Btrfs: Fix streaming read performance with checksumming on
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48
49 struct btrfs_iget_args {
50 u64 ino;
51 struct btrfs_root *root;
52 };
53
54 static struct inode_operations btrfs_dir_inode_operations;
55 static struct inode_operations btrfs_symlink_inode_operations;
56 static struct inode_operations btrfs_dir_ro_inode_operations;
57 static struct inode_operations btrfs_special_inode_operations;
58 static struct inode_operations btrfs_file_inode_operations;
59 static struct address_space_operations btrfs_aops;
60 static struct address_space_operations btrfs_symlink_aops;
61 static struct file_operations btrfs_dir_file_operations;
62 static struct extent_io_ops btrfs_extent_io_ops;
63
64 static struct kmem_cache *btrfs_inode_cachep;
65 struct kmem_cache *btrfs_trans_handle_cachep;
66 struct kmem_cache *btrfs_transaction_cachep;
67 struct kmem_cache *btrfs_bit_radix_cachep;
68 struct kmem_cache *btrfs_path_cachep;
69
70 #define S_SHIFT 12
71 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
72 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
73 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
74 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
75 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
76 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
77 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
78 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
79 };
80
81 static void btrfs_truncate(struct inode *inode);
82
83 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
84 int for_del)
85 {
86 u64 total;
87 u64 used;
88 u64 thresh;
89 unsigned long flags;
90 int ret = 0;
91
92 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
93 total = btrfs_super_total_bytes(&root->fs_info->super_copy);
94 used = btrfs_super_bytes_used(&root->fs_info->super_copy);
95 if (for_del)
96 thresh = total * 90;
97 else
98 thresh = total * 85;
99
100 do_div(thresh, 100);
101
102 if (used + root->fs_info->delalloc_bytes + num_required > thresh)
103 ret = -ENOSPC;
104 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
105 return ret;
106 }
107
108 static int cow_file_range(struct inode *inode, u64 start, u64 end)
109 {
110 struct btrfs_root *root = BTRFS_I(inode)->root;
111 struct btrfs_trans_handle *trans;
112 u64 alloc_hint = 0;
113 u64 num_bytes;
114 u64 cur_alloc_size;
115 u64 blocksize = root->sectorsize;
116 u64 orig_num_bytes;
117 struct btrfs_key ins;
118 struct extent_map *em;
119 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
120 int ret = 0;
121
122 trans = btrfs_join_transaction(root, 1);
123 BUG_ON(!trans);
124 btrfs_set_trans_block_group(trans, inode);
125
126 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
127 num_bytes = max(blocksize, num_bytes);
128 orig_num_bytes = num_bytes;
129
130 if (alloc_hint == EXTENT_MAP_INLINE)
131 goto out;
132
133 BUG_ON(num_bytes > btrfs_super_total_bytes(&root->fs_info->super_copy));
134 mutex_lock(&BTRFS_I(inode)->extent_mutex);
135 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1);
136 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
137
138 while(num_bytes > 0) {
139 cur_alloc_size = min(num_bytes, root->fs_info->max_extent);
140 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
141 root->sectorsize, 0, 0,
142 (u64)-1, &ins, 1);
143 if (ret) {
144 WARN_ON(1);
145 goto out;
146 }
147 em = alloc_extent_map(GFP_NOFS);
148 em->start = start;
149 em->len = ins.offset;
150 em->block_start = ins.objectid;
151 em->bdev = root->fs_info->fs_devices->latest_bdev;
152 mutex_lock(&BTRFS_I(inode)->extent_mutex);
153 set_bit(EXTENT_FLAG_PINNED, &em->flags);
154 while(1) {
155 spin_lock(&em_tree->lock);
156 ret = add_extent_mapping(em_tree, em);
157 spin_unlock(&em_tree->lock);
158 if (ret != -EEXIST) {
159 free_extent_map(em);
160 break;
161 }
162 btrfs_drop_extent_cache(inode, start,
163 start + ins.offset - 1);
164 }
165 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
166
167 cur_alloc_size = ins.offset;
168 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
169 ins.offset);
170 BUG_ON(ret);
171 if (num_bytes < cur_alloc_size) {
172 printk("num_bytes %Lu cur_alloc %Lu\n", num_bytes,
173 cur_alloc_size);
174 break;
175 }
176 num_bytes -= cur_alloc_size;
177 alloc_hint = ins.objectid + ins.offset;
178 start += cur_alloc_size;
179 }
180 out:
181 btrfs_end_transaction(trans, root);
182 return ret;
183 }
184
185 static int run_delalloc_nocow(struct inode *inode, u64 start, u64 end)
186 {
187 u64 extent_start;
188 u64 extent_end;
189 u64 bytenr;
190 u64 cow_end;
191 u64 loops = 0;
192 u64 total_fs_bytes;
193 struct btrfs_root *root = BTRFS_I(inode)->root;
194 struct btrfs_block_group_cache *block_group;
195 struct extent_buffer *leaf;
196 int found_type;
197 struct btrfs_path *path;
198 struct btrfs_file_extent_item *item;
199 int ret;
200 int err;
201 struct btrfs_key found_key;
202
203 total_fs_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
204 path = btrfs_alloc_path();
205 BUG_ON(!path);
206 again:
207 ret = btrfs_lookup_file_extent(NULL, root, path,
208 inode->i_ino, start, 0);
209 if (ret < 0) {
210 btrfs_free_path(path);
211 return ret;
212 }
213
214 cow_end = end;
215 if (ret != 0) {
216 if (path->slots[0] == 0)
217 goto not_found;
218 path->slots[0]--;
219 }
220
221 leaf = path->nodes[0];
222 item = btrfs_item_ptr(leaf, path->slots[0],
223 struct btrfs_file_extent_item);
224
225 /* are we inside the extent that was found? */
226 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
227 found_type = btrfs_key_type(&found_key);
228 if (found_key.objectid != inode->i_ino ||
229 found_type != BTRFS_EXTENT_DATA_KEY)
230 goto not_found;
231
232 found_type = btrfs_file_extent_type(leaf, item);
233 extent_start = found_key.offset;
234 if (found_type == BTRFS_FILE_EXTENT_REG) {
235 u64 extent_num_bytes;
236
237 extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item);
238 extent_end = extent_start + extent_num_bytes;
239 err = 0;
240
241 if (loops && start != extent_start)
242 goto not_found;
243
244 if (start < extent_start || start >= extent_end)
245 goto not_found;
246
247 cow_end = min(end, extent_end - 1);
248 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
249 if (bytenr == 0)
250 goto not_found;
251
252 if (btrfs_cross_ref_exists(root, &found_key, bytenr))
253 goto not_found;
254 /*
255 * we may be called by the resizer, make sure we're inside
256 * the limits of the FS
257 */
258 block_group = btrfs_lookup_block_group(root->fs_info,
259 bytenr);
260 if (!block_group || block_group->ro)
261 goto not_found;
262
263 start = extent_end;
264 } else {
265 goto not_found;
266 }
267 loop:
268 if (start > end) {
269 btrfs_free_path(path);
270 return 0;
271 }
272 btrfs_release_path(root, path);
273 loops++;
274 goto again;
275
276 not_found:
277 btrfs_release_path(root, path);
278 cow_file_range(inode, start, end);
279 start = end + 1;
280 goto loop;
281 }
282
283 static int run_delalloc_range(struct inode *inode, u64 start, u64 end)
284 {
285 struct btrfs_root *root = BTRFS_I(inode)->root;
286 int ret;
287
288 if (btrfs_test_opt(root, NODATACOW) ||
289 btrfs_test_flag(inode, NODATACOW))
290 ret = run_delalloc_nocow(inode, start, end);
291 else
292 ret = cow_file_range(inode, start, end);
293
294 return ret;
295 }
296
297 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
298 unsigned long old, unsigned long bits)
299 {
300 unsigned long flags;
301 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
302 struct btrfs_root *root = BTRFS_I(inode)->root;
303 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
304 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
305 root->fs_info->delalloc_bytes += end - start + 1;
306 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
307 }
308 return 0;
309 }
310
311 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
312 unsigned long old, unsigned long bits)
313 {
314 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
315 struct btrfs_root *root = BTRFS_I(inode)->root;
316 unsigned long flags;
317
318 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
319 if (end - start + 1 > root->fs_info->delalloc_bytes) {
320 printk("warning: delalloc account %Lu %Lu\n",
321 end - start + 1, root->fs_info->delalloc_bytes);
322 root->fs_info->delalloc_bytes = 0;
323 BTRFS_I(inode)->delalloc_bytes = 0;
324 } else {
325 root->fs_info->delalloc_bytes -= end - start + 1;
326 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
327 }
328 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
329 }
330 return 0;
331 }
332
333 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
334 size_t size, struct bio *bio)
335 {
336 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
337 struct btrfs_mapping_tree *map_tree;
338 u64 logical = bio->bi_sector << 9;
339 u64 length = 0;
340 u64 map_length;
341 int ret;
342
343 length = bio->bi_size;
344 map_tree = &root->fs_info->mapping_tree;
345 map_length = length;
346 ret = btrfs_map_block(map_tree, READ, logical,
347 &map_length, NULL, 0);
348
349 if (map_length < length + size) {
350 return 1;
351 }
352 return 0;
353 }
354
355 int __btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
356 int mirror_num)
357 {
358 struct btrfs_root *root = BTRFS_I(inode)->root;
359 int ret = 0;
360
361 ret = btrfs_csum_one_bio(root, inode, bio);
362 BUG_ON(ret);
363
364 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
365 }
366
367 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
368 int mirror_num)
369 {
370 struct btrfs_root *root = BTRFS_I(inode)->root;
371 int ret = 0;
372
373 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
374 BUG_ON(ret);
375
376 if (!(rw & (1 << BIO_RW))) {
377 if (!btrfs_test_opt(root, NODATASUM) &&
378 !btrfs_test_flag(inode, NODATASUM)) {
379 btrfs_lookup_bio_sums(root, inode, bio);
380 }
381 goto mapit;
382 }
383
384 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
385 inode, rw, bio, mirror_num,
386 __btrfs_submit_bio_hook);
387 mapit:
388 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
389 }
390
391 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
392 struct inode *inode, u64 file_offset,
393 struct list_head *list)
394 {
395 struct list_head *cur;
396 struct btrfs_ordered_sum *sum;
397
398 btrfs_set_trans_block_group(trans, inode);
399 list_for_each(cur, list) {
400 sum = list_entry(cur, struct btrfs_ordered_sum, list);
401 mutex_lock(&BTRFS_I(inode)->csum_mutex);
402 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
403 inode, sum);
404 mutex_unlock(&BTRFS_I(inode)->csum_mutex);
405 }
406 return 0;
407 }
408
409 struct btrfs_writepage_fixup {
410 struct page *page;
411 struct btrfs_work work;
412 };
413
414 /* see btrfs_writepage_start_hook for details on why this is required */
415 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
416 {
417 struct btrfs_writepage_fixup *fixup;
418 struct btrfs_ordered_extent *ordered;
419 struct page *page;
420 struct inode *inode;
421 u64 page_start;
422 u64 page_end;
423
424 fixup = container_of(work, struct btrfs_writepage_fixup, work);
425 page = fixup->page;
426 again:
427 lock_page(page);
428 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
429 ClearPageChecked(page);
430 goto out_page;
431 }
432
433 inode = page->mapping->host;
434 page_start = page_offset(page);
435 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
436
437 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
438
439 /* already ordered? We're done */
440 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
441 EXTENT_ORDERED, 0)) {
442 goto out;
443 }
444
445 ordered = btrfs_lookup_ordered_extent(inode, page_start);
446 if (ordered) {
447 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
448 page_end, GFP_NOFS);
449 unlock_page(page);
450 btrfs_start_ordered_extent(inode, ordered, 1);
451 goto again;
452 }
453
454 set_extent_delalloc(&BTRFS_I(inode)->io_tree, page_start, page_end,
455 GFP_NOFS);
456 ClearPageChecked(page);
457 out:
458 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
459 out_page:
460 unlock_page(page);
461 page_cache_release(page);
462 }
463
464 /*
465 * There are a few paths in the higher layers of the kernel that directly
466 * set the page dirty bit without asking the filesystem if it is a
467 * good idea. This causes problems because we want to make sure COW
468 * properly happens and the data=ordered rules are followed.
469 *
470 * In our case any range that doesn't have the EXTENT_ORDERED bit set
471 * hasn't been properly setup for IO. We kick off an async process
472 * to fix it up. The async helper will wait for ordered extents, set
473 * the delalloc bit and make it safe to write the page.
