode)->force_compress)
481 compress_type = BTRFS_I(inode)->force_compress;
482
483 /*
484 * we need to call clear_page_dirty_for_io on each
485 * page in the range. Otherwise applications with the file
486 * mmap'd can wander in and change the page contents while
487 * we are compressing them.
488 *
489 * If the compression fails for any reason, we set the pages
490 * dirty again later on.
491 */
492 extent_range_clear_dirty_for_io(inode, start, end);
493 redirty = 1;
494 ret = btrfs_compress_pages(compress_type,
495 inode->i_mapping, start,
496 total_compressed, pages,
497 nr_pages, &nr_pages_ret,
498 &total_in,
499 &total_compressed,
500 max_compressed);
501
502 if (!ret) {
503 unsigned long offset = total_compressed &
504 (PAGE_CACHE_SIZE - 1);
505 struct page *page = pages[nr_pages_ret - 1];
506 char *kaddr;
507
508 /* zero the tail end of the last page, we might be
509 * sending it down to disk
510 */
511 if (offset) {
512 kaddr = kmap_atomic(page);
513 memset(kaddr + offset, 0,
514 PAGE_CACHE_SIZE - offset);
515 kunmap_atomic(kaddr);
516 }
517 will_compress = 1;
518 }
519 }
520 cont:
521 if (start == 0) {
522 /* lets try to make an inline extent */
523 if (ret || total_in < (actual_end - start)) {
524 /* we didn't compress the entire range, try
525 * to make an uncompressed inline extent.
526 */
527 ret = cow_file_range_inline(root, inode, start, end,
528 0, 0, NULL);
529 } else {
530 /* try making a compressed inline extent */
531 ret = cow_file_range_inline(root, inode, start, end,
532 total_compressed,
533 compress_type, pages);
534 }
535 if (ret <= 0) {
536 unsigned long clear_flags = EXTENT_DELALLOC |
537 EXTENT_DEFRAG;
538 unsigned long page_error_op;
539
540 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
541 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
542
543 /*
544 * inline extent creation worked or returned error,
545 * we don't need to create any more async work items.
546 * Unlock and free up our temp pages.
547 */
548 extent_clear_unlock_delalloc(inode, start, end, NULL,
549 clear_flags, PAGE_UNLOCK |
550 PAGE_CLEAR_DIRTY |
551 PAGE_SET_WRITEBACK |
552 page_error_op |
553 PAGE_END_WRITEBACK);
554 goto free_pages_out;
555 }
556 }
557
558 if (will_compress) {
559 /*
560 * we aren't doing an inline extent round the compressed size
561 * up to a block size boundary so the allocator does sane
562 * things
563 */
564 total_compressed = ALIGN(total_compressed, blocksize);
565
566 /*
567 * one last check to make sure the compression is really a
568 * win, compare the page count read with the blocks on disk
569 */
570 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
571 if (total_compressed >= total_in) {
572 will_compress = 0;
573 } else {
574 num_bytes = total_in;
575 }
576 }
577 if (!will_compress && pages) {
578 /*
579 * the compression code ran but failed to make things smaller,
580 * free any pages it allocated and our page pointer array
581 */
582 for (i = 0; i < nr_pages_ret; i++) {
583 WARN_ON(pages[i]->mapping);
584 page_cache_release(pages[i]);
585 }
586 kfree(pages);
587 pages = NULL;
588 total_compressed = 0;
589 nr_pages_ret = 0;
590
591 /* flag the file so we don't compress in the future */
592 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
593 !(BTRFS_I(inode)->force_compress)) {
594 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
595 }
596 }
597 if (will_compress) {
598 *num_added += 1;
599
600 /* the async work queues will take care of doing actual
601 * allocation on disk for these compressed pages,
602 * and will submit them to the elevator.
603 */
604 add_async_extent(async_cow, start, num_bytes,
605 total_compressed, pages, nr_pages_ret,
606 compress_type);
607
608 if (start + num_bytes < end) {
609 start += num_bytes;
610 pages = NULL;
611 cond_resched();
612 goto again;
613 }
614 } else {
615 cleanup_and_bail_uncompressed:
616 /*
617 * No compression, but we still need to write the pages in
618 * the file we've been given so far. redirty the locked
619 * page if it corresponds to our extent and set things up
620 * for the async work queue to run cow_file_range to do
621 * the normal delalloc dance
622 */
623 if (page_offset(locked_page) >= start &&
624 page_offset(locked_page) <= end) {
625 __set_page_dirty_nobuffers(locked_page);
626 /* unlocked later on in the async handlers */
627 }
628 if (redirty)
629 extent_range_redirty_for_io(inode, start, end);
630 add_async_extent(async_cow, start, end - start + 1,
631 0, NULL, 0, BTRFS_COMPRESS_NONE);
632 *num_added += 1;
633 }
634
635 return;
636
637 free_pages_out:
638 for (i = 0; i < nr_pages_ret; i++) {
639 WARN_ON(pages[i]->mapping);
640 page_cache_release(pages[i]);
641 }
642 kfree(pages);
643 }
644
645 static void free_async_extent_pages(struct async_extent *async_extent)
646 {
647 int i;
648
649 if (!async_extent->pages)
650 return;
651
652 for (i = 0; i < async_extent->nr_pages; i++) {
653 WARN_ON(async_extent->pages[i]->mapping);
654 page_cache_release(async_extent->pages[i]);
655 }
656 kfree(async_extent->pages);
657 async_extent->nr_pages = 0;
658 async_extent->pages = NULL;
659 }
660
661 /*
662 * phase two of compressed writeback. This is the ordered portion
663 * of the code, which only gets called in the order the work was
664 * queued. We walk all the async extents created by compress_file_range
665 * and send them down to the disk.
666 */
667 static noinline void submit_compressed_extents(struct inode *inode,
668 struct async_cow *async_cow)
669 {
670 struct async_extent *async_extent;
671 u64 alloc_hint = 0;
672 struct btrfs_key ins;
673 struct extent_map *em;
674 struct btrfs_root *root = BTRFS_I(inode)->root;
675 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
676 struct extent_io_tree *io_tree;
677 int ret = 0;
678
679 again:
680 while (!list_empty(&async_cow->extents)) {
681 async_extent = list_entry(async_cow->extents.next,
682 struct async_extent, list);
683 list_del(&async_extent->list);
684
685 io_tree = &BTRFS_I(inode)->io_tree;
686
687 retry:
688 /* did the compression code fall back to uncompressed IO? */
689 if (!async_extent->pages) {
690 int page_started = 0;
691 unsigned long nr_written = 0;
692
693 lock_extent(io_tree, async_extent->start,
694 async_extent->start +
695 async_extent->ram_size - 1);
696
697 /* allocate blocks */
698 ret = cow_file_range(inode, async_cow->locked_page,
699 async_extent->start,
700 async_extent->start +
701 async_extent->ram_size - 1,
702 &page_started, &nr_written, 0);
703
704 /* JDM XXX */
705
706 /*
707 * if page_started, cow_file_range inserted an
708 * inline extent and took care of all the unlocking
709 * and IO for us. Otherwise, we need to submit
710 * all those pages down to the drive.
711 */
712 if (!page_started && !ret)
713 extent_write_locked_range(io_tree,
714 inode, async_extent->start,
715 async_extent->start +
716 async_extent->ram_size - 1,
717 btrfs_get_extent,
718 WB_SYNC_ALL);
719 else if (ret)
720 unlock_page(async_cow->locked_page);
721 kfree(async_extent);
722 cond_resched();
723 continue;
724 }
725
726 lock_extent(io_tree, async_extent->start,
727 async_extent->start + async_extent->ram_size - 1);
728
729 ret = btrfs_reserve_extent(root,
730 async_extent->compressed_size,
731 async_extent->compressed_size,
732 0, alloc_hint, &ins, 1, 1);
733 if (ret) {
734 free_async_extent_pages(async_extent);
735
736 if (ret == -ENOSPC) {
737 unlock_extent(io_tree, async_extent->start,
738 async_extent->start +
739 async_extent->ram_size - 1);
740
741 /*
742 * we need to redirty the pages if we decide to
743 * fallback to uncompressed IO, otherwise we
744 * will not submit these pages down to lower
745 * layers.
746 */
747 extent_range_redirty_for_io(inode,
748 async_extent->start,
749 async_extent->start +
750 async_extent->ram_size - 1);
751
752 goto retry;
753 }
754 goto out_free;
755 }
756 /*
757 * here we're doing allocation and writeback of the
758 * compressed pages
759 */
760 btrfs_drop_extent_cache(inode, async_extent->start,
761 async_extent->start +
762 async_extent->ram_size - 1, 0);
763
764 em = alloc_extent_map();
765 if (!em) {
766 ret = -ENOMEM;
767 goto out_free_reserve;
768 }
769 em->start = async_extent->start;
770 em->len = async_extent->ram_size;
771 em->orig_start = em->start;
772 em->mod_start = em->start;
773 em->mod_len = em->len;
774
775 em->block_start = ins.objectid;
776 em->block_len = ins.offset;
777 em->orig_block_len = ins.offset;
778 em->ram_bytes = async_extent->ram_size;
779 em->bdev = root->fs_info->fs_devices->latest_bdev;
780 em->compress_type = async_extent->compress_type;
781 set_bit(EXTENT_FLAG_PINNED, &em->flags);
782 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
783 em->generation = -1;
784
785 while (1) {
786 write_lock(&em_tree->lock);
787 ret = add_extent_mapping(em_tree, em, 1);
788 write_unlock(&em_tree->lock);
789 if (ret != -EEXIST) {
790 free_extent_map(em);
791 break;
792 }
793 btrfs_drop_extent_cache(inode, async_extent->start,
794 async_extent->start +
795 async_extent->ram_size - 1, 0);
796 }
797
798 if (ret)
799 goto out_free_reserve;
800
801 ret = btrfs_add_ordered_extent_compress(inode,
802 async_extent->start,
803 ins.objectid,
804 async_extent->ram_size,
805 ins.offset,
806 BTRFS_ORDERED_COMPRESSED,
807 async_extent->compress_type);
808 if (ret) {
809 btrfs_drop_extent_cache(inode, async_extent->start,
810 async_extent->start +
811 async_extent->ram_size - 1, 0);
812 goto out_free_reserve;
813 }
814
815 /*
816 * clear dirty, set writeback and unlock the pages.
817 */
818 extent_clear_unlock_delalloc(inode, async_extent->start,
819 async_extent->start +
820 async_extent->ram_size - 1,
821 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
822 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
823 PAGE_SET_WRITEBACK);
824 ret = btrfs_submit_compressed_write(inode,
825 async_extent->start,
826 async_extent->ram_size,
827 ins.objectid,
828 ins.offset, async_extent->pages,
829 async_extent->nr_pages);
830 if (ret) {
831 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
832 struct page *p = async_extent->pages[0];
833 const u64 start = async_extent->start;
834 const u64 end = start + async_extent->ram_size - 1;
835
836 p->mapping = inode->i_mapping;
837 tree->ops->writepage_end_io_hook(p, start, end,
838 NULL, 0);
839 p->mapping = NULL;
840 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
841 PAGE_END_WRITEBACK |
842 PAGE_SET_ERROR);
843 free_async_extent_pages(async_extent);
844 }
845 alloc_hint = ins.objectid + ins.offset;
846 kfree(async_extent);
847 cond_resched();
848 }
849 return;
850 out_free_reserve:
851 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
852 out_free:
853 extent_clear_unlock_delalloc(inode, async_extent->start,
854 async_extent->start +
855 async_extent->ram_size - 1,
856 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
857 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
858 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
859 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
860 PAGE_SET_ERROR);
861 free_async_extent_pages(async_extent);
862 kfree(async_extent);
863 goto again;
864 }
865
866 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
867 u64 num_bytes)
868 {
869 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
870 struct extent_map *em;
871 u64 alloc_hint = 0;
872
873 read_lock(&em_tree->lock);
874 em = search_extent_mapping(em_tree, start, num_bytes);
875 if (em) {
876 /*
877 * if block start isn't an actual block number then find the
878 * first block in this inode and use that as a hint. If that
879 * block is also bogus then just don't worry about it.
880 */
881 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
882 free_extent_map(em);
883 em = search_extent_mapping(em_tree, 0, 0);
884 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
885 alloc_hint = em->block_start;
886 if (em)
887 free_extent_map(em);
888 } else {
889 alloc_hint = em->block_start;
890 free_extent_map(em);
891 }
892 }
893 read_unlock(&em_tree->lock);
894
895 return alloc_hint;
896 }
897
898 /*
899 * when extent_io.c finds a delayed allocation range in the file,
900 * the call backs end up in this code. The basic idea is to
901 * allocate extents on disk for the range, and create ordered data structs
902 * in ram to track those extents.
903 *
904 * locked_page is the page that writepage had locked already. We use
905 * it to make sure we don't do extra locks or unlocks.
906 *
907 * *page_started is set to one if we unlock locked_page and do everything
908 * required to start IO on it. It may be clean and already done with
909 * IO when we return.
910 */
911 static noinline int cow_file_range(struct inode *inode,
912 struct page *locked_page,
913 u64 start, u64 end, int *page_started,
914 unsigned long *nr_written,
915 int unlock)
916 {
917 struct btrfs_root *root = BTRFS_I(inode)->root;
918 u64 alloc_hint = 0;
919 u64 num_bytes;
920 unsigned long ram_size;
921 u64 disk_num_bytes;
922 u64 cur_alloc_size;
923 u64 blocksize = root->sectorsize;
924 struct btrfs_key ins;
925 struct extent_map *em;
926 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
927 int ret = 0;
928
929 if (btrfs_is_free_space_inode(inode)) {
930 WARN_ON_ONCE(1);
931 ret = -EINVAL;
932 goto out_unlock;
933 }
934
935 num_bytes = ALIGN(end - start + 1, blocksize);
936 num_bytes = max(blocksize, num_bytes);
937 disk_num_bytes = num_bytes;
938
939 /* if this is a small write inside eof, kick off defrag */
940 if (num_bytes < 64 * 1024 &&
941 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
942 btrfs_add_inode_defrag(NULL, inode);
943
944 if (start == 0) {
945 /* lets try to make an inline extent */
946 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
947 NULL);
948 if (ret == 0) {
949 extent_clear_unlock_delalloc(inode, start, end, NULL,
950 EXTENT_LOCKED | EXTENT_DELALLOC |
951 EXTENT_DEFRAG, PAGE_UNLOCK |
952 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
953 PAGE_END_WRITEBACK);
954
955 *nr_written = *nr_written +
956 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
957 *page_started = 1;
958 goto out;
959 } else if (ret < 0) {
960 goto out_unlock;
961 }
962 }
963
964 BUG_ON(disk_num_bytes >
965 btrfs_super_total_bytes(root->fs_info->super_copy));
966
967 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
968 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
969
970 while (disk_num_bytes > 0) {
971 unsigned long op;
972
973 cur_alloc_size = disk_num_bytes;
974 ret = btrfs_reserve_extent(root, cur_alloc_size,
975 root->sectorsize, 0, alloc_hint,
976 &ins, 1, 1);
977 if (ret < 0)
978 goto out_unlock;
979
980 em = alloc_extent_map();
981 if (!em) {
982 ret = -ENOMEM;
983 goto out_reserve;
984 }
985 em->start = start;
986 em->orig_start = em->start;
987 ram_size = ins.offset;
988 em->len = ins.offset;
989 em->mod_start = em->start;
990 em->mod_len = em->len;
991
992 em->block_start = ins.objectid;
993 em->block_len = ins.offset;
994 em->orig_block_len = ins.offset;
995 em->ram_bytes = ram_size;
996 em->bdev = root->fs_info->fs_devices->latest_bdev;
997 set_bit(EXTENT_FLAG_PINNED, &em->flags);
998 em->generation = -1;
999
1000 while (1) {
1001 write_lock(&em_tree->lock);
1002 ret = add_extent_mapping(em_tree, em, 1);
1003 write_unlock(&em_tree->lock);
1004 if (ret != -EEXIST) {
1005 free_extent_map(em);
1006 break;
1007 }
1008 btrfs_drop_extent_cache(inode, start,
1009 start + ram_size - 1, 0);
1010 }
1011 if (ret)
1012 goto out_reserve;
1013
1014 cur_alloc_size = ins.offset;
1015 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1016 ram_size, cur_alloc_size, 0);
1017 if (ret)
1018 goto out_drop_extent_cache;
1019
1020 if (root->root_key.objectid ==
1021 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1022 ret = btrfs_reloc_clone_csums(inode, start,
1023 cur_alloc_size);
1024 if (ret)
1025 goto out_drop_extent_cache;
1026 }
1027
1028 if (disk_num_bytes < cur_alloc_size)
1029 break;
1030
1031 /* we're not doing compressed IO, don't unlock the first
1032 * page (which the caller expects to stay locked), don't
1033 * clear any dirty bits and don't set any writeback bits
1034 *
1035 * Do set the Private2 bit so we know this page was properly
1036 * setup for writepage
1037 */
1038 op = unlock ? PAGE_UNLOCK : 0;
1039 op |= PAGE_SET_PRIVATE2;
1040
1041 extent_clear_unlock_delalloc(inode, start,
1042 start + ram_size - 1, locked_page,
1043 EXTENT_LOCKED | EXTENT_DELALLOC,
1044 op);
1045 disk_num_bytes -= cur_alloc_size;
1046 num_bytes -= cur_alloc_size;
1047 alloc_hint = ins.objectid + ins.offset;
1048 start += cur_alloc_size;
1049 }
1050 out:
1051 return ret;
1052
1053 out_drop_extent_cache:
1054 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1055 out_reserve:
1056 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1057 out_unlock:
1058 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1059 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1060 EXTENT_DELALLOC | EXTENT_DEFRAG,
1061 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1062 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1063 goto out;
1064 }
1065
1066 /*
1067 * work queue call back to started compression on a file and pages
1068 */
1069 static noinline void async_cow_start(struct btrfs_work *work)
1070 {
1071 struct async_cow *async_cow;
1072 int num_added = 0;
1073 async_cow = container_of(work, struct async_cow, work);
1074
1075 compress_file_range(async_cow->inode, async_cow->locked_page,
1076 async_cow->start, async_cow->end, async_cow,
1077 &num_added);
1078 if (num_added == 0) {
1079 btrfs_add_delayed_iput(async_cow->inode);
1080 async_cow->inode = NULL;
1081 }
1082 }
1083
1084 /*
1085 * work queue call back to submit previously compressed pages
1086 */
1087 static noinline void async_cow_submit(struct btrfs_work *work)
1088 {
1089 struct async_cow *async_cow;
1090 struct btrfs_root *root;
1091 unsigned long nr_pages;
1092
1093 async_cow = container_of(work, struct async_cow, work);
1094
1095 root = async_cow->root;
1096 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1097 PAGE_CACHE_SHIFT;
1098
1099 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1100 5 * 1024 * 1024 &&
1101 waitqueue_active(&root->fs_info->async_submit_wait))
1102 wake_up(&root->fs_info->async_submit_wait);
1103
1104 if (async_cow->inode)
1105 submit_compressed_extents(async_cow->inode, async_cow);
1106 }
1107
1108 static noinline void async_cow_free(struct btrfs_work *work)
1109 {
1110 struct async_cow *async_cow;
1111 async_cow = container_of(work, struct async_cow, work);
1112 if (async_cow->inode)
1113 btrfs_add_delayed_iput(async_cow->inode);
1114 kfree(async_cow);
1115 }
1116
1117 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1118 u64 start, u64 end, int *page_started,
1119 unsigned long *nr_written)
1120 {
1121 struct async_cow *async_cow;
1122 struct btrfs_root *root = BTRFS_I(inode)->root;
1123 unsigned long nr_pages;
1124 u64 cur_end;
1125 int limit = 10 * 1024 * 1024;
1126
1127 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1128 1, 0, NULL, GFP_NOFS);
1129 while (start < end) {
1130 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1131 BUG_ON(!async_cow); /* -ENOMEM */
1132 async_cow->inode = igrab(inode);
1133 async_cow->root = root;
1134 async_cow->locked_page = locked_page;
1135 async_cow->start = start;
1136
1137 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1138 !btrfs_test_opt(root, FORCE_COMPRESS))
1139 cur_end = end;
1140 else
1141 cur_end = min(end, start + 512 * 1024 - 1);
1142
1143 async_cow->end = cur_end;
1144 INIT_LIST_HEAD(&async_cow->extents);
1145
1146 btrfs_init_work(&async_cow->work,
1147 btrfs_delalloc_helper,
1148 async_cow_start, async_cow_submit,
1149 async_cow_free);
1150
1151 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1152 PAGE_CACHE_SHIFT;
1153 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1154
1155 btrfs_queue_work(root->fs_info->delalloc_workers,
1156 &async_cow->work);
1157
1158 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1159 wait_event(root->fs_info->async_submit_wait,
1160 (atomic_read(&root->fs_info->async_delalloc_pages) <
1161 limit));
1162 }
1163
1164 while (atomic_read(&root->fs_info->async_submit_draining) &&
1165 atomic_read(&root->fs_info->async_delalloc_pages)) {
1166 wait_event(root->fs_info->async_submit_wait,
1167 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1168 0));
1169 }
1170
1171 *nr_written += nr_pages;
1172 start = cur_end + 1;
1173 }
1174 *page_started = 1;
1175 return 0;
1176 }
1177
1178 static noinline int csum_exist_in_range(struct btrfs_root *root,
1179 u64 bytenr, u64 num_bytes)
1180 {
1181 int ret;
1182 struct btrfs_ordered_sum *sums;
1183 LIST_HEAD(list);
1184
1185 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1186 bytenr + num_bytes - 1, &list, 0);
1187 if (ret == 0 && list_empty(&list))
1188 return 0;
1189
1190 while (!list_empty(&list)) {
1191 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1192 list_del(&sums->list);
1193 kfree(sums);
1194 }
1195 return 1;
1196 }
1197
1198 /*
1199 * when nowcow writeback call back. This checks for snapshots or COW copies
1200 * of the extents that exist in the file, and COWs the file as required.
1201 *
1202 * If no cow copies or snapshots exist, we write directly to the existing
1203 * blocks on disk
1204 */
1205 static noinline int run_delalloc_nocow(struct inode *inode,
1206 struct page *locked_page,
1207 u64 start, u64 end, int *page_started, int force,
1208 unsigned long *nr_written)
1209 {
1210 struct btrfs_root *root = BTRFS_I(inode)->root;
1211 struct btrfs_trans_handle *trans;
1212 struct extent_buffer *leaf;
1213 struct btrfs_path *path;
1214 struct btrfs_file_extent_item *fi;
1215 struct btrfs_key found_key;
1216 u64 cow_start;
1217 u64 cur_offset;
1218 u64 extent_end;
1219 u64 extent_offset;
1220 u64 disk_bytenr;
1221 u64 num_bytes;
1222 u64 disk_num_bytes;
1223 u64 ram_bytes;
1224 int extent_type;
1225 int ret, err;
1226 int type;
1227 int nocow;
1228 int check_prev = 1;
1229 bool nolock;
1230 u64 ino = btrfs_ino(inode);
1231
1232 path = btrfs_alloc_path();
1233 if (!path) {
1234 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1235 EXTENT_LOCKED | EXTENT_DELALLOC |
1236 EXTENT_DO_ACCOUNTING |
1237 EXTENT_DEFRAG, PAGE_UNLOCK |
1238 PAGE_CLEAR_DIRTY |
1239 PAGE_SET_WRITEBACK |
1240 PAGE_END_WRITEBACK);
1241 return -ENOMEM;
1242 }
1243
1244 nolock = btrfs_is_free_space_inode(inode);
1245
1246 if (nolock)
1247 trans = btrfs_join_transaction_nolock(root);
1248 else
1249 trans = btrfs_join_transaction(root);
1250
1251 if (IS_ERR(trans)) {
1252 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1253 EXTENT_LOCKED | EXTENT_DELALLOC |
1254 EXTENT_DO_ACCOUNTING |
1255 EXTENT_DEFRAG, PAGE_UNLOCK |
1256 PAGE_CLEAR_DIRTY |
1257 PAGE_SET_WRITEBACK |
1258 PAGE_END_WRITEBACK);
1259 btrfs_free_path(path);
1260 return PTR_ERR(trans);
1261 }
1262
1263 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1264
1265 cow_start = (u64)-1;
1266 cur_offset = start;
1267 while (1) {
1268 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1269 cur_offset, 0);
1270 if (ret < 0)
1271 goto error;
1272 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1273 leaf = path->nodes[0];
1274 btrfs_item_key_to_cpu(leaf, &found_key,
1275 path->slots[0] - 1);
1276 if (found_key.objectid == ino &&
1277 found_key.type == BTRFS_EXTENT_DATA_KEY)
1278 path->slots[0]--;
1279 }
1280 check_prev = 0;
1281 next_slot:
1282 leaf = path->nodes[0];
1283 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1284 ret = btrfs_next_leaf(root, path);
1285 if (ret < 0)
1286 goto error;
1287 if (ret > 0)
1288 break;
1289 leaf = path->nodes[0];
1290 }
1291
1292 nocow = 0;
1293 disk_bytenr = 0;
1294 num_bytes = 0;
1295 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1296
1297 if (found_key.objectid > ino ||
1298 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1299 found_key.offset > end)
1300 break;
1301
1302 if (found_key.offset > cur_offset) {
1303 extent_end = found_key.offset;
1304 extent_type = 0;
1305 goto out_check;
1306 }
1307
1308 fi = btrfs_item_ptr(leaf, path->slots[0],
1309 struct btrfs_file_extent_item);
1310 extent_type = btrfs_file_extent_type(leaf, fi);
1311
1312 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1313 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1314 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1315 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1316 extent_offset = btrfs_file_extent_offset(leaf, fi);
1317 extent_end = found_key.offset +
1318 btrfs_file_extent_num_bytes(leaf, fi);
1319 disk_num_bytes =
1320 btrfs_file_extent_disk_num_bytes(leaf, fi);
1321 if (extent_end <= start) {
1322 path->slots[0]++;
1323 goto next_slot;
1324 }
1325 if (disk_bytenr == 0)
1326 goto out_check;
1327 if (btrfs_file_extent_compression(leaf, fi) ||
1328 btrfs_file_extent_encryption(leaf, fi) ||
1329 btrfs_file_extent_other_encoding(leaf, fi))
1330 goto out_check;
1331 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1332 goto out_check;
1333 if (btrfs_extent_readonly(root, disk_bytenr))
1334 goto out_check;
1335 if (btrfs_cross_ref_exist(trans, root, ino,
1336 found_key.offset -
1337 extent_offset, disk_bytenr))
1338 goto out_check;
1339 disk_bytenr += extent_offset;
1340 disk_bytenr += cur_offset - found_key.offset;
1341 num_bytes = min(end + 1, extent_end) - cur_offset;
1342 /*
1343 * if there are pending snapshots for this root,
1344 * we fall into common COW way.
1345 */
1346 if (!nolock) {
1347 err = btrfs_start_write_no_snapshoting(root);
1348 if (!err)
1349 goto out_check;
1350 }
1351 /*
1352 * force cow if csum exists in the range.
1353 * this ensure that csum for a given extent are
1354 * either valid or do not exist.
1355 */
1356 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1357 goto out_check;
1358 nocow = 1;
1359 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1360 extent_end = found_key.offset +
1361 btrfs_file_extent_inline_len(leaf,
1362 path->slots[0], fi);
1363 extent_end = ALIGN(extent_end, root->sectorsize);
1364 } else {
1365 BUG_ON(1);
1366 }
1367 out_check:
1368 if (extent_end <= start) {
1369 path->slots[0]++;
1370 if (!nolock && nocow)
1371 btrfs_end_write_no_snapshoting(root);
1372 goto next_slot;
1373 }
1374 if (!nocow) {
1375 if (cow_start == (u64)-1)
1376 cow_start = cur_offset;
1377 cur_offset = extent_end;
1378 if (cur_offset > end)
1379 break;
1380 path->slots[0]++;
1381 goto next_slot;
1382 }
1383
1384 btrfs_release_path(path);
1385 if (cow_start != (u64)-1) {
1386 ret = cow_file_range(inode, locked_page,
1387 cow_start, found_key.offset - 1,
1388 page_started, nr_written, 1);
1389 if (ret) {
1390 if (!nolock && nocow)
1391 btrfs_end_write_no_snapshoting(root);
1392 goto error;
1393 }
1394 cow_start = (u64)-1;
1395 }
1396
1397 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1398 struct extent_map *em;
1399 struct extent_map_tree *em_tree;
1400 em_tree = &BTRFS_I(inode)->extent_tree;
1401 em = alloc_extent_map();
1402 BUG_ON(!em); /* -ENOMEM */
1403 em->start = cur_offset;
1404 em->orig_start = found_key.offset - extent_offset;
1405 em->len = num_bytes;
1406 em->block_len = num_bytes;
1407 em->block_start = disk_bytenr;
1408 em->orig_block_len = disk_num_bytes;
1409 em->ram_bytes = ram_bytes;
1410 em->bdev = root->fs_info->fs_devices->latest_bdev;
1411 em->mod_start = em->start;
1412 em->mod_len = em->len;
1413 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1414 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1415 em->generation = -1;
1416 while (1) {
1417 write_lock(&em_tree->lock);
1418 ret = add_extent_mapping(em_tree, em, 1);
1419 write_unlock(&em_tree->lock);
1420 if (ret != -EEXIST) {
1421 free_extent_map(em);
1422 break;
1423 }
1424 btrfs_drop_extent_cache(inode, em->start,
1425 em->start + em->len - 1, 0);
1426 }
1427 type = BTRFS_ORDERED_PREALLOC;
1428 } else {
1429 type = BTRFS_ORDERED_NOCOW;
1430 }
1431
1432 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1433 num_bytes, num_bytes, type);
1434 BUG_ON(ret); /* -ENOMEM */
1435
1436 if (root->root_key.objectid ==
1437 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1438 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1439 num_bytes);
1440 if (ret) {
1441 if (!nolock && nocow)
1442 btrfs_end_write_no_snapshoting(root);
1443 goto error;
1444 }
1445 }
1446
1447 extent_clear_unlock_delalloc(inode, cur_offset,
1448 cur_offset + num_bytes - 1,
1449 locked_page, EXTENT_LOCKED |
1450 EXTENT_DELALLOC, PAGE_UNLOCK |
1451 PAGE_SET_PRIVATE2);
1452 if (!nolock && nocow)
1453 btrfs_end_write_no_snapshoting(root);
1454 cur_offset = extent_end;
1455 if (cur_offset > end)
1456 break;
1457 }
1458 btrfs_release_path(path);
1459
1460 if (cur_offset <= end && cow_start == (u64)-1) {
1461 cow_start = cur_offset;
1462 cur_offset = end;
1463 }
1464
1465 if (cow_start != (u64)-1) {
1466 ret = cow_file_range(inode, locked_page, cow_start, end,
1467 page_started, nr_written, 1);
1468 if (ret)
1469 goto error;
1470 }
1471
1472 error:
1473 err = btrfs_end_transaction(trans, root);
1474 if (!ret)
1475 ret = err;
1476
1477 if (ret && cur_offset < end)
1478 extent_clear_unlock_delalloc(inode, cur_offset, end,
1479 locked_page, EXTENT_LOCKED |
1480 EXTENT_DELALLOC | EXTENT_DEFRAG |
1481 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1482 PAGE_CLEAR_DIRTY |
1483 PAGE_SET_WRITEBACK |
1484 PAGE_END_WRITEBACK);
1485 btrfs_free_path(path);
1486 return ret;
1487 }
1488
1489 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1490 {
1491
1492 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1493 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1494 return 0;
1495
1496 /*
1497 * @defrag_bytes is a hint value, no spinlock held here,
1498 * if is not zero, it means the file is defragging.
1499 * Force cow if given extent needs to be defragged.
1500 */
1501 if (BTRFS_I(inode)->defrag_bytes &&
1502 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1503 EXTENT_DEFRAG, 0, NULL))
1504 return 1;
1505
1506 return 0;
1507 }
1508
1509 /*
1510 * extent_io.c call back to do delayed allocation processing
1511 */
1512 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1513 u64 start, u64 end, int *page_started,
1514 unsigned long *nr_written)
1515 {
1516 int ret;
1517 int force_cow = need_force_cow(inode, start, end);
1518
1519 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1520 ret = run_delalloc_nocow(inode, locked_page, start, end,
1521 page_started, 1, nr_written);
1522 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1523 ret = run_delalloc_nocow(inode, locked_page, start, end,
1524 page_started, 0, nr_written);
1525 } else if (!inode_need_compress(inode)) {
1526 ret = cow_file_range(inode, locked_page, start, end,
1527 page_started, nr_written, 1);
1528 } else {
1529 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1530 &BTRFS_I(inode)->runtime_flags);
1531 ret = cow_file_range_async(inode, locked_page, start, end,
1532 page_started, nr_written);
1533 }
1534 return ret;
1535 }
1536
1537 static void btrfs_split_extent_hook(struct inode *inode,
1538 struct extent_state *orig, u64 split)
1539 {
1540 u64 size;
1541
1542 /* not delalloc, ignore it */
1543 if (!(orig->state & EXTENT_DELALLOC))
1544 return;
1545
1546 size = orig->end - orig->start + 1;
1547 if (size > BTRFS_MAX_EXTENT_SIZE) {
1548 u64 num_extents;
1549 u64 new_size;
1550
1551 /*
1552 * See the explanation in btrfs_merge_extent_hook, the same
1553 * applies here, just in reverse.
1554 */
1555 new_size = orig->end - split + 1;
1556 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1557 BTRFS_MAX_EXTENT_SIZE);
1558 new_size = split - orig->start;
1559 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1560 BTRFS_MAX_EXTENT_SIZE);
1561 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1562 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1563 return;
1564 }
1565
1566 spin_lock(&BTRFS_I(inode)->lock);
1567 BTRFS_I(inode)->outstanding_extents++;
1568 spin_unlock(&BTRFS_I(inode)->lock);
1569 }
1570
1571 /*
1572 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1573 * extents so we can keep track of new extents that are just merged onto old
1574 * extents, such as when we are doing sequential writes, so we can properly
1575 * account for the metadata space we'll need.
1576 */
1577 static void btrfs_merge_extent_hook(struct inode *inode,
1578 struct extent_state *new,
1579 struct extent_state *other)
1580 {
1581 u64 new_size, old_size;
1582 u64 num_extents;
1583
1584 /* not delalloc, ignore it */
1585 if (!(other->state & EXTENT_DELALLOC))
1586 return;
1587
1588 if (new->start > other->start)
1589 new_size = new->end - other->start + 1;
1590 else
1591 new_size = other->end - new->start + 1;
1592
1593 /* we're not bigger than the max, unreserve the space and go */
1594 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1595 spin_lock(&BTRFS_I(inode)->lock);
1596 BTRFS_I(inode)->outstanding_extents--;
1597 spin_unlock(&BTRFS_I(inode)->lock);
1598 return;
1599 }
1600
1601 /*
1602 * We have to add up either side to figure out how many extents were
1603 * accounted for before we merged into one big extent. If the number of
1604 * extents we accounted for is <= the amount we need for the new range
1605 * then we can return, otherwise drop. Think of it like this
1606 *
1607 * [ 4k][MAX_SIZE]
1608 *
1609 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1610 * need 2 outstanding extents, on one side we have 1 and the other side
1611 * we have 1 so they are == and we can return. But in this case
1612 *
1613 * [MAX_SIZE+4k][MAX_SIZE+4k]
1614 *
1615 * Each range on their own accounts for 2 extents, but merged together
1616 * they are only 3 extents worth of accounting, so we need to drop in
1617 * this case.