474 */
475 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
476 {
477 struct inode *inode = page->mapping->host;
478 struct btrfs_writepage_fixup *fixup;
479 struct btrfs_root *root = BTRFS_I(inode)->root;
480 int ret;
481
482 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
483 EXTENT_ORDERED, 0);
484 if (ret)
485 return 0;
486
487 if (PageChecked(page))
488 return -EAGAIN;
489
490 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
491 if (!fixup)
492 return -EAGAIN;
493
494 SetPageChecked(page);
495 page_cache_get(page);
496 fixup->work.func = btrfs_writepage_fixup_worker;
497 fixup->page = page;
498 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
499 return -EAGAIN;
500 }
501
502 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
503 {
504 struct btrfs_root *root = BTRFS_I(inode)->root;
505 struct btrfs_trans_handle *trans;
506 struct btrfs_ordered_extent *ordered_extent;
507 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
508 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
509 struct extent_map *em;
510 struct extent_map *em_orig;
511 u64 alloc_hint = 0;
512 u64 clear_start;
513 u64 clear_end;
514 struct list_head list;
515 struct btrfs_key ins;
516 struct rb_node *rb;
517 int ret;
518
519 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
520 if (!ret)
521 return 0;
522
523 trans = btrfs_join_transaction(root, 1);
524
525 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
526 BUG_ON(!ordered_extent);
527
528 lock_extent(io_tree, ordered_extent->file_offset,
529 ordered_extent->file_offset + ordered_extent->len - 1,
530 GFP_NOFS);
531
532 INIT_LIST_HEAD(&list);
533
534 ins.objectid = ordered_extent->start;
535 ins.offset = ordered_extent->len;
536 ins.type = BTRFS_EXTENT_ITEM_KEY;
537
538 ret = btrfs_alloc_reserved_extent(trans, root, root->root_key.objectid,
539 trans->transid, inode->i_ino,
540 ordered_extent->file_offset, &ins);
541 BUG_ON(ret);
542
543 mutex_lock(&BTRFS_I(inode)->extent_mutex);
544
545 spin_lock(&em_tree->lock);
546 clear_start = ordered_extent->file_offset;
547 clear_end = ordered_extent->file_offset + ordered_extent->len;
548 em = lookup_extent_mapping(em_tree, clear_start,
549 ordered_extent->len);
550 em_orig = em;
551 while(em && clear_start < extent_map_end(em) && clear_end > em->start) {
552 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
553 rb = rb_next(&em->rb_node);
554 if (!rb)
555 break;
556 em = rb_entry(rb, struct extent_map, rb_node);
557 }
558 free_extent_map(em_orig);
559 spin_unlock(&em_tree->lock);
560
561 ret = btrfs_drop_extents(trans, root, inode,
562 ordered_extent->file_offset,
563 ordered_extent->file_offset +
564 ordered_extent->len,
565 ordered_extent->file_offset, &alloc_hint);
566 BUG_ON(ret);
567 ret = btrfs_insert_file_extent(trans, root, inode->i_ino,
568 ordered_extent->file_offset,
569 ordered_extent->start,
570 ordered_extent->len,
571 ordered_extent->len, 0);
572 BUG_ON(ret);
573
574 btrfs_drop_extent_cache(inode, ordered_extent->file_offset,
575 ordered_extent->file_offset +
576 ordered_extent->len - 1);
577 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
578
579 inode->i_blocks += ordered_extent->len >> 9;
580 unlock_extent(io_tree, ordered_extent->file_offset,
581 ordered_extent->file_offset + ordered_extent->len - 1,
582 GFP_NOFS);
583 add_pending_csums(trans, inode, ordered_extent->file_offset,
584 &ordered_extent->list);
585
586 btrfs_ordered_update_i_size(inode, ordered_extent);
587 btrfs_remove_ordered_extent(inode, ordered_extent);
588
589 /* once for us */
590 btrfs_put_ordered_extent(ordered_extent);
591 /* once for the tree */
592 btrfs_put_ordered_extent(ordered_extent);
593
594 btrfs_update_inode(trans, root, inode);
595 btrfs_end_transaction(trans, root);
596 return 0;
597 }
598
599 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
600 struct extent_state *state, int uptodate)
601 {
602 return btrfs_finish_ordered_io(page->mapping->host, start, end);
603 }
604
605 struct io_failure_record {
606 struct page *page;
607 u64 start;
608 u64 len;
609 u64 logical;
610 int last_mirror;
611 };
612
613 int btrfs_io_failed_hook(struct bio *failed_bio,
614 struct page *page, u64 start, u64 end,
615 struct extent_state *state)
616 {
617 struct io_failure_record *failrec = NULL;
618 u64 private;
619 struct extent_map *em;
620 struct inode *inode = page->mapping->host;
621 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
622 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
623 struct bio *bio;
624 int num_copies;
625 int ret;
626 int rw;
627 u64 logical;
628
629 ret = get_state_private(failure_tree, start, &private);
630 if (ret) {
631 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
632 if (!failrec)
633 return -ENOMEM;
634 failrec->start = start;
635 failrec->len = end - start + 1;
636 failrec->last_mirror = 0;
637
638 spin_lock(&em_tree->lock);
639 em = lookup_extent_mapping(em_tree, start, failrec->len);
640 if (em->start > start || em->start + em->len < start) {
641 free_extent_map(em);
642 em = NULL;
643 }
644 spin_unlock(&em_tree->lock);
645
646 if (!em || IS_ERR(em)) {
647 kfree(failrec);
648 return -EIO;
649 }
650 logical = start - em->start;
651 logical = em->block_start + logical;
652 failrec->logical = logical;
653 free_extent_map(em);
654 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
655 EXTENT_DIRTY, GFP_NOFS);
656 set_state_private(failure_tree, start,
657 (u64)(unsigned long)failrec);
658 } else {
659 failrec = (struct io_failure_record *)(unsigned long)private;
660 }
661 num_copies = btrfs_num_copies(
662 &BTRFS_I(inode)->root->fs_info->mapping_tree,
663 failrec->logical, failrec->len);
664 failrec->last_mirror++;
665 if (!state) {
666 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
667 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
668 failrec->start,
669 EXTENT_LOCKED);
670 if (state && state->start != failrec->start)
671 state = NULL;
672 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
673 }
674 if (!state || failrec->last_mirror > num_copies) {
675 set_state_private(failure_tree, failrec->start, 0);
676 clear_extent_bits(failure_tree, failrec->start,
677 failrec->start + failrec->len - 1,
678 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
679 kfree(failrec);
680 return -EIO;
681 }
682 bio = bio_alloc(GFP_NOFS, 1);
683 bio->bi_private = state;
684 bio->bi_end_io = failed_bio->bi_end_io;
685 bio->bi_sector = failrec->logical >> 9;
686 bio->bi_bdev = failed_bio->bi_bdev;
687 bio->bi_size = 0;
688 bio_add_page(bio, page, failrec->len, start - page_offset(page));
689 if (failed_bio->bi_rw & (1 << BIO_RW))
690 rw = WRITE;
691 else
692 rw = READ;
693
694 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
695 failrec->last_mirror);
696 return 0;
697 }
698
699 int btrfs_clean_io_failures(struct inode *inode, u64 start)
700 {
701 u64 private;
702 u64 private_failure;
703 struct io_failure_record *failure;
704 int ret;
705
706 private = 0;
707 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
708 (u64)-1, 1, EXTENT_DIRTY)) {
709 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
710 start, &private_failure);
711 if (ret == 0) {
712 failure = (struct io_failure_record *)(unsigned long)
713 private_failure;
714 set_state_private(&BTRFS_I(inode)->io_failure_tree,
715 failure->start, 0);
716 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
717 failure->start,
718 failure->start + failure->len - 1,
719 EXTENT_DIRTY | EXTENT_LOCKED,
720 GFP_NOFS);
721 kfree(failure);
722 }
723 }
724 return 0;
725 }
726
727 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
728 struct extent_state *state)
729 {
730 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
731 struct inode *inode = page->mapping->host;
732 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
733 char *kaddr;
734 u64 private = ~(u32)0;
735 int ret;
736 struct btrfs_root *root = BTRFS_I(inode)->root;
737 u32 csum = ~(u32)0;
738 unsigned long flags;
739
740 if (btrfs_test_opt(root, NODATASUM) ||
741 btrfs_test_flag(inode, NODATASUM))
742 return 0;
743 if (state && state->start == start) {
744 private = state->private;
745 ret = 0;
746 } else {
747 ret = get_state_private(io_tree, start, &private);
748 }
749 local_irq_save(flags);
750 kaddr = kmap_atomic(page, KM_IRQ0);
751 if (ret) {
752 goto zeroit;
753 }
754 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
755 btrfs_csum_final(csum, (char *)&csum);
756 if (csum != private) {
757 goto zeroit;
758 }
759 kunmap_atomic(kaddr, KM_IRQ0);
760 local_irq_restore(flags);
761
762 /* if the io failure tree for this inode is non-empty,
763 * check to see if we've recovered from a failed IO
764 */
765 btrfs_clean_io_failures(inode, start);
766 return 0;
767
768 zeroit:
769 printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
770 page->mapping->host->i_ino, (unsigned long long)start, csum,
771 private);
772 memset(kaddr + offset, 1, end - start + 1);
773 flush_dcache_page(page);
774 kunmap_atomic(kaddr, KM_IRQ0);
775 local_irq_restore(flags);
776 if (private == 0)
777 return 0;
778 return -EIO;
779 }
780
781 /*
782 * This creates an orphan entry for the given inode in case something goes
783 * wrong in the middle of an unlink/truncate.
784 */
785 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
786 {
787 struct btrfs_root *root = BTRFS_I(inode)->root;
788 int ret = 0;
789
790 spin_lock(&root->list_lock);
791
792 /* already on the orphan list, we're good */
793 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
794 spin_unlock(&root->list_lock);
795 return 0;
796 }
797
798 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
799
800 spin_unlock(&root->list_lock);
801
802 /*
803 * insert an orphan item to track this unlinked/truncated file
804 */
805 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
806
807 return ret;
808 }
809
810 /*
811 * We have done the truncate/delete so we can go ahead and remove the orphan
812 * item for this particular inode.
813 */
814 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
815 {
816 struct btrfs_root *root = BTRFS_I(inode)->root;
817 int ret = 0;
818
819 spin_lock(&root->list_lock);
820
821 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
822 spin_unlock(&root->list_lock);
823 return 0;
824 }
825
826 list_del_init(&BTRFS_I(inode)->i_orphan);
827 if (!trans) {
828 spin_unlock(&root->list_lock);
829 return 0;
830 }
831
832 spin_unlock(&root->list_lock);
833
834 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
835
836 return ret;
837 }
838
839 /*
840 * this cleans up any orphans that may be left on the list from the last use
841 * of this root.
842 */
843 void btrfs_orphan_cleanup(struct btrfs_root *root)
844 {
845 struct btrfs_path *path;
846 struct extent_buffer *leaf;
847 struct btrfs_item *item;
848 struct btrfs_key key, found_key;
849 struct btrfs_trans_handle *trans;
850 struct inode *inode;
851 int ret = 0, nr_unlink = 0, nr_truncate = 0;
852
853 /* don't do orphan cleanup if the fs is readonly. */
854 if (root->inode->i_sb->s_flags & MS_RDONLY)
855 return;
856
857 path = btrfs_alloc_path();
858 if (!path)
859 return;
860 path->reada = -1;
861
862 key.objectid = BTRFS_ORPHAN_OBJECTID;
863 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
864 key.offset = (u64)-1;
865
866 trans = btrfs_start_transaction(root, 1);
867 btrfs_set_trans_block_group(trans, root->inode);
868
869 while (1) {
870 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
871 if (ret < 0) {
872 printk(KERN_ERR "Error searching slot for orphan: %d"
873 "\n", ret);
874 break;
875 }
876
877 /*
878 * if ret == 0 means we found what we were searching for, which
879 * is weird, but possible, so only screw with path if we didnt
880 * find the key and see if we have stuff that matches
881 */
882 if (ret > 0) {
883 if (path->slots[0] == 0)
884 break;
885 path->slots[0]--;
886 }
887
888 /* pull out the item */
889 leaf = path->nodes[0];
890 item = btrfs_item_nr(leaf, path->slots[0]);
891 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
892
893 /* make sure the item matches what we want */
894 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
895 break;
896 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
897 break;
898
899 /* release the path since we're done with it */
900 btrfs_release_path(root, path);
901
902 /*
903 * this is where we are basically btrfs_lookup, without the
904 * crossing root thing. we store the inode number in the
905 * offset of the orphan item.