1618 */
1619 old_size = other->end - other->start + 1;
1620 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1621 BTRFS_MAX_EXTENT_SIZE);
1622 old_size = new->end - new->start + 1;
1623 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1624 BTRFS_MAX_EXTENT_SIZE);
1625
1626 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1627 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1628 return;
1629
1630 spin_lock(&BTRFS_I(inode)->lock);
1631 BTRFS_I(inode)->outstanding_extents--;
1632 spin_unlock(&BTRFS_I(inode)->lock);
1633 }
1634
1635 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1636 struct inode *inode)
1637 {
1638 spin_lock(&root->delalloc_lock);
1639 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1640 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1641 &root->delalloc_inodes);
1642 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1643 &BTRFS_I(inode)->runtime_flags);
1644 root->nr_delalloc_inodes++;
1645 if (root->nr_delalloc_inodes == 1) {
1646 spin_lock(&root->fs_info->delalloc_root_lock);
1647 BUG_ON(!list_empty(&root->delalloc_root));
1648 list_add_tail(&root->delalloc_root,
1649 &root->fs_info->delalloc_roots);
1650 spin_unlock(&root->fs_info->delalloc_root_lock);
1651 }
1652 }
1653 spin_unlock(&root->delalloc_lock);
1654 }
1655
1656 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1657 struct inode *inode)
1658 {
1659 spin_lock(&root->delalloc_lock);
1660 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1661 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1662 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1663 &BTRFS_I(inode)->runtime_flags);
1664 root->nr_delalloc_inodes--;
1665 if (!root->nr_delalloc_inodes) {
1666 spin_lock(&root->fs_info->delalloc_root_lock);
1667 BUG_ON(list_empty(&root->delalloc_root));
1668 list_del_init(&root->delalloc_root);
1669 spin_unlock(&root->fs_info->delalloc_root_lock);
1670 }
1671 }
1672 spin_unlock(&root->delalloc_lock);
1673 }
1674
1675 /*
1676 * extent_io.c set_bit_hook, used to track delayed allocation
1677 * bytes in this file, and to maintain the list of inodes that
1678 * have pending delalloc work to be done.
1679 */
1680 static void btrfs_set_bit_hook(struct inode *inode,
1681 struct extent_state *state, unsigned *bits)
1682 {
1683
1684 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1685 WARN_ON(1);
1686 /*
1687 * set_bit and clear bit hooks normally require _irqsave/restore
1688 * but in this case, we are only testing for the DELALLOC
1689 * bit, which is only set or cleared with irqs on
1690 */
1691 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1692 struct btrfs_root *root = BTRFS_I(inode)->root;
1693 u64 len = state->end + 1 - state->start;
1694 bool do_list = !btrfs_is_free_space_inode(inode);
1695
1696 if (*bits & EXTENT_FIRST_DELALLOC) {
1697 *bits &= ~EXTENT_FIRST_DELALLOC;
1698 } else {
1699 spin_lock(&BTRFS_I(inode)->lock);
1700 BTRFS_I(inode)->outstanding_extents++;
1701 spin_unlock(&BTRFS_I(inode)->lock);
1702 }
1703
1704 /* For sanity tests */
1705 if (btrfs_test_is_dummy_root(root))
1706 return;
1707
1708 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1709 root->fs_info->delalloc_batch);
1710 spin_lock(&BTRFS_I(inode)->lock);
1711 BTRFS_I(inode)->delalloc_bytes += len;
1712 if (*bits & EXTENT_DEFRAG)
1713 BTRFS_I(inode)->defrag_bytes += len;
1714 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1715 &BTRFS_I(inode)->runtime_flags))
1716 btrfs_add_delalloc_inodes(root, inode);
1717 spin_unlock(&BTRFS_I(inode)->lock);
1718 }
1719 }
1720
1721 /*
1722 * extent_io.c clear_bit_hook, see set_bit_hook for why
1723 */
1724 static void btrfs_clear_bit_hook(struct inode *inode,
1725 struct extent_state *state,
1726 unsigned *bits)
1727 {
1728 u64 len = state->end + 1 - state->start;
1729 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1730 BTRFS_MAX_EXTENT_SIZE);
1731
1732 spin_lock(&BTRFS_I(inode)->lock);
1733 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1734 BTRFS_I(inode)->defrag_bytes -= len;
1735 spin_unlock(&BTRFS_I(inode)->lock);
1736
1737 /*
1738 * set_bit and clear bit hooks normally require _irqsave/restore
1739 * but in this case, we are only testing for the DELALLOC
1740 * bit, which is only set or cleared with irqs on
1741 */
1742 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1743 struct btrfs_root *root = BTRFS_I(inode)->root;
1744 bool do_list = !btrfs_is_free_space_inode(inode);
1745
1746 if (*bits & EXTENT_FIRST_DELALLOC) {
1747 *bits &= ~EXTENT_FIRST_DELALLOC;
1748 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1749 spin_lock(&BTRFS_I(inode)->lock);
1750 BTRFS_I(inode)->outstanding_extents -= num_extents;
1751 spin_unlock(&BTRFS_I(inode)->lock);
1752 }
1753
1754 /*
1755 * We don't reserve metadata space for space cache inodes so we
1756 * don't need to call dellalloc_release_metadata if there is an
1757 * error.
1758 */
1759 if (*bits & EXTENT_DO_ACCOUNTING &&
1760 root != root->fs_info->tree_root)
1761 btrfs_delalloc_release_metadata(inode, len);
1762
1763 /* For sanity tests. */
1764 if (btrfs_test_is_dummy_root(root))
1765 return;
1766
1767 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1768 && do_list && !(state->state & EXTENT_NORESERVE))
1769 btrfs_free_reserved_data_space(inode, len);
1770
1771 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1772 root->fs_info->delalloc_batch);
1773 spin_lock(&BTRFS_I(inode)->lock);
1774 BTRFS_I(inode)->delalloc_bytes -= len;
1775 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1776 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1777 &BTRFS_I(inode)->runtime_flags))
1778 btrfs_del_delalloc_inode(root, inode);
1779 spin_unlock(&BTRFS_I(inode)->lock);
1780 }
1781 }
1782
1783 /*
1784 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1785 * we don't create bios that span stripes or chunks
1786 */
1787 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1788 size_t size, struct bio *bio,
1789 unsigned long bio_flags)
1790 {
1791 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1792 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1793 u64 length = 0;
1794 u64 map_length;
1795 int ret;
1796
1797 if (bio_flags & EXTENT_BIO_COMPRESSED)
1798 return 0;
1799
1800 length = bio->bi_iter.bi_size;
1801 map_length = length;
1802 ret = btrfs_map_block(root->fs_info, rw, logical,
1803 &map_length, NULL, 0);
1804 /* Will always return 0 with map_multi == NULL */
1805 BUG_ON(ret < 0);
1806 if (map_length < length + size)
1807 return 1;
1808 return 0;
1809 }
1810
1811 /*
1812 * in order to insert checksums into the metadata in large chunks,
1813 * we wait until bio submission time. All the pages in the bio are
1814 * checksummed and sums are attached onto the ordered extent record.
1815 *
1816 * At IO completion time the cums attached on the ordered extent record
1817 * are inserted into the btree
1818 */
1819 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1820 struct bio *bio, int mirror_num,
1821 unsigned long bio_flags,
1822 u64 bio_offset)
1823 {
1824 struct btrfs_root *root = BTRFS_I(inode)->root;
1825 int ret = 0;
1826
1827 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1828 BUG_ON(ret); /* -ENOMEM */
1829 return 0;
1830 }
1831
1832 /*
1833 * in order to insert checksums into the metadata in large chunks,
1834 * we wait until bio submission time. All the pages in the bio are
1835 * checksummed and sums are attached onto the ordered extent record.
1836 *
1837 * At IO completion time the cums attached on the ordered extent record
1838 * are inserted into the btree
1839 */
1840 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1841 int mirror_num, unsigned long bio_flags,
1842 u64 bio_offset)
1843 {
1844 struct btrfs_root *root = BTRFS_I(inode)->root;
1845 int ret;
1846
1847 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1848 if (ret)
1849 bio_endio(bio, ret);
1850 return ret;
1851 }
1852
1853 /*
1854 * extent_io.c submission hook. This does the right thing for csum calculation
1855 * on write, or reading the csums from the tree before a read
1856 */
1857 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1858 int mirror_num, unsigned long bio_flags,
1859 u64 bio_offset)
1860 {
1861 struct btrfs_root *root = BTRFS_I(inode)->root;
1862 int ret = 0;
1863 int skip_sum;
1864 int metadata = 0;
1865 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1866
1867 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1868
1869 if (btrfs_is_free_space_inode(inode))
1870 metadata = 2;
1871
1872 if (!(rw & REQ_WRITE)) {
1873 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1874 if (ret)
1875 goto out;
1876
1877 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1878 ret = btrfs_submit_compressed_read(inode, bio,
1879 mirror_num,
1880 bio_flags);
1881 goto out;
1882 } else if (!skip_sum) {
1883 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1884 if (ret)
1885 goto out;
1886 }
1887 goto mapit;
1888 } else if (async && !skip_sum) {
1889 /* csum items have already been cloned */
1890 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1891 goto mapit;
1892 /* we're doing a write, do the async checksumming */
1893 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1894 inode, rw, bio, mirror_num,
1895 bio_flags, bio_offset,
1896 __btrfs_submit_bio_start,
1897 __btrfs_submit_bio_done);
1898 goto out;
1899 } else if (!skip_sum) {
1900 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1901 if (ret)
1902 goto out;
1903 }
1904
1905 mapit:
1906 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1907
1908 out:
1909 if (ret < 0)
1910 bio_endio(bio, ret);
1911 return ret;
1912 }
1913
1914 /*
1915 * given a list of ordered sums record them in the inode. This happens
1916 * at IO completion time based on sums calculated at bio submission time.
1917 */
1918 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1919 struct inode *inode, u64 file_offset,
1920 struct list_head *list)
1921 {
1922 struct btrfs_ordered_sum *sum;
1923
1924 list_for_each_entry(sum, list, list) {
1925 trans->adding_csums = 1;
1926 btrfs_csum_file_blocks(trans,
1927 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1928 trans->adding_csums = 0;
1929 }
1930 return 0;
1931 }
1932
1933 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1934 struct extent_state **cached_state)
1935 {
1936 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1937 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1938 cached_state, GFP_NOFS);
1939 }
1940
1941 /* see btrfs_writepage_start_hook for details on why this is required */
1942 struct btrfs_writepage_fixup {
1943 struct page *page;
1944 struct btrfs_work work;
1945 };
1946
1947 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1948 {
1949 struct btrfs_writepage_fixup *fixup;
1950 struct btrfs_ordered_extent *ordered;
1951 struct extent_state *cached_state = NULL;
1952 struct page *page;
1953 struct inode *inode;
1954 u64 page_start;
1955 u64 page_end;
1956 int ret;
1957
1958 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1959 page = fixup->page;
1960 again:
1961 lock_page(page);
1962 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1963 ClearPageChecked(page);
1964 goto out_page;
1965 }
1966
1967 inode = page->mapping->host;
1968 page_start = page_offset(page);
1969 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1970
1971 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1972 &cached_state);
1973
1974 /* already ordered? We're done */
1975 if (PagePrivate2(page))
1976 goto out;
1977
1978 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1979 if (ordered) {
1980 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1981 page_end, &cached_state, GFP_NOFS);
1982 unlock_page(page);
1983 btrfs_start_ordered_extent(inode, ordered, 1);
1984 btrfs_put_ordered_extent(ordered);
1985 goto again;
1986 }
1987
1988 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1989 if (ret) {
1990 mapping_set_error(page->mapping, ret);
1991 end_extent_writepage(page, ret, page_start, page_end);
1992 ClearPageChecked(page);
1993 goto out;
1994 }
1995
1996 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1997 ClearPageChecked(page);
1998 set_page_dirty(page);
1999 out:
2000 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2001 &cached_state, GFP_NOFS);
2002 out_page:
2003 unlock_page(page);
2004 page_cache_release(page);
2005 kfree(fixup);
2006 }
2007
2008 /*
2009 * There are a few paths in the higher layers of the kernel that directly
2010 * set the page dirty bit without asking the filesystem if it is a
2011 * good idea. This causes problems because we want to make sure COW
2012 * properly happens and the data=ordered rules are followed.
2013 *
2014 * In our case any range that doesn't have the ORDERED bit set
2015 * hasn't been properly setup for IO. We kick off an async process
2016 * to fix it up. The async helper will wait for ordered extents, set
2017 * the delalloc bit and make it safe to write the page.
2018 */
2019 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2020 {
2021 struct inode *inode = page->mapping->host;
2022 struct btrfs_writepage_fixup *fixup;
2023 struct btrfs_root *root = BTRFS_I(inode)->root;
2024
2025 /* this page is properly in the ordered list */
2026 if (TestClearPagePrivate2(page))
2027 return 0;
2028
2029 if (PageChecked(page))
2030 return -EAGAIN;
2031
2032 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2033 if (!fixup)
2034 return -EAGAIN;
2035
2036 SetPageChecked(page);
2037 page_cache_get(page);
2038 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2039 btrfs_writepage_fixup_worker, NULL, NULL);
2040 fixup->page = page;
2041 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2042 return -EBUSY;
2043 }
2044
2045 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2046 struct inode *inode, u64 file_pos,
2047 u64 disk_bytenr, u64 disk_num_bytes,
2048 u64 num_bytes, u64 ram_bytes,
2049 u8 compression, u8 encryption,
2050 u16 other_encoding, int extent_type)
2051 {
2052 struct btrfs_root *root = BTRFS_I(inode)->root;
2053 struct btrfs_file_extent_item *fi;
2054 struct btrfs_path *path;
2055 struct extent_buffer *leaf;
2056 struct btrfs_key ins;
2057 int extent_inserted = 0;
2058 int ret;
2059
2060 path = btrfs_alloc_path();
2061 if (!path)
2062 return -ENOMEM;
2063
2064 /*
2065 * we may be replacing one extent in the tree with another.
2066 * The new extent is pinned in the extent map, and we don't want
2067 * to drop it from the cache until it is completely in the btree.
2068 *
2069 * So, tell btrfs_drop_extents to leave this extent in the cache.
2070 * the caller is expected to unpin it and allow it to be merged
2071 * with the others.
2072 */
2073 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2074 file_pos + num_bytes, NULL, 0,
2075 1, sizeof(*fi), &extent_inserted);
2076 if (ret)
2077 goto out;
2078
2079 if (!extent_inserted) {
2080 ins.objectid = btrfs_ino(inode);
2081 ins.offset = file_pos;
2082 ins.type = BTRFS_EXTENT_DATA_KEY;
2083
2084 path->leave_spinning = 1;
2085 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2086 sizeof(*fi));
2087 if (ret)
2088 goto out;
2089 }
2090 leaf = path->nodes[0];
2091 fi = btrfs_item_ptr(leaf, path->slots[0],
2092 struct btrfs_file_extent_item);
2093 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2094 btrfs_set_file_extent_type(leaf, fi, extent_type);
2095 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2096 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2097 btrfs_set_file_extent_offset(leaf, fi, 0);
2098 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2099 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2100 btrfs_set_file_extent_compression(leaf, fi, compression);
2101 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2102 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2103
2104 btrfs_mark_buffer_dirty(leaf);
2105 btrfs_release_path(path);
2106
2107 inode_add_bytes(inode, num_bytes);
2108
2109 ins.objectid = disk_bytenr;
2110 ins.offset = disk_num_bytes;
2111 ins.type = BTRFS_EXTENT_ITEM_KEY;
2112 ret = btrfs_alloc_reserved_file_extent(trans, root,
2113 root->root_key.objectid,
2114 btrfs_ino(inode), file_pos, &ins);
2115 out:
2116 btrfs_free_path(path);
2117
2118 return ret;
2119 }
2120
2121 /* snapshot-aware defrag */
2122 struct sa_defrag_extent_backref {
2123 struct rb_node node;
2124 struct old_sa_defrag_extent *old;
2125 u64 root_id;
2126 u64 inum;
2127 u64 file_pos;
2128 u64 extent_offset;
2129 u64 num_bytes;
2130 u64 generation;
2131 };
2132
2133 struct old_sa_defrag_extent {
2134 struct list_head list;
2135 struct new_sa_defrag_extent *new;
2136
2137 u64 extent_offset;
2138 u64 bytenr;
2139 u64 offset;
2140 u64 len;
2141 int count;
2142 };
2143
2144 struct new_sa_defrag_extent {
2145 struct rb_root root;
2146 struct list_head head;
2147 struct btrfs_path *path;
2148 struct inode *inode;
2149 u64 file_pos;
2150 u64 len;
2151 u64 bytenr;
2152 u64 disk_len;
2153 u8 compress_type;
2154 };
2155
2156 static int backref_comp(struct sa_defrag_extent_backref *b1,
2157 struct sa_defrag_extent_backref *b2)
2158 {
2159 if (b1->root_id < b2->root_id)
2160 return -1;
2161 else if (b1->root_id > b2->root_id)
2162 return 1;
2163
2164 if (b1->inum < b2->inum)
2165 return -1;
2166 else if (b1->inum > b2->inum)
2167 return 1;
2168
2169 if (b1->file_pos < b2->file_pos)
2170 return -1;
2171 else if (b1->file_pos > b2->file_pos)
2172 return 1;
2173
2174 /*
2175 * [------------------------------] ===> (a range of space)
2176 * |<--->| |<---->| =============> (fs/file tree A)
2177 * |<---------------------------->| ===> (fs/file tree B)
2178 *
2179 * A range of space can refer to two file extents in one tree while
2180 * refer to only one file extent in another tree.
2181 *
2182 * So we may process a disk offset more than one time(two extents in A)
2183 * and locate at the same extent(one extent in B), then insert two same
2184 * backrefs(both refer to the extent in B).
2185 */
2186 return 0;
2187 }
2188
2189 static void backref_insert(struct rb_root *root,
2190 struct sa_defrag_extent_backref *backref)
2191 {
2192 struct rb_node **p = &root->rb_node;
2193 struct rb_node *parent = NULL;
2194 struct sa_defrag_extent_backref *entry;
2195 int ret;
2196
2197 while (*p) {
2198 parent = *p;
2199 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2200
2201 ret = backref_comp(backref, entry);
2202 if (ret < 0)
2203 p = &(*p)->rb_left;
2204 else
2205 p = &(*p)->rb_right;
2206 }
2207
2208 rb_link_node(&backref->node, parent, p);
2209 rb_insert_color(&backref->node, root);
2210 }
2211
2212 /*
2213 * Note the backref might has changed, and in this case we just return 0.
2214 */
2215 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2216 void *ctx)
2217 {
2218 struct btrfs_file_extent_item *extent;
2219 struct btrfs_fs_info *fs_info;
2220 struct old_sa_defrag_extent *old = ctx;
2221 struct new_sa_defrag_extent *new = old->new;
2222 struct btrfs_path *path = new->path;
2223 struct btrfs_key key;
2224 struct btrfs_root *root;
2225 struct sa_defrag_extent_backref *backref;
2226 struct extent_buffer *leaf;
2227 struct inode *inode = new->inode;
2228 int slot;
2229 int ret;
2230 u64 extent_offset;
2231 u64 num_bytes;
2232
2233 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2234 inum == btrfs_ino(inode))
2235 return 0;
2236
2237 key.objectid = root_id;
2238 key.type = BTRFS_ROOT_ITEM_KEY;
2239 key.offset = (u64)-1;
2240
2241 fs_info = BTRFS_I(inode)->root->fs_info;
2242 root = btrfs_read_fs_root_no_name(fs_info, &key);
2243 if (IS_ERR(root)) {
2244 if (PTR_ERR(root) == -ENOENT)
2245 return 0;
2246 WARN_ON(1);
2247 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2248 inum, offset, root_id);
2249 return PTR_ERR(root);
2250 }
2251
2252 key.objectid = inum;
2253 key.type = BTRFS_EXTENT_DATA_KEY;
2254 if (offset > (u64)-1 << 32)
2255 key.offset = 0;
2256 else
2257 key.offset = offset;
2258
2259 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2260 if (WARN_ON(ret < 0))
2261 return ret;
2262 ret = 0;
2263
2264 while (1) {
2265 cond_resched();
2266
2267 leaf = path->nodes[0];
2268 slot = path->slots[0];
2269
2270 if (slot >= btrfs_header_nritems(leaf)) {
2271 ret = btrfs_next_leaf(root, path);
2272 if (ret < 0) {
2273 goto out;
2274 } else if (ret > 0) {
2275 ret = 0;
2276 goto out;
2277 }
2278 continue;
2279 }
2280
2281 path->slots[0]++;
2282
2283 btrfs_item_key_to_cpu(leaf, &key, slot);
2284
2285 if (key.objectid > inum)
2286 goto out;
2287
2288 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2289 continue;
2290
2291 extent = btrfs_item_ptr(leaf, slot,
2292 struct btrfs_file_extent_item);
2293
2294 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2295 continue;
2296
2297 /*
2298 * 'offset' refers to the exact key.offset,
2299 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2300 * (key.offset - extent_offset).
2301 */
2302 if (key.offset != offset)
2303 continue;
2304
2305 extent_offset = btrfs_file_extent_offset(leaf, extent);
2306 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2307
2308 if (extent_offset >= old->extent_offset + old->offset +
2309 old->len || extent_offset + num_bytes <=
2310 old->extent_offset + old->offset)
2311 continue;
2312 break;
2313 }
2314
2315 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2316 if (!backref) {
2317 ret = -ENOENT;
2318 goto out;
2319 }
2320
2321 backref->root_id = root_id;
2322 backref->inum = inum;
2323 backref->file_pos = offset;
2324 backref->num_bytes = num_bytes;
2325 backref->extent_offset = extent_offset;
2326 backref->generation = btrfs_file_extent_generation(leaf, extent);
2327 backref->old = old;
2328 backref_insert(&new->root, backref);
2329 old->count++;
2330 out:
2331 btrfs_release_path(path);
2332 WARN_ON(ret);
2333 return ret;
2334 }
2335
2336 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2337 struct new_sa_defrag_extent *new)
2338 {
2339 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2340 struct old_sa_defrag_extent *old, *tmp;
2341 int ret;
2342
2343 new->path = path;
2344
2345 list_for_each_entry_safe(old, tmp, &new->head, list) {
2346 ret = iterate_inodes_from_logical(old->bytenr +
2347 old->extent_offset, fs_info,
2348 path, record_one_backref,
2349 old);
2350 if (ret < 0 && ret != -ENOENT)
2351 return false;
2352
2353 /* no backref to be processed for this extent */
2354 if (!old->count) {
2355 list_del(&old->list);
2356 kfree(old);
2357 }
2358 }
2359
2360 if (list_empty(&new->head))
2361 return false;
2362
2363 return true;
2364 }
2365
2366 static int relink_is_mergable(struct extent_buffer *leaf,
2367 struct btrfs_file_extent_item *fi,
2368 struct new_sa_defrag_extent *new)
2369 {
2370 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2371 return 0;
2372
2373 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2374 return 0;
2375
2376 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2377 return 0;
2378
2379 if (btrfs_file_extent_encryption(leaf, fi) ||
2380 btrfs_file_extent_other_encoding(leaf, fi))
2381 return 0;
2382
2383 return 1;
2384 }
2385
2386 /*
2387 * Note the backref might has changed, and in this case we just return 0.
2388 */
2389 static noinline int relink_extent_backref(struct btrfs_path *path,
2390 struct sa_defrag_extent_backref *prev,
2391 struct sa_defrag_extent_backref *backref)
2392 {
2393 struct btrfs_file_extent_item *extent;
2394 struct btrfs_file_extent_item *item;
2395 struct btrfs_ordered_extent *ordered;
2396 struct btrfs_trans_handle *trans;
2397 struct btrfs_fs_info *fs_info;
2398 struct btrfs_root *root;
2399 struct btrfs_key key;
2400 struct extent_buffer *leaf;
2401 struct old_sa_defrag_extent *old = backref->old;
2402 struct new_sa_defrag_extent *new = old->new;
2403 struct inode *src_inode = new->inode;
2404 struct inode *inode;
2405 struct extent_state *cached = NULL;
2406 int ret = 0;
2407 u64 start;
2408 u64 len;
2409 u64 lock_start;
2410 u64 lock_end;
2411 bool merge = false;
2412 int index;
2413
2414 if (prev && prev->root_id == backref->root_id &&
2415 prev->inum == backref->inum &&
2416 prev->file_pos + prev->num_bytes == backref->file_pos)
2417 merge = true;
2418
2419 /* step 1: get root */
2420 key.objectid = backref->root_id;
2421 key.type = BTRFS_ROOT_ITEM_KEY;
2422 key.offset = (u64)-1;
2423
2424 fs_info = BTRFS_I(src_inode)->root->fs_info;
2425 index = srcu_read_lock(&fs_info->subvol_srcu);
2426
2427 root = btrfs_read_fs_root_no_name(fs_info, &key);
2428 if (IS_ERR(root)) {
2429 srcu_read_unlock(&fs_info->subvol_srcu, index);
2430 if (PTR_ERR(root) == -ENOENT)
2431 return 0;
2432 return PTR_ERR(root);
2433 }
2434
2435 if (btrfs_root_readonly(root)) {
2436 srcu_read_unlock(&fs_info->subvol_srcu, index);
2437 return 0;
2438 }
2439
2440 /* step 2: get inode */
2441 key.objectid = backref->inum;
2442 key.type = BTRFS_INODE_ITEM_KEY;
2443 key.offset = 0;
2444
2445 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2446 if (IS_ERR(inode)) {
2447 srcu_read_unlock(&fs_info->subvol_srcu, index);
2448 return 0;
2449 }
2450
2451 srcu_read_unlock(&fs_info->subvol_srcu, index);
2452
2453 /* step 3: relink backref */
2454 lock_start = backref->file_pos;
2455 lock_end = backref->file_pos + backref->num_bytes - 1;
2456 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2457 0, &cached);
2458
2459 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2460 if (ordered) {
2461 btrfs_put_ordered_extent(ordered);
2462 goto out_unlock;
2463 }
2464
2465 trans = btrfs_join_transaction(root);
2466 if (IS_ERR(trans)) {
2467 ret = PTR_ERR(trans);
2468 goto out_unlock;
2469 }
2470
2471 key.objectid = backref->inum;
2472 key.type = BTRFS_EXTENT_DATA_KEY;
2473 key.offset = backref->file_pos;
2474
2475 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2476 if (ret < 0) {
2477 goto out_free_path;
2478 } else if (ret > 0) {
2479 ret = 0;
2480 goto out_free_path;
2481 }
2482
2483 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2484 struct btrfs_file_extent_item);
2485
2486 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2487 backref->generation)
2488 goto out_free_path;
2489
2490 btrfs_release_path(path);
2491
2492 start = backref->file_pos;
2493 if (backref->extent_offset < old->extent_offset + old->offset)
2494 start += old->extent_offset + old->offset -
2495 backref->extent_offset;
2496
2497 len = min(backref->extent_offset + backref->num_bytes,
2498 old->extent_offset + old->offset + old->len);
2499 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2500
2501 ret = btrfs_drop_extents(trans, root, inode, start,
2502 start + len, 1);
2503 if (ret)
2504 goto out_free_path;
2505 again:
2506 key.objectid = btrfs_ino(inode);
2507 key.type = BTRFS_EXTENT_DATA_KEY;
2508 key.offset = start;
2509
2510 path->leave_spinning = 1;
2511 if (merge) {
2512 struct btrfs_file_extent_item *fi;
2513 u64 extent_len;
2514 struct btrfs_key found_key;
2515
2516 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2517 if (ret < 0)
2518 goto out_free_path;
2519
2520 path->slots[0]--;
2521 leaf = path->nodes[0];
2522 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2523
2524 fi = btrfs_item_ptr(leaf, path->slots[0],
2525 struct btrfs_file_extent_item);
2526 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2527
2528 if (extent_len + found_key.offset == start &&
2529 relink_is_mergable(leaf, fi, new)) {
2530 btrfs_set_file_extent_num_bytes(leaf, fi,
2531 extent_len + len);
2532 btrfs_mark_buffer_dirty(leaf);
2533 inode_add_bytes(inode, len);
2534
2535 ret = 1;
2536 goto out_free_path;
2537 } else {
2538 merge = false;
2539 btrfs_release_path(path);
2540 goto again;
2541 }
2542 }
2543
2544 ret = btrfs_insert_empty_item(trans, root, path, &key,
2545 sizeof(*extent));
2546 if (ret) {
2547 btrfs_abort_transaction(trans, root, ret);
2548 goto out_free_path;
2549 }
2550
2551 leaf = path->nodes[0];
2552 item = btrfs_item_ptr(leaf, path->slots[0],
2553 struct btrfs_file_extent_item);
2554 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2555 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2556 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2557 btrfs_set_file_extent_num_bytes(leaf, item, len);
2558 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2559 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2560 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2561 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2562 btrfs_set_file_extent_encryption(leaf, item, 0);
2563 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2564
2565 btrfs_mark_buffer_dirty(leaf);
2566 inode_add_bytes(inode, len);
2567 btrfs_release_path(path);
2568
2569 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2570 new->disk_len, 0,
2571 backref->root_id, backref->inum,
2572 new->file_pos, 0); /* start - extent_offset */
2573 if (ret) {
2574 btrfs_abort_transaction(trans, root, ret);
2575 goto out_free_path;
2576 }
2577
2578 ret = 1;
2579 out_free_path:
2580 btrfs_release_path(path);
2581 path->leave_spinning = 0;
2582 btrfs_end_transaction(trans, root);
2583 out_unlock:
2584 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2585 &cached, GFP_NOFS);
2586 iput(inode);
2587 return ret;
2588 }
2589
2590 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2591 {
2592 struct old_sa_defrag_extent *old, *tmp;
2593
2594 if (!new)
2595 return;
2596
2597 list_for_each_entry_safe(old, tmp, &new->head, list) {
2598 list_del(&old->list);
2599 kfree(old);
2600 }
2601 kfree(new);
2602 }
2603
2604 static void relink_file_extents(struct new_sa_defrag_extent *new)
2605 {
2606 struct btrfs_path *path;
2607 struct sa_defrag_extent_backref *backref;
2608 struct sa_defrag_extent_backref *prev = NULL;
2609 struct inode *inode;
2610 struct btrfs_root *root;
2611 struct rb_node *node;
2612 int ret;
2613
2614 inode = new->inode;
2615 root = BTRFS_I(inode)->root;
2616
2617 path = btrfs_alloc_path();
2618 if (!path)
2619 return;
2620
2621 if (!record_extent_backrefs(path, new)) {
2622 btrfs_free_path(path);
2623 goto out;
2624 }
2625 btrfs_release_path(path);
2626
2627 while (1) {
2628 node = rb_first(&new->root);
2629 if (!node)
2630 break;
2631 rb_erase(node, &new->root);
2632
2633 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2634
2635 ret = relink_extent_backref(path, prev, backref);
2636 WARN_ON(ret < 0);
2637
2638 kfree(prev);
2639
2640 if (ret == 1)
2641 prev = backref;
2642 else
2643 prev = NULL;
2644 cond_resched();
2645 }
2646 kfree(prev);
2647
2648 btrfs_free_path(path);
2649 out:
2650 free_sa_defrag_extent(new);
2651
2652 atomic_dec(&root->fs_info->defrag_running);
2653 wake_up(&root->fs_info->transaction_wait);
2654 }
2655
2656 static struct new_sa_defrag_extent *
2657 record_old_file_extents(struct inode *inode,
2658 struct btrfs_ordered_extent *ordered)
2659 {
2660 struct btrfs_root *root = BTRFS_I(inode)->root;
2661 struct btrfs_path *path;
2662 struct btrfs_key key;
2663 struct old_sa_defrag_extent *old;
2664 struct new_sa_defrag_extent *new;
2665 int ret;
2666
2667 new = kmalloc(sizeof(*new), GFP_NOFS);
2668 if (!new)
2669 return NULL;
2670
2671 new->inode = inode;
2672 new->file_pos = ordered->file_offset;
2673 new->len = ordered->len;
2674 new->bytenr = ordered->start;
2675 new->disk_len = ordered->disk_len;
2676 new->compress_type = ordered->compress_type;
2677 new->root = RB_ROOT;
2678 INIT_LIST_HEAD(&new->head);
2679
2680 path = btrfs_alloc_path();
2681 if (!path)
2682 goto out_kfree;
2683
2684 key.objectid = btrfs_ino(inode);
2685 key.type = BTRFS_EXTENT_DATA_KEY;
2686 key.offset = new->file_pos;
2687
2688 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2689 if (ret < 0)
2690 goto out_free_path;
2691 if (ret > 0 && path->slots[0] > 0)
2692 path->slots[0]--;
2693
2694 /* find out all the old extents for the file range */
2695 while (1) {
2696 struct btrfs_file_extent_item *extent;
2697 struct extent_buffer *l;
2698 int slot;
2699 u64 num_bytes;
2700 u64 offset;
2701 u64 end;
2702 u64 disk_bytenr;
2703 u64 extent_offset;
2704
2705 l = path->nodes[0];
2706 slot = path->slots[0];
2707
2708 if (slot >= btrfs_header_nritems(l)) {
2709 ret = btrfs_next_leaf(root, path);
2710 if (ret < 0)
2711 goto out_free_path;
2712 else if (ret > 0)
2713 break;
2714 continue;
2715 }
2716
2717 btrfs_item_key_to_cpu(l, &key, slot);
2718
2719 if (key.objectid != btrfs_ino(inode))
2720 break;
2721 if (key.type != BTRFS_EXTENT_DATA_KEY)
2722 break;
2723 if (key.offset >= new->file_pos + new->len)
2724 break;
2725
2726 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2727
2728 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2729 if (key.offset + num_bytes < new->file_pos)
2730 goto next;
2731
2732 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2733 if (!disk_bytenr)
2734 goto next;
2735
2736 extent_offset = btrfs_file_extent_offset(l, extent);
2737
2738 old = kmalloc(sizeof(*old), GFP_NOFS);
2739 if (!old)
2740 goto out_free_path;
2741
2742 offset = max(new->file_pos, key.offset);
2743 end = min(new->file_pos + new->len, key.offset + num_bytes);
2744
2745 old->bytenr = disk_bytenr;
2746 old->extent_offset = extent_offset;
2747 old->offset = offset - key.offset;
2748 old->len = end - offset;
2749 old->new = new;
2750 old->count = 0;
2751 list_add_tail(&old->list, &new->head);
2752 next:
2753 path->slots[0]++;
2754 cond_resched();
2755 }
2756
2757 btrfs_free_path(path);
2758 atomic_inc(&root->fs_info->defrag_running);
2759
2760 return new;
2761
2762 out_free_path:
2763 btrfs_free_path(path);
2764 out_kfree:
2765 free_sa_defrag_extent(new);
2766 return NULL;
2767 }
2768
2769 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2770 u64 start, u64 len)
2771 {
2772 struct btrfs_block_group_cache *cache;
2773
2774 cache = btrfs_lookup_block_group(root->fs_info, start);
2775 ASSERT(cache);
2776
2777 spin_lock(&cache->lock);
2778 cache->delalloc_bytes -= len;
2779 spin_unlock(&cache->lock);
2780
2781 btrfs_put_block_group(cache);
2782 }
2783
2784 /* as ordered data IO finishes, this gets called so we can finish
2785 * an ordered extent if the range of bytes in the file it covers are
2786 * fully written.
2787 */
2788 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2789 {
2790 struct inode *inode = ordered_extent->inode;
2791 struct btrfs_root *root = BTRFS_I(inode)->root;
2792 struct btrfs_trans_handle *trans = NULL;
2793 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2794 struct extent_state *cached_state = NULL;
2795 struct new_sa_defrag_extent *new = NULL;
2796 int compress_type = 0;
2797 int ret = 0;
2798 u64 logical_len = ordered_extent->len;
2799 bool nolock;
2800 bool truncated = false;
2801
2802 nolock = btrfs_is_free_space_inode(inode);
2803
2804 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2805 ret = -EIO;
2806 goto out;
2807 }
2808
2809 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2810 ordered_extent->file_offset +
2811 ordered_extent->len - 1);
2812
2813 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2814 truncated = true;
2815 logical_len = ordered_extent->truncated_len;
2816 /* Truncated the entire extent, don't bother adding */
2817 if (!logical_len)
2818 goto out;
2819 }
2820
2821 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2822 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2823 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2824 if (nolock)
2825 trans = btrfs_join_transaction_nolock(root);
2826 else
2827 trans = btrfs_join_transaction(root);
2828 if (IS_ERR(trans)) {
2829 ret = PTR_ERR(trans);
2830 trans = NULL;
2831 goto out;
2832 }
2833 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2834 ret = btrfs_update_inode_fallback(trans, root, inode);
2835 if (ret) /* -ENOMEM or corruption */
2836 btrfs_abort_transaction(trans, root, ret);
2837 goto out;
2838 }
2839
2840 lock_extent_bits(io_tree, ordered_extent->file_offset,
2841 ordered_extent->file_offset + ordered_extent->len - 1,
2842 0, &cached_state);
2843
2844 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2845 ordered_extent->file_offset + ordered_extent->len - 1,
2846 EXTENT_DEFRAG, 1, cached_state);
2847 if (ret) {
2848 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2849 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2850 /* the inode is shared */
2851 new = record_old_file_extents(inode, ordered_extent);
2852
2853 clear_extent_bit(io_tree, ordered_extent->file_offset,
2854 ordered_extent->file_offset + ordered_extent->len - 1,
2855 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2856 }
2857
2858 if (nolock)
2859 trans = btrfs_join_transaction_nolock(root);
2860 else
2861 trans = btrfs_join_transaction(root);
2862 if (IS_ERR(trans)) {
2863 ret = PTR_ERR(trans);
2864 trans = NULL;
2865 goto out_unlock;
2866 }
2867
2868 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2869
2870 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2871 compress_type = ordered_extent->compress_type;
2872 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2873 BUG_ON(compress_type);
2874 ret = btrfs_mark_extent_written(trans, inode,
2875 ordered_extent->file_offset,
2876 ordered_extent->file_offset +
2877 logical_len);
2878 } else {
2879 BUG_ON(root == root->fs_info->tree_root);
2880 ret = insert_reserved_file_extent(trans, inode,
2881 ordered_extent->file_offset,
2882 ordered_extent->start,
2883 ordered_extent->disk_len,
2884 logical_len, logical_len,
2885 compress_type, 0, 0,
2886 BTRFS_FILE_EXTENT_REG);
2887 if (!ret)
2888 btrfs_release_delalloc_bytes(root,
2889 ordered_extent->start,
2890 ordered_extent->disk_len);
2891 }
2892 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2893 ordered_extent->file_offset, ordered_extent->len,
2894 trans->transid);
2895 if (ret < 0) {
2896 btrfs_abort_transaction(trans, root, ret);
2897 goto out_unlock;
2898 }
2899
2900 add_pending_csums(trans, inode, ordered_extent->file_offset,
2901 &ordered_extent->list);
2902
2903 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2904 ret = btrfs_update_inode_fallback(trans, root, inode);
2905 if (ret) { /* -ENOMEM or corruption */
2906 btrfs_abort_transaction(trans, root, ret);
2907 goto out_unlock;
2908 }
2909 ret = 0;
2910 out_unlock:
2911 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2912 ordered_extent->file_offset +
2913 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2914 out:
2915 if (root != root->fs_info->tree_root)
2916 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2917 if (trans)
2918 btrfs_end_transaction(trans, root);
2919
2920 if (ret || truncated) {
2921 u64 start, end;
2922
2923 if (truncated)
2924 start = ordered_extent->file_offset + logical_len;
2925 else
2926 start = ordered_extent->file_offset;
2927 end = ordered_extent->file_offset + ordered_extent->len - 1;
2928 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2929
2930 /* Drop the cache for the part of the extent we didn't write. */
2931 btrfs_drop_extent_cache(inode, start, end, 0);
2932
2933 /*
2934 * If the ordered extent had an IOERR or something else went
2935 * wrong we need to return the space for this ordered extent
2936 * back to the allocator. We only free the extent in the
2937 * truncated case if we didn't write out the extent at all.
2938 */
2939 if ((ret || !logical_len) &&
2940 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2941 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2942 btrfs_free_reserved_extent(root, ordered_extent->start,
2943 ordered_extent->disk_len, 1);
2944 }
2945
2946
2947 /*
2948 * This needs to be done to make sure anybody waiting knows we are done
2949 * updating everything for this ordered extent.
2950 */
2951 btrfs_remove_ordered_extent(inode, ordered_extent);
2952
2953 /* for snapshot-aware defrag */
2954 if (new) {
2955 if (ret) {
2956 free_sa_defrag_extent(new);
2957 atomic_dec(&root->fs_info->defrag_running);
2958 } else {
2959 relink_file_extents(new);
2960 }
2961 }
2962
2963 /* once for us */
2964 btrfs_put_ordered_extent(ordered_extent);
2965 /* once for the tree */
2966 btrfs_put_ordered_extent(ordered_extent);
2967
2968 return ret;
2969 }
2970
2971 static void finish_ordered_fn(struct btrfs_work *work)
2972 {
2973 struct btrfs_ordered_extent *ordered_extent;
2974 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2975 btrfs_finish_ordered_io(ordered_extent);
2976 }
2977
2978 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2979 struct extent_state *state, int uptodate)
2980 {
2981 struct inode *inode = page->mapping->host;
2982 struct btrfs_root *root = BTRFS_I(inode)->root;
2983 struct btrfs_ordered_extent *ordered_extent = NULL;
2984 struct btrfs_workqueue *wq;
2985 btrfs_work_func_t func;
2986
2987 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2988
2989 ClearPagePrivate2(page);
2990 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2991 end - start + 1, uptodate))
2992 return 0;
2993
2994 if (btrfs_is_free_space_inode(inode)) {
2995 wq = root->fs_info->endio_freespace_worker;
2996 func = btrfs_freespace_write_helper;
2997 } else {
2998 wq = root->fs_info->endio_write_workers;
2999 func = btrfs_endio_write_helper;
3000 }
3001
3002 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3003 NULL);
3004 btrfs_queue_work(wq, &ordered_extent->work);
3005
3006 return 0;
3007 }
3008
3009 static int __readpage_endio_check(struct inode *inode,
3010 struct btrfs_io_bio *io_bio,
3011 int icsum, struct page *page,
3012 int pgoff, u64 start, size_t len)
3013 {
3014 char *kaddr;
3015 u32 csum_expected;
3016 u32 csum = ~(u32)0;
3017 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
3018 DEFAULT_RATELIMIT_BURST);
3019
3020 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3021
3022 kaddr = kmap_atomic(page);
3023 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3024 btrfs_csum_final(csum, (char *)&csum);
3025 if (csum != csum_expected)
3026 goto zeroit;
3027
3028 kunmap_atomic(kaddr);
3029 return 0;
3030 zeroit:
3031 if (__ratelimit(&_rs))
3032 btrfs_warn(BTRFS_I(inode)->root->fs_info,
3033 "csum failed ino %llu off %llu csum %u expected csum %u",
3034 btrfs_ino(inode), start, csum, csum_expected);
3035 memset(kaddr + pgoff, 1, len);
3036 flush_dcache_page(page);
3037 kunmap_atomic(kaddr);
3038 if (csum_expected == 0)
3039 return 0;
3040 return -EIO;
3041 }
3042
3043 /*
3044 * when reads are done, we need to check csums to verify the data is correct
3045 * if there's a match, we allow the bio to finish. If not, the code in
3046 * extent_io.c will try to find good copies for us.
3047 */
3048 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3049 u64 phy_offset, struct page *page,
3050 u64 start, u64 end, int mirror)
3051 {
3052 size_t offset = start - page_offset(page);
3053 struct inode *inode = page->mapping->host;
3054 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3055 struct btrfs_root *root = BTRFS_I(inode)->root;
3056
3057 if (PageChecked(page)) {
3058 ClearPageChecked(page);
3059 return 0;
3060 }
3061
3062 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3063 return 0;
3064
3065 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3066 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3067 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3068 GFP_NOFS);
3069 return 0;
3070 }
3071
3072 phy_offset >>= inode->i_sb->s_blocksize_bits;
3073 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3074 start, (size_t)(end - start + 1));
3075 }
3076
3077 struct delayed_iput {
3078 struct list_head list;
3079 struct inode *inode;
3080 };
3081
3082 /* JDM: If this is fs-wide, why can't we add a pointer to
3083 * btrfs_inode instead and avoid the allocation? */
3084 void btrfs_add_delayed_iput(struct inode *inode)
3085 {
3086 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3087 struct delayed_iput *delayed;
3088
3089 if (atomic_add_unless(&inode->i_count, -1, 1))
3090 return;
3091
3092 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3093 delayed->inode = inode;
3094
3095 spin_lock(&fs_info->delayed_iput_lock);
3096 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3097 spin_unlock(&fs_info->delayed_iput_lock);
3098 }
3099
3100 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3101 {
3102 LIST_HEAD(list);
3103 struct btrfs_fs_info *fs_info = root->fs_info;
3104 struct delayed_iput *delayed;
3105 int empty;
3106
3107 spin_lock(&fs_info->delayed_iput_lock);
3108 empty = list_empty(&fs_info->delayed_iputs);
3109 spin_unlock(&fs_info->delayed_iput_lock);
3110 if (empty)
3111 return;
3112
3113 down_read(&fs_info->delayed_iput_sem);
3114
3115 spin_lock(&fs_info->delayed_iput_lock);
3116 list_splice_init(&fs_info->delayed_iputs, &list);
3117 spin_unlock(&fs_info->delayed_iput_lock);
3118
3119 while (!list_empty(&list)) {
3120 delayed = list_entry(list.next, struct delayed_iput, list);
3121 list_del(&delayed->list);
3122 iput(delayed->inode);
3123 kfree(delayed);
3124 }
3125
3126 up_read(&root->fs_info->delayed_iput_sem);
3127 }
3128
3129 /*
3130 * This is called in transaction commit time. If there are no orphan
3131 * files in the subvolume, it removes orphan item and frees block_rsv
3132 * structure.
3133 */
3134 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3135 struct btrfs_root *root)
3136 {
3137 struct btrfs_block_rsv *block_rsv;
3138 int ret;
3139
3140 if (atomic_read(&root->orphan_inodes) ||
3141 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3142 return;
3143
3144 spin_lock(&root->orphan_lock);
3145 if (atomic_read(&root->orphan_inodes)) {
3146 spin_unlock(&root->orphan_lock);
3147 return;
3148 }
3149
3150 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3151 spin_unlock(&root->orphan_lock);
3152 return;
3153 }
3154
3155 block_rsv = root->orphan_block_rsv;
3156 root->orphan_block_rsv = NULL;
3157 spin_unlock(&root->orphan_lock);
3158
3159 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3160 btrfs_root_refs(&root->root_item) > 0) {
3161 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3162 root->root_key.objectid);
3163 if (ret)
3164 btrfs_abort_transaction(trans, root, ret);
3165 else
3166 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3167 &root->state);
3168 }
3169
3170 if (block_rsv) {
3171 WARN_ON(block_rsv->size > 0);
3172 btrfs_free_block_rsv(root, block_rsv);
3173 }
3174 }
3175
3176 /*
3177 * This creates an orphan entry for the given inode in case something goes
3178 * wrong in the middle of an unlink/truncate.
3179 *
3180 * NOTE: caller of this function should reserve 5 units of metadata for
3181 * this function.
3182 */
3183 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3184 {
3185 struct btrfs_root *root = BTRFS_I(inode)->root;
3186 struct btrfs_block_rsv *block_rsv = NULL;
3187 int reserve = 0;
3188 int insert = 0;
3189 int ret;
3190
3191 if (!root->orphan_block_rsv) {
3192 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3193 if (!block_rsv)
3194 return -ENOMEM;
3195 }
3196
3197 spin_lock(&root->orphan_lock);
3198 if (!root->orphan_block_rsv) {
3199 root->orphan_block_rsv = block_rsv;
3200 } else if (block_rsv) {
3201 btrfs_free_block_rsv(root, block_rsv);
3202 block_rsv = NULL;
3203 }
3204
3205 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3206 &BTRFS_I(inode)->runtime_flags)) {
3207 #if 0
3208 /*
3209 * For proper ENOSPC handling, we should do orphan
3210 * cleanup when mounting. But this introduces backward
3211 * compatibility issue.
3212 */
3213 if (!xchg(&root->orphan_item_inserted, 1))
3214 insert = 2;
3215 else
3216 insert = 1;
3217 #endif
3218 insert = 1;
3219 atomic_inc(&root->orphan_inodes);
3220 }
3221
3222 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3223 &BTRFS_I(inode)->runtime_flags))
3224 reserve = 1;
3225 spin_unlock(&root->orphan_lock);
3226
3227 /* grab metadata reservation from transaction handle */
3228 if (reserve) {
3229 ret = btrfs_orphan_reserve_metadata(trans, inode);
3230 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3231 }
3232
3233 /* insert an orphan item to track this unlinked/truncated file */
3234 if (insert >= 1) {
3235 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3236 if (ret) {
3237 atomic_dec(&root->orphan_inodes);
3238 if (reserve) {
3239 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3240 &BTRFS_I(inode)->runtime_flags);
3241 btrfs_orphan_release_metadata(inode);
3242 }
3243 if (ret != -EEXIST) {
3244 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3245 &BTRFS_I(inode)->runtime_flags);
3246 btrfs_abort_transaction(trans, root, ret);
3247 return ret;
3248 }
3249 }
3250 ret = 0;
3251 }
3252
3253 /* insert an orphan item to track subvolume contains orphan files */
3254 if (insert >= 2) {
3255 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3256 root->root_key.objectid);
3257 if (ret && ret != -EEXIST) {
3258 btrfs_abort_transaction(trans, root, ret);
3259 return ret;
3260 }
3261 }
3262 return 0;
3263 }
3264
3265 /*
3266 * We have done the truncate/delete so we can go ahead and remove the orphan
3267 * item for this particular inode.
3268 */
3269 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3270 struct inode *inode)
3271 {
3272 struct btrfs_root *root = BTRFS_I(inode)->root;
3273 int delete_item = 0;
3274 int release_rsv = 0;
3275 int ret = 0;
3276
3277 spin_lock(&root->orphan_lock);
3278 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3279 &BTRFS_I(inode)->runtime_flags))
3280 delete_item = 1;
3281
3282 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3283 &BTRFS_I(inode)->runtime_flags))
3284 release_rsv = 1;
3285 spin_unlock(&root->orphan_lock);
3286
3287 if (delete_item) {
3288 atomic_dec(&root->orphan_inodes);
3289 if (trans)
3290 ret = btrfs_del_orphan_item(trans, root,
3291 btrfs_ino(inode));
3292 }
3293
3294 if (release_rsv)
3295 btrfs_orphan_release_metadata(inode);
3296
3297 return ret;
3298 }
3299
3300 /*
3301 * this cleans up any orphans that may be left on the list from the last use
3302 * of this root.
3303 */
3304 int btrfs_orphan_cleanup(struct btrfs_root *root)
3305 {
3306 struct btrfs_path *path;
3307 struct extent_buffer *leaf;
3308 struct btrfs_key key, found_key;
3309 struct btrfs_trans_handle *trans;
3310 struct inode *inode;
3311 u64 last_objectid = 0;
3312 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3313
3314 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3315 return 0;
3316
3317 path = btrfs_alloc_path();
3318 if (!path) {
3319 ret = -ENOMEM;
3320 goto out;
3321 }
3322 path->reada = -1;
3323
3324 key.objectid = BTRFS_ORPHAN_OBJECTID;
3325 key.type = BTRFS_ORPHAN_ITEM_KEY;
3326 key.offset = (u64)-1;
3327
3328 while (1) {
3329 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3330 if (ret < 0)
3331 goto out;
3332
3333 /*
3334 * if ret == 0 means we found what we were searching for, which
3335 * is weird, but possible, so only screw with path if we didn't
3336 * find the key and see if we have stuff that matches
3337 */
3338 if (ret > 0) {
3339 ret = 0;
3340 if (path->slots[0] == 0)
3341 break;
3342 path->slots[0]--;
3343 }
3344
3345 /* pull out the item */
3346 leaf = path->nodes[0];
3347 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3348
3349 /* make sure the item matches what we want */
3350 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3351 break;
3352 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3353 break;
3354
3355 /* release the path since we're done with it */
3356 btrfs_release_path(path);
3357
3358 /*
3359 * this is where we are basically btrfs_lookup, without the
3360 * crossing root thing. we store the inode number in the
3361 * offset of the orphan item.
3362 */
3363
3364 if (found_key.offset == last_objectid) {
3365 btrfs_err(root->fs_info,
3366 "Error removing orphan entry, stopping orphan cleanup");
3367 ret = -EINVAL;
3368 goto out;
3369 }
3370
3371 last_objectid = found_key.offset;
3372
3373 found_key.objectid = found_key.offset;
3374 found_key.type = BTRFS_INODE_ITEM_KEY;
3375 found_key.offset = 0;
3376 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3377 ret = PTR_ERR_OR_ZERO(inode);
3378 if (ret && ret != -ESTALE)
3379 goto out;
3380
3381 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3382 struct btrfs_root *dead_root;
3383 struct btrfs_fs_info *fs_info = root->fs_info;
3384 int is_dead_root = 0;
3385
3386 /*
3387 * this is an orphan in the tree root. Currently these
3388 * could come from 2 sources:
3389 * a) a snapshot deletion in progress
3390 * b) a free space cache inode
3391 * We need to distinguish those two, as the snapshot
3392 * orphan must not get deleted.
3393 * find_dead_roots already ran before us, so if this
3394 * is a snapshot deletion, we should find the root
3395 * in the dead_roots list
3396 */
3397 spin_lock(&fs_info->trans_lock);
3398 list_for_each_entry(dead_root, &fs_info->dead_roots,
3399 root_list) {
3400 if (dead_root->root_key.objectid ==
3401 found_key.objectid) {
3402 is_dead_root = 1;
3403 break;
3404 }
3405 }
3406 spin_unlock(&fs_info->trans_lock);
3407 if (is_dead_root) {
3408 /* prevent this orphan from being found again */
3409 key.offset = found_key.objectid - 1;
3410 continue;
3411 }
3412 }
3413 /*
3414 * Inode is already gone but the orphan item is still there,
3415 * kill the orphan item.
3416 */
3417 if (ret == -ESTALE) {
3418 trans = btrfs_start_transaction(root, 1);
3419 if (IS_ERR(trans)) {
3420 ret = PTR_ERR(trans);
3421 goto out;
3422 }
3423 btrfs_debug(root->fs_info, "auto deleting %Lu",
3424 found_key.objectid);
3425 ret = btrfs_del_orphan_item(trans, root,
3426 found_key.objectid);
3427 btrfs_end_transaction(trans, root);
3428 if (ret)
3429 goto out;
3430 continue;
3431 }
3432
3433 /*
3434 * add this inode to the orphan list so btrfs_orphan_del does
3435 * the proper thing when we hit it
3436 */
3437 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3438 &BTRFS_I(inode)->runtime_flags);
3439 atomic_inc(&root->orphan_inodes);
3440
3441 /* if we have links, this was a truncate, lets do that */
3442 if (inode->i_nlink) {
3443 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3444 iput(inode);
3445 continue;
3446 }
3447 nr_truncate++;
3448
3449 /* 1 for the orphan item deletion. */
3450 trans = btrfs_start_transaction(root, 1);
3451 if (IS_ERR(trans)) {
3452 iput(inode);
3453 ret = PTR_ERR(trans);
3454 goto out;
3455 }
3456 ret = btrfs_orphan_add(trans, inode);
3457 btrfs_end_transaction(trans, root);
3458 if (ret) {
3459 iput(inode);
3460 goto out;
3461 }
3462
3463 ret = btrfs_truncate(inode);
3464 if (ret)
3465 btrfs_orphan_del(NULL, inode);
3466 } else {
3467 nr_unlink++;
3468 }
3469
3470 /* this will do delete_inode and everything for us */
3471 iput(inode);
3472 if (ret)
3473 goto out;
3474 }
3475 /* release the path since we're done with it */
3476 btrfs_release_path(path);
3477
3478 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3479
3480 if (root->orphan_block_rsv)
3481 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3482 (u64)-1);
3483
3484 if (root->orphan_block_rsv ||
3485 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3486 trans = btrfs_join_transaction(root);
3487 if (!IS_ERR(trans))
3488 btrfs_end_transaction(trans, root);
3489 }
3490
3491 if (nr_unlink)
3492 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3493 if (nr_truncate)
3494 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3495
3496 out:
3497 if (ret)
3498 btrfs_err(root->fs_info,
3499 "could not do orphan cleanup %d", ret);
3500 btrfs_free_path(path);
3501 return ret;
3502 }
3503
3504 /*
3505 * very simple check to peek ahead in the leaf looking for xattrs. If we
3506 * don't find any xattrs, we know there can't be any acls.
3507 *
3508 * slot is the slot the inode is in, objectid is the objectid of the inode
3509 */
3510 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3511 int slot, u64 objectid,
3512 int *first_xattr_slot)
3513 {
3514 u32 nritems = btrfs_header_nritems(leaf);
3515 struct btrfs_key found_key;
3516 static u64 xattr_access = 0;
3517 static u64 xattr_default = 0;
3518 int scanned = 0;
3519
3520 if (!xattr_access) {
3521 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3522 strlen(POSIX_ACL_XATTR_ACCESS));
3523 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3524 strlen(POSIX_ACL_XATTR_DEFAULT));
3525 }
3526
3527 slot++;
3528 *first_xattr_slot = -1;
3529 while (slot < nritems) {
3530 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3531
3532 /* we found a different objectid, there must not be acls */
3533 if (found_key.objectid != objectid)
3534 return 0;
3535
3536 /* we found an xattr, assume we've got an acl */
3537 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3538 if (*first_xattr_slot == -1)
3539 *first_xattr_slot = slot;
3540 if (found_key.offset == xattr_access ||
3541 found_key.offset == xattr_default)
3542 return 1;
3543 }
3544
3545 /*
3546 * we found a key greater than an xattr key, there can't
3547 * be any acls later on
3548 */
3549 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3550 return 0;
3551
3552 slot++;
3553 scanned++;
3554
3555 /*
3556 * it goes inode, inode backrefs, xattrs, extents,
3557 * so if there are a ton of hard links to an inode there can
3558 * be a lot of backrefs. Don't waste time searching too hard,
3559 * this is just an optimization
3560 */
3561 if (scanned >= 8)
3562 break;
3563 }
3564 /* we hit the end of the leaf before we found an xattr or
3565 * something larger than an xattr. We have to assume the inode
3566 * has acls
3567 */
3568 if (*first_xattr_slot == -1)
3569 *first_xattr_slot = slot;
3570 return 1;
3571 }
3572
3573 /*
3574 * read an inode from the btree into the in-memory inode
3575 */
3576 static void btrfs_read_locked_inode(struct inode *inode)
3577 {
3578 struct btrfs_path *path;
3579 struct extent_buffer *leaf;
3580 struct btrfs_inode_item *inode_item;
3581 struct btrfs_root *root = BTRFS_I(inode)->root;
3582 struct btrfs_key location;
3583 unsigned long ptr;
3584 int maybe_acls;
3585 u32 rdev;
3586 int ret;
3587 bool filled = false;
3588 int first_xattr_slot;
3589
3590 ret = btrfs_fill_inode(inode, &rdev);
3591 if (!ret)
3592 filled = true;
3593
3594 path = btrfs_alloc_path();
3595 if (!path)
3596 goto make_bad;
3597
3598 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3599
3600 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3601 if (ret)
3602 goto make_bad;
3603
3604 leaf = path->nodes[0];
3605
3606 if (filled)
3607 goto cache_index;
3608
3609 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3610 struct btrfs_inode_item);
3611 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3612 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3613 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3614 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3615 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3616
3617 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3618 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3619
3620 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3621 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3622
3623 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3624 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3625
3626 BTRFS_I(inode)->i_otime.tv_sec =
3627 btrfs_timespec_sec(leaf, &inode_item->otime);
3628 BTRFS_I(inode)->i_otime.tv_nsec =
3629 btrfs_timespec_nsec(leaf, &inode_item->otime);
3630
3631 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3632 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3633 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3634
3635 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3636 inode->i_generation = BTRFS_I(inode)->generation;
3637 inode->i_rdev = 0;
3638 rdev = btrfs_inode_rdev(leaf, inode_item);
3639
3640 BTRFS_I(inode)->index_cnt = (u64)-1;
3641 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3642
3643 cache_index:
3644 /*
3645 * If we were modified in the current generation and evicted from memory
3646 * and then re-read we need to do a full sync since we don't have any
3647 * idea about which extents were modified before we were evicted from
3648 * cache.
3649 *
3650 * This is required for both inode re-read from disk and delayed inode
3651 * in delayed_nodes_tree.
3652 */
3653 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3654 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3655 &BTRFS_I(inode)->runtime_flags);
3656
3657 /*
3658 * We don't persist the id of the transaction where an unlink operation
3659 * against the inode was last made. So here we assume the inode might
3660 * have been evicted, and therefore the exact value of last_unlink_trans
3661 * lost, and set it to last_trans to avoid metadata inconsistencies
3662 * between the inode and its parent if the inode is fsync'ed and the log
3663 * replayed. For example, in the scenario:
3664 *
3665 * touch mydir/foo
3666 * ln mydir/foo mydir/bar
3667 * sync
3668 * unlink mydir/bar
3669 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3670 * xfs_io -c fsync mydir/foo
3671 * <power failure>
3672 * mount fs, triggers fsync log replay
3673 *
3674 * We must make sure that when we fsync our inode foo we also log its
3675 * parent inode, otherwise after log replay the parent still has the
3676 * dentry with the "bar" name but our inode foo has a link count of 1
3677 * and doesn't have an inode ref with the name "bar" anymore.
3678 *
3679 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3680 * but it guarantees correctness at the expense of ocassional full
3681 * transaction commits on fsync if our inode is a directory, or if our
3682 * inode is not a directory, logging its parent unnecessarily.
3683 */
3684 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3685
3686 path->slots[0]++;
3687 if (inode->i_nlink != 1 ||
3688 path->slots[0] >= btrfs_header_nritems(leaf))
3689 goto cache_acl;
3690
3691 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3692 if (location.objectid != btrfs_ino(inode))
3693 goto cache_acl;
3694
3695 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3696 if (location.type == BTRFS_INODE_REF_KEY) {
3697 struct btrfs_inode_ref *ref;
3698
3699 ref = (struct btrfs_inode_ref *)ptr;
3700 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3701 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3702 struct btrfs_inode_extref *extref;
3703
3704 extref = (struct btrfs_inode_extref *)ptr;
3705 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3706 extref);
3707 }
3708 cache_acl:
3709 /*
3710 * try to precache a NULL acl entry for files that don't have
3711 * any xattrs or acls
3712 */
3713 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3714 btrfs_ino(inode), &first_xattr_slot);
3715 if (first_xattr_slot != -1) {
3716 path->slots[0] = first_xattr_slot;
3717 ret = btrfs_load_inode_props(inode, path);
3718 if (ret)
3719 btrfs_err(root->fs_info,
3720 "error loading props for ino %llu (root %llu): %d",
3721 btrfs_ino(inode),
3722 root->root_key.objectid, ret);
3723 }
3724 btrfs_free_path(path);
3725
3726 if (!maybe_acls)
3727 cache_no_acl(inode);
3728
3729 switch (inode->i_mode & S_IFMT) {
3730 case S_IFREG:
3731 inode->i_mapping->a_ops = &btrfs_aops;
3732 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3733 inode->i_fop = &btrfs_file_operations;
3734 inode->i_op = &btrfs_file_inode_operations;
3735 break;
3736 case S_IFDIR:
3737 inode->i_fop = &btrfs_dir_file_operations;
3738 if (root == root->fs_info->tree_root)
3739 inode->i_op = &btrfs_dir_ro_inode_operations;
3740 else
3741 inode->i_op = &btrfs_dir_inode_operations;
3742 break;
3743 case S_IFLNK:
3744 inode->i_op = &btrfs_symlink_inode_operations;
3745 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3746 break;
3747 default:
3748 inode->i_op = &btrfs_special_inode_operations;
3749 init_special_inode(inode, inode->i_mode, rdev);
3750 break;
3751 }
3752
3753 btrfs_update_iflags(inode);
3754 return;
3755
3756 make_bad:
3757 btrfs_free_path(path);
3758 make_bad_inode(inode);
3759 }
3760
3761 /*
3762 * given a leaf and an inode, copy the inode fields into the leaf
3763 */
3764 static void fill_inode_item(struct btrfs_trans_handle *trans,
3765 struct extent_buffer *leaf,
3766 struct btrfs_inode_item *item,
3767 struct inode *inode)
3768 {
3769 struct btrfs_map_token token;
3770
3771 btrfs_init_map_token(&token);
3772
3773 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3774 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3775 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3776 &token);
3777 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3778 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3779
3780 btrfs_set_token_timespec_sec(leaf, &item->atime,
3781 inode->i_atime.tv_sec, &token);
3782 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3783 inode->i_atime.tv_nsec, &token);
3784
3785 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3786 inode->i_mtime.tv_sec, &token);
3787 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3788 inode->i_mtime.tv_nsec, &token);
3789
3790 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3791 inode->i_ctime.tv_sec, &token);
3792 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3793 inode->i_ctime.tv_nsec, &token);
3794
3795 btrfs_set_token_timespec_sec(leaf, &item->otime,
3796 BTRFS_I(inode)->i_otime.tv_sec, &token);
3797 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3798 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3799
3800 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3801 &token);
3802 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3803 &token);
3804 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3805 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3806 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3807 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3808 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3809 }
3810
3811 /*
3812 * copy everything in the in-memory inode into the btree.
3813 */
3814 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3815 struct btrfs_root *root, struct inode *inode)
3816 {
3817 struct btrfs_inode_item *inode_item;
3818 struct btrfs_path *path;
3819 struct extent_buffer *leaf;
3820 int ret;
3821
3822 path = btrfs_alloc_path();
3823 if (!path)
3824 return -ENOMEM;
3825
3826 path->leave_spinning = 1;
3827 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3828 1);
3829 if (ret) {
3830 if (ret > 0)
3831 ret = -ENOENT;
3832 goto failed;
3833 }
3834
3835 leaf = path->nodes[0];
3836 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3837 struct btrfs_inode_item);
3838
3839 fill_inode_item(trans, leaf, inode_item, inode);
3840 btrfs_mark_buffer_dirty(leaf);
3841 btrfs_set_inode_last_trans(trans, inode);
3842 ret = 0;
3843 failed:
3844 btrfs_free_path(path);
3845 return ret;
3846 }
3847
3848 /*
3849 * copy everything in the in-memory inode into the btree.
3850 */
3851 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3852 struct btrfs_root *root, struct inode *inode)
3853 {
3854 int ret;
3855
3856 /*
3857 * If the inode is a free space inode, we can deadlock during commit
3858 * if we put it into the delayed code.
3859 *
3860 * The data relocation inode should also be directly updated
3861 * without delay
3862 */
3863 if (!btrfs_is_free_space_inode(inode)
3864 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3865 && !root->fs_info->log_root_recovering) {
3866 btrfs_update_root_times(trans, root);
3867
3868 ret = btrfs_delayed_update_inode(trans, root, inode);
3869 if (!ret)
3870 btrfs_set_inode_last_trans(trans, inode);
3871 return ret;
3872 }
3873
3874 return btrfs_update_inode_item(trans, root, inode);
3875 }
3876
3877 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3878 struct btrfs_root *root,
3879 struct inode *inode)
3880 {
3881 int ret;
3882
3883 ret = btrfs_update_inode(trans, root, inode);
3884 if (ret == -ENOSPC)
3885 return btrfs_update_inode_item(trans, root, inode);
3886 return ret;
3887 }
3888
3889 /*
3890 * unlink helper that gets used here in inode.c and in the tree logging
3891 * recovery code. It remove a link in a directory with a given name, and
3892 * also drops the back refs in the inode to the directory
3893 */
3894 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3895 struct btrfs_root *root,
3896 struct inode *dir, struct inode *inode,
3897 const char *name, int name_len)
3898 {
3899 struct btrfs_path *path;
3900 int ret = 0;
3901 struct extent_buffer *leaf;
3902 struct btrfs_dir_item *di;
3903 struct btrfs_key key;
3904 u64 index;
3905 u64 ino = btrfs_ino(inode);
3906 u64 dir_ino = btrfs_ino(dir);
3907
3908 path = btrfs_alloc_path();
3909 if (!path) {
3910 ret = -ENOMEM;
3911 goto out;
3912 }
3913
3914 path->leave_spinning = 1;
3915 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3916 name, name_len, -1);
3917 if (IS_ERR(di)) {
3918 ret = PTR_ERR(di);
3919 goto err;
3920 }
3921 if (!di) {
3922 ret = -ENOENT;
3923 goto err;
3924 }
3925 leaf = path->nodes[0];
3926 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3927 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3928 if (ret)
3929 goto err;
3930 btrfs_release_path(path);
3931
3932 /*
3933 * If we don't have dir index, we have to get it by looking up
3934 * the inode ref, since we get the inode ref, remove it directly,
3935 * it is unnecessary to do delayed deletion.
3936 *
3937 * But if we have dir index, needn't search inode ref to get it.
3938 * Since the inode ref is close to the inode item, it is better
3939 * that we delay to delete it, and just do this deletion when
3940 * we update the inode item.
3941 */
3942 if (BTRFS_I(inode)->dir_index) {
3943 ret = btrfs_delayed_delete_inode_ref(inode);
3944 if (!ret) {
3945 index = BTRFS_I(inode)->dir_index;
3946 goto skip_backref;
3947 }
3948 }
3949
3950 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3951 dir_ino, &index);
3952 if (ret) {
3953 btrfs_info(root->fs_info,
3954 "failed to delete reference to %.*s, inode %llu parent %llu",
3955 name_len, name, ino, dir_ino);
3956 btrfs_abort_transaction(trans, root, ret);
3957 goto err;
3958 }
3959 skip_backref:
3960 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3961 if (ret) {
3962 btrfs_abort_transaction(trans, root, ret);
3963 goto err;
3964 }
3965
3966 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3967 inode, dir_ino);
3968 if (ret != 0 && ret != -ENOENT) {
3969 btrfs_abort_transaction(trans, root, ret);
3970 goto err;
3971 }
3972
3973 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3974 dir, index);
3975 if (ret == -ENOENT)
3976 ret = 0;
3977 else if (ret)
3978 btrfs_abort_transaction(trans, root, ret);
3979 err:
3980 btrfs_free_path(path);
3981 if (ret)
3982 goto out;
3983
3984 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3985 inode_inc_iversion(inode);
3986 inode_inc_iversion(dir);
3987 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3988 ret = btrfs_update_inode(trans, root, dir);
3989 out:
3990 return ret;
3991 }
3992
3993 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3994 struct btrfs_root *root,
3995 struct inode *dir, struct inode *inode,
3996 const char *name, int name_len)
3997 {
3998 int ret;
3999 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4000 if (!ret) {
4001 drop_nlink(inode);
4002 ret = btrfs_update_inode(trans, root, inode);
4003 }
4004 return ret;
4005 }
4006
4007 /*
4008 * helper to start transaction for unlink and rmdir.
4009 *
4010 * unlink and rmdir are special in btrfs, they do not always free space, so
4011 * if we cannot make our reservations the normal way try and see if there is
4012 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4013 * allow the unlink to occur.