906 */
907 inode = btrfs_iget_locked(root->inode->i_sb,
908 found_key.offset, root);
909 if (!inode)
910 break;
911
912 if (inode->i_state & I_NEW) {
913 BTRFS_I(inode)->root = root;
914
915 /* have to set the location manually */
916 BTRFS_I(inode)->location.objectid = inode->i_ino;
917 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
918 BTRFS_I(inode)->location.offset = 0;
919
920 btrfs_read_locked_inode(inode);
921 unlock_new_inode(inode);
922 }
923
924 /*
925 * add this inode to the orphan list so btrfs_orphan_del does
926 * the proper thing when we hit it
927 */
928 spin_lock(&root->list_lock);
929 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
930 spin_unlock(&root->list_lock);
931
932 /*
933 * if this is a bad inode, means we actually succeeded in
934 * removing the inode, but not the orphan record, which means
935 * we need to manually delete the orphan since iput will just
936 * do a destroy_inode
937 */
938 if (is_bad_inode(inode)) {
939 btrfs_orphan_del(trans, inode);
940 iput(inode);
941 continue;
942 }
943
944 /* if we have links, this was a truncate, lets do that */
945 if (inode->i_nlink) {
946 nr_truncate++;
947 btrfs_truncate(inode);
948 } else {
949 nr_unlink++;
950 }
951
952 /* this will do delete_inode and everything for us */
953 iput(inode);
954 }
955
956 if (nr_unlink)
957 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
958 if (nr_truncate)
959 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
960
961 btrfs_free_path(path);
962 btrfs_end_transaction(trans, root);
963 }
964
965 void btrfs_read_locked_inode(struct inode *inode)
966 {
967 struct btrfs_path *path;
968 struct extent_buffer *leaf;
969 struct btrfs_inode_item *inode_item;
970 struct btrfs_timespec *tspec;
971 struct btrfs_root *root = BTRFS_I(inode)->root;
972 struct btrfs_key location;
973 u64 alloc_group_block;
974 u32 rdev;
975 int ret;
976
977 path = btrfs_alloc_path();
978 BUG_ON(!path);
979 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
980
981 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
982 if (ret)
983 goto make_bad;
984
985 leaf = path->nodes[0];
986 inode_item = btrfs_item_ptr(leaf, path->slots[0],
987 struct btrfs_inode_item);
988
989 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
990 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
991 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
992 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
993 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
994
995 tspec = btrfs_inode_atime(inode_item);
996 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
997 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
998
999 tspec = btrfs_inode_mtime(inode_item);
1000 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1001 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1002
1003 tspec = btrfs_inode_ctime(inode_item);
1004 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1005 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1006
1007 inode->i_blocks = btrfs_inode_nblocks(leaf, inode_item);
1008 inode->i_generation = btrfs_inode_generation(leaf, inode_item);
1009 inode->i_rdev = 0;
1010 rdev = btrfs_inode_rdev(leaf, inode_item);
1011
1012 BTRFS_I(inode)->index_cnt = (u64)-1;
1013
1014 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1015 BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1016 alloc_group_block);
1017 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1018 if (!BTRFS_I(inode)->block_group) {
1019 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1020 NULL, 0,
1021 BTRFS_BLOCK_GROUP_METADATA, 0);
1022 }
1023 btrfs_free_path(path);
1024 inode_item = NULL;
1025
1026 switch (inode->i_mode & S_IFMT) {
1027 case S_IFREG:
1028 inode->i_mapping->a_ops = &btrfs_aops;
1029 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1030 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1031 inode->i_fop = &btrfs_file_operations;
1032 inode->i_op = &btrfs_file_inode_operations;
1033 break;
1034 case S_IFDIR:
1035 inode->i_fop = &btrfs_dir_file_operations;
1036 if (root == root->fs_info->tree_root)
1037 inode->i_op = &btrfs_dir_ro_inode_operations;
1038 else
1039 inode->i_op = &btrfs_dir_inode_operations;
1040 break;
1041 case S_IFLNK:
1042 inode->i_op = &btrfs_symlink_inode_operations;
1043 inode->i_mapping->a_ops = &btrfs_symlink_aops;
1044 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1045 break;
1046 default:
1047 init_special_inode(inode, inode->i_mode, rdev);
1048 break;
1049 }
1050 return;
1051
1052 make_bad:
1053 btrfs_free_path(path);
1054 make_bad_inode(inode);
1055 }
1056
1057 static void fill_inode_item(struct extent_buffer *leaf,
1058 struct btrfs_inode_item *item,
1059 struct inode *inode)
1060 {
1061 btrfs_set_inode_uid(leaf, item, inode->i_uid);
1062 btrfs_set_inode_gid(leaf, item, inode->i_gid);
1063 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
1064 btrfs_set_inode_mode(leaf, item, inode->i_mode);
1065 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
1066
1067 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
1068 inode->i_atime.tv_sec);
1069 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
1070 inode->i_atime.tv_nsec);
1071
1072 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
1073 inode->i_mtime.tv_sec);
1074 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
1075 inode->i_mtime.tv_nsec);
1076
1077 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
1078 inode->i_ctime.tv_sec);
1079 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
1080 inode->i_ctime.tv_nsec);
1081
1082 btrfs_set_inode_nblocks(leaf, item, inode->i_blocks);
1083 btrfs_set_inode_generation(leaf, item, inode->i_generation);
1084 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
1085 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
1086 btrfs_set_inode_block_group(leaf, item,
1087 BTRFS_I(inode)->block_group->key.objectid);
1088 }
1089
1090 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
1091 struct btrfs_root *root,
1092 struct inode *inode)
1093 {
1094 struct btrfs_inode_item *inode_item;
1095 struct btrfs_path *path;
1096 struct extent_buffer *leaf;
1097 int ret;
1098
1099 path = btrfs_alloc_path();
1100 BUG_ON(!path);
1101 ret = btrfs_lookup_inode(trans, root, path,
1102 &BTRFS_I(inode)->location, 1);
1103 if (ret) {
1104 if (ret > 0)
1105 ret = -ENOENT;
1106 goto failed;
1107 }
1108
1109 leaf = path->nodes[0];
1110 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1111 struct btrfs_inode_item);
1112
1113 fill_inode_item(leaf, inode_item, inode);
1114 btrfs_mark_buffer_dirty(leaf);
1115 btrfs_set_inode_last_trans(trans, inode);
1116 ret = 0;
1117 failed:
1118 btrfs_free_path(path);
1119 return ret;
1120 }
1121
1122
1123 static int btrfs_unlink_trans(struct btrfs_trans_handle *trans,
1124 struct btrfs_root *root,
1125 struct inode *dir,
1126 struct dentry *dentry)
1127 {
1128 struct btrfs_path *path;
1129 const char *name = dentry->d_name.name;
1130 int name_len = dentry->d_name.len;
1131 int ret = 0;
1132 struct extent_buffer *leaf;
1133 struct btrfs_dir_item *di;
1134 struct btrfs_key key;
1135 u64 index;
1136
1137 path = btrfs_alloc_path();
1138 if (!path) {
1139 ret = -ENOMEM;
1140 goto err;
1141 }
1142
1143 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
1144 name, name_len, -1);
1145 if (IS_ERR(di)) {
1146 ret = PTR_ERR(di);
1147 goto err;
1148 }
1149 if (!di) {
1150 ret = -ENOENT;
1151 goto err;
1152 }
1153 leaf = path->nodes[0];
1154 btrfs_dir_item_key_to_cpu(leaf, di, &key);
1155 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1156 if (ret)
1157 goto err;
1158 btrfs_release_path(root, path);
1159
1160 ret = btrfs_del_inode_ref(trans, root, name, name_len,
1161 dentry->d_inode->i_ino,
1162 dentry->d_parent->d_inode->i_ino, &index);
1163 if (ret) {
1164 printk("failed to delete reference to %.*s, "
1165 "inode %lu parent %lu\n", name_len, name,
1166 dentry->d_inode->i_ino,
1167 dentry->d_parent->d_inode->i_ino);
1168 goto err;
1169 }
1170
1171 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
1172 index, name, name_len, -1);
1173 if (IS_ERR(di)) {
1174 ret = PTR_ERR(di);
1175 goto err;
1176 }
1177 if (!di) {
1178 ret = -ENOENT;
1179 goto err;
1180 }
1181 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1182 btrfs_release_path(root, path);
1183
1184 dentry->d_inode->i_ctime = dir->i_ctime;
1185 err:
1186 btrfs_free_path(path);
1187 if (!ret) {
1188 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
1189 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
1190 btrfs_update_inode(trans, root, dir);
1191 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1192 dentry->d_inode->i_nlink--;
1193 #else
1194 drop_nlink(dentry->d_inode);
1195 #endif
1196 ret = btrfs_update_inode(trans, root, dentry->d_inode);
1197 dir->i_sb->s_dirt = 1;
1198 }
1199 return ret;
1200 }
1201
1202 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
1203 {
1204 struct btrfs_root *root;
1205 struct btrfs_trans_handle *trans;
1206 struct inode *inode = dentry->d_inode;
1207 int ret;
1208 unsigned long nr = 0;
1209
1210 root = BTRFS_I(dir)->root;
1211
1212 ret = btrfs_check_free_space(root, 1, 1);
1213 if (ret)
1214 goto fail;
1215
1216 trans = btrfs_start_transaction(root, 1);
1217
1218 btrfs_set_trans_block_group(trans, dir);
1219 ret = btrfs_unlink_trans(trans, root, dir, dentry);
1220
1221 if (inode->i_nlink == 0)
1222 ret = btrfs_orphan_add(trans, inode);
1223
1224 nr = trans->blocks_used;
1225
1226 btrfs_end_transaction_throttle(trans, root);
1227 fail:
1228 btrfs_btree_balance_dirty(root, nr);
1229 return ret;
1230 }
1231
1232 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
1233 {
1234 struct inode *inode = dentry->d_inode;
1235 int err = 0;
1236 int ret;
1237 struct btrfs_root *root = BTRFS_I(dir)->root;
1238 struct btrfs_trans_handle *trans;
1239 unsigned long nr = 0;
1240
1241 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
1242 return -ENOTEMPTY;
1243 }
1244
1245 ret = btrfs_check_free_space(root, 1, 1);
1246 if (ret)
1247 goto fail;
1248
1249 trans = btrfs_start_transaction(root, 1);
1250 btrfs_set_trans_block_group(trans, dir);
1251
1252 err = btrfs_orphan_add(trans, inode);
1253 if (err)
1254 goto fail_trans;
1255
1256 /* now the directory is empty */
1257 err = btrfs_unlink_trans(trans, root, dir, dentry);
1258 if (!err) {
1259 btrfs_i_size_write(inode, 0);
1260 }
1261
1262 fail_trans:
1263 nr = trans->blocks_used;
1264 ret = btrfs_end_transaction_throttle(trans, root);
1265 fail:
1266 btrfs_btree_balance_dirty(root, nr);
1267
1268 if (ret && !err)
1269 err = ret;
1270 return err;
1271 }
1272
1273 /*
1274 * this can truncate away extent items, csum items and directory items.
1275 * It starts at a high offset and removes keys until it can't find
1276 * any higher than i_size.
1277 *
1278 * csum items that cross the new i_size are truncated to the new size
1279 * as well.
1280 *
1281 * min_type is the minimum key type to truncate down to. If set to 0, this
1282 * will kill all the items on this inode, including the INODE_ITEM_KEY.
1283 */
1284 static int btrfs_truncate_in_trans(struct btrfs_trans_handle *trans,
1285 struct btrfs_root *root,
1286 struct inode *inode,
1287 u32 min_type)
1288 {
1289 int ret;
1290 struct btrfs_path *path;
1291 struct btrfs_key key;
1292 struct btrfs_key found_key;
1293 u32 found_type;
1294 struct extent_buffer *leaf;
1295 struct btrfs_file_extent_item *fi;
1296 u64 extent_start = 0;
1297 u64 extent_num_bytes = 0;
1298 u64 item_end = 0;
1299 u64 root_gen = 0;
1300 u64 root_owner = 0;
1301 int found_extent;
1302 int del_item;
1303 int pending_del_nr = 0;
1304 int pending_del_slot = 0;
1305 int extent_type = -1;
1306 u64 mask = root->sectorsize - 1;
1307
1308 btrfs_drop_extent_cache(inode, inode->i_size & (~mask), (u64)-1);
1309 path = btrfs_alloc_path();
1310 path->reada = -1;
1311 BUG_ON(!path);
1312
1313 /* FIXME, add redo link to tree so we don't leak on crash */
1314 key.objectid = inode->i_ino;
1315 key.offset = (u64)-1;
1316 key.type = (u8)-1;
1317
1318 btrfs_init_path(path);
1319 search_again:
1320 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1321 if (ret < 0) {
1322 goto error;
1323 }
1324 if (ret > 0) {
1325 BUG_ON(path->slots[0] == 0);
1326 path->slots[0]--;
1327 }
1328
1329 while(1) {
1330 fi = NULL;
1331 leaf = path->nodes[0];
1332 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1333 found_type = btrfs_key_type(&found_key);
1334
1335 if (found_key.objectid != inode->i_ino)
1336 break;
1337
1338 if (found_type < min_type)
1339 break;
1340
1341 item_end = found_key.offset;
1342 if (found_type == BTRFS_EXTENT_DATA_KEY) {
1343 fi = btrfs_item_ptr(leaf, path->slots[0],
1344 struct btrfs_file_extent_item);
1345 extent_type = btrfs_file_extent_type(leaf, fi);
1346 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1347 item_end +=
1348 btrfs_file_extent_num_bytes(leaf, fi);
1349 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1350 struct btrfs_item *item = btrfs_item_nr(leaf,
1351 path->slots[0]);
1352 item_end += btrfs_file_extent_inline_len(leaf,
1353 item);
1354 }
1355 item_end--;
1356 }
1357 if (found_type == BTRFS_CSUM_ITEM_KEY) {
1358 ret = btrfs_csum_truncate(trans, root, path,
1359 inode->i_size);
1360 BUG_ON(ret);
1361 }
1362 if (item_end < inode->i_size) {
1363 if (found_type == BTRFS_DIR_ITEM_KEY) {
1364 found_type = BTRFS_INODE_ITEM_KEY;
1365 } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
1366 found_type = BTRFS_CSUM_ITEM_KEY;
1367 } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
1368 found_type = BTRFS_XATTR_ITEM_KEY;
1369 } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
1370 found_type = BTRFS_INODE_REF_KEY;
1371 } else if (found_type) {
1372 found_type--;
1373 } else {
1374 break;
1375 }
1376 btrfs_set_key_type(&key, found_type);
1377 goto next;
1378 }
1379 if (found_key.offset >= inode->i_size)
1380 del_item = 1;
1381 else
1382 del_item = 0;
1383 found_extent = 0;
1384
1385 /* FIXME, shrink the extent if the ref count is only 1 */
1386 if (found_type != BTRFS_EXTENT_DATA_KEY)
1387 goto delete;
1388
1389 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1390 u64 num_dec;
1391 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
1392 if (!del_item) {
1393 u64 orig_num_bytes =
1394 btrfs_file_extent_num_bytes(leaf, fi);
1395 extent_num_bytes = inode->i_size -
1396 found_key.offset + root->sectorsize - 1;
1397 extent_num_bytes = extent_num_bytes &
1398 ~((u64)root->sectorsize - 1);
1399 btrfs_set_file_extent_num_bytes(leaf, fi,
1400 extent_num_bytes);
1401 num_dec = (orig_num_bytes -
1402 extent_num_bytes);
1403 if (extent_start != 0)
1404 dec_i_blocks(inode, num_dec);
1405 btrfs_mark_buffer_dirty(leaf);
1406 } else {
1407 extent_num_bytes =
1408 btrfs_file_extent_disk_num_bytes(leaf,
1409 fi);
1410 /* FIXME blocksize != 4096 */
1411 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
1412 if (extent_start != 0) {
1413 found_extent = 1;
1414 dec_i_blocks(inode, num_dec);
1415 }
1416 root_gen = btrfs_header_generation(leaf);
1417 root_owner = btrfs_header_owner(leaf);
1418 }
1419 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1420 if (!del_item) {
1421 u32 newsize = inode->i_size - found_key.offset;
1422 dec_i_blocks(inode, item_end + 1 -
1423 found_key.offset - newsize);
1424 newsize =
1425 btrfs_file_extent_calc_inline_size(newsize);
1426 ret = btrfs_truncate_item(trans, root, path,
1427 newsize, 1);
1428 BUG_ON(ret);
1429 } else {
1430 dec_i_blocks(inode, item_end + 1 -
1431 found_key.offset);
1432 }
1433 }
1434 delete:
1435 if (del_item) {
1436 if (!pending_del_nr) {
1437 /* no pending yet, add ourselves */
1438 pending_del_slot = path->slots[0];
1439 pending_del_nr = 1;
1440 } else if (pending_del_nr &&
1441 path->slots[0] + 1 == pending_del_slot) {
1442 /* hop on the pending chunk */
1443 pending_del_nr++;
1444 pending_del_slot = path->slots[0];
1445 } else {
1446 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
1447 }
1448 } else {
1449 break;
1450 }
1451 if (found_extent) {
1452 ret = btrfs_free_extent(trans, root, extent_start,
1453 extent_num_bytes,
1454 root_owner,
1455 root_gen, inode->i_ino,
1456 found_key.offset, 0);
1457 BUG_ON(ret);
1458 }
1459 next:
1460 if (path->slots[0] == 0) {
1461 if (pending_del_nr)
1462 goto del_pending;
1463 btrfs_release_path(root, path);
1464 goto search_again;
1465 }
1466
1467 path->slots[0]--;
1468 if (pending_del_nr &&
1469 path->slots[0] + 1 != pending_del_slot) {
1470 struct btrfs_key debug;
1471 del_pending:
1472 btrfs_item_key_to_cpu(path->nodes[0], &debug,
1473 pending_del_slot);
1474 ret = btrfs_del_items(trans, root, path,
1475 pending_del_slot,
1476 pending_del_nr);
1477 BUG_ON(ret);
1478 pending_del_nr = 0;
1479 btrfs_release_path(root, path);
1480 goto search_again;
1481 }
1482 }
1483 ret = 0;
1484 error:
1485 if (pending_del_nr) {
1486 ret = btrfs_del_items(trans, root, path, pending_del_slot,
1487 pending_del_nr);
1488 }
1489 btrfs_free_path(path);
1490 inode->i_sb->s_dirt = 1;
1491 return ret;
1492 }
1493
1494 /*
1495 * taken from block_truncate_page, but does cow as it zeros out
1496 * any bytes left in the last page in the file.