4014 */
4015 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4016 {
4017 struct btrfs_trans_handle *trans;
4018 struct btrfs_root *root = BTRFS_I(dir)->root;
4019 int ret;
4020
4021 /*
4022 * 1 for the possible orphan item
4023 * 1 for the dir item
4024 * 1 for the dir index
4025 * 1 for the inode ref
4026 * 1 for the inode
4027 */
4028 trans = btrfs_start_transaction(root, 5);
4029 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
4030 return trans;
4031
4032 if (PTR_ERR(trans) == -ENOSPC) {
4033 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4034
4035 trans = btrfs_start_transaction(root, 0);
4036 if (IS_ERR(trans))
4037 return trans;
4038 ret = btrfs_cond_migrate_bytes(root->fs_info,
4039 &root->fs_info->trans_block_rsv,
4040 num_bytes, 5);
4041 if (ret) {
4042 btrfs_end_transaction(trans, root);
4043 return ERR_PTR(ret);
4044 }
4045 trans->block_rsv = &root->fs_info->trans_block_rsv;
4046 trans->bytes_reserved = num_bytes;
4047 }
4048 return trans;
4049 }
4050
4051 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4052 {
4053 struct btrfs_root *root = BTRFS_I(dir)->root;
4054 struct btrfs_trans_handle *trans;
4055 struct inode *inode = d_inode(dentry);
4056 int ret;
4057
4058 trans = __unlink_start_trans(dir);
4059 if (IS_ERR(trans))
4060 return PTR_ERR(trans);
4061
4062 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4063
4064 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4065 dentry->d_name.name, dentry->d_name.len);
4066 if (ret)
4067 goto out;
4068
4069 if (inode->i_nlink == 0) {
4070 ret = btrfs_orphan_add(trans, inode);
4071 if (ret)
4072 goto out;
4073 }
4074
4075 out:
4076 btrfs_end_transaction(trans, root);
4077 btrfs_btree_balance_dirty(root);
4078 return ret;
4079 }
4080
4081 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4082 struct btrfs_root *root,
4083 struct inode *dir, u64 objectid,
4084 const char *name, int name_len)
4085 {
4086 struct btrfs_path *path;
4087 struct extent_buffer *leaf;
4088 struct btrfs_dir_item *di;
4089 struct btrfs_key key;
4090 u64 index;
4091 int ret;
4092 u64 dir_ino = btrfs_ino(dir);
4093
4094 path = btrfs_alloc_path();
4095 if (!path)
4096 return -ENOMEM;
4097
4098 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4099 name, name_len, -1);
4100 if (IS_ERR_OR_NULL(di)) {
4101 if (!di)
4102 ret = -ENOENT;
4103 else
4104 ret = PTR_ERR(di);
4105 goto out;
4106 }
4107
4108 leaf = path->nodes[0];
4109 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4110 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4111 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4112 if (ret) {
4113 btrfs_abort_transaction(trans, root, ret);
4114 goto out;
4115 }
4116 btrfs_release_path(path);
4117
4118 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4119 objectid, root->root_key.objectid,
4120 dir_ino, &index, name, name_len);
4121 if (ret < 0) {
4122 if (ret != -ENOENT) {
4123 btrfs_abort_transaction(trans, root, ret);
4124 goto out;
4125 }
4126 di = btrfs_search_dir_index_item(root, path, dir_ino,
4127 name, name_len);
4128 if (IS_ERR_OR_NULL(di)) {
4129 if (!di)
4130 ret = -ENOENT;
4131 else
4132 ret = PTR_ERR(di);
4133 btrfs_abort_transaction(trans, root, ret);
4134 goto out;
4135 }
4136
4137 leaf = path->nodes[0];
4138 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4139 btrfs_release_path(path);
4140 index = key.offset;
4141 }
4142 btrfs_release_path(path);
4143
4144 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4145 if (ret) {
4146 btrfs_abort_transaction(trans, root, ret);
4147 goto out;
4148 }
4149
4150 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4151 inode_inc_iversion(dir);
4152 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4153 ret = btrfs_update_inode_fallback(trans, root, dir);
4154 if (ret)
4155 btrfs_abort_transaction(trans, root, ret);
4156 out:
4157 btrfs_free_path(path);
4158 return ret;
4159 }
4160
4161 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4162 {
4163 struct inode *inode = d_inode(dentry);
4164 int err = 0;
4165 struct btrfs_root *root = BTRFS_I(dir)->root;
4166 struct btrfs_trans_handle *trans;
4167
4168 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4169 return -ENOTEMPTY;
4170 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4171 return -EPERM;
4172
4173 trans = __unlink_start_trans(dir);
4174 if (IS_ERR(trans))
4175 return PTR_ERR(trans);
4176
4177 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4178 err = btrfs_unlink_subvol(trans, root, dir,
4179 BTRFS_I(inode)->location.objectid,
4180 dentry->d_name.name,
4181 dentry->d_name.len);
4182 goto out;
4183 }
4184
4185 err = btrfs_orphan_add(trans, inode);
4186 if (err)
4187 goto out;
4188
4189 /* now the directory is empty */
4190 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4191 dentry->d_name.name, dentry->d_name.len);
4192 if (!err)
4193 btrfs_i_size_write(inode, 0);
4194 out:
4195 btrfs_end_transaction(trans, root);
4196 btrfs_btree_balance_dirty(root);
4197
4198 return err;
4199 }
4200
4201 static int truncate_space_check(struct btrfs_trans_handle *trans,
4202 struct btrfs_root *root,
4203 u64 bytes_deleted)
4204 {
4205 int ret;
4206
4207 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4208 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4209 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4210 if (!ret)
4211 trans->bytes_reserved += bytes_deleted;
4212 return ret;
4213
4214 }
4215
4216 /*
4217 * this can truncate away extent items, csum items and directory items.
4218 * It starts at a high offset and removes keys until it can't find
4219 * any higher than new_size
4220 *
4221 * csum items that cross the new i_size are truncated to the new size
4222 * as well.
4223 *
4224 * min_type is the minimum key type to truncate down to. If set to 0, this
4225 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4226 */
4227 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4228 struct btrfs_root *root,
4229 struct inode *inode,
4230 u64 new_size, u32 min_type)
4231 {
4232 struct btrfs_path *path;
4233 struct extent_buffer *leaf;
4234 struct btrfs_file_extent_item *fi;
4235 struct btrfs_key key;
4236 struct btrfs_key found_key;
4237 u64 extent_start = 0;
4238 u64 extent_num_bytes = 0;
4239 u64 extent_offset = 0;
4240 u64 item_end = 0;
4241 u64 last_size = new_size;
4242 u32 found_type = (u8)-1;
4243 int found_extent;
4244 int del_item;
4245 int pending_del_nr = 0;
4246 int pending_del_slot = 0;
4247 int extent_type = -1;
4248 int ret;
4249 int err = 0;
4250 u64 ino = btrfs_ino(inode);
4251 u64 bytes_deleted = 0;
4252 bool be_nice = 0;
4253 bool should_throttle = 0;
4254 bool should_end = 0;
4255
4256 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4257
4258 /*
4259 * for non-free space inodes and ref cows, we want to back off from
4260 * time to time
4261 */
4262 if (!btrfs_is_free_space_inode(inode) &&
4263 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4264 be_nice = 1;
4265
4266 path = btrfs_alloc_path();
4267 if (!path)
4268 return -ENOMEM;
4269 path->reada = -1;
4270
4271 /*
4272 * We want to drop from the next block forward in case this new size is
4273 * not block aligned since we will be keeping the last block of the
4274 * extent just the way it is.
4275 */
4276 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4277 root == root->fs_info->tree_root)
4278 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4279 root->sectorsize), (u64)-1, 0);
4280
4281 /*
4282 * This function is also used to drop the items in the log tree before
4283 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4284 * it is used to drop the loged items. So we shouldn't kill the delayed
4285 * items.
4286 */
4287 if (min_type == 0 && root == BTRFS_I(inode)->root)
4288 btrfs_kill_delayed_inode_items(inode);
4289
4290 key.objectid = ino;
4291 key.offset = (u64)-1;
4292 key.type = (u8)-1;
4293
4294 search_again:
4295 /*
4296 * with a 16K leaf size and 128MB extents, you can actually queue
4297 * up a huge file in a single leaf. Most of the time that
4298 * bytes_deleted is > 0, it will be huge by the time we get here
4299 */
4300 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4301 if (btrfs_should_end_transaction(trans, root)) {
4302 err = -EAGAIN;
4303 goto error;
4304 }
4305 }
4306
4307
4308 path->leave_spinning = 1;
4309 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4310 if (ret < 0) {
4311 err = ret;
4312 goto out;
4313 }
4314
4315 if (ret > 0) {
4316 /* there are no items in the tree for us to truncate, we're
4317 * done
4318 */
4319 if (path->slots[0] == 0)
4320 goto out;
4321 path->slots[0]--;
4322 }
4323
4324 while (1) {
4325 fi = NULL;
4326 leaf = path->nodes[0];
4327 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4328 found_type = found_key.type;
4329
4330 if (found_key.objectid != ino)
4331 break;
4332
4333 if (found_type < min_type)
4334 break;
4335
4336 item_end = found_key.offset;
4337 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4338 fi = btrfs_item_ptr(leaf, path->slots[0],
4339 struct btrfs_file_extent_item);
4340 extent_type = btrfs_file_extent_type(leaf, fi);
4341 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4342 item_end +=
4343 btrfs_file_extent_num_bytes(leaf, fi);
4344 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4345 item_end += btrfs_file_extent_inline_len(leaf,
4346 path->slots[0], fi);
4347 }
4348 item_end--;
4349 }
4350 if (found_type > min_type) {
4351 del_item = 1;
4352 } else {
4353 if (item_end < new_size)
4354 break;
4355 if (found_key.offset >= new_size)
4356 del_item = 1;
4357 else
4358 del_item = 0;
4359 }
4360 found_extent = 0;
4361 /* FIXME, shrink the extent if the ref count is only 1 */
4362 if (found_type != BTRFS_EXTENT_DATA_KEY)
4363 goto delete;
4364
4365 if (del_item)
4366 last_size = found_key.offset;
4367 else
4368 last_size = new_size;
4369
4370 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4371 u64 num_dec;
4372 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4373 if (!del_item) {
4374 u64 orig_num_bytes =
4375 btrfs_file_extent_num_bytes(leaf, fi);
4376 extent_num_bytes = ALIGN(new_size -
4377 found_key.offset,
4378 root->sectorsize);
4379 btrfs_set_file_extent_num_bytes(leaf, fi,
4380 extent_num_bytes);
4381 num_dec = (orig_num_bytes -
4382 extent_num_bytes);
4383 if (test_bit(BTRFS_ROOT_REF_COWS,
4384 &root->state) &&
4385 extent_start != 0)
4386 inode_sub_bytes(inode, num_dec);
4387 btrfs_mark_buffer_dirty(leaf);
4388 } else {
4389 extent_num_bytes =
4390 btrfs_file_extent_disk_num_bytes(leaf,
4391 fi);
4392 extent_offset = found_key.offset -
4393 btrfs_file_extent_offset(leaf, fi);
4394
4395 /* FIXME blocksize != 4096 */
4396 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4397 if (extent_start != 0) {
4398 found_extent = 1;
4399 if (test_bit(BTRFS_ROOT_REF_COWS,
4400 &root->state))
4401 inode_sub_bytes(inode, num_dec);
4402 }
4403 }
4404 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4405 /*
4406 * we can't truncate inline items that have had
4407 * special encodings
4408 */
4409 if (!del_item &&
4410 btrfs_file_extent_compression(leaf, fi) == 0 &&
4411 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4412 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4413 u32 size = new_size - found_key.offset;
4414
4415 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4416 inode_sub_bytes(inode, item_end + 1 -
4417 new_size);
4418
4419 /*
4420 * update the ram bytes to properly reflect
4421 * the new size of our item
4422 */
4423 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4424 size =
4425 btrfs_file_extent_calc_inline_size(size);
4426 btrfs_truncate_item(root, path, size, 1);
4427 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4428 &root->state)) {
4429 inode_sub_bytes(inode, item_end + 1 -
4430 found_key.offset);
4431 }
4432 }
4433 delete:
4434 if (del_item) {
4435 if (!pending_del_nr) {
4436 /* no pending yet, add ourselves */
4437 pending_del_slot = path->slots[0];
4438 pending_del_nr = 1;
4439 } else if (pending_del_nr &&
4440 path->slots[0] + 1 == pending_del_slot) {
4441 /* hop on the pending chunk */
4442 pending_del_nr++;
4443 pending_del_slot = path->slots[0];
4444 } else {
4445 BUG();
4446 }
4447 } else {
4448 break;
4449 }
4450 should_throttle = 0;
4451
4452 if (found_extent &&
4453 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4454 root == root->fs_info->tree_root)) {
4455 btrfs_set_path_blocking(path);
4456 bytes_deleted += extent_num_bytes;
4457 ret = btrfs_free_extent(trans, root, extent_start,
4458 extent_num_bytes, 0,
4459 btrfs_header_owner(leaf),
4460 ino, extent_offset, 0);
4461 BUG_ON(ret);
4462 if (btrfs_should_throttle_delayed_refs(trans, root))
4463 btrfs_async_run_delayed_refs(root,
4464 trans->delayed_ref_updates * 2, 0);
4465 if (be_nice) {
4466 if (truncate_space_check(trans, root,
4467 extent_num_bytes)) {
4468 should_end = 1;
4469 }
4470 if (btrfs_should_throttle_delayed_refs(trans,
4471 root)) {
4472 should_throttle = 1;
4473 }
4474 }
4475 }
4476
4477 if (found_type == BTRFS_INODE_ITEM_KEY)
4478 break;
4479
4480 if (path->slots[0] == 0 ||
4481 path->slots[0] != pending_del_slot ||
4482 should_throttle || should_end) {
4483 if (pending_del_nr) {
4484 ret = btrfs_del_items(trans, root, path,
4485 pending_del_slot,
4486 pending_del_nr);
4487 if (ret) {
4488 btrfs_abort_transaction(trans,
4489 root, ret);
4490 goto error;
4491 }
4492 pending_del_nr = 0;
4493 }
4494 btrfs_release_path(path);
4495 if (should_throttle) {
4496 unsigned long updates = trans->delayed_ref_updates;
4497 if (updates) {
4498 trans->delayed_ref_updates = 0;
4499 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4500 if (ret && !err)
4501 err = ret;
4502 }
4503 }
4504 /*
4505 * if we failed to refill our space rsv, bail out
4506 * and let the transaction restart
4507 */
4508 if (should_end) {
4509 err = -EAGAIN;
4510 goto error;
4511 }
4512 goto search_again;
4513 } else {
4514 path->slots[0]--;
4515 }
4516 }
4517 out:
4518 if (pending_del_nr) {
4519 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4520 pending_del_nr);
4521 if (ret)
4522 btrfs_abort_transaction(trans, root, ret);
4523 }
4524 error:
4525 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4526 btrfs_ordered_update_i_size(inode, last_size, NULL);
4527
4528 btrfs_free_path(path);
4529
4530 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4531 unsigned long updates = trans->delayed_ref_updates;
4532 if (updates) {
4533 trans->delayed_ref_updates = 0;
4534 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4535 if (ret && !err)
4536 err = ret;
4537 }
4538 }
4539 return err;
4540 }
4541
4542 /*
4543 * btrfs_truncate_page - read, zero a chunk and write a page
4544 * @inode - inode that we're zeroing
4545 * @from - the offset to start zeroing
4546 * @len - the length to zero, 0 to zero the entire range respective to the
4547 * offset
4548 * @front - zero up to the offset instead of from the offset on
4549 *
4550 * This will find the page for the "from" offset and cow the page and zero the
4551 * part we want to zero. This is used with truncate and hole punching.
4552 */
4553 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4554 int front)
4555 {
4556 struct address_space *mapping = inode->i_mapping;
4557 struct btrfs_root *root = BTRFS_I(inode)->root;
4558 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4559 struct btrfs_ordered_extent *ordered;
4560 struct extent_state *cached_state = NULL;
4561 char *kaddr;
4562 u32 blocksize = root->sectorsize;
4563 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4564 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4565 struct page *page;
4566 gfp_t mask = btrfs_alloc_write_mask(mapping);
4567 int ret = 0;
4568 u64 page_start;
4569 u64 page_end;
4570
4571 if ((offset & (blocksize - 1)) == 0 &&
4572 (!len || ((len & (blocksize - 1)) == 0)))
4573 goto out;
4574 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4575 if (ret)
4576 goto out;
4577
4578 again:
4579 page = find_or_create_page(mapping, index, mask);
4580 if (!page) {
4581 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4582 ret = -ENOMEM;
4583 goto out;
4584 }
4585
4586 page_start = page_offset(page);
4587 page_end = page_start + PAGE_CACHE_SIZE - 1;
4588
4589 if (!PageUptodate(page)) {
4590 ret = btrfs_readpage(NULL, page);
4591 lock_page(page);
4592 if (page->mapping != mapping) {
4593 unlock_page(page);
4594 page_cache_release(page);
4595 goto again;
4596 }
4597 if (!PageUptodate(page)) {
4598 ret = -EIO;
4599 goto out_unlock;
4600 }
4601 }
4602 wait_on_page_writeback(page);
4603
4604 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4605 set_page_extent_mapped(page);
4606
4607 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4608 if (ordered) {
4609 unlock_extent_cached(io_tree, page_start, page_end,
4610 &cached_state, GFP_NOFS);
4611 unlock_page(page);
4612 page_cache_release(page);
4613 btrfs_start_ordered_extent(inode, ordered, 1);
4614 btrfs_put_ordered_extent(ordered);
4615 goto again;
4616 }
4617
4618 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4619 EXTENT_DIRTY | EXTENT_DELALLOC |
4620 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4621 0, 0, &cached_state, GFP_NOFS);
4622
4623 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4624 &cached_state);
4625 if (ret) {
4626 unlock_extent_cached(io_tree, page_start, page_end,
4627 &cached_state, GFP_NOFS);
4628 goto out_unlock;
4629 }
4630
4631 if (offset != PAGE_CACHE_SIZE) {
4632 if (!len)
4633 len = PAGE_CACHE_SIZE - offset;
4634 kaddr = kmap(page);
4635 if (front)
4636 memset(kaddr, 0, offset);
4637 else
4638 memset(kaddr + offset, 0, len);
4639 flush_dcache_page(page);
4640 kunmap(page);
4641 }
4642 ClearPageChecked(page);
4643 set_page_dirty(page);
4644 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4645 GFP_NOFS);
4646
4647 out_unlock:
4648 if (ret)
4649 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4650 unlock_page(page);
4651 page_cache_release(page);
4652 out:
4653 return ret;
4654 }
4655
4656 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4657 u64 offset, u64 len)
4658 {
4659 struct btrfs_trans_handle *trans;
4660 int ret;
4661
4662 /*
4663 * Still need to make sure the inode looks like it's been updated so
4664 * that any holes get logged if we fsync.
4665 */
4666 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4667 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4668 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4669 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4670 return 0;
4671 }
4672
4673 /*
4674 * 1 - for the one we're dropping
4675 * 1 - for the one we're adding
4676 * 1 - for updating the inode.
4677 */
4678 trans = btrfs_start_transaction(root, 3);
4679 if (IS_ERR(trans))
4680 return PTR_ERR(trans);
4681
4682 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4683 if (ret) {
4684 btrfs_abort_transaction(trans, root, ret);
4685 btrfs_end_transaction(trans, root);
4686 return ret;
4687 }
4688
4689 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4690 0, 0, len, 0, len, 0, 0, 0);
4691 if (ret)
4692 btrfs_abort_transaction(trans, root, ret);
4693 else
4694 btrfs_update_inode(trans, root, inode);
4695 btrfs_end_transaction(trans, root);
4696 return ret;
4697 }
4698
4699 /*
4700 * This function puts in dummy file extents for the area we're creating a hole
4701 * for. So if we are truncating this file to a larger size we need to insert
4702 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4703 * the range between oldsize and size
4704 */
4705 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4706 {
4707 struct btrfs_root *root = BTRFS_I(inode)->root;
4708 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4709 struct extent_map *em = NULL;
4710 struct extent_state *cached_state = NULL;
4711 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4712 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4713 u64 block_end = ALIGN(size, root->sectorsize);
4714 u64 last_byte;
4715 u64 cur_offset;
4716 u64 hole_size;
4717 int err = 0;
4718
4719 /*
4720 * If our size started in the middle of a page we need to zero out the
4721 * rest of the page before we expand the i_size, otherwise we could
4722 * expose stale data.
4723 */
4724 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4725 if (err)
4726 return err;
4727
4728 if (size <= hole_start)
4729 return 0;
4730
4731 while (1) {
4732 struct btrfs_ordered_extent *ordered;
4733
4734 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4735 &cached_state);
4736 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4737 block_end - hole_start);
4738 if (!ordered)
4739 break;
4740 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4741 &cached_state, GFP_NOFS);
4742 btrfs_start_ordered_extent(inode, ordered, 1);
4743 btrfs_put_ordered_extent(ordered);
4744 }
4745
4746 cur_offset = hole_start;
4747 while (1) {
4748 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4749 block_end - cur_offset, 0);
4750 if (IS_ERR(em)) {
4751 err = PTR_ERR(em);
4752 em = NULL;
4753 break;
4754 }
4755 last_byte = min(extent_map_end(em), block_end);
4756 last_byte = ALIGN(last_byte , root->sectorsize);
4757 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4758 struct extent_map *hole_em;
4759 hole_size = last_byte - cur_offset;
4760
4761 err = maybe_insert_hole(root, inode, cur_offset,
4762 hole_size);
4763 if (err)
4764 break;
4765 btrfs_drop_extent_cache(inode, cur_offset,
4766 cur_offset + hole_size - 1, 0);
4767 hole_em = alloc_extent_map();
4768 if (!hole_em) {
4769 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4770 &BTRFS_I(inode)->runtime_flags);
4771 goto next;
4772 }
4773 hole_em->start = cur_offset;
4774 hole_em->len = hole_size;
4775 hole_em->orig_start = cur_offset;
4776
4777 hole_em->block_start = EXTENT_MAP_HOLE;
4778 hole_em->block_len = 0;
4779 hole_em->orig_block_len = 0;
4780 hole_em->ram_bytes = hole_size;
4781 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4782 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4783 hole_em->generation = root->fs_info->generation;
4784
4785 while (1) {
4786 write_lock(&em_tree->lock);
4787 err = add_extent_mapping(em_tree, hole_em, 1);
4788 write_unlock(&em_tree->lock);
4789 if (err != -EEXIST)
4790 break;
4791 btrfs_drop_extent_cache(inode, cur_offset,
4792 cur_offset +
4793 hole_size - 1, 0);
4794 }
4795 free_extent_map(hole_em);
4796 }
4797 next:
4798 free_extent_map(em);
4799 em = NULL;
4800 cur_offset = last_byte;
4801 if (cur_offset >= block_end)
4802 break;
4803 }
4804 free_extent_map(em);
4805 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4806 GFP_NOFS);
4807 return err;
4808 }
4809
4810 static int wait_snapshoting_atomic_t(atomic_t *a)
4811 {
4812 schedule();
4813 return 0;
4814 }
4815
4816 static void wait_for_snapshot_creation(struct btrfs_root *root)
4817 {
4818 while (true) {
4819 int ret;
4820
4821 ret = btrfs_start_write_no_snapshoting(root);
4822 if (ret)
4823 break;
4824 wait_on_atomic_t(&root->will_be_snapshoted,
4825 wait_snapshoting_atomic_t,
4826 TASK_UNINTERRUPTIBLE);
4827 }
4828 }
4829
4830 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4831 {
4832 struct btrfs_root *root = BTRFS_I(inode)->root;
4833 struct btrfs_trans_handle *trans;
4834 loff_t oldsize = i_size_read(inode);
4835 loff_t newsize = attr->ia_size;
4836 int mask = attr->ia_valid;
4837 int ret;
4838
4839 /*
4840 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4841 * special case where we need to update the times despite not having
4842 * these flags set. For all other operations the VFS set these flags
4843 * explicitly if it wants a timestamp update.
4844 */
4845 if (newsize != oldsize) {
4846 inode_inc_iversion(inode);
4847 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4848 inode->i_ctime = inode->i_mtime =
4849 current_fs_time(inode->i_sb);
4850 }
4851
4852 if (newsize > oldsize) {
4853 truncate_pagecache(inode, newsize);
4854 /*
4855 * Don't do an expanding truncate while snapshoting is ongoing.
4856 * This is to ensure the snapshot captures a fully consistent
4857 * state of this file - if the snapshot captures this expanding
4858 * truncation, it must capture all writes that happened before
4859 * this truncation.
4860 */
4861 wait_for_snapshot_creation(root);
4862 ret = btrfs_cont_expand(inode, oldsize, newsize);
4863 if (ret) {
4864 btrfs_end_write_no_snapshoting(root);
4865 return ret;
4866 }
4867
4868 trans = btrfs_start_transaction(root, 1);
4869 if (IS_ERR(trans)) {
4870 btrfs_end_write_no_snapshoting(root);
4871 return PTR_ERR(trans);
4872 }
4873
4874 i_size_write(inode, newsize);
4875 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4876 ret = btrfs_update_inode(trans, root, inode);
4877 btrfs_end_write_no_snapshoting(root);
4878 btrfs_end_transaction(trans, root);
4879 } else {
4880
4881 /*
4882 * We're truncating a file that used to have good data down to
4883 * zero. Make sure it gets into the ordered flush list so that
4884 * any new writes get down to disk quickly.
4885 */
4886 if (newsize == 0)
4887 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4888 &BTRFS_I(inode)->runtime_flags);
4889
4890 /*
4891 * 1 for the orphan item we're going to add
4892 * 1 for the orphan item deletion.
4893 */
4894 trans = btrfs_start_transaction(root, 2);
4895 if (IS_ERR(trans))
4896 return PTR_ERR(trans);
4897
4898 /*
4899 * We need to do this in case we fail at _any_ point during the
4900 * actual truncate. Once we do the truncate_setsize we could
4901 * invalidate pages which forces any outstanding ordered io to
4902 * be instantly completed which will give us extents that need
4903 * to be truncated. If we fail to get an orphan inode down we
4904 * could have left over extents that were never meant to live,
4905 * so we need to garuntee from this point on that everything
4906 * will be consistent.
4907 */
4908 ret = btrfs_orphan_add(trans, inode);
4909 btrfs_end_transaction(trans, root);
4910 if (ret)
4911 return ret;
4912
4913 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4914 truncate_setsize(inode, newsize);
4915
4916 /* Disable nonlocked read DIO to avoid the end less truncate */
4917 btrfs_inode_block_unlocked_dio(inode);
4918 inode_dio_wait(inode);
4919 btrfs_inode_resume_unlocked_dio(inode);
4920
4921 ret = btrfs_truncate(inode);
4922 if (ret && inode->i_nlink) {
4923 int err;
4924
4925 /*
4926 * failed to truncate, disk_i_size is only adjusted down
4927 * as we remove extents, so it should represent the true
4928 * size of the inode, so reset the in memory size and
4929 * delete our orphan entry.
4930 */
4931 trans = btrfs_join_transaction(root);
4932 if (IS_ERR(trans)) {
4933 btrfs_orphan_del(NULL, inode);
4934 return ret;
4935 }
4936 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4937 err = btrfs_orphan_del(trans, inode);
4938 if (err)
4939 btrfs_abort_transaction(trans, root, err);
4940 btrfs_end_transaction(trans, root);
4941 }
4942 }
4943
4944 return ret;
4945 }
4946
4947 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4948 {
4949 struct inode *inode = d_inode(dentry);
4950 struct btrfs_root *root = BTRFS_I(inode)->root;
4951 int err;
4952
4953 if (btrfs_root_readonly(root))
4954 return -EROFS;
4955
4956 err = inode_change_ok(inode, attr);
4957 if (err)
4958 return err;
4959
4960 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4961 err = btrfs_setsize(inode, attr);
4962 if (err)
4963 return err;
4964 }
4965
4966 if (attr->ia_valid) {
4967 setattr_copy(inode, attr);
4968 inode_inc_iversion(inode);
4969 err = btrfs_dirty_inode(inode);
4970
4971 if (!err && attr->ia_valid & ATTR_MODE)
4972 err = posix_acl_chmod(inode, inode->i_mode);
4973 }
4974
4975 return err;
4976 }
4977
4978 /*
4979 * While truncating the inode pages during eviction, we get the VFS calling
4980 * btrfs_invalidatepage() against each page of the inode. This is slow because
4981 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4982 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4983 * extent_state structures over and over, wasting lots of time.
4984 *
4985 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4986 * those expensive operations on a per page basis and do only the ordered io
4987 * finishing, while we release here the extent_map and extent_state structures,
4988 * without the excessive merging and splitting.
4989 */
4990 static void evict_inode_truncate_pages(struct inode *inode)
4991 {
4992 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4993 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4994 struct rb_node *node;
4995
4996 ASSERT(inode->i_state & I_FREEING);
4997 truncate_inode_pages_final(&inode->i_data);
4998
4999 write_lock(&map_tree->lock);
5000 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5001 struct extent_map *em;
5002
5003 node = rb_first(&map_tree->map);
5004 em = rb_entry(node, struct extent_map, rb_node);
5005 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5006 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5007 remove_extent_mapping(map_tree, em);
5008 free_extent_map(em);
5009 if (need_resched()) {
5010 write_unlock(&map_tree->lock);
5011 cond_resched();
5012 write_lock(&map_tree->lock);
5013 }
5014 }
5015 write_unlock(&map_tree->lock);
5016
5017 /*
5018 * Keep looping until we have no more ranges in the io tree.
5019 * We can have ongoing bios started by readpages (called from readahead)
5020 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5021 * still in progress (unlocked the pages in the bio but did not yet
5022 * unlocked the ranges in the io tree). Therefore this means some
5023 * ranges can still be locked and eviction started because before
5024 * submitting those bios, which are executed by a separate task (work
5025 * queue kthread), inode references (inode->i_count) were not taken
5026 * (which would be dropped in the end io callback of each bio).
5027 * Therefore here we effectively end up waiting for those bios and
5028 * anyone else holding locked ranges without having bumped the inode's
5029 * reference count - if we don't do it, when they access the inode's
5030 * io_tree to unlock a range it may be too late, leading to an
5031 * use-after-free issue.
5032 */
5033 spin_lock(&io_tree->lock);
5034 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5035 struct extent_state *state;
5036 struct extent_state *cached_state = NULL;
5037 u64 start;
5038 u64 end;
5039
5040 node = rb_first(&io_tree->state);
5041 state = rb_entry(node, struct extent_state, rb_node);
5042 start = state->start;
5043 end = state->end;
5044 spin_unlock(&io_tree->lock);
5045
5046 lock_extent_bits(io_tree, start, end, 0, &cached_state);
5047 clear_extent_bit(io_tree, start, end,
5048 EXTENT_LOCKED | EXTENT_DIRTY |
5049 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5050 EXTENT_DEFRAG, 1, 1,
5051 &cached_state, GFP_NOFS);
5052
5053 cond_resched();
5054 spin_lock(&io_tree->lock);
5055 }
5056 spin_unlock(&io_tree->lock);
5057 }
5058
5059 void btrfs_evict_inode(struct inode *inode)
5060 {
5061 struct btrfs_trans_handle *trans;
5062 struct btrfs_root *root = BTRFS_I(inode)->root;
5063 struct btrfs_block_rsv *rsv, *global_rsv;
5064 int steal_from_global = 0;
5065 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5066 int ret;
5067
5068 trace_btrfs_inode_evict(inode);
5069
5070 evict_inode_truncate_pages(inode);
5071
5072 if (inode->i_nlink &&
5073 ((btrfs_root_refs(&root->root_item) != 0 &&
5074 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5075 btrfs_is_free_space_inode(inode)))
5076 goto no_delete;
5077
5078 if (is_bad_inode(inode)) {
5079 btrfs_orphan_del(NULL, inode);
5080 goto no_delete;
5081 }
5082 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5083 if (!special_file(inode->i_mode))
5084 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5085
5086 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5087
5088 if (root->fs_info->log_root_recovering) {
5089 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5090 &BTRFS_I(inode)->runtime_flags));
5091 goto no_delete;
5092 }
5093
5094 if (inode->i_nlink > 0) {
5095 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5096 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5097 goto no_delete;
5098 }
5099
5100 ret = btrfs_commit_inode_delayed_inode(inode);
5101 if (ret) {
5102 btrfs_orphan_del(NULL, inode);
5103 goto no_delete;
5104 }
5105
5106 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5107 if (!rsv) {
5108 btrfs_orphan_del(NULL, inode);
5109 goto no_delete;
5110 }
5111 rsv->size = min_size;
5112 rsv->failfast = 1;
5113 global_rsv = &root->fs_info->global_block_rsv;
5114
5115 btrfs_i_size_write(inode, 0);
5116
5117 /*
5118 * This is a bit simpler than btrfs_truncate since we've already
5119 * reserved our space for our orphan item in the unlink, so we just
5120 * need to reserve some slack space in case we add bytes and update
5121 * inode item when doing the truncate.
5122 */
5123 while (1) {
5124 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5125 BTRFS_RESERVE_FLUSH_LIMIT);
5126
5127 /*
5128 * Try and steal from the global reserve since we will
5129 * likely not use this space anyway, we want to try as
5130 * hard as possible to get this to work.
5131 */
5132 if (ret)
5133 steal_from_global++;
5134 else
5135 steal_from_global = 0;
5136 ret = 0;
5137
5138 /*
5139 * steal_from_global == 0: we reserved stuff, hooray!
5140 * steal_from_global == 1: we didn't reserve stuff, boo!
5141 * steal_from_global == 2: we've committed, still not a lot of
5142 * room but maybe we'll have room in the global reserve this
5143 * time.
5144 * steal_from_global == 3: abandon all hope!
5145 */
5146 if (steal_from_global > 2) {
5147 btrfs_warn(root->fs_info,
5148 "Could not get space for a delete, will truncate on mount %d",
5149 ret);
5150 btrfs_orphan_del(NULL, inode);
5151 btrfs_free_block_rsv(root, rsv);
5152 goto no_delete;
5153 }
5154
5155 trans = btrfs_join_transaction(root);
5156 if (IS_ERR(trans)) {
5157 btrfs_orphan_del(NULL, inode);
5158 btrfs_free_block_rsv(root, rsv);
5159 goto no_delete;
5160 }
5161
5162 /*
5163 * We can't just steal from the global reserve, we need tomake
5164 * sure there is room to do it, if not we need to commit and try
5165 * again.
5166 */
5167 if (steal_from_global) {
5168 if (!btrfs_check_space_for_delayed_refs(trans, root))
5169 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5170 min_size);
5171 else
5172 ret = -ENOSPC;
5173 }
5174
5175 /*
5176 * Couldn't steal from the global reserve, we have too much
5177 * pending stuff built up, commit the transaction and try it
5178 * again.
5179 */
5180 if (ret) {
5181 ret = btrfs_commit_transaction(trans, root);
5182 if (ret) {
5183 btrfs_orphan_del(NULL, inode);
5184 btrfs_free_block_rsv(root, rsv);
5185 goto no_delete;
5186 }
5187 continue;
5188 } else {
5189 steal_from_global = 0;
5190 }
5191
5192 trans->block_rsv = rsv;
5193
5194 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5195 if (ret != -ENOSPC && ret != -EAGAIN)
5196 break;
5197
5198 trans->block_rsv = &root->fs_info->trans_block_rsv;
5199 btrfs_end_transaction(trans, root);
5200 trans = NULL;
5201 btrfs_btree_balance_dirty(root);
5202 }
5203
5204 btrfs_free_block_rsv(root, rsv);
5205
5206 /*
5207 * Errors here aren't a big deal, it just means we leave orphan items
5208 * in the tree. They will be cleaned up on the next mount.
5209 */
5210 if (ret == 0) {
5211 trans->block_rsv = root->orphan_block_rsv;
5212 btrfs_orphan_del(trans, inode);
5213 } else {
5214 btrfs_orphan_del(NULL, inode);
5215 }
5216
5217 trans->block_rsv = &root->fs_info->trans_block_rsv;
5218 if (!(root == root->fs_info->tree_root ||
5219 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5220 btrfs_return_ino(root, btrfs_ino(inode));
5221
5222 btrfs_end_transaction(trans, root);
5223 btrfs_btree_balance_dirty(root);
5224 no_delete:
5225 btrfs_remove_delayed_node(inode);
5226 clear_inode(inode);
5227 return;
5228 }
5229
5230 /*
5231 * this returns the key found in the dir entry in the location pointer.
5232 * If no dir entries were found, location->objectid is 0.
5233 */
5234 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5235 struct btrfs_key *location)
5236 {
5237 const char *name = dentry->d_name.name;
5238 int namelen = dentry->d_name.len;
5239 struct btrfs_dir_item *di;
5240 struct btrfs_path *path;
5241 struct btrfs_root *root = BTRFS_I(dir)->root;
5242 int ret = 0;
5243
5244 path = btrfs_alloc_path();
5245 if (!path)
5246 return -ENOMEM;
5247
5248 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5249 namelen, 0);
5250 if (IS_ERR(di))
5251 ret = PTR_ERR(di);
5252
5253 if (IS_ERR_OR_NULL(di))
5254 goto out_err;
5255
5256 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5257 out:
5258 btrfs_free_path(path);
5259 return ret;
5260 out_err:
5261 location->objectid = 0;
5262 goto out;
5263 }
5264
5265 /*
5266 * when we hit a tree root in a directory, the btrfs part of the inode
5267 * needs to be changed to reflect the root directory of the tree root. This
5268 * is kind of like crossing a mount point.
5269 */
5270 static int fixup_tree_root_location(struct btrfs_root *root,
5271 struct inode *dir,
5272 struct dentry *dentry,
5273 struct btrfs_key *location,
5274 struct btrfs_root **sub_root)
5275 {
5276 struct btrfs_path *path;
5277 struct btrfs_root *new_root;
5278 struct btrfs_root_ref *ref;
5279 struct extent_buffer *leaf;
5280 struct btrfs_key key;
5281 int ret;
5282 int err = 0;
5283
5284 path = btrfs_alloc_path();
5285 if (!path) {
5286 err = -ENOMEM;
5287 goto out;
5288 }
5289
5290 err = -ENOENT;
5291 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5292 key.type = BTRFS_ROOT_REF_KEY;
5293 key.offset = location->objectid;
5294
5295 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5296 0, 0);
5297 if (ret) {
5298 if (ret < 0)
5299 err = ret;
5300 goto out;
5301 }
5302
5303 leaf = path->nodes[0];
5304 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5305 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5306 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5307 goto out;
5308
5309 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5310 (unsigned long)(ref + 1),
5311 dentry->d_name.len);
5312 if (ret)
5313 goto out;
5314
5315 btrfs_release_path(path);
5316
5317 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5318 if (IS_ERR(new_root)) {
5319 err = PTR_ERR(new_root);
5320 goto out;
5321 }
5322
5323 *sub_root = new_root;
5324 location->objectid = btrfs_root_dirid(&new_root->root_item);
5325 location->type = BTRFS_INODE_ITEM_KEY;
5326 location->offset = 0;
5327 err = 0;
5328 out:
5329 btrfs_free_path(path);
5330 return err;
5331 }
5332
5333 static void inode_tree_add(struct inode *inode)
5334 {
5335 struct btrfs_root *root = BTRFS_I(inode)->root;
5336 struct btrfs_inode *entry;
5337 struct rb_node **p;
5338 struct rb_node *parent;
5339 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5340 u64 ino = btrfs_ino(inode);
5341
5342 if (inode_unhashed(inode))
5343 return;
5344 parent = NULL;
5345 spin_lock(&root->inode_lock);
5346 p = &root->inode_tree.rb_node;
5347 while (*p) {
5348 parent = *p;
5349 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5350
5351 if (ino < btrfs_ino(&entry->vfs_inode))
5352 p = &parent->rb_left;
5353 else if (ino > btrfs_ino(&entry->vfs_inode))
5354 p = &parent->rb_right;
5355 else {
5356 WARN_ON(!(entry->vfs_inode.i_state &
5357 (I_WILL_FREE | I_FREEING)));
5358 rb_replace_node(parent, new, &root->inode_tree);
5359 RB_CLEAR_NODE(parent);
5360 spin_unlock(&root->inode_lock);
5361 return;
5362 }
5363 }
5364 rb_link_node(new, parent, p);
5365 rb_insert_color(new, &root->inode_tree);
5366 spin_unlock(&root->inode_lock);
5367 }
5368
5369 static void inode_tree_del(struct inode *inode)
5370 {
5371 struct btrfs_root *root = BTRFS_I(inode)->root;
5372 int empty = 0;
5373
5374 spin_lock(&root->inode_lock);
5375 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5376 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5377 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5378 empty = RB_EMPTY_ROOT(&root->inode_tree);
5379 }
5380 spin_unlock(&root->inode_lock);
5381
5382 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5383 synchronize_srcu(&root->fs_info->subvol_srcu);
5384 spin_lock(&root->inode_lock);
5385 empty = RB_EMPTY_ROOT(&root->inode_tree);
5386 spin_unlock(&root->inode_lock);
5387 if (empty)
5388 btrfs_add_dead_root(root);
5389 }
5390 }
5391
5392 void btrfs_invalidate_inodes(struct btrfs_root *root)
5393 {
5394 struct rb_node *node;
5395 struct rb_node *prev;
5396 struct btrfs_inode *entry;
5397 struct inode *inode;
5398 u64 objectid = 0;
5399
5400 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5401 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5402
5403 spin_lock(&root->inode_lock);
5404 again:
5405 node = root->inode_tree.rb_node;
5406 prev = NULL;
5407 while (node) {
5408 prev = node;
5409 entry = rb_entry(node, struct btrfs_inode, rb_node);
5410
5411 if (objectid < btrfs_ino(&entry->vfs_inode))
5412 node = node->rb_left;
5413 else if (objectid > btrfs_ino(&entry->vfs_inode))
5414 node = node->rb_right;
5415 else
5416 break;
5417 }
5418 if (!node) {
5419 while (prev) {
5420 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5421 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5422 node = prev;
5423 break;
5424 }
5425 prev = rb_next(prev);
5426 }
5427 }
5428 while (node) {
5429 entry = rb_entry(node, struct btrfs_inode, rb_node);
5430 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5431 inode = igrab(&entry->vfs_inode);
5432 if (inode) {
5433 spin_unlock(&root->inode_lock);
5434 if (atomic_read(&inode->i_count) > 1)
5435 d_prune_aliases(inode);
5436 /*
5437 * btrfs_drop_inode will have it removed from
5438 * the inode cache when its usage count
5439 * hits zero.
5440 */
5441 iput(inode);
5442 cond_resched();
5443 spin_lock(&root->inode_lock);
5444 goto again;
5445 }
5446
5447 if (cond_resched_lock(&root->inode_lock))
5448 goto again;
5449
5450 node = rb_next(node);
5451 }
5452 spin_unlock(&root->inode_lock);
5453 }
5454
5455 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5456 {
5457 struct btrfs_iget_args *args = p;
5458 inode->i_ino = args->location->objectid;
5459 memcpy(&BTRFS_I(inode)->location, args->location,
5460 sizeof(*args->location));
5461 BTRFS_I(inode)->root = args->root;
5462 return 0;
5463 }
5464
5465 static int btrfs_find_actor(struct inode *inode, void *opaque)
5466 {
5467 struct btrfs_iget_args *args = opaque;
5468 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5469 args->root == BTRFS_I(inode)->root;
5470 }
5471
5472 static struct inode *btrfs_iget_locked(struct super_block *s,
5473 struct btrfs_key *location,
5474 struct btrfs_root *root)
5475 {
5476 struct inode *inode;
5477 struct btrfs_iget_args args;
5478 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5479
5480 args.location = location;
5481 args.root = root;
5482
5483 inode = iget5_locked(s, hashval, btrfs_find_actor,
5484 btrfs_init_locked_inode,
5485 (void *)&args);
5486 return inode;
5487 }
5488
5489 /* Get an inode object given its location and corresponding root.
5490 * Returns in *is_new if the inode was read from disk
5491 */
5492 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5493 struct btrfs_root *root, int *new)
5494 {
5495 struct inode *inode;
5496
5497 inode = btrfs_iget_locked(s, location, root);
5498 if (!inode)
5499 return ERR_PTR(-ENOMEM);
5500
5501 if (inode->i_state & I_NEW) {
5502 btrfs_read_locked_inode(inode);
5503 if (!is_bad_inode(inode)) {
5504 inode_tree_add(inode);
5505 unlock_new_inode(inode);
5506 if (new)
5507 *new = 1;
5508 } else {
5509 unlock_new_inode(inode);
5510 iput(inode);
5511 inode = ERR_PTR(-ESTALE);
5512 }
5513 }
5514
5515 return inode;
5516 }
5517
5518 static struct inode *new_simple_dir(struct super_block *s,
5519 struct btrfs_key *key,
5520 struct btrfs_root *root)
5521 {
5522 struct inode *inode = new_inode(s);
5523
5524 if (!inode)
5525 return ERR_PTR(-ENOMEM);
5526
5527 BTRFS_I(inode)->root = root;
5528 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5529 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5530
5531 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5532 inode->i_op = &btrfs_dir_ro_inode_operations;
5533 inode->i_fop = &simple_dir_operations;
5534 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5535 inode->i_mtime = CURRENT_TIME;
5536 inode->i_atime = inode->i_mtime;
5537 inode->i_ctime = inode->i_mtime;
5538 BTRFS_I(inode)->i_otime = inode->i_mtime;
5539
5540 return inode;
5541 }
5542
5543 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5544 {
5545 struct inode *inode;
5546 struct btrfs_root *root = BTRFS_I(dir)->root;
5547 struct btrfs_root *sub_root = root;
5548 struct btrfs_key location;
5549 int index;
5550 int ret = 0;
5551
5552 if (dentry->d_name.len > BTRFS_NAME_LEN)
5553 return ERR_PTR(-ENAMETOOLONG);
5554
5555 ret = btrfs_inode_by_name(dir, dentry, &location);
5556 if (ret < 0)
5557 return ERR_PTR(ret);
5558
5559 if (location.objectid == 0)
5560 return ERR_PTR(-ENOENT);
5561
5562 if (location.type == BTRFS_INODE_ITEM_KEY) {
5563 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5564 return inode;
5565 }
5566
5567 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5568
5569 index = srcu_read_lock(&root->fs_info->subvol_srcu);
5570 ret = fixup_tree_root_location(root, dir, dentry,
5571 &location, &sub_root);
5572 if (ret < 0) {
5573 if (ret != -ENOENT)
5574 inode = ERR_PTR(ret);
5575 else
5576 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5577 } else {
5578 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5579 }
5580 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5581
5582 if (!IS_ERR(inode) && root != sub_root) {
5583 down_read(&root->fs_info->cleanup_work_sem);
5584 if (!(inode->i_sb->s_flags & MS_RDONLY))
5585 ret = btrfs_orphan_cleanup(sub_root);
5586 up_read(&root->fs_info->cleanup_work_sem);
5587 if (ret) {
5588 iput(inode);
5589 inode = ERR_PTR(ret);
5590 }
5591 }
5592
5593 return inode;
5594 }
5595
5596 static int btrfs_dentry_delete(const struct dentry *dentry)
5597 {
5598 struct btrfs_root *root;
5599 struct inode *inode = d_inode(dentry);
5600
5601 if (!inode && !IS_ROOT(dentry))
5602 inode = d_inode(dentry->d_parent);
5603
5604 if (inode) {
5605 root = BTRFS_I(inode)->root;
5606 if (btrfs_root_refs(&root->root_item) == 0)
5607 return 1;
5608
5609 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5610 return 1;
5611 }
5612 return 0;
5613 }
5614
5615 static void btrfs_dentry_release(struct dentry *dentry)
5616 {
5617 kfree(dentry->d_fsdata);
5618 }
5619
5620 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5621 unsigned int flags)
5622 {
5623 struct inode *inode;
5624
5625 inode = btrfs_lookup_dentry(dir, dentry);
5626 if (IS_ERR(inode)) {
5627 if (PTR_ERR(inode) == -ENOENT)
5628 inode = NULL;
5629 else
5630 return ERR_CAST(inode);
5631 }
5632
5633 return d_splice_alias(inode, dentry);
5634 }
5635
5636 unsigned char btrfs_filetype_table[] = {
5637 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5638 };
5639
5640 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5641 {
5642 struct inode *inode = file_inode(file);
5643 struct btrfs_root *root = BTRFS_I(inode)->root;
5644 struct btrfs_item *item;
5645 struct btrfs_dir_item *di;
5646 struct btrfs_key key;
5647 struct btrfs_key found_key;
5648 struct btrfs_path *path;
5649 struct list_head ins_list;
5650 struct list_head del_list;
5651 int ret;
5652 struct extent_buffer *leaf;
5653 int slot;
5654 unsigned char d_type;
5655 int over = 0;
5656 u32 di_cur;
5657 u32 di_total;
5658 u32 di_len;
5659 int key_type = BTRFS_DIR_INDEX_KEY;
5660 char tmp_name[32];
5661 char *name_ptr;
5662 int name_len;
5663 int is_curr = 0; /* ctx->pos points to the current index? */
5664
5665 /* FIXME, use a real flag for deciding about the key type */
5666 if (root->fs_info->tree_root == root)
5667 key_type = BTRFS_DIR_ITEM_KEY;
5668
5669 if (!dir_emit_dots(file, ctx))
5670 return 0;
5671
5672 path = btrfs_alloc_path();
5673 if (!path)
5674 return -ENOMEM;
5675
5676 path->reada = 1;
5677
5678 if (key_type == BTRFS_DIR_INDEX_KEY) {
5679 INIT_LIST_HEAD(&ins_list);
5680 INIT_LIST_HEAD(&del_list);
5681 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5682 }
5683
5684 key.type = key_type;
5685 key.offset = ctx->pos;
5686 key.objectid = btrfs_ino(inode);
5687
5688 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5689 if (ret < 0)
5690 goto err;
5691
5692 while (1) {
5693 leaf = path->nodes[0];
5694 slot = path->slots[0];
5695 if (slot >= btrfs_header_nritems(leaf)) {
5696 ret = btrfs_next_leaf(root, path);
5697 if (ret < 0)
5698 goto err;
5699 else if (ret > 0)
5700 break;
5701 continue;
5702 }
5703
5704 item = btrfs_item_nr(slot);
5705 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5706
5707 if (found_key.objectid != key.objectid)
5708 break;
5709 if (found_key.type != key_type)
5710 break;
5711 if (found_key.offset < ctx->pos)
5712 goto next;
5713 if (key_type == BTRFS_DIR_INDEX_KEY &&
5714 btrfs_should_delete_dir_index(&del_list,
5715 found_key.offset))
5716 goto next;
5717
5718 ctx->pos = found_key.offset;
5719 is_curr = 1;
5720
5721 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5722 di_cur = 0;
5723 di_total = btrfs_item_size(leaf, item);
5724
5725 while (di_cur < di_total) {
5726 struct btrfs_key location;
5727
5728 if (verify_dir_item(root, leaf, di))
5729 break;
5730
5731 name_len = btrfs_dir_name_len(leaf, di);
5732 if (name_len <= sizeof(tmp_name)) {
5733 name_ptr = tmp_name;
5734 } else {
5735 name_ptr = kmalloc(name_len, GFP_NOFS);
5736 if (!name_ptr) {
5737 ret = -ENOMEM;
5738 goto err;
5739 }
5740 }
5741 read_extent_buffer(leaf, name_ptr,
5742 (unsigned long)(di + 1), name_len);
5743
5744 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5745 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5746
5747
5748 /* is this a reference to our own snapshot? If so
5749 * skip it.
5750 *
5751 * In contrast to old kernels, we insert the snapshot's
5752 * dir item and dir index after it has been created, so
5753 * we won't find a reference to our own snapshot. We
5754 * still keep the following code for backward
5755 * compatibility.
5756 */
5757 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5758 location.objectid == root->root_key.objectid) {
5759 over = 0;
5760 goto skip;
5761 }
5762 over = !dir_emit(ctx, name_ptr, name_len,
5763 location.objectid, d_type);
5764
5765 skip:
5766 if (name_ptr != tmp_name)
5767 kfree(name_ptr);
5768
5769 if (over)
5770 goto nopos;
5771 di_len = btrfs_dir_name_len(leaf, di) +
5772 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5773 di_cur += di_len;
5774 di = (struct btrfs_dir_item *)((char *)di + di_len);
5775 }
5776 next:
5777 path->slots[0]++;
5778 }
5779
5780 if (key_type == BTRFS_DIR_INDEX_KEY) {
5781 if (is_curr)
5782 ctx->pos++;
5783 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5784 if (ret)
5785 goto nopos;
5786 }
5787
5788 /* Reached end of directory/root. Bump pos past the last item. */
5789 ctx->pos++;
5790
5791 /*
5792 * Stop new entries from being returned after we return the last
5793 * entry.
5794 *
5795 * New directory entries are assigned a strictly increasing
5796 * offset. This means that new entries created during readdir
5797 * are *guaranteed* to be seen in the future by that readdir.
5798 * This has broken buggy programs which operate on names as
5799 * they're returned by readdir. Until we re-use freed offsets
5800 * we have this hack to stop new entries from being returned
5801 * under the assumption that they'll never reach this huge
5802 * offset.
5803 *
5804 * This is being careful not to overflow 32bit loff_t unless the
5805 * last entry requires it because doing so has broken 32bit apps
5806 * in the past.
5807 */
5808 if (key_type == BTRFS_DIR_INDEX_KEY) {
5809 if (ctx->pos >= INT_MAX)
5810 ctx->pos = LLONG_MAX;
5811 else
5812 ctx->pos = INT_MAX;
5813 }
5814 nopos:
5815 ret = 0;
5816 err:
5817 if (key_type == BTRFS_DIR_INDEX_KEY)
5818 btrfs_put_delayed_items(&ins_list, &del_list);
5819 btrfs_free_path(path);
5820 return ret;
5821 }
5822
5823 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5824 {
5825 struct btrfs_root *root = BTRFS_I(inode)->root;
5826 struct btrfs_trans_handle *trans;
5827 int ret = 0;
5828 bool nolock = false;
5829
5830 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5831 return 0;
5832
5833 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5834 nolock = true;
5835
5836 if (wbc->sync_mode == WB_SYNC_ALL) {
5837 if (nolock)
5838 trans = btrfs_join_transaction_nolock(root);
5839 else
5840 trans = btrfs_join_transaction(root);
5841 if (IS_ERR(trans))
5842 return PTR_ERR(trans);
5843 ret = btrfs_commit_transaction(trans, root);
5844 }
5845 return ret;
5846 }
5847
5848 /*
5849 * This is somewhat expensive, updating the tree every time the
5850 * inode changes. But, it is most likely to find the inode in cache.
5851 * FIXME, needs more benchmarking...there are no reasons other than performance
5852 * to keep or drop this code.
5853 */
5854 static int btrfs_dirty_inode(struct inode *inode)
5855 {
5856 struct btrfs_root *root = BTRFS_I(inode)->root;
5857 struct btrfs_trans_handle *trans;
5858 int ret;
5859
5860 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5861 return 0;
5862
5863 trans = btrfs_join_transaction(root);
5864 if (IS_ERR(trans))
5865 return PTR_ERR(trans);
5866
5867 ret = btrfs_update_inode(trans, root, inode);
5868 if (ret && ret == -ENOSPC) {
5869 /* whoops, lets try again with the full transaction */
5870 btrfs_end_transaction(trans, root);
5871 trans = btrfs_start_transaction(root, 1);
5872 if (IS_ERR(trans))
5873 return PTR_ERR(trans);
5874
5875 ret = btrfs_update_inode(trans, root, inode);
5876 }
5877 btrfs_end_transaction(trans, root);
5878 if (BTRFS_I(inode)->delayed_node)
5879 btrfs_balance_delayed_items(root);
5880
5881 return ret;
5882 }
5883
5884 /*
5885 * This is a copy of file_update_time. We need this so we can return error on
5886 * ENOSPC for updating the inode in the case of file write and mmap writes.
5887 */
5888 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5889 int flags)
5890 {
5891 struct btrfs_root *root = BTRFS_I(inode)->root;
5892
5893 if (btrfs_root_readonly(root))
5894 return -EROFS;
5895
5896 if (flags & S_VERSION)
5897 inode_inc_iversion(inode);
5898 if (flags & S_CTIME)
5899 inode->i_ctime = *now;
5900 if (flags & S_MTIME)
5901 inode->i_mtime = *now;
5902 if (flags & S_ATIME)
5903 inode->i_atime = *now;
5904 return btrfs_dirty_inode(inode);
5905 }
5906
5907 /*
5908 * find the highest existing sequence number in a directory
5909 * and then set the in-memory index_cnt variable to reflect
5910 * free sequence numbers
5911 */
5912 static int btrfs_set_inode_index_count(struct inode *inode)
5913 {
5914 struct btrfs_root *root = BTRFS_I(inode)->root;
5915 struct btrfs_key key, found_key;
5916 struct btrfs_path *path;
5917 struct extent_buffer *leaf;
5918 int ret;
5919
5920 key.objectid = btrfs_ino(inode);
5921 key.type = BTRFS_DIR_INDEX_KEY;
5922 key.offset = (u64)-1;
5923
5924 path = btrfs_alloc_path();
5925 if (!path)
5926 return -ENOMEM;
5927
5928 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5929 if (ret < 0)
5930 goto out;
5931 /* FIXME: we should be able to handle this */
5932 if (ret == 0)
5933 goto out;
5934 ret = 0;
5935
5936 /*
5937 * MAGIC NUMBER EXPLANATION:
5938 * since we search a directory based on f_pos we have to start at 2
5939 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5940 * else has to start at 2
5941 */
5942 if (path->slots[0] == 0) {
5943 BTRFS_I(inode)->index_cnt = 2;
5944 goto out;
5945 }
5946
5947 path->slots[0]--;
5948
5949 leaf = path->nodes[0];
5950 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5951
5952 if (found_key.objectid != btrfs_ino(inode) ||
5953 found_key.type != BTRFS_DIR_INDEX_KEY) {
5954 BTRFS_I(inode)->index_cnt = 2;
5955 goto out;
5956 }
5957
5958 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5959 out:
5960 btrfs_free_path(path);
5961 return ret;
5962 }
5963
5964 /*
5965 * helper to find a free sequence number in a given directory. This current
5966 * code is very simple, later versions will do smarter things in the btree
5967 */
5968 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5969 {
5970 int ret = 0;
5971
5972 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5973 ret = btrfs_inode_delayed_dir_index_count(dir);
5974 if (ret) {
5975 ret = btrfs_set_inode_index_count(dir);
5976 if (ret)
5977 return ret;
5978 }
5979 }
5980
5981 *index = BTRFS_I(dir)->index_cnt;
5982 BTRFS_I(dir)->index_cnt++;
5983
5984 return ret;
5985 }
5986
5987 static int btrfs_insert_inode_locked(struct inode *inode)
5988 {
5989 struct btrfs_iget_args args;
5990 args.location = &BTRFS_I(inode)->location;
5991 args.root = BTRFS_I(inode)->root;
5992
5993 return insert_inode_locked4(inode,
5994 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5995 btrfs_find_actor, &args);
5996 }
5997
5998 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5999 struct btrfs_root *root,
6000 struct inode *dir,
6001 const char *name, int name_len,
6002 u64 ref_objectid, u64 objectid,
6003 umode_t mode, u64 *index)
6004 {
6005 struct inode *inode;
6006 struct btrfs_inode_item *inode_item;
6007 struct btrfs_key *location;
6008 struct btrfs_path *path;
6009 struct btrfs_inode_ref *ref;
6010 struct btrfs_key key[2];
6011 u32 sizes[2];
6012 int nitems = name ? 2 : 1;
6013 unsigned long ptr;
6014 int ret;
6015
6016 path = btrfs_alloc_path();
6017 if (!path)
6018 return ERR_PTR(-ENOMEM);
6019
6020 inode = new_inode(root->fs_info->sb);
6021 if (!inode) {
6022 btrfs_free_path(path);
6023 return ERR_PTR(-ENOMEM);
6024 }
6025
6026 /*
6027 * O_TMPFILE, set link count to 0, so that after this point,
6028 * we fill in an inode item with the correct link count.
6029 */
6030 if (!name)
6031 set_nlink(inode, 0);
6032
6033 /*
6034 * we have to initialize this early, so we can reclaim the inode
6035 * number if we fail afterwards in this function.
6036 */
6037 inode->i_ino = objectid;
6038
6039 if (dir && name) {
6040 trace_btrfs_inode_request(dir);
6041
6042 ret = btrfs_set_inode_index(dir, index);
6043 if (ret) {
6044 btrfs_free_path(path);
6045 iput(inode);
6046 return ERR_PTR(ret);
6047 }
6048 } else if (dir) {
6049 *index = 0;
6050 }
6051 /*
6052 * index_cnt is ignored for everything but a dir,
6053 * btrfs_get_inode_index_count has an explanation for the magic
6054 * number
6055 */
6056 BTRFS_I(inode)->index_cnt = 2;
6057 BTRFS_I(inode)->dir_index = *index;
6058 BTRFS_I(inode)->root = root;
6059 BTRFS_I(inode)->generation = trans->transid;
6060 inode->i_generation = BTRFS_I(inode)->generation;
6061
6062 /*
6063 * We could have gotten an inode number from somebody who was fsynced
6064 * and then removed in this same transaction, so let's just set full
6065 * sync since it will be a full sync anyway and this will blow away the
6066 * old info in the log.
6067 */
6068 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6069
6070 key[0].objectid = objectid;
6071 key[0].type = BTRFS_INODE_ITEM_KEY;
6072 key[0].offset = 0;
6073
6074 sizes[0] = sizeof(struct btrfs_inode_item);
6075
6076 if (name) {
6077 /*
6078 * Start new inodes with an inode_ref. This is slightly more
6079 * efficient for small numbers of hard links since they will
6080 * be packed into one item. Extended refs will kick in if we
6081 * add more hard links than can fit in the ref item.
6082 */
6083 key[1].objectid = objectid;
6084 key[1].type = BTRFS_INODE_REF_KEY;
6085 key[1].offset = ref_objectid;
6086
6087 sizes[1] = name_len + sizeof(*ref);
6088 }
6089
6090 location = &BTRFS_I(inode)->location;
6091 location->objectid = objectid;
6092 location->offset = 0;
6093 location->type = BTRFS_INODE_ITEM_KEY;
6094
6095 ret = btrfs_insert_inode_locked(inode);
6096 if (ret < 0)
6097 goto fail;
6098
6099 path->leave_spinning = 1;
6100 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6101 if (ret != 0)
6102 goto fail_unlock;
6103
6104 inode_init_owner(inode, dir, mode);
6105 inode_set_bytes(inode, 0);
6106
6107 inode->i_mtime = CURRENT_TIME;
6108 inode->i_atime = inode->i_mtime;
6109 inode->i_ctime = inode->i_mtime;
6110 BTRFS_I(inode)->i_otime = inode->i_mtime;
6111
6112 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6113 struct btrfs_inode_item);
6114 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6115 sizeof(*inode_item));
6116 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6117
6118 if (name) {
6119 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6120 struct btrfs_inode_ref);
6121 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6122 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6123 ptr = (unsigned long)(ref + 1);
6124 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6125 }
6126
6127 btrfs_mark_buffer_dirty(path->nodes[0]);
6128 btrfs_free_path(path);
6129
6130 btrfs_inherit_iflags(inode, dir);
6131
6132 if (S_ISREG(mode)) {
6133 if (btrfs_test_opt(root, NODATASUM))
6134 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6135 if (btrfs_test_opt(root, NODATACOW))
6136 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6137 BTRFS_INODE_NODATASUM;
6138 }
6139
6140 inode_tree_add(inode);
6141
6142 trace_btrfs_inode_new(inode);
6143 btrfs_set_inode_last_trans(trans, inode);
6144
6145 btrfs_update_root_times(trans, root);
6146
6147 ret = btrfs_inode_inherit_props(trans, inode, dir);
6148 if (ret)
6149 btrfs_err(root->fs_info,
6150 "error inheriting props for ino %llu (root %llu): %d",
6151 btrfs_ino(inode), root->root_key.objectid, ret);
6152
6153 return inode;
6154
6155 fail_unlock:
6156 unlock_new_inode(inode);
6157 fail:
6158 if (dir && name)
6159 BTRFS_I(dir)->index_cnt--;
6160 btrfs_free_path(path);
6161 iput(inode);
6162 return ERR_PTR(ret);
6163 }
6164
6165 static inline u8 btrfs_inode_type(struct inode *inode)
6166 {
6167 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6168 }
6169
6170 /*
6171 * utility function to add 'inode' into 'parent_inode' with
6172 * a give name and a given sequence number.
6173 * if 'add_backref' is true, also insert a backref from the
6174 * inode to the parent directory.
6175 */
6176 int btrfs_add_link(struct btrfs_trans_handle *trans,
6177 struct inode *parent_inode, struct inode *inode,
6178 const char *name, int name_len, int add_backref, u64 index)
6179 {
6180 int ret = 0;
6181 struct btrfs_key key;
6182 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6183 u64 ino = btrfs_ino(inode);
6184 u64 parent_ino = btrfs_ino(parent_inode);
6185
6186 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6187 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6188 } else {
6189 key.objectid = ino;
6190 key.type = BTRFS_INODE_ITEM_KEY;
6191 key.offset = 0;
6192 }
6193
6194 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6195 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6196 key.objectid, root->root_key.objectid,
6197 parent_ino, index, name, name_len);
6198 } else if (add_backref) {
6199 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6200 parent_ino, index);
6201 }
6202
6203 /* Nothing to clean up yet */
6204 if (ret)
6205 return ret;
6206
6207 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6208 parent_inode, &key,
6209 btrfs_inode_type(inode), index);
6210 if (ret == -EEXIST || ret == -EOVERFLOW)
6211 goto fail_dir_item;
6212 else if (ret) {
6213 btrfs_abort_transaction(trans, root, ret);
6214 return ret;
6215 }
6216
6217 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6218 name_len * 2);
6219 inode_inc_iversion(parent_inode);
6220 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6221 ret = btrfs_update_inode(trans, root, parent_inode);
6222 if (ret)
6223 btrfs_abort_transaction(trans, root, ret);
6224 return ret;
6225
6226 fail_dir_item:
6227 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6228 u64 local_index;
6229 int err;
6230 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6231 key.objectid, root->root_key.objectid,
6232 parent_ino, &local_index, name, name_len);
6233
6234 } else if (add_backref) {
6235 u64 local_index;
6236 int err;
6237
6238 err = btrfs_del_inode_ref(trans, root, name, name_len,
6239 ino, parent_ino, &local_index);
6240 }
6241 return ret;
6242 }
6243
6244 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6245 struct inode *dir, struct dentry *dentry,
6246 struct inode *inode, int backref, u64 index)
6247 {
6248 int err = btrfs_add_link(trans, dir, inode,
6249 dentry->d_name.name, dentry->d_name.len,
6250 backref, index);
6251 if (err > 0)
6252 err = -EEXIST;
6253 return err;
6254 }
6255
6256 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6257 umode_t mode, dev_t rdev)
6258 {
6259 struct btrfs_trans_handle *trans;
6260 struct btrfs_root *root = BTRFS_I(dir)->root;
6261 struct inode *inode = NULL;
6262 int err;
6263 int drop_inode = 0;
6264 u64 objectid;
6265 u64 index = 0;
6266
6267 if (!new_valid_dev(rdev))
6268 return -EINVAL;
6269
6270 /*
6271 * 2 for inode item and ref
6272 * 2 for dir items
6273 * 1 for xattr if selinux is on
6274 */
6275 trans = btrfs_start_transaction(root, 5);
6276 if (IS_ERR(trans))
6277 return PTR_ERR(trans);
6278
6279 err = btrfs_find_free_ino(root, &objectid);
6280 if (err)
6281 goto out_unlock;
6282
6283 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6284 dentry->d_name.len, btrfs_ino(dir), objectid,
6285 mode, &index);
6286 if (IS_ERR(inode)) {
6287 err = PTR_ERR(inode);
6288 goto out_unlock;
6289 }
6290
6291 /*
6292 * If the active LSM wants to access the inode during
6293 * d_instantiate it needs these. Smack checks to see
6294 * if the filesystem supports xattrs by looking at the
6295 * ops vector.
6296 */
6297 inode->i_op = &btrfs_special_inode_operations;
6298 init_special_inode(inode, inode->i_mode, rdev);
6299
6300 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6301 if (err)
6302 goto out_unlock_inode;
6303
6304 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6305 if (err) {
6306 goto out_unlock_inode;
6307 } else {
6308 btrfs_update_inode(trans, root, inode);
6309 unlock_new_inode(inode);
6310 d_instantiate(dentry, inode);
6311 }
6312
6313 out_unlock:
6314 btrfs_end_transaction(trans, root);
6315 btrfs_balance_delayed_items(root);
6316 btrfs_btree_balance_dirty(root);
6317 if (drop_inode) {
6318 inode_dec_link_count(inode);
6319 iput(inode);
6320 }
6321 return err;
6322
6323 out_unlock_inode:
6324 drop_inode = 1;
6325 unlock_new_inode(inode);
6326 goto out_unlock;
6327
6328 }
6329
6330 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6331 umode_t mode, bool excl)
6332 {
6333 struct btrfs_trans_handle *trans;
6334 struct btrfs_root *root = BTRFS_I(dir)->root;
6335 struct inode *inode = NULL;
6336 int drop_inode_on_err = 0;
6337 int err;
6338 u64 objectid;
6339 u64 index = 0;
6340
6341 /*
6342 * 2 for inode item and ref
6343 * 2 for dir items
6344 * 1 for xattr if selinux is on
6345 */
6346 trans = btrfs_start_transaction(root, 5);
6347 if (IS_ERR(trans))
6348 return PTR_ERR(trans);
6349
6350 err = btrfs_find_free_ino(root, &objectid);
6351 if (err)
6352 goto out_unlock;
6353
6354 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6355 dentry->d_name.len, btrfs_ino(dir), objectid,
6356 mode, &index);
6357 if (IS_ERR(inode)) {
6358 err = PTR_ERR(inode);
6359 goto out_unlock;
6360 }
6361 drop_inode_on_err = 1;
6362 /*
6363 * If the active LSM wants to access the inode during
6364 * d_instantiate it needs these. Smack checks to see
6365 * if the filesystem supports xattrs by looking at the
6366 * ops vector.
6367 */
6368 inode->i_fop = &btrfs_file_operations;
6369 inode->i_op = &btrfs_file_inode_operations;
6370 inode->i_mapping->a_ops = &btrfs_aops;
6371
6372 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6373 if (err)
6374 goto out_unlock_inode;
6375
6376 err = btrfs_update_inode(trans, root, inode);
6377 if (err)
6378 goto out_unlock_inode;
6379
6380 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6381 if (err)
6382 goto out_unlock_inode;
6383
6384 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6385 unlock_new_inode(inode);
6386 d_instantiate(dentry, inode);
6387
6388 out_unlock:
6389 btrfs_end_transaction(trans, root);
6390 if (err && drop_inode_on_err) {
6391 inode_dec_link_count(inode);
6392 iput(inode);
6393 }
6394 btrfs_balance_delayed_items(root);
6395 btrfs_btree_balance_dirty(root);
6396 return err;
6397
6398 out_unlock_inode:
6399 unlock_new_inode(inode);
6400 goto out_unlock;
6401
6402 }
6403
6404 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6405 struct dentry *dentry)
6406 {
6407 struct btrfs_trans_handle *trans;
6408 struct btrfs_root *root = BTRFS_I(dir)->root;
6409 struct inode *inode = d_inode(old_dentry);
6410 u64 index;
6411 int err;
6412 int drop_inode = 0;
6413
6414 /* do not allow sys_link's with other subvols of the same device */
6415 if (root->objectid != BTRFS_I(inode)->root->objectid)
6416 return -EXDEV;
6417
6418 if (inode->i_nlink >= BTRFS_LINK_MAX)
6419 return -EMLINK;
6420
6421 err = btrfs_set_inode_index(dir, &index);
6422 if (err)
6423 goto fail;
6424
6425 /*
6426 * 2 items for inode and inode ref
6427 * 2 items for dir items
6428 * 1 item for parent inode
6429 */
6430 trans = btrfs_start_transaction(root, 5);
6431 if (IS_ERR(trans)) {
6432 err = PTR_ERR(trans);
6433 goto fail;
6434 }
6435
6436 /* There are several dir indexes for this inode, clear the cache. */
6437 BTRFS_I(inode)->dir_index = 0ULL;
6438 inc_nlink(inode);
6439 inode_inc_iversion(inode);
6440 inode->i_ctime = CURRENT_TIME;
6441 ihold(inode);
6442 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6443
6444 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6445
6446 if (err) {
6447 drop_inode = 1;
6448 } else {
6449 struct dentry *parent = dentry->d_parent;
6450 err = btrfs_update_inode(trans, root, inode);
6451 if (err)
6452 goto fail;
6453 if (inode->i_nlink == 1) {
6454 /*
6455 * If new hard link count is 1, it's a file created
6456 * with open(2) O_TMPFILE flag.