1497 */
1498 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
1499 {
1500 struct inode *inode = mapping->host;
1501 struct btrfs_root *root = BTRFS_I(inode)->root;
1502 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1503 struct btrfs_ordered_extent *ordered;
1504 char *kaddr;
1505 u32 blocksize = root->sectorsize;
1506 pgoff_t index = from >> PAGE_CACHE_SHIFT;
1507 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1508 struct page *page;
1509 int ret = 0;
1510 u64 page_start;
1511 u64 page_end;
1512
1513 if ((offset & (blocksize - 1)) == 0)
1514 goto out;
1515
1516 ret = -ENOMEM;
1517 again:
1518 page = grab_cache_page(mapping, index);
1519 if (!page)
1520 goto out;
1521
1522 page_start = page_offset(page);
1523 page_end = page_start + PAGE_CACHE_SIZE - 1;
1524
1525 if (!PageUptodate(page)) {
1526 ret = btrfs_readpage(NULL, page);
1527 lock_page(page);
1528 if (page->mapping != mapping) {
1529 unlock_page(page);
1530 page_cache_release(page);
1531 goto again;
1532 }
1533 if (!PageUptodate(page)) {
1534 ret = -EIO;
1535 goto out_unlock;
1536 }
1537 }
1538 wait_on_page_writeback(page);
1539
1540 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
1541 set_page_extent_mapped(page);
1542
1543 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1544 if (ordered) {
1545 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1546 unlock_page(page);
1547 page_cache_release(page);
1548 btrfs_start_ordered_extent(inode, ordered, 1);
1549 btrfs_put_ordered_extent(ordered);
1550 goto again;
1551 }
1552
1553 set_extent_delalloc(&BTRFS_I(inode)->io_tree, page_start,
1554 page_end, GFP_NOFS);
1555 ret = 0;
1556 if (offset != PAGE_CACHE_SIZE) {
1557 kaddr = kmap(page);
1558 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
1559 flush_dcache_page(page);
1560 kunmap(page);
1561 }
1562 ClearPageChecked(page);
1563 set_page_dirty(page);
1564 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1565
1566 out_unlock:
1567 unlock_page(page);
1568 page_cache_release(page);
1569 out:
1570 return ret;
1571 }
1572
1573 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
1574 {
1575 struct inode *inode = dentry->d_inode;
1576 int err;
1577
1578 err = inode_change_ok(inode, attr);
1579 if (err)
1580 return err;
1581
1582 if (S_ISREG(inode->i_mode) &&
1583 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
1584 struct btrfs_trans_handle *trans;
1585 struct btrfs_root *root = BTRFS_I(inode)->root;
1586 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1587
1588 u64 mask = root->sectorsize - 1;
1589 u64 hole_start = (inode->i_size + mask) & ~mask;
1590 u64 block_end = (attr->ia_size + mask) & ~mask;
1591 u64 hole_size;
1592 u64 alloc_hint = 0;
1593
1594 if (attr->ia_size <= hole_start)
1595 goto out;
1596
1597 err = btrfs_check_free_space(root, 1, 0);
1598 if (err)
1599 goto fail;
1600
1601 btrfs_truncate_page(inode->i_mapping, inode->i_size);
1602
1603 hole_size = block_end - hole_start;
1604 btrfs_wait_ordered_range(inode, hole_start, hole_size);
1605 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1606
1607 trans = btrfs_start_transaction(root, 1);
1608 btrfs_set_trans_block_group(trans, inode);
1609 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1610 err = btrfs_drop_extents(trans, root, inode,
1611 hole_start, block_end, hole_start,
1612 &alloc_hint);
1613
1614 if (alloc_hint != EXTENT_MAP_INLINE) {
1615 err = btrfs_insert_file_extent(trans, root,
1616 inode->i_ino,
1617 hole_start, 0, 0,
1618 hole_size, 0);
1619 btrfs_drop_extent_cache(inode, hole_start,
1620 (u64)-1);
1621 btrfs_check_file(root, inode);
1622 }
1623 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1624 btrfs_end_transaction(trans, root);
1625 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1626 if (err)
1627 return err;
1628 }
1629 out:
1630 err = inode_setattr(inode, attr);
1631
1632 if (!err && ((attr->ia_valid & ATTR_MODE)))
1633 err = btrfs_acl_chmod(inode);
1634 fail:
1635 return err;
1636 }
1637
1638 void btrfs_delete_inode(struct inode *inode)
1639 {
1640 struct btrfs_trans_handle *trans;
1641 struct btrfs_root *root = BTRFS_I(inode)->root;
1642 unsigned long nr;
1643 int ret;
1644
1645 truncate_inode_pages(&inode->i_data, 0);
1646 if (is_bad_inode(inode)) {
1647 btrfs_orphan_del(NULL, inode);
1648 goto no_delete;
1649 }
1650 btrfs_wait_ordered_range(inode, 0, (u64)-1);
1651
1652 btrfs_i_size_write(inode, 0);
1653 trans = btrfs_start_transaction(root, 1);
1654
1655 btrfs_set_trans_block_group(trans, inode);
1656 ret = btrfs_truncate_in_trans(trans, root, inode, 0);
1657 if (ret) {
1658 btrfs_orphan_del(NULL, inode);
1659 goto no_delete_lock;
1660 }
1661
1662 btrfs_orphan_del(trans, inode);
1663
1664 nr = trans->blocks_used;
1665 clear_inode(inode);
1666
1667 btrfs_end_transaction(trans, root);
1668 btrfs_btree_balance_dirty(root, nr);
1669 return;
1670
1671 no_delete_lock:
1672 nr = trans->blocks_used;
1673 btrfs_end_transaction(trans, root);
1674 btrfs_btree_balance_dirty(root, nr);
1675 no_delete:
1676 clear_inode(inode);
1677 }
1678
1679 /*
1680 * this returns the key found in the dir entry in the location pointer.
1681 * If no dir entries were found, location->objectid is 0.
1682 */
1683 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
1684 struct btrfs_key *location)
1685 {
1686 const char *name = dentry->d_name.name;
1687 int namelen = dentry->d_name.len;
1688 struct btrfs_dir_item *di;
1689 struct btrfs_path *path;
1690 struct btrfs_root *root = BTRFS_I(dir)->root;
1691 int ret = 0;
1692
1693 if (namelen == 1 && strcmp(name, ".") == 0) {
1694 location->objectid = dir->i_ino;
1695 location->type = BTRFS_INODE_ITEM_KEY;
1696 location->offset = 0;
1697 return 0;
1698 }
1699 path = btrfs_alloc_path();
1700 BUG_ON(!path);
1701
1702 if (namelen == 2 && strcmp(name, "..") == 0) {
1703 struct btrfs_key key;
1704 struct extent_buffer *leaf;
1705 int slot;
1706
1707 key.objectid = dir->i_ino;
1708 key.offset = (u64)-1;
1709 btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY);
1710 if (ret < 0 || path->slots[0] == 0)
1711 goto out_err;
1712 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1713 BUG_ON(ret == 0);
1714 ret = 0;
1715 leaf = path->nodes[0];
1716 slot = path->slots[0] - 1;
1717
1718 btrfs_item_key_to_cpu(leaf, &key, slot);
1719 if (key.objectid != dir->i_ino ||
1720 key.type != BTRFS_INODE_REF_KEY) {
1721 goto out_err;
1722 }
1723 location->objectid = key.offset;
1724 location->type = BTRFS_INODE_ITEM_KEY;
1725 location->offset = 0;
1726 goto out;
1727 }
1728
1729 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
1730 namelen, 0);
1731 if (IS_ERR(di))
1732 ret = PTR_ERR(di);
1733 if (!di || IS_ERR(di)) {
1734 goto out_err;
1735 }
1736 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
1737 out:
1738 btrfs_free_path(path);
1739 return ret;
1740 out_err:
1741 location->objectid = 0;
1742 goto out;
1743 }
1744
1745 /*
1746 * when we hit a tree root in a directory, the btrfs part of the inode
1747 * needs to be changed to reflect the root directory of the tree root. This
1748 * is kind of like crossing a mount point.
1749 */
1750 static int fixup_tree_root_location(struct btrfs_root *root,
1751 struct btrfs_key *location,
1752 struct btrfs_root **sub_root,
1753 struct dentry *dentry)
1754 {
1755 struct btrfs_root_item *ri;
1756
1757 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
1758 return 0;
1759 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1760 return 0;
1761
1762 *sub_root = btrfs_read_fs_root(root->fs_info, location,
1763 dentry->d_name.name,
1764 dentry->d_name.len);
1765 if (IS_ERR(*sub_root))
1766 return PTR_ERR(*sub_root);
1767
1768 ri = &(*sub_root)->root_item;
1769 location->objectid = btrfs_root_dirid(ri);
1770 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
1771 location->offset = 0;
1772
1773 return 0;
1774 }
1775
1776 static int btrfs_init_locked_inode(struct inode *inode, void *p)
1777 {
1778 struct btrfs_iget_args *args = p;
1779 inode->i_ino = args->ino;
1780 BTRFS_I(inode)->root = args->root;
1781 BTRFS_I(inode)->delalloc_bytes = 0;
1782 BTRFS_I(inode)->disk_i_size = 0;
1783 BTRFS_I(inode)->index_cnt = (u64)-1;
1784 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
1785 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
1786 inode->i_mapping, GFP_NOFS);
1787 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
1788 inode->i_mapping, GFP_NOFS);
1789 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
1790 mutex_init(&BTRFS_I(inode)->csum_mutex);
1791 mutex_init(&BTRFS_I(inode)->extent_mutex);
1792 return 0;
1793 }
1794
1795 static int btrfs_find_actor(struct inode *inode, void *opaque)
1796 {
1797 struct btrfs_iget_args *args = opaque;
1798 return (args->ino == inode->i_ino &&
1799 args->root == BTRFS_I(inode)->root);
1800 }
1801
1802 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
1803 u64 root_objectid)
1804 {
1805 struct btrfs_iget_args args;
1806 args.ino = objectid;
1807 args.root = btrfs_lookup_fs_root(btrfs_sb(s)->fs_info, root_objectid);
1808
1809 if (!args.root)
1810 return NULL;
1811
1812 return ilookup5(s, objectid, btrfs_find_actor, (void *)&args);
1813 }
1814
1815 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
1816 struct btrfs_root *root)
1817 {
1818 struct inode *inode;
1819 struct btrfs_iget_args args;
1820 args.ino = objectid;
1821 args.root = root;
1822
1823 inode = iget5_locked(s, objectid, btrfs_find_actor,
1824 btrfs_init_locked_inode,
1825 (void *)&args);
1826 return inode;
1827 }
1828
1829 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
1830 struct nameidata *nd)
1831 {
1832 struct inode * inode;
1833 struct btrfs_inode *bi = BTRFS_I(dir);
1834 struct btrfs_root *root = bi->root;
1835 struct btrfs_root *sub_root = root;
1836 struct btrfs_key location;
1837 int ret, do_orphan = 0;
1838
1839 if (dentry->d_name.len > BTRFS_NAME_LEN)
1840 return ERR_PTR(-ENAMETOOLONG);
1841
1842 ret = btrfs_inode_by_name(dir, dentry, &location);
1843
1844 if (ret < 0)
1845 return ERR_PTR(ret);
1846
1847 inode = NULL;
1848 if (location.objectid) {
1849 ret = fixup_tree_root_location(root, &location, &sub_root,
1850 dentry);
1851 if (ret < 0)
1852 return ERR_PTR(ret);
1853 if (ret > 0)
1854 return ERR_PTR(-ENOENT);
1855
1856 inode = btrfs_iget_locked(dir->i_sb, location.objectid,
1857 sub_root);
1858 if (!inode)
1859 return ERR_PTR(-EACCES);
1860 if (inode->i_state & I_NEW) {
1861 /* the inode and parent dir are two different roots */
1862 if (sub_root != root) {
1863 igrab(inode);
1864 sub_root->inode = inode;
1865 do_orphan = 1;
1866 }
1867 BTRFS_I(inode)->root = sub_root;
1868 memcpy(&BTRFS_I(inode)->location, &location,
1869 sizeof(location));
1870 btrfs_read_locked_inode(inode);
1871 unlock_new_inode(inode);
1872 }
1873 }
1874
1875 if (unlikely(do_orphan))
1876 btrfs_orphan_cleanup(sub_root);
1877
1878 return d_splice_alias(inode, dentry);
1879 }
1880
1881 static unsigned char btrfs_filetype_table[] = {
1882 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
1883 };
1884
1885 static int btrfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
1886 {
1887 struct inode *inode = filp->f_dentry->d_inode;
1888 struct btrfs_root *root = BTRFS_I(inode)->root;
1889 struct btrfs_item *item;
1890 struct btrfs_dir_item *di;
1891 struct btrfs_key key;
1892 struct btrfs_key found_key;
1893 struct btrfs_path *path;
1894 int ret;
1895 u32 nritems;
1896 struct extent_buffer *leaf;
1897 int slot;
1898 int advance;
1899 unsigned char d_type;
1900 int over = 0;
1901 u32 di_cur;
1902 u32 di_total;
1903 u32 di_len;
1904 int key_type = BTRFS_DIR_INDEX_KEY;
1905 char tmp_name[32];
1906 char *name_ptr;
1907 int name_len;
1908
1909 /* FIXME, use a real flag for deciding about the key type */