6457 */
6458 err = btrfs_orphan_del(trans, inode);
6459 if (err)
6460 goto fail;
6461 }
6462 d_instantiate(dentry, inode);
6463 btrfs_log_new_name(trans, inode, NULL, parent);
6464 }
6465
6466 btrfs_end_transaction(trans, root);
6467 btrfs_balance_delayed_items(root);
6468 fail:
6469 if (drop_inode) {
6470 inode_dec_link_count(inode);
6471 iput(inode);
6472 }
6473 btrfs_btree_balance_dirty(root);
6474 return err;
6475 }
6476
6477 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6478 {
6479 struct inode *inode = NULL;
6480 struct btrfs_trans_handle *trans;
6481 struct btrfs_root *root = BTRFS_I(dir)->root;
6482 int err = 0;
6483 int drop_on_err = 0;
6484 u64 objectid = 0;
6485 u64 index = 0;
6486
6487 /*
6488 * 2 items for inode and ref
6489 * 2 items for dir items
6490 * 1 for xattr if selinux is on
6491 */
6492 trans = btrfs_start_transaction(root, 5);
6493 if (IS_ERR(trans))
6494 return PTR_ERR(trans);
6495
6496 err = btrfs_find_free_ino(root, &objectid);
6497 if (err)
6498 goto out_fail;
6499
6500 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6501 dentry->d_name.len, btrfs_ino(dir), objectid,
6502 S_IFDIR | mode, &index);
6503 if (IS_ERR(inode)) {
6504 err = PTR_ERR(inode);
6505 goto out_fail;
6506 }
6507
6508 drop_on_err = 1;
6509 /* these must be set before we unlock the inode */
6510 inode->i_op = &btrfs_dir_inode_operations;
6511 inode->i_fop = &btrfs_dir_file_operations;
6512
6513 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6514 if (err)
6515 goto out_fail_inode;
6516
6517 btrfs_i_size_write(inode, 0);
6518 err = btrfs_update_inode(trans, root, inode);
6519 if (err)
6520 goto out_fail_inode;
6521
6522 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6523 dentry->d_name.len, 0, index);
6524 if (err)
6525 goto out_fail_inode;
6526
6527 d_instantiate(dentry, inode);
6528 /*
6529 * mkdir is special. We're unlocking after we call d_instantiate
6530 * to avoid a race with nfsd calling d_instantiate.
6531 */
6532 unlock_new_inode(inode);
6533 drop_on_err = 0;
6534
6535 out_fail:
6536 btrfs_end_transaction(trans, root);
6537 if (drop_on_err) {
6538 inode_dec_link_count(inode);
6539 iput(inode);
6540 }
6541 btrfs_balance_delayed_items(root);
6542 btrfs_btree_balance_dirty(root);
6543 return err;
6544
6545 out_fail_inode:
6546 unlock_new_inode(inode);
6547 goto out_fail;
6548 }
6549
6550 /* Find next extent map of a given extent map, caller needs to ensure locks */
6551 static struct extent_map *next_extent_map(struct extent_map *em)
6552 {
6553 struct rb_node *next;
6554
6555 next = rb_next(&em->rb_node);
6556 if (!next)
6557 return NULL;
6558 return container_of(next, struct extent_map, rb_node);
6559 }
6560
6561 static struct extent_map *prev_extent_map(struct extent_map *em)
6562 {
6563 struct rb_node *prev;
6564
6565 prev = rb_prev(&em->rb_node);
6566 if (!prev)
6567 return NULL;
6568 return container_of(prev, struct extent_map, rb_node);
6569 }
6570
6571 /* helper for btfs_get_extent. Given an existing extent in the tree,
6572 * the existing extent is the nearest extent to map_start,
6573 * and an extent that you want to insert, deal with overlap and insert
6574 * the best fitted new extent into the tree.
6575 */
6576 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6577 struct extent_map *existing,
6578 struct extent_map *em,
6579 u64 map_start)
6580 {
6581 struct extent_map *prev;
6582 struct extent_map *next;
6583 u64 start;
6584 u64 end;
6585 u64 start_diff;
6586
6587 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6588
6589 if (existing->start > map_start) {
6590 next = existing;
6591 prev = prev_extent_map(next);
6592 } else {
6593 prev = existing;
6594 next = next_extent_map(prev);
6595 }
6596
6597 start = prev ? extent_map_end(prev) : em->start;
6598 start = max_t(u64, start, em->start);
6599 end = next ? next->start : extent_map_end(em);
6600 end = min_t(u64, end, extent_map_end(em));
6601 start_diff = start - em->start;
6602 em->start = start;
6603 em->len = end - start;
6604 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6605 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6606 em->block_start += start_diff;
6607 em->block_len -= start_diff;
6608 }
6609 return add_extent_mapping(em_tree, em, 0);
6610 }
6611
6612 static noinline int uncompress_inline(struct btrfs_path *path,
6613 struct inode *inode, struct page *page,
6614 size_t pg_offset, u64 extent_offset,
6615 struct btrfs_file_extent_item *item)
6616 {
6617 int ret;
6618 struct extent_buffer *leaf = path->nodes[0];
6619 char *tmp;
6620 size_t max_size;
6621 unsigned long inline_size;
6622 unsigned long ptr;
6623 int compress_type;
6624
6625 WARN_ON(pg_offset != 0);
6626 compress_type = btrfs_file_extent_compression(leaf, item);
6627 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6628 inline_size = btrfs_file_extent_inline_item_len(leaf,
6629 btrfs_item_nr(path->slots[0]));
6630 tmp = kmalloc(inline_size, GFP_NOFS);
6631 if (!tmp)
6632 return -ENOMEM;
6633 ptr = btrfs_file_extent_inline_start(item);
6634
6635 read_extent_buffer(leaf, tmp, ptr, inline_size);
6636
6637 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6638 ret = btrfs_decompress(compress_type, tmp, page,
6639 extent_offset, inline_size, max_size);
6640 kfree(tmp);
6641 return ret;
6642 }
6643
6644 /*
6645 * a bit scary, this does extent mapping from logical file offset to the disk.
6646 * the ugly parts come from merging extents from the disk with the in-ram
6647 * representation. This gets more complex because of the data=ordered code,
6648 * where the in-ram extents might be locked pending data=ordered completion.
6649 *
6650 * This also copies inline extents directly into the page.
6651 */
6652
6653 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6654 size_t pg_offset, u64 start, u64 len,
6655 int create)
6656 {
6657 int ret;
6658 int err = 0;
6659 u64 extent_start = 0;
6660 u64 extent_end = 0;
6661 u64 objectid = btrfs_ino(inode);
6662 u32 found_type;
6663 struct btrfs_path *path = NULL;
6664 struct btrfs_root *root = BTRFS_I(inode)->root;
6665 struct btrfs_file_extent_item *item;
6666 struct extent_buffer *leaf;
6667 struct btrfs_key found_key;
6668 struct extent_map *em = NULL;
6669 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6670 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6671 struct btrfs_trans_handle *trans = NULL;
6672 const bool new_inline = !page || create;
6673
6674 again:
6675 read_lock(&em_tree->lock);
6676 em = lookup_extent_mapping(em_tree, start, len);
6677 if (em)
6678 em->bdev = root->fs_info->fs_devices->latest_bdev;
6679 read_unlock(&em_tree->lock);
6680
6681 if (em) {
6682 if (em->start > start || em->start + em->len <= start)
6683 free_extent_map(em);
6684 else if (em->block_start == EXTENT_MAP_INLINE && page)
6685 free_extent_map(em);
6686 else
6687 goto out;
6688 }
6689 em = alloc_extent_map();
6690 if (!em) {
6691 err = -ENOMEM;
6692 goto out;
6693 }
6694 em->bdev = root->fs_info->fs_devices->latest_bdev;
6695 em->start = EXTENT_MAP_HOLE;
6696 em->orig_start = EXTENT_MAP_HOLE;
6697 em->len = (u64)-1;
6698 em->block_len = (u64)-1;
6699
6700 if (!path) {
6701 path = btrfs_alloc_path();
6702 if (!path) {
6703 err = -ENOMEM;
6704 goto out;
6705 }
6706 /*
6707 * Chances are we'll be called again, so go ahead and do
6708 * readahead
6709 */
6710 path->reada = 1;
6711 }
6712
6713 ret = btrfs_lookup_file_extent(trans, root, path,
6714 objectid, start, trans != NULL);
6715 if (ret < 0) {
6716 err = ret;
6717 goto out;
6718 }
6719
6720 if (ret != 0) {
6721 if (path->slots[0] == 0)
6722 goto not_found;
6723 path->slots[0]--;
6724 }
6725
6726 leaf = path->nodes[0];
6727 item = btrfs_item_ptr(leaf, path->slots[0],
6728 struct btrfs_file_extent_item);
6729 /* are we inside the extent that was found? */
6730 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6731 found_type = found_key.type;
6732 if (found_key.objectid != objectid ||
6733 found_type != BTRFS_EXTENT_DATA_KEY) {
6734 /*
6735 * If we backup past the first extent we want to move forward
6736 * and see if there is an extent in front of us, otherwise we'll
6737 * say there is a hole for our whole search range which can
6738 * cause problems.
6739 */
6740 extent_end = start;
6741 goto next;
6742 }
6743
6744 found_type = btrfs_file_extent_type(leaf, item);
6745 extent_start = found_key.offset;
6746 if (found_type == BTRFS_FILE_EXTENT_REG ||
6747 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6748 extent_end = extent_start +
6749 btrfs_file_extent_num_bytes(leaf, item);
6750 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6751 size_t size;
6752 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6753 extent_end = ALIGN(extent_start + size, root->sectorsize);
6754 }
6755 next:
6756 if (start >= extent_end) {
6757 path->slots[0]++;
6758 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6759 ret = btrfs_next_leaf(root, path);
6760 if (ret < 0) {
6761 err = ret;
6762 goto out;
6763 }
6764 if (ret > 0)
6765 goto not_found;
6766 leaf = path->nodes[0];
6767 }
6768 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6769 if (found_key.objectid != objectid ||
6770 found_key.type != BTRFS_EXTENT_DATA_KEY)
6771 goto not_found;
6772 if (start + len <= found_key.offset)
6773 goto not_found;
6774 if (start > found_key.offset)
6775 goto next;
6776 em->start = start;
6777 em->orig_start = start;
6778 em->len = found_key.offset - start;
6779 goto not_found_em;
6780 }
6781
6782 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6783
6784 if (found_type == BTRFS_FILE_EXTENT_REG ||
6785 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6786 goto insert;
6787 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6788 unsigned long ptr;
6789 char *map;
6790 size_t size;
6791 size_t extent_offset;
6792 size_t copy_size;
6793
6794 if (new_inline)
6795 goto out;
6796
6797 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6798 extent_offset = page_offset(page) + pg_offset - extent_start;
6799 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6800 size - extent_offset);
6801 em->start = extent_start + extent_offset;
6802 em->len = ALIGN(copy_size, root->sectorsize);
6803 em->orig_block_len = em->len;
6804 em->orig_start = em->start;
6805 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6806 if (create == 0 && !PageUptodate(page)) {
6807 if (btrfs_file_extent_compression(leaf, item) !=
6808 BTRFS_COMPRESS_NONE) {
6809 ret = uncompress_inline(path, inode, page,
6810 pg_offset,
6811 extent_offset, item);
6812 if (ret) {
6813 err = ret;
6814 goto out;
6815 }
6816 } else {
6817 map = kmap(page);
6818 read_extent_buffer(leaf, map + pg_offset, ptr,
6819 copy_size);
6820 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6821 memset(map + pg_offset + copy_size, 0,
6822 PAGE_CACHE_SIZE - pg_offset -
6823 copy_size);
6824 }
6825 kunmap(page);
6826 }
6827 flush_dcache_page(page);
6828 } else if (create && PageUptodate(page)) {
6829 BUG();
6830 if (!trans) {
6831 kunmap(page);
6832 free_extent_map(em);
6833 em = NULL;
6834
6835 btrfs_release_path(path);
6836 trans = btrfs_join_transaction(root);
6837
6838 if (IS_ERR(trans))
6839 return ERR_CAST(trans);
6840 goto again;
6841 }
6842 map = kmap(page);
6843 write_extent_buffer(leaf, map + pg_offset, ptr,
6844 copy_size);
6845 kunmap(page);
6846 btrfs_mark_buffer_dirty(leaf);
6847 }
6848 set_extent_uptodate(io_tree, em->start,
6849 extent_map_end(em) - 1, NULL, GFP_NOFS);
6850 goto insert;
6851 }
6852 not_found:
6853 em->start = start;
6854 em->orig_start = start;
6855 em->len = len;
6856 not_found_em:
6857 em->block_start = EXTENT_MAP_HOLE;
6858 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6859 insert:
6860 btrfs_release_path(path);
6861 if (em->start > start || extent_map_end(em) <= start) {
6862 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6863 em->start, em->len, start, len);
6864 err = -EIO;
6865 goto out;
6866 }
6867
6868 err = 0;
6869 write_lock(&em_tree->lock);
6870 ret = add_extent_mapping(em_tree, em, 0);
6871 /* it is possible that someone inserted the extent into the tree
6872 * while we had the lock dropped. It is also possible that
6873 * an overlapping map exists in the tree
6874 */
6875 if (ret == -EEXIST) {
6876 struct extent_map *existing;
6877
6878 ret = 0;
6879
6880 existing = search_extent_mapping(em_tree, start, len);
6881 /*
6882 * existing will always be non-NULL, since there must be
6883 * extent causing the -EEXIST.
6884 */
6885 if (start >= extent_map_end(existing) ||
6886 start <= existing->start) {
6887 /*
6888 * The existing extent map is the one nearest to
6889 * the [start, start + len) range which overlaps
6890 */
6891 err = merge_extent_mapping(em_tree, existing,
6892 em, start);
6893 free_extent_map(existing);
6894 if (err) {
6895 free_extent_map(em);
6896 em = NULL;
6897 }
6898 } else {
6899 free_extent_map(em);
6900 em = existing;
6901 err = 0;
6902 }
6903 }
6904 write_unlock(&em_tree->lock);
6905 out:
6906
6907 trace_btrfs_get_extent(root, em);
6908
6909 btrfs_free_path(path);
6910 if (trans) {
6911 ret = btrfs_end_transaction(trans, root);
6912 if (!err)
6913 err = ret;
6914 }
6915 if (err) {
6916 free_extent_map(em);
6917 return ERR_PTR(err);
6918 }
6919 BUG_ON(!em); /* Error is always set */
6920 return em;
6921 }
6922
6923 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6924 size_t pg_offset, u64 start, u64 len,
6925 int create)
6926 {
6927 struct extent_map *em;
6928 struct extent_map *hole_em = NULL;
6929 u64 range_start = start;
6930 u64 end;
6931 u64 found;
6932 u64 found_end;
6933 int err = 0;
6934
6935 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6936 if (IS_ERR(em))
6937 return em;
6938 if (em) {
6939 /*
6940 * if our em maps to
6941 * - a hole or
6942 * - a pre-alloc extent,
6943 * there might actually be delalloc bytes behind it.
6944 */
6945 if (em->block_start != EXTENT_MAP_HOLE &&
6946 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6947 return em;
6948 else
6949 hole_em = em;
6950 }
6951
6952 /* check to see if we've wrapped (len == -1 or similar) */
6953 end = start + len;
6954 if (end < start)
6955 end = (u64)-1;
6956 else
6957 end -= 1;
6958
6959 em = NULL;
6960
6961 /* ok, we didn't find anything, lets look for delalloc */
6962 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6963 end, len, EXTENT_DELALLOC, 1);
6964 found_end = range_start + found;
6965 if (found_end < range_start)
6966 found_end = (u64)-1;
6967
6968 /*
6969 * we didn't find anything useful, return
6970 * the original results from get_extent()
6971 */
6972 if (range_start > end || found_end <= start) {
6973 em = hole_em;
6974 hole_em = NULL;
6975 goto out;
6976 }
6977
6978 /* adjust the range_start to make sure it doesn't
6979 * go backwards from the start they passed in
6980 */
6981 range_start = max(start, range_start);
6982 found = found_end - range_start;
6983
6984 if (found > 0) {
6985 u64 hole_start = start;
6986 u64 hole_len = len;
6987
6988 em = alloc_extent_map();
6989 if (!em) {
6990 err = -ENOMEM;
6991 goto out;
6992 }
6993 /*
6994 * when btrfs_get_extent can't find anything it
6995 * returns one huge hole
6996 *
6997 * make sure what it found really fits our range, and
6998 * adjust to make sure it is based on the start from
6999 * the caller
7000 */
7001 if (hole_em) {
7002 u64 calc_end = extent_map_end(hole_em);
7003
7004 if (calc_end <= start || (hole_em->start > end)) {
7005 free_extent_map(hole_em);
7006 hole_em = NULL;
7007 } else {
7008 hole_start = max(hole_em->start, start);
7009 hole_len = calc_end - hole_start;
7010 }
7011 }
7012 em->bdev = NULL;
7013 if (hole_em && range_start > hole_start) {
7014 /* our hole starts before our delalloc, so we
7015 * have to return just the parts of the hole
7016 * that go until the delalloc starts
7017 */
7018 em->len = min(hole_len,
7019 range_start - hole_start);
7020 em->start = hole_start;
7021 em->orig_start = hole_start;
7022 /*
7023 * don't adjust block start at all,
7024 * it is fixed at EXTENT_MAP_HOLE
7025 */
7026 em->block_start = hole_em->block_start;
7027 em->block_len = hole_len;
7028 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7029 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7030 } else {
7031 em->start = range_start;
7032 em->len = found;
7033 em->orig_start = range_start;
7034 em->block_start = EXTENT_MAP_DELALLOC;
7035 em->block_len = found;
7036 }
7037 } else if (hole_em) {
7038 return hole_em;
7039 }
7040 out:
7041
7042 free_extent_map(hole_em);
7043 if (err) {
7044 free_extent_map(em);
7045 return ERR_PTR(err);
7046 }
7047 return em;
7048 }
7049
7050 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7051 u64 start, u64 len)
7052 {
7053 struct btrfs_root *root = BTRFS_I(inode)->root;
7054 struct extent_map *em;
7055 struct btrfs_key ins;
7056 u64 alloc_hint;
7057 int ret;
7058
7059 alloc_hint = get_extent_allocation_hint(inode, start, len);
7060 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7061 alloc_hint, &ins, 1, 1);
7062 if (ret)
7063 return ERR_PTR(ret);
7064
7065 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
7066 ins.offset, ins.offset, ins.offset, 0);
7067 if (IS_ERR(em)) {
7068 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7069 return em;
7070 }
7071
7072 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7073 ins.offset, ins.offset, 0);
7074 if (ret) {
7075 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7076 free_extent_map(em);
7077 return ERR_PTR(ret);
7078 }
7079
7080 return em;
7081 }
7082
7083 /*
7084 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7085 * block must be cow'd
7086 */
7087 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7088 u64 *orig_start, u64 *orig_block_len,
7089 u64 *ram_bytes)
7090 {
7091 struct btrfs_trans_handle *trans;
7092 struct btrfs_path *path;
7093 int ret;
7094 struct extent_buffer *leaf;
7095 struct btrfs_root *root = BTRFS_I(inode)->root;
7096 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7097 struct btrfs_file_extent_item *fi;
7098 struct btrfs_key key;
7099 u64 disk_bytenr;
7100 u64 backref_offset;
7101 u64 extent_end;
7102 u64 num_bytes;
7103 int slot;
7104 int found_type;
7105 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7106
7107 path = btrfs_alloc_path();
7108 if (!path)
7109 return -ENOMEM;
7110
7111 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7112 offset, 0);
7113 if (ret < 0)
7114 goto out;
7115
7116 slot = path->slots[0];
7117 if (ret == 1) {
7118 if (slot == 0) {
7119 /* can't find the item, must cow */
7120 ret = 0;
7121 goto out;
7122 }
7123 slot--;
7124 }
7125 ret = 0;
7126 leaf = path->nodes[0];
7127 btrfs_item_key_to_cpu(leaf, &key, slot);
7128 if (key.objectid != btrfs_ino(inode) ||
7129 key.type != BTRFS_EXTENT_DATA_KEY) {
7130 /* not our file or wrong item type, must cow */
7131 goto out;
7132 }
7133
7134 if (key.offset > offset) {
7135 /* Wrong offset, must cow */
7136 goto out;
7137 }
7138
7139 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7140 found_type = btrfs_file_extent_type(leaf, fi);
7141 if (found_type != BTRFS_FILE_EXTENT_REG &&
7142 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7143 /* not a regular extent, must cow */
7144 goto out;
7145 }
7146
7147 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7148 goto out;
7149
7150 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7151 if (extent_end <= offset)
7152 goto out;
7153
7154 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7155 if (disk_bytenr == 0)
7156 goto out;
7157
7158 if (btrfs_file_extent_compression(leaf, fi) ||
7159 btrfs_file_extent_encryption(leaf, fi) ||
7160 btrfs_file_extent_other_encoding(leaf, fi))
7161 goto out;
7162
7163 backref_offset = btrfs_file_extent_offset(leaf, fi);
7164
7165 if (orig_start) {
7166 *orig_start = key.offset - backref_offset;
7167 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7168 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7169 }
7170
7171 if (btrfs_extent_readonly(root, disk_bytenr))
7172 goto out;
7173
7174 num_bytes = min(offset + *len, extent_end) - offset;
7175 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7176 u64 range_end;
7177
7178 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7179 ret = test_range_bit(io_tree, offset, range_end,
7180 EXTENT_DELALLOC, 0, NULL);
7181 if (ret) {
7182 ret = -EAGAIN;
7183 goto out;
7184 }
7185 }
7186
7187 btrfs_release_path(path);
7188
7189 /*
7190 * look for other files referencing this extent, if we
7191 * find any we must cow
7192 */
7193 trans = btrfs_join_transaction(root);
7194 if (IS_ERR(trans)) {
7195 ret = 0;
7196 goto out;
7197 }
7198
7199 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7200 key.offset - backref_offset, disk_bytenr);
7201 btrfs_end_transaction(trans, root);
7202 if (ret) {
7203 ret = 0;
7204 goto out;
7205 }
7206
7207 /*
7208 * adjust disk_bytenr and num_bytes to cover just the bytes
7209 * in this extent we are about to write. If there
7210 * are any csums in that range we have to cow in order
7211 * to keep the csums correct
7212 */
7213 disk_bytenr += backref_offset;
7214 disk_bytenr += offset - key.offset;
7215 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7216 goto out;
7217 /*
7218 * all of the above have passed, it is safe to overwrite this extent
7219 * without cow
7220 */
7221 *len = num_bytes;
7222 ret = 1;
7223 out:
7224 btrfs_free_path(path);
7225 return ret;
7226 }
7227
7228 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7229 {
7230 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7231 int found = false;
7232 void **pagep = NULL;
7233 struct page *page = NULL;
7234 int start_idx;
7235 int end_idx;
7236
7237 start_idx = start >> PAGE_CACHE_SHIFT;
7238
7239 /*
7240 * end is the last byte in the last page. end == start is legal
7241 */
7242 end_idx = end >> PAGE_CACHE_SHIFT;
7243
7244 rcu_read_lock();
7245
7246 /* Most of the code in this while loop is lifted from
7247 * find_get_page. It's been modified to begin searching from a
7248 * page and return just the first page found in that range. If the
7249 * found idx is less than or equal to the end idx then we know that
7250 * a page exists. If no pages are found or if those pages are
7251 * outside of the range then we're fine (yay!) */
7252 while (page == NULL &&
7253 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7254 page = radix_tree_deref_slot(pagep);
7255 if (unlikely(!page))
7256 break;
7257
7258 if (radix_tree_exception(page)) {
7259 if (radix_tree_deref_retry(page)) {
7260 page = NULL;
7261 continue;
7262 }
7263 /*
7264 * Otherwise, shmem/tmpfs must be storing a swap entry
7265 * here as an exceptional entry: so return it without
7266 * attempting to raise page count.
7267 */
7268 page = NULL;
7269 break; /* TODO: Is this relevant for this use case? */
7270 }
7271
7272 if (!page_cache_get_speculative(page)) {
7273 page = NULL;
7274 continue;
7275 }
7276
7277 /*
7278 * Has the page moved?
7279 * This is part of the lockless pagecache protocol. See
7280 * include/linux/pagemap.h for details.
7281 */
7282 if (unlikely(page != *pagep)) {
7283 page_cache_release(page);
7284 page = NULL;
7285 }
7286 }
7287
7288 if (page) {
7289 if (page->index <= end_idx)
7290 found = true;
7291 page_cache_release(page);
7292 }
7293
7294 rcu_read_unlock();
7295 return found;
7296 }
7297
7298 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7299 struct extent_state **cached_state, int writing)
7300 {
7301 struct btrfs_ordered_extent *ordered;
7302 int ret = 0;
7303
7304 while (1) {
7305 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7306 0, cached_state);
7307 /*
7308 * We're concerned with the entire range that we're going to be
7309 * doing DIO to, so we need to make sure theres no ordered
7310 * extents in this range.
7311 */
7312 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7313 lockend - lockstart + 1);
7314
7315 /*
7316 * We need to make sure there are no buffered pages in this
7317 * range either, we could have raced between the invalidate in
7318 * generic_file_direct_write and locking the extent. The
7319 * invalidate needs to happen so that reads after a write do not
7320 * get stale data.
7321 */
7322 if (!ordered &&
7323 (!writing ||
7324 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7325 break;
7326
7327 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7328 cached_state, GFP_NOFS);
7329
7330 if (ordered) {
7331 btrfs_start_ordered_extent(inode, ordered, 1);
7332 btrfs_put_ordered_extent(ordered);
7333 } else {
7334 /* Screw you mmap */
7335 ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
7336 if (ret)
7337 break;
7338 ret = filemap_fdatawait_range(inode->i_mapping,
7339 lockstart,
7340 lockend);
7341 if (ret)
7342 break;
7343
7344 /*
7345 * If we found a page that couldn't be invalidated just
7346 * fall back to buffered.
7347 */
7348 ret = invalidate_inode_pages2_range(inode->i_mapping,
7349 lockstart >> PAGE_CACHE_SHIFT,
7350 lockend >> PAGE_CACHE_SHIFT);
7351 if (ret)
7352 break;
7353 }
7354
7355 cond_resched();
7356 }
7357
7358 return ret;
7359 }
7360
7361 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7362 u64 len, u64 orig_start,
7363 u64 block_start, u64 block_len,
7364 u64 orig_block_len, u64 ram_bytes,
7365 int type)
7366 {
7367 struct extent_map_tree *em_tree;
7368 struct extent_map *em;
7369 struct btrfs_root *root = BTRFS_I(inode)->root;
7370 int ret;
7371
7372 em_tree = &BTRFS_I(inode)->extent_tree;
7373 em = alloc_extent_map();
7374 if (!em)
7375 return ERR_PTR(-ENOMEM);
7376
7377 em->start = start;
7378 em->orig_start = orig_start;
7379 em->mod_start = start;
7380 em->mod_len = len;
7381 em->len = len;
7382 em->block_len = block_len;
7383 em->block_start = block_start;
7384 em->bdev = root->fs_info->fs_devices->latest_bdev;
7385 em->orig_block_len = orig_block_len;
7386 em->ram_bytes = ram_bytes;
7387 em->generation = -1;
7388 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7389 if (type == BTRFS_ORDERED_PREALLOC)
7390 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7391
7392 do {
7393 btrfs_drop_extent_cache(inode, em->start,
7394 em->start + em->len - 1, 0);
7395 write_lock(&em_tree->lock);
7396 ret = add_extent_mapping(em_tree, em, 1);
7397 write_unlock(&em_tree->lock);
7398 } while (ret == -EEXIST);
7399
7400 if (ret) {
7401 free_extent_map(em);
7402 return ERR_PTR(ret);
7403 }
7404
7405 return em;
7406 }
7407
7408 struct btrfs_dio_data {
7409 u64 outstanding_extents;
7410 u64 reserve;
7411 };
7412
7413 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7414 struct buffer_head *bh_result, int create)
7415 {
7416 struct extent_map *em;
7417 struct btrfs_root *root = BTRFS_I(inode)->root;
7418 struct extent_state *cached_state = NULL;
7419 struct btrfs_dio_data *dio_data = NULL;
7420 u64 start = iblock << inode->i_blkbits;
7421 u64 lockstart, lockend;
7422 u64 len = bh_result->b_size;
7423 int unlock_bits = EXTENT_LOCKED;
7424 int ret = 0;
7425
7426 if (create)
7427 unlock_bits |= EXTENT_DIRTY;
7428 else
7429 len = min_t(u64, len, root->sectorsize);
7430
7431 lockstart = start;
7432 lockend = start + len - 1;
7433
7434 if (current->journal_info) {
7435 /*
7436 * Need to pull our outstanding extents and set journal_info to NULL so
7437 * that anything that needs to check if there's a transction doesn't get
7438 * confused.
7439 */
7440 dio_data = current->journal_info;
7441 current->journal_info = NULL;
7442 }
7443
7444 /*
7445 * If this errors out it's because we couldn't invalidate pagecache for
7446 * this range and we need to fallback to buffered.
7447 */
7448 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7449 return -ENOTBLK;
7450
7451 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7452 if (IS_ERR(em)) {
7453 ret = PTR_ERR(em);
7454 goto unlock_err;
7455 }
7456
7457 /*
7458 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7459 * io. INLINE is special, and we could probably kludge it in here, but
7460 * it's still buffered so for safety lets just fall back to the generic
7461 * buffered path.
7462 *
7463 * For COMPRESSED we _have_ to read the entire extent in so we can
7464 * decompress it, so there will be buffering required no matter what we
7465 * do, so go ahead and fallback to buffered.
7466 *
7467 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7468 * to buffered IO. Don't blame me, this is the price we pay for using
7469 * the generic code.
7470 */
7471 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7472 em->block_start == EXTENT_MAP_INLINE) {
7473 free_extent_map(em);
7474 ret = -ENOTBLK;
7475 goto unlock_err;
7476 }
7477
7478 /* Just a good old fashioned hole, return */
7479 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7480 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7481 free_extent_map(em);
7482 goto unlock_err;
7483 }
7484
7485 /*
7486 * We don't allocate a new extent in the following cases
7487 *
7488 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7489 * existing extent.
7490 * 2) The extent is marked as PREALLOC. We're good to go here and can
7491 * just use the extent.
7492 *
7493 */
7494 if (!create) {
7495 len = min(len, em->len - (start - em->start));
7496 lockstart = start + len;
7497 goto unlock;
7498 }
7499
7500 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7501 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7502 em->block_start != EXTENT_MAP_HOLE)) {
7503 int type;
7504 u64 block_start, orig_start, orig_block_len, ram_bytes;
7505
7506 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7507 type = BTRFS_ORDERED_PREALLOC;
7508 else
7509 type = BTRFS_ORDERED_NOCOW;
7510 len = min(len, em->len - (start - em->start));
7511 block_start = em->block_start + (start - em->start);
7512
7513 if (can_nocow_extent(inode, start, &len, &orig_start,
7514 &orig_block_len, &ram_bytes) == 1) {
7515 if (type == BTRFS_ORDERED_PREALLOC) {
7516 free_extent_map(em);
7517 em = create_pinned_em(inode, start, len,
7518 orig_start,
7519 block_start, len,
7520 orig_block_len,
7521 ram_bytes, type);
7522 if (IS_ERR(em)) {
7523 ret = PTR_ERR(em);
7524 goto unlock_err;
7525 }
7526 }
7527
7528 ret = btrfs_add_ordered_extent_dio(inode, start,
7529 block_start, len, len, type);
7530 if (ret) {
7531 free_extent_map(em);
7532 goto unlock_err;
7533 }
7534 goto unlock;
7535 }
7536 }
7537
7538 /*
7539 * this will cow the extent, reset the len in case we changed
7540 * it above
7541 */
7542 len = bh_result->b_size;
7543 free_extent_map(em);
7544 em = btrfs_new_extent_direct(inode, start, len);
7545 if (IS_ERR(em)) {
7546 ret = PTR_ERR(em);
7547 goto unlock_err;
7548 }
7549 len = min(len, em->len - (start - em->start));
7550 unlock:
7551 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7552 inode->i_blkbits;
7553 bh_result->b_size = len;
7554 bh_result->b_bdev = em->bdev;
7555 set_buffer_mapped(bh_result);
7556 if (create) {
7557 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7558 set_buffer_new(bh_result);
7559
7560 /*
7561 * Need to update the i_size under the extent lock so buffered
7562 * readers will get the updated i_size when we unlock.
7563 */
7564 if (start + len > i_size_read(inode))
7565 i_size_write(inode, start + len);
7566
7567 /*
7568 * If we have an outstanding_extents count still set then we're
7569 * within our reservation, otherwise we need to adjust our inode
7570 * counter appropriately.
7571 */
7572 if (dio_data->outstanding_extents) {
7573 (dio_data->outstanding_extents)--;
7574 } else {
7575 spin_lock(&BTRFS_I(inode)->lock);
7576 BTRFS_I(inode)->outstanding_extents++;
7577 spin_unlock(&BTRFS_I(inode)->lock);
7578 }
7579
7580 btrfs_free_reserved_data_space(inode, len);
7581 WARN_ON(dio_data->reserve < len);
7582 dio_data->reserve -= len;
7583 current->journal_info = dio_data;
7584 }
7585
7586 /*
7587 * In the case of write we need to clear and unlock the entire range,
7588 * in the case of read we need to unlock only the end area that we
7589 * aren't using if there is any left over space.
7590 */
7591 if (lockstart < lockend) {
7592 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7593 lockend, unlock_bits, 1, 0,
7594 &cached_state, GFP_NOFS);
7595 } else {
7596 free_extent_state(cached_state);
7597 }
7598
7599 free_extent_map(em);
7600
7601 return 0;
7602
7603 unlock_err:
7604 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7605 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7606 if (dio_data)
7607 current->journal_info = dio_data;
7608 return ret;
7609 }
7610
7611 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7612 int rw, int mirror_num)
7613 {
7614 struct btrfs_root *root = BTRFS_I(inode)->root;
7615 int ret;
7616
7617 BUG_ON(rw & REQ_WRITE);
7618
7619 bio_get(bio);
7620
7621 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7622 BTRFS_WQ_ENDIO_DIO_REPAIR);
7623 if (ret)
7624 goto err;
7625
7626 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7627 err:
7628 bio_put(bio);
7629 return ret;
7630 }
7631
7632 static int btrfs_check_dio_repairable(struct inode *inode,
7633 struct bio *failed_bio,
7634 struct io_failure_record *failrec,
7635 int failed_mirror)
7636 {
7637 int num_copies;
7638
7639 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7640 failrec->logical, failrec->len);
7641 if (num_copies == 1) {
7642 /*
7643 * we only have a single copy of the data, so don't bother with
7644 * all the retry and error correction code that follows. no
7645 * matter what the error is, it is very likely to persist.
7646 */
7647 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7648 num_copies, failrec->this_mirror, failed_mirror);
7649 return 0;
7650 }
7651
7652 failrec->failed_mirror = failed_mirror;
7653 failrec->this_mirror++;
7654 if (failrec->this_mirror == failed_mirror)
7655 failrec->this_mirror++;
7656
7657 if (failrec->this_mirror > num_copies) {
7658 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7659 num_copies, failrec->this_mirror, failed_mirror);
7660 return 0;
7661 }
7662
7663 return 1;
7664 }
7665
7666 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7667 struct page *page, u64 start, u64 end,
7668 int failed_mirror, bio_end_io_t *repair_endio,
7669 void *repair_arg)
7670 {
7671 struct io_failure_record *failrec;
7672 struct bio *bio;
7673 int isector;
7674 int read_mode;
7675 int ret;
7676
7677 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7678
7679 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7680 if (ret)
7681 return ret;
7682
7683 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7684 failed_mirror);
7685 if (!ret) {
7686 free_io_failure(inode, failrec);
7687 return -EIO;
7688 }
7689
7690 if (failed_bio->bi_vcnt > 1)
7691 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7692 else
7693 read_mode = READ_SYNC;
7694
7695 isector = start - btrfs_io_bio(failed_bio)->logical;
7696 isector >>= inode->i_sb->s_blocksize_bits;
7697 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7698 0, isector, repair_endio, repair_arg);
7699 if (!bio) {
7700 free_io_failure(inode, failrec);
7701 return -EIO;
7702 }
7703
7704 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7705 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7706 read_mode, failrec->this_mirror, failrec->in_validation);
7707
7708 ret = submit_dio_repair_bio(inode, bio, read_mode,
7709 failrec->this_mirror);
7710 if (ret) {
7711 free_io_failure(inode, failrec);
7712 bio_put(bio);
7713 }
7714
7715 return ret;
7716 }
7717
7718 struct btrfs_retry_complete {
7719 struct completion done;
7720 struct inode *inode;
7721 u64 start;
7722 int uptodate;
7723 };
7724
7725 static void btrfs_retry_endio_nocsum(struct bio *bio, int err)
7726 {
7727 struct btrfs_retry_complete *done = bio->bi_private;
7728 struct bio_vec *bvec;
7729 int i;
7730
7731 if (err)
7732 goto end;
7733
7734 done->uptodate = 1;
7735 bio_for_each_segment_all(bvec, bio, i)
7736 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7737 end:
7738 complete(&done->done);
7739 bio_put(bio);
7740 }
7741
7742 static int __btrfs_correct_data_nocsum(struct inode *inode,
7743 struct btrfs_io_bio *io_bio)
7744 {
7745 struct bio_vec *bvec;
7746 struct btrfs_retry_complete done;
7747 u64 start;
7748 int i;
7749 int ret;
7750
7751 start = io_bio->logical;
7752 done.inode = inode;
7753
7754 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7755 try_again:
7756 done.uptodate = 0;
7757 done.start = start;
7758 init_completion(&done.done);
7759
7760 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7761 start + bvec->bv_len - 1,
7762 io_bio->mirror_num,
7763 btrfs_retry_endio_nocsum, &done);
7764 if (ret)
7765 return ret;
7766
7767 wait_for_completion(&done.done);
7768
7769 if (!done.uptodate) {
7770 /* We might have another mirror, so try again */
7771 goto try_again;
7772 }
7773
7774 start += bvec->bv_len;
7775 }
7776
7777 return 0;
7778 }
7779
7780 static void btrfs_retry_endio(struct bio *bio, int err)
7781 {
7782 struct btrfs_retry_complete *done = bio->bi_private;
7783 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7784 struct bio_vec *bvec;
7785 int uptodate;
7786 int ret;
7787 int i;
7788
7789 if (err)
7790 goto end;
7791
7792 uptodate = 1;
7793 bio_for_each_segment_all(bvec, bio, i) {
7794 ret = __readpage_endio_check(done->inode, io_bio, i,
7795 bvec->bv_page, 0,
7796 done->start, bvec->bv_len);
7797 if (!ret)
7798 clean_io_failure(done->inode, done->start,
7799 bvec->bv_page, 0);
7800 else
7801 uptodate = 0;
7802 }
7803
7804 done->uptodate = uptodate;
7805 end:
7806 complete(&done->done);
7807 bio_put(bio);
7808 }
7809
7810 static int __btrfs_subio_endio_read(struct inode *inode,
7811 struct btrfs_io_bio *io_bio, int err)
7812 {
7813 struct bio_vec *bvec;
7814 struct btrfs_retry_complete done;
7815 u64 start;
7816 u64 offset = 0;
7817 int i;
7818 int ret;
7819
7820 err = 0;
7821 start = io_bio->logical;
7822 done.inode = inode;
7823
7824 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7825 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7826 0, start, bvec->bv_len);
7827 if (likely(!ret))
7828 goto next;
7829 try_again:
7830 done.uptodate = 0;
7831 done.start = start;
7832 init_completion(&done.done);
7833
7834 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7835 start + bvec->bv_len - 1,
7836 io_bio->mirror_num,
7837 btrfs_retry_endio, &done);
7838 if (ret) {
7839 err = ret;
7840 goto next;
7841 }
7842
7843 wait_for_completion(&done.done);
7844
7845 if (!done.uptodate) {
7846 /* We might have another mirror, so try again */
7847 goto try_again;
7848 }
7849 next:
7850 offset += bvec->bv_len;
7851 start += bvec->bv_len;
7852 }
7853
7854 return err;
7855 }
7856
7857 static int btrfs_subio_endio_read(struct inode *inode,
7858 struct btrfs_io_bio *io_bio, int err)
7859 {
7860 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7861
7862 if (skip_csum) {
7863 if (unlikely(err))
7864 return __btrfs_correct_data_nocsum(inode, io_bio);
7865 else
7866 return 0;
7867 } else {
7868 return __btrfs_subio_endio_read(inode, io_bio, err);
7869 }
7870 }
7871
7872 static void btrfs_endio_direct_read(struct bio *bio, int err)
7873 {
7874 struct btrfs_dio_private *dip = bio->bi_private;
7875 struct inode *inode = dip->inode;
7876 struct bio *dio_bio;
7877 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7878
7879 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7880 err = btrfs_subio_endio_read(inode, io_bio, err);
7881
7882 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7883 dip->logical_offset + dip->bytes - 1);
7884 dio_bio = dip->dio_bio;
7885
7886 kfree(dip);
7887
7888 /* If we had a csum failure make sure to clear the uptodate flag */
7889 if (err)
7890 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7891 dio_end_io(dio_bio, err);
7892
7893 if (io_bio->end_io)
7894 io_bio->end_io(io_bio, err);
7895 bio_put(bio);
7896 }
7897
7898 static void btrfs_endio_direct_write(struct bio *bio, int err)
7899 {
7900 struct btrfs_dio_private *dip = bio->bi_private;
7901 struct inode *inode = dip->inode;
7902 struct btrfs_root *root = BTRFS_I(inode)->root;
7903 struct btrfs_ordered_extent *ordered = NULL;
7904 u64 ordered_offset = dip->logical_offset;
7905 u64 ordered_bytes = dip->bytes;
7906 struct bio *dio_bio;
7907 int ret;
7908
7909 again:
7910 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7911 &ordered_offset,
7912 ordered_bytes, !err);
7913 if (!ret)
7914 goto out_test;
7915
7916 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7917 finish_ordered_fn, NULL, NULL);
7918 btrfs_queue_work(root->fs_info->endio_write_workers,
7919 &ordered->work);
7920 out_test:
7921 /*
7922 * our bio might span multiple ordered extents. If we haven't
7923 * completed the accounting for the whole dio, go back and try again
7924 */
7925 if (ordered_offset < dip->logical_offset + dip->bytes) {
7926 ordered_bytes = dip->logical_offset + dip->bytes -
7927 ordered_offset;
7928 ordered = NULL;
7929 goto again;
7930 }
7931 dio_bio = dip->dio_bio;
7932
7933 kfree(dip);
7934
7935 /* If we had an error make sure to clear the uptodate flag */
7936 if (err)
7937 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7938 dio_end_io(dio_bio, err);
7939 bio_put(bio);
7940 }
7941
7942 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7943 struct bio *bio, int mirror_num,
7944 unsigned long bio_flags, u64 offset)
7945 {
7946 int ret;
7947 struct btrfs_root *root = BTRFS_I(inode)->root;
7948 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7949 BUG_ON(ret); /* -ENOMEM */
7950 return 0;
7951 }
7952
7953 static void btrfs_end_dio_bio(struct bio *bio, int err)
7954 {
7955 struct btrfs_dio_private *dip = bio->bi_private;
7956
7957 if (err)
7958 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7959 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7960 btrfs_ino(dip->inode), bio->bi_rw,
7961 (unsigned long long)bio->bi_iter.bi_sector,
7962 bio->bi_iter.bi_size, err);
7963
7964 if (dip->subio_endio)
7965 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
7966
7967 if (err) {
7968 dip->errors = 1;
7969
7970 /*
7971 * before atomic variable goto zero, we must make sure
7972 * dip->errors is perceived to be set.
7973 */
7974 smp_mb__before_atomic();
7975 }
7976
7977 /* if there are more bios still pending for this dio, just exit */
7978 if (!atomic_dec_and_test(&dip->pending_bios))
7979 goto out;
7980
7981 if (dip->errors) {
7982 bio_io_error(dip->orig_bio);
7983 } else {
7984 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
7985 bio_endio(dip->orig_bio, 0);
7986 }
7987 out:
7988 bio_put(bio);
7989 }
7990
7991 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7992 u64 first_sector, gfp_t gfp_flags)
7993 {
7994 int nr_vecs = bio_get_nr_vecs(bdev);
7995 struct bio *bio;
7996 bio = btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7997 if (bio)
7998 bio_associate_current(bio);
7999 return bio;
8000 }
8001
8002 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8003 struct inode *inode,
8004 struct btrfs_dio_private *dip,
8005 struct bio *bio,
8006 u64 file_offset)
8007 {
8008 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8009 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8010 int ret;
8011
8012 /*
8013 * We load all the csum data we need when we submit
8014 * the first bio to reduce the csum tree search and
8015 * contention.
8016 */
8017 if (dip->logical_offset == file_offset) {
8018 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8019 file_offset);
8020 if (ret)
8021 return ret;
8022 }
8023
8024 if (bio == dip->orig_bio)
8025 return 0;
8026
8027 file_offset -= dip->logical_offset;
8028 file_offset >>= inode->i_sb->s_blocksize_bits;
8029 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8030
8031 return 0;
8032 }
8033
8034 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8035 int rw, u64 file_offset, int skip_sum,
8036 int async_submit)
8037 {
8038 struct btrfs_dio_private *dip = bio->bi_private;
8039 int write = rw & REQ_WRITE;
8040 struct btrfs_root *root = BTRFS_I(inode)->root;
8041 int ret;
8042
8043 if (async_submit)
8044 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8045
8046 bio_get(bio);
8047
8048 if (!write) {
8049 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8050 BTRFS_WQ_ENDIO_DATA);
8051 if (ret)
8052 goto err;
8053 }
8054
8055 if (skip_sum)
8056 goto map;
8057
8058 if (write && async_submit) {
8059 ret = btrfs_wq_submit_bio(root->fs_info,
8060 inode, rw, bio, 0, 0,
8061 file_offset,
8062 __btrfs_submit_bio_start_direct_io,
8063 __btrfs_submit_bio_done);
8064 goto err;
8065 } else if (write) {
8066 /*
8067 * If we aren't doing async submit, calculate the csum of the
8068 * bio now.
8069 */
8070 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8071 if (ret)
8072 goto err;
8073 } else {
8074 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8075 file_offset);
8076 if (ret)
8077 goto err;
8078 }
8079 map:
8080 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
8081 err:
8082 bio_put(bio);
8083 return ret;
8084 }
8085
8086 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8087 int skip_sum)
8088 {
8089 struct inode *inode = dip->inode;
8090 struct btrfs_root *root = BTRFS_I(inode)->root;
8091 struct bio *bio;
8092 struct bio *orig_bio = dip->orig_bio;
8093 struct bio_vec *bvec = orig_bio->bi_io_vec;
8094 u64 start_sector = orig_bio->bi_iter.bi_sector;
8095 u64 file_offset = dip->logical_offset;
8096 u64 submit_len = 0;
8097 u64 map_length;
8098 int nr_pages = 0;
8099 int ret;
8100 int async_submit = 0;
8101
8102 map_length = orig_bio->bi_iter.bi_size;
8103 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
8104 &map_length, NULL, 0);
8105 if (ret)
8106 return -EIO;
8107
8108 if (map_length >= orig_bio->bi_iter.bi_size) {
8109 bio = orig_bio;
8110 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8111 goto submit;
8112 }
8113
8114 /* async crcs make it difficult to collect full stripe writes. */
8115 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8116 async_submit = 0;
8117 else
8118 async_submit = 1;
8119
8120 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8121 if (!bio)
8122 return -ENOMEM;
8123
8124 bio->bi_private = dip;
8125 bio->bi_end_io = btrfs_end_dio_bio;
8126 btrfs_io_bio(bio)->logical = file_offset;
8127 atomic_inc(&dip->pending_bios);
8128
8129 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8130 if (map_length < submit_len + bvec->bv_len ||
8131 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
8132 bvec->bv_offset) < bvec->bv_len) {
8133 /*
8134 * inc the count before we submit the bio so
8135 * we know the end IO handler won't happen before
8136 * we inc the count. Otherwise, the dip might get freed
8137 * before we're done setting it up
8138 */
8139 atomic_inc(&dip->pending_bios);
8140 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8141 file_offset, skip_sum,
8142 async_submit);
8143 if (ret) {
8144 bio_put(bio);
8145 atomic_dec(&dip->pending_bios);
8146 goto out_err;
8147 }
8148
8149 start_sector += submit_len >> 9;
8150 file_offset += submit_len;
8151
8152 submit_len = 0;
8153 nr_pages = 0;
8154
8155 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8156 start_sector, GFP_NOFS);
8157 if (!bio)
8158 goto out_err;
8159 bio->bi_private = dip;
8160 bio->bi_end_io = btrfs_end_dio_bio;
8161 btrfs_io_bio(bio)->logical = file_offset;
8162
8163 map_length = orig_bio->bi_iter.bi_size;
8164 ret = btrfs_map_block(root->fs_info, rw,
8165 start_sector << 9,
8166 &map_length, NULL, 0);
8167 if (ret) {
8168 bio_put(bio);
8169 goto out_err;
8170 }
8171 } else {
8172 submit_len += bvec->bv_len;
8173 nr_pages++;
8174 bvec++;
8175 }
8176 }
8177
8178 submit:
8179 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
8180 async_submit);
8181 if (!ret)
8182 return 0;
8183
8184 bio_put(bio);
8185 out_err:
8186 dip->errors = 1;
8187 /*
8188 * before atomic variable goto zero, we must
8189 * make sure dip->errors is perceived to be set.
8190 */
8191 smp_mb__before_atomic();
8192 if (atomic_dec_and_test(&dip->pending_bios))
8193 bio_io_error(dip->orig_bio);
8194
8195 /* bio_end_io() will handle error, so we needn't return it */
8196 return 0;
8197 }
8198
8199 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8200 struct inode *inode, loff_t file_offset)
8201 {
8202 struct btrfs_dio_private *dip = NULL;
8203 struct bio *io_bio = NULL;
8204 struct btrfs_io_bio *btrfs_bio;
8205 int skip_sum;
8206 int write = rw & REQ_WRITE;
8207 int ret = 0;
8208
8209 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8210
8211 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8212 if (!io_bio) {
8213 ret = -ENOMEM;
8214 goto free_ordered;
8215 }
8216
8217 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8218 if (!dip) {
8219 ret = -ENOMEM;
8220 goto free_ordered;
8221 }
8222
8223 dip->private = dio_bio->bi_private;
8224 dip->inode = inode;
8225 dip->logical_offset = file_offset;
8226 dip->bytes = dio_bio->bi_iter.bi_size;
8227 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8228 io_bio->bi_private = dip;
8229 dip->orig_bio = io_bio;
8230 dip->dio_bio = dio_bio;
8231 atomic_set(&dip->pending_bios, 0);
8232 btrfs_bio = btrfs_io_bio(io_bio);
8233 btrfs_bio->logical = file_offset;
8234
8235 if (write) {
8236 io_bio->bi_end_io = btrfs_endio_direct_write;
8237 } else {
8238 io_bio->bi_end_io = btrfs_endio_direct_read;
8239 dip->subio_endio = btrfs_subio_endio_read;
8240 }
8241
8242 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8243 if (!ret)
8244 return;
8245
8246 if (btrfs_bio->end_io)
8247 btrfs_bio->end_io(btrfs_bio, ret);
8248
8249 free_ordered:
8250 /*
8251 * If we arrived here it means either we failed to submit the dip
8252 * or we either failed to clone the dio_bio or failed to allocate the
8253 * dip. If we cloned the dio_bio and allocated the dip, we can just
8254 * call bio_endio against our io_bio so that we get proper resource
8255 * cleanup if we fail to submit the dip, otherwise, we must do the
8256 * same as btrfs_endio_direct_[write|read] because we can't call these
8257 * callbacks - they require an allocated dip and a clone of dio_bio.
8258 */
8259 if (io_bio && dip) {
8260 bio_endio(io_bio, ret);
8261 /*
8262 * The end io callbacks free our dip, do the final put on io_bio
8263 * and all the cleanup and final put for dio_bio (through
8264 * dio_end_io()).
8265 */
8266 dip = NULL;
8267 io_bio = NULL;
8268 } else {
8269 if (write) {
8270 struct btrfs_ordered_extent *ordered;
8271
8272 ordered = btrfs_lookup_ordered_extent(inode,
8273 file_offset);
8274 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
8275 /*
8276 * Decrements our ref on the ordered extent and removes
8277 * the ordered extent from the inode's ordered tree,
8278 * doing all the proper resource cleanup such as for the
8279 * reserved space and waking up any waiters for this
8280 * ordered extent (through btrfs_remove_ordered_extent).
8281 */
8282 btrfs_finish_ordered_io(ordered);
8283 } else {
8284 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8285 file_offset + dio_bio->bi_iter.bi_size - 1);
8286 }
8287 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
8288 /*
8289 * Releases and cleans up our dio_bio, no need to bio_put()
8290 * nor bio_endio()/bio_io_error() against dio_bio.
8291 */
8292 dio_end_io(dio_bio, ret);
8293 }
8294 if (io_bio)
8295 bio_put(io_bio);
8296 kfree(dip);
8297 }
8298
8299 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8300 const struct iov_iter *iter, loff_t offset)
8301 {
8302 int seg;
8303 int i;
8304 unsigned blocksize_mask = root->sectorsize - 1;
8305 ssize_t retval = -EINVAL;
8306
8307 if (offset & blocksize_mask)
8308 goto out;
8309
8310 if (iov_iter_alignment(iter) & blocksize_mask)
8311 goto out;
8312
8313 /* If this is a write we don't need to check anymore */
8314 if (iov_iter_rw(iter) == WRITE)
8315 return 0;
8316 /*
8317 * Check to make sure we don't have duplicate iov_base's in this
8318 * iovec, if so return EINVAL, otherwise we'll get csum errors
8319 * when reading back.
8320 */
8321 for (seg = 0; seg < iter->nr_segs; seg++) {
8322 for (i = seg + 1; i < iter->nr_segs; i++) {
8323 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8324 goto out;
8325 }
8326 }
8327 retval = 0;
8328 out:
8329 return retval;
8330 }
8331
8332 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8333 loff_t offset)
8334 {
8335 struct file *file = iocb->ki_filp;
8336 struct inode *inode = file->f_mapping->host;
8337 struct btrfs_root *root = BTRFS_I(inode)->root;
8338 struct btrfs_dio_data dio_data = { 0 };
8339 size_t count = 0;
8340 int flags = 0;
8341 bool wakeup = true;
8342 bool relock = false;
8343 ssize_t ret;
8344
8345 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8346 return 0;
8347
8348 inode_dio_begin(inode);
8349 smp_mb__after_atomic();
8350
8351 /*
8352 * The generic stuff only does filemap_write_and_wait_range, which
8353 * isn't enough if we've written compressed pages to this area, so
8354 * we need to flush the dirty pages again to make absolutely sure
8355 * that any outstanding dirty pages are on disk.
8356 */
8357 count = iov_iter_count(iter);
8358 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8359 &BTRFS_I(inode)->runtime_flags))
8360 filemap_fdatawrite_range(inode->i_mapping, offset,
8361 offset + count - 1);
8362
8363 if (iov_iter_rw(iter) == WRITE) {
8364 /*
8365 * If the write DIO is beyond the EOF, we need update
8366 * the isize, but it is protected by i_mutex. So we can
8367 * not unlock the i_mutex at this case.
8368 */
8369 if (offset + count <= inode->i_size) {
8370 mutex_unlock(&inode->i_mutex);
8371 relock = true;
8372 }
8373 ret = btrfs_delalloc_reserve_space(inode, count);
8374 if (ret)
8375 goto out;
8376 dio_data.outstanding_extents = div64_u64(count +
8377 BTRFS_MAX_EXTENT_SIZE - 1,
8378 BTRFS_MAX_EXTENT_SIZE);
8379
8380 /*
8381 * We need to know how many extents we reserved so that we can
8382 * do the accounting properly if we go over the number we
8383 * originally calculated. Abuse current->journal_info for this.
8384 */
8385 dio_data.reserve = round_up(count, root->sectorsize);
8386 current->journal_info = &dio_data;
8387 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8388 &BTRFS_I(inode)->runtime_flags)) {
8389 inode_dio_end(inode);
8390 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8391 wakeup = false;
8392 }
8393
8394 ret = __blockdev_direct_IO(iocb, inode,
8395 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8396 iter, offset, btrfs_get_blocks_direct, NULL,
8397 btrfs_submit_direct, flags);
8398 if (iov_iter_rw(iter) == WRITE) {
8399 current->journal_info = NULL;
8400 if (ret < 0 && ret != -EIOCBQUEUED) {
8401 if (dio_data.reserve)
8402 btrfs_delalloc_release_space(inode,
8403 dio_data.reserve);
8404 } else if (ret >= 0 && (size_t)ret < count)
8405 btrfs_delalloc_release_space(inode,
8406 count - (size_t)ret);
8407 }
8408 out:
8409 if (wakeup)
8410 inode_dio_end(inode);
8411 if (relock)
8412 mutex_lock(&inode->i_mutex);
8413
8414 return ret;
8415 }
8416
8417 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8418
8419 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8420 __u64 start, __u64 len)
8421 {
8422 int ret;
8423
8424 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8425 if (ret)
8426 return ret;
8427
8428 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8429 }
8430
8431 int btrfs_readpage(struct file *file, struct page *page)
8432 {
8433 struct extent_io_tree *tree;
8434 tree = &BTRFS_I(page->mapping->host)->io_tree;
8435 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8436 }
8437
8438 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8439 {
8440 struct extent_io_tree *tree;
8441
8442
8443 if (current->flags & PF_MEMALLOC) {
8444 redirty_page_for_writepage(wbc, page);
8445 unlock_page(page);
8446 return 0;
8447 }
8448 tree = &BTRFS_I(page->mapping->host)->io_tree;
8449 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8450 }
8451
8452 static int btrfs_writepages(struct address_space *mapping,
8453 struct writeback_control *wbc)
8454 {
8455 struct extent_io_tree *tree;
8456
8457 tree = &BTRFS_I(mapping->host)->io_tree;
8458 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8459 }
8460
8461 static int
8462 btrfs_readpages(struct file *file, struct address_space *mapping,
8463 struct list_head *pages, unsigned nr_pages)
8464 {
8465 struct extent_io_tree *tree;
8466 tree = &BTRFS_I(mapping->host)->io_tree;
8467 return extent_readpages(tree, mapping, pages, nr_pages,
8468 btrfs_get_extent);
8469 }
8470 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8471 {
8472 struct extent_io_tree *tree;
8473 struct extent_map_tree *map;
8474 int ret;
8475
8476 tree = &BTRFS_I(page->mapping->host)->io_tree;
8477 map = &BTRFS_I(page->mapping->host)->extent_tree;
8478 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8479 if (ret == 1) {
8480 ClearPagePrivate(page);
8481 set_page_private(page, 0);
8482 page_cache_release(page);
8483 }
8484 return ret;
8485 }
8486
8487 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8488 {
8489 if (PageWriteback(page) || PageDirty(page))
8490 return 0;
8491 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8492 }
8493
8494 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8495 unsigned int length)
8496 {
8497 struct inode *inode = page->mapping->host;
8498 struct extent_io_tree *tree;
8499 struct btrfs_ordered_extent *ordered;
8500 struct extent_state *cached_state = NULL;
8501 u64 page_start = page_offset(page);
8502 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8503 int inode_evicting = inode->i_state & I_FREEING;
8504
8505 /*
8506 * we have the page locked, so new writeback can't start,
8507 * and the dirty bit won't be cleared while we are here.
8508 *
8509 * Wait for IO on this page so that we can safely clear
8510 * the PagePrivate2 bit and do ordered accounting
8511 */
8512 wait_on_page_writeback(page);
8513
8514 tree = &BTRFS_I(inode)->io_tree;
8515 if (offset) {
8516 btrfs_releasepage(page, GFP_NOFS);
8517 return;
8518 }
8519
8520 if (!inode_evicting)
8521 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8522 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8523 if (ordered) {
8524 /*
8525 * IO on this page will never be started, so we need
8526 * to account for any ordered extents now
8527 */
8528 if (!inode_evicting)
8529 clear_extent_bit(tree, page_start, page_end,
8530 EXTENT_DIRTY | EXTENT_DELALLOC |
8531 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8532 EXTENT_DEFRAG, 1, 0, &cached_state,
8533 GFP_NOFS);
8534 /*
8535 * whoever cleared the private bit is responsible
8536 * for the finish_ordered_io
8537 */
8538 if (TestClearPagePrivate2(page)) {
8539 struct btrfs_ordered_inode_tree *tree;
8540 u64 new_len;
8541
8542 tree = &BTRFS_I(inode)->ordered_tree;
8543
8544 spin_lock_irq(&tree->lock);
8545 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8546 new_len = page_start - ordered->file_offset;
8547 if (new_len < ordered->truncated_len)
8548 ordered->truncated_len = new_len;
8549 spin_unlock_irq(&tree->lock);
8550
8551 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8552 page_start,
8553 PAGE_CACHE_SIZE, 1))
8554 btrfs_finish_ordered_io(ordered);
8555 }
8556 btrfs_put_ordered_extent(ordered);
8557 if (!inode_evicting) {
8558 cached_state = NULL;
8559 lock_extent_bits(tree, page_start, page_end, 0,
8560 &cached_state);
8561 }
8562 }
8563
8564 if (!inode_evicting) {
8565 clear_extent_bit(tree, page_start, page_end,
8566 EXTENT_LOCKED | EXTENT_DIRTY |
8567 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8568 EXTENT_DEFRAG, 1, 1,
8569 &cached_state, GFP_NOFS);
8570
8571 __btrfs_releasepage(page, GFP_NOFS);
8572 }
8573
8574 ClearPageChecked(page);
8575 if (PagePrivate(page)) {
8576 ClearPagePrivate(page);
8577 set_page_private(page, 0);
8578 page_cache_release(page);
8579 }
8580 }
8581
8582 /*
8583 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8584 * called from a page fault handler when a page is first dirtied. Hence we must
8585 * be careful to check for EOF conditions here. We set the page up correctly
8586 * for a written page which means we get ENOSPC checking when writing into
8587 * holes and correct delalloc and unwritten extent mapping on filesystems that
8588 * support these features.
8589 *
8590 * We are not allowed to take the i_mutex here so we have to play games to
8591 * protect against truncate races as the page could now be beyond EOF. Because
8592 * vmtruncate() writes the inode size before removing pages, once we have the
8593 * page lock we can determine safely if the page is beyond EOF. If it is not
8594 * beyond EOF, then the page is guaranteed safe against truncation until we
8595 * unlock the page.
8596 */
8597 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8598 {
8599 struct page *page = vmf->page;
8600 struct inode *inode = file_inode(vma->vm_file);
8601 struct btrfs_root *root = BTRFS_I(inode)->root;
8602 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8603 struct btrfs_ordered_extent *ordered;
8604 struct extent_state *cached_state = NULL;
8605 char *kaddr;
8606 unsigned long zero_start;
8607 loff_t size;
8608 int ret;
8609 int reserved = 0;
8610 u64 page_start;
8611 u64 page_end;
8612
8613 sb_start_pagefault(inode->i_sb);
8614 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
8615 if (!ret) {
8616 ret = file_update_time(vma->vm_file);
8617 reserved = 1;
8618 }
8619 if (ret) {
8620 if (ret == -ENOMEM)
8621 ret = VM_FAULT_OOM;
8622 else /* -ENOSPC, -EIO, etc */
8623 ret = VM_FAULT_SIGBUS;
8624 if (reserved)
8625 goto out;
8626 goto out_noreserve;
8627 }
8628
8629 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8630 again:
8631 lock_page(page);
8632 size = i_size_read(inode);
8633 page_start = page_offset(page);
8634 page_end = page_start + PAGE_CACHE_SIZE - 1;
8635
8636 if ((page->mapping != inode->i_mapping) ||
8637 (page_start >= size)) {
8638 /* page got truncated out from underneath us */
8639 goto out_unlock;
8640 }
8641 wait_on_page_writeback(page);
8642
8643 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
8644 set_page_extent_mapped(page);
8645
8646 /*
8647 * we can't set the delalloc bits if there are pending ordered
8648 * extents. Drop our locks and wait for them to finish
8649 */
8650 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8651 if (ordered) {
8652 unlock_extent_cached(io_tree, page_start, page_end,
8653 &cached_state, GFP_NOFS);
8654 unlock_page(page);
8655 btrfs_start_ordered_extent(inode, ordered, 1);
8656 btrfs_put_ordered_extent(ordered);
8657 goto again;
8658 }
8659
8660 /*
8661 * XXX - page_mkwrite gets called every time the page is dirtied, even
8662 * if it was already dirty, so for space accounting reasons we need to
8663 * clear any delalloc bits for the range we are fixing to save. There
8664 * is probably a better way to do this, but for now keep consistent with
8665 * prepare_pages in the normal write path.
8666 */
8667 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8668 EXTENT_DIRTY | EXTENT_DELALLOC |
8669 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8670 0, 0, &cached_state, GFP_NOFS);
8671
8672 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8673 &cached_state);
8674 if (ret) {
8675 unlock_extent_cached(io_tree, page_start, page_end,
8676 &cached_state, GFP_NOFS);
8677 ret = VM_FAULT_SIGBUS;
8678 goto out_unlock;
8679 }
8680 ret = 0;
8681
8682 /* page is wholly or partially inside EOF */
8683 if (page_start + PAGE_CACHE_SIZE > size)
8684 zero_start = size & ~PAGE_CACHE_MASK;
8685 else
8686 zero_start = PAGE_CACHE_SIZE;
8687
8688 if (zero_start != PAGE_CACHE_SIZE) {
8689 kaddr = kmap(page);
8690 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8691 flush_dcache_page(page);
8692 kunmap(page);
8693 }
8694 ClearPageChecked(page);
8695 set_page_dirty(page);
8696 SetPageUptodate(page);
8697
8698 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8699 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8700 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8701
8702 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8703
8704 out_unlock:
8705 if (!ret) {
8706 sb_end_pagefault(inode->i_sb);
8707 return VM_FAULT_LOCKED;
8708 }
8709 unlock_page(page);
8710 out:
8711 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
8712 out_noreserve:
8713 sb_end_pagefault(inode->i_sb);
8714 return ret;
8715 }
8716
8717 static int btrfs_truncate(struct inode *inode)
8718 {
8719 struct btrfs_root *root = BTRFS_I(inode)->root;
8720 struct btrfs_block_rsv *rsv;
8721 int ret = 0;
8722 int err = 0;
8723 struct btrfs_trans_handle *trans;
8724 u64 mask = root->sectorsize - 1;
8725 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8726
8727 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8728 (u64)-1);
8729 if (ret)
8730 return ret;
8731
8732 /*
8733 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8734 * 3 things going on here
8735 *
8736 * 1) We need to reserve space for our orphan item and the space to
8737 * delete our orphan item. Lord knows we don't want to have a dangling
8738 * orphan item because we didn't reserve space to remove it.
8739 *
8740 * 2) We need to reserve space to update our inode.
8741 *
8742 * 3) We need to have something to cache all the space that is going to
8743 * be free'd up by the truncate operation, but also have some slack
8744 * space reserved in case it uses space during the truncate (thank you
8745 * very much snapshotting).
8746 *
8747 * And we need these to all be seperate. The fact is we can use alot of
8748 * space doing the truncate, and we have no earthly idea how much space
8749 * we will use, so we need the truncate reservation to be seperate so it
8750 * doesn't end up using space reserved for updating the inode or
8751 * removing the orphan item. We also need to be able to stop the
8752 * transaction and start a new one, which means we need to be able to
8753 * update the inode several times, and we have no idea of knowing how
8754 * many times that will be, so we can't just reserve 1 item for the
8755 * entirety of the opration, so that has to be done seperately as well.
8756 * Then there is the orphan item, which does indeed need to be held on
8757 * to for the whole operation, and we need nobody to touch this reserved
8758 * space except the orphan code.
8759 *
8760 * So that leaves us with
8761 *
8762 * 1) root->orphan_block_rsv - for the orphan deletion.
8763 * 2) rsv - for the truncate reservation, which we will steal from the
8764 * transaction reservation.
8765 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8766 * updating the inode.
8767 */
8768 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8769 if (!rsv)
8770 return -ENOMEM;
8771 rsv->size = min_size;
8772 rsv->failfast = 1;
8773
8774 /*
8775 * 1 for the truncate slack space
8776 * 1 for updating the inode.
8777 */
8778 trans = btrfs_start_transaction(root, 2);
8779 if (IS_ERR(trans)) {
8780 err = PTR_ERR(trans);
8781 goto out;
8782 }
8783
8784 /* Migrate the slack space for the truncate to our reserve */
8785 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8786 min_size);
8787 BUG_ON(ret);
8788
8789 /*
8790 * So if we truncate and then write and fsync we normally would just
8791 * write the extents that changed, which is a problem if we need to
8792 * first truncate that entire inode. So set this flag so we write out
8793 * all of the extents in the inode to the sync log so we're completely
8794 * safe.
8795 */
8796 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8797 trans->block_rsv = rsv;
8798
8799 while (1) {
8800 ret = btrfs_truncate_inode_items(trans, root, inode,
8801 inode->i_size,
8802 BTRFS_EXTENT_DATA_KEY);
8803 if (ret != -ENOSPC && ret != -EAGAIN) {
8804 err = ret;
8805 break;
8806 }
8807
8808 trans->block_rsv = &root->fs_info->trans_block_rsv;
8809 ret = btrfs_update_inode(trans, root, inode);
8810 if (ret) {
8811 err = ret;
8812 break;
8813 }
8814
8815 btrfs_end_transaction(trans, root);
8816 btrfs_btree_balance_dirty(root);
8817
8818 trans = btrfs_start_transaction(root, 2);
8819 if (IS_ERR(trans)) {
8820 ret = err = PTR_ERR(trans);
8821 trans = NULL;
8822 break;
8823 }
8824
8825 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8826 rsv, min_size);
8827 BUG_ON(ret); /* shouldn't happen */
8828 trans->block_rsv = rsv;
8829 }
8830
8831 if (ret == 0 && inode->i_nlink > 0) {
8832 trans->block_rsv = root->orphan_block_rsv;
8833 ret = btrfs_orphan_del(trans, inode);
8834 if (ret)
8835 err = ret;
8836 }
8837
8838 if (trans) {
8839 trans->block_rsv = &root->fs_info->trans_block_rsv;
8840 ret = btrfs_update_inode(trans, root, inode);
8841 if (ret && !err)
8842 err = ret;
8843
8844 ret = btrfs_end_transaction(trans, root);
8845 btrfs_btree_balance_dirty(root);
8846 }
8847
8848 out:
8849 btrfs_free_block_rsv(root, rsv);
8850
8851 if (ret && !err)
8852 err = ret;
8853
8854 return err;
8855 }
8856
8857 /*
8858 * create a new subvolume directory/inode (helper for the ioctl).