1910 if (root->fs_info->tree_root == root)
1911 key_type = BTRFS_DIR_ITEM_KEY;
1912
1913 /* special case for "." */
1914 if (filp->f_pos == 0) {
1915 over = filldir(dirent, ".", 1,
1916 1, inode->i_ino,
1917 DT_DIR);
1918 if (over)
1919 return 0;
1920 filp->f_pos = 1;
1921 }
1922
1923 key.objectid = inode->i_ino;
1924 path = btrfs_alloc_path();
1925 path->reada = 2;
1926
1927 /* special case for .., just use the back ref */
1928 if (filp->f_pos == 1) {
1929 btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY);
1930 key.offset = (u64)-1;
1931 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1932 if (ret < 0 || path->slots[0] == 0) {
1933 btrfs_release_path(root, path);
1934 goto read_dir_items;
1935 }
1936 BUG_ON(ret == 0);
1937 leaf = path->nodes[0];
1938 slot = path->slots[0] - 1;
1939 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1940 btrfs_release_path(root, path);
1941 if (found_key.objectid != key.objectid ||
1942 found_key.type != BTRFS_INODE_REF_KEY)
1943 goto read_dir_items;
1944 over = filldir(dirent, "..", 2,
1945 2, found_key.offset, DT_DIR);
1946 if (over)
1947 goto nopos;
1948 filp->f_pos = 2;
1949 }
1950
1951 read_dir_items:
1952 btrfs_set_key_type(&key, key_type);
1953 key.offset = filp->f_pos;
1954
1955 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1956 if (ret < 0)
1957 goto err;
1958 advance = 0;
1959 while(1) {
1960 leaf = path->nodes[0];
1961 nritems = btrfs_header_nritems(leaf);
1962 slot = path->slots[0];
1963 if (advance || slot >= nritems) {
1964 if (slot >= nritems -1) {
1965 ret = btrfs_next_leaf(root, path);
1966 if (ret)
1967 break;
1968 leaf = path->nodes[0];
1969 nritems = btrfs_header_nritems(leaf);
1970 slot = path->slots[0];
1971 } else {
1972 slot++;
1973 path->slots[0]++;
1974 }
1975 }
1976 advance = 1;
1977 item = btrfs_item_nr(leaf, slot);
1978 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1979
1980 if (found_key.objectid != key.objectid)
1981 break;
1982 if (btrfs_key_type(&found_key) != key_type)
1983 break;
1984 if (found_key.offset < filp->f_pos)
1985 continue;
1986
1987 filp->f_pos = found_key.offset;
1988 advance = 1;
1989 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
1990 di_cur = 0;
1991 di_total = btrfs_item_size(leaf, item);
1992 while(di_cur < di_total) {
1993 struct btrfs_key location;
1994
1995 name_len = btrfs_dir_name_len(leaf, di);
1996 if (name_len < 32) {
1997 name_ptr = tmp_name;
1998 } else {
1999 name_ptr = kmalloc(name_len, GFP_NOFS);
2000 BUG_ON(!name_ptr);
2001 }
2002 read_extent_buffer(leaf, name_ptr,
2003 (unsigned long)(di + 1), name_len);
2004
2005 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
2006 btrfs_dir_item_key_to_cpu(leaf, di, &location);
2007 over = filldir(dirent, name_ptr, name_len,
2008 found_key.offset,
2009 location.objectid,
2010 d_type);
2011
2012 if (name_ptr != tmp_name)
2013 kfree(name_ptr);
2014
2015 if (over)
2016 goto nopos;
2017 di_len = btrfs_dir_name_len(leaf, di) +
2018 btrfs_dir_data_len(leaf, di) +sizeof(*di);
2019 di_cur += di_len;
2020 di = (struct btrfs_dir_item *)((char *)di + di_len);
2021 }
2022 }
2023 if (key_type == BTRFS_DIR_INDEX_KEY)
2024 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
2025 else
2026 filp->f_pos++;
2027 nopos:
2028 ret = 0;
2029 err:
2030 btrfs_free_path(path);
2031 return ret;
2032 }
2033
2034 int btrfs_write_inode(struct inode *inode, int wait)
2035 {
2036 struct btrfs_root *root = BTRFS_I(inode)->root;
2037 struct btrfs_trans_handle *trans;
2038 int ret = 0;
2039
2040 if (wait) {
2041 trans = btrfs_join_transaction(root, 1);
2042 btrfs_set_trans_block_group(trans, inode);
2043 ret = btrfs_commit_transaction(trans, root);
2044 }
2045 return ret;
2046 }
2047
2048 /*
2049 * This is somewhat expensive, updating the tree every time the
2050 * inode changes. But, it is most likely to find the inode in cache.
2051 * FIXME, needs more benchmarking...there are no reasons other than performance
2052 * to keep or drop this code.
2053 */
2054 void btrfs_dirty_inode(struct inode *inode)
2055 {
2056 struct btrfs_root *root = BTRFS_I(inode)->root;
2057 struct btrfs_trans_handle *trans;
2058
2059 trans = btrfs_join_transaction(root, 1);
2060 btrfs_set_trans_block_group(trans, inode);
2061 btrfs_update_inode(trans, root, inode);
2062 btrfs_end_transaction(trans, root);
2063 }
2064
2065 static int btrfs_set_inode_index_count(struct inode *inode)
2066 {
2067 struct btrfs_root *root = BTRFS_I(inode)->root;
2068 struct btrfs_key key, found_key;
2069 struct btrfs_path *path;
2070 struct extent_buffer *leaf;
2071 int ret;
2072
2073 key.objectid = inode->i_ino;
2074 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
2075 key.offset = (u64)-1;
2076
2077 path = btrfs_alloc_path();
2078 if (!path)
2079 return -ENOMEM;
2080
2081 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2082 if (ret < 0)
2083 goto out;
2084 /* FIXME: we should be able to handle this */
2085 if (ret == 0)
2086 goto out;
2087 ret = 0;
2088
2089 /*
2090 * MAGIC NUMBER EXPLANATION:
2091 * since we search a directory based on f_pos we have to start at 2
2092 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
2093 * else has to start at 2
2094 */
2095 if (path->slots[0] == 0) {
2096 BTRFS_I(inode)->index_cnt = 2;
2097 goto out;
2098 }
2099
2100 path->slots[0]--;
2101
2102 leaf = path->nodes[0];
2103 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2104
2105 if (found_key.objectid != inode->i_ino ||
2106 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
2107 BTRFS_I(inode)->index_cnt = 2;
2108 goto out;
2109 }
2110
2111 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
2112 out:
2113 btrfs_free_path(path);
2114 return ret;
2115 }
2116
2117 static int btrfs_set_inode_index(struct inode *dir, struct inode *inode)
2118 {
2119 int ret = 0;
2120
2121 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
2122 ret = btrfs_set_inode_index_count(dir);
2123 if (ret)
2124 return ret;
2125 }
2126
2127 BTRFS_I(inode)->index = BTRFS_I(dir)->index_cnt;
2128 BTRFS_I(dir)->index_cnt++;
2129
2130 return ret;
2131 }
2132
2133 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
2134 struct btrfs_root *root,
2135 struct inode *dir,
2136 const char *name, int name_len,
2137 u64 ref_objectid,
2138 u64 objectid,
2139 struct btrfs_block_group_cache *group,
2140 int mode)
2141 {
2142 struct inode *inode;
2143 struct btrfs_inode_item *inode_item;
2144 struct btrfs_block_group_cache *new_inode_group;
2145 struct btrfs_key *location;
2146 struct btrfs_path *path;
2147 struct btrfs_inode_ref *ref;
2148 struct btrfs_key key[2];
2149 u32 sizes[2];
2150 unsigned long ptr;
2151 int ret;
2152 int owner;
2153
2154 path = btrfs_alloc_path();
2155 BUG_ON(!path);
2156
2157 inode = new_inode(root->fs_info->sb);
2158 if (!inode)
2159 return ERR_PTR(-ENOMEM);
2160
2161 if (dir) {
2162 ret = btrfs_set_inode_index(dir, inode);
2163 if (ret)
2164 return ERR_PTR(ret);
2165 } else {
2166 BTRFS_I(inode)->index = 0;
2167 }
2168 /*
2169 * index_cnt is ignored for everything but a dir,
2170 * btrfs_get_inode_index_count has an explanation for the magic
2171 * number
2172 */
2173 BTRFS_I(inode)->index_cnt = 2;
2174
2175 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2176 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2177 inode->i_mapping, GFP_NOFS);
2178 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2179 inode->i_mapping, GFP_NOFS);
2180 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2181 mutex_init(&BTRFS_I(inode)->csum_mutex);
2182 mutex_init(&BTRFS_I(inode)->extent_mutex);
2183 BTRFS_I(inode)->delalloc_bytes = 0;
2184 BTRFS_I(inode)->disk_i_size = 0;
2185 BTRFS_I(inode)->root = root;
2186
2187 if (mode & S_IFDIR)
2188 owner = 0;
2189 else
2190 owner = 1;
2191 new_inode_group = btrfs_find_block_group(root, group, 0,
2192 BTRFS_BLOCK_GROUP_METADATA, owner);
2193 if (!new_inode_group) {
2194 printk("find_block group failed\n");
2195 new_inode_group = group;
2196 }
2197 BTRFS_I(inode)->block_group = new_inode_group;
2198 BTRFS_I(inode)->flags = 0;
2199
2200 key[0].objectid = objectid;
2201 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
2202 key[0].offset = 0;
2203
2204 key[1].objectid = objectid;
2205 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
2206 key[1].offset = ref_objectid;
2207
2208 sizes[0] = sizeof(struct btrfs_inode_item);
2209 sizes[1] = name_len + sizeof(*ref);
2210
2211 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
2212 if (ret != 0)
2213 goto fail;
2214
2215 if (objectid > root->highest_inode)
2216 root->highest_inode = objectid;
2217
2218 inode->i_uid = current->fsuid;
2219 inode->i_gid = current->fsgid;
2220 inode->i_mode = mode;
2221 inode->i_ino = objectid;
2222 inode->i_blocks = 0;
2223 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2224 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2225 struct btrfs_inode_item);
2226 fill_inode_item(path->nodes[0], inode_item, inode);
2227
2228 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
2229 struct btrfs_inode_ref);
2230 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
2231 btrfs_set_inode_ref_index(path->nodes[0], ref, BTRFS_I(inode)->index);
2232 ptr = (unsigned long)(ref + 1);
2233 write_extent_buffer(path->nodes[0], name, ptr, name_len);
2234
2235 btrfs_mark_buffer_dirty(path->nodes[0]);
2236 btrfs_free_path(path);
2237
2238 location = &BTRFS_I(inode)->location;
2239 location->objectid = objectid;
2240 location->offset = 0;
2241 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2242
2243 insert_inode_hash(inode);
2244 return inode;
2245 fail:
2246 if (dir)
2247 BTRFS_I(dir)->index_cnt--;
2248 btrfs_free_path(path);
2249 return ERR_PTR(ret);
2250 }
2251
2252 static inline u8 btrfs_inode_type(struct inode *inode)
2253 {
2254 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
2255 }
2256
2257 static int btrfs_add_link(struct btrfs_trans_handle *trans,
2258 struct dentry *dentry, struct inode *inode,
2259 int add_backref)
2260 {
2261 int ret;
2262 struct btrfs_key key;
2263 struct btrfs_root *root = BTRFS_I(dentry->d_parent->d_inode)->root;
2264 struct inode *parent_inode = dentry->d_parent->d_inode;
2265
2266 key.objectid = inode->i_ino;
2267 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
2268 key.offset = 0;
2269
2270 ret = btrfs_insert_dir_item(trans, root,
2271 dentry->d_name.name, dentry->d_name.len,
2272 dentry->d_parent->d_inode->i_ino,
2273 &key, btrfs_inode_type(inode),
2274 BTRFS_I(inode)->index);
2275 if (ret == 0) {
2276 if (add_backref) {
2277 ret = btrfs_insert_inode_ref(trans, root,
2278 dentry->d_name.name,
2279 dentry->d_name.len,
2280 inode->i_ino,
2281 parent_inode->i_ino,
2282 BTRFS_I(inode)->index);
2283 }
2284 btrfs_i_size_write(parent_inode, parent_inode->i_size +
2285 dentry->d_name.len * 2);
2286 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
2287 ret = btrfs_update_inode(trans, root,
2288 dentry->d_parent->d_inode);
2289 }
2290 return ret;
2291 }
2292
2293 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
2294 struct dentry *dentry, struct inode *inode,
2295 int backref)
2296 {
2297 int err = btrfs_add_link(trans, dentry, inode, backref);
2298 if (!err) {
2299 d_instantiate(dentry, inode);
2300 return 0;
2301 }
2302 if (err > 0)
2303 err = -EEXIST;
2304 return err;
2305 }
2306
2307 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
2308 int mode, dev_t rdev)
2309 {
2310 struct btrfs_trans_handle *trans;
2311 struct btrfs_root *root = BTRFS_I(dir)->root;
2312 struct inode *inode = NULL;
2313 int err;
2314 int drop_inode = 0;
2315 u64 objectid;
2316 unsigned long nr = 0;
2317
2318 if (!new_valid_dev(rdev))
2319 return -EINVAL;
2320
2321 err = btrfs_check_free_space(root, 1, 0);