8859 */
8860 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8861 struct btrfs_root *new_root,
8862 struct btrfs_root *parent_root,
8863 u64 new_dirid)
8864 {
8865 struct inode *inode;
8866 int err;
8867 u64 index = 0;
8868
8869 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8870 new_dirid, new_dirid,
8871 S_IFDIR | (~current_umask() & S_IRWXUGO),
8872 &index);
8873 if (IS_ERR(inode))
8874 return PTR_ERR(inode);
8875 inode->i_op = &btrfs_dir_inode_operations;
8876 inode->i_fop = &btrfs_dir_file_operations;
8877
8878 set_nlink(inode, 1);
8879 btrfs_i_size_write(inode, 0);
8880 unlock_new_inode(inode);
8881
8882 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8883 if (err)
8884 btrfs_err(new_root->fs_info,
8885 "error inheriting subvolume %llu properties: %d",
8886 new_root->root_key.objectid, err);
8887
8888 err = btrfs_update_inode(trans, new_root, inode);
8889
8890 iput(inode);
8891 return err;
8892 }
8893
8894 struct inode *btrfs_alloc_inode(struct super_block *sb)
8895 {
8896 struct btrfs_inode *ei;
8897 struct inode *inode;
8898
8899 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8900 if (!ei)
8901 return NULL;
8902
8903 ei->root = NULL;
8904 ei->generation = 0;
8905 ei->last_trans = 0;
8906 ei->last_sub_trans = 0;
8907 ei->logged_trans = 0;
8908 ei->delalloc_bytes = 0;
8909 ei->defrag_bytes = 0;
8910 ei->disk_i_size = 0;
8911 ei->flags = 0;
8912 ei->csum_bytes = 0;
8913 ei->index_cnt = (u64)-1;
8914 ei->dir_index = 0;
8915 ei->last_unlink_trans = 0;
8916 ei->last_log_commit = 0;
8917
8918 spin_lock_init(&ei->lock);
8919 ei->outstanding_extents = 0;
8920 ei->reserved_extents = 0;
8921
8922 ei->runtime_flags = 0;
8923 ei->force_compress = BTRFS_COMPRESS_NONE;
8924
8925 ei->delayed_node = NULL;
8926
8927 ei->i_otime.tv_sec = 0;
8928 ei->i_otime.tv_nsec = 0;
8929
8930 inode = &ei->vfs_inode;
8931 extent_map_tree_init(&ei->extent_tree);
8932 extent_io_tree_init(&ei->io_tree, &inode->i_data);
8933 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8934 ei->io_tree.track_uptodate = 1;
8935 ei->io_failure_tree.track_uptodate = 1;
8936 atomic_set(&ei->sync_writers, 0);
8937 mutex_init(&ei->log_mutex);
8938 mutex_init(&ei->delalloc_mutex);
8939 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8940 INIT_LIST_HEAD(&ei->delalloc_inodes);
8941 RB_CLEAR_NODE(&ei->rb_node);
8942
8943 return inode;
8944 }
8945
8946 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8947 void btrfs_test_destroy_inode(struct inode *inode)
8948 {
8949 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8950 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8951 }
8952 #endif
8953
8954 static void btrfs_i_callback(struct rcu_head *head)
8955 {
8956 struct inode *inode = container_of(head, struct inode, i_rcu);
8957 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8958 }
8959
8960 void btrfs_destroy_inode(struct inode *inode)
8961 {
8962 struct btrfs_ordered_extent *ordered;
8963 struct btrfs_root *root = BTRFS_I(inode)->root;
8964
8965 WARN_ON(!hlist_empty(&inode->i_dentry));
8966 WARN_ON(inode->i_data.nrpages);
8967 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8968 WARN_ON(BTRFS_I(inode)->reserved_extents);
8969 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8970 WARN_ON(BTRFS_I(inode)->csum_bytes);
8971 WARN_ON(BTRFS_I(inode)->defrag_bytes);
8972
8973 /*
8974 * This can happen where we create an inode, but somebody else also
8975 * created the same inode and we need to destroy the one we already
8976 * created.
8977 */
8978 if (!root)
8979 goto free;
8980
8981 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8982 &BTRFS_I(inode)->runtime_flags)) {
8983 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8984 btrfs_ino(inode));
8985 atomic_dec(&root->orphan_inodes);
8986 }
8987
8988 while (1) {
8989 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8990 if (!ordered)
8991 break;
8992 else {
8993 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8994 ordered->file_offset, ordered->len);
8995 btrfs_remove_ordered_extent(inode, ordered);
8996 btrfs_put_ordered_extent(ordered);
8997 btrfs_put_ordered_extent(ordered);
8998 }
8999 }
9000 inode_tree_del(inode);
9001 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9002 free:
9003 call_rcu(&inode->i_rcu, btrfs_i_callback);
9004 }
9005
9006 int btrfs_drop_inode(struct inode *inode)
9007 {
9008 struct btrfs_root *root = BTRFS_I(inode)->root;
9009
9010 if (root == NULL)
9011 return 1;
9012
9013 /* the snap/subvol tree is on deleting */
9014 if (btrfs_root_refs(&root->root_item) == 0)
9015 return 1;
9016 else
9017 return generic_drop_inode(inode);
9018 }
9019
9020 static void init_once(void *foo)
9021 {
9022 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9023
9024 inode_init_once(&ei->vfs_inode);
9025 }
9026
9027 void btrfs_destroy_cachep(void)
9028 {
9029 /*
9030 * Make sure all delayed rcu free inodes are flushed before we
9031 * destroy cache.
9032 */
9033 rcu_barrier();
9034 if (btrfs_inode_cachep)
9035 kmem_cache_destroy(btrfs_inode_cachep);
9036 if (btrfs_trans_handle_cachep)
9037 kmem_cache_destroy(btrfs_trans_handle_cachep);
9038 if (btrfs_transaction_cachep)
9039 kmem_cache_destroy(btrfs_transaction_cachep);
9040 if (btrfs_path_cachep)
9041 kmem_cache_destroy(btrfs_path_cachep);
9042 if (btrfs_free_space_cachep)
9043 kmem_cache_destroy(btrfs_free_space_cachep);
9044 if (btrfs_delalloc_work_cachep)
9045 kmem_cache_destroy(btrfs_delalloc_work_cachep);
9046 }
9047
9048 int btrfs_init_cachep(void)
9049 {
9050 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9051 sizeof(struct btrfs_inode), 0,
9052 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
9053 if (!btrfs_inode_cachep)
9054 goto fail;
9055
9056 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9057 sizeof(struct btrfs_trans_handle), 0,
9058 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9059 if (!btrfs_trans_handle_cachep)
9060 goto fail;
9061
9062 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9063 sizeof(struct btrfs_transaction), 0,
9064 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9065 if (!btrfs_transaction_cachep)
9066 goto fail;
9067
9068 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9069 sizeof(struct btrfs_path), 0,
9070 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9071 if (!btrfs_path_cachep)
9072 goto fail;
9073
9074 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9075 sizeof(struct btrfs_free_space), 0,
9076 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9077 if (!btrfs_free_space_cachep)
9078 goto fail;
9079
9080 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
9081 sizeof(struct btrfs_delalloc_work), 0,
9082 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
9083 NULL);
9084 if (!btrfs_delalloc_work_cachep)
9085 goto fail;
9086
9087 return 0;
9088 fail:
9089 btrfs_destroy_cachep();
9090 return -ENOMEM;
9091 }
9092
9093 static int btrfs_getattr(struct vfsmount *mnt,
9094 struct dentry *dentry, struct kstat *stat)
9095 {
9096 u64 delalloc_bytes;
9097 struct inode *inode = d_inode(dentry);
9098 u32 blocksize = inode->i_sb->s_blocksize;
9099
9100 generic_fillattr(inode, stat);
9101 stat->dev = BTRFS_I(inode)->root->anon_dev;
9102 stat->blksize = PAGE_CACHE_SIZE;
9103
9104 spin_lock(&BTRFS_I(inode)->lock);
9105 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9106 spin_unlock(&BTRFS_I(inode)->lock);
9107 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9108 ALIGN(delalloc_bytes, blocksize)) >> 9;
9109 return 0;
9110 }
9111
9112 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9113 struct inode *new_dir, struct dentry *new_dentry)
9114 {
9115 struct btrfs_trans_handle *trans;
9116 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9117 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9118 struct inode *new_inode = d_inode(new_dentry);
9119 struct inode *old_inode = d_inode(old_dentry);
9120 struct timespec ctime = CURRENT_TIME;
9121 u64 index = 0;
9122 u64 root_objectid;
9123 int ret;
9124 u64 old_ino = btrfs_ino(old_inode);
9125
9126 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9127 return -EPERM;
9128
9129 /* we only allow rename subvolume link between subvolumes */
9130 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9131 return -EXDEV;
9132
9133 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9134 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9135 return -ENOTEMPTY;
9136
9137 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9138 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9139 return -ENOTEMPTY;
9140
9141
9142 /* check for collisions, even if the name isn't there */
9143 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9144 new_dentry->d_name.name,
9145 new_dentry->d_name.len);
9146
9147 if (ret) {
9148 if (ret == -EEXIST) {
9149 /* we shouldn't get
9150 * eexist without a new_inode */
9151 if (WARN_ON(!new_inode)) {
9152 return ret;
9153 }
9154 } else {
9155 /* maybe -EOVERFLOW */
9156 return ret;
9157 }
9158 }
9159 ret = 0;
9160
9161 /*
9162 * we're using rename to replace one file with another. Start IO on it
9163 * now so we don't add too much work to the end of the transaction
9164 */
9165 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9166 filemap_flush(old_inode->i_mapping);
9167
9168 /* close the racy window with snapshot create/destroy ioctl */
9169 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9170 down_read(&root->fs_info->subvol_sem);
9171 /*
9172 * We want to reserve the absolute worst case amount of items. So if
9173 * both inodes are subvols and we need to unlink them then that would
9174 * require 4 item modifications, but if they are both normal inodes it
9175 * would require 5 item modifications, so we'll assume their normal
9176 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9177 * should cover the worst case number of items we'll modify.
9178 */
9179 trans = btrfs_start_transaction(root, 11);
9180 if (IS_ERR(trans)) {
9181 ret = PTR_ERR(trans);
9182 goto out_notrans;
9183 }
9184
9185 if (dest != root)
9186 btrfs_record_root_in_trans(trans, dest);
9187
9188 ret = btrfs_set_inode_index(new_dir, &index);
9189 if (ret)
9190 goto out_fail;
9191
9192 BTRFS_I(old_inode)->dir_index = 0ULL;
9193 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9194 /* force full log commit if subvolume involved. */
9195 btrfs_set_log_full_commit(root->fs_info, trans);
9196 } else {
9197 ret = btrfs_insert_inode_ref(trans, dest,
9198 new_dentry->d_name.name,
9199 new_dentry->d_name.len,
9200 old_ino,
9201 btrfs_ino(new_dir), index);
9202 if (ret)
9203 goto out_fail;
9204 /*
9205 * this is an ugly little race, but the rename is required
9206 * to make sure that if we crash, the inode is either at the
9207 * old name or the new one. pinning the log transaction lets
9208 * us make sure we don't allow a log commit to come in after
9209 * we unlink the name but before we add the new name back in.
9210 */
9211 btrfs_pin_log_trans(root);
9212 }
9213
9214 inode_inc_iversion(old_dir);
9215 inode_inc_iversion(new_dir);
9216 inode_inc_iversion(old_inode);
9217 old_dir->i_ctime = old_dir->i_mtime = ctime;
9218 new_dir->i_ctime = new_dir->i_mtime = ctime;
9219 old_inode->i_ctime = ctime;
9220
9221 if (old_dentry->d_parent != new_dentry->d_parent)
9222 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9223
9224 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9225 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9226 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9227 old_dentry->d_name.name,
9228 old_dentry->d_name.len);
9229 } else {
9230 ret = __btrfs_unlink_inode(trans, root, old_dir,
9231 d_inode(old_dentry),
9232 old_dentry->d_name.name,
9233 old_dentry->d_name.len);
9234 if (!ret)
9235 ret = btrfs_update_inode(trans, root, old_inode);
9236 }
9237 if (ret) {
9238 btrfs_abort_transaction(trans, root, ret);
9239 goto out_fail;
9240 }
9241
9242 if (new_inode) {
9243 inode_inc_iversion(new_inode);
9244 new_inode->i_ctime = CURRENT_TIME;
9245 if (unlikely(btrfs_ino(new_inode) ==
9246 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9247 root_objectid = BTRFS_I(new_inode)->location.objectid;
9248 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9249 root_objectid,
9250 new_dentry->d_name.name,
9251 new_dentry->d_name.len);
9252 BUG_ON(new_inode->i_nlink == 0);
9253 } else {
9254 ret = btrfs_unlink_inode(trans, dest, new_dir,
9255 d_inode(new_dentry),
9256 new_dentry->d_name.name,
9257 new_dentry->d_name.len);
9258 }
9259 if (!ret && new_inode->i_nlink == 0)
9260 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9261 if (ret) {
9262 btrfs_abort_transaction(trans, root, ret);
9263 goto out_fail;
9264 }
9265 }
9266
9267 ret = btrfs_add_link(trans, new_dir, old_inode,
9268 new_dentry->d_name.name,
9269 new_dentry->d_name.len, 0, index);
9270 if (ret) {
9271 btrfs_abort_transaction(trans, root, ret);
9272 goto out_fail;
9273 }
9274
9275 if (old_inode->i_nlink == 1)
9276 BTRFS_I(old_inode)->dir_index = index;
9277
9278 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9279 struct dentry *parent = new_dentry->d_parent;
9280 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9281 btrfs_end_log_trans(root);
9282 }
9283 out_fail:
9284 btrfs_end_transaction(trans, root);
9285 out_notrans:
9286 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9287 up_read(&root->fs_info->subvol_sem);
9288
9289 return ret;
9290 }
9291
9292 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9293 struct inode *new_dir, struct dentry *new_dentry,
9294 unsigned int flags)
9295 {
9296 if (flags & ~RENAME_NOREPLACE)
9297 return -EINVAL;
9298
9299 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9300 }
9301
9302 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9303 {
9304 struct btrfs_delalloc_work *delalloc_work;
9305 struct inode *inode;
9306
9307 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9308 work);
9309 inode = delalloc_work->inode;
9310 if (delalloc_work->wait) {
9311 btrfs_wait_ordered_range(inode, 0, (u64)-1);
9312 } else {
9313 filemap_flush(inode->i_mapping);
9314 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9315 &BTRFS_I(inode)->runtime_flags))
9316 filemap_flush(inode->i_mapping);
9317 }
9318
9319 if (delalloc_work->delay_iput)
9320 btrfs_add_delayed_iput(inode);
9321 else
9322 iput(inode);
9323 complete(&delalloc_work->completion);
9324 }
9325
9326 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9327 int wait, int delay_iput)
9328 {
9329 struct btrfs_delalloc_work *work;
9330
9331 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9332 if (!work)
9333 return NULL;
9334
9335 init_completion(&work->completion);
9336 INIT_LIST_HEAD(&work->list);
9337 work->inode = inode;
9338 work->wait = wait;
9339 work->delay_iput = delay_iput;
9340 WARN_ON_ONCE(!inode);
9341 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9342 btrfs_run_delalloc_work, NULL, NULL);
9343
9344 return work;
9345 }
9346
9347 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9348 {
9349 wait_for_completion(&work->completion);
9350 kmem_cache_free(btrfs_delalloc_work_cachep, work);
9351 }
9352
9353 /*
9354 * some fairly slow code that needs optimization. This walks the list
9355 * of all the inodes with pending delalloc and forces them to disk.
9356 */
9357 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9358 int nr)
9359 {
9360 struct btrfs_inode *binode;
9361 struct inode *inode;
9362 struct btrfs_delalloc_work *work, *next;
9363 struct list_head works;
9364 struct list_head splice;
9365 int ret = 0;
9366
9367 INIT_LIST_HEAD(&works);
9368 INIT_LIST_HEAD(&splice);
9369
9370 mutex_lock(&root->delalloc_mutex);
9371 spin_lock(&root->delalloc_lock);
9372 list_splice_init(&root->delalloc_inodes, &splice);
9373 while (!list_empty(&splice)) {
9374 binode = list_entry(splice.next, struct btrfs_inode,
9375 delalloc_inodes);
9376
9377 list_move_tail(&binode->delalloc_inodes,
9378 &root->delalloc_inodes);
9379 inode = igrab(&binode->vfs_inode);
9380 if (!inode) {
9381 cond_resched_lock(&root->delalloc_lock);
9382 continue;
9383 }
9384 spin_unlock(&root->delalloc_lock);
9385
9386 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
9387 if (!work) {
9388 if (delay_iput)
9389 btrfs_add_delayed_iput(inode);
9390 else
9391 iput(inode);
9392 ret = -ENOMEM;
9393 goto out;
9394 }
9395 list_add_tail(&work->list, &works);
9396 btrfs_queue_work(root->fs_info->flush_workers,
9397 &work->work);
9398 ret++;
9399 if (nr != -1 && ret >= nr)
9400 goto out;
9401 cond_resched();
9402 spin_lock(&root->delalloc_lock);
9403 }
9404 spin_unlock(&root->delalloc_lock);
9405
9406 out:
9407 list_for_each_entry_safe(work, next, &works, list) {
9408 list_del_init(&work->list);
9409 btrfs_wait_and_free_delalloc_work(work);
9410 }
9411
9412 if (!list_empty_careful(&splice)) {
9413 spin_lock(&root->delalloc_lock);
9414 list_splice_tail(&splice, &root->delalloc_inodes);
9415 spin_unlock(&root->delalloc_lock);
9416 }
9417 mutex_unlock(&root->delalloc_mutex);
9418 return ret;
9419 }
9420
9421 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9422 {
9423 int ret;
9424
9425 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9426 return -EROFS;
9427
9428 ret = __start_delalloc_inodes(root, delay_iput, -1);
9429 if (ret > 0)
9430 ret = 0;
9431 /*
9432 * the filemap_flush will queue IO into the worker threads, but
9433 * we have to make sure the IO is actually started and that
9434 * ordered extents get created before we return
9435 */
9436 atomic_inc(&root->fs_info->async_submit_draining);
9437 while (atomic_read(&root->fs_info->nr_async_submits) ||
9438 atomic_read(&root->fs_info->async_delalloc_pages)) {
9439 wait_event(root->fs_info->async_submit_wait,
9440 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9441 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9442 }
9443 atomic_dec(&root->fs_info->async_submit_draining);
9444 return ret;
9445 }
9446
9447 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9448 int nr)
9449 {
9450 struct btrfs_root *root;
9451 struct list_head splice;
9452 int ret;
9453
9454 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9455 return -EROFS;
9456
9457 INIT_LIST_HEAD(&splice);
9458
9459 mutex_lock(&fs_info->delalloc_root_mutex);
9460 spin_lock(&fs_info->delalloc_root_lock);
9461 list_splice_init(&fs_info->delalloc_roots, &splice);
9462 while (!list_empty(&splice) && nr) {
9463 root = list_first_entry(&splice, struct btrfs_root,
9464 delalloc_root);
9465 root = btrfs_grab_fs_root(root);
9466 BUG_ON(!root);
9467 list_move_tail(&root->delalloc_root,
9468 &fs_info->delalloc_roots);
9469 spin_unlock(&fs_info->delalloc_root_lock);
9470
9471 ret = __start_delalloc_inodes(root, delay_iput, nr);
9472 btrfs_put_fs_root(root);
9473 if (ret < 0)
9474 goto out;
9475
9476 if (nr != -1) {
9477 nr -= ret;
9478 WARN_ON(nr < 0);
9479 }
9480 spin_lock(&fs_info->delalloc_root_lock);
9481 }
9482 spin_unlock(&fs_info->delalloc_root_lock);
9483
9484 ret = 0;
9485 atomic_inc(&fs_info->async_submit_draining);
9486 while (atomic_read(&fs_info->nr_async_submits) ||
9487 atomic_read(&fs_info->async_delalloc_pages)) {
9488 wait_event(fs_info->async_submit_wait,
9489 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9490 atomic_read(&fs_info->async_delalloc_pages) == 0));
9491 }
9492 atomic_dec(&fs_info->async_submit_draining);
9493 out:
9494 if (!list_empty_careful(&splice)) {
9495 spin_lock(&fs_info->delalloc_root_lock);
9496 list_splice_tail(&splice, &fs_info->delalloc_roots);
9497 spin_unlock(&fs_info->delalloc_root_lock);
9498 }
9499 mutex_unlock(&fs_info->delalloc_root_mutex);
9500 return ret;
9501 }
9502
9503 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9504 const char *symname)
9505 {
9506 struct btrfs_trans_handle *trans;
9507 struct btrfs_root *root = BTRFS_I(dir)->root;
9508 struct btrfs_path *path;
9509 struct btrfs_key key;
9510 struct inode *inode = NULL;
9511 int err;
9512 int drop_inode = 0;
9513 u64 objectid;
9514 u64 index = 0;
9515 int name_len;
9516 int datasize;
9517 unsigned long ptr;
9518 struct btrfs_file_extent_item *ei;
9519 struct extent_buffer *leaf;
9520
9521 name_len = strlen(symname);
9522 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9523 return -ENAMETOOLONG;
9524
9525 /*
9526 * 2 items for inode item and ref
9527 * 2 items for dir items
9528 * 1 item for xattr if selinux is on
9529 */
9530 trans = btrfs_start_transaction(root, 5);
9531 if (IS_ERR(trans))
9532 return PTR_ERR(trans);
9533
9534 err = btrfs_find_free_ino(root, &objectid);
9535 if (err)
9536 goto out_unlock;
9537
9538 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9539 dentry->d_name.len, btrfs_ino(dir), objectid,
9540 S_IFLNK|S_IRWXUGO, &index);
9541 if (IS_ERR(inode)) {
9542 err = PTR_ERR(inode);
9543 goto out_unlock;
9544 }
9545
9546 /*
9547 * If the active LSM wants to access the inode during
9548 * d_instantiate it needs these. Smack checks to see
9549 * if the filesystem supports xattrs by looking at the
9550 * ops vector.
9551 */
9552 inode->i_fop = &btrfs_file_operations;
9553 inode->i_op = &btrfs_file_inode_operations;
9554 inode->i_mapping->a_ops = &btrfs_aops;
9555 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9556
9557 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9558 if (err)
9559 goto out_unlock_inode;
9560
9561 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9562 if (err)
9563 goto out_unlock_inode;
9564
9565 path = btrfs_alloc_path();
9566 if (!path) {
9567 err = -ENOMEM;
9568 goto out_unlock_inode;
9569 }
9570 key.objectid = btrfs_ino(inode);
9571 key.offset = 0;
9572 key.type = BTRFS_EXTENT_DATA_KEY;
9573 datasize = btrfs_file_extent_calc_inline_size(name_len);
9574 err = btrfs_insert_empty_item(trans, root, path, &key,
9575 datasize);
9576 if (err) {
9577 btrfs_free_path(path);
9578 goto out_unlock_inode;
9579 }
9580 leaf = path->nodes[0];
9581 ei = btrfs_item_ptr(leaf, path->slots[0],
9582 struct btrfs_file_extent_item);
9583 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9584 btrfs_set_file_extent_type(leaf, ei,
9585 BTRFS_FILE_EXTENT_INLINE);
9586 btrfs_set_file_extent_encryption(leaf, ei, 0);
9587 btrfs_set_file_extent_compression(leaf, ei, 0);
9588 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9589 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9590
9591 ptr = btrfs_file_extent_inline_start(ei);
9592 write_extent_buffer(leaf, symname, ptr, name_len);
9593 btrfs_mark_buffer_dirty(leaf);
9594 btrfs_free_path(path);
9595
9596 inode->i_op = &btrfs_symlink_inode_operations;
9597 inode->i_mapping->a_ops = &btrfs_symlink_aops;
9598 inode_set_bytes(inode, name_len);
9599 btrfs_i_size_write(inode, name_len);
9600 err = btrfs_update_inode(trans, root, inode);
9601 if (err) {
9602 drop_inode = 1;
9603 goto out_unlock_inode;
9604 }
9605
9606 unlock_new_inode(inode);
9607 d_instantiate(dentry, inode);
9608
9609 out_unlock:
9610 btrfs_end_transaction(trans, root);
9611 if (drop_inode) {
9612 inode_dec_link_count(inode);
9613 iput(inode);
9614 }
9615 btrfs_btree_balance_dirty(root);
9616 return err;
9617
9618 out_unlock_inode:
9619 drop_inode = 1;
9620 unlock_new_inode(inode);
9621 goto out_unlock;
9622 }
9623
9624 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9625 u64 start, u64 num_bytes, u64 min_size,
9626 loff_t actual_len, u64 *alloc_hint,
9627 struct btrfs_trans_handle *trans)
9628 {
9629 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9630 struct extent_map *em;
9631 struct btrfs_root *root = BTRFS_I(inode)->root;
9632 struct btrfs_key ins;
9633 u64 cur_offset = start;
9634 u64 i_size;
9635 u64 cur_bytes;
9636 int ret = 0;
9637 bool own_trans = true;
9638
9639 if (trans)
9640 own_trans = false;
9641 while (num_bytes > 0) {
9642 if (own_trans) {
9643 trans = btrfs_start_transaction(root, 3);
9644 if (IS_ERR(trans)) {
9645 ret = PTR_ERR(trans);
9646 break;
9647 }
9648 }
9649
9650 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9651 cur_bytes = max(cur_bytes, min_size);
9652 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9653 *alloc_hint, &ins, 1, 0);
9654 if (ret) {
9655 if (own_trans)
9656 btrfs_end_transaction(trans, root);
9657 break;
9658 }
9659
9660 ret = insert_reserved_file_extent(trans, inode,
9661 cur_offset, ins.objectid,
9662 ins.offset, ins.offset,
9663 ins.offset, 0, 0, 0,
9664 BTRFS_FILE_EXTENT_PREALLOC);
9665 if (ret) {
9666 btrfs_free_reserved_extent(root, ins.objectid,
9667 ins.offset, 0);
9668 btrfs_abort_transaction(trans, root, ret);
9669 if (own_trans)
9670 btrfs_end_transaction(trans, root);
9671 break;
9672 }
9673
9674 btrfs_drop_extent_cache(inode, cur_offset,
9675 cur_offset + ins.offset -1, 0);
9676
9677 em = alloc_extent_map();
9678 if (!em) {
9679 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9680 &BTRFS_I(inode)->runtime_flags);
9681 goto next;
9682 }
9683
9684 em->start = cur_offset;
9685 em->orig_start = cur_offset;
9686 em->len = ins.offset;
9687 em->block_start = ins.objectid;
9688 em->block_len = ins.offset;
9689 em->orig_block_len = ins.offset;
9690 em->ram_bytes = ins.offset;
9691 em->bdev = root->fs_info->fs_devices->latest_bdev;
9692 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9693 em->generation = trans->transid;
9694
9695 while (1) {
9696 write_lock(&em_tree->lock);
9697 ret = add_extent_mapping(em_tree, em, 1);
9698 write_unlock(&em_tree->lock);
9699 if (ret != -EEXIST)
9700 break;
9701 btrfs_drop_extent_cache(inode, cur_offset,
9702 cur_offset + ins.offset - 1,
9703 0);
9704 }
9705 free_extent_map(em);
9706 next:
9707 num_bytes -= ins.offset;
9708 cur_offset += ins.offset;
9709 *alloc_hint = ins.objectid + ins.offset;
9710
9711 inode_inc_iversion(inode);
9712 inode->i_ctime = CURRENT_TIME;
9713 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9714 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9715 (actual_len > inode->i_size) &&
9716 (cur_offset > inode->i_size)) {
9717 if (cur_offset > actual_len)
9718 i_size = actual_len;
9719 else
9720 i_size = cur_offset;
9721 i_size_write(inode, i_size);
9722 btrfs_ordered_update_i_size(inode, i_size, NULL);
9723 }
9724
9725 ret = btrfs_update_inode(trans, root, inode);
9726
9727 if (ret) {
9728 btrfs_abort_transaction(trans, root, ret);
9729 if (own_trans)
9730 btrfs_end_transaction(trans, root);
9731 break;
9732 }
9733
9734 if (own_trans)
9735 btrfs_end_transaction(trans, root);
9736 }
9737 return ret;
9738 }
9739
9740 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9741 u64 start, u64 num_bytes, u64 min_size,
9742 loff_t actual_len, u64 *alloc_hint)
9743 {
9744 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9745 min_size, actual_len, alloc_hint,
9746 NULL);
9747 }
9748
9749 int btrfs_prealloc_file_range_trans(struct inode *inode,
9750 struct btrfs_trans_handle *trans, int mode,
9751 u64 start, u64 num_bytes, u64 min_size,
9752 loff_t actual_len, u64 *alloc_hint)
9753 {
9754 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9755 min_size, actual_len, alloc_hint, trans);
9756 }
9757
9758 static int btrfs_set_page_dirty(struct page *page)
9759 {
9760 return __set_page_dirty_nobuffers(page);
9761 }
9762
9763 static int btrfs_permission(struct inode *inode, int mask)
9764 {
9765 struct btrfs_root *root = BTRFS_I(inode)->root;
9766 umode_t mode = inode->i_mode;
9767
9768 if (mask & MAY_WRITE &&
9769 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9770 if (btrfs_root_readonly(root))
9771 return -EROFS;
9772 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9773 return -EACCES;
9774 }
9775 return generic_permission(inode, mask);
9776 }
9777
9778 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9779 {
9780 struct btrfs_trans_handle *trans;
9781 struct btrfs_root *root = BTRFS_I(dir)->root;
9782 struct inode *inode = NULL;
9783 u64 objectid;
9784 u64 index;
9785 int ret = 0;
9786
9787 /*
9788 * 5 units required for adding orphan entry
9789 */
9790 trans = btrfs_start_transaction(root, 5);
9791 if (IS_ERR(trans))
9792 return PTR_ERR(trans);
9793
9794 ret = btrfs_find_free_ino(root, &objectid);
9795 if (ret)
9796 goto out;
9797
9798 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9799 btrfs_ino(dir), objectid, mode, &index);
9800 if (IS_ERR(inode)) {
9801 ret = PTR_ERR(inode);
9802 inode = NULL;
9803 goto out;
9804 }
9805
9806 inode->i_fop = &btrfs_file_operations;
9807 inode->i_op = &btrfs_file_inode_operations;
9808
9809 inode->i_mapping->a_ops = &btrfs_aops;
9810 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9811
9812 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9813 if (ret)
9814 goto out_inode;
9815
9816 ret = btrfs_update_inode(trans, root, inode);
9817 if (ret)
9818 goto out_inode;
9819 ret = btrfs_orphan_add(trans, inode);
9820 if (ret)
9821 goto out_inode;
9822
9823 /*
9824 * We set number of links to 0 in btrfs_new_inode(), and here we set
9825 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9826 * through:
9827 *
9828 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9829 */
9830 set_nlink(inode, 1);
9831 unlock_new_inode(inode);
9832 d_tmpfile(dentry, inode);
9833 mark_inode_dirty(inode);
9834
9835 out:
9836 btrfs_end_transaction(trans, root);
9837 if (ret)
9838 iput(inode);
9839 btrfs_balance_delayed_items(root);
9840 btrfs_btree_balance_dirty(root);
9841 return ret;
9842
9843 out_inode:
9844 unlock_new_inode(inode);
9845 goto out;
9846
9847 }
9848
9849 /* Inspired by filemap_check_errors() */
9850 int btrfs_inode_check_errors(struct inode *inode)
9851 {
9852 int ret = 0;
9853
9854 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9855 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9856 ret = -ENOSPC;
9857 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9858 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9859 ret = -EIO;
9860
9861 return ret;
9862 }
9863
9864 static const struct inode_operations btrfs_dir_inode_operations = {
9865 .getattr = btrfs_getattr,
9866 .lookup = btrfs_lookup,
9867 .create = btrfs_create,
9868 .unlink = btrfs_unlink,
9869 .link = btrfs_link,
9870 .mkdir = btrfs_mkdir,
9871 .rmdir = btrfs_rmdir,
9872 .rename2 = btrfs_rename2,
9873 .symlink = btrfs_symlink,
9874 .setattr = btrfs_setattr,
9875 .mknod = btrfs_mknod,
9876 .setxattr = btrfs_setxattr,
9877 .getxattr = btrfs_getxattr,
9878 .listxattr = btrfs_listxattr,
9879 .removexattr = btrfs_removexattr,
9880 .permission = btrfs_permission,
9881 .get_acl = btrfs_get_acl,
9882 .set_acl = btrfs_set_acl,
9883 .update_time = btrfs_update_time,
9884 .tmpfile = btrfs_tmpfile,
9885 };
9886 static const struct inode_operations btrfs_dir_ro_inode_operations = {
9887 .lookup = btrfs_lookup,
9888 .permission = btrfs_permission,
9889 .get_acl = btrfs_get_acl,
9890 .set_acl = btrfs_set_acl,
9891 .update_time = btrfs_update_time,
9892 };
9893
9894 static const struct file_operations btrfs_dir_file_operations = {
9895 .llseek = generic_file_llseek,
9896 .read = generic_read_dir,
9897 .iterate = btrfs_real_readdir,
9898 .unlocked_ioctl = btrfs_ioctl,
9899 #ifdef CONFIG_COMPAT
9900 .compat_ioctl = btrfs_ioctl,
9901 #endif
9902 .release = btrfs_release_file,
9903 .fsync = btrfs_sync_file,
9904 };
9905
9906 static struct extent_io_ops btrfs_extent_io_ops = {
9907 .fill_delalloc = run_delalloc_range,
9908 .submit_bio_hook = btrfs_submit_bio_hook,
9909 .merge_bio_hook = btrfs_merge_bio_hook,
9910 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
9911 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
9912 .writepage_start_hook = btrfs_writepage_start_hook,
9913 .set_bit_hook = btrfs_set_bit_hook,
9914 .clear_bit_hook = btrfs_clear_bit_hook,
9915 .merge_extent_hook = btrfs_merge_extent_hook,
9916 .split_extent_hook = btrfs_split_extent_hook,
9917 };
9918
9919 /*
9920 * btrfs doesn't support the bmap operation because swapfiles
9921 * use bmap to make a mapping of extents in the file. They assume
9922 * these extents won't change over the life of the file and they
9923 * use the bmap result to do IO directly to the drive.
9924 *
9925 * the btrfs bmap call would return logical addresses that aren't
9926 * suitable for IO and they also will change frequently as COW
9927 * operations happen. So, swapfile + btrfs == corruption.
9928 *
9929 * For now we're avoiding this by dropping bmap.
9930 */
9931 static const struct address_space_operations btrfs_aops = {
9932 .readpage = btrfs_readpage,
9933 .writepage = btrfs_writepage,
9934 .writepages = btrfs_writepages,
9935 .readpages = btrfs_readpages,
9936 .direct_IO = btrfs_direct_IO,
9937 .invalidatepage = btrfs_invalidatepage,
9938 .releasepage = btrfs_releasepage,
9939 .set_page_dirty = btrfs_set_page_dirty,
9940 .error_remove_page = generic_error_remove_page,
9941 };
9942
9943 static const struct address_space_operations btrfs_symlink_aops = {
9944 .readpage = btrfs_readpage,
9945 .writepage = btrfs_writepage,
9946 .invalidatepage = btrfs_invalidatepage,
9947 .releasepage = btrfs_releasepage,
9948 };
9949
9950 static const struct inode_operations btrfs_file_inode_operations = {
9951 .getattr = btrfs_getattr,
9952 .setattr = btrfs_setattr,
9953 .setxattr = btrfs_setxattr,
9954 .getxattr = btrfs_getxattr,
9955 .listxattr = btrfs_listxattr,
9956 .removexattr = btrfs_removexattr,
9957 .permission = btrfs_permission,
9958 .fiemap = btrfs_fiemap,
9959 .get_acl = btrfs_get_acl,
9960 .set_acl = btrfs_set_acl,
9961 .update_time = btrfs_update_time,
9962 };
9963 static const struct inode_operations btrfs_special_inode_operations = {
9964 .getattr = btrfs_getattr,
9965 .setattr = btrfs_setattr,
9966 .permission = btrfs_permission,
9967 .setxattr = btrfs_setxattr,
9968 .getxattr = btrfs_getxattr,
9969 .listxattr = btrfs_listxattr,
9970 .removexattr = btrfs_removexattr,
9971 .get_acl = btrfs_get_acl,
9972 .set_acl = btrfs_set_acl,
9973 .update_time = btrfs_update_time,
9974 };
9975 static const struct inode_operations btrfs_symlink_inode_operations = {
9976 .readlink = generic_readlink,
9977 .follow_link = page_follow_link_light,
9978 .put_link = page_put_link,
9979 .getattr = btrfs_getattr,
9980 .setattr = btrfs_setattr,
9981 .permission = btrfs_permission,
9982 .setxattr = btrfs_setxattr,
9983 .getxattr = btrfs_getxattr,
9984 .listxattr = btrfs_listxattr,
9985 .removexattr = btrfs_removexattr,
9986 .update_time = btrfs_update_time,
9987 };
9988
9989 const struct dentry_operations btrfs_dentry_operations = {
9990 .d_delete = btrfs_dentry_delete,
9991 .d_release = btrfs_dentry_release,
9992 };
This page took 0.335601 seconds and 6 git commands to generate.