2322 if (err)
2323 goto fail;
2324
2325 trans = btrfs_start_transaction(root, 1);
2326 btrfs_set_trans_block_group(trans, dir);
2327
2328 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2329 if (err) {
2330 err = -ENOSPC;
2331 goto out_unlock;
2332 }
2333
2334 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2335 dentry->d_name.len,
2336 dentry->d_parent->d_inode->i_ino, objectid,
2337 BTRFS_I(dir)->block_group, mode);
2338 err = PTR_ERR(inode);
2339 if (IS_ERR(inode))
2340 goto out_unlock;
2341
2342 err = btrfs_init_acl(inode, dir);
2343 if (err) {
2344 drop_inode = 1;
2345 goto out_unlock;
2346 }
2347
2348 btrfs_set_trans_block_group(trans, inode);
2349 err = btrfs_add_nondir(trans, dentry, inode, 0);
2350 if (err)
2351 drop_inode = 1;
2352 else {
2353 inode->i_op = &btrfs_special_inode_operations;
2354 init_special_inode(inode, inode->i_mode, rdev);
2355 btrfs_update_inode(trans, root, inode);
2356 }
2357 dir->i_sb->s_dirt = 1;
2358 btrfs_update_inode_block_group(trans, inode);
2359 btrfs_update_inode_block_group(trans, dir);
2360 out_unlock:
2361 nr = trans->blocks_used;
2362 btrfs_end_transaction_throttle(trans, root);
2363 fail:
2364 if (drop_inode) {
2365 inode_dec_link_count(inode);
2366 iput(inode);
2367 }
2368 btrfs_btree_balance_dirty(root, nr);
2369 return err;
2370 }
2371
2372 static int btrfs_create(struct inode *dir, struct dentry *dentry,
2373 int mode, struct nameidata *nd)
2374 {
2375 struct btrfs_trans_handle *trans;
2376 struct btrfs_root *root = BTRFS_I(dir)->root;
2377 struct inode *inode = NULL;
2378 int err;
2379 int drop_inode = 0;
2380 unsigned long nr = 0;
2381 u64 objectid;
2382
2383 err = btrfs_check_free_space(root, 1, 0);
2384 if (err)
2385 goto fail;
2386 trans = btrfs_start_transaction(root, 1);
2387 btrfs_set_trans_block_group(trans, dir);
2388
2389 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2390 if (err) {
2391 err = -ENOSPC;
2392 goto out_unlock;
2393 }
2394
2395 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2396 dentry->d_name.len,
2397 dentry->d_parent->d_inode->i_ino,
2398 objectid, BTRFS_I(dir)->block_group, mode);
2399 err = PTR_ERR(inode);
2400 if (IS_ERR(inode))
2401 goto out_unlock;
2402
2403 err = btrfs_init_acl(inode, dir);
2404 if (err) {
2405 drop_inode = 1;
2406 goto out_unlock;
2407 }
2408
2409 btrfs_set_trans_block_group(trans, inode);
2410 err = btrfs_add_nondir(trans, dentry, inode, 0);
2411 if (err)
2412 drop_inode = 1;
2413 else {
2414 inode->i_mapping->a_ops = &btrfs_aops;
2415 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2416 inode->i_fop = &btrfs_file_operations;
2417 inode->i_op = &btrfs_file_inode_operations;
2418 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2419 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2420 inode->i_mapping, GFP_NOFS);
2421 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2422 inode->i_mapping, GFP_NOFS);
2423 mutex_init(&BTRFS_I(inode)->csum_mutex);
2424 mutex_init(&BTRFS_I(inode)->extent_mutex);
2425 BTRFS_I(inode)->delalloc_bytes = 0;
2426 BTRFS_I(inode)->disk_i_size = 0;
2427 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2428 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2429 }
2430 dir->i_sb->s_dirt = 1;
2431 btrfs_update_inode_block_group(trans, inode);
2432 btrfs_update_inode_block_group(trans, dir);
2433 out_unlock:
2434 nr = trans->blocks_used;
2435 btrfs_end_transaction_throttle(trans, root);
2436 fail:
2437 if (drop_inode) {
2438 inode_dec_link_count(inode);
2439 iput(inode);
2440 }
2441 btrfs_btree_balance_dirty(root, nr);
2442 return err;
2443 }
2444
2445 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
2446 struct dentry *dentry)
2447 {
2448 struct btrfs_trans_handle *trans;
2449 struct btrfs_root *root = BTRFS_I(dir)->root;
2450 struct inode *inode = old_dentry->d_inode;
2451 unsigned long nr = 0;
2452 int err;
2453 int drop_inode = 0;
2454
2455 if (inode->i_nlink == 0)
2456 return -ENOENT;
2457
2458 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
2459 inode->i_nlink++;
2460 #else
2461 inc_nlink(inode);
2462 #endif
2463 err = btrfs_check_free_space(root, 1, 0);
2464 if (err)
2465 goto fail;
2466 err = btrfs_set_inode_index(dir, inode);
2467 if (err)
2468 goto fail;
2469
2470 trans = btrfs_start_transaction(root, 1);
2471
2472 btrfs_set_trans_block_group(trans, dir);
2473 atomic_inc(&inode->i_count);
2474
2475 err = btrfs_add_nondir(trans, dentry, inode, 1);
2476
2477 if (err)
2478 drop_inode = 1;
2479
2480 dir->i_sb->s_dirt = 1;
2481 btrfs_update_inode_block_group(trans, dir);
2482 err = btrfs_update_inode(trans, root, inode);
2483
2484 if (err)
2485 drop_inode = 1;
2486
2487 nr = trans->blocks_used;
2488 btrfs_end_transaction_throttle(trans, root);
2489 fail:
2490 if (drop_inode) {
2491 inode_dec_link_count(inode);
2492 iput(inode);
2493 }
2494 btrfs_btree_balance_dirty(root, nr);
2495 return err;
2496 }
2497
2498 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2499 {
2500 struct inode *inode = NULL;
2501 struct btrfs_trans_handle *trans;
2502 struct btrfs_root *root = BTRFS_I(dir)->root;
2503 int err = 0;
2504 int drop_on_err = 0;
2505 u64 objectid = 0;
2506 unsigned long nr = 1;
2507
2508 err = btrfs_check_free_space(root, 1, 0);
2509 if (err)
2510 goto out_unlock;
2511
2512 trans = btrfs_start_transaction(root, 1);
2513 btrfs_set_trans_block_group(trans, dir);
2514
2515 if (IS_ERR(trans)) {
2516 err = PTR_ERR(trans);
2517 goto out_unlock;
2518 }
2519
2520 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2521 if (err) {
2522 err = -ENOSPC;
2523 goto out_unlock;
2524 }
2525
2526 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2527 dentry->d_name.len,
2528 dentry->d_parent->d_inode->i_ino, objectid,
2529 BTRFS_I(dir)->block_group, S_IFDIR | mode);
2530 if (IS_ERR(inode)) {
2531 err = PTR_ERR(inode);
2532 goto out_fail;
2533 }
2534
2535 drop_on_err = 1;
2536
2537 err = btrfs_init_acl(inode, dir);
2538 if (err)
2539 goto out_fail;
2540
2541 inode->i_op = &btrfs_dir_inode_operations;
2542 inode->i_fop = &btrfs_dir_file_operations;
2543 btrfs_set_trans_block_group(trans, inode);
2544
2545 btrfs_i_size_write(inode, 0);
2546 err = btrfs_update_inode(trans, root, inode);
2547 if (err)
2548 goto out_fail;
2549
2550 err = btrfs_add_link(trans, dentry, inode, 0);
2551 if (err)
2552 goto out_fail;
2553
2554 d_instantiate(dentry, inode);
2555 drop_on_err = 0;
2556 dir->i_sb->s_dirt = 1;
2557 btrfs_update_inode_block_group(trans, inode);
2558 btrfs_update_inode_block_group(trans, dir);
2559
2560 out_fail:
2561 nr = trans->blocks_used;
2562 btrfs_end_transaction_throttle(trans, root);
2563
2564 out_unlock:
2565 if (drop_on_err)
2566 iput(inode);
2567 btrfs_btree_balance_dirty(root, nr);
2568 return err;
2569 }
2570
2571 static int merge_extent_mapping(struct extent_map_tree *em_tree,
2572 struct extent_map *existing,
2573 struct extent_map *em,
2574 u64 map_start, u64 map_len)
2575 {
2576 u64 start_diff;
2577
2578 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
2579 start_diff = map_start - em->start;
2580 em->start = map_start;
2581 em->len = map_len;
2582 if (em->block_start < EXTENT_MAP_LAST_BYTE)
2583 em->block_start += start_diff;
2584 return add_extent_mapping(em_tree, em);
2585 }
2586
2587 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
2588 size_t pg_offset, u64 start, u64 len,
2589 int create)
2590 {
2591 int ret;
2592 int err = 0;
2593 u64 bytenr;
2594 u64 extent_start = 0;
2595 u64 extent_end = 0;
2596 u64 objectid = inode->i_ino;
2597 u32 found_type;
2598 struct btrfs_path *path = NULL;
2599 struct btrfs_root *root = BTRFS_I(inode)->root;
2600 struct btrfs_file_extent_item *item;
2601 struct extent_buffer *leaf;
2602 struct btrfs_key found_key;
2603 struct extent_map *em = NULL;
2604 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2605 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2606 struct btrfs_trans_handle *trans = NULL;
2607
2608 again:
2609 spin_lock(&em_tree->lock);
2610 em = lookup_extent_mapping(em_tree, start, len);
2611 if (em)
2612 em->bdev = root->fs_info->fs_devices->latest_bdev;
2613 spin_unlock(&em_tree->lock);
2614
2615 if (em) {
2616 if (em->start > start || em->start + em->len <= start)
2617 free_extent_map(em);
2618 else if (em->block_start == EXTENT_MAP_INLINE && page)
2619 free_extent_map(em);
2620 else
2621 goto out;
2622 }
2623 em = alloc_extent_map(GFP_NOFS);
2624 if (!em) {
2625 err = -ENOMEM;
2626 goto out;
2627 }
2628 em->bdev = root->fs_info->fs_devices->latest_bdev;
2629 em->start = EXTENT_MAP_HOLE;
2630 em->len = (u64)-1;
2631
2632 if (!path) {
2633 path = btrfs_alloc_path();
2634 BUG_ON(!path);
2635 }
2636
2637 ret = btrfs_lookup_file_extent(trans, root, path,
2638 objectid, start, trans != NULL);
2639 if (ret < 0) {
2640 err = ret;
2641 goto out;
2642 }
2643
2644 if (ret != 0) {
2645 if (path->slots[0] == 0)
2646 goto not_found;
2647 path->slots[0]--;
2648 }
2649
2650 leaf = path->nodes[0];
2651 item = btrfs_item_ptr(leaf, path->slots[0],
2652 struct btrfs_file_extent_item);
2653 /* are we inside the extent that was found? */
2654 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2655 found_type = btrfs_key_type(&found_key);
2656 if (found_key.objectid != objectid ||
2657 found_type != BTRFS_EXTENT_DATA_KEY) {
2658 goto not_found;
2659 }
2660
2661 found_type = btrfs_file_extent_type(leaf, item);
2662 extent_start = found_key.offset;
2663 if (found_type == BTRFS_FILE_EXTENT_REG) {
2664 extent_end = extent_start +
2665 btrfs_file_extent_num_bytes(leaf, item);
2666 err = 0;
2667 if (start < extent_start || start >= extent_end) {
2668 em->start = start;
2669 if (start < extent_start) {
2670 if (start + len <= extent_start)
2671 goto not_found;
2672 em->len = extent_end - extent_start;
2673 } else {
2674 em->len = len;
2675 }
2676 goto not_found_em;
2677 }
2678 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
2679 if (bytenr == 0) {
2680 em->start = extent_start;
2681 em->len = extent_end - extent_start;
2682 em->block_start = EXTENT_MAP_HOLE;
2683 goto insert;
2684 }
2685 bytenr += btrfs_file_extent_offset(leaf, item);
2686 em->block_start = bytenr;
2687 em->start = extent_start;
2688 em->len = extent_end - extent_start;
2689 goto insert;
2690 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
2691 u64 page_start;
2692 unsigned long ptr;
2693 char *map;
2694 size_t size;
2695 size_t extent_offset;
2696 size_t copy_size;
2697
2698 size = btrfs_file_extent_inline_len(leaf, btrfs_item_nr(leaf,
2699 path->slots[0]));
2700 extent_end = (extent_start + size + root->sectorsize - 1) &
2701 ~((u64)root->sectorsize - 1);
2702 if (start < extent_start || start >= extent_end) {
2703 em->start = start;
2704 if (start < extent_start) {
2705 if (start + len <= extent_start)
2706 goto not_found;
2707 em->len = extent_end - extent_start;
2708 } else {
2709 em->len = len;
2710 }
2711 goto not_found_em;
2712 }
2713 em->block_start = EXTENT_MAP_INLINE;
2714
2715 if (!page) {
2716 em->start = extent_start;
2717 em->len = size;
2718 goto out;
2719 }
2720
2721 page_start = page_offset(page) + pg_offset;
2722 extent_offset = page_start - extent_start;
2723 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
2724 size - extent_offset);
2725 em->start = extent_start + extent_offset;
2726 em->len = (copy_size + root->sectorsize - 1) &
2727 ~((u64)root->sectorsize - 1);
2728 map = kmap(page);
2729 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
2730 if (create == 0 && !PageUptodate(page)) {
2731 read_extent_buffer(leaf, map + pg_offset, ptr,
2732 copy_size);
2733 flush_dcache_page(page);
2734 } else if (create && PageUptodate(page)) {
2735 if (!trans) {
2736 kunmap(page);
2737 free_extent_map(em);
2738 em = NULL;
2739 btrfs_release_path(root, path);
2740 trans = btrfs_join_transaction(root, 1);
2741 goto again;
2742 }
2743 write_extent_buffer(leaf, map + pg_offset, ptr,
2744 copy_size);
2745 btrfs_mark_buffer_dirty(leaf);
2746 }
2747 kunmap(page);
2748 set_extent_uptodate(io_tree, em->start,
2749 extent_map_end(em) - 1, GFP_NOFS);
2750 goto insert;
2751 } else {
2752 printk("unkknown found_type %d\n", found_type);
2753 WARN_ON(1);
2754 }
2755 not_found:
2756 em->start = start;
2757 em->len = len;
2758 not_found_em:
2759 em->block_start = EXTENT_MAP_HOLE;
2760 insert:
2761 btrfs_release_path(root, path);
2762 if (em->start > start || extent_map_end(em) <= start) {
2763 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
2764 err = -EIO;
2765 goto out;
2766 }
2767
2768 err = 0;
2769 spin_lock(&em_tree->lock);
2770 ret = add_extent_mapping(em_tree, em);
2771 /* it is possible that someone inserted the extent into the tree
2772 * while we had the lock dropped. It is also possible that
2773 * an overlapping map exists in the tree
2774 */
2775 if (ret == -EEXIST) {
2776 struct extent_map *existing;
2777
2778 ret = 0;
2779
2780 existing = lookup_extent_mapping(em_tree, start, len);
2781 if (existing && (existing->start > start ||
2782 existing->start + existing->len <= start)) {
2783 free_extent_map(existing);
2784 existing = NULL;
2785 }
2786 if (!existing) {
2787 existing = lookup_extent_mapping(em_tree, em->start,
2788 em->len);
2789 if (existing) {
2790 err = merge_extent_mapping(em_tree, existing,
2791 em, start,
2792 root->sectorsize);
2793 free_extent_map(existing);
2794 if (err) {
2795 free_extent_map(em);
2796 em = NULL;
2797 }
2798 } else {
2799 err = -EIO;
2800 printk("failing to insert %Lu %Lu\n",
2801 start, len);
2802 free_extent_map(em);
2803 em = NULL;
2804 }
2805 } else {
2806 free_extent_map(em);
2807 em = existing;
2808 err = 0;
2809 }
2810 }
2811 spin_unlock(&em_tree->lock);
2812 out:
2813 if (path)
2814 btrfs_free_path(path);
2815 if (trans) {
2816 ret = btrfs_end_transaction(trans, root);
2817 if (!err) {
2818 err = ret;
2819 }
2820 }
2821 if (err) {
2822 free_extent_map(em);
2823 WARN_ON(1);
2824 return ERR_PTR(err);
2825 }
2826 return em;
2827 }
2828
2829 #if 0 /* waiting for O_DIRECT reads */
2830 static int btrfs_get_block(struct inode *inode, sector_t iblock,
2831 struct buffer_head *bh_result, int create)
2832 {
2833 struct extent_map *em;
2834 u64 start = (u64)iblock << inode->i_blkbits;
2835 struct btrfs_multi_bio *multi = NULL;
2836 struct btrfs_root *root = BTRFS_I(inode)->root;
2837 u64 len;
2838 u64 logical;
2839 u64 map_length;
2840 int ret = 0;
2841
2842 em = btrfs_get_extent(inode, NULL, 0, start, bh_result->b_size, 0);
2843
2844 if (!em || IS_ERR(em))
2845 goto out;
2846
2847 if (em->start > start || em->start + em->len <= start) {
2848 goto out;
2849 }
2850
2851 if (em->block_start == EXTENT_MAP_INLINE) {
2852 ret = -EINVAL;
2853 goto out;
2854 }
2855
2856 len = em->start + em->len - start;
2857 len = min_t(u64, len, INT_LIMIT(typeof(bh_result->b_size)));
2858
2859 if (em->block_start == EXTENT_MAP_HOLE ||
2860 em->block_start == EXTENT_MAP_DELALLOC) {
2861 bh_result->b_size = len;
2862 goto out;
2863 }
2864
2865 logical = start - em->start;
2866 logical = em->block_start + logical;
2867
2868 map_length = len;
2869 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
2870 logical, &map_length, &multi, 0);
2871 BUG_ON(ret);
2872 bh_result->b_blocknr = multi->stripes[0].physical >> inode->i_blkbits;
2873 bh_result->b_size = min(map_length, len);
2874
2875 bh_result->b_bdev = multi->stripes[0].dev->bdev;
2876 set_buffer_mapped(bh_result);
2877 kfree(multi);
2878 out:
2879 free_extent_map(em);
2880 return ret;
2881 }
2882 #endif
2883
2884 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
2885 const struct iovec *iov, loff_t offset,
2886 unsigned long nr_segs)
2887 {
2888 return -EINVAL;
2889 #if 0
2890 struct file *file = iocb->ki_filp;
2891 struct inode *inode = file->f_mapping->host;
2892
2893 if (rw == WRITE)
2894 return -EINVAL;
2895
2896 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2897 offset, nr_segs, btrfs_get_block, NULL);
2898 #endif
2899 }
2900
2901 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
2902 {
2903 return extent_bmap(mapping, iblock, btrfs_get_extent);
2904 }
2905
2906 int btrfs_readpage(struct file *file, struct page *page)
2907 {
2908 struct extent_io_tree *tree;
2909 tree = &BTRFS_I(page->mapping->host)->io_tree;
2910 return extent_read_full_page(tree, page, btrfs_get_extent);
2911 }
2912
2913 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
2914 {
2915 struct extent_io_tree *tree;
2916
2917
2918 if (current->flags & PF_MEMALLOC) {
2919 redirty_page_for_writepage(wbc, page);
2920 unlock_page(page);
2921 return 0;
2922 }
2923 tree = &BTRFS_I(page->mapping->host)->io_tree;
2924 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
2925 }
2926
2927 int btrfs_writepages(struct address_space *mapping,
2928 struct writeback_control *wbc)
2929 {
2930 struct extent_io_tree *tree;
2931 tree = &BTRFS_I(mapping->host)->io_tree;
2932 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
2933 }
2934
2935 static int
2936 btrfs_readpages(struct file *file, struct address_space *mapping,
2937 struct list_head *pages, unsigned nr_pages)
2938 {
2939 struct extent_io_tree *tree;
2940 tree = &BTRFS_I(mapping->host)->io_tree;
2941 return extent_readpages(tree, mapping, pages, nr_pages,
2942 btrfs_get_extent);
2943 }
2944 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
2945 {
2946 struct extent_io_tree *tree;
2947 struct extent_map_tree *map;
2948 int ret;
2949
2950 tree = &BTRFS_I(page->mapping->host)->io_tree;
2951 map = &BTRFS_I(page->mapping->host)->extent_tree;
2952 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
2953 if (ret == 1) {
2954 ClearPagePrivate(page);
2955 set_page_private(page, 0);
2956 page_cache_release(page);
2957 }
2958 return ret;
2959 }
2960
2961 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
2962 {
2963 return __btrfs_releasepage(page, gfp_flags);
2964 }
2965
2966 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
2967 {
2968 struct extent_io_tree *tree;
2969 struct btrfs_ordered_extent *ordered;
2970 u64 page_start = page_offset(page);
2971 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2972
2973 wait_on_page_writeback(page);
2974 tree = &BTRFS_I(page->mapping->host)->io_tree;
2975 if (offset) {
2976 btrfs_releasepage(page, GFP_NOFS);
2977 return;
2978 }
2979
2980 lock_extent(tree, page_start, page_end, GFP_NOFS);
2981 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
2982 page_offset(page));
2983 if (ordered) {
2984 /*
2985 * IO on this page will never be started, so we need
2986 * to account for any ordered extents now
2987 */
2988 clear_extent_bit(tree, page_start, page_end,
2989 EXTENT_DIRTY | EXTENT_DELALLOC |
2990 EXTENT_LOCKED, 1, 0, GFP_NOFS);
2991 btrfs_finish_ordered_io(page->mapping->host,
2992 page_start, page_end);
2993 btrfs_put_ordered_extent(ordered);
2994 lock_extent(tree, page_start, page_end, GFP_NOFS);
2995 }
2996 clear_extent_bit(tree, page_start, page_end,
2997 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2998 EXTENT_ORDERED,
2999 1, 1, GFP_NOFS);
3000 __btrfs_releasepage(page, GFP_NOFS);
3001
3002 ClearPageChecked(page);
3003 if (PagePrivate(page)) {
3004 ClearPagePrivate(page);
3005 set_page_private(page, 0);
3006 page_cache_release(page);
3007 }
3008 }
3009
3010 /*
3011 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
3012 * called from a page fault handler when a page is first dirtied. Hence we must
3013 * be careful to check for EOF conditions here. We set the page up correctly
3014 * for a written page which means we get ENOSPC checking when writing into
3015 * holes and correct delalloc and unwritten extent mapping on filesystems that
3016 * support these features.
3017 *
3018 * We are not allowed to take the i_mutex here so we have to play games to
3019 * protect against truncate races as the page could now be beyond EOF. Because
3020 * vmtruncate() writes the inode size before removing pages, once we have the
3021 * page lock we can determine safely if the page is beyond EOF. If it is not
3022 * beyond EOF, then the page is guaranteed safe against truncation until we
3023 * unlock the page.
3024 */
3025 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3026 {
3027 struct inode *inode = fdentry(vma->vm_file)->d_inode;
3028 struct btrfs_root *root = BTRFS_I(inode)->root;
3029 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3030 struct btrfs_ordered_extent *ordered;
3031 char *kaddr;
3032 unsigned long zero_start;
3033 loff_t size;
3034 int ret;
3035 u64 page_start;
3036 u64 page_end;
3037
3038 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
3039 if (ret)
3040 goto out;
3041
3042 ret = -EINVAL;
3043 again:
3044 lock_page(page);
3045 size = i_size_read(inode);
3046 page_start = page_offset(page);
3047 page_end = page_start + PAGE_CACHE_SIZE - 1;
3048
3049 if ((page->mapping != inode->i_mapping) ||
3050 (page_start >= size)) {
3051 /* page got truncated out from underneath us */
3052 goto out_unlock;
3053 }
3054 wait_on_page_writeback(page);
3055
3056 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3057 set_page_extent_mapped(page);
3058
3059 /*
3060 * we can't set the delalloc bits if there are pending ordered
3061 * extents. Drop our locks and wait for them to finish
3062 */
3063 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3064 if (ordered) {
3065 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3066 unlock_page(page);
3067 btrfs_start_ordered_extent(inode, ordered, 1);
3068 btrfs_put_ordered_extent(ordered);
3069 goto again;
3070 }
3071
3072 set_extent_delalloc(&BTRFS_I(inode)->io_tree, page_start,
3073 page_end, GFP_NOFS);
3074 ret = 0;
3075
3076 /* page is wholly or partially inside EOF */
3077 if (page_start + PAGE_CACHE_SIZE > size)
3078 zero_start = size & ~PAGE_CACHE_MASK;
3079 else
3080 zero_start = PAGE_CACHE_SIZE;
3081
3082 if (zero_start != PAGE_CACHE_SIZE) {
3083 kaddr = kmap(page);
3084 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
3085 flush_dcache_page(page);
3086 kunmap(page);
3087 }
3088 ClearPageChecked(page);
3089 set_page_dirty(page);
3090 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3091
3092 out_unlock:
3093 unlock_page(page);
3094 out:
3095 return ret;
3096 }
3097
3098 static void btrfs_truncate(struct inode *inode)
3099 {
3100 struct btrfs_root *root = BTRFS_I(inode)->root;
3101 int ret;
3102 struct btrfs_trans_handle *trans;
3103 unsigned long nr;
3104 u64 mask = root->sectorsize - 1;
3105
3106 if (!S_ISREG(inode->i_mode))
3107 return;
3108 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3109 return;
3110
3111 btrfs_truncate_page(inode->i_mapping, inode->i_size);
3112 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
3113
3114 trans = btrfs_start_transaction(root, 1);
3115 btrfs_set_trans_block_group(trans, inode);
3116 btrfs_i_size_write(inode, inode->i_size);
3117
3118 ret = btrfs_orphan_add(trans, inode);
3119 if (ret)
3120 goto out;
3121 /* FIXME, add redo link to tree so we don't leak on crash */
3122 ret = btrfs_truncate_in_trans(trans, root, inode,
3123 BTRFS_EXTENT_DATA_KEY);
3124 btrfs_update_inode(trans, root, inode);
3125
3126 ret = btrfs_orphan_del(trans, inode);
3127 BUG_ON(ret);
3128
3129 out:
3130 nr = trans->blocks_used;
3131 ret = btrfs_end_transaction_throttle(trans, root);
3132 BUG_ON(ret);
3133 btrfs_btree_balance_dirty(root, nr);
3134 }
3135
3136 /*
3137 * Invalidate a single dcache entry at the root of the filesystem.
3138 * Needed after creation of snapshot or subvolume.
3139 */
3140 void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name,
3141 int namelen)
3142 {
3143 struct dentry *alias, *entry;
3144 struct qstr qstr;
3145
3146 alias = d_find_alias(root->fs_info->sb->s_root->d_inode);
3147 if (alias) {
3148 qstr.name = name;
3149 qstr.len = namelen;
3150 /* change me if btrfs ever gets a d_hash operation */
3151 qstr.hash = full_name_hash(qstr.name, qstr.len);
3152 entry = d_lookup(alias, &qstr);
3153 dput(alias);
3154 if (entry) {
3155 d_invalidate(entry);
3156 dput(entry);
3157 }
3158 }
3159 }
3160
3161 int btrfs_create_subvol_root(struct btrfs_root *new_root,
3162 struct btrfs_trans_handle *trans, u64 new_dirid,
3163 struct btrfs_block_group_cache *block_group)
3164 {
3165 struct inode *inode;
3166
3167 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
3168 new_dirid, block_group, S_IFDIR | 0700);
3169 if (IS_ERR(inode))
3170 return PTR_ERR(inode);
3171 inode->i_op = &btrfs_dir_inode_operations;
3172 inode->i_fop = &btrfs_dir_file_operations;
3173 new_root->inode = inode;
3174
3175 inode->i_nlink = 1;
3176 btrfs_i_size_write(inode, 0);
3177
3178 return btrfs_update_inode(trans, new_root, inode);
3179 }
3180
3181 unsigned long btrfs_force_ra(struct address_space *mapping,
3182 struct file_ra_state *ra, struct file *file,
3183 pgoff_t offset, pgoff_t last_index)
3184 {
3185 pgoff_t req_size = last_index - offset + 1;
3186
3187 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3188 offset = page_cache_readahead(mapping, ra, file, offset, req_size);
3189 return offset;
3190 #else
3191 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3192 return offset + req_size;
3193 #endif
3194 }
3195
3196 struct inode *btrfs_alloc_inode(struct super_block *sb)
3197 {
3198 struct btrfs_inode *ei;
3199
3200 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
3201 if (!ei)
3202 return NULL;
3203 ei->last_trans = 0;
3204 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
3205 ei->i_acl = BTRFS_ACL_NOT_CACHED;
3206 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
3207 INIT_LIST_HEAD(&ei->i_orphan);
3208 return &ei->vfs_inode;
3209 }
3210
3211 void btrfs_destroy_inode(struct inode *inode)
3212 {
3213 struct btrfs_ordered_extent *ordered;
3214 WARN_ON(!list_empty(&inode->i_dentry));
3215 WARN_ON(inode->i_data.nrpages);
3216
3217 if (BTRFS_I(inode)->i_acl &&
3218 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
3219 posix_acl_release(BTRFS_I(inode)->i_acl);
3220 if (BTRFS_I(inode)->i_default_acl &&
3221 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
3222 posix_acl_release(BTRFS_I(inode)->i_default_acl);
3223
3224 spin_lock(&BTRFS_I(inode)->root->list_lock);
3225 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
3226 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
3227 " list\n", inode->i_ino);
3228 dump_stack();
3229 }
3230 spin_unlock(&BTRFS_I(inode)->root->list_lock);
3231
3232 while(1) {
3233 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
3234 if (!ordered)
3235 break;
3236 else {
3237 printk("found ordered extent %Lu %Lu\n",
3238 ordered->file_offset, ordered->len);
3239 btrfs_remove_ordered_extent(inode, ordered);
3240 btrfs_put_ordered_extent(ordered);
3241 btrfs_put_ordered_extent(ordered);
3242 }
3243 }
3244 btrfs_drop_extent_cache(inode, 0, (u64)-1);
3245 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
3246 }
3247
3248 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3249 static void init_once(void *foo)
3250 #elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3251 static void init_once(struct kmem_cache * cachep, void *foo)
3252 #else
3253 static void init_once(void * foo, struct kmem_cache * cachep,
3254 unsigned long flags)
3255 #endif
3256 {
3257 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
3258
3259 inode_init_once(&ei->vfs_inode);
3260 }
3261
3262 void btrfs_destroy_cachep(void)
3263 {
3264 if (btrfs_inode_cachep)
3265 kmem_cache_destroy(btrfs_inode_cachep);
3266 if (btrfs_trans_handle_cachep)
3267 kmem_cache_destroy(btrfs_trans_handle_cachep);
3268 if (btrfs_transaction_cachep)
3269 kmem_cache_destroy(btrfs_transaction_cachep);
3270 if (btrfs_bit_radix_cachep)
3271 kmem_cache_destroy(btrfs_bit_radix_cachep);
3272 if (btrfs_path_cachep)
3273 kmem_cache_destroy(btrfs_path_cachep);
3274 }
3275
3276 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
3277 unsigned long extra_flags,
3278 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3279 void (*ctor)(void *)
3280 #elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3281 void (*ctor)(struct kmem_cache *, void *)
3282 #else
3283 void (*ctor)(void *, struct kmem_cache *,
3284 unsigned long)
3285 #endif
3286 )
3287 {
3288 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
3289 SLAB_MEM_SPREAD | extra_flags), ctor
3290 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3291 ,NULL
3292 #endif
3293 );
3294 }
3295
3296 int btrfs_init_cachep(void)
3297 {
3298 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
3299 sizeof(struct btrfs_inode),
3300 0, init_once);
3301 if (!btrfs_inode_cachep)
3302 goto fail;
3303 btrfs_trans_handle_cachep =
3304 btrfs_cache_create("btrfs_trans_handle_cache",
3305 sizeof(struct btrfs_trans_handle),
3306 0, NULL);
3307 if (!btrfs_trans_handle_cachep)
3308 goto fail;
3309 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
3310 sizeof(struct btrfs_transaction),
3311 0, NULL);
3312 if (!btrfs_transaction_cachep)
3313 goto fail;
3314 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
3315 sizeof(struct btrfs_path),
3316 0, NULL);
3317 if (!btrfs_path_cachep)
3318 goto fail;
3319 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
3320 SLAB_DESTROY_BY_RCU, NULL);
3321 if (!btrfs_bit_radix_cachep)
3322 goto fail;
3323 return 0;
3324 fail:
3325 btrfs_destroy_cachep();
3326 return -ENOMEM;
3327 }
3328
3329 static int btrfs_getattr(struct vfsmount *mnt,
3330 struct dentry *dentry, struct kstat *stat)
3331 {
3332 struct inode *inode = dentry->d_inode;
3333 generic_fillattr(inode, stat);
3334 stat->blksize = PAGE_CACHE_SIZE;
3335 stat->blocks = inode->i_blocks + (BTRFS_I(inode)->delalloc_bytes >> 9);
3336 return 0;
3337 }
3338
3339 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
3340 struct inode * new_dir,struct dentry *new_dentry)
3341 {
3342 struct btrfs_trans_handle *trans;
3343 struct btrfs_root *root = BTRFS_I(old_dir)->root;
3344 struct inode *new_inode = new_dentry->d_inode;
3345 struct inode *old_inode = old_dentry->d_inode;
3346 struct timespec ctime = CURRENT_TIME;
3347 int ret;
3348
3349 if (S_ISDIR(old_inode->i_mode) && new_inode &&
3350 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
3351 return -ENOTEMPTY;
3352 }
3353
3354 ret = btrfs_check_free_space(root, 1, 0);
3355 if (ret)
3356 goto out_unlock;
3357
3358 trans = btrfs_start_transaction(root, 1);
3359
3360 btrfs_set_trans_block_group(trans, new_dir);
3361
3362 old_dentry->d_inode->i_nlink++;
3363 old_dir->i_ctime = old_dir->i_mtime = ctime;
3364 new_dir->i_ctime = new_dir->i_mtime = ctime;
3365 old_inode->i_ctime = ctime;
3366
3367 ret = btrfs_unlink_trans(trans, root, old_dir, old_dentry);
3368 if (ret)
3369 goto out_fail;
3370
3371 if (new_inode) {
3372 new_inode->i_ctime = CURRENT_TIME;
3373 ret = btrfs_unlink_trans(trans, root, new_dir, new_dentry);
3374 if (ret)
3375 goto out_fail;
3376 if (new_inode->i_nlink == 0) {
3377 ret = btrfs_orphan_add(trans, new_inode);
3378 if (ret)
3379 goto out_fail;
3380 }
3381 }
3382 ret = btrfs_set_inode_index(new_dir, old_inode);
3383 if (ret)
3384 goto out_fail;
3385
3386 ret = btrfs_add_link(trans, new_dentry, old_inode, 1);
3387 if (ret)
3388 goto out_fail;
3389
3390 out_fail:
3391 btrfs_end_transaction_throttle(trans, root);
3392 out_unlock:
3393 return ret;
3394 }
3395
3396 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
3397 const char *symname)
3398 {
3399 struct btrfs_trans_handle *trans;
3400 struct btrfs_root *root = BTRFS_I(dir)->root;
3401 struct btrfs_path *path;
3402 struct btrfs_key key;
3403 struct inode *inode = NULL;
3404 int err;
3405 int drop_inode = 0;
3406 u64 objectid;
3407 int name_len;
3408 int datasize;
3409 unsigned long ptr;
3410 struct btrfs_file_extent_item *ei;
3411 struct extent_buffer *leaf;
3412 unsigned long nr = 0;
3413
3414 name_len = strlen(symname) + 1;
3415 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
3416 return -ENAMETOOLONG;
3417
3418 err = btrfs_check_free_space(root, 1, 0);
3419 if (err)
3420 goto out_fail;
3421
3422 trans = btrfs_start_transaction(root, 1);
3423 btrfs_set_trans_block_group(trans, dir);
3424
3425 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3426 if (err) {
3427 err = -ENOSPC;
3428 goto out_unlock;
3429 }
3430
3431 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3432 dentry->d_name.len,
3433 dentry->d_parent->d_inode->i_ino, objectid,
3434 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO);
3435 err = PTR_ERR(inode);
3436 if (IS_ERR(inode))
3437 goto out_unlock;
3438
3439 err = btrfs_init_acl(inode, dir);
3440 if (err) {
3441 drop_inode = 1;
3442 goto out_unlock;
3443 }
3444
3445 btrfs_set_trans_block_group(trans, inode);
3446 err = btrfs_add_nondir(trans, dentry, inode, 0);
3447 if (err)
3448 drop_inode = 1;
3449 else {
3450 inode->i_mapping->a_ops = &btrfs_aops;
3451 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3452 inode->i_fop = &btrfs_file_operations;
3453 inode->i_op = &btrfs_file_inode_operations;
3454 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3455 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3456 inode->i_mapping, GFP_NOFS);
3457 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3458 inode->i_mapping, GFP_NOFS);
3459 mutex_init(&BTRFS_I(inode)->csum_mutex);
3460 mutex_init(&BTRFS_I(inode)->extent_mutex);
3461 BTRFS_I(inode)->delalloc_bytes = 0;
3462 BTRFS_I(inode)->disk_i_size = 0;
3463 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3464 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3465 }
3466 dir->i_sb->s_dirt = 1;
3467 btrfs_update_inode_block_group(trans, inode);
3468 btrfs_update_inode_block_group(trans, dir);
3469 if (drop_inode)
3470 goto out_unlock;
3471
3472 path = btrfs_alloc_path();
3473 BUG_ON(!path);
3474 key.objectid = inode->i_ino;
3475 key.offset = 0;
3476 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
3477 datasize = btrfs_file_extent_calc_inline_size(name_len);
3478 err = btrfs_insert_empty_item(trans, root, path, &key,
3479 datasize);
3480 if (err) {
3481 drop_inode = 1;
3482 goto out_unlock;
3483 }
3484 leaf = path->nodes[0];
3485 ei = btrfs_item_ptr(leaf, path->slots[0],
3486 struct btrfs_file_extent_item);
3487 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
3488 btrfs_set_file_extent_type(leaf, ei,
3489 BTRFS_FILE_EXTENT_INLINE);
3490 ptr = btrfs_file_extent_inline_start(ei);
3491 write_extent_buffer(leaf, symname, ptr, name_len);
3492 btrfs_mark_buffer_dirty(leaf);
3493 btrfs_free_path(path);
3494
3495 inode->i_op = &btrfs_symlink_inode_operations;
3496 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3497 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3498 btrfs_i_size_write(inode, name_len - 1);
3499 err = btrfs_update_inode(trans, root, inode);
3500 if (err)
3501 drop_inode = 1;
3502
3503 out_unlock:
3504 nr = trans->blocks_used;
3505 btrfs_end_transaction_throttle(trans, root);
3506 out_fail:
3507 if (drop_inode) {
3508 inode_dec_link_count(inode);
3509 iput(inode);
3510 }
3511 btrfs_btree_balance_dirty(root, nr);
3512 return err;
3513 }
3514
3515 static int btrfs_set_page_dirty(struct page *page)
3516 {
3517 return __set_page_dirty_nobuffers(page);
3518 }
3519
3520 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3521 static int btrfs_permission(struct inode *inode, int mask)
3522 #else
3523 static int btrfs_permission(struct inode *inode, int mask,
3524 struct nameidata *nd)
3525 #endif
3526 {
3527 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
3528 return -EACCES;
3529 return generic_permission(inode, mask, btrfs_check_acl);
3530 }
3531
3532 static struct inode_operations btrfs_dir_inode_operations = {
3533 .lookup = btrfs_lookup,
3534 .create = btrfs_create,
3535 .unlink = btrfs_unlink,
3536 .link = btrfs_link,
3537 .mkdir = btrfs_mkdir,
3538 .rmdir = btrfs_rmdir,
3539 .rename = btrfs_rename,
3540 .symlink = btrfs_symlink,
3541 .setattr = btrfs_setattr,
3542 .mknod = btrfs_mknod,
3543 .setxattr = generic_setxattr,
3544 .getxattr = generic_getxattr,
3545 .listxattr = btrfs_listxattr,
3546 .removexattr = generic_removexattr,
3547 .permission = btrfs_permission,
3548 };
3549 static struct inode_operations btrfs_dir_ro_inode_operations = {
3550 .lookup = btrfs_lookup,
3551 .permission = btrfs_permission,
3552 };
3553 static struct file_operations btrfs_dir_file_operations = {
3554 .llseek = generic_file_llseek,
3555 .read = generic_read_dir,
3556 .readdir = btrfs_readdir,
3557 .unlocked_ioctl = btrfs_ioctl,
3558 #ifdef CONFIG_COMPAT
3559 .compat_ioctl = btrfs_ioctl,
3560 #endif
3561 .release = btrfs_release_file,
3562 };
3563
3564 static struct extent_io_ops btrfs_extent_io_ops = {
3565 .fill_delalloc = run_delalloc_range,
3566 .submit_bio_hook = btrfs_submit_bio_hook,
3567 .merge_bio_hook = btrfs_merge_bio_hook,
3568 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
3569 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
3570 .writepage_start_hook = btrfs_writepage_start_hook,
3571 .readpage_io_failed_hook = btrfs_io_failed_hook,
3572 .set_bit_hook = btrfs_set_bit_hook,
3573 .clear_bit_hook = btrfs_clear_bit_hook,
3574 };
3575
3576 static struct address_space_operations btrfs_aops = {
3577 .readpage = btrfs_readpage,
3578 .writepage = btrfs_writepage,
3579 .writepages = btrfs_writepages,
3580 .readpages = btrfs_readpages,
3581 .sync_page = block_sync_page,
3582 .bmap = btrfs_bmap,
3583 .direct_IO = btrfs_direct_IO,
3584 .invalidatepage = btrfs_invalidatepage,
3585 .releasepage = btrfs_releasepage,
3586 .set_page_dirty = btrfs_set_page_dirty,
3587 };
3588
3589 static struct address_space_operations btrfs_symlink_aops = {
3590 .readpage = btrfs_readpage,
3591 .writepage = btrfs_writepage,
3592 .invalidatepage = btrfs_invalidatepage,
3593 .releasepage = btrfs_releasepage,
3594 };
3595
3596 static struct inode_operations btrfs_file_inode_operations = {
3597 .truncate = btrfs_truncate,
3598 .getattr = btrfs_getattr,
3599 .setattr = btrfs_setattr,
3600 .setxattr = generic_setxattr,
3601 .getxattr = generic_getxattr,
3602 .listxattr = btrfs_listxattr,
3603 .removexattr = generic_removexattr,
3604 .permission = btrfs_permission,
3605 };
3606 static struct inode_operations btrfs_special_inode_operations = {
3607 .getattr = btrfs_getattr,
3608 .setattr = btrfs_setattr,
3609 .permission = btrfs_permission,
3610 .setxattr = generic_setxattr,
3611 .getxattr = generic_getxattr,
3612 .listxattr = btrfs_listxattr,
3613 .removexattr = generic_removexattr,
3614 };
3615 static struct inode_operations btrfs_symlink_inode_operations = {
3616 .readlink = generic_readlink,
3617 .follow_link = page_follow_link_light,
3618 .put_link = page_put_link,
3619 .permission = btrfs_permission,
3620 };
This page took 0.104005 seconds and 6 git commands to generate.